1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = sbi->meta_inode->i_mapping; 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 /* We wait writeback only inside grab_meta_page() */ 43 wait_on_page_writeback(page); 44 SetPageUptodate(page); 45 return page; 46 } 47 48 /* 49 * We guarantee no failure on the returned page. 50 */ 51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 52 { 53 struct address_space *mapping = sbi->meta_inode->i_mapping; 54 struct page *page; 55 repeat: 56 page = grab_cache_page(mapping, index); 57 if (!page) { 58 cond_resched(); 59 goto repeat; 60 } 61 if (PageUptodate(page)) 62 goto out; 63 64 if (f2fs_readpage(sbi, page, index, READ_SYNC)) 65 goto repeat; 66 67 lock_page(page); 68 if (page->mapping != mapping) { 69 f2fs_put_page(page, 1); 70 goto repeat; 71 } 72 out: 73 mark_page_accessed(page); 74 return page; 75 } 76 77 static int f2fs_write_meta_page(struct page *page, 78 struct writeback_control *wbc) 79 { 80 struct inode *inode = page->mapping->host; 81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 82 83 /* Should not write any meta pages, if any IO error was occurred */ 84 if (wbc->for_reclaim || sbi->por_doing || 85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { 86 dec_page_count(sbi, F2FS_DIRTY_META); 87 wbc->pages_skipped++; 88 set_page_dirty(page); 89 return AOP_WRITEPAGE_ACTIVATE; 90 } 91 92 wait_on_page_writeback(page); 93 94 write_meta_page(sbi, page); 95 dec_page_count(sbi, F2FS_DIRTY_META); 96 unlock_page(page); 97 return 0; 98 } 99 100 static int f2fs_write_meta_pages(struct address_space *mapping, 101 struct writeback_control *wbc) 102 { 103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 104 struct block_device *bdev = sbi->sb->s_bdev; 105 long written; 106 107 if (wbc->for_kupdate) 108 return 0; 109 110 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 111 return 0; 112 113 /* if mounting is failed, skip writing node pages */ 114 mutex_lock(&sbi->cp_mutex); 115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 116 mutex_unlock(&sbi->cp_mutex); 117 wbc->nr_to_write -= written; 118 return 0; 119 } 120 121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 122 long nr_to_write) 123 { 124 struct address_space *mapping = sbi->meta_inode->i_mapping; 125 pgoff_t index = 0, end = LONG_MAX; 126 struct pagevec pvec; 127 long nwritten = 0; 128 struct writeback_control wbc = { 129 .for_reclaim = 0, 130 }; 131 132 pagevec_init(&pvec, 0); 133 134 while (index <= end) { 135 int i, nr_pages; 136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 137 PAGECACHE_TAG_DIRTY, 138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 139 if (nr_pages == 0) 140 break; 141 142 for (i = 0; i < nr_pages; i++) { 143 struct page *page = pvec.pages[i]; 144 lock_page(page); 145 BUG_ON(page->mapping != mapping); 146 BUG_ON(!PageDirty(page)); 147 clear_page_dirty_for_io(page); 148 if (f2fs_write_meta_page(page, &wbc)) { 149 unlock_page(page); 150 break; 151 } 152 if (nwritten++ >= nr_to_write) 153 break; 154 } 155 pagevec_release(&pvec); 156 cond_resched(); 157 } 158 159 if (nwritten) 160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 161 162 return nwritten; 163 } 164 165 static int f2fs_set_meta_page_dirty(struct page *page) 166 { 167 struct address_space *mapping = page->mapping; 168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 169 170 SetPageUptodate(page); 171 if (!PageDirty(page)) { 172 __set_page_dirty_nobuffers(page); 173 inc_page_count(sbi, F2FS_DIRTY_META); 174 return 1; 175 } 176 return 0; 177 } 178 179 const struct address_space_operations f2fs_meta_aops = { 180 .writepage = f2fs_write_meta_page, 181 .writepages = f2fs_write_meta_pages, 182 .set_page_dirty = f2fs_set_meta_page_dirty, 183 }; 184 185 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 186 { 187 unsigned int max_orphans; 188 int