1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 82 /* 83 * Lock ordering 84 * 85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 86 * i_mmap_rwsem (inode->i_mmap_rwsem)! 87 * 88 * page fault path: 89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 90 * page lock -> i_data_sem (rw) 91 * 92 * buffered write path: 93 * sb_start_write -> i_mutex -> mmap_sem 94 * sb_start_write -> i_mutex -> transaction start -> page lock -> 95 * i_data_sem (rw) 96 * 97 * truncate: 98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 99 * i_mmap_rwsem (w) -> page lock 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * transaction start -> i_data_sem (rw) 102 * 103 * direct IO: 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 106 * transaction start -> i_data_sem (rw) 107 * 108 * writepages: 109 * transaction start -> page lock(s) -> i_data_sem (rw) 110 */ 111 112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 113 static struct file_system_type ext2_fs_type = { 114 .owner = THIS_MODULE, 115 .name = "ext2", 116 .mount = ext4_mount, 117 .kill_sb = kill_block_super, 118 .fs_flags = FS_REQUIRES_DEV, 119 }; 120 MODULE_ALIAS_FS("ext2"); 121 MODULE_ALIAS("ext2"); 122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 123 #else 124 #define IS_EXT2_SB(sb) (0) 125 #endif 126 127 128 static struct file_system_type ext3_fs_type = { 129 .owner = THIS_MODULE, 130 .name = "ext3", 131 .mount = ext4_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("ext3"); 136 MODULE_ALIAS("ext3"); 137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 138 139 static int ext4_verify_csum_type(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!ext4_has_feature_metadata_csum(sb)) 143 return 1; 144 145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 146 } 147 148 static __le32 ext4_superblock_csum(struct super_block *sb, 149 struct ext4_super_block *es) 150 { 151 struct ext4_sb_info *sbi = EXT4_SB(sb); 152 int offset = offsetof(struct ext4_super_block, s_checksum); 153 __u32 csum; 154 155 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 156 157 return cpu_to_le32(csum); 158 } 159 160 static int ext4_superblock_csum_verify(struct super_block *sb, 161 struct ext4_super_block *es) 162 { 163 if (!ext4_has_metadata_csum(sb)) 164 return 1; 165 166 return es->s_checksum == ext4_superblock_csum(sb, es); 167 } 168 169 void ext4_superblock_csum_set(struct super_block *sb) 170 { 171 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 172 173 if (!ext4_has_metadata_csum(sb)) 174 return; 175 176 es->s_checksum = ext4_superblock_csum(sb, es); 177 } 178 179 void *ext4_kvmalloc(size_t size, gfp_t flags) 180 { 181 void *ret; 182 183 ret = kmalloc(size, flags | __GFP_NOWARN); 184 if (!ret) 185 ret = __vmalloc(size, flags, PAGE_KERNEL); 186 return ret; 187 } 188 189 void *ext4_kvzalloc(size_t size, gfp_t flags) 190 { 191 void *ret; 192 193 ret = kzalloc(size, flags | __GFP_NOWARN); 194 if (!ret) 195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 196 return ret; 197 } 198 199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 200 struct ext4_group_desc *bg) 201 { 202 return le32_to_cpu(bg->bg_block_bitmap_lo) | 203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 205 } 206 207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_table_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 221 } 222 223 __u32 ext4_free_group_clusters(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 229 } 230 231 __u32 ext4_free_inodes_count(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_used_dirs_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_itable_unused_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_itable_unused_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 253 } 254 255 void ext4_block_bitmap_set(struct super_block *sb, 256 struct ext4_group_desc *bg, ext4_fsblk_t blk) 257 { 258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 261 } 262 263 void ext4_inode_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_table_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_free_group_clusters_set(struct super_block *sb, 280 struct ext4_group_desc *bg, __u32 count) 281 { 282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 285 } 286 287 void ext4_free_inodes_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_used_dirs_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_itable_unused_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 309 } 310 311 312 static void __save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 316 317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 318 if (bdev_read_only(sb->s_bdev)) 319 return; 320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 321 es->s_last_error_time = cpu_to_le32(get_seconds()); 322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 323 es->s_last_error_line = cpu_to_le32(line); 324 if (!es->s_first_error_time) { 325 es->s_first_error_time = es->s_last_error_time; 326 strncpy(es->s_first_error_func, func, 327 sizeof(es->s_first_error_func)); 328 es->s_first_error_line = cpu_to_le32(line); 329 es->s_first_error_ino = es->s_last_error_ino; 330 es->s_first_error_block = es->s_last_error_block; 331 } 332 /* 333 * Start the daily error reporting function if it hasn't been 334 * started already 335 */ 336 if (!es->s_error_count) 337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 338 le32_add_cpu(&es->s_error_count, 1); 339 } 340 341 static void save_error_info(struct super_block *sb, const char *func, 342 unsigned int line) 343 { 344 __save_error_info(sb, func, line); 345 ext4_commit_super(sb, 1); 346 } 347 348 /* 349 * The del_gendisk() function uninitializes the disk-specific data 350 * structures, including the bdi structure, without telling anyone 351 * else. Once this happens, any attempt to call mark_buffer_dirty() 352 * (for example, by ext4_commit_super), will cause a kernel OOPS. 353 * This is a kludge to prevent these oops until we can put in a proper 354 * hook in del_gendisk() to inform the VFS and file system layers. 355 */ 356 static int block_device_ejected(struct super_block *sb) 357 { 358 struct inode *bd_inode = sb->s_bdev->bd_inode; 359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 360 361 return bdi->dev == NULL; 362 } 363 364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 365 { 366 struct super_block *sb = journal->j_private; 367 struct ext4_sb_info *sbi = EXT4_SB(sb); 368 int error = is_journal_aborted(journal); 369 struct ext4_journal_cb_entry *jce; 370 371 BUG_ON(txn->t_state == T_FINISHED); 372 spin_lock(&sbi->s_md_lock); 373 while (!list_empty(&txn->t_private_list)) { 374 jce = list_entry(txn->t_private_list.next, 375 struct ext4_journal_cb_entry, jce_list); 376 list_del_init(&jce->jce_list); 377 spin_unlock(&sbi->s_md_lock); 378 jce->jce_func(sb, jce, error); 379 spin_lock(&sbi->s_md_lock); 380 } 381 spin_unlock(&sbi->s_md_lock); 382 } 383 384 /* Deal with the reporting of failure conditions on a filesystem such as 385 * inconsistencies detected or read IO failures. 386 * 387 * On ext2, we can store the error state of the filesystem in the 388 * superblock. That is not possible on ext4, because we may have other 389 * write ordering constraints on the superblock which prevent us from 390 * writing it out straight away; and given that the journal is about to 391 * be aborted, we can't rely on the current, or future, transactions to 392 * write out the superblock safely. 393 * 394 * We'll just use the jbd2_journal_abort() error code to record an error in 395 * the journal instead. On recovery, the journal will complain about 396 * that error until we've noted it down and cleared it. 397 */ 398 399 static void ext4_handle_error(struct super_block *sb) 400 { 401 if (sb->s_flags & MS_RDONLY) 402 return; 403 404 if (!test_opt(sb, ERRORS_CONT)) { 405 journal_t *journal = EXT4_SB(sb)->s_journal; 406 407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 408 if (journal) 409 jbd2_journal_abort(journal, -EIO); 410 } 411 if (test_opt(sb, ERRORS_RO)) { 412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 413 /* 414 * Make sure updated value of ->s_mount_flags will be visible 415 * before ->s_flags update 416 */ 417 smp_wmb(); 418 sb->s_flags |= MS_RDONLY; 419 } 420 if (test_opt(sb, ERRORS_PANIC)) { 421 if (EXT4_SB(sb)->s_journal && 422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 423 return; 424 panic("EXT4-fs (device %s): panic forced after error\n", 425 sb->s_id); 426 } 427 } 428 429 #define ext4_error_ratelimit(sb) \ 430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 431 "EXT4-fs error") 432 433 void __ext4_error(struct super_block *sb, const char *function, 434 unsigned int line, const char *fmt, ...) 435 { 436 struct va_format vaf; 437 va_list args; 438 439 if (ext4_error_ratelimit(sb)) { 440 va_start(args, fmt); 441 vaf.fmt = fmt; 442 vaf.va = &args; 443 printk(KERN_CRIT 444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 445 sb->s_id, function, line, current->comm, &vaf); 446 va_end(args); 447 } 448 save_error_info(sb, function, line); 449 ext4_handle_error(sb); 450 } 451 452 void __ext4_error_inode(struct inode *inode, const char *function, 453 unsigned int line, ext4_fsblk_t block, 454 const char *fmt, ...) 455 { 456 va_list args; 457 struct va_format vaf; 458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 459 460 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 461 es->s_last_error_block = cpu_to_le64(block); 462 if (ext4_error_ratelimit(inode->i_sb)) { 463 va_start(args, fmt); 464 vaf.fmt = fmt; 465 vaf.va = &args; 466 if (block) 467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 468 "inode #%lu: block %llu: comm %s: %pV\n", 469 inode->i_sb->s_id, function, line, inode->i_ino, 470 block, current->comm, &vaf); 471 else 472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 473 "inode #%lu: comm %s: %pV\n", 474 inode->i_sb->s_id, function, line, inode->i_ino, 475 current->comm, &vaf); 476 va_end(args); 477 } 478 save_error_info(inode->i_sb, function, line); 479 ext4_handle_error(inode->i_sb); 480 } 481 482 void __ext4_error_file(struct file *file, const char *function, 483 unsigned int line, ext4_fsblk_t block, 484 const char *fmt, ...) 485 { 486 va_list args; 487 struct va_format vaf; 488 struct ext4_super_block *es; 489 struct inode *inode = file_inode(file); 490 char pathname[80], *path; 491 492 es = EXT4_SB(inode->i_sb)->s_es; 493 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 494 if (ext4_error_ratelimit(inode->i_sb)) { 495 path = file_path(file, pathname, sizeof(pathname)); 496 if (IS_ERR(path)) 497 path = "(unknown)"; 498 va_start(args, fmt); 499 vaf.fmt = fmt; 500 vaf.va = &args; 501 if (block) 502 printk(KERN_CRIT 503 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 504 "block %llu: comm %s: path %s: %pV\n", 505 inode->i_sb->s_id, function, line, inode->i_ino, 506 block, current->comm, path, &vaf); 507 else 508 printk(KERN_CRIT 509 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 510 "comm %s: path %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, path, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 const char *ext4_decode_error(struct super_block *sb, int errno, 520 char nbuf[16]) 521 { 522 char *errstr = NULL; 523 524 switch (errno) { 525 case -EFSCORRUPTED: 526 errstr = "Corrupt filesystem"; 527 break; 528 case -EFSBADCRC: 529 errstr = "Filesystem failed CRC"; 530 break; 531 case -EIO: 532 errstr = "IO failure"; 533 break; 534 case -ENOMEM: 535 errstr = "Out of memory"; 536 break; 537 case -EROFS: 538 if (!sb || (EXT4_SB(sb)->s_journal && 539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 540 errstr = "Journal has aborted"; 541 else 542 errstr = "Readonly filesystem"; 543 break; 544 default: 545 /* If the caller passed in an extra buffer for unknown 546 * errors, textualise them now. Else we just return 547 * NULL. */ 548 if (nbuf) { 549 /* Check for truncated error codes... */ 550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 551 errstr = nbuf; 552 } 553 break; 554 } 555 556 return errstr; 557 } 558 559 /* __ext4_std_error decodes expected errors from journaling functions 560 * automatically and invokes the appropriate error response. */ 561 562 void __ext4_std_error(struct super_block *sb, const char *function, 563 unsigned int line, int errno) 564 { 565 char nbuf[16]; 566 const char *errstr; 567 568 /* Special case: if the error is EROFS, and we're not already 569 * inside a transaction, then there's really no point in logging 570 * an error. */ 571 if (errno == -EROFS && journal_current_handle() == NULL && 572 (sb->s_flags & MS_RDONLY)) 573 return; 574 575 if (ext4_error_ratelimit(sb)) { 576 errstr = ext4_decode_error(sb, errno, nbuf); 577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 578 sb->s_id, function, line, errstr); 579 } 580 581 save_error_info(sb, function, line); 582 ext4_handle_error(sb); 583 } 584 585 /* 586 * ext4_abort is a much stronger failure handler than ext4_error. The 587 * abort function may be used to deal with unrecoverable failures such 588 * as journal IO errors or ENOMEM at a critical moment in log management. 589 * 590 * We unconditionally force the filesystem into an ABORT|READONLY state, 591 * unless the error response on the fs has been set to panic in which 592 * case we take the easy way out and panic immediately. 593 */ 594 595 void __ext4_abort(struct super_block *sb, const char *function, 596 unsigned int line, const char *fmt, ...) 597 { 598 va_list args; 599 600 save_error_info(sb, function, line); 601 va_start(args, fmt); 602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 603 function, line); 604 vprintk(fmt, args); 605 printk("\n"); 606 va_end(args); 607 608 if ((sb->s_flags & MS_RDONLY) == 0) { 609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 611 /* 612 * Make sure updated value of ->s_mount_flags will be visible 613 * before ->s_flags update 614 */ 615 smp_wmb(); 616 sb->s_flags |= MS_RDONLY; 617 if (EXT4_SB(sb)->s_journal) 618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 619 save_error_info(sb, function, line); 620 } 621 if (test_opt(sb, ERRORS_PANIC)) { 622 if (EXT4_SB(sb)->s_journal && 623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 624 return; 625 panic("EXT4-fs panic from previous error\n"); 626 } 627 } 628 629 void __ext4_msg(struct super_block *sb, 630 const char *prefix, const char *fmt, ...) 631 { 632 struct va_format vaf; 633 va_list args; 634 635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 636 return; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 642 va_end(args); 643 } 644 645 #define ext4_warning_ratelimit(sb) \ 646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 647 "EXT4-fs warning") 648 649 void __ext4_warning(struct super_block *sb, const char *function, 650 unsigned int line, const char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 if (!ext4_warning_ratelimit(sb)) 656 return; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 662 sb->s_id, function, line, &vaf); 663 va_end(args); 664 } 665 666 void __ext4_warning_inode(const struct inode *inode, const char *function, 667 unsigned int line, const char *fmt, ...) 668 { 669 struct va_format vaf; 670 va_list args; 671 672 if (!ext4_warning_ratelimit(inode->i_sb)) 673 return; 674 675 va_start(args, fmt); 676 vaf.fmt = fmt; 677 vaf.va = &args; 678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 680 function, line, inode->i_ino, current->comm, &vaf); 681 va_end(args); 682 } 683 684 void __ext4_grp_locked_error(const char *function, unsigned int line, 685 struct super_block *sb, ext4_group_t grp, 686 unsigned long ino, ext4_fsblk_t block, 687 const char *fmt, ...) 688 __releases(bitlock) 689 __acquires(bitlock) 690 { 691 struct va_format vaf; 692 va_list args; 693 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 694 695 es->s_last_error_ino = cpu_to_le32(ino); 696 es->s_last_error_block = cpu_to_le64(block); 697 __save_error_info(sb, function, line); 698 699 if (ext4_error_ratelimit(sb)) { 700 va_start(args, fmt); 701 vaf.fmt = fmt; 702 vaf.va = &args; 703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 704 sb->s_id, function, line, grp); 705 if (ino) 706 printk(KERN_CONT "inode %lu: ", ino); 707 if (block) 708 printk(KERN_CONT "block %llu:", 709 (unsigned long long) block); 710 printk(KERN_CONT "%pV\n", &vaf); 711 va_end(args); 712 } 713 714 if (test_opt(sb, ERRORS_CONT)) { 715 ext4_commit_super(sb, 0); 716 return; 717 } 718 719 ext4_unlock_group(sb, grp); 720 ext4_handle_error(sb); 721 /* 722 * We only get here in the ERRORS_RO case; relocking the group 723 * may be dangerous, but nothing bad will happen since the 724 * filesystem will have already been marked read/only and the 725 * journal has been aborted. We return 1 as a hint to callers 726 * who might what to use the return value from 727 * ext4_grp_locked_error() to distinguish between the 728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 729 * aggressively from the ext4 function in question, with a 730 * more appropriate error code. 731 */ 732 ext4_lock_group(sb, grp); 733 return; 734 } 735 736 void ext4_update_dynamic_rev(struct super_block *sb) 737 { 738 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 739 740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 741 return; 742 743 ext4_warning(sb, 744 "updating to rev %d because of new feature flag, " 745 "running e2fsck is recommended", 746 EXT4_DYNAMIC_REV); 747 748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 751 /* leave es->s_feature_*compat flags alone */ 752 /* es->s_uuid will be set by e2fsck if empty */ 753 754 /* 755 * The rest of the superblock fields should be zero, and if not it 756 * means they are likely already in use, so leave them alone. We 757 * can leave it up to e2fsck to clean up any inconsistencies there. 758 */ 759 } 760 761 /* 762 * Open the external journal device 763 */ 764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 765 { 766 struct block_device *bdev; 767 char b[BDEVNAME_SIZE]; 768 769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 770 if (IS_ERR(bdev)) 771 goto fail; 772 return bdev; 773 774 fail: 775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 776 __bdevname(dev, b), PTR_ERR(bdev)); 777 return NULL; 778 } 779 780 /* 781 * Release the journal device 782 */ 783 static void ext4_blkdev_put(struct block_device *bdev) 784 { 785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 786 } 787 788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 789 { 790 struct block_device *bdev; 791 bdev = sbi->journal_bdev; 792 if (bdev) { 793 ext4_blkdev_put(bdev); 794 sbi->journal_bdev = NULL; 795 } 796 } 797 798 static inline struct inode *orphan_list_entry(struct list_head *l) 799 { 800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 801 } 802 803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 804 { 805 struct list_head *l; 806 807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 808 le32_to_cpu(sbi->s_es->s_last_orphan)); 809 810 printk(KERN_ERR "sb_info orphan list:\n"); 811 list_for_each(l, &sbi->s_orphan) { 812 struct inode *inode = orphan_list_entry(l); 813 printk(KERN_ERR " " 814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 815 inode->i_sb->s_id, inode->i_ino, inode, 816 inode->i_mode, inode->i_nlink, 817 NEXT_ORPHAN(inode)); 818 } 819 } 820 821 static void ext4_put_super(struct super_block *sb) 822 { 823 struct ext4_sb_info *sbi = EXT4_SB(sb); 824 struct ext4_super_block *es = sbi->s_es; 825 int i, err; 826 827 ext4_unregister_li_request(sb); 828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 829 830 flush_workqueue(sbi->rsv_conversion_wq); 831 destroy_workqueue(sbi->rsv_conversion_wq); 832 833 if (sbi->s_journal) { 834 err = jbd2_journal_destroy(sbi->s_journal); 835 sbi->s_journal = NULL; 836 if (err < 0) 837 ext4_abort(sb, "Couldn't clean up the journal"); 838 } 839 840 ext4_unregister_sysfs(sb); 841 ext4_es_unregister_shrinker(sbi); 842 del_timer_sync(&sbi->s_err_report); 843 ext4_release_system_zone(sb); 844 ext4_mb_release(sb); 845 ext4_ext_release(sb); 846 847 if (!(sb->s_flags & MS_RDONLY)) { 848 ext4_clear_feature_journal_needs_recovery(sb); 849 es->s_state = cpu_to_le16(sbi->s_mount_state); 850 } 851 if (!(sb->s_flags & MS_RDONLY)) 852 ext4_commit_super(sb, 1); 853 854 for (i = 0; i < sbi->s_gdb_count; i++) 855 brelse(sbi->s_group_desc[i]); 856 kvfree(sbi->s_group_desc); 857 kvfree(sbi->s_flex_groups); 858 percpu_counter_destroy(&sbi->s_freeclusters_counter); 859 percpu_counter_destroy(&sbi->s_freeinodes_counter); 860 percpu_counter_destroy(&sbi->s_dirs_counter); 861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 862 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 863 brelse(sbi->s_sbh); 864 #ifdef CONFIG_QUOTA 865 for (i = 0; i < EXT4_MAXQUOTAS; i++) 866 kfree(sbi->s_qf_names[i]); 867 #endif 868 869 /* Debugging code just in case the in-memory inode orphan list 870 * isn't empty. The on-disk one can be non-empty if we've 871 * detected an error and taken the fs readonly, but the 872 * in-memory list had better be clean by this point. */ 873 if (!list_empty(&sbi->s_orphan)) 874 dump_orphan_list(sb, sbi); 875 J_ASSERT(list_empty(&sbi->s_orphan)); 876 877 sync_blockdev(sb->s_bdev); 878 invalidate_bdev(sb->s_bdev); 879 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 880 /* 881 * Invalidate the journal device's buffers. We don't want them 882 * floating about in memory - the physical journal device may 883 * hotswapped, and it breaks the `ro-after' testing code. 884 */ 885 sync_blockdev(sbi->journal_bdev); 886 invalidate_bdev(sbi->journal_bdev); 887 ext4_blkdev_remove(sbi); 888 } 889 if (sbi->s_mb_cache) { 890 ext4_xattr_destroy_cache(sbi->s_mb_cache); 891 sbi->s_mb_cache = NULL; 892 } 893 if (sbi->s_mmp_tsk) 894 kthread_stop(sbi->s_mmp_tsk); 895 sb->s_fs_info = NULL; 896 /* 897 * Now that we are completely done shutting down the 898 * superblock, we need to actually destroy the kobject. 