1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static int ext4_mballoc_ready; 59 static struct ratelimit_state ext4_mount_msg_ratelimit; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static int ext4_remount(struct super_block *sb, int *flags, char *data); 71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 72 static int ext4_unfreeze(struct super_block *sb); 73 static int ext4_freeze(struct super_block *sb); 74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 75 const char *dev_name, void *data); 76 static inline int ext2_feature_set_ok(struct super_block *sb); 77 static inline int ext3_feature_set_ok(struct super_block *sb); 78 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 79 static void ext4_destroy_lazyinit_thread(void); 80 static void ext4_unregister_li_request(struct super_block *sb); 81 static void ext4_clear_request_list(void); 82 83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 84 static struct file_system_type ext2_fs_type = { 85 .owner = THIS_MODULE, 86 .name = "ext2", 87 .mount = ext4_mount, 88 .kill_sb = kill_block_super, 89 .fs_flags = FS_REQUIRES_DEV, 90 }; 91 MODULE_ALIAS_FS("ext2"); 92 MODULE_ALIAS("ext2"); 93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 94 #else 95 #define IS_EXT2_SB(sb) (0) 96 #endif 97 98 99 static struct file_system_type ext3_fs_type = { 100 .owner = THIS_MODULE, 101 .name = "ext3", 102 .mount = ext4_mount, 103 .kill_sb = kill_block_super, 104 .fs_flags = FS_REQUIRES_DEV, 105 }; 106 MODULE_ALIAS_FS("ext3"); 107 MODULE_ALIAS("ext3"); 108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 109 110 static int ext4_verify_csum_type(struct super_block *sb, 111 struct ext4_super_block *es) 112 { 113 if (!ext4_has_feature_metadata_csum(sb)) 114 return 1; 115 116 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 117 } 118 119 static __le32 ext4_superblock_csum(struct super_block *sb, 120 struct ext4_super_block *es) 121 { 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 int offset = offsetof(struct ext4_super_block, s_checksum); 124 __u32 csum; 125 126 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 127 128 return cpu_to_le32(csum); 129 } 130 131 static int ext4_superblock_csum_verify(struct super_block *sb, 132 struct ext4_super_block *es) 133 { 134 if (!ext4_has_metadata_csum(sb)) 135 return 1; 136 137 return es->s_checksum == ext4_superblock_csum(sb, es); 138 } 139 140 void ext4_superblock_csum_set(struct super_block *sb) 141 { 142 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 143 144 if (!ext4_has_metadata_csum(sb)) 145 return; 146 147 es->s_checksum = ext4_superblock_csum(sb, es); 148 } 149 150 void *ext4_kvmalloc(size_t size, gfp_t flags) 151 { 152 void *ret; 153 154 ret = kmalloc(size, flags | __GFP_NOWARN); 155 if (!ret) 156 ret = __vmalloc(size, flags, PAGE_KERNEL); 157 return ret; 158 } 159 160 void *ext4_kvzalloc(size_t size, gfp_t flags) 161 { 162 void *ret; 163 164 ret = kzalloc(size, flags | __GFP_NOWARN); 165 if (!ret) 166 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 167 return ret; 168 } 169 170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 171 struct ext4_group_desc *bg) 172 { 173 return le32_to_cpu(bg->bg_block_bitmap_lo) | 174 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 175 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 176 } 177 178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 179 struct ext4_group_desc *bg) 180 { 181 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 183 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 184 } 185 186 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_inode_table_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 192 } 193 194 __u32 ext4_free_group_clusters(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 200 } 201 202 __u32 ext4_free_inodes_count(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 208 } 209 210 __u32 ext4_used_dirs_count(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_itable_unused_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_itable_unused_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 224 } 225 226 void ext4_block_bitmap_set(struct super_block *sb, 227 struct ext4_group_desc *bg, ext4_fsblk_t blk) 228 { 229 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 230 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 231 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 232 } 233 234 void ext4_inode_bitmap_set(struct super_block *sb, 235 struct ext4_group_desc *bg, ext4_fsblk_t blk) 236 { 237 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 239 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 240 } 241 242 void ext4_inode_table_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_free_group_clusters_set(struct super_block *sb, 251 struct ext4_group_desc *bg, __u32 count) 252 { 253 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 256 } 257 258 void ext4_free_inodes_set(struct super_block *sb, 259 struct ext4_group_desc *bg, __u32 count) 260 { 261 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 264 } 265 266 void ext4_used_dirs_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_itable_unused_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 280 } 281 282 283 static void __save_error_info(struct super_block *sb, const char *func, 284 unsigned int line) 285 { 286 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 287 288 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 289 if (bdev_read_only(sb->s_bdev)) 290 return; 291 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 292 es->s_last_error_time = cpu_to_le32(get_seconds()); 293 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 294 es->s_last_error_line = cpu_to_le32(line); 295 if (!es->s_first_error_time) { 296 es->s_first_error_time = es->s_last_error_time; 297 strncpy(es->s_first_error_func, func, 298 sizeof(es->s_first_error_func)); 299 es->s_first_error_line = cpu_to_le32(line); 300 es->s_first_error_ino = es->s_last_error_ino; 301 es->s_first_error_block = es->s_last_error_block; 302 } 303 /* 304 * Start the daily error reporting function if it hasn't been 305 * started already 306 */ 307 if (!es->s_error_count) 308 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 309 le32_add_cpu(&es->s_error_count, 1); 310 } 311 312 static void save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 __save_error_info(sb, func, line); 316 ext4_commit_super(sb, 1); 317 } 318 319 /* 320 * The del_gendisk() function uninitializes the disk-specific data 321 * structures, including the bdi structure, without telling anyone 322 * else. Once this happens, any attempt to call mark_buffer_dirty() 323 * (for example, by ext4_commit_super), will cause a kernel OOPS. 324 * This is a kludge to prevent these oops until we can put in a proper 325 * hook in del_gendisk() to inform the VFS and file system layers. 326 */ 327 static int block_device_ejected(struct super_block *sb) 328 { 329 struct inode *bd_inode = sb->s_bdev->bd_inode; 330 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 331 332 return bdi->dev == NULL; 333 } 334 335 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 336 { 337 struct super_block *sb = journal->j_private; 338 struct ext4_sb_info *sbi = EXT4_SB(sb); 339 int error = is_journal_aborted(journal); 340 struct ext4_journal_cb_entry *jce; 341 342 BUG_ON(txn->t_state == T_FINISHED); 343 spin_lock(&sbi->s_md_lock); 344 while (!list_empty(&txn->t_private_list)) { 345 jce = list_entry(txn->t_private_list.next, 346 struct ext4_journal_cb_entry, jce_list); 347 list_del_init(&jce->jce_list); 348 spin_unlock(&sbi->s_md_lock); 349 jce->jce_func(sb, jce, error); 350 spin_lock(&sbi->s_md_lock); 351 } 352 spin_unlock(&sbi->s_md_lock); 353 } 354 355 /* Deal with the reporting of failure conditions on a filesystem such as 356 * inconsistencies detected or read IO failures. 357 * 358 * On ext2, we can store the error state of the filesystem in the 359 * superblock. That is not possible on ext4, because we may have other 360 * write ordering constraints on the superblock which prevent us from 361 * writing it out straight away; and given that the journal is about to 362 * be aborted, we can't rely on the current, or future, transactions to 363 * write out the superblock safely. 364 * 365 * We'll just use the jbd2_journal_abort() error code to record an error in 366 * the journal instead. On recovery, the journal will complain about 367 * that error until we've noted it down and cleared it. 368 */ 369 370 static void ext4_handle_error(struct super_block *sb) 371 { 372 if (sb->s_flags & MS_RDONLY) 373 return; 374 375 if (!test_opt(sb, ERRORS_CONT)) { 376 journal_t *journal = EXT4_SB(sb)->s_journal; 377 378 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 379 if (journal) 380 jbd2_journal_abort(journal, -EIO); 381 } 382 if (test_opt(sb, ERRORS_RO)) { 383 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 384 /* 385 * Make sure updated value of ->s_mount_flags will be visible 386 * before ->s_flags update 387 */ 388 smp_wmb(); 389 sb->s_flags |= MS_RDONLY; 390 } 391 if (test_opt(sb, ERRORS_PANIC)) 392 panic("EXT4-fs (device %s): panic forced after error\n", 393 sb->s_id); 394 } 395 396 #define ext4_error_ratelimit(sb) \ 397 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 398 "EXT4-fs error") 399 400 void __ext4_error(struct super_block *sb, const char *function, 401 unsigned int line, const char *fmt, ...) 402 { 403 struct va_format vaf; 404 va_list args; 405 406 if (ext4_error_ratelimit(sb)) { 407 va_start(args, fmt); 408 vaf.fmt = fmt; 409 vaf.va = &args; 410 printk(KERN_CRIT 411 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 412 sb->s_id, function, line, current->comm, &vaf); 413 va_end(args); 414 } 415 save_error_info(sb, function, line); 416 ext4_handle_error(sb); 417 } 418 419 void __ext4_error_inode(struct inode *inode, const char *function, 420 unsigned int line, ext4_fsblk_t block, 421 const char *fmt, ...) 422 { 423 va_list args; 424 struct va_format vaf; 425 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 426 427 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 428 es->s_last_error_block = cpu_to_le64(block); 429 if (ext4_error_ratelimit(inode->i_sb)) { 430 va_start(args, fmt); 431 vaf.fmt = fmt; 432 vaf.va = &args; 433 if (block) 434 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 435 "inode #%lu: block %llu: comm %s: %pV\n", 436 inode->i_sb->s_id, function, line, inode->i_ino, 437 block, current->comm, &vaf); 438 else 439 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 440 "inode #%lu: comm %s: %pV\n", 441 inode->i_sb->s_id, function, line, inode->i_ino, 442 current->comm, &vaf); 443 va_end(args); 444 } 445 save_error_info(inode->i_sb, function, line); 446 ext4_handle_error(inode->i_sb); 447 } 448 449 void __ext4_error_file(struct file *file, const char *function, 450 unsigned int line, ext4_fsblk_t block, 451 const char *fmt, ...) 452 { 453 va_list args; 454 struct va_format vaf; 455 struct ext4_super_block *es; 456 struct inode *inode = file_inode(file); 457 char pathname[80], *path; 458 459 es = EXT4_SB(inode->i_sb)->s_es; 460 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 461 if (ext4_error_ratelimit(inode->i_sb)) { 462 path = file_path(file, pathname, sizeof(pathname)); 463 if (IS_ERR(path)) 464 path = "(unknown)"; 465 va_start(args, fmt); 466 vaf.fmt = fmt; 467 vaf.va = &args; 468 if (block) 469 printk(KERN_CRIT 470 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 471 "block %llu: comm %s: path %s: %pV\n", 472 inode->i_sb->s_id, function, line, inode->i_ino, 473 block, current->comm, path, &vaf); 474 else 475 printk(KERN_CRIT 476 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 477 "comm %s: path %s: %pV\n", 478 inode->i_sb->s_id, function, line, inode->i_ino, 479 current->comm, path, &vaf); 480 va_end(args); 481 } 482 save_error_info(inode->i_sb, function, line); 483 ext4_handle_error(inode->i_sb); 484 } 485 486 const char *ext4_decode_error(struct super_block *sb, int errno, 487 char nbuf[16]) 488 { 489 char *errstr = NULL; 490 491 switch (errno) { 492 case -EFSCORRUPTED: 493 errstr = "Corrupt filesystem"; 494 break; 495 case -EFSBADCRC: 496 errstr = "Filesystem failed CRC"; 497 break; 498 case -EIO: 499 errstr = "IO failure"; 500 break; 501 case -ENOMEM: 502 errstr = "Out of memory"; 503 break; 504 case -EROFS: 505 if (!sb || (EXT4_SB(sb)->s_journal && 506 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 507 errstr = "Journal has aborted"; 508 else 509 errstr = "Readonly filesystem"; 510 break; 511 default: 512 /* If the caller passed in an extra buffer for unknown 513 * errors, textualise them now. Else we just return 514 * NULL. */ 515 if (nbuf) { 516 /* Check for truncated error codes... */ 517 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 518 errstr = nbuf; 519 } 520 break; 521 } 522 523 return errstr; 524 } 525 526 /* __ext4_std_error decodes expected errors from journaling functions 527 * automatically and invokes the appropriate error response. */ 528 529 void __ext4_std_error(struct super_block *sb, const char *function, 530 unsigned int line, int errno) 531 { 532 char nbuf[16]; 533 const char *errstr; 534 535 /* Special case: if the error is EROFS, and we're not already 536 * inside a transaction, then there's really no point in logging 537 * an error. */ 538 if (errno == -EROFS && journal_current_handle() == NULL && 539 (sb->s_flags & MS_RDONLY)) 540 return; 541 542 if (ext4_error_ratelimit(sb)) { 543 errstr = ext4_decode_error(sb, errno, nbuf); 544 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 545 sb->s_id, function, line, errstr); 546 } 547 548 save_error_info(sb, function, line); 549 ext4_handle_error(sb); 550 } 551 552 /* 553 * ext4_abort is a much stronger failure handler than ext4_error. The 554 * abort function may be used to deal with unrecoverable failures such 555 * as journal IO errors or ENOMEM at a critical moment in log management. 556 * 557 * We unconditionally force the filesystem into an ABORT|READONLY state, 558 * unless the error response on the fs has been set to panic in which 559 * case we take the easy way out and panic immediately. 560 */ 561 562 void __ext4_abort(struct super_block *sb, const char *function, 563 unsigned int line, const char *fmt, ...) 564 { 565 va_list args; 566 567 save_error_info(sb, function, line); 568 va_start(args, fmt); 569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 570 function, line); 571 vprintk(fmt, args); 572 printk("\n"); 573 va_end(args); 574 575 if ((sb->s_flags & MS_RDONLY) == 0) { 576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 577 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 578 /* 579 * Make sure updated value of ->s_mount_flags will be visible 580 * before ->s_flags update 581 */ 582 smp_wmb(); 583 sb->s_flags |= MS_RDONLY; 584 if (EXT4_SB(sb)->s_journal) 585 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 586 save_error_info(sb, function, line); 587 } 588 if (test_opt(sb, ERRORS_PANIC)) 589 panic("EXT4-fs panic from previous error\n"); 590 } 591 592 void __ext4_msg(struct super_block *sb, 593 const char *prefix, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 599 return; 600 601 va_start(args, fmt); 602 vaf.fmt = fmt; 603 vaf.va = &args; 604 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 605 va_end(args); 606 } 607 608 #define ext4_warning_ratelimit(sb) \ 609 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 610 "EXT4-fs warning") 611 612 void __ext4_warning(struct super_block *sb, const char *function, 613 unsigned int line, const char *fmt, ...) 614 { 615 struct va_format vaf; 616 va_list args; 617 618 if (!ext4_warning_ratelimit(sb)) 619 return; 620 621 va_start(args, fmt); 622 vaf.fmt = fmt; 623 vaf.va = &args; 624 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 625 sb->s_id, function, line, &vaf); 626 va_end(args); 627 } 628 629 void __ext4_warning_inode(const struct inode *inode, const char *function, 630 unsigned int line, const char *fmt, ...) 631 { 632 struct va_format vaf; 633 va_list args; 634 635 if (!ext4_warning_ratelimit(inode->i_sb)) 636 return; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 642 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 643 function, line, inode->i_ino, current->comm, &vaf); 644 va_end(args); 645 } 646 647 void __ext4_grp_locked_error(const char *function, unsigned int line, 648 struct super_block *sb, ext4_group_t grp, 649 unsigned long ino, ext4_fsblk_t block, 650 const char *fmt, ...) 651 __releases(bitlock) 652 __acquires(bitlock) 653 { 654 struct va_format vaf; 655 va_list args; 656 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 657 658 es->s_last_error_ino = cpu_to_le32(ino); 659 es->s_last_error_block = cpu_to_le64(block); 660 __save_error_info(sb, function, line); 661 662 if (ext4_error_ratelimit(sb)) { 663 va_start(args, fmt); 664 vaf.fmt = fmt; 665 vaf.va = &args; 666 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 667 sb->s_id, function, line, grp); 668 if (ino) 669 printk(KERN_CONT "inode %lu: ", ino); 670 if (block) 671 printk(KERN_CONT "block %llu:", 672 (unsigned long long) block); 673 printk(KERN_CONT "%pV\n", &vaf); 674 va_end(args); 675 } 676 677 if (test_opt(sb, ERRORS_CONT)) { 678 ext4_commit_super(sb, 0); 679 return; 680 } 681 682 ext4_unlock_group(sb, grp); 683 ext4_handle_error(sb); 684 /* 685 * We only get here in the ERRORS_RO case; relocking the group 686 * may be dangerous, but nothing bad will happen since the 687 * filesystem will have already been marked read/only and the 688 * journal has been aborted. We return 1 as a hint to callers 689 * who might what to use the return value from 690 * ext4_grp_locked_error() to distinguish between the 691 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 692 * aggressively from the ext4 function in question, with a 693 * more appropriate error code. 694 */ 695 ext4_lock_group(sb, grp); 696 return; 697 } 698 699 void ext4_update_dynamic_rev(struct super_block *sb) 700 { 701 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 702 703 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 704 return; 705 706 ext4_warning(sb, 707 "updating to rev %d because of new feature flag, " 708 "running e2fsck is recommended", 709 EXT4_DYNAMIC_REV); 710 711 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 712 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 713 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 714 /* leave es->s_feature_*compat flags alone */ 715 /* es->s_uuid will be set by e2fsck if empty */ 716 717 /* 718 * The rest of the superblock fields should be zero, and if not it 719 * means they are likely already in use, so leave them alone. We 720 * can leave it up to e2fsck to clean up any inconsistencies there. 721 */ 722 } 723 724 /* 725 * Open the external journal device 726 */ 727 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 728 { 729 struct block_device *bdev; 730 char b[BDEVNAME_SIZE]; 731 732 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 733 if (IS_ERR(bdev)) 734 goto fail; 735 return bdev; 736 737 fail: 738 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 739 __bdevname(dev, b), PTR_ERR(bdev)); 740 return NULL; 741 } 742 743 /* 744 * Release the journal device 745 */ 746 static void ext4_blkdev_put(struct block_device *bdev) 747 { 748 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 749 } 750 751 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 752 { 753 struct block_device *bdev; 754 bdev = sbi->journal_bdev; 755 if (bdev) { 756 ext4_blkdev_put(bdev); 757 sbi->journal_bdev = NULL; 758 } 759 } 760 761 static inline struct inode *orphan_list_entry(struct list_head *l) 762 { 763 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 764 } 765 766 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 767 { 768 struct list_head *l; 769 770 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 771 le32_to_cpu(sbi->s_es->s_last_orphan)); 772 773 printk(KERN_ERR "sb_info orphan list:\n"); 774 list_for_each(l, &sbi->s_orphan) { 775 struct inode *inode = orphan_list_entry(l); 776 printk(KERN_ERR " " 777 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 778 inode->i_sb->s_id, inode->i_ino, inode, 779 inode->i_mode, inode->i_nlink, 780 NEXT_ORPHAN(inode)); 781 } 782 } 783 784 static void ext4_put_super(struct super_block *sb) 785 { 786 struct ext4_sb_info *sbi = EXT4_SB(sb); 787 struct ext4_super_block *es = sbi->s_es; 788 int i, err; 789 790 ext4_unregister_li_request(sb); 791 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 792 793 flush_workqueue(sbi->rsv_conversion_wq); 794 destroy_workqueue(sbi->rsv_conversion_wq); 795 796 if (sbi->s_journal) { 797 err = jbd2_journal_destroy(sbi->s_journal); 798 sbi->s_journal = NULL; 799 if (err < 0) 800 ext4_abort(sb, "Couldn't clean up the journal"); 801 } 802 803 ext4_unregister_sysfs(sb); 804 ext4_es_unregister_shrinker(sbi); 805 del_timer_sync(&sbi->s_err_report); 806 ext4_release_system_zone(sb); 807 ext4_mb_release(sb); 808 ext4_ext_release(sb); 809 ext4_xattr_put_super(sb); 810 811 if (!