1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "mballoc.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ext4.h> 52 53 struct proc_dir_entry *ext4_proc_root; 54 static struct kset *ext4_kset; 55 56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 57 unsigned long journal_devnum); 58 static int ext4_commit_super(struct super_block *sb, int sync); 59 static void ext4_mark_recovery_complete(struct super_block *sb, 60 struct ext4_super_block *es); 61 static void ext4_clear_journal_err(struct super_block *sb, 62 struct ext4_super_block *es); 63 static int ext4_sync_fs(struct super_block *sb, int wait); 64 static const char *ext4_decode_error(struct super_block *sb, int errno, 65 char nbuf[16]); 66 static int ext4_remount(struct super_block *sb, int *flags, char *data); 67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 68 static int ext4_unfreeze(struct super_block *sb); 69 static void ext4_write_super(struct super_block *sb); 70 static int ext4_freeze(struct super_block *sb); 71 72 73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 74 struct ext4_group_desc *bg) 75 { 76 return le32_to_cpu(bg->bg_block_bitmap_lo) | 77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 79 } 80 81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 82 struct ext4_group_desc *bg) 83 { 84 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 87 } 88 89 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 90 struct ext4_group_desc *bg) 91 { 92 return le32_to_cpu(bg->bg_inode_table_lo) | 93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 95 } 96 97 __u32 ext4_free_blks_count(struct super_block *sb, 98 struct ext4_group_desc *bg) 99 { 100 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 103 } 104 105 __u32 ext4_free_inodes_count(struct super_block *sb, 106 struct ext4_group_desc *bg) 107 { 108 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 111 } 112 113 __u32 ext4_used_dirs_count(struct super_block *sb, 114 struct ext4_group_desc *bg) 115 { 116 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 119 } 120 121 __u32 ext4_itable_unused_count(struct super_block *sb, 122 struct ext4_group_desc *bg) 123 { 124 return le16_to_cpu(bg->bg_itable_unused_lo) | 125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 127 } 128 129 void ext4_block_bitmap_set(struct super_block *sb, 130 struct ext4_group_desc *bg, ext4_fsblk_t blk) 131 { 132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 135 } 136 137 void ext4_inode_bitmap_set(struct super_block *sb, 138 struct ext4_group_desc *bg, ext4_fsblk_t blk) 139 { 140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 143 } 144 145 void ext4_inode_table_set(struct super_block *sb, 146 struct ext4_group_desc *bg, ext4_fsblk_t blk) 147 { 148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 151 } 152 153 void ext4_free_blks_set(struct super_block *sb, 154 struct ext4_group_desc *bg, __u32 count) 155 { 156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 159 } 160 161 void ext4_free_inodes_set(struct super_block *sb, 162 struct ext4_group_desc *bg, __u32 count) 163 { 164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 167 } 168 169 void ext4_used_dirs_set(struct super_block *sb, 170 struct ext4_group_desc *bg, __u32 count) 171 { 172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 175 } 176 177 void ext4_itable_unused_set(struct super_block *sb, 178 struct ext4_group_desc *bg, __u32 count) 179 { 180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 183 } 184 185 186 /* Just increment the non-pointer handle value */ 187 static handle_t *ext4_get_nojournal(void) 188 { 189 handle_t *handle = current->journal_info; 190 unsigned long ref_cnt = (unsigned long)handle; 191 192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 193 194 ref_cnt++; 195 handle = (handle_t *)ref_cnt; 196 197 current->journal_info = handle; 198 return handle; 199 } 200 201 202 /* Decrement the non-pointer handle value */ 203 static void ext4_put_nojournal(handle_t *handle) 204 { 205 unsigned long ref_cnt = (unsigned long)handle; 206 207 BUG_ON(ref_cnt == 0); 208 209 ref_cnt--; 210 handle = (handle_t *)ref_cnt; 211 212 current->journal_info = handle; 213 } 214 215 /* 216 * Wrappers for jbd2_journal_start/end. 217 * 218 * The only special thing we need to do here is to make sure that all 219 * journal_end calls result in the superblock being marked dirty, so 220 * that sync() will call the filesystem's write_super callback if 221 * appropriate. 222 */ 223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 224 { 225 journal_t *journal; 226 227 if (sb->s_flags & MS_RDONLY) 228 return ERR_PTR(-EROFS); 229 230 /* Special case here: if the journal has aborted behind our 231 * backs (eg. EIO in the commit thread), then we still need to 232 * take the FS itself readonly cleanly. */ 233 journal = EXT4_SB(sb)->s_journal; 234 if (journal) { 235 if (is_journal_aborted(journal)) { 236 ext4_abort(sb, __func__, "Detected aborted journal"); 237 return ERR_PTR(-EROFS); 238 } 239 return jbd2_journal_start(journal, nblocks); 240 } 241 return ext4_get_nojournal(); 242 } 243 244 /* 245 * The only special thing we need to do here is to make sure that all 246 * jbd2_journal_stop calls result in the superblock being marked dirty, so 247 * that sync() will call the filesystem's write_super callback if 248 * appropriate. 249 */ 250 int __ext4_journal_stop(const char *where, handle_t *handle) 251 { 252 struct super_block *sb; 253 int err; 254 int rc; 255 256 if (!ext4_handle_valid(handle)) { 257 ext4_put_nojournal(handle); 258 return 0; 259 } 260 sb = handle->h_transaction->t_journal->j_private; 261 err = handle->h_err; 262 rc = jbd2_journal_stop(handle); 263 264 if (!err) 265 err = rc; 266 if (err) 267 __ext4_std_error(sb, where, err); 268 return err; 269 } 270 271 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 272 struct buffer_head *bh, handle_t *handle, int err) 273 { 274 char nbuf[16]; 275 const char *errstr = ext4_decode_error(NULL, err, nbuf); 276 277 BUG_ON(!ext4_handle_valid(handle)); 278 279 if (bh) 280 BUFFER_TRACE(bh, "abort"); 281 282 if (!handle->h_err) 283 handle->h_err = err; 284 285 if (is_handle_aborted(handle)) 286 return; 287 288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 289 caller, errstr, err_fn); 290 291 jbd2_journal_abort_handle(handle); 292 } 293 294 /* Deal with the reporting of failure conditions on a filesystem such as 295 * inconsistencies detected or read IO failures. 296 * 297 * On ext2, we can store the error state of the filesystem in the 298 * superblock. That is not possible on ext4, because we may have other 299 * write ordering constraints on the superblock which prevent us from 300 * writing it out straight away; and given that the journal is about to 301 * be aborted, we can't rely on the current, or future, transactions to 302 * write out the superblock safely. 303 * 304 * We'll just use the jbd2_journal_abort() error code to record an error in 305 * the journal instead. On recovery, the journal will compain about 306 * that error until we've noted it down and cleared it. 307 */ 308 309 static void ext4_handle_error(struct super_block *sb) 310 { 311 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 312 313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 315 316 if (sb->s_flags & MS_RDONLY) 317 return; 318 319 if (!test_opt(sb, ERRORS_CONT)) { 320 journal_t *journal = EXT4_SB(sb)->s_journal; 321 322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 323 if (journal) 324 jbd2_journal_abort(journal, -EIO); 325 } 326 if (test_opt(sb, ERRORS_RO)) { 327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 328 sb->s_flags |= MS_RDONLY; 329 } 330 ext4_commit_super(sb, 1); 331 if (test_opt(sb, ERRORS_PANIC)) 332 panic("EXT4-fs (device %s): panic forced after error\n", 333 sb->s_id); 334 } 335 336 void ext4_error(struct super_block *sb, const char *function, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 va_start(args, fmt); 342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 343 vprintk(fmt, args); 344 printk("\n"); 345 va_end(args); 346 347 ext4_handle_error(sb); 348 } 349 350 static const char *ext4_decode_error(struct super_block *sb, int errno, 351 char nbuf[16]) 352 { 353 char *errstr = NULL; 354 355 switch (errno) { 356 case -EIO: 357 errstr = "IO failure"; 358 break; 359 case -ENOMEM: 360 errstr = "Out of memory"; 361 break; 362 case -EROFS: 363 if (!sb || (EXT4_SB(sb)->s_journal && 364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 365 errstr = "Journal has aborted"; 366 else 367 errstr = "Readonly filesystem"; 368 break; 369 default: 370 /* If the caller passed in an extra buffer for unknown 371 * errors, textualise them now. Else we just return 372 * NULL. */ 373 if (nbuf) { 374 /* Check for truncated error codes... */ 375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 376 errstr = nbuf; 377 } 378 break; 379 } 380 381 return errstr; 382 } 383 384 /* __ext4_std_error decodes expected errors from journaling functions 385 * automatically and invokes the appropriate error response. */ 386 387 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 388 { 389 char nbuf[16]; 390 const char *errstr; 391 392 /* Special case: if the error is EROFS, and we're not already 393 * inside a transaction, then there's really no point in logging 394 * an error. */ 395 if (errno == -EROFS && journal_current_handle() == NULL && 396 (sb->s_flags & MS_RDONLY)) 397 return; 398 399 errstr = ext4_decode_error(sb, errno, nbuf); 400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 401 sb->s_id, function, errstr); 402 403 ext4_handle_error(sb); 404 } 405 406 /* 407 * ext4_abort is a much stronger failure handler than ext4_error. The 408 * abort function may be used to deal with unrecoverable failures such 409 * as journal IO errors or ENOMEM at a critical moment in log management. 410 * 411 * We unconditionally force the filesystem into an ABORT|READONLY state, 412 * unless the error response on the fs has been set to panic in which 413 * case we take the easy way out and panic immediately. 414 */ 415 416 void ext4_abort(struct super_block *sb, const char *function, 417 const char *fmt, ...) 418 { 419 va_list args; 420 421 va_start(args, fmt); 422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 423 vprintk(fmt, args); 424 printk("\n"); 425 va_end(args); 426 427 if (test_opt(sb, ERRORS_PANIC)) 428 panic("EXT4-fs panic from previous error\n"); 429 430 if (sb->s_flags & MS_RDONLY) 431 return; 432 433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 435 sb->s_flags |= MS_RDONLY; 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (EXT4_SB(sb)->s_journal) 438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 439 } 440 441 void ext4_msg (struct super_block * sb, const char *prefix, 442 const char *fmt, ...) 443 { 444 va_list args; 445 446 va_start(args, fmt); 447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 448 vprintk(fmt, args); 449 printk("\n"); 450 va_end(args); 451 } 452 453 void ext4_warning(struct super_block *sb, const char *function, 454 const char *fmt, ...) 455 { 456 va_list args; 457 458 va_start(args, fmt); 459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 460 sb->s_id, function); 461 vprintk(fmt, args); 462 printk("\n"); 463 va_end(args); 464 } 465 466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 467 const char *function, const char *fmt, ...) 468 __releases(bitlock) 469 __acquires(bitlock) 470 { 471 va_list args; 472 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 473 474 va_start(args, fmt); 475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 476 vprintk(fmt, args); 477 printk("\n"); 478 va_end(args); 479 480 if (test_opt(sb, ERRORS_CONT)) { 481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 483 ext4_commit_super(sb, 0); 484 return; 485 } 486 ext4_unlock_group(sb, grp); 487 ext4_handle_error(sb); 488 /* 489 * We only get here in the ERRORS_RO case; relocking the group 490 * may be dangerous, but nothing bad will happen since the 491 * filesystem will have already been marked read/only and the 492 * journal has been aborted. We return 1 as a hint to callers 493 * who might what to use the return value from 494 * ext4_grp_locked_error() to distinguish beween the 495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 496 * aggressively from the ext4 function in question, with a 497 * more appropriate error code. 498 */ 499 ext4_lock_group(sb, grp); 500 return; 501 } 502 503 void ext4_update_dynamic_rev(struct super_block *sb) 504 { 505 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 506 507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 508 return; 509 510 ext4_warning(sb, __func__, 511 "updating to rev %d because of new feature flag, " 512 "running e2fsck is recommended", 513 EXT4_DYNAMIC_REV); 514 515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 518 /* leave es->s_feature_*compat flags alone */ 519 /* es->s_uuid will be set by e2fsck if empty */ 520 521 /* 522 * The rest of the superblock fields should be zero, and if not it 523 * means they are likely already in use, so leave them alone. We 524 * can leave it up to e2fsck to clean up any inconsistencies there. 525 */ 526 } 527 528 /* 529 * Open the external journal device 530 */ 531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 532 { 533 struct block_device *bdev; 534 char b[BDEVNAME_SIZE]; 535 536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 537 if (IS_ERR(bdev)) 538 goto fail; 539 return bdev; 540 541 fail: 542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 543 __bdevname(dev, b), PTR_ERR(bdev)); 544 return NULL; 545 } 546 547 /* 548 * Release the journal device 549 */ 550 static int ext4_blkdev_put(struct block_device *bdev) 551 { 552 bd_release(bdev); 553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 554 } 555 556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 557 { 558 struct block_device *bdev; 559 int ret = -ENODEV; 560 561 bdev = sbi->journal_bdev; 562 if (bdev) { 563 ret = ext4_blkdev_put(bdev); 564 sbi->journal_bdev = NULL; 565 } 566 return ret; 567 } 568 569 static inline struct inode *orphan_list_entry(struct list_head *l) 570 { 571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 572 } 573 574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 575 { 576 struct list_head *l; 577 578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 579 le32_to_cpu(sbi->s_es->s_last_orphan)); 580 581 printk(KERN_ERR "sb_info orphan list:\n"); 582 list_for_each(l, &sbi->s_orphan) { 583 struct inode *inode = orphan_list_entry(l); 584 printk(KERN_ERR " " 585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 586 inode->i_sb->s_id, inode->i_ino, inode, 587 inode->i_mode, inode->i_nlink, 588 NEXT_ORPHAN(inode)); 589 } 590 } 591 592 static void ext4_put_super(struct super_block *sb) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 struct ext4_super_block *es = sbi->s_es; 596 int i, err; 597 598 flush_workqueue(sbi->dio_unwritten_wq); 599 destroy_workqueue(sbi->dio_unwritten_wq); 600 601 lock_super(sb); 602 lock_kernel(); 603 if (sb->s_dirt) 604 ext4_commit_super(sb, 1); 605 606 if (sbi->s_journal) { 607 err = jbd2_journal_destroy(sbi->s_journal); 608 sbi->s_journal = NULL; 609 if (err < 0) 610 ext4_abort(sb, __func__, 611 "Couldn't clean up the journal"); 612 } 613 614 ext4_release_system_zone(sb); 615 ext4_mb_release(sb); 616 ext4_ext_release(sb); 617 ext4_xattr_put_super(sb); 618 619 if (!