xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 1d9ac659ff782bea6107a8feecf62eb626864021)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23 
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	f2fs_build_fault_attr(sbi, 0, 0);
32 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 	if (!end_io)
34 		f2fs_flush_merged_writes(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 							bool is_meta)
58 {
59 	struct address_space *mapping = META_MAPPING(sbi);
60 	struct page *page;
61 	struct f2fs_io_info fio = {
62 		.sbi = sbi,
63 		.type = META,
64 		.op = REQ_OP_READ,
65 		.op_flags = REQ_META | REQ_PRIO,
66 		.old_blkaddr = index,
67 		.new_blkaddr = index,
68 		.encrypted_page = NULL,
69 		.is_por = !is_meta,
70 	};
71 	int err;
72 
73 	if (unlikely(!is_meta))
74 		fio.op_flags &= ~REQ_META;
75 repeat:
76 	page = f2fs_grab_cache_page(mapping, index, false);
77 	if (!page) {
78 		cond_resched();
79 		goto repeat;
80 	}
81 	if (PageUptodate(page))
82 		goto out;
83 
84 	fio.page = page;
85 
86 	err = f2fs_submit_page_bio(&fio);
87 	if (err) {
88 		f2fs_put_page(page, 1);
89 		return ERR_PTR(err);
90 	}
91 
92 	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93 
94 	lock_page(page);
95 	if (unlikely(page->mapping != mapping)) {
96 		f2fs_put_page(page, 1);
97 		goto repeat;
98 	}
99 
100 	if (unlikely(!PageUptodate(page))) {
101 		f2fs_put_page(page, 1);
102 		return ERR_PTR(-EIO);
103 	}
104 out:
105 	return page;
106 }
107 
108 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110 	return __get_meta_page(sbi, index, true);
111 }
112 
113 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 	struct page *page;
116 	int count = 0;
117 
118 retry:
119 	page = __get_meta_page(sbi, index, true);
120 	if (IS_ERR(page)) {
121 		if (PTR_ERR(page) == -EIO &&
122 				++count <= DEFAULT_RETRY_IO_COUNT)
123 			goto retry;
124 		f2fs_stop_checkpoint(sbi, false);
125 	}
126 	return page;
127 }
128 
129 /* for POR only */
130 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
131 {
132 	return __get_meta_page(sbi, index, false);
133 }
134 
135 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
136 							int type)
137 {
138 	struct seg_entry *se;
139 	unsigned int segno, offset;
140 	bool exist;
141 
142 	if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
143 		return true;
144 
145 	segno = GET_SEGNO(sbi, blkaddr);
146 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
147 	se = get_seg_entry(sbi, segno);
148 
149 	exist = f2fs_test_bit(offset, se->cur_valid_map);
150 	if (!exist && type == DATA_GENERIC_ENHANCE) {
151 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
152 			 blkaddr, exist);
153 		set_sbi_flag(sbi, SBI_NEED_FSCK);
154 		WARN_ON(1);
155 	}
156 	return exist;
157 }
158 
159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
160 					block_t blkaddr, int type)
161 {
162 	switch (type) {
163 	case META_NAT:
164 		break;
165 	case META_SIT:
166 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
167 			return false;
168 		break;
169 	case META_SSA:
170 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
171 			blkaddr < SM_I(sbi)->ssa_blkaddr))
172 			return false;
173 		break;
174 	case META_CP:
175 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
176 			blkaddr < __start_cp_addr(sbi)))
177 			return false;
178 		break;
179 	case META_POR:
180 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
181 			blkaddr < MAIN_BLKADDR(sbi)))
182 			return false;
183 		break;
184 	case DATA_GENERIC:
185 	case DATA_GENERIC_ENHANCE:
186 	case DATA_GENERIC_ENHANCE_READ:
187 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
188 				blkaddr < MAIN_BLKADDR(sbi))) {
189 			f2fs_warn(sbi, "access invalid blkaddr:%u",
190 				  blkaddr);
191 			set_sbi_flag(sbi, SBI_NEED_FSCK);
192 			WARN_ON(1);
193 			return false;
194 		} else {
195 			return __is_bitmap_valid(sbi, blkaddr, type);
196 		}
197 		break;
198 	case META_GENERIC:
199 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
200 			blkaddr >= MAIN_BLKADDR(sbi)))
201 			return false;
202 		break;
203 	default:
204 		BUG();
205 	}
206 
207 	return true;
208 }
209 
210 /*
211  * Readahead CP/NAT/SIT/SSA/POR pages
212  */
213 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
214 							int type, bool sync)
215 {
216 	struct page *page;
217 	block_t blkno = start;
218 	struct f2fs_io_info fio = {
219 		.sbi = sbi,
220 		.type = META,
221 		.op = REQ_OP_READ,
222 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
223 		.encrypted_page = NULL,
224 		.in_list = false,
225 		.is_por = (type == META_POR),
226 	};
227 	struct blk_plug plug;
228 	int err;
229 
230 	if (unlikely(type == META_POR))
231 		fio.op_flags &= ~REQ_META;
232 
233 	blk_start_plug(&plug);
234 	for (; nrpages-- > 0; blkno++) {
235 
236 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
237 			goto out;
238 
239 		switch (type) {
240 		case META_NAT:
241 			if (unlikely(blkno >=
242 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
243 				blkno = 0;
244 			/* get nat block addr */
245 			fio.new_blkaddr = current_nat_addr(sbi,
246 					blkno * NAT_ENTRY_PER_BLOCK);
247 			break;
248 		case META_SIT:
249 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
250 				goto out;
251 			/* get sit block addr */
252 			fio.new_blkaddr = current_sit_addr(sbi,
253 					blkno * SIT_ENTRY_PER_BLOCK);
254 			break;
255 		case META_SSA:
256 		case META_CP:
257 		case META_POR:
258 			fio.new_blkaddr = blkno;
259 			break;
260 		default:
261 			BUG();
262 		}
263 
264 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
265 						fio.new_blkaddr, false);
266 		if (!page)
267 			continue;
268 		if (PageUptodate(page)) {
269 			f2fs_put_page(page, 1);
270 			continue;
271 		}
272 
273 		fio.page = page;
274 		err = f2fs_submit_page_bio(&fio);
275 		f2fs_put_page(page, err ? 1 : 0);
276 
277 		if (!err)
278 			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
279 	}
280 out:
281 	blk_finish_plug(&plug);
282 	return blkno - start;
283 }
284 
285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
286 {
287 	struct page *page;
288 	bool readahead = false;
289 
290 	page = find_get_page(META_MAPPING(sbi), index);
291 	if (!page || !PageUptodate(page))
292 		readahead = true;
293 	f2fs_put_page(page, 0);
294 
295 	if (readahead)
296 		f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
297 }
298 
299 static int __f2fs_write_meta_page(struct page *page,
