xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 67298804f34452a53a9ec9e609d95aa35084132b)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27 
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 	struct address_space *mapping = META_MAPPING(sbi);
34 	struct page *page = NULL;
35 repeat:
36 	page = grab_cache_page(mapping, index);
37 	if (!page) {
38 		cond_resched();
39 		goto repeat;
40 	}
41 	f2fs_wait_on_page_writeback(page, META);
42 	SetPageUptodate(page);
43 	return page;
44 }
45 
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 	struct address_space *mapping = META_MAPPING(sbi);
52 	struct page *page;
53 repeat:
54 	page = grab_cache_page(mapping, index);
55 	if (!page) {
56 		cond_resched();
57 		goto repeat;
58 	}
59 	if (PageUptodate(page))
60 		goto out;
61 
62 	if (f2fs_submit_page_bio(sbi, page, index,
63 				READ_SYNC | REQ_META | REQ_PRIO))
64 		goto repeat;
65 
66 	lock_page(page);
67 	if (unlikely(page->mapping != mapping)) {
68 		f2fs_put_page(page, 1);
69 		goto repeat;
70 	}
71 out:
72 	return page;
73 }
74 
75 struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index)
76 {
77 	bool readahead = false;
78 	struct page *page;
79 
80 	page = find_get_page(META_MAPPING(sbi), index);
81 	if (!page || (page && !PageUptodate(page)))
82 		readahead = true;
83 	f2fs_put_page(page, 0);
84 
85 	if (readahead)
86 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
87 	return get_meta_page(sbi, index);
88 }
89 
90 static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
91 {
92 	switch (type) {
93 	case META_NAT:
94 		return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
95 	case META_SIT:
96 		return SIT_BLK_CNT(sbi);
97 	case META_SSA:
98 	case META_CP:
99 		return 0;
100 	case META_POR:
101 		return MAX_BLKADDR(sbi);
102 	default:
103 		BUG();
104 	}
105 }
106 
107 /*
108  * Readahead CP/NAT/SIT/SSA pages
109  */
110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
111 {
112 	block_t prev_blk_addr = 0;
113 	struct page *page;
114 	block_t blkno = start;
115 	block_t max_blks = get_max_meta_blks(sbi, type);
116 
117 	struct f2fs_io_info fio = {
118 		.type = META,
119 		.rw = READ_SYNC | REQ_META | REQ_PRIO
120 	};
121 
122 	for (; nrpages-- > 0; blkno++) {
123 		block_t blk_addr;
124 
125 		switch (type) {
126 		case META_NAT:
127 			/* get nat block addr */
128 			if (unlikely(blkno >= max_blks))
129 				blkno = 0;
130 			blk_addr = current_nat_addr(sbi,
131 					blkno * NAT_ENTRY_PER_BLOCK);
132 			break;
133 		case META_SIT:
134 			/* get sit block addr */
135 			if (unlikely(blkno >= max_blks))
136 				goto out;
137 			blk_addr = current_sit_addr(sbi,
138 					blkno * SIT_ENTRY_PER_BLOCK);
139 			if (blkno != start && prev_blk_addr + 1 != blk_addr)
140 				goto out;
141 			prev_blk_addr = blk_addr;
142 			break;
143 		case META_SSA:
144 		case META_CP:
145 		case META_POR:
146 			if (unlikely(blkno >= max_blks))
147 				goto out;
148 			if (unlikely(blkno < SEG0_BLKADDR(sbi)))
149 				goto out;
150 			blk_addr = blkno;
151 			break;
152 		default:
153 			BUG();
154 		}
155 
156 		page = grab_cache_page(META_MAPPING(sbi), blk_addr);
157 		if (!page)
158 			continue;
159 		if (PageUptodate(page)) {
160 			f2fs_put_page(page, 1);
161 			continue;
162 		}
163 
164 		f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
165 		f2fs_put_page(page, 0);
166 	}
167 out:
168 	f2fs_submit_merged_bio(sbi, META, READ);
169 	return blkno - start;
170 }
171 
172 static int f2fs_write_meta_page(struct page *page,
173 				struct writeback_control *wbc)
174 {
