1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static void ext4_write_super(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 89 static struct file_system_type ext2_fs_type = { 90 .owner = THIS_MODULE, 91 .name = "ext2", 92 .mount = ext4_mount, 93 .kill_sb = kill_block_super, 94 .fs_flags = FS_REQUIRES_DEV, 95 }; 96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97 #else 98 #define IS_EXT2_SB(sb) (0) 99 #endif 100 101 102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103 static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109 }; 110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 111 #else 112 #define IS_EXT3_SB(sb) (0) 113 #endif 114 115 static int ext4_verify_csum_type(struct super_block *sb, 116 struct ext4_super_block *es) 117 { 118 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 119 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 120 return 1; 121 122 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 123 } 124 125 static __le32 ext4_superblock_csum(struct super_block *sb, 126 struct ext4_super_block *es) 127 { 128 struct ext4_sb_info *sbi = EXT4_SB(sb); 129 int offset = offsetof(struct ext4_super_block, s_checksum); 130 __u32 csum; 131 132 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 133 134 return cpu_to_le32(csum); 135 } 136 137 int ext4_superblock_csum_verify(struct super_block *sb, 138 struct ext4_super_block *es) 139 { 140 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 141 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 142 return 1; 143 144 return es->s_checksum == ext4_superblock_csum(sb, es); 145 } 146 147 void ext4_superblock_csum_set(struct super_block *sb, 148 struct ext4_super_block *es) 149 { 150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 152 return; 153 154 es->s_checksum = ext4_superblock_csum(sb, es); 155 } 156 157 void *ext4_kvmalloc(size_t size, gfp_t flags) 158 { 159 void *ret; 160 161 ret = kmalloc(size, flags); 162 if (!ret) 163 ret = __vmalloc(size, flags, PAGE_KERNEL); 164 return ret; 165 } 166 167 void *ext4_kvzalloc(size_t size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = kzalloc(size, flags); 172 if (!ret) 173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 174 return ret; 175 } 176 177 void ext4_kvfree(void *ptr) 178 { 179 if (is_vmalloc_addr(ptr)) 180 vfree(ptr); 181 else 182 kfree(ptr); 183 184 } 185 186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_block_bitmap_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 192 } 193 194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 200 } 201 202 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le32_to_cpu(bg->bg_inode_table_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 208 } 209 210 __u32 ext4_free_group_clusters(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_free_inodes_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 224 } 225 226 __u32 ext4_used_dirs_count(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 232 } 233 234 __u32 ext4_itable_unused_count(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le16_to_cpu(bg->bg_itable_unused_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 240 } 241 242 void ext4_block_bitmap_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_inode_bitmap_set(struct super_block *sb, 251 struct ext4_group_desc *bg, ext4_fsblk_t blk) 252 { 253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 256 } 257 258 void ext4_inode_table_set(struct super_block *sb, 259 struct ext4_group_desc *bg, ext4_fsblk_t blk) 260 { 261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 264 } 265 266 void ext4_free_group_clusters_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_free_inodes_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 280 } 281 282 void ext4_used_dirs_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284 { 285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 288 } 289 290 void ext4_itable_unused_set(struct