1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *ino_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = META_MAPPING(sbi); 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 f2fs_wait_on_page_writeback(page, META); 42 SetPageUptodate(page); 43 return page; 44 } 45 46 /* 47 * We guarantee no failure on the returned page. 48 */ 49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 50 { 51 struct address_space *mapping = META_MAPPING(sbi); 52 struct page *page; 53 repeat: 54 page = grab_cache_page(mapping, index); 55 if (!page) { 56 cond_resched(); 57 goto repeat; 58 } 59 if (PageUptodate(page)) 60 goto out; 61 62 if (f2fs_submit_page_bio(sbi, page, index, 63 READ_SYNC | REQ_META | REQ_PRIO)) 64 goto repeat; 65 66 lock_page(page); 67 if (unlikely(page->mapping != mapping)) { 68 f2fs_put_page(page, 1); 69 goto repeat; 70 } 71 out: 72 return page; 73 } 74 75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type) 76 { 77 switch (type) { 78 case META_NAT: 79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK; 80 case META_SIT: 81 return SIT_BLK_CNT(sbi); 82 case META_SSA: 83 case META_CP: 84 return 0; 85 default: 86 BUG(); 87 } 88 } 89 90 /* 91 * Readahead CP/NAT/SIT/SSA pages 92 */ 93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type) 94 { 95 block_t prev_blk_addr = 0; 96 struct page *page; 97 int blkno = start; 98 int max_blks = get_max_meta_blks(sbi, type); 99 100 struct f2fs_io_info fio = { 101 .type = META, 102 .rw = READ_SYNC | REQ_META | REQ_PRIO 103 }; 104 105 for (; nrpages-- > 0; blkno++) { 106 block_t blk_addr; 107 108 switch (type) { 109 case META_NAT: 110 /* get nat block addr */ 111 if (unlikely(blkno >= max_blks)) 112 blkno = 0; 113 blk_addr = current_nat_addr(sbi, 114 blkno * NAT_ENTRY_PER_BLOCK); 115 break; 116 case META_SIT: 117 /* get sit block addr */ 118 if (unlikely(blkno >= max_blks)) 119 goto out; 120 blk_addr = current_sit_addr(sbi, 121 blkno * SIT_ENTRY_PER_BLOCK); 122 if (blkno != start && prev_blk_addr + 1 != blk_addr) 123 goto out; 124 prev_blk_addr = blk_addr; 125 break; 126 case META_SSA: 127 case META_CP: 128 /* get ssa/cp block addr */ 129 blk_addr = blkno; 130 break; 131 default: 132 BUG(); 133 } 134 135 page = grab_cache_page(META_MAPPING(sbi), blk_addr); 136 if (!page) 137 continue; 138 if (PageUptodate(page)) { 139 f2fs_put_page(page, 1); 140 continue; 141 } 142 143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio); 144 f2fs_put_page(page, 0); 145 } 146 out: 147 f2fs_submit_merged_bio(sbi, META, READ); 148 return blkno - start; 149 } 150 151 static int f2fs_write_meta_page(struct page *page, 152 struct writeback_control *wbc) 153 { 154 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 155 156 trace_f2fs_writepage(page, META); 157 158 if (unlikely(sbi->por_doing)) 159 goto redirty_out; 160 if (wbc->for_reclaim) 161 goto redirty_out; 162 if (unlikely(f2fs_cp_error(sbi))) 163 goto redirty_out; 164 165 f2fs_wait_on_page_writeback(page, META); 166 write_meta_page(sbi, page); 167 dec_page_count(sbi, F2FS_DIRTY_META); 168 unlock_page(page); 169 return 0; 170 171 redirty_out: 172 redirty_page_for_writepage(wbc, page); 173 return AOP_WRITEPAGE_ACTIVATE; 174 } 175 176 static int f2fs_write_meta_pages(struct address_space *mapping, 177 struct writeback_control *wbc) 178 { 179 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 180 long diff, written; 181 182 trace_f2fs_writepages(mapping->host, wbc, META); 183 184 /* collect a number of dirty meta pages and write together */ 185 if (wbc->for_kupdate || 186 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 187 goto skip_write; 188 189 /* if mounting is failed, skip writing node pages */ 190 mutex_lock(&sbi->cp_mutex); 191 diff = nr_pages_to_write(sbi, META, wbc); 192 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 193 mutex_unlock(&sbi->cp_mutex); 194 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 195 return 0; 196 197 skip_write: 198 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 199 return 0; 200 } 201 202 