xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 55523519bc7227e651fd4febeb3aafdd22b8af1c)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 	};
166 	struct blk_plug plug;
167 
168 	if (unlikely(type == META_POR))
169 		fio.op_flags &= ~REQ_META;
170 
171 	blk_start_plug(&plug);
172 	for (; nrpages-- > 0; blkno++) {
173 
174 		if (!is_valid_blkaddr(sbi, blkno, type))
175 			goto out;
176 
177 		switch (type) {
178 		case META_NAT:
179 			if (unlikely(blkno >=
180 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 				blkno = 0;
182 			/* get nat block addr */
183 			fio.new_blkaddr = current_nat_addr(sbi,
184 					blkno * NAT_ENTRY_PER_BLOCK);
185 			break;
186 		case META_SIT:
187 			/* get sit block addr */
188 			fio.new_blkaddr = current_sit_addr(sbi,
189 					blkno * SIT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SSA:
192 		case META_CP:
193 		case META_POR:
194 			fio.new_blkaddr = blkno;
195 			break;
196 		default:
197 			BUG();
198 		}
199 
200 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 						fio.new_blkaddr, false);
202 		if (!page)
203 			continue;
204 		if (PageUptodate(page)) {
205 			f2fs_put_page(page, 1);
206 			continue;
207 		}
208 
209 		fio.page = page;
210 		fio.old_blkaddr = fio.new_blkaddr;
211 		f2fs_submit_page_mbio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	f2fs_submit_merged_bio(sbi, META, READ);
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233 
234 static int f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253 						0, page->index, META, WRITE);
254 
255 	unlock_page(page);
256 
257 	if (unlikely(f2fs_cp_error(sbi)))
258 		f2fs_submit_merged_bio(sbi, META, WRITE);
259 
260 	return 0;
261 
262 redirty_out:
263 	redirty_page_for_writepage(wbc, page);
264 	return AOP_WRITEPAGE_ACTIVATE;
265 }
266 
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268 				struct writeback_control *wbc)
269 {
270 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271 	long diff, written;
272 
273 	/* collect a number of dirty meta pages and write together */
274 	if (wbc->for_kupdate ||
275 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276 		goto skip_write;
277 
278 	trace_f2fs_writepages(mapping->host, wbc, META);
279 
280 	/* if mounting is failed, skip writing node pages */
281 	mutex_lock(&sbi->cp_mutex);
282 	diff = nr_pages_to_write(sbi, META, wbc);
283 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
284 	mutex_unlock(&sbi->cp_mutex);
285 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
286 	return 0;
287 
288 skip_write:
289 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
290 	trace_f2fs_writepages(mapping->host, wbc, META);
291 	return 0;
292 }
293 
294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
295 						long nr_to_write)
296 {
297 	struct address_space *mapping = META_MAPPING(sbi);
298 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
299 	struct pagevec pvec;
300 	long nwritten = 0;
301 	struct writeback_control wbc = {
302 		.for_reclaim = 0,
303 	};
304 	struct blk_plug plug;
305 
306 	pagevec_init(&pvec, 0);
307 
308 	blk_start_plug(&plug);
309 
310 	while (index <= end) {
311 		int i, nr_pages;
312 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
313 				PAGECACHE_TAG_DIRTY,
314 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
315 		if (unlikely(nr_pages == 0))
316 			break;
317 
318 		for (i = 0; i < nr_pages; i++) {
319 			struct page *page = pvec.pages[i];
320 
321 			if (prev == ULONG_MAX)
322 				prev = page->index - 1;
323 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
324 				pagevec_release(&pvec);
325 				goto stop;
326 			}
327 
328 			lock_page(page);
329 
330 			if (unlikely(page->mapping != mapping)) {
331 continue_unlock:
332 				unlock_page(page);
333 				continue;
334 			}
335 			if (!PageDirty(page)) {
336 				/* someone wrote it for us */
337 				goto continue_unlock;
338 			}
339 
340 			f2fs_wait_on_page_writeback(page, META, true);