899 */ 900 kobject_put(&sbi->s_kobj); 901 wait_for_completion(&sbi->s_kobj_unregister); 902 if (sbi->s_chksum_driver) 903 crypto_free_shash(sbi->s_chksum_driver); 904 kfree(sbi->s_blockgroup_lock); 905 kfree(sbi); 906 } 907 908 static struct kmem_cache *ext4_inode_cachep; 909 910 /* 911 * Called inside transaction, so use GFP_NOFS 912 */ 913 static struct inode *ext4_alloc_inode(struct super_block *sb) 914 { 915 struct ext4_inode_info *ei; 916 917 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 918 if (!ei) 919 return NULL; 920 921 ei->vfs_inode.i_version = 1; 922 spin_lock_init(&ei->i_raw_lock); 923 INIT_LIST_HEAD(&ei->i_prealloc_list); 924 spin_lock_init(&ei->i_prealloc_lock); 925 ext4_es_init_tree(&ei->i_es_tree); 926 rwlock_init(&ei->i_es_lock); 927 INIT_LIST_HEAD(&ei->i_es_list); 928 ei->i_es_all_nr = 0; 929 ei->i_es_shk_nr = 0; 930 ei->i_es_shrink_lblk = 0; 931 ei->i_reserved_data_blocks = 0; 932 ei->i_reserved_meta_blocks = 0; 933 ei->i_allocated_meta_blocks = 0; 934 ei->i_da_metadata_calc_len = 0; 935 ei->i_da_metadata_calc_last_lblock = 0; 936 spin_lock_init(&(ei->i_block_reservation_lock)); 937 #ifdef CONFIG_QUOTA 938 ei->i_reserved_quota = 0; 939 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 940 #endif 941 ei->jinode = NULL; 942 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 943 spin_lock_init(&ei->i_completed_io_lock); 944 ei->i_sync_tid = 0; 945 ei->i_datasync_tid = 0; 946 atomic_set(&ei->i_unwritten, 0); 947 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 948 return &ei->vfs_inode; 949 } 950 951 static int ext4_drop_inode(struct inode *inode) 952 { 953 int drop = generic_drop_inode(inode); 954 955 trace_ext4_drop_inode(inode, drop); 956 return drop; 957 } 958 959 static void ext4_i_callback(struct rcu_head *head) 960 { 961 struct inode *inode = container_of(head, struct inode, i_rcu); 962 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 963 } 964 965 static void ext4_destroy_inode(struct inode *inode) 966 { 967 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 968 ext4_msg(inode->i_sb, KERN_ERR, 969 "Inode %lu (%p): orphan list check failed!", 970 inode->i_ino, EXT4_I(inode)); 971 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 972 EXT4_I(inode), sizeof(struct ext4_inode_info), 973 true); 974 dump_stack(); 975 } 976 call_rcu(&inode->i_rcu, ext4_i_callback); 977 } 978 979 static void init_once(void *foo) 980 { 981 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 982 983 INIT_LIST_HEAD(&ei->i_orphan); 984 init_rwsem(&ei->xattr_sem); 985 init_rwsem(&ei->i_data_sem); 986 init_rwsem(&ei->i_mmap_sem); 987 inode_init_once(&ei->vfs_inode); 988 } 989 990 static int __init init_inodecache(void) 991 { 992 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 993 sizeof(struct ext4_inode_info), 994 0, (SLAB_RECLAIM_ACCOUNT| 995 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 996 init_once); 997 if (ext4_inode_cachep == NULL) 998 return -ENOMEM; 999 return 0; 1000 } 1001 1002 static void destroy_inodecache(void) 1003 { 1004 /* 1005 * Make sure all delayed rcu free inodes are flushed before we 1006 * destroy cache. 1007 */ 1008 rcu_barrier(); 1009 kmem_cache_destroy(ext4_inode_cachep); 1010 } 1011 1012 void ext4_clear_inode(struct inode *inode) 1013 { 1014 invalidate_inode_buffers(inode); 1015 clear_inode(inode); 1016 dquot_drop(inode); 1017 ext4_discard_preallocations(inode); 1018 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1019 if (EXT4_I(inode)->jinode) { 1020 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1021 EXT4_I(inode)->jinode); 1022 jbd2_free_inode(EXT4_I(inode)->jinode); 1023 EXT4_I(inode)->jinode = NULL; 1024 } 1025 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1026 fscrypt_put_encryption_info(inode, NULL); 1027 #endif 1028 } 1029 1030 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1031 u64 ino, u32 generation) 1032 { 1033 struct inode *inode; 1034 1035 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1036 return ERR_PTR(-ESTALE); 1037 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1038 return ERR_PTR(-ESTALE); 1039 1040 /* iget isn't really right if the inode is currently unallocated!! 1041 * 1042 * ext4_read_inode will return a bad_inode if the inode had been 1043 * deleted, so we should be safe. 1044 * 1045 * Currently we don't know the generation for parent directory, so 1046 * a generation of 0 means "accept any" 1047 */ 1048 inode = ext4_iget_normal(sb, ino); 1049 if (IS_ERR(inode)) 1050 return ERR_CAST(inode); 1051 if (generation && inode->i_generation != generation) { 1052 iput(inode); 1053 return ERR_PTR(-ESTALE); 1054 } 1055 1056 return inode; 1057 } 1058 1059 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1060 int fh_len, int fh_type) 1061 { 1062 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1063 ext4_nfs_get_inode); 1064 } 1065 1066 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1067 int fh_len, int fh_type) 1068 { 1069 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1070 ext4_nfs_get_inode); 1071 } 1072 1073 /* 1074 * Try to release metadata pages (indirect blocks, directories) which are 1075 * mapped via the block device. Since these pages could have journal heads 1076 * which would prevent try_to_free_buffers() from freeing them, we must use 1077 * jbd2 layer's try_to_free_buffers() function to release them. 1078 */ 1079 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1080 gfp_t wait) 1081 { 1082 journal_t *journal = EXT4_SB(sb)->s_journal; 1083 1084 WARN_ON(PageChecked(page)); 1085 if (!page_has_buffers(page)) 1086 return 0; 1087 if (journal) 1088 return jbd2_journal_try_to_free_buffers(journal, page, 1089 wait & ~__GFP_DIRECT_RECLAIM); 1090 return try_to_free_buffers(page); 1091 } 1092 1093 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1094 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1095 { 1096 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1097 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1098 } 1099 1100 static int ext4_key_prefix(struct inode *inode, u8 **key) 1101 { 1102 *key = EXT4_SB(inode->i_sb)->key_prefix; 1103 return EXT4_SB(inode->i_sb)->key_prefix_size; 1104 } 1105 1106 static int ext4_prepare_context(struct inode *inode) 1107 { 1108 return ext4_convert_inline_data(inode); 1109 } 1110 1111 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1112 void *fs_data) 1113 { 1114 handle_t *handle; 1115 int res, res2; 1116 1117 /* fs_data is null when internally used. */ 1118 if (fs_data) { 1119 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1120 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, 1121 len, 0); 1122 if (!res) { 1123 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1124 ext4_clear_inode_state(inode, 1125 EXT4_STATE_MAY_INLINE_DATA); 1126 } 1127 return res; 1128 } 1129 1130 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1131 ext4_jbd2_credits_xattr(inode)); 1132 if (IS_ERR(handle)) 1133 return PTR_ERR(handle); 1134 1135 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1136 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, 1137 len, 0); 1138 if (!res) { 1139 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1140 res = ext4_mark_inode_dirty(handle, inode); 1141 if (res) 1142 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1143 } 1144 res2 = ext4_journal_stop(handle); 1145 if (!res) 1146 res = res2; 1147 return res; 1148 } 1149 1150 static int ext4_dummy_context(struct inode *inode) 1151 { 1152 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1153 } 1154 1155 static unsigned ext4_max_namelen(struct inode *inode) 1156 { 1157 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1158 EXT4_NAME_LEN; 1159 } 1160 1161 static struct fscrypt_operations ext4_cryptops = { 1162 .get_context = ext4_get_context, 1163 .key_prefix = ext4_key_prefix, 1164 .prepare_context = ext4_prepare_context, 1165 .set_context = ext4_set_context, 1166 .dummy_context = ext4_dummy_context, 1167 .is_encrypted = ext4_encrypted_inode, 1168 .empty_dir = ext4_empty_dir, 1169 .max_namelen = ext4_max_namelen, 1170 }; 1171 #else 1172 static struct fscrypt_operations ext4_cryptops = { 1173 .is_encrypted = ext4_encrypted_inode, 1174 }; 1175 #endif 1176 1177 #ifdef CONFIG_QUOTA 1178 static char *quotatypes[] = INITQFNAMES; 1179 #define QTYPE2NAME(t) (quotatypes[t]) 1180 1181 static int ext4_write_dquot(struct dquot *dquot); 1182 static int ext4_acquire_dquot(struct dquot *dquot); 1183 static int ext4_release_dquot(struct dquot *dquot); 1184 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1185 static int ext4_write_info(struct super_block *sb, int type); 1186 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1187 struct path *path); 1188 static int ext4_quota_off(struct super_block *sb, int type); 1189 static int ext4_quota_on_mount(struct super_block *sb, int type); 1190 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1191 size_t len, loff_t off); 1192 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1193 const char *data, size_t len, loff_t off); 1194 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1195 unsigned int flags); 1196 static int ext4_enable_quotas(struct super_block *sb); 1197 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1198 1199 static struct dquot **ext4_get_dquots(struct inode *inode) 1200 { 1201 return EXT4_I(inode)->i_dquot; 1202 } 1203 1204 static const struct dquot_operations ext4_quota_operations = { 1205 .get_reserved_space = ext4_get_reserved_space, 1206 .write_dquot = ext4_write_dquot, 1207 .acquire_dquot = ext4_acquire_dquot, 1208 .release_dquot = ext4_release_dquot, 1209 .mark_dirty = ext4_mark_dquot_dirty, 1210 .write_info = ext4_write_info, 1211 .alloc_dquot = dquot_alloc, 1212 .destroy_dquot = dquot_destroy, 1213 .get_projid = ext4_get_projid, 1214 .get_next_id = ext4_get_next_id, 1215 }; 1216 1217 static const struct quotactl_ops ext4_qctl_operations = { 1218 .quota_on = ext4_quota_on, 1219 .quota_off = ext4_quota_off, 1220 .quota_sync = dquot_quota_sync, 1221 .get_state = dquot_get_state, 1222 .set_info = dquot_set_dqinfo, 1223 .get_dqblk = dquot_get_dqblk, 1224 .set_dqblk = dquot_set_dqblk, 1225 .get_nextdqblk = dquot_get_next_dqblk, 1226 }; 1227 #endif 1228 1229 static const struct super_operations ext4_sops = { 1230 .alloc_inode = ext4_alloc_inode, 1231 .destroy_inode = ext4_destroy_inode, 1232 .write_inode = ext4_write_inode, 1233 .dirty_inode = ext4_dirty_inode, 1234 .drop_inode = ext4_drop_inode, 1235 .evict_inode = ext4_evict_inode, 1236 .put_super = ext4_put_super, 1237 .sync_fs = ext4_sync_fs, 1238 .freeze_fs = ext4_freeze, 1239 .unfreeze_fs = ext4_unfreeze, 1240 .statfs = ext4_statfs, 1241 .remount_fs = ext4_remount, 1242 .show_options = ext4_show_options, 1243 #ifdef CONFIG_QUOTA 1244 .quota_read = ext4_quota_read, 1245 .quota_write = ext4_quota_write, 1246 .get_dquots = ext4_get_dquots, 1247 #endif 1248 .bdev_try_to_free_page = bdev_try_to_free_page, 1249 }; 1250 1251 static const struct export_operations ext4_export_ops = { 1252 .fh_to_dentry = ext4_fh_to_dentry, 1253 .fh_to_parent = ext4_fh_to_parent, 1254 .get_parent = ext4_get_parent, 1255 }; 1256 1257 enum { 1258 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1259 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1260 Opt_nouid32, Opt_debug, Opt_removed, 1261 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1262 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1263 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1264 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1265 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1266 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1267 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1268 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1269 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1270 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1271 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1272 Opt_lazytime, Opt_nolazytime, 1273 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1274 Opt_inode_readahead_blks, Opt_journal_ioprio, 1275 Opt_dioread_nolock, Opt_dioread_lock, 1276 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1277 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1278 }; 1279 1280 static const match_table_t tokens = { 1281 {Opt_bsd_df, "bsddf"}, 1282 {Opt_minix_df, "minixdf"}, 1283 {Opt_grpid, "grpid"}, 1284 {Opt_grpid, "bsdgroups"}, 1285 {Opt_nogrpid, "nogrpid"}, 1286 {Opt_nogrpid, "sysvgroups"}, 1287 {Opt_resgid, "resgid=%u"}, 1288 {Opt_resuid, "resuid=%u"}, 1289 {Opt_sb, "sb=%u"}, 1290 {Opt_err_cont, "errors=continue"}, 1291 {Opt_err_panic, "errors=panic"}, 1292 {Opt_err_ro, "errors=remount-ro"}, 1293 {Opt_nouid32, "nouid32"}, 1294 {Opt_debug, "debug"}, 1295 {Opt_removed, "oldalloc"}, 1296 {Opt_removed, "orlov"}, 1297 {Opt_user_xattr, "user_xattr"}, 1298 {Opt_nouser_xattr, "nouser_xattr"}, 1299 {Opt_acl, "acl"}, 1300 {Opt_noacl, "noacl"}, 1301 {Opt_noload, "norecovery"}, 1302 {Opt_noload, "noload"}, 1303 {Opt_removed, "nobh"}, 1304 {Opt_removed, "bh"}, 1305 {Opt_commit, "commit=%u"}, 1306 {Opt_min_batch_time, "min_batch_time=%u"}, 1307 {Opt_max_batch_time, "max_batch_time=%u"}, 1308 {Opt_journal_dev, "journal_dev=%u"}, 1309 {Opt_journal_path, "journal_path=%s"}, 1310 {Opt_journal_checksum, "journal_checksum"}, 1311 {Opt_nojournal_checksum, "nojournal_checksum"}, 1312 {Opt_journal_async_commit, "journal_async_commit"}, 1313 {Opt_abort, "abort"}, 1314 {Opt_data_journal, "data=journal"}, 1315 {Opt_data_ordered, "data=ordered"}, 1316 {Opt_data_writeback, "data=writeback"}, 1317 {Opt_data_err_abort, "data_err=abort"}, 1318 {Opt_data_err_ignore, "data_err=ignore"}, 1319 {Opt_offusrjquota, "usrjquota="}, 1320 {Opt_usrjquota, "usrjquota=%s"}, 1321 {Opt_offgrpjquota, "grpjquota="}, 1322 {Opt_grpjquota, "grpjquota=%s"}, 1323 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1324 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1325 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1326 {Opt_grpquota, "grpquota"}, 1327 {Opt_noquota, "noquota"}, 1328 {Opt_quota, "quota"}, 1329 {Opt_usrquota, "usrquota"}, 1330 {Opt_barrier, "barrier=%u"}, 1331 {Opt_barrier, "barrier"}, 1332 {Opt_nobarrier, "nobarrier"}, 1333 {Opt_i_version, "i_version"}, 1334 {Opt_dax, "dax"}, 1335 {Opt_stripe, "stripe=%u"}, 1336 {Opt_delalloc, "delalloc"}, 1337 {Opt_lazytime, "lazytime"}, 1338 {Opt_nolazytime, "nolazytime"}, 1339 {Opt_nodelalloc, "nodelalloc"}, 1340 {Opt_removed, "mblk_io_submit"}, 1341 {Opt_removed, "nomblk_io_submit"}, 1342 {Opt_block_validity, "block_validity"}, 1343 {Opt_noblock_validity, "noblock_validity"}, 1344 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1345 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1346 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1347 {Opt_auto_da_alloc, "auto_da_alloc"}, 1348 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1349 {Opt_dioread_nolock, "dioread_nolock"}, 1350 {Opt_dioread_lock, "dioread_lock"}, 1351 {Opt_discard, "discard"}, 1352 {Opt_nodiscard, "nodiscard"}, 1353 {Opt_init_itable, "init_itable=%u"}, 1354 {Opt_init_itable, "init_itable"}, 1355 {Opt_noinit_itable, "noinit_itable"}, 1356 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1357 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1358 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1359 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1360 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1361 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1362 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1363 {Opt_err, NULL}, 1364 }; 1365 1366 static ext4_fsblk_t get_sb_block(void **data) 1367 { 1368 ext4_fsblk_t sb_block; 1369 char *options = (char *) *data; 1370 1371 if (!options || strncmp(options, "sb=", 3) != 0) 1372 return 1; /* Default location */ 1373 1374 options += 3; 1375 /* TODO: use simple_strtoll with >32bit ext4 */ 1376 sb_block = simple_strtoul(options, &options, 0); 1377 if (*options && *options != ',') { 1378 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1379 (char *) *data); 1380 return 1; 1381 } 1382 if (*options == ',') 1383 options++; 1384 *data = (void *) options; 1385 1386 return sb_block; 1387 } 1388 1389 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1390 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1391 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1392 1393 #ifdef CONFIG_QUOTA 1394 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1395 { 1396 struct ext4_sb_info *sbi = EXT4_SB(sb); 1397 char *qname; 1398 int ret = -1; 1399 1400 if (sb_any_quota_loaded(sb) && 1401 !sbi->s_qf_names[qtype]) { 1402 ext4_msg(sb, KERN_ERR, 1403 "Cannot change journaled " 1404 "quota options when quota turned on"); 1405 return -1; 1406 } 1407 if (ext4_has_feature_quota(sb)) { 1408 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1409 "ignored when QUOTA feature is enabled"); 1410 return 1; 1411 } 1412 qname = match_strdup(args); 1413 if (!qname) { 1414 ext4_msg(sb, KERN_ERR, 1415 "Not enough memory for storing quotafile name"); 1416 return -1; 1417 } 1418 if (sbi->s_qf_names[qtype]) { 1419 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1420 ret = 1; 1421 else 1422 ext4_msg(sb, KERN_ERR, 1423 "%s quota file already specified", 1424 QTYPE2NAME(qtype)); 1425 goto errout; 1426 } 1427 if (strchr(qname, '/')) { 1428 ext4_msg(sb, KERN_ERR, 1429 "quotafile must be on filesystem root"); 1430 goto errout; 1431 } 1432 sbi->s_qf_names[qtype] = qname; 1433 set_opt(sb, QUOTA); 1434 return 1; 1435 errout: 1436 kfree(qname); 1437 return ret; 1438 } 1439 1440 static int clear_qf_name(struct super_block *sb, int qtype) 1441 { 1442 1443 struct ext4_sb_info *sbi = EXT4_SB(sb); 1444 1445 if (sb_any_quota_loaded(sb) && 1446 sbi->s_qf_names[qtype]) { 1447 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1448 " when quota turned on"); 1449 return -1; 1450 } 1451 kfree(sbi->s_qf_names[qtype]); 1452 sbi->s_qf_names[qtype] = NULL; 1453 return 1; 1454 } 1455 #endif 1456 1457 #define MOPT_SET 0x0001 1458 #define MOPT_CLEAR 0x0002 1459 #define MOPT_NOSUPPORT 0x0004 1460 #define MOPT_EXPLICIT 0x0008 1461 #define MOPT_CLEAR_ERR 0x0010 1462 #define MOPT_GTE0 0x0020 1463 #ifdef CONFIG_QUOTA 1464 #define MOPT_Q 0 1465 #define MOPT_QFMT 0x0040 1466 #else 1467 #define MOPT_Q MOPT_NOSUPPORT 1468 #define MOPT_QFMT MOPT_NOSUPPORT 1469 #endif 1470 #define MOPT_DATAJ 0x0080 1471 #define MOPT_NO_EXT2 0x0100 1472 #define MOPT_NO_EXT3 0x0200 1473 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1474 #define MOPT_STRING 0x0400 1475 1476 static const struct mount_opts { 1477 int token; 1478 int mount_opt; 1479 int flags; 1480 } ext4_mount_opts[] = { 1481 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1482 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1483 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1484 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1485 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1486 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1487 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1488 MOPT_EXT4_ONLY | MOPT_SET}, 1489 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1490 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1491 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1492 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1493 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1494 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1495 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1496 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1497 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1498 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1499 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1500 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1501 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1502 EXT4_MOUNT_JOURNAL_CHECKSUM), 1503 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1504 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1505 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1506 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1507 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1508 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1509 MOPT_NO_EXT2}, 1510 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1511 MOPT_NO_EXT2}, 1512 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1513 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1514 