1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = sbi->meta_inode->i_mapping; 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 /* We wait writeback only inside grab_meta_page() */ 43 wait_on_page_writeback(page); 44 SetPageUptodate(page); 45 return page; 46 } 47 48 /* 49 * We guarantee no failure on the returned page. 50 */ 51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 52 { 53 struct address_space *mapping = sbi->meta_inode->i_mapping; 54 struct page *page; 55 repeat: 56 page = grab_cache_page(mapping, index); 57 if (!page) { 58 cond_resched(); 59 goto repeat; 60 } 61 if (PageUptodate(page)) 62 goto out; 63 64 if (f2fs_readpage(sbi, page, index, READ_SYNC)) 65 goto repeat; 66 67 lock_page(page); 68 if (page->mapping != mapping) { 69 f2fs_put_page(page, 1); 70 goto repeat; 71 } 72 out: 73 mark_page_accessed(page); 74 return page; 75 } 76 77 static int f2fs_write_meta_page(struct page *page, 78 struct writeback_control *wbc) 79 { 80 struct inode *inode = page->mapping->host; 81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 82 83 /* Should not write any meta pages, if any IO error was occurred */ 84 if (wbc->for_reclaim || sbi->por_doing || 85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { 86 dec_page_count(sbi, F2FS_DIRTY_META); 87 wbc->pages_skipped++; 88 set_page_dirty(page); 89 return AOP_WRITEPAGE_ACTIVATE; 90 } 91 92 wait_on_page_writeback(page); 93 94 write_meta_page(sbi, page); 95 dec_page_count(sbi, F2FS_DIRTY_META); 96 unlock_page(page); 97 return 0; 98 } 99 100 static int f2fs_write_meta_pages(struct address_space *mapping, 101 struct writeback_control *wbc) 102 { 103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 104 struct block_device *bdev = sbi->sb->s_bdev; 105 long written; 106 107 if (wbc->for_kupdate) 108 return 0; 109 110 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 111 return 0; 112 113 /* if mounting is failed, skip writing node pages */ 114 mutex_lock(&sbi->cp_mutex); 115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 116 mutex_unlock(&sbi->cp_mutex); 117 wbc->nr_to_write -= written; 118 return 0; 119 } 120 121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 122 long nr_to_write) 123 { 124 struct address_space *mapping = sbi->meta_inode->i_mapping; 125 pgoff_t index = 0, end = LONG_MAX; 126 struct pagevec pvec; 127 long nwritten = 0; 128 struct writeback_control wbc = { 129 .for_reclaim = 0, 130 }; 131 132 pagevec_init(&pvec, 0); 133 134 while (index <= end) { 135 int i, nr_pages; 136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 137 PAGECACHE_TAG_DIRTY, 138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 139 if (nr_pages == 0) 140 break; 141 142 for (i = 0; i < nr_pages; i++) { 143 struct page *page = pvec.pages[i]; 144 lock_page(page); 145 BUG_ON(page->mapping != mapping); 146 BUG_ON(!PageDirty(page)); 147 clear_page_dirty_for_io(page); 148 if (f2fs_write_meta_page(page, &wbc)) { 149 unlock_page(page); 150 break; 151 } 152 if (nwritten++ >= nr_to_write) 153 break; 154 } 155 pagevec_release(&pvec); 156 cond_resched(); 157 } 158 159 if (nwritten) 160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 161 162 return nwritten; 163 } 164 165 static int f2fs_set_meta_page_dirty(struct page *page) 166 { 167 struct address_space *mapping = page->mapping; 168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 169 170 SetPageUptodate(page); 171 if (!PageDirty(page)) { 172 __set_page_dirty_nobuffers(page); 173 inc_page_count(sbi, F2FS_DIRTY_META); 174 return 1; 175 } 176 return 0; 177 } 178 179 const struct address_space_operations f2fs_meta_aops = { 180 .writepage = f2fs_write_meta_page, 181 .writepages = f2fs_write_meta_pages, 182 .set_page_dirty = f2fs_set_meta_page_dirty, 183 }; 184 185 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 186 { 187 