xref: /openbmc/linux/fs/ext4/super.c (revision 4ea99936a1630f51fc3a2d61a58ec4a1c4b7d55a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 					struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 				   struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 		       const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_sem
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_sem
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116 
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 	.owner		= THIS_MODULE,
120 	.name		= "ext2",
121 	.mount		= ext4_mount,
122 	.kill_sb	= kill_block_super,
123 	.fs_flags	= FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131 
132 
133 static struct file_system_type ext3_fs_type = {
134 	.owner		= THIS_MODULE,
135 	.name		= "ext3",
136 	.mount		= ext4_mount,
137 	.kill_sb	= kill_block_super,
138 	.fs_flags	= FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 
144 /*
145  * This works like sb_bread() except it uses ERR_PTR for error
146  * returns.  Currently with sb_bread it's impossible to distinguish
147  * between ENOMEM and EIO situations (since both result in a NULL
148  * return.
149  */
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153 	struct buffer_head *bh = sb_getblk(sb, block);
154 
155 	if (bh == NULL)
156 		return ERR_PTR(-ENOMEM);
157 	if (buffer_uptodate(bh))
158 		return bh;
159 	ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 	wait_on_buffer(bh);
161 	if (buffer_uptodate(bh))
162 		return bh;
163 	put_bh(bh);
164 	return ERR_PTR(-EIO);
165 }
166 
167 static int ext4_verify_csum_type(struct super_block *sb,
168 				 struct ext4_super_block *es)
169 {
170 	if (!ext4_has_feature_metadata_csum(sb))
171 		return 1;
172 
173 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175 
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 				   struct ext4_super_block *es)
178 {
179 	struct ext4_sb_info *sbi = EXT4_SB(sb);
180 	int offset = offsetof(struct ext4_super_block, s_checksum);
181 	__u32 csum;
182 
183 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184 
185 	return cpu_to_le32(csum);
186 }
187 
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 				       struct ext4_super_block *es)
190 {
191 	if (!ext4_has_metadata_csum(sb))
192 		return 1;
193 
194 	return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196 
197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200 
201 	if (!ext4_has_metadata_csum(sb))
202 		return;
203 
204 	es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206 
207 void *ext4_kvmalloc(size_t size, gfp_t flags)
208 {
209 	void *ret;
210 
211 	ret = kmalloc(size, flags | __GFP_NOWARN);
212 	if (!ret)
213 		ret = __vmalloc(size, flags, PAGE_KERNEL);
214 	return ret;
215 }
216 
217 void *ext4_kvzalloc(size_t size, gfp_t flags)
218 {
219 	void *ret;
220 
221 	ret = kzalloc(size, flags | __GFP_NOWARN);
222 	if (!ret)
223 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224 	return ret;
225 }
226 
227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228 			       struct ext4_group_desc *bg)
229 {
230 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233 }
234 
235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236 			       struct ext4_group_desc *bg)
237 {
238 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241 }
242 
243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244 			      struct ext4_group_desc *bg)
245 {
246 	return le32_to_cpu(bg->bg_inode_table_lo) |
247 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249 }
250 
251 __u32 ext4_free_group_clusters(struct super_block *sb,
252 			       struct ext4_group_desc *bg)
253 {
254 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257 }
258 
259 __u32 ext4_free_inodes_count(struct super_block *sb,
260 			      struct ext4_group_desc *bg)
261 {
262 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265 }
266 
267 __u32 ext4_used_dirs_count(struct super_block *sb,
268 			      struct ext4_group_desc *bg)
269 {
270 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273 }
274 
275 __u32 ext4_itable_unused_count(struct super_block *sb,
276 			      struct ext4_group_desc *bg)
277 {
278 	return le16_to_cpu(bg->bg_itable_unused_lo) |
279 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281 }
282 
283 void ext4_block_bitmap_set(struct super_block *sb,
284 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
285 {
286 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289 }
290 
291 void ext4_inode_bitmap_set(struct super_block *sb,
292 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
293 {
294 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
295 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297 }
298 
299 void ext4_inode_table_set(struct super_block *sb,
300 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
301 {
302 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305 }
306 
307 void ext4_free_group_clusters_set(struct super_block *sb,
308 				  struct ext4_group_desc *bg, __u32 count)
309 {
310 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313 }
314 
315 void ext4_free_inodes_set(struct super_block *sb,
316 			  struct ext4_group_desc *bg, __u32 count)
317 {
318 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321 }
322 
323 void ext4_used_dirs_set(struct super_block *sb,
324 			  struct ext4_group_desc *bg, __u32 count)
325 {
326 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329 }
330 
331 void ext4_itable_unused_set(struct super_block *sb,
332 			  struct ext4_group_desc *bg, __u32 count)
333 {
334 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337 }
338 
339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340 {
341 	time64_t now = ktime_get_real_seconds();
342 
343 	now = clamp_val(now, 0, (1ull << 40) - 1);
344 
345 	*lo = cpu_to_le32(lower_32_bits(now));
346 	*hi = upper_32_bits(now);
347 }
348 
349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350 {
351 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352 }
353 #define ext4_update_tstamp(es, tstamp) \
354 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357 
358 static void __save_error_info(struct super_block *sb, const char *func,
359 			    unsigned int line)
360 {
361 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362 
363 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364 	if (bdev_read_only(sb->s_bdev))
365 		return;
366 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367 	ext4_update_tstamp(es, s_last_error_time);
368 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369 	es->s_last_error_line = cpu_to_le32(line);
370 	if (!es->s_first_error_time) {
371 		es->s_first_error_time = es->s_last_error_time;
372 		es->s_first_error_time_hi = es->s_last_error_time_hi;
373 		strncpy(es->s_first_error_func, func,
374 			sizeof(es->s_first_error_func));
375 		es->s_first_error_line = cpu_to_le32(line);
376 		es->s_first_error_ino = es->s_last_error_ino;
377 		es->s_first_error_block = es->s_last_error_block;
378 	}
379 	/*
380 	 * Start the daily error reporting function if it hasn't been
381 	 * started already
382 	 */
383 	if (!es->s_error_count)
384 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385 	le32_add_cpu(&es->s_error_count, 1);
386 }
387 
388 static void save_error_info(struct super_block *sb, const char *func,
389 			    unsigned int line)
390 {
391 	__save_error_info(sb, func, line);
392 	ext4_commit_super(sb, 1);
393 }
394 
395 /*
396  * The del_gendisk() function uninitializes the disk-specific data
397  * structures, including the bdi structure, without telling anyone
398  * else.  Once this happens, any attempt to call mark_buffer_dirty()
399  * (for example, by ext4_commit_super), will cause a kernel OOPS.
400  * This is a kludge to prevent these oops until we can put in a proper
401  * hook in del_gendisk() to inform the VFS and file system layers.
402  */
403 static int block_device_ejected(struct super_block *sb)
404 {
405 	struct inode *bd_inode = sb->s_bdev->bd_inode;
406 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407 
408 	return bdi->dev == NULL;
409 }
410 
411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413 	struct super_block		*sb = journal->j_private;
414 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
415 	int				error = is_journal_aborted(journal);
416 	struct ext4_journal_cb_entry	*jce;
417 
418 	BUG_ON(txn->t_state == T_FINISHED);
419 
420 	ext4_process_freed_data(sb, txn->t_tid);
421 
422 	spin_lock(&sbi->s_md_lock);
423 	while (!list_empty(&txn->t_private_list)) {
424 		jce = list_entry(txn->t_private_list.next,
425 				 struct ext4_journal_cb_entry, jce_list);
426 		list_del_init(&jce->jce_list);
427 		spin_unlock(&sbi->s_md_lock);
428 		jce->jce_func(sb, jce, error);
429 		spin_lock(&sbi->s_md_lock);
430 	}
431 	spin_unlock(&sbi->s_md_lock);
432 }
433 
434 static bool system_going_down(void)
435 {
436 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 		|| system_state == SYSTEM_RESTART;
438 }
439 
440 /* Deal with the reporting of failure conditions on a filesystem such as
441  * inconsistencies detected or read IO failures.
442  *
443  * On ext2, we can store the error state of the filesystem in the
444  * superblock.  That is not possible on ext4, because we may have other
445  * write ordering constraints on the superblock which prevent us from
446  * writing it out straight away; and given that the journal is about to
447  * be aborted, we can't rely on the current, or future, transactions to
448  * write out the superblock safely.
449  *
450  * We'll just use the jbd2_journal_abort() error code to record an error in
451  * the journal instead.  On recovery, the journal will complain about
452  * that error until we've noted it down and cleared it.
453  */
454 
455 static void ext4_handle_error(struct super_block *sb)
456 {
457 	if (test_opt(sb, WARN_ON_ERROR))
458 		WARN_ON_ONCE(1);
459 
460 	if (sb_rdonly(sb))
461 		return;
462 
463 	if (!test_opt(sb, ERRORS_CONT)) {
464 		journal_t *journal = EXT4_SB(sb)->s_journal;
465 
466 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 		if (journal)
468 			jbd2_journal_abort(journal, -EIO);
469 	}
470 	/*
471 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 	 * could panic during 'reboot -f' as the underlying device got already
473 	 * disabled.
474 	 */
475 	if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477 		/*
478 		 * Make sure updated value of ->s_mount_flags will be visible
479 		 * before ->s_flags update
480 		 */
481 		smp_wmb();
482 		sb->s_flags |= SB_RDONLY;
483 	} else if (test_opt(sb, ERRORS_PANIC)) {
484 		if (EXT4_SB(sb)->s_journal &&
485 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 			return;
487 		panic("EXT4-fs (device %s): panic forced after error\n",
488 			sb->s_id);
489 	}
490 }
491 
492 #define ext4_error_ratelimit(sb)					\
493 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
494 			     "EXT4-fs error")
495 
496 void __ext4_error(struct super_block *sb, const char *function,
497 		  unsigned int line, const char *fmt, ...)
498 {
499 	struct va_format vaf;
500 	va_list args;
501 
502 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 		return;
504 
505 	trace_ext4_error(sb, function, line);
506 	if (ext4_error_ratelimit(sb)) {
507 		va_start(args, fmt);
508 		vaf.fmt = fmt;
509 		vaf.va = &args;
510 		printk(KERN_CRIT
511 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 		       sb->s_id, function, line, current->comm, &vaf);
513 		va_end(args);
514 	}
515 	save_error_info(sb, function, line);
516 	ext4_handle_error(sb);
517 }
518 
519 void __ext4_error_inode(struct inode *inode, const char *function,
520 			unsigned int line, ext4_fsblk_t block,
521 			const char *fmt, ...)
522 {
523 	va_list args;
524 	struct va_format vaf;
525 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526 
527 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 		return;
529 
530 	trace_ext4_error(inode->i_sb, function, line);
531 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 	es->s_last_error_block = cpu_to_le64(block);
533 	if (ext4_error_ratelimit(inode->i_sb)) {
534 		va_start(args, fmt);
535 		vaf.fmt = fmt;
536 		vaf.va = &args;
537 		if (block)
538 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 			       "inode #%lu: block %llu: comm %s: %pV\n",
540 			       inode->i_sb->s_id, function, line, inode->i_ino,
541 			       block, current->comm, &vaf);
542 		else
543 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 			       "inode #%lu: comm %s: %pV\n",
545 			       inode->i_sb->s_id, function, line, inode->i_ino,
546 			       current->comm, &vaf);
547 		va_end(args);
548 	}
549 	save_error_info(inode->i_sb, function, line);
550 	ext4_handle_error(inode->i_sb);
551 }
552 
553 void __ext4_error_file(struct file *file, const char *function,
554 		       unsigned int line, ext4_fsblk_t block,
555 		       const char *fmt, ...)
556 {
557 	va_list args;
558 	struct va_format vaf;
559 	struct ext4_super_block *es;
560 	struct inode *inode = file_inode(file);
561 	char pathname[80], *path;
562 
563 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 		return;
565 
566 	trace_ext4_error(inode->i_sb, function, line);
567 	es = EXT4_SB(inode->i_sb)->s_es;
568 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 	if (ext4_error_ratelimit(inode->i_sb)) {
570 		path = file_path(file, pathname, sizeof(pathname));
571 		if (IS_ERR(path))
572 			path = "(unknown)";
573 		va_start(args, fmt);
574 		vaf.fmt = fmt;
575 		vaf.va = &args;
576 		if (block)
577 			printk(KERN_CRIT
578 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 			       "block %llu: comm %s: path %s: %pV\n",
580 			       inode->i_sb->s_id, function, line, inode->i_ino,
581 			       block, current->comm, path, &vaf);
582 		else
583 			printk(KERN_CRIT
584 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 			       "comm %s: path %s: %pV\n",
586 			       inode->i_sb->s_id, function, line, inode->i_ino,
587 			       current->comm, path, &vaf);
588 		va_end(args);
589 	}
590 	save_error_info(inode->i_sb, function, line);
591 	ext4_handle_error(inode->i_sb);
592 }
593 
594 const char *ext4_decode_error(struct super_block *sb, int errno,
595 			      char nbuf[16])
596 {
597 	char *errstr = NULL;
598 
599 	switch (errno) {
600 	case -EFSCORRUPTED:
601 		errstr = "Corrupt filesystem";
602 		break;
603 	case -EFSBADCRC:
604 		errstr = "Filesystem failed CRC";
605 		break;
606 	case -EIO:
607 		errstr = "IO failure";
608 		break;
609 	case -ENOMEM:
610 		errstr = "Out of memory";
611 		break;
612 	case -EROFS:
613 		if (!sb || (EXT4_SB(sb)->s_journal &&
614 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 			errstr = "Journal has aborted";
616 		else
617 			errstr = "Readonly filesystem";
618 		break;
619 	default:
620 		/* If the caller passed in an extra buffer for unknown
621 		 * errors, textualise them now.  Else we just return
622 		 * NULL. */
623 		if (nbuf) {
624 			/* Check for truncated error codes... */
625 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 				errstr = nbuf;
627 		}
628 		break;
629 	}
630 
631 	return errstr;
632 }
633 
634 /* __ext4_std_error decodes expected errors from journaling functions
635  * automatically and invokes the appropriate error response.  */
636 
637 void __ext4_std_error(struct super_block *sb, const char *function,
638 		      unsigned int line, int errno)
639 {
640 	char nbuf[16];
641 	const char *errstr;
642 
643 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 		return;
645 
646 	/* Special case: if the error is EROFS, and we're not already
647 	 * inside a transaction, then there's really no point in logging
648 	 * an error. */
649 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 		return;
651 
652 	if (ext4_error_ratelimit(sb)) {
653 		errstr = ext4_decode_error(sb, errno, nbuf);
654 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 		       sb->s_id, function, line, errstr);
656 	}
657 
658 	save_error_info(sb, function, line);
659 	ext4_handle_error(sb);
660 }
661 
662 /*
663  * ext4_abort is a much stronger failure handler than ext4_error.  The
664  * abort function may be used to deal with unrecoverable failures such
665  * as journal IO errors or ENOMEM at a critical moment in log management.
666  *
667  * We unconditionally force the filesystem into an ABORT|READONLY state,
668  * unless the error response on the fs has been set to panic in which
669  * case we take the easy way out and panic immediately.
670  */
671 
672 void __ext4_abort(struct super_block *sb, const char *function,
673 		unsigned int line, const char *fmt, ...)
674 {
675 	struct va_format vaf;
676 	va_list args;
677 
678 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 		return;
680 
681 	save_error_info(sb, function, line);
682 	va_start(args, fmt);
683 	vaf.fmt = fmt;
684 	vaf.va = &args;
685 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 	       sb->s_id, function, line, &vaf);
687 	va_end(args);
688 
689 	if (sb_rdonly(sb) == 0) {
690 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692 		/*
693 		 * Make sure updated value of ->s_mount_flags will be visible
694 		 * before ->s_flags update
695 		 */
696 		smp_wmb();
697 		sb->s_flags |= SB_RDONLY;
698 		if (EXT4_SB(sb)->s_journal)
699 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 		save_error_info(sb, function, line);
701 	}
702 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 		if (EXT4_SB(sb)->s_journal &&
704 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 			return;
706 		panic("EXT4-fs panic from previous error\n");
707 	}
708 }
709 
710 void __ext4_msg(struct super_block *sb,
711 		const char *prefix, const char *fmt, ...)
712 {
713 	struct va_format vaf;
714 	va_list args;
715 
716 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 		return;
718 
719 	va_start(args, fmt);
720 	vaf.fmt = fmt;
721 	vaf.va = &args;
722 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 	va_end(args);
724 }
725 
726 #define ext4_warning_ratelimit(sb)					\
727 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
728 			     "EXT4-fs warning")
729 
730 void __ext4_warning(struct super_block *sb, const char *function,
731 		    unsigned int line, const char *fmt, ...)
732 {
733 	struct va_format vaf;
734 	va_list args;
735 
736 	if (!ext4_warning_ratelimit(sb))
737 		return;
738 
739 	va_start(args, fmt);
740 	vaf.fmt = fmt;
741 	vaf.va = &args;
742 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 	       sb->s_id, function, line, &vaf);
744 	va_end(args);
745 }
746 
747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 			  unsigned int line, const char *fmt, ...)
749 {
750 	struct va_format vaf;
751 	va_list args;
752 
753 	if (!ext4_warning_ratelimit(inode->i_sb))
754 		return;
755 
756 	va_start(args, fmt);
757 	vaf.fmt = fmt;
758 	vaf.va = &args;
759 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 	       function, line, inode->i_ino, current->comm, &vaf);
762 	va_end(args);
763 }
764 
765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 			     struct super_block *sb, ext4_group_t grp,
767 			     unsigned long ino, ext4_fsblk_t block,
768 			     const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772 	struct va_format vaf;
773 	va_list args;
774 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775 
776 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 		return;
778 
779 	trace_ext4_error(sb, function, line);
780 	es->s_last_error_ino = cpu_to_le32(ino);
781 	es->s_last_error_block = cpu_to_le64(block);
782 	__save_error_info(sb, function, line);
783 
784 	if (ext4_error_ratelimit(sb)) {
785 		va_start(args, fmt);
786 		vaf.fmt = fmt;
787 		vaf.va = &args;
788 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 		       sb->s_id, function, line, grp);
790 		if (ino)
791 			printk(KERN_CONT "inode %lu: ", ino);
792 		if (block)
793 			printk(KERN_CONT "block %llu:",
794 			       (unsigned long long) block);
795 		printk(KERN_CONT "%pV\n", &vaf);
796 		va_end(args);
797 	}
798 
799 	if (test_opt(sb, WARN_ON_ERROR))
800 		WARN_ON_ONCE(1);
801 
802 	if (test_opt(sb, ERRORS_CONT)) {
803 		ext4_commit_super(sb, 0);
804 		return;
805 	}
806 
807 	ext4_unlock_group(sb, grp);
808 	ext4_commit_super(sb, 1);
809 	ext4_handle_error(sb);
810 	/*
811 	 * We only get here in the ERRORS_RO case; relocking the group
812 	 * may be dangerous, but nothing bad will happen since the
813 	 * filesystem will have already been marked read/only and the
814 	 * journal has been aborted.  We return 1 as a hint to callers
815 	 * who might what to use the return value from
816 	 * ext4_grp_locked_error() to distinguish between the
817 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 	 * aggressively from the ext4 function in question, with a
819 	 * more appropriate error code.
820 	 */
821 	ext4_lock_group(sb, grp);
822 	return;
823 }
824 
825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 				     ext4_group_t group,
827 				     unsigned int flags)
828 {
829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
830 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 	int ret;
833 
834 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 					    &grp->bb_state);
837 		if (!ret)
838 			percpu_counter_sub(&sbi->s_freeclusters_counter,
839 					   grp->bb_free);
840 	}
841 
842 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 					    &grp->bb_state);
845 		if (!ret && gdp) {
846 			int count;
847 
848 			count = ext4_free_inodes_count(sb, gdp);
849 			percpu_counter_sub(&sbi->s_freeinodes_counter,
850 					   count);
851 		}
852 	}
853 }
854 
855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858 
859 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 		return;
861 
862 	ext4_warning(sb,
863 		     "updating to rev %d because of new feature flag, "
864 		     "running e2fsck is recommended",
865 		     EXT4_DYNAMIC_REV);
866 
867 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 	/* leave es->s_feature_*compat flags alone */
871 	/* es->s_uuid will be set by e2fsck if empty */
872 
873 	/*
874 	 * The rest of the superblock fields should be zero, and if not it
875 	 * means they are likely already in use, so leave them alone.  We
876 	 * can leave it up to e2fsck to clean up any inconsistencies there.
877 	 */
878 }
879 
880 /*
881  * Open the external journal device
882  */
883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885 	struct block_device *bdev;
886 	char b[BDEVNAME_SIZE];
887 
888 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 	if (IS_ERR(bdev))
890 		goto fail;
891 	return bdev;
892 
893 fail:
894 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 			__bdevname(dev, b), PTR_ERR(bdev));
896 	return NULL;
897 }
898 
899 /*
900  * Release the journal device
901  */
902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906 
907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909 	struct block_device *bdev;
910 	bdev = sbi->journal_bdev;
911 	if (bdev) {
912 		ext4_blkdev_put(bdev);
913 		sbi->journal_bdev = NULL;
914 	}
915 }
916 
917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921 
922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924 	struct list_head *l;
925 
926 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 		 le32_to_cpu(sbi->s_es->s_last_orphan));
928 
929 	printk(KERN_ERR "sb_info orphan list:\n");
930 	list_for_each(l, &sbi->s_orphan) {
931 		struct inode *inode = orphan_list_entry(l);
932 		printk(KERN_ERR "  "
933 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 		       inode->i_sb->s_id, inode->i_ino, inode,
935 		       inode->i_mode, inode->i_nlink,
936 		       NEXT_ORPHAN(inode));
937 	}
938 }
939 
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942 
943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945 	int type;
946 
947 	/* Use our quota_off function to clear inode flags etc. */
948 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 		ext4_quota_off(sb, type);
950 }
951 
952 /*
953  * This is a helper function which is used in the mount/remount
954  * codepaths (which holds s_umount) to fetch the quota file name.
955  */
956 static inline char *get_qf_name(struct super_block *sb,
957 				struct ext4_sb_info *sbi,
958 				int type)
959 {
960 	return rcu_dereference_protected(sbi->s_qf_names[type],
961 					 lockdep_is_held(&sb->s_umount));
962 }
963 #else
964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968 
969 static void ext4_put_super(struct super_block *sb)
970 {
971 	struct ext4_sb_info *sbi = EXT4_SB(sb);
972 	struct ext4_super_block *es = sbi->s_es;
973 	int aborted = 0;
974 	int i, err;
975 
976 	ext4_unregister_li_request(sb);
977 	ext4_quota_off_umount(sb);
978 
979 	destroy_workqueue(sbi->rsv_conversion_wq);
980 
981 	if (sbi->s_journal) {
982 		aborted = is_journal_aborted(sbi->s_journal);
983 		err = jbd2_journal_destroy(sbi->s_journal);
984 		sbi->s_journal = NULL;
985 		if ((err < 0) && !aborted)
986 			ext4_abort(sb, "Couldn't clean up the journal");
987 	}
988 
989 	ext4_unregister_sysfs(sb);
990 	ext4_es_unregister_shrinker(sbi);
991 	del_timer_sync(&sbi->s_err_report);
992 	ext4_release_system_zone(sb);
993 	ext4_mb_release(sb);
994 	ext4_ext_release(sb);
995 
996 	if (!sb_rdonly(sb) && !aborted) {
997 		ext4_clear_feature_journal_needs_recovery(sb);
998 		es->s_state = cpu_to_le16(sbi->s_mount_state);
999 	}
1000 	if (!sb_rdonly(sb))
1001 		ext4_commit_super(sb, 1);
1002 
1003 	for (i = 0; i < sbi->s_gdb_count; i++)
1004 		brelse(sbi->s_group_desc[i]);
1005 	kvfree(sbi->s_group_desc);
1006 	kvfree(sbi->s_flex_groups);
1007 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009 	percpu_counter_destroy(&sbi->s_dirs_counter);
1010 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014 		kfree(get_qf_name(sb, sbi, i));
1015 #endif
1016 
1017 	/* Debugging code just in case the in-memory inode orphan list
1018 	 * isn't empty.  The on-disk one can be non-empty if we've
1019 	 * detected an error and taken the fs readonly, but the
1020 	 * in-memory list had better be clean by this point. */
1021 	if (!list_empty(&sbi->s_orphan))
1022 		dump_orphan_list(sb, sbi);
1023 	J_ASSERT(list_empty(&sbi->s_orphan));
1024 
1025 	sync_blockdev(sb->s_bdev);
1026 	invalidate_bdev(sb->s_bdev);
1027 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028 		/*
1029 		 * Invalidate the journal device's buffers.  We don't want them
1030 		 * floating about in memory - the physical journal device may
1031 		 * hotswapped, and it breaks the `ro-after' testing code.