err = 0; 189 190 /* 191 * considering 512 blocks in a segment 5 blocks are needed for cp 192 * and log segment summaries. Remaining blocks are used to keep 193 * orphan entries with the limitation one reserved segment 194 * for cp pack we can have max 1020*507 orphan entries 195 */ 196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 197 mutex_lock(&sbi->orphan_inode_mutex); 198 if (sbi->n_orphans >= max_orphans) 199 err = -ENOSPC; 200 else 201 sbi->n_orphans++; 202 mutex_unlock(&sbi->orphan_inode_mutex); 203 return err; 204 } 205 206 void release_orphan_inode(struct f2fs_sb_info *sbi) 207 { 208 mutex_lock(&sbi->orphan_inode_mutex); 209 BUG_ON(sbi->n_orphans == 0); 210 sbi->n_orphans--; 211 mutex_unlock(&sbi->orphan_inode_mutex); 212 } 213 214 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 215 { 216 struct list_head *head, *this; 217 struct orphan_inode_entry *new = NULL, *orphan = NULL; 218 219 mutex_lock(&sbi->orphan_inode_mutex); 220 head = &sbi->orphan_inode_list; 221 list_for_each(this, head) { 222 orphan = list_entry(this, struct orphan_inode_entry, list); 223 if (orphan->ino == ino) 224 goto out; 225 if (orphan->ino > ino) 226 break; 227 orphan = NULL; 228 } 229 retry: 230 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 231 if (!new) { 232 cond_resched(); 233 goto retry; 234 } 235 new->ino = ino; 236 237 /* add new_oentry into list which is sorted by inode number */ 238 if (orphan) 239 list_add(&new->list, this->prev); 240 else 241 list_add_tail(&new->list, head); 242 out: 243 mutex_unlock(&sbi->orphan_inode_mutex); 244 } 245 246 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 247 { 248 struct list_head *head; 249 struct orphan_inode_entry *orphan; 250 251 mutex_lock(&sbi->orphan_inode_mutex); 252 head = &sbi->orphan_inode_list; 253 list_for_each_entry(orphan, head, list) { 254 if (orphan->ino == ino) { 255 list_del(&orphan->list); 256 kmem_cache_free(orphan_entry_slab, orphan); 257 BUG_ON(sbi->n_orphans == 0); 258 sbi->n_orphans--; 259 break; 260 } 261 } 262 mutex_unlock(&sbi->orphan_inode_mutex); 263 } 264 265 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 266 { 267 struct inode *inode = f2fs_iget(sbi->sb, ino); 268 BUG_ON(IS_ERR(inode)); 269 clear_nlink(inode); 270 271 /* truncate all the data during iput */ 272 iput(inode); 273 } 274 275 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 276 { 277 block_t start_blk, orphan_blkaddr, i, j; 278 279 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 280 return 0; 281 282 sbi->por_doing = 1; 283 start_blk = __start_cp_addr(sbi) + 1; 284 orphan_blkaddr = __start_sum_addr(sbi) - 1; 285 286 for (i = 0; i < orphan_blkaddr; i++) { 287 struct page *page = get_meta_page(sbi, start_blk + i); 288 struct f2fs_orphan_block *orphan_blk; 289 290 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 291 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 292 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 293 recover_orphan_inode(sbi, ino); 294 } 295 f2fs_put_page(page, 1); 296 } 297 /* clear Orphan Flag */ 298 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 299 sbi->por_doing = 0; 300 return 0; 301 } 302 303 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 304 { 305 struct list_head *head, *this, *next; 306 struct f2fs_orphan_block *orphan_blk = NULL; 307 struct page *page = NULL; 308 unsigned int nentries = 0; 309 unsigned short index = 1; 310 unsigned short orphan_blocks; 311 312 orphan_blocks = (unsigned short)((sbi->n_orphans + 313 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 314 315 mutex_lock(&sbi->orphan_inode_mutex); 316 head = &sbi->orphan_inode_list; 317 318 /* loop for each orphan inode entry and write them in Jornal block */ 319 list_for_each_safe(this, next, head) { 320 struct orphan_inode_entry *orphan; 321 322 orphan = list_entry(this, struct