(sb->s_flags & MS_RDONLY)) { 620 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 621 es->s_state = cpu_to_le16(sbi->s_mount_state); 622 ext4_commit_super(sb, 1); 623 } 624 if (sbi->s_proc) { 625 remove_proc_entry(sb->s_id, ext4_proc_root); 626 } 627 kobject_del(&sbi->s_kobj); 628 629 for (i = 0; i < sbi->s_gdb_count; i++) 630 brelse(sbi->s_group_desc[i]); 631 kfree(sbi->s_group_desc); 632 if (is_vmalloc_addr(sbi->s_flex_groups)) 633 vfree(sbi->s_flex_groups); 634 else 635 kfree(sbi->s_flex_groups); 636 percpu_counter_destroy(&sbi->s_freeblocks_counter); 637 percpu_counter_destroy(&sbi->s_freeinodes_counter); 638 percpu_counter_destroy(&sbi->s_dirs_counter); 639 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 640 brelse(sbi->s_sbh); 641 #ifdef CONFIG_QUOTA 642 for (i = 0; i < MAXQUOTAS; i++) 643 kfree(sbi->s_qf_names[i]); 644 #endif 645 646 /* Debugging code just in case the in-memory inode orphan list 647 * isn't empty. The on-disk one can be non-empty if we've 648 * detected an error and taken the fs readonly, but the 649 * in-memory list had better be clean by this point. */ 650 if (!list_empty(&sbi->s_orphan)) 651 dump_orphan_list(sb, sbi); 652 J_ASSERT(list_empty(&sbi->s_orphan)); 653 654 invalidate_bdev(sb->s_bdev); 655 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 656 /* 657 * Invalidate the journal device's buffers. We don't want them 658 * floating about in memory - the physical journal device may 659 * hotswapped, and it breaks the `ro-after' testing code. 660 */ 661 sync_blockdev(sbi->journal_bdev); 662 invalidate_bdev(sbi->journal_bdev); 663 ext4_blkdev_remove(sbi); 664 } 665 sb->s_fs_info = NULL; 666 /* 667 * Now that we are completely done shutting down the 668 * superblock, we need to actually destroy the kobject. 669 */ 670 unlock_kernel(); 671 unlock_super(sb); 672 kobject_put(&sbi->s_kobj); 673 wait_for_completion(&sbi->s_kobj_unregister); 674 kfree(sbi->s_blockgroup_lock); 675 kfree(sbi); 676 } 677 678 static struct kmem_cache *ext4_inode_cachep; 679 680 /* 681 * Called inside transaction, so use GFP_NOFS 682 */ 683 static struct inode *ext4_alloc_inode(struct super_block *sb) 684 { 685 struct ext4_inode_info *ei; 686 687 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 688 if (!ei) 689 return NULL; 690 691 ei->vfs_inode.i_version = 1; 692 ei->vfs_inode.i_data.writeback_index = 0; 693 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 694 INIT_LIST_HEAD(&ei->i_prealloc_list); 695 spin_lock_init(&ei->i_prealloc_lock); 696 /* 697 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 698 * therefore it can be null here. Don't check it, just initialize 699 * jinode. 700 */ 701 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 702 ei->i_reserved_data_blocks = 0; 703 ei->i_reserved_meta_blocks = 0; 704 ei->i_allocated_meta_blocks = 0; 705 ei->i_da_metadata_calc_len = 0; 706 ei->i_delalloc_reserved_flag = 0; 707 spin_lock_init(&(ei->i_block_reservation_lock)); 708 #ifdef CONFIG_QUOTA 709 ei->i_reserved_quota = 0; 710 #endif 711 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list); 712 ei->cur_aio_dio = NULL; 713 ei->i_sync_tid = 0; 714 ei->i_datasync_tid = 0; 715 716 return &ei->vfs_inode; 717 } 718 719 static void ext4_destroy_inode(struct inode *inode) 720 { 721 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 722 ext4_msg(inode->i_sb, KERN_ERR, 723 "Inode %lu (%p): orphan list check failed!", 724 inode->i_ino, EXT4_I(inode)); 725 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 726 EXT4_I(inode), sizeof(struct ext4_inode_info), 727 true); 728 dump_stack(); 729 } 730 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 731 } 732 733 static void init_once(void *foo) 734 { 735 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 736 737 INIT_LIST_HEAD(&ei->i_orphan); 738 #ifdef CONFIG_EXT4_FS_XATTR 739 init_rwsem(&ei->xattr_sem); 740 #endif 741 init_rwsem(&ei->i_data_sem); 742 inode_init_once(&ei->vfs_inode); 743 } 744 745 static int init_inodecache(void) 746 { 747 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 748 sizeof(struct ext4_inode_info), 749 0, (SLAB_RECLAIM_ACCOUNT| 750 SLAB_MEM_SPREAD), 751 init_once); 752 if (ext4_inode_cachep == NULL) 753 return -ENOMEM; 754 return 0; 755 } 756 757 static void destroy_inodecache(void) 758 { 759 kmem_cache_destroy(ext4_inode_cachep); 760 } 761 762 static void ext4_clear_inode(struct inode *inode) 763 { 764 ext4_discard_preallocations(inode); 765 if (EXT4_JOURNAL(inode)) 766 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 767 &EXT4_I(inode)->jinode); 768 } 769 770 static inline void ext4_show_quota_options(struct seq_file *seq, 771 struct super_block *sb) 772 { 773 #if defined(CONFIG_QUOTA) 774 struct ext4_sb_info *sbi = EXT4_SB(sb); 775 776 if (sbi->s_jquota_fmt) { 777 char *fmtname = ""; 778 779 switch (sbi->s_jquota_fmt) { 780 case QFMT_VFS_OLD: 781 fmtname = "vfsold"; 782 break; 783 case QFMT_VFS_V0: 784 fmtname = "vfsv0"; 785 break; 786 case QFMT_VFS_V1: 787 fmtname = "vfsv1"; 788 break; 789 } 790 seq_printf(seq, ",jqfmt=%s", fmtname); 791 } 792 793 if (sbi->s_qf_names[USRQUOTA]) 794 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 795 796 if (sbi->s_qf_names[GRPQUOTA]) 797 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 798 799 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 800 seq_puts(seq, ",usrquota"); 801 802 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 803 seq_puts(seq, ",grpquota"); 804 #endif 805 } 806 807 /* 808 * Show an option if 809 * - it's set to a non-default value OR 810 * - if the per-sb default is different from the global default 811 */ 812 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 813 { 814 int def_errors; 815 unsigned long def_mount_opts; 816 struct super_block *sb = vfs->mnt_sb; 817 struct ext4_sb_info *sbi = EXT4_SB(sb); 818 struct ext4_super_block *es = sbi->s_es; 819 820 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 821 def_errors = le16_to_cpu(es->s_errors); 822 823 if (sbi->s_sb_block != 1) 824 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 825 if (test_opt(sb, MINIX_DF)) 826 seq_puts(seq, ",minixdf"); 827 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 828 seq_puts(seq, ",grpid"); 829 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 830 seq_puts(seq, ",nogrpid"); 831 if (sbi->s_resuid != EXT4_DEF_RESUID || 832 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 833 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 834 } 835 if (sbi->s_resgid != EXT4_DEF_RESGID || 836 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 837 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 838 } 839 if (test_opt(sb, ERRORS_RO)) { 840 if (def_errors == EXT4_ERRORS_PANIC || 841 def_errors == EXT4_ERRORS_CONTINUE) { 842 seq_puts(seq, ",errors=remount-ro"); 843 } 844 } 845 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 846 seq_puts(seq, ",errors=continue"); 847 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 848 seq_puts(seq, ",errors=panic"); 849 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 850 seq_puts(seq, ",nouid32"); 851 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 852 seq_puts(seq, ",debug"); 853 if (test_opt(sb, OLDALLOC)) 854 seq_puts(seq, ",oldalloc"); 855 #ifdef CONFIG_EXT4_FS_XATTR 856 if (test_opt(sb, XATTR_USER) && 857 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 858 seq_puts(seq, ",user_xattr"); 859 if (!test_opt(sb, XATTR_USER) && 860 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 861 seq_puts(seq, ",nouser_xattr"); 862 } 863 #endif 864 #ifdef CONFIG_EXT4_FS_POSIX_ACL 865 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 866 seq_puts(seq, ",acl"); 867 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 868 seq_puts(seq, ",noacl"); 869 #endif 870 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 871 seq_printf(seq, ",commit=%u", 872 (unsigned) (sbi->s_commit_interval / HZ)); 873 } 874 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 875 seq_printf(seq, ",min_batch_time=%u", 876 (unsigned) sbi->s_min_batch_time); 877 } 878 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 879 seq_printf(seq, ",max_batch_time=%u", 880 (unsigned) sbi->s_min_batch_time); 881 } 882 883 /* 884 * We're changing the default of barrier mount option, so 885 * let's always display its mount state so it's clear what its 886 * status is. 887 */ 888 seq_puts(seq, ",barrier="); 889 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 890 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 891 seq_puts(seq, ",journal_async_commit"); 892 if (test_opt(sb, NOBH)) 893 seq_puts(seq, ",nobh"); 894 if (test_opt(sb, I_VERSION)) 895 seq_puts(seq, ",i_version"); 896 if (!test_opt(sb, DELALLOC)) 897 seq_puts(seq, ",nodelalloc"); 898 899 900 if (sbi->s_stripe) 901 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 902 /* 903 * journal mode get enabled in different ways 904 * So just print the value even if we didn't specify it 905 */ 906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 907 seq_puts(seq, ",data=journal"); 908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 909 seq_puts(seq, ",data=ordered"); 910 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 911 seq_puts(seq, ",data=writeback"); 912 913 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 914 seq_printf(seq, ",inode_readahead_blks=%u", 915 sbi->s_inode_readahead_blks); 916 917 if (test_opt(sb, DATA_ERR_ABORT)) 918 seq_puts(seq, ",data_err=abort"); 919 920 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 921 seq_puts(seq, ",noauto_da_alloc"); 922 923 if (test_opt(sb, DISCARD)) 924 seq_puts(seq, ",discard"); 925 926 if (test_opt(sb, NOLOAD)) 927 seq_puts(seq, ",norecovery"); 928 929 ext4_show_quota_options(seq, sb); 930 931 return 0; 932 } 933 934 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 935 u64 ino, u32 generation) 936 { 937 struct inode *inode; 938 939 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 940 return ERR_PTR(-ESTALE); 941 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 942 return ERR_PTR(-ESTALE); 943 944 /* iget isn't really right if the inode is currently unallocated!! 945 * 946 * ext4_read_inode will return a bad_inode if the inode had been 947 * deleted, so we should be safe. 948 * 949 * Currently we don't know the generation for parent directory, so 950 * a generation of 0 means "accept any" 951 */ 952 inode = ext4_iget(sb, ino); 953 if (IS_ERR(inode)) 954 return ERR_CAST(inode); 955 if (generation && inode->i_generation != generation) { 956 iput(inode); 957 return ERR_PTR(-ESTALE); 958 } 959 960 return inode; 961 } 962 963 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 964 int fh_len, int fh_type) 965 { 966 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 967 ext4_nfs_get_inode); 968 } 969 970 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 971 int fh_len, int fh_type) 972 { 973 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 974 ext4_nfs_get_inode); 975 } 976 977 /* 978 * Try to release metadata pages (indirect blocks, directories) which are 979 * mapped via the block device. Since these pages could have journal heads 980 * which would prevent try_to_free_buffers() from freeing them, we must use 981 * jbd2 layer's try_to_free_buffers() function to release them. 982 */ 983 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 984 gfp_t wait) 985 { 986 journal_t *journal = EXT4_SB(sb)->s_journal; 987 988 WARN_ON(PageChecked(page)); 989 if (!page_has_buffers(page)) 990 return 0; 991 if (journal) 992 return jbd2_journal_try_to_free_buffers(journal, page, 993 wait & ~__GFP_WAIT); 994 return try_to_free_buffers(page); 995 } 996 997 #ifdef CONFIG_QUOTA 998 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 999 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1000 1001 static int ext4_write_dquot(struct dquot *dquot); 1002 static int ext4_acquire_dquot(struct dquot *dquot); 1003 static int ext4_release_dquot(struct dquot *dquot); 1004 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1005 static int ext4_write_info(struct super_block *sb, int type); 1006 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1007 char *path, int remount); 1008 static int ext4_quota_on_mount(struct super_block *sb, int type); 1009 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1010 size_t len, loff_t off); 1011 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1012 const char *data, size_t len, loff_t off); 1013 1014 static const struct dquot_operations ext4_quota_operations = { 1015 .initialize = dquot_initialize, 1016 .drop = dquot_drop, 1017 #ifdef CONFIG_QUOTA 1018 .get_reserved_space = ext4_get_reserved_space, 1019 #endif 1020 .write_dquot = ext4_write_dquot, 1021 .acquire_dquot = ext4_acquire_dquot, 1022 .release_dquot = ext4_release_dquot, 1023 .mark_dirty = ext4_mark_dquot_dirty, 1024 .write_info = ext4_write_info, 1025 .alloc_dquot = dquot_alloc, 1026 .destroy_dquot = dquot_destroy, 1027 }; 1028 1029 static const struct quotactl_ops ext4_qctl_operations = { 1030 .quota_on = ext4_quota_on, 1031 .quota_off = vfs_quota_off, 1032 .quota_sync = vfs_quota_sync, 1033 .get_info = vfs_get_dqinfo, 1034 .set_info = vfs_set_dqinfo, 1035 .get_dqblk = vfs_get_dqblk, 1036 .set_dqblk = vfs_set_dqblk 1037 }; 1038 #endif 1039 1040 static const struct super_operations ext4_sops = { 1041 .alloc_inode = ext4_alloc_inode, 1042 .destroy_inode = ext4_destroy_inode, 1043 .write_inode = ext4_write_inode, 1044 .dirty_inode = ext4_dirty_inode, 1045 .delete_inode = ext4_delete_inode, 1046 .put_super = ext4_put_super, 1047 .sync_fs = ext4_sync_fs, 1048 .freeze_fs = ext4_freeze, 1049 .unfreeze_fs = ext4_unfreeze, 1050 .statfs = ext4_statfs, 1051 .remount_fs = ext4_remount, 1052 .clear_inode = ext4_clear_inode, 1053 .show_options = ext4_show_options, 1054 #ifdef CONFIG_QUOTA 1055 .quota_read = ext4_quota_read, 1056 .quota_write = ext4_quota_write, 1057 #endif 1058 .bdev_try_to_free_page = bdev_try_to_free_page, 1059 }; 1060 1061 static const struct super_operations ext4_nojournal_sops = { 1062 .alloc_inode = ext4_alloc_inode, 1063 .destroy_inode = ext4_destroy_inode, 1064 .write_inode = ext4_write_inode, 1065 .dirty_inode = ext4_dirty_inode, 1066 .delete_inode = ext4_delete_inode, 1067 .write_super = ext4_write_super, 1068 .put_super = ext4_put_super, 1069 .statfs = ext4_statfs, 1070 .remount_fs = ext4_remount, 1071 .clear_inode = ext4_clear_inode, 1072 .show_options = ext4_show_options, 1073 #ifdef CONFIG_QUOTA 1074 .quota_read = ext4_quota_read, 1075 .quota_write = ext4_quota_write, 1076 #endif 1077 .bdev_try_to_free_page = bdev_try_to_free_page, 1078 }; 1079 1080 static const struct export_operations ext4_export_ops = { 1081 .fh_to_dentry = ext4_fh_to_dentry, 1082 .fh_to_parent = ext4_fh_to_parent, 1083 .get_parent = ext4_get_parent, 1084 }; 1085 1086 enum { 1087 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1088 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1089 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1090 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1091 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1092 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1093 Opt_journal_update, Opt_journal_dev, 1094 Opt_journal_checksum, Opt_journal_async_commit, 1095 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1096 Opt_data_err_abort, Opt_data_err_ignore, 1097 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1098 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1099 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1100 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1101 