1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = META_MAPPING(sbi); 53 struct page *page; 54 struct f2fs_io_info fio = { 55 .sbi = sbi, 56 .type = META, 57 .rw = READ_SYNC | REQ_META | REQ_PRIO, 58 .blk_addr = index, 59 .encrypted_page = NULL, 60 }; 61 repeat: 62 page = grab_cache_page(mapping, index); 63 if (!page) { 64 cond_resched(); 65 goto repeat; 66 } 67 if (PageUptodate(page)) 68 goto out; 69 70 fio.page = page; 71 72 if (f2fs_submit_page_bio(&fio)) { 73 f2fs_put_page(page, 1); 74 goto repeat; 75 } 76 77 lock_page(page); 78 if (unlikely(page->mapping != mapping)) { 79 f2fs_put_page(page, 1); 80 goto repeat; 81 } 82 out: 83 return page; 84 } 85 86 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 87 { 88 switch (type) { 89 case META_NAT: 90 break; 91 case META_SIT: 92 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 93 return false; 94 break; 95 case META_SSA: 96 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 97 blkaddr < SM_I(sbi)->ssa_blkaddr)) 98 return false; 99 break; 100 case META_CP: 101 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 102 blkaddr < __start_cp_addr(sbi))) 103 return false; 104 break; 105 case META_POR: 106 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 107 blkaddr < MAIN_BLKADDR(sbi))) 108 return false; 109 break; 110 default: 111 BUG(); 112 } 113 114 return true; 115 } 116 117 /* 118 * Readahead CP/NAT/SIT/SSA pages 119 */ 120 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 121 { 122 block_t prev_blk_addr = 0; 123 struct page *page; 124 block_t blkno = start; 125 struct f2fs_io_info fio = { 126 .sbi = sbi, 127 .type = META, 128 .rw = READ_SYNC | REQ_META | REQ_PRIO, 129 .encrypted_page = NULL, 130 }; 131 132 for (; nrpages-- > 0; blkno++) { 133 134 if (!is_valid_blkaddr(sbi, blkno, type)) 135 goto out; 136 137 switch (type) { 138 case META_NAT: 139 if (unlikely(blkno >= 140 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 141 blkno = 0; 142 /* get nat block addr */ 143 fio.blk_addr = current_nat_addr(sbi, 144 blkno * NAT_ENTRY_PER_BLOCK); 145 break; 146 case META_SIT: 147 /* get sit block addr */ 148 fio.blk_addr = current_sit_addr(sbi, 149 blkno * SIT_ENTRY_PER_BLOCK); 150 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 151 goto out; 152 prev_blk_addr = fio.blk_addr; 153 break; 154 case META_SSA: 155 case META_CP: 156 case META_POR: 157 fio.blk_addr = blkno; 158 break; 159 default: 160 BUG(); 161 } 162 163 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 164 if (!page) 165 continue; 166 if (PageUptodate(page)) { 167 f2fs_put_page(page, 1); 168 continue; 169 } 170 171 fio.page = page; 172 f2fs_submit_page_mbio(&fio); 173 f2fs_put_page(page, 0); 174 } 175 out: 176 f2fs_submit_merged_bio(sbi, META, READ); 177 return blkno - start; 178 } 179 180 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 181 { 182 struct page *page; 183 bool readahead = false; 184 185 page = find_get_page(META_MAPPING(sbi), index); 186 if (!page || (page && !PageUptodate(page))) 187 readahead = true; 188 f2fs_put_page(page, 0); 189 190 if (readahead) 191 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 192 } 193 194 static int f2fs_write_meta_page(struct page *page, 195 struct writeback_control *wbc) 196 { 197 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 198 199 trace_f2fs_writepage(page, META); 200 201 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 202 goto redirty_out; 203 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 204 goto redirty_out; 205 if (unlikely(f2fs_cp_error(sbi))) 206 goto redirty_out; 207 208 f2fs_wait_on_page_writeback(page, META); 209 write_meta_page(sbi, page); 210 dec_page_count(sbi, F2FS_DIRTY_META); 211 unlock_page(page); 212 213 if (wbc->for_reclaim) 214 f2fs_submit_merged_bio(sbi, META, WRITE); 215 return 0; 216 217 redirty_out: 218 redirty_page_for_writepage(wbc, page); 219 return AOP_WRITEPAGE_ACTIVATE; 220 } 221 222 static int f2fs_write_meta_pages(struct address_space *mapping, 223 struct writeback_control *wbc) 224 { 225 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 226 long diff, written; 227 228 trace_f2fs_writepages(mapping->host, wbc, META); 229 230 /* collect a number of dirty meta pages and write together */ 