175 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
176 
177 	trace_f2fs_writepage(page, META);
178 
179 	if (unlikely(sbi->por_doing))
180 		goto redirty_out;
181 	if (wbc->for_reclaim)
182 		goto redirty_out;
183 	if (unlikely(f2fs_cp_error(sbi)))
184 		goto redirty_out;
185 
186 	f2fs_wait_on_page_writeback(page, META);
187 	write_meta_page(sbi, page);
188 	dec_page_count(sbi, F2FS_DIRTY_META);
189 	unlock_page(page);
190 	return 0;
191 
192 redirty_out:
193 	redirty_page_for_writepage(wbc, page);
194 	return AOP_WRITEPAGE_ACTIVATE;
195 }
196 
197 static int f2fs_write_meta_pages(struct address_space *mapping,
198 				struct writeback_control *wbc)
199 {
200 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
201 	long diff, written;
202 
203 	trace_f2fs_writepages(mapping->host, wbc, META);
204 
205 	/* collect a number of dirty meta pages and write together */
206 	if (wbc->for_kupdate ||
207 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
208 		goto skip_write;
209 
210 	/* if mounting is failed, skip writing node pages */
211 	mutex_lock(&sbi->cp_mutex);
212 	diff = nr_pages_to_write(sbi, META, wbc);
213 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
214 	mutex_unlock(&sbi->cp_mutex);
215 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
216 	return 0;
217 
218 skip_write:
219 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
220 	return 0;
221 }
222 
223 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
224 						long nr_to_write)
225 {
226 	struct address_space *mapping = META_MAPPING(sbi);
227 	pgoff_t index = 0, end = LONG_MAX;
228 	struct pagevec pvec;
229 	long nwritten = 0;
230 	struct writeback_control wbc = {
231 		.for_reclaim = 0,
232 	};
233 
234 	pagevec_init(&pvec, 0);
235 
236 	while (index <= end) {
237 		int i, nr_pages;
238 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
239 				PAGECACHE_TAG_DIRTY,
240 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
241 		if (unlikely(nr_pages == 0))
242 			break;
243 
244 		for (i = 0; i < nr_pages; i++) {
245 			struct page *page = pvec.pages[i];
246 
247 			lock_page(page);
248 
249 			if (unlikely(page->mapping != mapping)) {
250 continue_unlock:
251 				unlock_page(page);
252 				continue;
253 			}
254 			if (!PageDirty(page)) {
255 				/* someone wrote it for us */
256 				goto continue_unlock;
257 			}
258 
259 			if (!clear_page_dirty_for_io(page))
260 				goto continue_unlock;
261 
262 			if (f2fs_write_meta_page(page, &wbc)) {
263 				unlock_page(page);
264 				break;
265 			}
266 			nwritten++;
267 			if (unlikely(nwritten >= nr_to_write))
268 				break;
269 		}
270 		pagevec_release(&pvec);
271 		cond_resched();
272 	}
273 
274 	if (nwritten)
275 		f2fs_submit_merged_bio(sbi, type, WRITE);
276 
277 	return nwritten;
278 }
279 
280 static int f2fs_set_meta_page_dirty(struct page *page)
281 {
282 	trace_f2fs_set_page_dirty(page, META);
283 
284 	SetPageUptodate(page);
285 	if (!PageDirty(page)) {
286 		__set_page_dirty_nobuffers(page);
287 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
288 		return 1;
289 	}
290 	return 0;
291 }
292 
293 const struct address_space_operations f2fs_meta_aops = {
294 	.writepage	= f2fs_write_meta_page,
295 	.writepages	= f2fs_write_meta_pages,
296 	.set_page_dirty	= f2fs_set_meta_page_dirty,
297 };
298 
299 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
300 {
301 	struct inode_management *im = &sbi->im[type];
302 	struct ino_entry *e;
303 retry:
304 	spin_lock(&im->ino_lock);
305 
306 	e = radix_tree_lookup(&im->ino_root, ino);
