xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 86531d6b84bc096d5d9dbc23333df0ab8d347763)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 	struct address_space *mapping = META_MAPPING(sbi);
35 	struct page *page = NULL;
36 repeat:
37 	page = grab_cache_page(mapping, index);
38 	if (!page) {
39 		cond_resched();
40 		goto repeat;
41 	}
42 	f2fs_wait_on_page_writeback(page, META);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 	struct address_space *mapping = META_MAPPING(sbi);
53 	struct page *page;
54 	struct f2fs_io_info fio = {
55 		.sbi = sbi,
56 		.type = META,
57 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
58 		.blk_addr = index,
59 		.encrypted_page = NULL,
60 	};
61 repeat:
62 	page = grab_cache_page(mapping, index);
63 	if (!page) {
64 		cond_resched();
65 		goto repeat;
66 	}
67 	if (PageUptodate(page))
68 		goto out;
69 
70 	fio.page = page;
71 
72 	if (f2fs_submit_page_bio(&fio)) {
73 		f2fs_put_page(page, 1);
74 		goto repeat;
75 	}
76 
77 	lock_page(page);
78 	if (unlikely(page->mapping != mapping)) {
79 		f2fs_put_page(page, 1);
80 		goto repeat;
81 	}
82 out:
83 	return page;
84 }
85 
86 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
87 {
88 	switch (type) {
89 	case META_NAT:
90 		break;
91 	case META_SIT:
92 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
93 			return false;
94 		break;
95 	case META_SSA:
96 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
97 			blkaddr < SM_I(sbi)->ssa_blkaddr))
98 			return false;
99 		break;
100 	case META_CP:
101 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
102 			blkaddr < __start_cp_addr(sbi)))
103 			return false;
104 		break;
105 	case META_POR:
106 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
107 			blkaddr < MAIN_BLKADDR(sbi)))
108 			return false;
109 		break;
110 	default:
111 		BUG();
112 	}
113 
114 	return true;
115 }
116 
117 /*
118  * Readahead CP/NAT/SIT/SSA pages
119  */
120 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
121 {
122 	block_t prev_blk_addr = 0;
123 	struct page *page;
124 	block_t blkno = start;
125 	struct f2fs_io_info fio = {
126 		.sbi = sbi,
127 		.type = META,
128 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
129 		.encrypted_page = NULL,
130 	};
131 
132 	for (; nrpages-- > 0; blkno++) {
133 
134 		if (!is_valid_blkaddr(sbi, blkno, type))
135 			goto out;
136 
137 		switch (type) {
138 		case META_NAT:
139 			if (unlikely(blkno >=
140 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
141 				blkno = 0;
142 			/* get nat block addr */
143 			fio.blk_addr = current_nat_addr(sbi,
144 					blkno * NAT_ENTRY_PER_BLOCK);
145 			break;
146 		case META_SIT:
147 			/* get sit block addr */
148 			fio.blk_addr = current_sit_addr(sbi,
149 					blkno * SIT_ENTRY_PER_BLOCK);
150 			if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
151 				goto out;
152 			prev_blk_addr = fio.blk_addr;
153 			break;
154 		case META_SSA:
155 		case META_CP:
156 		case META_POR:
157 			fio.blk_addr = blkno;
158 			break;
159 		default:
160 			BUG();
161 		}
162 
163 		page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
164 		if (!page)
165 			continue;
166 		if (PageUptodate(page)) {
167 			f2fs_put_page(page, 1);
168 			continue;
169 		}
170 
171 		fio.page = page;
172 		f2fs_submit_page_mbio(&fio);
173 		f2fs_put_page(page, 0);
174 	}
175 out:
176 	f2fs_submit_merged_bio(sbi, META, READ);
177 	return blkno - start;
178 }
179 
180 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
181 {
182 	struct page *page;
183 	bool readahead = false;
184 
185 	page = find_get_page(META_MAPPING(sbi), index);
186 	if (!page || (page && !PageUptodate(page)))
187 		readahead = true;