super_block *sb, 291 struct ext4_group_desc *bg, __u32 count) 292 { 293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 296 } 297 298 299 /* Just increment the non-pointer handle value */ 300 static handle_t *ext4_get_nojournal(void) 301 { 302 handle_t *handle = current->journal_info; 303 unsigned long ref_cnt = (unsigned long)handle; 304 305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 306 307 ref_cnt++; 308 handle = (handle_t *)ref_cnt; 309 310 current->journal_info = handle; 311 return handle; 312 } 313 314 315 /* Decrement the non-pointer handle value */ 316 static void ext4_put_nojournal(handle_t *handle) 317 { 318 unsigned long ref_cnt = (unsigned long)handle; 319 320 BUG_ON(ref_cnt == 0); 321 322 ref_cnt--; 323 handle = (handle_t *)ref_cnt; 324 325 current->journal_info = handle; 326 } 327 328 /* 329 * Wrappers for jbd2_journal_start/end. 330 * 331 * The only special thing we need to do here is to make sure that all 332 * journal_end calls result in the superblock being marked dirty, so 333 * that sync() will call the filesystem's write_super callback if 334 * appropriate. 335 * 336 * To avoid j_barrier hold in userspace when a user calls freeze(), 337 * ext4 prevents a new handle from being started by s_frozen, which 338 * is in an upper layer. 339 */ 340 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 341 { 342 journal_t *journal; 343 handle_t *handle; 344 345 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 346 if (sb->s_flags & MS_RDONLY) 347 return ERR_PTR(-EROFS); 348 349 journal = EXT4_SB(sb)->s_journal; 350 handle = ext4_journal_current_handle(); 351 352 /* 353 * If a handle has been started, it should be allowed to 354 * finish, otherwise deadlock could happen between freeze 355 * and others(e.g. truncate) due to the restart of the 356 * journal handle if the filesystem is forzen and active 357 * handles are not stopped. 358 */ 359 if (!handle) 360 vfs_check_frozen(sb, SB_FREEZE_TRANS); 361 362 if (!journal) 363 return ext4_get_nojournal(); 364 /* 365 * Special case here: if the journal has aborted behind our 366 * backs (eg. EIO in the commit thread), then we still need to 367 * take the FS itself readonly cleanly. 368 */ 369 if (is_journal_aborted(journal)) { 370 ext4_abort(sb, "Detected aborted journal"); 371 return ERR_PTR(-EROFS); 372 } 373 return jbd2_journal_start(journal, nblocks); 374 } 375 376 /* 377 * The only special thing we need to do here is to make sure that all 378 * jbd2_journal_stop calls result in the superblock being marked dirty, so 379 * that sync() will call the filesystem's write_super callback if 380 * appropriate. 381 */ 382 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 383 { 384 struct super_block *sb; 385 int err; 386 int rc; 387 388 if (!ext4_handle_valid(handle)) { 389 ext4_put_nojournal(handle); 390 return 0; 391 } 392 sb = handle->h_transaction->t_journal->j_private; 393 err = handle->h_err; 394 rc = jbd2_journal_stop(handle); 395 396 if (!err) 397 err = rc; 398 if (err) 399 __ext4_std_error(sb, where, line, err); 400 return err; 401 } 402 403 void ext4_journal_abort_handle(const char *caller, unsigned int line, 404 const char *err_fn, struct buffer_head *bh, 405 handle_t *handle, int err) 406 { 407 char nbuf[16]; 408 const char *errstr = ext4_decode_error(NULL, err, nbuf); 409 410 BUG_ON(!ext4_handle_valid(handle)); 411 412 if (bh) 413 BUFFER_TRACE(bh, "abort"); 414 415 if (!handle->h_err) 416 handle->h_err = err; 417 418 if (is_handle_aborted(handle)) 419 return; 420 421 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 422 caller, line, errstr, err_fn); 423 424 jbd2_journal_abort_handle(handle); 425 } 426 427 static void __save_error_info(struct super_block *sb, const char *func, 428 unsigned int line) 429 { 430 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 431 432 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 433 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 434 