unsigned int max_orphans; 188 int err = 0; 189 190 /* 191 * considering 512 blocks in a segment 5 blocks are needed for cp 192 * and log segment summaries. Remaining blocks are used to keep 193 * orphan entries with the limitation one reserved segment 194 * for cp pack we can have max 1020*507 orphan entries 195 */ 196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 197 mutex_lock(&sbi->orphan_inode_mutex); 198 if (sbi->n_orphans >= max_orphans) 199 err = -ENOSPC; 200 else 201 sbi->n_orphans++; 202 mutex_unlock(&sbi->orphan_inode_mutex); 203 return err; 204 } 205 206 void release_orphan_inode(struct f2fs_sb_info *sbi) 207 { 208 mutex_lock(&sbi->orphan_inode_mutex); 209 BUG_ON(sbi->n_orphans == 0); 210 sbi->n_orphans--; 211 mutex_unlock(&sbi->orphan_inode_mutex); 212 } 213 214 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 215 { 216 struct list_head *head, *this; 217 struct orphan_inode_entry *new = NULL, *orphan = NULL; 218 219 mutex_lock(&sbi->orphan_inode_mutex); 220 head = &sbi->orphan_inode_list; 221 list_for_each(this, head) { 222 orphan = list_entry(this, struct orphan_inode_entry, list); 223 if (orphan->ino == ino) 224 goto out; 225 if (orphan->ino > ino) 226 break; 227 orphan = NULL; 228 } 229 230 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 231 new->ino = ino; 232 233 /* add new_oentry into list which is sorted by inode number */ 234 if (orphan) 235 list_add(&new->list, this->prev); 236 else 237 list_add_tail(&new->list, head); 238 out: 239 mutex_unlock(&sbi->orphan_inode_mutex); 240 } 241 242 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 243 { 244 struct list_head *head; 245 struct orphan_inode_entry *orphan; 246 247 mutex_lock(&sbi->orphan_inode_mutex); 248 head = &sbi->orphan_inode_list; 249 list_for_each_entry(orphan, head, list) { 250 if (orphan->ino == ino) { 251 list_del(&orphan->list); 252 kmem_cache_free(orphan_entry_slab, orphan); 253 BUG_ON(sbi->n_orphans == 0); 254 sbi->n_orphans--; 255 break; 256 } 257 } 258 mutex_unlock(&sbi->orphan_inode_mutex); 259 } 260 261 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 262 { 263 struct inode *inode = f2fs_iget(sbi->sb, ino); 264 BUG_ON(IS_ERR(inode)); 265 clear_nlink(inode); 266 267 /* truncate all the data during iput */ 268 iput(inode); 269 } 270 271 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 272 { 273 block_t start_blk, orphan_blkaddr, i, j; 274 275 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 276 return 0; 277 278 sbi->por_doing = 1; 279 start_blk = __start_cp_addr(sbi) + 1; 280 orphan_blkaddr = __start_sum_addr(sbi) - 1; 281 282 for (i = 0; i < orphan_blkaddr; i++) { 283 struct page *page = get_meta_page(sbi, start_blk + i); 284 struct f2fs_orphan_block *orphan_blk; 285 286 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 287 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 288 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 289 recover_orphan_inode(sbi, ino); 290 } 291 f2fs_put_page(page, 1); 292 } 293 /* clear Orphan Flag */ 294 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 295 sbi->por_doing = 0; 296 return 0; 297 } 298 299 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 300 { 301 struct list_head *head, *this, *next; 302 struct f2fs_orphan_block *orphan_blk = NULL; 303 struct page *page = NULL; 304 unsigned int nentries = 0; 305 unsigned short index = 1; 306 unsigned short orphan_blocks; 307 308 orphan_blocks = (unsigned short)((sbi->n_orphans + 309 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 310 311 mutex_lock(&sbi->orphan_inode_mutex); 312 head = &sbi->orphan_inode_list; 313 314 /* loop for each orphan inode entry and write them in Jornal block */ 315 list_for_each_safe(this, next, head) { 316 struct orphan_inode_entry *orphan; 317 318 orphan = list_entry(this, struct