188 	f2fs_put_page(page, 0);
189 
190 	if (readahead)
191 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
192 }
193 
194 static int f2fs_write_meta_page(struct page *page,
195 				struct writeback_control *wbc)
196 {
197 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
198 
199 	trace_f2fs_writepage(page, META);
200 
201 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
202 		goto redirty_out;
203 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
204 		goto redirty_out;
205 	if (unlikely(f2fs_cp_error(sbi)))
206 		goto redirty_out;
207 
208 	f2fs_wait_on_page_writeback(page, META);
209 	write_meta_page(sbi, page);
210 	dec_page_count(sbi, F2FS_DIRTY_META);
211 	unlock_page(page);
212 
213 	if (wbc->for_reclaim)
214 		f2fs_submit_merged_bio(sbi, META, WRITE);
215 	return 0;
216 
217 redirty_out:
218 	redirty_page_for_writepage(wbc, page);
219 	return AOP_WRITEPAGE_ACTIVATE;
220 }
221 
222 static int f2fs_write_meta_pages(struct address_space *mapping,
223 				struct writeback_control *wbc)
224 {
225 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
226 	long diff, written;
227 
228 	trace_f2fs_writepages(mapping->host, wbc, META);
229 
230 	/* collect a number of dirty meta pages and write together */
231 	if (wbc->for_kupdate ||
232 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
233 		goto skip_write;
234 
235 	/* if mounting is failed, skip writing node pages */
236 	mutex_lock(&sbi->cp_mutex);
237 	diff = nr_pages_to_write(sbi, META, wbc);
238 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
239 	mutex_unlock(&sbi->cp_mutex);
240 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
241 	return 0;
242 
243 skip_write:
244 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
245 	return 0;
246 }
247 
248 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
249 						long nr_to_write)
250 {
251 	struct address_space *mapping = META_MAPPING(sbi);
252 	pgoff_t index = 0, end = LONG_MAX;
253 	struct pagevec pvec;
254 	long nwritten = 0;
255 	struct writeback_control wbc = {
256 		.for_reclaim = 0,
257 	};
258 
259 	pagevec_init(&pvec, 0);
260 
261 	while (index <= end) {
262 		int i, nr_pages;
263 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
264 				PAGECACHE_TAG_DIRTY,
265 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
266 		if (unlikely(nr_pages == 0))
267 			break;
268 
269 		for (i = 0; i < nr_pages; i++) {
270 			struct page *page = pvec.pages[i];
271 
272 			lock_page(page);
273 
274 			if (unlikely(page->mapping != mapping)) {
275 continue_unlock:
276 				unlock_page(page);
277 				continue;
278 			}
279 			if (!PageDirty(page)) {
280 				/* someone wrote it for us */
281 				goto continue_unlock;
282 			}
283 
284 			if (!clear_page_dirty_for_io(page))
285 				goto continue_unlock;
286 
287 			if (mapping->a_ops->writepage(page, &wbc)) {
288 				unlock_page(page);
289 				break;
290 			}
291 			nwritten++;
292 			if (unlikely(nwritten >= nr_to_write))
293 				break;
294 		}
295 		pagevec_release(&pvec);
296 		cond_resched();
297 	}
298 
299 	if (nwritten)
300 		f2fs_submit_merged_bio(sbi, type, WRITE);
301 
302 	return nwritten;
303 }
304 
305 static int f2fs_set_meta_page_dirty(struct page *page)
306 {
307 	trace_f2fs_set_page_dirty(page, META);
308 
309 	SetPageUptodate(page);
310 	if (!PageDirty(page)) {
311 		__set_page_dirty_nobuffers(page);
312 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
313 		SetPagePrivate(page);
314 		f2fs_trace_pid(page);
315 		return 1;
316 	}
317 	return 0;
318 }
319 
320 const struct address_space_operations f2fs_meta_aops = {
321 	.writepage	= f2fs_write_meta_page,
322 	.writepages	= f2fs_write_meta_pages,