231 if (wbc->for_kupdate || 232 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 233 goto skip_write; 234 235 /* if mounting is failed, skip writing node pages */ 236 mutex_lock(&sbi->cp_mutex); 237 diff = nr_pages_to_write(sbi, META, wbc); 238 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 239 mutex_unlock(&sbi->cp_mutex); 240 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 241 return 0; 242 243 skip_write: 244 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 245 return 0; 246 } 247 248 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 249 long nr_to_write) 250 { 251 struct address_space *mapping = META_MAPPING(sbi); 252 pgoff_t index = 0, end = LONG_MAX; 253 struct pagevec pvec; 254 long nwritten = 0; 255 struct writeback_control wbc = { 256 .for_reclaim = 0, 257 }; 258 259 pagevec_init(&pvec, 0); 260 261 while (index <= end) { 262 int i, nr_pages; 263 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 264 PAGECACHE_TAG_DIRTY, 265 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 266 if (unlikely(nr_pages == 0)) 267 break; 268 269 for (i = 0; i < nr_pages; i++) { 270 struct page *page = pvec.pages[i]; 271 272 lock_page(page); 273 274 if (unlikely(page->mapping != mapping)) { 275 continue_unlock: 276 unlock_page(page); 277 continue; 278 } 279 if (!PageDirty(page)) { 280 /* someone wrote it for us */ 281 goto continue_unlock; 282 } 283 284 if (!clear_page_dirty_for_io(page)) 285 goto continue_unlock; 286 287 if (mapping->a_ops->writepage(page, &wbc)) { 288 unlock_page(page); 289 break; 290 } 291 nwritten++; 292 if (unlikely(nwritten >= nr_to_write)) 293 break; 294 } 295 pagevec_release(&pvec); 296 cond_resched(); 297 } 298 299 if (nwritten) 300 f2fs_submit_merged_bio(sbi, type, WRITE); 301 302 return nwritten; 303 } 304 305 static int f2fs_set_meta_page_dirty(struct page *page) 306 { 307 trace_f2fs_set_page_dirty(page, META); 308 309 SetPageUptodate(page); 310 if (!PageDirty(page)) { 311 __set_page_dirty_nobuffers(page); 312 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 313 SetPagePrivate(page); 314 f2fs_trace_pid(page); 315 return 1; 316 } 317 return 0; 318 } 319 320 const struct address_space_operations f2fs_meta_aops = { 321 .writepage = f2fs_write_meta_page, 322 .writepages = f2fs_write_meta_pages, 323 .set_page_dirty = f2fs_set_meta_page_dirty, 324 .invalidatepage = f2fs_invalidate_page, 325 .releasepage = f2fs_release_page, 326 }; 327 328 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 329 { 330 struct inode_management *im = &sbi->im[type]; 331 struct ino_entry *e; 332 retry: 333 if (radix_tree_preload(GFP_NOFS)) { 334 cond_resched(); 335 goto retry; 336 } 337 338 spin_lock(&im->ino_lock); 339 340 e = radix_tree_lookup(&im->ino_root, ino); 341 if (!e) { 342 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 343 if (!e) { 344 spin_unlock(&im->ino_lock); 345 radix_tree_preload_end(); 346 goto retry; 347 } 348 if (radix_tree_insert(&im->ino_root, ino, e)) { 349 spin_unlock(&im->ino_lock); 350 kmem_cache_free(ino_entry_slab, e); 351 radix_tree_preload_end(); 352 goto retry; 353 } 354 memset(e, 0, sizeof(struct ino_entry)); 355 e->ino = ino; 356 357 list_add_tail(&e->list, &im->ino_list); 358 if (type != ORPHAN_INO) 359 im->ino_num++; 360 } 361 spin_unlock(&im->ino_lock); 362 radix_tree_preload_end(); 363 } 364 365 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 366 { 367 struct inode_management *im = &sbi->im[type]; 368 struct ino_entry *e; 369 370 spin_lock(&im->ino_lock); 371 e = radix_tree_lookup(&im->ino_root, ino); 372 if (e) { 373 list_del(&e->list); 374 radix_tree_delete(&im->ino_root, ino); 375 im->ino_num--; 376 spin_unlock(&im->ino_lock); 377 kmem_cache_free(ino_entry_slab, e); 378 return; 379 } 380 spin_unlock(&im->ino_lock); 381 } 382 383 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 384 { 385 /* add new dirty ino entry into list */ 386 __add_ino_entry(sbi, ino, type); 387 } 388 389 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 390 { 391 /* remove dirty ino entry from list */ 392 __remove_ino_entry(sbi, ino, type); 393 } 394 395 /* mode should be APPEND_INO or UPDATE_INO */ 396 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 397 { 398 struct inode_management *im = &sbi->im[mode]; 399 struct ino_entry *e; 400 401 spin_lock(&im->ino_lock); 402 e = radix_tree_lookup(&im->ino_root, ino); 403 spin_unlock(&im->ino_lock); 404 return e ? true : false; 405 } 406 407 void release_dirty_inode(struct f2fs_sb_info *sbi) 408 { 409 struct ino_entry *e, *tmp; 410 int i; 411 412 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 413 struct inode_management *im = &sbi->im[i]; 414 415 spin_lock(&im->ino_lock); 416 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 417 list_del(&e->list); 418 radix_tree_delete(&im->ino_root, e->ino); 419 kmem_cache_free(ino_entry_slab, e); 420 im->ino_num--; 421 } 422 spin_unlock(&im->ino_lock); 423 } 424 } 425 426 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 427 { 428 struct inode_management *im = &sbi->im[ORPHAN_INO]; 429 int err = 0; 430 431 spin_lock(&im->ino_lock); 432 if (unlikely(im->ino_num >= sbi->max_orphans)) 433 err = -ENOSPC; 434 else 435 im->ino_num++; 436 spin_unlock(&im->ino_lock); 437 438 return err; 439 } 440 441 void release_orphan_inode(struct f2fs_sb_info *sbi) 442 { 443 struct inode_management *im = &sbi->im[ORPHAN_INO]; 444 445 spin_lock(&im->ino_lock); 446 f2fs_bug_on(sbi, im->ino_num == 0); 447 im->ino_num--; 448 spin_unlock(&im->ino_lock); 449 } 450 451 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 452 { 453 /* add new orphan ino entry into list */ 454 __add_ino_entry(sbi, ino, ORPHAN_INO); 455 } 456 457 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 458 { 459 /* remove orphan entry from orphan list */ 460 __remove_ino_entry(sbi, ino, ORPHAN_INO); 461 } 462 463 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 464 { 465 struct inode *inode = f2fs_iget(sbi->sb, ino); 466 f2fs_bug_on(sbi, IS_ERR(inode)); 467 clear_nlink(inode); 468 469 /* truncate all the data during iput */ 470 iput(inode); 471 } 472 473 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 474 { 475 block_t start_blk, orphan_blocks, i, j; 476 477 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 478 return; 479 480 set_sbi_flag(sbi, SBI_POR_DOING); 481 482 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 483 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 484 485 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP); 486 487 for (i = 0; i < orphan_blocks; i++) { 488 struct page *page = get_meta_page(sbi, start_blk + i); 489 struct f2fs_orphan_block *orphan_blk; 490 491 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 492 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 493 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 494 recover_orphan_inode(sbi, ino); 495 } 496 f2fs_put_page(page, 1); 497 } 498 /* clear Orphan Flag */ 499 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 500 clear_sbi_flag(sbi, SBI_POR_DOING); 501 return; 502 } 503 504 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 505 { 506 struct list_head *head; 507 struct f2fs_orphan_block *orphan_blk = NULL; 508 unsigned int nentries = 0; 509 unsigned short index = 1; 510 unsigned short orphan_blocks; 511 struct page *page = NULL; 512 struct ino_entry *orphan = NULL; 513 struct inode_management *im = &sbi->im[ORPHAN_INO]; 514 515 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 516 517 /* 518 * we don't need to do spin_lock(&im->ino_lock) here, since all the 519 * orphan inode operations are covered under f2fs_lock_op(). 520 * And, spin_lock should be avoided due to page operations below. 521 */ 522 head = &im->ino_list; 523 524 /* loop for each orphan inode entry and write them in Jornal block */ 525 list_for_each_entry(orphan, head, list) { 526 if (!page) { 527 page = grab_meta_page(sbi, start_blk++); 528 orphan_blk = 529 (struct f2fs_orphan_block *)page_address(page); 530 memset(orphan_blk, 0, sizeof(*orphan_blk)); 531 } 532 533 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 534 535 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 536 /* 537 * an orphan block is full of 1020 entries, 538 * then we need to flush current orphan blocks 539 * and bring another one in memory 540 */ 541 orphan_blk->blk_addr = cpu_to_le16(index); 542 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 543 orphan_blk->entry_count = cpu_to_le32(nentries); 