307 	if (!e) {
308 		e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
309 		if (!e) {
310 			spin_unlock(&im->ino_lock);
311 			goto retry;
312 		}
313 		if (radix_tree_insert(&im->ino_root, ino, e)) {
314 			spin_unlock(&im->ino_lock);
315 			kmem_cache_free(ino_entry_slab, e);
316 			goto retry;
317 		}
318 		memset(e, 0, sizeof(struct ino_entry));
319 		e->ino = ino;
320 
321 		list_add_tail(&e->list, &im->ino_list);
322 		if (type != ORPHAN_INO)
323 			im->ino_num++;
324 	}
325 	spin_unlock(&im->ino_lock);
326 }
327 
328 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
329 {
330 	struct inode_management *im = &sbi->im[type];
331 	struct ino_entry *e;
332 
333 	spin_lock(&im->ino_lock);
334 	e = radix_tree_lookup(&im->ino_root, ino);
335 	if (e) {
336 		list_del(&e->list);
337 		radix_tree_delete(&im->ino_root, ino);
338 		im->ino_num--;
339 		spin_unlock(&im->ino_lock);
340 		kmem_cache_free(ino_entry_slab, e);
341 		return;
342 	}
343 	spin_unlock(&im->ino_lock);
344 }
345 
346 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
347 {
348 	/* add new dirty ino entry into list */
349 	__add_ino_entry(sbi, ino, type);
350 }
351 
352 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
353 {
354 	/* remove dirty ino entry from list */
355 	__remove_ino_entry(sbi, ino, type);
356 }
357 
358 /* mode should be APPEND_INO or UPDATE_INO */
359 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
360 {
361 	struct inode_management *im = &sbi->im[mode];
362 	struct ino_entry *e;
363 
364 	spin_lock(&im->ino_lock);
365 	e = radix_tree_lookup(&im->ino_root, ino);
366 	spin_unlock(&im->ino_lock);
367 	return e ? true : false;
368 }
369 
370 void release_dirty_inode(struct f2fs_sb_info *sbi)
371 {
372 	struct ino_entry *e, *tmp;
373 	int i;
374 
375 	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
376 		struct inode_management *im = &sbi->im[i];
377 
378 		spin_lock(&im->ino_lock);
379 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
380 			list_del(&e->list);
381 			radix_tree_delete(&im->ino_root, e->ino);
382 			kmem_cache_free(ino_entry_slab, e);
383 			im->ino_num--;
384 		}
385 		spin_unlock(&im->ino_lock);
386 	}
387 }
388 
389 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
390 {
391 	struct inode_management *im = &sbi->im[ORPHAN_INO];
392 	int err = 0;
393 
394 	spin_lock(&im->ino_lock);
395 	if (unlikely(im->ino_num >= sbi->max_orphans))
396 		err = -ENOSPC;
397 	else
398 		im->ino_num++;
399 	spin_unlock(&im->ino_lock);
400 
401 	return err;
402 }
403 
404 void release_orphan_inode(struct f2fs_sb_info *sbi)
405 {
406 	struct inode_management *im = &sbi->im[ORPHAN_INO];
407 
408 	spin_lock(&im->ino_lock);
409 	f2fs_bug_on(sbi, im->ino_num == 0);
410 	im->ino_num--;
411 	spin_unlock(&im->ino_lock);
412 }
413 
414 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
415 {
416 	/* add new orphan ino entry into list */
417 	__add_ino_entry(sbi, ino, ORPHAN_INO);
418 }
419 
420 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
421 {
422 	/* remove orphan entry from orphan list */
423 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
424 }
425 
426 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
427 {
428 	struct inode *inode = f2fs_iget(sbi->sb, ino);
429 	f2fs_bug_on(sbi, IS_ERR(inode));
430 	clear_nlink(inode);
431 
432 	/* truncate all the data during iput */
433 	iput(inode);
434 }
435 
436 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
437 {
438 	block_t start_blk, orphan_blkaddr, i, j;
439 
440 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