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1102 Opt_block_validity, Opt_noblock_validity, 1103 Opt_inode_readahead_blks, Opt_journal_ioprio, 1104 Opt_discard, Opt_nodiscard, 1105 }; 1106 1107 static const match_table_t tokens = { 1108 {Opt_bsd_df, "bsddf"}, 1109 {Opt_minix_df, "minixdf"}, 1110 {Opt_grpid, "grpid"}, 1111 {Opt_grpid, "bsdgroups"}, 1112 {Opt_nogrpid, "nogrpid"}, 1113 {Opt_nogrpid, "sysvgroups"}, 1114 {Opt_resgid, "resgid=%u"}, 1115 {Opt_resuid, "resuid=%u"}, 1116 {Opt_sb, "sb=%u"}, 1117 {Opt_err_cont, "errors=continue"}, 1118 {Opt_err_panic, "errors=panic"}, 1119 {Opt_err_ro, "errors=remount-ro"}, 1120 {Opt_nouid32, "nouid32"}, 1121 {Opt_debug, "debug"}, 1122 {Opt_oldalloc, "oldalloc"}, 1123 {Opt_orlov, "orlov"}, 1124 {Opt_user_xattr, "user_xattr"}, 1125 {Opt_nouser_xattr, "nouser_xattr"}, 1126 {Opt_acl, "acl"}, 1127 {Opt_noacl, "noacl"}, 1128 {Opt_noload, "noload"}, 1129 {Opt_noload, "norecovery"}, 1130 {Opt_nobh, "nobh"}, 1131 {Opt_bh, "bh"}, 1132 {Opt_commit, "commit=%u"}, 1133 {Opt_min_batch_time, "min_batch_time=%u"}, 1134 {Opt_max_batch_time, "max_batch_time=%u"}, 1135 {Opt_journal_update, "journal=update"}, 1136 {Opt_journal_dev, "journal_dev=%u"}, 1137 {Opt_journal_checksum, "journal_checksum"}, 1138 {Opt_journal_async_commit, "journal_async_commit"}, 1139 {Opt_abort, "abort"}, 1140 {Opt_data_journal, "data=journal"}, 1141 {Opt_data_ordered, "data=ordered"}, 1142 {Opt_data_writeback, "data=writeback"}, 1143 {Opt_data_err_abort, "data_err=abort"}, 1144 {Opt_data_err_ignore, "data_err=ignore"}, 1145 {Opt_offusrjquota, "usrjquota="}, 1146 {Opt_usrjquota, "usrjquota=%s"}, 1147 {Opt_offgrpjquota, "grpjquota="}, 1148 {Opt_grpjquota, "grpjquota=%s"}, 1149 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1150 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1151 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1152 {Opt_grpquota, "grpquota"}, 1153 {Opt_noquota, "noquota"}, 1154 {Opt_quota, "quota"}, 1155 {Opt_usrquota, "usrquota"}, 1156 {Opt_barrier, "barrier=%u"}, 1157 {Opt_barrier, "barrier"}, 1158 {Opt_nobarrier, "nobarrier"}, 1159 {Opt_i_version, "i_version"}, 1160 {Opt_stripe, "stripe=%u"}, 1161 {Opt_resize, "resize"}, 1162 {Opt_delalloc, "delalloc"}, 1163 {Opt_nodelalloc, "nodelalloc"}, 1164 {Opt_block_validity, "block_validity"}, 1165 {Opt_noblock_validity, "noblock_validity"}, 1166 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1167 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1168 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1169 {Opt_auto_da_alloc, "auto_da_alloc"}, 1170 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1171 {Opt_discard, "discard"}, 1172 {Opt_nodiscard, "nodiscard"}, 1173 {Opt_err, NULL}, 1174 }; 1175 1176 static ext4_fsblk_t get_sb_block(void **data) 1177 { 1178 ext4_fsblk_t sb_block; 1179 char *options = (char *) *data; 1180 1181 if (!options || strncmp(options, "sb=", 3) != 0) 1182 return 1; /* Default location */ 1183 1184 options += 3; 1185 /* TODO: use simple_strtoll with >32bit ext4 */ 1186 sb_block = simple_strtoul(options, &options, 0); 1187 if (*options && *options != ',') { 1188 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1189 (char *) *data); 1190 return 1; 1191 } 1192 if (*options == ',') 1193 options++; 1194 *data = (void *) options; 1195 1196 return sb_block; 1197 } 1198 1199 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1200 1201 static int parse_options(char *options, struct super_block *sb, 1202 unsigned long *journal_devnum, 1203 unsigned int *journal_ioprio, 1204 ext4_fsblk_t *n_blocks_count, int is_remount) 1205 { 1206 struct ext4_sb_info *sbi = EXT4_SB(sb); 1207 char *p; 1208 substring_t args[MAX_OPT_ARGS]; 1209 int data_opt = 0; 1210 int option; 1211 #ifdef CONFIG_QUOTA 1212 int qtype, qfmt; 1213 char *qname; 1214 #endif 1215 1216 if (!options) 1217 return 1; 1218 1219 while ((p = strsep(&options, ",")) != NULL) { 1220 int token; 1221 if (!*p) 1222 continue; 1223 1224 token = match_token(p, tokens, args); 1225 switch (token) { 1226 case Opt_bsd_df: 1227 clear_opt(sbi->s_mount_opt, MINIX_DF); 1228 break; 1229 case Opt_minix_df: 1230 set_opt(sbi->s_mount_opt, MINIX_DF); 1231 break; 1232 case Opt_grpid: 1233 set_opt(sbi->s_mount_opt, GRPID); 1234 break; 1235 case Opt_nogrpid: 1236 clear_opt(sbi->s_mount_opt, GRPID); 1237 break; 1238 case Opt_resuid: 1239 if (match_int(&args[0], &option)) 1240 return 0; 1241 sbi->s_resuid = option; 1242 break; 1243 case Opt_resgid: 1244 if (match_int(&args[0], &option)) 1245 return 0; 1246 sbi->s_resgid = option; 1247 break; 1248 case Opt_sb: 1249 /* handled by get_sb_block() instead of here */ 1250 /* *sb_block = match_int(&args[0]); */ 1251 break; 1252 case Opt_err_panic: 1253 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1254 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1255 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1256 break; 1257 case Opt_err_ro: 1258 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1259 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1260 set_opt(sbi->s_mount_opt, ERRORS_RO); 1261 break; 1262 case Opt_err_cont: 1263 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1264 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1265 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1266 break; 1267 case Opt_nouid32: 1268 set_opt(sbi->s_mount_opt, NO_UID32); 1269 break; 1270 case Opt_debug: 1271 set_opt(sbi->s_mount_opt, DEBUG); 1272 break; 1273 case Opt_oldalloc: 1274 set_opt(sbi->s_mount_opt, OLDALLOC); 1275 break; 1276 case Opt_orlov: 1277 clear_opt(sbi->s_mount_opt, OLDALLOC); 1278 break; 1279 #ifdef CONFIG_EXT4_FS_XATTR 1280 case Opt_user_xattr: 1281 set_opt(sbi->s_mount_opt, XATTR_USER); 1282 break; 1283 case Opt_nouser_xattr: 1284 clear_opt(sbi->s_mount_opt, XATTR_USER); 1285 break; 1286 #else 1287 case Opt_user_xattr: 1288 case Opt_nouser_xattr: 1289 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1290 break; 1291 #endif 1292 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1293 case Opt_acl: 1294 set_opt(sbi->s_mount_opt, POSIX_ACL); 1295 break; 1296 case Opt_noacl: 1297 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1298 break; 1299 #else 1300 case Opt_acl: 1301 case Opt_noacl: 1302 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1303 break; 1304 #endif 1305 case Opt_journal_update: 1306 /* @@@ FIXME */ 1307 /* Eventually we will want to be able to create 1308 a journal file here. For now, only allow the 1309 user to specify an existing inode to be the 1310 journal file. */ 1311 if (is_remount) { 1312 ext4_msg(sb, KERN_ERR, 1313 "Cannot specify journal on remount"); 1314 return 0; 1315 } 1316 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1317 break; 1318 case Opt_journal_dev: 1319 if (is_remount) { 1320 ext4_msg(sb, KERN_ERR, 1321 "Cannot specify journal on remount"); 1322 return 0; 1323 } 1324 if (match_int(&args[0], &option)) 1325 return 0; 1326 *journal_devnum = option; 1327 break; 1328 case Opt_journal_checksum: 1329 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1330 break; 1331 case Opt_journal_async_commit: 1332 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1333 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1334 break; 1335 case Opt_noload: 1336 set_opt(sbi->s_mount_opt, NOLOAD); 1337 break; 1338 case Opt_commit: 1339 if (match_int(&args[0], &option)) 1340 return 0; 1341 if (option < 0) 1342 return 0; 1343 if (option == 0) 1344 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1345 sbi->s_commit_interval = HZ * option; 1346 break; 1347 case Opt_max_batch_time: 1348 if (match_int(&args[0], &option)) 1349 return 0; 1350 if (option < 0) 1351 return 0; 1352 if (option == 0) 1353 option = EXT4_DEF_MAX_BATCH_TIME; 1354 sbi->s_max_batch_time = option; 1355 break; 1356 case Opt_min_batch_time: 1357 if (match_int(&args[0], &option)) 1358 return 0; 1359 if (option < 0) 1360 return 0; 1361 sbi->s_min_batch_time = option; 1362 break; 1363 case Opt_data_journal: 1364 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1365 goto datacheck; 1366 case Opt_data_ordered: 1367 data_opt = EXT4_MOUNT_ORDERED_DATA; 1368 goto datacheck; 1369 case Opt_data_writeback: 1370 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1371 datacheck: 1372 if (is_remount) { 1373 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1374 != data_opt) { 1375 ext4_msg(sb, KERN_ERR, 1376 "Cannot change data mode on remount"); 1377 return 0; 1378 } 1379 } else { 1380 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1381 sbi->s_mount_opt |= data_opt; 1382 } 1383 break; 1384 case Opt_data_err_abort: 1385 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1386 break; 1387 case Opt_data_err_ignore: 1388 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1389 break; 1390 #ifdef CONFIG_QUOTA 1391 case Opt_usrjquota: 1392 qtype = USRQUOTA; 1393 goto set_qf_name; 1394 case Opt_grpjquota: 1395 qtype = GRPQUOTA; 1396 set_qf_name: 1397 if (sb_any_quota_loaded(sb) && 1398 !sbi->s_qf_names[qtype]) { 1399 ext4_msg(sb, KERN_ERR, 1400 "Cannot change journaled " 1401 "quota options when quota turned on"); 1402 return 0; 1403 } 1404 qname = match_strdup(&args[0]); 1405 if (!qname) { 1406 ext4_msg(sb, KERN_ERR, 1407 "Not enough memory for " 1408 "storing quotafile name"); 1409 return 0; 1410 } 1411 if (sbi->s_qf_names[qtype] && 1412 strcmp(sbi->s_qf_names[qtype], qname)) { 1413 ext4_msg(sb, KERN_ERR, 1414 "%s quota file already " 1415 "specified", QTYPE2NAME(qtype)); 1416 kfree(qname); 1417 return 0; 1418 } 1419 sbi->s_qf_names[qtype] = qname; 1420 if (strchr(sbi->s_qf_names[qtype], '/')) { 1421 ext4_msg(sb, KERN_ERR, 1422 "quotafile must be on " 1423 "filesystem root"); 1424 kfree(sbi->s_qf_names[qtype]); 1425 sbi->s_qf_names[qtype] = NULL; 1426 return 0; 1427 } 1428 set_opt(sbi->s_mount_opt, QUOTA); 1429 break; 1430 case Opt_offusrjquota: 1431 qtype = USRQUOTA; 1432 goto clear_qf_name; 1433 case Opt_offgrpjquota: 1434 qtype = GRPQUOTA; 1435 clear_qf_name: 1436 if (sb_any_quota_loaded(sb) && 1437 sbi->s_qf_names[qtype]) { 1438 ext4_msg(sb, KERN_ERR, "Cannot change " 1439 "journaled quota options when " 1440 "quota turned on"); 1441 return 0; 1442 } 1443 /* 1444 * The space will be released later when all options 1445 * are confirmed to be correct 1446 */ 1447 sbi->s_qf_names[qtype] = NULL; 1448 break; 1449 case Opt_jqfmt_vfsold: 1450 qfmt = QFMT_VFS_OLD; 1451 goto set_qf_format; 1452 case Opt_jqfmt_vfsv0: 1453 qfmt = QFMT_VFS_V0; 1454 goto set_qf_format; 1455 case Opt_jqfmt_vfsv1: 1456 qfmt = QFMT_VFS_V1; 1457 set_qf_format: 1458 if (sb_any_quota_loaded(sb) && 1459 sbi->s_jquota_fmt != qfmt) { 1460 ext4_msg(sb, KERN_ERR, "Cannot change " 1461 "journaled quota options when " 1462 "quota turned on"); 1463 return 0; 1464 } 1465 sbi->s_jquota_fmt = qfmt; 1466 break; 1467 case Opt_quota: 1468 case Opt_usrquota: 1469 set_opt(sbi->s_mount_opt, QUOTA); 1470 set_opt(sbi->s_mount_opt, USRQUOTA); 1471 break; 1472 case Opt_grpquota: 1473 set_opt(sbi->s_mount_opt, QUOTA); 1474 set_opt(sbi->s_mount_opt, GRPQUOTA); 1475 break; 1476 case Opt_noquota: 1477 if (sb_any_quota_loaded(sb)) { 1478 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1479 "options when quota turned on"); 1480 return 0; 1481 } 1482 clear_opt(sbi->s_mount_opt, QUOTA); 1483 clear_opt(sbi->s_mount_opt, USRQUOTA); 1484 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1485 break; 1486 #else 1487 case Opt_quota: 1488 case Opt_usrquota: 1489 case Opt_grpquota: 1490 ext4_msg(sb, KERN_ERR, 1491 "quota options not supported"); 1492 break; 1493 case Opt_usrjquota: 1494 case Opt_grpjquota: 1495 case Opt_offusrjquota: 1496 case Opt_offgrpjquota: 1497 case Opt_jqfmt_vfsold: 1498 case Opt_jqfmt_vfsv0: 1499 case Opt_jqfmt_vfsv1: 1500 ext4_msg(sb, KERN_ERR, 1501 "journaled quota options not supported"); 1502 break; 1503 case Opt_noquota: 1504 break; 1505 #endif 1506 case Opt_abort: 1507 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1508 break; 1509 case Opt_nobarrier: 1510 clear_opt(sbi->s_mount_opt, BARRIER); 1511 break; 1512 case Opt_barrier: 1513 if (match_int(&args[0], &option)) { 1514 set_opt(sbi->s_mount_opt, BARRIER); 1515 break; 1516 } 1517 if (option) 1518 set_opt(sbi->s_mount_opt, BARRIER); 1519 else 1520 clear_opt(sbi->s_mount_opt, BARRIER); 1521 break; 1522 case Opt_ignore: 1523 break; 1524 case Opt_resize: 1525 if (!is_remount) { 1526 ext4_msg(sb, KERN_ERR, 1527 "resize option only available " 1528 "for remount"); 1529 return 0; 1530 } 1531 if (match_int(&args[0], &option) != 0) 1532 return 0; 1533 *n_blocks_count = option; 1534 break; 1535 case Opt_nobh: 1536 set_opt(sbi->s_mount_opt, NOBH); 1537 break; 1538 case Opt_bh: 1539 clear_opt(sbi->s_mount_opt, NOBH); 1540 break; 1541 case Opt_i_version: 1542 set_opt(sbi->s_mount_opt, I_VERSION); 1543 sb->s_flags |= MS_I_VERSION; 1544 break; 1545 case Opt_nodelalloc: 1546 clear_opt(sbi->s_mount_opt, DELALLOC); 1547 break; 1548 case Opt_stripe: 1549 if (match_int(&args[0], &option)) 1550 return 0; 1551 if (option < 0) 1552 return 0; 1553 sbi->s_stripe = option; 1554 break; 1555 case Opt_delalloc: 1556 set_opt(sbi->s_mount_opt, DELALLOC); 1557 break; 1558 case Opt_block_validity: 1559 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1560 break; 1561 case Opt_noblock_validity: 1562 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1563 break; 1564 case Opt_inode_readahead_blks: 1565 if (match_int(&args[0], &option)) 1566 return 0; 1567 if (option < 0 || option > (1 << 30)) 1568 return 0; 1569 if (!is_power_of_2(option)) { 1570 ext4_msg(sb, KERN_ERR, 1571 "EXT4-fs: inode_readahead_blks" 1572 " must be a power of 2"); 1573 return 0; 1574 } 1575 sbi->s_inode_readahead_blks = option; 1576 break; 1577 case Opt_journal_ioprio: 1578 if (match_int(&args[0], &option)) 1579 return 0; 1580 if (option < 0 || option > 7) 1581 break; 1582 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1583 option); 1584 break; 1585 case Opt_noauto_da_alloc: 1586 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1587 break; 1588 case Opt_auto_da_alloc: 1589 if (match_int(&args[0], &option)) { 1590 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1591 break; 1592 } 1593 if (option) 1594 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1595 else 1596 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1597 break; 1598 case Opt_discard: 1599 set_opt(sbi->s_mount_opt, DISCARD); 1600 break; 1601 case Opt_nodiscard: 1602 clear_opt(sbi->s_mount_opt, DISCARD); 1603 break; 1604 default: 1605 ext4_msg(sb, KERN_ERR, 1606 "Unrecognized mount option \"%s\" " 1607 "or missing value", p); 1608 return 0; 1609 } 1610 } 1611 #ifdef CONFIG_QUOTA 1612 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1613 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1614 sbi->s_qf_names[USRQUOTA]) 1615 clear_opt(sbi->s_mount_opt, USRQUOTA); 1616 1617 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1618 sbi->s_qf_names[GRPQUOTA]) 1619 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1620 1621 if ((sbi->s_qf_names[USRQUOTA] && 1622 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1623 (sbi->s_qf_names[GRPQUOTA] && 1624 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1625 ext4_msg(sb, KERN_ERR, "old and new quota " 1626 "format mixing"); 1627 return 0; 1628 } 1629 1630 if (!sbi->s_jquota_fmt) { 1631 ext4_msg(sb, KERN_ERR, "journaled quota format " 1632 "not specified"); 1633 return 0; 1634 } 1635 } else { 1636 if (sbi->s_jquota_fmt) { 1637 ext4_msg(sb, KERN_ERR, "journaled quota format " 1638 "specified with no journaling " 1639 "enabled"); 1640 return 0; 1641 } 1642 } 1643 #endif 1644 return 1; 1645 } 1646 1647 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1648 int read_only) 1649 { 1650 struct ext4_sb_info *sbi = EXT4_SB(sb); 1651 int res = 0; 1652 1653 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1654 ext4_msg(sb, KERN_ERR, "revision level too high, " 1655 "forcing read-only mode"); 1656 res = MS_RDONLY; 1657 } 1658 if (read_only) 1659 return res; 1660 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1661 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1662 "running e2fsck is recommended"); 1663 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1664 ext4_msg(sb, KERN_WARNING, 1665 "warning: mounting fs with errors, " 1666 "running e2fsck is recommended"); 1667 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1668 le16_to_cpu(es->s_mnt_count) >= 1669 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1670 ext4_msg(sb, KERN_WARNING, 1671 "warning: maximal mount count reached, " 1672 "running e2fsck is recommended"); 1673 else if (le32_to_cpu(es->s_checkinterval) && 1674 (le32_to_cpu(es->s_lastcheck) + 1675 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1676 ext4_msg(sb, KERN_WARNING, 1677 "warning: checktime reached, " 1678 "running e2fsck is recommended"); 1679 if (!sbi->s_journal) 1680 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1681 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1682 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1683 le16_add_cpu(&es->s_mnt_count, 1); 1684 es->s_mtime = cpu_to_le32(get_seconds()); 1685 ext4_update_dynamic_rev(sb); 1686 if (sbi->s_journal) 1687 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1688 1689 ext4_commit_super(sb, 1); 1690 if (test_opt(sb, DEBUG)) 1691 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1692 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1693 sb->s_blocksize, 1694 sbi->s_groups_count, 1695 EXT4_BLOCKS_PER_GROUP(sb), 1696 EXT4_INODES_PER_GROUP(sb), 1697 sbi->s_mount_opt); 1698 1699 return res; 1700 } 1701 1702 static int ext4_fill_flex_info(struct super_block *sb) 1703 { 1704 struct ext4_sb_info *sbi = EXT4_SB(sb); 1705 struct ext4_group_desc *gdp = NULL; 1706 ext4_group_t flex_group_count; 1707 ext4_group_t flex_group; 1708 int groups_per_flex = 0; 1709 size_t size; 1710 int i; 1711 1712 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1713 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1714 1715 if (groups_per_flex < 2) { 1716 sbi->s_log_groups_per_flex = 0; 1717 return 1; 1718 } 1719 1720 /* We allocate both existing and potentially added groups */ 1721 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1722 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1723 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1724 size = flex_group_count * sizeof(struct flex_groups); 1725 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1726 if (sbi->s_flex_groups == NULL) { 1727 sbi->s_flex_groups = vmalloc(size); 1728 if (sbi->s_flex_groups) 1729 memset(sbi->s_flex_groups, 0, size); 1730 } 1731 if (sbi->s_flex_groups == NULL) { 1732 ext4_msg(sb, KERN_ERR, "not enough memory for " 1733 "%u flex groups", flex_group_count); 1734 goto failed; 1735 } 1736 1737 for (i = 0; i < sbi->s_groups_count; i++) { 1738 gdp = ext4_get_group_desc(sb, i, NULL); 1739 1740 flex_group = ext4_flex_group(sbi, i); 1741 atomic_add(ext4_free_inodes_count(sb, gdp), 1742 &sbi->s_flex_groups[flex_group].free_inodes); 1743 atomic_add(ext4_free_blks_count(sb, gdp), 1744 &sbi->s_flex_groups[flex_group].free_blocks); 1745 atomic_add(ext4_used_dirs_count(sb, gdp), 1746 &sbi->s_flex_groups[flex_group].used_dirs); 1747 } 1748 1749 return 1; 1750 failed: 1751 return 0; 1752 } 1753 1754 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1755 struct ext4_group_desc *gdp) 1756 { 1757 __u16 crc = 0; 1758 1759 if (sbi->s_es->s_feature_ro_compat & 1760 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1761 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1762 __le32 le_group = cpu_to_le32(block_group); 1763 1764 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1765 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1766 crc = crc16(crc, (__u8 *)gdp, offset); 1767 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1768 /* for checksum of struct ext4_group_desc do the rest...*/ 1769 if ((sbi->s_es->s_feature_incompat & 1770 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1771 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1772 crc = crc16(crc, (__u8 *)gdp + offset, 1773 le16_to_cpu(sbi->s_es->s_desc_size) - 1774 offset); 1775 } 1776 1777 return cpu_to_le16(crc); 1778 } 1779 1780 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1781 struct ext4_group_desc *gdp) 1782 { 1783 if ((sbi->s_es->s_feature_ro_compat & 1784 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1785 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1786 return 0; 1787 1788 return 1; 1789 } 1790 1791 /* Called at mount-time, super-block is locked */ 1792 static int ext4_check_descriptors(struct super_block *sb) 1793 { 1794 struct ext4_sb_info *sbi = EXT4_SB(sb); 1795 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1796 ext4_fsblk_t last_block; 1797 ext4_fsblk_t block_bitmap; 1798 ext4_fsblk_t inode_bitmap; 1799 ext4_fsblk_t inode_table; 1800 int flexbg_flag = 0; 1801 ext4_group_t i; 1802 1803 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1804 flexbg_flag = 1; 1805 1806 ext4_debug("Checking group descriptors"); 1807 1808 for (i = 0; i < sbi->s_groups_count; i++) { 1809 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1810 1811 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1812 last_block = ext4_blocks_count(sbi->s_es) - 1; 1813 else 1814 last_block = first_block + 1815 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1816 1817 block_bitmap = ext4_block_bitmap(sb, gdp); 1818 if (block_bitmap < first_block || block_bitmap > last_block) { 1819 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1820 "Block bitmap for group %u not in group " 1821 "(block %llu)!", i, block_bitmap); 1822 return 0; 1823 } 1824 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1825 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1826 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1827 "Inode bitmap for group %u not in group " 1828 "(block %llu)!", i, inode_bitmap); 1829 return 0; 1830 } 1831 inode_table = ext4_inode_table(sb, gdp); 1832 if (inode_table < first_block || 1833 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1834 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1835 "Inode table for group %u not in group " 1836 "(block %llu)!", i, inode_table); 1837 return 0; 1838 } 1839 ext4_lock_group(sb, i); 1840 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1841 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1842 "Checksum for group %u failed (%u!=%u)", 1843 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1844 gdp)), le16_to_cpu(gdp->bg_checksum)); 1845 if (!(sb->s_flags & MS_RDONLY)) { 1846 ext4_unlock_group(sb, i); 1847 return 0; 1848 } 1849 } 1850 ext4_unlock_group(sb, i); 1851 if (!flexbg_flag) 1852 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1853 } 1854 1855 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1856 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1857 return 1; 1858 } 1859 1860 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1861 * the superblock) which were deleted from all directories, but held open by 1862 * a process at the time of a crash. We walk the list and try to delete these 1863 * inodes at recovery time (only with a read-write filesystem). 1864 * 1865 * In order to keep the orphan inode chain consistent during traversal (in 1866 * case of crash during recovery), we link each inode into the superblock 1867 * orphan list_head and handle it the same way as an inode deletion during 1868 * normal operation (which journals the operations for us). 1869 * 1870 * We only do an iget() and an iput() on each inode, which is very safe if we 1871 * accidentally point at an in-use or already deleted inode. The worst that 1872 * can happen in this case is that we get a "bit already cleared" message from 1873 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1874 * e2fsck was run on this filesystem, and it must have already done the orphan 1875 * inode cleanup for us, so we can safely abort without any further action. 1876 */ 1877 static void ext4_orphan_cleanup(struct super_block *sb, 1878 struct ext4_super_block *es) 1879 { 1880 unsigned int s_flags = sb->s_flags; 1881 int nr_orphans = 0, nr_truncates = 0; 1882 #ifdef CONFIG_QUOTA 1883 int i; 1884 #endif 1885 if (!es->s_last_orphan) { 1886 jbd_debug(4, "no orphan inodes to clean up\n"); 1887 return; 1888 } 1889 1890 if (bdev_read_only(sb->s_bdev)) { 1891 ext4_msg(sb, KERN_ERR, "write access " 1892 "unavailable, skipping orphan cleanup"); 1893 return; 1894 } 1895 1896 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1897 if (es->s_last_orphan) 1898 jbd_debug(1, "Errors on filesystem, " 1899 "clearing orphan list.\n"); 1900 es->s_last_orphan = 0; 1901 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1902 return; 1903 } 1904 1905 if (s_flags & MS_RDONLY) { 1906 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1907 sb->s_flags &= ~MS_RDONLY; 1908 } 1909 #ifdef CONFIG_QUOTA 1910 /* Needed for iput() to work correctly and not trash data */ 1911 sb->s_flags |= MS_ACTIVE; 1912 /* Turn on quotas so that they are updated correctly */ 1913 for (i = 0; i < MAXQUOTAS; i++) { 1914 if (EXT4_SB(sb)->s_qf_names[i]) { 1915 int ret = ext4_quota_on_mount(sb, i); 1916 if (ret < 0) 1917 ext4_msg(sb, KERN_ERR, 1918 "Cannot turn on journaled " 1919 "quota: error %d", ret); 1920 } 1921 } 1922 #endif 1923 1924 while (es->s_last_orphan) { 1925 struct inode *inode; 1926 1927 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1928 if (IS_ERR(inode)) { 1929 es->s_last_orphan = 0; 1930 break; 1931 } 1932 1933 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1934 vfs_dq_init(inode); 1935 if (inode->i_nlink) { 1936 ext4_msg(sb, KERN_DEBUG, 1937 "%s: truncating inode %lu to %lld bytes", 1938 __func__, inode->i_ino, inode->i_size); 1939 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1940 inode->i_ino, inode->i_size); 1941 ext4_truncate(inode); 1942 nr_truncates++; 1943 } else { 1944 ext4_msg(sb, KERN_DEBUG, 1945 "%s: deleting unreferenced inode %lu", 1946 __func__, inode->i_ino); 1947 jbd_debug(2, "deleting unreferenced inode %lu\n", 1948 inode->i_ino); 1949 nr_orphans++; 1950 } 1951 iput(inode); /* The delete magic happens here! */ 1952 } 1953 1954 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1955 1956 if (nr_orphans) 1957 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1958 PLURAL(nr_orphans)); 1959 if (nr_truncates) 1960 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1961 PLURAL(nr_truncates)); 1962 #ifdef CONFIG_QUOTA 1963 /* Turn quotas off */ 1964 for (i = 0; i < MAXQUOTAS; i++) { 1965 if (sb_dqopt(sb)->files[i]) 1966 vfs_quota_off(sb, i, 0); 1967 } 1968 #endif 1969 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1970 } 1971 1972 /* 1973 * Maximal extent format file size. 1974 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1975 * extent format containers, within a sector_t, and within i_blocks 1976 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1977 * so that won't be a limiting factor. 1978 * 1979 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1980 */ 1981 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1982 { 1983 loff_t res; 1984 loff_t upper_limit = MAX_LFS_FILESIZE; 1985 1986 /* small i_blocks in vfs inode? */ 1987 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1988 /* 1989 * CONFIG_LBDAF is not enabled implies the inode 1990 * i_block represent total blocks in 512 bytes 1991 * 32 == size of vfs inode i_blocks * 8 1992 */ 1993 upper_limit = (1LL << 32) - 1; 1994 1995 /* total blocks in file system block size */ 1996 upper_limit >>= (blkbits - 9); 1997 upper_limit <<= blkbits; 1998 } 1999 2000 /* 32-bit extent-start container, ee_block */ 2001 res = 1LL << 32; 2002 res <<= blkbits; 2003 res -= 1; 2004 2005 /* Sanity check against vm- & vfs- imposed limits */ 2006 if (res > upper_limit) 2007 res = upper_limit; 2008 2009 return res; 2010 } 2011 2012 /* 2013 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2014 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2015 * We need to be 1 filesystem block less than the 2^48 sector limit. 2016 */ 2017 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2018 { 2019 loff_t res = EXT4_NDIR_BLOCKS; 2020 int meta_blocks; 2021 loff_t upper_limit; 2022 /* This is calculated to be the largest file size for a dense, block 2023 * mapped file such that the file's total number of 512-byte sectors, 2024 * including data and all indirect blocks, does not exceed (2^48 - 1). 2025 * 2026 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2027 * number of 512-byte sectors of the file. 2028 */ 2029 2030 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2031 /* 2032 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2033 * the inode i_block field represents total file blocks in 2034 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2035 */ 2036 upper_limit = (1LL << 32) - 1; 2037 2038 /* total blocks in file system block size */ 2039 upper_limit >>= (bits - 9); 2040 2041 } else { 2042 /* 2043 * We use 48 bit ext4_inode i_blocks 2044 * With EXT4_HUGE_FILE_FL set the i_blocks 2045 * represent total number of blocks in 2046 * file system block size 2047 */ 2048 upper_limit = (1LL << 48) - 1; 2049 2050 } 2051 2052 /* indirect blocks */ 2053 meta_blocks = 1; 2054 /* double indirect blocks */ 2055 meta_blocks += 1 + (1LL << (bits-2)); 2056 /* tripple indirect blocks */ 2057 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2058 2059 upper_limit -= meta_blocks; 2060 upper_limit <<= bits; 2061 2062 res += 1LL << (bits-2); 2063 res += 1LL << (2*(bits-2)); 2064 res += 1LL << (3*(bits-2)); 2065 res <<= bits; 2066 if (res > upper_limit) 2067 res = upper_limit; 2068 2069 if (res > MAX_LFS_FILESIZE) 2070 res = MAX_LFS_FILESIZE; 2071 2072 return res; 2073 } 2074 2075 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2076 ext4_fsblk_t logical_sb_block, int nr) 2077 { 2078 struct ext4_sb_info *sbi = EXT4_SB(sb); 2079 ext4_group_t bg, first_meta_bg; 2080 int has_super = 0; 2081 2082 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2083 2084 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2085 nr < first_meta_bg) 2086 return logical_sb_block + nr + 1; 2087 bg = sbi->s_desc_per_block * nr; 2088 if (ext4_bg_has_super(sb, bg)) 2089 has_super = 1; 2090 2091 return (has_super + ext4_group_first_block_no(sb, bg)); 2092 } 2093 2094 /** 2095 * ext4_get_stripe_size: Get the stripe size. 2096 * @sbi: In memory super block info 2097 * 2098 * If we have specified it via mount option, then 2099 * use the mount option value. If the value specified at mount time is 2100 * greater than the blocks per group use the super block value. 2101 * If the super block value is greater than blocks per group return 0. 2102 * Allocator needs it be less than blocks per group. 