1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 fio.old_blkaddr = fio.new_blkaddr; 211 f2fs_submit_page_mbio(&fio); 212 f2fs_put_page(page, 0); 213 } 214 out: 215 f2fs_submit_merged_bio(sbi, META, READ); 216 blk_finish_plug(&plug); 217 return blkno - start; 218 } 219 220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 221 { 222 struct page *page; 223 bool readahead = false; 224 225 page = find_get_page(META_MAPPING(sbi), index); 226 if (!page || !PageUptodate(page)) 227 readahead = true; 228 f2fs_put_page(page, 0); 229 230 if (readahead) 231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 232 } 233 234 static int f2fs_write_meta_page(struct page *page, 235 struct writeback_control *wbc) 236 { 237 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 238 239 trace_f2fs_writepage(page, META); 240 241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 242 goto redirty_out; 243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 244 goto redirty_out; 245 if (unlikely(f2fs_cp_error(sbi))) 246 goto redirty_out; 247 248 write_meta_page(sbi, page); 249 dec_page_count(sbi, F2FS_DIRTY_META); 250 251 if (wbc->for_reclaim) 252 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 253 0, page->index, META, WRITE); 254 255 unlock_page(page); 256 257 if (unlikely(f2fs_cp_error(sbi))) 258 f2fs_submit_merged_bio(sbi, META, WRITE); 259 260 return 0; 261 262 redirty_out: 263 redirty_page_for_writepage(wbc, page); 264 return AOP_WRITEPAGE_ACTIVATE; 265 } 266 267 static int f2fs_write_meta_pages(struct address_space *mapping, 268 struct writeback_control *wbc) 269 { 270 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 271 long diff, written; 272 273 /* collect a number of dirty meta pages and write together */ 274 if (wbc->for_kupdate || 275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 276 goto skip_write; 277 278 trace_f2fs_writepages(mapping->host, wbc, META); 279 280 /* if mounting is failed, skip writing node pages */ 281 mutex_lock(&sbi->cp_mutex); 282 diff = nr_pages_to_write(sbi, META, wbc); 283 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 284 mutex_unlock(&sbi->cp_mutex); 285 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 286 return 0; 287 288 skip_write: 289 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 290 trace_f2fs_writepages(mapping->host, wbc, META); 291 return 0; 292 } 293 294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 295 long nr_to_write) 296 { 297 struct address_space *mapping = META_MAPPING(sbi); 298 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 299 struct pagevec pvec; 300 long nwritten = 0; 301 struct writeback_control wbc = { 302 .for_reclaim = 0, 303 }; 304 struct blk_plug plug; 305 306 pagevec_init(&pvec, 0); 307 308 blk_start_plug(&plug); 309 310 while (index <= end) { 311 int i, nr_pages; 312 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 313 PAGECACHE_TAG_DIRTY, 314 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 315 if (unlikely(nr_pages == 0)) 316 break; 317 318 for (i = 0; i < nr_pages; i++) { 319 struct page *page = pvec.pages[i]; 320 321 if (prev == ULONG_MAX) 322 prev = page->index - 1; 323 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 324 pagevec_release(&pvec); 325 goto stop; 326 } 327 328 lock_page(page); 329 330 if (unlikely(page->mapping != mapping)) { 331 continue_unlock: 332 unlock_page(page); 333 continue; 334 } 335 if (!PageDirty(page)) { 336 /* someone wrote it for us */ 337 goto continue_unlock; 338 } 339 340 f2fs_wait_on_page_writeback(page, META, true); 341 342 BUG_ON(PageWriteback(page)); 343 if (!clear_page_dirty_for_io(page)) 344 goto continue_unlock; 345 346 if (mapping->a_ops->writepage(page, &wbc)) { 347 unlock_page(page); 348 break; 349 } 350 nwritten++; 351 prev = page->index; 352 if (unlikely(nwritten >= nr_to_write)) 353 break; 354 } 355 pagevec_release(&pvec); 356 cond_resched(); 357 } 358 stop: 359 if (nwritten) 360 f2fs_submit_merged_bio(sbi, type, WRITE); 361 362 blk_finish_plug(&plug); 363 364 return nwritten; 365 } 366 367 static int