1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/ext4_fs.h> 25 #include <linux/ext4_jbd2.h> 26 #include <linux/slab.h> 27 #include <linux/init.h> 28 #include <linux/blkdev.h> 29 #include <linux/parser.h> 30 #include <linux/smp_lock.h> 31 #include <linux/buffer_head.h> 32 #include <linux/exportfs.h> 33 #include <linux/vfs.h> 34 #include <linux/random.h> 35 #include <linux/mount.h> 36 #include <linux/namei.h> 37 #include <linux/quotaops.h> 38 #include <linux/seq_file.h> 39 40 #include <asm/uaccess.h> 41 42 #include "xattr.h" 43 #include "acl.h" 44 #include "namei.h" 45 46 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 47 unsigned long journal_devnum); 48 static int ext4_create_journal(struct super_block *, struct ext4_super_block *, 49 unsigned int); 50 static void ext4_commit_super (struct super_block * sb, 51 struct ext4_super_block * es, 52 int sync); 53 static void ext4_mark_recovery_complete(struct super_block * sb, 54 struct ext4_super_block * es); 55 static void ext4_clear_journal_err(struct super_block * sb, 56 struct ext4_super_block * es); 57 static int ext4_sync_fs(struct super_block *sb, int wait); 58 static const char *ext4_decode_error(struct super_block * sb, int errno, 59 char nbuf[16]); 60 static int ext4_remount (struct super_block * sb, int * flags, char * data); 61 static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf); 62 static void ext4_unlockfs(struct super_block *sb); 63 static void ext4_write_super (struct super_block * sb); 64 static void ext4_write_super_lockfs(struct super_block *sb); 65 66 67 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 68 struct ext4_group_desc *bg) 69 { 70 return le32_to_cpu(bg->bg_block_bitmap) | 71 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 72 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 73 } 74 75 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 76 struct ext4_group_desc *bg) 77 { 78 return le32_to_cpu(bg->bg_inode_bitmap) | 79 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 80 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 81 } 82 83 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 84 struct ext4_group_desc *bg) 85 { 86 return le32_to_cpu(bg->bg_inode_table) | 87 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 88 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 89 } 90 91 void ext4_block_bitmap_set(struct super_block *sb, 92 struct ext4_group_desc *bg, ext4_fsblk_t blk) 93 { 94 bg->bg_block_bitmap = cpu_to_le32((u32)blk); 95 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 96 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 97 } 98 99 void ext4_inode_bitmap_set(struct super_block *sb, 100 struct ext4_group_desc *bg, ext4_fsblk_t blk) 101 { 102 bg->bg_inode_bitmap = cpu_to_le32((u32)blk); 103 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 104 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 105 } 106 107 void ext4_inode_table_set(struct super_block *sb, 108 struct ext4_group_desc *bg, ext4_fsblk_t blk) 109 { 110 bg->bg_inode_table = cpu_to_le32((u32)blk); 111 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 112 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 113 } 114 115 /* 116 * Wrappers for jbd2_journal_start/end. 117 * 118 * The only special thing we need to do here is to make sure that all 119 * journal_end calls result in the superblock being marked dirty, so 120 * that sync() will call the filesystem's write_super callback if 121 * appropriate. 122 */ 123 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 124 { 125 journal_t *journal; 126 127 if (sb->s_flags & MS_RDONLY) 128 return ERR_PTR(-EROFS); 129 130 /* Special case here: if the journal has aborted behind our 131 * backs (eg. EIO in the commit thread), then we still need to 132 * take the FS itself readonly cleanly. */ 133 journal = EXT4_SB(sb)->s_journal; 134 if (is_journal_aborted(journal)) { 135 ext4_abort(sb, __FUNCTION__, 136 "Detected aborted journal"); 137 return ERR_PTR(-EROFS); 138 } 139 140 return jbd2_journal_start(journal, nblocks); 141 } 142 143 /* 144 * The only special thing we need to do here is to make sure that all 145 * jbd2_journal_stop calls result in the superblock being marked dirty, so 146 * that sync() will call the filesystem's write_super callback if 147 * appropriate. 148 */ 149 int __ext4_journal_stop(const char *where, handle_t *handle) 150 { 151 struct super_block *sb; 152 int err; 153 int rc; 154 155 sb = handle->h_transaction->t_journal->j_private; 156 err = handle->h_err; 157 rc = jbd2_journal_stop(handle); 158 159 if (!err) 160 err = rc; 161 if (err) 162 __ext4_std_error(sb, where, err); 163 return err; 164 } 165 166 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 167 struct buffer_head *bh, handle_t *handle, int err) 168 { 169 char nbuf[16]; 170 const char *errstr = ext4_decode_error(NULL, err, nbuf); 171 172 if (bh) 173 BUFFER_TRACE(bh, "abort"); 174 175 if (!handle->h_err) 176 handle->h_err = err; 177 178 if (is_handle_aborted(handle)) 179 return; 180 181 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 182 caller, errstr, err_fn); 183 184 jbd2_journal_abort_handle(handle); 185 } 186 187 /* Deal with the reporting of failure conditions on a filesystem such as 188 * inconsistencies detected or read IO failures. 189 * 190 * On ext2, we can store the error state of the filesystem in the 191 * superblock. That is not possible on ext4, because we may have other 192 * write ordering constraints on the superblock which prevent us from 193 * writing it out straight away; and given that the journal is about to 194 * be aborted, we can't rely on the current, or future, transactions to 195 * write out the superblock safely. 196 * 197 * We'll just use the jbd2_journal_abort() error code to record an error in 198 * the journal instead. On recovery, the journal will compain about 199 * that error until we've noted it down and cleared it. 200 */ 201 202 static void ext4_handle_error(struct super_block *sb) 203 { 204 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 205 206 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 207 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 208 209 if (sb->s_flags & MS_RDONLY) 210 return; 211 212 if (!test_opt (sb, ERRORS_CONT)) { 213 journal_t *journal = EXT4_SB(sb)->s_journal; 214 215 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 216 if (journal) 217 jbd2_journal_abort(journal, -EIO); 218 } 219 if (test_opt (sb, ERRORS_RO)) { 220 printk (KERN_CRIT "Remounting filesystem read-only\n"); 221 sb->s_flags |= MS_RDONLY; 222 } 223 ext4_commit_super(sb, es, 1); 224 if (test_opt(sb, ERRORS_PANIC)) 225 panic("EXT4-fs (device %s): panic forced after error\n", 226 sb->s_id); 227 } 228 229 void ext4_error (struct super_block * sb, const char * function, 230 const char * fmt, ...) 231 { 232 va_list args; 233 234 va_start(args, fmt); 235 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function); 236 vprintk(fmt, args); 237 printk("\n"); 238 va_end(args); 239 240 ext4_handle_error(sb); 241 } 242 243 static const char *ext4_decode_error(struct super_block * sb, int errno, 244 char nbuf[16]) 245 { 246 char *errstr = NULL; 247 248 switch (errno) { 249 case -EIO: 250 errstr = "IO failure"; 251 break; 252 case -ENOMEM: 253 errstr = "Out of memory"; 254 break; 255 case -EROFS: 256 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) 257 errstr = "Journal has aborted"; 258 else 259 errstr = "Readonly filesystem"; 260 break; 261 default: 262 /* If the caller passed in an extra buffer for unknown 263 * errors, textualise them now. Else we just return 264 * NULL. */ 265 if (nbuf) { 266 /* Check for truncated error codes... */ 267 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 268 errstr = nbuf; 269 } 270 break; 271 } 272 273 return errstr; 274 } 275 276 /* __ext4_std_error decodes expected errors from journaling functions 277 * automatically and invokes the appropriate error response. */ 278 279 void __ext4_std_error (struct super_block * sb, const char * function, 280 int errno) 281 { 282 char nbuf[16]; 283 const char *errstr; 284 285 /* Special case: if the error is EROFS, and we're not already 286 * inside a transaction, then there's really no point in logging 287 * an error. */ 288 if (errno == -EROFS && journal_current_handle() == NULL && 289 (sb->s_flags & MS_RDONLY)) 290 return; 291 292 errstr = ext4_decode_error(sb, errno, nbuf); 293 printk (KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 294 sb->s_id, function, errstr); 295 296 ext4_handle_error(sb); 297 } 298 299 /* 300 * ext4_abort is a much stronger failure handler than ext4_error. The 301 * abort function may be used to deal with unrecoverable failures such 302 * as journal IO errors or ENOMEM at a critical moment in log management. 303 * 304 * We unconditionally force the filesystem into an ABORT|READONLY state, 305 * unless the error response on the fs has been set to panic in which 306 * case we take the easy way out and panic immediately. 307 */ 308 309 void ext4_abort (struct super_block * sb, const char * function, 310 const char * fmt, ...) 311 { 312 va_list args; 313 314 printk (KERN_CRIT "ext4_abort called.\n"); 315 316 va_start(args, fmt); 317 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function); 318 vprintk(fmt, args); 319 printk("\n"); 320 va_end(args); 321 322 if (test_opt(sb, ERRORS_PANIC)) 323 panic("EXT4-fs panic from previous error\n"); 324 325 if (sb->s_flags & MS_RDONLY) 326 return; 327 328 printk(KERN_CRIT "Remounting filesystem read-only\n"); 329 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 330 sb->s_flags |= MS_RDONLY; 331 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 332 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 333 } 334 335 void ext4_warning (struct super_block * sb, const char * function, 336 const char * fmt, ...) 337 { 338 va_list args; 339 340 va_start(args, fmt); 341 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 342 sb->s_id, function); 343 vprintk(fmt, args); 344 printk("\n"); 345 va_end(args); 346 } 347 348 void ext4_update_dynamic_rev(struct super_block *sb) 349 { 350 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 351 352 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 353 return; 354 355 ext4_warning(sb, __FUNCTION__, 356 "updating to rev %d because of new feature flag, " 357 "running e2fsck is recommended", 358 EXT4_DYNAMIC_REV); 359 360 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 361 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 362 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 363 /* leave es->s_feature_*compat flags alone */ 364 /* es->s_uuid will be set by e2fsck if empty */ 365 366 /* 367 * The rest of the superblock fields should be zero, and if not it 368 * means they are likely already in use, so leave them alone. We 369 * can leave it up to e2fsck to clean up any inconsistencies there. 