1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 f2fs_build_fault_attr(sbi, 0, 0); 32 set_ckpt_flags(sbi, CP_ERROR_FLAG); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_por = !is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 93 94 lock_page(page); 95 if (unlikely(page->mapping != mapping)) { 96 f2fs_put_page(page, 1); 97 goto repeat; 98 } 99 100 if (unlikely(!PageUptodate(page))) { 101 f2fs_put_page(page, 1); 102 return ERR_PTR(-EIO); 103 } 104 out: 105 return page; 106 } 107 108 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 109 { 110 return __get_meta_page(sbi, index, true); 111 } 112 113 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 struct page *page; 116 int count = 0; 117 118 retry: 119 page = __get_meta_page(sbi, index, true); 120 if (IS_ERR(page)) { 121 if (PTR_ERR(page) == -EIO && 122 ++count <= DEFAULT_RETRY_IO_COUNT) 123 goto retry; 124 f2fs_stop_checkpoint(sbi, false); 125 } 126 return page; 127 } 128 129 /* for POR only */ 130 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 131 { 132 return __get_meta_page(sbi, index, false); 133 } 134 135 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 136 int type) 137 { 138 struct seg_entry *se; 139 unsigned int segno, offset; 140 bool exist; 141 142 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 143 return true; 144 145 segno = GET_SEGNO(sbi, blkaddr); 146 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 147 se = get_seg_entry(sbi, segno); 148 149 exist = f2fs_test_bit(offset, se->cur_valid_map); 150 if (!exist && type == DATA_GENERIC_ENHANCE) { 151 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 152 blkaddr, exist); 153 set_sbi_flag(sbi, SBI_NEED_FSCK); 154 WARN_ON(1); 155 } 156 return exist; 157 } 158 159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 160 block_t blkaddr, int type) 161 { 162 switch (type) { 163 case META_NAT: 164 break; 165 case META_SIT: 166 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 167 return false; 168 break; 169 case META_SSA: 170 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 171 blkaddr < SM_I(sbi)->ssa_blkaddr)) 172 return false; 173 break; 174 case META_CP: 175 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 176 blkaddr < __start_cp_addr(sbi))) 177 return false; 178 break; 179 case META_POR: 180 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 181 blkaddr < MAIN_BLKADDR(sbi))) 182 return false; 183 break; 184 case DATA_GENERIC: 185 case DATA_GENERIC_ENHANCE: 186 case DATA_GENERIC_ENHANCE_READ: 187 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 188 blkaddr < MAIN_BLKADDR(sbi))) { 189 f2fs_warn(sbi, "access invalid blkaddr:%u", 190 blkaddr); 191 set_sbi_flag(sbi, SBI_NEED_FSCK); 192 WARN_ON(1); 193 return false; 194 } else { 195 return __is_bitmap_valid(sbi, blkaddr, type); 196 } 197 break; 198 case META_GENERIC: 199 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 200 blkaddr >= MAIN_BLKADDR(sbi))) 201 return false; 202 break; 203 default: 204 BUG(); 205 } 206 207 return true; 208 } 209 210 /* 211 * Readahead CP/NAT/SIT/SSA/POR pages 212 */ 213 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 214 int type, bool sync) 215 { 216 struct page *page; 217 block_t blkno = start; 218 struct f2fs_io_info fio = { 219 .sbi = sbi, 220 .type = META, 221 .op = REQ_OP_READ, 222 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 223 .encrypted_page = NULL, 224 .in_list = false, 225 .is_por = (type == META_POR), 226 }; 227 struct blk_plug plug; 228 int err; 229 230 if (unlikely(type == META_POR)) 231 fio.op_flags &= ~REQ_META; 232 233 blk_start_plug(&plug); 234 for (; nrpages-- > 0; blkno++) { 235 236 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 237 goto out; 238 239 switch (type) { 240 case META_NAT: 241 if (unlikely(blkno >= 242 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 243 blkno = 0; 244 /* get nat block addr */ 245 fio.new_blkaddr = current_nat_addr(sbi, 246 blkno * NAT_ENTRY_PER_BLOCK); 247 break; 248 case META_SIT: 249 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 250 goto out; 251 /* get sit block addr */ 252 fio.new_blkaddr = current_sit_addr(sbi, 253 blkno * SIT_ENTRY_PER_BLOCK); 254 break; 255 case META_SSA: 256 case META_CP: 257 case META_POR: 258 fio.new_blkaddr = blkno; 259 break; 260 default: 261 BUG(); 262 } 263 264 page = f2fs_grab_cache_page(META_MAPPING(sbi), 265 fio.new_blkaddr, false); 266 if (!page) 267 continue; 268 if (PageUptodate(page)) { 269 f2fs_put_page(page, 1); 270 continue; 271 } 272 273 fio.page = page; 274 err = f2fs_submit_page_bio(&fio); 275 f2fs_put_page(page, err ? 1 : 0); 276 277 if (!err) 278 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 279 } 280 out: 281 blk_finish_plug(&plug); 282 return blkno - start; 283 } 284 285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 286 { 287 struct page *page; 288 bool readahead = false; 289 290 page = find_get_page(META_MAPPING(sbi), index); 291 if (!page || !PageUptodate(page)) 292 readahead = true; 293 f2fs_put_page(page, 0); 294 295 if (readahead) 296 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true); 297 } 298 299 static int __f2fs_write_meta_page(struct page *page, 300 struct writeback_control *wbc, 301 enum iostat_type io_type) 302 { 303 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 304 305 trace_f2fs_writepage(page, META); 306 307 if (unlikely(f2fs_cp_error(sbi))) 308 goto redirty_out; 309 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 310 goto redirty_out; 311 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 312 goto redirty_out; 313 314 f2fs_do_write_meta_page(sbi, page, io_type); 315 dec_page_count(sbi, F2FS_DIRTY_META); 316 317 if (wbc->for_reclaim) 318 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 319 320 unlock_page(page); 321 322 if (unlikely(f2fs_cp_error(sbi))) 323 f2fs_submit_merged_write(sbi, META); 324 325 return 0; 326 327 redirty_out: 328 redirty_page_for_writepage(wbc, page); 329 return AOP_WRITEPAGE_ACTIVATE; 330 } 331 332 static int f2fs_write_meta_page(struct page *page, 333 struct writeback_control *wbc) 334 { 335 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 336 } 337 338 static int f2fs_write_meta_pages(struct address_space *mapping, 339 struct writeback_control *wbc) 340 { 341 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 342 long diff, written; 343 344 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 345 goto skip_write; 346 347 /* collect