f2fs_set_meta_page_dirty(struct page *page) 368 { 369 trace_f2fs_set_page_dirty(page, META); 370 371 if (!PageUptodate(page)) 372 SetPageUptodate(page); 373 if (!PageDirty(page)) { 374 f2fs_set_page_dirty_nobuffers(page); 375 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 376 SetPagePrivate(page); 377 f2fs_trace_pid(page); 378 return 1; 379 } 380 return 0; 381 } 382 383 const struct address_space_operations f2fs_meta_aops = { 384 .writepage = f2fs_write_meta_page, 385 .writepages = f2fs_write_meta_pages, 386 .set_page_dirty = f2fs_set_meta_page_dirty, 387 .invalidatepage = f2fs_invalidate_page, 388 .releasepage = f2fs_release_page, 389 #ifdef CONFIG_MIGRATION 390 .migratepage = f2fs_migrate_page, 391 #endif 392 }; 393 394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 395 { 396 struct inode_management *im = &sbi->im[type]; 397 struct ino_entry *e, *tmp; 398 399 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 400 retry: 401 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 402 403 spin_lock(&im->ino_lock); 404 e = radix_tree_lookup(&im->ino_root, ino); 405 if (!e) { 406 e = tmp; 407 if (radix_tree_insert(&im->ino_root, ino, e)) { 408 spin_unlock(&im->ino_lock); 409 radix_tree_preload_end(); 410 goto retry; 411 } 412 memset(e, 0, sizeof(struct ino_entry)); 413 e->ino = ino; 414 415 list_add_tail(&e->list, &im->ino_list); 416 if (type != ORPHAN_INO) 417 im->ino_num++; 418 } 419 spin_unlock(&im->ino_lock); 420 radix_tree_preload_end(); 421 422 if (e != tmp) 423 kmem_cache_free(ino_entry_slab, tmp); 424 } 425 426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 427 { 428 struct inode_management *im = &sbi->im[type]; 429 struct ino_entry *e; 430 431 spin_lock(&im->ino_lock); 432 e = radix_tree_lookup(&im->ino_root, ino); 433 if (e) { 434 list_del(&e->list); 435 radix_tree_delete(&im->ino_root, ino); 436 im->ino_num--; 437 spin_unlock(&im->ino_lock); 438 kmem_cache_free(ino_entry_slab, e); 439 return; 440 } 441 spin_unlock(&im->ino_lock); 442 } 443 444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 445 { 446 /* add new dirty ino entry into list */ 447 __add_ino_entry(sbi, ino, type); 448 } 449 450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 451 { 452 /* remove dirty ino entry from list */ 453 __remove_ino_entry(sbi, ino, type); 454 } 455 456 /* mode should be APPEND_INO or UPDATE_INO */ 457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 458 { 459 struct inode_management *im = &sbi->im[mode]; 460 struct ino_entry *e; 461 462 spin_lock(&im->ino_lock); 463 e = radix_tree_lookup(&im->ino_root, ino); 464 spin_unlock(&im->ino_lock); 465 return e ? true : false; 466 } 467 468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 469 { 470 struct ino_entry *e, *tmp; 471 int i; 472 473 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 474 struct inode_management *im = &sbi->im[i]; 475 476 spin_lock(&im->ino_lock); 477 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 478 list_del(&e->list); 479 radix_tree_delete(&im->ino_root, e->ino); 480 kmem_cache_free(ino_entry_slab, e); 481 im->ino_num--; 482 } 483 spin_unlock(&im->ino_lock); 484 } 485 } 486 487 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 488 { 489 struct inode_management *im = &sbi->im[ORPHAN_INO]; 490 int err = 0; 491 492 spin_lock(&im->ino_lock); 493 494 #ifdef CONFIG_F2FS_FAULT_INJECTION 495 if (time_to_inject(sbi, FAULT_ORPHAN)) { 496 spin_unlock(&im->ino_lock); 497 f2fs_show_injection_info(FAULT_ORPHAN); 498 return -ENOSPC; 499 } 500 #endif 501 if (unlikely(im->ino_num >= sbi->max_orphans)) 502 err = -ENOSPC; 503 else 504 im->ino_num++; 505 spin_unlock(&im->ino_lock); 506 507 return err; 508 } 509 510 void release_orphan_inode(struct f2fs_sb_info *sbi) 511 { 512 struct inode_management *im = &sbi->im[ORPHAN_INO]; 513 514 spin_lock(&im->ino_lock); 515 f2fs_bug_on(sbi, im->ino_num == 0); 516 im->ino_num--; 517 spin_unlock(&im->ino_lock); 518 } 519 520 void add_orphan_inode(struct inode *inode) 521 { 522 /* add new orphan ino entry into list */ 523 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 