370 */ 371 } 372 373 /* 374 * Open the external journal device 375 */ 376 static struct block_device *ext4_blkdev_get(dev_t dev) 377 { 378 struct block_device *bdev; 379 char b[BDEVNAME_SIZE]; 380 381 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 382 if (IS_ERR(bdev)) 383 goto fail; 384 return bdev; 385 386 fail: 387 printk(KERN_ERR "EXT4: failed to open journal device %s: %ld\n", 388 __bdevname(dev, b), PTR_ERR(bdev)); 389 return NULL; 390 } 391 392 /* 393 * Release the journal device 394 */ 395 static int ext4_blkdev_put(struct block_device *bdev) 396 { 397 bd_release(bdev); 398 return blkdev_put(bdev); 399 } 400 401 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 402 { 403 struct block_device *bdev; 404 int ret = -ENODEV; 405 406 bdev = sbi->journal_bdev; 407 if (bdev) { 408 ret = ext4_blkdev_put(bdev); 409 sbi->journal_bdev = NULL; 410 } 411 return ret; 412 } 413 414 static inline struct inode *orphan_list_entry(struct list_head *l) 415 { 416 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 417 } 418 419 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 420 { 421 struct list_head *l; 422 423 printk(KERN_ERR "sb orphan head is %d\n", 424 le32_to_cpu(sbi->s_es->s_last_orphan)); 425 426 printk(KERN_ERR "sb_info orphan list:\n"); 427 list_for_each(l, &sbi->s_orphan) { 428 struct inode *inode = orphan_list_entry(l); 429 printk(KERN_ERR " " 430 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 431 inode->i_sb->s_id, inode->i_ino, inode, 432 inode->i_mode, inode->i_nlink, 433 NEXT_ORPHAN(inode)); 434 } 435 } 436 437 static void ext4_put_super (struct super_block * sb) 438 { 439 struct ext4_sb_info *sbi = EXT4_SB(sb); 440 struct ext4_super_block *es = sbi->s_es; 441 int i; 442 443 ext4_ext_release(sb); 444 ext4_xattr_put_super(sb); 445 jbd2_journal_destroy(sbi->s_journal); 446 if (!(sb->s_flags & MS_RDONLY)) { 447 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 448 es->s_state = cpu_to_le16(sbi->s_mount_state); 449 BUFFER_TRACE(sbi->s_sbh, "marking dirty"); 450 mark_buffer_dirty(sbi->s_sbh); 451 ext4_commit_super(sb, es, 1); 452 } 453 454 for (i = 0; i < sbi->s_gdb_count; i++) 455 brelse(sbi->s_group_desc[i]); 456 kfree(sbi->s_group_desc); 457 percpu_counter_destroy(&sbi->s_freeblocks_counter); 458 percpu_counter_destroy(&sbi->s_freeinodes_counter); 459 percpu_counter_destroy(&sbi->s_dirs_counter); 460 brelse(sbi->s_sbh); 461 #ifdef CONFIG_QUOTA 462 for (i = 0; i < MAXQUOTAS; i++) 463 kfree(sbi->s_qf_names[i]); 464 #endif 465 466 /* Debugging code just in case the in-memory inode orphan list 467 * isn't empty. The on-disk one can be non-empty if we've 468 * detected an error and taken the fs readonly, but the 469 * in-memory list had better be clean by this point. */ 470 if (!list_empty(&sbi->s_orphan)) 471 dump_orphan_list(sb, sbi); 472 J_ASSERT(list_empty(&sbi->s_orphan)); 473 474 invalidate_bdev(sb->s_bdev); 475 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 476 /* 477 * Invalidate the journal device's buffers. We don't want them 478 * floating about in memory - the physical journal device may 479 * hotswapped, and it breaks the `ro-after' testing code. 480 */ 481 sync_blockdev(sbi->journal_bdev); 482 invalidate_bdev(sbi->journal_bdev); 483 ext4_blkdev_remove(sbi); 484 } 485 sb->s_fs_info = NULL; 486 kfree(sbi); 487 return; 488 } 489 490 static struct kmem_cache *ext4_inode_cachep; 491 492 /* 493 * Called inside transaction, so use GFP_NOFS 494 */ 495 static struct inode *ext4_alloc_inode(struct super_block *sb) 496 { 497 struct ext4_inode_info *ei; 498 499 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 500 if (!ei) 501 return NULL; 502 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 503 ei->i_acl = EXT4_ACL_NOT_CACHED; 504 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 505 #endif 506 ei->i_block_alloc_info = NULL; 507 ei->vfs_inode.i_version = 1; 508 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 509 return &ei->vfs_inode; 510 } 511 512 static void ext4_destroy_inode(struct inode *inode) 513 { 514 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 515 printk("EXT4 Inode %p: orphan list check failed!\n", 516 EXT4_I(inode)); 517 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 518 EXT4_I(inode), sizeof(struct ext4_inode_info), 519 true); 520 dump_stack(); 521 } 522 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 523 } 524 525 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) 526 { 527 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 528 529 INIT_LIST_HEAD(&ei->i_orphan); 530 #ifdef CONFIG_EXT4DEV_FS_XATTR 531 init_rwsem(&ei->xattr_sem); 532 #endif 533 mutex_init(&ei->truncate_mutex); 534 inode_init_once(&ei->vfs_inode); 535 } 536 537 static int init_inodecache(void) 538 { 539 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 540 sizeof(struct ext4_inode_info), 541 0, (SLAB_RECLAIM_ACCOUNT| 542 SLAB_MEM_SPREAD), 543 init_once, NULL); 544 if (ext4_inode_cachep == NULL) 545 return -ENOMEM; 546 return 0; 547 } 548 549 static void destroy_inodecache(void) 550 { 551 kmem_cache_destroy(ext4_inode_cachep); 552 } 553 554 static void ext4_clear_inode(struct inode *inode) 555 { 556 struct ext4_block_alloc_info *rsv = EXT4_I(inode)->i_block_alloc_info; 557 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 558 if (EXT4_I(inode)->i_acl && 559 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) { 560 posix_acl_release(EXT4_I(inode)->i_acl); 561 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED; 562 } 563 if (EXT4_I(inode)->i_default_acl && 564 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) { 565 posix_acl_release(EXT4_I(inode)->i_default_acl); 566 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED; 567 } 568 #endif 569 ext4_discard_reservation(inode); 570 EXT4_I(inode)->i_block_alloc_info = NULL; 571 if (unlikely(rsv)) 572 kfree(rsv); 573 } 574 575 static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb) 576 { 577 #if defined(CONFIG_QUOTA) 578 struct ext4_sb_info *sbi = EXT4_SB(sb); 579 580 if (sbi->s_jquota_fmt) 581 seq_printf(seq, ",jqfmt=%s", 582 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold": "vfsv0"); 583 584 if (sbi->s_qf_names[USRQUOTA]) 585 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 586 587 if (sbi->s_qf_names[GRPQUOTA]) 588 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 589 590 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 591 seq_puts(seq, ",usrquota"); 592 593 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 594 seq_puts(seq, ",grpquota"); 595 #endif 596 } 597 598 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 599 { 600 struct super_block *sb = vfs->mnt_sb; 601 602 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 603 seq_puts(seq, ",data=journal"); 604 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 605 seq_puts(seq, ",data=ordered"); 606 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 607 seq_puts(seq, ",data=writeback"); 608 609 ext4_show_quota_options(seq, sb); 610 611 return 0; 612 } 613 614 615 static struct dentry *ext4_get_dentry(struct super_block *sb, void *vobjp) 616 { 617 __u32 *objp = vobjp; 618 unsigned long ino = objp[0]; 619 __u32 generation = objp[1]; 620 struct inode *inode; 621 struct dentry *result; 622 623 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 624 return ERR_PTR(-ESTALE); 625 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 626 return ERR_PTR(-ESTALE); 627 628 /* iget isn't really right if the inode is currently unallocated!! 629 * 630 * ext4_read_inode will return a bad_inode if the inode had been 631 * deleted, so we should be safe. 632 * 633 * Currently we don't know the generation for parent directory, so 634 * a generation of 0 means "accept any" 635 */ 636 inode = iget(sb, ino); 637 if (inode == NULL) 638 return ERR_PTR(-ENOMEM); 639 if (is_bad_inode(inode) || 640 (generation && inode->i_generation != generation)) { 641 iput(inode); 642 return ERR_PTR(-ESTALE); 643 } 644 /* now to find a dentry. 645 * If possible, get a well-connected one 646 */ 647 result = d_alloc_anon(inode); 648 if (!result) { 649 iput(inode); 650 return ERR_PTR(-ENOMEM); 651 } 652 return result; 653 } 654 655 #ifdef CONFIG_QUOTA 656 #define QTYPE2NAME(t) ((t)==USRQUOTA?"user":"group") 657 #define QTYPE2MOPT(on, t) ((t)==USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 658 659 static int ext4_dquot_initialize(struct inode *inode, int type); 660 static int ext4_dquot_drop(struct inode *inode); 661 static int ext4_write_dquot(struct dquot *dquot); 662 static int ext4_acquire_dquot(struct dquot *dquot); 663 static int ext4_release_dquot(struct dquot *dquot); 664 static int ext4_mark_dquot_dirty(struct dquot *dquot); 665 static int ext4_write_info(struct super_block *sb, int type); 666 static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *path); 667 static int ext4_quota_on_mount(struct super_block *sb, int type); 668 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 669 size_t len, loff_t off); 670 static ssize_t ext4_quota_write(struct super_block *sb, int type, 671 const char *data, size_t len, loff_t off); 672 673 static struct dquot_operations ext4_quota_operations = { 674 .initialize = ext4_dquot_initialize, 675 .drop = ext4_dquot_drop, 676 .alloc_space = dquot_alloc_space, 677 .alloc_inode = dquot_alloc_inode, 678 .free_space = dquot_free_space, 679 .free_inode = dquot_free_inode, 680 .transfer = dquot_transfer, 681 .write_dquot = ext4_write_dquot, 682 .acquire_dquot = ext4_acquire_dquot, 683 .release_dquot = ext4_release_dquot, 684 .mark_dirty = ext4_mark_dquot_dirty, 685 .write_info = ext4_write_info 686 }; 687 688 static struct quotactl_ops ext4_qctl_operations = { 689 .quota_on = ext4_quota_on, 690 .quota_off = vfs_quota_off, 691 .quota_sync = vfs_quota_sync, 692 .get_info = vfs_get_dqinfo, 693 .set_info = vfs_set_dqinfo, 694 .get_dqblk = vfs_get_dqblk, 695 .set_dqblk = vfs_set_dqblk 696 }; 697 #endif 698 699 static const struct super_operations ext4_sops = { 700 .alloc_inode = ext4_alloc_inode, 701 .destroy_inode = ext4_destroy_inode, 702 .read_inode = ext4_read_inode, 703 .write_inode = ext4_write_inode, 704 .dirty_inode = ext4_dirty_inode, 705 .delete_inode = ext4_delete_inode, 706 .put_super = ext4_put_super, 707 .write_super = ext4_write_super, 708 .sync_fs = ext4_sync_fs, 709 .write_super_lockfs = ext4_write_super_lockfs, 710 .unlockfs = ext4_unlockfs, 711 .statfs = ext4_statfs, 712 .remount_fs = ext4_remount, 713 .clear_inode = ext4_clear_inode, 714 .show_options = ext4_show_options, 715 #ifdef CONFIG_QUOTA 716 .quota_read = ext4_quota_read, 717 .quota_write = ext4_quota_write, 718 #endif 719 }; 720 721 static struct export_operations ext4_export_ops = { 722 .get_parent = ext4_get_parent, 723 .get_dentry = ext4_get_dentry, 724 }; 725 726 enum { 727 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 728 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 729 Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov, 730 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 731 Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh, 732 Opt_commit, Opt_journal_update, Opt_journal_inum, Opt_journal_dev, 733 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 734 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 735 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 736 Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota, 737 Opt_grpquota, Opt_extents, 738 }; 739 740 static match_table_t tokens = { 741 {Opt_bsd_df, "bsddf"}, 742 {Opt_minix_df, "minixdf"}, 743 {Opt_grpid, "grpid"}, 744 {Opt_grpid, "bsdgroups"}, 745 {Opt_nogrpid, "nogrpid"}, 746 {Opt_nogrpid, "sysvgroups"}, 747 {Opt_resgid, "resgid=%u"}, 748 {Opt_resuid, "resuid=%u"}, 749 {Opt_sb, "sb=%u"}, 750 {Opt_err_cont, "errors=continue"}, 751 {Opt_err_panic, "errors=panic"}, 752 {Opt_err_ro, "errors=remount-ro"}, 753 {Opt_nouid32, "nouid32"}, 754 {Opt_nocheck, "nocheck"}, 755 {Opt_nocheck, "check=none"}, 756 {Opt_debug, "debug"}, 757 {Opt_oldalloc, "oldalloc"}, 758 {Opt_orlov, "orlov"}, 759 {Opt_user_xattr, "user_xattr"}, 760 {Opt_nouser_xattr, "nouser_xattr"}, 761 {Opt_acl, "acl"}, 762 {Opt_noacl, "noacl"}, 763 {Opt_reservation, "reservation"}, 764 {Opt_noreservation, "noreservation"}, 765 {Opt_noload, "noload"}, 766 {Opt_nobh, "nobh"}, 767 {Opt_bh, "bh"}, 768 {Opt_commit, "commit=%u"}, 769 {Opt_journal_update, "journal=update"}, 770 {Opt_journal_inum, "journal=%u"}, 771 {Opt_journal_dev, "journal_dev=%u"}, 772 {Opt_abort, "abort"}, 773 {Opt_data_journal, "data=journal"}, 774 {Opt_data_ordered, "data=ordered"}, 775 {Opt_data_writeback, "data=writeback"}, 776 {Opt_offusrjquota, "usrjquota="}, 777 {Opt_usrjquota, "usrjquota=%s"}, 778 {Opt_offgrpjquota, "grpjquota="}, 779 {Opt_grpjquota, "grpjquota=%s"}, 780 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 781 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 782 {Opt_grpquota, "grpquota"}, 783 {Opt_noquota, "noquota"}, 784 {Opt_quota, "quota"}, 785 {Opt_usrquota, "usrquota"}, 786 {Opt_barrier, "barrier=%u"}, 787 {Opt_extents, "extents"}, 788 {Opt_err, NULL}, 789 {Opt_resize, "resize"}, 790 }; 791 792 static ext4_fsblk_t get_sb_block(void **data) 793 { 794 ext4_fsblk_t sb_block; 795 char *options = (char *) *data; 796 797 if (!options || strncmp(options, "sb=", 3) != 0) 798 return 1; /* Default location */ 799 options += 3; 800 /*todo: use simple_strtoll with >32bit ext4 */ 801 sb_block = simple_strtoul(options, &options, 0); 802 if (*options && *options != ',') { 803 printk("EXT4-fs: Invalid sb specification: %s\n", 804 (char *) *data); 805 return 1; 806 } 807 if (*options == ',') 808 options++; 809 *data = (void *) options; 810 return sb_block; 811 } 812 813 static int parse_options (char *options, struct super_block *sb, 814 unsigned int *inum, unsigned long *journal_devnum, 815 ext4_fsblk_t *n_blocks_count, int is_remount) 816 { 817 struct ext4_sb_info *sbi = EXT4_SB(sb); 818 char * p; 819 substring_t args[MAX_OPT_ARGS]; 820 int data_opt = 0; 821 int option; 822 #ifdef CONFIG_QUOTA 823 int qtype; 824 char *qname; 825 #endif 826 827 if (!options) 828 return 1; 829 830 while ((p = strsep (&options, ",")) != NULL) { 831 int token; 832 if (!*p) 833 continue; 834 835 token = match_token(p, tokens, args); 836 switch (token) { 837 case Opt_bsd_df: 838 clear_opt (sbi->s_mount_opt, MINIX_DF); 839 break; 840 case Opt_minix_df: 841 set_opt (sbi->s_mount_opt, MINIX_DF); 842 break; 843 case Opt_grpid: 844 set_opt (sbi->s_mount_opt, GRPID); 845 break; 846 case Opt_nogrpid: 847 clear_opt (sbi->s_mount_opt, GRPID); 848 break; 849 case Opt_resuid: 850 if (match_int(&args[0], &option)) 851 return 0; 852 sbi->s_resuid = option; 853 break; 854 case Opt_resgid: 855 if (match_int(&args[0], &option)) 856 return 0; 857 sbi->s_resgid = option; 858 break; 859 case Opt_sb: 860 /* handled by get_sb_block() instead of here */ 861 /* *sb_block = match_int(&args[0]); */ 862 break; 863 case Opt_err_panic: 864 clear_opt (sbi->s_mount_opt, ERRORS_CONT); 865 clear_opt (sbi->s_mount_opt, ERRORS_RO); 866 set_opt (sbi->s_mount_opt, ERRORS_PANIC); 867 break; 868 case Opt_err_ro: 869 clear_opt (sbi->s_mount_opt, ERRORS_CONT); 870 clear_opt (sbi->s_mount_opt, ERRORS_PANIC); 871 set_opt (sbi->s_mount_opt, ERRORS_RO); 872 break; 873 case Opt_err_cont: 874 clear_opt (sbi->s_mount_opt, ERRORS_RO); 875 clear_opt (sbi->s_mount_opt, ERRORS_PANIC); 876 set_opt (sbi->s_mount_opt, ERRORS_CONT); 877 break; 878 case Opt_nouid32: 879 set_opt (sbi->s_mount_opt, NO_UID32); 880 break; 881 case Opt_nocheck: 882 clear_opt (sbi->s_mount_opt, CHECK); 883 break; 884 case Opt_debug: 885 set_opt (sbi->s_mount_opt, DEBUG); 886 break; 887 case Opt_oldalloc: 888 set_opt (sbi->s_mount_opt, OLDALLOC); 889 break; 890 case Opt_orlov: 891 clear_opt (sbi->s_mount_opt, OLDALLOC); 892 break; 893 #ifdef CONFIG_EXT4DEV_FS_XATTR 894 case Opt_user_xattr: 895 set_opt (sbi->s_mount_opt, XATTR_USER); 896 break; 897 case Opt_nouser_xattr: 898 clear_opt (sbi->s_mount_opt, XATTR_USER); 899 break; 900 #else 901 case Opt_user_xattr: 902 case Opt_nouser_xattr: 903 printk("EXT4 (no)user_xattr options not supported\n"); 904 break; 905 #endif 906 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 907 case Opt_acl: 908 set_opt(sbi->s_mount_opt, POSIX_ACL); 909 break; 910 case Opt_noacl: 911 clear_opt(sbi->s_mount_opt, POSIX_ACL); 912 break; 913 #else 914 case Opt_acl: 915 case Opt_noacl: 916 printk("EXT4 (no)acl options not supported\n"); 917 break; 918 #endif 919 case Opt_reservation: 920 set_opt(sbi->s_mount_opt, RESERVATION); 921 break; 922 case Opt_noreservation: 923 clear_opt(sbi->s_mount_opt, RESERVATION); 924 break; 925 case Opt_journal_update: 926 /* @@@ FIXME */ 927 /* Eventually we will want to be able to create 928 a journal file here. For now, only allow the 929 user to specify an existing inode to be the 930 journal file. */ 931 if (is_remount) { 932 printk(KERN_ERR "EXT4-fs: cannot specify " 933 "journal on remount\n"); 934 return 0; 935 } 936 set_opt (sbi->s_mount_opt, UPDATE_JOURNAL); 937 break; 938 case Opt_journal_inum: 939 if (is_remount) { 940 printk(KERN_ERR "EXT4-fs: cannot specify " 941 "journal on remount\n"); 942 return 0; 943 } 944 if (match_int(&args[0], &option)) 945 return 0; 946 *inum = option; 947 break; 948 case Opt_journal_dev: 949 if (is_remount) { 950 printk(KERN_ERR "EXT4-fs: cannot specify " 951 "journal on remount\n"); 952 return 0; 953 } 954 if (match_int(&args[0], &option)) 955 return 0; 956 *journal_devnum = option; 957 break; 958 case Opt_noload: 959 set_opt (sbi->s_mount_opt, NOLOAD); 960 break; 961 case Opt_commit: 962 if (match_int(&args[0], &option)) 963 return 0; 964 if (option < 0) 965 return 0; 966 if (option == 0) 967 option = JBD_DEFAULT_MAX_COMMIT_AGE; 968 sbi->s_commit_interval = HZ * option; 969 break; 970 case Opt_data_journal: 971 data_opt = EXT4_MOUNT_JOURNAL_DATA; 972 goto datacheck; 973 case Opt_data_ordered: 974 data_opt = EXT4_MOUNT_ORDERED_DATA; 975 goto datacheck; 976 case Opt_data_writeback: 977 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 978 datacheck: 979 if (is_remount) { 980 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 981 != data_opt) { 982 printk(KERN_ERR 983 "EXT4-fs: cannot change data " 984 "mode on remount\n"); 985 return 0; 986 } 987 } else { 988 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 989 sbi->s_mount_opt |= data_opt; 990 } 991 break; 992 #ifdef CONFIG_QUOTA 993 case Opt_usrjquota: 994 qtype = USRQUOTA; 995 goto set_qf_name; 996 case Opt_grpjquota: 997 qtype = GRPQUOTA; 998 set_qf_name: 999 if (sb_any_quota_enabled(sb)) { 1000 printk(KERN_ERR 1001 "EXT4-fs: Cannot change journalled " 1002 "quota options when quota turned on.\n"); 1003 return 0; 1004 } 1005 qname = match_strdup(&args[0]); 1006 if (!qname) { 1007 printk(KERN_ERR 1008 "EXT4-fs: not enough memory for " 1009 "storing quotafile name.\n"); 1010 return 0; 1011 } 1012 if (sbi->s_qf_names[qtype] && 1013 strcmp(sbi->s_qf_names[qtype], qname)) { 1014 printk(KERN_ERR 1015 "EXT4-fs: %s quota file already " 1016 "specified.\n", QTYPE2NAME(qtype)); 1017 kfree(qname); 1018 return 0; 1019 } 1020 sbi->s_qf_names[qtype] = qname; 1021 if (strchr(sbi->s_qf_names[qtype], '/')) { 1022 printk(KERN_ERR 1023 "EXT4-fs: quotafile must be on " 1024 "filesystem root.\n"); 1025 kfree(sbi->s_qf_names[qtype]); 1026 sbi->s_qf_names[qtype] = NULL; 1027 return 0; 1028 } 1029 set_opt(sbi->s_mount_opt, QUOTA); 1030 break; 1031 case Opt_offusrjquota: 1032 qtype = USRQUOTA; 1033 goto clear_qf_name; 1034 case Opt_offgrpjquota: 1035 qtype = GRPQUOTA; 1036 clear_qf_name: 1037 if (sb_any_quota_enabled(sb)) { 1038 printk(KERN_ERR "EXT4-fs: Cannot change " 1039 "journalled quota options when " 1040 "quota turned on.\n"); 1041 return 0; 1042 } 1043 /* 1044 * The space will be released later when all options 1045 * are confirmed to be correct 1046 */ 1047 sbi->s_qf_names[qtype] = NULL; 1048 break; 1049 case Opt_jqfmt_vfsold: 1050 sbi->s_jquota_fmt = QFMT_VFS_OLD; 1051 break; 1052 case Opt_jqfmt_vfsv0: 1053 sbi->s_jquota_fmt = QFMT_VFS_V0; 1054 break; 1055 case Opt_quota: 1056 case Opt_usrquota: 1057 set_opt(sbi->s_mount_opt, QUOTA); 1058 set_opt(sbi->s_mount_opt, USRQUOTA); 1059 break; 1060 case Opt_grpquota: 1061 set_opt(sbi->s_mount_opt, QUOTA); 1062 set_opt(sbi->s_mount_opt, GRPQUOTA); 1063 break; 1064 case Opt_noquota: 1065 if (sb_any_quota_enabled(sb)) { 1066 printk(KERN_ERR "EXT4-fs: Cannot change quota " 1067 "options when quota turned on.\n"); 1068 return 0; 1069 } 1070 clear_opt(sbi->s_mount_opt, QUOTA); 1071 clear_opt(sbi->s_mount_opt, USRQUOTA); 1072 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1073 break; 1074 #else 1075 case Opt_quota: 1076 case Opt_usrquota: 1077 case Opt_grpquota: 1078 case Opt_usrjquota: 1079 case Opt_grpjquota: 1080 case Opt_offusrjquota: 1081 case Opt_offgrpjquota: 1082 case Opt_jqfmt_vfsold: 1083 case Opt_jqfmt_vfsv0: 1084 printk(KERN_ERR 1085 "EXT4-fs: journalled quota options not " 1086 "supported.\n"); 1087 break; 1088 case Opt_noquota: 1089 break; 1090 #endif 1091 case Opt_abort: 1092 set_opt(sbi->s_mount_opt, ABORT); 1093 break; 1094 case Opt_barrier: 1095 if (match_int(&args[0], &option)) 1096 return 0; 1097 if (option) 1098 set_opt(sbi->s_mount_opt, BARRIER); 1099 else 1100 clear_opt(sbi->s_mount_opt, BARRIER); 1101 break; 1102 case Opt_ignore: 1103 break; 1104 case Opt_resize: 1105 if (!is_remount) { 1106 printk("EXT4-fs: resize option only available " 1107 "for remount\n"); 1108 return 0; 1109 } 1110 if (match_int(&args[0], &option) != 0) 1111 return 0; 1112 *n_blocks_count = option; 1113 break; 1114 case Opt_nobh: 1115 set_opt(sbi->s_mount_opt, NOBH); 1116 break; 1117 case Opt_bh: 1118 clear_opt(sbi->s_mount_opt, NOBH); 1119 break; 1120 case Opt_extents: 1121 set_opt (sbi->s_mount_opt, EXTENTS); 1122 break; 1123 default: 1124 printk (KERN_ERR 1125 "EXT4-fs: Unrecognized mount option \"%s\" " 1126 "or missing value\n", p); 1127 return 0; 1128 } 1129 } 1130 #ifdef CONFIG_QUOTA 1131 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1132 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1133 sbi->s_qf_names[USRQUOTA]) 1134 clear_opt(sbi->s_mount_opt, USRQUOTA); 1135 1136 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1137 sbi->s_qf_names[GRPQUOTA]) 1138 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1139 1140 if ((sbi->s_qf_names[USRQUOTA] && 1141 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1142 (sbi->s_qf_names[GRPQUOTA] && 1143 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1144 printk(KERN_ERR "EXT4-fs: old and new quota " 1145 "format mixing.