xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 87a9bd265678ec3cc8431b14bcb14c68d0f94032)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27 
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 	struct address_space *mapping = sbi->meta_inode->i_mapping;
34 	struct page *page = NULL;
35 repeat:
36 	page = grab_cache_page(mapping, index);
37 	if (!page) {
38 		cond_resched();
39 		goto repeat;
40 	}
41 
42 	/* We wait writeback only inside grab_meta_page() */
43 	wait_on_page_writeback(page);
44 	SetPageUptodate(page);
45 	return page;
46 }
47 
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 	struct address_space *mapping = sbi->meta_inode->i_mapping;
54 	struct page *page;
55 repeat:
56 	page = grab_cache_page(mapping, index);
57 	if (!page) {
58 		cond_resched();
59 		goto repeat;
60 	}
61 	if (PageUptodate(page))
62 		goto out;
63 
64 	if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 		goto repeat;
66 
67 	lock_page(page);
68 	if (page->mapping != mapping) {
69 		f2fs_put_page(page, 1);
70 		goto repeat;
71 	}
72 out:
73 	mark_page_accessed(page);
74 	return page;
75 }
76 
77 static int f2fs_write_meta_page(struct page *page,
78 				struct writeback_control *wbc)
79 {
80 	struct inode *inode = page->mapping->host;
81 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82 
83 	/* Should not write any meta pages, if any IO error was occurred */
84 	if (wbc->for_reclaim || sbi->por_doing ||
85 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 		dec_page_count(sbi, F2FS_DIRTY_META);
87 		wbc->pages_skipped++;
88 		set_page_dirty(page);
89 		return AOP_WRITEPAGE_ACTIVATE;
90 	}
91 
92 	wait_on_page_writeback(page);
93 
94 	write_meta_page(sbi, page);
95 	dec_page_count(sbi, F2FS_DIRTY_META);
96 	unlock_page(page);
97 	return 0;
98 }
99 
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 				struct writeback_control *wbc)
102 {
103 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 	struct block_device *bdev = sbi->sb->s_bdev;
105 	long written;
106 
107 	if (wbc->for_kupdate)
108 		return 0;
109 
110 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 		return 0;
112 
113 	/* if mounting is failed, skip writing node pages */
114 	mutex_lock(&sbi->cp_mutex);
115 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 	mutex_unlock(&sbi->cp_mutex);
117 	wbc->nr_to_write -= written;
118 	return 0;
119 }
120 
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 						long nr_to_write)
123 {
124 	struct address_space *mapping = sbi->meta_inode->i_mapping;
125 	pgoff_t index = 0, end = LONG_MAX;
126 	struct pagevec pvec;
127 	long nwritten = 0;
128 	struct writeback_control wbc = {
129 		.for_reclaim = 0,
130 	};
131 
132 	pagevec_init(&pvec, 0);
133 
134 	while (index <= end) {
135 		int i, nr_pages;
136 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 				PAGECACHE_TAG_DIRTY,
138 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 		if (nr_pages == 0)
140 			break;
141 
142 		for (i = 0; i < nr_pages; i++) {
143 			struct page *page = pvec.pages[i];
144 			lock_page(page);
145 			BUG_ON(page->mapping != mapping);
146 			BUG_ON(!PageDirty(page));
147 			clear_page_dirty_for_io(page);
148 			if (f2fs_write_meta_page(page, &wbc)) {
149 				unlock_page(page);
150 				break;
151 			}
152 			if (nwritten++ >= nr_to_write)
153 				break;
154 		}
155 		pagevec_release(&pvec);
156 		cond_resched();
157 	}
158 
159 	if (nwritten)
160 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161 
162 	return nwritten;
163 }
164 
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167 	struct address_space *mapping = page->mapping;
168 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169 
170 	SetPageUptodate(page);
171 	if (!PageDirty(page)) {
172 		__set_page_dirty_nobuffers(page);
173 		inc_page_count(sbi, F2FS_DIRTY_META);
174 		return 1;
175 	}
176 	return 0;
177 }
178 
179 const struct address_space_operations f2fs_meta_aops = {
180 	.writepage	= f2fs_write_meta_page,
181 	.writepages	= f2fs_write_meta_pages,
182 	.set_page_dirty	= f2fs_set_meta_page_dirty,
183 };
184 