524 update_inode_page(inode); 525 } 526 527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 528 { 529 /* remove orphan entry from orphan list */ 530 __remove_ino_entry(sbi, ino, ORPHAN_INO); 531 } 532 533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 534 { 535 struct inode *inode; 536 struct node_info ni; 537 int err = acquire_orphan_inode(sbi); 538 539 if (err) { 540 set_sbi_flag(sbi, SBI_NEED_FSCK); 541 f2fs_msg(sbi->sb, KERN_WARNING, 542 "%s: orphan failed (ino=%x), run fsck to fix.", 543 __func__, ino); 544 return err; 545 } 546 547 __add_ino_entry(sbi, ino, ORPHAN_INO); 548 549 inode = f2fs_iget_retry(sbi->sb, ino); 550 if (IS_ERR(inode)) { 551 /* 552 * there should be a bug that we can't find the entry 553 * to orphan inode. 554 */ 555 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 556 return PTR_ERR(inode); 557 } 558 559 clear_nlink(inode); 560 561 /* truncate all the data during iput */ 562 iput(inode); 563 564 get_node_info(sbi, ino, &ni); 565 566 /* ENOMEM was fully retried in f2fs_evict_inode. */ 567 if (ni.blk_addr != NULL_ADDR) { 568 set_sbi_flag(sbi, SBI_NEED_FSCK); 569 f2fs_msg(sbi->sb, KERN_WARNING, 570 "%s: orphan failed (ino=%x), run fsck to fix.", 571 __func__, ino); 572 return -EIO; 573 } 574 __remove_ino_entry(sbi, ino, ORPHAN_INO); 575 return 0; 576 } 577 578 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 579 { 580 block_t start_blk, orphan_blocks, i, j; 581 int err; 582 583 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 584 return 0; 585 586 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 587 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 588 589 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 590 591 for (i = 0; i < orphan_blocks; i++) { 592 struct page *page = get_meta_page(sbi, start_blk + i); 593 struct f2fs_orphan_block *orphan_blk; 594 595 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 596 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 597 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 598 err = recover_orphan_inode(sbi, ino); 599 if (err) { 600 f2fs_put_page(page, 1); 601 return err; 602 } 603 } 604 f2fs_put_page(page, 1); 605 } 606 /* clear Orphan Flag */ 607 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 608 return 0; 609 } 610 611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 612 { 613 struct list_head *head; 614 struct f2fs_orphan_block *orphan_blk = NULL; 615 unsigned int nentries = 0; 616 unsigned short index = 1; 617 unsigned short orphan_blocks; 618 struct page *page = NULL; 619 struct ino_entry *orphan = NULL; 620 struct inode_management *im = &sbi->im[ORPHAN_INO]; 621 622 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 623 624 /* 625 * we don't need to do spin_lock(&im->ino_lock) here, since all the 626 * orphan inode operations are covered under f2fs_lock_op(). 627 * And, spin_lock should be avoided due to page operations below. 628 */ 629 head = &im->ino_list; 630 631 /* loop for each orphan inode entry and write them in Jornal block */ 632 list_for_each_entry(orphan, head, list) { 633 if (!page) { 634 page = grab_meta_page(sbi, start_blk++); 635 orphan_blk = 636 (struct f2fs_orphan_block *)page_address(page); 637 memset(orphan_blk, 0, sizeof(*orphan_blk)); 638 } 639 640 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 641 642 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 643 /* 644 * an orphan block is full of 1020 entries, 645 * then we need to flush current orphan blocks 646 * and bring another one in memory 647 */ 648 orphan_blk->blk_addr = cpu_to_le16(index); 649 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 650 orphan_blk->entry_count = cpu_to_le32(nentries); 651 set_page_dirty(page); 652 f2fs_put_page(page, 1); 653 index++; 654 nentries = 0; 655 page = NULL; 656 } 657 } 658 659 if (page) { 660 orphan_blk->blk_addr = cpu_to_le16(index); 661 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 662 orphan_blk->entry_count = cpu_to_le32(nentries); 663 set_page_dirty(page); 664 f2fs_put_page(page, 1); 665 } 666 } 667 