300 				struct writeback_control *wbc,
301 				enum iostat_type io_type)
302 {
303 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
304 
305 	trace_f2fs_writepage(page, META);
306 
307 	if (unlikely(f2fs_cp_error(sbi)))
308 		goto redirty_out;
309 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
310 		goto redirty_out;
311 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
312 		goto redirty_out;
313 
314 	f2fs_do_write_meta_page(sbi, page, io_type);
315 	dec_page_count(sbi, F2FS_DIRTY_META);
316 
317 	if (wbc->for_reclaim)
318 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
319 
320 	unlock_page(page);
321 
322 	if (unlikely(f2fs_cp_error(sbi)))
323 		f2fs_submit_merged_write(sbi, META);
324 
325 	return 0;
326 
327 redirty_out:
328 	redirty_page_for_writepage(wbc, page);
329 	return AOP_WRITEPAGE_ACTIVATE;
330 }
331 
332 static int f2fs_write_meta_page(struct page *page,
333 				struct writeback_control *wbc)
334 {
335 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
336 }
337 
338 static int f2fs_write_meta_pages(struct address_space *mapping,
339 				struct writeback_control *wbc)
340 {
341 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
342 	long diff, written;
343 
344 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
345 		goto skip_write;
346 
347 	/* collect a number of dirty meta pages and write together */
348 	if (wbc->sync_mode != WB_SYNC_ALL &&
349 			get_pages(sbi, F2FS_DIRTY_META) <
350 					nr_pages_to_skip(sbi, META))
351 		goto skip_write;
352 
353 	/* if locked failed, cp will flush dirty pages instead */
354 	if (!down_write_trylock(&sbi->cp_global_sem))
355 		goto skip_write;
356 
357 	trace_f2fs_writepages(mapping->host, wbc, META);
358 	diff = nr_pages_to_write(sbi, META, wbc);
359 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
360 	up_write(&sbi->cp_global_sem);
361 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
362 	return 0;
363 
364 skip_write:
365 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
366 	trace_f2fs_writepages(mapping->host, wbc, META);
367 	return 0;
368 }
369 
370 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
371 				long nr_to_write, enum iostat_type io_type)
372 {
373 	struct address_space *mapping = META_MAPPING(sbi);
374 	pgoff_t index = 0, prev = ULONG_MAX;
375 	struct pagevec pvec;
376 	long nwritten = 0;
377 	int nr_pages;
378 	struct writeback_control wbc = {
379 		.for_reclaim = 0,
380 	};
381 	struct blk_plug plug;
382 
383 	pagevec_init(&pvec);
384 
385 	blk_start_plug(&plug);
386 
387 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
388 				PAGECACHE_TAG_DIRTY))) {
389 		int i;
390 
391 		for (i = 0; i < nr_pages; i++) {
392 			struct page *page = pvec.pages[i];
393 
394 			if (prev == ULONG_MAX)
395 				prev = page->index - 1;
396 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
397 				pagevec_release(&pvec);
398 				goto stop;
399 			}
400 
401 			lock_page(page);
402 
403 			if (unlikely(page->mapping != mapping)) {
404 continue_unlock:
405 				unlock_page(page);
406 				continue;
407 			}
408 			if (!PageDirty(page)) {
409 				/* someone wrote it for us */
410 				goto continue_unlock;
411 			}
412 
413 			f2fs_wait_on_page_writeback(page, META, true, true);
414 
415 			if (!clear_page_dirty_for_io(page))
416 				goto continue_unlock;
417 
418 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
419 				unlock_page(page);
420 				break;
421 			}
422 			nwritten++;
423 			prev = page->index;
424 			if (unlikely(nwritten >= nr_to_write))
425 				break;
426 		}
427 		pagevec_release(&pvec);
428 		cond_resched();
429 	}
430 stop:
431 	if (nwritten)
432 		f2fs_submit_merged_write(sbi, type);
433 
434 	blk_finish_plug(&plug);
435 
436 	return nwritten;
437 }
438 
439 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
440 		struct folio *folio)
441 {
442 	trace_f2fs_set_page_dirty(&folio->page, META);
443 
444 	if (!folio_test_uptodate(folio))
445 		folio_mark_uptodate(folio);
446 	if (!folio_test_dirty(folio)) {
447 		filemap_dirty_folio(mapping, folio);
448 		inc_page_count(F2FS_P_SB(&folio->page), F2FS_DIRTY_META);
449 		set_page_private_reference(&folio->page);
450 		return true;
451 	}
452 	return false;
453 }
454 
455 const struct address_space_operations f2fs_meta_aops = {
456 	.writepage	= f2fs_write_meta_page,
457 	.writepages	= f2fs_write_meta_pages,
458 	.dirty_folio	= f2fs_dirty_meta_folio,
459 	.invalidate_folio = f2fs_invalidate_folio,
460 	.releasepage	= f2fs_release_page,
461 #ifdef CONFIG_MIGRATION
462 	.migratepage    = f2fs_migrate_page,
463 #endif
464 };
465 
466 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
467 						unsigned int devidx, int type)
468 {
469 	struct inode_management *im = &sbi->im[type];
470 	struct ino_entry *e = NULL, *new = NULL;
471 
472 	if (type == FLUSH_INO) {
473 		rcu_read_lock();
474 		e = radix_tree_lookup(&im->ino_root, ino);
475 		rcu_read_unlock();
476 	}
477 
478 retry:
479 	if (!e)
480 		new = f2fs_kmem_cache_alloc(ino_entry_slab,
481 						GFP_NOFS, true, NULL);
482 
483 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
484 
485 	spin_lock(&im->ino_lock);
486 	e = radix_tree_lookup(&im->ino_root, ino);
487 	if (!e) {
488 		if (!new) {
489 			spin_unlock(&im->ino_lock);
490 			goto retry;
491 		}
492 		e = new;
493 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
494 			f2fs_bug_on(sbi, 1);
495 
496 		memset(e, 0, sizeof(struct ino_entry));
497 		e->ino = ino;
498 
499 		list_add_tail(&e->list, &im->ino_list);
500 		if (type != ORPHAN_INO)
501 			im->ino_num++;
502 	}
503 
504 	if (type == FLUSH_INO)
505 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
506 
507 	spin_unlock(&im->ino_lock);
508 	radix_tree_preload_end();
509 
510 	if (new && e != new)
511 		kmem_cache_free(ino_entry_slab, new);
512 }
513 
514 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
515 {
516 	struct inode_management *im = &sbi->im[type];
517 	struct ino_entry *e;
518 
519 	spin_lock(&im->ino_lock);
520 	e = radix_tree_lookup(&im->ino_root, ino);
521 	if (e) {
522 		list_del(&e->list);
523 		radix_tree_delete(&im->ino_root, ino);
524 		im->ino_num--;
525 		spin_unlock(&im->ino_lock);
526 		kmem_cache_free(ino_entry_slab, e);
527 		return;
528 	}
529 	spin_unlock(&im->ino_lock);
530 }
531 
532 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
533 {
534 	/* add new dirty ino entry into list */
535 	__add_ino_entry(sbi, ino, 0, type);