\n"); 1146 return 0; 1147 } 1148 1149 if (!sbi->s_jquota_fmt) { 1150 printk(KERN_ERR "EXT4-fs: journalled quota format " 1151 "not specified.\n"); 1152 return 0; 1153 } 1154 } else { 1155 if (sbi->s_jquota_fmt) { 1156 printk(KERN_ERR "EXT4-fs: journalled quota format " 1157 "specified with no journalling " 1158 "enabled.\n"); 1159 return 0; 1160 } 1161 } 1162 #endif 1163 return 1; 1164 } 1165 1166 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1167 int read_only) 1168 { 1169 struct ext4_sb_info *sbi = EXT4_SB(sb); 1170 int res = 0; 1171 1172 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1173 printk (KERN_ERR "EXT4-fs warning: revision level too high, " 1174 "forcing read-only mode\n"); 1175 res = MS_RDONLY; 1176 } 1177 if (read_only) 1178 return res; 1179 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1180 printk (KERN_WARNING "EXT4-fs warning: mounting unchecked fs, " 1181 "running e2fsck is recommended\n"); 1182 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1183 printk (KERN_WARNING 1184 "EXT4-fs warning: mounting fs with errors, " 1185 "running e2fsck is recommended\n"); 1186 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1187 le16_to_cpu(es->s_mnt_count) >= 1188 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1189 printk (KERN_WARNING 1190 "EXT4-fs warning: maximal mount count reached, " 1191 "running e2fsck is recommended\n"); 1192 else if (le32_to_cpu(es->s_checkinterval) && 1193 (le32_to_cpu(es->s_lastcheck) + 1194 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1195 printk (KERN_WARNING 1196 "EXT4-fs warning: checktime reached, " 1197 "running e2fsck is recommended\n"); 1198 #if 0 1199 /* @@@ We _will_ want to clear the valid bit if we find 1200 * inconsistencies, to force a fsck at reboot. But for 1201 * a plain journaled filesystem we can keep it set as 1202 * valid forever! :) 1203 */ 1204 es->s_state = cpu_to_le16(le16_to_cpu(es->s_state) & ~EXT4_VALID_FS); 1205 #endif 1206 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1207 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1208 es->s_mnt_count=cpu_to_le16(le16_to_cpu(es->s_mnt_count) + 1); 1209 es->s_mtime = cpu_to_le32(get_seconds()); 1210 ext4_update_dynamic_rev(sb); 1211 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1212 1213 ext4_commit_super(sb, es, 1); 1214 if (test_opt(sb, DEBUG)) 1215 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%lu, " 1216 "bpg=%lu, ipg=%lu, mo=%04lx]\n", 1217 sb->s_blocksize, 1218 sbi->s_groups_count, 1219 EXT4_BLOCKS_PER_GROUP(sb), 1220 EXT4_INODES_PER_GROUP(sb), 1221 sbi->s_mount_opt); 1222 1223 printk(KERN_INFO "EXT4 FS on %s, ", sb->s_id); 1224 if (EXT4_SB(sb)->s_journal->j_inode == NULL) { 1225 char b[BDEVNAME_SIZE]; 1226 1227 printk("external journal on %s\n", 1228 bdevname(EXT4_SB(sb)->s_journal->j_dev, b)); 1229 } else { 1230 printk("internal journal\n"); 1231 } 1232 return res; 1233 } 1234 1235 /* Called at mount-time, super-block is locked */ 1236 static int ext4_check_descriptors (struct super_block * sb) 1237 { 1238 struct ext4_sb_info *sbi = EXT4_SB(sb); 1239 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1240 ext4_fsblk_t last_block; 1241 ext4_fsblk_t block_bitmap; 1242 ext4_fsblk_t inode_bitmap; 1243 ext4_fsblk_t inode_table; 1244 struct ext4_group_desc * gdp = NULL; 1245 int desc_block = 0; 1246 int i; 1247 1248 ext4_debug ("Checking group descriptors"); 1249 1250 for (i = 0; i < sbi->s_groups_count; i++) 1251 { 1252 if (i == sbi->s_groups_count - 1) 1253 last_block = ext4_blocks_count(sbi->s_es) - 1; 1254 else 1255 last_block = first_block + 1256 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1257 1258 if ((i % EXT4_DESC_PER_BLOCK(sb)) == 0) 1259 gdp = (struct ext4_group_desc *) 1260 sbi->s_group_desc[desc_block++]->b_data; 1261 block_bitmap = ext4_block_bitmap(sb, gdp); 1262 if (block_bitmap < first_block || block_bitmap > last_block) 1263 { 1264 ext4_error (sb, "ext4_check_descriptors", 1265 "Block bitmap for group %d" 1266 " not in group (block %llu)!", 1267 i, block_bitmap); 1268 return 0; 1269 } 1270 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1271 if (inode_bitmap < first_block || inode_bitmap > last_block) 1272 { 1273 ext4_error (sb, "ext4_check_descriptors", 1274 "Inode bitmap for group %d" 1275 " not in group (block %llu)!", 1276 i, inode_bitmap); 1277 return 0; 1278 } 1279 inode_table = ext4_inode_table(sb, gdp); 1280 if (inode_table < first_block || 1281 inode_table + sbi->s_itb_per_group > last_block) 1282 { 1283 ext4_error (sb, "ext4_check_descriptors", 1284 "Inode table for group %d" 1285 " not in group (block %llu)!", 1286 i, inode_table); 1287 return 0; 1288 } 1289 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1290 gdp = (struct ext4_group_desc *) 1291 ((__u8 *)gdp + EXT4_DESC_SIZE(sb)); 1292 } 1293 1294 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1295 sbi->s_es->s_free_inodes_count=cpu_to_le32(ext4_count_free_inodes(sb)); 1296 return 1; 1297 } 1298 1299 1300 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1301 * the superblock) which were deleted from all directories, but held open by 1302 * a process at the time of a crash. We walk the list and try to delete these 1303 * inodes at recovery time (only with a read-write filesystem). 1304 * 1305 * In order to keep the orphan inode chain consistent during traversal (in 1306 * case of crash during recovery), we link each inode into the superblock 1307 * orphan list_head and handle it the same way as an inode deletion during 1308 * normal operation (which journals the operations for us). 1309 * 1310 * We only do an iget() and an iput() on each inode, which is very safe if we 1311 * accidentally point at an in-use or already deleted inode. The worst that 1312 * can happen in this case is that we get a "bit already cleared" message from 1313 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1314 * e2fsck was run on this filesystem, and it must have already done the orphan 1315 * inode cleanup for us, so we can safely abort without any further action. 1316 */ 1317 static void ext4_orphan_cleanup (struct super_block * sb, 1318 struct ext4_super_block * es) 1319 { 1320 unsigned int s_flags = sb->s_flags; 1321 int nr_orphans = 0, nr_truncates = 0; 1322 #ifdef CONFIG_QUOTA 1323 int i; 1324 #endif 1325 if (!es->s_last_orphan) { 1326 jbd_debug(4, "no orphan inodes to clean up\n"); 1327 return; 1328 } 1329 1330 if (bdev_read_only(sb->s_bdev)) { 1331 printk(KERN_ERR "EXT4-fs: write access " 1332 "unavailable, skipping orphan cleanup.\n"); 1333 return; 1334 } 1335 1336 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1337 if (es->s_last_orphan) 1338 jbd_debug(1, "Errors on filesystem, " 1339 "clearing orphan list.\n"); 1340 es->s_last_orphan = 0; 1341 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1342 return; 1343 } 1344 1345 if (s_flags & MS_RDONLY) { 1346 printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n", 1347 sb->s_id); 1348 sb->s_flags &= ~MS_RDONLY; 1349 } 1350 #ifdef CONFIG_QUOTA 1351 /* Needed for iput() to work correctly and not trash data */ 1352 sb->s_flags |= MS_ACTIVE; 1353 /* Turn on quotas so that they are updated correctly */ 1354 for (i = 0; i < MAXQUOTAS; i++) { 1355 if (EXT4_SB(sb)->s_qf_names[i]) { 1356 int ret = ext4_quota_on_mount(sb, i); 1357 if (ret < 0) 1358 printk(KERN_ERR 1359 "EXT4-fs: Cannot turn on journalled " 1360 "quota: error %d\n", ret); 1361 } 1362 } 1363 #endif 1364 1365 while (es->s_last_orphan) { 1366 struct inode *inode; 1367 1368 if (!(inode = 1369 ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)))) { 1370 es->s_last_orphan = 0; 1371 break; 1372 } 1373 1374 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1375 DQUOT_INIT(inode); 1376 if (inode->i_nlink) { 1377 printk(KERN_DEBUG 1378 "%s: truncating inode %lu to %Ld bytes\n", 1379 __FUNCTION__, inode->i_ino, inode->i_size); 1380 jbd_debug(2, "truncating inode %lu to %Ld bytes\n", 1381 inode->i_ino, inode->i_size); 1382 ext4_truncate(inode); 1383 nr_truncates++; 1384 } else { 1385 printk(KERN_DEBUG 1386 "%s: deleting unreferenced inode %lu\n", 1387 __FUNCTION__, inode->i_ino); 1388 jbd_debug(2, "deleting unreferenced inode %lu\n", 1389 inode->i_ino); 1390 nr_orphans++; 1391 } 1392 iput(inode); /* The delete magic happens here! */ 1393 } 1394 1395 #define PLURAL(x) (x), ((x)==1) ? "" : "s" 1396 1397 if (nr_orphans) 1398 printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n", 1399 sb->s_id, PLURAL(nr_orphans)); 1400 if (nr_truncates) 1401 printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n", 1402 sb->s_id, PLURAL(nr_truncates)); 1403 #ifdef CONFIG_QUOTA 1404 /* Turn quotas off */ 1405 for (i = 0; i < MAXQUOTAS; i++) { 1406 if (sb_dqopt(sb)->files[i]) 1407 vfs_quota_off(sb, i); 1408 } 1409 #endif 1410 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1411 } 1412 1413 #define log2(n) ffz(~(n)) 1414 1415 /* 1416 * Maximal file size. There is a direct, and {,double-,triple-}indirect 1417 * block limit, and also a limit of (2^32 - 1) 512-byte sectors in i_blocks. 1418 * We need to be 1 filesystem block less than the 2^32 sector limit. 1419 */ 1420 static loff_t ext4_max_size(int bits) 1421 { 1422 loff_t res = EXT4_NDIR_BLOCKS; 1423 /* This constant is calculated to be the largest file size for a 1424 * dense, 4k-blocksize file such that the total number of 1425 * sectors in the file, including data and all indirect blocks, 1426 * does not exceed 2^32. */ 1427 const loff_t upper_limit = 0x1ff7fffd000LL; 1428 1429 res += 1LL << (bits-2); 1430 res += 1LL << (2*(bits-2)); 1431 res += 1LL << (3*(bits-2)); 1432 res <<= bits; 1433 if (res > upper_limit) 1434 res = upper_limit; 1435 return res; 1436 } 1437 1438 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 1439 ext4_fsblk_t logical_sb_block, int nr) 1440 { 1441 struct ext4_sb_info *sbi = EXT4_SB(sb); 1442 unsigned long bg, first_meta_bg; 1443 int has_super = 0; 1444 1445 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 1446 1447 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 1448 nr < first_meta_bg) 1449 return logical_sb_block + nr + 1; 1450 bg = sbi->s_desc_per_block * nr; 1451 if (ext4_bg_has_super(sb, bg)) 1452 has_super = 1; 1453 return (has_super + ext4_group_first_block_no(sb, bg)); 1454 } 1455 1456 1457 static int ext4_fill_super (struct super_block *sb, void *data, int silent) 1458 { 1459 struct buffer_head * bh; 1460 struct ext4_super_block *es = NULL; 1461 struct ext4_sb_info *sbi; 1462 ext4_fsblk_t block; 1463 ext4_fsblk_t sb_block = get_sb_block(&data); 1464 ext4_fsblk_t logical_sb_block; 1465 unsigned long offset = 0; 1466 unsigned int journal_inum = 0; 1467 unsigned long journal_devnum = 0; 1468 unsigned long def_mount_opts; 1469 struct inode *root; 1470 int blocksize; 1471 int hblock; 1472 int db_count; 1473 int i; 1474 int needs_recovery; 1475 __le32 features; 1476 __u64 blocks_count; 1477 1478 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1479 if (!sbi) 1480 return -ENOMEM; 1481 sb->s_fs_info = sbi; 1482 sbi->s_mount_opt = 0; 1483 sbi->s_resuid = EXT4_DEF_RESUID; 1484 sbi->s_resgid = EXT4_DEF_RESGID; 1485 1486 unlock_kernel(); 1487 1488 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 1489 if (!blocksize) { 1490 printk(KERN_ERR "EXT4-fs: unable to set blocksize\n"); 1491 goto out_fail; 1492 } 1493 1494 /* 1495 * The ext4 superblock will not be buffer aligned for other than 1kB 1496 * block sizes. We need to calculate the offset from buffer start. 