a number of dirty meta pages and write together */ 348 if (wbc->sync_mode != WB_SYNC_ALL && 349 get_pages(sbi, F2FS_DIRTY_META) < 350 nr_pages_to_skip(sbi, META)) 351 goto skip_write; 352 353 /* if locked failed, cp will flush dirty pages instead */ 354 if (!down_write_trylock(&sbi->cp_global_sem)) 355 goto skip_write; 356 357 trace_f2fs_writepages(mapping->host, wbc, META); 358 diff = nr_pages_to_write(sbi, META, wbc); 359 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 360 up_write(&sbi->cp_global_sem); 361 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 362 return 0; 363 364 skip_write: 365 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 366 trace_f2fs_writepages(mapping->host, wbc, META); 367 return 0; 368 } 369 370 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 371 long nr_to_write, enum iostat_type io_type) 372 { 373 struct address_space *mapping = META_MAPPING(sbi); 374 pgoff_t index = 0, prev = ULONG_MAX; 375 struct pagevec pvec; 376 long nwritten = 0; 377 int nr_pages; 378 struct writeback_control wbc = { 379 .for_reclaim = 0, 380 }; 381 struct blk_plug plug; 382 383 pagevec_init(&pvec); 384 385 blk_start_plug(&plug); 386 387 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 388 PAGECACHE_TAG_DIRTY))) { 389 int i; 390 391 for (i = 0; i < nr_pages; i++) { 392 struct page *page = pvec.pages[i]; 393 394 if (prev == ULONG_MAX) 395 prev = page->index - 1; 396 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 397 pagevec_release(&pvec); 398 goto stop; 399 } 400 401 lock_page(page); 402 403 if (unlikely(page->mapping != mapping)) { 404 continue_unlock: 405 unlock_page(page); 406 continue; 407 } 408 if (!PageDirty(page)) { 409 /* someone wrote it for us */ 410 goto continue_unlock; 411 } 412 413 f2fs_wait_on_page_writeback(page, META, true, true); 414 415 if (!clear_page_dirty_for_io(page)) 416 goto continue_unlock; 417 418 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 419 unlock_page(page); 420 break; 421 } 422 nwritten++; 423 prev = page->index; 424 if (unlikely(nwritten >= nr_to_write)) 425 break; 426 } 427 pagevec_release(&pvec); 428 cond_resched(); 429 } 430 stop: 431 if (nwritten) 432 f2fs_submit_merged_write(sbi, type); 433 434 blk_finish_plug(&plug); 435 436 return nwritten; 437 } 438 439 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 440 struct folio *folio) 441 { 442 trace_f2fs_set_page_dirty(&folio->page, META); 443 444 if (!folio_test_uptodate(folio)) 445 folio_mark_uptodate(folio); 446 if (!folio_test_dirty(folio)) { 447 filemap_dirty_folio(mapping, folio); 448 inc_page_count(F2FS_P_SB(&folio->page), F2FS_DIRTY_META); 449 set_page_private_reference(&folio->page); 450 return true; 451 } 452 return false; 453 } 454 455 const struct address_space_operations f2fs_meta_aops = { 456 .writepage = f2fs_write_meta_page, 457 .writepages = f2fs_write_meta_pages, 458 .dirty_folio = f2fs_dirty_meta_folio, 459 .invalidate_folio = f2fs_invalidate_folio, 460 .releasepage = f2fs_release_page, 461 #ifdef CONFIG_MIGRATION 462 .migratepage = f2fs_migrate_page, 463 #endif 464 }; 465 466 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 467 unsigned int devidx, int type) 468 { 469 struct inode_management *im = &sbi->im[type]; 470 struct ino_entry *e = NULL, *new = NULL; 471 472 if (type == FLUSH_INO) { 473 rcu_read_lock(); 474 e = radix_tree_lookup(&im->ino_root, ino); 475 rcu_read_unlock(); 476 } 477 478 retry: 479 if (!e) 480 new = f2fs_kmem_cache_alloc(ino_entry_slab, 481 GFP_NOFS, true, NULL); 482 483 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 484 485 spin_lock(&im->ino_lock); 486 e = radix_tree_lookup(&im->ino_root, ino); 487 if (!e) { 488 if (!new) { 489 spin_unlock(&im->ino_lock); 490 goto retry; 491 } 492 e = new; 493 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 494 f2fs_bug_on(sbi, 1); 495 496 memset(e, 0, sizeof(struct ino_entry)); 497 e->ino = ino; 498 499 list_add_tail(&e->list, &im->ino_list); 500 if (type != ORPHAN_INO) 501 im->ino_num++; 502 } 503 504 if (type == FLUSH_INO) 505 f2fs_set_bit(devidx, (char *)&e->dirty_device); 506 507 spin_unlock(&im->ino_lock); 508 radix_tree_preload_end(); 509 510 if (new && e != new) 511 kmem_cache_free(ino_entry_slab, new); 512 } 513 514 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 515 { 516 struct inode_management *im = &sbi->im[type]; 517 struct ino_entry *e; 518 519 spin_lock(&im->ino_lock); 520 e = radix_tree_lookup(&im->ino_root, ino); 521 if (e) { 522 list_del(&e->list); 523 radix_tree_delete(&im->ino_root, ino); 524 im->ino_num--; 525 spin_unlock(&im->ino_lock); 526 kmem_cache_free(ino_entry_slab, e); 527 return; 528 } 529 spin_unlock(&im->ino_lock); 530 } 531 532 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 533 { 534 /* add new dirty ino entry into list */ 535 __add_ino_entry(sbi, ino, 0, type); 536 } 537 538 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 539 { 540 /* remove dirty ino entry from list */ 541 __remove_ino_entry(sbi, ino, type); 542 } 543 544 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 545 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 546 { 547 struct inode_management *im = &sbi->im[mode]; 548 struct ino_entry *e; 549 550 spin_lock(&im->ino_lock); 551 e = radix_tree_lookup(&im->ino_root, ino); 552 spin_unlock(&im->ino_lock); 553 return e ? true : false; 554 } 555 556 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 557 { 558 struct ino_entry *e, *tmp; 559 int i; 560 561 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 562 struct inode_management *im = &sbi->im[i]; 563 564 spin_lock(&im->ino_lock); 565 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 566 list_del(&e->list); 567 radix_tree_delete(&im->ino_root, e->ino); 568 kmem_cache_free(ino_entry_slab, e); 569 im->ino_num--; 570 } 571 spin_unlock(&im->ino_lock); 572 } 573 } 574 575 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 576 unsigned int devidx, int type) 577 { 578 __add_ino_entry(sbi, ino, devidx, type); 579 } 580 581 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 582 unsigned int devidx, int type) 583 { 584 struct inode_management *im = &sbi->im[type]; 585 struct ino_entry *e; 586 bool is_dirty = false; 587 588 spin_lock(&im->ino_lock); 589 e = radix_tree_lookup(&im->ino_root, ino); 590 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 591 is_dirty = true; 592 spin_unlock(&im->ino_lock); 593 return is_dirty; 594 } 595 596 