(sb->s_flags & MS_RDONLY)) { 812 ext4_clear_feature_journal_needs_recovery(sb); 813 es->s_state = cpu_to_le16(sbi->s_mount_state); 814 } 815 if (!(sb->s_flags & MS_RDONLY)) 816 ext4_commit_super(sb, 1); 817 818 for (i = 0; i < sbi->s_gdb_count; i++) 819 brelse(sbi->s_group_desc[i]); 820 kvfree(sbi->s_group_desc); 821 kvfree(sbi->s_flex_groups); 822 percpu_counter_destroy(&sbi->s_freeclusters_counter); 823 percpu_counter_destroy(&sbi->s_freeinodes_counter); 824 percpu_counter_destroy(&sbi->s_dirs_counter); 825 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 826 brelse(sbi->s_sbh); 827 #ifdef CONFIG_QUOTA 828 for (i = 0; i < EXT4_MAXQUOTAS; i++) 829 kfree(sbi->s_qf_names[i]); 830 #endif 831 832 /* Debugging code just in case the in-memory inode orphan list 833 * isn't empty. The on-disk one can be non-empty if we've 834 * detected an error and taken the fs readonly, but the 835 * in-memory list had better be clean by this point. */ 836 if (!list_empty(&sbi->s_orphan)) 837 dump_orphan_list(sb, sbi); 838 J_ASSERT(list_empty(&sbi->s_orphan)); 839 840 sync_blockdev(sb->s_bdev); 841 invalidate_bdev(sb->s_bdev); 842 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 843 /* 844 * Invalidate the journal device's buffers. We don't want them 845 * floating about in memory - the physical journal device may 846 * hotswapped, and it breaks the `ro-after' testing code. 847 */ 848 sync_blockdev(sbi->journal_bdev); 849 invalidate_bdev(sbi->journal_bdev); 850 ext4_blkdev_remove(sbi); 851 } 852 if (sbi->s_mb_cache) { 853 ext4_xattr_destroy_cache(sbi->s_mb_cache); 854 sbi->s_mb_cache = NULL; 855 } 856 if (sbi->s_mmp_tsk) 857 kthread_stop(sbi->s_mmp_tsk); 858 sb->s_fs_info = NULL; 859 /* 860 * Now that we are completely done shutting down the 861 * superblock, we need to actually destroy the kobject. 862 */ 863 kobject_put(&sbi->s_kobj); 864 wait_for_completion(&sbi->s_kobj_unregister); 865 if (sbi->s_chksum_driver) 866 crypto_free_shash(sbi->s_chksum_driver); 867 kfree(sbi->s_blockgroup_lock); 868 kfree(sbi); 869 } 870 871 static struct kmem_cache *ext4_inode_cachep; 872 873 /* 874 * Called inside transaction, so use GFP_NOFS 875 */ 876 static struct inode *ext4_alloc_inode(struct super_block *sb) 877 { 878 struct ext4_inode_info *ei; 879 880 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 881 if (!ei) 882 return NULL; 883 884 ei->vfs_inode.i_version = 1; 885 spin_lock_init(&ei->i_raw_lock); 886 INIT_LIST_HEAD(&ei->i_prealloc_list); 887 spin_lock_init(&ei->i_prealloc_lock); 888 ext4_es_init_tree(&ei->i_es_tree); 889 rwlock_init(&ei->i_es_lock); 890 INIT_LIST_HEAD(&ei->i_es_list); 891 ei->i_es_all_nr = 0; 892 ei->i_es_shk_nr = 0; 893 ei->i_es_shrink_lblk = 0; 894 ei->i_reserved_data_blocks = 0; 895 ei->i_reserved_meta_blocks = 0; 896 ei->i_allocated_meta_blocks = 0; 897 ei->i_da_metadata_calc_len = 0; 898 ei->i_da_metadata_calc_last_lblock = 0; 899 spin_lock_init(&(ei->i_block_reservation_lock)); 900 #ifdef CONFIG_QUOTA 901 ei->i_reserved_quota = 0; 902 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 903 #endif 904 ei->jinode = NULL; 905 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 906 spin_lock_init(&ei->i_completed_io_lock); 907 ei->i_sync_tid = 0; 908 ei->i_datasync_tid = 0; 909 atomic_set(&ei->i_ioend_count, 0); 910 atomic_set(&ei->i_unwritten, 0); 911 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 912 #ifdef CONFIG_EXT4_FS_ENCRYPTION 913 ei->i_crypt_info = NULL; 914 #endif 915 return &ei->vfs_inode; 916 } 917 918 static int ext4_drop_inode(struct inode *inode) 919 { 920 int drop = generic_drop_inode(inode); 921 922 trace_ext4_drop_inode(inode, drop); 923 return drop; 924 } 925 926 static void ext4_i_callback(struct rcu_head *head) 927 { 928 struct inode *inode = container_of(head, struct inode, i_rcu); 929 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 930 } 931 932 static void ext4_destroy_inode(struct inode *inode) 933 { 934 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 935 ext4_msg(inode->i_sb, KERN_ERR, 936 "Inode %lu (%p): orphan list check failed!", 937 inode->i_ino, EXT4_I(inode)); 938 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 939 EXT4_I(inode), sizeof(struct ext4_inode_info), 940 true); 941 dump_stack(); 942 } 943 call_rcu(&inode->i_rcu, ext4_i_callback); 944 } 945 946 static void init_once(void *foo) 947 { 948 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 949 950 INIT_LIST_HEAD(&ei->i_orphan); 951 init_rwsem(&ei->xattr_sem); 952 init_rwsem(&ei->i_data_sem); 953 inode_init_once(&ei->vfs_inode); 954 } 955 956 static int __init init_inodecache(void) 957 { 958 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 959 sizeof(struct ext4_inode_info), 960 0, (SLAB_RECLAIM_ACCOUNT| 961 SLAB_MEM_SPREAD), 962 init_once); 963 if (ext4_inode_cachep == NULL) 964 return -ENOMEM; 965 return 0; 966 } 967 968 static void destroy_inodecache(void) 969 { 970 /* 971 * Make sure all delayed rcu free inodes are flushed before we 972 * destroy cache. 973 */ 974 rcu_barrier(); 975 kmem_cache_destroy(ext4_inode_cachep); 976 } 977 978 void ext4_clear_inode(struct inode *inode) 979 { 980 invalidate_inode_buffers(inode); 981 clear_inode(inode); 982 dquot_drop(inode); 983 ext4_discard_preallocations(inode); 984 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 985 if (EXT4_I(inode)->jinode) { 986 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 987 EXT4_I(inode)->jinode); 988 jbd2_free_inode(EXT4_I(inode)->jinode); 989 EXT4_I(inode)->jinode = NULL; 990 } 991 #ifdef CONFIG_EXT4_FS_ENCRYPTION 992 if (EXT4_I(inode)->i_crypt_info) 993 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 994 #endif 995 } 996 997 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 998 u64 ino, u32 generation) 999 { 1000 struct inode *inode; 1001 1002 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1003 return ERR_PTR(-ESTALE); 1004 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1005 return ERR_PTR(-ESTALE); 1006 1007 /* iget isn't really right if the inode is currently unallocated!! 1008 * 1009 * ext4_read_inode will return a bad_inode if the inode had been 1010 * deleted, so we should be safe. 1011 * 1012 * Currently we don't know the generation for parent directory, so 1013 * a generation of 0 means "accept any" 1014 */ 1015 inode = ext4_iget_normal(sb, ino); 1016 if (IS_ERR(inode)) 1017 return ERR_CAST(inode); 1018 if (generation && inode->i_generation != generation) { 1019 iput(inode); 1020 return ERR_PTR(-ESTALE); 1021 } 1022 1023 return inode; 1024 } 1025 1026 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1027 int fh_len, int fh_type) 1028 { 1029 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1030 ext4_nfs_get_inode); 1031 } 1032 1033 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1034 int fh_len, int fh_type) 1035 { 1036 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1037 ext4_nfs_get_inode); 1038 } 1039 1040 /* 1041 * Try to release metadata pages (indirect blocks, directories) which are 1042 * mapped via the block device. Since these pages could have journal heads 1043 * which would prevent try_to_free_buffers() from freeing them, we must use 1044 * jbd2 layer's try_to_free_buffers() function to release them. 1045 */ 1046 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1047 gfp_t wait) 1048 { 1049 journal_t *journal = EXT4_SB(sb)->s_journal; 1050 1051 WARN_ON(PageChecked(page)); 1052 if (!page_has_buffers(page)) 1053 return 0; 1054 if (journal) 1055 return jbd2_journal_try_to_free_buffers(journal, page, 1056 wait & ~__GFP_WAIT); 1057 return try_to_free_buffers(page); 1058 } 1059 1060 #ifdef CONFIG_QUOTA 1061 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1062 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1063 1064 static int ext4_write_dquot(struct dquot *dquot); 1065 static int ext4_acquire_dquot(struct dquot *dquot); 1066 static int ext4_release_dquot(struct dquot *dquot); 1067 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1068 static int ext4_write_info(struct super_block *sb, int type); 1069 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1070 struct path *path); 1071 static int ext4_quota_off(struct super_block *sb, int type); 1072 static int ext4_quota_on_mount(struct super_block *sb, int type); 1073 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1074 size_t len, loff_t off); 1075 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1076 const char *data, size_t len, loff_t off); 1077 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1078 unsigned int flags); 1079 static int ext4_enable_quotas(struct super_block *sb); 1080 1081 static struct dquot **ext4_get_dquots(struct inode *inode) 1082 { 1083 return EXT4_I(inode)->i_dquot; 1084 } 1085 1086 static const struct dquot_operations ext4_quota_operations = { 1087 .get_reserved_space = ext4_get_reserved_space, 1088 .write_dquot = ext4_write_dquot, 1089 .acquire_dquot = ext4_acquire_dquot, 1090 .release_dquot = ext4_release_dquot, 1091 .mark_dirty = ext4_mark_dquot_dirty, 1092 .write_info = ext4_write_info, 1093 .alloc_dquot = dquot_alloc, 1094 .destroy_dquot = dquot_destroy, 1095 }; 1096 1097 static const struct quotactl_ops ext4_qctl_operations = { 1098 .quota_on = ext4_quota_on, 1099 .quota_off = ext4_quota_off, 1100 .quota_sync = dquot_quota_sync, 1101 .get_state = dquot_get_state, 1102 .set_info = dquot_set_dqinfo, 1103 .get_dqblk = dquot_get_dqblk, 1104 .set_dqblk = dquot_set_dqblk 1105 }; 1106 #endif 1107 1108 static const struct super_operations ext4_sops = { 1109 .alloc_inode = ext4_alloc_inode, 1110 .destroy_inode = ext4_destroy_inode, 1111 .write_inode = ext4_write_inode, 1112 .dirty_inode = ext4_dirty_inode, 1113 .drop_inode = ext4_drop_inode, 1114 .evict_inode = ext4_evict_inode, 1115 .put_super = ext4_put_super, 1116 .sync_fs = ext4_sync_fs, 1117 .freeze_fs = ext4_freeze, 1118 .unfreeze_fs = ext4_unfreeze, 1119 .statfs = ext4_statfs, 1120 .remount_fs = ext4_remount, 1121 .show_options = ext4_show_options, 1122 #ifdef CONFIG_QUOTA 1123 .quota_read = ext4_quota_read, 1124 .quota_write = ext4_quota_write, 1125 .get_dquots = ext4_get_dquots, 1126 #endif 1127 .bdev_try_to_free_page = bdev_try_to_free_page, 1128 }; 1129 1130 static const struct export_operations ext4_export_ops = { 1131 .fh_to_dentry = ext4_fh_to_dentry, 1132 .fh_to_parent = ext4_fh_to_parent, 1133 .get_parent = ext4_get_parent, 1134 }; 1135 1136 enum { 1137 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1138 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1139 Opt_nouid32, Opt_debug, Opt_removed, 1140 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1141 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1142 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1143 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1144 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1145 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1146 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1147 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1148 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1149 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1150 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1151 Opt_lazytime, Opt_nolazytime, 1152 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1153 Opt_inode_readahead_blks, Opt_journal_ioprio, 1154 Opt_dioread_nolock, Opt_dioread_lock, 1155 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1156 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1157 }; 1158 1159 static const match_table_t tokens = { 1160 {Opt_bsd_df, "bsddf"}, 1161 {Opt_minix_df, "minixdf"}, 1162 {Opt_grpid, "grpid"}, 1163 {Opt_grpid, "bsdgroups"}, 1164 {Opt_nogrpid, "nogrpid"}, 1165 {Opt_nogrpid, "sysvgroups"}, 1166 {Opt_resgid, "resgid=%u"}, 1167 {Opt_resuid, "resuid=%u"}, 1168 {Opt_sb, "sb=%u"}, 1169 {Opt_err_cont, "errors=continue"}, 1170 {Opt_err_panic, "errors=panic"}, 1171 {Opt_err_ro, "errors=remount-ro"}, 1172 {Opt_nouid32, "nouid32"}, 1173 {Opt_debug, "debug"}, 1174 {Opt_removed, "oldalloc"}, 1175 {Opt_removed, "orlov"}, 1176 {Opt_user_xattr, "user_xattr"}, 1177 {Opt_nouser_xattr, "nouser_xattr"}, 1178 {Opt_acl, "acl"}, 1179 {Opt_noacl, "noacl"}, 1180 {Opt_noload, "norecovery"}, 1181 {Opt_noload, "noload"}, 1182 {Opt_removed, "nobh"}, 1183 {Opt_removed, "bh"}, 1184 {Opt_commit, "commit=%u"}, 1185 {Opt_min_batch_time, "min_batch_time=%u"}, 1186 {Opt_max_batch_time, "max_batch_time=%u"}, 1187 {Opt_journal_dev, "journal_dev=%u"}, 1188 {Opt_journal_path, "journal_path=%s"}, 1189 {Opt_journal_checksum, "journal_checksum"}, 1190 {Opt_nojournal_checksum, "nojournal_checksum"}, 1191 {Opt_journal_async_commit, "journal_async_commit"}, 1192 {Opt_abort, "abort"}, 1193 {Opt_data_journal, "data=journal"}, 1194 {Opt_data_ordered, "data=ordered"}, 1195 {Opt_data_writeback, "data=writeback"}, 1196 {Opt_data_err_abort, "data_err=abort"}, 1197 {Opt_data_err_ignore, "data_err=ignore"}, 1198 {Opt_offusrjquota, "usrjquota="}, 1199 {Opt_usrjquota, "usrjquota=%s"}, 1200 {Opt_offgrpjquota, "grpjquota="}, 1201 {Opt_grpjquota, "grpjquota=%s"}, 1202 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1203 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1204 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1205 {Opt_grpquota, "grpquota"}, 1206 {Opt_noquota, "noquota"}, 1207 {Opt_quota, "quota"}, 1208 {Opt_usrquota, "usrquota"}, 1209 {Opt_barrier, "barrier=%u"}, 1210 {Opt_barrier, "barrier"}, 1211 {Opt_nobarrier, "nobarrier"}, 1212 {Opt_i_version, "i_version"}, 1213 {Opt_dax, "dax"}, 1214 {Opt_stripe, "stripe=%u"}, 1215 {Opt_delalloc, "delalloc"}, 1216 {Opt_lazytime, "lazytime"}, 1217 {Opt_nolazytime, "nolazytime"}, 1218 {Opt_nodelalloc, "nodelalloc"}, 1219 {Opt_removed, "mblk_io_submit"}, 1220 {Opt_removed, "nomblk_io_submit"}, 1221 {Opt_block_validity, "block_validity"}, 1222 {Opt_noblock_validity, "noblock_validity"}, 1223 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1224 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1225 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1226 {Opt_auto_da_alloc, "auto_da_alloc"}, 1227 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1228 {Opt_dioread_nolock, "dioread_nolock"}, 1229 {Opt_dioread_lock, "dioread_lock"}, 1230 {Opt_discard, "discard"}, 1231 {Opt_nodiscard, "nodiscard"}, 1232 {Opt_init_itable, "init_itable=%u"}, 1233 {Opt_init_itable, "init_itable"}, 1234 {Opt_noinit_itable, "noinit_itable"}, 1235 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1236 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1237 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1238 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1239 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1240 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1241 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1242 {Opt_err, NULL}, 1243 }; 1244 1245 static ext4_fsblk_t get_sb_block(void **data) 1246 { 1247 ext4_fsblk_t sb_block; 1248 char *options = (char *) *data; 1249 1250 if (!options || strncmp(options, "sb=", 3) != 0) 1251 return 1; /* Default location */ 1252 1253 options += 3; 1254 /* TODO: use simple_strtoll with >32bit ext4 */ 1255 sb_block = simple_strtoul(options, &options, 0); 1256 if (*options && *options != ',') { 1257 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1258 (char *) *data); 1259 return 1; 1260 } 1261 if (*options == ',') 1262 options++; 1263 *data = (void *) options; 1264 1265 return sb_block; 1266 } 1267 1268 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1269 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1270 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1271 1272 #ifdef CONFIG_QUOTA 1273 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1274 { 1275 struct ext4_sb_info *sbi = EXT4_SB(sb); 1276 char *qname; 1277 int ret = -1; 1278 1279 if (sb_any_quota_loaded(sb) && 1280 !sbi->s_qf_names[qtype]) { 1281 ext4_msg(sb, KERN_ERR, 1282 "Cannot change journaled " 1283 "quota options when quota turned on"); 1284 return -1; 1285 } 1286 if (ext4_has_feature_quota(sb)) { 1287 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1288 "when QUOTA feature is enabled"); 1289 return -1; 1290 } 1291 qname = match_strdup(args); 1292 if (!qname) { 1293 ext4_msg(sb, KERN_ERR, 1294 "Not enough memory for storing quotafile name"); 1295 return -1; 1296 } 1297 if (sbi->s_qf_names[qtype]) { 1298 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1299 ret = 1; 1300 else 1301 ext4_msg(sb, KERN_ERR, 1302 "%s quota file already specified", 1303 QTYPE2NAME(qtype)); 1304 goto errout; 1305 } 1306 if (strchr(qname, '/')) { 1307 ext4_msg(sb, KERN_ERR, 1308 "quotafile must be on filesystem root"); 1309 goto errout; 1310 } 1311 sbi->s_qf_names[qtype] = qname; 1312 set_opt(sb, QUOTA); 1313 return 1; 1314 errout: 1315 kfree(qname); 1316 return ret; 1317 } 1318 1319 static int clear_qf_name(struct super_block *sb, int qtype) 1320 { 1321 1322 struct ext4_sb_info *sbi = EXT4_SB(sb); 1323 1324 if (sb_any_quota_loaded(sb) && 1325 sbi->s_qf_names[qtype]) { 1326 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1327 " when quota turned on"); 1328 return -1; 1329 } 1330 kfree(sbi->s_qf_names[qtype]); 1331 sbi->s_qf_names[qtype] = NULL; 1332 return 1; 1333 } 1334 #endif 1335 1336 #define MOPT_SET 0x0001 1337 #define MOPT_CLEAR 0x0002 1338 #define MOPT_NOSUPPORT 0x0004 1339 #define MOPT_EXPLICIT 0x0008 1340 #define MOPT_CLEAR_ERR 0x0010 1341 #define MOPT_GTE0 0x0020 1342 #ifdef CONFIG_QUOTA 1343 #define MOPT_Q 0 1344 #define MOPT_QFMT 0x0040 1345 #else 1346 #define MOPT_Q MOPT_NOSUPPORT 1347 #define MOPT_QFMT MOPT_NOSUPPORT 1348 #endif 1349 #define MOPT_DATAJ 0x0080 1350 #define MOPT_NO_EXT2 0x0100 1351 #define MOPT_NO_EXT3 0x0200 1352 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1353 #define MOPT_STRING 0x0400 1354 1355 static const struct mount_opts { 1356 int token; 1357 int mount_opt; 1358 int flags; 1359 } ext4_mount_opts[] = { 1360 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1361 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1362 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1363 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1364 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1365 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1366 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1367 MOPT_EXT4_ONLY | MOPT_SET}, 1368 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1369 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1370 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1371 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1372 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1373 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1374 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1375 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1376 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1377 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1378 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1379 MOPT_EXT4_ONLY | MOPT_SET}, 1380 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1381 EXT4_MOUNT_JOURNAL_CHECKSUM), 1382 MOPT_EXT4_ONLY | MOPT_SET}, 1383 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1384 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1385 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1386 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1387 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1388 MOPT_NO_EXT2 | MOPT_SET}, 1389 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1390 