323 	.set_page_dirty	= f2fs_set_meta_page_dirty,
324 	.invalidatepage = f2fs_invalidate_page,
325 	.releasepage	= f2fs_release_page,
326 };
327 
328 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
329 {
330 	struct inode_management *im = &sbi->im[type];
331 	struct ino_entry *e;
332 retry:
333 	if (radix_tree_preload(GFP_NOFS)) {
334 		cond_resched();
335 		goto retry;
336 	}
337 
338 	spin_lock(&im->ino_lock);
339 
340 	e = radix_tree_lookup(&im->ino_root, ino);
341 	if (!e) {
342 		e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
343 		if (!e) {
344 			spin_unlock(&im->ino_lock);
345 			radix_tree_preload_end();
346 			goto retry;
347 		}
348 		if (radix_tree_insert(&im->ino_root, ino, e)) {
349 			spin_unlock(&im->ino_lock);
350 			kmem_cache_free(ino_entry_slab, e);
351 			radix_tree_preload_end();
352 			goto retry;
353 		}
354 		memset(e, 0, sizeof(struct ino_entry));
355 		e->ino = ino;
356 
357 		list_add_tail(&e->list, &im->ino_list);
358 		if (type != ORPHAN_INO)
359 			im->ino_num++;
360 	}
361 	spin_unlock(&im->ino_lock);
362 	radix_tree_preload_end();
363 }
364 
365 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
366 {
367 	struct inode_management *im = &sbi->im[type];
368 	struct ino_entry *e;
369 
370 	spin_lock(&im->ino_lock);
371 	e = radix_tree_lookup(&im->ino_root, ino);
372 	if (e) {
373 		list_del(&e->list);
374 		radix_tree_delete(&im->ino_root, ino);
375 		im->ino_num--;
376 		spin_unlock(&im->ino_lock);
377 		kmem_cache_free(ino_entry_slab, e);
378 		return;
379 	}
380 	spin_unlock(&im->ino_lock);
381 }
382 
383 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
384 {
385 	/* add new dirty ino entry into list */
386 	__add_ino_entry(sbi, ino, type);
387 }
388 
389 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
390 {
391 	/* remove dirty ino entry from list */
392 	__remove_ino_entry(sbi, ino, type);
393 }
394 
395 /* mode should be APPEND_INO or UPDATE_INO */
396 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
397 {
398 	struct inode_management *im = &sbi->im[mode];
399 	struct ino_entry *e;
400 
401 	spin_lock(&im->ino_lock);
402 	e = radix_tree_lookup(&im->ino_root, ino);
403 	spin_unlock(&im->ino_lock);
404 	return e ? true : false;
405 }
406 
407 void release_dirty_inode(struct f2fs_sb_info *sbi)
408 {
409 	struct ino_entry *e, *tmp;
410 	int i;
411 
412 	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
413 		struct inode_management *im = &sbi->im[i];
414 
415 		spin_lock(&im->ino_lock);
416 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
417 			list_del(&e->list);
418 			radix_tree_delete(&im->ino_root, e->ino);
419 			kmem_cache_free(ino_entry_slab, e);
420 			im->ino_num--;
421 		}
422 		spin_unlock(&im->ino_lock);
423 	}
424 }
425 
426 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
427 {
428 	struct inode_management *im = &sbi->im[ORPHAN_INO];
429 	int err = 0;
430 
431 	spin_lock(&im->ino_lock);
432 	if (unlikely(im->ino_num >= sbi->max_orphans))
433 		err = -ENOSPC;
434 	else
435 		im->ino_num++;
436 	spin_unlock(&im->ino_lock);
437 
438 	return err;
439 }
440 
441 void release_orphan_inode(struct f2fs_sb_info *sbi)
442 {
443 	struct inode_management *im = &sbi->im[ORPHAN_INO];
444 
445 	spin_lock(&im->ino_lock);
446 	f2fs_bug_on(sbi, im->ino_num == 0);
447 	im->ino_num--;
448 	spin_unlock(&im->ino_lock);
449 }
450 
451 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
452 {
453 	/* add new orphan ino entry into list */
454 	__add_ino_entry(sbi, ino, ORPHAN_INO);
455 }
456 
457 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
458 {
459 	/* remove orphan entry from orphan list */
460 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
461 }
462 