441 		return;
442 
443 	sbi->por_doing = true;
444 
445 	start_blk = __start_cp_addr(sbi) + 1 +
446 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
447 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
448 
449 	ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
450 
451 	for (i = 0; i < orphan_blkaddr; i++) {
452 		struct page *page = get_meta_page(sbi, start_blk + i);
453 		struct f2fs_orphan_block *orphan_blk;
454 
455 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
456 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
457 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
458 			recover_orphan_inode(sbi, ino);
459 		}
460 		f2fs_put_page(page, 1);
461 	}
462 	/* clear Orphan Flag */
463 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
464 	sbi->por_doing = false;
465 	return;
466 }
467 
468 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
469 {
470 	struct list_head *head;
471 	struct f2fs_orphan_block *orphan_blk = NULL;
472 	unsigned int nentries = 0;
473 	unsigned short index;
474 	unsigned short orphan_blocks;
475 	struct page *page = NULL;
476 	struct ino_entry *orphan = NULL;
477 	struct inode_management *im = &sbi->im[ORPHAN_INO];
478 
479 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
480 
481 	for (index = 0; index < orphan_blocks; index++)
482 		grab_meta_page(sbi, start_blk + index);
483 
484 	index = 1;
485 	spin_lock(&im->ino_lock);
486 	head = &im->ino_list;
487 
488 	/* loop for each orphan inode entry and write them in Jornal block */
489 	list_for_each_entry(orphan, head, list) {
490 		if (!page) {
491 			page = find_get_page(META_MAPPING(sbi), start_blk++);
492 			f2fs_bug_on(sbi, !page);
493 			orphan_blk =
494 				(struct f2fs_orphan_block *)page_address(page);
495 			memset(orphan_blk, 0, sizeof(*orphan_blk));
496 			f2fs_put_page(page, 0);
497 		}
498 
499 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
500 
501 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
502 			/*
503 			 * an orphan block is full of 1020 entries,
504 			 * then we need to flush current orphan blocks
505 			 * and bring another one in memory
506 			 */
507 			orphan_blk->blk_addr = cpu_to_le16(index);
508 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
509 			orphan_blk->entry_count = cpu_to_le32(nentries);
510 			set_page_dirty(page);
511 			f2fs_put_page(page, 1);
512 			index++;
513 			nentries = 0;
514 			page = NULL;
515 		}
516 	}
517 
518 	if (page) {
519 		orphan_blk->blk_addr = cpu_to_le16(index);
520 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
521 		orphan_blk->entry_count = cpu_to_le32(nentries);
522 		set_page_dirty(page);
523 		f2fs_put_page(page, 1);
524 	}
525 
526 	spin_unlock(&im->ino_lock);
527 }
528 
529 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
530 				block_t cp_addr, unsigned long long *version)
531 {
532 	struct page *cp_page_1, *cp_page_2 = NULL;
533 	unsigned long blk_size = sbi->blocksize;
534 	struct f2fs_checkpoint *cp_block;
535 	unsigned long long cur_version = 0, pre_version = 0;
536 	size_t crc_offset;
537 	__u32 crc = 0;
538 
539 	/* Read the 1st cp block in this CP pack */
540 	cp_page_1 = get_meta_page(sbi, cp_addr);
541 
542 	/* get the version number */
543 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
544 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
545 	if (crc_offset >= blk_size)
546 		goto invalid_cp1;
547 
548 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
549 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
550 		goto invalid_cp1;