536 }
537 
538 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
539 {
540 	/* remove dirty ino entry from list */
541 	__remove_ino_entry(sbi, ino, type);
542 }
543 
544 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
545 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
546 {
547 	struct inode_management *im = &sbi->im[mode];
548 	struct ino_entry *e;
549 
550 	spin_lock(&im->ino_lock);
551 	e = radix_tree_lookup(&im->ino_root, ino);
552 	spin_unlock(&im->ino_lock);
553 	return e ? true : false;
554 }
555 
556 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
557 {
558 	struct ino_entry *e, *tmp;
559 	int i;
560 
561 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
562 		struct inode_management *im = &sbi->im[i];
563 
564 		spin_lock(&im->ino_lock);
565 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
566 			list_del(&e->list);
567 			radix_tree_delete(&im->ino_root, e->ino);
568 			kmem_cache_free(ino_entry_slab, e);
569 			im->ino_num--;
570 		}
571 		spin_unlock(&im->ino_lock);
572 	}
573 }
574 
575 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
576 					unsigned int devidx, int type)
577 {
578 	__add_ino_entry(sbi, ino, devidx, type);
579 }
580 
581 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
582 					unsigned int devidx, int type)
583 {
584 	struct inode_management *im = &sbi->im[type];
585 	struct ino_entry *e;
586 	bool is_dirty = false;
587 
588 	spin_lock(&im->ino_lock);
589 	e = radix_tree_lookup(&im->ino_root, ino);
590 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
591 		is_dirty = true;
592 	spin_unlock(&im->ino_lock);
593 	return is_dirty;
594 }
595 
596 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
597 {
598 	struct inode_management *im = &sbi->im[ORPHAN_INO];
599 	int err = 0;
600 
601 	spin_lock(&im->ino_lock);
602 
603 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
604 		spin_unlock(&im->ino_lock);
605 		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
606 		return -ENOSPC;
607 	}
608 
609 	if (unlikely(im->ino_num >= sbi->max_orphans))
610 		err = -ENOSPC;
611 	else
612 		im->ino_num++;
613 	spin_unlock(&im->ino_lock);
614 
615 	return err;
616 }
617 
618 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
619 {
620 	struct inode_management *im = &sbi->im[ORPHAN_INO];
621 
622 	spin_lock(&im->ino_lock);
623 	f2fs_bug_on(sbi, im->ino_num == 0);
624 	im->ino_num--;
625 	spin_unlock(&im->ino_lock);
626 }
627 
628 void f2fs_add_orphan_inode(struct inode *inode)
629 {
630 	/* add new orphan ino entry into list */
631 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
632 	f2fs_update_inode_page(inode);
633 }
634 
635 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637 	/* remove orphan entry from orphan list */
638 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
639 }
640 
641 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
642 {
643 	struct inode *inode;
644 	struct node_info ni;
645 	int err;
646 
647 	inode = f2fs_iget_retry(sbi->sb, ino);
648 	if (IS_ERR(inode)) {
649 		/*
650 		 * there should be a bug that we can't find the entry
651 		 * to orphan inode.
652 		 */
653 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
654 		return PTR_ERR(inode);
655 	}
656 
657 	err = f2fs_dquot_initialize(inode);
658 	if (err) {
659 		iput(inode);
660 		goto err_out;
661 	}
662 
663 	clear_nlink(inode);
664 
665 	/* truncate all the data during iput */
666 	iput(inode);
667 
668 	err = f2fs_get_node_info(sbi, ino, &ni, false);
669 	if (err)
670 		goto err_out;
671 
672 	/* ENOMEM was fully retried in f2fs_evict_inode. */
673 	if (ni.blk_addr != NULL_ADDR) {
674 		err = -EIO;
675 		goto err_out;
676 	}
677 	return 0;
678 
679 err_out:
680 	set_sbi_flag(sbi, SBI_NEED_FSCK);
681 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
682 		  __func__, ino);
683 	return err;
684 }
685 
686 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
687 {
688 	block_t start_blk, orphan_blocks, i, j;
689 	unsigned int s_flags = sbi->sb->s_flags;
690 	int err = 0;
691 #ifdef CONFIG_QUOTA
692 	int quota_enabled;
693 #endif
694 
695 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
696 		return 0;
697 
698 	if (bdev_read_only(sbi->sb->s_bdev)) {
699 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
700 		return 0;
701 	}
702 
703 	if (s_flags & SB_RDONLY) {
704 		f2fs_info(sbi, "orphan cleanup on readonly fs");
705 		sbi->sb->s_flags &= ~SB_RDONLY;
706 	}
707 
708 #ifdef CONFIG_QUOTA
709 	/*
710 	 * Turn on quotas which were not enabled for read-only mounts if
711 	 * filesystem has quota feature, so that they are updated correctly.
712 	 */
713 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
714 #endif
715 
716 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
717 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
718 
719 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
720 
721 	for (i = 0; i < orphan_blocks; i++) {
722 		struct page *page;
723 		struct f2fs_orphan_block *orphan_blk;
724 
725 		page = f2fs_get_meta_page(sbi, start_blk + i);
726 		if (IS_ERR(page)) {
727 			err = PTR_ERR(page);
728 			goto out;
729 		}
730 
731 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
732 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
733 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
734 
735 			err = recover_orphan_inode(sbi, ino);
736 			if (err) {
737 				f2fs_put_page(page, 1);
738 				goto out;
739 			}
740 		}
741 		f2fs_put_page(page, 1);
742 	}
743 	/* clear Orphan Flag */
744 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
745 out:
746 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
747 
748 #ifdef CONFIG_QUOTA
749 	/* Turn quotas off */
750 	if (quota_enabled)
751 		f2fs_quota_off_umount(sbi->sb);
752 #endif
753 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
754 
755 	return err;
756 }
757 
758 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
759 {
760 	struct list_head *head;
761 	struct f2fs_orphan_block *orphan_blk = NULL;
762 	unsigned int nentries = 0;
763 	unsigned short index = 1;
764 	unsigned short orphan_blocks;
765 	struct page *page = NULL;
766 	struct ino_entry *orphan = NULL;
767 	struct inode_management *im = &sbi->im[ORPHAN_INO];
768 
769 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
770 
771 	/*
772 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
773 	 * orphan inode operations are covered under f2fs_lock_op().