orphan_inode_entry, list); 323 324 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 325 /* 326 * an orphan block is full of 1020 entries, 327 * then we need to flush current orphan blocks 328 * and bring another one in memory 329 */ 330 orphan_blk->blk_addr = cpu_to_le16(index); 331 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 332 orphan_blk->entry_count = cpu_to_le32(nentries); 333 set_page_dirty(page); 334 f2fs_put_page(page, 1); 335 index++; 336 start_blk++; 337 nentries = 0; 338 page = NULL; 339 } 340 if (page) 341 goto page_exist; 342 343 page = grab_meta_page(sbi, start_blk); 344 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 345 memset(orphan_blk, 0, sizeof(*orphan_blk)); 346 page_exist: 347 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 348 } 349 if (!page) 350 goto end; 351 352 orphan_blk->blk_addr = cpu_to_le16(index); 353 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 354 orphan_blk->entry_count = cpu_to_le32(nentries); 355 set_page_dirty(page); 356 f2fs_put_page(page, 1); 357 end: 358 mutex_unlock(&sbi->orphan_inode_mutex); 359 } 360 361 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 362 block_t cp_addr, unsigned long long *version) 363 { 364 struct page *cp_page_1, *cp_page_2 = NULL; 365 unsigned long blk_size = sbi->blocksize; 366 struct f2fs_checkpoint *cp_block; 367 unsigned long long cur_version = 0, pre_version = 0; 368 size_t crc_offset; 369 __u32 crc = 0; 370 371 /* Read the 1st cp block in this CP pack */ 372 cp_page_1 = get_meta_page(sbi, cp_addr); 373 374 /* get the version number */ 375 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 376 crc_offset = le32_to_cpu(cp_block->checksum_offset); 377 if (crc_offset >= blk_size) 378 goto invalid_cp1; 379 380 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 381 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 382 goto invalid_cp1; 383 384 pre_version = cur_cp_version(cp_block); 385 386 /* Read the 2nd cp block in this CP pack */ 387 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 388 cp_page_2 = get_meta_page(sbi, cp_addr); 389 390 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 391 crc_offset = le32_to_cpu(cp_block->checksum_offset); 392 if (crc_offset >= blk_size) 393 goto invalid_cp2; 394 395 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 396 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 397 goto invalid_cp2; 398 399 cur_version = cur_cp_version(cp_block); 400 401 if (cur_version == pre_version) { 402 *version = cur_version; 403 f2fs_put_page(cp_page_2, 1); 404 return cp_page_1; 405 } 406 invalid_cp2: 407 f2fs_put_page(cp_page_2, 1); 408 invalid_cp1: 409 f2fs_put_page(cp_page_1, 1); 410 return NULL; 411 } 412 413 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 414 { 415 struct f2fs_checkpoint *cp_block; 416 struct f2fs_super_block *fsb = sbi->raw_super; 417 struct page *cp1, *cp2, *cur_page; 418 unsigned long blk_size = sbi->blocksize; 419 unsigned long long cp1_version = 0, cp2_version = 0; 420 unsigned long long cp_start_blk_no; 421 422 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 423 if (!sbi->ckpt) 424 return -ENOMEM; 425 /* 426 * Finding out valid cp block involves read both 427 * sets( cp pack1 and cp pack 2) 428 */ 429 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 430 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 431 432 /* The second checkpoint pack should start at the next segment */ 433 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 434 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 435 436 if (cp1 && cp2) { 437 if (ver_after(cp2_version, cp1_version)) 438 cur_page = cp2; 439 else 440 cur_page = cp1; 441 } else if (cp1) { 442 cur_page = cp1; 443 } else if (cp2) { 444 cur_page = cp2; 445 } else { 446 goto fail_no_cp; 447 } 448 449 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 