551 
552 	pre_version = cur_cp_version(cp_block);
553 
554 	/* Read the 2nd cp block in this CP pack */
555 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
556 	cp_page_2 = get_meta_page(sbi, cp_addr);
557 
558 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
559 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
560 	if (crc_offset >= blk_size)
561 		goto invalid_cp2;
562 
563 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
564 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
565 		goto invalid_cp2;
566 
567 	cur_version = cur_cp_version(cp_block);
568 
569 	if (cur_version == pre_version) {
570 		*version = cur_version;
571 		f2fs_put_page(cp_page_2, 1);
572 		return cp_page_1;
573 	}
574 invalid_cp2:
575 	f2fs_put_page(cp_page_2, 1);
576 invalid_cp1:
577 	f2fs_put_page(cp_page_1, 1);
578 	return NULL;
579 }
580 
581 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
582 {
583 	struct f2fs_checkpoint *cp_block;
584 	struct f2fs_super_block *fsb = sbi->raw_super;
585 	struct page *cp1, *cp2, *cur_page;
586 	unsigned long blk_size = sbi->blocksize;
587 	unsigned long long cp1_version = 0, cp2_version = 0;
588 	unsigned long long cp_start_blk_no;
589 	unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
590 	block_t cp_blk_no;
591 	int i;
592 
593 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
594 	if (!sbi->ckpt)
595 		return -ENOMEM;
596 	/*
597 	 * Finding out valid cp block involves read both
598 	 * sets( cp pack1 and cp pack 2)
599 	 */
600 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
601 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
602 
603 	/* The second checkpoint pack should start at the next segment */
604 	cp_start_blk_no += ((unsigned long long)1) <<
605 				le32_to_cpu(fsb->log_blocks_per_seg);
606 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
607 
608 	if (cp1 && cp2) {
609 		if (ver_after(cp2_version, cp1_version))
610 			cur_page = cp2;
611 		else
612 			cur_page = cp1;
613 	} else if (cp1) {
614 		cur_page = cp1;
615 	} else if (cp2) {
616 		cur_page = cp2;
617 	} else {
618 		goto fail_no_cp;
619 	}
620 
621 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
622 	memcpy(sbi->ckpt, cp_block, blk_size);
623 
624 	if (cp_blks <= 1)
625 		goto done;
626 
627 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
628 	if (cur_page == cp2)
629 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
630 
631 	for (i = 1; i < cp_blks; i++) {
632 		void *sit_bitmap_ptr;
633 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
634 
635 		cur_page = get_meta_page(sbi, cp_blk_no + i);
636 		sit_bitmap_ptr = page_address(cur_page);
637 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
638 		f2fs_put_page(cur_page, 1);
639 	}
640 done:
641 	f2fs_put_page(cp1, 1);
642 	f2fs_put_page(cp2, 1);
643 	return 0;
644 
645 fail_no_cp:
646 	kfree(sbi->ckpt);
647 	return -EINVAL;
648 }
649 
650 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
651 {
652 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
653 
654 	if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
655 		return -EEXIST;
656 
657 	set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
658 	F2FS_I(inode)->dirty_dir = new;
659 	list_add_tail(&new->list, &sbi->dir_inode_list);
660 	stat_inc_dirty_dir(sbi);
661 	return 0;
662 }
663 
664 void update_dirty_page(struct inode *inode, struct page *page)
665 {
666 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
667 	struct dir_inode_entry *new;
668 	int ret = 0;
669 
670 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