2103 * 2104 */ 2105 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2106 { 2107 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2108 unsigned long stripe_width = 2109 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2110 2111 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2112 return sbi->s_stripe; 2113 2114 if (stripe_width <= sbi->s_blocks_per_group) 2115 return stripe_width; 2116 2117 if (stride <= sbi->s_blocks_per_group) 2118 return stride; 2119 2120 return 0; 2121 } 2122 2123 /* sysfs supprt */ 2124 2125 struct ext4_attr { 2126 struct attribute attr; 2127 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2128 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2129 const char *, size_t); 2130 int offset; 2131 }; 2132 2133 static int parse_strtoul(const char *buf, 2134 unsigned long max, unsigned long *value) 2135 { 2136 char *endp; 2137 2138 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2139 endp = skip_spaces(endp); 2140 if (*endp || *value > max) 2141 return -EINVAL; 2142 2143 return 0; 2144 } 2145 2146 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2147 struct ext4_sb_info *sbi, 2148 char *buf) 2149 { 2150 return snprintf(buf, PAGE_SIZE, "%llu\n", 2151 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2152 } 2153 2154 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2155 struct ext4_sb_info *sbi, char *buf) 2156 { 2157 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2158 2159 return snprintf(buf, PAGE_SIZE, "%lu\n", 2160 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2161 sbi->s_sectors_written_start) >> 1); 2162 } 2163 2164 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2165 struct ext4_sb_info *sbi, char *buf) 2166 { 2167 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2168 2169 return snprintf(buf, PAGE_SIZE, "%llu\n", 2170 (unsigned long long)(sbi->s_kbytes_written + 2171 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2172 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2173 } 2174 2175 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2176 struct ext4_sb_info *sbi, 2177 const char *buf, size_t count) 2178 { 2179 unsigned long t; 2180 2181 if (parse_strtoul(buf, 0x40000000, &t)) 2182 return -EINVAL; 2183 2184 if (!is_power_of_2(t)) 2185 return -EINVAL; 2186 2187 sbi->s_inode_readahead_blks = t; 2188 return count; 2189 } 2190 2191 static ssize_t sbi_ui_show(struct ext4_attr *a, 2192 struct ext4_sb_info *sbi, char *buf) 2193 { 2194 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2195 2196 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2197 } 2198 2199 static ssize_t sbi_ui_store(struct ext4_attr *a, 2200 struct ext4_sb_info *sbi, 2201 const char *buf, size_t count) 2202 { 2203 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2204 unsigned long t; 2205 2206 if (parse_strtoul(buf, 0xffffffff, &t)) 2207 return -EINVAL; 2208 *ui = t; 2209 return count; 2210 } 2211 2212 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2213 static struct ext4_attr ext4_attr_##_name = { \ 2214 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2215 .show = _show, \ 2216 .store = _store, \ 2217 .offset = offsetof(struct ext4_sb_info, _elname), \ 2218 } 2219 #define EXT4_ATTR(name, mode, show, store) \ 2220 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2221 2222 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2223 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2224 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2225 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2226 #define ATTR_LIST(name) &ext4_attr_##name.attr 2227 2228 EXT4_RO_ATTR(delayed_allocation_blocks); 2229 EXT4_RO_ATTR(session_write_kbytes); 2230 EXT4_RO_ATTR(lifetime_write_kbytes); 2231 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2232 inode_readahead_blks_store, s_inode_readahead_blks); 2233 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2234 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2235 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2236 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2237 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2238 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2239 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2240 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2241 2242 static struct attribute *ext4_attrs[] = { 2243 ATTR_LIST(delayed_allocation_blocks), 2244 ATTR_LIST(session_write_kbytes), 2245 ATTR_LIST(lifetime_write_kbytes), 2246 ATTR_LIST(inode_readahead_blks), 2247 ATTR_LIST(inode_goal), 2248 ATTR_LIST(mb_stats), 2249 ATTR_LIST(mb_max_to_scan), 2250 ATTR_LIST(mb_min_to_scan), 2251 ATTR_LIST(mb_order2_req), 2252 ATTR_LIST(mb_stream_req), 2253 ATTR_LIST(mb_group_prealloc), 2254 ATTR_LIST(max_writeback_mb_bump), 2255 NULL, 2256 }; 2257 2258 static ssize_t ext4_attr_show(struct kobject *kobj, 2259 struct attribute *attr, char *buf) 2260 { 2261 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2262 s_kobj); 2263 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2264 2265 return a->show ? a->show(a, sbi, buf) : 0; 2266 } 2267 2268 static ssize_t ext4_attr_store(struct kobject *kobj, 2269 struct attribute *attr, 2270 const char *buf, size_t len) 2271 { 2272 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2273 s_kobj); 2274 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2275 2276 return a->store ? a->store(a, sbi, buf, len) : 0; 2277 } 2278 2279 static void ext4_sb_release(struct kobject *kobj) 2280 { 2281 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2282 s_kobj); 2283 complete(&sbi->s_kobj_unregister); 2284 } 2285 2286 2287 static struct sysfs_ops ext4_attr_ops = { 2288 .show = ext4_attr_show, 2289 .store = ext4_attr_store, 2290 }; 2291 2292 static struct kobj_type ext4_ktype = { 2293 .default_attrs = ext4_attrs, 2294 .sysfs_ops = &ext4_attr_ops, 2295 .release = ext4_sb_release, 2296 }; 2297 2298 /* 2299 * Check whether this filesystem can be mounted based on 2300 * the features present and the RDONLY/RDWR mount requested. 2301 * Returns 1 if this filesystem can be mounted as requested, 2302 * 0 if it cannot be. 2303 */ 2304 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2305 { 2306 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2307 ext4_msg(sb, KERN_ERR, 2308 "Couldn't mount because of " 2309 "unsupported optional features (%x)", 2310 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2311 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2312 return 0; 2313 } 2314 2315 if (readonly) 2316 return 1; 2317 2318 /* Check that feature set is OK for a read-write mount */ 2319 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2320 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2321 "unsupported optional features (%x)", 2322 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2323 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2324 return 0; 2325 } 2326 /* 2327 * Large file size enabled file system can only be mounted 2328 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2329 */ 2330 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2331 if (sizeof(blkcnt_t) < sizeof(u64)) { 2332 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2333 "cannot be mounted RDWR without " 2334 "CONFIG_LBDAF"); 2335 return 0; 2336 } 2337 } 2338 return 1; 2339 } 2340 2341 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2342 __releases(kernel_lock) 2343 __acquires(kernel_lock) 2344 { 2345 struct buffer_head *bh; 2346 struct ext4_super_block *es = NULL; 2347 struct ext4_sb_info *sbi; 2348 ext4_fsblk_t block; 2349 ext4_fsblk_t sb_block = get_sb_block(&data); 2350 ext4_fsblk_t logical_sb_block; 2351 unsigned long offset = 0; 2352 unsigned long journal_devnum = 0; 2353 unsigned long def_mount_opts; 2354 struct inode *root; 2355 char *cp; 2356 const char *descr; 2357 int ret = -EINVAL; 2358 int blocksize; 2359 unsigned int db_count; 2360 unsigned int i; 2361 int needs_recovery, has_huge_files; 2362 __u64 blocks_count; 2363 int err; 2364 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2365 2366 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2367 if (!sbi) 2368 return -ENOMEM; 2369 2370 sbi->s_blockgroup_lock = 2371 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2372 if (!sbi->s_blockgroup_lock) { 2373 kfree(sbi); 2374 return -ENOMEM; 2375 } 2376 sb->s_fs_info = sbi; 2377 sbi->s_mount_opt = 0; 2378 sbi->s_resuid = EXT4_DEF_RESUID; 2379 sbi->s_resgid = EXT4_DEF_RESGID; 2380 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2381 sbi->s_sb_block = sb_block; 2382 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2383 sectors[1]); 2384 2385 unlock_kernel(); 2386 2387 /* Cleanup superblock name */ 2388 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2389 *cp = '!'; 2390 2391 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2392 if (!blocksize) { 2393 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2394 goto out_fail; 2395 } 2396 2397 /* 2398 * The ext4 superblock will not be buffer aligned for other than 1kB 2399 * block sizes. We need to calculate the offset from buffer start. 2400 */ 2401 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2402 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2403 offset = do_div(logical_sb_block, blocksize); 2404 } else { 2405 logical_sb_block = sb_block; 2406 } 2407 2408 if (!(bh = sb_bread(sb, logical_sb_block))) { 2409 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2410 goto out_fail; 2411 } 2412 /* 2413 * Note: s_es must be initialized as soon as possible because 2414 * some ext4 macro-instructions depend on its value 2415 */ 2416 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2417 sbi->s_es = es; 2418 sb->s_magic = le16_to_cpu(es->s_magic); 2419 if (sb->s_magic != EXT4_SUPER_MAGIC) 2420 goto cantfind_ext4; 2421 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2422 2423 /* Set defaults before we parse the mount options */ 2424 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2425 if (def_mount_opts & EXT4_DEFM_DEBUG) 2426 set_opt(sbi->s_mount_opt, DEBUG); 2427 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2428 set_opt(sbi->s_mount_opt, GRPID); 2429 if (def_mount_opts & EXT4_DEFM_UID16) 2430 set_opt(sbi->s_mount_opt, NO_UID32); 2431 #ifdef CONFIG_EXT4_FS_XATTR 2432 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2433 set_opt(sbi->s_mount_opt, XATTR_USER); 2434 #endif 2435 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2436 if (def_mount_opts & EXT4_DEFM_ACL) 2437 set_opt(sbi->s_mount_opt, POSIX_ACL); 2438 #endif 2439 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2440 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2441 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2442 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2443 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2444 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2445 2446 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2447 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2448 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2449 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2450 else 2451 set_opt(sbi->s_mount_opt, ERRORS_RO); 2452 2453 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2454 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2455 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2456 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2457 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2458 2459 set_opt(sbi->s_mount_opt, BARRIER); 2460 2461 /* 2462 * enable delayed allocation by default 2463 * Use -o nodelalloc to turn it off 2464 */ 2465 set_opt(sbi->s_mount_opt, DELALLOC); 2466 2467 if (!parse_options((char *) data, sb, &journal_devnum, 2468 &journal_ioprio, NULL, 0)) 2469 goto failed_mount; 2470 2471 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2472 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2473 2474 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2475 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2476 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2477 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2478 ext4_msg(sb, KERN_WARNING, 2479 "feature flags set on rev 0 fs, " 2480 "running e2fsck is recommended"); 2481 2482 /* 2483 * Check feature flags regardless of the revision level, since we 2484 * previously didn't change the revision level when setting the flags, 2485 * so there is a chance incompat flags are set on a rev 0 filesystem. 2486 */ 2487 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 2488 goto failed_mount; 2489 2490 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2491 2492 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2493 blocksize > EXT4_MAX_BLOCK_SIZE) { 2494 ext4_msg(sb, KERN_ERR, 2495 "Unsupported filesystem blocksize %d", blocksize); 2496 goto failed_mount; 2497 } 2498 2499 if (sb->s_blocksize != blocksize) { 2500 /* Validate the filesystem blocksize */ 2501 if (!sb_set_blocksize(sb, blocksize)) { 2502 ext4_msg(sb, KERN_ERR, "bad block size %d", 2503 blocksize); 2504 goto failed_mount; 2505 } 2506 2507 brelse(bh); 2508 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2509 offset = do_div(logical_sb_block, blocksize); 2510 bh = sb_bread(sb, logical_sb_block); 2511 if (!bh) { 2512 ext4_msg(sb, KERN_ERR, 2513 "Can't read superblock on 2nd try"); 2514 goto failed_mount; 2515 } 2516 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2517 sbi->s_es = es; 2518 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2519 ext4_msg(sb, KERN_ERR, 2520 "Magic mismatch, very weird!"); 2521 goto failed_mount; 2522 } 2523 } 2524 2525 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2526 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2527 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2528 has_huge_files); 2529 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2530 2531 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2532 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2533 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2534 } else { 2535 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2536 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2537 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2538 (!is_power_of_2(sbi->s_inode_size)) || 2539 (sbi->s_inode_size > blocksize)) { 2540 ext4_msg(sb, KERN_ERR, 2541 "unsupported inode size: %d", 2542 sbi->s_inode_size); 2543 goto failed_mount; 2544 } 2545 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2546 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2547 } 2548 2549 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2550 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2551 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2552 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2553 !is_power_of_2(sbi->s_desc_size)) { 2554 ext4_msg(sb, KERN_ERR, 2555 "unsupported descriptor size %lu", 2556 sbi->s_desc_size); 2557 goto failed_mount; 2558 } 2559 } else 2560 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2561 2562 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2563 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2564 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2565 goto cantfind_ext4; 2566 2567 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2568 if (sbi->s_inodes_per_block == 0) 2569 goto cantfind_ext4; 2570 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2571 sbi->s_inodes_per_block; 2572 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2573 sbi->s_sbh = bh; 2574 sbi->s_mount_state = le16_to_cpu(es->s_state); 2575 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2576 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2577 2578 for (i = 0; i < 4; i++) 2579 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2580 sbi->s_def_hash_version = es->s_def_hash_version; 2581 i = le32_to_cpu(es->s_flags); 2582 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2583 sbi->s_hash_unsigned = 3; 2584 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2585 #ifdef __CHAR_UNSIGNED__ 2586 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2587 sbi->s_hash_unsigned = 3; 2588 #else 2589 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2590 #endif 2591 sb->s_dirt = 1; 2592 } 2593 2594 if (sbi->s_blocks_per_group > blocksize * 8) { 2595 ext4_msg(sb, KERN_ERR, 2596 "#blocks per group too big: %lu", 2597 sbi->s_blocks_per_group); 2598 goto failed_mount; 2599 } 2600 if (sbi->s_inodes_per_group > blocksize * 8) { 2601 ext4_msg(sb, KERN_ERR, 2602 "#inodes per group too big: %lu", 2603 sbi->s_inodes_per_group); 2604 goto failed_mount; 2605 } 2606 2607 /* 2608 * Test whether we have more sectors than will fit in sector_t, 2609 * and whether the max offset is addressable by the page cache. 