463 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
464 {
465 	struct inode *inode = f2fs_iget(sbi->sb, ino);
466 	f2fs_bug_on(sbi, IS_ERR(inode));
467 	clear_nlink(inode);
468 
469 	/* truncate all the data during iput */
470 	iput(inode);
471 }
472 
473 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
474 {
475 	block_t start_blk, orphan_blocks, i, j;
476 
477 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
478 		return;
479 
480 	set_sbi_flag(sbi, SBI_POR_DOING);
481 
482 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
483 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
484 
485 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
486 
487 	for (i = 0; i < orphan_blocks; i++) {
488 		struct page *page = get_meta_page(sbi, start_blk + i);
489 		struct f2fs_orphan_block *orphan_blk;
490 
491 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
492 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
493 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
494 			recover_orphan_inode(sbi, ino);
495 		}
496 		f2fs_put_page(page, 1);
497 	}
498 	/* clear Orphan Flag */
499 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
500 	clear_sbi_flag(sbi, SBI_POR_DOING);
501 	return;
502 }
503 
504 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
505 {
506 	struct list_head *head;
507 	struct f2fs_orphan_block *orphan_blk = NULL;
508 	unsigned int nentries = 0;
509 	unsigned short index = 1;
510 	unsigned short orphan_blocks;
511 	struct page *page = NULL;
512 	struct ino_entry *orphan = NULL;
513 	struct inode_management *im = &sbi->im[ORPHAN_INO];
514 
515 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
516 
517 	/*
518 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
519 	 * orphan inode operations are covered under f2fs_lock_op().
520 	 * And, spin_lock should be avoided due to page operations below.
521 	 */
522 	head = &im->ino_list;
523 
524 	/* loop for each orphan inode entry and write them in Jornal block */
525 	list_for_each_entry(orphan, head, list) {
526 		if (!page) {
527 			page = grab_meta_page(sbi, start_blk++);
528 			orphan_blk =
529 				(struct f2fs_orphan_block *)page_address(page);
530 			memset(orphan_blk, 0, sizeof(*orphan_blk));
531 		}
532 
533 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
534 
535 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
536 			/*
537 			 * an orphan block is full of 1020 entries,
538 			 * then we need to flush current orphan blocks
539 			 * and bring another one in memory
540 			 */
541 			orphan_blk->blk_addr = cpu_to_le16(index);
542 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
543 			orphan_blk->entry_count = cpu_to_le32(nentries);
544 			set_page_dirty(page);
545 			f2fs_put_page(page, 1);
546 			index++;
547 			nentries = 0;
548 			page = NULL;
549 		}
550 	}
551 
552 	if (page) {
553 		orphan_blk->blk_addr = cpu_to_le16(index);
554 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
555 		orphan_blk->entry_count = cpu_to_le32(nentries);
556 		set_page_dirty(page);
557 		f2fs_put_page(page, 1);
558 	}
559 }
560 
561 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
562 				block_t cp_addr, unsigned long long *version)
563 {
564 	struct page *cp_page_1, *cp_page_2 = NULL;
565 	unsigned long blk_size = sbi->blocksize;
566 	struct f2fs_checkpoint *cp_block;
567 	unsigned long long cur_version = 0, pre_version = 0;
568 	size_t crc_offset;
569 	__u32 crc = 0;
570 
571 	/* Read the 1st cp block in this CP pack */
572 	cp_page_1 = get_meta_page(sbi, cp_addr);
573 
574 	/* get the version number */
575 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
576 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
