1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *ino_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = META_MAPPING(sbi); 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 f2fs_wait_on_page_writeback(page, META); 42 SetPageUptodate(page); 43 return page; 44 } 45 46 /* 47 * We guarantee no failure on the returned page. 48 */ 49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 50 { 51 struct address_space *mapping = META_MAPPING(sbi); 52 struct page *page; 53 repeat: 54 page = grab_cache_page(mapping, index); 55 if (!page) { 56 cond_resched(); 57 goto repeat; 58 } 59 if (PageUptodate(page)) 60 goto out; 61 62 if (f2fs_submit_page_bio(sbi, page, index, 63 READ_SYNC | REQ_META | REQ_PRIO)) 64 goto repeat; 65 66 lock_page(page); 67 if (unlikely(page->mapping != mapping)) { 68 f2fs_put_page(page, 1); 69 goto repeat; 70 } 71 out: 72 return page; 73 } 74 75 struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index) 76 { 77 bool readahead = false; 78 struct page *page; 79 80 page = find_get_page(META_MAPPING(sbi), index); 81 if (!page || (page && !PageUptodate(page))) 82 readahead = true; 83 f2fs_put_page(page, 0); 84 85 if (readahead) 86 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 87 return get_meta_page(sbi, index); 88 } 89 90 static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type) 91 { 92 switch (type) { 93 case META_NAT: 94 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK; 95 case META_SIT: 96 return SIT_BLK_CNT(sbi); 97 case META_SSA: 98 case META_CP: 99 return 0; 100 case META_POR: 101 return MAX_BLKADDR(sbi); 102 default: 103 BUG(); 104 } 105 } 106 107 /* 108 * Readahead CP/NAT/SIT/SSA pages 109 */ 110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 111 { 112 block_t prev_blk_addr = 0; 113 struct page *page; 114 block_t blkno = start; 115 block_t max_blks = get_max_meta_blks(sbi, type); 116 117 struct f2fs_io_info fio = { 118 .type = META, 119 .rw = READ_SYNC | REQ_META | REQ_PRIO 120 }; 121 122 for (; nrpages-- > 0; blkno++) { 123 block_t blk_addr; 124 125 switch (type) { 126 case META_NAT: 127 /* get nat block addr */ 128 if (unlikely(blkno >= max_blks)) 129 blkno = 0; 130 blk_addr = current_nat_addr(sbi, 131 blkno * NAT_ENTRY_PER_BLOCK); 132 break; 133 case META_SIT: 134 /* get sit block addr */ 135 if (unlikely(blkno >= max_blks)) 136 goto out; 137 blk_addr = current_sit_addr(sbi, 138 blkno * SIT_ENTRY_PER_BLOCK); 139 if (blkno != start && prev_blk_addr + 1 != blk_addr) 140 goto out; 141 prev_blk_addr = blk_addr; 142 break; 143 case META_SSA: 144 case META_CP: 145 case META_POR: 146 if (unlikely(blkno >= max_blks)) 147 goto out; 148 if (unlikely(blkno < SEG0_BLKADDR(sbi))) 149 goto out; 150 blk_addr = blkno; 151 break; 152 default: 153 BUG(); 154 } 155 156 page = grab_cache_page(META_MAPPING(sbi), blk_addr); 157 if (!page) 158 continue; 159 if (PageUptodate(page)) { 160 f2fs_put_page(page, 1); 161 continue; 162 } 163 164 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio); 165 f2fs_put_page(page, 0); 166 } 167 out: 168 f2fs_submit_merged_bio(sbi, META, READ); 169 return blkno - start; 170 } 171 172 static int f2fs_write_meta_page(struct page *page, 173 struct writeback_control *wbc) 174 { 175 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 176 177 trace_f2fs_writepage(page, META); 178 179 if (unlikely(sbi->por_doing)) 180 goto redirty_out; 181 if (wbc->for_reclaim) 182 goto redirty_out; 183 if (unlikely(f2fs_cp_error(sbi))) 184 goto redirty_out; 185 186 f2fs_wait_on_page_writeback(page, META); 187 write_meta_page(sbi, page); 188 dec_page_count(sbi, F2FS_DIRTY_META); 189 unlock_page(page); 190 return 0; 191 192 redirty_out: 193 redirty_page_for_writepage(wbc, page); 194 return AOP_WRITEPAGE_ACTIVATE; 195 } 196 197 static int f2fs_write_meta_pages(struct address_space *mapping, 198 struct writeback_control *wbc) 199 { 200 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 201 long diff, written; 202 203 trace_f2fs_writepages(mapping->host, wbc, META); 204 205 /* collect a number of dirty meta pages and write together */ 206 if (wbc->for_kupdate || 207 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 208 goto skip_write; 209 210 /* if mounting is failed, skip writing node pages */ 211 mutex_lock(&sbi->cp_mutex); 212 diff = nr_pages_to_write(sbi, META, wbc); 213 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 214 mutex_unlock(&sbi->cp_mutex); 215 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 216 return 0; 217 218 skip_write: 219 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 220 return 0; 221 } 222 223 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 224 long nr_to_write) 225 { 226 struct address_space *mapping = META_MAPPING(sbi); 227 pgoff_t index = 0, end = LONG_MAX; 228 struct pagevec pvec; 229 long nwritten = 0; 230 struct writeback_control wbc = { 231 .for_reclaim = 0, 232 }; 233 234 pagevec_init(&pvec, 0); 235 236 while (index <= end) { 237 int i, nr_pages; 238 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 239 PAGECACHE_TAG_DIRTY, 240 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 241 if (unlikely(nr_pages == 0)) 242 break; 243 244 for (i = 0; i < nr_pages; i++) { 245 struct page *page = pvec.pages[i]; 246 247 lock_page(page); 248 249 if (unlikely(page->mapping != mapping)) { 250 continue_unlock: 251 unlock_page(page); 252 continue; 253 } 254 if (!PageDirty(page)) { 255 /* someone wrote it for us */ 256 goto continue_unlock; 257 } 258 259 if (!clear_page_dirty_for_io(page)) 260 goto continue_unlock; 261 262 if (f2fs_write_meta_page(page, &wbc)) { 263 unlock_page(page); 264 break; 265 } 266 nwritten++; 267 if (unlikely(nwritten >= nr_to_write)) 268 break; 269 } 270 pagevec_release(&pvec); 271 cond_resched(); 272 } 273 274 if (nwritten) 275 f2fs_submit_merged_bio(sbi, type, WRITE); 276 277 return nwritten; 278 } 279 280 static int f2fs_set_meta_page_dirty(struct page *page) 281 { 282 trace_f2fs_set_page_dirty(page, META); 283 284 SetPageUptodate(page); 285 if (!PageDirty(page)) { 286 __set_page_dirty_nobuffers(page); 287 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 288 return 1; 289 } 290 return 0; 291 } 292 293 const struct address_space_operations f2fs_meta_aops = { 294 .writepage = f2fs_write_meta_page, 295 .writepages = f2fs_write_meta_pages, 296 .set_page_dirty = f2fs_set_meta_page_dirty, 297 }; 298 299 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 300 { 301 struct inode_management *im = &sbi->im[type]; 302 struct ino_entry *e; 303 retry: 304 spin_lock(&im->ino_lock); 305 306 e = radix_tree_lookup(&im->ino_root, ino); 307 if (!e) { 308 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 309 if (!e) { 310 spin_unlock(&im->ino_lock); 311 goto retry; 312 } 313 if (radix_tree_insert(&im->ino_root, ino, e)) { 314 spin_unlock(&im->ino_lock); 315 kmem_cache_free(ino_entry_slab, e); 316 goto retry; 317 } 318 memset(e, 0, sizeof(struct ino_entry)); 319 e->ino = ino; 320 321 list_add_tail(&e->list, &im->ino_list); 322 if (type != ORPHAN_INO) 323 im->ino_num++; 324 } 325 spin_unlock(&im->ino_lock); 326 } 327 328 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 329 { 330 struct inode_management *im = &sbi->im[type]; 331 struct ino_entry *e; 332 333 spin_lock(&im->ino_lock); 334 e = radix_tree_lookup(&im->ino_root, ino); 335 if (e) { 336 list_del(&e->list); 337 radix_tree_delete(&im->ino_root, ino); 338 im->ino_num--; 339 spin_unlock(&im->ino_lock); 340 kmem_cache_free(ino_entry_slab, e); 341 return; 342 } 343 spin_unlock(&im->ino_lock); 344 } 345 346 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 347 { 348 /* add new dirty ino entry into list */ 349 __add_ino_entry(sbi, ino, type); 350 } 351 352 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 353 { 354 /* remove dirty ino entry from list */ 355 __remove_ino_entry(sbi, ino, type); 356 } 357 358 /* mode should be APPEND_INO or UPDATE_INO */ 359 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 360 { 361 struct inode_management *im = &sbi->im[mode]; 362 struct ino_entry *e; 363 364 spin_lock(&im->ino_lock); 365 e = radix_tree_lookup(&im->ino_root, ino); 366 spin_unlock(&im->ino_lock); 367 return e ? true : false; 368 } 369 370 void release_dirty_inode(struct f2fs_sb_info *sbi) 371 { 372 struct ino_entry *e, *tmp; 373 int i; 374 375 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 376 struct