orphan_inode_entry, list); 319 320 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 321 /* 322 * an orphan block is full of 1020 entries, 323 * then we need to flush current orphan blocks 324 * and bring another one in memory 325 */ 326 orphan_blk->blk_addr = cpu_to_le16(index); 327 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 328 orphan_blk->entry_count = cpu_to_le32(nentries); 329 set_page_dirty(page); 330 f2fs_put_page(page, 1); 331 index++; 332 start_blk++; 333 nentries = 0; 334 page = NULL; 335 } 336 if (page) 337 goto page_exist; 338 339 page = grab_meta_page(sbi, start_blk); 340 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 341 memset(orphan_blk, 0, sizeof(*orphan_blk)); 342 page_exist: 343 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 344 } 345 if (!page) 346 goto end; 347 348 orphan_blk->blk_addr = cpu_to_le16(index); 349 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 350 orphan_blk->entry_count = cpu_to_le32(nentries); 351 set_page_dirty(page); 352 f2fs_put_page(page, 1); 353 end: 354 mutex_unlock(&sbi->orphan_inode_mutex); 355 } 356 357 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 358 block_t cp_addr, unsigned long long *version) 359 { 360 struct page *cp_page_1, *cp_page_2 = NULL; 361 unsigned long blk_size = sbi->blocksize; 362 struct f2fs_checkpoint *cp_block; 363 unsigned long long cur_version = 0, pre_version = 0; 364 size_t crc_offset; 365 __u32 crc = 0; 366 367 /* Read the 1st cp block in this CP pack */ 368 cp_page_1 = get_meta_page(sbi, cp_addr); 369 370 /* get the version number */ 371 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 372 crc_offset = le32_to_cpu(cp_block->checksum_offset); 373 if (crc_offset >= blk_size) 374 goto invalid_cp1; 375 376 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 377 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 378 goto invalid_cp1; 379 380 pre_version = cur_cp_version(cp_block); 381 382 /* Read the 2nd cp block in this CP pack */ 383 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 384 cp_page_2 = get_meta_page(sbi, cp_addr); 385 386 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 387 crc_offset = le32_to_cpu(cp_block->checksum_offset); 388 if (crc_offset >= blk_size) 389 goto invalid_cp2; 390 391 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 392 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 393 goto invalid_cp2; 394 395 cur_version = cur_cp_version(cp_block); 396 397 if (cur_version == pre_version) { 398 *version = cur_version; 399 f2fs_put_page(cp_page_2, 1); 400 return cp_page_1; 401 } 402 invalid_cp2: 403 f2fs_put_page(cp_page_2, 1); 404 invalid_cp1: 405 f2fs_put_page(cp_page_1, 1); 406 return NULL; 407 } 408 409 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 410 { 411 struct f2fs_checkpoint *cp_block; 412 struct f2fs_super_block *fsb = sbi->raw_super; 413 struct page *cp1, *cp2, *cur_page; 414 unsigned long blk_size = sbi->blocksize; 415 unsigned long long cp1_version = 0, cp2_version = 0; 416 unsigned long long cp_start_blk_no; 417 418 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 419 if (!sbi->ckpt) 420 return -ENOMEM; 421 /* 422 * Finding out valid cp block involves read both 423 * sets( cp pack1 and cp pack 2) 424 */ 425 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 426 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 427 428 /* The second checkpoint pack should start at the next segment */ 429 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 430 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 431 432 if (cp1 && cp2) { 433 if (ver_after(cp2_version, cp1_version)) 434 cur_page = cp2; 435 else 436 cur_page = cp1; 437 } else if (cp1) { 438 cur_page = cp1; 439 } else if (cp2) { 440 cur_page = cp2; 441 } else { 442 goto fail_no_cp; 443 } 444 445 