668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 669 struct f2fs_checkpoint **cp_block, struct page **cp_page, 670 unsigned long long *version) 671 { 672 unsigned long blk_size = sbi->blocksize; 673 size_t crc_offset = 0; 674 __u32 crc = 0; 675 676 *cp_page = get_meta_page(sbi, cp_addr); 677 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 678 679 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 680 if (crc_offset >= blk_size) { 681 f2fs_msg(sbi->sb, KERN_WARNING, 682 "invalid crc_offset: %zu", crc_offset); 683 return -EINVAL; 684 } 685 686 crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block 687 + crc_offset))); 688 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 689 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 690 return -EINVAL; 691 } 692 693 *version = cur_cp_version(*cp_block); 694 return 0; 695 } 696 697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 698 block_t cp_addr, unsigned long long *version) 699 { 700 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 701 struct f2fs_checkpoint *cp_block = NULL; 702 unsigned long long cur_version = 0, pre_version = 0; 703 int err; 704 705 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 706 &cp_page_1, version); 707 if (err) 708 goto invalid_cp1; 709 pre_version = *version; 710 711 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 712 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 713 &cp_page_2, version); 714 if (err) 715 goto invalid_cp2; 716 cur_version = *version; 717 718 if (cur_version == pre_version) { 719 *version = cur_version; 720 f2fs_put_page(cp_page_2, 1); 721 return cp_page_1; 722 } 723 invalid_cp2: 724 f2fs_put_page(cp_page_2, 1); 725 invalid_cp1: 726 f2fs_put_page(cp_page_1, 1); 727 return NULL; 728 } 729 730 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 731 { 732 struct f2fs_checkpoint *cp_block; 733 struct f2fs_super_block *fsb = sbi->raw_super; 734 struct page *cp1, *cp2, *cur_page; 735 unsigned long blk_size = sbi->blocksize; 736 unsigned long long cp1_version = 0, cp2_version = 0; 737 unsigned long long cp_start_blk_no; 738 unsigned int cp_blks = 1 + __cp_payload(sbi); 739 block_t cp_blk_no; 740 int i; 741 742 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 743 if (!sbi->ckpt) 744 return -ENOMEM; 745 /* 746 * Finding out valid cp block involves read both 747 * sets( cp pack1 and cp pack 2) 748 */ 749 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 750 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 751 752 /* The second checkpoint pack should start at the next segment */ 753 cp_start_blk_no += ((unsigned long long)1) << 754 le32_to_cpu(fsb->log_blocks_per_seg); 755 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 756 757 if (cp1 && cp2) { 758 if (ver_after(cp2_version, cp1_version)) 759 cur_page = cp2; 760 else 761 cur_page = cp1; 762 } else if (cp1) { 763 cur_page = cp1; 764 } else if (cp2) { 765 cur_page = cp2; 766 } else { 767 goto fail_no_cp; 768 } 769 770 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 771 memcpy(sbi->ckpt, cp_block, blk_size); 772 773 /* Sanity checking of checkpoint */ 774 if (sanity_check_ckpt(sbi)) 775 goto free_fail_no_cp; 776 777 if (cur_page == cp1) 778 sbi->cur_cp_pack = 1; 779 else 780 sbi->cur_cp_pack = 2; 781 782 if (cp_blks <= 1) 783 goto done; 784 785 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 786 if (cur_page == cp2) 787 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 788 789 for (i = 1; i < cp_blks; i++) { 790 void *sit_bitmap_ptr; 791 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 792 793 cur_page = get_meta_page(sbi, cp_blk_no + i); 794 sit_bitmap_ptr = page_address(cur_page); 795 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 796 f2fs_put_page(cur_page, 1); 797 } 798 done: 799 f2fs_put_page(cp1, 1); 800 f2fs_put_page(cp2, 1); 801 return 0; 802 803 free_fail_no_cp: 804 f2fs_put_page(cp1, 1); 805 f2fs_put_page(cp2, 1); 806 fail_no_cp: 807 kfree(sbi->ckpt); 808 return -EINVAL; 809 } 810 811 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 812 { 