341 
342 			BUG_ON(PageWriteback(page));
343 			if (!clear_page_dirty_for_io(page))
344 				goto continue_unlock;
345 
346 			if (mapping->a_ops->writepage(page, &wbc)) {
347 				unlock_page(page);
348 				break;
349 			}
350 			nwritten++;
351 			prev = page->index;
352 			if (unlikely(nwritten >= nr_to_write))
353 				break;
354 		}
355 		pagevec_release(&pvec);
356 		cond_resched();
357 	}
358 stop:
359 	if (nwritten)
360 		f2fs_submit_merged_bio(sbi, type, WRITE);
361 
362 	blk_finish_plug(&plug);
363 
364 	return nwritten;
365 }
366 
367 static int f2fs_set_meta_page_dirty(struct page *page)
368 {
369 	trace_f2fs_set_page_dirty(page, META);
370 
371 	if (!PageUptodate(page))
372 		SetPageUptodate(page);
373 	if (!PageDirty(page)) {
374 		f2fs_set_page_dirty_nobuffers(page);
375 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
376 		SetPagePrivate(page);
377 		f2fs_trace_pid(page);
378 		return 1;
379 	}
380 	return 0;
381 }
382 
383 const struct address_space_operations f2fs_meta_aops = {
384 	.writepage	= f2fs_write_meta_page,
385 	.writepages	= f2fs_write_meta_pages,
386 	.set_page_dirty	= f2fs_set_meta_page_dirty,
387 	.invalidatepage = f2fs_invalidate_page,
388 	.releasepage	= f2fs_release_page,
389 #ifdef CONFIG_MIGRATION
390 	.migratepage    = f2fs_migrate_page,
391 #endif
392 };
393 
394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
395 {
396 	struct inode_management *im = &sbi->im[type];
397 	struct ino_entry *e, *tmp;
398 
399 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
400 retry:
401 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
402 
403 	spin_lock(&im->ino_lock);
404 	e = radix_tree_lookup(&im->ino_root, ino);
405 	if (!e) {
406 		e = tmp;
407 		if (radix_tree_insert(&im->ino_root, ino, e)) {
408 			spin_unlock(&im->ino_lock);
409 			radix_tree_preload_end();
410 			goto retry;
411 		}
412 		memset(e, 0, sizeof(struct ino_entry));
413 		e->ino = ino;
414 
415 		list_add_tail(&e->list, &im->ino_list);
416 		if (type != ORPHAN_INO)
417 			im->ino_num++;
418 	}
419 	spin_unlock(&im->ino_lock);
420 	radix_tree_preload_end();
421 
422 	if (e != tmp)
423 		kmem_cache_free(ino_entry_slab, tmp);
424 }
425 
426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
427 {
428 	struct inode_management *im = &sbi->im[type];
429 	struct ino_entry *e;
430 
431 	spin_lock(&im->ino_lock);
432 	e = radix_tree_lookup(&im->ino_root, ino);
433 	if (e) {
434 		list_del(&e->list);
435 		radix_tree_delete(&im->ino_root, ino);
436 		im->ino_num--;
437 		spin_unlock(&im->ino_lock);
438 		kmem_cache_free(ino_entry_slab, e);
439 		return;
440 	}
441 	spin_unlock(&im->ino_lock);
442 }
443 
444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446 	/* add new dirty ino entry into list */
447 	__add_ino_entry(sbi, ino, type);
448 }
449 
450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
451 {
452 	/* remove dirty ino entry from list */
453 	__remove_ino_entry(sbi, ino, type);
454 }
455 
456 /* mode should be APPEND_INO or UPDATE_INO */
457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
458 {
459 	struct inode_management *im = &sbi->im[mode];
460 	struct ino_entry *e;
461 
462 	spin_lock(&im->ino_lock);
463 	e = radix_tree_lookup(&im->ino_root, ino);
464 	spin_unlock(&im->ino_lock);
465 	return e ? true : false;
466 }
467 
468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
469 {
470 	struct ino_entry *e, *tmp;
471 	int i;
472 
473 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
474 		struct inode_management *im = &sbi->im[i];
475 
476 		spin_lock(&im->ino_lock);
477 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
478 			list_del(&e->list);
479 			radix_tree_delete(&im->ino_root, e->ino);
480 			kmem_cache_free(ino_entry_slab, e);
481 			im->ino_num--;
482 		}
483 		spin_unlock(&im->ino_lock);
484 	}
485 }
486 
487 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
488 {