1497 */ 1498 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 1499 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 1500 offset = do_div(logical_sb_block, blocksize); 1501 } else { 1502 logical_sb_block = sb_block; 1503 } 1504 1505 if (!(bh = sb_bread(sb, logical_sb_block))) { 1506 printk (KERN_ERR "EXT4-fs: unable to read superblock\n"); 1507 goto out_fail; 1508 } 1509 /* 1510 * Note: s_es must be initialized as soon as possible because 1511 * some ext4 macro-instructions depend on its value 1512 */ 1513 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 1514 sbi->s_es = es; 1515 sb->s_magic = le16_to_cpu(es->s_magic); 1516 if (sb->s_magic != EXT4_SUPER_MAGIC) 1517 goto cantfind_ext4; 1518 1519 /* Set defaults before we parse the mount options */ 1520 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 1521 if (def_mount_opts & EXT4_DEFM_DEBUG) 1522 set_opt(sbi->s_mount_opt, DEBUG); 1523 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 1524 set_opt(sbi->s_mount_opt, GRPID); 1525 if (def_mount_opts & EXT4_DEFM_UID16) 1526 set_opt(sbi->s_mount_opt, NO_UID32); 1527 #ifdef CONFIG_EXT4DEV_FS_XATTR 1528 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 1529 set_opt(sbi->s_mount_opt, XATTR_USER); 1530 #endif 1531 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 1532 if (def_mount_opts & EXT4_DEFM_ACL) 1533 set_opt(sbi->s_mount_opt, POSIX_ACL); 1534 #endif 1535 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 1536 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 1537 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 1538 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 1539 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 1540 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 1541 1542 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 1543 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1544 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_RO) 1545 set_opt(sbi->s_mount_opt, ERRORS_RO); 1546 else 1547 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1548 1549 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 1550 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 1551 1552 set_opt(sbi->s_mount_opt, RESERVATION); 1553 1554 if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum, 1555 NULL, 0)) 1556 goto failed_mount; 1557 1558 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1559 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 1560 1561 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 1562 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 1563 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 1564 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 1565 printk(KERN_WARNING 1566 "EXT4-fs warning: feature flags set on rev 0 fs, " 1567 "running e2fsck is recommended\n"); 1568 /* 1569 * Check feature flags regardless of the revision level, since we 1570 * previously didn't change the revision level when setting the flags, 1571 * so there is a chance incompat flags are set on a rev 0 filesystem. 1572 */ 1573 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); 1574 if (features) { 1575 printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of " 1576 "unsupported optional features (%x).\n", 1577 sb->s_id, le32_to_cpu(features)); 1578 goto failed_mount; 1579 } 1580 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); 1581 if (!(sb->s_flags & MS_RDONLY) && features) { 1582 printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of " 1583 "unsupported optional features (%x).\n", 1584 sb->s_id, le32_to_cpu(features)); 1585 goto failed_mount; 1586 } 1587 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 1588 1589 if (blocksize < EXT4_MIN_BLOCK_SIZE || 1590 blocksize > EXT4_MAX_BLOCK_SIZE) { 1591 printk(KERN_ERR 1592 "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n", 1593 blocksize, sb->s_id); 1594 goto failed_mount; 1595 } 1596 1597 hblock = bdev_hardsect_size(sb->s_bdev); 1598 if (sb->s_blocksize != blocksize) { 1599 /* 1600 * Make sure the blocksize for the filesystem is larger 1601 * than the hardware sectorsize for the machine. 1602 */ 1603 if (blocksize < hblock) { 1604 printk(KERN_ERR "EXT4-fs: blocksize %d too small for " 1605 "device blocksize %d.\n", blocksize, hblock); 1606 goto failed_mount; 1607 } 1608 1609 brelse (bh); 1610 sb_set_blocksize(sb, blocksize); 1611 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 1612 offset = do_div(logical_sb_block, blocksize); 1613 bh = sb_bread(sb, logical_sb_block); 1614 if (!bh) { 1615 printk(KERN_ERR 1616 "EXT4-fs: Can't read superblock on 2nd try.\n"); 1617 goto failed_mount; 1618 } 1619 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 1620 sbi->s_es = es; 1621 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 1622 printk (KERN_ERR 1623 "EXT4-fs: Magic mismatch, very weird !\n"); 1624 goto failed_mount; 1625 } 1626 } 1627 1628 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits); 1629 1630 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 1631 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 1632 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 1633 } else { 1634 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 1635 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 1636 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 1637 (sbi->s_inode_size & (sbi->s_inode_size - 1)) || 1638 (sbi->s_inode_size > blocksize)) { 1639 printk (KERN_ERR 1640 "EXT4-fs: unsupported inode size: %d\n", 1641 sbi->s_inode_size); 1642 goto failed_mount; 1643 } 1644 } 1645 sbi->s_frag_size = EXT4_MIN_FRAG_SIZE << 1646 le32_to_cpu(es->s_log_frag_size); 1647 if (blocksize != sbi->s_frag_size) { 1648 printk(KERN_ERR 1649 "EXT4-fs: fragsize %lu != blocksize %u (unsupported)\n", 1650 sbi->s_frag_size, blocksize); 1651 goto failed_mount; 1652 } 1653 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 1654 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 1655 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 1656 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 1657 sbi->s_desc_size & (sbi->s_desc_size - 1)) { 1658 printk(KERN_ERR 1659 "EXT4-fs: unsupported descriptor size %lu\n", 1660 sbi->s_desc_size); 1661 goto failed_mount; 1662 } 1663 } else 1664 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 1665 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 1666 sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group); 1667 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 1668 if (EXT4_INODE_SIZE(sb) == 0) 1669 goto cantfind_ext4; 1670 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 1671 if (sbi->s_inodes_per_block == 0) 1672 goto cantfind_ext4; 1673 sbi->s_itb_per_group = sbi->s_inodes_per_group / 1674 sbi->s_inodes_per_block; 1675 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 1676 sbi->s_sbh = bh; 1677 sbi->s_mount_state = le16_to_cpu(es->s_state); 1678 sbi->s_addr_per_block_bits = log2(EXT4_ADDR_PER_BLOCK(sb)); 1679 sbi->s_desc_per_block_bits = log2(EXT4_DESC_PER_BLOCK(sb)); 1680 for (i=0; i < 4; i++) 1681 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 1682 sbi->s_def_hash_version = es->s_def_hash_version; 1683 1684 if (sbi->s_blocks_per_group > blocksize * 8) { 1685 printk (KERN_ERR 1686 "EXT4-fs: #blocks per group too big: %lu\n", 1687 sbi->s_blocks_per_group); 1688 goto failed_mount; 1689 } 1690 if (sbi->s_frags_per_group > blocksize * 8) { 1691 printk (KERN_ERR 1692 "EXT4-fs: #fragments per group too big: %lu\n", 1693 sbi->s_frags_per_group); 1694 goto failed_mount; 1695 } 1696 if (sbi->s_inodes_per_group > blocksize * 8) { 1697 printk (KERN_ERR 1698 "EXT4-fs: #inodes per group too big: %lu\n", 1699 sbi->s_inodes_per_group); 1700 goto failed_mount; 1701 } 1702 1703 if (ext4_blocks_count(es) > 1704 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { 1705 printk(KERN_ERR "EXT4-fs: filesystem on %s:" 1706 " too large to mount safely\n", sb->s_id); 1707 if (sizeof(sector_t) < 8) 1708 printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not " 1709 "enabled\n"); 1710 goto failed_mount; 1711 } 1712 1713 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 1714 goto cantfind_ext4; 1715 blocks_count = (ext4_blocks_count(es) - 1716 le32_to_cpu(es->s_first_data_block) + 1717 EXT4_BLOCKS_PER_GROUP(sb) - 1); 1718 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 1719 sbi->s_groups_count = blocks_count; 1720 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 1721 EXT4_DESC_PER_BLOCK(sb); 1722 sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *), 1723 GFP_KERNEL); 1724 if (sbi->s_group_desc == NULL) { 1725 printk (KERN_ERR "EXT4-fs: not enough memory\n"); 1726 goto failed_mount; 1727 } 1728 1729 bgl_lock_init(&sbi->s_blockgroup_lock); 1730 1731 for (i = 0; i < db_count; i++) { 1732 block = descriptor_loc(sb, logical_sb_block, i); 1733 sbi->s_group_desc[i] = sb_bread(sb, block); 1734 if (!sbi->s_group_desc[i]) { 1735 printk (KERN_ERR "EXT4-fs: " 1736 "can't read group descriptor %d\n", i); 1737 db_count = i; 1738 goto failed_mount2; 1739 } 1740 } 1741 if (!ext4_check_descriptors (sb)) { 1742 printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n"); 1743 goto failed_mount2; 1744 } 1745 sbi->s_gdb_count = db_count; 1746 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1747 spin_lock_init(&sbi->s_next_gen_lock); 1748 1749 percpu_counter_init(&sbi->s_freeblocks_counter, 1750 ext4_count_free_blocks(sb)); 1751 percpu_counter_init(&sbi->s_freeinodes_counter, 1752 ext4_count_free_inodes(sb)); 1753 percpu_counter_init(&sbi->s_dirs_counter, 1754 ext4_count_dirs(sb)); 1755 1756 /* per fileystem reservation list head & lock */ 1757 spin_lock_init(&sbi->s_rsv_window_lock); 1758 sbi->s_rsv_window_root = RB_ROOT; 1759 /* Add a single, static dummy reservation to the start of the 1760 * reservation window list --- it gives us a placeholder for 1761 * append-at-start-of-list which makes the allocation logic 1762 * _much_ simpler. */ 1763 sbi->s_rsv_window_head.rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 1764 sbi->s_rsv_window_head.rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 1765 sbi->s_rsv_window_head.rsv_alloc_hit = 0; 1766 sbi->s_rsv_window_head.rsv_goal_size = 0; 1767 ext4_rsv_window_add(sb, &sbi->s_rsv_window_head); 1768 1769 /* 1770 * set up enough so that it can read an inode 1771 */ 1772 sb->s_op = &ext4_sops; 1773 sb->s_export_op = &ext4_export_ops; 1774 sb->s_xattr = ext4_xattr_handlers; 1775 #ifdef CONFIG_QUOTA 1776 sb->s_qcop = &ext4_qctl_operations; 1777 sb->dq_op = &ext4_quota_operations; 1778 #endif 1779 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 1780 1781 sb->s_root = NULL; 1782 1783 needs_recovery = (es->s_last_orphan != 0 || 1784 EXT4_HAS_INCOMPAT_FEATURE(sb, 1785 EXT4_FEATURE_INCOMPAT_RECOVER)); 1786 1787 /* 1788 * The first inode we look at is the journal inode. Don't try 1789 * root first: it may be modified in the journal! 