671 		return;
672 
673 	if (!S_ISDIR(inode->i_mode)) {
674 		inode_inc_dirty_pages(inode);
675 		goto out;
676 	}
677 
678 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
679 	new->inode = inode;
680 	INIT_LIST_HEAD(&new->list);
681 
682 	spin_lock(&sbi->dir_inode_lock);
683 	ret = __add_dirty_inode(inode, new);
684 	inode_inc_dirty_pages(inode);
685 	spin_unlock(&sbi->dir_inode_lock);
686 
687 	if (ret)
688 		kmem_cache_free(inode_entry_slab, new);
689 out:
690 	SetPagePrivate(page);
691 }
692 
693 void add_dirty_dir_inode(struct inode *inode)
694 {
695 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
696 	struct dir_inode_entry *new =
697 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
698 	int ret = 0;
699 
700 	new->inode = inode;
701 	INIT_LIST_HEAD(&new->list);
702 
703 	spin_lock(&sbi->dir_inode_lock);
704 	ret = __add_dirty_inode(inode, new);
705 	spin_unlock(&sbi->dir_inode_lock);
706 
707 	if (ret)
708 		kmem_cache_free(inode_entry_slab, new);
709 }
710 
711 void remove_dirty_dir_inode(struct inode *inode)
712 {
713 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
714 	struct dir_inode_entry *entry;
715 
716 	if (!S_ISDIR(inode->i_mode))
717 		return;
718 
719 	spin_lock(&sbi->dir_inode_lock);
720 	if (get_dirty_pages(inode) ||
721 			!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
722 		spin_unlock(&sbi->dir_inode_lock);
723 		return;
724 	}
725 
726 	entry = F2FS_I(inode)->dirty_dir;
727 	list_del(&entry->list);
728 	F2FS_I(inode)->dirty_dir = NULL;
729 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
730 	stat_dec_dirty_dir(sbi);
731 	spin_unlock(&sbi->dir_inode_lock);
732 	kmem_cache_free(inode_entry_slab, entry);
733 
734 	/* Only from the recovery routine */
735 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
736 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
737 		iput(inode);
738 	}
739 }
740 
741 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
742 {
743 	struct list_head *head;
744 	struct dir_inode_entry *entry;
745 	struct inode *inode;
746 retry:
747 	if (unlikely(f2fs_cp_error(sbi)))
748 		return;
749 
750 	spin_lock(&sbi->dir_inode_lock);
751 
752 	head = &sbi->dir_inode_list;
753 	if (list_empty(head)) {
754 		spin_unlock(&sbi->dir_inode_lock);
755 		return;
756 	}
757 	entry = list_entry(head->next, struct dir_inode_entry, list);
758 	inode = igrab(entry->inode);
759 	spin_unlock(&sbi->dir_inode_lock);
760 	if (inode) {
761 		filemap_fdatawrite(inode->i_mapping);
762 		iput(inode);
763 	} else {
764 		/*
765 		 * We should submit bio, since it exists several
766 		 * wribacking dentry pages in the freeing inode.
767 		 */
768 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
769 	}
770 	goto retry;
771 }
772 
773 /*
774  * Freeze all the FS-operations for checkpoint.
775  */
776 static int block_operations(struct f2fs_sb_info *sbi)
777 {
778 	struct writeback_control wbc = {
779 		.sync_mode = WB_SYNC_ALL,
780 		.nr_to_write = LONG_MAX,
781 		.for_reclaim = 0,
782 	};
783 	struct blk_plug plug;
784 	int err = 0;
785 
786 	blk_start_plug(&plug);
787 
788 retry_flush_dents:
789 	f2fs_lock_all(sbi);
790 	/* write all the dirty dentry pages */
791 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
792 		f2fs_unlock_all(sbi);
793 		sync_dirty_dir_inodes(sbi);
794 		if (unlikely(f2fs_cp_error(sbi))) {
795 			err = -EIO;
796 			goto out;
797 		}
798 		goto retry_flush_dents;
799 	}
800 
801 	/*
802 	 * POR: we should ensure that there are no dirty node pages
803 	 * until finishing nat/sit flush.