489 	struct inode_management *im = &sbi->im[ORPHAN_INO];
490 	int err = 0;
491 
492 	spin_lock(&im->ino_lock);
493 
494 #ifdef CONFIG_F2FS_FAULT_INJECTION
495 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
496 		spin_unlock(&im->ino_lock);
497 		f2fs_show_injection_info(FAULT_ORPHAN);
498 		return -ENOSPC;
499 	}
500 #endif
501 	if (unlikely(im->ino_num >= sbi->max_orphans))
502 		err = -ENOSPC;
503 	else
504 		im->ino_num++;
505 	spin_unlock(&im->ino_lock);
506 
507 	return err;
508 }
509 
510 void release_orphan_inode(struct f2fs_sb_info *sbi)
511 {
512 	struct inode_management *im = &sbi->im[ORPHAN_INO];
513 
514 	spin_lock(&im->ino_lock);
515 	f2fs_bug_on(sbi, im->ino_num == 0);
516 	im->ino_num--;
517 	spin_unlock(&im->ino_lock);
518 }
519 
520 void add_orphan_inode(struct inode *inode)
521 {
522 	/* add new orphan ino entry into list */
523 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
524 	update_inode_page(inode);
525 }
526 
527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529 	/* remove orphan entry from orphan list */
530 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
531 }
532 
533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
534 {
535 	struct inode *inode;
536 	struct node_info ni;
537 	int err = acquire_orphan_inode(sbi);
538 
539 	if (err) {
540 		set_sbi_flag(sbi, SBI_NEED_FSCK);
541 		f2fs_msg(sbi->sb, KERN_WARNING,
542 				"%s: orphan failed (ino=%x), run fsck to fix.",
543 				__func__, ino);
544 		return err;
545 	}
546 
547 	__add_ino_entry(sbi, ino, ORPHAN_INO);
548 
549 	inode = f2fs_iget_retry(sbi->sb, ino);
550 	if (IS_ERR(inode)) {
551 		/*
552 		 * there should be a bug that we can't find the entry
553 		 * to orphan inode.
554 		 */
555 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
556 		return PTR_ERR(inode);
557 	}
558 
559 	clear_nlink(inode);
560 
561 	/* truncate all the data during iput */
562 	iput(inode);
563 
564 	get_node_info(sbi, ino, &ni);
565 
566 	/* ENOMEM was fully retried in f2fs_evict_inode. */
567 	if (ni.blk_addr != NULL_ADDR) {
568 		set_sbi_flag(sbi, SBI_NEED_FSCK);
569 		f2fs_msg(sbi->sb, KERN_WARNING,
570 			"%s: orphan failed (ino=%x), run fsck to fix.",
571 				__func__, ino);
572 		return -EIO;
573 	}
574 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
575 	return 0;
576 }
577 
578 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
579 {
580 	block_t start_blk, orphan_blocks, i, j;
581 	int err;
582 
583 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
584 		return 0;
585 
586 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
587 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
588 
589 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
590 
591 	for (i = 0; i < orphan_blocks; i++) {
592 		struct page *page = get_meta_page(sbi, start_blk + i);
593 		struct f2fs_orphan_block *orphan_blk;
594 
595 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
596 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
597 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
598 			err = recover_orphan_inode(sbi, ino);
599 			if (err) {
600 				f2fs_put_page(page, 1);
601 				return err;
602 			}
603 		}
604 		f2fs_put_page(page, 1);
605 	}
606 	/* clear Orphan Flag */
607 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
608 	return 0;
609 }
610 
611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
612 {
613 	struct list_head *head;
614 	struct f2fs_orphan_block *orphan_blk = NULL;
615 	unsigned int nentries = 0;
616 	unsigned short index = 1;
617 	unsigned short orphan_blocks;
618 	struct page *page = NULL;
619 	struct ino_entry *orphan = NULL;
620 	struct inode_management *im = &sbi->im[ORPHAN_INO];
621 
622 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
623 
624 	/*
625 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
626 	 * orphan inode operations are covered under f2fs_lock_op().
627 	 * And, spin_lock should be avoided due to page operations below.