544 set_page_dirty(page); 545 f2fs_put_page(page, 1); 546 index++; 547 nentries = 0; 548 page = NULL; 549 } 550 } 551 552 if (page) { 553 orphan_blk->blk_addr = cpu_to_le16(index); 554 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 555 orphan_blk->entry_count = cpu_to_le32(nentries); 556 set_page_dirty(page); 557 f2fs_put_page(page, 1); 558 } 559 } 560 561 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 562 block_t cp_addr, unsigned long long *version) 563 { 564 struct page *cp_page_1, *cp_page_2 = NULL; 565 unsigned long blk_size = sbi->blocksize; 566 struct f2fs_checkpoint *cp_block; 567 unsigned long long cur_version = 0, pre_version = 0; 568 size_t crc_offset; 569 __u32 crc = 0; 570 571 /* Read the 1st cp block in this CP pack */ 572 cp_page_1 = get_meta_page(sbi, cp_addr); 573 574 /* get the version number */ 575 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 576 crc_offset = le32_to_cpu(cp_block->checksum_offset); 577 if (crc_offset >= blk_size) 578 goto invalid_cp1; 579 580 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 581 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 582 goto invalid_cp1; 583 584 pre_version = cur_cp_version(cp_block); 585 586 /* Read the 2nd cp block in this CP pack */ 587 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 588 cp_page_2 = get_meta_page(sbi, cp_addr); 589 590 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 591 crc_offset = le32_to_cpu(cp_block->checksum_offset); 592 if (crc_offset >= blk_size) 593 goto invalid_cp2; 594 595 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 596 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 597 goto invalid_cp2; 598 599 cur_version = cur_cp_version(cp_block); 600 601 if (cur_version == pre_version) { 602 *version = cur_version; 603 f2fs_put_page(cp_page_2, 1); 604 return cp_page_1; 605 } 606 invalid_cp2: 607 f2fs_put_page(cp_page_2, 1); 608 invalid_cp1: 609 f2fs_put_page(cp_page_1, 1); 610 return NULL; 611 } 612 613 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 614 { 615 struct f2fs_checkpoint *cp_block; 616 struct f2fs_super_block *fsb = sbi->raw_super; 617 struct page *cp1, *cp2, *cur_page; 618 unsigned long blk_size = sbi->blocksize; 619 unsigned long long cp1_version = 0, cp2_version = 0; 620 unsigned long long cp_start_blk_no; 621 unsigned int cp_blks = 1 + __cp_payload(sbi); 622 block_t cp_blk_no; 623 int i; 624 625 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 626 if (!sbi->ckpt) 627 return -ENOMEM; 628 /* 629 * Finding out valid cp block involves read both 630 * sets( cp pack1 and cp pack 2) 631 */ 632 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 633 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 634 635 /* The second checkpoint pack should start at the next segment */ 636 cp_start_blk_no += ((unsigned long long)1) << 637 le32_to_cpu(fsb->log_blocks_per_seg); 638 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 639 640 if (cp1 && cp2) { 641 if (ver_after(cp2_version, cp1_version)) 642 cur_page = cp2; 643 else 644 cur_page = cp1; 645 } else if (cp1) { 646 cur_page = cp1; 647 } else if (cp2) { 648 cur_page = cp2; 649 } else { 650 goto fail_no_cp; 651 } 652 653 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 654 memcpy(sbi->ckpt, cp_block, blk_size); 655 656 if (cp_blks <= 1) 657 goto done; 658 659 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 660 if (cur_page == cp2) 661 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 662 663 for (i = 1; i < cp_blks; i++) { 664 void *sit_bitmap_ptr; 665 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 666 667 cur_page = get_meta_page(sbi, cp_blk_no + i); 668 sit_bitmap_ptr = page_address(cur_page); 669 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 670 f2fs_put_page(cur_page, 1); 671 } 672 done: 673 f2fs_put_page(cp1, 1); 674 f2fs_put_page(cp2, 1); 675 return 0; 676 677 fail_no_cp: 678 kfree(sbi->ckpt); 679 return -EINVAL; 680 } 681 682 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 683 { 684 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 685 686 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 687 return -EEXIST; 688 689 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 690 