185 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
186 {
187 	unsigned int max_orphans;
188 	int err = 0;
189 
190 	/*
191 	 * considering 512 blocks in a segment 5 blocks are needed for cp
192 	 * and log segment summaries. Remaining blocks are used to keep
193 	 * orphan entries with the limitation one reserved segment
194 	 * for cp pack we can have max 1020*507 orphan entries
195 	 */
196 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197 	mutex_lock(&sbi->orphan_inode_mutex);
198 	if (sbi->n_orphans >= max_orphans)
199 		err = -ENOSPC;
200 	else
201 		sbi->n_orphans++;
202 	mutex_unlock(&sbi->orphan_inode_mutex);
203 	return err;
204 }
205 
206 void release_orphan_inode(struct f2fs_sb_info *sbi)
207 {
208 	mutex_lock(&sbi->orphan_inode_mutex);
209 	BUG_ON(sbi->n_orphans == 0);
210 	sbi->n_orphans--;
211 	mutex_unlock(&sbi->orphan_inode_mutex);
212 }
213 
214 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
215 {
216 	struct list_head *head, *this;
217 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
218 
219 	mutex_lock(&sbi->orphan_inode_mutex);
220 	head = &sbi->orphan_inode_list;
221 	list_for_each(this, head) {
222 		orphan = list_entry(this, struct orphan_inode_entry, list);
223 		if (orphan->ino == ino)
224 			goto out;
225 		if (orphan->ino > ino)
226 			break;
227 		orphan = NULL;
228 	}
229 retry:
230 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
231 	if (!new) {
232 		cond_resched();
233 		goto retry;
234 	}
235 	new->ino = ino;
236 
237 	/* add new_oentry into list which is sorted by inode number */
238 	if (orphan)
239 		list_add(&new->list, this->prev);
240 	else
241 		list_add_tail(&new->list, head);
242 out:
243 	mutex_unlock(&sbi->orphan_inode_mutex);
244 }
245 
246 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
247 {
248 	struct list_head *head;
249 	struct orphan_inode_entry *orphan;
250 
251 	mutex_lock(&sbi->orphan_inode_mutex);
252 	head = &sbi->orphan_inode_list;
253 	list_for_each_entry(orphan, head, list) {
254 		if (orphan->ino == ino) {
255 			list_del(&orphan->list);
256 			kmem_cache_free(orphan_entry_slab, orphan);
257 			BUG_ON(sbi->n_orphans == 0);
258 			sbi->n_orphans--;
259 			break;
260 		}
261 	}
262 	mutex_unlock(&sbi->orphan_inode_mutex);
263 }
264 
265 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
266 {
267 	struct inode *inode = f2fs_iget(sbi->sb, ino);
268 	BUG_ON(IS_ERR(inode));
269 	clear_nlink(inode);
270 
271 	/* truncate all the data during iput */
272 	iput(inode);
273 }
274 
275 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
276 {
277 	block_t start_blk, orphan_blkaddr, i, j;
278 
279 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
280 		return 0;
281 
282 	sbi->por_doing = 1;
283 	start_blk = __start_cp_addr(sbi) + 1;
284 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
285 
286 	for (i = 0; i < orphan_blkaddr; i++) {
287 		struct page *page = get_meta_page(sbi, start_blk + i);
288 		struct f2fs_orphan_block *orphan_blk;
289 
290 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
291 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
292 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
293 			recover_orphan_inode(sbi, ino);
294 		}
295 		f2fs_put_page(page, 1);
296 	}
297 	/* clear Orphan Flag */
298 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
299 	sbi->por_doing = 0;
300 	return 0;
301 }
302 
303 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
304 {
305 	struct list_head *head, *this, *next;
306 	struct f2fs_orphan_block *orphan_blk = NULL;
307 	struct page *page = NULL;
308 	unsigned int nentries = 0;
309 	unsigned short index = 1;
310 	unsigned short orphan_blocks;
311 
312 	orphan_blocks = (unsigned short)((sbi->n_orphans +
313 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
314 
315 	mutex_lock(&sbi->orphan_inode_mutex);
316 	head = &sbi->orphan_inode_list;
317 
318 	/* loop for each orphan inode entry and write them in Jornal block */
319 	list_for_each_safe(this, next, head) {
320 		struct orphan_inode_entry *orphan;
321 
322 		orphan = list_entry(this, struct orphan_inode_entry, list);