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 597 { 598 struct inode_management *im = &sbi->im[ORPHAN_INO]; 599 int err = 0; 600 601 spin_lock(&im->ino_lock); 602 603 if (time_to_inject(sbi, FAULT_ORPHAN)) { 604 spin_unlock(&im->ino_lock); 605 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 606 return -ENOSPC; 607 } 608 609 if (unlikely(im->ino_num >= sbi->max_orphans)) 610 err = -ENOSPC; 611 else 612 im->ino_num++; 613 spin_unlock(&im->ino_lock); 614 615 return err; 616 } 617 618 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 619 { 620 struct inode_management *im = &sbi->im[ORPHAN_INO]; 621 622 spin_lock(&im->ino_lock); 623 f2fs_bug_on(sbi, im->ino_num == 0); 624 im->ino_num--; 625 spin_unlock(&im->ino_lock); 626 } 627 628 void f2fs_add_orphan_inode(struct inode *inode) 629 { 630 /* add new orphan ino entry into list */ 631 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 632 f2fs_update_inode_page(inode); 633 } 634 635 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 636 { 637 /* remove orphan entry from orphan list */ 638 __remove_ino_entry(sbi, ino, ORPHAN_INO); 639 } 640 641 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 642 { 643 struct inode *inode; 644 struct node_info ni; 645 int err; 646 647 inode = f2fs_iget_retry(sbi->sb, ino); 648 if (IS_ERR(inode)) { 649 /* 650 * there should be a bug that we can't find the entry 651 * to orphan inode. 652 */ 653 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 654 return PTR_ERR(inode); 655 } 656 657 err = f2fs_dquot_initialize(inode); 658 if (err) { 659 iput(inode); 660 goto err_out; 661 } 662 663 clear_nlink(inode); 664 665 /* truncate all the data during iput */ 666 iput(inode); 667 668 err = f2fs_get_node_info(sbi, ino, &ni, false); 669 if (err) 670 goto err_out; 671 672 /* ENOMEM was fully retried in f2fs_evict_inode. */ 673 if (ni.blk_addr != NULL_ADDR) { 674 err = -EIO; 675 goto err_out; 676 } 677 return 0; 678 679 err_out: 680 set_sbi_flag(sbi, SBI_NEED_FSCK); 681 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 682 __func__, ino); 683 return err; 684 } 685 686 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 687 { 688 block_t start_blk, orphan_blocks, i, j; 689 unsigned int s_flags = sbi->sb->s_flags; 690 int err = 0; 691 #ifdef CONFIG_QUOTA 692 int quota_enabled; 693 #endif 694 695 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 696 return 0; 697 698 if (bdev_read_only(sbi->sb->s_bdev)) { 699 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 700 return 0; 701 } 702 703 if (s_flags & SB_RDONLY) { 704 f2fs_info(sbi, "orphan cleanup on readonly fs"); 705 sbi->sb->s_flags &= ~SB_RDONLY; 706 } 707 708 #ifdef CONFIG_QUOTA 709 /* 710 * Turn on quotas which were not enabled for read-only mounts if 711 * filesystem has quota feature, so that they are updated correctly. 712 */ 713 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 714 #endif 715 716 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 717 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 718 719 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 720 721 for (i = 0; i < orphan_blocks; i++) { 722 struct page *page; 723 struct f2fs_orphan_block *orphan_blk; 724 725 page = f2fs_get_meta_page(sbi, start_blk + i); 726 if (IS_ERR(page)) { 727 err = PTR_ERR(page); 728 goto out; 729 } 730 731 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 732 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 733 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 734 735 err = recover_orphan_inode(sbi, ino); 736 if (err) { 737 f2fs_put_page(page, 1); 738 goto out; 739 } 740 } 741 f2fs_put_page(page, 1); 742 } 743 /* clear Orphan Flag */ 744 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 745 out: 746 set_sbi_flag(sbi, SBI_IS_RECOVERED); 747 748 #ifdef CONFIG_QUOTA 749 /* Turn quotas off */ 750 if (quota_enabled) 751 f2fs_quota_off_umount(sbi->sb); 752 #endif 753 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 754 755 return err; 756 } 757 758 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 759 { 760 struct list_head *head; 761 struct f2fs_orphan_block *orphan_blk = NULL; 762 unsigned int nentries = 0; 763 unsigned short index = 1; 764 unsigned short orphan_blocks; 765 struct page *page = NULL; 766 struct ino_entry *orphan = NULL; 767 struct inode_management *im = &sbi->im[ORPHAN_INO]; 768 769 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 770 771 /* 772 * we don't need to do spin_lock(&im->ino_lock) here, since all the 773 * orphan inode operations are covered under f2fs_lock_op(). 774 * And, spin_lock should be avoided due to page operations below. 775 */ 776 head = &im->ino_list; 777 778 /* loop for each orphan inode entry and write them in Jornal block */ 779 list_for_each_entry(orphan, head, list) { 780 if (!page) { 781 page = f2fs_grab_meta_page(sbi, start_blk++); 782 orphan_blk = 783 (struct f2fs_orphan_block *)page_address(page); 784 memset(orphan_blk, 0, sizeof(*orphan_blk)); 785 } 786 787 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 788 789 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 790 /* 791 * an orphan block is full of 1020 entries, 792 * then we need to flush current orphan blocks 793 * and bring another one in memory 794 */ 795 orphan_blk->blk_addr = cpu_to_le16(index); 796 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 797 orphan_blk->entry_count = cpu_to_le32(nentries); 798 set_page_dirty(page); 799 f2fs_put_page(page, 1); 800 index++; 801 nentries = 0; 802 page = NULL; 803 } 804 } 805 806 if (page) { 807 orphan_blk->blk_addr = cpu_to_le16(index); 808 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 809 orphan_blk->entry_count = cpu_to_le32(nentries); 810 set_page_dirty(page); 811 f2fs_put_page(page, 1); 812 } 813 } 814 815 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 816 struct f2fs_checkpoint *ckpt) 817 { 818 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 819 __u32 chksum; 820 821 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 822 if (chksum_ofs < CP_CHKSUM_OFFSET) { 823 chksum_ofs += sizeof(chksum); 824 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 825 F2FS_BLKSIZE - chksum_ofs); 826 } 827 return chksum; 828 } 829 830 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 831 struct f2fs_checkpoint **cp_block, struct page **cp_page, 832 unsigned long long *version) 833 { 834 size_t crc_offset = 0; 835 __u32 crc; 836 837 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 