xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 1601839e9e5bd5726d744c9c5919f87dc808bbcc)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 	struct address_space *mapping = META_MAPPING(sbi);
35 	struct page *page = NULL;
36 repeat:
37 	page = grab_cache_page(mapping, index);
38 	if (!page) {
39 		cond_resched();
40 		goto repeat;
41 	}
42 	f2fs_wait_on_page_writeback(page, META);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 	struct address_space *mapping = META_MAPPING(sbi);
53 	struct page *page;
54 	struct f2fs_io_info fio = {
55 		.type = META,
56 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
57 		.blk_addr = index,
58 	};
59 repeat:
60 	page = grab_cache_page(mapping, index);
61 	if (!page) {
62 		cond_resched();
63 		goto repeat;
64 	}
65 	if (PageUptodate(page))
66 		goto out;
67 
68 	if (f2fs_submit_page_bio(sbi, page, &fio))
69 		goto repeat;
70 
71 	lock_page(page);
72 	if (unlikely(page->mapping != mapping)) {
73 		f2fs_put_page(page, 1);
74 		goto repeat;
75 	}
76 out:
77 	return page;
78 }
79 
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81 						block_t blkaddr, int type)
82 {
83 	switch (type) {
84 	case META_NAT:
85 		break;
86 	case META_SIT:
87 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88 			return false;
89 		break;
90 	case META_SSA:
91 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92 			blkaddr < SM_I(sbi)->ssa_blkaddr))
93 			return false;
94 		break;
95 	case META_CP:
96 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97 			blkaddr < __start_cp_addr(sbi)))
98 			return false;
99 		break;
100 	case META_POR:
101 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102 			blkaddr < MAIN_BLKADDR(sbi)))
103 			return false;
104 		break;
105 	default:
106 		BUG();
107 	}
108 
109 	return true;
110 }
111 
112 /*
113  * Readahead CP/NAT/SIT/SSA pages
114  */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117 	block_t prev_blk_addr = 0;
118 	struct page *page;
119 	block_t blkno = start;
120 	struct f2fs_io_info fio = {
121 		.type = META,
122 		.rw = READ_SYNC | REQ_META | REQ_PRIO
123 	};
124 
125 	for (; nrpages-- > 0; blkno++) {
126 
127 		if (!is_valid_blkaddr(sbi, blkno, type))
128 			goto out;
129 
130 		switch (type) {
131 		case META_NAT:
132 			if (unlikely(blkno >=
133 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134 				blkno = 0;
135 			/* get nat block addr */
136 			fio.blk_addr = current_nat_addr(sbi,
137 					blkno * NAT_ENTRY_PER_BLOCK);
138 			break;
139 		case META_SIT:
140 			/* get sit block addr */
141 			fio.blk_addr = current_sit_addr(sbi,
142 					blkno * SIT_ENTRY_PER_BLOCK);
143 			if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144 				goto out;
145 			prev_blk_addr = fio.blk_addr;
146 			break;
147 		case META_SSA:
148 		case META_CP:
149 		case META_POR:
150 			fio.blk_addr = blkno;
151 			break;
152 		default:
153 			BUG();
154 		}
155 
156 		page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157 		if (!page)
158 			continue;
159 		if (PageUptodate(page)) {
160 			f2fs_put_page(page, 1);
161 			continue;
162 		}
163 
164 		f2fs_submit_page_mbio(sbi, page, &fio);
165 		f2fs_put_page(page, 0);
166 	}
167 out:
168 	f2fs_submit_merged_bio(sbi, META, READ);
169 	return blkno - start;
170 }
171 
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174 	struct page *page;
175 	bool readahead = false;
176 
177 	page = find_get_page(META_MAPPING(sbi), index);
178 	if (!page || (page && !PageUptodate(page)))
179 		readahead = true;
180 	f2fs_put_page(page, 0);
181 
182 	if (readahead)
183 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185 
186 static int f2fs_write_meta_page(struct page *page,
187 				struct writeback_control *wbc)