1790 */ 1791 if (!test_opt(sb, NOLOAD) && 1792 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 1793 if (ext4_load_journal(sb, es, journal_devnum)) 1794 goto failed_mount3; 1795 } else if (journal_inum) { 1796 if (ext4_create_journal(sb, es, journal_inum)) 1797 goto failed_mount3; 1798 } else { 1799 if (!silent) 1800 printk (KERN_ERR 1801 "ext4: No journal on filesystem on %s\n", 1802 sb->s_id); 1803 goto failed_mount3; 1804 } 1805 1806 /* We have now updated the journal if required, so we can 1807 * validate the data journaling mode. */ 1808 switch (test_opt(sb, DATA_FLAGS)) { 1809 case 0: 1810 /* No mode set, assume a default based on the journal 1811 * capabilities: ORDERED_DATA if the journal can 1812 * cope, else JOURNAL_DATA 1813 */ 1814 if (jbd2_journal_check_available_features 1815 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 1816 set_opt(sbi->s_mount_opt, ORDERED_DATA); 1817 else 1818 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 1819 break; 1820 1821 case EXT4_MOUNT_ORDERED_DATA: 1822 case EXT4_MOUNT_WRITEBACK_DATA: 1823 if (!jbd2_journal_check_available_features 1824 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 1825 printk(KERN_ERR "EXT4-fs: Journal does not support " 1826 "requested data journaling mode\n"); 1827 goto failed_mount4; 1828 } 1829 default: 1830 break; 1831 } 1832 1833 if (test_opt(sb, NOBH)) { 1834 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 1835 printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - " 1836 "its supported only with writeback mode\n"); 1837 clear_opt(sbi->s_mount_opt, NOBH); 1838 } 1839 } 1840 /* 1841 * The jbd2_journal_load will have done any necessary log recovery, 1842 * so we can safely mount the rest of the filesystem now. 1843 */ 1844 1845 root = iget(sb, EXT4_ROOT_INO); 1846 sb->s_root = d_alloc_root(root); 1847 if (!sb->s_root) { 1848 printk(KERN_ERR "EXT4-fs: get root inode failed\n"); 1849 iput(root); 1850 goto failed_mount4; 1851 } 1852 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1853 dput(sb->s_root); 1854 sb->s_root = NULL; 1855 printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n"); 1856 goto failed_mount4; 1857 } 1858 1859 ext4_setup_super (sb, es, sb->s_flags & MS_RDONLY); 1860 /* 1861 * akpm: core read_super() calls in here with the superblock locked. 1862 * That deadlocks, because orphan cleanup needs to lock the superblock 1863 * in numerous places. Here we just pop the lock - it's relatively 1864 * harmless, because we are now ready to accept write_super() requests, 1865 * and aviro says that's the only reason for hanging onto the 1866 * superblock lock. 1867 */ 1868 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 1869 ext4_orphan_cleanup(sb, es); 1870 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 1871 if (needs_recovery) 1872 printk (KERN_INFO "EXT4-fs: recovery complete.\n"); 1873 ext4_mark_recovery_complete(sb, es); 1874 printk (KERN_INFO "EXT4-fs: mounted filesystem with %s data mode.\n", 1875 test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ? "journal": 1876 test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA ? "ordered": 1877 "writeback"); 1878 1879 ext4_ext_init(sb); 1880 1881 lock_kernel(); 1882 return 0; 1883 1884 cantfind_ext4: 1885 if (!silent) 1886 printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n", 1887 sb->s_id); 1888 goto failed_mount; 1889 1890 failed_mount4: 1891 jbd2_journal_destroy(sbi->s_journal); 1892 failed_mount3: 1893 percpu_counter_destroy(&sbi->s_freeblocks_counter); 1894 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1895 percpu_counter_destroy(&sbi->s_dirs_counter); 1896 failed_mount2: 1897 for (i = 0; i < db_count; i++) 1898 brelse(sbi->s_group_desc[i]); 1899 kfree(sbi->s_group_desc); 1900 failed_mount: 1901 #ifdef CONFIG_QUOTA 1902 for (i = 0; i < MAXQUOTAS; i++) 1903 kfree(sbi->s_qf_names[i]); 1904 #endif 1905 ext4_blkdev_remove(sbi); 1906 brelse(bh); 1907 out_fail: 1908 sb->s_fs_info = NULL; 1909 kfree(sbi); 1910 lock_kernel(); 1911 return -EINVAL; 1912 } 1913 1914 /* 1915 * Setup any per-fs journal parameters now. We'll do this both on 1916 * initial mount, once the journal has been initialised but before we've 1917 * done any recovery; and again on any subsequent remount. 1918 */ 1919 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 1920 { 1921 struct ext4_sb_info *sbi = EXT4_SB(sb); 1922 1923 if (sbi->s_commit_interval) 1924 journal->j_commit_interval = sbi->s_commit_interval; 1925 /* We could also set up an ext4-specific default for the commit 1926 * interval here, but for now we'll just fall back to the jbd 1927 * default. */ 1928 1929 spin_lock(&journal->j_state_lock); 1930 if (test_opt(sb, BARRIER)) 1931 journal->j_flags |= JBD2_BARRIER; 1932 else 1933 journal->j_flags &= ~JBD2_BARRIER; 1934 spin_unlock(&journal->j_state_lock); 1935 } 1936 1937 static journal_t *ext4_get_journal(struct super_block *sb, 1938 unsigned int journal_inum) 1939 { 1940 struct inode *journal_inode; 1941 journal_t *journal; 1942 1943 /* First, test for the existence of a valid inode on disk. Bad 1944 * things happen if we iget() an unused inode, as the subsequent 1945 * iput() will try to delete it. */ 1946 1947 journal_inode = iget(sb, journal_inum); 1948 if (!journal_inode) { 1949 printk(KERN_ERR "EXT4-fs: no journal found.\n"); 1950 return NULL; 1951 } 1952 if (!journal_inode->i_nlink) { 1953 make_bad_inode(journal_inode); 1954 iput(journal_inode); 1955 printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n"); 1956 return NULL; 1957 } 1958 1959 jbd_debug(2, "Journal inode found at %p: %Ld bytes\n", 1960 journal_inode, journal_inode->i_size); 1961 if (is_bad_inode(journal_inode) || !S_ISREG(journal_inode->i_mode)) { 1962 printk(KERN_ERR "EXT4-fs: invalid journal inode.\n"); 1963 iput(journal_inode); 1964 return NULL; 1965 } 1966 1967 journal = jbd2_journal_init_inode(journal_inode); 1968 if (!journal) { 1969 printk(KERN_ERR "EXT4-fs: Could not load journal inode\n"); 1970 iput(journal_inode); 1971 return NULL; 1972 } 1973 journal->j_private = sb; 1974 ext4_init_journal_params(sb, journal); 1975 return journal; 1976 } 1977 1978 static journal_t *ext4_get_dev_journal(struct super_block *sb, 1979 dev_t j_dev) 1980 { 1981 struct buffer_head * bh; 1982 journal_t *journal; 1983 ext4_fsblk_t start; 1984 ext4_fsblk_t len; 1985 int hblock, blocksize; 1986 ext4_fsblk_t sb_block; 1987 unsigned long offset; 1988 struct ext4_super_block * es; 1989 struct block_device *bdev; 1990 1991 bdev = ext4_blkdev_get(j_dev); 1992 if (bdev == NULL) 1993 return NULL; 1994 1995 if (bd_claim(bdev, sb)) { 1996 printk(KERN_ERR 1997 "EXT4: failed to claim external journal device.\n"); 1998 blkdev_put(bdev); 1999 return NULL; 2000 } 2001 2002 blocksize = sb->s_blocksize; 2003 hblock = bdev_hardsect_size(bdev); 2004 if (blocksize < hblock) { 2005 printk(KERN_ERR 2006 "EXT4-fs: blocksize too small for journal device.\n"); 2007 goto out_bdev; 2008 } 2009 2010 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 2011 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 2012 set_blocksize(bdev, blocksize); 2013 if (!(bh = __bread(bdev, sb_block, blocksize))) { 2014 printk(KERN_ERR "EXT4-fs: couldn't read superblock of " 2015 "external journal\n"); 2016 goto out_bdev; 2017 } 2018 2019 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2020 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 2021 !(le32_to_cpu(es->s_feature_incompat) & 2022 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 2023 printk(KERN_ERR "EXT4-fs: external journal has " 2024 "bad superblock\n"); 2025 brelse(bh); 2026 goto out_bdev; 2027 } 2028 2029 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 2030 printk(KERN_ERR "EXT4-fs: journal UUID does not match\n"); 2031 brelse(bh); 2032 goto out_bdev; 2033 } 2034 2035 len = ext4_blocks_count(es); 2036 start = sb_block + 1; 2037 brelse(bh); /* we're done with the superblock */ 2038 2039 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 2040 start, len, blocksize); 2041 if (!journal) { 2042 printk(KERN_ERR "EXT4-fs: failed to create device journal\n"); 2043 goto out_bdev; 2044 } 2045 journal->j_private = sb; 2046 ll_rw_block(READ, 1, &journal->j_sb_buffer); 2047 wait_on_buffer(journal->j_sb_buffer); 2048 if (!buffer_uptodate(journal->j_sb_buffer)) { 2049 printk(KERN_ERR "EXT4-fs: I/O error on journal device\n"); 2050 goto out_journal; 2051 } 2052 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 2053 printk(KERN_ERR "EXT4-fs: External journal has more than one " 2054 "user (unsupported) - %d\n", 2055 be32_to_cpu(journal->j_superblock->s_nr_users)); 2056 goto out_journal; 2057 } 2058 EXT4_SB(sb)->journal_bdev = bdev; 2059 ext4_init_journal_params(sb, journal); 2060 return journal; 2061 out_journal: 2062 jbd2_journal_destroy(journal); 2063 out_bdev: 2064 ext4_blkdev_put(bdev); 2065 return NULL; 2066 } 2067 2068 static int ext4_load_journal(struct super_block *sb, 2069 struct ext4_super_block *es, 2070 unsigned long journal_devnum) 2071 { 2072 journal_t *journal; 2073 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 2074 dev_t journal_dev; 2075 int err = 0; 2076 int really_read_only; 2077 2078 if (journal_devnum && 2079 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 2080 printk(KERN_INFO "EXT4-fs: external journal device major/minor " 2081 "numbers have changed\n"); 2082 journal_dev = new_decode_dev(journal_devnum); 2083 } else 2084 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 2085 2086 really_read_only = bdev_read_only(sb->s_bdev); 2087 2088 /* 2089 * Are we loading a blank journal or performing recovery after a 2090 * crash? For recovery, we need to check in advance whether we 2091 * can get read-write access to the device. 2092 */ 2093 2094 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2095 if (sb->s_flags & MS_RDONLY) { 2096 printk(KERN_INFO "EXT4-fs: INFO: recovery " 2097 "required on readonly filesystem.\n"); 2098 if (really_read_only) { 2099 printk(KERN_ERR "EXT4-fs: write access " 2100 "unavailable, cannot proceed.\n"); 2101 return -EROFS; 2102 } 2103 printk (KERN_INFO "EXT4-fs: write access will " 2104 "be enabled during recovery.\n"); 2105 } 2106 } 2107 2108 if (journal_inum && journal_dev) { 2109 printk(KERN_ERR "EXT4-fs: filesystem has both journal " 2110 "and inode journals!\n"); 2111 return -EINVAL; 2112 } 2113 2114 if (journal_inum) { 2115 if (!(journal = ext4_get_journal(sb, journal_inum))) 2116 return -EINVAL; 2117 } else { 2118 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 2119 return -EINVAL; 2120 } 2121 2122 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 2123 err = jbd2_journal_update_format(journal); 2124 if (err) { 2125 printk(KERN_ERR "EXT4-fs: error updating journal.\n"); 2126 jbd2_journal_destroy(journal); 2127 return err; 2128 } 2129 } 2130 2131 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 2132 err = jbd2_journal_wipe(journal, !really_read_only); 2133 if (!err) 2134 err = jbd2_journal_load(journal); 2135 2136 if (err) { 2137 printk(KERN_ERR "EXT4-fs: error loading journal.