F2FS_I(inode)->dirty_dir = new; 691 list_add_tail(&new->list, &sbi->dir_inode_list); 692 stat_inc_dirty_dir(sbi); 693 return 0; 694 } 695 696 void update_dirty_page(struct inode *inode, struct page *page) 697 { 698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 699 struct inode_entry *new; 700 int ret = 0; 701 702 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 703 !S_ISLNK(inode->i_mode)) 704 return; 705 706 if (!S_ISDIR(inode->i_mode)) { 707 inode_inc_dirty_pages(inode); 708 goto out; 709 } 710 711 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 712 new->inode = inode; 713 INIT_LIST_HEAD(&new->list); 714 715 spin_lock(&sbi->dir_inode_lock); 716 ret = __add_dirty_inode(inode, new); 717 inode_inc_dirty_pages(inode); 718 spin_unlock(&sbi->dir_inode_lock); 719 720 if (ret) 721 kmem_cache_free(inode_entry_slab, new); 722 out: 723 SetPagePrivate(page); 724 f2fs_trace_pid(page); 725 } 726 727 void add_dirty_dir_inode(struct inode *inode) 728 { 729 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 730 struct inode_entry *new = 731 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 732 int ret = 0; 733 734 new->inode = inode; 735 INIT_LIST_HEAD(&new->list); 736 737 spin_lock(&sbi->dir_inode_lock); 738 ret = __add_dirty_inode(inode, new); 739 spin_unlock(&sbi->dir_inode_lock); 740 741 if (ret) 742 kmem_cache_free(inode_entry_slab, new); 743 } 744 745 void remove_dirty_dir_inode(struct inode *inode) 746 { 747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 748 struct inode_entry *entry; 749 750 if (!S_ISDIR(inode->i_mode)) 751 return; 752 753 spin_lock(&sbi->dir_inode_lock); 754 if (get_dirty_pages(inode) || 755 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 756 spin_unlock(&sbi->dir_inode_lock); 757 return; 758 } 759 760 entry = F2FS_I(inode)->dirty_dir; 761 list_del(&entry->list); 762 F2FS_I(inode)->dirty_dir = NULL; 763 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 764 stat_dec_dirty_dir(sbi); 765 spin_unlock(&sbi->dir_inode_lock); 766 kmem_cache_free(inode_entry_slab, entry); 767 768 /* Only from the recovery routine */ 769 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 770 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 771 iput(inode); 772 } 773 } 774 775 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 776 { 777 struct list_head *head; 778 struct inode_entry *entry; 779 struct inode *inode; 780 retry: 781 if (unlikely(f2fs_cp_error(sbi))) 782 return; 783 784 spin_lock(&sbi->dir_inode_lock); 785 786 head = &sbi->dir_inode_list; 787 if (list_empty(head)) { 788 spin_unlock(&sbi->dir_inode_lock); 789 return; 790 } 791 entry = list_entry(head->next, struct inode_entry, list); 792 inode = igrab(entry->inode); 793 spin_unlock(&sbi->dir_inode_lock); 794 if (inode) { 795 filemap_fdatawrite(inode->i_mapping); 796 iput(inode); 797 } else { 798 /* 799 * We should submit bio, since it exists several 800 * wribacking dentry pages in the freeing inode. 801 */ 802 f2fs_submit_merged_bio(sbi, DATA, WRITE); 803 cond_resched(); 804 } 805 goto retry; 806 } 807 808 /* 809 * Freeze all the FS-operations for checkpoint. 810 */ 811 static int block_operations(struct f2fs_sb_info *sbi) 812 { 813 struct writeback_control wbc = { 814 .sync_mode = WB_SYNC_ALL, 815 .nr_to_write = LONG_MAX, 816 .for_reclaim = 0, 817 }; 818 struct blk_plug plug; 819 int err = 0; 820 821 blk_start_plug(&plug); 822 823 retry_flush_dents: 824 f2fs_lock_all(sbi); 825 /* write all the dirty dentry pages */ 826 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 827 f2fs_unlock_all(sbi); 828 sync_dirty_dir_inodes(sbi); 829 if (unlikely(f2fs_cp_error(sbi))) { 830 err = -EIO; 831 goto out; 832 } 833 goto retry_flush_dents; 834 } 835 836 /* 837 * POR: we should ensure that there are no dirty node pages 838 * until finishing nat/sit flush. 