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 203 long nr_to_write) 204 { 205 struct address_space *mapping = META_MAPPING(sbi); 206 pgoff_t index = 0, end = LONG_MAX; 207 struct pagevec pvec; 208 long nwritten = 0; 209 struct writeback_control wbc = { 210 .for_reclaim = 0, 211 }; 212 213 pagevec_init(&pvec, 0); 214 215 while (index <= end) { 216 int i, nr_pages; 217 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 218 PAGECACHE_TAG_DIRTY, 219 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 220 if (unlikely(nr_pages == 0)) 221 break; 222 223 for (i = 0; i < nr_pages; i++) { 224 struct page *page = pvec.pages[i]; 225 226 lock_page(page); 227 228 if (unlikely(page->mapping != mapping)) { 229 continue_unlock: 230 unlock_page(page); 231 continue; 232 } 233 if (!PageDirty(page)) { 234 /* someone wrote it for us */ 235 goto continue_unlock; 236 } 237 238 if (!clear_page_dirty_for_io(page)) 239 goto continue_unlock; 240 241 if (f2fs_write_meta_page(page, &wbc)) { 242 unlock_page(page); 243 break; 244 } 245 nwritten++; 246 if (unlikely(nwritten >= nr_to_write)) 247 break; 248 } 249 pagevec_release(&pvec); 250 cond_resched(); 251 } 252 253 if (nwritten) 254 f2fs_submit_merged_bio(sbi, type, WRITE); 255 256 return nwritten; 257 } 258 259 static int f2fs_set_meta_page_dirty(struct page *page) 260 { 261 trace_f2fs_set_page_dirty(page, META); 262 263 SetPageUptodate(page); 264 if (!PageDirty(page)) { 265 __set_page_dirty_nobuffers(page); 266 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 267 return 1; 268 } 269 return 0; 270 } 271 272 const struct address_space_operations f2fs_meta_aops = { 273 .writepage = f2fs_write_meta_page, 274 .writepages = f2fs_write_meta_pages, 275 .set_page_dirty = f2fs_set_meta_page_dirty, 276 }; 277 278 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 279 { 280 struct ino_entry *e; 281 retry: 282 spin_lock(&sbi->ino_lock[type]); 283 284 e = radix_tree_lookup(&sbi->ino_root[type], ino); 285 if (!e) { 286 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 287 if (!e) { 288 spin_unlock(&sbi->ino_lock[type]); 289 goto retry; 290 } 291 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) { 292 spin_unlock(&sbi->ino_lock[type]); 293 kmem_cache_free(ino_entry_slab, e); 294 goto retry; 295 } 296 memset(e, 0, sizeof(struct ino_entry)); 297 e->ino = ino; 298 299 list_add_tail(&e->list, &sbi->ino_list[type]); 300 } 301 spin_unlock(&sbi->ino_lock[type]); 302 } 303 304 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 305 { 306 struct ino_entry *e; 307 308 spin_lock(&sbi->ino_lock[type]); 309 e = radix_tree_lookup(&sbi->ino_root[type], ino); 310 if (e) { 311 list_del(&e->list); 312 radix_tree_delete(&sbi->ino_root[type], ino); 313 if (type == ORPHAN_INO) 314 sbi->n_orphans--; 315 spin_unlock(&sbi->ino_lock[type]); 316 kmem_cache_free(ino_entry_slab, e); 317 return; 318 } 319 spin_unlock(&sbi->ino_lock[type]); 320 } 321 322 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 323 { 324 /* add new dirty ino entry into list */ 325 __add_ino_entry(sbi, ino, type); 326 } 327 328 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 329 { 330 /* remove dirty ino entry from list */ 331 __remove_ino_entry(sbi, ino, type); 332 } 333 334 /* mode should be APPEND_INO or UPDATE_INO */ 335 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 336 { 337 struct ino_entry *e; 338 spin_lock(&sbi->ino_lock[mode]); 339 e = radix_tree_lookup(&sbi->ino_root[mode], ino); 340 spin_unlock(&sbi->ino_lock[mode]); 341 return e ? true : false; 342 } 343 344 void release_dirty_inode(struct f2fs_sb_info *sbi) 345 { 346 struct ino_entry *e, *tmp; 347 int i; 348 349 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 350 spin_lock(&sbi->ino_lock[i]); 351 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) { 352 list_del(&e->list); 353 radix_tree_delete(&sbi->ino_root[i], e->ino); 354 kmem_cache_free(ino_entry_slab, e); 355 } 356 spin_unlock(&sbi->ino_lock[i]); 357 } 358 } 359 360 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 361 { 