577 	if (crc_offset >= blk_size)
578 		goto invalid_cp1;
579 
580 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
581 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
582 		goto invalid_cp1;
583 
584 	pre_version = cur_cp_version(cp_block);
585 
586 	/* Read the 2nd cp block in this CP pack */
587 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
588 	cp_page_2 = get_meta_page(sbi, cp_addr);
589 
590 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
591 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
592 	if (crc_offset >= blk_size)
593 		goto invalid_cp2;
594 
595 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
596 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
597 		goto invalid_cp2;
598 
599 	cur_version = cur_cp_version(cp_block);
600 
601 	if (cur_version == pre_version) {
602 		*version = cur_version;
603 		f2fs_put_page(cp_page_2, 1);
604 		return cp_page_1;
605 	}
606 invalid_cp2:
607 	f2fs_put_page(cp_page_2, 1);
608 invalid_cp1:
609 	f2fs_put_page(cp_page_1, 1);
610 	return NULL;
611 }
612 
613 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
614 {
615 	struct f2fs_checkpoint *cp_block;
616 	struct f2fs_super_block *fsb = sbi->raw_super;
617 	struct page *cp1, *cp2, *cur_page;
618 	unsigned long blk_size = sbi->blocksize;
619 	unsigned long long cp1_version = 0, cp2_version = 0;
620 	unsigned long long cp_start_blk_no;
621 	unsigned int cp_blks = 1 + __cp_payload(sbi);
622 	block_t cp_blk_no;
623 	int i;
624 
625 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
626 	if (!sbi->ckpt)
627 		return -ENOMEM;
628 	/*
629 	 * Finding out valid cp block involves read both
630 	 * sets( cp pack1 and cp pack 2)
631 	 */
632 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
633 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
634 
635 	/* The second checkpoint pack should start at the next segment */
636 	cp_start_blk_no += ((unsigned long long)1) <<
637 				le32_to_cpu(fsb->log_blocks_per_seg);
638 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
639 
640 	if (cp1 && cp2) {
641 		if (ver_after(cp2_version, cp1_version))
642 			cur_page = cp2;
643 		else
644 			cur_page = cp1;
645 	} else if (cp1) {
646 		cur_page = cp1;
647 	} else if (cp2) {
648 		cur_page = cp2;
649 	} else {
650 		goto fail_no_cp;
651 	}
652 
653 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
654 	memcpy(sbi->ckpt, cp_block, blk_size);
655 
656 	if (cp_blks <= 1)
657 		goto done;
658 
659 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
660 	if (cur_page == cp2)
661 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
662 
663 	for (i = 1; i < cp_blks; i++) {
664 		void *sit_bitmap_ptr;
665 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
666 
667 		cur_page = get_meta_page(sbi, cp_blk_no + i);
668 		sit_bitmap_ptr = page_address(cur_page);
669 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
670 		f2fs_put_page(cur_page, 1);
671 	}
672 done:
673 	f2fs_put_page(cp1, 1);
674 	f2fs_put_page(cp2, 1);
675 	return 0;
676 
677 fail_no_cp:
678 	kfree(sbi->ckpt);
679 	return -EINVAL;
680 }
681 
682 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
683 {
684 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
685 
686 	if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
687 		return -EEXIST;
688 
689 	set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
690 	F2FS_I(inode)->dirty_dir = new;
691 	list_add_tail(&new->list, &sbi->dir_inode_list);
692 	stat_inc_dirty_dir(sbi);
693 	return 0;
694 }
695 
696 void update_dirty_page(struct inode *inode, struct page *page)
697 {
698 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
699 	struct inode_entry *new;