813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 814 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 815 816 if (is_inode_flag_set(inode, flag)) 817 return; 818 819 set_inode_flag(inode, flag); 820 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 821 stat_inc_dirty_inode(sbi, type); 822 } 823 824 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 825 { 826 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 827 828 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 829 return; 830 831 list_del_init(&F2FS_I(inode)->dirty_list); 832 clear_inode_flag(inode, flag); 833 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 834 } 835 836 void update_dirty_page(struct inode *inode, struct page *page) 837 { 838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 839 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 840 841 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 842 !S_ISLNK(inode->i_mode)) 843 return; 844 845 spin_lock(&sbi->inode_lock[type]); 846 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 847 __add_dirty_inode(inode, type); 848 inode_inc_dirty_pages(inode); 849 spin_unlock(&sbi->inode_lock[type]); 850 851 SetPagePrivate(page); 852 f2fs_trace_pid(page); 853 } 854 855 void remove_dirty_inode(struct inode *inode) 856 { 857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 858 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 859 860 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 861 !S_ISLNK(inode->i_mode)) 862 return; 863 864 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 865 return; 866 867 spin_lock(&sbi->inode_lock[type]); 868 __remove_dirty_inode(inode, type); 869 spin_unlock(&sbi->inode_lock[type]); 870 } 871 872 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 873 { 874 struct list_head *head; 875 struct inode *inode; 876 struct f2fs_inode_info *fi; 877 bool is_dir = (type == DIR_INODE); 878 879 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 880 get_pages(sbi, is_dir ? 881 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 882 retry: 883 if (unlikely(f2fs_cp_error(sbi))) 884 return -EIO; 885 886 spin_lock(&sbi->inode_lock[type]); 887 888 head = &sbi->inode_list[type]; 889 if (list_empty(head)) { 890 spin_unlock(&sbi->inode_lock[type]); 891 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 892 get_pages(sbi, is_dir ? 893 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 894 return 0; 895 } 896 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 897 inode = igrab(&fi->vfs_inode); 898 spin_unlock(&sbi->inode_lock[type]); 899 if (inode) { 900 filemap_fdatawrite(inode->i_mapping); 901 iput(inode); 902 } else { 903 /* 904 * We should submit bio, since it exists several 905 * wribacking dentry pages in the freeing inode. 906 */ 907 f2fs_submit_merged_bio(sbi, DATA, WRITE); 908 cond_resched(); 909 } 910 goto retry; 911 } 912 913 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 914 { 915 struct list_head *head = &sbi->inode_list[DIRTY_META]; 916 struct inode *inode; 917 struct f2fs_inode_info *fi; 918 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 919 920 while (total--) { 921 if (unlikely(f2fs_cp_error(sbi))) 922 return -EIO; 923 924 spin_lock(&sbi->inode_lock[DIRTY_META]); 925 if (list_empty(head)) { 926 spin_unlock(&sbi->inode_lock[DIRTY_META]); 927 return 0; 928 } 929 fi = list_first_entry(head, struct f2fs_inode_info, 930 gdirty_list); 931 inode = igrab(&fi->vfs_inode); 932 spin_unlock(&sbi->inode_lock[DIRTY_META]); 933 if (inode) { 934 sync_inode_metadata(inode, 0); 935 936 /* it's on eviction */ 937 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 938 update_inode_page(inode); 939 iput(inode); 940 } 941 }; 942 return 0; 943 } 944 945 /* 946 * Freeze all the FS-operations for checkpoint. 