362 int err = 0; 363 364 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 365 if (unlikely(sbi->n_orphans >= sbi->max_orphans)) 366 err = -ENOSPC; 367 else 368 sbi->n_orphans++; 369 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 370 371 return err; 372 } 373 374 void release_orphan_inode(struct f2fs_sb_info *sbi) 375 { 376 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 377 f2fs_bug_on(sbi, sbi->n_orphans == 0); 378 sbi->n_orphans--; 379 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 380 } 381 382 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 383 { 384 /* add new orphan ino entry into list */ 385 __add_ino_entry(sbi, ino, ORPHAN_INO); 386 } 387 388 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 389 { 390 /* remove orphan entry from orphan list */ 391 __remove_ino_entry(sbi, ino, ORPHAN_INO); 392 } 393 394 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 395 { 396 struct inode *inode = f2fs_iget(sbi->sb, ino); 397 f2fs_bug_on(sbi, IS_ERR(inode)); 398 clear_nlink(inode); 399 400 /* truncate all the data during iput */ 401 iput(inode); 402 } 403 404 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 405 { 406 block_t start_blk, orphan_blkaddr, i, j; 407 408 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 409 return; 410 411 sbi->por_doing = true; 412 413 start_blk = __start_cp_addr(sbi) + 1 + 414 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 415 orphan_blkaddr = __start_sum_addr(sbi) - 1; 416 417 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); 418 419 for (i = 0; i < orphan_blkaddr; i++) { 420 struct page *page = get_meta_page(sbi, start_blk + i); 421 struct f2fs_orphan_block *orphan_blk; 422 423 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 424 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 425 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 426 recover_orphan_inode(sbi, ino); 427 } 428 f2fs_put_page(page, 1); 429 } 430 /* clear Orphan Flag */ 431 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 432 sbi->por_doing = false; 433 return; 434 } 435 436 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 437 { 438 struct list_head *head; 439 struct f2fs_orphan_block *orphan_blk = NULL; 440 unsigned int nentries = 0; 441 unsigned short index; 442 unsigned short orphan_blocks = 443 (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans); 444 struct page *page = NULL; 445 struct ino_entry *orphan = NULL; 446 447 for (index = 0; index < orphan_blocks; index++) 448 grab_meta_page(sbi, start_blk + index); 449 450 index = 1; 451 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 452 head = &sbi->ino_list[ORPHAN_INO]; 453 454 /* loop for each orphan inode entry and write them in Jornal block */ 455 list_for_each_entry(orphan, head, list) { 456 if (!page) { 457 page = find_get_page(META_MAPPING(sbi), start_blk++); 458 f2fs_bug_on(sbi, !page); 459 orphan_blk = 460 (struct f2fs_orphan_block *)page_address(page); 461 memset(orphan_blk, 0, sizeof(*orphan_blk)); 462 f2fs_put_page(page, 0); 463 } 464 465 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 466 467 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 468 /* 469 * an orphan block is full of 1020 entries, 470 * then we need to flush current orphan blocks 471 * and bring another one in memory 472 */ 473 orphan_blk->blk_addr = cpu_to_le16(index); 474 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 475 orphan_blk->entry_count = cpu_to_le32(nentries); 476 set_page_dirty(page); 477 f2fs_put_page(page, 1); 478 index++; 479 nentries = 0; 480 page = NULL; 481 } 482 } 483 484 if (page) { 485 orphan_blk->blk_addr = cpu_to_le16(index); 486 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 487 orphan_blk->entry_count = cpu_to_le32(nentries); 488 set_page_dirty(page); 489 f2fs_put_page(page, 1); 490 } 491 492 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 493 } 494 495 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 496 block_t cp_addr, unsigned long long *version) 497 { 498 struct page *cp_page_1, *cp_page_2 = NULL; 499 unsigned long blk_size = sbi->blocksize; 500 struct f2fs_checkpoint *cp_block; 501 unsigned long long cur_version = 0, pre_version = 0; 502 size_t crc_offset; 503 __u32 crc = 0; 504 505 /* Read the 1st cp block in this CP pack */ 506 cp_page_1 = get_meta_page(sbi, cp_addr); 507 508 /* get the version number */ 509 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 510 crc_offset = le32_to_cpu(cp_block->checksum_offset); 511 if (crc_offset >= blk_size) 512 goto invalid_cp1; 513 514 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 515 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 516 goto invalid_cp1; 517 518 pre_version = cur_cp_version(cp_block); 519 520 /* Read the 2nd cp block in this CP pack */ 521 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 522 cp_page_2 = get_meta_page(sbi, cp_addr); 523 524 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 525 crc_offset = le32_to_cpu(cp_block->checksum_offset); 526 if (crc_offset >= blk_size) 527 goto invalid_cp2; 528 529 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 530 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 531 goto invalid_cp2; 532 533 cur_version = cur_cp_version(cp_block); 534 535 if (cur_version == pre_version) { 536 *version = cur_version; 537 f2fs_put_page(cp_page_2, 1); 538 return cp_page_1; 539 } 540 invalid_cp2: 541 f2fs_put_page(cp_page_2, 1); 542 invalid_cp1: 543 f2fs_put_page(cp_page_1, 1); 544 return NULL; 545 } 546 547 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 548 { 549 struct f2fs_checkpoint *cp_block; 550 struct f2fs_super_block *fsb = sbi->raw_super; 551 struct page *cp1, *cp2, *cur_page; 552 unsigned long blk_size = sbi->blocksize; 553 unsigned long long cp1_version = 0, cp2_version = 0; 554 unsigned long long cp_start_blk_no; 555 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 556 block_t cp_blk_no; 557 int i; 558 559 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 560 if (!sbi->ckpt) 561 return -ENOMEM; 562 /* 563 * Finding out valid cp block involves read both 564 * sets( cp pack1 and cp pack 2) 565 */ 566 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 567 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 568 569 /* The second checkpoint pack should start at the next segment */ 570 cp_start_blk_no += ((unsigned long long)1) << 571 le32_to_cpu(fsb->log_blocks_per_seg); 572 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 573 574 if (cp1 && cp2) { 575 if (ver_after(cp2_version, cp1_version)) 576 cur_page = cp2; 577 else 578 cur_page = cp1; 579 } else if (cp1) { 580 cur_page = cp1; 581 } else if (cp2) { 582 cur_page = cp2; 583 } else { 584 goto fail_no_cp; 585 } 586 587 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 588 memcpy(sbi->ckpt, cp_block, blk_size); 589 590 if (cp_blks <= 1) 591 goto done; 592 593 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 594 if (cur_page == cp2) 595 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 596 597 for (i = 1; i < cp_blks; i++) { 598 void *sit_bitmap_ptr; 599 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 600 601 cur_page = get_meta_page(sbi, cp_blk_no + i); 602 sit_bitmap_ptr = page_address(cur_page); 603 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 604 f2fs_put_page(cur_page, 1); 605 } 606 done: 607 f2fs_put_page(cp1, 1); 608 f2fs_put_page(cp2, 1); 609 return 0; 610 611 fail_no_cp: 612 kfree(sbi->ckpt); 613 return -EINVAL; 614 } 615 616 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 617 { 618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 619 620 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 621 return -EEXIST; 622 623 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 624 F2FS_I(inode)->dirty_dir = new; 625 list_add_tail(&new->list, &sbi->dir_inode_list); 626 stat_inc_dirty_dir(sbi); 627 return 0; 628 } 629 630 void update_dirty_page(struct inode *inode, struct page *page) 631 { 632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 633 struct dir_inode_entry *new; 