323 
324 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
325 			/*
326 			 * an orphan block is full of 1020 entries,
327 			 * then we need to flush current orphan blocks
328 			 * and bring another one in memory
329 			 */
330 			orphan_blk->blk_addr = cpu_to_le16(index);
331 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
332 			orphan_blk->entry_count = cpu_to_le32(nentries);
333 			set_page_dirty(page);
334 			f2fs_put_page(page, 1);
335 			index++;
336 			start_blk++;
337 			nentries = 0;
338 			page = NULL;
339 		}
340 		if (page)
341 			goto page_exist;
342 
343 		page = grab_meta_page(sbi, start_blk);
344 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
345 		memset(orphan_blk, 0, sizeof(*orphan_blk));
346 page_exist:
347 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
348 	}
349 	if (!page)
350 		goto end;
351 
352 	orphan_blk->blk_addr = cpu_to_le16(index);
353 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
354 	orphan_blk->entry_count = cpu_to_le32(nentries);
355 	set_page_dirty(page);
356 	f2fs_put_page(page, 1);
357 end:
358 	mutex_unlock(&sbi->orphan_inode_mutex);
359 }
360 
361 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
362 				block_t cp_addr, unsigned long long *version)
363 {
364 	struct page *cp_page_1, *cp_page_2 = NULL;
365 	unsigned long blk_size = sbi->blocksize;
366 	struct f2fs_checkpoint *cp_block;
367 	unsigned long long cur_version = 0, pre_version = 0;
368 	size_t crc_offset;
369 	__u32 crc = 0;
370 
371 	/* Read the 1st cp block in this CP pack */
372 	cp_page_1 = get_meta_page(sbi, cp_addr);
373 
374 	/* get the version number */
375 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
376 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
377 	if (crc_offset >= blk_size)
378 		goto invalid_cp1;
379 
380 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
381 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
382 		goto invalid_cp1;
383 
384 	pre_version = cur_cp_version(cp_block);
385 
386 	/* Read the 2nd cp block in this CP pack */
387 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
388 	cp_page_2 = get_meta_page(sbi, cp_addr);
389 
390 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
391 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
392 	if (crc_offset >= blk_size)
393 		goto invalid_cp2;
394 
395 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
396 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
397 		goto invalid_cp2;
398 
399 	cur_version = cur_cp_version(cp_block);
400 
401 	if (cur_version == pre_version) {
402 		*version = cur_version;
403 		f2fs_put_page(cp_page_2, 1);
404 		return cp_page_1;
405 	}
406 invalid_cp2:
407 	f2fs_put_page(cp_page_2, 1);
408 invalid_cp1:
409 	f2fs_put_page(cp_page_1, 1);
410 	return NULL;
411 }
412 
413 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
414 {
415 	struct f2fs_checkpoint *cp_block;
416 	struct f2fs_super_block *fsb = sbi->raw_super;
417 	struct page *cp1, *cp2, *cur_page;
418 	unsigned long blk_size = sbi->blocksize;
419 	unsigned long long cp1_version = 0, cp2_version = 0;
420 	unsigned long long cp_start_blk_no;
421 
422 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
423 	if (!sbi->ckpt)
424 		return -ENOMEM;
425 	/*
426 	 * Finding out valid cp block involves read both
427 	 * sets( cp pack1 and cp pack 2)
428 	 */
429 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
430 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
431 
432 	/* The second checkpoint pack should start at the next segment */
433 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
434 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
435 
436 	if (cp1 && cp2) {
437 		if (ver_after(cp2_version, cp1_version))
438 			cur_page = cp2;
439 		else
440 			cur_page = cp1;
441 	} else if (cp1) {
442 		cur_page = cp1;
443 	} else if (cp2) {
444 		cur_page = cp2;
445 	} else {
446 		goto fail_no_cp;
447 	}
448 
449 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
450 	memcpy(sbi->ckpt, cp_block, blk_size);
451 
452 	f2fs_put_page(cp1, 1);