1032 		 */
1033 		sync_blockdev(sbi->journal_bdev);
1034 		invalidate_bdev(sbi->journal_bdev);
1035 		ext4_blkdev_remove(sbi);
1036 	}
1037 
1038 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039 	sbi->s_ea_inode_cache = NULL;
1040 
1041 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042 	sbi->s_ea_block_cache = NULL;
1043 
1044 	if (sbi->s_mmp_tsk)
1045 		kthread_stop(sbi->s_mmp_tsk);
1046 	brelse(sbi->s_sbh);
1047 	sb->s_fs_info = NULL;
1048 	/*
1049 	 * Now that we are completely done shutting down the
1050 	 * superblock, we need to actually destroy the kobject.
1051 	 */
1052 	kobject_put(&sbi->s_kobj);
1053 	wait_for_completion(&sbi->s_kobj_unregister);
1054 	if (sbi->s_chksum_driver)
1055 		crypto_free_shash(sbi->s_chksum_driver);
1056 	kfree(sbi->s_blockgroup_lock);
1057 	fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059 	utf8_unload(sbi->s_encoding);
1060 #endif
1061 	kfree(sbi);
1062 }
1063 
1064 static struct kmem_cache *ext4_inode_cachep;
1065 
1066 /*
1067  * Called inside transaction, so use GFP_NOFS
1068  */
1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1070 {
1071 	struct ext4_inode_info *ei;
1072 
1073 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074 	if (!ei)
1075 		return NULL;
1076 
1077 	inode_set_iversion(&ei->vfs_inode, 1);
1078 	spin_lock_init(&ei->i_raw_lock);
1079 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1080 	spin_lock_init(&ei->i_prealloc_lock);
1081 	ext4_es_init_tree(&ei->i_es_tree);
1082 	rwlock_init(&ei->i_es_lock);
1083 	INIT_LIST_HEAD(&ei->i_es_list);
1084 	ei->i_es_all_nr = 0;
1085 	ei->i_es_shk_nr = 0;
1086 	ei->i_es_shrink_lblk = 0;
1087 	ei->i_reserved_data_blocks = 0;
1088 	ei->i_da_metadata_calc_len = 0;
1089 	ei->i_da_metadata_calc_last_lblock = 0;
1090 	spin_lock_init(&(ei->i_block_reservation_lock));
1091 	ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093 	ei->i_reserved_quota = 0;
1094 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096 	ei->jinode = NULL;
1097 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098 	spin_lock_init(&ei->i_completed_io_lock);
1099 	ei->i_sync_tid = 0;
1100 	ei->i_datasync_tid = 0;
1101 	atomic_set(&ei->i_unwritten, 0);
1102 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103 	return &ei->vfs_inode;
1104 }
1105 
1106 static int ext4_drop_inode(struct inode *inode)
1107 {
1108 	int drop = generic_drop_inode(inode);
1109 
1110 	if (!drop)
1111 		drop = fscrypt_drop_inode(inode);
1112 
1113 	trace_ext4_drop_inode(inode, drop);
1114 	return drop;
1115 }
1116 
1117 static void ext4_free_in_core_inode(struct inode *inode)
1118 {
1119 	fscrypt_free_inode(inode);
1120 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1121 }
1122 
1123 static void ext4_destroy_inode(struct inode *inode)
1124 {
1125 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1126 		ext4_msg(inode->i_sb, KERN_ERR,
1127 			 "Inode %lu (%p): orphan list check failed!",
1128 			 inode->i_ino, EXT4_I(inode));
1129 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1130 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1131 				true);
1132 		dump_stack();
1133 	}
1134 }
1135 
1136 static void init_once(void *foo)
1137 {
1138 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1139 
1140 	INIT_LIST_HEAD(&ei->i_orphan);
1141 	init_rwsem(&ei->xattr_sem);
1142 	init_rwsem(&ei->i_data_sem);
1143 	init_rwsem(&ei->i_mmap_sem);
1144 	inode_init_once(&ei->vfs_inode);
1145 }
1146 
1147 static int __init init_inodecache(void)
1148 {
1149 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1150 				sizeof(struct ext4_inode_info), 0,
1151 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1152 					SLAB_ACCOUNT),
1153 				offsetof(struct ext4_inode_info, i_data),
1154 				sizeof_field(struct ext4_inode_info, i_data),
1155 				init_once);
1156 	if (ext4_inode_cachep == NULL)
1157 		return -ENOMEM;
1158 	return 0;
1159 }
1160 
1161 static void destroy_inodecache(void)
1162 {
1163 	/*
1164 	 * Make sure all delayed rcu free inodes are flushed before we
1165 	 * destroy cache.
1166 	 */
1167 	rcu_barrier();
1168 	kmem_cache_destroy(ext4_inode_cachep);
1169 }
1170 
1171 void ext4_clear_inode(struct inode *inode)
1172 {
1173 	invalidate_inode_buffers(inode);
1174 	clear_inode(inode);
1175 	dquot_drop(inode);
1176 	ext4_discard_preallocations(inode);
1177 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1178 	if (EXT4_I(inode)->jinode) {
1179 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1180 					       EXT4_I(inode)->jinode);
1181 		jbd2_free_inode(EXT4_I(inode)->jinode);
1182 		EXT4_I(inode)->jinode = NULL;
1183 	}
1184 	fscrypt_put_encryption_info(inode);
1185 	fsverity_cleanup_inode(inode);
1186 }
1187 
1188 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1189 					u64 ino, u32 generation)
1190 {
1191 	struct inode *inode;
1192 
1193 	/*
1194 	 * Currently we don't know the generation for parent directory, so
1195 	 * a generation of 0 means "accept any"
1196 	 */
1197 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1198 	if (IS_ERR(inode))
1199 		return ERR_CAST(inode);
1200 	if (generation && inode->i_generation != generation) {
1201 		iput(inode);
1202 		return ERR_PTR(-ESTALE);
1203 	}
1204 
1205 	return inode;
1206 }
1207 
1208 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1209 					int fh_len, int fh_type)
1210 {
1211 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1212 				    ext4_nfs_get_inode);
1213 }
1214 
1215 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1216 					int fh_len, int fh_type)
1217 {
1218 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1219 				    ext4_nfs_get_inode);
1220 }
1221 
1222 static int ext4_nfs_commit_metadata(struct inode *inode)
1223 {
1224 	struct writeback_control wbc = {
1225 		.sync_mode = WB_SYNC_ALL
1226 	};
1227 
1228 	trace_ext4_nfs_commit_metadata(inode);
1229 	return ext4_write_inode(inode, &wbc);
1230 }
1231 
1232 /*
1233  * Try to release metadata pages (indirect blocks, directories) which are
1234  * mapped via the block device.  Since these pages could have journal heads
1235  * which would prevent try_to_free_buffers() from freeing them, we must use
1236  * jbd2 layer's try_to_free_buffers() function to release them.
1237  */
1238 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1239 				 gfp_t wait)
1240 {
1241 	journal_t *journal = EXT4_SB(sb)->s_journal;
1242 
1243 	WARN_ON(PageChecked(page));
1244 	if (!page_has_buffers(page))
1245 		return 0;
1246 	if (journal)
1247 		return jbd2_journal_try_to_free_buffers(journal, page,
1248 						wait & ~__GFP_DIRECT_RECLAIM);
1249 	return try_to_free_buffers(page);
1250 }
1251 
1252 #ifdef CONFIG_FS_ENCRYPTION
1253 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1254 {
1255 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1256 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1257 }
1258 
1259 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1260 							void *fs_data)
1261 {
1262 	handle_t *handle = fs_data;
1263 	int res, res2, credits, retries = 0;
1264 
1265 	/*
1266 	 * Encrypting the root directory is not allowed because e2fsck expects
1267 	 * lost+found to exist and be unencrypted, and encrypting the root
1268 	 * directory would imply encrypting the lost+found directory as well as
1269 	 * the filename "lost+found" itself.
1270 	 */
1271 	if (inode->i_ino == EXT4_ROOT_INO)
1272 		return -EPERM;
1273 
1274 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1275 		return -EINVAL;
1276 
1277 	res = ext4_convert_inline_data(inode);
1278 	if (res)
1279 		return res;
1280 
1281 	/*
1282 	 * If a journal handle was specified, then the encryption context is
1283 	 * being set on a new inode via inheritance and is part of a larger
1284 	 * transaction to create the inode.  Otherwise the encryption context is
1285 	 * being set on an existing inode in its own transaction.  Only in the
1286 	 * latter case should the "retry on ENOSPC" logic be used.
1287 	 */
1288 
1289 	if (handle) {
1290 		res = ext4_xattr_set_handle(handle, inode,
1291 					    EXT4_XATTR_INDEX_ENCRYPTION,
1292 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1293 					    ctx, len, 0);
1294 		if (!res) {
1295 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1296 			ext4_clear_inode_state(inode,
1297 					EXT4_STATE_MAY_INLINE_DATA);
1298 			/*
1299 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1300 			 * S_DAX may be disabled
1301 			 */
1302 			ext4_set_inode_flags(inode);
1303 		}
1304 		return res;
1305 	}
1306 
1307 	res = dquot_initialize(inode);
1308 	if (res)
1309 		return res;
1310 retry:
1311 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1312 				     &credits);
1313 	if (res)
1314 		return res;
1315 
1316 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1317 	if (IS_ERR(handle))
1318 		return PTR_ERR(handle);
1319 
1320 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1321 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1322 				    ctx, len, 0);
1323 	if (!res) {
1324 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1325 		/*
1326 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1327 		 * S_DAX may be disabled
1328 		 */
1329 		ext4_set_inode_flags(inode);
1330 		res = ext4_mark_inode_dirty(handle, inode);
1331 		if (res)
1332 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1333 	}
1334 	res2 = ext4_journal_stop(handle);
1335 
1336 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1337 		goto retry;
1338 	if (!res)
1339 		res = res2;
1340 	return res;
1341 }
1342 
1343 static bool ext4_dummy_context(struct inode *inode)
1344 {
1345 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1346 }
1347 
1348 static const struct fscrypt_operations ext4_cryptops = {
1349 	.key_prefix		= "ext4:",
1350 	.get_context		= ext4_get_context,
1351 	.set_context		= ext4_set_context,
1352 	.dummy_context		= ext4_dummy_context,
1353 	.empty_dir		= ext4_empty_dir,
1354 	.max_namelen		= EXT4_NAME_LEN,
1355 };
1356 #endif
1357 
1358 #ifdef CONFIG_QUOTA
1359 static const char * const quotatypes[] = INITQFNAMES;
1360 #define QTYPE2NAME(t) (quotatypes[t])
1361 
1362 static int ext4_write_dquot(struct dquot *dquot);
1363 static int ext4_acquire_dquot(struct dquot *dquot);
1364 static int ext4_release_dquot(struct dquot *dquot);
1365 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1366 static int ext4_write_info(struct super_block *sb, int type);
1367 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1368 			 const struct path *path);
1369 static int ext4_quota_on_mount(struct super_block *sb, int type);
1370 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1371 			       size_t len, loff_t off);
1372 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1373 				const char *data, size_t len, loff_t off);
1374 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1375 			     unsigned int flags);
1376 static int ext4_enable_quotas(struct super_block *sb);
1377 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1378 
1379 static struct dquot **ext4_get_dquots(struct inode *inode)
1380 {
1381 	return EXT4_I(inode)->i_dquot;
1382 }
1383 
1384 static const struct dquot_operations ext4_quota_operations = {
1385 	.get_reserved_space	= ext4_get_reserved_space,
1386 	.write_dquot		= ext4_write_dquot,
1387 	.acquire_dquot		= ext4_acquire_dquot,
1388 	.release_dquot		= ext4_release_dquot,
1389 	.mark_dirty		= ext4_mark_dquot_dirty,
1390 	.write_info		= ext4_write_info,
1391 	.alloc_dquot		= dquot_alloc,
1392 	.destroy_dquot		= dquot_destroy,
1393 	.get_projid		= ext4_get_projid,
1394 	.get_inode_usage	= ext4_get_inode_usage,
1395 	.get_next_id		= ext4_get_next_id,
1396 };
1397 
1398 static const struct quotactl_ops ext4_qctl_operations = {
1399 	.quota_on	= ext4_quota_on,
1400 	.quota_off	= ext4_quota_off,
1401 	.quota_sync	= dquot_quota_sync,
1402 	.get_state	= dquot_get_state,
1403 	.set_info	= dquot_set_dqinfo,
1404 	.get_dqblk	= dquot_get_dqblk,
1405 	.set_dqblk	= dquot_set_dqblk,
1406 	.get_nextdqblk	= dquot_get_next_dqblk,
1407 };
1408 #endif
1409 
1410 static const struct super_operations ext4_sops = {
1411 	.alloc_inode	= ext4_alloc_inode,
1412 	.free_inode	= ext4_free_in_core_inode,
1413 	.destroy_inode	= ext4_destroy_inode,
1414 	.write_inode	= ext4_write_inode,
1415 	.dirty_inode	= ext4_dirty_inode,
1416 	.drop_inode	= ext4_drop_inode,
1417 	.evict_inode	= ext4_evict_inode,
1418 	.put_super	= ext4_put_super,
1419 	.sync_fs	= ext4_sync_fs,
1420 	.freeze_fs	= ext4_freeze,
1421 	.unfreeze_fs	= ext4_unfreeze,
1422 	.statfs		= ext4_statfs,
1423 	.remount_fs	= ext4_remount,
1424 	.show_options	= ext4_show_options,
1425 #ifdef CONFIG_QUOTA
1426 	.quota_read	= ext4_quota_read,
1427 	.quota_write	= ext4_quota_write,
1428 	.get_dquots	= ext4_get_dquots,
1429 #endif
1430 	.bdev_try_to_free_page = bdev_try_to_free_page,
1431 };
1432 
1433 static const struct export_operations ext4_export_ops = {
1434 	.fh_to_dentry = ext4_fh_to_dentry,
1435 	.fh_to_parent = ext4_fh_to_parent,
1436 	.get_parent = ext4_get_parent,
1437 	.commit_metadata = ext4_nfs_commit_metadata,
1438 };
1439 
1440 enum {
1441 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1442 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1443 	Opt_nouid32, Opt_debug, Opt_removed,
1444 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1445 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1446 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1447 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1448 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1449 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1450 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1451 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1452 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1453 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1454 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1455 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1456 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1457 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1458 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1459 	Opt_dioread_nolock, Opt_dioread_lock,
1460 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1461 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1462 };
1463 
1464 static const match_table_t tokens = {
1465 	{Opt_bsd_df, "bsddf"},
1466 	{Opt_minix_df, "minixdf"},
1467 	{Opt_grpid, "grpid"},
1468 	{Opt_grpid, "bsdgroups"},
1469 	{Opt_nogrpid, "nogrpid"},
1470 	{Opt_nogrpid, "sysvgroups"},
1471 	{Opt_resgid, "resgid=%u"},
1472 	{Opt_resuid, "resuid=%u"},
1473 	{Opt_sb, "sb=%u"},
1474 	{Opt_err_cont, "errors=continue"},
1475 	{Opt_err_panic, "errors=panic"},
1476 	{Opt_err_ro, "errors=remount-ro"},
1477 	{Opt_nouid32, "nouid32"},
1478 	{Opt_debug, "debug"},
1479 	{Opt_removed, "oldalloc"},
1480 	{Opt_removed, "orlov"},
1481 	{Opt_user_xattr, "user_xattr"},
1482 	{Opt_nouser_xattr, "nouser_xattr"},
1483 	{Opt_acl, "acl"},
1484 	{Opt_noacl, "noacl"},
1485 	{Opt_noload, "norecovery"},
1486 	{Opt_noload, "noload"},
1487 	{Opt_removed, "nobh"},
1488 	{Opt_removed, "bh"},
1489 	{Opt_commit, "commit=%u"},
1490 	{Opt_min_batch_time, "min_batch_time=%u"},
1491 	{Opt_max_batch_time, "max_batch_time=%u"},
1492 	{Opt_journal_dev, "journal_dev=%u"},
1493 	{Opt_journal_path, "journal_path=%s"},
1494 	{Opt_journal_checksum, "journal_checksum"},
1495 	{Opt_nojournal_checksum, "nojournal_checksum"},
1496 	{Opt_journal_async_commit, "journal_async_commit"},
1497 	{Opt_abort, "abort"},
1498 	{Opt_data_journal, "data=journal"},
1499 	{Opt_data_ordered, "data=ordered"},
1500 	{Opt_data_writeback, "data=writeback"},
1501 	{Opt_data_err_abort, "data_err=abort"},
1502 	{Opt_data_err_ignore, "data_err=ignore"},
1503 	{Opt_offusrjquota, "usrjquota="},
1504 	{Opt_usrjquota, "usrjquota=%s"},
1505 	{Opt_offgrpjquota, "grpjquota="},
1506 	{Opt_grpjquota, "grpjquota=%s"},
1507 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1508 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1509 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1510 	{Opt_grpquota, "grpquota"},
1511 	{Opt_noquota, "noquota"},
1512 	{Opt_quota, "quota"},
1513 	{Opt_usrquota, "usrquota"},
1514 	{Opt_prjquota, "prjquota"},
1515 	{Opt_barrier, "barrier=%u"},
1516 	{Opt_barrier, "barrier"},
1517 	{Opt_nobarrier, "nobarrier"},
1518 	{Opt_i_version, "i_version"},
1519 	{Opt_dax, "dax"},
1520 	{Opt_stripe, "stripe=%u"},
1521 	{Opt_delalloc, "delalloc"},
1522 	{Opt_warn_on_error, "warn_on_error"},
1523 	{Opt_nowarn_on_error, "nowarn_on_error"},
1524 	{Opt_lazytime, "lazytime"},
1525 	{Opt_nolazytime, "nolazytime"},
1526 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1527 	{Opt_nodelalloc, "nodelalloc"},
1528 	{Opt_removed, "mblk_io_submit"},
1529 	{Opt_removed, "nomblk_io_submit"},
1530 	{Opt_block_validity, "block_validity"},
1531 	{Opt_noblock_validity, "noblock_validity"},
1532 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1533 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1534 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1535 	{Opt_auto_da_alloc, "auto_da_alloc"},
1536 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1537 	{Opt_dioread_nolock, "dioread_nolock"},
1538 	{Opt_dioread_lock, "dioread_lock"},
1539 	{Opt_discard, "discard"},
1540 	{Opt_nodiscard, "nodiscard"},
1541 	{Opt_init_itable, "init_itable=%u"},
1542 	{Opt_init_itable, "init_itable"},
1543 	{Opt_noinit_itable, "noinit_itable"},
1544 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1545 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1546 	{Opt_nombcache, "nombcache"},
1547 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1548 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1549 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1550 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1551 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1552 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1553 	{Opt_err, NULL},
1554 };
1555 
1556 static ext4_fsblk_t get_sb_block(void **data)
1557 {
1558 	ext4_fsblk_t	sb_block;
1559 	char		*options = (char *) *data;
1560 
1561 	if (!options || strncmp(options, "sb=", 3) != 0)
1562 		return 1;	/* Default location */
1563 
1564 	options += 3;
1565 	/* TODO: use simple_strtoll with >32bit ext4 */
1566 	sb_block = simple_strtoul(options, &options, 0);
1567 	if (*options && *options != ',') {
1568 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1569 		       (char *) *data);
1570 		return 1;
1571 	}
1572 	if (*options == ',')
1573 		options++;
1574 	*data = (void *) options;
1575 
1576 	return sb_block;
1577 }
1578 
1579 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1580 static const char deprecated_msg[] =
1581 	"Mount option \"%s\" will be removed by %s\n"
1582 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1583 
1584 #ifdef CONFIG_QUOTA
1585 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1588 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1589 	int ret = -1;
1590 
1591 	if (sb_any_quota_loaded(sb) && !old_qname) {
1592 		ext4_msg(sb, KERN_ERR,
1593 			"Cannot change journaled "
1594 			"quota options when quota turned on");
1595 		return -1;
1596 	}
1597 	if (ext4_has_feature_quota(sb)) {
1598 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1599 			 "ignored when QUOTA feature is enabled");
1600 		return 1;
1601 	}
1602 	qname = match_strdup(args);
1603 	if (!qname) {
1604 		ext4_msg(sb, KERN_ERR,
1605 			"Not enough memory for storing quotafile name");
1606 		return -1;
1607 	}
1608 	if (old_qname) {
1609 		if (strcmp(old_qname, qname) == 0)
1610 			ret = 1;
1611 		else
1612 			ext4_msg(sb, KERN_ERR,
1613 				 "%s quota file already specified",
1614 				 QTYPE2NAME(qtype));
1615 		goto errout;
1616 	}
1617 	if (strchr(qname, '/')) {
1618 		ext4_msg(sb, KERN_ERR,
1619 			"quotafile must be on filesystem root");
1620 		goto errout;
1621 	}
1622 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1623 	set_opt(sb, QUOTA);
1624 	return 1;
1625 errout:
1626 	kfree(qname);
1627 	return ret;
1628 }
1629 
1630 static int clear_qf_name(struct super_block *sb, int qtype)
1631 {
1632 
1633 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1634 	char *old_qname = get_qf_name(sb, sbi, qtype);
1635 
1636 	if (sb_any_quota_loaded(sb) && old_qname) {
1637 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1638 			" when quota turned on");
1639 		return -1;
1640 	}
1641 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1642 	synchronize_rcu();
1643 	kfree(old_qname);
1644 	return 1;
1645 }
1646 #endif
1647 
1648 #define MOPT_SET	0x0001
1649 #define MOPT_CLEAR	0x0002
1650 #define MOPT_NOSUPPORT	0x0004
1651 #define MOPT_EXPLICIT	0x0008
1652 #define MOPT_CLEAR_ERR	0x0010
1653 #define MOPT_GTE0	0x0020
1654 #ifdef CONFIG_QUOTA
1655 #define MOPT_Q		0
1656 #define MOPT_QFMT	0x0040
1657 #else
1658 #define MOPT_Q		MOPT_NOSUPPORT
1659 #define MOPT_QFMT	MOPT_NOSUPPORT
1660 #endif
1661 #define MOPT_DATAJ	0x0080
1662 #define MOPT_NO_EXT2	0x0100
1663 #define MOPT_NO_EXT3	0x0200
1664 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1665 #define MOPT_STRING	0x0400
1666 
1667 static const struct mount_opts {
1668 	int	token;
1669 	int	mount_opt;
1670 	int	flags;
1671 } ext4_mount_opts[] = {
1672 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1673 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1674 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1675 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1676 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1677 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1678 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1679 	 MOPT_EXT4_ONLY | MOPT_SET},
1680 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1681 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1682 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1683 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1684 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1685 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1686 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1687 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1688 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1689 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1690 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1691 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1692 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1693 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1694 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1695 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1696 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1697 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1698 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1699 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1700 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1701 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1702 	 MOPT_NO_EXT2},
1703 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1704 	 MOPT_NO_EXT2},
1705 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1706 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1707 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1708 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1709 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1710 	{Opt_commit, 0, MOPT_GTE0},
1711 	{Opt_max_batch_time, 0, MOPT_GTE0},
1712 	{Opt_min_batch_time, 0, MOPT_GTE0},
1713 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1714 	{Opt_init_itable, 0, MOPT_GTE0},
1715 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1716 	{Opt_stripe, 0, MOPT_GTE0},
1717 	{Opt_resuid, 0, MOPT_GTE0},
1718 	{Opt_resgid, 0, MOPT_GTE0},
1719 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1720 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1721 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1722 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1723 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1724 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1725 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1726 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1727 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1728 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1729 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1730 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1731 #else
1732 	{Opt_acl, 0, MOPT_NOSUPPORT},
1733 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1734 #endif
1735 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1736 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1737 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1738 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1739 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1740 							MOPT_SET | MOPT_Q},
1741 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1742 							MOPT_SET | MOPT_Q},
1743 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1744 							MOPT_SET | MOPT_Q},
1745 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1746 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1747 							MOPT_CLEAR | MOPT_Q},
1748 	{Opt_usrjquota, 0, MOPT_Q},
1749 	{Opt_grpjquota, 0, MOPT_Q},
1750 	{Opt_offusrjquota, 0, MOPT_Q},
1751 	{Opt_offgrpjquota, 0, MOPT_Q},
1752 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1753 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1754 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1755 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1756 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1757 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1758 	{Opt_err, 0, 0}
1759 };
1760 
1761 #ifdef CONFIG_UNICODE
1762 static const struct ext4_sb_encodings {
1763 	__u16 magic;
1764 	char *name;
1765 	char *version;
1766 } ext4_sb_encoding_map[] = {
1767 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1768 };
1769 
1770 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1771 				 const struct ext4_sb_encodings **encoding,
1772 				 __u16 *flags)
1773 {
1774 	__u16 magic = le16_to_cpu(es->s_encoding);
1775 	int i;
1776 
1777 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1778 		if (magic == ext4_sb_encoding_map[i].magic)
1779 			break;
1780 
1781 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1782 		return -EINVAL;
1783 
1784 	*encoding = &ext4_sb_encoding_map[i];
1785 	*flags = le16_to_cpu(es->s_encoding_flags);
1786 
1787 	return 0;
1788 }