450 memcpy(sbi->ckpt, cp_block, blk_size); 451 452 f2fs_put_page(cp1, 1); 453 f2fs_put_page(cp2, 1); 454 return 0; 455 456 fail_no_cp: 457 kfree(sbi->ckpt); 458 return -EINVAL; 459 } 460 461 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 462 { 463 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 464 struct list_head *head = &sbi->dir_inode_list; 465 struct list_head *this; 466 467 list_for_each(this, head) { 468 struct dir_inode_entry *entry; 469 entry = list_entry(this, struct dir_inode_entry, list); 470 if (entry->inode == inode) 471 return -EEXIST; 472 } 473 list_add_tail(&new->list, head); 474 #ifdef CONFIG_F2FS_STAT_FS 475 sbi->n_dirty_dirs++; 476 #endif 477 return 0; 478 } 479 480 void set_dirty_dir_page(struct inode *inode, struct page *page) 481 { 482 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 483 struct dir_inode_entry *new; 484 485 if (!S_ISDIR(inode->i_mode)) 486 return; 487 retry: 488 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 489 if (!new) { 490 cond_resched(); 491 goto retry; 492 } 493 new->inode = inode; 494 INIT_LIST_HEAD(&new->list); 495 496 spin_lock(&sbi->dir_inode_lock); 497 if (__add_dirty_inode(inode, new)) 498 kmem_cache_free(inode_entry_slab, new); 499 500 inc_page_count(sbi, F2FS_DIRTY_DENTS); 501 inode_inc_dirty_dents(inode); 502 SetPagePrivate(page); 503 spin_unlock(&sbi->dir_inode_lock); 504 } 505 506 void add_dirty_dir_inode(struct inode *inode) 507 { 508 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 509 struct dir_inode_entry *new; 510 retry: 511 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 512 if (!new) { 513 cond_resched(); 514 goto retry; 515 } 516 new->inode = inode; 517 INIT_LIST_HEAD(&new->list); 518 519 spin_lock(&sbi->dir_inode_lock); 520 if (__add_dirty_inode(inode, new)) 521 kmem_cache_free(inode_entry_slab, new); 522 spin_unlock(&sbi->dir_inode_lock); 523 } 524 525 void remove_dirty_dir_inode(struct inode *inode) 526 { 527 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 528 struct list_head *head = &sbi->dir_inode_list; 529 struct list_head *this; 530 531 if (!S_ISDIR(inode->i_mode)) 532 return; 533 534 spin_lock(&sbi->dir_inode_lock); 535 if (atomic_read(&F2FS_I(inode)->dirty_dents)) { 536 spin_unlock(&sbi->dir_inode_lock); 537 return; 538 } 539 540 list_for_each(this, head) { 541 struct dir_inode_entry *entry; 542 entry = list_entry(this, struct dir_inode_entry, list); 543 if (entry->inode == inode) { 544 list_del(&entry->list); 545 kmem_cache_free(inode_entry_slab, entry); 546 #ifdef CONFIG_F2FS_STAT_FS 547 sbi->n_dirty_dirs--; 548 #endif 549 break; 550 } 551 } 552 spin_unlock(&sbi->dir_inode_lock); 553 554 /* Only from the recovery routine */ 555 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 556 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 557 iput(inode); 558 } 559 } 560 561 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) 562 { 563 struct list_head *head = &sbi->dir_inode_list; 564 struct list_head *this; 565 struct inode *inode = NULL; 566 567 spin_lock(&sbi->dir_inode_lock); 568 list_for_each(this, head) { 569 struct dir_inode_entry *entry; 570 entry = list_entry(this, struct dir_inode_entry, list); 571 if (entry->inode->i_ino == ino) { 572 inode = entry->inode; 573 break; 574 } 575 } 576 spin_unlock(&sbi->dir_inode_lock); 577 return inode; 578 } 579 580 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 581 { 582 struct list_head *head = &sbi->dir_inode_list; 583 struct dir_inode_entry *entry; 584 struct inode *inode; 585 retry: 586 spin_lock(&sbi->dir_inode_lock); 587 if (list_empty(head)) { 588 spin_unlock(&sbi->dir_inode_lock); 589 return; 590 } 591 entry = list_entry(head->next, struct dir_inode_entry, list); 592 inode = igrab(entry->inode); 593 spin_unlock(&sbi->dir_inode_lock); 594 if (inode) { 595 filemap_flush(inode->i_mapping); 596 iput(inode); 597 } else { 598 /* 599 * We should submit bio, since it exists several 600 * wribacking dentry pages in the freeing inode. 