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1515 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1516 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1517 {Opt_commit, 0, MOPT_GTE0}, 1518 {Opt_max_batch_time, 0, MOPT_GTE0}, 1519 {Opt_min_batch_time, 0, MOPT_GTE0}, 1520 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1521 {Opt_init_itable, 0, MOPT_GTE0}, 1522 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1523 {Opt_stripe, 0, MOPT_GTE0}, 1524 {Opt_resuid, 0, MOPT_GTE0}, 1525 {Opt_resgid, 0, MOPT_GTE0}, 1526 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1527 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1528 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1529 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1530 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1531 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1532 MOPT_NO_EXT2 | MOPT_DATAJ}, 1533 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1534 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1535 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1536 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1537 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1538 #else 1539 {Opt_acl, 0, MOPT_NOSUPPORT}, 1540 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1541 #endif 1542 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1543 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1544 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1545 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1546 MOPT_SET | MOPT_Q}, 1547 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1548 MOPT_SET | MOPT_Q}, 1549 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1550 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1551 {Opt_usrjquota, 0, MOPT_Q}, 1552 {Opt_grpjquota, 0, MOPT_Q}, 1553 {Opt_offusrjquota, 0, MOPT_Q}, 1554 {Opt_offgrpjquota, 0, MOPT_Q}, 1555 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1556 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1557 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1558 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1559 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1560 {Opt_err, 0, 0} 1561 }; 1562 1563 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1564 substring_t *args, unsigned long *journal_devnum, 1565 unsigned int *journal_ioprio, int is_remount) 1566 { 1567 struct ext4_sb_info *sbi = EXT4_SB(sb); 1568 const struct mount_opts *m; 1569 kuid_t uid; 1570 kgid_t gid; 1571 int arg = 0; 1572 1573 #ifdef CONFIG_QUOTA 1574 if (token == Opt_usrjquota) 1575 return set_qf_name(sb, USRQUOTA, &args[0]); 1576 else if (token == Opt_grpjquota) 1577 return set_qf_name(sb, GRPQUOTA, &args[0]); 1578 else if (token == Opt_offusrjquota) 1579 return clear_qf_name(sb, USRQUOTA); 1580 else if (token == Opt_offgrpjquota) 1581 return clear_qf_name(sb, GRPQUOTA); 1582 #endif 1583 switch (token) { 1584 case Opt_noacl: 1585 case Opt_nouser_xattr: 1586 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1587 break; 1588 case Opt_sb: 1589 return 1; /* handled by get_sb_block() */ 1590 case Opt_removed: 1591 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1592 return 1; 1593 case Opt_abort: 1594 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1595 return 1; 1596 case Opt_i_version: 1597 sb->s_flags |= MS_I_VERSION; 1598 return 1; 1599 case Opt_lazytime: 1600 sb->s_flags |= MS_LAZYTIME; 1601 return 1; 1602 case Opt_nolazytime: 1603 sb->s_flags &= ~MS_LAZYTIME; 1604 return 1; 1605 } 1606 1607 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1608 if (token == m->token) 1609 break; 1610 1611 if (m->token == Opt_err) { 1612 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1613 "or missing value", opt); 1614 return -1; 1615 } 1616 1617 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1618 ext4_msg(sb, KERN_ERR, 1619 "Mount option \"%s\" incompatible with ext2", opt); 1620 return -1; 1621 } 1622 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1623 ext4_msg(sb, KERN_ERR, 1624 "Mount option \"%s\" incompatible with ext3", opt); 1625 return -1; 1626 } 1627 1628 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1629 return -1; 1630 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1631 return -1; 1632 if (m->flags & MOPT_EXPLICIT) { 1633 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1634 set_opt2(sb, EXPLICIT_DELALLOC); 1635 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1636 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1637 } else 1638 return -1; 1639 } 1640 if (m->flags & MOPT_CLEAR_ERR) 1641 clear_opt(sb, ERRORS_MASK); 1642 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1643 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1644 "options when quota turned on"); 1645 return -1; 1646 } 1647 1648 if (m->flags & MOPT_NOSUPPORT) { 1649 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1650 } else if (token == Opt_commit) { 1651 if (arg == 0) 1652 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1653 sbi->s_commit_interval = HZ * arg; 1654 } else if (token == Opt_max_batch_time) { 1655 sbi->s_max_batch_time = arg; 1656 } else if (token == Opt_min_batch_time) { 1657 sbi->s_min_batch_time = arg; 1658 } else if (token == Opt_inode_readahead_blks) { 1659 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1660 ext4_msg(sb, KERN_ERR, 1661 "EXT4-fs: inode_readahead_blks must be " 1662 "0 or a power of 2 smaller than 2^31"); 1663 return -1; 1664 } 1665 sbi->s_inode_readahead_blks = arg; 1666 } else if (token == Opt_init_itable) { 1667 set_opt(sb, INIT_INODE_TABLE); 1668 if (!args->from) 1669 arg = EXT4_DEF_LI_WAIT_MULT; 1670 sbi->s_li_wait_mult = arg; 1671 } else if (token == Opt_max_dir_size_kb) { 1672 sbi->s_max_dir_size_kb = arg; 1673 } else if (token == Opt_stripe) { 1674 sbi->s_stripe = arg; 1675 } else if (token == Opt_resuid) { 1676 uid = make_kuid(current_user_ns(), arg); 1677 if (!uid_valid(uid)) { 1678 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1679 return -1; 1680 } 1681 sbi->s_resuid = uid; 1682 } else if (token == Opt_resgid) { 1683 gid = make_kgid(current_user_ns(), arg); 1684 if (!gid_valid(gid)) { 1685 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1686 return -1; 1687 } 1688 sbi->s_resgid = gid; 1689 } else if (token == Opt_journal_dev) { 1690 if (is_remount) { 1691 ext4_msg(sb, KERN_ERR, 1692 "Cannot specify journal on remount"); 1693 return -1; 1694 } 1695 *journal_devnum = arg; 1696 } else if (token == Opt_journal_path) { 1697 char *journal_path; 1698 struct inode *journal_inode; 1699 struct path path; 1700 int error; 1701 1702 if (is_remount) { 1703 ext4_msg(sb, KERN_ERR, 1704 "Cannot specify journal on remount"); 1705 return -1; 1706 } 1707 journal_path = match_strdup(&args[0]); 1708 if (!journal_path) { 1709 ext4_msg(sb, KERN_ERR, "error: could not dup " 1710 "journal device string"); 1711 return -1; 1712 } 1713 1714 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1715 if (error) { 1716 ext4_msg(sb, KERN_ERR, "error: could not find " 1717 "journal device path: error %d", error); 1718 kfree(journal_path); 1719 return -1; 1720 } 1721 1722 journal_inode = d_inode(path.dentry); 1723 if (!S_ISBLK(journal_inode->i_mode)) { 1724 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1725 "is not a block device", journal_path); 1726 path_put(&path); 1727 kfree(journal_path); 1728 return -1; 1729 } 1730 1731 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1732 path_put(&path); 1733 kfree(journal_path); 1734 } else if (token == Opt_journal_ioprio) { 1735 if (arg > 7) { 1736 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1737 " (must be 0-7)"); 1738 return -1; 1739 } 1740 *journal_ioprio = 1741 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1742 } else if (token == Opt_test_dummy_encryption) { 1743 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1744 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1745 ext4_msg(sb, KERN_WARNING, 1746 "Test dummy encryption mode enabled"); 1747 #else 1748 ext4_msg(sb, KERN_WARNING, 1749 "Test dummy encryption mount option ignored"); 1750 #endif 1751 } else if (m->flags & MOPT_DATAJ) { 1752 if (is_remount) { 1753 if (!sbi->s_journal) 1754 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1755 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1756 ext4_msg(sb, KERN_ERR, 1757 "Cannot change data mode on remount"); 1758 return -1; 1759 } 1760 } else { 1761 clear_opt(sb, DATA_FLAGS); 1762 sbi->s_mount_opt |= m->mount_opt; 1763 } 1764 #ifdef CONFIG_QUOTA 1765 } else if (m->flags & MOPT_QFMT) { 1766 if (sb_any_quota_loaded(sb) && 1767 sbi->s_jquota_fmt != m->mount_opt) { 1768 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1769 "quota options when quota turned on"); 1770 return -1; 1771 } 1772 if (ext4_has_feature_quota(sb)) { 1773 ext4_msg(sb, KERN_INFO, 1774 "Quota format mount options ignored " 1775 "when QUOTA feature is enabled"); 1776 return 1; 1777 } 1778 sbi->s_jquota_fmt = m->mount_opt; 1779 #endif 1780 } else if (token == Opt_dax) { 1781 #ifdef CONFIG_FS_DAX 1782 ext4_msg(sb, KERN_WARNING, 1783 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1784 sbi->s_mount_opt |= m->mount_opt; 1785 #else 1786 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1787 return -1; 1788 #endif 1789 } else if (token == Opt_data_err_abort) { 1790 sbi->s_mount_opt |= m->mount_opt; 1791 } else if (token == Opt_data_err_ignore) { 1792 sbi->s_mount_opt &= ~m->mount_opt; 1793 } else { 1794 if (!args->from) 1795 arg = 1; 1796 if (m->flags & MOPT_CLEAR) 1797 arg = !arg; 1798 else if (unlikely(!(m->flags & MOPT_SET))) { 1799 ext4_msg(sb, KERN_WARNING, 1800 "buggy handling of option %s", opt); 1801 WARN_ON(1); 1802 return -1; 1803 } 1804 if (arg != 0) 1805 sbi->s_mount_opt |= m->mount_opt; 1806 else 1807 sbi->s_mount_opt &= ~m->mount_opt; 1808 } 1809 return 1; 1810 } 1811 1812 static int parse_options(char *options, struct super_block *sb, 1813 unsigned long *journal_devnum, 1814 unsigned int *journal_ioprio, 1815 int is_remount) 1816 { 1817 struct ext4_sb_info *sbi = EXT4_SB(sb); 1818 char *p; 1819 substring_t args[MAX_OPT_ARGS]; 1820 int token; 1821 1822 if (!options) 1823 return 1; 1824 1825 while ((p = strsep(&options, ",")) != NULL) { 1826 if (!*p) 1827 continue; 1828 /* 1829 * Initialize args struct so we know whether arg was 1830 * found; some options take optional arguments. 1831 */ 1832 args[0].to = args[0].from = NULL; 1833 token = match_token(p, tokens, args); 1834 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1835 journal_ioprio, is_remount) < 0) 1836 return 0; 1837 } 1838 #ifdef CONFIG_QUOTA 1839 if (ext4_has_feature_quota(sb) && 1840 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1841 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota " 1842 "mount options ignored."); 1843 clear_opt(sb, USRQUOTA); 1844 clear_opt(sb, GRPQUOTA); 1845 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1846 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1847 clear_opt(sb, USRQUOTA); 1848 1849 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1850 clear_opt(sb, GRPQUOTA); 1851 1852 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1853 ext4_msg(sb, KERN_ERR, "old and new quota " 1854 "format mixing"); 1855 return 0; 1856 } 1857 1858 if (!sbi->s_jquota_fmt) { 1859 ext4_msg(sb, KERN_ERR, "journaled quota format " 1860 "not specified"); 1861 return 0; 1862 } 1863 } 1864 #endif 1865 if (test_opt(sb, DIOREAD_NOLOCK)) { 1866 int blocksize = 1867 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1868 1869 if (blocksize < PAGE_SIZE) { 1870 ext4_msg(sb, KERN_ERR, "can't mount with " 1871 "dioread_nolock if block size != PAGE_SIZE"); 1872 return 0; 1873 } 1874 } 1875 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1876 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1877 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1878 "in data=ordered mode"); 1879 return 0; 1880 } 1881 return 1; 1882 } 1883 1884 static inline void ext4_show_quota_options(struct seq_file *seq, 1885 struct super_block *sb) 1886 { 1887 #if defined(CONFIG_QUOTA) 1888 struct ext4_sb_info *sbi = EXT4_SB(sb); 1889 1890 if (sbi->s_jquota_fmt) { 1891 char *fmtname = ""; 1892 1893 switch (sbi->s_jquota_fmt) { 1894 case QFMT_VFS_OLD: 1895 fmtname = "vfsold"; 1896 break; 1897 case QFMT_VFS_V0: 1898 fmtname = "vfsv0"; 1899 break; 1900 case QFMT_VFS_V1: 1901 fmtname = "vfsv1"; 1902 break; 1903 } 1904 seq_printf(seq, ",jqfmt=%s", fmtname); 1905 } 1906 1907 if (sbi->s_qf_names[USRQUOTA]) 1908 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1909 1910 if (sbi->s_qf_names[GRPQUOTA]) 1911 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1912 #endif 1913 } 1914 1915 static const char *token2str(int token) 1916 { 1917 const struct match_token *t; 1918 1919 for (t = tokens; t->token != Opt_err; t++) 1920 if (t->token == token && !strchr(t->pattern, '=')) 1921 break; 1922 return t->pattern; 1923 } 1924 1925 /* 1926 * Show an option if 1927 * - it's set to a non-default value OR 1928 * - if the per-sb default is different from the global default 1929 */ 1930 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1931 int nodefs) 1932 { 1933 struct ext4_sb_info *sbi = EXT4_SB(sb); 1934 struct ext4_super_block *es = sbi->s_es; 1935 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1936 const struct mount_opts *m; 1937 char sep = nodefs ? '\n' : ','; 1938 1939 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1940 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1941 1942 if (sbi->s_sb_block != 1) 1943 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1944 1945 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1946 int want_set = m->flags & MOPT_SET; 1947 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1948 (m->flags & MOPT_CLEAR_ERR)) 1949 continue; 1950 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1951 continue; /* skip if same as the default */ 1952 if ((want_set && 1953 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1954 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1955 continue; /* select Opt_noFoo vs Opt_Foo */ 1956 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1957 } 1958 1959 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1960 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1961 SEQ_OPTS_PRINT("resuid=%u", 1962 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1963 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1964 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1965 SEQ_OPTS_PRINT("resgid=%u", 1966 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1967 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1968 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1969 SEQ_OPTS_PUTS("errors=remount-ro"); 1970 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1971 SEQ_OPTS_PUTS("errors=continue"); 1972 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1973 SEQ_OPTS_PUTS("errors=panic"); 1974 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1975 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1976 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1977 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1978 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1979 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1980 if (sb->s_flags & MS_I_VERSION) 1981 SEQ_OPTS_PUTS("i_version"); 1982 if (nodefs || sbi->s_stripe) 1983 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1984 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1985 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1986 SEQ_OPTS_PUTS("data=journal"); 1987 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1988 SEQ_OPTS_PUTS("data=ordered"); 1989 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1990 SEQ_OPTS_PUTS("data=writeback"); 1991 } 1992 if (nodefs || 1993 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1994 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1995 sbi->s_inode_readahead_blks); 1996 1997 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1998 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1999 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2000 if (nodefs || sbi->s_max_dir_size_kb) 2001 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2002 if (test_opt(sb, DATA_ERR_ABORT)) 2003 SEQ_OPTS_PUTS("data_err=abort"); 2004 2005 ext4_show_quota_options(seq, sb); 2006 return 0; 2007 } 2008 2009 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2010 { 2011 return _ext4_show_options(seq, root->d_sb, 0); 2012 } 2013 2014 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2015 { 2016 struct super_block *sb = seq->private; 2017 int rc; 2018 2019 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2020 rc = _ext4_show_options(seq, sb, 1); 2021 seq_puts(seq, "\n"); 2022 return rc; 2023 } 2024 2025 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2026 int read_only) 2027 { 2028 struct ext4_sb_info *sbi = EXT4_SB(sb); 2029 int res = 0; 2030 2031 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2032 ext4_msg(sb, KERN_ERR, "revision level too high, " 2033 "forcing read-only mode"); 2034 res = MS_RDONLY; 2035 } 2036 if (read_only) 2037 goto done; 2038 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2039 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2040 "running e2fsck is recommended"); 2041 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2042 ext4_msg(sb, KERN_WARNING, 2043 "warning: mounting fs with errors, " 2044 "running e2fsck is recommended"); 2045 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2046 le16_to_cpu(es->s_mnt_count) >= 2047 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2048 ext4_msg(sb, KERN_WARNING, 2049 "warning: maximal mount count reached, " 2050 "running e2fsck is recommended"); 2051 else if (le32_to_cpu(es->s_checkinterval) && 2052 (le32_to_cpu(es->s_lastcheck) + 2053 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2054 ext4_msg(sb, KERN_WARNING, 2055 "warning: checktime reached, " 2056 "running e2fsck is recommended"); 2057 if (!sbi->s_journal) 2058 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2059 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2060 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2061 le16_add_cpu(&es->s_mnt_count, 1); 2062 es->s_mtime = cpu_to_le32(get_seconds()); 2063 ext4_update_dynamic_rev(sb); 2064 if (sbi->s_journal) 2065 ext4_set_feature_journal_needs_recovery(sb); 2066 2067 ext4_commit_super(sb, 1); 2068 done: 2069 if (test_opt(sb, DEBUG)) 2070 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2071 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2072 sb->s_blocksize, 2073 sbi->s_groups_count, 2074 EXT4_BLOCKS_PER_GROUP(sb), 2075 EXT4_INODES_PER_GROUP(sb), 2076 sbi->s_mount_opt, sbi->s_mount_opt2); 2077 2078 cleancache_init_fs(sb); 2079 return res; 2080 } 2081 2082 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2083 { 2084 struct ext4_sb_info *sbi = EXT4_SB(sb); 2085 struct flex_groups *new_groups; 2086 int size; 2087 2088 if (!sbi->s_log_groups_per_flex) 2089 return 0; 2090 2091 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2092 if (size <= sbi->s_flex_groups_allocated) 2093 return 0; 2094 2095 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2096 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2097 if (!new_groups) { 2098 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2099 size / (int) sizeof(struct flex_groups)); 2100 return -ENOMEM; 2101 } 2102 2103 if (sbi->s_flex_groups) { 2104 memcpy(new_groups, sbi->s_flex_groups, 2105 (sbi->s_flex_groups_allocated * 2106 sizeof(struct flex_groups))); 2107 kvfree(sbi->s_flex_groups); 2108 } 2109 sbi->s_flex_groups = new_groups; 2110 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2111 return 0; 2112 } 2113 2114 static int ext4_fill_flex_info(struct super_block *sb) 2115 { 2116 struct ext4_sb_info *sbi = EXT4_SB(sb); 2117 struct ext4_group_desc *gdp = NULL; 2118 ext4_group_t flex_group; 2119 int i, err; 2120 2121 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2122 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2123 sbi->s_log_groups_per_flex = 0; 2124 return 1; 2125 } 2126 2127 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2128 if (err) 2129 goto failed; 2130 2131 for (i = 0; i < sbi->s_groups_count; i++) { 2132 gdp = ext4_get_group_desc(sb, i, NULL); 2133 2134 flex_group = ext4_flex_group(sbi, i); 2135 atomic_add(ext4_free_inodes_count(sb, gdp), 2136 &sbi->s_flex_groups[flex_group].free_inodes); 2137 atomic64_add(ext4_free_group_clusters(sb, gdp), 2138 &sbi->s_flex_groups[flex_group].free_clusters); 2139 atomic_add(ext4_used_dirs_count(sb, gdp), 2140 &sbi->s_flex_groups[flex_group].used_dirs); 2141 } 2142 2143 return 1; 2144 failed: 2145 return 0; 2146 } 2147 2148 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2149 struct ext4_group_desc *gdp) 2150 { 2151 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2152 __u16 crc = 0; 2153 __le32 le_group = cpu_to_le32(block_group); 2154 struct ext4_sb_info *sbi = EXT4_SB(sb); 2155 2156 if (ext4_has_metadata_csum(sbi->s_sb)) { 2157 /* Use new metadata_csum algorithm */ 2158 __u32 csum32; 2159 __u16 dummy_csum = 0; 2160 2161 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2162 sizeof(le_group)); 2163 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2165 sizeof(dummy_csum)); 2166 offset += sizeof(dummy_csum); 2167 if (offset < sbi->s_desc_size) 2168 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2169 sbi->s_desc_size - offset); 2170 2171 crc = csum32 & 0xFFFF; 2172 goto out; 2173 } 2174 2175 /* old crc16 code */ 2176 if (!ext4_has_feature_gdt_csum(sb)) 2177 return 0; 2178 2179 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2180 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2181 crc = crc16(crc, (__u8 *)gdp, offset); 2182 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2183 /* for checksum of struct ext4_group_desc do the rest...