1789 #endif
1790 
1791 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1792 			    substring_t *args, unsigned long *journal_devnum,
1793 			    unsigned int *journal_ioprio, int is_remount)
1794 {
1795 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1796 	const struct mount_opts *m;
1797 	kuid_t uid;
1798 	kgid_t gid;
1799 	int arg = 0;
1800 
1801 #ifdef CONFIG_QUOTA
1802 	if (token == Opt_usrjquota)
1803 		return set_qf_name(sb, USRQUOTA, &args[0]);
1804 	else if (token == Opt_grpjquota)
1805 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1806 	else if (token == Opt_offusrjquota)
1807 		return clear_qf_name(sb, USRQUOTA);
1808 	else if (token == Opt_offgrpjquota)
1809 		return clear_qf_name(sb, GRPQUOTA);
1810 #endif
1811 	switch (token) {
1812 	case Opt_noacl:
1813 	case Opt_nouser_xattr:
1814 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1815 		break;
1816 	case Opt_sb:
1817 		return 1;	/* handled by get_sb_block() */
1818 	case Opt_removed:
1819 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1820 		return 1;
1821 	case Opt_abort:
1822 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1823 		return 1;
1824 	case Opt_i_version:
1825 		sb->s_flags |= SB_I_VERSION;
1826 		return 1;
1827 	case Opt_lazytime:
1828 		sb->s_flags |= SB_LAZYTIME;
1829 		return 1;
1830 	case Opt_nolazytime:
1831 		sb->s_flags &= ~SB_LAZYTIME;
1832 		return 1;
1833 	}
1834 
1835 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1836 		if (token == m->token)
1837 			break;
1838 
1839 	if (m->token == Opt_err) {
1840 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1841 			 "or missing value", opt);
1842 		return -1;
1843 	}
1844 
1845 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1846 		ext4_msg(sb, KERN_ERR,
1847 			 "Mount option \"%s\" incompatible with ext2", opt);
1848 		return -1;
1849 	}
1850 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1851 		ext4_msg(sb, KERN_ERR,
1852 			 "Mount option \"%s\" incompatible with ext3", opt);
1853 		return -1;
1854 	}
1855 
1856 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1857 		return -1;
1858 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1859 		return -1;
1860 	if (m->flags & MOPT_EXPLICIT) {
1861 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1862 			set_opt2(sb, EXPLICIT_DELALLOC);
1863 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1864 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1865 		} else
1866 			return -1;
1867 	}
1868 	if (m->flags & MOPT_CLEAR_ERR)
1869 		clear_opt(sb, ERRORS_MASK);
1870 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1871 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1872 			 "options when quota turned on");
1873 		return -1;
1874 	}
1875 
1876 	if (m->flags & MOPT_NOSUPPORT) {
1877 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1878 	} else if (token == Opt_commit) {
1879 		if (arg == 0)
1880 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1881 		else if (arg > INT_MAX / HZ) {
1882 			ext4_msg(sb, KERN_ERR,
1883 				 "Invalid commit interval %d, "
1884 				 "must be smaller than %d",
1885 				 arg, INT_MAX / HZ);
1886 			return -1;
1887 		}
1888 		sbi->s_commit_interval = HZ * arg;
1889 	} else if (token == Opt_debug_want_extra_isize) {
1890 		sbi->s_want_extra_isize = arg;
1891 	} else if (token == Opt_max_batch_time) {
1892 		sbi->s_max_batch_time = arg;
1893 	} else if (token == Opt_min_batch_time) {
1894 		sbi->s_min_batch_time = arg;
1895 	} else if (token == Opt_inode_readahead_blks) {
1896 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1897 			ext4_msg(sb, KERN_ERR,
1898 				 "EXT4-fs: inode_readahead_blks must be "
1899 				 "0 or a power of 2 smaller than 2^31");
1900 			return -1;
1901 		}
1902 		sbi->s_inode_readahead_blks = arg;
1903 	} else if (token == Opt_init_itable) {
1904 		set_opt(sb, INIT_INODE_TABLE);
1905 		if (!args->from)
1906 			arg = EXT4_DEF_LI_WAIT_MULT;
1907 		sbi->s_li_wait_mult = arg;
1908 	} else if (token == Opt_max_dir_size_kb) {
1909 		sbi->s_max_dir_size_kb = arg;
1910 	} else if (token == Opt_stripe) {
1911 		sbi->s_stripe = arg;
1912 	} else if (token == Opt_resuid) {
1913 		uid = make_kuid(current_user_ns(), arg);
1914 		if (!uid_valid(uid)) {
1915 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1916 			return -1;
1917 		}
1918 		sbi->s_resuid = uid;
1919 	} else if (token == Opt_resgid) {
1920 		gid = make_kgid(current_user_ns(), arg);
1921 		if (!gid_valid(gid)) {
1922 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1923 			return -1;
1924 		}
1925 		sbi->s_resgid = gid;
1926 	} else if (token == Opt_journal_dev) {
1927 		if (is_remount) {
1928 			ext4_msg(sb, KERN_ERR,
1929 				 "Cannot specify journal on remount");
1930 			return -1;
1931 		}
1932 		*journal_devnum = arg;
1933 	} else if (token == Opt_journal_path) {
1934 		char *journal_path;
1935 		struct inode *journal_inode;
1936 		struct path path;
1937 		int error;
1938 
1939 		if (is_remount) {
1940 			ext4_msg(sb, KERN_ERR,
1941 				 "Cannot specify journal on remount");
1942 			return -1;
1943 		}
1944 		journal_path = match_strdup(&args[0]);
1945 		if (!journal_path) {
1946 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1947 				"journal device string");
1948 			return -1;
1949 		}
1950 
1951 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1952 		if (error) {
1953 			ext4_msg(sb, KERN_ERR, "error: could not find "
1954 				"journal device path: error %d", error);
1955 			kfree(journal_path);
1956 			return -1;
1957 		}
1958 
1959 		journal_inode = d_inode(path.dentry);
1960 		if (!S_ISBLK(journal_inode->i_mode)) {
1961 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1962 				"is not a block device", journal_path);
1963 			path_put(&path);
1964 			kfree(journal_path);
1965 			return -1;
1966 		}
1967 
1968 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1969 		path_put(&path);
1970 		kfree(journal_path);
1971 	} else if (token == Opt_journal_ioprio) {
1972 		if (arg > 7) {
1973 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1974 				 " (must be 0-7)");
1975 			return -1;
1976 		}
1977 		*journal_ioprio =
1978 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1979 	} else if (token == Opt_test_dummy_encryption) {
1980 #ifdef CONFIG_FS_ENCRYPTION
1981 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1982 		ext4_msg(sb, KERN_WARNING,
1983 			 "Test dummy encryption mode enabled");
1984 #else
1985 		ext4_msg(sb, KERN_WARNING,
1986 			 "Test dummy encryption mount option ignored");
1987 #endif
1988 	} else if (m->flags & MOPT_DATAJ) {
1989 		if (is_remount) {
1990 			if (!sbi->s_journal)
1991 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1992 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1993 				ext4_msg(sb, KERN_ERR,
1994 					 "Cannot change data mode on remount");
1995 				return -1;
1996 			}
1997 		} else {
1998 			clear_opt(sb, DATA_FLAGS);
1999 			sbi->s_mount_opt |= m->mount_opt;
2000 		}
2001 #ifdef CONFIG_QUOTA
2002 	} else if (m->flags & MOPT_QFMT) {
2003 		if (sb_any_quota_loaded(sb) &&
2004 		    sbi->s_jquota_fmt != m->mount_opt) {
2005 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2006 				 "quota options when quota turned on");
2007 			return -1;
2008 		}
2009 		if (ext4_has_feature_quota(sb)) {
2010 			ext4_msg(sb, KERN_INFO,
2011 				 "Quota format mount options ignored "
2012 				 "when QUOTA feature is enabled");
2013 			return 1;
2014 		}
2015 		sbi->s_jquota_fmt = m->mount_opt;
2016 #endif
2017 	} else if (token == Opt_dax) {
2018 #ifdef CONFIG_FS_DAX
2019 		ext4_msg(sb, KERN_WARNING,
2020 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2021 		sbi->s_mount_opt |= m->mount_opt;
2022 #else
2023 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2024 		return -1;
2025 #endif
2026 	} else if (token == Opt_data_err_abort) {
2027 		sbi->s_mount_opt |= m->mount_opt;
2028 	} else if (token == Opt_data_err_ignore) {
2029 		sbi->s_mount_opt &= ~m->mount_opt;
2030 	} else {
2031 		if (!args->from)
2032 			arg = 1;
2033 		if (m->flags & MOPT_CLEAR)
2034 			arg = !arg;
2035 		else if (unlikely(!(m->flags & MOPT_SET))) {
2036 			ext4_msg(sb, KERN_WARNING,
2037 				 "buggy handling of option %s", opt);
2038 			WARN_ON(1);
2039 			return -1;
2040 		}
2041 		if (arg != 0)
2042 			sbi->s_mount_opt |= m->mount_opt;
2043 		else
2044 			sbi->s_mount_opt &= ~m->mount_opt;
2045 	}
2046 	return 1;
2047 }
2048 
2049 static int parse_options(char *options, struct super_block *sb,
2050 			 unsigned long *journal_devnum,
2051 			 unsigned int *journal_ioprio,
2052 			 int is_remount)
2053 {
2054 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2055 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2056 	substring_t args[MAX_OPT_ARGS];
2057 	int token;
2058 
2059 	if (!options)
2060 		return 1;
2061 
2062 	while ((p = strsep(&options, ",")) != NULL) {
2063 		if (!*p)
2064 			continue;
2065 		/*
2066 		 * Initialize args struct so we know whether arg was
2067 		 * found; some options take optional arguments.
2068 		 */
2069 		args[0].to = args[0].from = NULL;
2070 		token = match_token(p, tokens, args);
2071 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2072 				     journal_ioprio, is_remount) < 0)
2073 			return 0;
2074 	}
2075 #ifdef CONFIG_QUOTA
2076 	/*
2077 	 * We do the test below only for project quotas. 'usrquota' and
2078 	 * 'grpquota' mount options are allowed even without quota feature
2079 	 * to support legacy quotas in quota files.
2080 	 */
2081 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2082 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2083 			 "Cannot enable project quota enforcement.");
2084 		return 0;
2085 	}
2086 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2087 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2088 	if (usr_qf_name || grp_qf_name) {
2089 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2090 			clear_opt(sb, USRQUOTA);
2091 
2092 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2093 			clear_opt(sb, GRPQUOTA);
2094 
2095 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2096 			ext4_msg(sb, KERN_ERR, "old and new quota "
2097 					"format mixing");
2098 			return 0;
2099 		}
2100 
2101 		if (!sbi->s_jquota_fmt) {
2102 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2103 					"not specified");
2104 			return 0;
2105 		}
2106 	}
2107 #endif
2108 	return 1;
2109 }
2110 
2111 static inline void ext4_show_quota_options(struct seq_file *seq,
2112 					   struct super_block *sb)
2113 {
2114 #if defined(CONFIG_QUOTA)
2115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2116 	char *usr_qf_name, *grp_qf_name;
2117 
2118 	if (sbi->s_jquota_fmt) {
2119 		char *fmtname = "";
2120 
2121 		switch (sbi->s_jquota_fmt) {
2122 		case QFMT_VFS_OLD:
2123 			fmtname = "vfsold";
2124 			break;
2125 		case QFMT_VFS_V0:
2126 			fmtname = "vfsv0";
2127 			break;
2128 		case QFMT_VFS_V1:
2129 			fmtname = "vfsv1";
2130 			break;
2131 		}
2132 		seq_printf(seq, ",jqfmt=%s", fmtname);
2133 	}
2134 
2135 	rcu_read_lock();
2136 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2137 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2138 	if (usr_qf_name)
2139 		seq_show_option(seq, "usrjquota", usr_qf_name);
2140 	if (grp_qf_name)
2141 		seq_show_option(seq, "grpjquota", grp_qf_name);
2142 	rcu_read_unlock();
2143 #endif
2144 }
2145 
2146 static const char *token2str(int token)
2147 {
2148 	const struct match_token *t;
2149 
2150 	for (t = tokens; t->token != Opt_err; t++)
2151 		if (t->token == token && !strchr(t->pattern, '='))
2152 			break;
2153 	return t->pattern;
2154 }
2155 
2156 /*
2157  * Show an option if
2158  *  - it's set to a non-default value OR
2159  *  - if the per-sb default is different from the global default
2160  */
2161 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2162 			      int nodefs)
2163 {
2164 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2165 	struct ext4_super_block *es = sbi->s_es;
2166 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2167 	const struct mount_opts *m;
2168 	char sep = nodefs ? '\n' : ',';
2169 
2170 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2171 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2172 
2173 	if (sbi->s_sb_block != 1)
2174 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2175 
2176 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2177 		int want_set = m->flags & MOPT_SET;
2178 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2179 		    (m->flags & MOPT_CLEAR_ERR))
2180 			continue;
2181 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2182 			continue; /* skip if same as the default */
2183 		if ((want_set &&
2184 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2185 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2186 			continue; /* select Opt_noFoo vs Opt_Foo */
2187 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2188 	}
2189 
2190 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2191 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2192 		SEQ_OPTS_PRINT("resuid=%u",
2193 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2194 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2195 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2196 		SEQ_OPTS_PRINT("resgid=%u",
2197 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2198 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2199 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2200 		SEQ_OPTS_PUTS("errors=remount-ro");
2201 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2202 		SEQ_OPTS_PUTS("errors=continue");
2203 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2204 		SEQ_OPTS_PUTS("errors=panic");
2205 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2206 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2207 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2208 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2209 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2210 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2211 	if (sb->s_flags & SB_I_VERSION)
2212 		SEQ_OPTS_PUTS("i_version");
2213 	if (nodefs || sbi->s_stripe)
2214 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2215 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2216 			(sbi->s_mount_opt ^ def_mount_opt)) {
2217 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2218 			SEQ_OPTS_PUTS("data=journal");
2219 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2220 			SEQ_OPTS_PUTS("data=ordered");
2221 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2222 			SEQ_OPTS_PUTS("data=writeback");
2223 	}
2224 	if (nodefs ||
2225 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2226 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2227 			       sbi->s_inode_readahead_blks);
2228 
2229 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2230 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2231 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2232 	if (nodefs || sbi->s_max_dir_size_kb)
2233 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2234 	if (test_opt(sb, DATA_ERR_ABORT))
2235 		SEQ_OPTS_PUTS("data_err=abort");
2236 	if (DUMMY_ENCRYPTION_ENABLED(sbi))
2237 		SEQ_OPTS_PUTS("test_dummy_encryption");
2238 
2239 	ext4_show_quota_options(seq, sb);
2240 	return 0;
2241 }
2242 
2243 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2244 {
2245 	return _ext4_show_options(seq, root->d_sb, 0);
2246 }
2247 
2248 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2249 {
2250 	struct super_block *sb = seq->private;
2251 	int rc;
2252 
2253 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2254 	rc = _ext4_show_options(seq, sb, 1);
2255 	seq_puts(seq, "\n");
2256 	return rc;
2257 }
2258 
2259 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2260 			    int read_only)
2261 {
2262 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2263 	int err = 0;
2264 
2265 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2266 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2267 			 "forcing read-only mode");
2268 		err = -EROFS;
2269 	}
2270 	if (read_only)
2271 		goto done;
2272 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2273 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2274 			 "running e2fsck is recommended");
2275 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2276 		ext4_msg(sb, KERN_WARNING,
2277 			 "warning: mounting fs with errors, "
2278 			 "running e2fsck is recommended");
2279 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2280 		 le16_to_cpu(es->s_mnt_count) >=
2281 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2282 		ext4_msg(sb, KERN_WARNING,
2283 			 "warning: maximal mount count reached, "
2284 			 "running e2fsck is recommended");
2285 	else if (le32_to_cpu(es->s_checkinterval) &&
2286 		 (ext4_get_tstamp(es, s_lastcheck) +
2287 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2288 		ext4_msg(sb, KERN_WARNING,
2289 			 "warning: checktime reached, "
2290 			 "running e2fsck is recommended");
2291 	if (!sbi->s_journal)
2292 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2293 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2294 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2295 	le16_add_cpu(&es->s_mnt_count, 1);
2296 	ext4_update_tstamp(es, s_mtime);
2297 	if (sbi->s_journal)
2298 		ext4_set_feature_journal_needs_recovery(sb);
2299 
2300 	err = ext4_commit_super(sb, 1);
2301 done:
2302 	if (test_opt(sb, DEBUG))
2303 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2304 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2305 			sb->s_blocksize,
2306 			sbi->s_groups_count,
2307 			EXT4_BLOCKS_PER_GROUP(sb),
2308 			EXT4_INODES_PER_GROUP(sb),
2309 			sbi->s_mount_opt, sbi->s_mount_opt2);
2310 
2311 	cleancache_init_fs(sb);
2312 	return err;
2313 }
2314 
2315 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2316 {
2317 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2318 	struct flex_groups *new_groups;
2319 	int size;
2320 
2321 	if (!sbi->s_log_groups_per_flex)
2322 		return 0;
2323 
2324 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2325 	if (size <= sbi->s_flex_groups_allocated)
2326 		return 0;
2327 
2328 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2329 	new_groups = kvzalloc(size, GFP_KERNEL);
2330 	if (!new_groups) {
2331 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2332 			 size / (int) sizeof(struct flex_groups));
2333 		return -ENOMEM;
2334 	}
2335 
2336 	if (sbi->s_flex_groups) {
2337 		memcpy(new_groups, sbi->s_flex_groups,
2338 		       (sbi->s_flex_groups_allocated *
2339 			sizeof(struct flex_groups)));
2340 		kvfree(sbi->s_flex_groups);
2341 	}
2342 	sbi->s_flex_groups = new_groups;
2343 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2344 	return 0;
2345 }
2346 
2347 static int ext4_fill_flex_info(struct super_block *sb)
2348 {
2349 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2350 	struct ext4_group_desc *gdp = NULL;
2351 	ext4_group_t flex_group;
2352 	int i, err;
2353 
2354 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2355 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2356 		sbi->s_log_groups_per_flex = 0;
2357 		return 1;
2358 	}
2359 
2360 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2361 	if (err)
2362 		goto failed;
2363 
2364 	for (i = 0; i < sbi->s_groups_count; i++) {
2365 		gdp = ext4_get_group_desc(sb, i, NULL);
2366 
2367 		flex_group = ext4_flex_group(sbi, i);
2368 		atomic_add(ext4_free_inodes_count(sb, gdp),
2369 			   &sbi->s_flex_groups[flex_group].free_inodes);
2370 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2371 			     &sbi->s_flex_groups[flex_group].free_clusters);
2372 		atomic_add(ext4_used_dirs_count(sb, gdp),
2373 			   &sbi->s_flex_groups[flex_group].used_dirs);
2374 	}
2375 
2376 	return 1;
2377 failed:
2378 	return 0;
2379 }
2380 
2381 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2382 				   struct ext4_group_desc *gdp)
2383 {
2384 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2385 	__u16 crc = 0;
2386 	__le32 le_group = cpu_to_le32(block_group);
2387 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2388 
2389 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2390 		/* Use new metadata_csum algorithm */
2391 		__u32 csum32;
2392 		__u16 dummy_csum = 0;
2393 
2394 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2395 				     sizeof(le_group));
2396 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2397 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2398 				     sizeof(dummy_csum));
2399 		offset += sizeof(dummy_csum);
2400 		if (offset < sbi->s_desc_size)
2401 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2402 					     sbi->s_desc_size - offset);
2403 
2404 		crc = csum32 & 0xFFFF;
2405 		goto out;
2406 	}
2407 
2408 	/* old crc16 code */
2409 	if (!ext4_has_feature_gdt_csum(sb))
2410 		return 0;
2411 
2412 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2413 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2414 	crc = crc16(crc, (__u8 *)gdp, offset);
2415 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2416 	/* for checksum of struct ext4_group_desc do the rest...*/
2417 	if (ext4_has_feature_64bit(sb) &&
2418 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2419 		crc = crc16(crc, (__u8 *)gdp + offset,
2420 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2421 				offset);
2422 
2423 out:
2424 	return cpu_to_le16(crc);
2425 }
2426 
2427 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2428 				struct ext4_group_desc *gdp)
2429 {
2430 	if (ext4_has_group_desc_csum(sb) &&
2431 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2432 		return 0;
2433 
2434 	return 1;
2435 }
2436 
2437 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2438 			      struct ext4_group_desc *gdp)
2439 {
2440 	if (!ext4_has_group_desc_csum(sb))
2441 		return;
2442 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2443 }
2444 
2445 /* Called at mount-time, super-block is locked */
2446 static int ext4_check_descriptors(struct super_block *sb,
2447 				  ext4_fsblk_t sb_block,
2448 				  ext4_group_t *first_not_zeroed)
2449 {
2450 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2451 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2452 	ext4_fsblk_t last_block;
2453 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2454 	ext4_fsblk_t block_bitmap;
2455 	ext4_fsblk_t inode_bitmap;
2456 	ext4_fsblk_t inode_table;
2457 	int flexbg_flag = 0;
2458 	ext4_group_t i, grp = sbi->s_groups_count;
2459 
2460 	if (ext4_has_feature_flex_bg(sb))
2461 		flexbg_flag = 1;
2462 
2463 	ext4_debug("Checking group descriptors");
2464 
2465 	for (i = 0; i < sbi->s_groups_count; i++) {
2466 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2467 
2468 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2469 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2470 		else
2471 			last_block = first_block +
2472 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2473 
2474 		if ((grp == sbi->s_groups_count) &&
2475 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2476 			grp = i;
2477 
2478 		block_bitmap = ext4_block_bitmap(sb, gdp);
2479 		if (block_bitmap == sb_block) {
2480 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2481 				 "Block bitmap for group %u overlaps "
2482 				 "superblock", i);
2483 			if (!sb_rdonly(sb))
2484 				return 0;
2485 		}
2486 		if (block_bitmap >= sb_block + 1 &&
2487 		    block_bitmap <= last_bg_block) {
2488 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2489 				 "Block bitmap for group %u overlaps "
2490 				 "block group descriptors", i);
2491 			if (!sb_rdonly(sb))
2492 				return 0;
2493 		}
2494 		if (block_bitmap < first_block || block_bitmap > last_block) {
2495 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2496 			       "Block bitmap for group %u not in group "
2497 			       "(block %llu)!", i, block_bitmap);
2498 			return 0;
2499 		}
2500 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2501 		if (inode_bitmap == sb_block) {
2502 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2503 				 "Inode bitmap for group %u overlaps "
2504 				 "superblock", i);
2505 			if (!sb_rdonly(sb))
2506 				return 0;
2507 		}
2508 		if (inode_bitmap >= sb_block + 1 &&
2509 		    inode_bitmap <= last_bg_block) {
2510 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2511 				 "Inode bitmap for group %u overlaps "
2512 				 "block group descriptors", i);
2513 			if (!sb_rdonly(sb))
2514 				return 0;
2515 		}
2516 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2517 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2518 			       "Inode bitmap for group %u not in group "
2519 			       "(block %llu)!", i, inode_bitmap);
2520 			return 0;
2521 		}
2522 		inode_table = ext4_inode_table(sb, gdp);
2523 		if (inode_table == sb_block) {
2524 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2525 				 "Inode table for group %u overlaps "
2526 				 "superblock", i);
2527 			if (!sb_rdonly(sb))
2528 				return 0;
2529 		}
2530 		if (inode_table >= sb_block + 1 &&
2531 		    inode_table <= last_bg_block) {
2532 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2533 				 "Inode table for group %u overlaps "
2534 				 "block group descriptors", i);
2535 			if (!sb_rdonly(sb))
2536 				return 0;
2537 		}
2538 		if (inode_table < first_block ||
2539 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2540 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2541 			       "Inode table for group %u not in group "
2542 			       "(block %llu)!", i, inode_table);
2543 			return 0;
2544 		}
2545 		ext4_lock_group(sb, i);
2546 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2547 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2548 				 "Checksum for group %u failed (%u!=%u)",
2549 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2550 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2551 			if (!sb_rdonly(sb)) {
2552 				ext4_unlock_group(sb, i);
2553 				return 0;
2554 			}
2555 		}
2556 		ext4_unlock_group(sb, i);
2557 		if (!flexbg_flag)
2558 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2559 	}
2560 	if (NULL != first_not_zeroed)
2561 		*first_not_zeroed = grp;
2562 	return 1;
2563 }
2564 
2565 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2566  * the superblock) which were deleted from all directories, but held open by
2567  * a process at the time of a crash.  We walk the list and try to delete these
2568  * inodes at recovery time (only with a read-write filesystem).