MOPT_NO_EXT2 | MOPT_CLEAR}, 1391 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1392 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1393 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1394 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1395 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1396 {Opt_commit, 0, MOPT_GTE0}, 1397 {Opt_max_batch_time, 0, MOPT_GTE0}, 1398 {Opt_min_batch_time, 0, MOPT_GTE0}, 1399 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1400 {Opt_init_itable, 0, MOPT_GTE0}, 1401 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1402 {Opt_stripe, 0, MOPT_GTE0}, 1403 {Opt_resuid, 0, MOPT_GTE0}, 1404 {Opt_resgid, 0, MOPT_GTE0}, 1405 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1406 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1407 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1408 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1409 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1410 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1411 MOPT_NO_EXT2 | MOPT_DATAJ}, 1412 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1413 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1414 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1415 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1416 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1417 #else 1418 {Opt_acl, 0, MOPT_NOSUPPORT}, 1419 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1420 #endif 1421 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1422 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1423 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1424 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1425 MOPT_SET | MOPT_Q}, 1426 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1427 MOPT_SET | MOPT_Q}, 1428 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1429 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1430 {Opt_usrjquota, 0, MOPT_Q}, 1431 {Opt_grpjquota, 0, MOPT_Q}, 1432 {Opt_offusrjquota, 0, MOPT_Q}, 1433 {Opt_offgrpjquota, 0, MOPT_Q}, 1434 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1435 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1436 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1437 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1438 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1439 {Opt_err, 0, 0} 1440 }; 1441 1442 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1443 substring_t *args, unsigned long *journal_devnum, 1444 unsigned int *journal_ioprio, int is_remount) 1445 { 1446 struct ext4_sb_info *sbi = EXT4_SB(sb); 1447 const struct mount_opts *m; 1448 kuid_t uid; 1449 kgid_t gid; 1450 int arg = 0; 1451 1452 #ifdef CONFIG_QUOTA 1453 if (token == Opt_usrjquota) 1454 return set_qf_name(sb, USRQUOTA, &args[0]); 1455 else if (token == Opt_grpjquota) 1456 return set_qf_name(sb, GRPQUOTA, &args[0]); 1457 else if (token == Opt_offusrjquota) 1458 return clear_qf_name(sb, USRQUOTA); 1459 else if (token == Opt_offgrpjquota) 1460 return clear_qf_name(sb, GRPQUOTA); 1461 #endif 1462 switch (token) { 1463 case Opt_noacl: 1464 case Opt_nouser_xattr: 1465 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1466 break; 1467 case Opt_sb: 1468 return 1; /* handled by get_sb_block() */ 1469 case Opt_removed: 1470 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1471 return 1; 1472 case Opt_abort: 1473 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1474 return 1; 1475 case Opt_i_version: 1476 sb->s_flags |= MS_I_VERSION; 1477 return 1; 1478 case Opt_lazytime: 1479 sb->s_flags |= MS_LAZYTIME; 1480 return 1; 1481 case Opt_nolazytime: 1482 sb->s_flags &= ~MS_LAZYTIME; 1483 return 1; 1484 } 1485 1486 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1487 if (token == m->token) 1488 break; 1489 1490 if (m->token == Opt_err) { 1491 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1492 "or missing value", opt); 1493 return -1; 1494 } 1495 1496 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1497 ext4_msg(sb, KERN_ERR, 1498 "Mount option \"%s\" incompatible with ext2", opt); 1499 return -1; 1500 } 1501 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1502 ext4_msg(sb, KERN_ERR, 1503 "Mount option \"%s\" incompatible with ext3", opt); 1504 return -1; 1505 } 1506 1507 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1508 return -1; 1509 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1510 return -1; 1511 if (m->flags & MOPT_EXPLICIT) 1512 set_opt2(sb, EXPLICIT_DELALLOC); 1513 if (m->flags & MOPT_CLEAR_ERR) 1514 clear_opt(sb, ERRORS_MASK); 1515 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1516 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1517 "options when quota turned on"); 1518 return -1; 1519 } 1520 1521 if (m->flags & MOPT_NOSUPPORT) { 1522 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1523 } else if (token == Opt_commit) { 1524 if (arg == 0) 1525 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1526 sbi->s_commit_interval = HZ * arg; 1527 } else if (token == Opt_max_batch_time) { 1528 sbi->s_max_batch_time = arg; 1529 } else if (token == Opt_min_batch_time) { 1530 sbi->s_min_batch_time = arg; 1531 } else if (token == Opt_inode_readahead_blks) { 1532 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1533 ext4_msg(sb, KERN_ERR, 1534 "EXT4-fs: inode_readahead_blks must be " 1535 "0 or a power of 2 smaller than 2^31"); 1536 return -1; 1537 } 1538 sbi->s_inode_readahead_blks = arg; 1539 } else if (token == Opt_init_itable) { 1540 set_opt(sb, INIT_INODE_TABLE); 1541 if (!args->from) 1542 arg = EXT4_DEF_LI_WAIT_MULT; 1543 sbi->s_li_wait_mult = arg; 1544 } else if (token == Opt_max_dir_size_kb) { 1545 sbi->s_max_dir_size_kb = arg; 1546 } else if (token == Opt_stripe) { 1547 sbi->s_stripe = arg; 1548 } else if (token == Opt_resuid) { 1549 uid = make_kuid(current_user_ns(), arg); 1550 if (!uid_valid(uid)) { 1551 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1552 return -1; 1553 } 1554 sbi->s_resuid = uid; 1555 } else if (token == Opt_resgid) { 1556 gid = make_kgid(current_user_ns(), arg); 1557 if (!gid_valid(gid)) { 1558 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1559 return -1; 1560 } 1561 sbi->s_resgid = gid; 1562 } else if (token == Opt_journal_dev) { 1563 if (is_remount) { 1564 ext4_msg(sb, KERN_ERR, 1565 "Cannot specify journal on remount"); 1566 return -1; 1567 } 1568 *journal_devnum = arg; 1569 } else if (token == Opt_journal_path) { 1570 char *journal_path; 1571 struct inode *journal_inode; 1572 struct path path; 1573 int error; 1574 1575 if (is_remount) { 1576 ext4_msg(sb, KERN_ERR, 1577 "Cannot specify journal on remount"); 1578 return -1; 1579 } 1580 journal_path = match_strdup(&args[0]); 1581 if (!journal_path) { 1582 ext4_msg(sb, KERN_ERR, "error: could not dup " 1583 "journal device string"); 1584 return -1; 1585 } 1586 1587 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1588 if (error) { 1589 ext4_msg(sb, KERN_ERR, "error: could not find " 1590 "journal device path: error %d", error); 1591 kfree(journal_path); 1592 return -1; 1593 } 1594 1595 journal_inode = d_inode(path.dentry); 1596 if (!S_ISBLK(journal_inode->i_mode)) { 1597 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1598 "is not a block device", journal_path); 1599 path_put(&path); 1600 kfree(journal_path); 1601 return -1; 1602 } 1603 1604 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1605 path_put(&path); 1606 kfree(journal_path); 1607 } else if (token == Opt_journal_ioprio) { 1608 if (arg > 7) { 1609 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1610 " (must be 0-7)"); 1611 return -1; 1612 } 1613 *journal_ioprio = 1614 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1615 } else if (token == Opt_test_dummy_encryption) { 1616 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1617 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1618 ext4_msg(sb, KERN_WARNING, 1619 "Test dummy encryption mode enabled"); 1620 #else 1621 ext4_msg(sb, KERN_WARNING, 1622 "Test dummy encryption mount option ignored"); 1623 #endif 1624 } else if (m->flags & MOPT_DATAJ) { 1625 if (is_remount) { 1626 if (!sbi->s_journal) 1627 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1628 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1629 ext4_msg(sb, KERN_ERR, 1630 "Cannot change data mode on remount"); 1631 return -1; 1632 } 1633 } else { 1634 clear_opt(sb, DATA_FLAGS); 1635 sbi->s_mount_opt |= m->mount_opt; 1636 } 1637 #ifdef CONFIG_QUOTA 1638 } else if (m->flags & MOPT_QFMT) { 1639 if (sb_any_quota_loaded(sb) && 1640 sbi->s_jquota_fmt != m->mount_opt) { 1641 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1642 "quota options when quota turned on"); 1643 return -1; 1644 } 1645 if (ext4_has_feature_quota(sb)) { 1646 ext4_msg(sb, KERN_ERR, 1647 "Cannot set journaled quota options " 1648 "when QUOTA feature is enabled"); 1649 return -1; 1650 } 1651 sbi->s_jquota_fmt = m->mount_opt; 1652 #endif 1653 #ifndef CONFIG_FS_DAX 1654 } else if (token == Opt_dax) { 1655 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1656 return -1; 1657 #endif 1658 } else { 1659 if (!args->from) 1660 arg = 1; 1661 if (m->flags & MOPT_CLEAR) 1662 arg = !arg; 1663 else if (unlikely(!(m->flags & MOPT_SET))) { 1664 ext4_msg(sb, KERN_WARNING, 1665 "buggy handling of option %s", opt); 1666 WARN_ON(1); 1667 return -1; 1668 } 1669 if (arg != 0) 1670 sbi->s_mount_opt |= m->mount_opt; 1671 else 1672 sbi->s_mount_opt &= ~m->mount_opt; 1673 } 1674 return 1; 1675 } 1676 1677 static int parse_options(char *options, struct super_block *sb, 1678 unsigned long *journal_devnum, 1679 unsigned int *journal_ioprio, 1680 int is_remount) 1681 { 1682 struct ext4_sb_info *sbi = EXT4_SB(sb); 1683 char *p; 1684 substring_t args[MAX_OPT_ARGS]; 1685 int token; 1686 1687 if (!options) 1688 return 1; 1689 1690 while ((p = strsep(&options, ",")) != NULL) { 1691 if (!*p) 1692 continue; 1693 /* 1694 * Initialize args struct so we know whether arg was 1695 * found; some options take optional arguments. 1696 */ 1697 args[0].to = args[0].from = NULL; 1698 token = match_token(p, tokens, args); 1699 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1700 journal_ioprio, is_remount) < 0) 1701 return 0; 1702 } 1703 #ifdef CONFIG_QUOTA 1704 if (ext4_has_feature_quota(sb) && 1705 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1706 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1707 "feature is enabled"); 1708 return 0; 1709 } 1710 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1711 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1712 clear_opt(sb, USRQUOTA); 1713 1714 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1715 clear_opt(sb, GRPQUOTA); 1716 1717 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1718 ext4_msg(sb, KERN_ERR, "old and new quota " 1719 "format mixing"); 1720 return 0; 1721 } 1722 1723 if (!sbi->s_jquota_fmt) { 1724 ext4_msg(sb, KERN_ERR, "journaled quota format " 1725 "not specified"); 1726 return 0; 1727 } 1728 } 1729 #endif 1730 if (test_opt(sb, DIOREAD_NOLOCK)) { 1731 int blocksize = 1732 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1733 1734 if (blocksize < PAGE_CACHE_SIZE) { 1735 ext4_msg(sb, KERN_ERR, "can't mount with " 1736 "dioread_nolock if block size != PAGE_SIZE"); 1737 return 0; 1738 } 1739 } 1740 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1741 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1742 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1743 "in data=ordered mode"); 1744 return 0; 1745 } 1746 return 1; 1747 } 1748 1749 static inline void ext4_show_quota_options(struct seq_file *seq, 1750 struct super_block *sb) 1751 { 1752 #if defined(CONFIG_QUOTA) 1753 struct ext4_sb_info *sbi = EXT4_SB(sb); 1754 1755 if (sbi->s_jquota_fmt) { 1756 char *fmtname = ""; 1757 1758 switch (sbi->s_jquota_fmt) { 1759 case QFMT_VFS_OLD: 1760 fmtname = "vfsold"; 1761 break; 1762 case QFMT_VFS_V0: 1763 fmtname = "vfsv0"; 1764 break; 1765 case QFMT_VFS_V1: 1766 fmtname = "vfsv1"; 1767 break; 1768 } 1769 seq_printf(seq, ",jqfmt=%s", fmtname); 1770 } 1771 1772 if (sbi->s_qf_names[USRQUOTA]) 1773 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1774 1775 if (sbi->s_qf_names[GRPQUOTA]) 1776 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1777 #endif 1778 } 1779 1780 static const char *token2str(int token) 1781 { 1782 const struct match_token *t; 1783 1784 for (t = tokens; t->token != Opt_err; t++) 1785 if (t->token == token && !strchr(t->pattern, '=')) 1786 break; 1787 return t->pattern; 1788 } 1789 1790 /* 1791 * Show an option if 1792 * - it's set to a non-default value OR 1793 * - if the per-sb default is different from the global default 1794 */ 1795 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1796 int nodefs) 1797 { 1798 struct ext4_sb_info *sbi = EXT4_SB(sb); 1799 struct ext4_super_block *es = sbi->s_es; 1800 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1801 const struct mount_opts *m; 1802 char sep = nodefs ? '\n' : ','; 1803 1804 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1805 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1806 1807 if (sbi->s_sb_block != 1) 1808 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1809 1810 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1811 int want_set = m->flags & MOPT_SET; 1812 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1813 (m->flags & MOPT_CLEAR_ERR)) 1814 continue; 1815 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1816 continue; /* skip if same as the default */ 1817 if ((want_set && 1818 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1819 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1820 continue; /* select Opt_noFoo vs Opt_Foo */ 1821 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1822 } 1823 1824 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1825 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1826 SEQ_OPTS_PRINT("resuid=%u", 1827 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1828 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1829 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1830 SEQ_OPTS_PRINT("resgid=%u", 1831 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1832 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1833 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1834 SEQ_OPTS_PUTS("errors=remount-ro"); 1835 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1836 SEQ_OPTS_PUTS("errors=continue"); 1837 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1838 SEQ_OPTS_PUTS("errors=panic"); 1839 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1840 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1841 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1842 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1843 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1844 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1845 if (sb->s_flags & MS_I_VERSION) 1846 SEQ_OPTS_PUTS("i_version"); 1847 if (nodefs || sbi->s_stripe) 1848 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1849 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1850 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1851 SEQ_OPTS_PUTS("data=journal"); 1852 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1853 SEQ_OPTS_PUTS("data=ordered"); 1854 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1855 SEQ_OPTS_PUTS("data=writeback"); 1856 } 1857 if (nodefs || 1858 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1859 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1860 sbi->s_inode_readahead_blks); 1861 1862 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1863 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1864 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1865 if (nodefs || sbi->s_max_dir_size_kb) 1866 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1867 1868 ext4_show_quota_options(seq, sb); 1869 return 0; 1870 } 1871 1872 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1873 { 1874 return _ext4_show_options(seq, root->d_sb, 0); 1875 } 1876 1877 int ext4_seq_options_show(struct seq_file *seq, void *offset) 1878 { 1879 struct super_block *sb = seq->private; 1880 int rc; 1881 1882 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1883 rc = _ext4_show_options(seq, sb, 1); 1884 seq_puts(seq, "\n"); 1885 return rc; 1886 } 1887 1888 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1889 int read_only) 1890 { 1891 struct ext4_sb_info *sbi = EXT4_SB(sb); 1892 int res = 0; 1893 1894 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1895 ext4_msg(sb, KERN_ERR, "revision level too high, " 1896 "forcing read-only mode"); 1897 res = MS_RDONLY; 1898 } 1899 if (read_only) 1900 goto done; 1901 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1902 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1903 "running e2fsck is recommended"); 1904 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1905 ext4_msg(sb, KERN_WARNING, 1906 "warning: mounting fs with errors, " 1907 "running e2fsck is recommended"); 1908 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1909 le16_to_cpu(es->s_mnt_count) >= 1910 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1911 ext4_msg(sb, KERN_WARNING, 1912 "warning: maximal mount count reached, " 1913 "running e2fsck is recommended"); 1914 else if (le32_to_cpu(es->s_checkinterval) && 1915 (le32_to_cpu(es->s_lastcheck) + 1916 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1917 ext4_msg(sb, KERN_WARNING, 1918 "warning: checktime reached, " 1919 "running e2fsck is recommended"); 1920 if (!sbi->s_journal) 1921 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1922 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1923 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1924 le16_add_cpu(&es->s_mnt_count, 1); 1925 es->s_mtime = cpu_to_le32(get_seconds()); 1926 ext4_update_dynamic_rev(sb); 1927 if (sbi->s_journal) 1928 ext4_set_feature_journal_needs_recovery(sb); 1929 1930 ext4_commit_super(sb, 1); 1931 done: 1932 if (test_opt(sb, DEBUG)) 1933 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1934 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1935 sb->s_blocksize, 1936 sbi->s_groups_count, 1937 EXT4_BLOCKS_PER_GROUP(sb), 1938 EXT4_INODES_PER_GROUP(sb), 1939 sbi->s_mount_opt, sbi->s_mount_opt2); 1940 1941 cleancache_init_fs(sb); 1942 return res; 1943 } 1944 1945 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1946 { 1947 struct ext4_sb_info *sbi = EXT4_SB(sb); 1948 struct flex_groups *new_groups; 1949 int size; 1950 1951 if (!sbi->s_log_groups_per_flex) 1952 return 0; 1953 1954 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1955 if (size <= sbi->s_flex_groups_allocated) 1956 return 0; 1957 1958 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1959 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1960 if (!new_groups) { 1961 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1962 size / (int) sizeof(struct flex_groups)); 1963 return -ENOMEM; 1964 } 1965 1966 if (sbi->s_flex_groups) { 1967 memcpy(new_groups, sbi->s_flex_groups, 1968 (sbi->s_flex_groups_allocated * 1969 sizeof(struct flex_groups))); 1970 kvfree(sbi->s_flex_groups); 1971 } 1972 sbi->s_flex_groups = new_groups; 1973 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1974 return 0; 1975 } 1976 1977 static int ext4_fill_flex_info(struct super_block *sb) 1978 { 1979 struct ext4_sb_info *sbi = EXT4_SB(sb); 1980 struct ext4_group_desc *gdp = NULL; 1981 ext4_group_t flex_group; 1982 int i, err; 1983 1984 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1985 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1986 sbi->s_log_groups_per_flex = 0; 1987 return 1; 1988 } 1989 1990 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1991 if (err) 1992 goto failed; 1993 1994 for (i = 0; i < sbi->s_groups_count; i++) { 1995 gdp = ext4_get_group_desc(sb, i, NULL); 1996 1997 flex_group = ext4_flex_group(sbi, i); 1998 atomic_add(ext4_free_inodes_count(sb, gdp), 1999 &sbi->s_flex_groups[flex_group].free_inodes); 2000 atomic64_add(ext4_free_group_clusters(sb, gdp), 2001 &sbi->s_flex_groups[flex_group].free_clusters); 2002 atomic_add(ext4_used_dirs_count(sb, gdp), 2003 &sbi->s_flex_groups[flex_group].used_dirs); 2004 } 2005 2006 return 1; 2007 failed: 2008 return 0; 2009 } 2010 2011 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2012 struct ext4_group_desc *gdp) 2013 { 2014 int offset; 2015 __u16 crc = 0; 2016 __le32 le_group = cpu_to_le32(block_group); 2017 struct ext4_sb_info *sbi = EXT4_SB(sb); 2018 2019 if (ext4_has_metadata_csum(sbi->s_sb)) { 2020 /* Use new metadata_csum algorithm */ 2021 __le16 save_csum; 2022 __u32 csum32; 2023 2024 save_csum = gdp->bg_checksum; 2025 gdp->bg_checksum = 0; 2026 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2027 sizeof(le_group)); 2028 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2029 sbi->s_desc_size); 2030 gdp->bg_checksum = save_csum; 2031 2032 crc = csum32 & 0xFFFF; 2033 goto out; 2034 } 2035 2036 /* old crc16 code */ 2037 if (!ext4_has_feature_gdt_csum(sb)) 2038 return 0; 2039 2040 offset = offsetof(struct ext4_group_desc, bg_checksum); 2041 2042 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2043 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2044 crc = crc16(crc, (__u8 *)gdp, offset); 2045 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2046 /* for checksum of struct ext4_group_desc do the rest...