774 	 * And, spin_lock should be avoided due to page operations below.
775 	 */
776 	head = &im->ino_list;
777 
778 	/* loop for each orphan inode entry and write them in Jornal block */
779 	list_for_each_entry(orphan, head, list) {
780 		if (!page) {
781 			page = f2fs_grab_meta_page(sbi, start_blk++);
782 			orphan_blk =
783 				(struct f2fs_orphan_block *)page_address(page);
784 			memset(orphan_blk, 0, sizeof(*orphan_blk));
785 		}
786 
787 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
788 
789 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
790 			/*
791 			 * an orphan block is full of 1020 entries,
792 			 * then we need to flush current orphan blocks
793 			 * and bring another one in memory
794 			 */
795 			orphan_blk->blk_addr = cpu_to_le16(index);
796 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
797 			orphan_blk->entry_count = cpu_to_le32(nentries);
798 			set_page_dirty(page);
799 			f2fs_put_page(page, 1);
800 			index++;
801 			nentries = 0;
802 			page = NULL;
803 		}
804 	}
805 
806 	if (page) {
807 		orphan_blk->blk_addr = cpu_to_le16(index);
808 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
809 		orphan_blk->entry_count = cpu_to_le32(nentries);
810 		set_page_dirty(page);
811 		f2fs_put_page(page, 1);
812 	}
813 }
814 
815 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
816 						struct f2fs_checkpoint *ckpt)
817 {
818 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
819 	__u32 chksum;
820 
821 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
822 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
823 		chksum_ofs += sizeof(chksum);
824 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
825 						F2FS_BLKSIZE - chksum_ofs);
826 	}
827 	return chksum;
828 }
829 
830 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
831 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
832 		unsigned long long *version)
833 {
834 	size_t crc_offset = 0;
835 	__u32 crc;
836 
837 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
838 	if (IS_ERR(*cp_page))
839 		return PTR_ERR(*cp_page);
840 
841 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
842 
843 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
844 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
845 			crc_offset > CP_CHKSUM_OFFSET) {
846 		f2fs_put_page(*cp_page, 1);
847 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
848 		return -EINVAL;
849 	}
850 
851 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
852 	if (crc != cur_cp_crc(*cp_block)) {
853 		f2fs_put_page(*cp_page, 1);
854 		f2fs_warn(sbi, "invalid crc value");
855 		return -EINVAL;
856 	}
857 
858 	*version = cur_cp_version(*cp_block);
859 	return 0;
860 }
861 
862 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
863 				block_t cp_addr, unsigned long long *version)
864 {
865 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
866 	struct f2fs_checkpoint *cp_block = NULL;
867 	unsigned long long cur_version = 0, pre_version = 0;
868 	int err;
869 
870 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
871 					&cp_page_1, version);
872 	if (err)
873 		return NULL;
874 
875 	if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
876 					sbi->blocks_per_seg) {
877 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
878 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
879 		goto invalid_cp;
880 	}
881 	pre_version = *version;
882 
883 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
884 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
885 					&cp_page_2, version);
886 	if (err)
887 		goto invalid_cp;
888 	cur_version = *version;
889 
890 	if (cur_version == pre_version) {
891 		*version = cur_version;
892 		f2fs_put_page(cp_page_2, 1);
893 		return cp_page_1;
894 	}
895 	f2fs_put_page(cp_page_2, 1);
896 invalid_cp:
897 	f2fs_put_page(cp_page_1, 1);
898 	return NULL;
899 }
900 
901 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
902 {
903 	struct f2fs_checkpoint *cp_block;
904 	struct f2fs_super_block *fsb = sbi->raw_super;
905 	struct page *cp1, *cp2, *cur_page;
906 	unsigned long blk_size = sbi->blocksize;
907 	unsigned long long cp1_version = 0, cp2_version = 0;
908 	unsigned long long cp_start_blk_no;
909 	unsigned int cp_blks = 1 + __cp_payload(sbi);
910 	block_t cp_blk_no;
911 	int i;
912 	int err;
913 
914 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
915 				  GFP_KERNEL);
916 	if (!sbi->ckpt)
917 		return -ENOMEM;
918 	/*
919 	 * Finding out valid cp block involves read both
920 	 * sets( cp pack 1 and cp pack 2)
921 	 */
922 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
923 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
924 
925 	/* The second checkpoint pack should start at the next segment */
926 	cp_start_blk_no += ((unsigned long long)1) <<
927 				le32_to_cpu(fsb->log_blocks_per_seg);
928 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
929 
930 	if (cp1 && cp2) {
931 		if (ver_after(cp2_version, cp1_version))
932 			cur_page = cp2;
933 		else
934 			cur_page = cp1;
935 	} else if (cp1) {
936 		cur_page = cp1;
937 	} else if (cp2) {
938 		cur_page = cp2;
939 	} else {
940 		err = -EFSCORRUPTED;
941 		goto fail_no_cp;
942 	}
943 
944 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
945 	memcpy(sbi->ckpt, cp_block, blk_size);
946 
947 	if (cur_page == cp1)
948 		sbi->cur_cp_pack = 1;
949 	else
950 		sbi->cur_cp_pack = 2;
951 
952 	/* Sanity checking of checkpoint */
953 	if (f2fs_sanity_check_ckpt(sbi)) {
954 		err = -EFSCORRUPTED;
955 		goto free_fail_no_cp;
956 	}
957 
958 	if (cp_blks <= 1)
959 		goto done;
960 
961 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
962 	if (cur_page == cp2)
963 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
964 
965 	for (i = 1; i < cp_blks; i++) {
966 		void *sit_bitmap_ptr;
967 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
968 
969 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
970 		if (IS_ERR(cur_page)) {
971 			err = PTR_ERR(cur_page);
972 			goto free_fail_no_cp;
973 		}
974 		sit_bitmap_ptr = page_address(cur_page);
975 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
976 		f2fs_put_page(cur_page, 1);
977 	}
978 done:
979 	f2fs_put_page(cp1, 1);