2569  *
2570  * In order to keep the orphan inode chain consistent during traversal (in
2571  * case of crash during recovery), we link each inode into the superblock
2572  * orphan list_head and handle it the same way as an inode deletion during
2573  * normal operation (which journals the operations for us).
2574  *
2575  * We only do an iget() and an iput() on each inode, which is very safe if we
2576  * accidentally point at an in-use or already deleted inode.  The worst that
2577  * can happen in this case is that we get a "bit already cleared" message from
2578  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2579  * e2fsck was run on this filesystem, and it must have already done the orphan
2580  * inode cleanup for us, so we can safely abort without any further action.
2581  */
2582 static void ext4_orphan_cleanup(struct super_block *sb,
2583 				struct ext4_super_block *es)
2584 {
2585 	unsigned int s_flags = sb->s_flags;
2586 	int ret, nr_orphans = 0, nr_truncates = 0;
2587 #ifdef CONFIG_QUOTA
2588 	int quota_update = 0;
2589 	int i;
2590 #endif
2591 	if (!es->s_last_orphan) {
2592 		jbd_debug(4, "no orphan inodes to clean up\n");
2593 		return;
2594 	}
2595 
2596 	if (bdev_read_only(sb->s_bdev)) {
2597 		ext4_msg(sb, KERN_ERR, "write access "
2598 			"unavailable, skipping orphan cleanup");
2599 		return;
2600 	}
2601 
2602 	/* Check if feature set would not allow a r/w mount */
2603 	if (!ext4_feature_set_ok(sb, 0)) {
2604 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2605 			 "unknown ROCOMPAT features");
2606 		return;
2607 	}
2608 
2609 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2610 		/* don't clear list on RO mount w/ errors */
2611 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2612 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2613 				  "clearing orphan list.\n");
2614 			es->s_last_orphan = 0;
2615 		}
2616 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2617 		return;
2618 	}
2619 
2620 	if (s_flags & SB_RDONLY) {
2621 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2622 		sb->s_flags &= ~SB_RDONLY;
2623 	}
2624 #ifdef CONFIG_QUOTA
2625 	/* Needed for iput() to work correctly and not trash data */
2626 	sb->s_flags |= SB_ACTIVE;
2627 
2628 	/*
2629 	 * Turn on quotas which were not enabled for read-only mounts if
2630 	 * filesystem has quota feature, so that they are updated correctly.
2631 	 */
2632 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2633 		int ret = ext4_enable_quotas(sb);
2634 
2635 		if (!ret)
2636 			quota_update = 1;
2637 		else
2638 			ext4_msg(sb, KERN_ERR,
2639 				"Cannot turn on quotas: error %d", ret);
2640 	}
2641 
2642 	/* Turn on journaled quotas used for old sytle */
2643 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2644 		if (EXT4_SB(sb)->s_qf_names[i]) {
2645 			int ret = ext4_quota_on_mount(sb, i);
2646 
2647 			if (!ret)
2648 				quota_update = 1;
2649 			else
2650 				ext4_msg(sb, KERN_ERR,
2651 					"Cannot turn on journaled "
2652 					"quota: type %d: error %d", i, ret);
2653 		}
2654 	}
2655 #endif
2656 
2657 	while (es->s_last_orphan) {
2658 		struct inode *inode;
2659 
2660 		/*
2661 		 * We may have encountered an error during cleanup; if
2662 		 * so, skip the rest.
2663 		 */
2664 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2665 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2666 			es->s_last_orphan = 0;
2667 			break;
2668 		}
2669 
2670 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2671 		if (IS_ERR(inode)) {
2672 			es->s_last_orphan = 0;
2673 			break;
2674 		}
2675 
2676 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2677 		dquot_initialize(inode);
2678 		if (inode->i_nlink) {
2679 			if (test_opt(sb, DEBUG))
2680 				ext4_msg(sb, KERN_DEBUG,
2681 					"%s: truncating inode %lu to %lld bytes",
2682 					__func__, inode->i_ino, inode->i_size);
2683 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2684 				  inode->i_ino, inode->i_size);
2685 			inode_lock(inode);
2686 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2687 			ret = ext4_truncate(inode);
2688 			if (ret)
2689 				ext4_std_error(inode->i_sb, ret);
2690 			inode_unlock(inode);
2691 			nr_truncates++;
2692 		} else {
2693 			if (test_opt(sb, DEBUG))
2694 				ext4_msg(sb, KERN_DEBUG,
2695 					"%s: deleting unreferenced inode %lu",
2696 					__func__, inode->i_ino);
2697 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2698 				  inode->i_ino);
2699 			nr_orphans++;
2700 		}
2701 		iput(inode);  /* The delete magic happens here! */
2702 	}
2703 
2704 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2705 
2706 	if (nr_orphans)
2707 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2708 		       PLURAL(nr_orphans));
2709 	if (nr_truncates)
2710 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2711 		       PLURAL(nr_truncates));
2712 #ifdef CONFIG_QUOTA
2713 	/* Turn off quotas if they were enabled for orphan cleanup */
2714 	if (quota_update) {
2715 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2716 			if (sb_dqopt(sb)->files[i])
2717 				dquot_quota_off(sb, i);
2718 		}
2719 	}
2720 #endif
2721 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2722 }
2723 
2724 /*
2725  * Maximal extent format file size.
2726  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2727  * extent format containers, within a sector_t, and within i_blocks
2728  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2729  * so that won't be a limiting factor.
2730  *
2731  * However there is other limiting factor. We do store extents in the form
2732  * of starting block and length, hence the resulting length of the extent
2733  * covering maximum file size must fit into on-disk format containers as
2734  * well. Given that length is always by 1 unit bigger than max unit (because
2735  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2736  *
2737  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2738  */
2739 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2740 {
2741 	loff_t res;
2742 	loff_t upper_limit = MAX_LFS_FILESIZE;
2743 
2744 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2745 
2746 	if (!has_huge_files) {
2747 		upper_limit = (1LL << 32) - 1;
2748 
2749 		/* total blocks in file system block size */
2750 		upper_limit >>= (blkbits - 9);
2751 		upper_limit <<= blkbits;
2752 	}
2753 
2754 	/*
2755 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2756 	 * by one fs block, so ee_len can cover the extent of maximum file
2757 	 * size
2758 	 */
2759 	res = (1LL << 32) - 1;
2760 	res <<= blkbits;
2761 
2762 	/* Sanity check against vm- & vfs- imposed limits */
2763 	if (res > upper_limit)
2764 		res = upper_limit;
2765 
2766 	return res;
2767 }
2768 
2769 /*
2770  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2771  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2772  * We need to be 1 filesystem block less than the 2^48 sector limit.
2773  */
2774 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2775 {
2776 	loff_t res = EXT4_NDIR_BLOCKS;
2777 	int meta_blocks;
2778 	loff_t upper_limit;
2779 	/* This is calculated to be the largest file size for a dense, block
2780 	 * mapped file such that the file's total number of 512-byte sectors,
2781 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2782 	 *
2783 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2784 	 * number of 512-byte sectors of the file.
2785 	 */
2786 
2787 	if (!has_huge_files) {
2788 		/*
2789 		 * !has_huge_files or implies that the inode i_block field
2790 		 * represents total file blocks in 2^32 512-byte sectors ==
2791 		 * size of vfs inode i_blocks * 8
2792 		 */
2793 		upper_limit = (1LL << 32) - 1;
2794 
2795 		/* total blocks in file system block size */
2796 		upper_limit >>= (bits - 9);
2797 
2798 	} else {
2799 		/*
2800 		 * We use 48 bit ext4_inode i_blocks
2801 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2802 		 * represent total number of blocks in
2803 		 * file system block size
2804 		 */
2805 		upper_limit = (1LL << 48) - 1;
2806 
2807 	}
2808 
2809 	/* indirect blocks */
2810 	meta_blocks = 1;
2811 	/* double indirect blocks */
2812 	meta_blocks += 1 + (1LL << (bits-2));
2813 	/* tripple indirect blocks */
2814 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2815 
2816 	upper_limit -= meta_blocks;
2817 	upper_limit <<= bits;
2818 
2819 	res += 1LL << (bits-2);
2820 	res += 1LL << (2*(bits-2));
2821 	res += 1LL << (3*(bits-2));
2822 	res <<= bits;
2823 	if (res > upper_limit)
2824 		res = upper_limit;
2825 
2826 	if (res > MAX_LFS_FILESIZE)
2827 		res = MAX_LFS_FILESIZE;
2828 
2829 	return res;
2830 }
2831 
2832 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2833 				   ext4_fsblk_t logical_sb_block, int nr)
2834 {
2835 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2836 	ext4_group_t bg, first_meta_bg;
2837 	int has_super = 0;
2838 
2839 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2840 
2841 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2842 		return logical_sb_block + nr + 1;
2843 	bg = sbi->s_desc_per_block * nr;
2844 	if (ext4_bg_has_super(sb, bg))
2845 		has_super = 1;
2846 
2847 	/*
2848 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2849 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2850 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2851 	 * compensate.
2852 	 */
2853 	if (sb->s_blocksize == 1024 && nr == 0 &&
2854 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2855 		has_super++;
2856 
2857 	return (has_super + ext4_group_first_block_no(sb, bg));
2858 }
2859 
2860 /**
2861  * ext4_get_stripe_size: Get the stripe size.
2862  * @sbi: In memory super block info
2863  *
2864  * If we have specified it via mount option, then
2865  * use the mount option value. If the value specified at mount time is
2866  * greater than the blocks per group use the super block value.
2867  * If the super block value is greater than blocks per group return 0.
2868  * Allocator needs it be less than blocks per group.
2869  *
2870  */
2871 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2872 {
2873 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2874 	unsigned long stripe_width =
2875 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2876 	int ret;
2877 
2878 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2879 		ret = sbi->s_stripe;
2880 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2881 		ret = stripe_width;
2882 	else if (stride && stride <= sbi->s_blocks_per_group)
2883 		ret = stride;
2884 	else
2885 		ret = 0;
2886 
2887 	/*
2888 	 * If the stripe width is 1, this makes no sense and
2889 	 * we set it to 0 to turn off stripe handling code.
2890 	 */
2891 	if (ret <= 1)
2892 		ret = 0;
2893 
2894 	return ret;
2895 }
2896 
2897 /*
2898  * Check whether this filesystem can be mounted based on
2899  * the features present and the RDONLY/RDWR mount requested.
2900  * Returns 1 if this filesystem can be mounted as requested,
2901  * 0 if it cannot be.
2902  */
2903 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2904 {
2905 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2906 		ext4_msg(sb, KERN_ERR,
2907 			"Couldn't mount because of "
2908 			"unsupported optional features (%x)",
2909 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2910 			~EXT4_FEATURE_INCOMPAT_SUPP));
2911 		return 0;
2912 	}
2913 
2914 #ifndef CONFIG_UNICODE
2915 	if (ext4_has_feature_casefold(sb)) {
2916 		ext4_msg(sb, KERN_ERR,
2917 			 "Filesystem with casefold feature cannot be "
2918 			 "mounted without CONFIG_UNICODE");
2919 		return 0;
2920 	}
2921 #endif
2922 
2923 	if (readonly)
2924 		return 1;
2925 
2926 	if (ext4_has_feature_readonly(sb)) {
2927 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2928 		sb->s_flags |= SB_RDONLY;
2929 		return 1;
2930 	}
2931 
2932 	/* Check that feature set is OK for a read-write mount */
2933 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2934 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2935 			 "unsupported optional features (%x)",
2936 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2937 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2938 		return 0;
2939 	}
2940 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2941 		ext4_msg(sb, KERN_ERR,
2942 			 "Can't support bigalloc feature without "
2943 			 "extents feature\n");
2944 		return 0;
2945 	}
2946 
2947 #ifndef CONFIG_QUOTA
2948 	if (ext4_has_feature_quota(sb) && !readonly) {
2949 		ext4_msg(sb, KERN_ERR,
2950 			 "Filesystem with quota feature cannot be mounted RDWR "
2951 			 "without CONFIG_QUOTA");
2952 		return 0;
2953 	}
2954 	if (ext4_has_feature_project(sb) && !readonly) {
2955 		ext4_msg(sb, KERN_ERR,
2956 			 "Filesystem with project quota feature cannot be mounted RDWR "
2957 			 "without CONFIG_QUOTA");
2958 		return 0;
2959 	}
2960 #endif  /* CONFIG_QUOTA */
2961 	return 1;
2962 }
2963 
2964 /*
2965  * This function is called once a day if we have errors logged
2966  * on the file system
2967  */
2968 static void print_daily_error_info(struct timer_list *t)
2969 {
2970 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2971 	struct super_block *sb = sbi->s_sb;
2972 	struct ext4_super_block *es = sbi->s_es;
2973 
2974 	if (es->s_error_count)
2975 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2976 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2977 			 le32_to_cpu(es->s_error_count));
2978 	if (es->s_first_error_time) {
2979 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2980 		       sb->s_id,
2981 		       ext4_get_tstamp(es, s_first_error_time),
2982 		       (int) sizeof(es->s_first_error_func),
2983 		       es->s_first_error_func,
2984 		       le32_to_cpu(es->s_first_error_line));
2985 		if (es->s_first_error_ino)
2986 			printk(KERN_CONT ": inode %u",
2987 			       le32_to_cpu(es->s_first_error_ino));
2988 		if (es->s_first_error_block)
2989 			printk(KERN_CONT ": block %llu", (unsigned long long)
2990 			       le64_to_cpu(es->s_first_error_block));
2991 		printk(KERN_CONT "\n");
2992 	}
2993 	if (es->s_last_error_time) {
2994 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2995 		       sb->s_id,
2996 		       ext4_get_tstamp(es, s_last_error_time),
2997 		       (int) sizeof(es->s_last_error_func),
2998 		       es->s_last_error_func,
2999 		       le32_to_cpu(es->s_last_error_line));
3000 		if (es->s_last_error_ino)
3001 			printk(KERN_CONT ": inode %u",
3002 			       le32_to_cpu(es->s_last_error_ino));
3003 		if (es->s_last_error_block)
3004 			printk(KERN_CONT ": block %llu", (unsigned long long)
3005 			       le64_to_cpu(es->s_last_error_block));
3006 		printk(KERN_CONT "\n");
3007 	}
3008 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3009 }
3010 
3011 /* Find next suitable group and run ext4_init_inode_table */
3012 static int ext4_run_li_request(struct ext4_li_request *elr)
3013 {
3014 	struct ext4_group_desc *gdp = NULL;
3015 	ext4_group_t group, ngroups;
3016 	struct super_block *sb;
3017 	unsigned long timeout = 0;
3018 	int ret = 0;
3019 
3020 	sb = elr->lr_super;
3021 	ngroups = EXT4_SB(sb)->s_groups_count;
3022 
3023 	for (group = elr->lr_next_group; group < ngroups; group++) {
3024 		gdp = ext4_get_group_desc(sb, group, NULL);
3025 		if (!gdp) {
3026 			ret = 1;
3027 			break;
3028 		}
3029 
3030 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3031 			break;
3032 	}
3033 
3034 	if (group >= ngroups)
3035 		ret = 1;
3036 
3037 	if (!ret) {
3038 		timeout = jiffies;
3039 		ret = ext4_init_inode_table(sb, group,
3040 					    elr->lr_timeout ? 0 : 1);
3041 		if (elr->lr_timeout == 0) {
3042 			timeout = (jiffies - timeout) *
3043 				  elr->lr_sbi->s_li_wait_mult;
3044 			elr->lr_timeout = timeout;
3045 		}
3046 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3047 		elr->lr_next_group = group + 1;
3048 	}
3049 	return ret;
3050 }
3051 
3052 /*
3053  * Remove lr_request from the list_request and free the
3054  * request structure. Should be called with li_list_mtx held
3055  */
3056 static void ext4_remove_li_request(struct ext4_li_request *elr)
3057 {
3058 	struct ext4_sb_info *sbi;
3059 
3060 	if (!elr)
3061 		return;
3062 
3063 	sbi = elr->lr_sbi;
3064 
3065 	list_del(&elr->lr_request);
3066 	sbi->s_li_request = NULL;
3067 	kfree(elr);
3068 }
3069 
3070 static void ext4_unregister_li_request(struct super_block *sb)
3071 {
3072 	mutex_lock(&ext4_li_mtx);
3073 	if (!ext4_li_info) {
3074 		mutex_unlock(&ext4_li_mtx);
3075 		return;
3076 	}
3077 
3078 	mutex_lock(&ext4_li_info->li_list_mtx);
3079 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3080 	mutex_unlock(&ext4_li_info->li_list_mtx);
3081 	mutex_unlock(&ext4_li_mtx);
3082 }
3083 
3084 static struct task_struct *ext4_lazyinit_task;
3085 
3086 /*
3087  * This is the function where ext4lazyinit thread lives. It walks
3088  * through the request list searching for next scheduled filesystem.
3089  * When such a fs is found, run the lazy initialization request
3090  * (ext4_rn_li_request) and keep track of the time spend in this
3091  * function. Based on that time we compute next schedule time of
3092  * the request. When walking through the list is complete, compute
3093  * next waking time and put itself into sleep.
3094  */
3095 static int ext4_lazyinit_thread(void *arg)
3096 {
3097 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3098 	struct list_head *pos, *n;
3099 	struct ext4_li_request *elr;
3100 	unsigned long next_wakeup, cur;
3101 
3102 	BUG_ON(NULL == eli);
3103 
3104 cont_thread:
3105 	while (true) {
3106 		next_wakeup = MAX_JIFFY_OFFSET;
3107 
3108 		mutex_lock(&eli->li_list_mtx);
3109 		if (list_empty(&eli->li_request_list)) {
3110 			mutex_unlock(&eli->li_list_mtx);
3111 			goto exit_thread;
3112 		}
3113 		list_for_each_safe(pos, n, &eli->li_request_list) {
3114 			int err = 0;
3115 			int progress = 0;
3116 			elr = list_entry(pos, struct ext4_li_request,
3117 					 lr_request);
3118 
3119 			if (time_before(jiffies, elr->lr_next_sched)) {
3120 				if (time_before(elr->lr_next_sched, next_wakeup))
3121 					next_wakeup = elr->lr_next_sched;
3122 				continue;
3123 			}
3124 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3125 				if (sb_start_write_trylock(elr->lr_super)) {
3126 					progress = 1;
3127 					/*
3128 					 * We hold sb->s_umount, sb can not
3129 					 * be removed from the list, it is
3130 					 * now safe to drop li_list_mtx
3131 					 */
3132 					mutex_unlock(&eli->li_list_mtx);
3133 					err = ext4_run_li_request(elr);
3134 					sb_end_write(elr->lr_super);
3135 					mutex_lock(&eli->li_list_mtx);
3136 					n = pos->next;
3137 				}
3138 				up_read((&elr->lr_super->s_umount));
3139 			}
3140 			/* error, remove the lazy_init job */
3141 			if (err) {
3142 				ext4_remove_li_request(elr);
3143 				continue;
3144 			}
3145 			if (!progress) {
3146 				elr->lr_next_sched = jiffies +
3147 					(prandom_u32()
3148 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3149 			}
3150 			if (time_before(elr->lr_next_sched, next_wakeup))
3151 				next_wakeup = elr->lr_next_sched;
3152 		}
3153 		mutex_unlock(&eli->li_list_mtx);
3154 
3155 		try_to_freeze();
3156 
3157 		cur = jiffies;
3158 		if ((time_after_eq(cur, next_wakeup)) ||
3159 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3160 			cond_resched();
3161 			continue;
3162 		}
3163 
3164 		schedule_timeout_interruptible(next_wakeup - cur);
3165 
3166 		if (kthread_should_stop()) {
3167 			ext4_clear_request_list();
3168 			goto exit_thread;
3169 		}
3170 	}
3171 
3172 exit_thread:
3173 	/*
3174 	 * It looks like the request list is empty, but we need
3175 	 * to check it under the li_list_mtx lock, to prevent any
3176 	 * additions into it, and of course we should lock ext4_li_mtx
3177 	 * to atomically free the list and ext4_li_info, because at
3178 	 * this point another ext4 filesystem could be registering
3179 	 * new one.