838 if (IS_ERR(*cp_page)) 839 return PTR_ERR(*cp_page); 840 841 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 842 843 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 844 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 845 crc_offset > CP_CHKSUM_OFFSET) { 846 f2fs_put_page(*cp_page, 1); 847 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 848 return -EINVAL; 849 } 850 851 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 852 if (crc != cur_cp_crc(*cp_block)) { 853 f2fs_put_page(*cp_page, 1); 854 f2fs_warn(sbi, "invalid crc value"); 855 return -EINVAL; 856 } 857 858 *version = cur_cp_version(*cp_block); 859 return 0; 860 } 861 862 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 863 block_t cp_addr, unsigned long long *version) 864 { 865 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 866 struct f2fs_checkpoint *cp_block = NULL; 867 unsigned long long cur_version = 0, pre_version = 0; 868 int err; 869 870 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 871 &cp_page_1, version); 872 if (err) 873 return NULL; 874 875 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 876 sbi->blocks_per_seg) { 877 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 878 le32_to_cpu(cp_block->cp_pack_total_block_count)); 879 goto invalid_cp; 880 } 881 pre_version = *version; 882 883 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 884 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 885 &cp_page_2, version); 886 if (err) 887 goto invalid_cp; 888 cur_version = *version; 889 890 if (cur_version == pre_version) { 891 *version = cur_version; 892 f2fs_put_page(cp_page_2, 1); 893 return cp_page_1; 894 } 895 f2fs_put_page(cp_page_2, 1); 896 invalid_cp: 897 f2fs_put_page(cp_page_1, 1); 898 return NULL; 899 } 900 901 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 902 { 903 struct f2fs_checkpoint *cp_block; 904 struct f2fs_super_block *fsb = sbi->raw_super; 905 struct page *cp1, *cp2, *cur_page; 906 unsigned long blk_size = sbi->blocksize; 907 unsigned long long cp1_version = 0, cp2_version = 0; 908 unsigned long long cp_start_blk_no; 909 unsigned int cp_blks = 1 + __cp_payload(sbi); 910 block_t cp_blk_no; 911 int i; 912 int err; 913 914 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 915 GFP_KERNEL); 916 if (!sbi->ckpt) 917 return -ENOMEM; 918 /* 919 * Finding out valid cp block involves read both 920 * sets( cp pack 1 and cp pack 2) 921 */ 922 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 923 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 924 925 /* The second checkpoint pack should start at the next segment */ 926 cp_start_blk_no += ((unsigned long long)1) << 927 le32_to_cpu(fsb->log_blocks_per_seg); 928 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 929 930 if (cp1 && cp2) { 931 if (ver_after(cp2_version, cp1_version)) 932 cur_page = cp2; 933 else 934 cur_page = cp1; 935 } else if (cp1) { 936 cur_page = cp1; 937 } else if (cp2) { 938 cur_page = cp2; 939 } else { 940 err = -EFSCORRUPTED; 941 goto fail_no_cp; 942 } 943 944 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 945 memcpy(sbi->ckpt, cp_block, blk_size); 946 947 if (cur_page == cp1) 948 sbi->cur_cp_pack = 1; 949 else 950 sbi->cur_cp_pack = 2; 951 952 /* Sanity checking of checkpoint */ 953 if (f2fs_sanity_check_ckpt(sbi)) { 954 err = -EFSCORRUPTED; 955 goto free_fail_no_cp; 956 } 957 958 if (cp_blks <= 1) 959 goto done; 960 961 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 962 if (cur_page == cp2) 963 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 964 965 for (i = 1; i < cp_blks; i++) { 966 void *sit_bitmap_ptr; 967 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 968 969 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 970 if (IS_ERR(cur_page)) { 971 err = PTR_ERR(cur_page); 972 goto free_fail_no_cp; 973 } 974 sit_bitmap_ptr = page_address(cur_page); 975 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 976 f2fs_put_page(cur_page, 1); 977 } 978 done: 979 f2fs_put_page(cp1, 1); 980 f2fs_put_page(cp2, 1); 981 return 0; 982 983 free_fail_no_cp: 984 f2fs_put_page(cp1, 1); 985 f2fs_put_page(cp2, 1); 986 fail_no_cp: 987 kvfree(sbi->ckpt); 988 return err; 989 } 990 991 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 992 { 993 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 994 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 995 996 if (is_inode_flag_set(inode, flag)) 997 return; 998 999 set_inode_flag(inode, flag); 1000 if (!f2fs_is_volatile_file(inode)) 1001 list_add_tail(&F2FS_I(inode)->dirty_list, 1002 &sbi->inode_list[type]); 1003 stat_inc_dirty_inode(sbi, type); 1004 } 1005 1006 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1007 { 1008 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1009 1010 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1011 return; 1012 1013 list_del_init(&F2FS_I(inode)->dirty_list); 1014 clear_inode_flag(inode, flag); 1015 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1016 } 1017 1018 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 1019 { 1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1021 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1022 1023 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1024 !S_ISLNK(inode->i_mode)) 1025 return; 1026 1027 spin_lock(&sbi->inode_lock[type]); 1028 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1029 __add_dirty_inode(inode, type); 1030 inode_inc_dirty_pages(inode); 1031 spin_unlock(&sbi->inode_lock[type]); 1032 1033 set_page_private_reference(page); 1034 } 1035 1036 void f2fs_remove_dirty_inode(struct inode *inode) 1037 { 1038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1039 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1040 1041 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1042 !S_ISLNK(inode->i_mode)) 1043 return; 1044 1045 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1046 return; 1047 1048 spin_lock(&sbi->inode_lock[type]); 1049 __remove_dirty_inode(inode, type); 1050 spin_unlock(&sbi->inode_lock[type]); 1051 } 1052 1053 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1054 { 1055 struct list_head *head; 1056 struct inode *inode; 1057 struct f2fs_inode_info *fi; 1058 bool is_dir = (type == DIR_INODE); 1059 unsigned long ino = 0; 1060 1061 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1062 get_pages(sbi, is_dir ? 