2610 */ 2611 if ((ext4_blocks_count(es) > 2612 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) || 2613 (ext4_blocks_count(es) > 2614 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) { 2615 ext4_msg(sb, KERN_ERR, "filesystem" 2616 " too large to mount safely on this system"); 2617 if (sizeof(sector_t) < 8) 2618 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 2619 ret = -EFBIG; 2620 goto failed_mount; 2621 } 2622 2623 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2624 goto cantfind_ext4; 2625 2626 /* check blocks count against device size */ 2627 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2628 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2629 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2630 "exceeds size of device (%llu blocks)", 2631 ext4_blocks_count(es), blocks_count); 2632 goto failed_mount; 2633 } 2634 2635 /* 2636 * It makes no sense for the first data block to be beyond the end 2637 * of the filesystem. 2638 */ 2639 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2640 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2641 "block %u is beyond end of filesystem (%llu)", 2642 le32_to_cpu(es->s_first_data_block), 2643 ext4_blocks_count(es)); 2644 goto failed_mount; 2645 } 2646 blocks_count = (ext4_blocks_count(es) - 2647 le32_to_cpu(es->s_first_data_block) + 2648 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2649 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2650 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2651 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2652 "(block count %llu, first data block %u, " 2653 "blocks per group %lu)", sbi->s_groups_count, 2654 ext4_blocks_count(es), 2655 le32_to_cpu(es->s_first_data_block), 2656 EXT4_BLOCKS_PER_GROUP(sb)); 2657 goto failed_mount; 2658 } 2659 sbi->s_groups_count = blocks_count; 2660 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 2661 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 2662 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2663 EXT4_DESC_PER_BLOCK(sb); 2664 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2665 GFP_KERNEL); 2666 if (sbi->s_group_desc == NULL) { 2667 ext4_msg(sb, KERN_ERR, "not enough memory"); 2668 goto failed_mount; 2669 } 2670 2671 #ifdef CONFIG_PROC_FS 2672 if (ext4_proc_root) 2673 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2674 #endif 2675 2676 bgl_lock_init(sbi->s_blockgroup_lock); 2677 2678 for (i = 0; i < db_count; i++) { 2679 block = descriptor_loc(sb, logical_sb_block, i); 2680 sbi->s_group_desc[i] = sb_bread(sb, block); 2681 if (!sbi->s_group_desc[i]) { 2682 ext4_msg(sb, KERN_ERR, 2683 "can't read group descriptor %d", i); 2684 db_count = i; 2685 goto failed_mount2; 2686 } 2687 } 2688 if (!ext4_check_descriptors(sb)) { 2689 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2690 goto failed_mount2; 2691 } 2692 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2693 if (!ext4_fill_flex_info(sb)) { 2694 ext4_msg(sb, KERN_ERR, 2695 "unable to initialize " 2696 "flex_bg meta info!"); 2697 goto failed_mount2; 2698 } 2699 2700 sbi->s_gdb_count = db_count; 2701 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2702 spin_lock_init(&sbi->s_next_gen_lock); 2703 2704 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2705 ext4_count_free_blocks(sb)); 2706 if (!err) { 2707 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2708 ext4_count_free_inodes(sb)); 2709 } 2710 if (!err) { 2711 err = percpu_counter_init(&sbi->s_dirs_counter, 2712 ext4_count_dirs(sb)); 2713 } 2714 if (!err) { 2715 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2716 } 2717 if (err) { 2718 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2719 goto failed_mount3; 2720 } 2721 2722 sbi->s_stripe = ext4_get_stripe_size(sbi); 2723 sbi->s_max_writeback_mb_bump = 128; 2724 2725 /* 2726 * set up enough so that it can read an inode 2727 */ 2728 if (!test_opt(sb, NOLOAD) && 2729 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2730 sb->s_op = &ext4_sops; 2731 else 2732 sb->s_op = &ext4_nojournal_sops; 2733 sb->s_export_op = &ext4_export_ops; 2734 sb->s_xattr = ext4_xattr_handlers; 2735 #ifdef CONFIG_QUOTA 2736 sb->s_qcop = &ext4_qctl_operations; 2737 sb->dq_op = &ext4_quota_operations; 2738 #endif 2739 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2740 mutex_init(&sbi->s_orphan_lock); 2741 mutex_init(&sbi->s_resize_lock); 2742 2743 sb->s_root = NULL; 2744 2745 needs_recovery = (es->s_last_orphan != 0 || 2746 EXT4_HAS_INCOMPAT_FEATURE(sb, 2747 EXT4_FEATURE_INCOMPAT_RECOVER)); 2748 2749 /* 2750 * The first inode we look at is the journal inode. Don't try 2751 * root first: it may be modified in the journal! 2752 */ 2753 if (!test_opt(sb, NOLOAD) && 2754 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2755 if (ext4_load_journal(sb, es, journal_devnum)) 2756 goto failed_mount3; 2757 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2758 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2759 ext4_msg(sb, KERN_ERR, "required journal recovery " 2760 "suppressed and not mounted read-only"); 2761 goto failed_mount4; 2762 } else { 2763 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2764 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2765 sbi->s_journal = NULL; 2766 needs_recovery = 0; 2767 goto no_journal; 2768 } 2769 2770 if (ext4_blocks_count(es) > 0xffffffffULL && 2771 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2772 JBD2_FEATURE_INCOMPAT_64BIT)) { 2773 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2774 goto failed_mount4; 2775 } 2776 2777 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2778 jbd2_journal_set_features(sbi->s_journal, 2779 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2780 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2781 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2782 jbd2_journal_set_features(sbi->s_journal, 2783 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2784 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2785 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2786 } else { 2787 jbd2_journal_clear_features(sbi->s_journal, 2788 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2789 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2790 } 2791 2792 /* We have now updated the journal if required, so we can 2793 * validate the data journaling mode. */ 2794 switch (test_opt(sb, DATA_FLAGS)) { 2795 case 0: 2796 /* No mode set, assume a default based on the journal 2797 * capabilities: ORDERED_DATA if the journal can 2798 * cope, else JOURNAL_DATA 2799 */ 2800 if (jbd2_journal_check_available_features 2801 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2802 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2803 else 2804 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2805 break; 2806 2807 case EXT4_MOUNT_ORDERED_DATA: 2808 case EXT4_MOUNT_WRITEBACK_DATA: 2809 if (!jbd2_journal_check_available_features 2810 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2811 ext4_msg(sb, KERN_ERR, "Journal does not support " 2812 "requested data journaling mode"); 2813 goto failed_mount4; 2814 } 2815 default: 2816 break; 2817 } 2818 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2819 2820 no_journal: 2821 2822 if (test_opt(sb, NOBH)) { 2823 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2824 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2825 "its supported only with writeback mode"); 2826 clear_opt(sbi->s_mount_opt, NOBH); 2827 } 2828 } 2829 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 2830 if (!EXT4_SB(sb)->dio_unwritten_wq) { 2831 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 2832 goto failed_mount_wq; 2833 } 2834 2835 /* 2836 * The jbd2_journal_load will have done any necessary log recovery, 2837 * so we can safely mount the rest of the filesystem now. 2838 */ 2839 2840 root = ext4_iget(sb, EXT4_ROOT_INO); 2841 if (IS_ERR(root)) { 2842 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2843 ret = PTR_ERR(root); 2844 goto failed_mount4; 2845 } 2846 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2847 iput(root); 2848 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2849 goto failed_mount4; 2850 } 2851 sb->s_root = d_alloc_root(root); 2852 if (!sb->s_root) { 2853 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2854 iput(root); 2855 ret = -ENOMEM; 2856 goto failed_mount4; 2857 } 2858 2859 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2860 2861 /* determine the minimum size of new large inodes, if present */ 2862 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2863 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2864 EXT4_GOOD_OLD_INODE_SIZE; 2865 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2866 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2867 if (sbi->s_want_extra_isize < 2868 le16_to_cpu(es->s_want_extra_isize)) 2869 sbi->s_want_extra_isize = 2870 le16_to_cpu(es->s_want_extra_isize); 2871 if (sbi->s_want_extra_isize < 2872 le16_to_cpu(es->s_min_extra_isize)) 2873 sbi->s_want_extra_isize = 2874 le16_to_cpu(es->s_min_extra_isize); 2875 } 2876 } 2877 /* Check if enough inode space is available */ 2878 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2879 sbi->s_inode_size) { 2880 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2881 EXT4_GOOD_OLD_INODE_SIZE; 2882 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2883 "available"); 2884 } 2885 2886 if (test_opt(sb, DELALLOC) && 2887 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2888 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2889 "requested data journaling mode"); 2890 clear_opt(sbi->s_mount_opt, DELALLOC); 2891 } 2892 2893 err = ext4_setup_system_zone(sb); 2894 if (err) { 2895 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2896 "zone (%d)\n", err); 2897 goto failed_mount4; 2898 } 2899 2900 ext4_ext_init(sb); 2901 err = ext4_mb_init(sb, needs_recovery); 2902 if (err) { 2903 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2904 err); 2905 goto failed_mount4; 2906 } 2907 2908 sbi->s_kobj.kset = ext4_kset; 2909 init_completion(&sbi->s_kobj_unregister); 2910 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2911 "%s", sb->s_id); 2912 if (err) { 2913 ext4_mb_release(sb); 2914 ext4_ext_release(sb); 2915 goto failed_mount4; 2916 }; 2917 2918 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2919 ext4_orphan_cleanup(sb, es); 2920 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2921 if (needs_recovery) { 2922 ext4_msg(sb, KERN_INFO, "recovery complete"); 2923 ext4_mark_recovery_complete(sb, es); 2924 } 2925 if (EXT4_SB(sb)->s_journal) { 2926 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2927 descr = " journalled data mode"; 2928 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2929 descr = " ordered data mode"; 2930 else 2931 descr = " writeback data mode"; 2932 } else 2933 descr = "out journal"; 2934 2935 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2936 2937 lock_kernel(); 2938 return 0; 2939 2940 cantfind_ext4: 2941 if (!silent) 2942 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2943 goto failed_mount; 2944 2945 failed_mount4: 2946 ext4_msg(sb, KERN_ERR, "mount failed"); 2947 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 2948 failed_mount_wq: 2949 ext4_release_system_zone(sb); 2950 if (sbi->s_journal) { 2951 jbd2_journal_destroy(sbi->s_journal); 2952 sbi->s_journal = NULL; 2953 } 2954 failed_mount3: 2955 if (sbi->s_flex_groups) { 2956 if (is_vmalloc_addr(sbi->s_flex_groups)) 2957 vfree(sbi->s_flex_groups); 2958 else 2959 kfree(sbi->s_flex_groups); 2960 } 2961 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2962 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2963 percpu_counter_destroy(&sbi->s_dirs_counter); 2964 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2965 failed_mount2: 2966 for (i = 0; i < db_count; i++) 2967 brelse(sbi->s_group_desc[i]); 2968 kfree(sbi->s_group_desc); 2969 failed_mount: 2970 if (sbi->s_proc) { 2971 remove_proc_entry(sb->s_id, ext4_proc_root); 2972 } 2973 #ifdef CONFIG_QUOTA 2974 for (i = 0; i < MAXQUOTAS; i++) 2975 kfree(sbi->s_qf_names[i]); 2976 #endif 2977 ext4_blkdev_remove(sbi); 2978 brelse(bh); 2979 out_fail: 2980 sb->s_fs_info = NULL; 2981 kfree(sbi->s_blockgroup_lock); 2982 kfree(sbi); 2983 lock_kernel(); 2984 return ret; 2985 } 2986 2987 /* 2988 * Setup any per-fs journal parameters now. We'll do this both on 2989 * initial mount, once the journal has been initialised but before we've 2990 * done any recovery; and again on any subsequent remount. 2991 */ 2992 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2993 { 2994 struct ext4_sb_info *sbi = EXT4_SB(sb); 2995 2996 journal->j_commit_interval = sbi->s_commit_interval; 2997 journal->j_min_batch_time = sbi->s_min_batch_time; 2998 journal->j_max_batch_time = sbi->s_max_batch_time; 2999 3000 spin_lock(&journal->j_state_lock); 3001 if (test_opt(sb, BARRIER)) 3002 journal->j_flags |= JBD2_BARRIER; 3003 else 3004 journal->j_flags &= ~JBD2_BARRIER; 3005 if (test_opt(sb, DATA_ERR_ABORT)) 3006 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3007 else 3008 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3009 spin_unlock(&journal->j_state_lock); 3010 } 3011 3012 static journal_t *ext4_get_journal(struct super_block *sb, 3013 unsigned int journal_inum) 3014 { 3015 struct inode *journal_inode; 3016 journal_t *journal; 3017 3018 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3019 3020 /* First, test for the existence of a valid inode on disk. Bad 3021 * things happen if we iget() an unused inode, as the subsequent 3022 * iput() will try to delete it. */ 3023 3024 journal_inode = ext4_iget(sb, journal_inum); 3025 if (IS_ERR(journal_inode)) { 3026 ext4_msg(sb, KERN_ERR, "no journal found"); 3027 return NULL; 3028 } 3029 if (!journal_inode->i_nlink) { 3030 make_bad_inode(journal_inode); 3031 iput(journal_inode); 3032 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3033 return NULL; 3034 } 3035 3036 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3037 journal_inode, journal_inode->i_size); 3038 if (!S_ISREG(journal_inode->i_mode)) { 3039 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3040 iput(journal_inode); 3041 return NULL; 3042 } 3043 3044 journal = jbd2_journal_init_inode(journal_inode); 3045 if (!journal) { 3046 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3047 iput(journal_inode); 3048 return NULL; 3049 } 3050 journal->j_private = sb; 3051 ext4_init_journal_params(sb, journal); 3052 return journal; 3053 } 3054 3055 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3056 dev_t j_dev) 3057 { 3058 struct buffer_head *bh; 3059 journal_t *journal; 3060 ext4_fsblk_t start; 3061 ext4_fsblk_t len; 3062 int hblock, blocksize; 3063 ext4_fsblk_t sb_block; 3064 unsigned long offset; 3065 struct ext4_super_block *es; 3066 struct block_device *bdev; 3067 3068 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3069 3070 bdev = ext4_blkdev_get(j_dev, sb); 3071 if (bdev == NULL) 3072 return NULL; 3073 3074 if (bd_claim(bdev, sb)) { 3075 ext4_msg(sb, KERN_ERR, 3076 "failed to claim external journal device"); 3077 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3078 return NULL; 3079 } 3080 3081 blocksize = sb->s_blocksize; 3082 hblock = bdev_logical_block_size(bdev); 3083 if (blocksize < hblock) { 3084 ext4_msg(sb, KERN_ERR, 3085 "blocksize too small for journal device"); 3086 goto out_bdev; 3087 } 3088 3089 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3090 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3091 set_blocksize(bdev, blocksize); 3092 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3093 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3094 "external journal"); 3095 goto out_bdev; 3096 } 3097 3098 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3099 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3100 !