3180 	 */
3181 	mutex_lock(&ext4_li_mtx);
3182 	mutex_lock(&eli->li_list_mtx);
3183 	if (!list_empty(&eli->li_request_list)) {
3184 		mutex_unlock(&eli->li_list_mtx);
3185 		mutex_unlock(&ext4_li_mtx);
3186 		goto cont_thread;
3187 	}
3188 	mutex_unlock(&eli->li_list_mtx);
3189 	kfree(ext4_li_info);
3190 	ext4_li_info = NULL;
3191 	mutex_unlock(&ext4_li_mtx);
3192 
3193 	return 0;
3194 }
3195 
3196 static void ext4_clear_request_list(void)
3197 {
3198 	struct list_head *pos, *n;
3199 	struct ext4_li_request *elr;
3200 
3201 	mutex_lock(&ext4_li_info->li_list_mtx);
3202 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3203 		elr = list_entry(pos, struct ext4_li_request,
3204 				 lr_request);
3205 		ext4_remove_li_request(elr);
3206 	}
3207 	mutex_unlock(&ext4_li_info->li_list_mtx);
3208 }
3209 
3210 static int ext4_run_lazyinit_thread(void)
3211 {
3212 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3213 					 ext4_li_info, "ext4lazyinit");
3214 	if (IS_ERR(ext4_lazyinit_task)) {
3215 		int err = PTR_ERR(ext4_lazyinit_task);
3216 		ext4_clear_request_list();
3217 		kfree(ext4_li_info);
3218 		ext4_li_info = NULL;
3219 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3220 				 "initialization thread\n",
3221 				 err);
3222 		return err;
3223 	}
3224 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3225 	return 0;
3226 }
3227 
3228 /*
3229  * Check whether it make sense to run itable init. thread or not.
3230  * If there is at least one uninitialized inode table, return
3231  * corresponding group number, else the loop goes through all
3232  * groups and return total number of groups.
3233  */
3234 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3235 {
3236 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3237 	struct ext4_group_desc *gdp = NULL;
3238 
3239 	if (!ext4_has_group_desc_csum(sb))
3240 		return ngroups;
3241 
3242 	for (group = 0; group < ngroups; group++) {
3243 		gdp = ext4_get_group_desc(sb, group, NULL);
3244 		if (!gdp)
3245 			continue;
3246 
3247 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3248 			break;
3249 	}
3250 
3251 	return group;
3252 }
3253 
3254 static int ext4_li_info_new(void)
3255 {
3256 	struct ext4_lazy_init *eli = NULL;
3257 
3258 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3259 	if (!eli)
3260 		return -ENOMEM;
3261 
3262 	INIT_LIST_HEAD(&eli->li_request_list);
3263 	mutex_init(&eli->li_list_mtx);
3264 
3265 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3266 
3267 	ext4_li_info = eli;
3268 
3269 	return 0;
3270 }
3271 
3272 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3273 					    ext4_group_t start)
3274 {
3275 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3276 	struct ext4_li_request *elr;
3277 
3278 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3279 	if (!elr)
3280 		return NULL;
3281 
3282 	elr->lr_super = sb;
3283 	elr->lr_sbi = sbi;
3284 	elr->lr_next_group = start;
3285 
3286 	/*
3287 	 * Randomize first schedule time of the request to
3288 	 * spread the inode table initialization requests
3289 	 * better.
3290 	 */
3291 	elr->lr_next_sched = jiffies + (prandom_u32() %
3292 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3293 	return elr;
3294 }
3295 
3296 int ext4_register_li_request(struct super_block *sb,
3297 			     ext4_group_t first_not_zeroed)
3298 {
3299 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3300 	struct ext4_li_request *elr = NULL;
3301 	ext4_group_t ngroups = sbi->s_groups_count;
3302 	int ret = 0;
3303 
3304 	mutex_lock(&ext4_li_mtx);
3305 	if (sbi->s_li_request != NULL) {
3306 		/*
3307 		 * Reset timeout so it can be computed again, because
3308 		 * s_li_wait_mult might have changed.
3309 		 */
3310 		sbi->s_li_request->lr_timeout = 0;
3311 		goto out;
3312 	}
3313 
3314 	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3315 	    !test_opt(sb, INIT_INODE_TABLE))
3316 		goto out;
3317 
3318 	elr = ext4_li_request_new(sb, first_not_zeroed);
3319 	if (!elr) {
3320 		ret = -ENOMEM;
3321 		goto out;
3322 	}
3323 
3324 	if (NULL == ext4_li_info) {
3325 		ret = ext4_li_info_new();
3326 		if (ret)
3327 			goto out;
3328 	}
3329 
3330 	mutex_lock(&ext4_li_info->li_list_mtx);
3331 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3332 	mutex_unlock(&ext4_li_info->li_list_mtx);
3333 
3334 	sbi->s_li_request = elr;
3335 	/*
3336 	 * set elr to NULL here since it has been inserted to
3337 	 * the request_list and the removal and free of it is
3338 	 * handled by ext4_clear_request_list from now on.
3339 	 */
3340 	elr = NULL;
3341 
3342 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3343 		ret = ext4_run_lazyinit_thread();
3344 		if (ret)
3345 			goto out;
3346 	}
3347 out:
3348 	mutex_unlock(&ext4_li_mtx);
3349 	if (ret)
3350 		kfree(elr);
3351 	return ret;
3352 }
3353 
3354 /*
3355  * We do not need to lock anything since this is called on
3356  * module unload.
3357  */
3358 static void ext4_destroy_lazyinit_thread(void)
3359 {
3360 	/*
3361 	 * If thread exited earlier
3362 	 * there's nothing to be done.
3363 	 */
3364 	if (!ext4_li_info || !ext4_lazyinit_task)
3365 		return;
3366 
3367 	kthread_stop(ext4_lazyinit_task);
3368 }
3369 
3370 static int set_journal_csum_feature_set(struct super_block *sb)
3371 {
3372 	int ret = 1;
3373 	int compat, incompat;
3374 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3375 
3376 	if (ext4_has_metadata_csum(sb)) {
3377 		/* journal checksum v3 */
3378 		compat = 0;
3379 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3380 	} else {
3381 		/* journal checksum v1 */
3382 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3383 		incompat = 0;
3384 	}
3385 
3386 	jbd2_journal_clear_features(sbi->s_journal,
3387 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3388 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3389 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3390 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3391 		ret = jbd2_journal_set_features(sbi->s_journal,
3392 				compat, 0,
3393 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3394 				incompat);
3395 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3396 		ret = jbd2_journal_set_features(sbi->s_journal,
3397 				compat, 0,
3398 				incompat);
3399 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3400 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3401 	} else {
3402 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3403 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3404 	}
3405 
3406 	return ret;
3407 }
3408 
3409 /*
3410  * Note: calculating the overhead so we can be compatible with
3411  * historical BSD practice is quite difficult in the face of
3412  * clusters/bigalloc.  This is because multiple metadata blocks from
3413  * different block group can end up in the same allocation cluster.
3414  * Calculating the exact overhead in the face of clustered allocation
3415  * requires either O(all block bitmaps) in memory or O(number of block
3416  * groups**2) in time.  We will still calculate the superblock for
3417  * older file systems --- and if we come across with a bigalloc file
3418  * system with zero in s_overhead_clusters the estimate will be close to
3419  * correct especially for very large cluster sizes --- but for newer
3420  * file systems, it's better to calculate this figure once at mkfs
3421  * time, and store it in the superblock.  If the superblock value is
3422  * present (even for non-bigalloc file systems), we will use it.
3423  */
3424 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3425 			  char *buf)
3426 {
3427 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3428 	struct ext4_group_desc	*gdp;
3429 	ext4_fsblk_t		first_block, last_block, b;
3430 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3431 	int			s, j, count = 0;
3432 
3433 	if (!ext4_has_feature_bigalloc(sb))
3434 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3435 			sbi->s_itb_per_group + 2);
3436 
3437 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3438 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3439 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3440 	for (i = 0; i < ngroups; i++) {
3441 		gdp = ext4_get_group_desc(sb, i, NULL);
3442 		b = ext4_block_bitmap(sb, gdp);
3443 		if (b >= first_block && b <= last_block) {
3444 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3445 			count++;
3446 		}
3447 		b = ext4_inode_bitmap(sb, gdp);
3448 		if (b >= first_block && b <= last_block) {
3449 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3450 			count++;
3451 		}
3452 		b = ext4_inode_table(sb, gdp);
3453 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3454 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3455 				int c = EXT4_B2C(sbi, b - first_block);
3456 				ext4_set_bit(c, buf);
3457 				count++;
3458 			}
3459 		if (i != grp)
3460 			continue;
3461 		s = 0;
3462 		if (ext4_bg_has_super(sb, grp)) {
3463 			ext4_set_bit(s++, buf);
3464 			count++;
3465 		}
3466 		j = ext4_bg_num_gdb(sb, grp);
3467 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3468 			ext4_error(sb, "Invalid number of block group "
3469 				   "descriptor blocks: %d", j);
3470 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3471 		}
3472 		count += j;
3473 		for (; j > 0; j--)
3474 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3475 	}
3476 	if (!count)
3477 		return 0;
3478 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3479 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3480 }
3481 
3482 /*
3483  * Compute the overhead and stash it in sbi->s_overhead
3484  */
3485 int ext4_calculate_overhead(struct super_block *sb)
3486 {
3487 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3488 	struct ext4_super_block *es = sbi->s_es;
3489 	struct inode *j_inode;
3490 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3491 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3492 	ext4_fsblk_t overhead = 0;
3493 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3494 
3495 	if (!buf)
3496 		return -ENOMEM;
3497 
3498 	/*
3499 	 * Compute the overhead (FS structures).  This is constant
3500 	 * for a given filesystem unless the number of block groups
3501 	 * changes so we cache the previous value until it does.
3502 	 */
3503 
3504 	/*
3505 	 * All of the blocks before first_data_block are overhead
3506 	 */
3507 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3508 
3509 	/*
3510 	 * Add the overhead found in each block group
3511 	 */
3512 	for (i = 0; i < ngroups; i++) {
3513 		int blks;
3514 
3515 		blks = count_overhead(sb, i, buf);
3516 		overhead += blks;
3517 		if (blks)
3518 			memset(buf, 0, PAGE_SIZE);
3519 		cond_resched();
3520 	}
3521 
3522 	/*
3523 	 * Add the internal journal blocks whether the journal has been
3524 	 * loaded or not
3525 	 */
3526 	if (sbi->s_journal && !sbi->journal_bdev)
3527 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3528 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3529 		j_inode = ext4_get_journal_inode(sb, j_inum);
3530 		if (j_inode) {
3531 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3532 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3533 			iput(j_inode);
3534 		} else {
3535 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3536 		}
3537 	}
3538 	sbi->s_overhead = overhead;
3539 	smp_wmb();
3540 	free_page((unsigned long) buf);
3541 	return 0;
3542 }
3543 
3544 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3545 {
3546 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3547 	struct ext4_super_block *es = sbi->s_es;
3548 	unsigned def_extra_isize = sizeof(struct ext4_inode) -
3549 						EXT4_GOOD_OLD_INODE_SIZE;
3550 
3551 	if (sbi->s_inode_size == EXT4_GOOD_OLD_INODE_SIZE) {
3552 		sbi->s_want_extra_isize = 0;
3553 		return;
3554 	}
3555 	if (sbi->s_want_extra_isize < 4) {
3556 		sbi->s_want_extra_isize = def_extra_isize;
3557 		if (ext4_has_feature_extra_isize(sb)) {
3558 			if (sbi->s_want_extra_isize <
3559 			    le16_to_cpu(es->s_want_extra_isize))
3560 				sbi->s_want_extra_isize =
3561 					le16_to_cpu(es->s_want_extra_isize);
3562 			if (sbi->s_want_extra_isize <
3563 			    le16_to_cpu(es->s_min_extra_isize))
3564 				sbi->s_want_extra_isize =
3565 					le16_to_cpu(es->s_min_extra_isize);
3566 		}
3567 	}
3568 	/* Check if enough inode space is available */
3569 	if ((sbi->s_want_extra_isize > sbi->s_inode_size) ||
3570 	    (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3571 							sbi->s_inode_size)) {
3572 		sbi->s_want_extra_isize = def_extra_isize;
3573 		ext4_msg(sb, KERN_INFO,
3574 			 "required extra inode space not available");
3575 	}
3576 }
3577 
3578 static void ext4_set_resv_clusters(struct super_block *sb)
3579 {
3580 	ext4_fsblk_t resv_clusters;
3581 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3582 
3583 	/*
3584 	 * There's no need to reserve anything when we aren't using extents.
3585 	 * The space estimates are exact, there are no unwritten extents,
3586 	 * hole punching doesn't need new metadata... This is needed especially
3587 	 * to keep ext2/3 backward compatibility.
3588 	 */
3589 	if (!ext4_has_feature_extents(sb))
3590 		return;
3591 	/*
3592 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3593 	 * This should cover the situations where we can not afford to run
3594 	 * out of space like for example punch hole, or converting
3595 	 * unwritten extents in delalloc path. In most cases such
3596 	 * allocation would require 1, or 2 blocks, higher numbers are
3597 	 * very rare.
3598 	 */
3599 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3600 			 sbi->s_cluster_bits);
3601 
3602 	do_div(resv_clusters, 50);
3603 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3604 
3605 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3606 }
3607 
3608 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3609 {
3610 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3611 	char *orig_data = kstrdup(data, GFP_KERNEL);
3612 	struct buffer_head *bh;
3613 	struct ext4_super_block *es = NULL;
3614 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3615 	ext4_fsblk_t block;
3616 	ext4_fsblk_t sb_block = get_sb_block(&data);
3617 	ext4_fsblk_t logical_sb_block;
3618 	unsigned long offset = 0;
3619 	unsigned long journal_devnum = 0;
3620 	unsigned long def_mount_opts;
3621 	struct inode *root;
3622 	const char *descr;
3623 	int ret = -ENOMEM;
3624 	int blocksize, clustersize;
3625 	unsigned int db_count;
3626 	unsigned int i;
3627 	int needs_recovery, has_huge_files, has_bigalloc;
3628 	__u64 blocks_count;
3629 	int err = 0;
3630 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3631 	ext4_group_t first_not_zeroed;
3632 
3633 	if ((data && !orig_data) || !sbi)
3634 		goto out_free_base;
3635 
3636 	sbi->s_daxdev = dax_dev;
3637 	sbi->s_blockgroup_lock =
3638 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3639 	if (!sbi->s_blockgroup_lock)
3640 		goto out_free_base;
3641 
3642 	sb->s_fs_info = sbi;
3643 	sbi->s_sb = sb;
3644 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3645 	sbi->s_sb_block = sb_block;
3646 	if (sb->s_bdev->bd_part)
3647 		sbi->s_sectors_written_start =
3648 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3649 
3650 	/* Cleanup superblock name */
3651 	strreplace(sb->s_id, '/', '!');
3652 
3653 	/* -EINVAL is default */
3654 	ret = -EINVAL;
3655 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3656 	if (!blocksize) {
3657 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3658 		goto out_fail;
3659 	}
3660 
3661 	/*
3662 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3663 	 * block sizes.  We need to calculate the offset from buffer start.
3664 	 */
3665 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3666 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3667 		offset = do_div(logical_sb_block, blocksize);
3668 	} else {
3669 		logical_sb_block = sb_block;
3670 	}
3671 
3672 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3673 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3674 		goto out_fail;
3675 	}
3676 	/*
3677 	 * Note: s_es must be initialized as soon as possible because
3678 	 *       some ext4 macro-instructions depend on its value
3679 	 */
3680 	es = (struct ext4_super_block *) (bh->b_data + offset);
3681 	sbi->s_es = es;
3682 	sb->s_magic = le16_to_cpu(es->s_magic);
3683 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3684 		goto cantfind_ext4;
3685 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3686 
3687 	/* Warn if metadata_csum and gdt_csum are both set. */
3688 	if (ext4_has_feature_metadata_csum(sb) &&
3689 	    ext4_has_feature_gdt_csum(sb))
3690 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3691 			     "redundant flags; please run fsck.");
3692 
3693 	/* Check for a known checksum algorithm */
3694 	if (!ext4_verify_csum_type(sb, es)) {
3695 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3696 			 "unknown checksum algorithm.");
3697 		silent = 1;
3698 		goto cantfind_ext4;
3699 	}
3700 
3701 	/* Load the checksum driver */
3702 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3703 	if (IS_ERR(sbi->s_chksum_driver)) {
3704 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3705 		ret = PTR_ERR(sbi->s_chksum_driver);
3706 		sbi->s_chksum_driver = NULL;
3707 		goto failed_mount;
3708 	}
3709 
3710 	/* Check superblock checksum */
3711 	if (!ext4_superblock_csum_verify(sb, es)) {
3712 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3713 			 "invalid superblock checksum.  Run e2fsck?");
3714 		silent = 1;
3715 		ret = -EFSBADCRC;
3716 		goto cantfind_ext4;
3717 	}
3718 
3719 	/* Precompute checksum seed for all metadata */
3720 	if (ext4_has_feature_csum_seed(sb))
3721 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3722 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3723 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3724 					       sizeof(es->s_uuid));
3725 
3726 	/* Set defaults before we parse the mount options */
3727 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3728 	set_opt(sb, INIT_INODE_TABLE);
3729 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3730 		set_opt(sb, DEBUG);
3731 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3732 		set_opt(sb, GRPID);
3733 	if (def_mount_opts & EXT4_DEFM_UID16)
3734 		set_opt(sb, NO_UID32);
3735 	/* xattr user namespace & acls are now defaulted on */
3736 	set_opt(sb, XATTR_USER);
3737 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3738 	set_opt(sb, POSIX_ACL);
3739 #endif
3740 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3741 	if (ext4_has_metadata_csum(sb))
3742 		set_opt(sb, JOURNAL_CHECKSUM);
3743 
3744 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3745 		set_opt(sb, JOURNAL_DATA);
3746 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3747 		set_opt(sb, ORDERED_DATA);
3748 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3749 		set_opt(sb, WRITEBACK_DATA);
3750 
3751 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3752 		set_opt(sb, ERRORS_PANIC);
3753 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3754 		set_opt(sb, ERRORS_CONT);
3755 	else
3756 		set_opt(sb, ERRORS_RO);
3757 	/* block_validity enabled by default; disable with noblock_validity */
3758 	set_opt(sb, BLOCK_VALIDITY);
3759 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3760 		set_opt(sb, DISCARD);
3761 
3762 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3763 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3764 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3765 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3766 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3767 
3768 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3769 		set_opt(sb, BARRIER);
3770 
3771 	/*
3772 	 * enable delayed allocation by default
3773 	 * Use -o nodelalloc to turn it off
3774 	 */
3775 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3776 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3777 		set_opt(sb, DELALLOC);
3778 
3779 	/*
3780 	 * set default s_li_wait_mult for lazyinit, for the case there is
3781 	 * no mount option specified.
3782 	 */
3783 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3784 
3785 	if (sbi->s_es->s_mount_opts[0]) {
3786 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3787 					      sizeof(sbi->s_es->s_mount_opts),
3788 					      GFP_KERNEL);
3789 		if (!s_mount_opts)
3790 			goto failed_mount;
3791 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3792 				   &journal_ioprio, 0)) {
3793 			ext4_msg(sb, KERN_WARNING,
3794 				 "failed to parse options in superblock: %s",
3795 				 s_mount_opts);
3796 		}
3797 		kfree(s_mount_opts);
3798 	}
3799 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3800 	if (!parse_options((char *) data, sb, &journal_devnum,
3801 			   &journal_ioprio, 0))
3802 		goto failed_mount;
3803 
3804 #ifdef CONFIG_UNICODE
3805 	if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3806 		const struct ext4_sb_encodings *encoding_info;
3807 		struct unicode_map *encoding;
3808 		__u16 encoding_flags;
3809 
3810 		if (ext4_has_feature_encrypt(sb)) {
3811 			ext4_msg(sb, KERN_ERR,
3812 				 "Can't mount with encoding and encryption");
3813 			goto failed_mount;
3814 		}
3815 
3816 		if (ext4_sb_read_encoding(es, &encoding_info,
3817 					  &encoding_flags)) {
3818 			ext4_msg(sb, KERN_ERR,
3819 				 "Encoding requested by superblock is unknown");
3820 			goto failed_mount;
3821 		}
3822 
3823 		encoding = utf8_load(encoding_info->version);
3824 		if (IS_ERR(encoding)) {
3825 			ext4_msg(sb, KERN_ERR,
3826 				 "can't mount with superblock charset: %s-%s "
3827 				 "not supported by the kernel. flags: 0x%x.",
3828 				 encoding_info->name, encoding_info->version,
3829 				 encoding_flags);
3830 			goto failed_mount;
3831 		}
3832 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3833 			 "%s-%s with flags 0x%hx", encoding_info->name,
3834 			 encoding_info->version?:"\b", encoding_flags);
3835 
3836 		sbi->s_encoding = encoding;
3837 		sbi->s_encoding_flags = encoding_flags;
3838 	}
3839 #endif
3840 
3841 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3842 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3843 			    "with data=journal disables delayed "
3844 			    "allocation and O_DIRECT support!\n");
3845 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3846 			ext4_msg(sb, KERN_ERR, "can't mount with "
3847 				 "both data=journal and delalloc");
3848 			goto failed_mount;
3849 		}
3850 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3851 			ext4_msg(sb, KERN_ERR, "can't mount with "
3852 				 "both data=journal and dioread_nolock");
3853 			goto failed_mount;
3854 		}
3855 		if (test_opt(sb, DAX)) {
3856 			ext4_msg(sb, KERN_ERR, "can't mount with "
3857 				 "both data=journal and dax");
3858 			goto failed_mount;
3859 		}
3860 		if (ext4_has_feature_encrypt(sb)) {
3861 			ext4_msg(sb, KERN_WARNING,
3862 				 "encrypted files will use data=ordered "
3863 				 "instead of data journaling mode");
3864 		}
3865 		if (test_opt(sb, DELALLOC))
3866 			clear_opt(sb, DELALLOC);
3867 	} else {
3868 		sb->s_iflags |= SB_I_CGROUPWB;
3869 	}
3870 
3871 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3872 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3873 
3874 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3875 	    (ext4_has_compat_features(sb) ||
3876 	     ext4_has_ro_compat_features(sb) ||
3877 	     ext4_has_incompat_features(sb)))
3878 		ext4_msg(sb, KERN_WARNING,
3879 		       "feature flags set on rev 0 fs, "
3880 		       "running e2fsck is recommended");
3881 
3882 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3883 		set_opt2(sb, HURD_COMPAT);
3884 		if (ext4_has_feature_64bit(sb)) {
3885 			ext4_msg(sb, KERN_ERR,
3886 				 "The Hurd can't support 64-bit file systems");
3887 			goto failed_mount;
3888 		}
3889 
3890 		/*
3891 		 * ea_inode feature uses l_i_version field which is not
3892 		 * available in HURD_COMPAT mode.
3893 		 */
3894 		if (ext4_has_feature_ea_inode(sb)) {
3895 			ext4_msg(sb, KERN_ERR,
3896 				 "ea_inode feature is not supported for Hurd");
3897 			goto failed_mount;
3898 		}
3899 	}
3900 
3901 	if (IS_EXT2_SB(sb)) {
3902 		if (ext2_feature_set_ok(sb))
3903 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3904 				 "using the ext4 subsystem");
3905 		else {
3906 			/*
3907 			 * If we're probing be silent, if this looks like
3908 			 * it's actually an ext[34] filesystem.
3909 			 */
3910 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3911 				goto failed_mount;
3912 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3913 				 "to feature incompatibilities");
3914 			goto failed_mount;
3915 		}
3916 	}
3917 
3918 	if (IS_EXT3_SB(sb)) {
3919 		if (ext3_feature_set_ok(sb))
3920 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3921 				 "using the ext4 subsystem");
3922 		else {
3923 			/*
3924 			 * If we're probing be silent, if this looks like
3925 			 * it's actually an ext4 filesystem.