980 	f2fs_put_page(cp2, 1);
981 	return 0;
982 
983 free_fail_no_cp:
984 	f2fs_put_page(cp1, 1);
985 	f2fs_put_page(cp2, 1);
986 fail_no_cp:
987 	kvfree(sbi->ckpt);
988 	return err;
989 }
990 
991 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
992 {
993 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
994 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
995 
996 	if (is_inode_flag_set(inode, flag))
997 		return;
998 
999 	set_inode_flag(inode, flag);
1000 	if (!f2fs_is_volatile_file(inode))
1001 		list_add_tail(&F2FS_I(inode)->dirty_list,
1002 						&sbi->inode_list[type]);
1003 	stat_inc_dirty_inode(sbi, type);
1004 }
1005 
1006 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1007 {
1008 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1009 
1010 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1011 		return;
1012 
1013 	list_del_init(&F2FS_I(inode)->dirty_list);
1014 	clear_inode_flag(inode, flag);
1015 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1016 }
1017 
1018 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1019 {
1020 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1022 
1023 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1024 			!S_ISLNK(inode->i_mode))
1025 		return;
1026 
1027 	spin_lock(&sbi->inode_lock[type]);
1028 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1029 		__add_dirty_inode(inode, type);
1030 	inode_inc_dirty_pages(inode);
1031 	spin_unlock(&sbi->inode_lock[type]);
1032 
1033 	set_page_private_reference(page);
1034 }
1035 
1036 void f2fs_remove_dirty_inode(struct inode *inode)
1037 {
1038 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1040 
1041 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1042 			!S_ISLNK(inode->i_mode))
1043 		return;
1044 
1045 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1046 		return;
1047 
1048 	spin_lock(&sbi->inode_lock[type]);
1049 	__remove_dirty_inode(inode, type);
1050 	spin_unlock(&sbi->inode_lock[type]);
1051 }
1052 
1053 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1054 {
1055 	struct list_head *head;
1056 	struct inode *inode;
1057 	struct f2fs_inode_info *fi;
1058 	bool is_dir = (type == DIR_INODE);
1059 	unsigned long ino = 0;
1060 
1061 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1062 				get_pages(sbi, is_dir ?
1063 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1064 retry:
1065 	if (unlikely(f2fs_cp_error(sbi))) {
1066 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1067 				get_pages(sbi, is_dir ?
1068 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1069 		return -EIO;
1070 	}
1071 
1072 	spin_lock(&sbi->inode_lock[type]);
1073 
1074 	head = &sbi->inode_list[type];
1075 	if (list_empty(head)) {
1076 		spin_unlock(&sbi->inode_lock[type]);
1077 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1078 				get_pages(sbi, is_dir ?
1079 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1080 		return 0;
1081 	}
1082 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1083 	inode = igrab(&fi->vfs_inode);
1084 	spin_unlock(&sbi->inode_lock[type]);
1085 	if (inode) {
1086 		unsigned long cur_ino = inode->i_ino;
1087 
1088 		F2FS_I(inode)->cp_task = current;
1089 
1090 		filemap_fdatawrite(inode->i_mapping);
1091 
1092 		F2FS_I(inode)->cp_task = NULL;
1093 
1094 		iput(inode);
1095 		/* We need to give cpu to another writers. */
1096 		if (ino == cur_ino)
1097 			cond_resched();
1098 		else
1099 			ino = cur_ino;
1100 	} else {
1101 		/*
1102 		 * We should submit bio, since it exists several
1103 		 * wribacking dentry pages in the freeing inode.
1104 		 */
1105 		f2fs_submit_merged_write(sbi, DATA);
1106 		cond_resched();
1107 	}
1108 	goto retry;
1109 }
1110 
1111 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1112 {
1113 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1114 	struct inode *inode;
1115 	struct f2fs_inode_info *fi;
1116 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1117 
1118 	while (total--) {
1119 		if (unlikely(f2fs_cp_error(sbi)))
1120 			return -EIO;
1121 
1122 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1123 		if (list_empty(head)) {
1124 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1125 			return 0;
1126 		}
1127 		fi = list_first_entry(head, struct f2fs_inode_info,
1128 							gdirty_list);
1129 		inode = igrab(&fi->vfs_inode);
1130 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1131 		if (inode) {
1132 			sync_inode_metadata(inode, 0);
1133 
1134 			/* it's on eviction */
1135 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1136 				f2fs_update_inode_page(inode);
1137 			iput(inode);
1138 		}
1139 	}
1140 	return 0;
1141 }
1142 
1143 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1144 {
1145 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1146 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1147 	nid_t last_nid = nm_i->next_scan_nid;
1148 
1149 	next_free_nid(sbi, &last_nid);
1150 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1151 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1152 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1153 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1154 }
1155 
1156 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1157 {
1158 	bool ret = false;
1159 
1160 	if (!is_journalled_quota(sbi))
1161 		return false;
1162 
1163 	if (!down_write_trylock(&sbi->quota_sem))
1164 		return true;
1165 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1166 		ret = false;
1167 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1168 		ret = false;
1169 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1170 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1171 		ret = true;
1172 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1173 		ret = true;
1174 	}
1175 	up_write(&sbi->quota_sem);
1176 	return ret;
1177 }
1178 
1179 /*
1180  * Freeze all the FS-operations for checkpoint.
1181  */
1182 static int block_operations(struct f2fs_sb_info *sbi)
1183 {
1184 	struct writeback_control wbc = {
1185 		.sync_mode = WB_SYNC_ALL,
1186 		.nr_to_write = LONG_MAX,
1187 		.for_reclaim = 0,
1188 	};
1189 	int err = 0, cnt = 0;
1190 
1191 	/*
1192 	 * Let's flush inline_data in dirty node pages.