804 	 */
805 retry_flush_nodes:
806 	down_write(&sbi->node_write);
807 
808 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
809 		up_write(&sbi->node_write);
810 		sync_node_pages(sbi, 0, &wbc);
811 		if (unlikely(f2fs_cp_error(sbi))) {
812 			f2fs_unlock_all(sbi);
813 			err = -EIO;
814 			goto out;
815 		}
816 		goto retry_flush_nodes;
817 	}
818 out:
819 	blk_finish_plug(&plug);
820 	return err;
821 }
822 
823 static void unblock_operations(struct f2fs_sb_info *sbi)
824 {
825 	up_write(&sbi->node_write);
826 	f2fs_unlock_all(sbi);
827 }
828 
829 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
830 {
831 	DEFINE_WAIT(wait);
832 
833 	for (;;) {
834 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
835 
836 		if (!get_pages(sbi, F2FS_WRITEBACK))
837 			break;
838 
839 		io_schedule();
840 	}
841 	finish_wait(&sbi->cp_wait, &wait);
842 }
843 
844 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
845 {
846 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
847 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
848 	struct f2fs_nm_info *nm_i = NM_I(sbi);
849 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
850 	nid_t last_nid = nm_i->next_scan_nid;
851 	block_t start_blk;
852 	struct page *cp_page;
853 	unsigned int data_sum_blocks, orphan_blocks;
854 	__u32 crc32 = 0;
855 	void *kaddr;
856 	int i;
857 	int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
858 
859 	/*
860 	 * This avoids to conduct wrong roll-forward operations and uses
861 	 * metapages, so should be called prior to sync_meta_pages below.
862 	 */
863 	discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
864 
865 	/* Flush all the NAT/SIT pages */
866 	while (get_pages(sbi, F2FS_DIRTY_META)) {
867 		sync_meta_pages(sbi, META, LONG_MAX);
868 		if (unlikely(f2fs_cp_error(sbi)))
869 			return;
870 	}
871 
872 	next_free_nid(sbi, &last_nid);
873 
874 	/*
875 	 * modify checkpoint
876 	 * version number is already updated
877 	 */
878 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
879 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
880 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
881 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
882 		ckpt->cur_node_segno[i] =
883 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
884 		ckpt->cur_node_blkoff[i] =
885 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
886 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
887 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
888 	}
889 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
890 		ckpt->cur_data_segno[i] =
891 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
892 		ckpt->cur_data_blkoff[i] =
893 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
894 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
895 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
896 	}
897 
898 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
899 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
900 	ckpt->next_free_nid = cpu_to_le32(last_nid);
901 
902 	/* 2 cp  + n data seg summary + orphan inode blocks */
903 	data_sum_blocks = npages_for_summary_flush(sbi);
904 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
905 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
906 	else
907 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
908 
909 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
910 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
911 			orphan_blocks);
912 
913 	if (cpc->reason == CP_UMOUNT) {
914 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
915 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
916 				cp_payload_blks + data_sum_blocks +
917 				orphan_blocks + NR_CURSEG_NODE_TYPE);
918 	} else {
919 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
920 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
921 				cp_payload_blks + data_sum_blocks +
922 				orphan_blocks);
923 	}
924 
925 	if (orphan_num)
926 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
927 	else
928 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
929 
930 	if (sbi->need_fsck)
931 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
932 
933 	/* update SIT/NAT bitmap */
934 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
935 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
936 
937 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
938 	*((__le32 *)((unsigned char *)ckpt +
939 				le32_to_cpu(ckpt->checksum_offset)))
940 				= cpu_to_le32(crc32);
941 
942 	start_blk = __start_cp_addr(sbi);
943 
944 	/* write out checkpoint buffer at block 0 */
945 	cp_page = grab_meta_page(sbi, start_blk++);