es->s_last_error_time = cpu_to_le32(get_seconds()); 435 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 436 es->s_last_error_line = cpu_to_le32(line); 437 if (!es->s_first_error_time) { 438 es->s_first_error_time = es->s_last_error_time; 439 strncpy(es->s_first_error_func, func, 440 sizeof(es->s_first_error_func)); 441 es->s_first_error_line = cpu_to_le32(line); 442 es->s_first_error_ino = es->s_last_error_ino; 443 es->s_first_error_block = es->s_last_error_block; 444 } 445 /* 446 * Start the daily error reporting function if it hasn't been 447 * started already 448 */ 449 if (!es->s_error_count) 450 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 451 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 452 } 453 454 static void save_error_info(struct super_block *sb, const char *func, 455 unsigned int line) 456 { 457 __save_error_info(sb, func, line); 458 ext4_commit_super(sb, 1); 459 } 460 461 /* 462 * The del_gendisk() function uninitializes the disk-specific data 463 * structures, including the bdi structure, without telling anyone 464 * else. Once this happens, any attempt to call mark_buffer_dirty() 465 * (for example, by ext4_commit_super), will cause a kernel OOPS. 466 * This is a kludge to prevent these oops until we can put in a proper 467 * hook in del_gendisk() to inform the VFS and file system layers. 468 */ 469 static int block_device_ejected(struct super_block *sb) 470 { 471 struct inode *bd_inode = sb->s_bdev->bd_inode; 472 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 473 474 return bdi->dev == NULL; 475 } 476 477 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 478 { 479 struct super_block *sb = journal->j_private; 480 struct ext4_sb_info *sbi = EXT4_SB(sb); 481 int error = is_journal_aborted(journal); 482 struct ext4_journal_cb_entry *jce, *tmp; 483 484 spin_lock(&sbi->s_md_lock); 485 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 486 list_del_init(&jce->jce_list); 487 spin_unlock(&sbi->s_md_lock); 488 jce->jce_func(sb, jce, error); 489 spin_lock(&sbi->s_md_lock); 490 } 491 spin_unlock(&sbi->s_md_lock); 492 } 493 494 /* Deal with the reporting of failure conditions on a filesystem such as 495 * inconsistencies detected or read IO failures. 496 * 497 * On ext2, we can store the error state of the filesystem in the 498 * superblock. That is not possible on ext4, because we may have other 499 * write ordering constraints on the superblock which prevent us from 500 * writing it out straight away; and given that the journal is about to 501 * be aborted, we can't rely on the current, or future, transactions to 502 * write out the superblock safely. 503 * 504 * We'll just use the jbd2_journal_abort() error code to record an error in 505 * the journal instead. On recovery, the journal will complain about 506 * that error until we've noted it down and cleared it. 507 */ 508 509 static void ext4_handle_error(struct super_block *sb) 510 { 511 if (sb->s_flags & MS_RDONLY) 512 return; 513 514 if (!test_opt(sb, ERRORS_CONT)) { 515 journal_t *journal = EXT4_SB(sb)->s_journal; 516 517 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 518 if (journal) 519 jbd2_journal_abort(journal, -EIO); 520 } 521 if (test_opt(sb, ERRORS_RO)) { 522 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 523 sb->s_flags |= MS_RDONLY; 524 } 525 if (test_opt(sb, ERRORS_PANIC)) 526 panic("EXT4-fs (device %s): panic forced after error\n", 527 sb->s_id); 528 } 529 530 void __ext4_error(struct super_block *sb, const char *function, 531 unsigned int line, const char *fmt, ...) 532 { 533 struct va_format vaf; 534 va_list args; 535 536 va_start(args, fmt); 537 vaf.fmt = fmt; 538 vaf.va = &args; 539 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 540 sb->s_id, function, line, current->comm, &vaf); 541 va_end(args); 542 save_error_info(sb, function, line); 543 544 ext4_handle_error(sb); 545 } 546 547 void ext4_error_inode(struct inode *inode, const char *function, 548 unsigned int line, ext4_fsblk_t block, 549 const char *fmt, ...) 