188 {
189 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190 
191 	trace_f2fs_writepage(page, META);
192 
193 	if (unlikely(sbi->por_doing))
194 		goto redirty_out;
195 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196 		goto redirty_out;
197 	if (unlikely(f2fs_cp_error(sbi)))
198 		goto redirty_out;
199 
200 	f2fs_wait_on_page_writeback(page, META);
201 	write_meta_page(sbi, page);
202 	dec_page_count(sbi, F2FS_DIRTY_META);
203 	unlock_page(page);
204 
205 	if (wbc->for_reclaim)
206 		f2fs_submit_merged_bio(sbi, META, WRITE);
207 	return 0;
208 
209 redirty_out:
210 	redirty_page_for_writepage(wbc, page);
211 	return AOP_WRITEPAGE_ACTIVATE;
212 }
213 
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215 				struct writeback_control *wbc)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218 	long diff, written;
219 
220 	trace_f2fs_writepages(mapping->host, wbc, META);
221 
222 	/* collect a number of dirty meta pages and write together */
223 	if (wbc->for_kupdate ||
224 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225 		goto skip_write;
226 
227 	/* if mounting is failed, skip writing node pages */
228 	mutex_lock(&sbi->cp_mutex);
229 	diff = nr_pages_to_write(sbi, META, wbc);
230 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231 	mutex_unlock(&sbi->cp_mutex);
232 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233 	return 0;
234 
235 skip_write:
236 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237 	return 0;
238 }
239 
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241 						long nr_to_write)
242 {
243 	struct address_space *mapping = META_MAPPING(sbi);
244 	pgoff_t index = 0, end = LONG_MAX;
245 	struct pagevec pvec;
246 	long nwritten = 0;
247 	struct writeback_control wbc = {
248 		.for_reclaim = 0,
249 	};
250 
251 	pagevec_init(&pvec, 0);
252 
253 	while (index <= end) {
254 		int i, nr_pages;
255 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256 				PAGECACHE_TAG_DIRTY,
257 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258 		if (unlikely(nr_pages == 0))
259 			break;
260 
261 		for (i = 0; i < nr_pages; i++) {
262 			struct page *page = pvec.pages[i];
263 
264 			lock_page(page);
265 
266 			if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268 				unlock_page(page);
269 				continue;
270 			}
271 			if (!PageDirty(page)) {
272 				/* someone wrote it for us */
273 				goto continue_unlock;
274 			}
275 
276 			if (!clear_page_dirty_for_io(page))
277 				goto continue_unlock;
278 
279 			if (f2fs_write_meta_page(page, &wbc)) {
280 				unlock_page(page);
281 				break;
282 			}
283 			nwritten++;
284 			if (unlikely(nwritten >= nr_to_write))
285 				break;
286 		}
287 		pagevec_release(&pvec);
288 		cond_resched();
289 	}
290 
291 	if (nwritten)
292 		f2fs_submit_merged_bio(sbi, type, WRITE);
293 
294 	return nwritten;
295 }
296 
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299 	trace_f2fs_set_page_dirty(page, META);
300 
301 	SetPageUptodate(page);
302 	if (!PageDirty(page)) {
303 		__set_page_dirty_nobuffers(page);
304 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305 		SetPagePrivate(page);
306 		f2fs_trace_pid(page);
307 		return 1;
308 	}
309 	return 0;
310 }
311 
312 static void f2fs_invalidate_meta_page(struct page *page, unsigned int offset,
313 				      unsigned int length)
314 {
315 	struct inode *inode = page->mapping->host;
316 
317 	if (PageDirty(page))
318 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_META);
319 	ClearPagePrivate(page);
320 }
321 
322 static int f2fs_release_meta_page(struct page *page, gfp_t wait)
323 {
324 	ClearPagePrivate(page);
325 	return 1;
326 }
327 
328 const struct address_space_operations f2fs_meta_aops = {