947 */ 948 static int block_operations(struct f2fs_sb_info *sbi) 949 { 950 struct writeback_control wbc = { 951 .sync_mode = WB_SYNC_ALL, 952 .nr_to_write = LONG_MAX, 953 .for_reclaim = 0, 954 }; 955 struct blk_plug plug; 956 int err = 0; 957 958 blk_start_plug(&plug); 959 960 retry_flush_dents: 961 f2fs_lock_all(sbi); 962 /* write all the dirty dentry pages */ 963 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 964 f2fs_unlock_all(sbi); 965 err = sync_dirty_inodes(sbi, DIR_INODE); 966 if (err) 967 goto out; 968 goto retry_flush_dents; 969 } 970 971 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 972 f2fs_unlock_all(sbi); 973 err = f2fs_sync_inode_meta(sbi); 974 if (err) 975 goto out; 976 goto retry_flush_dents; 977 } 978 979 /* 980 * POR: we should ensure that there are no dirty node pages 981 * until finishing nat/sit flush. 982 */ 983 retry_flush_nodes: 984 down_write(&sbi->node_write); 985 986 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 987 up_write(&sbi->node_write); 988 err = sync_node_pages(sbi, &wbc); 989 if (err) { 990 f2fs_unlock_all(sbi); 991 goto out; 992 } 993 goto retry_flush_nodes; 994 } 995 out: 996 blk_finish_plug(&plug); 997 return err; 998 } 999 1000 static void unblock_operations(struct f2fs_sb_info *sbi) 1001 { 1002 up_write(&sbi->node_write); 1003 f2fs_unlock_all(sbi); 1004 } 1005 1006 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1007 { 1008 DEFINE_WAIT(wait); 1009 1010 for (;;) { 1011 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1012 1013 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1014 break; 1015 1016 io_schedule_timeout(5*HZ); 1017 } 1018 finish_wait(&sbi->cp_wait, &wait); 1019 } 1020 1021 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1022 { 1023 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1024 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1025 1026 spin_lock(&sbi->cp_lock); 1027 1028 if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count > 1029 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1030 disable_nat_bits(sbi, false); 1031 1032 if (cpc->reason == CP_UMOUNT) 1033 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1034 else 1035 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1036 1037 if (cpc->reason == CP_FASTBOOT) 1038 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1039 else 1040 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1041 1042 if (orphan_num) 1043 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1044 else 1045 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1046 1047 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1048 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1049 1050 /* set this flag to activate crc|cp_ver for recovery */ 1051 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1052 1053 spin_unlock(&sbi->cp_lock); 1054 } 1055 1056 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1057 { 1058 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1059 struct f2fs_nm_info *nm_i = NM_I(sbi); 1060 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1061 nid_t last_nid = nm_i->next_scan_nid; 1062 block_t start_blk; 1063 unsigned int data_sum_blocks, orphan_blocks; 1064 __u32 crc32 = 0; 1065 int i; 1066 int cp_payload_blks = __cp_payload(sbi); 1067 struct super_block *sb = sbi->sb; 1068 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1069 u64 kbytes_written; 1070 1071 /* Flush all the NAT/SIT pages */ 1072 while (get_pages(sbi, F2FS_DIRTY_META)) { 1073 sync_meta_pages(sbi, META, LONG_MAX); 1074 if (unlikely(f2fs_cp_error(sbi))) 1075 return -EIO; 1076 } 1077 1078 next_free_nid(sbi, &last_nid); 1079 1080 /* 1081 * modify checkpoint 1082 * version number is already updated 1083 */ 1084 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1085 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1086 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1087 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1088 ckpt->cur_node_segno[i] = 1089 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1090 ckpt->cur_node_blkoff[i] = 1091 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1092 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1093 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1094 } 1095 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1096 ckpt->cur_data_segno[i] = 1097 