453 	f2fs_put_page(cp2, 1);
454 	return 0;
455 
456 fail_no_cp:
457 	kfree(sbi->ckpt);
458 	return -EINVAL;
459 }
460 
461 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
462 {
463 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
464 	struct list_head *head = &sbi->dir_inode_list;
465 	struct list_head *this;
466 
467 	list_for_each(this, head) {
468 		struct dir_inode_entry *entry;
469 		entry = list_entry(this, struct dir_inode_entry, list);
470 		if (entry->inode == inode)
471 			return -EEXIST;
472 	}
473 	list_add_tail(&new->list, head);
474 #ifdef CONFIG_F2FS_STAT_FS
475 	sbi->n_dirty_dirs++;
476 #endif
477 	return 0;
478 }
479 
480 void set_dirty_dir_page(struct inode *inode, struct page *page)
481 {
482 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
483 	struct dir_inode_entry *new;
484 
485 	if (!S_ISDIR(inode->i_mode))
486 		return;
487 retry:
488 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
489 	if (!new) {
490 		cond_resched();
491 		goto retry;
492 	}
493 	new->inode = inode;
494 	INIT_LIST_HEAD(&new->list);
495 
496 	spin_lock(&sbi->dir_inode_lock);
497 	if (__add_dirty_inode(inode, new))
498 		kmem_cache_free(inode_entry_slab, new);
499 
500 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
501 	inode_inc_dirty_dents(inode);
502 	SetPagePrivate(page);
503 	spin_unlock(&sbi->dir_inode_lock);
504 }
505 
506 void add_dirty_dir_inode(struct inode *inode)
507 {
508 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
509 	struct dir_inode_entry *new;
510 retry:
511 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
512 	if (!new) {
513 		cond_resched();
514 		goto retry;
515 	}
516 	new->inode = inode;
517 	INIT_LIST_HEAD(&new->list);
518 
519 	spin_lock(&sbi->dir_inode_lock);
520 	if (__add_dirty_inode(inode, new))
521 		kmem_cache_free(inode_entry_slab, new);
522 	spin_unlock(&sbi->dir_inode_lock);
523 }
524 
525 void remove_dirty_dir_inode(struct inode *inode)
526 {
527 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
528 	struct list_head *head = &sbi->dir_inode_list;
529 	struct list_head *this;
530 
531 	if (!S_ISDIR(inode->i_mode))
532 		return;
533 
534 	spin_lock(&sbi->dir_inode_lock);
535 	if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
536 		spin_unlock(&sbi->dir_inode_lock);
537 		return;
538 	}
539 
540 	list_for_each(this, head) {
541 		struct dir_inode_entry *entry;
542 		entry = list_entry(this, struct dir_inode_entry, list);
543 		if (entry->inode == inode) {
544 			list_del(&entry->list);
545 			kmem_cache_free(inode_entry_slab, entry);
546 #ifdef CONFIG_F2FS_STAT_FS
547 			sbi->n_dirty_dirs--;
548 #endif
549 			break;
550 		}
551 	}
552 	spin_unlock(&sbi->dir_inode_lock);
553 
554 	/* Only from the recovery routine */
555 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
556 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
557 		iput(inode);
558 	}
559 }
560 
561 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
562 {
563 	struct list_head *head = &sbi->dir_inode_list;
564 	struct list_head *this;
565 	struct inode *inode = NULL;
566 
567 	spin_lock(&sbi->dir_inode_lock);
568 	list_for_each(this, head) {
569 		struct dir_inode_entry *entry;
570 		entry = list_entry(this, struct dir_inode_entry, list);
571 		if (entry->inode->i_ino == ino) {
572 			inode = entry->inode;
573 			break;
574 		}
575 	}
576 	spin_unlock(&sbi->dir_inode_lock);
577 	return inode;
578 }
579 
580 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
581 {
582 	struct list_head *head = &sbi->dir_inode_list;
583 	struct dir_inode_entry *entry;
584 	struct inode *inode;
585 retry:
586 	spin_lock(&sbi->dir_inode_lock);
587 	if (list_empty(head)) {
588 		spin_unlock(&sbi->dir_inode_lock);
589 		return;
590 	}
591 	entry = list_entry(head->next, struct dir_inode_entry, list);
592 	inode = igrab(entry->inode);
593 	spin_unlock(&sbi->dir_inode_lock);
594 	if (inode) {
595 		filemap_flush(inode->i_mapping);
596 		iput(inode);
597 	} else {
598 		/*
599 		 * We should submit bio, since it exists several
600 		 * wribacking dentry pages in the freeing inode.