329 	.writepage	= f2fs_write_meta_page,
330 	.writepages	= f2fs_write_meta_pages,
331 	.set_page_dirty	= f2fs_set_meta_page_dirty,
332 	.invalidatepage = f2fs_invalidate_meta_page,
333 	.releasepage	= f2fs_release_meta_page,
334 };
335 
336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
337 {
338 	struct inode_management *im = &sbi->im[type];
339 	struct ino_entry *e;
340 retry:
341 	if (radix_tree_preload(GFP_NOFS)) {
342 		cond_resched();
343 		goto retry;
344 	}
345 
346 	spin_lock(&im->ino_lock);
347 
348 	e = radix_tree_lookup(&im->ino_root, ino);
349 	if (!e) {
350 		e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
351 		if (!e) {
352 			spin_unlock(&im->ino_lock);
353 			radix_tree_preload_end();
354 			goto retry;
355 		}
356 		if (radix_tree_insert(&im->ino_root, ino, e)) {
357 			spin_unlock(&im->ino_lock);
358 			kmem_cache_free(ino_entry_slab, e);
359 			radix_tree_preload_end();
360 			goto retry;
361 		}
362 		memset(e, 0, sizeof(struct ino_entry));
363 		e->ino = ino;
364 
365 		list_add_tail(&e->list, &im->ino_list);
366 		if (type != ORPHAN_INO)
367 			im->ino_num++;
368 	}
369 	spin_unlock(&im->ino_lock);
370 	radix_tree_preload_end();
371 }
372 
373 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
374 {
375 	struct inode_management *im = &sbi->im[type];
376 	struct ino_entry *e;
377 
378 	spin_lock(&im->ino_lock);
379 	e = radix_tree_lookup(&im->ino_root, ino);
380 	if (e) {
381 		list_del(&e->list);
382 		radix_tree_delete(&im->ino_root, ino);
383 		im->ino_num--;
384 		spin_unlock(&im->ino_lock);
385 		kmem_cache_free(ino_entry_slab, e);
386 		return;
387 	}
388 	spin_unlock(&im->ino_lock);
389 }
390 
391 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
392 {
393 	/* add new dirty ino entry into list */
394 	__add_ino_entry(sbi, ino, type);
395 }
396 
397 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
398 {
399 	/* remove dirty ino entry from list */
400 	__remove_ino_entry(sbi, ino, type);
401 }
402 
403 /* mode should be APPEND_INO or UPDATE_INO */
404 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
405 {
406 	struct inode_management *im = &sbi->im[mode];
407 	struct ino_entry *e;
408 
409 	spin_lock(&im->ino_lock);
410 	e = radix_tree_lookup(&im->ino_root, ino);
411 	spin_unlock(&im->ino_lock);
412 	return e ? true : false;
413 }
414 
415 void release_dirty_inode(struct f2fs_sb_info *sbi)
416 {
417 	struct ino_entry *e, *tmp;
418 	int i;
419 
420 	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
421 		struct inode_management *im = &sbi->im[i];
422 
423 		spin_lock(&im->ino_lock);
424 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
425 			list_del(&e->list);
426 			radix_tree_delete(&im->ino_root, e->ino);
427 			kmem_cache_free(ino_entry_slab, e);
428 			im->ino_num--;
429 		}
430 		spin_unlock(&im->ino_lock);
431 	}
432 }
433 
434 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
435 {
436 	struct inode_management *im = &sbi->im[ORPHAN_INO];
437 	int err = 0;
438 
439 	spin_lock(&im->ino_lock);
440 	if (unlikely(im->ino_num >= sbi->max_orphans))
441 		err = -ENOSPC;
442 	else
443 		im->ino_num++;
444 	spin_unlock(&im->ino_lock);
445 
446 	return err;
447 }
448 
449 void release_orphan_inode(struct f2fs_sb_info *sbi)
450 {
451 	struct inode_management *im = &sbi->im[ORPHAN_INO];
452 
453 	spin_lock(&im->ino_lock);
454 	f2fs_bug_on(sbi, im->ino_num == 0);
455 	im->ino_num--;
456 	spin_unlock(&im->ino_lock);
457 }
458 
459 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
460 {
461 	/* add new orphan ino entry into list */
462 	__add_ino_entry(sbi, ino, ORPHAN_INO);
463 }
464 
465 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
466 {
467 	/* remove orphan entry from orphan list */