634 int ret = 0; 635 636 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 637 return; 638 639 if (!S_ISDIR(inode->i_mode)) { 640 inode_inc_dirty_pages(inode); 641 goto out; 642 } 643 644 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 645 new->inode = inode; 646 INIT_LIST_HEAD(&new->list); 647 648 spin_lock(&sbi->dir_inode_lock); 649 ret = __add_dirty_inode(inode, new); 650 inode_inc_dirty_pages(inode); 651 spin_unlock(&sbi->dir_inode_lock); 652 653 if (ret) 654 kmem_cache_free(inode_entry_slab, new); 655 out: 656 SetPagePrivate(page); 657 } 658 659 void add_dirty_dir_inode(struct inode *inode) 660 { 661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 662 struct dir_inode_entry *new = 663 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 664 int ret = 0; 665 666 new->inode = inode; 667 INIT_LIST_HEAD(&new->list); 668 669 spin_lock(&sbi->dir_inode_lock); 670 ret = __add_dirty_inode(inode, new); 671 spin_unlock(&sbi->dir_inode_lock); 672 673 if (ret) 674 kmem_cache_free(inode_entry_slab, new); 675 } 676 677 void remove_dirty_dir_inode(struct inode *inode) 678 { 679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 680 struct dir_inode_entry *entry; 681 682 if (!S_ISDIR(inode->i_mode)) 683 return; 684 685 spin_lock(&sbi->dir_inode_lock); 686 if (get_dirty_pages(inode) || 687 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 688 spin_unlock(&sbi->dir_inode_lock); 689 return; 690 } 691 692 entry = F2FS_I(inode)->dirty_dir; 693 list_del(&entry->list); 694 F2FS_I(inode)->dirty_dir = NULL; 695 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 696 stat_dec_dirty_dir(sbi); 697 spin_unlock(&sbi->dir_inode_lock); 698 kmem_cache_free(inode_entry_slab, entry); 699 700 /* Only from the recovery routine */ 701 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 702 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 703 iput(inode); 704 } 705 } 706 707 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 708 { 709 struct list_head *head; 710 struct dir_inode_entry *entry; 711 struct inode *inode; 712 retry: 713 spin_lock(&sbi->dir_inode_lock); 714 715 head = &sbi->dir_inode_list; 716 if (list_empty(head)) { 717 spin_unlock(&sbi->dir_inode_lock); 718 return; 719 } 720 entry = list_entry(head->next, struct dir_inode_entry, list); 721 inode = igrab(entry->inode); 722 spin_unlock(&sbi->dir_inode_lock); 723 if (inode) { 724 filemap_fdatawrite(inode->i_mapping); 725 iput(inode); 726 } else { 727 /* 728 * We should submit bio, since it exists several 729 * wribacking dentry pages in the freeing inode. 730 */ 731 f2fs_submit_merged_bio(sbi, DATA, WRITE); 732 } 733 goto retry; 734 } 735 736 /* 737 * Freeze all the FS-operations for checkpoint. 738 */ 739 static int block_operations(struct f2fs_sb_info *sbi) 740 { 741 struct writeback_control wbc = { 742 .sync_mode = WB_SYNC_ALL, 743 .nr_to_write = LONG_MAX, 744 .for_reclaim = 0, 745 }; 746 struct blk_plug plug; 747 int err = 0; 748 749 blk_start_plug(&plug); 750 751 retry_flush_dents: 752 f2fs_lock_all(sbi); 753 /* write all the dirty dentry pages */ 754 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 755 f2fs_unlock_all(sbi); 756 sync_dirty_dir_inodes(sbi); 757 if (unlikely(f2fs_cp_error(sbi))) { 758 err = -EIO; 759 goto out; 760 } 761 goto retry_flush_dents; 762 } 763 764 /* 765 * POR: we should ensure that there are no dirty node pages 766 * until finishing nat/sit flush. 767 */ 768 retry_flush_nodes: 769 down_write(&sbi->node_write); 770 771 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 772 up_write(&sbi->node_write); 773 sync_node_pages(sbi, 0, &wbc); 774 if (unlikely(f2fs_cp_error(sbi))) { 775 f2fs_unlock_all(sbi); 776 err = -EIO; 777 goto out; 778 } 779 goto retry_flush_nodes; 780 } 781 out: 782 blk_finish_plug(&plug); 783 return err; 784 } 785 786 static void unblock_operations(struct f2fs_sb_info *sbi) 787 { 788 up_write(&sbi->node_write); 789 f2fs_unlock_all(sbi); 790 } 791 792 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 793 { 794 DEFINE_WAIT(wait); 