1063 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1064 retry: 1065 if (unlikely(f2fs_cp_error(sbi))) { 1066 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1067 get_pages(sbi, is_dir ? 1068 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1069 return -EIO; 1070 } 1071 1072 spin_lock(&sbi->inode_lock[type]); 1073 1074 head = &sbi->inode_list[type]; 1075 if (list_empty(head)) { 1076 spin_unlock(&sbi->inode_lock[type]); 1077 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1078 get_pages(sbi, is_dir ? 1079 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1080 return 0; 1081 } 1082 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1083 inode = igrab(&fi->vfs_inode); 1084 spin_unlock(&sbi->inode_lock[type]); 1085 if (inode) { 1086 unsigned long cur_ino = inode->i_ino; 1087 1088 F2FS_I(inode)->cp_task = current; 1089 1090 filemap_fdatawrite(inode->i_mapping); 1091 1092 F2FS_I(inode)->cp_task = NULL; 1093 1094 iput(inode); 1095 /* We need to give cpu to another writers. */ 1096 if (ino == cur_ino) 1097 cond_resched(); 1098 else 1099 ino = cur_ino; 1100 } else { 1101 /* 1102 * We should submit bio, since it exists several 1103 * wribacking dentry pages in the freeing inode. 1104 */ 1105 f2fs_submit_merged_write(sbi, DATA); 1106 cond_resched(); 1107 } 1108 goto retry; 1109 } 1110 1111 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1112 { 1113 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1114 struct inode *inode; 1115 struct f2fs_inode_info *fi; 1116 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1117 1118 while (total--) { 1119 if (unlikely(f2fs_cp_error(sbi))) 1120 return -EIO; 1121 1122 spin_lock(&sbi->inode_lock[DIRTY_META]); 1123 if (list_empty(head)) { 1124 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1125 return 0; 1126 } 1127 fi = list_first_entry(head, struct f2fs_inode_info, 1128 gdirty_list); 1129 inode = igrab(&fi->vfs_inode); 1130 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1131 if (inode) { 1132 sync_inode_metadata(inode, 0); 1133 1134 /* it's on eviction */ 1135 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1136 f2fs_update_inode_page(inode); 1137 iput(inode); 1138 } 1139 } 1140 return 0; 1141 } 1142 1143 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1144 { 1145 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1146 struct f2fs_nm_info *nm_i = NM_I(sbi); 1147 nid_t last_nid = nm_i->next_scan_nid; 1148 1149 next_free_nid(sbi, &last_nid); 1150 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1151 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1152 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1153 ckpt->next_free_nid = cpu_to_le32(last_nid); 1154 } 1155 1156 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1157 { 1158 bool ret = false; 1159 1160 if (!is_journalled_quota(sbi)) 1161 return false; 1162 1163 if (!down_write_trylock(&sbi->quota_sem)) 1164 return true; 1165 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1166 ret = false; 1167 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1168 ret = false; 1169 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1170 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1171 ret = true; 1172 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1173 ret = true; 1174 } 1175 up_write(&sbi->quota_sem); 1176 return ret; 1177 } 1178 1179 /* 1180 * Freeze all the FS-operations for checkpoint. 1181 */ 1182 static int block_operations(struct f2fs_sb_info *sbi) 1183 { 1184 struct writeback_control wbc = { 1185 .sync_mode = WB_SYNC_ALL, 1186 .nr_to_write = LONG_MAX, 1187 .for_reclaim = 0, 1188 }; 1189 int err = 0, cnt = 0; 1190 1191 /* 1192 * Let's flush inline_data in dirty node pages. 1193 */ 1194 f2fs_flush_inline_data(sbi); 1195 1196 retry_flush_quotas: 1197 f2fs_lock_all(sbi); 1198 if (__need_flush_quota(sbi)) { 1199 int locked; 1200 1201 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1202 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1203 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1204 goto retry_flush_dents; 1205 } 1206 f2fs_unlock_all(sbi); 1207 1208 /* only failed during mount/umount/freeze/quotactl */ 1209 locked = down_read_trylock(&sbi->sb->s_umount); 1210 f2fs_quota_sync(sbi->sb, -1); 1211 if (locked) 1212 up_read(&sbi->sb->s_umount); 1213 cond_resched(); 1214 goto retry_flush_quotas; 1215 } 1216 1217 retry_flush_dents: 1218 /* write all the dirty dentry pages */ 1219 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1220 f2fs_unlock_all(sbi); 1221 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1222 if (err) 1223 return err; 1224 cond_resched(); 1225 goto retry_flush_quotas; 1226 } 1227 1228 /* 1229 * POR: we should ensure that there are no dirty node pages 1230 * until finishing nat/sit flush. inode->i_blocks can be updated. 1231 */ 1232 down_write(&sbi->node_change); 1233 1234 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1235 up_write(&sbi->node_change); 1236 f2fs_unlock_all(sbi); 1237 err = f2fs_sync_inode_meta(sbi); 1238 if (err) 1239 return err; 1240 cond_resched(); 1241 goto retry_flush_quotas; 1242 } 1243 1244 retry_flush_nodes: 1245 down_write(&sbi->node_write); 1246 1247 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1248 up_write(&sbi->node_write); 1249 atomic_inc(&sbi->wb_sync_req[NODE]); 1250 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1251 atomic_dec(&sbi->wb_sync_req[NODE]); 1252 if (err) { 1253 up_write(&sbi->node_change); 1254 f2fs_unlock_all(sbi); 1255 return err; 1256 } 1257 cond_resched(); 1258 goto retry_flush_nodes; 1259 } 1260 1261 /* 1262 * sbi->node_change is used only for AIO write_begin path which produces 1263 * dirty node blocks and some checkpoint values by block allocation. 