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 446 memcpy(sbi->ckpt, cp_block, blk_size); 447 448 f2fs_put_page(cp1, 1); 449 f2fs_put_page(cp2, 1); 450 return 0; 451 452 fail_no_cp: 453 kfree(sbi->ckpt); 454 return -EINVAL; 455 } 456 457 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 458 { 459 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 460 struct list_head *head = &sbi->dir_inode_list; 461 struct list_head *this; 462 463 list_for_each(this, head) { 464 struct dir_inode_entry *entry; 465 entry = list_entry(this, struct dir_inode_entry, list); 466 if (entry->inode == inode) 467 return -EEXIST; 468 } 469 list_add_tail(&new->list, head); 470 #ifdef CONFIG_F2FS_STAT_FS 471 sbi->n_dirty_dirs++; 472 #endif 473 return 0; 474 } 475 476 void set_dirty_dir_page(struct inode *inode, struct page *page) 477 { 478 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 479 struct dir_inode_entry *new; 480 481 if (!S_ISDIR(inode->i_mode)) 482 return; 483 484 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 485 new->inode = inode; 486 INIT_LIST_HEAD(&new->list); 487 488 spin_lock(&sbi->dir_inode_lock); 489 if (__add_dirty_inode(inode, new)) 490 kmem_cache_free(inode_entry_slab, new); 491 492 inc_page_count(sbi, F2FS_DIRTY_DENTS); 493 inode_inc_dirty_dents(inode); 494 SetPagePrivate(page); 495 spin_unlock(&sbi->dir_inode_lock); 496 } 497 498 void add_dirty_dir_inode(struct inode *inode) 499 { 500 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 501 struct dir_inode_entry *new = 502 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 503 504 new->inode = inode; 505 INIT_LIST_HEAD(&new->list); 506 507 spin_lock(&sbi->dir_inode_lock); 508 if (__add_dirty_inode(inode, new)) 509 kmem_cache_free(inode_entry_slab, new); 510 spin_unlock(&sbi->dir_inode_lock); 511 } 512 513 void remove_dirty_dir_inode(struct inode *inode) 514 { 515 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 516 struct list_head *head = &sbi->dir_inode_list; 517 struct list_head *this; 518 519 if (!S_ISDIR(inode->i_mode)) 520 return; 521 522 spin_lock(&sbi->dir_inode_lock); 523 if (atomic_read(&F2FS_I(inode)->dirty_dents)) { 524 spin_unlock(&sbi->dir_inode_lock); 525 return; 526 } 527 528 list_for_each(this, head) { 529 struct dir_inode_entry *entry; 530 entry = list_entry(this, struct dir_inode_entry, list); 531 if (entry->inode == inode) { 532 list_del(&entry->list); 533 kmem_cache_free(inode_entry_slab, entry); 534 #ifdef CONFIG_F2FS_STAT_FS 535 sbi->n_dirty_dirs--; 536 #endif 537 break; 538 } 539 } 540 spin_unlock(&sbi->dir_inode_lock); 541 542 /* Only from the recovery routine */ 543 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 544 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 545 iput(inode); 546 } 547 } 548 549 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) 550 { 551 struct list_head *head = &sbi->dir_inode_list; 552 struct list_head *this; 553 struct inode *inode = NULL; 554 555 spin_lock(&sbi->dir_inode_lock); 556 list_for_each(this, head) { 557 struct dir_inode_entry *entry; 558 entry = list_entry(this, struct dir_inode_entry, list); 559 if (entry->inode->i_ino == ino) { 560 inode = entry->inode; 561 break; 562 } 563 } 564 spin_unlock(&sbi->dir_inode_lock); 565 return inode; 566 } 567 568 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 569 { 570 struct list_head *head = &sbi->dir_inode_list; 571 struct dir_inode_entry *entry; 572 struct inode *inode; 573 retry: 574 spin_lock(&sbi->dir_inode_lock); 575 if (list_empty(head)) { 576 spin_unlock(&sbi->dir_inode_lock); 577 return; 578 } 579 entry = list_entry(head->next, struct dir_inode_entry, list); 580 inode = igrab(entry->inode); 581 spin_unlock(&sbi->dir_inode_lock); 582 if (inode) { 583 filemap_flush(inode->i_mapping); 584 iput(inode); 585 } else { 586 /* 587 * We should submit bio, since it exists several 588 * wribacking dentry pages in the freeing inode. 