700 	int ret = 0;
701 
702 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
703 			!S_ISLNK(inode->i_mode))
704 		return;
705 
706 	if (!S_ISDIR(inode->i_mode)) {
707 		inode_inc_dirty_pages(inode);
708 		goto out;
709 	}
710 
711 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
712 	new->inode = inode;
713 	INIT_LIST_HEAD(&new->list);
714 
715 	spin_lock(&sbi->dir_inode_lock);
716 	ret = __add_dirty_inode(inode, new);
717 	inode_inc_dirty_pages(inode);
718 	spin_unlock(&sbi->dir_inode_lock);
719 
720 	if (ret)
721 		kmem_cache_free(inode_entry_slab, new);
722 out:
723 	SetPagePrivate(page);
724 	f2fs_trace_pid(page);
725 }
726 
727 void add_dirty_dir_inode(struct inode *inode)
728 {
729 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
730 	struct inode_entry *new =
731 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
732 	int ret = 0;
733 
734 	new->inode = inode;
735 	INIT_LIST_HEAD(&new->list);
736 
737 	spin_lock(&sbi->dir_inode_lock);
738 	ret = __add_dirty_inode(inode, new);
739 	spin_unlock(&sbi->dir_inode_lock);
740 
741 	if (ret)
742 		kmem_cache_free(inode_entry_slab, new);
743 }
744 
745 void remove_dirty_dir_inode(struct inode *inode)
746 {
747 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
748 	struct inode_entry *entry;
749 
750 	if (!S_ISDIR(inode->i_mode))
751 		return;
752 
753 	spin_lock(&sbi->dir_inode_lock);
754 	if (get_dirty_pages(inode) ||
755 			!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
756 		spin_unlock(&sbi->dir_inode_lock);
757 		return;
758 	}
759 
760 	entry = F2FS_I(inode)->dirty_dir;
761 	list_del(&entry->list);
762 	F2FS_I(inode)->dirty_dir = NULL;
763 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
764 	stat_dec_dirty_dir(sbi);
765 	spin_unlock(&sbi->dir_inode_lock);
766 	kmem_cache_free(inode_entry_slab, entry);
767 
768 	/* Only from the recovery routine */
769 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
770 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
771 		iput(inode);
772 	}
773 }
774 
775 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
776 {
777 	struct list_head *head;
778 	struct inode_entry *entry;
779 	struct inode *inode;
780 retry:
781 	if (unlikely(f2fs_cp_error(sbi)))
782 		return;
783 
784 	spin_lock(&sbi->dir_inode_lock);
785 
786 	head = &sbi->dir_inode_list;
787 	if (list_empty(head)) {
788 		spin_unlock(&sbi->dir_inode_lock);
789 		return;
790 	}
791 	entry = list_entry(head->next, struct inode_entry, list);
792 	inode = igrab(entry->inode);
793 	spin_unlock(&sbi->dir_inode_lock);
794 	if (inode) {
795 		filemap_fdatawrite(inode->i_mapping);
796 		iput(inode);
797 	} else {
798 		/*
799 		 * We should submit bio, since it exists several
800 		 * wribacking dentry pages in the freeing inode.
801 		 */
802 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
803 		cond_resched();
804 	}
805 	goto retry;
806 }
807 
808 /*
809  * Freeze all the FS-operations for checkpoint.
810  */
811 static int block_operations(struct f2fs_sb_info *sbi)
812 {
813 	struct writeback_control wbc = {
814 		.sync_mode = WB_SYNC_ALL,
815 		.nr_to_write = LONG_MAX,
816 		.for_reclaim = 0,
817 	};
818 	struct blk_plug plug;
819 	int err = 0;
820 
821 	blk_start_plug(&plug);
822 
823 retry_flush_dents:
824 	f2fs_lock_all(sbi);
825 	/* write all the dirty dentry pages */
826 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
827 		f2fs_unlock_all(sbi);
828 		sync_dirty_dir_inodes(sbi);
829 		if (unlikely(f2fs_cp_error(sbi))) {
830 			err = -EIO;
831 			goto out;
832 		}
833 		goto retry_flush_dents;
834 	}
835 
836 	/*
837 	 * POR: we should ensure that there are no dirty node pages
838 	 * until finishing nat/sit flush.