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1098 ckpt->cur_data_blkoff[i] = 1099 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1100 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1101 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1102 } 1103 1104 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1105 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1106 ckpt->next_free_nid = cpu_to_le32(last_nid); 1107 1108 /* 2 cp + n data seg summary + orphan inode blocks */ 1109 data_sum_blocks = npages_for_summary_flush(sbi, false); 1110 spin_lock(&sbi->cp_lock); 1111 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1112 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1113 else 1114 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1115 spin_unlock(&sbi->cp_lock); 1116 1117 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1118 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1119 orphan_blocks); 1120 1121 if (__remain_node_summaries(cpc->reason)) 1122 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1123 cp_payload_blks + data_sum_blocks + 1124 orphan_blocks + NR_CURSEG_NODE_TYPE); 1125 else 1126 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1127 cp_payload_blks + data_sum_blocks + 1128 orphan_blocks); 1129 1130 /* update ckpt flag for checkpoint */ 1131 update_ckpt_flags(sbi, cpc); 1132 1133 /* update SIT/NAT bitmap */ 1134 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1135 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1136 1137 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1138 *((__le32 *)((unsigned char *)ckpt + 1139 le32_to_cpu(ckpt->checksum_offset))) 1140 = cpu_to_le32(crc32); 1141 1142 start_blk = __start_cp_next_addr(sbi); 1143 1144 /* write nat bits */ 1145 if (enabled_nat_bits(sbi, cpc)) { 1146 __u64 cp_ver = cur_cp_version(ckpt); 1147 unsigned int i; 1148 block_t blk; 1149 1150 cp_ver |= ((__u64)crc32 << 32); 1151 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1152 1153 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1154 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1155 update_meta_page(sbi, nm_i->nat_bits + 1156 (i << F2FS_BLKSIZE_BITS), blk + i); 1157 1158 /* Flush all the NAT BITS pages */ 1159 while (get_pages(sbi, F2FS_DIRTY_META)) { 1160 sync_meta_pages(sbi, META, LONG_MAX); 1161 if (unlikely(f2fs_cp_error(sbi))) 1162 return -EIO; 1163 } 1164 } 1165 1166 /* need to wait for end_io results */ 1167 wait_on_all_pages_writeback(sbi); 1168 if (unlikely(f2fs_cp_error(sbi))) 1169 return -EIO; 1170 1171 /* write out checkpoint buffer at block 0 */ 1172 update_meta_page(sbi, ckpt, start_blk++); 1173 1174 for (i = 1; i < 1 + cp_payload_blks; i++) 1175 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1176 start_blk++); 1177 1178 if (orphan_num) { 1179 write_orphan_inodes(sbi, start_blk); 1180 start_blk += orphan_blocks; 1181 } 1182 1183 write_data_summaries(sbi, start_blk); 1184 start_blk += data_sum_blocks; 1185 1186 /* Record write statistics in the hot node summary */ 1187 kbytes_written = sbi->kbytes_written; 1188 if (sb->s_bdev->bd_part) 1189 kbytes_written += BD_PART_WRITTEN(sbi); 1190 1191 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1192 1193 if (__remain_node_summaries(cpc->reason)) { 1194 write_node_summaries(sbi, start_blk); 1195 start_blk += NR_CURSEG_NODE_TYPE; 1196 } 1197 1198 /* writeout checkpoint block */ 1199 update_meta_page(sbi, ckpt, start_blk); 1200 1201 /* wait for previous submitted node/meta pages writeback */ 1202 wait_on_all_pages_writeback(sbi); 1203 1204 if (unlikely(f2fs_cp_error(sbi))) 1205 return -EIO; 1206 1207 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1208 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1209 1210 /* update user_block_counts */ 1211 sbi->last_valid_block_count = sbi->total_valid_block_count; 1212 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1213 1214 /* Here, we only have one bio having CP pack */ 1215 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1216 1217 /* wait for previous submitted meta pages writeback */ 1218 wait_on_all_pages_writeback(sbi); 1219 1220 release_ino_entry(sbi, false); 1221 1222 if (unlikely(f2fs_cp_error(sbi))) 1223 return -EIO; 1224 1225 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1226 clear_sbi_flag(sbi, SBI_NEED_CP); 1227 __set_cp_next_pack(sbi); 1228 1229 /* 1230 * redirty superblock if metadata like node page or inode cache is 1231 * updated during writing checkpoint. 