601 		 */
602 		f2fs_submit_bio(sbi, DATA, true);
603 	}
604 	goto retry;
605 }
606 
607 /*
608  * Freeze all the FS-operations for checkpoint.
609  */
610 static void block_operations(struct f2fs_sb_info *sbi)
611 {
612 	struct writeback_control wbc = {
613 		.sync_mode = WB_SYNC_ALL,
614 		.nr_to_write = LONG_MAX,
615 		.for_reclaim = 0,
616 	};
617 	struct blk_plug plug;
618 
619 	blk_start_plug(&plug);
620 
621 retry_flush_dents:
622 	f2fs_lock_all(sbi);
623 	/* write all the dirty dentry pages */
624 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
625 		f2fs_unlock_all(sbi);
626 		sync_dirty_dir_inodes(sbi);
627 		goto retry_flush_dents;
628 	}
629 
630 	/*
631 	 * POR: we should ensure that there is no dirty node pages
632 	 * until finishing nat/sit flush.
633 	 */
634 retry_flush_nodes:
635 	mutex_lock(&sbi->node_write);
636 
637 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
638 		mutex_unlock(&sbi->node_write);
639 		sync_node_pages(sbi, 0, &wbc);
640 		goto retry_flush_nodes;
641 	}
642 	blk_finish_plug(&plug);
643 }
644 
645 static void unblock_operations(struct f2fs_sb_info *sbi)
646 {
647 	mutex_unlock(&sbi->node_write);
648 	f2fs_unlock_all(sbi);
649 }
650 
651 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
652 {
653 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
654 	nid_t last_nid = 0;
655 	block_t start_blk;
656 	struct page *cp_page;
657 	unsigned int data_sum_blocks, orphan_blocks;
658 	__u32 crc32 = 0;
659 	void *kaddr;
660 	int i;
661 
662 	/* Flush all the NAT/SIT pages */
663 	while (get_pages(sbi, F2FS_DIRTY_META))
664 		sync_meta_pages(sbi, META, LONG_MAX);
665 
666 	next_free_nid(sbi, &last_nid);
667 
668 	/*
669 	 * modify checkpoint
670 	 * version number is already updated
671 	 */
672 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
673 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
674 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
675 	for (i = 0; i < 3; i++) {
676 		ckpt->cur_node_segno[i] =
677 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
678 		ckpt->cur_node_blkoff[i] =
679 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
680 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
681 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
682 	}
683 	for (i = 0; i < 3; i++) {
684 		ckpt->cur_data_segno[i] =
685 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
686 		ckpt->cur_data_blkoff[i] =
687 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
688 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
689 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
690 	}
691 
692 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
693 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
694 	ckpt->next_free_nid = cpu_to_le32(last_nid);
695 
696 	/* 2 cp  + n data seg summary + orphan inode blocks */
697 	data_sum_blocks = npages_for_summary_flush(sbi);
698 	if (data_sum_blocks < 3)
699 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
700 	else
701 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
702 
703 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
704 					/ F2FS_ORPHANS_PER_BLOCK;
705 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
706 
707 	if (is_umount) {
708 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
709 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
710 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
711 	} else {
712 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
713 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
714 			data_sum_blocks + orphan_blocks);
715 	}
716 
717 	if (sbi->n_orphans)
718 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
719 	else
720 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
721 
722 	/* update SIT/NAT bitmap */
723 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
724 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