(le32_to_cpu(es->s_feature_incompat) & 3101 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3102 ext4_msg(sb, KERN_ERR, "external journal has " 3103 "bad superblock"); 3104 brelse(bh); 3105 goto out_bdev; 3106 } 3107 3108 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3109 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3110 brelse(bh); 3111 goto out_bdev; 3112 } 3113 3114 len = ext4_blocks_count(es); 3115 start = sb_block + 1; 3116 brelse(bh); /* we're done with the superblock */ 3117 3118 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3119 start, len, blocksize); 3120 if (!journal) { 3121 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3122 goto out_bdev; 3123 } 3124 journal->j_private = sb; 3125 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3126 wait_on_buffer(journal->j_sb_buffer); 3127 if (!buffer_uptodate(journal->j_sb_buffer)) { 3128 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3129 goto out_journal; 3130 } 3131 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3132 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3133 "user (unsupported) - %d", 3134 be32_to_cpu(journal->j_superblock->s_nr_users)); 3135 goto out_journal; 3136 } 3137 EXT4_SB(sb)->journal_bdev = bdev; 3138 ext4_init_journal_params(sb, journal); 3139 return journal; 3140 3141 out_journal: 3142 jbd2_journal_destroy(journal); 3143 out_bdev: 3144 ext4_blkdev_put(bdev); 3145 return NULL; 3146 } 3147 3148 static int ext4_load_journal(struct super_block *sb, 3149 struct ext4_super_block *es, 3150 unsigned long journal_devnum) 3151 { 3152 journal_t *journal; 3153 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3154 dev_t journal_dev; 3155 int err = 0; 3156 int really_read_only; 3157 3158 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3159 3160 if (journal_devnum && 3161 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3162 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3163 "numbers have changed"); 3164 journal_dev = new_decode_dev(journal_devnum); 3165 } else 3166 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3167 3168 really_read_only = bdev_read_only(sb->s_bdev); 3169 3170 /* 3171 * Are we loading a blank journal or performing recovery after a 3172 * crash? For recovery, we need to check in advance whether we 3173 * can get read-write access to the device. 3174 */ 3175 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3176 if (sb->s_flags & MS_RDONLY) { 3177 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3178 "required on readonly filesystem"); 3179 if (really_read_only) { 3180 ext4_msg(sb, KERN_ERR, "write access " 3181 "unavailable, cannot proceed"); 3182 return -EROFS; 3183 } 3184 ext4_msg(sb, KERN_INFO, "write access will " 3185 "be enabled during recovery"); 3186 } 3187 } 3188 3189 if (journal_inum && journal_dev) { 3190 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3191 "and inode journals!"); 3192 return -EINVAL; 3193 } 3194 3195 if (journal_inum) { 3196 if (!(journal = ext4_get_journal(sb, journal_inum))) 3197 return -EINVAL; 3198 } else { 3199 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3200 return -EINVAL; 3201 } 3202 3203 if (!(journal->j_flags & JBD2_BARRIER)) 3204 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3205 3206 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3207 err = jbd2_journal_update_format(journal); 3208 if (err) { 3209 ext4_msg(sb, KERN_ERR, "error updating journal"); 3210 jbd2_journal_destroy(journal); 3211 return err; 3212 } 3213 } 3214 3215 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3216 err = jbd2_journal_wipe(journal, !really_read_only); 3217 if (!err) 3218 err = jbd2_journal_load(journal); 3219 3220 if (err) { 3221 ext4_msg(sb, KERN_ERR, "error loading journal"); 3222 jbd2_journal_destroy(journal); 3223 return err; 3224 } 3225 3226 EXT4_SB(sb)->s_journal = journal; 3227 ext4_clear_journal_err(sb, es); 3228 3229 if (journal_devnum && 3230 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3231 es->s_journal_dev = cpu_to_le32(journal_devnum); 3232 3233 /* Make sure we flush the recovery flag to disk. */ 3234 ext4_commit_super(sb, 1); 3235 } 3236 3237 return 0; 3238 } 3239 3240 static int ext4_commit_super(struct super_block *sb, int sync) 3241 { 3242 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3243 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3244 int error = 0; 3245 3246 if (!sbh) 3247 return error; 3248 if (buffer_write_io_error(sbh)) { 3249 /* 3250 * Oh, dear. A previous attempt to write the 3251 * superblock failed. This could happen because the 3252 * USB device was yanked out. Or it could happen to 3253 * be a transient write error and maybe the block will 3254 * be remapped. Nothing we can do but to retry the 3255 * write and hope for the best. 3256 */ 3257 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3258 "superblock detected"); 3259 clear_buffer_write_io_error(sbh); 3260 set_buffer_uptodate(sbh); 3261 } 3262 /* 3263 * If the file system is mounted read-only, don't update the 3264 * superblock write time. This avoids updating the superblock 3265 * write time when we are mounting the root file system 3266 * read/only but we need to replay the journal; at that point, 3267 * for people who are east of GMT and who make their clock 3268 * tick in localtime for Windows bug-for-bug compatibility, 3269 * the clock is set in the future, and this will cause e2fsck 3270 * to complain and force a full file system check. 3271 */ 3272 if (!(sb->s_flags & MS_RDONLY)) 3273 es->s_wtime = cpu_to_le32(get_seconds()); 3274 es->s_kbytes_written = 3275 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3276 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3277 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3278 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3279 &EXT4_SB(sb)->s_freeblocks_counter)); 3280 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3281 &EXT4_SB(sb)->s_freeinodes_counter)); 3282 sb->s_dirt = 0; 3283 BUFFER_TRACE(sbh, "marking dirty"); 3284 mark_buffer_dirty(sbh); 3285 if (sync) { 3286 error = sync_dirty_buffer(sbh); 3287 if (error) 3288 return error; 3289 3290 error = buffer_write_io_error(sbh); 3291 if (error) { 3292 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3293 "superblock"); 3294 clear_buffer_write_io_error(sbh); 3295 set_buffer_uptodate(sbh); 3296 } 3297 } 3298 return error; 3299 } 3300 3301 /* 3302 * Have we just finished recovery? If so, and if we are mounting (or 3303 * remounting) the filesystem readonly, then we will end up with a 3304 * consistent fs on disk. Record that fact. 3305 */ 3306 static void ext4_mark_recovery_complete(struct super_block *sb, 3307 struct ext4_super_block *es) 3308 { 3309 journal_t *journal = EXT4_SB(sb)->s_journal; 3310 3311 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3312 BUG_ON(journal != NULL); 3313 return; 3314 } 3315 jbd2_journal_lock_updates(journal); 3316 if (jbd2_journal_flush(journal) < 0) 3317 goto out; 3318 3319 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3320 sb->s_flags & MS_RDONLY) { 3321 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3322 ext4_commit_super(sb, 1); 3323 } 3324 3325 out: 3326 jbd2_journal_unlock_updates(journal); 3327 } 3328 3329 /* 3330 * If we are mounting (or read-write remounting) a filesystem whose journal 3331 * has recorded an error from a previous lifetime, move that error to the 3332 * main filesystem now. 3333 */ 3334 static void ext4_clear_journal_err(struct super_block *sb, 3335 struct ext4_super_block *es) 3336 { 3337 journal_t *journal; 3338 int j_errno; 3339 const char *errstr; 3340 3341 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3342 3343 journal = EXT4_SB(sb)->s_journal; 3344 3345 /* 3346 * Now check for any error status which may have been recorded in the 3347 * journal by a prior ext4_error() or ext4_abort() 3348 */ 3349 3350 j_errno = jbd2_journal_errno(journal); 3351 if (j_errno) { 3352 char nbuf[16]; 3353 3354 errstr = ext4_decode_error(sb, j_errno, nbuf); 3355 ext4_warning(sb, __func__, "Filesystem error recorded " 3356 "from previous mount: %s", errstr); 3357 ext4_warning(sb, __func__, "Marking fs in need of " 3358 "filesystem check."); 3359 3360 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3361 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3362 ext4_commit_super(sb, 1); 3363 3364 jbd2_journal_clear_err(journal); 3365 } 3366 } 3367 3368 /* 3369 * Force the running and committing transactions to commit, 3370 * and wait on the commit. 3371 */ 3372 int ext4_force_commit(struct super_block *sb) 3373 { 3374 journal_t *journal; 3375 int ret = 0; 3376 3377 if (sb->s_flags & MS_RDONLY) 3378 return 0; 3379 3380 journal = EXT4_SB(sb)->s_journal; 3381 if (journal) 3382 ret = ext4_journal_force_commit(journal); 3383 3384 return ret; 3385 } 3386 3387 static void ext4_write_super(struct super_block *sb) 3388 { 3389 lock_super(sb); 3390 ext4_commit_super(sb, 1); 3391 unlock_super(sb); 3392 } 3393 3394 static int ext4_sync_fs(struct super_block *sb, int wait) 3395 { 3396 int ret = 0; 3397 tid_t target; 3398 struct ext4_sb_info *sbi = EXT4_SB(sb); 3399 3400 trace_ext4_sync_fs(sb, wait); 3401 flush_workqueue(sbi->dio_unwritten_wq); 3402 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 3403 if (wait) 3404 jbd2_log_wait_commit(sbi->s_journal, target); 3405 } 3406 return ret; 3407 } 3408 3409 /* 3410 * LVM calls this function before a (read-only) snapshot is created. This 3411 * gives us a chance to flush the journal completely and mark the fs clean. 3412 */ 3413 static int ext4_freeze(struct super_block *sb) 3414 { 3415 int error = 0; 3416 journal_t *journal; 3417 3418 if (sb->s_flags & MS_RDONLY) 3419 return 0; 3420 3421 journal = EXT4_SB(sb)->s_journal; 3422 3423 /* Now we set up the journal barrier. */ 3424 jbd2_journal_lock_updates(journal); 3425 3426 /* 3427 * Don't clear the needs_recovery flag if we failed to flush 3428 * the journal. 3429 */ 3430 error = jbd2_journal_flush(journal); 3431 if (error < 0) { 3432 out: 3433 jbd2_journal_unlock_updates(journal); 3434 return error; 3435 } 3436 3437 /* Journal blocked and flushed, clear needs_recovery flag. */ 3438 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3439 error = ext4_commit_super(sb, 1); 3440 if (error) 3441 goto out; 3442 return 0; 3443 } 3444 3445 /* 3446 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3447 * flag here, even though the filesystem is not technically dirty yet. 3448 */ 3449 static int ext4_unfreeze(struct super_block *sb) 3450 { 3451 if (sb->s_flags & MS_RDONLY) 3452 return 0; 3453 3454 lock_super(sb); 3455 /* Reset the needs_recovery flag before the fs is unlocked. */ 3456 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3457 ext4_commit_super(sb, 1); 3458 unlock_super(sb); 3459 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3460 return 0; 3461 } 3462 3463 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3464 { 3465 struct ext4_super_block *es; 3466 struct ext4_sb_info *sbi = EXT4_SB(sb); 3467 ext4_fsblk_t n_blocks_count = 0; 3468 unsigned long old_sb_flags; 3469 struct ext4_mount_options old_opts; 3470 ext4_group_t g; 3471 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3472 int err; 3473 #ifdef CONFIG_QUOTA 3474 int i; 3475 #endif 3476 3477 lock_kernel(); 3478 3479 /* Store the original options */ 3480 lock_super(sb); 3481 old_sb_flags = sb->s_flags; 3482 old_opts.s_mount_opt = sbi->s_mount_opt; 3483 old_opts.s_resuid = sbi->s_resuid; 3484 old_opts.s_resgid = sbi->s_resgid; 3485 old_opts.s_commit_interval = sbi->s_commit_interval; 3486 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3487 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3488 #ifdef CONFIG_QUOTA 3489 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3490 for (i = 0; i < MAXQUOTAS; i++) 3491 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3492 #endif 3493 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3494 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3495 3496 /* 3497 * Allow the "check" option to be passed as a remount option. 3498 */ 3499 if (!parse_options(data, sb, NULL, &journal_ioprio, 3500 &n_blocks_count, 1)) { 3501 err = -EINVAL; 3502 goto restore_opts; 3503 } 3504 3505 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 3506 ext4_abort(sb, __func__, "Abort forced by user"); 3507 3508 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3509 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3510 3511 es = sbi->s_es; 3512 3513 if (sbi->s_journal) { 3514 ext4_init_journal_params(sb, sbi->s_journal); 3515 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3516 } 3517 3518 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3519 n_blocks_count > ext4_blocks_count(es)) { 3520 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 3521 err = -EROFS; 3522 goto restore_opts; 3523 } 3524 3525 if (*flags & MS_RDONLY) { 3526 /* 3527 * First of all, the unconditional stuff we have to do 3528 * to disable replay of the journal when we next remount 3529 */ 3530 sb->s_flags |= MS_RDONLY; 3531 3532 /* 3533 * OK, test if we are remounting a valid rw partition 3534 * readonly, and if so set the rdonly flag and then 3535 * mark the partition as valid again. 3536 */ 3537 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3538 (sbi->s_mount_state & EXT4_VALID_FS)) 3539 es->s_state = cpu_to_le16(sbi->s_mount_state); 3540 3541 if (sbi->s_journal) 3542 ext4_mark_recovery_complete(sb, es); 3543 } else { 3544 /* Make sure we can mount this feature set readwrite */ 3545 if (!ext4_feature_set_ok(sb, 0)) { 3546 err = -EROFS; 3547 goto restore_opts; 3548 } 3549 /* 3550 * Make sure the group descriptor checksums 3551 * are sane. If they aren't, refuse to remount r/w. 3552 */ 3553 for (g = 0; g < sbi->s_groups_count; g++) { 3554 struct ext4_group_desc *gdp = 3555 ext4_get_group_desc(sb, g, NULL); 3556 3557 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3558 ext4_msg(sb, KERN_ERR, 3559 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3560 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3561 le16_to_cpu(gdp->bg_checksum)); 3562 err = -EINVAL; 3563 goto restore_opts; 3564 } 3565 } 3566 3567 /* 3568 * If we have an unprocessed orphan list hanging 3569 * around from a previously readonly bdev mount, 3570 * require a full umount/remount for now. 3571 */ 3572 if (es->s_last_orphan) { 3573 ext4_msg(sb, KERN_WARNING, "Couldn't " 3574 "remount RDWR because of unprocessed " 3575 "orphan inode list. Please " 3576 "umount/remount instead"); 3577 err = -EINVAL; 3578 goto restore_opts; 3579 } 3580 3581 /* 3582 * Mounting a RDONLY partition read-write, so reread 3583 * and store the current valid flag. (It may have 3584 * been changed by e2fsck since we originally mounted 3585 * the partition.) 