628 	 */
629 	head = &im->ino_list;
630 
631 	/* loop for each orphan inode entry and write them in Jornal block */
632 	list_for_each_entry(orphan, head, list) {
633 		if (!page) {
634 			page = grab_meta_page(sbi, start_blk++);
635 			orphan_blk =
636 				(struct f2fs_orphan_block *)page_address(page);
637 			memset(orphan_blk, 0, sizeof(*orphan_blk));
638 		}
639 
640 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
641 
642 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
643 			/*
644 			 * an orphan block is full of 1020 entries,
645 			 * then we need to flush current orphan blocks
646 			 * and bring another one in memory
647 			 */
648 			orphan_blk->blk_addr = cpu_to_le16(index);
649 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
650 			orphan_blk->entry_count = cpu_to_le32(nentries);
651 			set_page_dirty(page);
652 			f2fs_put_page(page, 1);
653 			index++;
654 			nentries = 0;
655 			page = NULL;
656 		}
657 	}
658 
659 	if (page) {
660 		orphan_blk->blk_addr = cpu_to_le16(index);
661 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
662 		orphan_blk->entry_count = cpu_to_le32(nentries);
663 		set_page_dirty(page);
664 		f2fs_put_page(page, 1);
665 	}
666 }
667 
668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
669 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
670 		unsigned long long *version)
671 {
672 	unsigned long blk_size = sbi->blocksize;
673 	size_t crc_offset = 0;
674 	__u32 crc = 0;
675 
676 	*cp_page = get_meta_page(sbi, cp_addr);
677 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
678 
679 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
680 	if (crc_offset >= blk_size) {
681 		f2fs_msg(sbi->sb, KERN_WARNING,
682 			"invalid crc_offset: %zu", crc_offset);
683 		return -EINVAL;
684 	}
685 
686 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
687 							+ crc_offset)));
688 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
689 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
690 		return -EINVAL;
691 	}
692 
693 	*version = cur_cp_version(*cp_block);
694 	return 0;
695 }
696 
697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
698 				block_t cp_addr, unsigned long long *version)
699 {
700 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
701 	struct f2fs_checkpoint *cp_block = NULL;
702 	unsigned long long cur_version = 0, pre_version = 0;
703 	int err;
704 
705 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
706 					&cp_page_1, version);
707 	if (err)
708 		goto invalid_cp1;
709 	pre_version = *version;
710 
711 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
712 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
713 					&cp_page_2, version);
714 	if (err)
715 		goto invalid_cp2;
716 	cur_version = *version;
717 
718 	if (cur_version == pre_version) {
719 		*version = cur_version;
720 		f2fs_put_page(cp_page_2, 1);
721 		return cp_page_1;
722 	}
723 invalid_cp2:
724 	f2fs_put_page(cp_page_2, 1);
725 invalid_cp1:
726 	f2fs_put_page(cp_page_1, 1);
727 	return NULL;
728 }
729 
730 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
731 {
732 	struct f2fs_checkpoint *cp_block;
733 	struct f2fs_super_block *fsb = sbi->raw_super;
734 	struct page *cp1, *cp2, *cur_page;
735 	unsigned long blk_size = sbi->blocksize;
736 	unsigned long long cp1_version = 0, cp2_version = 0;
737 	unsigned long long cp_start_blk_no;
738 	unsigned int cp_blks = 1 + __cp_payload(sbi);
739 	block_t cp_blk_no;
740 	int i;
741 
742 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
743 	if (!sbi->ckpt)
744 		return -ENOMEM;
745 	/*
746 	 * Finding out valid cp block involves read both
747 	 * sets( cp pack1 and cp pack 2)
748 	 */
749 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
750 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
751 
752 	/* The second checkpoint pack should start at the next segment */
753 	cp_start_blk_no += ((unsigned long long)1) <<
754 				le32_to_cpu(fsb->log_blocks_per_seg);
755 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
756 
757 	if (cp1 && cp2) {
758 		if (ver_after(cp2_version, cp1_version))
759 			cur_page = cp2;
760 		else
761 			cur_page = cp1;
762 	} else if (cp1) {
763 		cur_page = cp1;
764 	} else if (cp2) {
765 		cur_page = cp2;
766 	} else {
767 		goto fail_no_cp;
768 	}
769 
770 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
771 	memcpy(sbi->ckpt, cp_block, blk_size);
772 
773 	/* Sanity checking of checkpoint */
774 	if (sanity_check_ckpt(sbi))
775 		goto free_fail_no_cp;
776 
777 	if (cur_page == cp1)
778 		sbi->cur_cp_pack = 1;
779 	else
780 		sbi->cur_cp_pack = 2;
781 
782 	if (cp_blks <= 1)
783 		goto done;
784 