1193 	 */
1194 	f2fs_flush_inline_data(sbi);
1195 
1196 retry_flush_quotas:
1197 	f2fs_lock_all(sbi);
1198 	if (__need_flush_quota(sbi)) {
1199 		int locked;
1200 
1201 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1202 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1203 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1204 			goto retry_flush_dents;
1205 		}
1206 		f2fs_unlock_all(sbi);
1207 
1208 		/* only failed during mount/umount/freeze/quotactl */
1209 		locked = down_read_trylock(&sbi->sb->s_umount);
1210 		f2fs_quota_sync(sbi->sb, -1);
1211 		if (locked)
1212 			up_read(&sbi->sb->s_umount);
1213 		cond_resched();
1214 		goto retry_flush_quotas;
1215 	}
1216 
1217 retry_flush_dents:
1218 	/* write all the dirty dentry pages */
1219 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1220 		f2fs_unlock_all(sbi);
1221 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1222 		if (err)
1223 			return err;
1224 		cond_resched();
1225 		goto retry_flush_quotas;
1226 	}
1227 
1228 	/*
1229 	 * POR: we should ensure that there are no dirty node pages
1230 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1231 	 */
1232 	down_write(&sbi->node_change);
1233 
1234 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1235 		up_write(&sbi->node_change);
1236 		f2fs_unlock_all(sbi);
1237 		err = f2fs_sync_inode_meta(sbi);
1238 		if (err)
1239 			return err;
1240 		cond_resched();
1241 		goto retry_flush_quotas;
1242 	}
1243 
1244 retry_flush_nodes:
1245 	down_write(&sbi->node_write);
1246 
1247 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1248 		up_write(&sbi->node_write);
1249 		atomic_inc(&sbi->wb_sync_req[NODE]);
1250 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1251 		atomic_dec(&sbi->wb_sync_req[NODE]);
1252 		if (err) {
1253 			up_write(&sbi->node_change);
1254 			f2fs_unlock_all(sbi);
1255 			return err;
1256 		}
1257 		cond_resched();
1258 		goto retry_flush_nodes;
1259 	}
1260 
1261 	/*
1262 	 * sbi->node_change is used only for AIO write_begin path which produces
1263 	 * dirty node blocks and some checkpoint values by block allocation.
1264 	 */
1265 	__prepare_cp_block(sbi);
1266 	up_write(&sbi->node_change);
1267 	return err;
1268 }
1269 
1270 static void unblock_operations(struct f2fs_sb_info *sbi)
1271 {
1272 	up_write(&sbi->node_write);
1273 	f2fs_unlock_all(sbi);
1274 }
1275 
1276 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1277 {
1278 	DEFINE_WAIT(wait);
1279 
1280 	for (;;) {
1281 		if (!get_pages(sbi, type))
1282 			break;
1283 
1284 		if (unlikely(f2fs_cp_error(sbi)))
1285 			break;
1286 
1287 		if (type == F2FS_DIRTY_META)
1288 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1289 							FS_CP_META_IO);
1290 		else if (type == F2FS_WB_CP_DATA)
1291 			f2fs_submit_merged_write(sbi, DATA);
1292 
1293 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1294 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1295 	}
1296 	finish_wait(&sbi->cp_wait, &wait);
1297 }
1298 
1299 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1300 {
1301 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1302 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1303 	unsigned long flags;
1304 
1305 	if (cpc->reason & CP_UMOUNT) {
1306 		if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1307 			NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1308 			clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1309 			f2fs_notice(sbi, "Disable nat_bits due to no space");
1310 		} else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1311 						f2fs_nat_bitmap_enabled(sbi)) {
1312 			f2fs_enable_nat_bits(sbi);
1313 			set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1314 			f2fs_notice(sbi, "Rebuild and enable nat_bits");
1315 		}
1316 	}
1317 
1318 	spin_lock_irqsave(&sbi->cp_lock, flags);
1319 
1320 	if (cpc->reason & CP_TRIMMED)
1321 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1322 	else
1323 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1324 
1325 	if (cpc->reason & CP_UMOUNT)
1326 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1327 	else
1328 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1329 
1330 	if (cpc->reason & CP_FASTBOOT)
1331 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1332 	else
1333 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1334 
1335 	if (orphan_num)
1336 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1337 	else
1338 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1339 
1340 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1341 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1342 
1343 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1344 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1345 	else
1346 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1347 
1348 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1349 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1350 	else
1351 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1352 
1353 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1354 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1355 	else
1356 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1357 
1358 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1359 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1360 	else
1361 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1362 
1363 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1364 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1365 
1366 	/* set this flag to activate crc|cp_ver for recovery */
1367 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1368 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1369 
1370 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1371 }
1372 
1373 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1374 	void *src, block_t blk_addr)
1375 {
1376 	struct writeback_control wbc = {
1377 		.for_reclaim = 0,
1378 	};
1379 
1380 	/*
1381 	 * pagevec_lookup_tag and lock_page again will take
1382 	 * some extra time. Therefore, f2fs_update_meta_pages and
1383 	 * f2fs_sync_meta_pages are combined in this function.
1384 	 */
1385 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1386 	int err;
1387 
1388 	f2fs_wait_on_page_writeback(page, META, true, true);
1389 
1390 	memcpy(page_address(page), src, PAGE_SIZE);
1391 
1392 	set_page_dirty(page);
1393 	if (unlikely(!clear_page_dirty_for_io(page)))
1394 		f2fs_bug_on(sbi, 1);
1395 
1396 	/* writeout cp pack 2 page */
1397 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1398 	if (unlikely(err && f2fs_cp_error(sbi))) {
1399 		f2fs_put_page(page, 1);
1400 		return;
1401 	}
1402 
1403 	f2fs_bug_on(sbi, err);
1404 	f2fs_put_page(page, 0);
1405 
1406 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1407 	f2fs_submit_merged_write(sbi, META_FLUSH);
1408 }
1409 
1410 static inline u64 get_sectors_written(struct block_device *bdev)
1411 {
1412 	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1413 }
1414 
1415 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1416 {
1417 	if (f2fs_is_multi_device(sbi)) {
1418 		u64 sectors = 0;
1419 		int i;
1420 
1421 		for (i = 0; i < sbi->s_ndevs; i++)
1422 			sectors += get_sectors_written(FDEV(i).bdev);
1423 
1424 		return sectors;
1425 	}
1426 
1427 	return get_sectors_written(sbi->sb->s_bdev);
1428 }
1429 
1430 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1431 {
1432 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1433 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1434 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1435 	block_t start_blk;
1436 	unsigned int data_sum_blocks, orphan_blocks;