3926 			 */
3927 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3928 				goto failed_mount;
3929 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3930 				 "to feature incompatibilities");
3931 			goto failed_mount;
3932 		}
3933 	}
3934 
3935 	/*
3936 	 * Check feature flags regardless of the revision level, since we
3937 	 * previously didn't change the revision level when setting the flags,
3938 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3939 	 */
3940 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3941 		goto failed_mount;
3942 
3943 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3944 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3945 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3946 		ext4_msg(sb, KERN_ERR,
3947 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3948 			 blocksize, le32_to_cpu(es->s_log_block_size));
3949 		goto failed_mount;
3950 	}
3951 	if (le32_to_cpu(es->s_log_block_size) >
3952 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3953 		ext4_msg(sb, KERN_ERR,
3954 			 "Invalid log block size: %u",
3955 			 le32_to_cpu(es->s_log_block_size));
3956 		goto failed_mount;
3957 	}
3958 	if (le32_to_cpu(es->s_log_cluster_size) >
3959 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3960 		ext4_msg(sb, KERN_ERR,
3961 			 "Invalid log cluster size: %u",
3962 			 le32_to_cpu(es->s_log_cluster_size));
3963 		goto failed_mount;
3964 	}
3965 
3966 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3967 		ext4_msg(sb, KERN_ERR,
3968 			 "Number of reserved GDT blocks insanely large: %d",
3969 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3970 		goto failed_mount;
3971 	}
3972 
3973 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3974 		if (ext4_has_feature_inline_data(sb)) {
3975 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3976 					" that may contain inline data");
3977 			goto failed_mount;
3978 		}
3979 		if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3980 			ext4_msg(sb, KERN_ERR,
3981 				"DAX unsupported by block device.");
3982 			goto failed_mount;
3983 		}
3984 	}
3985 
3986 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3987 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3988 			 es->s_encryption_level);
3989 		goto failed_mount;
3990 	}
3991 
3992 	if (sb->s_blocksize != blocksize) {
3993 		/* Validate the filesystem blocksize */
3994 		if (!sb_set_blocksize(sb, blocksize)) {
3995 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3996 					blocksize);
3997 			goto failed_mount;
3998 		}
3999 
4000 		brelse(bh);
4001 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4002 		offset = do_div(logical_sb_block, blocksize);
4003 		bh = sb_bread_unmovable(sb, logical_sb_block);
4004 		if (!bh) {
4005 			ext4_msg(sb, KERN_ERR,
4006 			       "Can't read superblock on 2nd try");
4007 			goto failed_mount;
4008 		}
4009 		es = (struct ext4_super_block *)(bh->b_data + offset);
4010 		sbi->s_es = es;
4011 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4012 			ext4_msg(sb, KERN_ERR,
4013 			       "Magic mismatch, very weird!");
4014 			goto failed_mount;
4015 		}
4016 	}
4017 
4018 	has_huge_files = ext4_has_feature_huge_file(sb);
4019 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4020 						      has_huge_files);
4021 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4022 
4023 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4024 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4025 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4026 	} else {
4027 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4028 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4029 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4030 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4031 				 sbi->s_first_ino);
4032 			goto failed_mount;
4033 		}
4034 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4035 		    (!is_power_of_2(sbi->s_inode_size)) ||
4036 		    (sbi->s_inode_size > blocksize)) {
4037 			ext4_msg(sb, KERN_ERR,
4038 			       "unsupported inode size: %d",
4039 			       sbi->s_inode_size);
4040 			goto failed_mount;
4041 		}
4042 		/*
4043 		 * i_atime_extra is the last extra field available for [acm]times in
4044 		 * struct ext4_inode. Checking for that field should suffice to ensure
4045 		 * we have extra space for all three.
4046 		 */
4047 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4048 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4049 			sb->s_time_gran = 1;
4050 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4051 		} else {
4052 			sb->s_time_gran = NSEC_PER_SEC;
4053 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4054 		}
4055 
4056 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4057 	}
4058 
4059 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4060 	if (ext4_has_feature_64bit(sb)) {
4061 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4062 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4063 		    !is_power_of_2(sbi->s_desc_size)) {
4064 			ext4_msg(sb, KERN_ERR,
4065 			       "unsupported descriptor size %lu",
4066 			       sbi->s_desc_size);
4067 			goto failed_mount;
4068 		}
4069 	} else
4070 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4071 
4072 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4073 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4074 
4075 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4076 	if (sbi->s_inodes_per_block == 0)
4077 		goto cantfind_ext4;
4078 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4079 	    sbi->s_inodes_per_group > blocksize * 8) {
4080 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4081 			 sbi->s_blocks_per_group);
4082 		goto failed_mount;
4083 	}
4084 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4085 					sbi->s_inodes_per_block;
4086 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4087 	sbi->s_sbh = bh;
4088 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4089 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4090 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4091 
4092 	for (i = 0; i < 4; i++)
4093 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4094 	sbi->s_def_hash_version = es->s_def_hash_version;
4095 	if (ext4_has_feature_dir_index(sb)) {
4096 		i = le32_to_cpu(es->s_flags);
4097 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4098 			sbi->s_hash_unsigned = 3;
4099 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4100 #ifdef __CHAR_UNSIGNED__
4101 			if (!sb_rdonly(sb))
4102 				es->s_flags |=
4103 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4104 			sbi->s_hash_unsigned = 3;
4105 #else
4106 			if (!sb_rdonly(sb))
4107 				es->s_flags |=
4108 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4109 #endif
4110 		}
4111 	}
4112 
4113 	/* Handle clustersize */
4114 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4115 	has_bigalloc = ext4_has_feature_bigalloc(sb);
4116 	if (has_bigalloc) {
4117 		if (clustersize < blocksize) {
4118 			ext4_msg(sb, KERN_ERR,
4119 				 "cluster size (%d) smaller than "
4120 				 "block size (%d)", clustersize, blocksize);
4121 			goto failed_mount;
4122 		}
4123 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4124 			le32_to_cpu(es->s_log_block_size);
4125 		sbi->s_clusters_per_group =
4126 			le32_to_cpu(es->s_clusters_per_group);
4127 		if (sbi->s_clusters_per_group > blocksize * 8) {
4128 			ext4_msg(sb, KERN_ERR,
4129 				 "#clusters per group too big: %lu",
4130 				 sbi->s_clusters_per_group);
4131 			goto failed_mount;
4132 		}
4133 		if (sbi->s_blocks_per_group !=
4134 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4135 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4136 				 "clusters per group (%lu) inconsistent",
4137 				 sbi->s_blocks_per_group,
4138 				 sbi->s_clusters_per_group);
4139 			goto failed_mount;
4140 		}
4141 	} else {
4142 		if (clustersize != blocksize) {
4143 			ext4_msg(sb, KERN_ERR,
4144 				 "fragment/cluster size (%d) != "
4145 				 "block size (%d)", clustersize, blocksize);
4146 			goto failed_mount;
4147 		}
4148 		if (sbi->s_blocks_per_group > blocksize * 8) {
4149 			ext4_msg(sb, KERN_ERR,
4150 				 "#blocks per group too big: %lu",
4151 				 sbi->s_blocks_per_group);
4152 			goto failed_mount;
4153 		}
4154 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4155 		sbi->s_cluster_bits = 0;
4156 	}
4157 	sbi->s_cluster_ratio = clustersize / blocksize;
4158 
4159 	/* Do we have standard group size of clustersize * 8 blocks ? */
4160 	if (sbi->s_blocks_per_group == clustersize << 3)
4161 		set_opt2(sb, STD_GROUP_SIZE);
4162 
4163 	/*
4164 	 * Test whether we have more sectors than will fit in sector_t,
4165 	 * and whether the max offset is addressable by the page cache.
4166 	 */
4167 	err = generic_check_addressable(sb->s_blocksize_bits,
4168 					ext4_blocks_count(es));
4169 	if (err) {
4170 		ext4_msg(sb, KERN_ERR, "filesystem"
4171 			 " too large to mount safely on this system");
4172 		goto failed_mount;
4173 	}
4174 
4175 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4176 		goto cantfind_ext4;
4177 
4178 	/* check blocks count against device size */
4179 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4180 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4181 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4182 		       "exceeds size of device (%llu blocks)",
4183 		       ext4_blocks_count(es), blocks_count);
4184 		goto failed_mount;
4185 	}
4186 
4187 	/*
4188 	 * It makes no sense for the first data block to be beyond the end
4189 	 * of the filesystem.
4190 	 */
4191 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4192 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4193 			 "block %u is beyond end of filesystem (%llu)",
4194 			 le32_to_cpu(es->s_first_data_block),
4195 			 ext4_blocks_count(es));
4196 		goto failed_mount;
4197 	}
4198 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4199 	    (sbi->s_cluster_ratio == 1)) {
4200 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4201 			 "block is 0 with a 1k block and cluster size");
4202 		goto failed_mount;
4203 	}
4204 
4205 	blocks_count = (ext4_blocks_count(es) -
4206 			le32_to_cpu(es->s_first_data_block) +
4207 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4208 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4209 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4210 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4211 		       "(block count %llu, first data block %u, "
4212 		       "blocks per group %lu)", sbi->s_groups_count,
4213 		       ext4_blocks_count(es),
4214 		       le32_to_cpu(es->s_first_data_block),
4215 		       EXT4_BLOCKS_PER_GROUP(sb));
4216 		goto failed_mount;
4217 	}
4218 	sbi->s_groups_count = blocks_count;
4219 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4220 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4221 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4222 	    le32_to_cpu(es->s_inodes_count)) {
4223 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4224 			 le32_to_cpu(es->s_inodes_count),
4225 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4226 		ret = -EINVAL;
4227 		goto failed_mount;
4228 	}
4229 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4230 		   EXT4_DESC_PER_BLOCK(sb);
4231 	if (ext4_has_feature_meta_bg(sb)) {
4232 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4233 			ext4_msg(sb, KERN_WARNING,
4234 				 "first meta block group too large: %u "
4235 				 "(group descriptor block count %u)",
4236 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4237 			goto failed_mount;
4238 		}
4239 	}
4240 	sbi->s_group_desc = kvmalloc_array(db_count,
4241 					   sizeof(struct buffer_head *),
4242 					   GFP_KERNEL);
4243 	if (sbi->s_group_desc == NULL) {
4244 		ext4_msg(sb, KERN_ERR, "not enough memory");
4245 		ret = -ENOMEM;
4246 		goto failed_mount;
4247 	}
4248 
4249 	bgl_lock_init(sbi->s_blockgroup_lock);
4250 
4251 	/* Pre-read the descriptors into the buffer cache */
4252 	for (i = 0; i < db_count; i++) {
4253 		block = descriptor_loc(sb, logical_sb_block, i);
4254 		sb_breadahead(sb, block);
4255 	}
4256 
4257 	for (i = 0; i < db_count; i++) {
4258 		block = descriptor_loc(sb, logical_sb_block, i);
4259 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4260 		if (!sbi->s_group_desc[i]) {
4261 			ext4_msg(sb, KERN_ERR,
4262 			       "can't read group descriptor %d", i);
4263 			db_count = i;
4264 			goto failed_mount2;
4265 		}
4266 	}
4267 	sbi->s_gdb_count = db_count;
4268 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4269 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4270 		ret = -EFSCORRUPTED;
4271 		goto failed_mount2;
4272 	}
4273 
4274 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4275 
4276 	/* Register extent status tree shrinker */
4277 	if (ext4_es_register_shrinker(sbi))
4278 		goto failed_mount3;
4279 
4280 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4281 	sbi->s_extent_max_zeroout_kb = 32;
4282 
4283 	/*
4284 	 * set up enough so that it can read an inode
4285 	 */
4286 	sb->s_op = &ext4_sops;
4287 	sb->s_export_op = &ext4_export_ops;
4288 	sb->s_xattr = ext4_xattr_handlers;
4289 #ifdef CONFIG_FS_ENCRYPTION
4290 	sb->s_cop = &ext4_cryptops;
4291 #endif
4292 #ifdef CONFIG_FS_VERITY
4293 	sb->s_vop = &ext4_verityops;
4294 #endif
4295 #ifdef CONFIG_QUOTA
4296 	sb->dq_op = &ext4_quota_operations;
4297 	if (ext4_has_feature_quota(sb))
4298 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4299 	else
4300 		sb->s_qcop = &ext4_qctl_operations;
4301 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4302 #endif
4303 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4304 
4305 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4306 	mutex_init(&sbi->s_orphan_lock);
4307 
4308 	sb->s_root = NULL;
4309 
4310 	needs_recovery = (es->s_last_orphan != 0 ||
4311 			  ext4_has_feature_journal_needs_recovery(sb));
4312 
4313 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4314 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4315 			goto failed_mount3a;
4316 
4317 	/*
4318 	 * The first inode we look at is the journal inode.  Don't try
4319 	 * root first: it may be modified in the journal!
4320 	 */
4321 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4322 		err = ext4_load_journal(sb, es, journal_devnum);
4323 		if (err)
4324 			goto failed_mount3a;
4325 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4326 		   ext4_has_feature_journal_needs_recovery(sb)) {
4327 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4328 		       "suppressed and not mounted read-only");
4329 		goto failed_mount_wq;
4330 	} else {
4331 		/* Nojournal mode, all journal mount options are illegal */
4332 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4333 			ext4_msg(sb, KERN_ERR, "can't mount with "
4334 				 "journal_checksum, fs mounted w/o journal");
4335 			goto failed_mount_wq;
4336 		}
4337 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4338 			ext4_msg(sb, KERN_ERR, "can't mount with "
4339 				 "journal_async_commit, fs mounted w/o journal");
4340 			goto failed_mount_wq;
4341 		}
4342 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4343 			ext4_msg(sb, KERN_ERR, "can't mount with "
4344 				 "commit=%lu, fs mounted w/o journal",
4345 				 sbi->s_commit_interval / HZ);
4346 			goto failed_mount_wq;
4347 		}
4348 		if (EXT4_MOUNT_DATA_FLAGS &
4349 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4350 			ext4_msg(sb, KERN_ERR, "can't mount with "
4351 				 "data=, fs mounted w/o journal");
4352 			goto failed_mount_wq;
4353 		}
4354 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4355 		clear_opt(sb, JOURNAL_CHECKSUM);
4356 		clear_opt(sb, DATA_FLAGS);
4357 		sbi->s_journal = NULL;
4358 		needs_recovery = 0;
4359 		goto no_journal;
4360 	}
4361 
4362 	if (ext4_has_feature_64bit(sb) &&
4363 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4364 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4365 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4366 		goto failed_mount_wq;
4367 	}
4368 
4369 	if (!set_journal_csum_feature_set(sb)) {
4370 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4371 			 "feature set");
4372 		goto failed_mount_wq;
4373 	}
4374 
4375 	/* We have now updated the journal if required, so we can
4376 	 * validate the data journaling mode. */
4377 	switch (test_opt(sb, DATA_FLAGS)) {
4378 	case 0:
4379 		/* No mode set, assume a default based on the journal
4380 		 * capabilities: ORDERED_DATA if the journal can
4381 		 * cope, else JOURNAL_DATA
4382 		 */
4383 		if (jbd2_journal_check_available_features
4384 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4385 			set_opt(sb, ORDERED_DATA);
4386 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4387 		} else {
4388 			set_opt(sb, JOURNAL_DATA);
4389 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4390 		}
4391 		break;
4392 
4393 	case EXT4_MOUNT_ORDERED_DATA:
4394 	case EXT4_MOUNT_WRITEBACK_DATA:
4395 		if (!jbd2_journal_check_available_features
4396 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4397 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4398 			       "requested data journaling mode");
4399 			goto failed_mount_wq;
4400 		}
4401 	default:
4402 		break;
4403 	}
4404 
4405 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4406 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4407 		ext4_msg(sb, KERN_ERR, "can't mount with "
4408 			"journal_async_commit in data=ordered mode");
4409 		goto failed_mount_wq;
4410 	}
4411 
4412 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4413 
4414 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4415 
4416 no_journal:
4417 	if (!test_opt(sb, NO_MBCACHE)) {
4418 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4419 		if (!sbi->s_ea_block_cache) {
4420 			ext4_msg(sb, KERN_ERR,
4421 				 "Failed to create ea_block_cache");
4422 			goto failed_mount_wq;
4423 		}
4424 
4425 		if (ext4_has_feature_ea_inode(sb)) {
4426 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4427 			if (!sbi->s_ea_inode_cache) {
4428 				ext4_msg(sb, KERN_ERR,
4429 					 "Failed to create ea_inode_cache");
4430 				goto failed_mount_wq;
4431 			}
4432 		}
4433 	}
4434 
4435 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4436 	    (blocksize != PAGE_SIZE)) {
4437 		ext4_msg(sb, KERN_ERR,
4438 			 "Unsupported blocksize for fs encryption");
4439 		goto failed_mount_wq;
4440 	}
4441 
4442 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4443 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4444 		goto failed_mount_wq;
4445 	}
4446 
4447 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4448 	    !ext4_has_feature_encrypt(sb)) {
4449 		ext4_set_feature_encrypt(sb);
4450 		ext4_commit_super(sb, 1);
4451 	}
4452 
4453 	/*
4454 	 * Get the # of file system overhead blocks from the
4455 	 * superblock if present.
4456 	 */
4457 	if (es->s_overhead_clusters)
4458 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4459 	else {
4460 		err = ext4_calculate_overhead(sb);
4461 		if (err)
4462 			goto failed_mount_wq;
4463 	}
4464 
4465 	/*
4466 	 * The maximum number of concurrent works can be high and
4467 	 * concurrency isn't really necessary.  Limit it to 1.
4468 	 */
4469 	EXT4_SB(sb)->rsv_conversion_wq =
4470 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4471 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4472 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4473 		ret = -ENOMEM;
4474 		goto failed_mount4;
4475 	}
4476 
4477 	/*
4478 	 * The jbd2_journal_load will have done any necessary log recovery,
4479 	 * so we can safely mount the rest of the filesystem now.
4480 	 */
4481 
4482 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4483 	if (IS_ERR(root)) {
4484 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4485 		ret = PTR_ERR(root);
4486 		root = NULL;
4487 		goto failed_mount4;
4488 	}
4489 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4490 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4491 		iput(root);
4492 		goto failed_mount4;
4493 	}
4494 
4495 #ifdef CONFIG_UNICODE
4496 	if (sbi->s_encoding)
4497 		sb->s_d_op = &ext4_dentry_ops;
4498 #endif
4499 
4500 	sb->s_root = d_make_root(root);
4501 	if (!sb->s_root) {
4502 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4503 		ret = -ENOMEM;
4504 		goto failed_mount4;
4505 	}
4506 
4507 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4508 	if (ret == -EROFS) {
4509 		sb->s_flags |= SB_RDONLY;
4510 		ret = 0;
4511 	} else if (ret)
4512 		goto failed_mount4a;
4513 
4514 	ext4_clamp_want_extra_isize(sb);
4515 
4516 	ext4_set_resv_clusters(sb);
4517 
4518 	err = ext4_setup_system_zone(sb);
4519 	if (err) {
4520 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4521 			 "zone (%d)", err);
4522 		goto failed_mount4a;
4523 	}
4524 
4525 	ext4_ext_init(sb);
4526 	err = ext4_mb_init(sb);
4527 	if (err) {
4528 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4529 			 err);
4530 		goto failed_mount5;
4531 	}
4532 
4533 	block = ext4_count_free_clusters(sb);
4534 	ext4_free_blocks_count_set(sbi->s_es,
4535 				   EXT4_C2B(sbi, block));
4536 	ext4_superblock_csum_set(sb);
4537 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4538 				  GFP_KERNEL);
4539 	if (!err) {
4540 		unsigned long freei = ext4_count_free_inodes(sb);
4541 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4542 		ext4_superblock_csum_set(sb);
4543 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4544 					  GFP_KERNEL);
4545 	}
4546 	if (!err)
4547 		err = percpu_counter_init(&sbi->s_dirs_counter,
4548 					  ext4_count_dirs(sb), GFP_KERNEL);
4549 	if (!err)
4550 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4551 					  GFP_KERNEL);
4552 	if (!err)
4553 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4554 
4555 	if (err) {
4556 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4557 		goto failed_mount6;
4558 	}
4559 
4560 	if (ext4_has_feature_flex_bg(sb))
4561 		if (!ext4_fill_flex_info(sb)) {
4562 			ext4_msg(sb, KERN_ERR,
4563 			       "unable to initialize "
4564 			       "flex_bg meta info!");
4565 			goto failed_mount6;
4566 		}
4567 
4568 	err = ext4_register_li_request(sb, first_not_zeroed);
4569 	if (err)
4570 		goto failed_mount6;
4571 
4572 	err = ext4_register_sysfs(sb);
4573 	if (err)
4574 		goto failed_mount7;
4575 
4576 #ifdef CONFIG_QUOTA
4577 	/* Enable quota usage during mount. */
4578 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4579 		err = ext4_enable_quotas(sb);
4580 		if (err)
4581 			goto failed_mount8;
4582 	}
4583 #endif  /* CONFIG_QUOTA */
4584 
4585 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4586 	ext4_orphan_cleanup(sb, es);
4587 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4588 	if (needs_recovery) {
4589 		ext4_msg(sb, KERN_INFO, "recovery complete");
4590 		ext4_mark_recovery_complete(sb, es);
4591 	}
4592 	if (EXT4_SB(sb)->s_journal) {
4593 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4594 			descr = " journalled data mode";
4595 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4596 			descr = " ordered data mode";
4597 		else
4598 			descr = " writeback data mode";
4599 	} else
4600 		descr = "out journal";
4601 
4602 	if (test_opt(sb, DISCARD)) {
4603 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4604 		if (!blk_queue_discard(q))
4605 			ext4_msg(sb, KERN_WARNING,
4606 				 "mounting with \"discard\" option, but "
4607 				 "the device does not support discard");
4608 	}
4609 
4610 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4611 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4612 			 "Opts: %.*s%s%s", descr,
4613 			 (int) sizeof(sbi->s_es->s_mount_opts),
4614 			 sbi->s_es->s_mount_opts,
4615 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4616 
4617 	if (es->s_error_count)
4618 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4619 
4620 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4621 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4622 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4623 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4624 
4625 	kfree(orig_data);
4626 	return 0;
4627 
4628 cantfind_ext4:
4629 	if (!silent)
4630 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4631 	goto failed_mount;
4632 
4633 #ifdef CONFIG_QUOTA
4634 failed_mount8:
4635 	ext4_unregister_sysfs(sb);
4636 #endif
4637 failed_mount7:
4638 	ext4_unregister_li_request(sb);
4639 failed_mount6:
4640 	ext4_mb_release(sb);
4641 	if (sbi->s_flex_groups)
4642 		kvfree(sbi->s_flex_groups);
4643 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4644 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4645 	percpu_counter_destroy(&sbi->s_dirs_counter);
4646 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4647 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4648 failed_mount5:
4649 	ext4_ext_release(sb);
4650 	ext4_release_system_zone(sb);
4651 failed_mount4a:
4652 	dput(sb->s_root);
4653 	sb->s_root = NULL;
4654 failed_mount4:
4655 	ext4_msg(sb, KERN_ERR, "mount failed");
4656 	if (EXT4_SB(sb)->rsv_conversion_wq)
4657 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4658 failed_mount_wq:
4659 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4660 	sbi->s_ea_inode_cache = NULL;
4661 
4662 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4663 	sbi->s_ea_block_cache = NULL;
4664 
4665 	if (sbi->s_journal) {
4666 		jbd2_journal_destroy(sbi->s_journal);
4667 		sbi->s_journal = NULL;
4668 	}
4669 failed_mount3a:
4670 	ext4_es_unregister_shrinker(sbi);
4671 failed_mount3:
4672 	del_timer_sync(&sbi->s_err_report);
4673 	if (sbi->s_mmp_tsk)
4674 		kthread_stop(sbi->s_mmp_tsk);
4675 failed_mount2:
4676 	for (i = 0; i < db_count; i++)
4677 		brelse(sbi->s_group_desc[i]);
4678 	kvfree(sbi->s_group_desc);
4679 failed_mount:
4680 	if (sbi->s_chksum_driver)
4681 		crypto_free_shash(sbi->s_chksum_driver);
4682 
4683 #ifdef CONFIG_UNICODE
4684 	utf8_unload(sbi->s_encoding);
4685 #endif
4686 
4687 #ifdef CONFIG_QUOTA
4688 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4689 		kfree(get_qf_name(sb, sbi, i));
4690 #endif
4691 	ext4_blkdev_remove(sbi);
4692 	brelse(bh);
4693 out_fail:
4694 	sb->s_fs_info = NULL;
4695 	kfree(sbi->s_blockgroup_lock);
4696 out_free_base:
4697 	kfree(sbi);
4698 	kfree(orig_data);
4699 	fs_put_dax(dax_dev);
4700 	return err ? err : ret;
4701 }
4702 
4703 /*
4704  * Setup any per-fs journal parameters now.  We'll do this both on
4705  * initial mount, once the journal has been initialised but before we've
4706  * done any recovery; and again on any subsequent remount.