550 { 551 va_list args; 552 struct va_format vaf; 553 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 554 555 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 556 es->s_last_error_block = cpu_to_le64(block); 557 save_error_info(inode->i_sb, function, line); 558 va_start(args, fmt); 559 vaf.fmt = fmt; 560 vaf.va = &args; 561 if (block) 562 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 563 "inode #%lu: block %llu: comm %s: %pV\n", 564 inode->i_sb->s_id, function, line, inode->i_ino, 565 block, current->comm, &vaf); 566 else 567 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 568 "inode #%lu: comm %s: %pV\n", 569 inode->i_sb->s_id, function, line, inode->i_ino, 570 current->comm, &vaf); 571 va_end(args); 572 573 ext4_handle_error(inode->i_sb); 574 } 575 576 void ext4_error_file(struct file *file, const char *function, 577 unsigned int line, ext4_fsblk_t block, 578 const char *fmt, ...) 579 { 580 va_list args; 581 struct va_format vaf; 582 struct ext4_super_block *es; 583 struct inode *inode = file->f_dentry->d_inode; 584 char pathname[80], *path; 585 586 es = EXT4_SB(inode->i_sb)->s_es; 587 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 588 save_error_info(inode->i_sb, function, line); 589 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 590 if (IS_ERR(path)) 591 path = "(unknown)"; 592 va_start(args, fmt); 593 vaf.fmt = fmt; 594 vaf.va = &args; 595 if (block) 596 printk(KERN_CRIT 597 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 598 "block %llu: comm %s: path %s: %pV\n", 599 inode->i_sb->s_id, function, line, inode->i_ino, 600 block, current->comm, path, &vaf); 601 else 602 printk(KERN_CRIT 603 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 604 "comm %s: path %s: %pV\n", 605 inode->i_sb->s_id, function, line, inode->i_ino, 606 current->comm, path, &vaf); 607 va_end(args); 608 609 ext4_handle_error(inode->i_sb); 610 } 611 612 static const char *ext4_decode_error(struct super_block *sb, int errno, 613 char nbuf[16]) 614 { 615 char *errstr = NULL; 616 617 switch (errno) { 618 case -EIO: 619 errstr = "IO failure"; 620 break; 621 case -ENOMEM: 622 errstr = "Out of memory"; 623 break; 624 case -EROFS: 625 if (!sb || (EXT4_SB(sb)->s_journal && 626 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 627 errstr = "Journal has aborted"; 628 else 629 errstr = "Readonly filesystem"; 630 break; 631 default: 632 /* If the caller passed in an extra buffer for unknown 633 * errors, textualise them now. Else we just return 634 * NULL. */ 635 if (nbuf) { 636 /* Check for truncated error codes... */ 637 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 638 errstr = nbuf; 639 } 640 break; 641 } 642 643 return errstr; 644 } 645 646 /* __ext4_std_error decodes expected errors from journaling functions 647 * automatically and invokes the appropriate error response. */ 648 649 void __ext4_std_error(struct super_block *sb, const char *function, 650 unsigned int line, int errno) 651 { 652 char nbuf[16]; 653 const char *errstr; 654 655 /* Special case: if the error is EROFS, and we're not already 656 * inside a transaction, then there's really no point in logging 657 * an error. */ 658 if (errno == -EROFS && journal_current_handle() == NULL && 659 (sb->s_flags & MS_RDONLY)) 660 return; 661 662 errstr = ext4_decode_error(sb, errno, nbuf); 663 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 664 sb->s_id, function, line, errstr); 665 save_error_info(sb, function, line); 666 667 ext4_handle_error(sb); 668 } 669 670 /* 671 * ext4_abort is a much stronger failure handler than ext4_error. The 672 * abort function may be used to deal with unrecoverable failures such 673 * as journal IO errors or ENOMEM at a critical moment in log management. 674 * 675 * We unconditionally force the filesystem into an ABORT|READONLY state, 676 * unless the error response on the fs has been set to panic in which 677 * case we take the easy way out and panic immediately. 