*/ 2184 if (ext4_has_feature_64bit(sb) && 2185 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2186 crc = crc16(crc, (__u8 *)gdp + offset, 2187 le16_to_cpu(sbi->s_es->s_desc_size) - 2188 offset); 2189 2190 out: 2191 return cpu_to_le16(crc); 2192 } 2193 2194 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2195 struct ext4_group_desc *gdp) 2196 { 2197 if (ext4_has_group_desc_csum(sb) && 2198 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2199 return 0; 2200 2201 return 1; 2202 } 2203 2204 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2205 struct ext4_group_desc *gdp) 2206 { 2207 if (!ext4_has_group_desc_csum(sb)) 2208 return; 2209 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2210 } 2211 2212 /* Called at mount-time, super-block is locked */ 2213 static int ext4_check_descriptors(struct super_block *sb, 2214 ext4_fsblk_t sb_block, 2215 ext4_group_t *first_not_zeroed) 2216 { 2217 struct ext4_sb_info *sbi = EXT4_SB(sb); 2218 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2219 ext4_fsblk_t last_block; 2220 ext4_fsblk_t block_bitmap; 2221 ext4_fsblk_t inode_bitmap; 2222 ext4_fsblk_t inode_table; 2223 int flexbg_flag = 0; 2224 ext4_group_t i, grp = sbi->s_groups_count; 2225 2226 if (ext4_has_feature_flex_bg(sb)) 2227 flexbg_flag = 1; 2228 2229 ext4_debug("Checking group descriptors"); 2230 2231 for (i = 0; i < sbi->s_groups_count; i++) { 2232 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2233 2234 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2235 last_block = ext4_blocks_count(sbi->s_es) - 1; 2236 else 2237 last_block = first_block + 2238 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2239 2240 if ((grp == sbi->s_groups_count) && 2241 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2242 grp = i; 2243 2244 block_bitmap = ext4_block_bitmap(sb, gdp); 2245 if (block_bitmap == sb_block) { 2246 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2247 "Block bitmap for group %u overlaps " 2248 "superblock", i); 2249 } 2250 if (block_bitmap < first_block || block_bitmap > last_block) { 2251 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2252 "Block bitmap for group %u not in group " 2253 "(block %llu)!", i, block_bitmap); 2254 return 0; 2255 } 2256 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2257 if (inode_bitmap == sb_block) { 2258 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2259 "Inode bitmap for group %u overlaps " 2260 "superblock", i); 2261 } 2262 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2263 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2264 "Inode bitmap for group %u not in group " 2265 "(block %llu)!", i, inode_bitmap); 2266 return 0; 2267 } 2268 inode_table = ext4_inode_table(sb, gdp); 2269 if (inode_table == sb_block) { 2270 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2271 "Inode table for group %u overlaps " 2272 "superblock", i); 2273 } 2274 if (inode_table < first_block || 2275 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2276 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2277 "Inode table for group %u not in group " 2278 "(block %llu)!", i, inode_table); 2279 return 0; 2280 } 2281 ext4_lock_group(sb, i); 2282 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2283 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2284 "Checksum for group %u failed (%u!=%u)", 2285 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2286 gdp)), le16_to_cpu(gdp->bg_checksum)); 2287 if (!(sb->s_flags & MS_RDONLY)) { 2288 ext4_unlock_group(sb, i); 2289 return 0; 2290 } 2291 } 2292 ext4_unlock_group(sb, i); 2293 if (!flexbg_flag) 2294 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2295 } 2296 if (NULL != first_not_zeroed) 2297 *first_not_zeroed = grp; 2298 return 1; 2299 } 2300 2301 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2302 * the superblock) which were deleted from all directories, but held open by 2303 * a process at the time of a crash. We walk the list and try to delete these 2304 * inodes at recovery time (only with a read-write filesystem). 2305 * 2306 * In order to keep the orphan inode chain consistent during traversal (in 2307 * case of crash during recovery), we link each inode into the superblock 2308 * orphan list_head and handle it the same way as an inode deletion during 2309 * normal operation (which journals the operations for us). 2310 * 2311 * We only do an iget() and an iput() on each inode, which is very safe if we 2312 * accidentally point at an in-use or already deleted inode. The worst that 2313 * can happen in this case is that we get a "bit already cleared" message from 2314 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2315 * e2fsck was run on this filesystem, and it must have already done the orphan 2316 * inode cleanup for us, so we can safely abort without any further action. 2317 */ 2318 static void ext4_orphan_cleanup(struct super_block *sb, 2319 struct ext4_super_block *es) 2320 { 2321 unsigned int s_flags = sb->s_flags; 2322 int nr_orphans = 0, nr_truncates = 0; 2323 #ifdef CONFIG_QUOTA 2324 int i; 2325 #endif 2326 if (!es->s_last_orphan) { 2327 jbd_debug(4, "no orphan inodes to clean up\n"); 2328 return; 2329 } 2330 2331 if (bdev_read_only(sb->s_bdev)) { 2332 ext4_msg(sb, KERN_ERR, "write access " 2333 "unavailable, skipping orphan cleanup"); 2334 return; 2335 } 2336 2337 /* Check if feature set would not allow a r/w mount */ 2338 if (!ext4_feature_set_ok(sb, 0)) { 2339 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2340 "unknown ROCOMPAT features"); 2341 return; 2342 } 2343 2344 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2345 /* don't clear list on RO mount w/ errors */ 2346 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2347 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2348 "clearing orphan list.\n"); 2349 es->s_last_orphan = 0; 2350 } 2351 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2352 return; 2353 } 2354 2355 if (s_flags & MS_RDONLY) { 2356 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2357 sb->s_flags &= ~MS_RDONLY; 2358 } 2359 #ifdef CONFIG_QUOTA 2360 /* Needed for iput() to work correctly and not trash data */ 2361 sb->s_flags |= MS_ACTIVE; 2362 /* Turn on quotas so that they are updated correctly */ 2363 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2364 if (EXT4_SB(sb)->s_qf_names[i]) { 2365 int ret = ext4_quota_on_mount(sb, i); 2366 if (ret < 0) 2367 ext4_msg(sb, KERN_ERR, 2368 "Cannot turn on journaled " 2369 "quota: error %d", ret); 2370 } 2371 } 2372 #endif 2373 2374 while (es->s_last_orphan) { 2375 struct inode *inode; 2376 2377 /* 2378 * We may have encountered an error during cleanup; if 2379 * so, skip the rest. 2380 */ 2381 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2382 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2383 es->s_last_orphan = 0; 2384 break; 2385 } 2386 2387 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2388 if (IS_ERR(inode)) { 2389 es->s_last_orphan = 0; 2390 break; 2391 } 2392 2393 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2394 dquot_initialize(inode); 2395 if (inode->i_nlink) { 2396 if (test_opt(sb, DEBUG)) 2397 ext4_msg(sb, KERN_DEBUG, 2398 "%s: truncating inode %lu to %lld bytes", 2399 __func__, inode->i_ino, inode->i_size); 2400 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2401 inode->i_ino, inode->i_size); 2402 inode_lock(inode); 2403 truncate_inode_pages(inode->i_mapping, inode->i_size); 2404 ext4_truncate(inode); 2405 inode_unlock(inode); 2406 nr_truncates++; 2407 } else { 2408 if (test_opt(sb, DEBUG)) 2409 ext4_msg(sb, KERN_DEBUG, 2410 "%s: deleting unreferenced inode %lu", 2411 __func__, inode->i_ino); 2412 jbd_debug(2, "deleting unreferenced inode %lu\n", 2413 inode->i_ino); 2414 nr_orphans++; 2415 } 2416 iput(inode); /* The delete magic happens here! */ 2417 } 2418 2419 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2420 2421 if (nr_orphans) 2422 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2423 PLURAL(nr_orphans)); 2424 if (nr_truncates) 2425 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2426 PLURAL(nr_truncates)); 2427 #ifdef CONFIG_QUOTA 2428 /* Turn quotas off */ 2429 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2430 if (sb_dqopt(sb)->files[i]) 2431 dquot_quota_off(sb, i); 2432 } 2433 #endif 2434 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2435 } 2436 2437 /* 2438 * Maximal extent format file size. 2439 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2440 * extent format containers, within a sector_t, and within i_blocks 2441 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2442 * so that won't be a limiting factor. 2443 * 2444 * However there is other limiting factor. We do store extents in the form 2445 * of starting block and length, hence the resulting length of the extent 2446 * covering maximum file size must fit into on-disk format containers as 2447 * well. Given that length is always by 1 unit bigger than max unit (because 2448 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2449 * 2450 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2451 */ 2452 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2453 { 2454 loff_t res; 2455 loff_t upper_limit = MAX_LFS_FILESIZE; 2456 2457 /* small i_blocks in vfs inode? */ 2458 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2459 /* 2460 * CONFIG_LBDAF is not enabled implies the inode 2461 * i_block represent total blocks in 512 bytes 2462 * 32 == size of vfs inode i_blocks * 8 2463 */ 2464 upper_limit = (1LL << 32) - 1; 2465 2466 /* total blocks in file system block size */ 2467 upper_limit >>= (blkbits - 9); 2468 upper_limit <<= blkbits; 2469 } 2470 2471 /* 2472 * 32-bit extent-start container, ee_block. We lower the maxbytes 2473 * by one fs block, so ee_len can cover the extent of maximum file 2474 * size 2475 */ 2476 res = (1LL << 32) - 1; 2477 res <<= blkbits; 2478 2479 /* Sanity check against vm- & vfs- imposed limits */ 2480 if (res > upper_limit) 2481 res = upper_limit; 2482 2483 return res; 2484 } 2485 2486 /* 2487 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2488 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2489 * We need to be 1 filesystem block less than the 2^48 sector limit. 2490 */ 2491 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2492 { 2493 loff_t res = EXT4_NDIR_BLOCKS; 2494 int meta_blocks; 2495 loff_t upper_limit; 2496 /* This is calculated to be the largest file size for a dense, block 2497 * mapped file such that the file's total number of 512-byte sectors, 2498 * including data and all indirect blocks, does not exceed (2^48 - 1). 2499 * 2500 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2501 * number of 512-byte sectors of the file. 2502 */ 2503 2504 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2505 /* 2506 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2507 * the inode i_block field represents total file blocks in 2508 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2509 */ 2510 upper_limit = (1LL << 32) - 1; 2511 2512 /* total blocks in file system block size */ 2513 upper_limit >>= (bits - 9); 2514 2515 } else { 2516 /* 2517 * We use 48 bit ext4_inode i_blocks 2518 * With EXT4_HUGE_FILE_FL set the i_blocks 2519 * represent total number of blocks in 2520 * file system block size 2521 */ 2522 upper_limit = (1LL << 48) - 1; 2523 2524 } 2525 2526 /* indirect blocks */ 2527 meta_blocks = 1; 2528 /* double indirect blocks */ 2529 meta_blocks += 1 + (1LL << (bits-2)); 2530 /* tripple indirect blocks */ 2531 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2532 2533 upper_limit -= meta_blocks; 2534 upper_limit <<= bits; 2535 2536 res += 1LL << (bits-2); 2537 res += 1LL << (2*(bits-2)); 2538 res += 1LL << (3*(bits-2)); 2539 res <<= bits; 2540 if (res > upper_limit) 2541 res = upper_limit; 2542 2543 if (res > MAX_LFS_FILESIZE) 2544 res = MAX_LFS_FILESIZE; 2545 2546 return res; 2547 } 2548 2549 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2550 ext4_fsblk_t logical_sb_block, int nr) 2551 { 2552 struct ext4_sb_info *sbi = EXT4_SB(sb); 2553 ext4_group_t bg, first_meta_bg; 2554 int has_super = 0; 2555 2556 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2557 2558 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2559 return logical_sb_block + nr + 1; 2560 bg = sbi->s_desc_per_block * nr; 2561 if (ext4_bg_has_super(sb, bg)) 2562 has_super = 1; 2563 2564 /* 2565 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2566 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2567 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2568 * compensate. 2569 */ 2570 if (sb->s_blocksize == 1024 && nr == 0 && 2571 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2572 has_super++; 2573 2574 return (has_super + ext4_group_first_block_no(sb, bg)); 2575 } 2576 2577 /** 2578 * ext4_get_stripe_size: Get the stripe size. 2579 * @sbi: In memory super block info 2580 * 2581 * If we have specified it via mount option, then 2582 * use the mount option value. If the value specified at mount time is 2583 * greater than the blocks per group use the super block value. 2584 * If the super block value is greater than blocks per group return 0. 2585 * Allocator needs it be less than blocks per group. 2586 * 2587 */ 2588 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2589 { 2590 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2591 unsigned long stripe_width = 2592 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2593 int ret; 2594 2595 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2596 ret = sbi->s_stripe; 2597 else if (stripe_width <= sbi->s_blocks_per_group) 2598 ret = stripe_width; 2599 else if (stride <= sbi->s_blocks_per_group) 2600 ret = stride; 2601 else 2602 ret = 0; 2603 2604 /* 2605 * If the stripe width is 1, this makes no sense and 2606 * we set it to 0 to turn off stripe handling code. 2607 */ 2608 if (ret <= 1) 2609 ret = 0; 2610 2611 return ret; 2612 } 2613 2614 /* 2615 * Check whether this filesystem can be mounted based on 2616 * the features present and the RDONLY/RDWR mount requested. 2617 * Returns 1 if this filesystem can be mounted as requested, 2618 * 0 if it cannot be. 2619 */ 2620 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2621 { 2622 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2623 ext4_msg(sb, KERN_ERR, 2624 "Couldn't mount because of " 2625 "unsupported optional features (%x)", 2626 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2627 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2628 return 0; 2629 } 2630 2631 if (readonly) 2632 return 1; 2633 2634 if (ext4_has_feature_readonly(sb)) { 2635 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2636 sb->s_flags |= MS_RDONLY; 2637 return 1; 2638 } 2639 2640 /* Check that feature set is OK for a read-write mount */ 2641 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2642 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2643 "unsupported optional features (%x)", 2644 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2645 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2646 return 0; 2647 } 2648 /* 2649 * Large file size enabled file system can only be mounted 2650 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2651 */ 2652 if (ext4_has_feature_huge_file(sb)) { 2653 if (sizeof(blkcnt_t) < sizeof(u64)) { 2654 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2655 "cannot be mounted RDWR without " 2656 "CONFIG_LBDAF"); 2657 return 0; 2658 } 2659 } 2660 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2661 ext4_msg(sb, KERN_ERR, 2662 "Can't support bigalloc feature without " 2663 "extents feature\n"); 2664 return 0; 2665 } 2666 2667 #ifndef CONFIG_QUOTA 2668 if (ext4_has_feature_quota(sb) && !readonly) { 2669 ext4_msg(sb, KERN_ERR, 2670 "Filesystem with quota feature cannot be mounted RDWR " 2671 "without CONFIG_QUOTA"); 2672 return 0; 2673 } 2674 if (ext4_has_feature_project(sb) && !readonly) { 2675 ext4_msg(sb, KERN_ERR, 2676 "Filesystem with project quota feature cannot be mounted RDWR " 2677 "without CONFIG_QUOTA"); 2678 return 0; 2679 } 2680 #endif /* CONFIG_QUOTA */ 2681 return 1; 2682 } 2683 2684 /* 2685 * This function is called once a day if we have errors logged 2686 * on the file system 2687 */ 2688 static void print_daily_error_info(unsigned long arg) 2689 { 2690 struct super_block *sb = (struct super_block *) arg; 2691 struct ext4_sb_info *sbi; 2692 struct ext4_super_block *es; 2693 2694 sbi = EXT4_SB(sb); 2695 es = sbi->s_es; 2696 2697 if (es->s_error_count) 2698 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2699 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2700 le32_to_cpu(es->s_error_count)); 2701 if (es->s_first_error_time) { 2702 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2703 sb->s_id, le32_to_cpu(es->s_first_error_time), 2704 (int) sizeof(es->s_first_error_func), 2705 es->s_first_error_func, 2706 le32_to_cpu(es->s_first_error_line)); 2707 if (es->s_first_error_ino) 2708 printk(": inode %u", 2709 le32_to_cpu(es->s_first_error_ino)); 2710 if (es->s_first_error_block) 2711 printk(": block %llu", (unsigned long long) 2712 le64_to_cpu(es->s_first_error_block)); 2713 printk("\n"); 2714 } 2715 if (es->s_last_error_time) { 2716 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2717 sb->s_id, le32_to_cpu(es->s_last_error_time), 2718 (int) sizeof(es->s_last_error_func), 2719 es->s_last_error_func, 2720 le32_to_cpu(es->s_last_error_line)); 2721 if (es->s_last_error_ino) 2722 printk(": inode %u", 2723 le32_to_cpu(es->s_last_error_ino)); 2724 if (es->s_last_error_block) 2725 printk(": block %llu", (unsigned long long) 2726 le64_to_cpu(es->s_last_error_block)); 2727 printk("\n"); 2728 } 2729 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2730 } 2731 2732 /* Find next suitable group and run ext4_init_inode_table */ 2733 static int ext4_run_li_request(struct ext4_li_request *elr) 2734 { 2735 struct ext4_group_desc *gdp = NULL; 2736 ext4_group_t group, ngroups; 2737 struct super_block *sb; 2738 unsigned long timeout = 0; 2739 int ret = 0; 2740 2741 sb = elr->lr_super; 2742 ngroups = EXT4_SB(sb)->s_groups_count; 2743 2744 sb_start_write(sb); 2745 for (group = elr->lr_next_group; group < ngroups; group++) { 2746 gdp = ext4_get_group_desc(sb, group, NULL); 2747 if (!gdp) { 2748 ret = 1; 2749 break; 2750 } 2751 2752 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2753 break; 2754 } 2755 2756 if (group >= ngroups) 2757 ret = 1; 2758 2759 if (!ret) { 2760 timeout = jiffies; 2761 ret = ext4_init_inode_table(sb, group, 2762 elr->lr_timeout ? 0 : 1); 2763 if (elr->lr_timeout == 0) { 2764 timeout = (jiffies - timeout) * 2765 elr->lr_sbi->s_li_wait_mult; 2766 elr->lr_timeout = timeout; 2767 } 2768 elr->lr_next_sched = jiffies + elr->lr_timeout; 2769 elr->lr_next_group = group + 1; 2770 } 2771 sb_end_write(sb); 2772 2773 return ret; 2774 } 2775 2776 /* 2777 * Remove lr_request from the list_request and free the 2778 * request structure. Should be called with li_list_mtx held 2779 */ 2780 static void ext4_remove_li_request(struct ext4_li_request *elr) 2781 { 2782 struct ext4_sb_info *sbi; 2783 2784 if (!elr) 2785 return; 2786 2787 sbi = elr->lr_sbi; 2788 2789 list_del(&elr->lr_request); 2790 sbi->s_li_request = NULL; 2791 kfree(elr); 2792 } 2793 2794 static void ext4_unregister_li_request(struct super_block *sb) 2795 { 2796 mutex_lock(&ext4_li_mtx); 2797 if (!ext4_li_info) { 2798 mutex_unlock(&ext4_li_mtx); 2799 return; 2800 } 2801 2802 mutex_lock(&ext4_li_info->li_list_mtx); 2803 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2804 mutex_unlock(&ext4_li_info->li_list_mtx); 2805 mutex_unlock(&ext4_li_mtx); 2806 } 2807 2808 static struct task_struct *ext4_lazyinit_task; 2809 2810 /* 2811 * This is the function where ext4lazyinit thread lives. It walks 2812 * through the request list searching for next scheduled filesystem. 2813 * When such a fs is found, run the lazy initialization request 2814 * (ext4_rn_li_request) and keep track of the time spend in this 2815 * function. Based on that time we compute next schedule time of 2816 * the request. When walking through the list is complete, compute 2817 * next waking time and put itself into sleep. 