\n"); 2138 jbd2_journal_destroy(journal); 2139 return err; 2140 } 2141 2142 EXT4_SB(sb)->s_journal = journal; 2143 ext4_clear_journal_err(sb, es); 2144 2145 if (journal_devnum && 2146 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 2147 es->s_journal_dev = cpu_to_le32(journal_devnum); 2148 sb->s_dirt = 1; 2149 2150 /* Make sure we flush the recovery flag to disk. */ 2151 ext4_commit_super(sb, es, 1); 2152 } 2153 2154 return 0; 2155 } 2156 2157 static int ext4_create_journal(struct super_block * sb, 2158 struct ext4_super_block * es, 2159 unsigned int journal_inum) 2160 { 2161 journal_t *journal; 2162 int err; 2163 2164 if (sb->s_flags & MS_RDONLY) { 2165 printk(KERN_ERR "EXT4-fs: readonly filesystem when trying to " 2166 "create journal.\n"); 2167 return -EROFS; 2168 } 2169 2170 journal = ext4_get_journal(sb, journal_inum); 2171 if (!journal) 2172 return -EINVAL; 2173 2174 printk(KERN_INFO "EXT4-fs: creating new journal on inode %u\n", 2175 journal_inum); 2176 2177 err = jbd2_journal_create(journal); 2178 if (err) { 2179 printk(KERN_ERR "EXT4-fs: error creating journal.\n"); 2180 jbd2_journal_destroy(journal); 2181 return -EIO; 2182 } 2183 2184 EXT4_SB(sb)->s_journal = journal; 2185 2186 ext4_update_dynamic_rev(sb); 2187 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2188 EXT4_SET_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL); 2189 2190 es->s_journal_inum = cpu_to_le32(journal_inum); 2191 sb->s_dirt = 1; 2192 2193 /* Make sure we flush the recovery flag to disk. */ 2194 ext4_commit_super(sb, es, 1); 2195 2196 return 0; 2197 } 2198 2199 static void ext4_commit_super (struct super_block * sb, 2200 struct ext4_super_block * es, 2201 int sync) 2202 { 2203 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 2204 2205 if (!sbh) 2206 return; 2207 es->s_wtime = cpu_to_le32(get_seconds()); 2208 ext4_free_blocks_count_set(es, ext4_count_free_blocks(sb)); 2209 es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb)); 2210 BUFFER_TRACE(sbh, "marking dirty"); 2211 mark_buffer_dirty(sbh); 2212 if (sync) 2213 sync_dirty_buffer(sbh); 2214 } 2215 2216 2217 /* 2218 * Have we just finished recovery? If so, and if we are mounting (or 2219 * remounting) the filesystem readonly, then we will end up with a 2220 * consistent fs on disk. Record that fact. 2221 */ 2222 static void ext4_mark_recovery_complete(struct super_block * sb, 2223 struct ext4_super_block * es) 2224 { 2225 journal_t *journal = EXT4_SB(sb)->s_journal; 2226 2227 jbd2_journal_lock_updates(journal); 2228 jbd2_journal_flush(journal); 2229 lock_super(sb); 2230 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 2231 sb->s_flags & MS_RDONLY) { 2232 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2233 sb->s_dirt = 0; 2234 ext4_commit_super(sb, es, 1); 2235 } 2236 unlock_super(sb); 2237 jbd2_journal_unlock_updates(journal); 2238 } 2239 2240 /* 2241 * If we are mounting (or read-write remounting) a filesystem whose journal 2242 * has recorded an error from a previous lifetime, move that error to the 2243 * main filesystem now. 2244 */ 2245 static void ext4_clear_journal_err(struct super_block * sb, 2246 struct ext4_super_block * es) 2247 { 2248 journal_t *journal; 2249 int j_errno; 2250 const char *errstr; 2251 2252 journal = EXT4_SB(sb)->s_journal; 2253 2254 /* 2255 * Now check for any error status which may have been recorded in the 2256 * journal by a prior ext4_error() or ext4_abort() 2257 */ 2258 2259 j_errno = jbd2_journal_errno(journal); 2260 if (j_errno) { 2261 char nbuf[16]; 2262 2263 errstr = ext4_decode_error(sb, j_errno, nbuf); 2264 ext4_warning(sb, __FUNCTION__, "Filesystem error recorded " 2265 "from previous mount: %s", errstr); 2266 ext4_warning(sb, __FUNCTION__, "Marking fs in need of " 2267 "filesystem check."); 2268 2269 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2270 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2271 ext4_commit_super (sb, es, 1); 2272 2273 jbd2_journal_clear_err(journal); 2274 } 2275 } 2276 2277 /* 2278 * Force the running and committing transactions to commit, 2279 * and wait on the commit. 2280 */ 2281 int ext4_force_commit(struct super_block *sb) 2282 { 2283 journal_t *journal; 2284 int ret; 2285 2286 if (sb->s_flags & MS_RDONLY) 2287 return 0; 2288 2289 journal = EXT4_SB(sb)->s_journal; 2290 sb->s_dirt = 0; 2291 ret = ext4_journal_force_commit(journal); 2292 return ret; 2293 } 2294 2295 /* 2296 * Ext4 always journals updates to the superblock itself, so we don't 2297 * have to propagate any other updates to the superblock on disk at this 2298 * point. Just start an async writeback to get the buffers on their way 2299 * to the disk. 2300 * 2301 * This implicitly triggers the writebehind on sync(). 2302 */ 2303 2304 static void ext4_write_super (struct super_block * sb) 2305 { 2306 if (mutex_trylock(&sb->s_lock) != 0) 2307 BUG(); 2308 sb->s_dirt = 0; 2309 } 2310 2311 static int ext4_sync_fs(struct super_block *sb, int wait) 2312 { 2313 tid_t target; 2314 2315 sb->s_dirt = 0; 2316 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) { 2317 if (wait) 2318 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target); 2319 } 2320 return 0; 2321 } 2322 2323 /* 2324 * LVM calls this function before a (read-only) snapshot is created. This 2325 * gives us a chance to flush the journal completely and mark the fs clean. 2326 */ 2327 static void ext4_write_super_lockfs(struct super_block *sb) 2328 { 2329 sb->s_dirt = 0; 2330 2331 if (!(sb->s_flags & MS_RDONLY)) { 2332 journal_t *journal = EXT4_SB(sb)->s_journal; 2333 2334 /* Now we set up the journal barrier. */ 2335 jbd2_journal_lock_updates(journal); 2336 jbd2_journal_flush(journal); 2337 2338 /* Journal blocked and flushed, clear needs_recovery flag. */ 2339 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2340 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 2341 } 2342 } 2343 2344 /* 2345 * Called by LVM after the snapshot is done. We need to reset the RECOVER 2346 * flag here, even though the filesystem is not technically dirty yet. 2347 */ 2348 static void ext4_unlockfs(struct super_block *sb) 2349 { 2350 if (!(sb->s_flags & MS_RDONLY)) { 2351 lock_super(sb); 2352 /* Reser the needs_recovery flag before the fs is unlocked. */ 2353 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2354 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 2355 unlock_super(sb); 2356 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 2357 } 2358 } 2359 2360 static int ext4_remount (struct super_block * sb, int * flags, char * data) 2361 { 2362 struct ext4_super_block * es; 2363 struct ext4_sb_info *sbi = EXT4_SB(sb); 2364 ext4_fsblk_t n_blocks_count = 0; 2365 unsigned long old_sb_flags; 2366 struct ext4_mount_options old_opts; 2367 int err; 2368 #ifdef CONFIG_QUOTA 2369 int i; 2370 #endif 2371 2372 /* Store the original options */ 2373 old_sb_flags = sb->s_flags; 2374 old_opts.s_mount_opt = sbi->s_mount_opt; 2375 old_opts.s_resuid = sbi->s_resuid; 2376 old_opts.s_resgid = sbi->s_resgid; 2377 old_opts.s_commit_interval = sbi->s_commit_interval; 2378 #ifdef CONFIG_QUOTA 2379 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 2380 for (i = 0; i < MAXQUOTAS; i++) 2381 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 2382 #endif 2383 2384 /* 2385 * Allow the "check" option to be passed as a remount option. 2386 */ 2387 if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) { 2388 err = -EINVAL; 2389 goto restore_opts; 2390 } 2391 2392 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) 2393 ext4_abort(sb, __FUNCTION__, "Abort forced by user"); 2394 2395 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2396 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2397 2398 es = sbi->s_es; 2399 2400 ext4_init_journal_params(sb, sbi->s_journal); 2401 2402 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 2403 n_blocks_count > ext4_blocks_count(es)) { 2404 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) { 2405 err = -EROFS; 2406 goto restore_opts; 2407 } 2408 2409 if (*flags & MS_RDONLY) { 2410 /* 2411 * First of all, the unconditional stuff we have to do 2412 * to disable replay of the journal when we next remount 2413 */ 2414 sb->s_flags |= MS_RDONLY; 2415 2416 /* 2417 * OK, test if we are remounting a valid rw partition 2418 * readonly, and if so set the rdonly flag and then 2419 * mark the partition as valid again. 2420 */ 2421 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 2422 (sbi->s_mount_state & EXT4_VALID_FS)) 2423 es->s_state = cpu_to_le16(sbi->s_mount_state); 2424 2425 /* 2426 * We have to unlock super so that we can wait for 2427 * transactions. 2428 */ 2429 unlock_super(sb); 2430 ext4_mark_recovery_complete(sb, es); 2431 lock_super(sb); 2432 } else { 2433 __le32 ret; 2434 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2435 ~EXT4_FEATURE_RO_COMPAT_SUPP))) { 2436 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 2437 "remount RDWR because of unsupported " 2438 "optional features (%x).\n", 2439 sb->s_id, le32_to_cpu(ret)); 2440 err = -EROFS; 2441 goto restore_opts; 2442 } 2443 2444 /* 2445 * If we have an unprocessed orphan list hanging 2446 * around from a previously readonly bdev mount, 2447 * require a full umount/remount for now. 2448 */ 2449 if (es->s_last_orphan) { 2450 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 2451 "remount RDWR because of unprocessed " 2452 "orphan inode list. Please " 2453 "umount/remount instead.\n", 2454 sb->s_id); 2455 err = -EINVAL; 2456 goto restore_opts; 2457 } 2458 2459 /* 2460 * Mounting a RDONLY partition read-write, so reread 2461 * and store the current valid flag. (It may have 2462 * been changed by e2fsck since we originally mounted 2463 * the partition.) 2464 */ 2465 ext4_clear_journal_err(sb, es); 2466 sbi->s_mount_state = le16_to_cpu(es->s_state); 2467 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 2468 goto restore_opts; 2469 if (!ext4_setup_super (sb, es, 0)) 2470 sb->s_flags &= ~MS_RDONLY; 2471 } 2472 } 2473 #ifdef CONFIG_QUOTA 2474 /* Release old quota file names */ 2475 for (i = 0; i < MAXQUOTAS; i++) 2476 if (old_opts.s_qf_names[i] && 2477 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 2478 kfree(old_opts.s_qf_names[i]); 2479 #endif 2480 return 0; 2481 restore_opts: 2482 sb->s_flags = old_sb_flags; 2483 sbi->s_mount_opt = old_opts.s_mount_opt; 2484 sbi->s_resuid = old_opts.s_resuid; 2485 sbi->s_resgid = old_opts.s_resgid; 2486 sbi->s_commit_interval = old_opts.s_commit_interval; 2487 #ifdef CONFIG_QUOTA 2488 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 2489 for (i = 0; i < MAXQUOTAS; i++) { 2490 if (sbi->s_qf_names[i] && 2491 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 2492 kfree(sbi->s_qf_names[i]); 2493 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 2494 } 2495 #endif 2496 return err; 2497 } 2498 2499 static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf) 2500 { 2501 struct super_block *sb = dentry->d_sb; 2502 struct ext4_sb_info *sbi = EXT4_SB(sb); 2503 struct ext4_super_block *es = sbi->s_es; 2504 u64 fsid; 2505 2506 if (test_opt(sb, MINIX_DF)) { 2507 sbi->s_overhead_last = 0; 2508 } else if (sbi->s_blocks_last != le32_to_cpu(es->s_blocks_count)) { 2509 unsigned long ngroups = sbi->s_groups_count, i; 2510 ext4_fsblk_t overhead = 0; 2511 smp_rmb(); 2512 2513 /* 2514 * Compute the overhead (FS structures). This is constant 2515 * for a given filesystem unless the number of block groups 2516 * changes so we cache the previous value until it does. 2517 */ 2518 2519 /* 2520 * All of the blocks before first_data_block are 2521 * overhead 2522 */ 2523 overhead = le32_to_cpu(es->s_first_data_block); 2524 2525 /* 2526 * Add the overhead attributed to the superblock and 2527 * block group descriptors. If the sparse superblocks 2528 * feature is turned on, then not all groups have this. 2529 */ 2530 for (i = 0; i < ngroups; i++) { 2531 overhead += ext4_bg_has_super(sb, i) + 2532 ext4_bg_num_gdb(sb, i); 2533 cond_resched(); 2534 } 2535 2536 /* 2537 * Every block group has an inode bitmap, a block 2538 * bitmap, and an inode table. 