*/ 2047 if (ext4_has_feature_64bit(sb) && 2048 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2049 crc = crc16(crc, (__u8 *)gdp + offset, 2050 le16_to_cpu(sbi->s_es->s_desc_size) - 2051 offset); 2052 2053 out: 2054 return cpu_to_le16(crc); 2055 } 2056 2057 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2058 struct ext4_group_desc *gdp) 2059 { 2060 if (ext4_has_group_desc_csum(sb) && 2061 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2062 return 0; 2063 2064 return 1; 2065 } 2066 2067 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2068 struct ext4_group_desc *gdp) 2069 { 2070 if (!ext4_has_group_desc_csum(sb)) 2071 return; 2072 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2073 } 2074 2075 /* Called at mount-time, super-block is locked */ 2076 static int ext4_check_descriptors(struct super_block *sb, 2077 ext4_group_t *first_not_zeroed) 2078 { 2079 struct ext4_sb_info *sbi = EXT4_SB(sb); 2080 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2081 ext4_fsblk_t last_block; 2082 ext4_fsblk_t block_bitmap; 2083 ext4_fsblk_t inode_bitmap; 2084 ext4_fsblk_t inode_table; 2085 int flexbg_flag = 0; 2086 ext4_group_t i, grp = sbi->s_groups_count; 2087 2088 if (ext4_has_feature_flex_bg(sb)) 2089 flexbg_flag = 1; 2090 2091 ext4_debug("Checking group descriptors"); 2092 2093 for (i = 0; i < sbi->s_groups_count; i++) { 2094 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2095 2096 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2097 last_block = ext4_blocks_count(sbi->s_es) - 1; 2098 else 2099 last_block = first_block + 2100 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2101 2102 if ((grp == sbi->s_groups_count) && 2103 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2104 grp = i; 2105 2106 block_bitmap = ext4_block_bitmap(sb, gdp); 2107 if (block_bitmap < first_block || block_bitmap > last_block) { 2108 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2109 "Block bitmap for group %u not in group " 2110 "(block %llu)!", i, block_bitmap); 2111 return 0; 2112 } 2113 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2114 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2115 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2116 "Inode bitmap for group %u not in group " 2117 "(block %llu)!", i, inode_bitmap); 2118 return 0; 2119 } 2120 inode_table = ext4_inode_table(sb, gdp); 2121 if (inode_table < first_block || 2122 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2124 "Inode table for group %u not in group " 2125 "(block %llu)!", i, inode_table); 2126 return 0; 2127 } 2128 ext4_lock_group(sb, i); 2129 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2130 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2131 "Checksum for group %u failed (%u!=%u)", 2132 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2133 gdp)), le16_to_cpu(gdp->bg_checksum)); 2134 if (!(sb->s_flags & MS_RDONLY)) { 2135 ext4_unlock_group(sb, i); 2136 return 0; 2137 } 2138 } 2139 ext4_unlock_group(sb, i); 2140 if (!flexbg_flag) 2141 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2142 } 2143 if (NULL != first_not_zeroed) 2144 *first_not_zeroed = grp; 2145 return 1; 2146 } 2147 2148 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2149 * the superblock) which were deleted from all directories, but held open by 2150 * a process at the time of a crash. We walk the list and try to delete these 2151 * inodes at recovery time (only with a read-write filesystem). 2152 * 2153 * In order to keep the orphan inode chain consistent during traversal (in 2154 * case of crash during recovery), we link each inode into the superblock 2155 * orphan list_head and handle it the same way as an inode deletion during 2156 * normal operation (which journals the operations for us). 2157 * 2158 * We only do an iget() and an iput() on each inode, which is very safe if we 2159 * accidentally point at an in-use or already deleted inode. The worst that 2160 * can happen in this case is that we get a "bit already cleared" message from 2161 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2162 * e2fsck was run on this filesystem, and it must have already done the orphan 2163 * inode cleanup for us, so we can safely abort without any further action. 2164 */ 2165 static void ext4_orphan_cleanup(struct super_block *sb, 2166 struct ext4_super_block *es) 2167 { 2168 unsigned int s_flags = sb->s_flags; 2169 int nr_orphans = 0, nr_truncates = 0; 2170 #ifdef CONFIG_QUOTA 2171 int i; 2172 #endif 2173 if (!es->s_last_orphan) { 2174 jbd_debug(4, "no orphan inodes to clean up\n"); 2175 return; 2176 } 2177 2178 if (bdev_read_only(sb->s_bdev)) { 2179 ext4_msg(sb, KERN_ERR, "write access " 2180 "unavailable, skipping orphan cleanup"); 2181 return; 2182 } 2183 2184 /* Check if feature set would not allow a r/w mount */ 2185 if (!ext4_feature_set_ok(sb, 0)) { 2186 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2187 "unknown ROCOMPAT features"); 2188 return; 2189 } 2190 2191 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2192 /* don't clear list on RO mount w/ errors */ 2193 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2194 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2195 "clearing orphan list.\n"); 2196 es->s_last_orphan = 0; 2197 } 2198 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2199 return; 2200 } 2201 2202 if (s_flags & MS_RDONLY) { 2203 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2204 sb->s_flags &= ~MS_RDONLY; 2205 } 2206 #ifdef CONFIG_QUOTA 2207 /* Needed for iput() to work correctly and not trash data */ 2208 sb->s_flags |= MS_ACTIVE; 2209 /* Turn on quotas so that they are updated correctly */ 2210 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2211 if (EXT4_SB(sb)->s_qf_names[i]) { 2212 int ret = ext4_quota_on_mount(sb, i); 2213 if (ret < 0) 2214 ext4_msg(sb, KERN_ERR, 2215 "Cannot turn on journaled " 2216 "quota: error %d", ret); 2217 } 2218 } 2219 #endif 2220 2221 while (es->s_last_orphan) { 2222 struct inode *inode; 2223 2224 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2225 if (IS_ERR(inode)) { 2226 es->s_last_orphan = 0; 2227 break; 2228 } 2229 2230 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2231 dquot_initialize(inode); 2232 if (inode->i_nlink) { 2233 if (test_opt(sb, DEBUG)) 2234 ext4_msg(sb, KERN_DEBUG, 2235 "%s: truncating inode %lu to %lld bytes", 2236 __func__, inode->i_ino, inode->i_size); 2237 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2238 inode->i_ino, inode->i_size); 2239 mutex_lock(&inode->i_mutex); 2240 truncate_inode_pages(inode->i_mapping, inode->i_size); 2241 ext4_truncate(inode); 2242 mutex_unlock(&inode->i_mutex); 2243 nr_truncates++; 2244 } else { 2245 if (test_opt(sb, DEBUG)) 2246 ext4_msg(sb, KERN_DEBUG, 2247 "%s: deleting unreferenced inode %lu", 2248 __func__, inode->i_ino); 2249 jbd_debug(2, "deleting unreferenced inode %lu\n", 2250 inode->i_ino); 2251 nr_orphans++; 2252 } 2253 iput(inode); /* The delete magic happens here! */ 2254 } 2255 2256 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2257 2258 if (nr_orphans) 2259 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2260 PLURAL(nr_orphans)); 2261 if (nr_truncates) 2262 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2263 PLURAL(nr_truncates)); 2264 #ifdef CONFIG_QUOTA 2265 /* Turn quotas off */ 2266 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2267 if (sb_dqopt(sb)->files[i]) 2268 dquot_quota_off(sb, i); 2269 } 2270 #endif 2271 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2272 } 2273 2274 /* 2275 * Maximal extent format file size. 2276 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2277 * extent format containers, within a sector_t, and within i_blocks 2278 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2279 * so that won't be a limiting factor. 2280 * 2281 * However there is other limiting factor. We do store extents in the form 2282 * of starting block and length, hence the resulting length of the extent 2283 * covering maximum file size must fit into on-disk format containers as 2284 * well. Given that length is always by 1 unit bigger than max unit (because 2285 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2286 * 2287 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2288 */ 2289 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2290 { 2291 loff_t res; 2292 loff_t upper_limit = MAX_LFS_FILESIZE; 2293 2294 /* small i_blocks in vfs inode? */ 2295 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2296 /* 2297 * CONFIG_LBDAF is not enabled implies the inode 2298 * i_block represent total blocks in 512 bytes 2299 * 32 == size of vfs inode i_blocks * 8 2300 */ 2301 upper_limit = (1LL << 32) - 1; 2302 2303 /* total blocks in file system block size */ 2304 upper_limit >>= (blkbits - 9); 2305 upper_limit <<= blkbits; 2306 } 2307 2308 /* 2309 * 32-bit extent-start container, ee_block. We lower the maxbytes 2310 * by one fs block, so ee_len can cover the extent of maximum file 2311 * size 2312 */ 2313 res = (1LL << 32) - 1; 2314 res <<= blkbits; 2315 2316 /* Sanity check against vm- & vfs- imposed limits */ 2317 if (res > upper_limit) 2318 res = upper_limit; 2319 2320 return res; 2321 } 2322 2323 /* 2324 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2325 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2326 * We need to be 1 filesystem block less than the 2^48 sector limit. 2327 */ 2328 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2329 { 2330 loff_t res = EXT4_NDIR_BLOCKS; 2331 int meta_blocks; 2332 loff_t upper_limit; 2333 /* This is calculated to be the largest file size for a dense, block 2334 * mapped file such that the file's total number of 512-byte sectors, 2335 * including data and all indirect blocks, does not exceed (2^48 - 1). 2336 * 2337 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2338 * number of 512-byte sectors of the file. 2339 */ 2340 2341 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2342 /* 2343 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2344 * the inode i_block field represents total file blocks in 2345 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2346 */ 2347 upper_limit = (1LL << 32) - 1; 2348 2349 /* total blocks in file system block size */ 2350 upper_limit >>= (bits - 9); 2351 2352 } else { 2353 /* 2354 * We use 48 bit ext4_inode i_blocks 2355 * With EXT4_HUGE_FILE_FL set the i_blocks 2356 * represent total number of blocks in 2357 * file system block size 2358 */ 2359 upper_limit = (1LL << 48) - 1; 2360 2361 } 2362 2363 /* indirect blocks */ 2364 meta_blocks = 1; 2365 /* double indirect blocks */ 2366 meta_blocks += 1 + (1LL << (bits-2)); 2367 /* tripple indirect blocks */ 2368 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2369 2370 upper_limit -= meta_blocks; 2371 upper_limit <<= bits; 2372 2373 res += 1LL << (bits-2); 2374 res += 1LL << (2*(bits-2)); 2375 res += 1LL << (3*(bits-2)); 2376 res <<= bits; 2377 if (res > upper_limit) 2378 res = upper_limit; 2379 2380 if (res > MAX_LFS_FILESIZE) 2381 res = MAX_LFS_FILESIZE; 2382 2383 return res; 2384 } 2385 2386 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2387 ext4_fsblk_t logical_sb_block, int nr) 2388 { 2389 struct ext4_sb_info *sbi = EXT4_SB(sb); 2390 ext4_group_t bg, first_meta_bg; 2391 int has_super = 0; 2392 2393 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2394 2395 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2396 return logical_sb_block + nr + 1; 2397 bg = sbi->s_desc_per_block * nr; 2398 if (ext4_bg_has_super(sb, bg)) 2399 has_super = 1; 2400 2401 /* 2402 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2403 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2404 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2405 * compensate. 2406 */ 2407 if (sb->s_blocksize == 1024 && nr == 0 && 2408 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2409 has_super++; 2410 2411 return (has_super + ext4_group_first_block_no(sb, bg)); 2412 } 2413 2414 /** 2415 * ext4_get_stripe_size: Get the stripe size. 2416 * @sbi: In memory super block info 2417 * 2418 * If we have specified it via mount option, then 2419 * use the mount option value. If the value specified at mount time is 2420 * greater than the blocks per group use the super block value. 2421 * If the super block value is greater than blocks per group return 0. 2422 * Allocator needs it be less than blocks per group. 2423 * 2424 */ 2425 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2426 { 2427 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2428 unsigned long stripe_width = 2429 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2430 int ret; 2431 2432 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2433 ret = sbi->s_stripe; 2434 else if (stripe_width <= sbi->s_blocks_per_group) 2435 ret = stripe_width; 2436 else if (stride <= sbi->s_blocks_per_group) 2437 ret = stride; 2438 else 2439 ret = 0; 2440 2441 /* 2442 * If the stripe width is 1, this makes no sense and 2443 * we set it to 0 to turn off stripe handling code. 2444 */ 2445 if (ret <= 1) 2446 ret = 0; 2447 2448 return ret; 2449 } 2450 2451 /* 2452 * Check whether this filesystem can be mounted based on 2453 * the features present and the RDONLY/RDWR mount requested. 2454 * Returns 1 if this filesystem can be mounted as requested, 2455 * 0 if it cannot be. 2456 */ 2457 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2458 { 2459 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2460 ext4_msg(sb, KERN_ERR, 2461 "Couldn't mount because of " 2462 "unsupported optional features (%x)", 2463 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2464 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2465 return 0; 2466 } 2467 2468 if (readonly) 2469 return 1; 2470 2471 if (ext4_has_feature_readonly(sb)) { 2472 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2473 sb->s_flags |= MS_RDONLY; 2474 return 1; 2475 } 2476 2477 /* Check that feature set is OK for a read-write mount */ 2478 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2479 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2480 "unsupported optional features (%x)", 2481 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2482 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2483 return 0; 2484 } 2485 /* 2486 * Large file size enabled file system can only be mounted 2487 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2488 */ 2489 if (ext4_has_feature_huge_file(sb)) { 2490 if (sizeof(blkcnt_t) < sizeof(u64)) { 2491 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2492 "cannot be mounted RDWR without " 2493 "CONFIG_LBDAF"); 2494 return 0; 2495 } 2496 } 2497 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2498 ext4_msg(sb, KERN_ERR, 2499 "Can't support bigalloc feature without " 2500 "extents feature\n"); 2501 return 0; 2502 } 2503 2504 #ifndef CONFIG_QUOTA 2505 if (ext4_has_feature_quota(sb) && !readonly) { 2506 ext4_msg(sb, KERN_ERR, 2507 "Filesystem with quota feature cannot be mounted RDWR " 2508 "without CONFIG_QUOTA"); 2509 return 0; 2510 } 2511 #endif /* CONFIG_QUOTA */ 2512 return 1; 2513 } 2514 2515 /* 2516 * This function is called once a day if we have errors logged 2517 * on the file system 2518 */ 2519 static void print_daily_error_info(unsigned long arg) 2520 { 2521 struct super_block *sb = (struct super_block *) arg; 2522 struct ext4_sb_info *sbi; 2523 struct ext4_super_block *es; 2524 2525 sbi = EXT4_SB(sb); 2526 es = sbi->s_es; 2527 2528 if (es->s_error_count) 2529 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2530 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2531 le32_to_cpu(es->s_error_count)); 2532 if (es->s_first_error_time) { 2533 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2534 sb->s_id, le32_to_cpu(es->s_first_error_time), 2535 (int) sizeof(es->s_first_error_func), 2536 es->s_first_error_func, 2537 le32_to_cpu(es->s_first_error_line)); 2538 if (es->s_first_error_ino) 2539 printk(": inode %u", 2540 le32_to_cpu(es->s_first_error_ino)); 2541 if (es->s_first_error_block) 2542 printk(": block %llu", (unsigned long long) 2543 le64_to_cpu(es->s_first_error_block)); 2544 printk("\n"); 2545 } 2546 if (es->s_last_error_time) { 2547 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2548 sb->s_id, le32_to_cpu(es->s_last_error_time), 2549 (int) sizeof(es->s_last_error_func), 2550 es->s_last_error_func, 2551 le32_to_cpu(es->s_last_error_line)); 2552 if (es->s_last_error_ino) 2553 printk(": inode %u", 2554 le32_to_cpu(es->s_last_error_ino)); 2555 if (es->s_last_error_block) 2556 printk(": block %llu", (unsigned long long) 2557 le64_to_cpu(es->s_last_error_block)); 2558 printk("\n"); 2559 } 2560 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2561 } 2562 2563 /* Find next suitable group and run ext4_init_inode_table */ 2564 static int ext4_run_li_request(struct ext4_li_request *elr) 2565 { 2566 struct ext4_group_desc *gdp = NULL; 2567 ext4_group_t group, ngroups; 2568 struct super_block *sb; 2569 unsigned long timeout = 0; 2570 int ret = 0; 2571 2572 sb = elr->lr_super; 2573 ngroups = EXT4_SB(sb)->s_groups_count; 2574 2575 sb_start_write(sb); 2576 for (group = elr->lr_next_group; group < ngroups; group++) { 2577 gdp = ext4_get_group_desc(sb, group, NULL); 2578 if (!gdp) { 2579 ret = 1; 2580 break; 2581 } 2582 2583 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2584 break; 2585 } 2586 2587 if (group >= ngroups) 2588 ret = 1; 2589 2590 if (!ret) { 2591 timeout = jiffies; 2592 ret = ext4_init_inode_table(sb, group, 2593 elr->lr_timeout ? 0 : 1); 2594 if (elr->lr_timeout == 0) { 2595 timeout = (jiffies - timeout) * 2596 elr->lr_sbi->s_li_wait_mult; 2597 elr->lr_timeout = timeout; 2598 } 2599 elr->lr_next_sched = jiffies + elr->lr_timeout; 2600 elr->lr_next_group = group + 1; 2601 } 2602 sb_end_write(sb); 2603 2604 return ret; 2605 } 2606 2607 /* 2608 * Remove lr_request from the list_request and free the 2609 * request structure. Should be called with li_list_mtx held 2610 */ 2611 static void ext4_remove_li_request(struct ext4_li_request *elr) 2612 { 2613 struct ext4_sb_info *sbi; 2614 2615 if (!elr) 2616 return; 2617 2618 sbi = elr->lr_sbi; 2619 2620 list_del(&elr->lr_request); 2621 sbi->s_li_request = NULL; 2622 kfree(elr); 2623 } 2624 2625 static void ext4_unregister_li_request(struct super_block *sb) 2626 { 2627 mutex_lock(&ext4_li_mtx); 2628 if (!ext4_li_info) { 2629 mutex_unlock(&ext4_li_mtx); 2630 return; 2631 } 2632 2633 mutex_lock(&ext4_li_info->li_list_mtx); 2634 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2635 mutex_unlock(&ext4_li_info->li_list_mtx); 2636 mutex_unlock(&ext4_li_mtx); 2637 } 2638 2639 static struct task_struct *ext4_lazyinit_task; 2640 2641 /* 2642 * This is the function where ext4lazyinit thread lives. It walks 2643 * through the request list searching for next scheduled filesystem. 2644 * When such a fs is found, run the lazy initialization request 2645 * (ext4_rn_li_request) and keep track of the time spend in this 2646 * function. Based on that time we compute next schedule time of 2647 * the request. When walking through the list is complete, compute 2648 * next waking time and put itself into sleep. 