1437 	__u32 crc32 = 0;
1438 	int i;
1439 	int cp_payload_blks = __cp_payload(sbi);
1440 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1441 	u64 kbytes_written;
1442 	int err;
1443 
1444 	/* Flush all the NAT/SIT pages */
1445 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1446 
1447 	/* start to update checkpoint, cp ver is already updated previously */
1448 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1449 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1450 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1451 		ckpt->cur_node_segno[i] =
1452 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1453 		ckpt->cur_node_blkoff[i] =
1454 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1455 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1456 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1457 	}
1458 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1459 		ckpt->cur_data_segno[i] =
1460 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1461 		ckpt->cur_data_blkoff[i] =
1462 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1463 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1464 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1465 	}
1466 
1467 	/* 2 cp + n data seg summary + orphan inode blocks */
1468 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1469 	spin_lock_irqsave(&sbi->cp_lock, flags);
1470 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1471 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1472 	else
1473 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1474 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1475 
1476 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1477 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1478 			orphan_blocks);
1479 
1480 	if (__remain_node_summaries(cpc->reason))
1481 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1482 				cp_payload_blks + data_sum_blocks +
1483 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1484 	else
1485 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1486 				cp_payload_blks + data_sum_blocks +
1487 				orphan_blocks);
1488 
1489 	/* update ckpt flag for checkpoint */
1490 	update_ckpt_flags(sbi, cpc);
1491 
1492 	/* update SIT/NAT bitmap */
1493 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1494 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1495 
1496 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1497 	*((__le32 *)((unsigned char *)ckpt +
1498 				le32_to_cpu(ckpt->checksum_offset)))
1499 				= cpu_to_le32(crc32);
1500 
1501 	start_blk = __start_cp_next_addr(sbi);
1502 
1503 	/* write nat bits */
1504 	if ((cpc->reason & CP_UMOUNT) &&
1505 			is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1506 		__u64 cp_ver = cur_cp_version(ckpt);
1507 		block_t blk;
1508 
1509 		cp_ver |= ((__u64)crc32 << 32);
1510 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1511 
1512 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1513 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1514 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1515 					(i << F2FS_BLKSIZE_BITS), blk + i);
1516 	}
1517 
1518 	/* write out checkpoint buffer at block 0 */
1519 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1520 
1521 	for (i = 1; i < 1 + cp_payload_blks; i++)
1522 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1523 							start_blk++);
1524 
1525 	if (orphan_num) {
1526 		write_orphan_inodes(sbi, start_blk);
1527 		start_blk += orphan_blocks;
1528 	}
1529 
1530 	f2fs_write_data_summaries(sbi, start_blk);
1531 	start_blk += data_sum_blocks;
1532 
1533 	/* Record write statistics in the hot node summary */
1534 	kbytes_written = sbi->kbytes_written;
1535 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1536 				sbi->sectors_written_start) >> 1;
1537 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1538 
1539 	if (__remain_node_summaries(cpc->reason)) {
1540 		f2fs_write_node_summaries(sbi, start_blk);
1541 		start_blk += NR_CURSEG_NODE_TYPE;
1542 	}
1543 
1544 	/* update user_block_counts */
1545 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1546 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1547 
1548 	/* Here, we have one bio having CP pack except cp pack 2 page */
1549 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1550 	/* Wait for all dirty meta pages to be submitted for IO */
1551 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1552 
1553 	/* wait for previous submitted meta pages writeback */
1554 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1555 
1556 	/* flush all device cache */
1557 	err = f2fs_flush_device_cache(sbi);
1558 	if (err)
1559 		return err;
1560 
1561 	/* barrier and flush checkpoint cp pack 2 page if it can */
1562 	commit_checkpoint(sbi, ckpt, start_blk);
1563 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1564 
1565 	/*
1566 	 * invalidate intermediate page cache borrowed from meta inode which are
1567 	 * used for migration of encrypted, verity or compressed inode's blocks.
1568 	 */
1569 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1570 		f2fs_sb_has_compression(sbi))
1571 		invalidate_mapping_pages(META_MAPPING(sbi),
1572 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1573 
1574 	f2fs_release_ino_entry(sbi, false);
1575 
1576 	f2fs_reset_fsync_node_info(sbi);
1577 
1578 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1579 	clear_sbi_flag(sbi, SBI_NEED_CP);
1580 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1581 
1582 	spin_lock(&sbi->stat_lock);
1583 	sbi->unusable_block_count = 0;
1584 	spin_unlock(&sbi->stat_lock);
1585 
1586 	__set_cp_next_pack(sbi);
1587 
1588 	/*
1589 	 * redirty superblock if metadata like node page or inode cache is
1590 	 * updated during writing checkpoint.
1591 	 */
1592 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1593 			get_pages(sbi, F2FS_DIRTY_IMETA))
1594 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1595 
1596 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1597 
1598 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1599 }
1600 
1601 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1602 {
1603 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1604 	unsigned long long ckpt_ver;
1605 	int err = 0;
1606 
1607 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1608 		return -EROFS;
1609 
1610 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1611 		if (cpc->reason != CP_PAUSE)
1612 			return 0;
1613 		f2fs_warn(sbi, "Start checkpoint disabled!");
1614 	}
1615 	if (cpc->reason != CP_RESIZE)
1616 		down_write(&sbi->cp_global_sem);
1617 
1618 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1619 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1620 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1621 		goto out;
1622 	if (unlikely(f2fs_cp_error(sbi))) {
1623 		err = -EIO;
1624 		goto out;
1625 	}
1626 
1627 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1628 
1629 	err = block_operations(sbi);
1630 	if (err)
1631 		goto out;
1632 
1633 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1634 
1635 	f2fs_flush_merged_writes(sbi);
1636 
1637 	/* this is the case of multiple fstrims without any changes */
1638 	if (cpc->reason & CP_DISCARD) {
1639 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1640 			unblock_operations(sbi);
1641 			goto out;
1642 		}
1643 
1644 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1645 				SIT_I(sbi)->dirty_sentries == 0 &&
1646 				prefree_segments(sbi) == 0) {
1647 			f2fs_flush_sit_entries(sbi, cpc);
1648 			f2fs_clear_prefree_segments(sbi, cpc);
1649 			unblock_operations(sbi);