946 	kaddr = page_address(cp_page);
947 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
948 	set_page_dirty(cp_page);
949 	f2fs_put_page(cp_page, 1);
950 
951 	for (i = 1; i < 1 + cp_payload_blks; i++) {
952 		cp_page = grab_meta_page(sbi, start_blk++);
953 		kaddr = page_address(cp_page);
954 		memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
955 				(1 << sbi->log_blocksize));
956 		set_page_dirty(cp_page);
957 		f2fs_put_page(cp_page, 1);
958 	}
959 
960 	if (orphan_num) {
961 		write_orphan_inodes(sbi, start_blk);
962 		start_blk += orphan_blocks;
963 	}
964 
965 	write_data_summaries(sbi, start_blk);
966 	start_blk += data_sum_blocks;
967 	if (cpc->reason == CP_UMOUNT) {
968 		write_node_summaries(sbi, start_blk);
969 		start_blk += NR_CURSEG_NODE_TYPE;
970 	}
971 
972 	/* writeout checkpoint block */
973 	cp_page = grab_meta_page(sbi, start_blk);
974 	kaddr = page_address(cp_page);
975 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
976 	set_page_dirty(cp_page);
977 	f2fs_put_page(cp_page, 1);
978 
979 	/* wait for previous submitted node/meta pages writeback */
980 	wait_on_all_pages_writeback(sbi);
981 
982 	if (unlikely(f2fs_cp_error(sbi)))
983 		return;
984 
985 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
986 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
987 
988 	/* update user_block_counts */
989 	sbi->last_valid_block_count = sbi->total_valid_block_count;
990 	sbi->alloc_valid_block_count = 0;
991 
992 	/* Here, we only have one bio having CP pack */
993 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
994 
995 	/* wait for previous submitted meta pages writeback */
996 	wait_on_all_pages_writeback(sbi);
997 
998 	release_dirty_inode(sbi);
999 
1000 	if (unlikely(f2fs_cp_error(sbi)))
1001 		return;
1002 
1003 	clear_prefree_segments(sbi);
1004 	F2FS_RESET_SB_DIRT(sbi);
1005 }
1006 
1007 /*
1008  * We guarantee that this checkpoint procedure will not fail.
1009  */
1010 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1011 {
1012 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1013 	unsigned long long ckpt_ver;
1014 
1015 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1016 
1017 	mutex_lock(&sbi->cp_mutex);
1018 
1019 	if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1020 		goto out;
1021 	if (unlikely(f2fs_cp_error(sbi)))
1022 		goto out;
1023 	if (block_operations(sbi))
1024 		goto out;
1025 
1026 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1027 
1028 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
1029 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1030 	f2fs_submit_merged_bio(sbi, META, WRITE);
1031 
1032 	/*
1033 	 * update checkpoint pack index
1034 	 * Increase the version number so that
1035 	 * SIT entries and seg summaries are written at correct place
1036 	 */
1037 	ckpt_ver = cur_cp_version(ckpt);
1038 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1039 
1040 	/* write cached NAT/SIT entries to NAT/SIT area */
1041 	flush_nat_entries(sbi);
1042 	flush_sit_entries(sbi, cpc);
1043 
1044 	/* unlock all the fs_lock[] in do_checkpoint() */
1045 	do_checkpoint(sbi, cpc);
1046 
1047 	unblock_operations(sbi);
1048 	stat_inc_cp_count(sbi->stat_info);
1049 out:
1050 	mutex_unlock(&sbi->cp_mutex);
1051 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1052 }
1053 
1054 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1059 		struct inode_management *im = &sbi->im[i];
1060 
1061 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1062 		spin_lock_init(&im->ino_lock);
1063 		INIT_LIST_HEAD(&im->ino_list);
1064 		im->ino_num = 0;
1065 	}
1066 
1067 	/*
1068 	 * considering 512 blocks in a segment 8 blocks are needed for cp
1069 	 * and log segment summaries. Remaining blocks are used to keep
1070 	 * orphan entries with the limitation one reserved segment
1071 	 * for cp pack we can have max 1020*504 orphan entries
1072 	 */
1073 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1074 			NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1075 }
1076 
1077 int __init create_checkpoint_caches(void)
1078 {
1079 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1080 			sizeof(struct ino_entry));
1081 	if (!ino_entry_slab)
1082 		return -ENOMEM;
1083 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1084 			sizeof(struct dir_inode_entry));
1085 	if (!inode_entry_slab) {
1086 		kmem_cache_destroy(ino_entry_slab);
1087 		return -ENOMEM;
1088 	}
1089 	return 0;
1090 }
1091 
1092 void destroy_checkpoint_caches(void)
1093 {
1094 	kmem_cache_destroy(ino_entry_slab);
1095 	kmem_cache_destroy(inode_entry_slab);
1096 }
1097