795 796 for (;;) { 797 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 798 799 if (!get_pages(sbi, F2FS_WRITEBACK)) 800 break; 801 802 io_schedule(); 803 } 804 finish_wait(&sbi->cp_wait, &wait); 805 } 806 807 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 808 { 809 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 810 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 811 nid_t last_nid = 0; 812 block_t start_blk; 813 struct page *cp_page; 814 unsigned int data_sum_blocks, orphan_blocks; 815 __u32 crc32 = 0; 816 void *kaddr; 817 int i; 818 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 819 820 /* 821 * This avoids to conduct wrong roll-forward operations and uses 822 * metapages, so should be called prior to sync_meta_pages below. 823 */ 824 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 825 826 /* Flush all the NAT/SIT pages */ 827 while (get_pages(sbi, F2FS_DIRTY_META)) { 828 sync_meta_pages(sbi, META, LONG_MAX); 829 if (unlikely(f2fs_cp_error(sbi))) 830 return; 831 } 832 833 next_free_nid(sbi, &last_nid); 834 835 /* 836 * modify checkpoint 837 * version number is already updated 838 */ 839 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 840 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 841 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 842 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 843 ckpt->cur_node_segno[i] = 844 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 845 ckpt->cur_node_blkoff[i] = 846 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 847 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 848 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 849 } 850 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 851 ckpt->cur_data_segno[i] = 852 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 853 ckpt->cur_data_blkoff[i] = 854 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 855 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 856 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 857 } 858 859 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 860 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 861 ckpt->next_free_nid = cpu_to_le32(last_nid); 862 863 /* 2 cp + n data seg summary + orphan inode blocks */ 864 data_sum_blocks = npages_for_summary_flush(sbi); 865 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 866 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 867 else 868 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 869 870 orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans); 871 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 872 orphan_blocks); 873 874 if (is_umount) { 875 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 876 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 877 cp_payload_blks + data_sum_blocks + 878 orphan_blocks + NR_CURSEG_NODE_TYPE); 879 } else { 880 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 881 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 882 cp_payload_blks + data_sum_blocks + 883 orphan_blocks); 884 } 885 886 if (sbi->n_orphans) 887 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 888 else 889 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 890 891 if (sbi->need_fsck) 892 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 893 894 /* update SIT/NAT bitmap */ 895 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 896 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 897 898 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 899 *((__le32 *)((unsigned char *)ckpt + 900 le32_to_cpu(ckpt->checksum_offset))) 901 = cpu_to_le32(crc32); 902 903 start_blk = __start_cp_addr(sbi); 904 905 /* write out checkpoint buffer at block 0 */ 906 cp_page = grab_meta_page(sbi, start_blk++); 907 kaddr = page_address(cp_page); 908 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 909 set_page_dirty(cp_page); 910 f2fs_put_page(cp_page, 1); 911 912 for (i = 1; i < 1 + cp_payload_blks; i++) { 913 cp_page = grab_meta_page(sbi, start_blk++); 914 