1232 */ 1233 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1234 get_pages(sbi, F2FS_DIRTY_IMETA)) 1235 set_sbi_flag(sbi, SBI_IS_DIRTY); 1236 1237 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1238 1239 return 0; 1240 } 1241 1242 /* 1243 * We guarantee that this checkpoint procedure will not fail. 1244 */ 1245 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1246 { 1247 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1248 unsigned long long ckpt_ver; 1249 int err = 0; 1250 1251 mutex_lock(&sbi->cp_mutex); 1252 1253 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1254 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1255 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1256 goto out; 1257 if (unlikely(f2fs_cp_error(sbi))) { 1258 err = -EIO; 1259 goto out; 1260 } 1261 if (f2fs_readonly(sbi->sb)) { 1262 err = -EROFS; 1263 goto out; 1264 } 1265 1266 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1267 1268 err = block_operations(sbi); 1269 if (err) 1270 goto out; 1271 1272 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1273 1274 f2fs_flush_merged_bios(sbi); 1275 1276 /* this is the case of multiple fstrims without any changes */ 1277 if (cpc->reason == CP_DISCARD) { 1278 if (!exist_trim_candidates(sbi, cpc)) { 1279 unblock_operations(sbi); 1280 goto out; 1281 } 1282 1283 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1284 SIT_I(sbi)->dirty_sentries == 0 && 1285 prefree_segments(sbi) == 0) { 1286 flush_sit_entries(sbi, cpc); 1287 clear_prefree_segments(sbi, cpc); 1288 unblock_operations(sbi); 1289 goto out; 1290 } 1291 } 1292 1293 /* 1294 * update checkpoint pack index 1295 * Increase the version number so that 1296 * SIT entries and seg summaries are written at correct place 1297 */ 1298 ckpt_ver = cur_cp_version(ckpt); 1299 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1300 1301 /* write cached NAT/SIT entries to NAT/SIT area */ 1302 flush_nat_entries(sbi, cpc); 1303 flush_sit_entries(sbi, cpc); 1304 1305 /* unlock all the fs_lock[] in do_checkpoint() */ 1306 err = do_checkpoint(sbi, cpc); 1307 if (err) 1308 release_discard_addrs(sbi); 1309 else 1310 clear_prefree_segments(sbi, cpc); 1311 1312 unblock_operations(sbi); 1313 stat_inc_cp_count(sbi->stat_info); 1314 1315 if (cpc->reason == CP_RECOVERY) 1316 f2fs_msg(sbi->sb, KERN_NOTICE, 1317 "checkpoint: version = %llx", ckpt_ver); 1318 1319 /* do checkpoint periodically */ 1320 f2fs_update_time(sbi, CP_TIME); 1321 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1322 out: 1323 mutex_unlock(&sbi->cp_mutex); 1324 return err; 1325 } 1326 1327 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1328 { 1329 int i; 1330 1331 for (i = 0; i < MAX_INO_ENTRY; i++) { 1332 struct inode_management *im = &sbi->im[i]; 1333 1334 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1335 spin_lock_init(&im->ino_lock); 1336 INIT_LIST_HEAD(&im->ino_list); 1337 im->ino_num = 0; 1338 } 1339 1340 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1341 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1342 F2FS_ORPHANS_PER_BLOCK; 1343 } 1344 1345 int __init create_checkpoint_caches(void) 1346 { 1347 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1348 sizeof(struct ino_entry)); 1349 if (!ino_entry_slab) 1350 return -ENOMEM; 1351 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1352 sizeof(struct inode_entry)); 1353 if (!inode_entry_slab) { 1354 kmem_cache_destroy(ino_entry_slab); 1355 return -ENOMEM; 1356 } 1357 return 0; 1358 } 1359 1360 void destroy_checkpoint_caches(void) 1361 { 1362 kmem_cache_destroy(ino_entry_slab); 1363 kmem_cache_destroy(inode_entry_slab); 1364 } 1365