468 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
469 }
470 
471 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
472 {
473 	struct inode *inode = f2fs_iget(sbi->sb, ino);
474 	f2fs_bug_on(sbi, IS_ERR(inode));
475 	clear_nlink(inode);
476 
477 	/* truncate all the data during iput */
478 	iput(inode);
479 }
480 
481 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
482 {
483 	block_t start_blk, orphan_blkaddr, i, j;
484 
485 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
486 		return;
487 
488 	sbi->por_doing = true;
489 
490 	start_blk = __start_cp_addr(sbi) + 1 +
491 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
492 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
493 
494 	ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
495 
496 	for (i = 0; i < orphan_blkaddr; i++) {
497 		struct page *page = get_meta_page(sbi, start_blk + i);
498 		struct f2fs_orphan_block *orphan_blk;
499 
500 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
501 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
502 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
503 			recover_orphan_inode(sbi, ino);
504 		}
505 		f2fs_put_page(page, 1);
506 	}
507 	/* clear Orphan Flag */
508 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
509 	sbi->por_doing = false;
510 	return;
511 }
512 
513 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
514 {
515 	struct list_head *head;
516 	struct f2fs_orphan_block *orphan_blk = NULL;
517 	unsigned int nentries = 0;
518 	unsigned short index;
519 	unsigned short orphan_blocks;
520 	struct page *page = NULL;
521 	struct ino_entry *orphan = NULL;
522 	struct inode_management *im = &sbi->im[ORPHAN_INO];
523 
524 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
525 
526 	for (index = 0; index < orphan_blocks; index++)
527 		grab_meta_page(sbi, start_blk + index);
528 
529 	index = 1;
530 	spin_lock(&im->ino_lock);
531 	head = &im->ino_list;
532 
533 	/* loop for each orphan inode entry and write them in Jornal block */
534 	list_for_each_entry(orphan, head, list) {
535 		if (!page) {
536 			page = find_get_page(META_MAPPING(sbi), start_blk++);
537 			f2fs_bug_on(sbi, !page);
538 			orphan_blk =
539 				(struct f2fs_orphan_block *)page_address(page);
540 			memset(orphan_blk, 0, sizeof(*orphan_blk));
541 			f2fs_put_page(page, 0);
542 		}
543 
544 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
545 
546 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
547 			/*
548 			 * an orphan block is full of 1020 entries,
549 			 * then we need to flush current orphan blocks
550 			 * and bring another one in memory
551 			 */
552 			orphan_blk->blk_addr = cpu_to_le16(index);
553 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
554 			orphan_blk->entry_count = cpu_to_le32(nentries);
555 			set_page_dirty(page);
556 			f2fs_put_page(page, 1);
557 			index++;
558 			nentries = 0;
559 			page = NULL;
560 		}
561 	}
562 
563 	if (page) {
564 		orphan_blk->blk_addr = cpu_to_le16(index);
565 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
566 		orphan_blk->entry_count = cpu_to_le32(nentries);
567 		set_page_dirty(page);
568 		f2fs_put_page(page, 1);
569 	}
570 
571 	spin_unlock(&im->ino_lock);
572 }
573 
574 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
575 				block_t cp_addr, unsigned long long *version)
576 {
577 	struct page *cp_page_1, *cp_page_2 = NULL;
578 	unsigned long blk_size = sbi->blocksize;
579 	struct f2fs_checkpoint *cp_block;
580 	unsigned long long cur_version = 0, pre_version = 0;
581 	size_t crc_offset;
582 	__u32 crc = 0;
583 
584 	/* Read the 1st cp block in this CP pack */
585 	cp_page_1 = get_meta_page(sbi, cp_addr);
586 
587 	/* get the version number */