785 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
786 	if (cur_page == cp2)
787 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
788 
789 	for (i = 1; i < cp_blks; i++) {
790 		void *sit_bitmap_ptr;
791 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
792 
793 		cur_page = get_meta_page(sbi, cp_blk_no + i);
794 		sit_bitmap_ptr = page_address(cur_page);
795 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
796 		f2fs_put_page(cur_page, 1);
797 	}
798 done:
799 	f2fs_put_page(cp1, 1);
800 	f2fs_put_page(cp2, 1);
801 	return 0;
802 
803 free_fail_no_cp:
804 	f2fs_put_page(cp1, 1);
805 	f2fs_put_page(cp2, 1);
806 fail_no_cp:
807 	kfree(sbi->ckpt);
808 	return -EINVAL;
809 }
810 
811 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
812 {
813 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
815 
816 	if (is_inode_flag_set(inode, flag))
817 		return;
818 
819 	set_inode_flag(inode, flag);
820 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
821 	stat_inc_dirty_inode(sbi, type);
822 }
823 
824 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
825 {
826 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
827 
828 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
829 		return;
830 
831 	list_del_init(&F2FS_I(inode)->dirty_list);
832 	clear_inode_flag(inode, flag);
833 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
834 }
835 
836 void update_dirty_page(struct inode *inode, struct page *page)
837 {
838 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
839 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
840 
841 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
842 			!S_ISLNK(inode->i_mode))
843 		return;
844 
845 	spin_lock(&sbi->inode_lock[type]);
846 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
847 		__add_dirty_inode(inode, type);
848 	inode_inc_dirty_pages(inode);
849 	spin_unlock(&sbi->inode_lock[type]);
850 
851 	SetPagePrivate(page);
852 	f2fs_trace_pid(page);
853 }
854 
855 void remove_dirty_inode(struct inode *inode)
856 {
857 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
858 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
859 
860 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
861 			!S_ISLNK(inode->i_mode))
862 		return;
863 
864 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
865 		return;
866 
867 	spin_lock(&sbi->inode_lock[type]);
868 	__remove_dirty_inode(inode, type);
869 	spin_unlock(&sbi->inode_lock[type]);
870 }
871 
872 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
873 {
874 	struct list_head *head;
875 	struct inode *inode;
876 	struct f2fs_inode_info *fi;
877 	bool is_dir = (type == DIR_INODE);
878 
879 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
880 				get_pages(sbi, is_dir ?
881 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
882 retry:
883 	if (unlikely(f2fs_cp_error(sbi)))
884 		return -EIO;
885 
886 	spin_lock(&sbi->inode_lock[type]);
887 
888 	head = &sbi->inode_list[type];
889 	if (list_empty(head)) {
890 		spin_unlock(&sbi->inode_lock[type]);
891 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
892 				get_pages(sbi, is_dir ?
893 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
894 		return 0;
895 	}
896 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
897 	inode = igrab(&fi->vfs_inode);
898 	spin_unlock(&sbi->inode_lock[type]);
899 	if (inode) {
900 		filemap_fdatawrite(inode->i_mapping);
901 		iput(inode);
902 	} else {
903 		/*
904 		 * We should submit bio, since it exists several
905 		 * wribacking dentry pages in the freeing inode.
906 		 */
907 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
908 		cond_resched();
909 	}
910 	goto retry;
911 }
912 
913 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
914 {
915 	struct list_head *head = &sbi->inode_list[DIRTY_META];
916 	struct inode *inode;
917 	struct f2fs_inode_info *fi;
918 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
919 
920 	while (total--) {
921 		if (unlikely(f2fs_cp_error(sbi)))
922 			return -EIO;
923 
924 		spin_lock(&sbi->inode_lock[DIRTY_META]);
925 		if (list_empty(head)) {
926 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
927 			return 0;
928 		}
929 		fi = list_first_entry(head, struct f2fs_inode_info,
930 							gdirty_list);
931 		inode = igrab(&fi->vfs_inode);
932 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
933 		if (inode) {
934 			sync_inode_metadata(inode, 0);
935 
936 			/* it's on eviction */
937 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
938 				update_inode_page(inode);
939 			iput(inode);
940 		}
941 	};
942 	return 0;
943 }
944 
945 /*
946  * Freeze all the FS-operations for checkpoint.