2649 */ 2650 static int ext4_lazyinit_thread(void *arg) 2651 { 2652 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2653 struct list_head *pos, *n; 2654 struct ext4_li_request *elr; 2655 unsigned long next_wakeup, cur; 2656 2657 BUG_ON(NULL == eli); 2658 2659 cont_thread: 2660 while (true) { 2661 next_wakeup = MAX_JIFFY_OFFSET; 2662 2663 mutex_lock(&eli->li_list_mtx); 2664 if (list_empty(&eli->li_request_list)) { 2665 mutex_unlock(&eli->li_list_mtx); 2666 goto exit_thread; 2667 } 2668 2669 list_for_each_safe(pos, n, &eli->li_request_list) { 2670 elr = list_entry(pos, struct ext4_li_request, 2671 lr_request); 2672 2673 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2674 if (ext4_run_li_request(elr) != 0) { 2675 /* error, remove the lazy_init job */ 2676 ext4_remove_li_request(elr); 2677 continue; 2678 } 2679 } 2680 2681 if (time_before(elr->lr_next_sched, next_wakeup)) 2682 next_wakeup = elr->lr_next_sched; 2683 } 2684 mutex_unlock(&eli->li_list_mtx); 2685 2686 try_to_freeze(); 2687 2688 cur = jiffies; 2689 if ((time_after_eq(cur, next_wakeup)) || 2690 (MAX_JIFFY_OFFSET == next_wakeup)) { 2691 cond_resched(); 2692 continue; 2693 } 2694 2695 schedule_timeout_interruptible(next_wakeup - cur); 2696 2697 if (kthread_should_stop()) { 2698 ext4_clear_request_list(); 2699 goto exit_thread; 2700 } 2701 } 2702 2703 exit_thread: 2704 /* 2705 * It looks like the request list is empty, but we need 2706 * to check it under the li_list_mtx lock, to prevent any 2707 * additions into it, and of course we should lock ext4_li_mtx 2708 * to atomically free the list and ext4_li_info, because at 2709 * this point another ext4 filesystem could be registering 2710 * new one. 2711 */ 2712 mutex_lock(&ext4_li_mtx); 2713 mutex_lock(&eli->li_list_mtx); 2714 if (!list_empty(&eli->li_request_list)) { 2715 mutex_unlock(&eli->li_list_mtx); 2716 mutex_unlock(&ext4_li_mtx); 2717 goto cont_thread; 2718 } 2719 mutex_unlock(&eli->li_list_mtx); 2720 kfree(ext4_li_info); 2721 ext4_li_info = NULL; 2722 mutex_unlock(&ext4_li_mtx); 2723 2724 return 0; 2725 } 2726 2727 static void ext4_clear_request_list(void) 2728 { 2729 struct list_head *pos, *n; 2730 struct ext4_li_request *elr; 2731 2732 mutex_lock(&ext4_li_info->li_list_mtx); 2733 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2734 elr = list_entry(pos, struct ext4_li_request, 2735 lr_request); 2736 ext4_remove_li_request(elr); 2737 } 2738 mutex_unlock(&ext4_li_info->li_list_mtx); 2739 } 2740 2741 static int ext4_run_lazyinit_thread(void) 2742 { 2743 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2744 ext4_li_info, "ext4lazyinit"); 2745 if (IS_ERR(ext4_lazyinit_task)) { 2746 int err = PTR_ERR(ext4_lazyinit_task); 2747 ext4_clear_request_list(); 2748 kfree(ext4_li_info); 2749 ext4_li_info = NULL; 2750 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2751 "initialization thread\n", 2752 err); 2753 return err; 2754 } 2755 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2756 return 0; 2757 } 2758 2759 /* 2760 * Check whether it make sense to run itable init. thread or not. 2761 * If there is at least one uninitialized inode table, return 2762 * corresponding group number, else the loop goes through all 2763 * groups and return total number of groups. 2764 */ 2765 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2766 { 2767 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2768 struct ext4_group_desc *gdp = NULL; 2769 2770 for (group = 0; group < ngroups; group++) { 2771 gdp = ext4_get_group_desc(sb, group, NULL); 2772 if (!gdp) 2773 continue; 2774 2775 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2776 break; 2777 } 2778 2779 return group; 2780 } 2781 2782 static int ext4_li_info_new(void) 2783 { 2784 struct ext4_lazy_init *eli = NULL; 2785 2786 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2787 if (!eli) 2788 return -ENOMEM; 2789 2790 INIT_LIST_HEAD(&eli->li_request_list); 2791 mutex_init(&eli->li_list_mtx); 2792 2793 eli->li_state |= EXT4_LAZYINIT_QUIT; 2794 2795 ext4_li_info = eli; 2796 2797 return 0; 2798 } 2799 2800 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2801 ext4_group_t start) 2802 { 2803 struct ext4_sb_info *sbi = EXT4_SB(sb); 2804 struct ext4_li_request *elr; 2805 2806 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2807 if (!elr) 2808 return NULL; 2809 2810 elr->lr_super = sb; 2811 elr->lr_sbi = sbi; 2812 elr->lr_next_group = start; 2813 2814 /* 2815 * Randomize first schedule time of the request to 2816 * spread the inode table initialization requests 2817 * better. 2818 */ 2819 elr->lr_next_sched = jiffies + (prandom_u32() % 2820 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2821 return elr; 2822 } 2823 2824 int ext4_register_li_request(struct super_block *sb, 2825 ext4_group_t first_not_zeroed) 2826 { 2827 struct ext4_sb_info *sbi = EXT4_SB(sb); 2828 struct ext4_li_request *elr = NULL; 2829 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2830 int ret = 0; 2831 2832 mutex_lock(&ext4_li_mtx); 2833 if (sbi->s_li_request != NULL) { 2834 /* 2835 * Reset timeout so it can be computed again, because 2836 * s_li_wait_mult might have changed. 2837 */ 2838 sbi->s_li_request->lr_timeout = 0; 2839 goto out; 2840 } 2841 2842 if (first_not_zeroed == ngroups || 2843 (sb->s_flags & MS_RDONLY) || 2844 !test_opt(sb, INIT_INODE_TABLE)) 2845 goto out; 2846 2847 elr = ext4_li_request_new(sb, first_not_zeroed); 2848 if (!elr) { 2849 ret = -ENOMEM; 2850 goto out; 2851 } 2852 2853 if (NULL == ext4_li_info) { 2854 ret = ext4_li_info_new(); 2855 if (ret) 2856 goto out; 2857 } 2858 2859 mutex_lock(&ext4_li_info->li_list_mtx); 2860 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2861 mutex_unlock(&ext4_li_info->li_list_mtx); 2862 2863 sbi->s_li_request = elr; 2864 /* 2865 * set elr to NULL here since it has been inserted to 2866 * the request_list and the removal and free of it is 2867 * handled by ext4_clear_request_list from now on. 2868 */ 2869 elr = NULL; 2870 2871 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2872 ret = ext4_run_lazyinit_thread(); 2873 if (ret) 2874 goto out; 2875 } 2876 out: 2877 mutex_unlock(&ext4_li_mtx); 2878 if (ret) 2879 kfree(elr); 2880 return ret; 2881 } 2882 2883 /* 2884 * We do not need to lock anything since this is called on 2885 * module unload. 2886 */ 2887 static void ext4_destroy_lazyinit_thread(void) 2888 { 2889 /* 2890 * If thread exited earlier 2891 * there's nothing to be done. 2892 */ 2893 if (!ext4_li_info || !ext4_lazyinit_task) 2894 return; 2895 2896 kthread_stop(ext4_lazyinit_task); 2897 } 2898 2899 static int set_journal_csum_feature_set(struct super_block *sb) 2900 { 2901 int ret = 1; 2902 int compat, incompat; 2903 struct ext4_sb_info *sbi = EXT4_SB(sb); 2904 2905 if (ext4_has_metadata_csum(sb)) { 2906 /* journal checksum v3 */ 2907 compat = 0; 2908 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 2909 } else { 2910 /* journal checksum v1 */ 2911 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 2912 incompat = 0; 2913 } 2914 2915 jbd2_journal_clear_features(sbi->s_journal, 2916 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2917 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 2918 JBD2_FEATURE_INCOMPAT_CSUM_V2); 2919 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2920 ret = jbd2_journal_set_features(sbi->s_journal, 2921 compat, 0, 2922 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 2923 incompat); 2924 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2925 ret = jbd2_journal_set_features(sbi->s_journal, 2926 compat, 0, 2927 incompat); 2928 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2929 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2930 } else { 2931 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2932 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2933 } 2934 2935 return ret; 2936 } 2937 2938 /* 2939 * Note: calculating the overhead so we can be compatible with 2940 * historical BSD practice is quite difficult in the face of 2941 * clusters/bigalloc. This is because multiple metadata blocks from 2942 * different block group can end up in the same allocation cluster. 2943 * Calculating the exact overhead in the face of clustered allocation 2944 * requires either O(all block bitmaps) in memory or O(number of block 2945 * groups**2) in time. We will still calculate the superblock for 2946 * older file systems --- and if we come across with a bigalloc file 2947 * system with zero in s_overhead_clusters the estimate will be close to 2948 * correct especially for very large cluster sizes --- but for newer 2949 * file systems, it's better to calculate this figure once at mkfs 2950 * time, and store it in the superblock. If the superblock value is 2951 * present (even for non-bigalloc file systems), we will use it. 2952 */ 2953 static int count_overhead(struct super_block *sb, ext4_group_t grp, 2954 char *buf) 2955 { 2956 struct ext4_sb_info *sbi = EXT4_SB(sb); 2957 struct ext4_group_desc *gdp; 2958 ext4_fsblk_t first_block, last_block, b; 2959 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 2960 int s, j, count = 0; 2961 2962 if (!ext4_has_feature_bigalloc(sb)) 2963 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 2964 sbi->s_itb_per_group + 2); 2965 2966 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 2967 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 2968 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 2969 for (i = 0; i < ngroups; i++) { 2970 gdp = ext4_get_group_desc(sb, i, NULL); 2971 b = ext4_block_bitmap(sb, gdp); 2972 if (b >= first_block && b <= last_block) { 2973 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 2974 count++; 2975 } 2976 b = ext4_inode_bitmap(sb, gdp); 2977 if (b >= first_block && b <= last_block) { 2978 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 2979 count++; 2980 } 2981 b = ext4_inode_table(sb, gdp); 2982 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 2983 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 2984 int c = EXT4_B2C(sbi, b - first_block); 2985 ext4_set_bit(c, buf); 2986 count++; 2987 } 2988 if (i != grp) 2989 continue; 2990 s = 0; 2991 if (ext4_bg_has_super(sb, grp)) { 2992 ext4_set_bit(s++, buf); 2993 count++; 2994 } 2995 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 2996 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 2997 count++; 2998 } 2999 } 3000 if (!count) 3001 return 0; 3002 return EXT4_CLUSTERS_PER_GROUP(sb) - 3003 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3004 } 3005 3006 /* 3007 * Compute the overhead and stash it in sbi->s_overhead 3008 */ 3009 int ext4_calculate_overhead(struct super_block *sb) 3010 { 3011 struct ext4_sb_info *sbi = EXT4_SB(sb); 3012 struct ext4_super_block *es = sbi->s_es; 3013 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3014 ext4_fsblk_t overhead = 0; 3015 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3016 3017 if (!buf) 3018 return -ENOMEM; 3019 3020 /* 3021 * Compute the overhead (FS structures). This is constant 3022 * for a given filesystem unless the number of block groups 3023 * changes so we cache the previous value until it does. 3024 */ 3025 3026 /* 3027 * All of the blocks before first_data_block are overhead 3028 */ 3029 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3030 3031 /* 3032 * Add the overhead found in each block group 3033 */ 3034 for (i = 0; i < ngroups; i++) { 3035 int blks; 3036 3037 blks = count_overhead(sb, i, buf); 3038 overhead += blks; 3039 if (blks) 3040 memset(buf, 0, PAGE_SIZE); 3041 cond_resched(); 3042 } 3043 /* Add the internal journal blocks as well */ 3044 if (sbi->s_journal && !sbi->journal_bdev) 3045 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3046 3047 sbi->s_overhead = overhead; 3048 smp_wmb(); 3049 free_page((unsigned long) buf); 3050 return 0; 3051 } 3052 3053 static void ext4_set_resv_clusters(struct super_block *sb) 3054 { 3055 ext4_fsblk_t resv_clusters; 3056 struct ext4_sb_info *sbi = EXT4_SB(sb); 3057 3058 /* 3059 * There's no need to reserve anything when we aren't using extents. 3060 * The space estimates are exact, there are no unwritten extents, 3061 * hole punching doesn't need new metadata... This is needed especially 3062 * to keep ext2/3 backward compatibility. 3063 */ 3064 if (!ext4_has_feature_extents(sb)) 3065 return; 3066 /* 3067 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3068 * This should cover the situations where we can not afford to run 3069 * out of space like for example punch hole, or converting 3070 * unwritten extents in delalloc path. In most cases such 3071 * allocation would require 1, or 2 blocks, higher numbers are 3072 * very rare. 3073 */ 3074 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3075 sbi->s_cluster_bits); 3076 3077 do_div(resv_clusters, 50); 3078 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3079 3080 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3081 } 3082 3083 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3084 { 3085 char *orig_data = kstrdup(data, GFP_KERNEL); 3086 struct buffer_head *bh; 3087 struct ext4_super_block *es = NULL; 3088 struct ext4_sb_info *sbi; 3089 ext4_fsblk_t block; 3090 ext4_fsblk_t sb_block = get_sb_block(&data); 3091 ext4_fsblk_t logical_sb_block; 3092 unsigned long offset = 0; 3093 unsigned long journal_devnum = 0; 3094 unsigned long def_mount_opts; 3095 struct inode *root; 3096 const char *descr; 3097 int ret = -ENOMEM; 3098 int blocksize, clustersize; 3099 unsigned int db_count; 3100 unsigned int i; 3101 int needs_recovery, has_huge_files, has_bigalloc; 3102 __u64 blocks_count; 3103 int err = 0; 3104 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3105 ext4_group_t first_not_zeroed; 3106 3107 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3108 if (!sbi) 3109 goto out_free_orig; 3110 3111 sbi->s_blockgroup_lock = 3112 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3113 if (!sbi->s_blockgroup_lock) { 3114 kfree(sbi); 3115 goto out_free_orig; 3116 } 3117 sb->s_fs_info = sbi; 3118 sbi->s_sb = sb; 3119 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3120 sbi->s_sb_block = sb_block; 3121 if (sb->s_bdev->bd_part) 3122 sbi->s_sectors_written_start = 3123 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3124 3125 /* Cleanup superblock name */ 3126 strreplace(sb->s_id, '/', '!'); 3127 3128 /* -EINVAL is default */ 3129 ret = -EINVAL; 3130 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3131 if (!blocksize) { 3132 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3133 goto out_fail; 3134 } 3135 3136 /* 3137 * The ext4 superblock will not be buffer aligned for other than 1kB 3138 * block sizes. We need to calculate the offset from buffer start. 3139 */ 3140 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3141 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3142 offset = do_div(logical_sb_block, blocksize); 3143 } else { 3144 logical_sb_block = sb_block; 3145 } 3146 3147 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3148 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3149 goto out_fail; 3150 } 3151 /* 3152 * Note: s_es must be initialized as soon as possible because 3153 * some ext4 macro-instructions depend on its value 3154 */ 3155 es = (struct ext4_super_block *) (bh->b_data + offset); 3156 sbi->s_es = es; 3157 sb->s_magic = le16_to_cpu(es->s_magic); 3158 if (sb->s_magic != EXT4_SUPER_MAGIC) 3159 goto cantfind_ext4; 3160 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3161 3162 /* Warn if metadata_csum and gdt_csum are both set. */ 3163 if (ext4_has_feature_metadata_csum(sb) && 3164 ext4_has_feature_gdt_csum(sb)) 3165 ext4_warning(sb, "metadata_csum and uninit_bg are " 3166 "redundant flags; please run fsck."); 3167 3168 /* Check for a known checksum algorithm */ 3169 if (!ext4_verify_csum_type(sb, es)) { 3170 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3171 "unknown checksum algorithm."); 3172 silent = 1; 3173 goto cantfind_ext4; 3174 } 3175 3176 /* Load the checksum driver */ 3177 if (ext4_has_feature_metadata_csum(sb)) { 3178 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3179 if (IS_ERR(sbi->s_chksum_driver)) { 3180 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3181 ret = PTR_ERR(sbi->s_chksum_driver); 3182 sbi->s_chksum_driver = NULL; 3183 goto failed_mount; 3184 } 3185 } 3186 3187 /* Check superblock checksum */ 3188 if (!ext4_superblock_csum_verify(sb, es)) { 3189 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3190 "invalid superblock checksum. Run e2fsck?"); 3191 silent = 1; 3192 ret = -EFSBADCRC; 3193 goto cantfind_ext4; 3194 } 3195 3196 /* Precompute checksum seed for all metadata */ 3197 if (ext4_has_feature_csum_seed(sb)) 3198 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3199 else if (ext4_has_metadata_csum(sb)) 3200 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3201 sizeof(es->s_uuid)); 3202 3203 /* Set defaults before we parse the mount options */ 3204 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3205 set_opt(sb, INIT_INODE_TABLE); 3206 if (def_mount_opts & EXT4_DEFM_DEBUG) 3207 set_opt(sb, DEBUG); 3208 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3209 set_opt(sb, GRPID); 3210 if (def_mount_opts & EXT4_DEFM_UID16) 3211 set_opt(sb, NO_UID32); 3212 /* xattr user namespace & acls are now defaulted on */ 3213 set_opt(sb, XATTR_USER); 3214 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3215 set_opt(sb, POSIX_ACL); 3216 #endif 3217 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3218 if (ext4_has_metadata_csum(sb)) 3219 set_opt(sb, JOURNAL_CHECKSUM); 3220 3221 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3222 set_opt(sb, JOURNAL_DATA); 3223 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3224 set_opt(sb, ORDERED_DATA); 3225 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3226 set_opt(sb, WRITEBACK_DATA); 3227 3228 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3229 set_opt(sb, ERRORS_PANIC); 3230 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3231 set_opt(sb, ERRORS_CONT); 3232 else 3233 set_opt(sb, ERRORS_RO); 3234 /* block_validity enabled by default; disable with noblock_validity */ 3235 set_opt(sb, BLOCK_VALIDITY); 3236 if (def_mount_opts & EXT4_DEFM_DISCARD) 3237 set_opt(sb, DISCARD); 3238 3239 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3240 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3241 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3242 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3243 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3244 3245 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3246 set_opt(sb, BARRIER); 3247 3248 /* 3249 * enable delayed allocation by default 3250 * Use -o nodelalloc to turn it off 3251 */ 3252 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3253 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3254 set_opt(sb, DELALLOC); 3255 3256 /* 3257 * set default s_li_wait_mult for lazyinit, for the case there is 3258 * no mount option specified. 3259 */ 3260 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3261 3262 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3263 &journal_devnum, &journal_ioprio, 0)) { 3264 ext4_msg(sb, KERN_WARNING, 3265 "failed to parse options in superblock: %s", 3266 sbi->s_es->s_mount_opts); 3267 } 3268 sbi->s_def_mount_opt = sbi->s_mount_opt; 3269 if (!parse_options((char *) data, sb, &journal_devnum, 3270 &journal_ioprio, 0)) 3271 goto failed_mount; 3272 3273 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3274 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3275 "with data=journal disables delayed " 3276 "allocation and O_DIRECT support!