3586 */ 3587 if (sbi->s_journal) 3588 ext4_clear_journal_err(sb, es); 3589 sbi->s_mount_state = le16_to_cpu(es->s_state); 3590 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3591 goto restore_opts; 3592 if (!ext4_setup_super(sb, es, 0)) 3593 sb->s_flags &= ~MS_RDONLY; 3594 } 3595 } 3596 ext4_setup_system_zone(sb); 3597 if (sbi->s_journal == NULL) 3598 ext4_commit_super(sb, 1); 3599 3600 #ifdef CONFIG_QUOTA 3601 /* Release old quota file names */ 3602 for (i = 0; i < MAXQUOTAS; i++) 3603 if (old_opts.s_qf_names[i] && 3604 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3605 kfree(old_opts.s_qf_names[i]); 3606 #endif 3607 unlock_super(sb); 3608 unlock_kernel(); 3609 return 0; 3610 3611 restore_opts: 3612 sb->s_flags = old_sb_flags; 3613 sbi->s_mount_opt = old_opts.s_mount_opt; 3614 sbi->s_resuid = old_opts.s_resuid; 3615 sbi->s_resgid = old_opts.s_resgid; 3616 sbi->s_commit_interval = old_opts.s_commit_interval; 3617 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3618 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3619 #ifdef CONFIG_QUOTA 3620 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3621 for (i = 0; i < MAXQUOTAS; i++) { 3622 if (sbi->s_qf_names[i] && 3623 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3624 kfree(sbi->s_qf_names[i]); 3625 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3626 } 3627 #endif 3628 unlock_super(sb); 3629 unlock_kernel(); 3630 return err; 3631 } 3632 3633 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3634 { 3635 struct super_block *sb = dentry->d_sb; 3636 struct ext4_sb_info *sbi = EXT4_SB(sb); 3637 struct ext4_super_block *es = sbi->s_es; 3638 u64 fsid; 3639 3640 if (test_opt(sb, MINIX_DF)) { 3641 sbi->s_overhead_last = 0; 3642 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3643 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3644 ext4_fsblk_t overhead = 0; 3645 3646 /* 3647 * Compute the overhead (FS structures). This is constant 3648 * for a given filesystem unless the number of block groups 3649 * changes so we cache the previous value until it does. 3650 */ 3651 3652 /* 3653 * All of the blocks before first_data_block are 3654 * overhead 3655 */ 3656 overhead = le32_to_cpu(es->s_first_data_block); 3657 3658 /* 3659 * Add the overhead attributed to the superblock and 3660 * block group descriptors. If the sparse superblocks 3661 * feature is turned on, then not all groups have this. 3662 */ 3663 for (i = 0; i < ngroups; i++) { 3664 overhead += ext4_bg_has_super(sb, i) + 3665 ext4_bg_num_gdb(sb, i); 3666 cond_resched(); 3667 } 3668 3669 /* 3670 * Every block group has an inode bitmap, a block 3671 * bitmap, and an inode table. 3672 */ 3673 overhead += ngroups * (2 + sbi->s_itb_per_group); 3674 sbi->s_overhead_last = overhead; 3675 smp_wmb(); 3676 sbi->s_blocks_last = ext4_blocks_count(es); 3677 } 3678 3679 buf->f_type = EXT4_SUPER_MAGIC; 3680 buf->f_bsize = sb->s_blocksize; 3681 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3682 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3683 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3684 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3685 if (buf->f_bfree < ext4_r_blocks_count(es)) 3686 buf->f_bavail = 0; 3687 buf->f_files = le32_to_cpu(es->s_inodes_count); 3688 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3689 buf->f_namelen = EXT4_NAME_LEN; 3690 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3691 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3692 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3693 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3694 3695 return 0; 3696 } 3697 3698 /* Helper function for writing quotas on sync - we need to start transaction 3699 * before quota file is locked for write. Otherwise the are possible deadlocks: 3700 * Process 1 Process 2 3701 * ext4_create() quota_sync() 3702 * jbd2_journal_start() write_dquot() 3703 * vfs_dq_init() down(dqio_mutex) 3704 * down(dqio_mutex) jbd2_journal_start() 3705 * 3706 */ 3707 3708 #ifdef CONFIG_QUOTA 3709 3710 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3711 { 3712 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3713 } 3714 3715 static int ext4_write_dquot(struct dquot *dquot) 3716 { 3717 int ret, err; 3718 handle_t *handle; 3719 struct inode *inode; 3720 3721 inode = dquot_to_inode(dquot); 3722 handle = ext4_journal_start(inode, 3723 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3724 if (IS_ERR(handle)) 3725 return PTR_ERR(handle); 3726 ret = dquot_commit(dquot); 3727 err = ext4_journal_stop(handle); 3728 if (!ret) 3729 ret = err; 3730 return ret; 3731 } 3732 3733 static int ext4_acquire_dquot(struct dquot *dquot) 3734 { 3735 int ret, err; 3736 handle_t *handle; 3737 3738 handle = ext4_journal_start(dquot_to_inode(dquot), 3739 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3740 if (IS_ERR(handle)) 3741 return PTR_ERR(handle); 3742 ret = dquot_acquire(dquot); 3743 err = ext4_journal_stop(handle); 3744 if (!ret) 3745 ret = err; 3746 return ret; 3747 } 3748 3749 static int ext4_release_dquot(struct dquot *dquot) 3750 { 3751 int ret, err; 3752 handle_t *handle; 3753 3754 handle = ext4_journal_start(dquot_to_inode(dquot), 3755 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3756 if (IS_ERR(handle)) { 3757 /* Release dquot anyway to avoid endless cycle in dqput() */ 3758 dquot_release(dquot); 3759 return PTR_ERR(handle); 3760 } 3761 ret = dquot_release(dquot); 3762 err = ext4_journal_stop(handle); 3763 if (!ret) 3764 ret = err; 3765 return ret; 3766 } 3767 3768 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3769 { 3770 /* Are we journaling quotas? */ 3771 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3772 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3773 dquot_mark_dquot_dirty(dquot); 3774 return ext4_write_dquot(dquot); 3775 } else { 3776 return dquot_mark_dquot_dirty(dquot); 3777 } 3778 } 3779 3780 static int ext4_write_info(struct super_block *sb, int type) 3781 { 3782 int ret, err; 3783 handle_t *handle; 3784 3785 /* Data block + inode block */ 3786 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3787 if (IS_ERR(handle)) 3788 return PTR_ERR(handle); 3789 ret = dquot_commit_info(sb, type); 3790 err = ext4_journal_stop(handle); 3791 if (!ret) 3792 ret = err; 3793 return ret; 3794 } 3795 3796 /* 3797 * Turn on quotas during mount time - we need to find 3798 * the quota file and such... 3799 */ 3800 static int ext4_quota_on_mount(struct super_block *sb, int type) 3801 { 3802 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3803 EXT4_SB(sb)->s_jquota_fmt, type); 3804 } 3805 3806 /* 3807 * Standard function to be called on quota_on 3808 */ 3809 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3810 char *name, int remount) 3811 { 3812 int err; 3813 struct path path; 3814 3815 if (!test_opt(sb, QUOTA)) 3816 return -EINVAL; 3817 /* When remounting, no checks are needed and in fact, name is NULL */ 3818 if (remount) 3819 return vfs_quota_on(sb, type, format_id, name, remount); 3820 3821 err = kern_path(name, LOOKUP_FOLLOW, &path); 3822 if (err) 3823 return err; 3824 3825 /* Quotafile not on the same filesystem? */ 3826 if (path.mnt->mnt_sb != sb) { 3827 path_put(&path); 3828 return -EXDEV; 3829 } 3830 /* Journaling quota? */ 3831 if (EXT4_SB(sb)->s_qf_names[type]) { 3832 /* Quotafile not in fs root? */ 3833 if (path.dentry->d_parent != sb->s_root) 3834 ext4_msg(sb, KERN_WARNING, 3835 "Quota file not on filesystem root. " 3836 "Journaled quota will not work"); 3837 } 3838 3839 /* 3840 * When we journal data on quota file, we have to flush journal to see 3841 * all updates to the file when we bypass pagecache... 3842 */ 3843 if (EXT4_SB(sb)->s_journal && 3844 ext4_should_journal_data(path.dentry->d_inode)) { 3845 /* 3846 * We don't need to lock updates but journal_flush() could 3847 * otherwise be livelocked... 3848 */ 3849 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3850 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3851 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3852 if (err) { 3853 path_put(&path); 3854 return err; 3855 } 3856 } 3857 3858 err = vfs_quota_on_path(sb, type, format_id, &path); 3859 path_put(&path); 3860 return err; 3861 } 3862 3863 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3864 * acquiring the locks... As quota files are never truncated and quota code 3865 * itself serializes the operations (and noone else should touch the files) 3866 * we don't have to be afraid of races */ 3867 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3868 size_t len, loff_t off) 3869 { 3870 struct inode *inode = sb_dqopt(sb)->files[type]; 3871 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3872 int err = 0; 3873 int offset = off & (sb->s_blocksize - 1); 3874 int tocopy; 3875 size_t toread; 3876 struct buffer_head *bh; 3877 loff_t i_size = i_size_read(inode); 3878 3879 if (off > i_size) 3880 return 0; 3881 if (off+len > i_size) 3882 len = i_size-off; 3883 toread = len; 3884 while (toread > 0) { 3885 tocopy = sb->s_blocksize - offset < toread ? 3886 sb->s_blocksize - offset : toread; 3887 bh = ext4_bread(NULL, inode, blk, 0, &err); 3888 if (err) 3889 return err; 3890 if (!bh) /* A hole? */ 3891 memset(data, 0, tocopy); 3892 else 3893 memcpy(data, bh->b_data+offset, tocopy); 3894 brelse(bh); 3895 offset = 0; 3896 toread -= tocopy; 3897 data += tocopy; 3898 blk++; 3899 } 3900 return len; 3901 } 3902 3903 /* Write to quotafile (we know the transaction is already started and has 3904 * enough credits) */ 3905 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3906 const char *data, size_t len, loff_t off) 3907 { 3908 struct inode *inode = sb_dqopt(sb)->files[type]; 3909 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3910 int err = 0; 3911 int offset = off & (sb->s_blocksize - 1); 3912 int tocopy; 3913 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3914 size_t towrite = len; 3915 struct buffer_head *bh; 3916 handle_t *handle = journal_current_handle(); 3917 3918 if (EXT4_SB(sb)->s_journal && !handle) { 3919 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3920 " cancelled because transaction is not started", 3921 (unsigned long long)off, (unsigned long long)len); 3922 return -EIO; 3923 } 3924 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3925 while (towrite > 0) { 3926 tocopy = sb->s_blocksize - offset < towrite ? 3927 sb->s_blocksize - offset : towrite; 3928 bh = ext4_bread(handle, inode, blk, 1, &err); 3929 if (!bh) 3930 goto out; 3931 if (journal_quota) { 3932 err = ext4_journal_get_write_access(handle, bh); 3933 if (err) { 3934 brelse(bh); 3935 goto out; 3936 } 3937 } 3938 lock_buffer(bh); 3939 memcpy(bh->b_data+offset, data, tocopy); 3940 flush_dcache_page(bh->b_page); 3941 unlock_buffer(bh); 3942 if (journal_quota) 3943 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3944 else { 3945 /* Always do at least ordered writes for quotas */ 3946 err = ext4_jbd2_file_inode(handle, inode); 3947 mark_buffer_dirty(bh); 3948 } 3949 brelse(bh); 3950 if (err) 3951 goto out; 3952 offset = 0; 3953 towrite -= tocopy; 3954 data += tocopy; 3955 blk++; 3956 } 3957 out: 3958 if (len == towrite) { 3959 mutex_unlock(&inode->i_mutex); 3960 return err; 3961 } 3962 if (inode->i_size < off+len-towrite) { 3963 i_size_write(inode, off+len-towrite); 3964 EXT4_I(inode)->i_disksize = inode->i_size; 3965 } 3966 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3967 ext4_mark_inode_dirty(handle, inode); 3968 mutex_unlock(&inode->i_mutex); 3969 return len - towrite; 3970 } 3971 3972 #endif 3973 3974 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3975 const char *dev_name, void *data, struct vfsmount *mnt) 3976 { 3977 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3978 } 3979 3980 #if !defined(CONTIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 3981 static struct file_system_type ext2_fs_type = { 3982 .owner = THIS_MODULE, 3983 .name = "ext2", 3984 .get_sb = ext4_get_sb, 3985 .kill_sb = kill_block_super, 3986 .fs_flags = FS_REQUIRES_DEV, 3987 }; 3988 3989 static inline void register_as_ext2(void) 3990 { 3991 int err = register_filesystem(&ext2_fs_type); 3992 if (err) 3993 printk(KERN_WARNING 3994 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 3995 } 3996 3997 static inline void unregister_as_ext2(void) 3998 { 3999 unregister_filesystem(&ext2_fs_type); 4000 } 4001 MODULE_ALIAS("ext2"); 4002 #else 4003 static inline void register_as_ext2(void) { } 4004 static inline void unregister_as_ext2(void) { } 4005 #endif 4006 4007 #if !defined(CONTIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4008 static struct file_system_type ext3_fs_type = { 4009 .owner = THIS_MODULE, 4010 .name = "ext3", 4011 .get_sb = ext4_get_sb, 4012 .kill_sb = kill_block_super, 4013 .fs_flags = FS_REQUIRES_DEV, 4014 }; 4015 4016 static inline void register_as_ext3(void) 4017 { 4018 int err = register_filesystem(&ext3_fs_type); 4019 if (err) 4020 printk(KERN_WARNING 4021 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4022 } 4023 4024 static inline void unregister_as_ext3(void) 4025 { 4026 unregister_filesystem(&ext3_fs_type); 4027 } 4028 MODULE_ALIAS("ext3"); 4029 #else 4030 static inline void register_as_ext3(void) { } 4031 static inline void unregister_as_ext3(void) { } 4032 #endif 4033 4034 static struct file_system_type ext4_fs_type = { 4035 .owner = THIS_MODULE, 4036 .name = "ext4", 4037 .get_sb = ext4_get_sb, 4038 .kill_sb = kill_block_super, 4039 .fs_flags = FS_REQUIRES_DEV, 4040 }; 4041 4042 static int __init init_ext4_fs(void) 4043 { 4044 int err; 4045 4046 err = init_ext4_system_zone(); 4047 if (err) 4048 return err; 4049 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4050 if (!ext4_kset) 4051 goto out4; 4052 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4053 err = init_ext4_mballoc(); 4054 if (err) 4055 goto out3; 4056 4057 err = init_ext4_xattr(); 4058 if (err) 4059 goto out2; 4060 err = init_inodecache(); 4061 if (err) 4062 goto out1; 4063 register_as_ext2(); 4064 register_as_ext3(); 4065 err = register_filesystem(&ext4_fs_type); 4066 if (err) 4067 goto out; 4068 return 0; 4069 out: 4070 unregister_as_ext2(); 4071 unregister_as_ext3(); 4072 destroy_inodecache(); 4073 out1: 4074 exit_ext4_xattr(); 4075 out2: 4076 exit_ext4_mballoc(); 4077 out3: 4078 remove_proc_entry("fs/ext4", NULL); 4079 kset_unregister(ext4_kset); 4080 out4: 4081 exit_ext4_system_zone(); 4082 return err; 4083 } 4084 4085 static void __exit exit_ext4_fs(void) 4086 { 4087 unregister_as_ext2(); 4088 unregister_as_ext3(); 4089 unregister_filesystem(&ext4_fs_type); 4090 destroy_inodecache(); 4091 exit_ext4_xattr(); 4092 exit_ext4_mballoc(); 4093 remove_proc_entry("fs/ext4", NULL); 4094 kset_unregister(ext4_kset); 4095 exit_ext4_system_zone(); 4096 } 4097 4098 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4099 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4100 MODULE_LICENSE("GPL"); 4101 module_init(init_ext4_fs) 4102 module_exit(exit_ext4_fs) 4103