1264 */ 1265 __prepare_cp_block(sbi); 1266 up_write(&sbi->node_change); 1267 return err; 1268 } 1269 1270 static void unblock_operations(struct f2fs_sb_info *sbi) 1271 { 1272 up_write(&sbi->node_write); 1273 f2fs_unlock_all(sbi); 1274 } 1275 1276 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1277 { 1278 DEFINE_WAIT(wait); 1279 1280 for (;;) { 1281 if (!get_pages(sbi, type)) 1282 break; 1283 1284 if (unlikely(f2fs_cp_error(sbi))) 1285 break; 1286 1287 if (type == F2FS_DIRTY_META) 1288 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1289 FS_CP_META_IO); 1290 else if (type == F2FS_WB_CP_DATA) 1291 f2fs_submit_merged_write(sbi, DATA); 1292 1293 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1294 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1295 } 1296 finish_wait(&sbi->cp_wait, &wait); 1297 } 1298 1299 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1300 { 1301 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1302 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1303 unsigned long flags; 1304 1305 if (cpc->reason & CP_UMOUNT) { 1306 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1307 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1308 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1309 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1310 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1311 f2fs_nat_bitmap_enabled(sbi)) { 1312 f2fs_enable_nat_bits(sbi); 1313 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1314 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1315 } 1316 } 1317 1318 spin_lock_irqsave(&sbi->cp_lock, flags); 1319 1320 if (cpc->reason & CP_TRIMMED) 1321 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1322 else 1323 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1324 1325 if (cpc->reason & CP_UMOUNT) 1326 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1327 else 1328 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1329 1330 if (cpc->reason & CP_FASTBOOT) 1331 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1332 else 1333 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1334 1335 if (orphan_num) 1336 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1337 else 1338 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1339 1340 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1341 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1342 1343 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1344 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1345 else 1346 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1347 1348 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1349 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1350 else 1351 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1352 1353 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1354 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1355 else 1356 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1357 1358 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1359 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1360 else 1361 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1362 1363 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1364 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1365 1366 /* set this flag to activate crc|cp_ver for recovery */ 1367 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1368 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1369 1370 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1371 } 1372 1373 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1374 void *src, block_t blk_addr) 1375 { 1376 struct writeback_control wbc = { 1377 .for_reclaim = 0, 1378 }; 1379 1380 /* 1381 * pagevec_lookup_tag and lock_page again will take 1382 * some extra time. Therefore, f2fs_update_meta_pages and 1383 * f2fs_sync_meta_pages are combined in this function. 1384 */ 1385 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1386 int err; 1387 1388 f2fs_wait_on_page_writeback(page, META, true, true); 1389 1390 memcpy(page_address(page), src, PAGE_SIZE); 1391 1392 set_page_dirty(page); 1393 if (unlikely(!clear_page_dirty_for_io(page))) 1394 f2fs_bug_on(sbi, 1); 1395 1396 /* writeout cp pack 2 page */ 1397 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1398 if (unlikely(err && f2fs_cp_error(sbi))) { 1399 f2fs_put_page(page, 1); 1400 return; 1401 } 1402 1403 f2fs_bug_on(sbi, err); 1404 f2fs_put_page(page, 0); 1405 1406 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1407 f2fs_submit_merged_write(sbi, META_FLUSH); 1408 } 1409 1410 static inline u64 get_sectors_written(struct block_device *bdev) 1411 { 1412 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1413 } 1414 1415 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1416 { 1417 if (f2fs_is_multi_device(sbi)) { 1418 u64 sectors = 0; 1419 int i; 1420 1421 for (i = 0; i < sbi->s_ndevs; i++) 1422 sectors += get_sectors_written(FDEV(i).bdev); 1423 1424 return sectors; 1425 } 1426 1427 return get_sectors_written(sbi->sb->s_bdev); 1428 } 1429 1430 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1431 { 1432 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1433 struct f2fs_nm_info *nm_i = NM_I(sbi); 1434 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1435 block_t start_blk; 1436 unsigned int data_sum_blocks, orphan_blocks; 1437 __u32 crc32 = 0; 1438 int i; 1439 int cp_payload_blks = __cp_payload(sbi); 1440 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1441 u64 kbytes_written; 1442 int err; 1443 1444 /* Flush all the NAT/SIT pages */ 1445 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1446 1447 /* start to update checkpoint, cp ver is already updated previously */ 1448 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1449 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1450 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1451 ckpt->cur_node_segno[i] = 1452 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1453 ckpt->cur_node_blkoff[i] = 1454 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1455 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1456 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1457 } 1458 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1459 ckpt->cur_data_segno[i] = 1460 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1461 ckpt->cur_data_blkoff[i] = 1462 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1463 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1464 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1465 } 1466 1467 /* 2 cp + n data seg summary + orphan inode blocks */ 1468 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1469 spin_lock_irqsave(&sbi->cp_lock, flags); 1470 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1471 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1472 else 1473 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1474 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1475 1476 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1477 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1478 orphan_blocks); 1479 1480 if (__remain_node_summaries(cpc->reason)) 1481 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1482 