588 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
589 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
590 	if (crc_offset >= blk_size)
591 		goto invalid_cp1;
592 
593 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
594 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
595 		goto invalid_cp1;
596 
597 	pre_version = cur_cp_version(cp_block);
598 
599 	/* Read the 2nd cp block in this CP pack */
600 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
601 	cp_page_2 = get_meta_page(sbi, cp_addr);
602 
603 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
604 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
605 	if (crc_offset >= blk_size)
606 		goto invalid_cp2;
607 
608 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
609 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
610 		goto invalid_cp2;
611 
612 	cur_version = cur_cp_version(cp_block);
613 
614 	if (cur_version == pre_version) {
615 		*version = cur_version;
616 		f2fs_put_page(cp_page_2, 1);
617 		return cp_page_1;
618 	}
619 invalid_cp2:
620 	f2fs_put_page(cp_page_2, 1);
621 invalid_cp1:
622 	f2fs_put_page(cp_page_1, 1);
623 	return NULL;
624 }
625 
626 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
627 {
628 	struct f2fs_checkpoint *cp_block;
629 	struct f2fs_super_block *fsb = sbi->raw_super;
630 	struct page *cp1, *cp2, *cur_page;
631 	unsigned long blk_size = sbi->blocksize;
632 	unsigned long long cp1_version = 0, cp2_version = 0;
633 	unsigned long long cp_start_blk_no;
634 	unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
635 	block_t cp_blk_no;
636 	int i;
637 
638 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
639 	if (!sbi->ckpt)
640 		return -ENOMEM;
641 	/*
642 	 * Finding out valid cp block involves read both
643 	 * sets( cp pack1 and cp pack 2)
644 	 */
645 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
646 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
647 
648 	/* The second checkpoint pack should start at the next segment */
649 	cp_start_blk_no += ((unsigned long long)1) <<
650 				le32_to_cpu(fsb->log_blocks_per_seg);
651 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
652 
653 	if (cp1 && cp2) {
654 		if (ver_after(cp2_version, cp1_version))
655 			cur_page = cp2;
656 		else
657 			cur_page = cp1;
658 	} else if (cp1) {
659 		cur_page = cp1;
660 	} else if (cp2) {
661 		cur_page = cp2;
662 	} else {
663 		goto fail_no_cp;
664 	}
665 
666 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
667 	memcpy(sbi->ckpt, cp_block, blk_size);
668 
669 	if (cp_blks <= 1)
670 		goto done;
671 
672 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
673 	if (cur_page == cp2)
674 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
675 
676 	for (i = 1; i < cp_blks; i++) {
677 		void *sit_bitmap_ptr;
678 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
679 
680 		cur_page = get_meta_page(sbi, cp_blk_no + i);
681 		sit_bitmap_ptr = page_address(cur_page);
682 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
683 		f2fs_put_page(cur_page, 1);
684 	}
685 done:
686 	f2fs_put_page(cp1, 1);
687 	f2fs_put_page(cp2, 1);
688 	return 0;
689 
690 fail_no_cp:
691 	kfree(sbi->ckpt);
692 	return -EINVAL;
693 }
694 
695 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
696 {
697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
698 
699 	if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
700 		return -EEXIST;
701 
702 	set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
703 	F2FS_I(inode)->dirty_dir = new;
704 	list_add_tail(&new->list, &sbi->dir_inode_list);
705 	stat_inc_dirty_dir(sbi);
706 	return 0;
707 }
708 
709 void update_dirty_page(struct inode *inode, struct page *page)