839 */ 840 retry_flush_nodes: 841 down_write(&sbi->node_write); 842 843 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 844 up_write(&sbi->node_write); 845 sync_node_pages(sbi, 0, &wbc); 846 if (unlikely(f2fs_cp_error(sbi))) { 847 f2fs_unlock_all(sbi); 848 err = -EIO; 849 goto out; 850 } 851 goto retry_flush_nodes; 852 } 853 out: 854 blk_finish_plug(&plug); 855 return err; 856 } 857 858 static void unblock_operations(struct f2fs_sb_info *sbi) 859 { 860 up_write(&sbi->node_write); 861 f2fs_unlock_all(sbi); 862 } 863 864 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 865 { 866 DEFINE_WAIT(wait); 867 868 for (;;) { 869 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 870 871 if (!get_pages(sbi, F2FS_WRITEBACK)) 872 break; 873 874 io_schedule(); 875 } 876 finish_wait(&sbi->cp_wait, &wait); 877 } 878 879 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 880 { 881 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 882 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 883 struct f2fs_nm_info *nm_i = NM_I(sbi); 884 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 885 nid_t last_nid = nm_i->next_scan_nid; 886 block_t start_blk; 887 unsigned int data_sum_blocks, orphan_blocks; 888 __u32 crc32 = 0; 889 int i; 890 int cp_payload_blks = __cp_payload(sbi); 891 892 /* 893 * This avoids to conduct wrong roll-forward operations and uses 894 * metapages, so should be called prior to sync_meta_pages below. 895 */ 896 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 897 898 /* Flush all the NAT/SIT pages */ 899 while (get_pages(sbi, F2FS_DIRTY_META)) { 900 sync_meta_pages(sbi, META, LONG_MAX); 901 if (unlikely(f2fs_cp_error(sbi))) 902 return; 903 } 904 905 next_free_nid(sbi, &last_nid); 906 907 /* 908 * modify checkpoint 909 * version number is already updated 910 */ 911 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 912 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 913 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 914 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 915 ckpt->cur_node_segno[i] = 916 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 917 ckpt->cur_node_blkoff[i] = 918 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 919 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 920 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 921 } 922 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 923 ckpt->cur_data_segno[i] = 924 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 925 ckpt->cur_data_blkoff[i] = 926 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 927 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 928 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 929 } 930 931 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 932 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 933 ckpt->next_free_nid = cpu_to_le32(last_nid); 934 935 /* 2 cp + n data seg summary + orphan inode blocks */ 936 data_sum_blocks = npages_for_summary_flush(sbi, false); 937 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 938 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 939 else 940 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 941 942 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 943 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 944 orphan_blocks); 945 946 if (__remain_node_summaries(cpc->reason)) 947 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 948 cp_payload_blks + data_sum_blocks + 949 orphan_blocks + NR_CURSEG_NODE_TYPE); 950 else 951 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 952 cp_payload_blks + data_sum_blocks + 953 orphan_blocks); 954 955 if (cpc->reason == CP_UMOUNT) 956 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 957 else 958 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 959 960 if (cpc->reason == CP_FASTBOOT) 961 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 962 else 963 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 964 965 if (orphan_num) 966 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 967 else 968 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 969 970 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 971 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 972 973 /* update SIT/NAT bitmap */ 974 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 975 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 976 977 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 978 *((__le32 *)((unsigned char *)ckpt + 979 le32_to_cpu(ckpt->checksum_offset))) 980 = cpu_to_le32(crc32); 981 982 start_blk = __start_cp_addr(sbi); 983 984 /* write out checkpoint