\n"); 3277 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3278 ext4_msg(sb, KERN_ERR, "can't mount with " 3279 "both data=journal and delalloc"); 3280 goto failed_mount; 3281 } 3282 if (test_opt(sb, DIOREAD_NOLOCK)) { 3283 ext4_msg(sb, KERN_ERR, "can't mount with " 3284 "both data=journal and dioread_nolock"); 3285 goto failed_mount; 3286 } 3287 if (test_opt(sb, DAX)) { 3288 ext4_msg(sb, KERN_ERR, "can't mount with " 3289 "both data=journal and dax"); 3290 goto failed_mount; 3291 } 3292 if (test_opt(sb, DELALLOC)) 3293 clear_opt(sb, DELALLOC); 3294 } else { 3295 sb->s_iflags |= SB_I_CGROUPWB; 3296 } 3297 3298 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3299 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3300 3301 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3302 (ext4_has_compat_features(sb) || 3303 ext4_has_ro_compat_features(sb) || 3304 ext4_has_incompat_features(sb))) 3305 ext4_msg(sb, KERN_WARNING, 3306 "feature flags set on rev 0 fs, " 3307 "running e2fsck is recommended"); 3308 3309 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3310 set_opt2(sb, HURD_COMPAT); 3311 if (ext4_has_feature_64bit(sb)) { 3312 ext4_msg(sb, KERN_ERR, 3313 "The Hurd can't support 64-bit file systems"); 3314 goto failed_mount; 3315 } 3316 } 3317 3318 if (IS_EXT2_SB(sb)) { 3319 if (ext2_feature_set_ok(sb)) 3320 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3321 "using the ext4 subsystem"); 3322 else { 3323 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3324 "to feature incompatibilities"); 3325 goto failed_mount; 3326 } 3327 } 3328 3329 if (IS_EXT3_SB(sb)) { 3330 if (ext3_feature_set_ok(sb)) 3331 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3332 "using the ext4 subsystem"); 3333 else { 3334 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3335 "to feature incompatibilities"); 3336 goto failed_mount; 3337 } 3338 } 3339 3340 /* 3341 * Check feature flags regardless of the revision level, since we 3342 * previously didn't change the revision level when setting the flags, 3343 * so there is a chance incompat flags are set on a rev 0 filesystem. 3344 */ 3345 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3346 goto failed_mount; 3347 3348 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3349 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3350 blocksize > EXT4_MAX_BLOCK_SIZE) { 3351 ext4_msg(sb, KERN_ERR, 3352 "Unsupported filesystem blocksize %d", blocksize); 3353 goto failed_mount; 3354 } 3355 3356 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3357 if (blocksize != PAGE_SIZE) { 3358 ext4_msg(sb, KERN_ERR, 3359 "error: unsupported blocksize for dax"); 3360 goto failed_mount; 3361 } 3362 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3363 ext4_msg(sb, KERN_ERR, 3364 "error: device does not support dax"); 3365 goto failed_mount; 3366 } 3367 } 3368 3369 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3370 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3371 es->s_encryption_level); 3372 goto failed_mount; 3373 } 3374 3375 if (sb->s_blocksize != blocksize) { 3376 /* Validate the filesystem blocksize */ 3377 if (!sb_set_blocksize(sb, blocksize)) { 3378 ext4_msg(sb, KERN_ERR, "bad block size %d", 3379 blocksize); 3380 goto failed_mount; 3381 } 3382 3383 brelse(bh); 3384 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3385 offset = do_div(logical_sb_block, blocksize); 3386 bh = sb_bread_unmovable(sb, logical_sb_block); 3387 if (!bh) { 3388 ext4_msg(sb, KERN_ERR, 3389 "Can't read superblock on 2nd try"); 3390 goto failed_mount; 3391 } 3392 es = (struct ext4_super_block *)(bh->b_data + offset); 3393 sbi->s_es = es; 3394 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3395 ext4_msg(sb, KERN_ERR, 3396 "Magic mismatch, very weird!"); 3397 goto failed_mount; 3398 } 3399 } 3400 3401 has_huge_files = ext4_has_feature_huge_file(sb); 3402 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3403 has_huge_files); 3404 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3405 3406 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3407 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3408 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3409 } else { 3410 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3411 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3412 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3413 (!is_power_of_2(sbi->s_inode_size)) || 3414 (sbi->s_inode_size > blocksize)) { 3415 ext4_msg(sb, KERN_ERR, 3416 "unsupported inode size: %d", 3417 sbi->s_inode_size); 3418 goto failed_mount; 3419 } 3420 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3421 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3422 } 3423 3424 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3425 if (ext4_has_feature_64bit(sb)) { 3426 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3427 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3428 !is_power_of_2(sbi->s_desc_size)) { 3429 ext4_msg(sb, KERN_ERR, 3430 "unsupported descriptor size %lu", 3431 sbi->s_desc_size); 3432 goto failed_mount; 3433 } 3434 } else 3435 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3436 3437 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3438 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3439 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3440 goto cantfind_ext4; 3441 3442 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3443 if (sbi->s_inodes_per_block == 0) 3444 goto cantfind_ext4; 3445 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3446 sbi->s_inodes_per_block; 3447 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3448 sbi->s_sbh = bh; 3449 sbi->s_mount_state = le16_to_cpu(es->s_state); 3450 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3451 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3452 3453 for (i = 0; i < 4; i++) 3454 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3455 sbi->s_def_hash_version = es->s_def_hash_version; 3456 if (ext4_has_feature_dir_index(sb)) { 3457 i = le32_to_cpu(es->s_flags); 3458 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3459 sbi->s_hash_unsigned = 3; 3460 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3461 #ifdef __CHAR_UNSIGNED__ 3462 if (!(sb->s_flags & MS_RDONLY)) 3463 es->s_flags |= 3464 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3465 sbi->s_hash_unsigned = 3; 3466 #else 3467 if (!(sb->s_flags & MS_RDONLY)) 3468 es->s_flags |= 3469 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3470 #endif 3471 } 3472 } 3473 3474 /* Handle clustersize */ 3475 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3476 has_bigalloc = ext4_has_feature_bigalloc(sb); 3477 if (has_bigalloc) { 3478 if (clustersize < blocksize) { 3479 ext4_msg(sb, KERN_ERR, 3480 "cluster size (%d) smaller than " 3481 "block size (%d)", clustersize, blocksize); 3482 goto failed_mount; 3483 } 3484 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3485 le32_to_cpu(es->s_log_block_size); 3486 sbi->s_clusters_per_group = 3487 le32_to_cpu(es->s_clusters_per_group); 3488 if (sbi->s_clusters_per_group > blocksize * 8) { 3489 ext4_msg(sb, KERN_ERR, 3490 "#clusters per group too big: %lu", 3491 sbi->s_clusters_per_group); 3492 goto failed_mount; 3493 } 3494 if (sbi->s_blocks_per_group != 3495 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3496 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3497 "clusters per group (%lu) inconsistent", 3498 sbi->s_blocks_per_group, 3499 sbi->s_clusters_per_group); 3500 goto failed_mount; 3501 } 3502 } else { 3503 if (clustersize != blocksize) { 3504 ext4_warning(sb, "fragment/cluster size (%d) != " 3505 "block size (%d)", clustersize, 3506 blocksize); 3507 clustersize = blocksize; 3508 } 3509 if (sbi->s_blocks_per_group > blocksize * 8) { 3510 ext4_msg(sb, KERN_ERR, 3511 "#blocks per group too big: %lu", 3512 sbi->s_blocks_per_group); 3513 goto failed_mount; 3514 } 3515 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3516 sbi->s_cluster_bits = 0; 3517 } 3518 sbi->s_cluster_ratio = clustersize / blocksize; 3519 3520 if (sbi->s_inodes_per_group > blocksize * 8) { 3521 ext4_msg(sb, KERN_ERR, 3522 "#inodes per group too big: %lu", 3523 sbi->s_inodes_per_group); 3524 goto failed_mount; 3525 } 3526 3527 /* Do we have standard group size of clustersize * 8 blocks ? */ 3528 if (sbi->s_blocks_per_group == clustersize << 3) 3529 set_opt2(sb, STD_GROUP_SIZE); 3530 3531 /* 3532 * Test whether we have more sectors than will fit in sector_t, 3533 * and whether the max offset is addressable by the page cache. 3534 */ 3535 err = generic_check_addressable(sb->s_blocksize_bits, 3536 ext4_blocks_count(es)); 3537 if (err) { 3538 ext4_msg(sb, KERN_ERR, "filesystem" 3539 " too large to mount safely on this system"); 3540 if (sizeof(sector_t) < 8) 3541 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3542 goto failed_mount; 3543 } 3544 3545 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3546 goto cantfind_ext4; 3547 3548 /* check blocks count against device size */ 3549 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3550 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3551 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3552 "exceeds size of device (%llu blocks)", 3553 ext4_blocks_count(es), blocks_count); 3554 goto failed_mount; 3555 } 3556 3557 /* 3558 * It makes no sense for the first data block to be beyond the end 3559 * of the filesystem. 3560 */ 3561 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3562 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3563 "block %u is beyond end of filesystem (%llu)", 3564 le32_to_cpu(es->s_first_data_block), 3565 ext4_blocks_count(es)); 3566 goto failed_mount; 3567 } 3568 blocks_count = (ext4_blocks_count(es) - 3569 le32_to_cpu(es->s_first_data_block) + 3570 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3571 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3572 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3573 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3574 "(block count %llu, first data block %u, " 3575 "blocks per group %lu)", sbi->s_groups_count, 3576 ext4_blocks_count(es), 3577 le32_to_cpu(es->s_first_data_block), 3578 EXT4_BLOCKS_PER_GROUP(sb)); 3579 goto failed_mount; 3580 } 3581 sbi->s_groups_count = blocks_count; 3582 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3583 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3584 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3585 EXT4_DESC_PER_BLOCK(sb); 3586 sbi->s_group_desc = ext4_kvmalloc(db_count * 3587 sizeof(struct buffer_head *), 3588 GFP_KERNEL); 3589 if (sbi->s_group_desc == NULL) { 3590 ext4_msg(sb, KERN_ERR, "not enough memory"); 3591 ret = -ENOMEM; 3592 goto failed_mount; 3593 } 3594 3595 bgl_lock_init(sbi->s_blockgroup_lock); 3596 3597 for (i = 0; i < db_count; i++) { 3598 block = descriptor_loc(sb, logical_sb_block, i); 3599 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3600 if (!sbi->s_group_desc[i]) { 3601 ext4_msg(sb, KERN_ERR, 3602 "can't read group descriptor %d", i); 3603 db_count = i; 3604 goto failed_mount2; 3605 } 3606 } 3607 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3608 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3609 ret = -EFSCORRUPTED; 3610 goto failed_mount2; 3611 } 3612 3613 sbi->s_gdb_count = db_count; 3614 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3615 spin_lock_init(&sbi->s_next_gen_lock); 3616 3617 setup_timer(&sbi->s_err_report, print_daily_error_info, 3618 (unsigned long) sb); 3619 3620 /* Register extent status tree shrinker */ 3621 if (ext4_es_register_shrinker(sbi)) 3622 goto failed_mount3; 3623 3624 sbi->s_stripe = ext4_get_stripe_size(sbi); 3625 sbi->s_extent_max_zeroout_kb = 32; 3626 3627 /* 3628 * set up enough so that it can read an inode 3629 */ 3630 sb->s_op = &ext4_sops; 3631 sb->s_export_op = &ext4_export_ops; 3632 sb->s_xattr = ext4_xattr_handlers; 3633 #ifdef CONFIG_QUOTA 3634 sb->dq_op = &ext4_quota_operations; 3635 if (ext4_has_feature_quota(sb)) 3636 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3637 else 3638 sb->s_qcop = &ext4_qctl_operations; 3639 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 3640 #endif 3641 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3642 3643 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3644 mutex_init(&sbi->s_orphan_lock); 3645 3646 sb->s_root = NULL; 3647 3648 needs_recovery = (es->s_last_orphan != 0 || 3649 ext4_has_feature_journal_needs_recovery(sb)); 3650 3651 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3652 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3653 goto failed_mount3a; 3654 3655 /* 3656 * The first inode we look at is the journal inode. Don't try 3657 * root first: it may be modified in the journal! 3658 */ 3659 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3660 if (ext4_load_journal(sb, es, journal_devnum)) 3661 goto failed_mount3a; 3662 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3663 ext4_has_feature_journal_needs_recovery(sb)) { 3664 ext4_msg(sb, KERN_ERR, "required journal recovery " 3665 "suppressed and not mounted read-only"); 3666 goto failed_mount_wq; 3667 } else { 3668 clear_opt(sb, DATA_FLAGS); 3669 sbi->s_journal = NULL; 3670 needs_recovery = 0; 3671 goto no_journal; 3672 } 3673 3674 if (ext4_has_feature_64bit(sb) && 3675 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3676 JBD2_FEATURE_INCOMPAT_64BIT)) { 3677 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3678 goto failed_mount_wq; 3679 } 3680 3681 if (!set_journal_csum_feature_set(sb)) { 3682 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3683 "feature set"); 3684 goto failed_mount_wq; 3685 } 3686 3687 /* We have now updated the journal if required, so we can 3688 * validate the data journaling mode. */ 3689 switch (test_opt(sb, DATA_FLAGS)) { 3690 case 0: 3691 /* No mode set, assume a default based on the journal 3692 * capabilities: ORDERED_DATA if the journal can 3693 * cope, else JOURNAL_DATA 3694 */ 3695 if (jbd2_journal_check_available_features 3696 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3697 set_opt(sb, ORDERED_DATA); 3698 else 3699 set_opt(sb, JOURNAL_DATA); 3700 break; 3701 3702 case EXT4_MOUNT_ORDERED_DATA: 3703 case EXT4_MOUNT_WRITEBACK_DATA: 3704 if (!jbd2_journal_check_available_features 3705 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3706 ext4_msg(sb, KERN_ERR, "Journal does not support " 3707 "requested data journaling mode"); 3708 goto failed_mount_wq; 3709 } 3710 default: 3711 break; 3712 } 3713 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3714 3715 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3716 3717 no_journal: 3718 if (ext4_mballoc_ready) { 3719 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 3720 if (!sbi->s_mb_cache) { 3721 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3722 goto failed_mount_wq; 3723 } 3724 } 3725 3726 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3727 (blocksize != PAGE_CACHE_SIZE)) { 3728 ext4_msg(sb, KERN_ERR, 3729 "Unsupported blocksize for fs encryption"); 3730 goto failed_mount_wq; 3731 } 3732 3733 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3734 !ext4_has_feature_encrypt(sb)) { 3735 ext4_set_feature_encrypt(sb); 3736 ext4_commit_super(sb, 1); 3737 } 3738 3739 /* 3740 * Get the # of file system overhead blocks from the 3741 * superblock if present. 3742 */ 3743 if (es->s_overhead_clusters) 3744 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3745 else { 3746 err = ext4_calculate_overhead(sb); 3747 if (err) 3748 goto failed_mount_wq; 3749 } 3750 3751 /* 3752 * The maximum number of concurrent works can be high and 3753 * concurrency isn't really necessary. Limit it to 1. 3754 */ 3755 EXT4_SB(sb)->rsv_conversion_wq = 3756 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3757 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3758 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3759 ret = -ENOMEM; 3760 goto failed_mount4; 3761 } 3762 3763 /* 3764 * The jbd2_journal_load will have done any necessary log recovery, 3765 * so we can safely mount the rest of the filesystem now. 3766 */ 3767 3768 root = ext4_iget(sb, EXT4_ROOT_INO); 3769 if (IS_ERR(root)) { 3770 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3771 ret = PTR_ERR(root); 3772 root = NULL; 3773 goto failed_mount4; 3774 } 3775 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3776 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3777 iput(root); 3778 goto failed_mount4; 3779 } 3780 sb->s_root = d_make_root(root); 3781 if (!sb->s_root) { 3782 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3783 ret = -ENOMEM; 3784 goto failed_mount4; 3785 } 3786 3787 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3788 sb->s_flags |= MS_RDONLY; 3789 3790 /* determine the minimum size of new large inodes, if present */ 3791 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3792 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3793 EXT4_GOOD_OLD_INODE_SIZE; 3794 if (ext4_has_feature_extra_isize(sb)) { 3795 if (sbi->s_want_extra_isize < 3796 le16_to_cpu(es->s_want_extra_isize)) 3797 sbi->s_want_extra_isize = 3798 le16_to_cpu(es->s_want_extra_isize); 3799 if (sbi->s_want_extra_isize < 3800 le16_to_cpu(es->s_min_extra_isize)) 3801 sbi->s_want_extra_isize = 3802 le16_to_cpu(es->s_min_extra_isize); 3803 } 3804 } 3805 /* Check if enough inode space is available */ 3806 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3807 sbi->s_inode_size) { 3808 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3809 EXT4_GOOD_OLD_INODE_SIZE; 3810 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3811 "available"); 3812 } 3813 3814 ext4_set_resv_clusters(sb); 3815 3816 err = ext4_setup_system_zone(sb); 3817 if (err) { 3818 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3819 "zone (%d)", err); 3820 goto failed_mount4a; 3821 } 3822 3823 ext4_ext_init(sb); 3824 err = ext4_mb_init(sb); 3825 if (err) { 3826 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3827 err); 3828 goto failed_mount5; 3829 } 3830 3831 block = ext4_count_free_clusters(sb); 3832 ext4_free_blocks_count_set(sbi->s_es, 3833 EXT4_C2B(sbi, block)); 3834 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 3835 GFP_KERNEL); 3836 if (!err) { 3837 unsigned long freei = ext4_count_free_inodes(sb); 3838 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 3839 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 3840 GFP_KERNEL); 3841 } 3842 if (!err) 3843 err = percpu_counter_init(&sbi->s_dirs_counter, 3844 ext4_count_dirs(sb), GFP_KERNEL); 3845 if (!err) 3846 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 3847 GFP_KERNEL); 3848 if (err) { 3849 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3850 goto failed_mount6; 3851 } 3852 3853 if (ext4_has_feature_flex_bg(sb)) 3854 if (!ext4_fill_flex_info(sb)) { 3855 ext4_msg(sb, KERN_ERR, 3856 "unable to initialize " 3857 "flex_bg meta info!"); 3858 goto failed_mount6; 3859 } 3860 3861 err = ext4_register_li_request(sb, first_not_zeroed); 3862 if (err) 3863 goto failed_mount6; 3864 3865 err = ext4_register_sysfs(sb); 3866 if (err) 3867 goto failed_mount7; 3868 3869 #ifdef CONFIG_QUOTA 3870 /* Enable quota usage during mount. */ 3871 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 3872 err = ext4_enable_quotas(sb); 3873 if (err) 3874 goto failed_mount8; 3875 } 3876 #endif /* CONFIG_QUOTA */ 3877 3878 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3879 ext4_orphan_cleanup(sb, es); 3880 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3881 if (needs_recovery) { 3882 ext4_msg(sb, KERN_INFO, "recovery complete"); 3883 ext4_mark_recovery_complete(sb, es); 3884 } 3885 if (EXT4_SB(sb)->s_journal) { 3886 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3887 descr = " journalled data mode"; 3888 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3889 descr = " ordered data mode"; 3890 else 3891 descr = " writeback data mode"; 3892 } else 3893 descr = "out journal"; 3894 3895 if (test_opt(sb, DISCARD)) { 3896 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3897 if (!blk_queue_discard(q)) 3898 ext4_msg(sb, KERN_WARNING, 3899 "mounting with \"discard\" option, but " 3900 "the device does not support discard"); 3901 } 3902 3903 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 3904 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3905 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3906 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3907 3908 if (es->s_error_count) 3909 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3910 3911 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 3912 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 3913 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 3914 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 3915 3916 kfree(orig_data); 3917 return 0; 3918 3919 cantfind_ext4: 3920 if (!silent) 3921 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3922 goto failed_mount; 3923 3924 #ifdef CONFIG_QUOTA 3925 failed_mount8: 3926 ext4_unregister_sysfs(sb); 3927 #endif 3928 failed_mount7: 3929 ext4_unregister_li_request(sb); 3930 failed_mount6: 3931 ext4_mb_release(sb); 3932 if (sbi->s_flex_groups) 3933 kvfree(sbi->s_flex_groups); 3934 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3935 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3936 percpu_counter_destroy(&sbi->s_dirs_counter); 3937 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3938 failed_mount5: 3939 ext4_ext_release(sb); 3940 ext4_release_system_zone(sb); 3941 failed_mount4a: 3942 dput(sb->s_root); 3943 sb->s_root = NULL; 3944 failed_mount4: 3945 ext4_msg(sb, KERN_ERR, "mount failed"); 3946 if (EXT4_SB(sb)->rsv_conversion_wq) 3947 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 3948 failed_mount_wq: 3949 if (sbi->s_journal) { 3950 jbd2_journal_destroy(sbi->s_journal); 3951 sbi->s_journal = NULL; 3952 } 3953 failed_mount3a: 3954 ext4_es_unregister_shrinker(sbi); 3955 failed_mount3: 3956 del_timer_sync(&sbi->s_err_report); 3957 if (sbi->s_mmp_tsk) 3958 kthread_stop(sbi->s_mmp_tsk); 3959 failed_mount2: 3960 for (i = 0; i < db_count; i++) 3961 brelse(sbi->s_group_desc[i]); 3962 kvfree(sbi->s_group_desc); 3963 failed_mount: 3964 if (sbi->s_chksum_driver) 3965 crypto_free_shash(sbi->s_chksum_driver); 3966 #ifdef CONFIG_QUOTA 3967 for (i = 0; i < EXT4_MAXQUOTAS; i++) 3968 kfree(sbi->s_qf_names[i]); 3969 #endif 3970 ext4_blkdev_remove(sbi); 3971 brelse(bh); 3972 out_fail: 3973 sb->s_fs_info = NULL; 3974 kfree(sbi->s_blockgroup_lock); 3975 kfree(sbi); 3976 out_free_orig: 3977 kfree(orig_data); 3978 return err ? err : ret; 3979 } 3980 3981 /* 3982 * Setup any per-fs journal parameters now. We'll do this both on 3983 * initial mount, once the journal has been initialised but before we've 3984 * done any recovery; and again on any subsequent remount. 