inode_management *im = &sbi->im[i]; 377 378 spin_lock(&im->ino_lock); 379 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 380 list_del(&e->list); 381 radix_tree_delete(&im->ino_root, e->ino); 382 kmem_cache_free(ino_entry_slab, e); 383 im->ino_num--; 384 } 385 spin_unlock(&im->ino_lock); 386 } 387 } 388 389 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 390 { 391 struct inode_management *im = &sbi->im[ORPHAN_INO]; 392 int err = 0; 393 394 spin_lock(&im->ino_lock); 395 if (unlikely(im->ino_num >= sbi->max_orphans)) 396 err = -ENOSPC; 397 else 398 im->ino_num++; 399 spin_unlock(&im->ino_lock); 400 401 return err; 402 } 403 404 void release_orphan_inode(struct f2fs_sb_info *sbi) 405 { 406 struct inode_management *im = &sbi->im[ORPHAN_INO]; 407 408 spin_lock(&im->ino_lock); 409 f2fs_bug_on(sbi, im->ino_num == 0); 410 im->ino_num--; 411 spin_unlock(&im->ino_lock); 412 } 413 414 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 415 { 416 /* add new orphan ino entry into list */ 417 __add_ino_entry(sbi, ino, ORPHAN_INO); 418 } 419 420 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 421 { 422 /* remove orphan entry from orphan list */ 423 __remove_ino_entry(sbi, ino, ORPHAN_INO); 424 } 425 426 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 427 { 428 struct inode *inode = f2fs_iget(sbi->sb, ino); 429 f2fs_bug_on(sbi, IS_ERR(inode)); 430 clear_nlink(inode); 431 432 /* truncate all the data during iput */ 433 iput(inode); 434 } 435 436 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 437 { 438 block_t start_blk, orphan_blkaddr, i, j; 439 440 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 441 return; 442 443 sbi->por_doing = true; 444 445 start_blk = __start_cp_addr(sbi) + 1 + 446 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 447 orphan_blkaddr = __start_sum_addr(sbi) - 1; 448 449 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); 450 451 for (i = 0; i < orphan_blkaddr; i++) { 452 struct page *page = get_meta_page(sbi, start_blk + i); 453 struct f2fs_orphan_block *orphan_blk; 454 455 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 456 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 457 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 458 recover_orphan_inode(sbi, ino); 459 } 460 f2fs_put_page(page, 1); 461 } 462 /* clear Orphan Flag */ 463 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 464 sbi->por_doing = false; 465 return; 466 } 467 468 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 469 { 470 struct list_head *head; 471 struct f2fs_orphan_block *orphan_blk = NULL; 472 unsigned int nentries = 0; 473 unsigned short index; 474 unsigned short orphan_blocks; 475 struct page *page = NULL; 476 struct ino_entry *orphan = NULL; 477 struct inode_management *im = &sbi->im[ORPHAN_INO]; 478 479 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 480 481 for (index = 0; index < orphan_blocks; index++) 482 grab_meta_page(sbi, start_blk + index); 483 484 index = 1; 485 spin_lock(&im->ino_lock); 486 head = &im->ino_list; 487 488 /* loop for each orphan inode entry and write them in Jornal block */ 489 list_for_each_entry(orphan, head, list) { 490 if (!page) { 491 page = find_get_page(META_MAPPING(sbi), start_blk++); 492 f2fs_bug_on(sbi, !page); 493 orphan_blk = 494 (struct f2fs_orphan_block *)page_address(page); 495 memset(orphan_blk, 0, sizeof(*orphan_blk)); 496 f2fs_put_page(page, 0); 497 } 498 499 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 500 501 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 502 /* 503 * an orphan block is full of 1020 entries, 504 * then we need to flush current orphan blocks 505 * and bring another one in memory 506 */ 507 orphan_blk->blk_addr = cpu_to_le16(index); 508 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 509 orphan_blk->entry_count = cpu_to_le32(nentries); 510 set_page_dirty(page); 511 f2fs_put_page(page, 1); 512 index++; 513 nentries = 0; 514 page = NULL; 515 } 516 } 517 518 if (page) { 519 orphan_blk->blk_addr = cpu_to_le16(index); 520 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 521 orphan_blk->entry_count = cpu_to_le32(nentries); 522 set_page_dirty(page); 523 