839 	 */
840 retry_flush_nodes:
841 	down_write(&sbi->node_write);
842 
843 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
844 		up_write(&sbi->node_write);
845 		sync_node_pages(sbi, 0, &wbc);
846 		if (unlikely(f2fs_cp_error(sbi))) {
847 			f2fs_unlock_all(sbi);
848 			err = -EIO;
849 			goto out;
850 		}
851 		goto retry_flush_nodes;
852 	}
853 out:
854 	blk_finish_plug(&plug);
855 	return err;
856 }
857 
858 static void unblock_operations(struct f2fs_sb_info *sbi)
859 {
860 	up_write(&sbi->node_write);
861 	f2fs_unlock_all(sbi);
862 }
863 
864 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
865 {
866 	DEFINE_WAIT(wait);
867 
868 	for (;;) {
869 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
870 
871 		if (!get_pages(sbi, F2FS_WRITEBACK))
872 			break;
873 
874 		io_schedule();
875 	}
876 	finish_wait(&sbi->cp_wait, &wait);
877 }
878 
879 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
880 {
881 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
882 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
883 	struct f2fs_nm_info *nm_i = NM_I(sbi);
884 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
885 	nid_t last_nid = nm_i->next_scan_nid;
886 	block_t start_blk;
887 	unsigned int data_sum_blocks, orphan_blocks;
888 	__u32 crc32 = 0;
889 	int i;
890 	int cp_payload_blks = __cp_payload(sbi);
891 
892 	/*
893 	 * This avoids to conduct wrong roll-forward operations and uses
894 	 * metapages, so should be called prior to sync_meta_pages below.
895 	 */
896 	discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
897 
898 	/* Flush all the NAT/SIT pages */
899 	while (get_pages(sbi, F2FS_DIRTY_META)) {
900 		sync_meta_pages(sbi, META, LONG_MAX);
901 		if (unlikely(f2fs_cp_error(sbi)))
902 			return;
903 	}
904 
905 	next_free_nid(sbi, &last_nid);
906 
907 	/*
908 	 * modify checkpoint
909 	 * version number is already updated
910 	 */
911 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
912 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
913 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
914 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
915 		ckpt->cur_node_segno[i] =
916 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
917 		ckpt->cur_node_blkoff[i] =
918 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
919 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
920 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
921 	}
922 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
923 		ckpt->cur_data_segno[i] =
924 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
925 		ckpt->cur_data_blkoff[i] =
926 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
927 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
928 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
929 	}
930 
931 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
932 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
933 	ckpt->next_free_nid = cpu_to_le32(last_nid);
934 
935 	/* 2 cp  + n data seg summary + orphan inode blocks */
936 	data_sum_blocks = npages_for_summary_flush(sbi, false);
937 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
938 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
939 	else
940 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
941 
942 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
943 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
944 			orphan_blocks);
945 
946 	if (__remain_node_summaries(cpc->reason))
947 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
948 				cp_payload_blks + data_sum_blocks +
949 				orphan_blocks + NR_CURSEG_NODE_TYPE);
950 	else
951 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
952 				cp_payload_blks + data_sum_blocks +
953 				orphan_blocks);
954 
955 	if (cpc->reason == CP_UMOUNT)
956 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
957 	else
958 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
959 
960 	if (cpc->reason == CP_FASTBOOT)
961 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
962 	else
963 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
964 
965 	if (orphan_num)
966 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
967 	else
968 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
969 
970 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
971 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
972 
973 	/* update SIT/NAT bitmap */
974 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
975 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
976 
977 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