3985 */ 3986 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3987 { 3988 struct ext4_sb_info *sbi = EXT4_SB(sb); 3989 3990 journal->j_commit_interval = sbi->s_commit_interval; 3991 journal->j_min_batch_time = sbi->s_min_batch_time; 3992 journal->j_max_batch_time = sbi->s_max_batch_time; 3993 3994 write_lock(&journal->j_state_lock); 3995 if (test_opt(sb, BARRIER)) 3996 journal->j_flags |= JBD2_BARRIER; 3997 else 3998 journal->j_flags &= ~JBD2_BARRIER; 3999 if (test_opt(sb, DATA_ERR_ABORT)) 4000 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4001 else 4002 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4003 write_unlock(&journal->j_state_lock); 4004 } 4005 4006 static journal_t *ext4_get_journal(struct super_block *sb, 4007 unsigned int journal_inum) 4008 { 4009 struct inode *journal_inode; 4010 journal_t *journal; 4011 4012 BUG_ON(!ext4_has_feature_journal(sb)); 4013 4014 /* First, test for the existence of a valid inode on disk. Bad 4015 * things happen if we iget() an unused inode, as the subsequent 4016 * iput() will try to delete it. */ 4017 4018 journal_inode = ext4_iget(sb, journal_inum); 4019 if (IS_ERR(journal_inode)) { 4020 ext4_msg(sb, KERN_ERR, "no journal found"); 4021 return NULL; 4022 } 4023 if (!journal_inode->i_nlink) { 4024 make_bad_inode(journal_inode); 4025 iput(journal_inode); 4026 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4027 return NULL; 4028 } 4029 4030 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4031 journal_inode, journal_inode->i_size); 4032 if (!S_ISREG(journal_inode->i_mode)) { 4033 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4034 iput(journal_inode); 4035 return NULL; 4036 } 4037 4038 journal = jbd2_journal_init_inode(journal_inode); 4039 if (!journal) { 4040 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4041 iput(journal_inode); 4042 return NULL; 4043 } 4044 journal->j_private = sb; 4045 ext4_init_journal_params(sb, journal); 4046 return journal; 4047 } 4048 4049 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4050 dev_t j_dev) 4051 { 4052 struct buffer_head *bh; 4053 journal_t *journal; 4054 ext4_fsblk_t start; 4055 ext4_fsblk_t len; 4056 int hblock, blocksize; 4057 ext4_fsblk_t sb_block; 4058 unsigned long offset; 4059 struct ext4_super_block *es; 4060 struct block_device *bdev; 4061 4062 BUG_ON(!ext4_has_feature_journal(sb)); 4063 4064 bdev = ext4_blkdev_get(j_dev, sb); 4065 if (bdev == NULL) 4066 return NULL; 4067 4068 blocksize = sb->s_blocksize; 4069 hblock = bdev_logical_block_size(bdev); 4070 if (blocksize < hblock) { 4071 ext4_msg(sb, KERN_ERR, 4072 "blocksize too small for journal device"); 4073 goto out_bdev; 4074 } 4075 4076 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4077 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4078 set_blocksize(bdev, blocksize); 4079 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4080 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4081 "external journal"); 4082 goto out_bdev; 4083 } 4084 4085 es = (struct ext4_super_block *) (bh->b_data + offset); 4086 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4087 !(le32_to_cpu(es->s_feature_incompat) & 4088 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4089 ext4_msg(sb, KERN_ERR, "external journal has " 4090 "bad superblock"); 4091 brelse(bh); 4092 goto out_bdev; 4093 } 4094 4095 if ((le32_to_cpu(es->s_feature_ro_compat) & 4096 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4097 es->s_checksum != ext4_superblock_csum(sb, es)) { 4098 ext4_msg(sb, KERN_ERR, "external journal has " 4099 "corrupt superblock"); 4100 brelse(bh); 4101 goto out_bdev; 4102 } 4103 4104 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4105 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4106 brelse(bh); 4107 goto out_bdev; 4108 } 4109 4110 len = ext4_blocks_count(es); 4111 start = sb_block + 1; 4112 brelse(bh); /* we're done with the superblock */ 4113 4114 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4115 start, len, blocksize); 4116 if (!journal) { 4117 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4118 goto out_bdev; 4119 } 4120 journal->j_private = sb; 4121 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4122 wait_on_buffer(journal->j_sb_buffer); 4123 if (!buffer_uptodate(journal->j_sb_buffer)) { 4124 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4125 goto out_journal; 4126 } 4127 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4128 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4129 "user (unsupported) - %d", 4130 be32_to_cpu(journal->j_superblock->s_nr_users)); 4131 goto out_journal; 4132 } 4133 EXT4_SB(sb)->journal_bdev = bdev; 4134 ext4_init_journal_params(sb, journal); 4135 return journal; 4136 4137 out_journal: 4138 jbd2_journal_destroy(journal); 4139 out_bdev: 4140 ext4_blkdev_put(bdev); 4141 return NULL; 4142 } 4143 4144 static int ext4_load_journal(struct super_block *sb, 4145 struct ext4_super_block *es, 4146 unsigned long journal_devnum) 4147 { 4148 journal_t *journal; 4149 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4150 dev_t journal_dev; 4151 int err = 0; 4152 int really_read_only; 4153 4154 BUG_ON(!ext4_has_feature_journal(sb)); 4155 4156 if (journal_devnum && 4157 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4158 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4159 "numbers have changed"); 4160 journal_dev = new_decode_dev(journal_devnum); 4161 } else 4162 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4163 4164 really_read_only = bdev_read_only(sb->s_bdev); 4165 4166 /* 4167 * Are we loading a blank journal or performing recovery after a 4168 * crash? For recovery, we need to check in advance whether we 4169 * can get read-write access to the device. 4170 */ 4171 if (ext4_has_feature_journal_needs_recovery(sb)) { 4172 if (sb->s_flags & MS_RDONLY) { 4173 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4174 "required on readonly filesystem"); 4175 if (really_read_only) { 4176 ext4_msg(sb, KERN_ERR, "write access " 4177 "unavailable, cannot proceed"); 4178 return -EROFS; 4179 } 4180 ext4_msg(sb, KERN_INFO, "write access will " 4181 "be enabled during recovery"); 4182 } 4183 } 4184 4185 if (journal_inum && journal_dev) { 4186 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4187 "and inode journals!"); 4188 return -EINVAL; 4189 } 4190 4191 if (journal_inum) { 4192 if (!(journal = ext4_get_journal(sb, journal_inum))) 4193 return -EINVAL; 4194 } else { 4195 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4196 return -EINVAL; 4197 } 4198 4199 if (!(journal->j_flags & JBD2_BARRIER)) 4200 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4201 4202 if (!ext4_has_feature_journal_needs_recovery(sb)) 4203 err = jbd2_journal_wipe(journal, !really_read_only); 4204 if (!err) { 4205 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4206 if (save) 4207 memcpy(save, ((char *) es) + 4208 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4209 err = jbd2_journal_load(journal); 4210 if (save) 4211 memcpy(((char *) es) + EXT4_S_ERR_START, 4212 save, EXT4_S_ERR_LEN); 4213 kfree(save); 4214 } 4215 4216 if (err) { 4217 ext4_msg(sb, KERN_ERR, "error loading journal"); 4218 jbd2_journal_destroy(journal); 4219 return err; 4220 } 4221 4222 EXT4_SB(sb)->s_journal = journal; 4223 ext4_clear_journal_err(sb, es); 4224 4225 if (!really_read_only && journal_devnum && 4226 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4227 es->s_journal_dev = cpu_to_le32(journal_devnum); 4228 4229 /* Make sure we flush the recovery flag to disk. */ 4230 ext4_commit_super(sb, 1); 4231 } 4232 4233 return 0; 4234 } 4235 4236 static int ext4_commit_super(struct super_block *sb, int sync) 4237 { 4238 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4239 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4240 int error = 0; 4241 4242 if (!sbh || block_device_ejected(sb)) 4243 return error; 4244 if (buffer_write_io_error(sbh)) { 4245 /* 4246 * Oh, dear. A previous attempt to write the 4247 * superblock failed. This could happen because the 4248 * USB device was yanked out. Or it could happen to 4249 * be a transient write error and maybe the block will 4250 * be remapped. Nothing we can do but to retry the 4251 * write and hope for the best. 4252 */ 4253 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4254 "superblock detected"); 4255 clear_buffer_write_io_error(sbh); 4256 set_buffer_uptodate(sbh); 4257 } 4258 /* 4259 * If the file system is mounted read-only, don't update the 4260 * superblock write time. This avoids updating the superblock 4261 * write time when we are mounting the root file system 4262 * read/only but we need to replay the journal; at that point, 4263 * for people who are east of GMT and who make their clock 4264 * tick in localtime for Windows bug-for-bug compatibility, 4265 * the clock is set in the future, and this will cause e2fsck 4266 * to complain and force a full file system check. 4267 */ 4268 if (!(sb->s_flags & MS_RDONLY)) 4269 es->s_wtime = cpu_to_le32(get_seconds()); 4270 if (sb->s_bdev->bd_part) 4271 es->s_kbytes_written = 4272 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4273 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4274 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4275 else 4276 es->s_kbytes_written = 4277 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4278 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4279 ext4_free_blocks_count_set(es, 4280 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4281 &EXT4_SB(sb)->s_freeclusters_counter))); 4282 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4283 es->s_free_inodes_count = 4284 cpu_to_le32(percpu_counter_sum_positive( 4285 &EXT4_SB(sb)->s_freeinodes_counter)); 4286 BUFFER_TRACE(sbh, "marking dirty"); 4287 ext4_superblock_csum_set(sb); 4288 mark_buffer_dirty(sbh); 4289 if (sync) { 4290 error = __sync_dirty_buffer(sbh, 4291 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4292 if (error) 4293 return error; 4294 4295 error = buffer_write_io_error(sbh); 4296 if (error) { 4297 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4298 "superblock"); 4299 clear_buffer_write_io_error(sbh); 4300 set_buffer_uptodate(sbh); 4301 } 4302 } 4303 return error; 4304 } 4305 4306 /* 4307 * Have we just finished recovery? If so, and if we are mounting (or 4308 * remounting) the filesystem readonly, then we will end up with a 4309 * consistent fs on disk. Record that fact. 4310 */ 4311 static void ext4_mark_recovery_complete(struct super_block *sb, 4312 struct ext4_super_block *es) 4313 { 4314 journal_t *journal = EXT4_SB(sb)->s_journal; 4315 4316 if (!ext4_has_feature_journal(sb)) { 4317 BUG_ON(journal != NULL); 4318 return; 4319 } 4320 jbd2_journal_lock_updates(journal); 4321 if (jbd2_journal_flush(journal) < 0) 4322 goto out; 4323 4324 if (ext4_has_feature_journal_needs_recovery(sb) && 4325 sb->s_flags & MS_RDONLY) { 4326 ext4_clear_feature_journal_needs_recovery(sb); 4327 ext4_commit_super(sb, 1); 4328 } 4329 4330 out: 4331 jbd2_journal_unlock_updates(journal); 4332 } 4333 4334 /* 4335 * If we are mounting (or read-write remounting) a filesystem whose journal 4336 * has recorded an error from a previous lifetime, move that error to the 4337 * main filesystem now. 4338 */ 4339 static void ext4_clear_journal_err(struct super_block *sb, 4340 struct ext4_super_block *es) 4341 { 4342 journal_t *journal; 4343 int j_errno; 4344 const char *errstr; 4345 4346 BUG_ON(!ext4_has_feature_journal(sb)); 4347 4348 journal = EXT4_SB(sb)->s_journal; 4349 4350 /* 4351 * Now check for any error status which may have been recorded in the 4352 * journal by a prior ext4_error() or ext4_abort() 4353 */ 4354 4355 j_errno = jbd2_journal_errno(journal); 4356 if (j_errno) { 4357 char nbuf[16]; 4358 4359 errstr = ext4_decode_error(sb, j_errno, nbuf); 4360 ext4_warning(sb, "Filesystem error recorded " 4361 "from previous mount: %s", errstr); 4362 ext4_warning(sb, "Marking fs in need of filesystem check."); 4363 4364 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4366 ext4_commit_super(sb, 1); 4367 4368 jbd2_journal_clear_err(journal); 4369 jbd2_journal_update_sb_errno(journal); 4370 } 4371 } 4372 4373 /* 4374 * Force the running and committing transactions to commit, 4375 * and wait on the commit. 4376 */ 4377 int ext4_force_commit(struct super_block *sb) 4378 { 4379 journal_t *journal; 4380 4381 if (sb->s_flags & MS_RDONLY) 4382 return 0; 4383 4384 journal = EXT4_SB(sb)->s_journal; 4385 return ext4_journal_force_commit(journal); 4386 } 4387 4388 static int ext4_sync_fs(struct super_block *sb, int wait) 4389 { 4390 int ret = 0; 4391 tid_t target; 4392 bool needs_barrier = false; 4393 struct ext4_sb_info *sbi = EXT4_SB(sb); 4394 4395 trace_ext4_sync_fs(sb, wait); 4396 flush_workqueue(sbi->rsv_conversion_wq); 4397 /* 4398 * Writeback quota in non-journalled quota case - journalled quota has 4399 * no dirty dquots 4400 */ 4401 dquot_writeback_dquots(sb, -1); 4402 /* 4403 * Data writeback is possible w/o journal transaction, so barrier must 4404 * being sent at the end of the function. But we can skip it if 4405 * transaction_commit will do it for us. 4406 */ 4407 if (sbi->s_journal) { 4408 target = jbd2_get_latest_transaction(sbi->s_journal); 4409 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4410 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4411 needs_barrier = true; 4412 4413 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4414 if (wait) 4415 ret = jbd2_log_wait_commit(sbi->s_journal, 4416 target); 4417 } 4418 } else if (wait && test_opt(sb, BARRIER)) 4419 needs_barrier = true; 4420 if (needs_barrier) { 4421 int err; 4422 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4423 if (!ret) 4424 ret = err; 4425 } 4426 4427 return ret; 4428 } 4429 4430 /* 4431 * LVM calls this function before a (read-only) snapshot is created. This 4432 * gives us a chance to flush the journal completely and mark the fs clean. 4433 * 4434 * Note that only this function cannot bring a filesystem to be in a clean 4435 * state independently. It relies on upper layer to stop all data & metadata 4436 * modifications. 4437 */ 4438 static int ext4_freeze(struct super_block *sb) 4439 { 4440 int error = 0; 4441 journal_t *journal; 4442 4443 if (sb->s_flags & MS_RDONLY) 4444 return 0; 4445 4446 journal = EXT4_SB(sb)->s_journal; 4447 4448 if (journal) { 4449 /* Now we set up the journal barrier. */ 4450 jbd2_journal_lock_updates(journal); 4451 4452 /* 4453 * Don't clear the needs_recovery flag if we failed to 4454 * flush the journal. 4455 */ 4456 error = jbd2_journal_flush(journal); 4457 if (error < 0) 4458 goto out; 4459 4460 /* Journal blocked and flushed, clear needs_recovery flag. */ 4461 ext4_clear_feature_journal_needs_recovery(sb); 4462 } 4463 4464 error = ext4_commit_super(sb, 1); 4465 out: 4466 if (journal) 4467 /* we rely on upper layer to stop further updates */ 4468 jbd2_journal_unlock_updates(journal); 4469 return error; 4470 } 4471 4472 /* 4473 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4474 * flag here, even though the filesystem is not technically dirty yet. 4475 */ 4476 static int ext4_unfreeze(struct super_block *sb) 4477 { 4478 if (sb->s_flags & MS_RDONLY) 4479 return 0; 4480 4481 if (EXT4_SB(sb)->s_journal) { 4482 /* Reset the needs_recovery flag before the fs is unlocked. */ 4483 ext4_set_feature_journal_needs_recovery(sb); 4484 } 4485 4486 ext4_commit_super(sb, 1); 4487 return 0; 4488 } 4489 4490 /* 4491 * Structure to save mount options for ext4_remount's benefit 4492 */ 4493 struct ext4_mount_options { 4494 unsigned long s_mount_opt; 4495 unsigned long s_mount_opt2; 4496 kuid_t s_resuid; 4497 kgid_t s_resgid; 4498 unsigned long s_commit_interval; 4499 u32 s_min_batch_time, s_max_batch_time; 4500 #ifdef CONFIG_QUOTA 4501 int s_jquota_fmt; 4502 char *s_qf_names[EXT4_MAXQUOTAS]; 4503 #endif 4504 }; 4505 4506 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4507 { 4508 struct ext4_super_block *es; 4509 struct ext4_sb_info *sbi = EXT4_SB(sb); 4510 unsigned long old_sb_flags; 4511 struct ext4_mount_options old_opts; 4512 int enable_quota = 0; 4513 ext4_group_t g; 4514 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4515 int err = 0; 4516 #ifdef CONFIG_QUOTA 4517 int i, j; 4518 #endif 4519 char *orig_data = kstrdup(data, GFP_KERNEL); 4520 4521 /* Store the original options */ 4522 old_sb_flags = sb->s_flags; 4523 old_opts.s_mount_opt = sbi->s_mount_opt; 4524 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4525 old_opts.s_resuid = sbi->s_resuid; 4526 old_opts.s_resgid = sbi->s_resgid; 4527 old_opts.s_commit_interval = sbi->s_commit_interval; 4528 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4529 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4530 #ifdef CONFIG_QUOTA 4531 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4532 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4533 if (sbi->s_qf_names[i]) { 4534 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4535 GFP_KERNEL); 4536 if (!old_opts.s_qf_names[i]) { 4537 for (j = 0; j < i; j++) 4538 kfree(old_opts.s_qf_names[j]); 4539 kfree(orig_data); 4540 return -ENOMEM; 4541 } 4542 } else 4543 old_opts.s_qf_names[i] = NULL; 4544 #endif 4545 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4546 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4547 4548 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4549 err = -EINVAL; 4550 goto restore_opts; 4551 } 4552 4553 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4554 test_opt(sb, JOURNAL_CHECKSUM)) { 4555 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4556 "during remount not supported; ignoring"); 4557 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4558 } 4559 4560 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4561 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4562 ext4_msg(sb, KERN_ERR, "can't mount with " 4563 "both data=journal and delalloc"); 4564 err = -EINVAL; 4565 goto restore_opts; 4566 } 4567 if (test_opt(sb, DIOREAD_NOLOCK)) { 4568 ext4_msg(sb, KERN_ERR, "can't mount with " 4569 "both data=journal and dioread_nolock"); 4570 err = -EINVAL; 4571 goto restore_opts; 4572 } 4573 if (test_opt(sb, DAX)) { 4574 ext4_msg(sb, KERN_ERR, "can't mount with " 4575 "both data=journal and dax"); 4576 err = -EINVAL; 4577 goto restore_opts; 4578 } 4579 } 4580 4581 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4582 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4583 "dax flag with busy inodes while remounting"); 4584 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4585 } 4586 4587 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4588 ext4_abort(sb, "Abort forced by user"); 4589 4590 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4591 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4592 4593 es = sbi->s_es; 4594 4595 if (sbi->s_journal) { 4596 ext4_init_journal_params(sb, sbi->s_journal); 4597 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4598 } 4599 4600 if (*flags & MS_LAZYTIME) 4601 sb->s_flags |= MS_LAZYTIME; 4602 4603 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4604 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4605 err = -EROFS; 4606 goto restore_opts; 4607 } 4608 4609 if (*flags & MS_RDONLY) { 4610 err = sync_filesystem(sb); 4611 if (err < 0) 4612 goto restore_opts; 4613 err = dquot_suspend(sb, -1); 4614 if (err < 0) 4615 goto restore_opts; 4616 4617 /* 4618 * First of all, the unconditional stuff we have to do 4619 * to disable replay of the journal when we next remount 4620 */ 4621 sb->s_flags |= MS_RDONLY; 4622 4623 /* 4624 * OK, test if we are remounting a valid rw partition 4625 * readonly, and if so set the rdonly flag and then 4626 * mark the partition as valid again. 