f2fs_put_page(page, 1); 524 } 525 526 spin_unlock(&im->ino_lock); 527 } 528 529 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 530 block_t cp_addr, unsigned long long *version) 531 { 532 struct page *cp_page_1, *cp_page_2 = NULL; 533 unsigned long blk_size = sbi->blocksize; 534 struct f2fs_checkpoint *cp_block; 535 unsigned long long cur_version = 0, pre_version = 0; 536 size_t crc_offset; 537 __u32 crc = 0; 538 539 /* Read the 1st cp block in this CP pack */ 540 cp_page_1 = get_meta_page(sbi, cp_addr); 541 542 /* get the version number */ 543 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 544 crc_offset = le32_to_cpu(cp_block->checksum_offset); 545 if (crc_offset >= blk_size) 546 goto invalid_cp1; 547 548 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 549 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 550 goto invalid_cp1; 551 552 pre_version = cur_cp_version(cp_block); 553 554 /* Read the 2nd cp block in this CP pack */ 555 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 556 cp_page_2 = get_meta_page(sbi, cp_addr); 557 558 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 559 crc_offset = le32_to_cpu(cp_block->checksum_offset); 560 if (crc_offset >= blk_size) 561 goto invalid_cp2; 562 563 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 564 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 565 goto invalid_cp2; 566 567 cur_version = cur_cp_version(cp_block); 568 569 if (cur_version == pre_version) { 570 *version = cur_version; 571 f2fs_put_page(cp_page_2, 1); 572 return cp_page_1; 573 } 574 invalid_cp2: 575 f2fs_put_page(cp_page_2, 1); 576 invalid_cp1: 577 f2fs_put_page(cp_page_1, 1); 578 return NULL; 579 } 580 581 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 582 { 583 struct f2fs_checkpoint *cp_block; 584 struct f2fs_super_block *fsb = sbi->raw_super; 585 struct page *cp1, *cp2, *cur_page; 586 unsigned long blk_size = sbi->blocksize; 587 unsigned long long cp1_version = 0, cp2_version = 0; 588 unsigned long long cp_start_blk_no; 589 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 590 block_t cp_blk_no; 591 int i; 592 593 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 594 if (!sbi->ckpt) 595 return -ENOMEM; 596 /* 597 * Finding out valid cp block involves read both 598 * sets( cp pack1 and cp pack 2) 599 */ 600 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 601 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 602 603 /* The second checkpoint pack should start at the next segment */ 604 cp_start_blk_no += ((unsigned long long)1) << 605 le32_to_cpu(fsb->log_blocks_per_seg); 606 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 607 608 if (cp1 && cp2) { 609 if (ver_after(cp2_version, cp1_version)) 610 cur_page = cp2; 611 else 612 cur_page = cp1; 613 } else if (cp1) { 614 cur_page = cp1; 615 } else if (cp2) { 616 cur_page = cp2; 617 } else { 618 goto fail_no_cp; 619 } 620 621 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 622 memcpy(sbi->ckpt, cp_block, blk_size); 623 624 if (cp_blks <= 1) 625 goto done; 626 627 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 628 if (cur_page == cp2) 629 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 630 631 for (i = 1; i < cp_blks; i++) { 632 void *sit_bitmap_ptr; 633 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 634 635 cur_page = get_meta_page(sbi, cp_blk_no + i); 636 sit_bitmap_ptr = page_address(cur_page); 637 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 638 f2fs_put_page(cur_page, 1); 639 } 640 done: 641 f2fs_put_page(cp1, 1); 642 f2fs_put_page(cp2, 1); 643 return 0; 644 645 fail_no_cp: 646 kfree(sbi->ckpt); 647 return -EINVAL; 648 } 649 650 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 651 { 652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 653 654 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 655 return -EEXIST; 656 657 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 658 F2FS_I(inode)->dirty_dir = new; 659 list_add_tail(&new->list, &sbi->dir_inode_list); 660 stat_inc_dirty_dir(sbi); 661 return 0; 662 } 663 664 void update_dirty_page(struct inode *inode, struct page *page) 665 { 666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 