buffer at block 0 */ 985 update_meta_page(sbi, ckpt, start_blk++); 986 987 for (i = 1; i < 1 + cp_payload_blks; i++) 988 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 989 start_blk++); 990 991 if (orphan_num) { 992 write_orphan_inodes(sbi, start_blk); 993 start_blk += orphan_blocks; 994 } 995 996 write_data_summaries(sbi, start_blk); 997 start_blk += data_sum_blocks; 998 if (__remain_node_summaries(cpc->reason)) { 999 write_node_summaries(sbi, start_blk); 1000 start_blk += NR_CURSEG_NODE_TYPE; 1001 } 1002 1003 /* writeout checkpoint block */ 1004 update_meta_page(sbi, ckpt, start_blk); 1005 1006 /* wait for previous submitted node/meta pages writeback */ 1007 wait_on_all_pages_writeback(sbi); 1008 1009 if (unlikely(f2fs_cp_error(sbi))) 1010 return; 1011 1012 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1013 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1014 1015 /* update user_block_counts */ 1016 sbi->last_valid_block_count = sbi->total_valid_block_count; 1017 sbi->alloc_valid_block_count = 0; 1018 1019 /* Here, we only have one bio having CP pack */ 1020 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1021 1022 /* wait for previous submitted meta pages writeback */ 1023 wait_on_all_pages_writeback(sbi); 1024 1025 release_dirty_inode(sbi); 1026 1027 if (unlikely(f2fs_cp_error(sbi))) 1028 return; 1029 1030 clear_prefree_segments(sbi, cpc); 1031 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1032 } 1033 1034 /* 1035 * We guarantee that this checkpoint procedure will not fail. 1036 */ 1037 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1038 { 1039 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1040 unsigned long long ckpt_ver; 1041 1042 mutex_lock(&sbi->cp_mutex); 1043 1044 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1045 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1046 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1047 goto out; 1048 if (unlikely(f2fs_cp_error(sbi))) 1049 goto out; 1050 if (f2fs_readonly(sbi->sb)) 1051 goto out; 1052 1053 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1054 1055 if (block_operations(sbi)) 1056 goto out; 1057 1058 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1059 1060 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1061 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1062 f2fs_submit_merged_bio(sbi, META, WRITE); 1063 1064 /* 1065 * update checkpoint pack index 1066 * Increase the version number so that 1067 * SIT entries and seg summaries are written at correct place 1068 */ 1069 ckpt_ver = cur_cp_version(ckpt); 1070 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1071 1072 /* write cached NAT/SIT entries to NAT/SIT area */ 1073 flush_nat_entries(sbi); 1074 flush_sit_entries(sbi, cpc); 1075 1076 /* unlock all the fs_lock[] in do_checkpoint() */ 1077 do_checkpoint(sbi, cpc); 1078 1079 unblock_operations(sbi); 1080 stat_inc_cp_count(sbi->stat_info); 1081 1082 if (cpc->reason == CP_RECOVERY) 1083 f2fs_msg(sbi->sb, KERN_NOTICE, 1084 "checkpoint: version = %llx", ckpt_ver); 1085 out: 1086 mutex_unlock(&sbi->cp_mutex); 1087 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1088 } 1089 1090 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1091 { 1092 int i; 1093 1094 for (i = 0; i < MAX_INO_ENTRY; i++) { 1095 struct inode_management *im = &sbi->im[i]; 1096 1097 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1098 spin_lock_init(&im->ino_lock); 1099 INIT_LIST_HEAD(&im->ino_list); 1100 im->ino_num = 0; 1101 } 1102 1103 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1104 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1105 F2FS_ORPHANS_PER_BLOCK; 1106 } 1107 1108 int __init create_checkpoint_caches(void) 1109 { 1110 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1111 sizeof(struct ino_entry)); 1112 if (!ino_entry_slab) 1113 return -ENOMEM; 1114 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1115 sizeof(struct inode_entry)); 1116 if (!inode_entry_slab) { 1117 kmem_cache_destroy(ino_entry_slab); 1118 return -ENOMEM; 1119 } 1120 return 0; 1121 } 1122 1123 void destroy_checkpoint_caches(void) 1124 { 1125 kmem_cache_destroy(ino_entry_slab); 1126 kmem_cache_destroy(inode_entry_slab); 1127 } 1128