2539 */ 2540 overhead += ngroups * (2 + sbi->s_itb_per_group); 2541 sbi->s_overhead_last = overhead; 2542 smp_wmb(); 2543 sbi->s_blocks_last = le32_to_cpu(es->s_blocks_count); 2544 } 2545 2546 buf->f_type = EXT4_SUPER_MAGIC; 2547 buf->f_bsize = sb->s_blocksize; 2548 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 2549 buf->f_bfree = percpu_counter_sum(&sbi->s_freeblocks_counter); 2550 es->s_free_blocks_count = cpu_to_le32(buf->f_bfree); 2551 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 2552 if (buf->f_bfree < ext4_r_blocks_count(es)) 2553 buf->f_bavail = 0; 2554 buf->f_files = le32_to_cpu(es->s_inodes_count); 2555 buf->f_ffree = percpu_counter_sum(&sbi->s_freeinodes_counter); 2556 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 2557 buf->f_namelen = EXT4_NAME_LEN; 2558 fsid = le64_to_cpup((void *)es->s_uuid) ^ 2559 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 2560 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 2561 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 2562 return 0; 2563 } 2564 2565 /* Helper function for writing quotas on sync - we need to start transaction before quota file 2566 * is locked for write. Otherwise the are possible deadlocks: 2567 * Process 1 Process 2 2568 * ext4_create() quota_sync() 2569 * jbd2_journal_start() write_dquot() 2570 * DQUOT_INIT() down(dqio_mutex) 2571 * down(dqio_mutex) jbd2_journal_start() 2572 * 2573 */ 2574 2575 #ifdef CONFIG_QUOTA 2576 2577 static inline struct inode *dquot_to_inode(struct dquot *dquot) 2578 { 2579 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 2580 } 2581 2582 static int ext4_dquot_initialize(struct inode *inode, int type) 2583 { 2584 handle_t *handle; 2585 int ret, err; 2586 2587 /* We may create quota structure so we need to reserve enough blocks */ 2588 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)); 2589 if (IS_ERR(handle)) 2590 return PTR_ERR(handle); 2591 ret = dquot_initialize(inode, type); 2592 err = ext4_journal_stop(handle); 2593 if (!ret) 2594 ret = err; 2595 return ret; 2596 } 2597 2598 static int ext4_dquot_drop(struct inode *inode) 2599 { 2600 handle_t *handle; 2601 int ret, err; 2602 2603 /* We may delete quota structure so we need to reserve enough blocks */ 2604 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_DEL_BLOCKS(inode->i_sb)); 2605 if (IS_ERR(handle)) 2606 return PTR_ERR(handle); 2607 ret = dquot_drop(inode); 2608 err = ext4_journal_stop(handle); 2609 if (!ret) 2610 ret = err; 2611 return ret; 2612 } 2613 2614 static int ext4_write_dquot(struct dquot *dquot) 2615 { 2616 int ret, err; 2617 handle_t *handle; 2618 struct inode *inode; 2619 2620 inode = dquot_to_inode(dquot); 2621 handle = ext4_journal_start(inode, 2622 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 2623 if (IS_ERR(handle)) 2624 return PTR_ERR(handle); 2625 ret = dquot_commit(dquot); 2626 err = ext4_journal_stop(handle); 2627 if (!ret) 2628 ret = err; 2629 return ret; 2630 } 2631 2632 static int ext4_acquire_dquot(struct dquot *dquot) 2633 { 2634 int ret, err; 2635 handle_t *handle; 2636 2637 handle = ext4_journal_start(dquot_to_inode(dquot), 2638 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 2639 if (IS_ERR(handle)) 2640 return PTR_ERR(handle); 2641 ret = dquot_acquire(dquot); 2642 err = ext4_journal_stop(handle); 2643 if (!ret) 2644 ret = err; 2645 return ret; 2646 } 2647 2648 static int ext4_release_dquot(struct dquot *dquot) 2649 { 2650 int ret, err; 2651 handle_t *handle; 2652 2653 handle = ext4_journal_start(dquot_to_inode(dquot), 2654 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 2655 if (IS_ERR(handle)) 2656 return PTR_ERR(handle); 2657 ret = dquot_release(dquot); 2658 err = ext4_journal_stop(handle); 2659 if (!ret) 2660 ret = err; 2661 return ret; 2662 } 2663 2664 static int ext4_mark_dquot_dirty(struct dquot *dquot) 2665 { 2666 /* Are we journalling quotas? */ 2667 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 2668 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 2669 dquot_mark_dquot_dirty(dquot); 2670 return ext4_write_dquot(dquot); 2671 } else { 2672 return dquot_mark_dquot_dirty(dquot); 2673 } 2674 } 2675 2676 static int ext4_write_info(struct super_block *sb, int type) 2677 { 2678 int ret, err; 2679 handle_t *handle; 2680 2681 /* Data block + inode block */ 2682 handle = ext4_journal_start(sb->s_root->d_inode, 2); 2683 if (IS_ERR(handle)) 2684 return PTR_ERR(handle); 2685 ret = dquot_commit_info(sb, type); 2686 err = ext4_journal_stop(handle); 2687 if (!ret) 2688 ret = err; 2689 return ret; 2690 } 2691 2692 /* 2693 * Turn on quotas during mount time - we need to find 2694 * the quota file and such... 2695 */ 2696 static int ext4_quota_on_mount(struct super_block *sb, int type) 2697 { 2698 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 2699 EXT4_SB(sb)->s_jquota_fmt, type); 2700 } 2701 2702 /* 2703 * Standard function to be called on quota_on 2704 */ 2705 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 2706 char *path) 2707 { 2708 int err; 2709 struct nameidata nd; 2710 2711 if (!test_opt(sb, QUOTA)) 2712 return -EINVAL; 2713 /* Not journalling quota? */ 2714 if (!EXT4_SB(sb)->s_qf_names[USRQUOTA] && 2715 !EXT4_SB(sb)->s_qf_names[GRPQUOTA]) 2716 return vfs_quota_on(sb, type, format_id, path); 2717 err = path_lookup(path, LOOKUP_FOLLOW, &nd); 2718 if (err) 2719 return err; 2720 /* Quotafile not on the same filesystem? */ 2721 if (nd.mnt->mnt_sb != sb) { 2722 path_release(&nd); 2723 return -EXDEV; 2724 } 2725 /* Quotafile not of fs root? */ 2726 if (nd.dentry->d_parent->d_inode != sb->s_root->d_inode) 2727 printk(KERN_WARNING 2728 "EXT4-fs: Quota file not on filesystem root. " 2729 "Journalled quota will not work.\n"); 2730 path_release(&nd); 2731 return vfs_quota_on(sb, type, format_id, path); 2732 } 2733 2734 /* Read data from quotafile - avoid pagecache and such because we cannot afford 2735 * acquiring the locks... As quota files are never truncated and quota code 2736 * itself serializes the operations (and noone else should touch the files) 2737 * we don't have to be afraid of races */ 2738 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 2739 size_t len, loff_t off) 2740 { 2741 struct inode *inode = sb_dqopt(sb)->files[type]; 2742 sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 2743 int err = 0; 2744 int offset = off & (sb->s_blocksize - 1); 2745 int tocopy; 2746 size_t toread; 2747 struct buffer_head *bh; 2748 loff_t i_size = i_size_read(inode); 2749 2750 if (off > i_size) 2751 return 0; 2752 if (off+len > i_size) 2753 len = i_size-off; 2754 toread = len; 2755 while (toread > 0) { 2756 tocopy = sb->s_blocksize - offset < toread ? 2757 sb->s_blocksize - offset : toread; 2758 bh = ext4_bread(NULL, inode, blk, 0, &err); 2759 if (err) 2760 return err; 2761 if (!bh) /* A hole? */ 2762 memset(data, 0, tocopy); 2763 else 2764 memcpy(data, bh->b_data+offset, tocopy); 2765 brelse(bh); 2766 offset = 0; 2767 toread -= tocopy; 2768 data += tocopy; 2769 blk++; 2770 } 2771 return len; 2772 } 2773 2774 /* Write to quotafile (we know the transaction is already started and has 2775 * enough credits) */ 2776 static ssize_t ext4_quota_write(struct super_block *sb, int type, 2777 const char *data, size_t len, loff_t off) 2778 { 2779 struct inode *inode = sb_dqopt(sb)->files[type]; 2780 sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 2781 int err = 0; 2782 int offset = off & (sb->s_blocksize - 1); 2783 int tocopy; 2784 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 2785 size_t towrite = len; 2786 struct buffer_head *bh; 2787 handle_t *handle = journal_current_handle(); 2788 2789 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 2790 while (towrite > 0) { 2791 tocopy = sb->s_blocksize - offset < towrite ? 2792 sb->s_blocksize - offset : towrite; 2793 bh = ext4_bread(handle, inode, blk, 1, &err); 2794 if (!bh) 2795 goto out; 2796 if (journal_quota) { 2797 err = ext4_journal_get_write_access(handle, bh); 2798 if (err) { 2799 brelse(bh); 2800 goto out; 2801 } 2802 } 2803 lock_buffer(bh); 2804 memcpy(bh->b_data+offset, data, tocopy); 2805 flush_dcache_page(bh->b_page); 2806 unlock_buffer(bh); 2807 if (journal_quota) 2808 err = ext4_journal_dirty_metadata(handle, bh); 2809 else { 2810 /* Always do at least ordered writes for quotas */ 2811 err = ext4_journal_dirty_data(handle, bh); 2812 mark_buffer_dirty(bh); 2813 } 2814 brelse(bh); 2815 if (err) 2816 goto out; 2817 offset = 0; 2818 towrite -= tocopy; 2819 data += tocopy; 2820 blk++; 2821 } 2822 out: 2823 if (len == towrite) 2824 return err; 2825 if (inode->i_size < off+len-towrite) { 2826 i_size_write(inode, off+len-towrite); 2827 EXT4_I(inode)->i_disksize = inode->i_size; 2828 } 2829 inode->i_version++; 2830 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2831 ext4_mark_inode_dirty(handle, inode); 2832 mutex_unlock(&inode->i_mutex); 2833 return len - towrite; 2834 } 2835 2836 #endif 2837 2838 static int ext4_get_sb(struct file_system_type *fs_type, 2839 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2840 { 2841 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); 2842 } 2843 2844 static struct file_system_type ext4dev_fs_type = { 2845 .owner = THIS_MODULE, 2846 .name = "ext4dev", 2847 .get_sb = ext4_get_sb, 2848 .kill_sb = kill_block_super, 2849 .fs_flags = FS_REQUIRES_DEV, 2850 }; 2851 2852 static int __init init_ext4_fs(void) 2853 { 2854 int err = init_ext4_xattr(); 2855 if (err) 2856 return err; 2857 err = init_inodecache(); 2858 if (err) 2859 goto out1; 2860 err = register_filesystem(&ext4dev_fs_type); 2861 if (err) 2862 goto out; 2863 return 0; 2864 out: 2865 destroy_inodecache(); 2866 out1: 2867 exit_ext4_xattr(); 2868 return err; 2869 } 2870 2871 static void __exit exit_ext4_fs(void) 2872 { 2873 unregister_filesystem(&ext4dev_fs_type); 2874 destroy_inodecache(); 2875 exit_ext4_xattr(); 2876 } 2877 2878 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 2879 MODULE_DESCRIPTION("Fourth Extended Filesystem with extents"); 2880 MODULE_LICENSE("GPL"); 2881 module_init(init_ext4_fs) 2882 module_exit(exit_ext4_fs) 2883