667 struct dir_inode_entry *new; 668 int ret = 0; 669 670 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 671 return; 672 673 if (!S_ISDIR(inode->i_mode)) { 674 inode_inc_dirty_pages(inode); 675 goto out; 676 } 677 678 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 679 new->inode = inode; 680 INIT_LIST_HEAD(&new->list); 681 682 spin_lock(&sbi->dir_inode_lock); 683 ret = __add_dirty_inode(inode, new); 684 inode_inc_dirty_pages(inode); 685 spin_unlock(&sbi->dir_inode_lock); 686 687 if (ret) 688 kmem_cache_free(inode_entry_slab, new); 689 out: 690 SetPagePrivate(page); 691 } 692 693 void add_dirty_dir_inode(struct inode *inode) 694 { 695 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 696 struct dir_inode_entry *new = 697 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 698 int ret = 0; 699 700 new->inode = inode; 701 INIT_LIST_HEAD(&new->list); 702 703 spin_lock(&sbi->dir_inode_lock); 704 ret = __add_dirty_inode(inode, new); 705 spin_unlock(&sbi->dir_inode_lock); 706 707 if (ret) 708 kmem_cache_free(inode_entry_slab, new); 709 } 710 711 void remove_dirty_dir_inode(struct inode *inode) 712 { 713 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 714 struct dir_inode_entry *entry; 715 716 if (!S_ISDIR(inode->i_mode)) 717 return; 718 719 spin_lock(&sbi->dir_inode_lock); 720 if (get_dirty_pages(inode) || 721 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 722 spin_unlock(&sbi->dir_inode_lock); 723 return; 724 } 725 726 entry = F2FS_I(inode)->dirty_dir; 727 list_del(&entry->list); 728 F2FS_I(inode)->dirty_dir = NULL; 729 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 730 stat_dec_dirty_dir(sbi); 731 spin_unlock(&sbi->dir_inode_lock); 732 kmem_cache_free(inode_entry_slab, entry); 733 734 /* Only from the recovery routine */ 735 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 736 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 737 iput(inode); 738 } 739 } 740 741 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 742 { 743 struct list_head *head; 744 struct dir_inode_entry *entry; 745 struct inode *inode; 746 retry: 747 if (unlikely(f2fs_cp_error(sbi))) 748 return; 749 750 spin_lock(&sbi->dir_inode_lock); 751 752 head = &sbi->dir_inode_list; 753 if (list_empty(head)) { 754 spin_unlock(&sbi->dir_inode_lock); 755 return; 756 } 757 entry = list_entry(head->next, struct dir_inode_entry, list); 758 inode = igrab(entry->inode); 759 spin_unlock(&sbi->dir_inode_lock); 760 if (inode) { 761 filemap_fdatawrite(inode->i_mapping); 762 iput(inode); 763 } else { 764 /* 765 * We should submit bio, since it exists several 766 * wribacking dentry pages in the freeing inode. 767 */ 768 f2fs_submit_merged_bio(sbi, DATA, WRITE); 769 } 770 goto retry; 771 } 772 773 /* 774 * Freeze all the FS-operations for checkpoint. 775 */ 776 static int block_operations(struct f2fs_sb_info *sbi) 777 { 778 struct writeback_control wbc = { 779 .sync_mode = WB_SYNC_ALL, 780 .nr_to_write = LONG_MAX, 781 .for_reclaim = 0, 782 }; 783 struct blk_plug plug; 784 int err = 0; 785 786 blk_start_plug(&plug); 787 788 retry_flush_dents: 789 f2fs_lock_all(sbi); 790 /* write all the dirty dentry pages */ 791 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 792 f2fs_unlock_all(sbi); 793 sync_dirty_dir_inodes(sbi); 794 if (unlikely(f2fs_cp_error(sbi))) { 795 err = -EIO; 796 goto out; 797 } 798 goto retry_flush_dents; 799 } 800 801 /* 802 * POR: we should ensure that there are no dirty node pages 803 * until finishing nat/sit flush. 804 */ 805 retry_flush_nodes: 806 down_write(&sbi->node_write); 807 808 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 809 up_write(&sbi->node_write); 810 sync_node_pages(sbi, 0, &wbc); 811 if (unlikely(f2fs_cp_error(sbi))) { 812 f2fs_unlock_all(sbi); 813 err = -EIO; 814 goto out; 815 } 816 goto retry_flush_nodes; 817 } 818 out: 819 blk_finish_plug(&plug); 820 return err; 821 } 822 823 static void unblock_operations(struct f2fs_sb_info *sbi) 824 { 825 up_write(&sbi->node_write); 826 f2fs_unlock_all(sbi); 827 } 828 829 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 830 { 831 DEFINE_WAIT(wait); 832 833 for (;;) { 834 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 