978 	*((__le32 *)((unsigned char *)ckpt +
979 				le32_to_cpu(ckpt->checksum_offset)))
980 				= cpu_to_le32(crc32);
981 
982 	start_blk = __start_cp_addr(sbi);
983 
984 	/* write out checkpoint buffer at block 0 */
985 	update_meta_page(sbi, ckpt, start_blk++);
986 
987 	for (i = 1; i < 1 + cp_payload_blks; i++)
988 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
989 							start_blk++);
990 
991 	if (orphan_num) {
992 		write_orphan_inodes(sbi, start_blk);
993 		start_blk += orphan_blocks;
994 	}
995 
996 	write_data_summaries(sbi, start_blk);
997 	start_blk += data_sum_blocks;
998 	if (__remain_node_summaries(cpc->reason)) {
999 		write_node_summaries(sbi, start_blk);
1000 		start_blk += NR_CURSEG_NODE_TYPE;
1001 	}
1002 
1003 	/* writeout checkpoint block */
1004 	update_meta_page(sbi, ckpt, start_blk);
1005 
1006 	/* wait for previous submitted node/meta pages writeback */
1007 	wait_on_all_pages_writeback(sbi);
1008 
1009 	if (unlikely(f2fs_cp_error(sbi)))
1010 		return;
1011 
1012 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1013 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1014 
1015 	/* update user_block_counts */
1016 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1017 	sbi->alloc_valid_block_count = 0;
1018 
1019 	/* Here, we only have one bio having CP pack */
1020 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1021 
1022 	/* wait for previous submitted meta pages writeback */
1023 	wait_on_all_pages_writeback(sbi);
1024 
1025 	release_dirty_inode(sbi);
1026 
1027 	if (unlikely(f2fs_cp_error(sbi)))
1028 		return;
1029 
1030 	clear_prefree_segments(sbi, cpc);
1031 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1032 }
1033 
1034 /*
1035  * We guarantee that this checkpoint procedure will not fail.
1036  */
1037 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1038 {
1039 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1040 	unsigned long long ckpt_ver;
1041 
1042 	mutex_lock(&sbi->cp_mutex);
1043 
1044 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1045 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1046 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1047 		goto out;
1048 	if (unlikely(f2fs_cp_error(sbi)))
1049 		goto out;
1050 	if (f2fs_readonly(sbi->sb))
1051 		goto out;
1052 
1053 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1054 
1055 	if (block_operations(sbi))
1056 		goto out;
1057 
1058 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1059 
1060 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
1061 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1062 	f2fs_submit_merged_bio(sbi, META, WRITE);
1063 
1064 	/*
1065 	 * update checkpoint pack index
1066 	 * Increase the version number so that
1067 	 * SIT entries and seg summaries are written at correct place
1068 	 */
1069 	ckpt_ver = cur_cp_version(ckpt);
1070 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1071 
1072 	/* write cached NAT/SIT entries to NAT/SIT area */
1073 	flush_nat_entries(sbi);
1074 	flush_sit_entries(sbi, cpc);
1075 
1076 	/* unlock all the fs_lock[] in do_checkpoint() */
1077 	do_checkpoint(sbi, cpc);
1078 
1079 	unblock_operations(sbi);
1080 	stat_inc_cp_count(sbi->stat_info);
1081 
1082 	if (cpc->reason == CP_RECOVERY)
1083 		f2fs_msg(sbi->sb, KERN_NOTICE,
1084 			"checkpoint: version = %llx", ckpt_ver);
1085 out:
1086 	mutex_unlock(&sbi->cp_mutex);
1087 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1088 }
1089 
1090 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1091 {
1092 	int i;
1093 
1094 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1095 		struct inode_management *im = &sbi->im[i];
1096 
1097 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1098 		spin_lock_init(&im->ino_lock);
1099 		INIT_LIST_HEAD(&im->ino_list);
1100 		im->ino_num = 0;
1101 	}
1102 
1103 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1104 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1105 				F2FS_ORPHANS_PER_BLOCK;
1106 }
1107 
1108 int __init create_checkpoint_caches(void)
1109 {
1110 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1111 			sizeof(struct ino_entry));
1112 	if (!ino_entry_slab)
1113 		return -ENOMEM;
1114 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1115 			sizeof(struct inode_entry));
1116 	if (!inode_entry_slab) {
1117 		kmem_cache_destroy(ino_entry_slab);
1118 		return -ENOMEM;
1119 	}
1120 	return 0;
1121 }
1122 
1123 void destroy_checkpoint_caches(void)
1124 {
1125 	kmem_cache_destroy(ino_entry_slab);
1126 	kmem_cache_destroy(inode_entry_slab);
1127 }
1128