601 */ 602 f2fs_submit_bio(sbi, DATA, true); 603 } 604 goto retry; 605 } 606 607 /* 608 * Freeze all the FS-operations for checkpoint. 609 */ 610 static void block_operations(struct f2fs_sb_info *sbi) 611 { 612 struct writeback_control wbc = { 613 .sync_mode = WB_SYNC_ALL, 614 .nr_to_write = LONG_MAX, 615 .for_reclaim = 0, 616 }; 617 struct blk_plug plug; 618 619 blk_start_plug(&plug); 620 621 retry_flush_dents: 622 f2fs_lock_all(sbi); 623 /* write all the dirty dentry pages */ 624 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 625 f2fs_unlock_all(sbi); 626 sync_dirty_dir_inodes(sbi); 627 goto retry_flush_dents; 628 } 629 630 /* 631 * POR: we should ensure that there is no dirty node pages 632 * until finishing nat/sit flush. 633 */ 634 retry_flush_nodes: 635 mutex_lock(&sbi->node_write); 636 637 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 638 mutex_unlock(&sbi->node_write); 639 sync_node_pages(sbi, 0, &wbc); 640 goto retry_flush_nodes; 641 } 642 blk_finish_plug(&plug); 643 } 644 645 static void unblock_operations(struct f2fs_sb_info *sbi) 646 { 647 mutex_unlock(&sbi->node_write); 648 f2fs_unlock_all(sbi); 649 } 650 651 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 652 { 653 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 654 nid_t last_nid = 0; 655 block_t start_blk; 656 struct page *cp_page; 657 unsigned int data_sum_blocks, orphan_blocks; 658 __u32 crc32 = 0; 659 void *kaddr; 660 int i; 661 662 /* Flush all the NAT/SIT pages */ 663 while (get_pages(sbi, F2FS_DIRTY_META)) 664 sync_meta_pages(sbi, META, LONG_MAX); 665 666 next_free_nid(sbi, &last_nid); 667 668 /* 669 * modify checkpoint 670 * version number is already updated 671 */ 672 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 673 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 674 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 675 for (i = 0; i < 3; i++) { 676 ckpt->cur_node_segno[i] = 677 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 678 ckpt->cur_node_blkoff[i] = 679 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 680 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 681 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 682 } 683 for (i = 0; i < 3; i++) { 684 ckpt->cur_data_segno[i] = 685 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 686 ckpt->cur_data_blkoff[i] = 687 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 688 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 689 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 690 } 691 692 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 693 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 694 ckpt->next_free_nid = cpu_to_le32(last_nid); 695 696 /* 2 cp + n data seg summary + orphan inode blocks */ 697 data_sum_blocks = npages_for_summary_flush(sbi); 698 if (data_sum_blocks < 3) 699 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 700 else 701 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 702 703 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 704 / F2FS_ORPHANS_PER_BLOCK; 705 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 706 707 if (is_umount) { 708 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 709 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 710 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 711 } else { 712 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 713 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 714 data_sum_blocks + orphan_blocks); 715 } 716 717 if (sbi->n_orphans) 718 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 719 else 720 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 721 722 /* update SIT/NAT bitmap */ 723 