947  */
948 static int block_operations(struct f2fs_sb_info *sbi)
949 {
950 	struct writeback_control wbc = {
951 		.sync_mode = WB_SYNC_ALL,
952 		.nr_to_write = LONG_MAX,
953 		.for_reclaim = 0,
954 	};
955 	struct blk_plug plug;
956 	int err = 0;
957 
958 	blk_start_plug(&plug);
959 
960 retry_flush_dents:
961 	f2fs_lock_all(sbi);
962 	/* write all the dirty dentry pages */
963 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
964 		f2fs_unlock_all(sbi);
965 		err = sync_dirty_inodes(sbi, DIR_INODE);
966 		if (err)
967 			goto out;
968 		goto retry_flush_dents;
969 	}
970 
971 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
972 		f2fs_unlock_all(sbi);
973 		err = f2fs_sync_inode_meta(sbi);
974 		if (err)
975 			goto out;
976 		goto retry_flush_dents;
977 	}
978 
979 	/*
980 	 * POR: we should ensure that there are no dirty node pages
981 	 * until finishing nat/sit flush.
982 	 */
983 retry_flush_nodes:
984 	down_write(&sbi->node_write);
985 
986 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
987 		up_write(&sbi->node_write);
988 		err = sync_node_pages(sbi, &wbc);
989 		if (err) {
990 			f2fs_unlock_all(sbi);
991 			goto out;
992 		}
993 		goto retry_flush_nodes;
994 	}
995 out:
996 	blk_finish_plug(&plug);
997 	return err;
998 }
999 
1000 static void unblock_operations(struct f2fs_sb_info *sbi)
1001 {
1002 	up_write(&sbi->node_write);
1003 	f2fs_unlock_all(sbi);
1004 }
1005 
1006 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1007 {
1008 	DEFINE_WAIT(wait);
1009 
1010 	for (;;) {
1011 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1012 
1013 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1014 			break;
1015 
1016 		io_schedule_timeout(5*HZ);
1017 	}
1018 	finish_wait(&sbi->cp_wait, &wait);
1019 }
1020 
1021 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1022 {
1023 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1024 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025 
1026 	spin_lock(&sbi->cp_lock);
1027 
1028 	if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count >
1029 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1030 		disable_nat_bits(sbi, false);
1031 
1032 	if (cpc->reason == CP_UMOUNT)
1033 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1034 	else
1035 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1036 
1037 	if (cpc->reason == CP_FASTBOOT)
1038 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1039 	else
1040 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1041 
1042 	if (orphan_num)
1043 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1044 	else
1045 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1046 
1047 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1048 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1049 
1050 	/* set this flag to activate crc|cp_ver for recovery */
1051 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1052 
1053 	spin_unlock(&sbi->cp_lock);
1054 }
1055 
1056 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1057 {
1058 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1059 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1060 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1061 	nid_t last_nid = nm_i->next_scan_nid;
1062 	block_t start_blk;
1063 	unsigned int data_sum_blocks, orphan_blocks;
1064 	__u32 crc32 = 0;
1065 	int i;
1066 	int cp_payload_blks = __cp_payload(sbi);
1067 	struct super_block *sb = sbi->sb;
1068 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1069 	u64 kbytes_written;
1070 
1071 	/* Flush all the NAT/SIT pages */
1072 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1073 		sync_meta_pages(sbi, META, LONG_MAX);
1074 		if (unlikely(f2fs_cp_error(sbi)))
1075 			return -EIO;
1076 	}
1077 
1078 	next_free_nid(sbi, &last_nid);
1079 
1080 	/*
1081 	 * modify checkpoint
1082 	 * version number is already updated
1083 	 */
1084 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1085 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1086 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1087 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1088 		ckpt->cur_node_segno[i] =
1089 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1090 		ckpt->cur_node_blkoff[i] =
1091 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1092 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1093 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1094 	}
1095 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1096 		ckpt->cur_data_segno[i] =
1097 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1098 		ckpt->cur_data_blkoff[i] =