cp_payload_blks + data_sum_blocks + 1483 orphan_blocks + NR_CURSEG_NODE_TYPE); 1484 else 1485 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1486 cp_payload_blks + data_sum_blocks + 1487 orphan_blocks); 1488 1489 /* update ckpt flag for checkpoint */ 1490 update_ckpt_flags(sbi, cpc); 1491 1492 /* update SIT/NAT bitmap */ 1493 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1494 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1495 1496 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1497 *((__le32 *)((unsigned char *)ckpt + 1498 le32_to_cpu(ckpt->checksum_offset))) 1499 = cpu_to_le32(crc32); 1500 1501 start_blk = __start_cp_next_addr(sbi); 1502 1503 /* write nat bits */ 1504 if ((cpc->reason & CP_UMOUNT) && 1505 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1506 __u64 cp_ver = cur_cp_version(ckpt); 1507 block_t blk; 1508 1509 cp_ver |= ((__u64)crc32 << 32); 1510 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1511 1512 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1513 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1514 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1515 (i << F2FS_BLKSIZE_BITS), blk + i); 1516 } 1517 1518 /* write out checkpoint buffer at block 0 */ 1519 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1520 1521 for (i = 1; i < 1 + cp_payload_blks; i++) 1522 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1523 start_blk++); 1524 1525 if (orphan_num) { 1526 write_orphan_inodes(sbi, start_blk); 1527 start_blk += orphan_blocks; 1528 } 1529 1530 f2fs_write_data_summaries(sbi, start_blk); 1531 start_blk += data_sum_blocks; 1532 1533 /* Record write statistics in the hot node summary */ 1534 kbytes_written = sbi->kbytes_written; 1535 kbytes_written += (f2fs_get_sectors_written(sbi) - 1536 sbi->sectors_written_start) >> 1; 1537 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1538 1539 if (__remain_node_summaries(cpc->reason)) { 1540 f2fs_write_node_summaries(sbi, start_blk); 1541 start_blk += NR_CURSEG_NODE_TYPE; 1542 } 1543 1544 /* update user_block_counts */ 1545 sbi->last_valid_block_count = sbi->total_valid_block_count; 1546 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1547 1548 /* Here, we have one bio having CP pack except cp pack 2 page */ 1549 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1550 /* Wait for all dirty meta pages to be submitted for IO */ 1551 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1552 1553 /* wait for previous submitted meta pages writeback */ 1554 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1555 1556 /* flush all device cache */ 1557 err = f2fs_flush_device_cache(sbi); 1558 if (err) 1559 return err; 1560 1561 /* barrier and flush checkpoint cp pack 2 page if it can */ 1562 commit_checkpoint(sbi, ckpt, start_blk); 1563 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1564 1565 /* 1566 * invalidate intermediate page cache borrowed from meta inode which are 1567 * used for migration of encrypted, verity or compressed inode's blocks. 1568 */ 1569 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1570 f2fs_sb_has_compression(sbi)) 1571 invalidate_mapping_pages(META_MAPPING(sbi), 1572 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1573 1574 f2fs_release_ino_entry(sbi, false); 1575 1576 f2fs_reset_fsync_node_info(sbi); 1577 1578 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1579 clear_sbi_flag(sbi, SBI_NEED_CP); 1580 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1581 1582 spin_lock(&sbi->stat_lock); 1583 sbi->unusable_block_count = 0; 1584 spin_unlock(&sbi->stat_lock); 1585 1586 __set_cp_next_pack(sbi); 1587 1588 /* 1589 * redirty superblock if metadata like node page or inode cache is 1590 * updated during writing checkpoint. 1591 */ 1592 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1593 get_pages(sbi, F2FS_DIRTY_IMETA)) 1594 set_sbi_flag(sbi, SBI_IS_DIRTY); 1595 1596 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1597 1598 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1599 } 1600 1601 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1602 { 1603 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1604 unsigned long long ckpt_ver; 1605 int err = 0; 1606 1607 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1608 return -EROFS; 1609 1610 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1611 if (cpc->reason != CP_PAUSE) 1612 return 0; 1613 f2fs_warn(sbi, "Start checkpoint disabled!"); 1614 } 1615 if (cpc->reason != CP_RESIZE) 1616 down_write(&sbi->cp_global_sem); 1617 1618 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1619 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1620 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1621 goto out; 1622 if (unlikely(f2fs_cp_error(sbi))) { 1623 err = -EIO; 1624 goto out; 1625 } 1626 1627 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1628 1629 err = block_operations(sbi); 1630 if (err) 1631 goto out; 1632 1633 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1634 1635 f2fs_flush_merged_writes(sbi); 1636 1637 /* this is the case of multiple fstrims without any changes */ 1638 if (cpc->reason & CP_DISCARD) { 1639 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1640 unblock_operations(sbi); 1641 goto out; 1642 } 1643 1644 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1645 SIT_I(sbi)->dirty_sentries == 0 && 1646 prefree_segments(sbi) == 0) { 1647 f2fs_flush_sit_entries(sbi, cpc); 1648 f2fs_clear_prefree_segments(sbi, cpc); 1649 unblock_operations(sbi); 1650 goto out; 1651 } 1652 } 1653 1654 /* 1655 * update checkpoint pack index 1656 * Increase the version number so that 1657 * SIT entries and seg summaries are written at correct place 1658 */ 1659 ckpt_ver = cur_cp_version(ckpt); 1660 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1661 1662 /* write cached NAT/SIT entries to NAT/SIT area */ 1663 err = f2fs_flush_nat_entries(sbi, cpc); 1664 if (err) { 1665 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1666 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1667 goto stop; 1668 } 1669 1670 f2fs_flush_sit_entries(sbi, cpc); 1671 1672 /* save inmem log status */ 1673 f2fs_save_inmem_curseg(sbi); 1674 1675 err = do_checkpoint(sbi, cpc); 1676 if (err) { 1677 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1678 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1679 f2fs_release_discard_addrs(sbi); 1680 } else { 1681 