2818 */ 2819 static int ext4_lazyinit_thread(void *arg) 2820 { 2821 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2822 struct list_head *pos, *n; 2823 struct ext4_li_request *elr; 2824 unsigned long next_wakeup, cur; 2825 2826 BUG_ON(NULL == eli); 2827 2828 cont_thread: 2829 while (true) { 2830 next_wakeup = MAX_JIFFY_OFFSET; 2831 2832 mutex_lock(&eli->li_list_mtx); 2833 if (list_empty(&eli->li_request_list)) { 2834 mutex_unlock(&eli->li_list_mtx); 2835 goto exit_thread; 2836 } 2837 2838 list_for_each_safe(pos, n, &eli->li_request_list) { 2839 elr = list_entry(pos, struct ext4_li_request, 2840 lr_request); 2841 2842 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2843 if (ext4_run_li_request(elr) != 0) { 2844 /* error, remove the lazy_init job */ 2845 ext4_remove_li_request(elr); 2846 continue; 2847 } 2848 } 2849 2850 if (time_before(elr->lr_next_sched, next_wakeup)) 2851 next_wakeup = elr->lr_next_sched; 2852 } 2853 mutex_unlock(&eli->li_list_mtx); 2854 2855 try_to_freeze(); 2856 2857 cur = jiffies; 2858 if ((time_after_eq(cur, next_wakeup)) || 2859 (MAX_JIFFY_OFFSET == next_wakeup)) { 2860 cond_resched(); 2861 continue; 2862 } 2863 2864 schedule_timeout_interruptible(next_wakeup - cur); 2865 2866 if (kthread_should_stop()) { 2867 ext4_clear_request_list(); 2868 goto exit_thread; 2869 } 2870 } 2871 2872 exit_thread: 2873 /* 2874 * It looks like the request list is empty, but we need 2875 * to check it under the li_list_mtx lock, to prevent any 2876 * additions into it, and of course we should lock ext4_li_mtx 2877 * to atomically free the list and ext4_li_info, because at 2878 * this point another ext4 filesystem could be registering 2879 * new one. 2880 */ 2881 mutex_lock(&ext4_li_mtx); 2882 mutex_lock(&eli->li_list_mtx); 2883 if (!list_empty(&eli->li_request_list)) { 2884 mutex_unlock(&eli->li_list_mtx); 2885 mutex_unlock(&ext4_li_mtx); 2886 goto cont_thread; 2887 } 2888 mutex_unlock(&eli->li_list_mtx); 2889 kfree(ext4_li_info); 2890 ext4_li_info = NULL; 2891 mutex_unlock(&ext4_li_mtx); 2892 2893 return 0; 2894 } 2895 2896 static void ext4_clear_request_list(void) 2897 { 2898 struct list_head *pos, *n; 2899 struct ext4_li_request *elr; 2900 2901 mutex_lock(&ext4_li_info->li_list_mtx); 2902 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2903 elr = list_entry(pos, struct ext4_li_request, 2904 lr_request); 2905 ext4_remove_li_request(elr); 2906 } 2907 mutex_unlock(&ext4_li_info->li_list_mtx); 2908 } 2909 2910 static int ext4_run_lazyinit_thread(void) 2911 { 2912 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2913 ext4_li_info, "ext4lazyinit"); 2914 if (IS_ERR(ext4_lazyinit_task)) { 2915 int err = PTR_ERR(ext4_lazyinit_task); 2916 ext4_clear_request_list(); 2917 kfree(ext4_li_info); 2918 ext4_li_info = NULL; 2919 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2920 "initialization thread\n", 2921 err); 2922 return err; 2923 } 2924 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2925 return 0; 2926 } 2927 2928 /* 2929 * Check whether it make sense to run itable init. thread or not. 2930 * If there is at least one uninitialized inode table, return 2931 * corresponding group number, else the loop goes through all 2932 * groups and return total number of groups. 2933 */ 2934 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2935 { 2936 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2937 struct ext4_group_desc *gdp = NULL; 2938 2939 for (group = 0; group < ngroups; group++) { 2940 gdp = ext4_get_group_desc(sb, group, NULL); 2941 if (!gdp) 2942 continue; 2943 2944 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2945 break; 2946 } 2947 2948 return group; 2949 } 2950 2951 static int ext4_li_info_new(void) 2952 { 2953 struct ext4_lazy_init *eli = NULL; 2954 2955 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2956 if (!eli) 2957 return -ENOMEM; 2958 2959 INIT_LIST_HEAD(&eli->li_request_list); 2960 mutex_init(&eli->li_list_mtx); 2961 2962 eli->li_state |= EXT4_LAZYINIT_QUIT; 2963 2964 ext4_li_info = eli; 2965 2966 return 0; 2967 } 2968 2969 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2970 ext4_group_t start) 2971 { 2972 struct ext4_sb_info *sbi = EXT4_SB(sb); 2973 struct ext4_li_request *elr; 2974 2975 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2976 if (!elr) 2977 return NULL; 2978 2979 elr->lr_super = sb; 2980 elr->lr_sbi = sbi; 2981 elr->lr_next_group = start; 2982 2983 /* 2984 * Randomize first schedule time of the request to 2985 * spread the inode table initialization requests 2986 * better. 2987 */ 2988 elr->lr_next_sched = jiffies + (prandom_u32() % 2989 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2990 return elr; 2991 } 2992 2993 int ext4_register_li_request(struct super_block *sb, 2994 ext4_group_t first_not_zeroed) 2995 { 2996 struct ext4_sb_info *sbi = EXT4_SB(sb); 2997 struct ext4_li_request *elr = NULL; 2998 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2999 int ret = 0; 3000 3001 mutex_lock(&ext4_li_mtx); 3002 if (sbi->s_li_request != NULL) { 3003 /* 3004 * Reset timeout so it can be computed again, because 3005 * s_li_wait_mult might have changed. 3006 */ 3007 sbi->s_li_request->lr_timeout = 0; 3008 goto out; 3009 } 3010 3011 if (first_not_zeroed == ngroups || 3012 (sb->s_flags & MS_RDONLY) || 3013 !test_opt(sb, INIT_INODE_TABLE)) 3014 goto out; 3015 3016 elr = ext4_li_request_new(sb, first_not_zeroed); 3017 if (!elr) { 3018 ret = -ENOMEM; 3019 goto out; 3020 } 3021 3022 if (NULL == ext4_li_info) { 3023 ret = ext4_li_info_new(); 3024 if (ret) 3025 goto out; 3026 } 3027 3028 mutex_lock(&ext4_li_info->li_list_mtx); 3029 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3030 mutex_unlock(&ext4_li_info->li_list_mtx); 3031 3032 sbi->s_li_request = elr; 3033 /* 3034 * set elr to NULL here since it has been inserted to 3035 * the request_list and the removal and free of it is 3036 * handled by ext4_clear_request_list from now on. 3037 */ 3038 elr = NULL; 3039 3040 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3041 ret = ext4_run_lazyinit_thread(); 3042 if (ret) 3043 goto out; 3044 } 3045 out: 3046 mutex_unlock(&ext4_li_mtx); 3047 if (ret) 3048 kfree(elr); 3049 return ret; 3050 } 3051 3052 /* 3053 * We do not need to lock anything since this is called on 3054 * module unload. 3055 */ 3056 static void ext4_destroy_lazyinit_thread(void) 3057 { 3058 /* 3059 * If thread exited earlier 3060 * there's nothing to be done. 3061 */ 3062 if (!ext4_li_info || !ext4_lazyinit_task) 3063 return; 3064 3065 kthread_stop(ext4_lazyinit_task); 3066 } 3067 3068 static int set_journal_csum_feature_set(struct super_block *sb) 3069 { 3070 int ret = 1; 3071 int compat, incompat; 3072 struct ext4_sb_info *sbi = EXT4_SB(sb); 3073 3074 if (ext4_has_metadata_csum(sb)) { 3075 /* journal checksum v3 */ 3076 compat = 0; 3077 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3078 } else { 3079 /* journal checksum v1 */ 3080 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3081 incompat = 0; 3082 } 3083 3084 jbd2_journal_clear_features(sbi->s_journal, 3085 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3086 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3087 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3088 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3089 ret = jbd2_journal_set_features(sbi->s_journal, 3090 compat, 0, 3091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3092 incompat); 3093 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3094 ret = jbd2_journal_set_features(sbi->s_journal, 3095 compat, 0, 3096 incompat); 3097 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3098 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3099 } else { 3100 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3101 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3102 } 3103 3104 return ret; 3105 } 3106 3107 /* 3108 * Note: calculating the overhead so we can be compatible with 3109 * historical BSD practice is quite difficult in the face of 3110 * clusters/bigalloc. This is because multiple metadata blocks from 3111 * different block group can end up in the same allocation cluster. 3112 * Calculating the exact overhead in the face of clustered allocation 3113 * requires either O(all block bitmaps) in memory or O(number of block 3114 * groups**2) in time. We will still calculate the superblock for 3115 * older file systems --- and if we come across with a bigalloc file 3116 * system with zero in s_overhead_clusters the estimate will be close to 3117 * correct especially for very large cluster sizes --- but for newer 3118 * file systems, it's better to calculate this figure once at mkfs 3119 * time, and store it in the superblock. If the superblock value is 3120 * present (even for non-bigalloc file systems), we will use it. 3121 */ 3122 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3123 char *buf) 3124 { 3125 struct ext4_sb_info *sbi = EXT4_SB(sb); 3126 struct ext4_group_desc *gdp; 3127 ext4_fsblk_t first_block, last_block, b; 3128 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3129 int s, j, count = 0; 3130 3131 if (!ext4_has_feature_bigalloc(sb)) 3132 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3133 sbi->s_itb_per_group + 2); 3134 3135 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3136 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3137 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3138 for (i = 0; i < ngroups; i++) { 3139 gdp = ext4_get_group_desc(sb, i, NULL); 3140 b = ext4_block_bitmap(sb, gdp); 3141 if (b >= first_block && b <= last_block) { 3142 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3143 count++; 3144 } 3145 b = ext4_inode_bitmap(sb, gdp); 3146 if (b >= first_block && b <= last_block) { 3147 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3148 count++; 3149 } 3150 b = ext4_inode_table(sb, gdp); 3151 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3152 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3153 int c = EXT4_B2C(sbi, b - first_block); 3154 ext4_set_bit(c, buf); 3155 count++; 3156 } 3157 if (i != grp) 3158 continue; 3159 s = 0; 3160 if (ext4_bg_has_super(sb, grp)) { 3161 ext4_set_bit(s++, buf); 3162 count++; 3163 } 3164 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3165 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3166 count++; 3167 } 3168 } 3169 if (!count) 3170 return 0; 3171 return EXT4_CLUSTERS_PER_GROUP(sb) - 3172 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3173 } 3174 3175 /* 3176 * Compute the overhead and stash it in sbi->s_overhead 3177 */ 3178 int ext4_calculate_overhead(struct super_block *sb) 3179 { 3180 struct ext4_sb_info *sbi = EXT4_SB(sb); 3181 struct ext4_super_block *es = sbi->s_es; 3182 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3183 ext4_fsblk_t overhead = 0; 3184 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3185 3186 if (!buf) 3187 return -ENOMEM; 3188 3189 /* 3190 * Compute the overhead (FS structures). This is constant 3191 * for a given filesystem unless the number of block groups 3192 * changes so we cache the previous value until it does. 3193 */ 3194 3195 /* 3196 * All of the blocks before first_data_block are overhead 3197 */ 3198 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3199 3200 /* 3201 * Add the overhead found in each block group 3202 */ 3203 for (i = 0; i < ngroups; i++) { 3204 int blks; 3205 3206 blks = count_overhead(sb, i, buf); 3207 overhead += blks; 3208 if (blks) 3209 memset(buf, 0, PAGE_SIZE); 3210 cond_resched(); 3211 } 3212 /* Add the internal journal blocks as well */ 3213 if (sbi->s_journal && !sbi->journal_bdev) 3214 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3215 3216 sbi->s_overhead = overhead; 3217 smp_wmb(); 3218 free_page((unsigned long) buf); 3219 return 0; 3220 } 3221 3222 static void ext4_set_resv_clusters(struct super_block *sb) 3223 { 3224 ext4_fsblk_t resv_clusters; 3225 struct ext4_sb_info *sbi = EXT4_SB(sb); 3226 3227 /* 3228 * There's no need to reserve anything when we aren't using extents. 3229 * The space estimates are exact, there are no unwritten extents, 3230 * hole punching doesn't need new metadata... This is needed especially 3231 * to keep ext2/3 backward compatibility. 3232 */ 3233 if (!ext4_has_feature_extents(sb)) 3234 return; 3235 /* 3236 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3237 * This should cover the situations where we can not afford to run 3238 * out of space like for example punch hole, or converting 3239 * unwritten extents in delalloc path. In most cases such 3240 * allocation would require 1, or 2 blocks, higher numbers are 3241 * very rare. 3242 */ 3243 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3244 sbi->s_cluster_bits); 3245 3246 do_div(resv_clusters, 50); 3247 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3248 3249 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3250 } 3251 3252 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3253 { 3254 char *orig_data = kstrdup(data, GFP_KERNEL); 3255 struct buffer_head *bh; 3256 struct ext4_super_block *es = NULL; 3257 struct ext4_sb_info *sbi; 3258 ext4_fsblk_t block; 3259 ext4_fsblk_t sb_block = get_sb_block(&data); 3260 ext4_fsblk_t logical_sb_block; 3261 unsigned long offset = 0; 3262 unsigned long journal_devnum = 0; 3263 unsigned long def_mount_opts; 3264 struct inode *root; 3265 const char *descr; 3266 int ret = -ENOMEM; 3267 int blocksize, clustersize; 3268 unsigned int db_count; 3269 unsigned int i; 3270 int needs_recovery, has_huge_files, has_bigalloc; 3271 __u64 blocks_count; 3272 int err = 0; 3273 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3274 ext4_group_t first_not_zeroed; 3275 3276 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3277 if (!sbi) 3278 goto out_free_orig; 3279 3280 sbi->s_blockgroup_lock = 3281 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3282 if (!sbi->s_blockgroup_lock) { 3283 kfree(sbi); 3284 goto out_free_orig; 3285 } 3286 sb->s_fs_info = sbi; 3287 sbi->s_sb = sb; 3288 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3289 sbi->s_sb_block = sb_block; 3290 if (sb->s_bdev->bd_part) 3291 sbi->s_sectors_written_start = 3292 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3293 3294 /* Cleanup superblock name */ 3295 strreplace(sb->s_id, '/', '!'); 3296 3297 /* -EINVAL is default */ 3298 ret = -EINVAL; 3299 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3300 if (!blocksize) { 3301 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3302 goto out_fail; 3303 } 3304 3305 /* 3306 * The ext4 superblock will not be buffer aligned for other than 1kB 3307 * block sizes. We need to calculate the offset from buffer start. 3308 */ 3309 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3310 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3311 offset = do_div(logical_sb_block, blocksize); 3312 } else { 3313 logical_sb_block = sb_block; 3314 } 3315 3316 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3317 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3318 goto out_fail; 3319 } 3320 /* 3321 * Note: s_es must be initialized as soon as possible because 3322 * some ext4 macro-instructions depend on its value 3323 */ 3324 es = (struct ext4_super_block *) (bh->b_data + offset); 3325 sbi->s_es = es; 3326 sb->s_magic = le16_to_cpu(es->s_magic); 3327 if (sb->s_magic != EXT4_SUPER_MAGIC) 3328 goto cantfind_ext4; 3329 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3330 3331 /* Warn if metadata_csum and gdt_csum are both set. */ 3332 if (ext4_has_feature_metadata_csum(sb) && 3333 ext4_has_feature_gdt_csum(sb)) 3334 ext4_warning(sb, "metadata_csum and uninit_bg are " 3335 "redundant flags; please run fsck."); 3336 3337 /* Check for a known checksum algorithm */ 3338 if (!ext4_verify_csum_type(sb, es)) { 3339 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3340 "unknown checksum algorithm."); 3341 silent = 1; 3342 goto cantfind_ext4; 3343 } 3344 3345 /* Load the checksum driver */ 3346 if (ext4_has_feature_metadata_csum(sb)) { 3347 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3348 if (IS_ERR(sbi->s_chksum_driver)) { 3349 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3350 ret = PTR_ERR(sbi->s_chksum_driver); 3351 sbi->s_chksum_driver = NULL; 3352 goto failed_mount; 3353 } 3354 } 3355 3356 /* Check superblock checksum */ 3357 if (!ext4_superblock_csum_verify(sb, es)) { 3358 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3359 "invalid superblock checksum. Run e2fsck?"); 3360 silent = 1; 3361 ret = -EFSBADCRC; 3362 goto cantfind_ext4; 3363 } 3364 3365 /* Precompute checksum seed for all metadata */ 3366 if (ext4_has_feature_csum_seed(sb)) 3367 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3368 else if (ext4_has_metadata_csum(sb)) 3369 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3370 sizeof(es->s_uuid)); 3371 3372 /* Set defaults before we parse the mount options */ 3373 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3374 set_opt(sb, INIT_INODE_TABLE); 3375 if (def_mount_opts & EXT4_DEFM_DEBUG) 3376 set_opt(sb, DEBUG); 3377 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3378 set_opt(sb, GRPID); 3379 if (def_mount_opts & EXT4_DEFM_UID16) 3380 set_opt(sb, NO_UID32); 3381 /* xattr user namespace & acls are now defaulted on */ 3382 set_opt(sb, XATTR_USER); 3383 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3384 set_opt(sb, POSIX_ACL); 3385 #endif 3386 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3387 if (ext4_has_metadata_csum(sb)) 3388 set_opt(sb, JOURNAL_CHECKSUM); 3389 3390 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3391 set_opt(sb, JOURNAL_DATA); 3392 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3393 set_opt(sb, ORDERED_DATA); 3394 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3395 set_opt(sb, WRITEBACK_DATA); 3396 3397 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3398 set_opt(sb, ERRORS_PANIC); 3399 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3400 set_opt(sb, ERRORS_CONT); 3401 else 3402 set_opt(sb, ERRORS_RO); 3403 /* block_validity enabled by default; disable with noblock_validity */ 3404 set_opt(sb, BLOCK_VALIDITY); 3405 if (def_mount_opts & EXT4_DEFM_DISCARD) 3406 set_opt(sb, DISCARD); 3407 3408 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3409 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3410 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3411 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3412 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3413 3414 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3415 set_opt(sb, BARRIER); 3416 3417 /* 3418 * enable delayed allocation by default 3419 * Use -o nodelalloc to turn it off 3420 */ 3421 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3422 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3423 set_opt(sb, DELALLOC); 3424 3425 /* 3426 * set default s_li_wait_mult for lazyinit, for the case there is 3427 * no mount option specified. 3428 */ 3429 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3430 3431 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3432 &journal_devnum, &journal_ioprio, 0)) { 3433 ext4_msg(sb, KERN_WARNING, 3434 "failed to parse options in superblock: %s", 3435 sbi->s_es->s_mount_opts); 3436 } 3437 sbi->s_def_mount_opt = sbi->s_mount_opt; 3438 if (!parse_options((char *) data, sb, &journal_devnum, 3439 &journal_ioprio, 0)) 3440 goto failed_mount; 3441 3442 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3443 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3444 "with data=journal disables delayed " 3445 "allocation and O_DIRECT support!\n"); 3446 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3447 ext4_msg(sb, KERN_ERR, "can't mount with " 3448 "both data=journal and delalloc"); 3449 goto failed_mount; 3450 } 3451 if (test_opt(sb, DIOREAD_NOLOCK)) { 3452 ext4_msg(sb, KERN_ERR, "can't mount with " 3453 "both data=journal and dioread_nolock"); 3454 goto failed_mount; 3455 } 3456 if (test_opt(sb, DAX)) { 3457 ext4_msg(sb, KERN_ERR, "can't mount with " 3458 "both data=journal and dax"); 3459 goto failed_mount; 3460 } 3461 if (test_opt(sb, DELALLOC)) 3462 clear_opt(sb, DELALLOC); 3463 } else { 3464 sb->s_iflags |= SB_I_CGROUPWB; 3465 } 3466 3467 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3468 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3469 3470 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3471 (ext4_has_compat_features(sb) || 3472 ext4_has_ro_compat_features(sb) || 3473 ext4_has_incompat_features(sb))) 3474 ext4_msg(sb, KERN_WARNING, 3475 "feature flags set on rev 0 fs, " 3476 "running e2fsck is recommended"); 3477 3478 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3479 set_opt2(sb, HURD_COMPAT); 3480 if (ext4_has_feature_64bit(sb)) { 3481 ext4_msg(sb, KERN_ERR, 3482 "The Hurd can't support 64-bit file systems"); 3483 goto failed_mount; 3484 } 3485 } 3486 3487 if (IS_EXT2_SB(sb)) { 3488 if (ext2_feature_set_ok(sb)) 3489 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3490 "using the ext4 subsystem"); 3491 else { 3492 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3493 "to feature incompatibilities"); 3494 goto failed_mount; 3495 } 3496 } 3497 3498 if (IS_EXT3_SB(sb)) { 3499 if (ext3_feature_set_ok(sb)) 3500 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3501 "using the ext4 subsystem"); 3502 else { 3503 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3504 "to feature incompatibilities"); 3505 goto failed_mount; 3506 } 3507 } 3508 3509 /* 3510 * Check feature flags regardless of the revision level, since we 3511 * previously didn't change the revision level when setting the flags, 3512 * so there is a chance incompat flags are set on a rev 0 filesystem. 