1099 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1100 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1101 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1102 	}
1103 
1104 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1105 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1106 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1107 
1108 	/* 2 cp  + n data seg summary + orphan inode blocks */
1109 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1110 	spin_lock(&sbi->cp_lock);
1111 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1112 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1113 	else
1114 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1115 	spin_unlock(&sbi->cp_lock);
1116 
1117 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1118 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1119 			orphan_blocks);
1120 
1121 	if (__remain_node_summaries(cpc->reason))
1122 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1123 				cp_payload_blks + data_sum_blocks +
1124 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1125 	else
1126 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1127 				cp_payload_blks + data_sum_blocks +
1128 				orphan_blocks);
1129 
1130 	/* update ckpt flag for checkpoint */
1131 	update_ckpt_flags(sbi, cpc);
1132 
1133 	/* update SIT/NAT bitmap */
1134 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1135 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1136 
1137 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1138 	*((__le32 *)((unsigned char *)ckpt +
1139 				le32_to_cpu(ckpt->checksum_offset)))
1140 				= cpu_to_le32(crc32);
1141 
1142 	start_blk = __start_cp_next_addr(sbi);
1143 
1144 	/* write nat bits */
1145 	if (enabled_nat_bits(sbi, cpc)) {
1146 		__u64 cp_ver = cur_cp_version(ckpt);
1147 		unsigned int i;
1148 		block_t blk;
1149 
1150 		cp_ver |= ((__u64)crc32 << 32);
1151 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1152 
1153 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1154 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1155 			update_meta_page(sbi, nm_i->nat_bits +
1156 					(i << F2FS_BLKSIZE_BITS), blk + i);
1157 
1158 		/* Flush all the NAT BITS pages */
1159 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1160 			sync_meta_pages(sbi, META, LONG_MAX);
1161 			if (unlikely(f2fs_cp_error(sbi)))
1162 				return -EIO;
1163 		}
1164 	}
1165 
1166 	/* need to wait for end_io results */
1167 	wait_on_all_pages_writeback(sbi);
1168 	if (unlikely(f2fs_cp_error(sbi)))
1169 		return -EIO;
1170 
1171 	/* write out checkpoint buffer at block 0 */
1172 	update_meta_page(sbi, ckpt, start_blk++);
1173 
1174 	for (i = 1; i < 1 + cp_payload_blks; i++)
1175 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1176 							start_blk++);
1177 
1178 	if (orphan_num) {
1179 		write_orphan_inodes(sbi, start_blk);
1180 		start_blk += orphan_blocks;
1181 	}
1182 
1183 	write_data_summaries(sbi, start_blk);
1184 	start_blk += data_sum_blocks;
1185 
1186 	/* Record write statistics in the hot node summary */
1187 	kbytes_written = sbi->kbytes_written;
1188 	if (sb->s_bdev->bd_part)
1189 		kbytes_written += BD_PART_WRITTEN(sbi);
1190 
1191 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1192 
1193 	if (__remain_node_summaries(cpc->reason)) {
1194 		write_node_summaries(sbi, start_blk);
1195 		start_blk += NR_CURSEG_NODE_TYPE;
1196 	}
1197 
1198 	/* writeout checkpoint block */
1199 	update_meta_page(sbi, ckpt, start_blk);
1200 
1201 	/* wait for previous submitted node/meta pages writeback */
1202 	wait_on_all_pages_writeback(sbi);
1203 
1204 	if (unlikely(f2fs_cp_error(sbi)))
1205 		return -EIO;
1206 
1207 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1208 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1209 
1210 	/* update user_block_counts */
1211 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1212 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1213 
1214 	/* Here, we only have one bio having CP pack */
1215 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1216 
1217 	/* wait for previous submitted meta pages writeback */
1218 	wait_on_all_pages_writeback(sbi);
1219 
1220 	release_ino_entry(sbi, false);
1221 
1222 	if (unlikely(f2fs_cp_error(sbi)))
1223 		return -EIO;
1224 
1225 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1226 	clear_sbi_flag(sbi, SBI_NEED_CP);
1227 	__set_cp_next_pack(sbi);
1228 
1229 	/*
1230 	 * redirty superblock if metadata like node page or inode cache is
1231 	 * updated during writing checkpoint.