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 724 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 725 726 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 727 *((__le32 *)((unsigned char *)ckpt + 728 le32_to_cpu(ckpt->checksum_offset))) 729 = cpu_to_le32(crc32); 730 731 start_blk = __start_cp_addr(sbi); 732 733 /* write out checkpoint buffer at block 0 */ 734 cp_page = grab_meta_page(sbi, start_blk++); 735 kaddr = page_address(cp_page); 736 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 737 set_page_dirty(cp_page); 738 f2fs_put_page(cp_page, 1); 739 740 if (sbi->n_orphans) { 741 write_orphan_inodes(sbi, start_blk); 742 start_blk += orphan_blocks; 743 } 744 745 write_data_summaries(sbi, start_blk); 746 start_blk += data_sum_blocks; 747 if (is_umount) { 748 write_node_summaries(sbi, start_blk); 749 start_blk += NR_CURSEG_NODE_TYPE; 750 } 751 752 /* writeout checkpoint block */ 753 cp_page = grab_meta_page(sbi, start_blk); 754 kaddr = page_address(cp_page); 755 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 756 set_page_dirty(cp_page); 757 f2fs_put_page(cp_page, 1); 758 759 /* wait for previous submitted node/meta pages writeback */ 760 sbi->cp_task = current; 761 while (get_pages(sbi, F2FS_WRITEBACK)) { 762 set_current_state(TASK_UNINTERRUPTIBLE); 763 if (!get_pages(sbi, F2FS_WRITEBACK)) 764 break; 765 io_schedule(); 766 } 767 __set_current_state(TASK_RUNNING); 768 sbi->cp_task = NULL; 769 770 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 771 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 772 773 /* update user_block_counts */ 774 sbi->last_valid_block_count = sbi->total_valid_block_count; 775 sbi->alloc_valid_block_count = 0; 776 777 /* Here, we only have one bio having CP pack */ 778 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 779 780 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 781 clear_prefree_segments(sbi); 782 F2FS_RESET_SB_DIRT(sbi); 783 } 784 } 785 786 /* 787 * We guarantee that this checkpoint procedure should not fail. 788 */ 789 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 790 { 791 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 792 unsigned long long ckpt_ver; 793 794 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 795 796 mutex_lock(&sbi->cp_mutex); 797 block_operations(sbi); 798 799 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 800 801 f2fs_submit_bio(sbi, DATA, true); 802 f2fs_submit_bio(sbi, NODE, true); 803 f2fs_submit_bio(sbi, META, true); 804 805 /* 806 * update checkpoint pack index 807 * Increase the version number so that 808 * SIT entries and seg summaries are written at correct place 809 */ 810 ckpt_ver = cur_cp_version(ckpt); 811 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 812 813 /* write cached NAT/SIT entries to NAT/SIT area */ 814 flush_nat_entries(sbi); 815 flush_sit_entries(sbi); 816 817 /* unlock all the fs_lock[] in do_checkpoint() */ 818 do_checkpoint(sbi, is_umount); 819 820 unblock_operations(sbi); 821 mutex_unlock(&sbi->cp_mutex); 822 823 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 824 } 825 826 void init_orphan_info(struct f2fs_sb_info *sbi) 827 { 828 mutex_init(&sbi->orphan_inode_mutex); 829 INIT_LIST_HEAD(&sbi->orphan_inode_list); 830 sbi->n_orphans = 0; 831 } 832 833 int __init create_checkpoint_caches(void) 834 { 835 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 836 sizeof(struct orphan_inode_entry), NULL); 837 if (unlikely(!orphan_entry_slab)) 838 return -ENOMEM; 839 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 840 sizeof(struct dir_inode_entry), NULL); 841 if (unlikely(!inode_entry_slab)) { 842 kmem_cache_destroy(orphan_entry_slab); 843 return -ENOMEM; 844 } 845 return 0; 846 } 847 848 void destroy_checkpoint_caches(void) 849 { 850 kmem_cache_destroy(orphan_entry_slab); 851 kmem_cache_destroy(inode_entry_slab); 852 } 853