589 */ 590 f2fs_submit_bio(sbi, DATA, true); 591 } 592 goto retry; 593 } 594 595 /* 596 * Freeze all the FS-operations for checkpoint. 597 */ 598 static void block_operations(struct f2fs_sb_info *sbi) 599 { 600 struct writeback_control wbc = { 601 .sync_mode = WB_SYNC_ALL, 602 .nr_to_write = LONG_MAX, 603 .for_reclaim = 0, 604 }; 605 struct blk_plug plug; 606 607 blk_start_plug(&plug); 608 609 retry_flush_dents: 610 f2fs_lock_all(sbi); 611 /* write all the dirty dentry pages */ 612 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 613 f2fs_unlock_all(sbi); 614 sync_dirty_dir_inodes(sbi); 615 goto retry_flush_dents; 616 } 617 618 /* 619 * POR: we should ensure that there is no dirty node pages 620 * until finishing nat/sit flush. 621 */ 622 retry_flush_nodes: 623 mutex_lock(&sbi->node_write); 624 625 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 626 mutex_unlock(&sbi->node_write); 627 sync_node_pages(sbi, 0, &wbc); 628 goto retry_flush_nodes; 629 } 630 blk_finish_plug(&plug); 631 } 632 633 static void unblock_operations(struct f2fs_sb_info *sbi) 634 { 635 mutex_unlock(&sbi->node_write); 636 f2fs_unlock_all(sbi); 637 } 638 639 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 640 { 641 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 642 nid_t last_nid = 0; 643 block_t start_blk; 644 struct page *cp_page; 645 unsigned int data_sum_blocks, orphan_blocks; 646 __u32 crc32 = 0; 647 void *kaddr; 648 int i; 649 650 /* Flush all the NAT/SIT pages */ 651 while (get_pages(sbi, F2FS_DIRTY_META)) 652 sync_meta_pages(sbi, META, LONG_MAX); 653 654 next_free_nid(sbi, &last_nid); 655 656 /* 657 * modify checkpoint 658 * version number is already updated 659 */ 660 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 661 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 662 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 663 for (i = 0; i < 3; i++) { 664 ckpt->cur_node_segno[i] = 665 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 666 ckpt->cur_node_blkoff[i] = 667 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 668 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 669 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 670 } 671 for (i = 0; i < 3; i++) { 672 ckpt->cur_data_segno[i] = 673 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 674 ckpt->cur_data_blkoff[i] = 675 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 676 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 677 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 678 } 679 680 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 681 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 682 ckpt->next_free_nid = cpu_to_le32(last_nid); 683 684 /* 2 cp + n data seg summary + orphan inode blocks */ 685 data_sum_blocks = npages_for_summary_flush(sbi); 686 if (data_sum_blocks < 3) 687 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 688 else 689 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 690 691 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 692 / F2FS_ORPHANS_PER_BLOCK; 693 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 694 695 if (is_umount) { 696 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 697 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 698 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 699 } else { 700 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 701 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 702 data_sum_blocks + orphan_blocks); 703 } 704 705 if (sbi->n_orphans) 706 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 707 else 708 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 709 710 /* update SIT/NAT bitmap */ 711 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 