1232 	 */
1233 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1234 			get_pages(sbi, F2FS_DIRTY_IMETA))
1235 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1236 
1237 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * We guarantee that this checkpoint procedure will not fail.
1244  */
1245 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1246 {
1247 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1248 	unsigned long long ckpt_ver;
1249 	int err = 0;
1250 
1251 	mutex_lock(&sbi->cp_mutex);
1252 
1253 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1254 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1255 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1256 		goto out;
1257 	if (unlikely(f2fs_cp_error(sbi))) {
1258 		err = -EIO;
1259 		goto out;
1260 	}
1261 	if (f2fs_readonly(sbi->sb)) {
1262 		err = -EROFS;
1263 		goto out;
1264 	}
1265 
1266 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1267 
1268 	err = block_operations(sbi);
1269 	if (err)
1270 		goto out;
1271 
1272 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1273 
1274 	f2fs_flush_merged_bios(sbi);
1275 
1276 	/* this is the case of multiple fstrims without any changes */
1277 	if (cpc->reason == CP_DISCARD) {
1278 		if (!exist_trim_candidates(sbi, cpc)) {
1279 			unblock_operations(sbi);
1280 			goto out;
1281 		}
1282 
1283 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1284 				SIT_I(sbi)->dirty_sentries == 0 &&
1285 				prefree_segments(sbi) == 0) {
1286 			flush_sit_entries(sbi, cpc);
1287 			clear_prefree_segments(sbi, cpc);
1288 			unblock_operations(sbi);
1289 			goto out;
1290 		}
1291 	}
1292 
1293 	/*
1294 	 * update checkpoint pack index
1295 	 * Increase the version number so that
1296 	 * SIT entries and seg summaries are written at correct place
1297 	 */
1298 	ckpt_ver = cur_cp_version(ckpt);
1299 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1300 
1301 	/* write cached NAT/SIT entries to NAT/SIT area */
1302 	flush_nat_entries(sbi, cpc);
1303 	flush_sit_entries(sbi, cpc);
1304 
1305 	/* unlock all the fs_lock[] in do_checkpoint() */
1306 	err = do_checkpoint(sbi, cpc);
1307 	if (err)
1308 		release_discard_addrs(sbi);
1309 	else
1310 		clear_prefree_segments(sbi, cpc);
1311 
1312 	unblock_operations(sbi);
1313 	stat_inc_cp_count(sbi->stat_info);
1314 
1315 	if (cpc->reason == CP_RECOVERY)
1316 		f2fs_msg(sbi->sb, KERN_NOTICE,
1317 			"checkpoint: version = %llx", ckpt_ver);
1318 
1319 	/* do checkpoint periodically */
1320 	f2fs_update_time(sbi, CP_TIME);
1321 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1322 out:
1323 	mutex_unlock(&sbi->cp_mutex);
1324 	return err;
1325 }
1326 
1327 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1328 {
1329 	int i;
1330 
1331 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1332 		struct inode_management *im = &sbi->im[i];
1333 
1334 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1335 		spin_lock_init(&im->ino_lock);
1336 		INIT_LIST_HEAD(&im->ino_list);
1337 		im->ino_num = 0;
1338 	}
1339 
1340 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1341 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1342 				F2FS_ORPHANS_PER_BLOCK;
1343 }
1344 
1345 int __init create_checkpoint_caches(void)
1346 {
1347 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1348 			sizeof(struct ino_entry));
1349 	if (!ino_entry_slab)
1350 		return -ENOMEM;
1351 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1352 			sizeof(struct inode_entry));
1353 	if (!inode_entry_slab) {
1354 		kmem_cache_destroy(ino_entry_slab);
1355 		return -ENOMEM;
1356 	}
1357 	return 0;
1358 }
1359 
1360 void destroy_checkpoint_caches(void)
1361 {
1362 	kmem_cache_destroy(ino_entry_slab);
1363 	kmem_cache_destroy(inode_entry_slab);
1364 }
1365