3513 */ 3514 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3515 goto failed_mount; 3516 3517 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3518 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3519 blocksize > EXT4_MAX_BLOCK_SIZE) { 3520 ext4_msg(sb, KERN_ERR, 3521 "Unsupported filesystem blocksize %d", blocksize); 3522 goto failed_mount; 3523 } 3524 3525 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3526 ext4_msg(sb, KERN_ERR, 3527 "Number of reserved GDT blocks insanely large: %d", 3528 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3529 goto failed_mount; 3530 } 3531 3532 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3533 err = bdev_dax_supported(sb, blocksize); 3534 if (err) 3535 goto failed_mount; 3536 } 3537 3538 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3539 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3540 es->s_encryption_level); 3541 goto failed_mount; 3542 } 3543 3544 if (sb->s_blocksize != blocksize) { 3545 /* Validate the filesystem blocksize */ 3546 if (!sb_set_blocksize(sb, blocksize)) { 3547 ext4_msg(sb, KERN_ERR, "bad block size %d", 3548 blocksize); 3549 goto failed_mount; 3550 } 3551 3552 brelse(bh); 3553 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3554 offset = do_div(logical_sb_block, blocksize); 3555 bh = sb_bread_unmovable(sb, logical_sb_block); 3556 if (!bh) { 3557 ext4_msg(sb, KERN_ERR, 3558 "Can't read superblock on 2nd try"); 3559 goto failed_mount; 3560 } 3561 es = (struct ext4_super_block *)(bh->b_data + offset); 3562 sbi->s_es = es; 3563 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3564 ext4_msg(sb, KERN_ERR, 3565 "Magic mismatch, very weird!"); 3566 goto failed_mount; 3567 } 3568 } 3569 3570 has_huge_files = ext4_has_feature_huge_file(sb); 3571 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3572 has_huge_files); 3573 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3574 3575 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3576 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3577 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3578 } else { 3579 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3580 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3581 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3582 (!is_power_of_2(sbi->s_inode_size)) || 3583 (sbi->s_inode_size > blocksize)) { 3584 ext4_msg(sb, KERN_ERR, 3585 "unsupported inode size: %d", 3586 sbi->s_inode_size); 3587 goto failed_mount; 3588 } 3589 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3590 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3591 } 3592 3593 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3594 if (ext4_has_feature_64bit(sb)) { 3595 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3596 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3597 !is_power_of_2(sbi->s_desc_size)) { 3598 ext4_msg(sb, KERN_ERR, 3599 "unsupported descriptor size %lu", 3600 sbi->s_desc_size); 3601 goto failed_mount; 3602 } 3603 } else 3604 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3605 3606 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3607 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3608 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3609 goto cantfind_ext4; 3610 3611 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3612 if (sbi->s_inodes_per_block == 0) 3613 goto cantfind_ext4; 3614 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3615 sbi->s_inodes_per_block; 3616 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3617 sbi->s_sbh = bh; 3618 sbi->s_mount_state = le16_to_cpu(es->s_state); 3619 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3620 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3621 3622 for (i = 0; i < 4; i++) 3623 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3624 sbi->s_def_hash_version = es->s_def_hash_version; 3625 if (ext4_has_feature_dir_index(sb)) { 3626 i = le32_to_cpu(es->s_flags); 3627 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3628 sbi->s_hash_unsigned = 3; 3629 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3630 #ifdef __CHAR_UNSIGNED__ 3631 if (!(sb->s_flags & MS_RDONLY)) 3632 es->s_flags |= 3633 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3634 sbi->s_hash_unsigned = 3; 3635 #else 3636 if (!(sb->s_flags & MS_RDONLY)) 3637 es->s_flags |= 3638 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3639 #endif 3640 } 3641 } 3642 3643 /* Handle clustersize */ 3644 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3645 has_bigalloc = ext4_has_feature_bigalloc(sb); 3646 if (has_bigalloc) { 3647 if (clustersize < blocksize) { 3648 ext4_msg(sb, KERN_ERR, 3649 "cluster size (%d) smaller than " 3650 "block size (%d)", clustersize, blocksize); 3651 goto failed_mount; 3652 } 3653 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3654 le32_to_cpu(es->s_log_block_size); 3655 sbi->s_clusters_per_group = 3656 le32_to_cpu(es->s_clusters_per_group); 3657 if (sbi->s_clusters_per_group > blocksize * 8) { 3658 ext4_msg(sb, KERN_ERR, 3659 "#clusters per group too big: %lu", 3660 sbi->s_clusters_per_group); 3661 goto failed_mount; 3662 } 3663 if (sbi->s_blocks_per_group != 3664 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3665 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3666 "clusters per group (%lu) inconsistent", 3667 sbi->s_blocks_per_group, 3668 sbi->s_clusters_per_group); 3669 goto failed_mount; 3670 } 3671 } else { 3672 if (clustersize != blocksize) { 3673 ext4_warning(sb, "fragment/cluster size (%d) != " 3674 "block size (%d)", clustersize, 3675 blocksize); 3676 clustersize = blocksize; 3677 } 3678 if (sbi->s_blocks_per_group > blocksize * 8) { 3679 ext4_msg(sb, KERN_ERR, 3680 "#blocks per group too big: %lu", 3681 sbi->s_blocks_per_group); 3682 goto failed_mount; 3683 } 3684 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3685 sbi->s_cluster_bits = 0; 3686 } 3687 sbi->s_cluster_ratio = clustersize / blocksize; 3688 3689 if (sbi->s_inodes_per_group > blocksize * 8) { 3690 ext4_msg(sb, KERN_ERR, 3691 "#inodes per group too big: %lu", 3692 sbi->s_inodes_per_group); 3693 goto failed_mount; 3694 } 3695 3696 /* Do we have standard group size of clustersize * 8 blocks ? */ 3697 if (sbi->s_blocks_per_group == clustersize << 3) 3698 set_opt2(sb, STD_GROUP_SIZE); 3699 3700 /* 3701 * Test whether we have more sectors than will fit in sector_t, 3702 * and whether the max offset is addressable by the page cache. 3703 */ 3704 err = generic_check_addressable(sb->s_blocksize_bits, 3705 ext4_blocks_count(es)); 3706 if (err) { 3707 ext4_msg(sb, KERN_ERR, "filesystem" 3708 " too large to mount safely on this system"); 3709 if (sizeof(sector_t) < 8) 3710 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3711 goto failed_mount; 3712 } 3713 3714 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3715 goto cantfind_ext4; 3716 3717 /* check blocks count against device size */ 3718 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3719 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3720 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3721 "exceeds size of device (%llu blocks)", 3722 ext4_blocks_count(es), blocks_count); 3723 goto failed_mount; 3724 } 3725 3726 /* 3727 * It makes no sense for the first data block to be beyond the end 3728 * of the filesystem. 3729 */ 3730 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3731 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3732 "block %u is beyond end of filesystem (%llu)", 3733 le32_to_cpu(es->s_first_data_block), 3734 ext4_blocks_count(es)); 3735 goto failed_mount; 3736 } 3737 blocks_count = (ext4_blocks_count(es) - 3738 le32_to_cpu(es->s_first_data_block) + 3739 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3740 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3741 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3742 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3743 "(block count %llu, first data block %u, " 3744 "blocks per group %lu)", sbi->s_groups_count, 3745 ext4_blocks_count(es), 3746 le32_to_cpu(es->s_first_data_block), 3747 EXT4_BLOCKS_PER_GROUP(sb)); 3748 goto failed_mount; 3749 } 3750 sbi->s_groups_count = blocks_count; 3751 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3752 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3753 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3754 EXT4_DESC_PER_BLOCK(sb); 3755 sbi->s_group_desc = ext4_kvmalloc(db_count * 3756 sizeof(struct buffer_head *), 3757 GFP_KERNEL); 3758 if (sbi->s_group_desc == NULL) { 3759 ext4_msg(sb, KERN_ERR, "not enough memory"); 3760 ret = -ENOMEM; 3761 goto failed_mount; 3762 } 3763 3764 bgl_lock_init(sbi->s_blockgroup_lock); 3765 3766 for (i = 0; i < db_count; i++) { 3767 block = descriptor_loc(sb, logical_sb_block, i); 3768 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3769 if (!sbi->s_group_desc[i]) { 3770 ext4_msg(sb, KERN_ERR, 3771 "can't read group descriptor %d", i); 3772 db_count = i; 3773 goto failed_mount2; 3774 } 3775 } 3776 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3777 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3778 ret = -EFSCORRUPTED; 3779 goto failed_mount2; 3780 } 3781 3782 sbi->s_gdb_count = db_count; 3783 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3784 spin_lock_init(&sbi->s_next_gen_lock); 3785 3786 setup_timer(&sbi->s_err_report, print_daily_error_info, 3787 (unsigned long) sb); 3788 3789 /* Register extent status tree shrinker */ 3790 if (ext4_es_register_shrinker(sbi)) 3791 goto failed_mount3; 3792 3793 sbi->s_stripe = ext4_get_stripe_size(sbi); 3794 sbi->s_extent_max_zeroout_kb = 32; 3795 3796 /* 3797 * set up enough so that it can read an inode 3798 */ 3799 sb->s_op = &ext4_sops; 3800 sb->s_export_op = &ext4_export_ops; 3801 sb->s_xattr = ext4_xattr_handlers; 3802 sb->s_cop = &ext4_cryptops; 3803 #ifdef CONFIG_QUOTA 3804 sb->dq_op = &ext4_quota_operations; 3805 if (ext4_has_feature_quota(sb)) 3806 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3807 else 3808 sb->s_qcop = &ext4_qctl_operations; 3809 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3810 #endif 3811 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3812 3813 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3814 mutex_init(&sbi->s_orphan_lock); 3815 3816 sb->s_root = NULL; 3817 3818 needs_recovery = (es->s_last_orphan != 0 || 3819 ext4_has_feature_journal_needs_recovery(sb)); 3820 3821 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3822 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3823 goto failed_mount3a; 3824 3825 /* 3826 * The first inode we look at is the journal inode. Don't try 3827 * root first: it may be modified in the journal! 3828 */ 3829 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3830 if (ext4_load_journal(sb, es, journal_devnum)) 3831 goto failed_mount3a; 3832 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3833 ext4_has_feature_journal_needs_recovery(sb)) { 3834 ext4_msg(sb, KERN_ERR, "required journal recovery " 3835 "suppressed and not mounted read-only"); 3836 goto failed_mount_wq; 3837 } else { 3838 /* Nojournal mode, all journal mount options are illegal */ 3839 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3840 ext4_msg(sb, KERN_ERR, "can't mount with " 3841 "journal_checksum, fs mounted w/o journal"); 3842 goto failed_mount_wq; 3843 } 3844 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3845 ext4_msg(sb, KERN_ERR, "can't mount with " 3846 "journal_async_commit, fs mounted w/o journal"); 3847 goto failed_mount_wq; 3848 } 3849 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3850 ext4_msg(sb, KERN_ERR, "can't mount with " 3851 "commit=%lu, fs mounted w/o journal", 3852 sbi->s_commit_interval / HZ); 3853 goto failed_mount_wq; 3854 } 3855 if (EXT4_MOUNT_DATA_FLAGS & 3856 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3857 ext4_msg(sb, KERN_ERR, "can't mount with " 3858 "data=, fs mounted w/o journal"); 3859 goto failed_mount_wq; 3860 } 3861 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3862 clear_opt(sb, JOURNAL_CHECKSUM); 3863 clear_opt(sb, DATA_FLAGS); 3864 sbi->s_journal = NULL; 3865 needs_recovery = 0; 3866 goto no_journal; 3867 } 3868 3869 if (ext4_has_feature_64bit(sb) && 3870 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3871 JBD2_FEATURE_INCOMPAT_64BIT)) { 3872 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3873 goto failed_mount_wq; 3874 } 3875 3876 if (!set_journal_csum_feature_set(sb)) { 3877 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3878 "feature set"); 3879 goto failed_mount_wq; 3880 } 3881 3882 /* We have now updated the journal if required, so we can 3883 * validate the data journaling mode. */ 3884 switch (test_opt(sb, DATA_FLAGS)) { 3885 case 0: 3886 /* No mode set, assume a default based on the journal 3887 * capabilities: ORDERED_DATA if the journal can 3888 * cope, else JOURNAL_DATA 3889 */ 3890 if (jbd2_journal_check_available_features 3891 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3892 set_opt(sb, ORDERED_DATA); 3893 else 3894 set_opt(sb, JOURNAL_DATA); 3895 break; 3896 3897 case EXT4_MOUNT_ORDERED_DATA: 3898 case EXT4_MOUNT_WRITEBACK_DATA: 3899 if (!jbd2_journal_check_available_features 3900 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3901 ext4_msg(sb, KERN_ERR, "Journal does not support " 3902 "requested data journaling mode"); 3903 goto failed_mount_wq; 3904 } 3905 default: 3906 break; 3907 } 3908 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3909 3910 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3911 3912 no_journal: 3913 sbi->s_mb_cache = ext4_xattr_create_cache(); 3914 if (!sbi->s_mb_cache) { 3915 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3916 goto failed_mount_wq; 3917 } 3918 3919 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3920 (blocksize != PAGE_SIZE)) { 3921 ext4_msg(sb, KERN_ERR, 3922 "Unsupported blocksize for fs encryption"); 3923 goto failed_mount_wq; 3924 } 3925 3926 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3927 !ext4_has_feature_encrypt(sb)) { 3928 ext4_set_feature_encrypt(sb); 3929 ext4_commit_super(sb, 1); 3930 } 3931 3932 /* 3933 * Get the # of file system overhead blocks from the 3934 * superblock if present. 3935 */ 3936 if (es->s_overhead_clusters) 3937 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3938 else { 3939 err = ext4_calculate_overhead(sb); 3940 if (err) 3941 goto failed_mount_wq; 3942 } 3943 3944 /* 3945 * The maximum number of concurrent works can be high and 3946 * concurrency isn't really necessary. Limit it to 1. 3947 */ 3948 EXT4_SB(sb)->rsv_conversion_wq = 3949 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3950 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3951 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3952 ret = -ENOMEM; 3953 goto failed_mount4; 3954 } 3955 3956 /* 3957 * The jbd2_journal_load will have done any necessary log recovery, 3958 * so we can safely mount the rest of the filesystem now. 3959 */ 3960 3961 root = ext4_iget(sb, EXT4_ROOT_INO); 3962 if (IS_ERR(root)) { 3963 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3964 ret = PTR_ERR(root); 3965 root = NULL; 3966 goto failed_mount4; 3967 } 3968 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3969 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3970 iput(root); 3971 goto failed_mount4; 3972 } 3973 sb->s_root = d_make_root(root); 3974 if (!sb->s_root) { 3975 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3976 ret = -ENOMEM; 3977 goto failed_mount4; 3978 } 3979 3980 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3981 sb->s_flags |= MS_RDONLY; 3982 3983 /* determine the minimum size of new large inodes, if present */ 3984 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3985 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3986 EXT4_GOOD_OLD_INODE_SIZE; 3987 if (ext4_has_feature_extra_isize(sb)) { 3988 if (sbi->s_want_extra_isize < 3989 le16_to_cpu(es->s_want_extra_isize)) 3990 sbi->s_want_extra_isize = 3991 le16_to_cpu(es->s_want_extra_isize); 3992 if (sbi->s_want_extra_isize < 3993 le16_to_cpu(es->s_min_extra_isize)) 3994 sbi->s_want_extra_isize = 3995 le16_to_cpu(es->s_min_extra_isize); 3996 } 3997 } 3998 /* Check if enough inode space is available */ 3999 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4000 sbi->s_inode_size) { 4001 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4002 EXT4_GOOD_OLD_INODE_SIZE; 4003 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4004 "available"); 4005 } 4006 4007 ext4_set_resv_clusters(sb); 4008 4009 err = ext4_setup_system_zone(sb); 4010 if (err) { 4011 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4012 "zone (%d)", err); 4013 goto failed_mount4a; 4014 } 4015 4016 ext4_ext_init(sb); 4017 err = ext4_mb_init(sb); 4018 if (err) { 4019 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4020 err); 4021 goto failed_mount5; 4022 } 4023 4024 block = ext4_count_free_clusters(sb); 4025 ext4_free_blocks_count_set(sbi->s_es, 4026 EXT4_C2B(sbi, block)); 4027 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4028 GFP_KERNEL); 4029 if (!err) { 4030 unsigned long freei = ext4_count_free_inodes(sb); 4031 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4032 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4033 GFP_KERNEL); 4034 } 4035 if (!err) 4036 err = percpu_counter_init(&sbi->s_dirs_counter, 4037 ext4_count_dirs(sb), GFP_KERNEL); 4038 if (!err) 4039 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4040 GFP_KERNEL); 4041 if (!err) 4042 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4043 4044 if (err) { 4045 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4046 goto failed_mount6; 4047 } 4048 4049 if (ext4_has_feature_flex_bg(sb)) 4050 if (!ext4_fill_flex_info(sb)) { 4051 ext4_msg(sb, KERN_ERR, 4052 "unable to initialize " 4053 "flex_bg meta info!"); 4054 goto failed_mount6; 4055 } 4056 4057 err = ext4_register_li_request(sb, first_not_zeroed); 4058 if (err) 4059 goto failed_mount6; 4060 4061 err = ext4_register_sysfs(sb); 4062 if (err) 4063 goto failed_mount7; 4064 4065 #ifdef CONFIG_QUOTA 4066 /* Enable quota usage during mount. */ 4067 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4068 err = ext4_enable_quotas(sb); 4069 if (err) 4070 goto failed_mount8; 4071 } 4072 #endif /* CONFIG_QUOTA */ 4073 4074 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4075 ext4_orphan_cleanup(sb, es); 4076 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4077 if (needs_recovery) { 4078 ext4_msg(sb, KERN_INFO, "recovery complete"); 4079 ext4_mark_recovery_complete(sb, es); 4080 } 4081 if (EXT4_SB(sb)->s_journal) { 4082 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4083 descr = " journalled data mode"; 4084 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4085 descr = " ordered data mode"; 4086 else 4087 descr = " writeback data mode"; 4088 } else 4089 descr = "out journal"; 4090 4091 if (test_opt(sb, DISCARD)) { 4092 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4093 if (!blk_queue_discard(q)) 4094 ext4_msg(sb, KERN_WARNING, 4095 "mounting with \"discard\" option, but " 4096 "the device does not support discard"); 4097 } 4098 4099 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4100 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4101 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4102 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4103 4104 if (es->s_error_count) 4105 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4106 4107 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4108 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4109 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4110 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4111 4112 kfree(orig_data); 4113 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4114 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX, 4115 EXT4_KEY_DESC_PREFIX_SIZE); 4116 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE; 4117 #endif 4118 return 0; 4119 4120 cantfind_ext4: 4121 if (!silent) 4122 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4123 goto failed_mount; 4124 4125 #ifdef CONFIG_QUOTA 4126 failed_mount8: 4127 ext4_unregister_sysfs(sb); 4128 #endif 4129 failed_mount7: 4130 ext4_unregister_li_request(sb); 4131 failed_mount6: 4132 ext4_mb_release(sb); 4133 if (sbi->s_flex_groups) 4134 kvfree(sbi->s_flex_groups); 4135 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4136 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4137 percpu_counter_destroy(&sbi->s_dirs_counter); 4138 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4139 failed_mount5: 4140 ext4_ext_release(sb); 4141 ext4_release_system_zone(sb); 4142 failed_mount4a: 4143 dput(sb->s_root); 4144 sb->s_root = NULL; 4145 failed_mount4: 4146 ext4_msg(sb, KERN_ERR, "mount failed"); 4147 if (EXT4_SB(sb)->rsv_conversion_wq) 4148 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4149 failed_mount_wq: 4150 if (sbi->s_mb_cache) { 4151 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4152 sbi->s_mb_cache = NULL; 4153 } 4154 if (sbi->s_journal) { 4155 jbd2_journal_destroy(sbi->s_journal); 4156 sbi->s_journal = NULL; 4157 } 4158 failed_mount3a: 4159 ext4_es_unregister_shrinker(sbi); 4160 failed_mount3: 4161 del_timer_sync(&sbi->s_err_report); 4162 if (sbi->s_mmp_tsk) 4163 kthread_stop(sbi->s_mmp_tsk); 4164 failed_mount2: 4165 for (i = 0; i < db_count; i++) 4166 brelse(sbi->s_group_desc[i]); 4167 kvfree(sbi->s_group_desc); 4168 failed_mount: 4169 if (sbi->s_chksum_driver) 4170 crypto_free_shash(sbi->s_chksum_driver); 4171 #ifdef CONFIG_QUOTA 4172 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4173 kfree(sbi->s_qf_names[i]); 4174 #endif 4175 ext4_blkdev_remove(sbi); 4176 brelse(bh); 4177 out_fail: 4178 sb->s_fs_info = NULL; 4179 kfree(sbi->s_blockgroup_lock); 4180 kfree(sbi); 4181 out_free_orig: 4182 kfree(orig_data); 4183 return err ? err : ret; 4184 } 4185 4186 /* 4187 * Setup any per-fs journal parameters now. We'll do this both on 4188 * initial mount, once the journal has been initialised but before we've 4189 * done any recovery; and again on any subsequent remount. 