835 836 if (!get_pages(sbi, F2FS_WRITEBACK)) 837 break; 838 839 io_schedule(); 840 } 841 finish_wait(&sbi->cp_wait, &wait); 842 } 843 844 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 845 { 846 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 847 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 848 struct f2fs_nm_info *nm_i = NM_I(sbi); 849 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 850 nid_t last_nid = nm_i->next_scan_nid; 851 block_t start_blk; 852 struct page *cp_page; 853 unsigned int data_sum_blocks, orphan_blocks; 854 __u32 crc32 = 0; 855 void *kaddr; 856 int i; 857 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 858 859 /* 860 * This avoids to conduct wrong roll-forward operations and uses 861 * metapages, so should be called prior to sync_meta_pages below. 862 */ 863 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 864 865 /* Flush all the NAT/SIT pages */ 866 while (get_pages(sbi, F2FS_DIRTY_META)) { 867 sync_meta_pages(sbi, META, LONG_MAX); 868 if (unlikely(f2fs_cp_error(sbi))) 869 return; 870 } 871 872 next_free_nid(sbi, &last_nid); 873 874 /* 875 * modify checkpoint 876 * version number is already updated 877 */ 878 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 879 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 880 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 881 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 882 ckpt->cur_node_segno[i] = 883 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 884 ckpt->cur_node_blkoff[i] = 885 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 886 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 887 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 888 } 889 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 890 ckpt->cur_data_segno[i] = 891 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 892 ckpt->cur_data_blkoff[i] = 893 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 894 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 895 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 896 } 897 898 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 899 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 900 ckpt->next_free_nid = cpu_to_le32(last_nid); 901 902 /* 2 cp + n data seg summary + orphan inode blocks */ 903 data_sum_blocks = npages_for_summary_flush(sbi); 904 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 905 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 906 else 907 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 908 909 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 910 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 911 orphan_blocks); 912 913 if (cpc->reason == CP_UMOUNT) { 914 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 915 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 916 cp_payload_blks + data_sum_blocks + 917 orphan_blocks + NR_CURSEG_NODE_TYPE); 918 } else { 919 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 920 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 921 cp_payload_blks + data_sum_blocks + 922 orphan_blocks); 923 } 924 925 if (orphan_num) 926 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 927 else 928 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 929 930 if (sbi->need_fsck) 931 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 932 933 /* update SIT/NAT bitmap */ 934 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 935 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 936 937 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 938 *((__le32 *)((unsigned char *)ckpt + 939 le32_to_cpu(ckpt->checksum_offset))) 940 = cpu_to_le32(crc32); 941 942 start_blk = __start_cp_addr(sbi); 943 944 /* write out checkpoint buffer at block 0 */ 945 cp_page = grab_meta_page(sbi, start_blk++); 946 kaddr = page_address(cp_page); 947 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 948 set_page_dirty(cp_page); 949 f2fs_put_page(cp_page, 1); 950 951 for (i = 1; i < 1 + cp_payload_blks; i++) { 952 cp_page = grab_meta_page(sbi, start_blk++); 953 kaddr = page_address(cp_page); 954 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, 