4707  */
4708 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4709 {
4710 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4711 
4712 	journal->j_commit_interval = sbi->s_commit_interval;
4713 	journal->j_min_batch_time = sbi->s_min_batch_time;
4714 	journal->j_max_batch_time = sbi->s_max_batch_time;
4715 
4716 	write_lock(&journal->j_state_lock);
4717 	if (test_opt(sb, BARRIER))
4718 		journal->j_flags |= JBD2_BARRIER;
4719 	else
4720 		journal->j_flags &= ~JBD2_BARRIER;
4721 	if (test_opt(sb, DATA_ERR_ABORT))
4722 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4723 	else
4724 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4725 	write_unlock(&journal->j_state_lock);
4726 }
4727 
4728 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4729 					     unsigned int journal_inum)
4730 {
4731 	struct inode *journal_inode;
4732 
4733 	/*
4734 	 * Test for the existence of a valid inode on disk.  Bad things
4735 	 * happen if we iget() an unused inode, as the subsequent iput()
4736 	 * will try to delete it.
4737 	 */
4738 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4739 	if (IS_ERR(journal_inode)) {
4740 		ext4_msg(sb, KERN_ERR, "no journal found");
4741 		return NULL;
4742 	}
4743 	if (!journal_inode->i_nlink) {
4744 		make_bad_inode(journal_inode);
4745 		iput(journal_inode);
4746 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4747 		return NULL;
4748 	}
4749 
4750 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4751 		  journal_inode, journal_inode->i_size);
4752 	if (!S_ISREG(journal_inode->i_mode)) {
4753 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4754 		iput(journal_inode);
4755 		return NULL;
4756 	}
4757 	return journal_inode;
4758 }
4759 
4760 static journal_t *ext4_get_journal(struct super_block *sb,
4761 				   unsigned int journal_inum)
4762 {
4763 	struct inode *journal_inode;
4764 	journal_t *journal;
4765 
4766 	BUG_ON(!ext4_has_feature_journal(sb));
4767 
4768 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4769 	if (!journal_inode)
4770 		return NULL;
4771 
4772 	journal = jbd2_journal_init_inode(journal_inode);
4773 	if (!journal) {
4774 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4775 		iput(journal_inode);
4776 		return NULL;
4777 	}
4778 	journal->j_private = sb;
4779 	ext4_init_journal_params(sb, journal);
4780 	return journal;
4781 }
4782 
4783 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4784 				       dev_t j_dev)
4785 {
4786 	struct buffer_head *bh;
4787 	journal_t *journal;
4788 	ext4_fsblk_t start;
4789 	ext4_fsblk_t len;
4790 	int hblock, blocksize;
4791 	ext4_fsblk_t sb_block;
4792 	unsigned long offset;
4793 	struct ext4_super_block *es;
4794 	struct block_device *bdev;
4795 
4796 	BUG_ON(!ext4_has_feature_journal(sb));
4797 
4798 	bdev = ext4_blkdev_get(j_dev, sb);
4799 	if (bdev == NULL)
4800 		return NULL;
4801 
4802 	blocksize = sb->s_blocksize;
4803 	hblock = bdev_logical_block_size(bdev);
4804 	if (blocksize < hblock) {
4805 		ext4_msg(sb, KERN_ERR,
4806 			"blocksize too small for journal device");
4807 		goto out_bdev;
4808 	}
4809 
4810 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4811 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4812 	set_blocksize(bdev, blocksize);
4813 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4814 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4815 		       "external journal");
4816 		goto out_bdev;
4817 	}
4818 
4819 	es = (struct ext4_super_block *) (bh->b_data + offset);
4820 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4821 	    !(le32_to_cpu(es->s_feature_incompat) &
4822 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4823 		ext4_msg(sb, KERN_ERR, "external journal has "
4824 					"bad superblock");
4825 		brelse(bh);
4826 		goto out_bdev;
4827 	}
4828 
4829 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4830 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4831 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4832 		ext4_msg(sb, KERN_ERR, "external journal has "
4833 				       "corrupt superblock");
4834 		brelse(bh);
4835 		goto out_bdev;
4836 	}
4837 
4838 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4839 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4840 		brelse(bh);
4841 		goto out_bdev;
4842 	}
4843 
4844 	len = ext4_blocks_count(es);
4845 	start = sb_block + 1;
4846 	brelse(bh);	/* we're done with the superblock */
4847 
4848 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4849 					start, len, blocksize);
4850 	if (!journal) {
4851 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4852 		goto out_bdev;
4853 	}
4854 	journal->j_private = sb;
4855 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4856 	wait_on_buffer(journal->j_sb_buffer);
4857 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4858 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4859 		goto out_journal;
4860 	}
4861 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4862 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4863 					"user (unsupported) - %d",
4864 			be32_to_cpu(journal->j_superblock->s_nr_users));
4865 		goto out_journal;
4866 	}
4867 	EXT4_SB(sb)->journal_bdev = bdev;
4868 	ext4_init_journal_params(sb, journal);
4869 	return journal;
4870 
4871 out_journal:
4872 	jbd2_journal_destroy(journal);
4873 out_bdev:
4874 	ext4_blkdev_put(bdev);
4875 	return NULL;
4876 }
4877 
4878 static int ext4_load_journal(struct super_block *sb,
4879 			     struct ext4_super_block *es,
4880 			     unsigned long journal_devnum)
4881 {
4882 	journal_t *journal;
4883 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4884 	dev_t journal_dev;
4885 	int err = 0;
4886 	int really_read_only;
4887 
4888 	BUG_ON(!ext4_has_feature_journal(sb));
4889 
4890 	if (journal_devnum &&
4891 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4892 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4893 			"numbers have changed");
4894 		journal_dev = new_decode_dev(journal_devnum);
4895 	} else
4896 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4897 
4898 	really_read_only = bdev_read_only(sb->s_bdev);
4899 
4900 	/*
4901 	 * Are we loading a blank journal or performing recovery after a
4902 	 * crash?  For recovery, we need to check in advance whether we
4903 	 * can get read-write access to the device.
4904 	 */
4905 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4906 		if (sb_rdonly(sb)) {
4907 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4908 					"required on readonly filesystem");
4909 			if (really_read_only) {
4910 				ext4_msg(sb, KERN_ERR, "write access "
4911 					"unavailable, cannot proceed "
4912 					"(try mounting with noload)");
4913 				return -EROFS;
4914 			}
4915 			ext4_msg(sb, KERN_INFO, "write access will "
4916 			       "be enabled during recovery");
4917 		}
4918 	}
4919 
4920 	if (journal_inum && journal_dev) {
4921 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4922 		       "and inode journals!");
4923 		return -EINVAL;
4924 	}
4925 
4926 	if (journal_inum) {
4927 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4928 			return -EINVAL;
4929 	} else {
4930 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4931 			return -EINVAL;
4932 	}
4933 
4934 	if (!(journal->j_flags & JBD2_BARRIER))
4935 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4936 
4937 	if (!ext4_has_feature_journal_needs_recovery(sb))
4938 		err = jbd2_journal_wipe(journal, !really_read_only);
4939 	if (!err) {
4940 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4941 		if (save)
4942 			memcpy(save, ((char *) es) +
4943 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4944 		err = jbd2_journal_load(journal);
4945 		if (save)
4946 			memcpy(((char *) es) + EXT4_S_ERR_START,
4947 			       save, EXT4_S_ERR_LEN);
4948 		kfree(save);
4949 	}
4950 
4951 	if (err) {
4952 		ext4_msg(sb, KERN_ERR, "error loading journal");
4953 		jbd2_journal_destroy(journal);
4954 		return err;
4955 	}
4956 
4957 	EXT4_SB(sb)->s_journal = journal;
4958 	ext4_clear_journal_err(sb, es);
4959 
4960 	if (!really_read_only && journal_devnum &&
4961 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4962 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4963 
4964 		/* Make sure we flush the recovery flag to disk. */
4965 		ext4_commit_super(sb, 1);
4966 	}
4967 
4968 	return 0;
4969 }
4970 
4971 static int ext4_commit_super(struct super_block *sb, int sync)
4972 {
4973 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4974 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4975 	int error = 0;
4976 
4977 	if (!sbh || block_device_ejected(sb))
4978 		return error;
4979 
4980 	/*
4981 	 * The superblock bh should be mapped, but it might not be if the
4982 	 * device was hot-removed. Not much we can do but fail the I/O.
4983 	 */
4984 	if (!buffer_mapped(sbh))
4985 		return error;
4986 
4987 	/*
4988 	 * If the file system is mounted read-only, don't update the
4989 	 * superblock write time.  This avoids updating the superblock
4990 	 * write time when we are mounting the root file system
4991 	 * read/only but we need to replay the journal; at that point,
4992 	 * for people who are east of GMT and who make their clock
4993 	 * tick in localtime for Windows bug-for-bug compatibility,
4994 	 * the clock is set in the future, and this will cause e2fsck
4995 	 * to complain and force a full file system check.
4996 	 */
4997 	if (!(sb->s_flags & SB_RDONLY))
4998 		ext4_update_tstamp(es, s_wtime);
4999 	if (sb->s_bdev->bd_part)
5000 		es->s_kbytes_written =
5001 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5002 			    ((part_stat_read(sb->s_bdev->bd_part,
5003 					     sectors[STAT_WRITE]) -
5004 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
5005 	else
5006 		es->s_kbytes_written =
5007 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5008 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5009 		ext4_free_blocks_count_set(es,
5010 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5011 				&EXT4_SB(sb)->s_freeclusters_counter)));
5012 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5013 		es->s_free_inodes_count =
5014 			cpu_to_le32(percpu_counter_sum_positive(
5015 				&EXT4_SB(sb)->s_freeinodes_counter));
5016 	BUFFER_TRACE(sbh, "marking dirty");
5017 	ext4_superblock_csum_set(sb);
5018 	if (sync)
5019 		lock_buffer(sbh);
5020 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5021 		/*
5022 		 * Oh, dear.  A previous attempt to write the
5023 		 * superblock failed.  This could happen because the
5024 		 * USB device was yanked out.  Or it could happen to
5025 		 * be a transient write error and maybe the block will
5026 		 * be remapped.  Nothing we can do but to retry the
5027 		 * write and hope for the best.
5028 		 */
5029 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5030 		       "superblock detected");
5031 		clear_buffer_write_io_error(sbh);
5032 		set_buffer_uptodate(sbh);
5033 	}
5034 	mark_buffer_dirty(sbh);
5035 	if (sync) {
5036 		unlock_buffer(sbh);
5037 		error = __sync_dirty_buffer(sbh,
5038 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5039 		if (buffer_write_io_error(sbh)) {
5040 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
5041 			       "superblock");
5042 			clear_buffer_write_io_error(sbh);
5043 			set_buffer_uptodate(sbh);
5044 		}
5045 	}
5046 	return error;
5047 }
5048 
5049 /*
5050  * Have we just finished recovery?  If so, and if we are mounting (or
5051  * remounting) the filesystem readonly, then we will end up with a
5052  * consistent fs on disk.  Record that fact.
5053  */
5054 static void ext4_mark_recovery_complete(struct super_block *sb,
5055 					struct ext4_super_block *es)
5056 {
5057 	journal_t *journal = EXT4_SB(sb)->s_journal;
5058 
5059 	if (!ext4_has_feature_journal(sb)) {
5060 		BUG_ON(journal != NULL);
5061 		return;
5062 	}
5063 	jbd2_journal_lock_updates(journal);
5064 	if (jbd2_journal_flush(journal) < 0)
5065 		goto out;
5066 
5067 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5068 		ext4_clear_feature_journal_needs_recovery(sb);
5069 		ext4_commit_super(sb, 1);
5070 	}
5071 
5072 out:
5073 	jbd2_journal_unlock_updates(journal);
5074 }
5075 
5076 /*
5077  * If we are mounting (or read-write remounting) a filesystem whose journal
5078  * has recorded an error from a previous lifetime, move that error to the
5079  * main filesystem now.
5080  */
5081 static void ext4_clear_journal_err(struct super_block *sb,
5082 				   struct ext4_super_block *es)
5083 {
5084 	journal_t *journal;
5085 	int j_errno;
5086 	const char *errstr;
5087 
5088 	BUG_ON(!ext4_has_feature_journal(sb));
5089 
5090 	journal = EXT4_SB(sb)->s_journal;
5091 
5092 	/*
5093 	 * Now check for any error status which may have been recorded in the
5094 	 * journal by a prior ext4_error() or ext4_abort()
5095 	 */
5096 
5097 	j_errno = jbd2_journal_errno(journal);
5098 	if (j_errno) {
5099 		char nbuf[16];
5100 
5101 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5102 		ext4_warning(sb, "Filesystem error recorded "
5103 			     "from previous mount: %s", errstr);
5104 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5105 
5106 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5107 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5108 		ext4_commit_super(sb, 1);
5109 
5110 		jbd2_journal_clear_err(journal);
5111 		jbd2_journal_update_sb_errno(journal);
5112 	}
5113 }
5114 
5115 /*
5116  * Force the running and committing transactions to commit,
5117  * and wait on the commit.
5118  */
5119 int ext4_force_commit(struct super_block *sb)
5120 {
5121 	journal_t *journal;
5122 
5123 	if (sb_rdonly(sb))
5124 		return 0;
5125 
5126 	journal = EXT4_SB(sb)->s_journal;
5127 	return ext4_journal_force_commit(journal);
5128 }
5129 
5130 static int ext4_sync_fs(struct super_block *sb, int wait)
5131 {
5132 	int ret = 0;
5133 	tid_t target;
5134 	bool needs_barrier = false;
5135 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5136 
5137 	if (unlikely(ext4_forced_shutdown(sbi)))
5138 		return 0;
5139 
5140 	trace_ext4_sync_fs(sb, wait);
5141 	flush_workqueue(sbi->rsv_conversion_wq);
5142 	/*
5143 	 * Writeback quota in non-journalled quota case - journalled quota has
5144 	 * no dirty dquots
5145 	 */
5146 	dquot_writeback_dquots(sb, -1);
5147 	/*
5148 	 * Data writeback is possible w/o journal transaction, so barrier must
5149 	 * being sent at the end of the function. But we can skip it if
5150 	 * transaction_commit will do it for us.
5151 	 */
5152 	if (sbi->s_journal) {
5153 		target = jbd2_get_latest_transaction(sbi->s_journal);
5154 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5155 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5156 			needs_barrier = true;
5157 
5158 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5159 			if (wait)
5160 				ret = jbd2_log_wait_commit(sbi->s_journal,
5161 							   target);
5162 		}
5163 	} else if (wait && test_opt(sb, BARRIER))
5164 		needs_barrier = true;
5165 	if (needs_barrier) {
5166 		int err;
5167 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5168 		if (!ret)
5169 			ret = err;
5170 	}
5171 
5172 	return ret;
5173 }
5174 
5175 /*
5176  * LVM calls this function before a (read-only) snapshot is created.  This
5177  * gives us a chance to flush the journal completely and mark the fs clean.
5178  *
5179  * Note that only this function cannot bring a filesystem to be in a clean
5180  * state independently. It relies on upper layer to stop all data & metadata
5181  * modifications.
5182  */
5183 static int ext4_freeze(struct super_block *sb)
5184 {
5185 	int error = 0;
5186 	journal_t *journal;
5187 
5188 	if (sb_rdonly(sb))
5189 		return 0;
5190 
5191 	journal = EXT4_SB(sb)->s_journal;
5192 
5193 	if (journal) {
5194 		/* Now we set up the journal barrier. */
5195 		jbd2_journal_lock_updates(journal);
5196 
5197 		/*
5198 		 * Don't clear the needs_recovery flag if we failed to
5199 		 * flush the journal.
5200 		 */
5201 		error = jbd2_journal_flush(journal);
5202 		if (error < 0)
5203 			goto out;
5204 
5205 		/* Journal blocked and flushed, clear needs_recovery flag. */
5206 		ext4_clear_feature_journal_needs_recovery(sb);
5207 	}
5208 
5209 	error = ext4_commit_super(sb, 1);
5210 out:
5211 	if (journal)
5212 		/* we rely on upper layer to stop further updates */
5213 		jbd2_journal_unlock_updates(journal);
5214 	return error;
5215 }
5216 
5217 /*
5218  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5219  * flag here, even though the filesystem is not technically dirty yet.
5220  */
5221 static int ext4_unfreeze(struct super_block *sb)
5222 {
5223 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5224 		return 0;
5225 
5226 	if (EXT4_SB(sb)->s_journal) {
5227 		/* Reset the needs_recovery flag before the fs is unlocked. */
5228 		ext4_set_feature_journal_needs_recovery(sb);
5229 	}
5230 
5231 	ext4_commit_super(sb, 1);
5232 	return 0;
5233 }
5234 
5235 /*
5236  * Structure to save mount options for ext4_remount's benefit
5237  */
5238 struct ext4_mount_options {
5239 	unsigned long s_mount_opt;
5240 	unsigned long s_mount_opt2;
5241 	kuid_t s_resuid;
5242 	kgid_t s_resgid;
5243 	unsigned long s_commit_interval;
5244 	u32 s_min_batch_time, s_max_batch_time;
5245 #ifdef CONFIG_QUOTA
5246 	int s_jquota_fmt;
5247 	char *s_qf_names[EXT4_MAXQUOTAS];
5248 #endif
5249 };
5250 
5251 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5252 {
5253 	struct ext4_super_block *es;
5254 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5255 	unsigned long old_sb_flags;
5256 	struct ext4_mount_options old_opts;
5257 	int enable_quota = 0;
5258 	ext4_group_t g;
5259 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5260 	int err = 0;
5261 #ifdef CONFIG_QUOTA
5262 	int i, j;
5263 	char *to_free[EXT4_MAXQUOTAS];
5264 #endif
5265 	char *orig_data = kstrdup(data, GFP_KERNEL);
5266 
5267 	if (data && !orig_data)
5268 		return -ENOMEM;
5269 
5270 	/* Store the original options */
5271 	old_sb_flags = sb->s_flags;
5272 	old_opts.s_mount_opt = sbi->s_mount_opt;
5273 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5274 	old_opts.s_resuid = sbi->s_resuid;
5275 	old_opts.s_resgid = sbi->s_resgid;
5276 	old_opts.s_commit_interval = sbi->s_commit_interval;
5277 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5278 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5279 #ifdef CONFIG_QUOTA
5280 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5281 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5282 		if (sbi->s_qf_names[i]) {
5283 			char *qf_name = get_qf_name(sb, sbi, i);
5284 
5285 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5286 			if (!old_opts.s_qf_names[i]) {
5287 				for (j = 0; j < i; j++)
5288 					kfree(old_opts.s_qf_names[j]);
5289 				kfree(orig_data);
5290 				return -ENOMEM;
5291 			}
5292 		} else
5293 			old_opts.s_qf_names[i] = NULL;
5294 #endif
5295 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5296 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5297 
5298 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5299 		err = -EINVAL;
5300 		goto restore_opts;
5301 	}
5302 
5303 	ext4_clamp_want_extra_isize(sb);
5304 
5305 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5306 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5307 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5308 			 "during remount not supported; ignoring");
5309 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5310 	}
5311 
5312 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5313 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5314 			ext4_msg(sb, KERN_ERR, "can't mount with "
5315 				 "both data=journal and delalloc");
5316 			err = -EINVAL;
5317 			goto restore_opts;
5318 		}
5319 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5320 			ext4_msg(sb, KERN_ERR, "can't mount with "
5321 				 "both data=journal and dioread_nolock");
5322 			err = -EINVAL;
5323 			goto restore_opts;
5324 		}
5325 		if (test_opt(sb, DAX)) {
5326 			ext4_msg(sb, KERN_ERR, "can't mount with "
5327 				 "both data=journal and dax");
5328 			err = -EINVAL;
5329 			goto restore_opts;
5330 		}
5331 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5332 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5333 			ext4_msg(sb, KERN_ERR, "can't mount with "
5334 				"journal_async_commit in data=ordered mode");
5335 			err = -EINVAL;
5336 			goto restore_opts;
5337 		}
5338 	}
5339 
5340 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5341 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5342 		err = -EINVAL;
5343 		goto restore_opts;
5344 	}
5345 
5346 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5347 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5348 			"dax flag with busy inodes while remounting");
5349 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5350 	}
5351 
5352 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5353 		ext4_abort(sb, "Abort forced by user");
5354 
5355 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5356 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5357 
5358 	es = sbi->s_es;
5359 
5360 	if (sbi->s_journal) {
5361 		ext4_init_journal_params(sb, sbi->s_journal);
5362 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5363 	}
5364 
5365 	if (*flags & SB_LAZYTIME)
5366 		sb->s_flags |= SB_LAZYTIME;
5367 
5368 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5369 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5370 			err = -EROFS;
5371 			goto restore_opts;
5372 		}
5373 
5374 		if (*flags & SB_RDONLY) {
5375 			err = sync_filesystem(sb);
5376 			if (err < 0)
5377 				goto restore_opts;
5378 			err = dquot_suspend(sb, -1);
5379 			if (err < 0)
5380 				goto restore_opts;
5381 
5382 			/*
5383 			 * First of all, the unconditional stuff we have to do
5384 			 * to disable replay of the journal when we next remount
5385 			 */
5386 			sb->s_flags |= SB_RDONLY;
5387 
5388 			/*
5389 			 * OK, test if we are remounting a valid rw partition
5390 			 * readonly, and if so set the rdonly flag and then
5391 			 * mark the partition as valid again.
5392 			 */
5393 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5394 			    (sbi->s_mount_state & EXT4_VALID_FS))
5395 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5396 
5397 			if (sbi->s_journal)
5398 				ext4_mark_recovery_complete(sb, es);
5399 			if (sbi->s_mmp_tsk)
5400 				kthread_stop(sbi->s_mmp_tsk);
5401 		} else {
5402 			/* Make sure we can mount this feature set readwrite */
5403 			if (ext4_has_feature_readonly(sb) ||
5404 			    !ext4_feature_set_ok(sb, 0)) {
5405 				err = -EROFS;
5406 				goto restore_opts;
5407 			}
5408 			/*
5409 			 * Make sure the group descriptor checksums
5410 			 * are sane.  If they aren't, refuse to remount r/w.