725 
726 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
727 	*((__le32 *)((unsigned char *)ckpt +
728 				le32_to_cpu(ckpt->checksum_offset)))
729 				= cpu_to_le32(crc32);
730 
731 	start_blk = __start_cp_addr(sbi);
732 
733 	/* write out checkpoint buffer at block 0 */
734 	cp_page = grab_meta_page(sbi, start_blk++);
735 	kaddr = page_address(cp_page);
736 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
737 	set_page_dirty(cp_page);
738 	f2fs_put_page(cp_page, 1);
739 
740 	if (sbi->n_orphans) {
741 		write_orphan_inodes(sbi, start_blk);
742 		start_blk += orphan_blocks;
743 	}
744 
745 	write_data_summaries(sbi, start_blk);
746 	start_blk += data_sum_blocks;
747 	if (is_umount) {
748 		write_node_summaries(sbi, start_blk);
749 		start_blk += NR_CURSEG_NODE_TYPE;
750 	}
751 
752 	/* writeout checkpoint block */
753 	cp_page = grab_meta_page(sbi, start_blk);
754 	kaddr = page_address(cp_page);
755 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
756 	set_page_dirty(cp_page);
757 	f2fs_put_page(cp_page, 1);
758 
759 	/* wait for previous submitted node/meta pages writeback */
760 	sbi->cp_task = current;
761 	while (get_pages(sbi, F2FS_WRITEBACK)) {
762 		set_current_state(TASK_UNINTERRUPTIBLE);
763 		if (!get_pages(sbi, F2FS_WRITEBACK))
764 			break;
765 		io_schedule();
766 	}
767 	__set_current_state(TASK_RUNNING);
768 	sbi->cp_task = NULL;
769 
770 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
771 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
772 
773 	/* update user_block_counts */
774 	sbi->last_valid_block_count = sbi->total_valid_block_count;
775 	sbi->alloc_valid_block_count = 0;
776 
777 	/* Here, we only have one bio having CP pack */
778 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
779 
780 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
781 		clear_prefree_segments(sbi);
782 		F2FS_RESET_SB_DIRT(sbi);
783 	}
784 }
785 
786 /*
787  * We guarantee that this checkpoint procedure should not fail.
788  */
789 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
790 {
791 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
792 	unsigned long long ckpt_ver;
793 
794 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
795 
796 	mutex_lock(&sbi->cp_mutex);
797 	block_operations(sbi);
798 
799 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
800 
801 	f2fs_submit_bio(sbi, DATA, true);
802 	f2fs_submit_bio(sbi, NODE, true);
803 	f2fs_submit_bio(sbi, META, true);
804 
805 	/*
806 	 * update checkpoint pack index
807 	 * Increase the version number so that
808 	 * SIT entries and seg summaries are written at correct place
809 	 */
810 	ckpt_ver = cur_cp_version(ckpt);
811 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
812 
813 	/* write cached NAT/SIT entries to NAT/SIT area */
814 	flush_nat_entries(sbi);
815 	flush_sit_entries(sbi);
816 
817 	/* unlock all the fs_lock[] in do_checkpoint() */
818 	do_checkpoint(sbi, is_umount);
819 
820 	unblock_operations(sbi);
821 	mutex_unlock(&sbi->cp_mutex);
822 
823 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
824 }
825 
826 void init_orphan_info(struct f2fs_sb_info *sbi)
827 {
828 	mutex_init(&sbi->orphan_inode_mutex);
829 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
830 	sbi->n_orphans = 0;
831 }
832 
833 int __init create_checkpoint_caches(void)
834 {
835 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
836 			sizeof(struct orphan_inode_entry), NULL);
837 	if (unlikely(!orphan_entry_slab))
838 		return -ENOMEM;
839 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
840 			sizeof(struct dir_inode_entry), NULL);
841 	if (unlikely(!inode_entry_slab)) {
842 		kmem_cache_destroy(orphan_entry_slab);
843 		return -ENOMEM;
844 	}
845 	return 0;
846 }
847 
848 void destroy_checkpoint_caches(void)
849 {
850 	kmem_cache_destroy(orphan_entry_slab);
851 	kmem_cache_destroy(inode_entry_slab);
852 }
853