955 (1 << sbi->log_blocksize)); 956 set_page_dirty(cp_page); 957 f2fs_put_page(cp_page, 1); 958 } 959 960 if (orphan_num) { 961 write_orphan_inodes(sbi, start_blk); 962 start_blk += orphan_blocks; 963 } 964 965 write_data_summaries(sbi, start_blk); 966 start_blk += data_sum_blocks; 967 if (cpc->reason == CP_UMOUNT) { 968 write_node_summaries(sbi, start_blk); 969 start_blk += NR_CURSEG_NODE_TYPE; 970 } 971 972 /* writeout checkpoint block */ 973 cp_page = grab_meta_page(sbi, start_blk); 974 kaddr = page_address(cp_page); 975 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 976 set_page_dirty(cp_page); 977 f2fs_put_page(cp_page, 1); 978 979 /* wait for previous submitted node/meta pages writeback */ 980 wait_on_all_pages_writeback(sbi); 981 982 if (unlikely(f2fs_cp_error(sbi))) 983 return; 984 985 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 986 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 987 988 /* update user_block_counts */ 989 sbi->last_valid_block_count = sbi->total_valid_block_count; 990 sbi->alloc_valid_block_count = 0; 991 992 /* Here, we only have one bio having CP pack */ 993 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 994 995 /* wait for previous submitted meta pages writeback */ 996 wait_on_all_pages_writeback(sbi); 997 998 release_dirty_inode(sbi); 999 1000 if (unlikely(f2fs_cp_error(sbi))) 1001 return; 1002 1003 clear_prefree_segments(sbi); 1004 F2FS_RESET_SB_DIRT(sbi); 1005 } 1006 1007 /* 1008 * We guarantee that this checkpoint procedure will not fail. 1009 */ 1010 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1011 { 1012 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1013 unsigned long long ckpt_ver; 1014 1015 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1016 1017 mutex_lock(&sbi->cp_mutex); 1018 1019 if (!sbi->s_dirty && cpc->reason != CP_DISCARD) 1020 goto out; 1021 if (unlikely(f2fs_cp_error(sbi))) 1022 goto out; 1023 if (block_operations(sbi)) 1024 goto out; 1025 1026 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1027 1028 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1029 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1030 f2fs_submit_merged_bio(sbi, META, WRITE); 1031 1032 /* 1033 * update checkpoint pack index 1034 * Increase the version number so that 1035 * SIT entries and seg summaries are written at correct place 1036 */ 1037 ckpt_ver = cur_cp_version(ckpt); 1038 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1039 1040 /* write cached NAT/SIT entries to NAT/SIT area */ 1041 flush_nat_entries(sbi); 1042 flush_sit_entries(sbi, cpc); 1043 1044 /* unlock all the fs_lock[] in do_checkpoint() */ 1045 do_checkpoint(sbi, cpc); 1046 1047 unblock_operations(sbi); 1048 stat_inc_cp_count(sbi->stat_info); 1049 out: 1050 mutex_unlock(&sbi->cp_mutex); 1051 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1052 } 1053 1054 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1055 { 1056 int i; 1057 1058 for (i = 0; i < MAX_INO_ENTRY; i++) { 1059 struct inode_management *im = &sbi->im[i]; 1060 1061 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1062 spin_lock_init(&im->ino_lock); 1063 INIT_LIST_HEAD(&im->ino_list); 1064 im->ino_num = 0; 1065 } 1066 1067 /* 1068 * considering 512 blocks in a segment 8 blocks are needed for cp 1069 * and log segment summaries. Remaining blocks are used to keep 1070 * orphan entries with the limitation one reserved segment 1071 * for cp pack we can have max 1020*504 orphan entries 1072 */ 1073 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1074 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK; 1075 } 1076 1077 int __init create_checkpoint_caches(void) 1078 { 1079 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1080 sizeof(struct ino_entry)); 1081 if (!ino_entry_slab) 1082 return -ENOMEM; 1083 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 1084 sizeof(struct dir_inode_entry)); 1085 if (!inode_entry_slab) { 1086 kmem_cache_destroy(ino_entry_slab); 1087 return -ENOMEM; 1088 } 1089 return 0; 1090 } 1091 1092 void destroy_checkpoint_caches(void) 1093 { 1094 kmem_cache_destroy(ino_entry_slab); 1095 kmem_cache_destroy(inode_entry_slab); 1096 } 1097