4190 */ 4191 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4192 { 4193 struct ext4_sb_info *sbi = EXT4_SB(sb); 4194 4195 journal->j_commit_interval = sbi->s_commit_interval; 4196 journal->j_min_batch_time = sbi->s_min_batch_time; 4197 journal->j_max_batch_time = sbi->s_max_batch_time; 4198 4199 write_lock(&journal->j_state_lock); 4200 if (test_opt(sb, BARRIER)) 4201 journal->j_flags |= JBD2_BARRIER; 4202 else 4203 journal->j_flags &= ~JBD2_BARRIER; 4204 if (test_opt(sb, DATA_ERR_ABORT)) 4205 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4206 else 4207 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4208 write_unlock(&journal->j_state_lock); 4209 } 4210 4211 static journal_t *ext4_get_journal(struct super_block *sb, 4212 unsigned int journal_inum) 4213 { 4214 struct inode *journal_inode; 4215 journal_t *journal; 4216 4217 BUG_ON(!ext4_has_feature_journal(sb)); 4218 4219 /* First, test for the existence of a valid inode on disk. Bad 4220 * things happen if we iget() an unused inode, as the subsequent 4221 * iput() will try to delete it. */ 4222 4223 journal_inode = ext4_iget(sb, journal_inum); 4224 if (IS_ERR(journal_inode)) { 4225 ext4_msg(sb, KERN_ERR, "no journal found"); 4226 return NULL; 4227 } 4228 if (!journal_inode->i_nlink) { 4229 make_bad_inode(journal_inode); 4230 iput(journal_inode); 4231 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4232 return NULL; 4233 } 4234 4235 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4236 journal_inode, journal_inode->i_size); 4237 if (!S_ISREG(journal_inode->i_mode)) { 4238 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4239 iput(journal_inode); 4240 return NULL; 4241 } 4242 4243 journal = jbd2_journal_init_inode(journal_inode); 4244 if (!journal) { 4245 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4246 iput(journal_inode); 4247 return NULL; 4248 } 4249 journal->j_private = sb; 4250 ext4_init_journal_params(sb, journal); 4251 return journal; 4252 } 4253 4254 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4255 dev_t j_dev) 4256 { 4257 struct buffer_head *bh; 4258 journal_t *journal; 4259 ext4_fsblk_t start; 4260 ext4_fsblk_t len; 4261 int hblock, blocksize; 4262 ext4_fsblk_t sb_block; 4263 unsigned long offset; 4264 struct ext4_super_block *es; 4265 struct block_device *bdev; 4266 4267 BUG_ON(!ext4_has_feature_journal(sb)); 4268 4269 bdev = ext4_blkdev_get(j_dev, sb); 4270 if (bdev == NULL) 4271 return NULL; 4272 4273 blocksize = sb->s_blocksize; 4274 hblock = bdev_logical_block_size(bdev); 4275 if (blocksize < hblock) { 4276 ext4_msg(sb, KERN_ERR, 4277 "blocksize too small for journal device"); 4278 goto out_bdev; 4279 } 4280 4281 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4282 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4283 set_blocksize(bdev, blocksize); 4284 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4285 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4286 "external journal"); 4287 goto out_bdev; 4288 } 4289 4290 es = (struct ext4_super_block *) (bh->b_data + offset); 4291 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4292 !(le32_to_cpu(es->s_feature_incompat) & 4293 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4294 ext4_msg(sb, KERN_ERR, "external journal has " 4295 "bad superblock"); 4296 brelse(bh); 4297 goto out_bdev; 4298 } 4299 4300 if ((le32_to_cpu(es->s_feature_ro_compat) & 4301 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4302 es->s_checksum != ext4_superblock_csum(sb, es)) { 4303 ext4_msg(sb, KERN_ERR, "external journal has " 4304 "corrupt superblock"); 4305 brelse(bh); 4306 goto out_bdev; 4307 } 4308 4309 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4310 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4311 brelse(bh); 4312 goto out_bdev; 4313 } 4314 4315 len = ext4_blocks_count(es); 4316 start = sb_block + 1; 4317 brelse(bh); /* we're done with the superblock */ 4318 4319 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4320 start, len, blocksize); 4321 if (!journal) { 4322 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4323 goto out_bdev; 4324 } 4325 journal->j_private = sb; 4326 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4327 wait_on_buffer(journal->j_sb_buffer); 4328 if (!buffer_uptodate(journal->j_sb_buffer)) { 4329 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4330 goto out_journal; 4331 } 4332 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4333 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4334 "user (unsupported) - %d", 4335 be32_to_cpu(journal->j_superblock->s_nr_users)); 4336 goto out_journal; 4337 } 4338 EXT4_SB(sb)->journal_bdev = bdev; 4339 ext4_init_journal_params(sb, journal); 4340 return journal; 4341 4342 out_journal: 4343 jbd2_journal_destroy(journal); 4344 out_bdev: 4345 ext4_blkdev_put(bdev); 4346 return NULL; 4347 } 4348 4349 static int ext4_load_journal(struct super_block *sb, 4350 struct ext4_super_block *es, 4351 unsigned long journal_devnum) 4352 { 4353 journal_t *journal; 4354 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4355 dev_t journal_dev; 4356 int err = 0; 4357 int really_read_only; 4358 4359 BUG_ON(!ext4_has_feature_journal(sb)); 4360 4361 if (journal_devnum && 4362 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4363 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4364 "numbers have changed"); 4365 journal_dev = new_decode_dev(journal_devnum); 4366 } else 4367 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4368 4369 really_read_only = bdev_read_only(sb->s_bdev); 4370 4371 /* 4372 * Are we loading a blank journal or performing recovery after a 4373 * crash? For recovery, we need to check in advance whether we 4374 * can get read-write access to the device. 4375 */ 4376 if (ext4_has_feature_journal_needs_recovery(sb)) { 4377 if (sb->s_flags & MS_RDONLY) { 4378 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4379 "required on readonly filesystem"); 4380 if (really_read_only) { 4381 ext4_msg(sb, KERN_ERR, "write access " 4382 "unavailable, cannot proceed"); 4383 return -EROFS; 4384 } 4385 ext4_msg(sb, KERN_INFO, "write access will " 4386 "be enabled during recovery"); 4387 } 4388 } 4389 4390 if (journal_inum && journal_dev) { 4391 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4392 "and inode journals!"); 4393 return -EINVAL; 4394 } 4395 4396 if (journal_inum) { 4397 if (!(journal = ext4_get_journal(sb, journal_inum))) 4398 return -EINVAL; 4399 } else { 4400 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4401 return -EINVAL; 4402 } 4403 4404 if (!(journal->j_flags & JBD2_BARRIER)) 4405 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4406 4407 if (!ext4_has_feature_journal_needs_recovery(sb)) 4408 err = jbd2_journal_wipe(journal, !really_read_only); 4409 if (!err) { 4410 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4411 if (save) 4412 memcpy(save, ((char *) es) + 4413 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4414 err = jbd2_journal_load(journal); 4415 if (save) 4416 memcpy(((char *) es) + EXT4_S_ERR_START, 4417 save, EXT4_S_ERR_LEN); 4418 kfree(save); 4419 } 4420 4421 if (err) { 4422 ext4_msg(sb, KERN_ERR, "error loading journal"); 4423 jbd2_journal_destroy(journal); 4424 return err; 4425 } 4426 4427 EXT4_SB(sb)->s_journal = journal; 4428 ext4_clear_journal_err(sb, es); 4429 4430 if (!really_read_only && journal_devnum && 4431 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4432 es->s_journal_dev = cpu_to_le32(journal_devnum); 4433 4434 /* Make sure we flush the recovery flag to disk. */ 4435 ext4_commit_super(sb, 1); 4436 } 4437 4438 return 0; 4439 } 4440 4441 static int ext4_commit_super(struct super_block *sb, int sync) 4442 { 4443 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4444 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4445 int error = 0; 4446 4447 if (!sbh || block_device_ejected(sb)) 4448 return error; 4449 /* 4450 * If the file system is mounted read-only, don't update the 4451 * superblock write time. This avoids updating the superblock 4452 * write time when we are mounting the root file system 4453 * read/only but we need to replay the journal; at that point, 4454 * for people who are east of GMT and who make their clock 4455 * tick in localtime for Windows bug-for-bug compatibility, 4456 * the clock is set in the future, and this will cause e2fsck 4457 * to complain and force a full file system check. 4458 */ 4459 if (!(sb->s_flags & MS_RDONLY)) 4460 es->s_wtime = cpu_to_le32(get_seconds()); 4461 if (sb->s_bdev->bd_part) 4462 es->s_kbytes_written = 4463 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4464 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4465 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4466 else 4467 es->s_kbytes_written = 4468 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4469 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4470 ext4_free_blocks_count_set(es, 4471 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4472 &EXT4_SB(sb)->s_freeclusters_counter))); 4473 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4474 es->s_free_inodes_count = 4475 cpu_to_le32(percpu_counter_sum_positive( 4476 &EXT4_SB(sb)->s_freeinodes_counter)); 4477 BUFFER_TRACE(sbh, "marking dirty"); 4478 ext4_superblock_csum_set(sb); 4479 lock_buffer(sbh); 4480 if (buffer_write_io_error(sbh)) { 4481 /* 4482 * Oh, dear. A previous attempt to write the 4483 * superblock failed. This could happen because the 4484 * USB device was yanked out. Or it could happen to 4485 * be a transient write error and maybe the block will 4486 * be remapped. Nothing we can do but to retry the 4487 * write and hope for the best. 4488 */ 4489 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4490 "superblock detected"); 4491 clear_buffer_write_io_error(sbh); 4492 set_buffer_uptodate(sbh); 4493 } 4494 mark_buffer_dirty(sbh); 4495 unlock_buffer(sbh); 4496 if (sync) { 4497 error = __sync_dirty_buffer(sbh, 4498 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4499 if (error) 4500 return error; 4501 4502 error = buffer_write_io_error(sbh); 4503 if (error) { 4504 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4505 "superblock"); 4506 clear_buffer_write_io_error(sbh); 4507 set_buffer_uptodate(sbh); 4508 } 4509 } 4510 return error; 4511 } 4512 4513 /* 4514 * Have we just finished recovery? If so, and if we are mounting (or 4515 * remounting) the filesystem readonly, then we will end up with a 4516 * consistent fs on disk. Record that fact. 4517 */ 4518 static void ext4_mark_recovery_complete(struct super_block *sb, 4519 struct ext4_super_block *es) 4520 { 4521 journal_t *journal = EXT4_SB(sb)->s_journal; 4522 4523 if (!ext4_has_feature_journal(sb)) { 4524 BUG_ON(journal != NULL); 4525 return; 4526 } 4527 jbd2_journal_lock_updates(journal); 4528 if (jbd2_journal_flush(journal) < 0) 4529 goto out; 4530 4531 if (ext4_has_feature_journal_needs_recovery(sb) && 4532 sb->s_flags & MS_RDONLY) { 4533 ext4_clear_feature_journal_needs_recovery(sb); 4534 ext4_commit_super(sb, 1); 4535 } 4536 4537 out: 4538 jbd2_journal_unlock_updates(journal); 4539 } 4540 4541 /* 4542 * If we are mounting (or read-write remounting) a filesystem whose journal 4543 * has recorded an error from a previous lifetime, move that error to the 4544 * main filesystem now. 4545 */ 4546 static void ext4_clear_journal_err(struct super_block *sb, 4547 struct ext4_super_block *es) 4548 { 4549 journal_t *journal; 4550 int j_errno; 4551 const char *errstr; 4552 4553 BUG_ON(!ext4_has_feature_journal(sb)); 4554 4555 journal = EXT4_SB(sb)->s_journal; 4556 4557 /* 4558 * Now check for any error status which may have been recorded in the 4559 * journal by a prior ext4_error() or ext4_abort() 4560 */ 4561 4562 j_errno = jbd2_journal_errno(journal); 4563 if (j_errno) { 4564 char nbuf[16]; 4565 4566 errstr = ext4_decode_error(sb, j_errno, nbuf); 4567 ext4_warning(sb, "Filesystem error recorded " 4568 "from previous mount: %s", errstr); 4569 ext4_warning(sb, "Marking fs in need of filesystem check."); 4570 4571 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4572 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4573 ext4_commit_super(sb, 1); 4574 4575 jbd2_journal_clear_err(journal); 4576 jbd2_journal_update_sb_errno(journal); 4577 } 4578 } 4579 4580 /* 4581 * Force the running and committing transactions to commit, 4582 * and wait on the commit. 4583 */ 4584 int ext4_force_commit(struct super_block *sb) 4585 { 4586 journal_t *journal; 4587 4588 if (sb->s_flags & MS_RDONLY) 4589 return 0; 4590 4591 journal = EXT4_SB(sb)->s_journal; 4592 return ext4_journal_force_commit(journal); 4593 } 4594 4595 static int ext4_sync_fs(struct super_block *sb, int wait) 4596 { 4597 int ret = 0; 4598 tid_t target; 4599 bool needs_barrier = false; 4600 struct ext4_sb_info *sbi = EXT4_SB(sb); 4601 4602 trace_ext4_sync_fs(sb, wait); 4603 flush_workqueue(sbi->rsv_conversion_wq); 4604 /* 4605 * Writeback quota in non-journalled quota case - journalled quota has 4606 * no dirty dquots 4607 */ 4608 dquot_writeback_dquots(sb, -1); 4609 /* 4610 * Data writeback is possible w/o journal transaction, so barrier must 4611 * being sent at the end of the function. But we can skip it if 4612 * transaction_commit will do it for us. 4613 */ 4614 if (sbi->s_journal) { 4615 target = jbd2_get_latest_transaction(sbi->s_journal); 4616 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4617 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4618 needs_barrier = true; 4619 4620 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4621 if (wait) 4622 ret = jbd2_log_wait_commit(sbi->s_journal, 4623 target); 4624 } 4625 } else if (wait && test_opt(sb, BARRIER)) 4626 needs_barrier = true; 4627 if (needs_barrier) { 4628 int err; 4629 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4630 if (!ret) 4631 ret = err; 4632 } 4633 4634 return ret; 4635 } 4636 4637 /* 4638 * LVM calls this function before a (read-only) snapshot is created. This 4639 * gives us a chance to flush the journal completely and mark the fs clean. 4640 * 4641 * Note that only this function cannot bring a filesystem to be in a clean 4642 * state independently. It relies on upper layer to stop all data & metadata 4643 * modifications. 4644 */ 4645 static int ext4_freeze(struct super_block *sb) 4646 { 4647 int error = 0; 4648 journal_t *journal; 4649 4650 if (sb->s_flags & MS_RDONLY) 4651 return 0; 4652 4653 journal = EXT4_SB(sb)->s_journal; 4654 4655 if (journal) { 4656 /* Now we set up the journal barrier. */ 4657 jbd2_journal_lock_updates(journal); 4658 4659 /* 4660 * Don't clear the needs_recovery flag if we failed to 4661 * flush the journal. 4662 */ 4663 error = jbd2_journal_flush(journal); 4664 if (error < 0) 4665 goto out; 4666 4667 /* Journal blocked and flushed, clear needs_recovery flag. */ 4668 ext4_clear_feature_journal_needs_recovery(sb); 4669 } 4670 4671 error = ext4_commit_super(sb, 1); 4672 out: 4673 if (journal) 4674 /* we rely on upper layer to stop further updates */ 4675 jbd2_journal_unlock_updates(journal); 4676 return error; 4677 } 4678 4679 /* 4680 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4681 * flag here, even though the filesystem is not technically dirty yet. 4682 */ 4683 static int ext4_unfreeze(struct super_block *sb) 4684 { 4685 if (sb->s_flags & MS_RDONLY) 4686 return 0; 4687 4688 if (EXT4_SB(sb)->s_journal) { 4689 /* Reset the needs_recovery flag before the fs is unlocked. */ 4690 ext4_set_feature_journal_needs_recovery(sb); 4691 } 4692 4693 ext4_commit_super(sb, 1); 4694 return 0; 4695 } 4696 4697 /* 4698 * Structure to save mount options for ext4_remount's benefit 4699 */ 4700 struct ext4_mount_options { 4701 unsigned long s_mount_opt; 4702 unsigned long s_mount_opt2; 4703 kuid_t s_resuid; 4704 kgid_t s_resgid; 4705 unsigned long s_commit_interval; 4706 u32 s_min_batch_time, s_max_batch_time; 4707 #ifdef CONFIG_QUOTA 4708 int s_jquota_fmt; 4709 char *s_qf_names[EXT4_MAXQUOTAS]; 4710 #endif 4711 }; 4712 4713 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4714 { 4715 struct ext4_super_block *es; 4716 struct ext4_sb_info *sbi = EXT4_SB(sb); 4717 unsigned long old_sb_flags; 4718 struct ext4_mount_options old_opts; 4719 int enable_quota = 0; 4720 ext4_group_t g; 4721 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4722 int err = 0; 4723 #ifdef CONFIG_QUOTA 4724 int i, j; 4725 #endif 4726 char *orig_data = kstrdup(data, GFP_KERNEL); 4727 4728 /* Store the original options */ 4729 old_sb_flags = sb->s_flags; 4730 old_opts.s_mount_opt = sbi->s_mount_opt; 4731 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4732 old_opts.s_resuid = sbi->s_resuid; 4733 old_opts.s_resgid = sbi->s_resgid; 4734 old_opts.s_commit_interval = sbi->s_commit_interval; 4735 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4736 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4737 #ifdef CONFIG_QUOTA 4738 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4739 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4740 if (sbi->s_qf_names[i]) { 4741 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4742 GFP_KERNEL); 4743 if (!old_opts.s_qf_names[i]) { 4744 for (j = 0; j < i; j++) 4745 kfree(old_opts.s_qf_names[j]); 4746 kfree(orig_data); 4747 return -ENOMEM; 4748 } 4749 } else 4750 old_opts.s_qf_names[i] = NULL; 4751 #endif 4752 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4753 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4754 4755 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4756 err = -EINVAL; 4757 goto restore_opts; 4758 } 4759 4760 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4761 test_opt(sb, JOURNAL_CHECKSUM)) { 4762 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4763 "during remount not supported; ignoring"); 4764 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4765 } 4766 4767 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4768 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4769 ext4_msg(sb, KERN_ERR, "can't mount with " 4770 "both data=journal and delalloc"); 4771 err = -EINVAL; 4772 goto restore_opts; 4773 } 4774 if (test_opt(sb, DIOREAD_NOLOCK)) { 4775 ext4_msg(sb, KERN_ERR, "can't mount with " 4776 "both data=journal and dioread_nolock"); 4777 err = -EINVAL; 4778 goto restore_opts; 4779 } 4780 if (test_opt(sb, DAX)) { 4781 ext4_msg(sb, KERN_ERR, "can't mount with " 4782 "both data=journal and dax"); 4783 err = -EINVAL; 4784 goto restore_opts; 4785 } 4786 } 4787 4788 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4789 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4790 "dax flag with busy inodes while remounting"); 4791 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4792 } 4793 4794 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4795 ext4_abort(sb, "Abort forced by user"); 4796 4797 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4798 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4799 4800 es = sbi->s_es; 4801 4802 if (sbi->s_journal) { 4803 ext4_init_journal_params(sb, sbi->s_journal); 4804 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4805 } 4806 4807 if (*flags & MS_LAZYTIME) 4808 sb->s_flags |= MS_LAZYTIME; 4809 4810 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4811 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4812 err = -EROFS; 4813 goto restore_opts; 4814 } 4815 4816 if (*flags & MS_RDONLY) { 4817 err = sync_filesystem(sb); 4818 if (err < 0) 4819 goto restore_opts; 4820 err = dquot_suspend(sb, -1); 4821 if (err < 0) 4822 goto restore_opts; 4823 4824 /* 4825 * First of all, the unconditional stuff we have to do 4826 * to disable replay of the journal when we next remount 4827 */ 4828 sb->s_flags |= MS_RDONLY; 4829 4830 /* 4831 * OK, test if we are remounting a valid rw partition 4832 * readonly, and if so set the rdonly flag and then 4833 * mark the partition as valid again. 