f2fs_clear_prefree_segments(sbi, cpc); 1682 } 1683 1684 f2fs_restore_inmem_curseg(sbi); 1685 stop: 1686 unblock_operations(sbi); 1687 stat_inc_cp_count(sbi->stat_info); 1688 1689 if (cpc->reason & CP_RECOVERY) 1690 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1691 1692 /* update CP_TIME to trigger checkpoint periodically */ 1693 f2fs_update_time(sbi, CP_TIME); 1694 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1695 out: 1696 if (cpc->reason != CP_RESIZE) 1697 up_write(&sbi->cp_global_sem); 1698 return err; 1699 } 1700 1701 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1702 { 1703 int i; 1704 1705 for (i = 0; i < MAX_INO_ENTRY; i++) { 1706 struct inode_management *im = &sbi->im[i]; 1707 1708 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1709 spin_lock_init(&im->ino_lock); 1710 INIT_LIST_HEAD(&im->ino_list); 1711 im->ino_num = 0; 1712 } 1713 1714 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1715 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1716 F2FS_ORPHANS_PER_BLOCK; 1717 } 1718 1719 int __init f2fs_create_checkpoint_caches(void) 1720 { 1721 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1722 sizeof(struct ino_entry)); 1723 if (!ino_entry_slab) 1724 return -ENOMEM; 1725 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1726 sizeof(struct inode_entry)); 1727 if (!f2fs_inode_entry_slab) { 1728 kmem_cache_destroy(ino_entry_slab); 1729 return -ENOMEM; 1730 } 1731 return 0; 1732 } 1733 1734 void f2fs_destroy_checkpoint_caches(void) 1735 { 1736 kmem_cache_destroy(ino_entry_slab); 1737 kmem_cache_destroy(f2fs_inode_entry_slab); 1738 } 1739 1740 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1741 { 1742 struct cp_control cpc = { .reason = CP_SYNC, }; 1743 int err; 1744 1745 down_write(&sbi->gc_lock); 1746 err = f2fs_write_checkpoint(sbi, &cpc); 1747 up_write(&sbi->gc_lock); 1748 1749 return err; 1750 } 1751 1752 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1753 { 1754 struct ckpt_req_control *cprc = &sbi->cprc_info; 1755 struct ckpt_req *req, *next; 1756 struct llist_node *dispatch_list; 1757 u64 sum_diff = 0, diff, count = 0; 1758 int ret; 1759 1760 dispatch_list = llist_del_all(&cprc->issue_list); 1761 if (!dispatch_list) 1762 return; 1763 dispatch_list = llist_reverse_order(dispatch_list); 1764 1765 ret = __write_checkpoint_sync(sbi); 1766 atomic_inc(&cprc->issued_ckpt); 1767 1768 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1769 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1770 req->ret = ret; 1771 complete(&req->wait); 1772 1773 sum_diff += diff; 1774 count++; 1775 } 1776 atomic_sub(count, &cprc->queued_ckpt); 1777 atomic_add(count, &cprc->total_ckpt); 1778 1779 spin_lock(&cprc->stat_lock); 1780 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1781 if (cprc->peak_time < cprc->cur_time) 1782 cprc->peak_time = cprc->cur_time; 1783 spin_unlock(&cprc->stat_lock); 1784 } 1785 1786 static int issue_checkpoint_thread(void *data) 1787 { 1788 struct f2fs_sb_info *sbi = data; 1789 struct ckpt_req_control *cprc = &sbi->cprc_info; 1790 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1791 repeat: 1792 if (kthread_should_stop()) 1793 return 0; 1794 1795 if (!llist_empty(&cprc->issue_list)) 1796 __checkpoint_and_complete_reqs(sbi); 1797 1798 wait_event_interruptible(*q, 1799 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1800 goto repeat; 1801 } 1802 1803 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1804 struct ckpt_req *wait_req) 1805 { 1806 struct ckpt_req_control *cprc = &sbi->cprc_info; 1807 1808 if (!llist_empty(&cprc->issue_list)) { 1809 __checkpoint_and_complete_reqs(sbi); 1810 } else { 1811 /* already dispatched by issue_checkpoint_thread */ 1812 if (wait_req) 1813 wait_for_completion(&wait_req->wait); 1814 } 1815 } 1816 1817 static void init_ckpt_req(struct ckpt_req *req) 1818 { 1819 memset(req, 0, sizeof(struct ckpt_req)); 1820 1821 init_completion(&req->wait); 1822 req->queue_time = ktime_get(); 1823 } 1824 1825 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1826 { 1827 struct ckpt_req_control *cprc = &sbi->cprc_info; 1828 struct ckpt_req req; 1829 struct cp_control cpc; 1830 1831 cpc.reason = __get_cp_reason(sbi); 1832 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1833 int ret; 1834 1835 down_write(&sbi->gc_lock); 1836 ret = f2fs_write_checkpoint(sbi, &cpc); 1837 up_write(&sbi->gc_lock); 1838 1839 return ret; 1840 } 1841 1842 if (!cprc->f2fs_issue_ckpt) 1843 return __write_checkpoint_sync(sbi); 1844 1845 init_ckpt_req(&req); 1846 1847 llist_add(&req.llnode, &cprc->issue_list); 1848 atomic_inc(&cprc->queued_ckpt); 1849 1850 /* 1851 * update issue_list before we wake up issue_checkpoint thread, 1852 * this smp_mb() pairs with another barrier in ___wait_event(), 1853 * see more details in comments of waitqueue_active(). 1854 */ 1855 smp_mb(); 1856 1857 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1858 wake_up(&cprc->ckpt_wait_queue); 1859 1860 if (cprc->f2fs_issue_ckpt) 1861 wait_for_completion(&req.wait); 1862 else 1863 flush_remained_ckpt_reqs(sbi, &req); 1864 1865 return req.ret; 1866 } 1867 1868 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1869 { 1870 dev_t dev = sbi->sb->s_bdev->bd_dev; 1871 struct ckpt_req_control *cprc = &sbi->cprc_info; 1872 1873 if (cprc->f2fs_issue_ckpt) 1874 return 0; 1875 1876 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1877 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1878 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1879 cprc->f2fs_issue_ckpt = NULL; 1880 return -ENOMEM; 1881 } 1882 1883 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1884 1885 return 0; 1886 } 1887 1888 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1889 { 1890 struct ckpt_req_control *cprc = &sbi->cprc_info; 1891 1892 if (cprc->f2fs_issue_ckpt) { 1893 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt; 1894 1895 cprc->f2fs_issue_ckpt = NULL; 1896 kthread_stop(ckpt_task); 1897 1898 flush_remained_ckpt_reqs(sbi, NULL); 1899 } 1900 } 1901 1902 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1903 { 1904 struct ckpt_req_control *cprc = &sbi->cprc_info; 1905 1906 atomic_set(&cprc->issued_ckpt, 0); 1907 atomic_set(&cprc->total_ckpt, 0); 1908 atomic_set(&cprc->queued_ckpt, 0); 1909 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1910 init_waitqueue_head(&cprc->ckpt_wait_queue); 1911 init_llist_head(&cprc->issue_list); 1912 spin_lock_init(&cprc->stat_lock); 1913 } 1914