712 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 713 714 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 715 *((__le32 *)((unsigned char *)ckpt + 716 le32_to_cpu(ckpt->checksum_offset))) 717 = cpu_to_le32(crc32); 718 719 start_blk = __start_cp_addr(sbi); 720 721 /* write out checkpoint buffer at block 0 */ 722 cp_page = grab_meta_page(sbi, start_blk++); 723 kaddr = page_address(cp_page); 724 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 725 set_page_dirty(cp_page); 726 f2fs_put_page(cp_page, 1); 727 728 if (sbi->n_orphans) { 729 write_orphan_inodes(sbi, start_blk); 730 start_blk += orphan_blocks; 731 } 732 733 write_data_summaries(sbi, start_blk); 734 start_blk += data_sum_blocks; 735 if (is_umount) { 736 write_node_summaries(sbi, start_blk); 737 start_blk += NR_CURSEG_NODE_TYPE; 738 } 739 740 /* writeout checkpoint block */ 741 cp_page = grab_meta_page(sbi, start_blk); 742 kaddr = page_address(cp_page); 743 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 744 set_page_dirty(cp_page); 745 f2fs_put_page(cp_page, 1); 746 747 /* wait for previous submitted node/meta pages writeback */ 748 sbi->cp_task = current; 749 while (get_pages(sbi, F2FS_WRITEBACK)) { 750 set_current_state(TASK_UNINTERRUPTIBLE); 751 if (!get_pages(sbi, F2FS_WRITEBACK)) 752 break; 753 io_schedule(); 754 } 755 __set_current_state(TASK_RUNNING); 756 sbi->cp_task = NULL; 757 758 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 759 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 760 761 /* update user_block_counts */ 762 sbi->last_valid_block_count = sbi->total_valid_block_count; 763 sbi->alloc_valid_block_count = 0; 764 765 /* Here, we only have one bio having CP pack */ 766 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 767 768 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 769 clear_prefree_segments(sbi); 770 F2FS_RESET_SB_DIRT(sbi); 771 } 772 } 773 774 /* 775 * We guarantee that this checkpoint procedure should not fail. 776 */ 777 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 778 { 779 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 780 unsigned long long ckpt_ver; 781 782 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 783 784 mutex_lock(&sbi->cp_mutex); 785 block_operations(sbi); 786 787 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 788 789 f2fs_submit_bio(sbi, DATA, true); 790 f2fs_submit_bio(sbi, NODE, true); 791 f2fs_submit_bio(sbi, META, true); 792 793 /* 794 * update checkpoint pack index 795 * Increase the version number so that 796 * SIT entries and seg summaries are written at correct place 797 */ 798 ckpt_ver = cur_cp_version(ckpt); 799 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 800 801 /* write cached NAT/SIT entries to NAT/SIT area */ 802 flush_nat_entries(sbi); 803 flush_sit_entries(sbi); 804 805 /* unlock all the fs_lock[] in do_checkpoint() */ 806 do_checkpoint(sbi, is_umount); 807 808 unblock_operations(sbi); 809 mutex_unlock(&sbi->cp_mutex); 810 811 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 812 } 813 814 void init_orphan_info(struct f2fs_sb_info *sbi) 815 { 816 mutex_init(&sbi->orphan_inode_mutex); 817 INIT_LIST_HEAD(&sbi->orphan_inode_list); 818 sbi->n_orphans = 0; 819 } 820 821 int __init create_checkpoint_caches(void) 822 { 823 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 824 sizeof(struct orphan_inode_entry), NULL); 825 if (unlikely(!orphan_entry_slab)) 826 return -ENOMEM; 827 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 828 sizeof(struct dir_inode_entry), NULL); 829 if (unlikely(!inode_entry_slab)) { 830 kmem_cache_destroy(orphan_entry_slab); 831 return -ENOMEM; 832 } 833 return 0; 834 } 835 836 void destroy_checkpoint_caches(void) 837 { 838 kmem_cache_destroy(orphan_entry_slab); 839 kmem_cache_destroy(inode_entry_slab); 840 } 841