710 {
711 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
712 	struct inode_entry *new;
713 	int ret = 0;
714 
715 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
716 		return;
717 
718 	if (!S_ISDIR(inode->i_mode)) {
719 		inode_inc_dirty_pages(inode);
720 		goto out;
721 	}
722 
723 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
724 	new->inode = inode;
725 	INIT_LIST_HEAD(&new->list);
726 
727 	spin_lock(&sbi->dir_inode_lock);
728 	ret = __add_dirty_inode(inode, new);
729 	inode_inc_dirty_pages(inode);
730 	spin_unlock(&sbi->dir_inode_lock);
731 
732 	if (ret)
733 		kmem_cache_free(inode_entry_slab, new);
734 out:
735 	SetPagePrivate(page);
736 	f2fs_trace_pid(page);
737 }
738 
739 void add_dirty_dir_inode(struct inode *inode)
740 {
741 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
742 	struct inode_entry *new =
743 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
744 	int ret = 0;
745 
746 	new->inode = inode;
747 	INIT_LIST_HEAD(&new->list);
748 
749 	spin_lock(&sbi->dir_inode_lock);
750 	ret = __add_dirty_inode(inode, new);
751 	spin_unlock(&sbi->dir_inode_lock);
752 
753 	if (ret)
754 		kmem_cache_free(inode_entry_slab, new);
755 }
756 
757 void remove_dirty_dir_inode(struct inode *inode)
758 {
759 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
760 	struct inode_entry *entry;
761 
762 	if (!S_ISDIR(inode->i_mode))
763 		return;
764 
765 	spin_lock(&sbi->dir_inode_lock);
766 	if (get_dirty_pages(inode) ||
767 			!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
768 		spin_unlock(&sbi->dir_inode_lock);
769 		return;
770 	}
771 
772 	entry = F2FS_I(inode)->dirty_dir;
773 	list_del(&entry->list);
774 	F2FS_I(inode)->dirty_dir = NULL;
775 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
776 	stat_dec_dirty_dir(sbi);
777 	spin_unlock(&sbi->dir_inode_lock);
778 	kmem_cache_free(inode_entry_slab, entry);
779 
780 	/* Only from the recovery routine */
781 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
782 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
783 		iput(inode);
784 	}
785 }
786 
787 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
788 {
789 	struct list_head *head;
790 	struct inode_entry *entry;
791 	struct inode *inode;
792 retry:
793 	if (unlikely(f2fs_cp_error(sbi)))
794 		return;
795 
796 	spin_lock(&sbi->dir_inode_lock);
797 
798 	head = &sbi->dir_inode_list;
799 	if (list_empty(head)) {
800 		spin_unlock(&sbi->dir_inode_lock);
801 		return;
802 	}
803 	entry = list_entry(head->next, struct inode_entry, list);
804 	inode = igrab(entry->inode);
805 	spin_unlock(&sbi->dir_inode_lock);
806 	if (inode) {
807 		filemap_fdatawrite(inode->i_mapping);
808 		iput(inode);
809 	} else {
810 		/*
811 		 * We should submit bio, since it exists several
812 		 * wribacking dentry pages in the freeing inode.
813 		 */
814 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
815 	}
816 	goto retry;
817 }
818 
819 /*
820  * Freeze all the FS-operations for checkpoint.
821  */
822 static int block_operations(struct f2fs_sb_info *sbi)
823 {
824 	struct writeback_control wbc = {
825 		.sync_mode = WB_SYNC_ALL,
826 		.nr_to_write = LONG_MAX,
827 		.for_reclaim = 0,
828 	};
829 	struct blk_plug plug;
830 	int err = 0;
831 
832 	blk_start_plug(&plug);
833 
834 retry_flush_dents:
835 	f2fs_lock_all(sbi);
836 	/* write all the dirty dentry pages */
837 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
838 		f2fs_unlock_all(sbi);
839 		sync_dirty_dir_inodes(sbi);
840 		if (unlikely(f2fs_cp_error(sbi))) {
841 			err = -EIO;
842 			goto out;
843 		}
844 		goto retry_flush_dents;
845 	}
846 
847 	/*
848 	 * POR: we should ensure that there are no dirty node pages
849 	 * until finishing nat/sit flush.