678 */ 679 680 void __ext4_abort(struct super_block *sb, const char *function, 681 unsigned int line, const char *fmt, ...) 682 { 683 va_list args; 684 685 save_error_info(sb, function, line); 686 va_start(args, fmt); 687 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 688 function, line); 689 vprintk(fmt, args); 690 printk("\n"); 691 va_end(args); 692 693 if ((sb->s_flags & MS_RDONLY) == 0) { 694 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 695 sb->s_flags |= MS_RDONLY; 696 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 697 if (EXT4_SB(sb)->s_journal) 698 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 699 save_error_info(sb, function, line); 700 } 701 if (test_opt(sb, ERRORS_PANIC)) 702 panic("EXT4-fs panic from previous error\n"); 703 } 704 705 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 706 { 707 struct va_format vaf; 708 va_list args; 709 710 va_start(args, fmt); 711 vaf.fmt = fmt; 712 vaf.va = &args; 713 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 714 va_end(args); 715 } 716 717 void __ext4_warning(struct super_block *sb, const char *function, 718 unsigned int line, const char *fmt, ...) 719 { 720 struct va_format vaf; 721 va_list args; 722 723 va_start(args, fmt); 724 vaf.fmt = fmt; 725 vaf.va = &args; 726 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 727 sb->s_id, function, line, &vaf); 728 va_end(args); 729 } 730 731 void __ext4_grp_locked_error(const char *function, unsigned int line, 732 struct super_block *sb, ext4_group_t grp, 733 unsigned long ino, ext4_fsblk_t block, 734 const char *fmt, ...) 735 __releases(bitlock) 736 __acquires(bitlock) 737 { 738 struct va_format vaf; 739 va_list args; 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 es->s_last_error_ino = cpu_to_le32(ino); 743 es->s_last_error_block = cpu_to_le64(block); 744 __save_error_info(sb, function, line); 745 746 va_start(args, fmt); 747 748 vaf.fmt = fmt; 749 vaf.va = &args; 750 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 751 sb->s_id, function, line, grp); 752 if (ino) 753 printk(KERN_CONT "inode %lu: ", ino); 754 if (block) 755 printk(KERN_CONT "block %llu:", (unsigned long long) block); 756 printk(KERN_CONT "%pV\n", &vaf); 757 va_end(args); 758 759 if (test_opt(sb, ERRORS_CONT)) { 760 ext4_commit_super(sb, 0); 761 return; 762 } 763 764 ext4_unlock_group(sb, grp); 765 ext4_handle_error(sb); 766 /* 767 * We only get here in the ERRORS_RO case; relocking the group 768 * may be dangerous, but nothing bad will happen since the 769 * filesystem will have already been marked read/only and the 770 * journal has been aborted. We return 1 as a hint to callers 771 * who might what to use the return value from 772 * ext4_grp_locked_error() to distinguish between the 773 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 774 * aggressively from the ext4 function in question, with a 775 * more appropriate error code. 776 */ 777 ext4_lock_group(sb, grp); 778 return; 779 } 780 781 void ext4_update_dynamic_rev(struct super_block *sb) 782 { 783 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 784 785 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 786 return; 787 788 ext4_warning(sb, 789 "updating to rev %d because of new feature flag, " 790 "running e2fsck is recommended", 791 EXT4_DYNAMIC_REV); 792 793 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 794 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 795 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 796 /* leave es->s_feature_*compat flags alone */ 797 /* es->s_uuid will be set by e2fsck if empty */ 798 799 /* 800 * The rest of the superblock fields should be zero, and if not it 801 * means they are likely already in use, so leave them alone. We 802 * can leave it up to e2fsck to clean up any inconsistencies there. 