5411 			 */
5412 			for (g = 0; g < sbi->s_groups_count; g++) {
5413 				struct ext4_group_desc *gdp =
5414 					ext4_get_group_desc(sb, g, NULL);
5415 
5416 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5417 					ext4_msg(sb, KERN_ERR,
5418 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5419 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5420 					       le16_to_cpu(gdp->bg_checksum));
5421 					err = -EFSBADCRC;
5422 					goto restore_opts;
5423 				}
5424 			}
5425 
5426 			/*
5427 			 * If we have an unprocessed orphan list hanging
5428 			 * around from a previously readonly bdev mount,
5429 			 * require a full umount/remount for now.
5430 			 */
5431 			if (es->s_last_orphan) {
5432 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5433 				       "remount RDWR because of unprocessed "
5434 				       "orphan inode list.  Please "
5435 				       "umount/remount instead");
5436 				err = -EINVAL;
5437 				goto restore_opts;
5438 			}
5439 
5440 			/*
5441 			 * Mounting a RDONLY partition read-write, so reread
5442 			 * and store the current valid flag.  (It may have
5443 			 * been changed by e2fsck since we originally mounted
5444 			 * the partition.)
5445 			 */
5446 			if (sbi->s_journal)
5447 				ext4_clear_journal_err(sb, es);
5448 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5449 
5450 			err = ext4_setup_super(sb, es, 0);
5451 			if (err)
5452 				goto restore_opts;
5453 
5454 			sb->s_flags &= ~SB_RDONLY;
5455 			if (ext4_has_feature_mmp(sb))
5456 				if (ext4_multi_mount_protect(sb,
5457 						le64_to_cpu(es->s_mmp_block))) {
5458 					err = -EROFS;
5459 					goto restore_opts;
5460 				}
5461 			enable_quota = 1;
5462 		}
5463 	}
5464 
5465 	/*
5466 	 * Reinitialize lazy itable initialization thread based on
5467 	 * current settings
5468 	 */
5469 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5470 		ext4_unregister_li_request(sb);
5471 	else {
5472 		ext4_group_t first_not_zeroed;
5473 		first_not_zeroed = ext4_has_uninit_itable(sb);
5474 		ext4_register_li_request(sb, first_not_zeroed);
5475 	}
5476 
5477 	ext4_setup_system_zone(sb);
5478 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5479 		err = ext4_commit_super(sb, 1);
5480 		if (err)
5481 			goto restore_opts;
5482 	}
5483 
5484 #ifdef CONFIG_QUOTA
5485 	/* Release old quota file names */
5486 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5487 		kfree(old_opts.s_qf_names[i]);
5488 	if (enable_quota) {
5489 		if (sb_any_quota_suspended(sb))
5490 			dquot_resume(sb, -1);
5491 		else if (ext4_has_feature_quota(sb)) {
5492 			err = ext4_enable_quotas(sb);
5493 			if (err)
5494 				goto restore_opts;
5495 		}
5496 	}
5497 #endif
5498 
5499 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5500 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5501 	kfree(orig_data);
5502 	return 0;
5503 
5504 restore_opts:
5505 	sb->s_flags = old_sb_flags;
5506 	sbi->s_mount_opt = old_opts.s_mount_opt;
5507 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5508 	sbi->s_resuid = old_opts.s_resuid;
5509 	sbi->s_resgid = old_opts.s_resgid;
5510 	sbi->s_commit_interval = old_opts.s_commit_interval;
5511 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5512 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5513 #ifdef CONFIG_QUOTA
5514 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5515 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5516 		to_free[i] = get_qf_name(sb, sbi, i);
5517 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5518 	}
5519 	synchronize_rcu();
5520 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5521 		kfree(to_free[i]);
5522 #endif
5523 	kfree(orig_data);
5524 	return err;
5525 }
5526 
5527 #ifdef CONFIG_QUOTA
5528 static int ext4_statfs_project(struct super_block *sb,
5529 			       kprojid_t projid, struct kstatfs *buf)
5530 {
5531 	struct kqid qid;
5532 	struct dquot *dquot;
5533 	u64 limit;
5534 	u64 curblock;
5535 
5536 	qid = make_kqid_projid(projid);
5537 	dquot = dqget(sb, qid);
5538 	if (IS_ERR(dquot))
5539 		return PTR_ERR(dquot);
5540 	spin_lock(&dquot->dq_dqb_lock);
5541 
5542 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5543 		 dquot->dq_dqb.dqb_bsoftlimit :
5544 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5545 	if (limit && buf->f_blocks > limit) {
5546 		curblock = (dquot->dq_dqb.dqb_curspace +
5547 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5548 		buf->f_blocks = limit;
5549 		buf->f_bfree = buf->f_bavail =
5550 			(buf->f_blocks > curblock) ?
5551 			 (buf->f_blocks - curblock) : 0;
5552 	}
5553 
5554 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5555 		dquot->dq_dqb.dqb_isoftlimit :
5556 		dquot->dq_dqb.dqb_ihardlimit;
5557 	if (limit && buf->f_files > limit) {
5558 		buf->f_files = limit;
5559 		buf->f_ffree =
5560 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5561 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5562 	}
5563 
5564 	spin_unlock(&dquot->dq_dqb_lock);
5565 	dqput(dquot);
5566 	return 0;
5567 }
5568 #endif
5569 
5570 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5571 {
5572 	struct super_block *sb = dentry->d_sb;
5573 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5574 	struct ext4_super_block *es = sbi->s_es;
5575 	ext4_fsblk_t overhead = 0, resv_blocks;
5576 	u64 fsid;
5577 	s64 bfree;
5578 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5579 
5580 	if (!test_opt(sb, MINIX_DF))
5581 		overhead = sbi->s_overhead;
5582 
5583 	buf->f_type = EXT4_SUPER_MAGIC;
5584 	buf->f_bsize = sb->s_blocksize;
5585 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5586 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5587 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5588 	/* prevent underflow in case that few free space is available */
5589 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5590 	buf->f_bavail = buf->f_bfree -
5591 			(ext4_r_blocks_count(es) + resv_blocks);
5592 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5593 		buf->f_bavail = 0;
5594 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5595 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5596 	buf->f_namelen = EXT4_NAME_LEN;
5597 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5598 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5599 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5600 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5601 
5602 #ifdef CONFIG_QUOTA
5603 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5604 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5605 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5606 #endif
5607 	return 0;
5608 }
5609 
5610 
5611 #ifdef CONFIG_QUOTA
5612 
5613 /*
5614  * Helper functions so that transaction is started before we acquire dqio_sem
5615  * to keep correct lock ordering of transaction > dqio_sem
5616  */
5617 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5618 {
5619 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5620 }
5621 
5622 static int ext4_write_dquot(struct dquot *dquot)
5623 {
5624 	int ret, err;
5625 	handle_t *handle;
5626 	struct inode *inode;
5627 
5628 	inode = dquot_to_inode(dquot);
5629 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5630 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5631 	if (IS_ERR(handle))
5632 		return PTR_ERR(handle);
5633 	ret = dquot_commit(dquot);
5634 	err = ext4_journal_stop(handle);
5635 	if (!ret)
5636 		ret = err;
5637 	return ret;
5638 }
5639 
5640 static int ext4_acquire_dquot(struct dquot *dquot)
5641 {
5642 	int ret, err;
5643 	handle_t *handle;
5644 
5645 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5646 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5647 	if (IS_ERR(handle))
5648 		return PTR_ERR(handle);
5649 	ret = dquot_acquire(dquot);
5650 	err = ext4_journal_stop(handle);
5651 	if (!ret)
5652 		ret = err;
5653 	return ret;
5654 }
5655 
5656 static int ext4_release_dquot(struct dquot *dquot)
5657 {
5658 	int ret, err;
5659 	handle_t *handle;
5660 
5661 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5662 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5663 	if (IS_ERR(handle)) {
5664 		/* Release dquot anyway to avoid endless cycle in dqput() */
5665 		dquot_release(dquot);
5666 		return PTR_ERR(handle);
5667 	}
5668 	ret = dquot_release(dquot);
5669 	err = ext4_journal_stop(handle);
5670 	if (!ret)
5671 		ret = err;
5672 	return ret;
5673 }
5674 
5675 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5676 {
5677 	struct super_block *sb = dquot->dq_sb;
5678 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5679 
5680 	/* Are we journaling quotas? */
5681 	if (ext4_has_feature_quota(sb) ||
5682 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5683 		dquot_mark_dquot_dirty(dquot);
5684 		return ext4_write_dquot(dquot);
5685 	} else {
5686 		return dquot_mark_dquot_dirty(dquot);
5687 	}
5688 }
5689 
5690 static int ext4_write_info(struct super_block *sb, int type)
5691 {
5692 	int ret, err;
5693 	handle_t *handle;
5694 
5695 	/* Data block + inode block */
5696 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5697 	if (IS_ERR(handle))
5698 		return PTR_ERR(handle);
5699 	ret = dquot_commit_info(sb, type);
5700 	err = ext4_journal_stop(handle);
5701 	if (!ret)
5702 		ret = err;
5703 	return ret;
5704 }
5705 
5706 /*
5707  * Turn on quotas during mount time - we need to find
5708  * the quota file and such...
5709  */
5710 static int ext4_quota_on_mount(struct super_block *sb, int type)
5711 {
5712 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5713 					EXT4_SB(sb)->s_jquota_fmt, type);
5714 }
5715 
5716 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5717 {
5718 	struct ext4_inode_info *ei = EXT4_I(inode);
5719 
5720 	/* The first argument of lockdep_set_subclass has to be
5721 	 * *exactly* the same as the argument to init_rwsem() --- in
5722 	 * this case, in init_once() --- or lockdep gets unhappy
5723 	 * because the name of the lock is set using the
5724 	 * stringification of the argument to init_rwsem().
5725 	 */
5726 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5727 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5728 }
5729 
5730 /*
5731  * Standard function to be called on quota_on
5732  */
5733 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5734 			 const struct path *path)
5735 {
5736 	int err;
5737 
5738 	if (!test_opt(sb, QUOTA))
5739 		return -EINVAL;
5740 
5741 	/* Quotafile not on the same filesystem? */
5742 	if (path->dentry->d_sb != sb)
5743 		return -EXDEV;
5744 	/* Journaling quota? */
5745 	if (EXT4_SB(sb)->s_qf_names[type]) {
5746 		/* Quotafile not in fs root? */
5747 		if (path->dentry->d_parent != sb->s_root)
5748 			ext4_msg(sb, KERN_WARNING,
5749 				"Quota file not on filesystem root. "
5750 				"Journaled quota will not work");
5751 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5752 	} else {
5753 		/*
5754 		 * Clear the flag just in case mount options changed since
5755 		 * last time.
5756 		 */
5757 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5758 	}
5759 
5760 	/*
5761 	 * When we journal data on quota file, we have to flush journal to see
5762 	 * all updates to the file when we bypass pagecache...
5763 	 */
5764 	if (EXT4_SB(sb)->s_journal &&
5765 	    ext4_should_journal_data(d_inode(path->dentry))) {
5766 		/*
5767 		 * We don't need to lock updates but journal_flush() could
5768 		 * otherwise be livelocked...
5769 		 */
5770 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5771 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5772 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5773 		if (err)
5774 			return err;
5775 	}
5776 
5777 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5778 	err = dquot_quota_on(sb, type, format_id, path);
5779 	if (err) {
5780 		lockdep_set_quota_inode(path->dentry->d_inode,
5781 					     I_DATA_SEM_NORMAL);
5782 	} else {
5783 		struct inode *inode = d_inode(path->dentry);
5784 		handle_t *handle;
5785 
5786 		/*
5787 		 * Set inode flags to prevent userspace from messing with quota
5788 		 * files. If this fails, we return success anyway since quotas
5789 		 * are already enabled and this is not a hard failure.
5790 		 */
5791 		inode_lock(inode);
5792 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5793 		if (IS_ERR(handle))
5794 			goto unlock_inode;
5795 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5796 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5797 				S_NOATIME | S_IMMUTABLE);
5798 		ext4_mark_inode_dirty(handle, inode);
5799 		ext4_journal_stop(handle);
5800 	unlock_inode:
5801 		inode_unlock(inode);
5802 	}
5803 	return err;
5804 }
5805 
5806 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5807 			     unsigned int flags)
5808 {
5809 	int err;
5810 	struct inode *qf_inode;
5811 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5812 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5813 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5814 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5815 	};
5816 
5817 	BUG_ON(!ext4_has_feature_quota(sb));
5818 
5819 	if (!qf_inums[type])
5820 		return -EPERM;
5821 
5822 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5823 	if (IS_ERR(qf_inode)) {
5824 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5825 		return PTR_ERR(qf_inode);
5826 	}
5827 
5828 	/* Don't account quota for quota files to avoid recursion */
5829 	qf_inode->i_flags |= S_NOQUOTA;
5830 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5831 	err = dquot_enable(qf_inode, type, format_id, flags);
5832 	if (err)
5833 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5834 	iput(qf_inode);
5835 
5836 	return err;
5837 }
5838 
5839 /* Enable usage tracking for all quota types. */
5840 static int ext4_enable_quotas(struct super_block *sb)
5841 {
5842 	int type, err = 0;
5843 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5844 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5845 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5846 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5847 	};
5848 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5849 		test_opt(sb, USRQUOTA),
5850 		test_opt(sb, GRPQUOTA),
5851 		test_opt(sb, PRJQUOTA),
5852 	};
5853 
5854 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5855 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5856 		if (qf_inums[type]) {
5857 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5858 				DQUOT_USAGE_ENABLED |
5859 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5860 			if (err) {
5861 				ext4_warning(sb,
5862 					"Failed to enable quota tracking "
5863 					"(type=%d, err=%d). Please run "
5864 					"e2fsck to fix.", type, err);
5865 				for (type--; type >= 0; type--)
5866 					dquot_quota_off(sb, type);
5867 
5868 				return err;
5869 			}
5870 		}
5871 	}
5872 	return 0;
5873 }
5874 
5875 static int ext4_quota_off(struct super_block *sb, int type)
5876 {
5877 	struct inode *inode = sb_dqopt(sb)->files[type];
5878 	handle_t *handle;
5879 	int err;
5880 
5881 	/* Force all delayed allocation blocks to be allocated.
5882 	 * Caller already holds s_umount sem */
5883 	if (test_opt(sb, DELALLOC))
5884 		sync_filesystem(sb);
5885 
5886 	if (!inode || !igrab(inode))
5887 		goto out;
5888 
5889 	err = dquot_quota_off(sb, type);
5890 	if (err || ext4_has_feature_quota(sb))
5891 		goto out_put;
5892 
5893 	inode_lock(inode);
5894 	/*
5895 	 * Update modification times of quota files when userspace can
5896 	 * start looking at them. If we fail, we return success anyway since
5897 	 * this is not a hard failure and quotas are already disabled.
5898 	 */
5899 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5900 	if (IS_ERR(handle))
5901 		goto out_unlock;
5902 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5903 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5904 	inode->i_mtime = inode->i_ctime = current_time(inode);
5905 	ext4_mark_inode_dirty(handle, inode);
5906 	ext4_journal_stop(handle);
5907 out_unlock:
5908 	inode_unlock(inode);
5909 out_put:
5910 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5911 	iput(inode);
5912 	return err;
5913 out:
5914 	return dquot_quota_off(sb, type);
5915 }
5916 
5917 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5918  * acquiring the locks... As quota files are never truncated and quota code
5919  * itself serializes the operations (and no one else should touch the files)
5920  * we don't have to be afraid of races */
5921 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5922 			       size_t len, loff_t off)
5923 {
5924 	struct inode *inode = sb_dqopt(sb)->files[type];
5925 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5926 	int offset = off & (sb->s_blocksize - 1);
5927 	int tocopy;
5928 	size_t toread;
5929 	struct buffer_head *bh;
5930 	loff_t i_size = i_size_read(inode);
5931 
5932 	if (off > i_size)
5933 		return 0;
5934 	if (off+len > i_size)
5935 		len = i_size-off;
5936 	toread = len;
5937 	while (toread > 0) {
5938 		tocopy = sb->s_blocksize - offset < toread ?
5939 				sb->s_blocksize - offset : toread;
5940 		bh = ext4_bread(NULL, inode, blk, 0);
5941 		if (IS_ERR(bh))
5942 			return PTR_ERR(bh);
5943 		if (!bh)	/* A hole? */
5944 			memset(data, 0, tocopy);
5945 		else
5946 			memcpy(data, bh->b_data+offset, tocopy);
5947 		brelse(bh);
5948 		offset = 0;
5949 		toread -= tocopy;
5950 		data += tocopy;
5951 		blk++;
5952 	}
5953 	return len;
5954 }
5955 
5956 /* Write to quotafile (we know the transaction is already started and has
5957  * enough credits) */
5958 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5959 				const char *data, size_t len, loff_t off)
5960 {
5961 	struct inode *inode = sb_dqopt(sb)->files[type];
5962 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5963 	int err, offset = off & (sb->s_blocksize - 1);
5964 	int retries = 0;
5965 	struct buffer_head *bh;
5966 	handle_t *handle = journal_current_handle();
5967 
5968 	if (EXT4_SB(sb)->s_journal && !handle) {
5969 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5970 			" cancelled because transaction is not started",
5971 			(unsigned long long)off, (unsigned long long)len);
5972 		return -EIO;
5973 	}
5974 	/*
5975 	 * Since we account only one data block in transaction credits,
5976 	 * then it is impossible to cross a block boundary.
5977 	 */
5978 	if (sb->s_blocksize - offset < len) {
5979 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5980 			" cancelled because not block aligned",
5981 			(unsigned long long)off, (unsigned long long)len);
5982 		return -EIO;
5983 	}
5984 
5985 	do {
5986 		bh = ext4_bread(handle, inode, blk,
5987 				EXT4_GET_BLOCKS_CREATE |
5988 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5989 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5990 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5991 	if (IS_ERR(bh))
5992 		return PTR_ERR(bh);
5993 	if (!bh)
5994 		goto out;
5995 	BUFFER_TRACE(bh, "get write access");
5996 	err = ext4_journal_get_write_access(handle, bh);
5997 	if (err) {
5998 		brelse(bh);
5999 		return err;
6000 	}
6001 	lock_buffer(bh);
6002 	memcpy(bh->b_data+offset, data, len);
6003 	flush_dcache_page(bh->b_page);
6004 	unlock_buffer(bh);
6005 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6006 	brelse(bh);
6007 out:
6008 	if (inode->i_size < off + len) {
6009 		i_size_write(inode, off + len);
6010 		EXT4_I(inode)->i_disksize = inode->i_size;
6011 		ext4_mark_inode_dirty(handle, inode);
6012 	}
6013 	return len;
6014 }
6015 
6016 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6017 {
6018 	const struct quota_format_ops	*ops;
6019 
6020 	if (!sb_has_quota_loaded(sb, qid->type))
6021 		return -ESRCH;
6022 	ops = sb_dqopt(sb)->ops[qid->type];
6023 	if (!ops || !ops->get_next_id)
6024 		return -ENOSYS;
6025 	return dquot_get_next_id(sb, qid);
6026 }
6027 #endif
6028 
6029 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6030 		       const char *dev_name, void *data)
6031 {
6032 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6033 }
6034 
6035 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6036 static inline void register_as_ext2(void)
6037 {
6038 	int err = register_filesystem(&ext2_fs_type);
6039 	if (err)
6040 		printk(KERN_WARNING
6041 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6042 }
6043 
6044 static inline void unregister_as_ext2(void)
6045 {
6046 	unregister_filesystem(&ext2_fs_type);
6047 }
6048 
6049 static inline int ext2_feature_set_ok(struct super_block *sb)
6050 {
6051 	if (ext4_has_unknown_ext2_incompat_features(sb))
6052 		return 0;
6053 	if (sb_rdonly(sb))
6054 		return 1;
6055 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6056 		return 0;
6057 	return 1;
6058 }
6059 #else
6060 static inline void register_as_ext2(void) { }
6061 static inline void unregister_as_ext2(void) { }
6062 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6063 #endif
6064 
6065 static inline void register_as_ext3(void)
6066 {
6067 	int err = register_filesystem(&ext3_fs_type);
6068 	if (err)
6069 		printk(KERN_WARNING
6070 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6071 }
6072 
6073 static inline void unregister_as_ext3(void)
6074 {
6075 	unregister_filesystem(&ext3_fs_type);
6076 }
6077 
6078 static inline int ext3_feature_set_ok(struct super_block *sb)
6079 {
6080 	if (ext4_has_unknown_ext3_incompat_features(sb))
6081 		return 0;
6082 	if (!ext4_has_feature_journal(sb))
6083 		return 0;
6084 	if (sb_rdonly(sb))
6085 		return 1;
6086 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6087 		return 0;
6088 	return 1;
6089 }
6090 
6091 static struct file_system_type ext4_fs_type = {
6092 	.owner		= THIS_MODULE,
6093 	.name		= "ext4",
6094 	.mount		= ext4_mount,
6095 	.kill_sb	= kill_block_super,
6096 	.fs_flags	= FS_REQUIRES_DEV,
6097 };
6098 MODULE_ALIAS_FS("ext4");
6099 
6100 /* Shared across all ext4 file systems */
6101 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6102 
6103 static int __init ext4_init_fs(void)
6104 {
6105 	int i, err;
6106 
6107 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6108 	ext4_li_info = NULL;
6109 	mutex_init(&ext4_li_mtx);
6110 
6111 	/* Build-time check for flags consistency */
6112 	ext4_check_flag_values();
6113 
6114 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6115 		init_waitqueue_head(&ext4__ioend_wq[i]);
6116 
6117 	err = ext4_init_es();
6118 	if (err)
6119 		return err;
6120 
6121 	err = ext4_init_pending();
6122 	if (err)
6123 		goto out7;
6124 
6125 	err = ext4_init_post_read_processing();
6126 	if (err)
6127 		goto out6;
6128 
6129 	err = ext4_init_pageio();
6130 	if (err)
6131 		goto out5;
6132 
6133 	err = ext4_init_system_zone();
6134 	if (err)
6135 		goto out4;
6136 
6137 	err = ext4_init_sysfs();
6138 	if (err)
6139 		goto out3;
6140 
6141 	err = ext4_init_mballoc();
6142 	if (err)
6143 		goto out2;
6144 	err = init_inodecache();
6145 	if (err)
6146 		goto out1;
6147 	register_as_ext3();
6148 	register_as_ext2();
6149 	err = register_filesystem(&ext4_fs_type);
6150 	if (err)
6151 		goto out;
6152 
6153 	return 0;
6154 out:
6155 	unregister_as_ext2();
6156 	unregister_as_ext3();
6157 	destroy_inodecache();
6158 out1:
6159 	ext4_exit_mballoc();
6160 out2:
6161 	ext4_exit_sysfs();
6162 out3:
6163 	ext4_exit_system_zone();
6164 out4:
6165 	ext4_exit_pageio();
6166 out5:
6167 	ext4_exit_post_read_processing();
6168 out6:
6169 	ext4_exit_pending();
6170 out7:
6171 	ext4_exit_es();
6172 
6173 	return err;
6174 }
6175 
6176 static void __exit ext4_exit_fs(void)
6177 {
6178 	ext4_destroy_lazyinit_thread();
6179 	unregister_as_ext2();
6180 	unregister_as_ext3();
6181 	unregister_filesystem(&ext4_fs_type);
6182 	destroy_inodecache();
6183 	ext4_exit_mballoc();
6184 	ext4_exit_sysfs();
6185 	ext4_exit_system_zone();
6186 	ext4_exit_pageio();
6187 	ext4_exit_post_read_processing();
6188 	ext4_exit_es();
6189 	ext4_exit_pending();
6190 }
6191 
6192 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6193 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6194 MODULE_LICENSE("GPL");
6195 MODULE_SOFTDEP("pre: crc32c");
6196 module_init(ext4_init_fs)
6197 module_exit(ext4_exit_fs)
6198