850 	 */
851 retry_flush_nodes:
852 	down_write(&sbi->node_write);
853 
854 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
855 		up_write(&sbi->node_write);
856 		sync_node_pages(sbi, 0, &wbc);
857 		if (unlikely(f2fs_cp_error(sbi))) {
858 			f2fs_unlock_all(sbi);
859 			err = -EIO;
860 			goto out;
861 		}
862 		goto retry_flush_nodes;
863 	}
864 out:
865 	blk_finish_plug(&plug);
866 	return err;
867 }
868 
869 static void unblock_operations(struct f2fs_sb_info *sbi)
870 {
871 	up_write(&sbi->node_write);
872 	f2fs_unlock_all(sbi);
873 }
874 
875 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
876 {
877 	DEFINE_WAIT(wait);
878 
879 	for (;;) {
880 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
881 
882 		if (!get_pages(sbi, F2FS_WRITEBACK))
883 			break;
884 
885 		io_schedule();
886 	}
887 	finish_wait(&sbi->cp_wait, &wait);
888 }
889 
890 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
891 {
892 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
893 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
894 	struct f2fs_nm_info *nm_i = NM_I(sbi);
895 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
896 	nid_t last_nid = nm_i->next_scan_nid;
897 	block_t start_blk;
898 	struct page *cp_page;
899 	unsigned int data_sum_blocks, orphan_blocks;
900 	__u32 crc32 = 0;
901 	void *kaddr;
902 	int i;
903 	int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
904 
905 	/*
906 	 * This avoids to conduct wrong roll-forward operations and uses
907 	 * metapages, so should be called prior to sync_meta_pages below.
908 	 */
909 	discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
910 
911 	/* Flush all the NAT/SIT pages */
912 	while (get_pages(sbi, F2FS_DIRTY_META)) {
913 		sync_meta_pages(sbi, META, LONG_MAX);
914 		if (unlikely(f2fs_cp_error(sbi)))
915 			return;
916 	}
917 
918 	next_free_nid(sbi, &last_nid);
919 
920 	/*
921 	 * modify checkpoint
922 	 * version number is already updated
923 	 */
924 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
925 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
926 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
927 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
928 		ckpt->cur_node_segno[i] =
929 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
930 		ckpt->cur_node_blkoff[i] =
931 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
932 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
933 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
934 	}
935 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
936 		ckpt->cur_data_segno[i] =
937 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
938 		ckpt->cur_data_blkoff[i] =
939 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
940 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
941 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
942 	}
943 
944 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
945 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
946 	ckpt->next_free_nid = cpu_to_le32(last_nid);
947 
948 	/* 2 cp  + n data seg summary + orphan inode blocks */
949 	data_sum_blocks = npages_for_summary_flush(sbi, false);
950 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
951 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
952 	else
953 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
954 
955 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
956 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
957 			orphan_blocks);
958 
959 	if (cpc->reason == CP_UMOUNT) {
960 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
961 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
962 				cp_payload_blks + data_sum_blocks +
963 				orphan_blocks + NR_CURSEG_NODE_TYPE);
964 	} else {
965 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
966 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
967 				cp_payload_blks + data_sum_blocks +
968 				orphan_blocks);
969 	}
970 
971 	if (orphan_num)
972 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
973 	else
974 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
975 
976 	if (sbi->need_fsck)
977 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
978 
979 	/* update SIT/NAT bitmap */
980 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
981 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
982 
983 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
984 	*((__le32 *)((unsigned char *)ckpt +
985 				le32_to_cpu(ckpt->checksum_offset)))
986 				= cpu_to_le32(crc32);
987 
988 	start_blk = __start_cp_addr(sbi);
989 
990 	/* write out checkpoint buffer at block 0 */
991 	cp_page = grab_meta_page(sbi, start_blk++);
992 	kaddr = page_address(cp_page);