4834 */ 4835 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4836 (sbi->s_mount_state & EXT4_VALID_FS)) 4837 es->s_state = cpu_to_le16(sbi->s_mount_state); 4838 4839 if (sbi->s_journal) 4840 ext4_mark_recovery_complete(sb, es); 4841 } else { 4842 /* Make sure we can mount this feature set readwrite */ 4843 if (ext4_has_feature_readonly(sb) || 4844 !ext4_feature_set_ok(sb, 0)) { 4845 err = -EROFS; 4846 goto restore_opts; 4847 } 4848 /* 4849 * Make sure the group descriptor checksums 4850 * are sane. If they aren't, refuse to remount r/w. 4851 */ 4852 for (g = 0; g < sbi->s_groups_count; g++) { 4853 struct ext4_group_desc *gdp = 4854 ext4_get_group_desc(sb, g, NULL); 4855 4856 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4857 ext4_msg(sb, KERN_ERR, 4858 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4859 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4860 le16_to_cpu(gdp->bg_checksum)); 4861 err = -EFSBADCRC; 4862 goto restore_opts; 4863 } 4864 } 4865 4866 /* 4867 * If we have an unprocessed orphan list hanging 4868 * around from a previously readonly bdev mount, 4869 * require a full umount/remount for now. 4870 */ 4871 if (es->s_last_orphan) { 4872 ext4_msg(sb, KERN_WARNING, "Couldn't " 4873 "remount RDWR because of unprocessed " 4874 "orphan inode list. Please " 4875 "umount/remount instead"); 4876 err = -EINVAL; 4877 goto restore_opts; 4878 } 4879 4880 /* 4881 * Mounting a RDONLY partition read-write, so reread 4882 * and store the current valid flag. (It may have 4883 * been changed by e2fsck since we originally mounted 4884 * the partition.) 4885 */ 4886 if (sbi->s_journal) 4887 ext4_clear_journal_err(sb, es); 4888 sbi->s_mount_state = le16_to_cpu(es->s_state); 4889 if (!ext4_setup_super(sb, es, 0)) 4890 sb->s_flags &= ~MS_RDONLY; 4891 if (ext4_has_feature_mmp(sb)) 4892 if (ext4_multi_mount_protect(sb, 4893 le64_to_cpu(es->s_mmp_block))) { 4894 err = -EROFS; 4895 goto restore_opts; 4896 } 4897 enable_quota = 1; 4898 } 4899 } 4900 4901 /* 4902 * Reinitialize lazy itable initialization thread based on 4903 * current settings 4904 */ 4905 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4906 ext4_unregister_li_request(sb); 4907 else { 4908 ext4_group_t first_not_zeroed; 4909 first_not_zeroed = ext4_has_uninit_itable(sb); 4910 ext4_register_li_request(sb, first_not_zeroed); 4911 } 4912 4913 ext4_setup_system_zone(sb); 4914 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4915 ext4_commit_super(sb, 1); 4916 4917 #ifdef CONFIG_QUOTA 4918 /* Release old quota file names */ 4919 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4920 kfree(old_opts.s_qf_names[i]); 4921 if (enable_quota) { 4922 if (sb_any_quota_suspended(sb)) 4923 dquot_resume(sb, -1); 4924 else if (ext4_has_feature_quota(sb)) { 4925 err = ext4_enable_quotas(sb); 4926 if (err) 4927 goto restore_opts; 4928 } 4929 } 4930 #endif 4931 4932 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4933 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4934 kfree(orig_data); 4935 return 0; 4936 4937 restore_opts: 4938 sb->s_flags = old_sb_flags; 4939 sbi->s_mount_opt = old_opts.s_mount_opt; 4940 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4941 sbi->s_resuid = old_opts.s_resuid; 4942 sbi->s_resgid = old_opts.s_resgid; 4943 sbi->s_commit_interval = old_opts.s_commit_interval; 4944 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4945 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4946 #ifdef CONFIG_QUOTA 4947 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4948 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4949 kfree(sbi->s_qf_names[i]); 4950 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4951 } 4952 #endif 4953 kfree(orig_data); 4954 return err; 4955 } 4956 4957 #ifdef CONFIG_QUOTA 4958 static int ext4_statfs_project(struct super_block *sb, 4959 kprojid_t projid, struct kstatfs *buf) 4960 { 4961 struct kqid qid; 4962 struct dquot *dquot; 4963 u64 limit; 4964 u64 curblock; 4965 4966 qid = make_kqid_projid(projid); 4967 dquot = dqget(sb, qid); 4968 if (IS_ERR(dquot)) 4969 return PTR_ERR(dquot); 4970 spin_lock(&dq_data_lock); 4971 4972 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 4973 dquot->dq_dqb.dqb_bsoftlimit : 4974 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 4975 if (limit && buf->f_blocks > limit) { 4976 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 4977 buf->f_blocks = limit; 4978 buf->f_bfree = buf->f_bavail = 4979 (buf->f_blocks > curblock) ? 4980 (buf->f_blocks - curblock) : 0; 4981 } 4982 4983 limit = dquot->dq_dqb.dqb_isoftlimit ? 4984 dquot->dq_dqb.dqb_isoftlimit : 4985 dquot->dq_dqb.dqb_ihardlimit; 4986 if (limit && buf->f_files > limit) { 4987 buf->f_files = limit; 4988 buf->f_ffree = 4989 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 4990 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 4991 } 4992 4993 spin_unlock(&dq_data_lock); 4994 dqput(dquot); 4995 return 0; 4996 } 4997 #endif 4998 4999 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5000 { 5001 struct super_block *sb = dentry->d_sb; 5002 struct ext4_sb_info *sbi = EXT4_SB(sb); 5003 struct ext4_super_block *es = sbi->s_es; 5004 ext4_fsblk_t overhead = 0, resv_blocks; 5005 u64 fsid; 5006 s64 bfree; 5007 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5008 5009 if (!test_opt(sb, MINIX_DF)) 5010 overhead = sbi->s_overhead; 5011 5012 buf->f_type = EXT4_SUPER_MAGIC; 5013 buf->f_bsize = sb->s_blocksize; 5014 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5015 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5016 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5017 /* prevent underflow in case that few free space is available */ 5018 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5019 buf->f_bavail = buf->f_bfree - 5020 (ext4_r_blocks_count(es) + resv_blocks); 5021 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5022 buf->f_bavail = 0; 5023 buf->f_files = le32_to_cpu(es->s_inodes_count); 5024 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5025 buf->f_namelen = EXT4_NAME_LEN; 5026 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5027 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5028 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5029 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5030 5031 #ifdef CONFIG_QUOTA 5032 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5033 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5034 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5035 #endif 5036 return 0; 5037 } 5038 5039 /* Helper function for writing quotas on sync - we need to start transaction 5040 * before quota file is locked for write. Otherwise the are possible deadlocks: 5041 * Process 1 Process 2 5042 * ext4_create() quota_sync() 5043 * jbd2_journal_start() write_dquot() 5044 * dquot_initialize() down(dqio_mutex) 5045 * down(dqio_mutex) jbd2_journal_start() 5046 * 5047 */ 5048 5049 #ifdef CONFIG_QUOTA 5050 5051 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5052 { 5053 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5054 } 5055 5056 static int ext4_write_dquot(struct dquot *dquot) 5057 { 5058 int ret, err; 5059 handle_t *handle; 5060 struct inode *inode; 5061 5062 inode = dquot_to_inode(dquot); 5063 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5064 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5065 if (IS_ERR(handle)) 5066 return PTR_ERR(handle); 5067 ret = dquot_commit(dquot); 5068 err = ext4_journal_stop(handle); 5069 if (!ret) 5070 ret = err; 5071 return ret; 5072 } 5073 5074 static int ext4_acquire_dquot(struct dquot *dquot) 5075 { 5076 int ret, err; 5077 handle_t *handle; 5078 5079 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5080 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5081 if (IS_ERR(handle)) 5082 return PTR_ERR(handle); 5083 ret = dquot_acquire(dquot); 5084 err = ext4_journal_stop(handle); 5085 if (!ret) 5086 ret = err; 5087 return ret; 5088 } 5089 5090 static int ext4_release_dquot(struct dquot *dquot) 5091 { 5092 int ret, err; 5093 handle_t *handle; 5094 5095 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5096 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5097 if (IS_ERR(handle)) { 5098 /* Release dquot anyway to avoid endless cycle in dqput() */ 5099 dquot_release(dquot); 5100 return PTR_ERR(handle); 5101 } 5102 ret = dquot_release(dquot); 5103 err = ext4_journal_stop(handle); 5104 if (!ret) 5105 ret = err; 5106 return ret; 5107 } 5108 5109 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5110 { 5111 struct super_block *sb = dquot->dq_sb; 5112 struct ext4_sb_info *sbi = EXT4_SB(sb); 5113 5114 /* Are we journaling quotas? */ 5115 if (ext4_has_feature_quota(sb) || 5116 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5117 dquot_mark_dquot_dirty(dquot); 5118 return ext4_write_dquot(dquot); 5119 } else { 5120 return dquot_mark_dquot_dirty(dquot); 5121 } 5122 } 5123 5124 static int ext4_write_info(struct super_block *sb, int type) 5125 { 5126 int ret, err; 5127 handle_t *handle; 5128 5129 /* Data block + inode block */ 5130 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5131 if (IS_ERR(handle)) 5132 return PTR_ERR(handle); 5133 ret = dquot_commit_info(sb, type); 5134 err = ext4_journal_stop(handle); 5135 if (!ret) 5136 ret = err; 5137 return ret; 5138 } 5139 5140 /* 5141 * Turn on quotas during mount time - we need to find 5142 * the quota file and such... 5143 */ 5144 static int ext4_quota_on_mount(struct super_block *sb, int type) 5145 { 5146 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5147 EXT4_SB(sb)->s_jquota_fmt, type); 5148 } 5149 5150 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5151 { 5152 struct ext4_inode_info *ei = EXT4_I(inode); 5153 5154 /* The first argument of lockdep_set_subclass has to be 5155 * *exactly* the same as the argument to init_rwsem() --- in 5156 * this case, in init_once() --- or lockdep gets unhappy 5157 * because the name of the lock is set using the 5158 * stringification of the argument to init_rwsem(). 5159 */ 5160 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5161 lockdep_set_subclass(&ei->i_data_sem, subclass); 5162 } 5163 5164 /* 5165 * Standard function to be called on quota_on 5166 */ 5167 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5168 struct path *path) 5169 { 5170 int err; 5171 5172 if (!test_opt(sb, QUOTA)) 5173 return -EINVAL; 5174 5175 /* Quotafile not on the same filesystem? */ 5176 if (path->dentry->d_sb != sb) 5177 return -EXDEV; 5178 /* Journaling quota? */ 5179 if (EXT4_SB(sb)->s_qf_names[type]) { 5180 /* Quotafile not in fs root? */ 5181 if (path->dentry->d_parent != sb->s_root) 5182 ext4_msg(sb, KERN_WARNING, 5183 "Quota file not on filesystem root. " 5184 "Journaled quota will not work"); 5185 } 5186 5187 /* 5188 * When we journal data on quota file, we have to flush journal to see 5189 * all updates to the file when we bypass pagecache... 5190 */ 5191 if (EXT4_SB(sb)->s_journal && 5192 ext4_should_journal_data(d_inode(path->dentry))) { 5193 /* 5194 * We don't need to lock updates but journal_flush() could 5195 * otherwise be livelocked... 5196 */ 5197 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5198 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5199 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5200 if (err) 5201 return err; 5202 } 5203 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5204 err = dquot_quota_on(sb, type, format_id, path); 5205 if (err) 5206 lockdep_set_quota_inode(path->dentry->d_inode, 5207 I_DATA_SEM_NORMAL); 5208 return err; 5209 } 5210 5211 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5212 unsigned int flags) 5213 { 5214 int err; 5215 struct inode *qf_inode; 5216 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5217 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5218 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5219 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5220 }; 5221 5222 BUG_ON(!ext4_has_feature_quota(sb)); 5223 5224 if (!qf_inums[type]) 5225 return -EPERM; 5226 5227 qf_inode = ext4_iget(sb, qf_inums[type]); 5228 if (IS_ERR(qf_inode)) { 5229 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5230 return PTR_ERR(qf_inode); 5231 } 5232 5233 /* Don't account quota for quota files to avoid recursion */ 5234 qf_inode->i_flags |= S_NOQUOTA; 5235 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5236 err = dquot_enable(qf_inode, type, format_id, flags); 5237 iput(qf_inode); 5238 if (err) 5239 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5240 5241 return err; 5242 } 5243 5244 /* Enable usage tracking for all quota types. */ 5245 static int ext4_enable_quotas(struct super_block *sb) 5246 { 5247 int type, err = 0; 5248 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5249 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5250 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5251 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5252 }; 5253 5254 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5255 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5256 if (qf_inums[type]) { 5257 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5258 DQUOT_USAGE_ENABLED); 5259 if (err) { 5260 ext4_warning(sb, 5261 "Failed to enable quota tracking " 5262 "(type=%d, err=%d). Please run " 5263 "e2fsck to fix.", type, err); 5264 return err; 5265 } 5266 } 5267 } 5268 return 0; 5269 } 5270 5271 static int ext4_quota_off(struct super_block *sb, int type) 5272 { 5273 struct inode *inode = sb_dqopt(sb)->files[type]; 5274 handle_t *handle; 5275 5276 /* Force all delayed allocation blocks to be allocated. 5277 * Caller already holds s_umount sem */ 5278 if (test_opt(sb, DELALLOC)) 5279 sync_filesystem(sb); 5280 5281 if (!inode) 5282 goto out; 5283 5284 /* Update modification times of quota files when userspace can 5285 * start looking at them */ 5286 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5287 if (IS_ERR(handle)) 5288 goto out; 5289 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5290 ext4_mark_inode_dirty(handle, inode); 5291 ext4_journal_stop(handle); 5292 5293 out: 5294 return dquot_quota_off(sb, type); 5295 } 5296 5297 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5298 * acquiring the locks... As quota files are never truncated and quota code 5299 * itself serializes the operations (and no one else should touch the files) 5300 * we don't have to be afraid of races */ 5301 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5302 size_t len, loff_t off) 5303 { 5304 struct inode *inode = sb_dqopt(sb)->files[type]; 5305 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5306 int offset = off & (sb->s_blocksize - 1); 5307 int tocopy; 5308 size_t toread; 5309 struct buffer_head *bh; 5310 loff_t i_size = i_size_read(inode); 5311 5312 if (off > i_size) 5313 return 0; 5314 if (off+len > i_size) 5315 len = i_size-off; 5316 toread = len; 5317 while (toread > 0) { 5318 tocopy = sb->s_blocksize - offset < toread ? 5319 sb->s_blocksize - offset : toread; 5320 bh = ext4_bread(NULL, inode, blk, 0); 5321 if (IS_ERR(bh)) 5322 return PTR_ERR(bh); 5323 if (!bh) /* A hole? */ 5324 memset(data, 0, tocopy); 5325 else 5326 memcpy(data, bh->b_data+offset, tocopy); 5327 brelse(bh); 5328 offset = 0; 5329 toread -= tocopy; 5330 data += tocopy; 5331 blk++; 5332 } 5333 return len; 5334 } 5335 5336 /* Write to quotafile (we know the transaction is already started and has 5337 * enough credits) */ 5338 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5339 const char *data, size_t len, loff_t off) 5340 { 5341 struct inode *inode = sb_dqopt(sb)->files[type]; 5342 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5343 int err, offset = off & (sb->s_blocksize - 1); 5344 int retries = 0; 5345 struct buffer_head *bh; 5346 handle_t *handle = journal_current_handle(); 5347 5348 if (EXT4_SB(sb)->s_journal && !handle) { 5349 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5350 " cancelled because transaction is not started", 5351 (unsigned long long)off, (unsigned long long)len); 5352 return -EIO; 5353 } 5354 /* 5355 * Since we account only one data block in transaction credits, 5356 * then it is impossible to cross a block boundary. 5357 */ 5358 if (sb->s_blocksize - offset < len) { 5359 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5360 " cancelled because not block aligned", 5361 (unsigned long long)off, (unsigned long long)len); 5362 return -EIO; 5363 } 5364 5365 do { 5366 bh = ext4_bread(handle, inode, blk, 5367 EXT4_GET_BLOCKS_CREATE | 5368 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5369 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5370 ext4_should_retry_alloc(inode->i_sb, &retries)); 5371 if (IS_ERR(bh)) 5372 return PTR_ERR(bh); 5373 if (!bh) 5374 goto out; 5375 BUFFER_TRACE(bh, "get write access"); 5376 err = ext4_journal_get_write_access(handle, bh); 5377 if (err) { 5378 brelse(bh); 5379 return err; 5380 } 5381 lock_buffer(bh); 5382 memcpy(bh->b_data+offset, data, len); 5383 flush_dcache_page(bh->b_page); 5384 unlock_buffer(bh); 5385 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5386 brelse(bh); 5387 out: 5388 if (inode->i_size < off + len) { 5389 i_size_write(inode, off + len); 5390 EXT4_I(inode)->i_disksize = inode->i_size; 5391 ext4_mark_inode_dirty(handle, inode); 5392 } 5393 return len; 5394 } 5395 5396 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5397 { 5398 const struct quota_format_ops *ops; 5399 5400 if (!sb_has_quota_loaded(sb, qid->type)) 5401 return -ESRCH; 5402 ops = sb_dqopt(sb)->ops[qid->type]; 5403 if (!ops || !ops->get_next_id) 5404 return -ENOSYS; 5405 return dquot_get_next_id(sb, qid); 5406 } 5407 #endif 5408 5409 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5410 const char *dev_name, void *data) 5411 { 5412 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5413 } 5414 5415 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5416 static inline void register_as_ext2(void) 5417 { 5418 int err = register_filesystem(&ext2_fs_type); 5419 if (err) 5420 printk(KERN_WARNING 5421 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5422 } 5423 5424 static inline void unregister_as_ext2(void) 5425 { 5426 unregister_filesystem(&ext2_fs_type); 5427 } 5428 5429 static inline int ext2_feature_set_ok(struct super_block *sb) 5430 { 5431 if (ext4_has_unknown_ext2_incompat_features(sb)) 5432 return 0; 5433 if (sb->s_flags & MS_RDONLY) 5434 return 1; 5435 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5436 return 0; 5437 return 1; 5438 } 5439 #else 5440 static inline void register_as_ext2(void) { } 5441 static inline void unregister_as_ext2(void) { } 5442 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5443 #endif 5444 5445 static inline void register_as_ext3(void) 5446 { 5447 int err = register_filesystem(&ext3_fs_type); 5448 if (err) 5449 printk(KERN_WARNING 5450 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5451 } 5452 5453 static inline void unregister_as_ext3(void) 5454 { 5455 unregister_filesystem(&ext3_fs_type); 5456 } 5457 5458 static inline int ext3_feature_set_ok(struct super_block *sb) 5459 { 5460 if (ext4_has_unknown_ext3_incompat_features(sb)) 5461 return 0; 5462 if (!ext4_has_feature_journal(sb)) 5463 return 0; 5464 if (sb->s_flags & MS_RDONLY) 5465 return 1; 5466 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5467 return 0; 5468 return 1; 5469 } 5470 5471 static struct file_system_type ext4_fs_type = { 5472 .owner = THIS_MODULE, 5473 .name = "ext4", 5474 .mount = ext4_mount, 5475 .kill_sb = kill_block_super, 5476 .fs_flags = FS_REQUIRES_DEV, 5477 }; 5478 MODULE_ALIAS_FS("ext4"); 5479 5480 /* Shared across all ext4 file systems */ 5481 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5482 5483 static int __init ext4_init_fs(void) 5484 { 5485 int i, err; 5486 5487 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5488 ext4_li_info = NULL; 5489 mutex_init(&ext4_li_mtx); 5490 5491 /* Build-time check for flags consistency */ 5492 ext4_check_flag_values(); 5493 5494 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5495 init_waitqueue_head(&ext4__ioend_wq[i]); 5496 5497 err = ext4_init_es(); 5498 if (err) 5499 return err; 5500 5501 err = ext4_init_pageio(); 5502 if (err) 5503 goto out5; 5504 5505 err = ext4_init_system_zone(); 5506 if (err) 5507 goto out4; 5508 5509 err = ext4_init_sysfs(); 5510 if (err) 5511 goto out3; 5512 5513 err = ext4_init_mballoc(); 5514 if (err) 5515 goto out2; 5516 err = init_inodecache(); 5517 if (err) 5518 goto out1; 5519 register_as_ext3(); 5520 register_as_ext2(); 5521 err = register_filesystem(&ext4_fs_type); 5522 if (err) 5523 goto out; 5524 5525 return 0; 5526 out: 5527 unregister_as_ext2(); 5528 unregister_as_ext3(); 5529 destroy_inodecache(); 5530 out1: 5531 ext4_exit_mballoc(); 5532 out2: 5533 ext4_exit_sysfs(); 5534 out3: 5535 ext4_exit_system_zone(); 5536 out4: 5537 ext4_exit_pageio(); 5538 out5: 5539 ext4_exit_es(); 5540 5541 return err; 5542 } 5543 5544 static void __exit ext4_exit_fs(void) 5545 { 5546 ext4_destroy_lazyinit_thread(); 5547 unregister_as_ext2(); 5548 unregister_as_ext3(); 5549 unregister_filesystem(&ext4_fs_type); 5550 destroy_inodecache(); 5551 ext4_exit_mballoc(); 5552 ext4_exit_sysfs(); 5553 ext4_exit_system_zone(); 5554 ext4_exit_pageio(); 5555 ext4_exit_es(); 5556 } 5557 5558 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5559 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5560 MODULE_LICENSE("GPL"); 5561 module_init(ext4_init_fs) 5562 module_exit(ext4_exit_fs) 5563