1650 			goto out;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * update checkpoint pack index
1656 	 * Increase the version number so that
1657 	 * SIT entries and seg summaries are written at correct place
1658 	 */
1659 	ckpt_ver = cur_cp_version(ckpt);
1660 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1661 
1662 	/* write cached NAT/SIT entries to NAT/SIT area */
1663 	err = f2fs_flush_nat_entries(sbi, cpc);
1664 	if (err) {
1665 		f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1666 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1667 		goto stop;
1668 	}
1669 
1670 	f2fs_flush_sit_entries(sbi, cpc);
1671 
1672 	/* save inmem log status */
1673 	f2fs_save_inmem_curseg(sbi);
1674 
1675 	err = do_checkpoint(sbi, cpc);
1676 	if (err) {
1677 		f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1678 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1679 		f2fs_release_discard_addrs(sbi);
1680 	} else {
1681 		f2fs_clear_prefree_segments(sbi, cpc);
1682 	}
1683 
1684 	f2fs_restore_inmem_curseg(sbi);
1685 stop:
1686 	unblock_operations(sbi);
1687 	stat_inc_cp_count(sbi->stat_info);
1688 
1689 	if (cpc->reason & CP_RECOVERY)
1690 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1691 
1692 	/* update CP_TIME to trigger checkpoint periodically */
1693 	f2fs_update_time(sbi, CP_TIME);
1694 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1695 out:
1696 	if (cpc->reason != CP_RESIZE)
1697 		up_write(&sbi->cp_global_sem);
1698 	return err;
1699 }
1700 
1701 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1702 {
1703 	int i;
1704 
1705 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1706 		struct inode_management *im = &sbi->im[i];
1707 
1708 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1709 		spin_lock_init(&im->ino_lock);
1710 		INIT_LIST_HEAD(&im->ino_list);
1711 		im->ino_num = 0;
1712 	}
1713 
1714 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1715 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1716 				F2FS_ORPHANS_PER_BLOCK;
1717 }
1718 
1719 int __init f2fs_create_checkpoint_caches(void)
1720 {
1721 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1722 			sizeof(struct ino_entry));
1723 	if (!ino_entry_slab)
1724 		return -ENOMEM;
1725 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1726 			sizeof(struct inode_entry));
1727 	if (!f2fs_inode_entry_slab) {
1728 		kmem_cache_destroy(ino_entry_slab);
1729 		return -ENOMEM;
1730 	}
1731 	return 0;
1732 }
1733 
1734 void f2fs_destroy_checkpoint_caches(void)
1735 {
1736 	kmem_cache_destroy(ino_entry_slab);
1737 	kmem_cache_destroy(f2fs_inode_entry_slab);
1738 }
1739 
1740 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1741 {
1742 	struct cp_control cpc = { .reason = CP_SYNC, };
1743 	int err;
1744 
1745 	down_write(&sbi->gc_lock);
1746 	err = f2fs_write_checkpoint(sbi, &cpc);
1747 	up_write(&sbi->gc_lock);
1748 
1749 	return err;
1750 }
1751 
1752 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1753 {
1754 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1755 	struct ckpt_req *req, *next;
1756 	struct llist_node *dispatch_list;
1757 	u64 sum_diff = 0, diff, count = 0;
1758 	int ret;
1759 
1760 	dispatch_list = llist_del_all(&cprc->issue_list);
1761 	if (!dispatch_list)
1762 		return;
1763 	dispatch_list = llist_reverse_order(dispatch_list);
1764 
1765 	ret = __write_checkpoint_sync(sbi);
1766 	atomic_inc(&cprc->issued_ckpt);
1767 
1768 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1769 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1770 		req->ret = ret;
1771 		complete(&req->wait);
1772 
1773 		sum_diff += diff;
1774 		count++;
1775 	}
1776 	atomic_sub(count, &cprc->queued_ckpt);
1777 	atomic_add(count, &cprc->total_ckpt);
1778 
1779 	spin_lock(&cprc->stat_lock);
1780 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1781 	if (cprc->peak_time < cprc->cur_time)
1782 		cprc->peak_time = cprc->cur_time;
1783 	spin_unlock(&cprc->stat_lock);
1784 }
1785 
1786 static int issue_checkpoint_thread(void *data)
1787 {
1788 	struct f2fs_sb_info *sbi = data;
1789 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1790 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1791 repeat:
1792 	if (kthread_should_stop())
1793 		return 0;
1794 
1795 	if (!llist_empty(&cprc->issue_list))
1796 		__checkpoint_and_complete_reqs(sbi);
1797 
1798 	wait_event_interruptible(*q,
1799 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1800 	goto repeat;
1801 }
1802 
1803 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1804 		struct ckpt_req *wait_req)
1805 {
1806 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1807 
1808 	if (!llist_empty(&cprc->issue_list)) {
1809 		__checkpoint_and_complete_reqs(sbi);
1810 	} else {
1811 		/* already dispatched by issue_checkpoint_thread */
1812 		if (wait_req)
1813 			wait_for_completion(&wait_req->wait);
1814 	}
1815 }
1816 
1817 static void init_ckpt_req(struct ckpt_req *req)
1818 {
1819 	memset(req, 0, sizeof(struct ckpt_req));
1820 
1821 	init_completion(&req->wait);
1822 	req->queue_time = ktime_get();
1823 }
1824 
1825 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1826 {
1827 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1828 	struct ckpt_req req;
1829 	struct cp_control cpc;
1830 
1831 	cpc.reason = __get_cp_reason(sbi);
1832 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1833 		int ret;
1834 
1835 		down_write(&sbi->gc_lock);
1836 		ret = f2fs_write_checkpoint(sbi, &cpc);
1837 		up_write(&sbi->gc_lock);
1838 
1839 		return ret;
1840 	}
1841 
1842 	if (!cprc->f2fs_issue_ckpt)
1843 		return __write_checkpoint_sync(sbi);
1844 
1845 	init_ckpt_req(&req);
1846 
1847 	llist_add(&req.llnode, &cprc->issue_list);
1848 	atomic_inc(&cprc->queued_ckpt);
1849 
1850 	/*
1851 	 * update issue_list before we wake up issue_checkpoint thread,
1852 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1853 	 * see more details in comments of waitqueue_active().
1854 	 */
1855 	smp_mb();
1856 
1857 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1858 		wake_up(&cprc->ckpt_wait_queue);
1859 
1860 	if (cprc->f2fs_issue_ckpt)
1861 		wait_for_completion(&req.wait);
1862 	else
1863 		flush_remained_ckpt_reqs(sbi, &req);
1864 
1865 	return req.ret;
1866 }
1867 
1868 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1869 {
1870 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1871 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1872 
1873 	if (cprc->f2fs_issue_ckpt)
1874 		return 0;
1875 
1876 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1877 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1878 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1879 		cprc->f2fs_issue_ckpt = NULL;
1880 		return -ENOMEM;
1881 	}
1882 
1883 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1884 
1885 	return 0;
1886 }
1887 
1888 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1889 {
1890 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1891 
1892 	if (cprc->f2fs_issue_ckpt) {
1893 		struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1894 
1895 		cprc->f2fs_issue_ckpt = NULL;
1896 		kthread_stop(ckpt_task);
1897 
1898 		flush_remained_ckpt_reqs(sbi, NULL);
1899 	}
1900 }
1901 
1902 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1903 {
1904 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1905 
1906 	atomic_set(&cprc->issued_ckpt, 0);
1907 	atomic_set(&cprc->total_ckpt, 0);
1908 	atomic_set(&cprc->queued_ckpt, 0);
1909 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1910 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1911 	init_llist_head(&cprc->issue_list);
1912 	spin_lock_init(&cprc->stat_lock);
1913 }
1914