kaddr = page_address(cp_page); 915 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, 916 (1 << sbi->log_blocksize)); 917 set_page_dirty(cp_page); 918 f2fs_put_page(cp_page, 1); 919 } 920 921 if (sbi->n_orphans) { 922 write_orphan_inodes(sbi, start_blk); 923 start_blk += orphan_blocks; 924 } 925 926 write_data_summaries(sbi, start_blk); 927 start_blk += data_sum_blocks; 928 if (is_umount) { 929 write_node_summaries(sbi, start_blk); 930 start_blk += NR_CURSEG_NODE_TYPE; 931 } 932 933 /* writeout checkpoint block */ 934 cp_page = grab_meta_page(sbi, start_blk); 935 kaddr = page_address(cp_page); 936 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 937 set_page_dirty(cp_page); 938 f2fs_put_page(cp_page, 1); 939 940 /* wait for previous submitted node/meta pages writeback */ 941 wait_on_all_pages_writeback(sbi); 942 943 if (unlikely(f2fs_cp_error(sbi))) 944 return; 945 946 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 947 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 948 949 /* update user_block_counts */ 950 sbi->last_valid_block_count = sbi->total_valid_block_count; 951 sbi->alloc_valid_block_count = 0; 952 953 /* Here, we only have one bio having CP pack */ 954 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 955 956 release_dirty_inode(sbi); 957 958 if (unlikely(f2fs_cp_error(sbi))) 959 return; 960 961 clear_prefree_segments(sbi); 962 F2FS_RESET_SB_DIRT(sbi); 963 } 964 965 /* 966 * We guarantee that this checkpoint procedure will not fail. 967 */ 968 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 969 { 970 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 971 unsigned long long ckpt_ver; 972 973 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 974 975 mutex_lock(&sbi->cp_mutex); 976 977 if (!sbi->s_dirty) 978 goto out; 979 if (unlikely(f2fs_cp_error(sbi))) 980 goto out; 981 if (block_operations(sbi)) 982 goto out; 983 984 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 985 986 f2fs_submit_merged_bio(sbi, DATA, WRITE); 987 f2fs_submit_merged_bio(sbi, NODE, WRITE); 988 f2fs_submit_merged_bio(sbi, META, WRITE); 989 990 /* 991 * update checkpoint pack index 992 * Increase the version number so that 993 * SIT entries and seg summaries are written at correct place 994 */ 995 ckpt_ver = cur_cp_version(ckpt); 996 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 997 998 /* write cached NAT/SIT entries to NAT/SIT area */ 999 flush_nat_entries(sbi); 1000 flush_sit_entries(sbi); 1001 1002 /* unlock all the fs_lock[] in do_checkpoint() */ 1003 do_checkpoint(sbi, is_umount); 1004 1005 unblock_operations(sbi); 1006 stat_inc_cp_count(sbi->stat_info); 1007 out: 1008 mutex_unlock(&sbi->cp_mutex); 1009 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 1010 } 1011 1012 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1013 { 1014 int i; 1015 1016 for (i = 0; i < MAX_INO_ENTRY; i++) { 1017 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC); 1018 spin_lock_init(&sbi->ino_lock[i]); 1019 INIT_LIST_HEAD(&sbi->ino_list[i]); 1020 } 1021 1022 /* 1023 * considering 512 blocks in a segment 8 blocks are needed for cp 1024 * and log segment summaries. Remaining blocks are used to keep 1025 * orphan entries with the limitation one reserved segment 1026 * for cp pack we can have max 1020*504 orphan entries 1027 */ 1028 sbi->n_orphans = 0; 1029 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1030 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK; 1031 } 1032 1033 int __init create_checkpoint_caches(void) 1034 { 1035 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1036 sizeof(struct ino_entry)); 1037 if (!ino_entry_slab) 1038 return -ENOMEM; 1039 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 1040 sizeof(struct dir_inode_entry)); 1041 if (!inode_entry_slab) { 1042 kmem_cache_destroy(ino_entry_slab); 1043 return -ENOMEM; 1044 } 1045 return 0; 1046 } 1047 1048 void destroy_checkpoint_caches(void) 1049 { 1050 kmem_cache_destroy(ino_entry_slab); 1051 kmem_cache_destroy(inode_entry_slab); 1052 } 1053