993 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
994 	set_page_dirty(cp_page);
995 	f2fs_put_page(cp_page, 1);
996 
997 	for (i = 1; i < 1 + cp_payload_blks; i++) {
998 		cp_page = grab_meta_page(sbi, start_blk++);
999 		kaddr = page_address(cp_page);
1000 		memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
1001 				(1 << sbi->log_blocksize));
1002 		set_page_dirty(cp_page);
1003 		f2fs_put_page(cp_page, 1);
1004 	}
1005 
1006 	if (orphan_num) {
1007 		write_orphan_inodes(sbi, start_blk);
1008 		start_blk += orphan_blocks;
1009 	}
1010 
1011 	write_data_summaries(sbi, start_blk);
1012 	start_blk += data_sum_blocks;
1013 	if (cpc->reason == CP_UMOUNT) {
1014 		write_node_summaries(sbi, start_blk);
1015 		start_blk += NR_CURSEG_NODE_TYPE;
1016 	}
1017 
1018 	/* writeout checkpoint block */
1019 	cp_page = grab_meta_page(sbi, start_blk);
1020 	kaddr = page_address(cp_page);
1021 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1022 	set_page_dirty(cp_page);
1023 	f2fs_put_page(cp_page, 1);
1024 
1025 	/* wait for previous submitted node/meta pages writeback */
1026 	wait_on_all_pages_writeback(sbi);
1027 
1028 	if (unlikely(f2fs_cp_error(sbi)))
1029 		return;
1030 
1031 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1032 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1033 
1034 	/* update user_block_counts */
1035 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1036 	sbi->alloc_valid_block_count = 0;
1037 
1038 	/* Here, we only have one bio having CP pack */
1039 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1040 
1041 	/* wait for previous submitted meta pages writeback */
1042 	wait_on_all_pages_writeback(sbi);
1043 
1044 	release_dirty_inode(sbi);
1045 
1046 	if (unlikely(f2fs_cp_error(sbi)))
1047 		return;
1048 
1049 	clear_prefree_segments(sbi);
1050 	F2FS_RESET_SB_DIRT(sbi);
1051 }
1052 
1053 /*
1054  * We guarantee that this checkpoint procedure will not fail.
1055  */
1056 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1057 {
1058 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1059 	unsigned long long ckpt_ver;
1060 
1061 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1062 
1063 	mutex_lock(&sbi->cp_mutex);
1064 
1065 	if (!sbi->s_dirty &&
1066 			cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
1067 		goto out;
1068 	if (unlikely(f2fs_cp_error(sbi)))
1069 		goto out;
1070 	if (block_operations(sbi))
1071 		goto out;
1072 
1073 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1074 
1075 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
1076 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1077 	f2fs_submit_merged_bio(sbi, META, WRITE);
1078 
1079 	/*
1080 	 * update checkpoint pack index
1081 	 * Increase the version number so that
1082 	 * SIT entries and seg summaries are written at correct place
1083 	 */
1084 	ckpt_ver = cur_cp_version(ckpt);
1085 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1086 
1087 	/* write cached NAT/SIT entries to NAT/SIT area */
1088 	flush_nat_entries(sbi);
1089 	flush_sit_entries(sbi, cpc);
1090 
1091 	/* unlock all the fs_lock[] in do_checkpoint() */
1092 	do_checkpoint(sbi, cpc);
1093 
1094 	unblock_operations(sbi);
1095 	stat_inc_cp_count(sbi->stat_info);
1096 out:
1097 	mutex_unlock(&sbi->cp_mutex);
1098 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1099 }
1100 
1101 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1102 {
1103 	int i;
1104 
1105 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1106 		struct inode_management *im = &sbi->im[i];
1107 
1108 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1109 		spin_lock_init(&im->ino_lock);
1110 		INIT_LIST_HEAD(&im->ino_list);
1111 		im->ino_num = 0;
1112 	}
1113 
1114 	/*
1115 	 * considering 512 blocks in a segment 8 blocks are needed for cp
1116 	 * and log segment summaries. Remaining blocks are used to keep
1117 	 * orphan entries with the limitation one reserved segment
1118 	 * for cp pack we can have max 1020*504 orphan entries
1119 	 */
1120 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1121 			NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1122 }
1123 
1124 int __init create_checkpoint_caches(void)
1125 {
1126 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1127 			sizeof(struct ino_entry));
1128 	if (!ino_entry_slab)
1129 		return -ENOMEM;
1130 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1131 			sizeof(struct inode_entry));
1132 	if (!inode_entry_slab) {
1133 		kmem_cache_destroy(ino_entry_slab);
1134 		return -ENOMEM;
1135 	}
1136 	return 0;
1137 }
1138 
1139 void destroy_checkpoint_caches(void)
1140 {
1141 	kmem_cache_destroy(ino_entry_slab);
1142 	kmem_cache_destroy(inode_entry_slab);
1143 }
1144