4627 */ 4628 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4629 (sbi->s_mount_state & EXT4_VALID_FS)) 4630 es->s_state = cpu_to_le16(sbi->s_mount_state); 4631 4632 if (sbi->s_journal) 4633 ext4_mark_recovery_complete(sb, es); 4634 } else { 4635 /* Make sure we can mount this feature set readwrite */ 4636 if (ext4_has_feature_readonly(sb) || 4637 !ext4_feature_set_ok(sb, 0)) { 4638 err = -EROFS; 4639 goto restore_opts; 4640 } 4641 /* 4642 * Make sure the group descriptor checksums 4643 * are sane. If they aren't, refuse to remount r/w. 4644 */ 4645 for (g = 0; g < sbi->s_groups_count; g++) { 4646 struct ext4_group_desc *gdp = 4647 ext4_get_group_desc(sb, g, NULL); 4648 4649 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4650 ext4_msg(sb, KERN_ERR, 4651 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4652 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4653 le16_to_cpu(gdp->bg_checksum)); 4654 err = -EFSBADCRC; 4655 goto restore_opts; 4656 } 4657 } 4658 4659 /* 4660 * If we have an unprocessed orphan list hanging 4661 * around from a previously readonly bdev mount, 4662 * require a full umount/remount for now. 4663 */ 4664 if (es->s_last_orphan) { 4665 ext4_msg(sb, KERN_WARNING, "Couldn't " 4666 "remount RDWR because of unprocessed " 4667 "orphan inode list. Please " 4668 "umount/remount instead"); 4669 err = -EINVAL; 4670 goto restore_opts; 4671 } 4672 4673 /* 4674 * Mounting a RDONLY partition read-write, so reread 4675 * and store the current valid flag. (It may have 4676 * been changed by e2fsck since we originally mounted 4677 * the partition.) 4678 */ 4679 if (sbi->s_journal) 4680 ext4_clear_journal_err(sb, es); 4681 sbi->s_mount_state = le16_to_cpu(es->s_state); 4682 if (!ext4_setup_super(sb, es, 0)) 4683 sb->s_flags &= ~MS_RDONLY; 4684 if (ext4_has_feature_mmp(sb)) 4685 if (ext4_multi_mount_protect(sb, 4686 le64_to_cpu(es->s_mmp_block))) { 4687 err = -EROFS; 4688 goto restore_opts; 4689 } 4690 enable_quota = 1; 4691 } 4692 } 4693 4694 /* 4695 * Reinitialize lazy itable initialization thread based on 4696 * current settings 4697 */ 4698 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4699 ext4_unregister_li_request(sb); 4700 else { 4701 ext4_group_t first_not_zeroed; 4702 first_not_zeroed = ext4_has_uninit_itable(sb); 4703 ext4_register_li_request(sb, first_not_zeroed); 4704 } 4705 4706 ext4_setup_system_zone(sb); 4707 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4708 ext4_commit_super(sb, 1); 4709 4710 #ifdef CONFIG_QUOTA 4711 /* Release old quota file names */ 4712 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4713 kfree(old_opts.s_qf_names[i]); 4714 if (enable_quota) { 4715 if (sb_any_quota_suspended(sb)) 4716 dquot_resume(sb, -1); 4717 else if (ext4_has_feature_quota(sb)) { 4718 err = ext4_enable_quotas(sb); 4719 if (err) 4720 goto restore_opts; 4721 } 4722 } 4723 #endif 4724 4725 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4726 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4727 kfree(orig_data); 4728 return 0; 4729 4730 restore_opts: 4731 sb->s_flags = old_sb_flags; 4732 sbi->s_mount_opt = old_opts.s_mount_opt; 4733 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4734 sbi->s_resuid = old_opts.s_resuid; 4735 sbi->s_resgid = old_opts.s_resgid; 4736 sbi->s_commit_interval = old_opts.s_commit_interval; 4737 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4738 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4739 #ifdef CONFIG_QUOTA 4740 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4741 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4742 kfree(sbi->s_qf_names[i]); 4743 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4744 } 4745 #endif 4746 kfree(orig_data); 4747 return err; 4748 } 4749 4750 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4751 { 4752 struct super_block *sb = dentry->d_sb; 4753 struct ext4_sb_info *sbi = EXT4_SB(sb); 4754 struct ext4_super_block *es = sbi->s_es; 4755 ext4_fsblk_t overhead = 0, resv_blocks; 4756 u64 fsid; 4757 s64 bfree; 4758 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4759 4760 if (!test_opt(sb, MINIX_DF)) 4761 overhead = sbi->s_overhead; 4762 4763 buf->f_type = EXT4_SUPER_MAGIC; 4764 buf->f_bsize = sb->s_blocksize; 4765 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4766 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4767 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4768 /* prevent underflow in case that few free space is available */ 4769 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4770 buf->f_bavail = buf->f_bfree - 4771 (ext4_r_blocks_count(es) + resv_blocks); 4772 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4773 buf->f_bavail = 0; 4774 buf->f_files = le32_to_cpu(es->s_inodes_count); 4775 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4776 buf->f_namelen = EXT4_NAME_LEN; 4777 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4778 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4779 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4780 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4781 4782 return 0; 4783 } 4784 4785 /* Helper function for writing quotas on sync - we need to start transaction 4786 * before quota file is locked for write. Otherwise the are possible deadlocks: 4787 * Process 1 Process 2 4788 * ext4_create() quota_sync() 4789 * jbd2_journal_start() write_dquot() 4790 * dquot_initialize() down(dqio_mutex) 4791 * down(dqio_mutex) jbd2_journal_start() 4792 * 4793 */ 4794 4795 #ifdef CONFIG_QUOTA 4796 4797 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4798 { 4799 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4800 } 4801 4802 static int ext4_write_dquot(struct dquot *dquot) 4803 { 4804 int ret, err; 4805 handle_t *handle; 4806 struct inode *inode; 4807 4808 inode = dquot_to_inode(dquot); 4809 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4810 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4811 if (IS_ERR(handle)) 4812 return PTR_ERR(handle); 4813 ret = dquot_commit(dquot); 4814 err = ext4_journal_stop(handle); 4815 if (!ret) 4816 ret = err; 4817 return ret; 4818 } 4819 4820 static int ext4_acquire_dquot(struct dquot *dquot) 4821 { 4822 int ret, err; 4823 handle_t *handle; 4824 4825 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4826 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4827 if (IS_ERR(handle)) 4828 return PTR_ERR(handle); 4829 ret = dquot_acquire(dquot); 4830 err = ext4_journal_stop(handle); 4831 if (!ret) 4832 ret = err; 4833 return ret; 4834 } 4835 4836 static int ext4_release_dquot(struct dquot *dquot) 4837 { 4838 int ret, err; 4839 handle_t *handle; 4840 4841 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4842 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4843 if (IS_ERR(handle)) { 4844 /* Release dquot anyway to avoid endless cycle in dqput() */ 4845 dquot_release(dquot); 4846 return PTR_ERR(handle); 4847 } 4848 ret = dquot_release(dquot); 4849 err = ext4_journal_stop(handle); 4850 if (!ret) 4851 ret = err; 4852 return ret; 4853 } 4854 4855 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4856 { 4857 struct super_block *sb = dquot->dq_sb; 4858 struct ext4_sb_info *sbi = EXT4_SB(sb); 4859 4860 /* Are we journaling quotas? */ 4861 if (ext4_has_feature_quota(sb) || 4862 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4863 dquot_mark_dquot_dirty(dquot); 4864 return ext4_write_dquot(dquot); 4865 } else { 4866 return dquot_mark_dquot_dirty(dquot); 4867 } 4868 } 4869 4870 static int ext4_write_info(struct super_block *sb, int type) 4871 { 4872 int ret, err; 4873 handle_t *handle; 4874 4875 /* Data block + inode block */ 4876 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 4877 if (IS_ERR(handle)) 4878 return PTR_ERR(handle); 4879 ret = dquot_commit_info(sb, type); 4880 err = ext4_journal_stop(handle); 4881 if (!ret) 4882 ret = err; 4883 return ret; 4884 } 4885 4886 /* 4887 * Turn on quotas during mount time - we need to find 4888 * the quota file and such... 4889 */ 4890 static int ext4_quota_on_mount(struct super_block *sb, int type) 4891 { 4892 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4893 EXT4_SB(sb)->s_jquota_fmt, type); 4894 } 4895 4896 /* 4897 * Standard function to be called on quota_on 4898 */ 4899 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4900 struct path *path) 4901 { 4902 int err; 4903 4904 if (!test_opt(sb, QUOTA)) 4905 return -EINVAL; 4906 4907 /* Quotafile not on the same filesystem? */ 4908 if (path->dentry->d_sb != sb) 4909 return -EXDEV; 4910 /* Journaling quota? */ 4911 if (EXT4_SB(sb)->s_qf_names[type]) { 4912 /* Quotafile not in fs root? */ 4913 if (path->dentry->d_parent != sb->s_root) 4914 ext4_msg(sb, KERN_WARNING, 4915 "Quota file not on filesystem root. " 4916 "Journaled quota will not work"); 4917 } 4918 4919 /* 4920 * When we journal data on quota file, we have to flush journal to see 4921 * all updates to the file when we bypass pagecache... 4922 */ 4923 if (EXT4_SB(sb)->s_journal && 4924 ext4_should_journal_data(d_inode(path->dentry))) { 4925 /* 4926 * We don't need to lock updates but journal_flush() could 4927 * otherwise be livelocked... 4928 */ 4929 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4930 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4931 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4932 if (err) 4933 return err; 4934 } 4935 4936 return dquot_quota_on(sb, type, format_id, path); 4937 } 4938 4939 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4940 unsigned int flags) 4941 { 4942 int err; 4943 struct inode *qf_inode; 4944 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 4945 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4946 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4947 }; 4948 4949 BUG_ON(!ext4_has_feature_quota(sb)); 4950 4951 if (!qf_inums[type]) 4952 return -EPERM; 4953 4954 qf_inode = ext4_iget(sb, qf_inums[type]); 4955 if (IS_ERR(qf_inode)) { 4956 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4957 return PTR_ERR(qf_inode); 4958 } 4959 4960 /* Don't account quota for quota files to avoid recursion */ 4961 qf_inode->i_flags |= S_NOQUOTA; 4962 err = dquot_enable(qf_inode, type, format_id, flags); 4963 iput(qf_inode); 4964 4965 return err; 4966 } 4967 4968 /* Enable usage tracking for all quota types. */ 4969 static int ext4_enable_quotas(struct super_block *sb) 4970 { 4971 int type, err = 0; 4972 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 4973 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4974 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4975 }; 4976 4977 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4978 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 4979 if (qf_inums[type]) { 4980 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4981 DQUOT_USAGE_ENABLED); 4982 if (err) { 4983 ext4_warning(sb, 4984 "Failed to enable quota tracking " 4985 "(type=%d, err=%d). Please run " 4986 "e2fsck to fix.", type, err); 4987 return err; 4988 } 4989 } 4990 } 4991 return 0; 4992 } 4993 4994 static int ext4_quota_off(struct super_block *sb, int type) 4995 { 4996 struct inode *inode = sb_dqopt(sb)->files[type]; 4997 handle_t *handle; 4998 4999 /* Force all delayed allocation blocks to be allocated. 5000 * Caller already holds s_umount sem */ 5001 if (test_opt(sb, DELALLOC)) 5002 sync_filesystem(sb); 5003 5004 if (!inode) 5005 goto out; 5006 5007 /* Update modification times of quota files when userspace can 5008 * start looking at them */ 5009 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5010 if (IS_ERR(handle)) 5011 goto out; 5012 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5013 ext4_mark_inode_dirty(handle, inode); 5014 ext4_journal_stop(handle); 5015 5016 out: 5017 return dquot_quota_off(sb, type); 5018 } 5019 5020 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5021 * acquiring the locks... As quota files are never truncated and quota code 5022 * itself serializes the operations (and no one else should touch the files) 5023 * we don't have to be afraid of races */ 5024 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5025 size_t len, loff_t off) 5026 { 5027 struct inode *inode = sb_dqopt(sb)->files[type]; 5028 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5029 int offset = off & (sb->s_blocksize - 1); 5030 int tocopy; 5031 size_t toread; 5032 struct buffer_head *bh; 5033 loff_t i_size = i_size_read(inode); 5034 5035 if (off > i_size) 5036 return 0; 5037 if (off+len > i_size) 5038 len = i_size-off; 5039 toread = len; 5040 while (toread > 0) { 5041 tocopy = sb->s_blocksize - offset < toread ? 5042 sb->s_blocksize - offset : toread; 5043 bh = ext4_bread(NULL, inode, blk, 0); 5044 if (IS_ERR(bh)) 5045 return PTR_ERR(bh); 5046 if (!bh) /* A hole? */ 5047 memset(data, 0, tocopy); 5048 else 5049 memcpy(data, bh->b_data+offset, tocopy); 5050 brelse(bh); 5051 offset = 0; 5052 toread -= tocopy; 5053 data += tocopy; 5054 blk++; 5055 } 5056 return len; 5057 } 5058 5059 /* Write to quotafile (we know the transaction is already started and has 5060 * enough credits) */ 5061 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5062 const char *data, size_t len, loff_t off) 5063 { 5064 struct inode *inode = sb_dqopt(sb)->files[type]; 5065 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5066 int err, offset = off & (sb->s_blocksize - 1); 5067 int retries = 0; 5068 struct buffer_head *bh; 5069 handle_t *handle = journal_current_handle(); 5070 5071 if (EXT4_SB(sb)->s_journal && !handle) { 5072 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5073 " cancelled because transaction is not started", 5074 (unsigned long long)off, (unsigned long long)len); 5075 return -EIO; 5076 } 5077 /* 5078 * Since we account only one data block in transaction credits, 5079 * then it is impossible to cross a block boundary. 5080 */ 5081 if (sb->s_blocksize - offset < len) { 5082 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5083 " cancelled because not block aligned", 5084 (unsigned long long)off, (unsigned long long)len); 5085 return -EIO; 5086 } 5087 5088 do { 5089 bh = ext4_bread(handle, inode, blk, 5090 EXT4_GET_BLOCKS_CREATE | 5091 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5092 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5093 ext4_should_retry_alloc(inode->i_sb, &retries)); 5094 if (IS_ERR(bh)) 5095 return PTR_ERR(bh); 5096 if (!bh) 5097 goto out; 5098 BUFFER_TRACE(bh, "get write access"); 5099 err = ext4_journal_get_write_access(handle, bh); 5100 if (err) { 5101 brelse(bh); 5102 return err; 5103 } 5104 lock_buffer(bh); 5105 memcpy(bh->b_data+offset, data, len); 5106 flush_dcache_page(bh->b_page); 5107 unlock_buffer(bh); 5108 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5109 brelse(bh); 5110 out: 5111 if (inode->i_size < off + len) { 5112 i_size_write(inode, off + len); 5113 EXT4_I(inode)->i_disksize = inode->i_size; 5114 ext4_mark_inode_dirty(handle, inode); 5115 } 5116 return len; 5117 } 5118 5119 #endif 5120 5121 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5122 const char *dev_name, void *data) 5123 { 5124 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5125 } 5126 5127 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5128 static inline void register_as_ext2(void) 5129 { 5130 int err = register_filesystem(&ext2_fs_type); 5131 if (err) 5132 printk(KERN_WARNING 5133 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5134 } 5135 5136 static inline void unregister_as_ext2(void) 5137 { 5138 unregister_filesystem(&ext2_fs_type); 5139 } 5140 5141 static inline int ext2_feature_set_ok(struct super_block *sb) 5142 { 5143 if (ext4_has_unknown_ext2_incompat_features(sb)) 5144 return 0; 5145 if (sb->s_flags & MS_RDONLY) 5146 return 1; 5147 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5148 return 0; 5149 return 1; 5150 } 5151 #else 5152 static inline void register_as_ext2(void) { } 5153 static inline void unregister_as_ext2(void) { } 5154 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5155 #endif 5156 5157 static inline void register_as_ext3(void) 5158 { 5159 int err = register_filesystem(&ext3_fs_type); 5160 if (err) 5161 printk(KERN_WARNING 5162 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5163 } 5164 5165 static inline void unregister_as_ext3(void) 5166 { 5167 unregister_filesystem(&ext3_fs_type); 5168 } 5169 5170 static inline int ext3_feature_set_ok(struct super_block *sb) 5171 { 5172 if (ext4_has_unknown_ext3_incompat_features(sb)) 5173 return 0; 5174 if (!ext4_has_feature_journal(sb)) 5175 return 0; 5176 if (sb->s_flags & MS_RDONLY) 5177 return 1; 5178 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5179 return 0; 5180 return 1; 5181 } 5182 5183 static struct file_system_type ext4_fs_type = { 5184 .owner = THIS_MODULE, 5185 .name = "ext4", 5186 .mount = ext4_mount, 5187 .kill_sb = kill_block_super, 5188 .fs_flags = FS_REQUIRES_DEV, 5189 }; 5190 MODULE_ALIAS_FS("ext4"); 5191 5192 /* Shared across all ext4 file systems */ 5193 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5194 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5195 5196 static int __init ext4_init_fs(void) 5197 { 5198 int i, err; 5199 5200 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5201 ext4_li_info = NULL; 5202 mutex_init(&ext4_li_mtx); 5203 5204 /* Build-time check for flags consistency */ 5205 ext4_check_flag_values(); 5206 5207 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5208 mutex_init(&ext4__aio_mutex[i]); 5209 init_waitqueue_head(&ext4__ioend_wq[i]); 5210 } 5211 5212 err = ext4_init_es(); 5213 if (err) 5214 return err; 5215 5216 err = ext4_init_pageio(); 5217 if (err) 5218 goto out5; 5219 5220 err = ext4_init_system_zone(); 5221 if (err) 5222 goto out4; 5223 5224 err = ext4_init_sysfs(); 5225 if (err) 5226 goto out3; 5227 5228 err = ext4_init_mballoc(); 5229 if (err) 5230 goto out2; 5231 else 5232 ext4_mballoc_ready = 1; 5233 err = init_inodecache(); 5234 if (err) 5235 goto out1; 5236 register_as_ext3(); 5237 register_as_ext2(); 5238 err = register_filesystem(&ext4_fs_type); 5239 if (err) 5240 goto out; 5241 5242 return 0; 5243 out: 5244 unregister_as_ext2(); 5245 unregister_as_ext3(); 5246 destroy_inodecache(); 5247 out1: 5248 ext4_mballoc_ready = 0; 5249 ext4_exit_mballoc(); 5250 out2: 5251 ext4_exit_sysfs(); 5252 out3: 5253 ext4_exit_system_zone(); 5254 out4: 5255 ext4_exit_pageio(); 5256 out5: 5257 ext4_exit_es(); 5258 5259 return err; 5260 } 5261 5262 static void __exit ext4_exit_fs(void) 5263 { 5264 ext4_exit_crypto(); 5265 ext4_destroy_lazyinit_thread(); 5266 unregister_as_ext2(); 5267 unregister_as_ext3(); 5268 unregister_filesystem(&ext4_fs_type); 5269 destroy_inodecache(); 5270 ext4_exit_mballoc(); 5271 ext4_exit_sysfs(); 5272 ext4_exit_system_zone(); 5273 ext4_exit_pageio(); 5274 ext4_exit_es(); 5275 } 5276 5277 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5278 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5279 MODULE_LICENSE("GPL"); 5280 module_init(ext4_init_fs) 5281 module_exit(ext4_exit_fs) 5282