803 */ 804 } 805 806 /* 807 * Open the external journal device 808 */ 809 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 810 { 811 struct block_device *bdev; 812 char b[BDEVNAME_SIZE]; 813 814 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 815 if (IS_ERR(bdev)) 816 goto fail; 817 return bdev; 818 819 fail: 820 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 821 __bdevname(dev, b), PTR_ERR(bdev)); 822 return NULL; 823 } 824 825 /* 826 * Release the journal device 827 */ 828 static int ext4_blkdev_put(struct block_device *bdev) 829 { 830 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 831 } 832 833 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 834 { 835 struct block_device *bdev; 836 int ret = -ENODEV; 837 838 bdev = sbi->journal_bdev; 839 if (bdev) { 840 ret = ext4_blkdev_put(bdev); 841 sbi->journal_bdev = NULL; 842 } 843 return ret; 844 } 845 846 static inline struct inode *orphan_list_entry(struct list_head *l) 847 { 848 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 849 } 850 851 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 852 { 853 struct list_head *l; 854 855 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 856 le32_to_cpu(sbi->s_es->s_last_orphan)); 857 858 printk(KERN_ERR "sb_info orphan list:\n"); 859 list_for_each(l, &sbi->s_orphan) { 860 struct inode *inode = orphan_list_entry(l); 861 printk(KERN_ERR " " 862 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 863 inode->i_sb->s_id, inode->i_ino, inode, 864 inode->i_mode, inode->i_nlink, 865 NEXT_ORPHAN(inode)); 866 } 867 } 868 869 static void ext4_put_super(struct super_block *sb) 870 { 871 struct ext4_sb_info *sbi = EXT4_SB(sb); 872 struct ext4_super_block *es = sbi->s_es; 873 int i, err; 874 875 ext4_unregister_li_request(sb); 876 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 877 878 flush_workqueue(sbi->dio_unwritten_wq); 879 destroy_workqueue(sbi->dio_unwritten_wq); 880 881 lock_super(sb); 882 if (sbi->s_journal) { 883 err = jbd2_journal_destroy(sbi->s_journal); 884 sbi->s_journal = NULL; 885 if (err < 0) 886 ext4_abort(sb, "Couldn't clean up the journal"); 887 } 888 889 del_timer(&sbi->s_err_report); 890 ext4_release_system_zone(sb); 891 ext4_mb_release(sb); 892 ext4_ext_release(sb); 893 ext4_xattr_put_super(sb); 894 895 if (!(sb->s_flags & MS_RDONLY)) { 896 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 897 es->s_state = cpu_to_le16(sbi->s_mount_state); 898 } 899 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY)) 900 ext4_commit_super(sb, 1); 901 902 if (sbi->s_proc) { 903 remove_proc_entry("options", sbi->s_proc); 904 remove_proc_entry(sb->s_id, ext4_proc_root); 905 } 906 kobject_del(&sbi->s_kobj); 907 908 for (i = 0; i < sbi->s_gdb_count; i++) 909 brelse(sbi->s_group_desc[i]); 910 ext4_kvfree(sbi->s_group_desc); 911 ext4_kvfree(sbi->s_flex_groups); 912 percpu_counter_destroy(&sbi->s_freeclusters_counter); 913 percpu_counter_destroy(&sbi->s_freeinodes_counter); 914 percpu_counter_destroy(&sbi->s_dirs_counter); 915 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 916 brelse(sbi->s_sbh); 917 #ifdef CONFIG_QUOTA 918 for (i = 0; i < MAXQUOTAS; i++) 919 kfree(sbi->s_qf_names[i]); 920 #endif 921 922 /* Debugging code just in case the in-memory inode orphan list 923 * isn't empty. The on-disk one can be non-empty if we've 924 * detected an error and taken the fs readonly, but the 925 * in-memory list had better be clean by this point. */ 926 if (!list_empty(&sbi->s_orphan)) 927 dump_orphan_list(sb, sbi); 928 J_ASSERT(list_empty(&sbi->s_orphan)); 929 930 invalidate_bdev(sb->s_bdev); 931 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 932 /* 933 * Invalidate the journal device's buffers. We don't want them 934 * floating about in memory - the physical journal device may 935 * hotswapped, and it breaks the `ro-after' testing code. 936 */ 937 sync_blockdev(sbi->journal_bdev); 938 invalidate_bdev(sbi->journal_bdev); 939 ext4_blkdev_remove(sbi); 940 } 941 if (sbi->s_mmp_tsk) 942 kthread_stop(sbi->s_mmp_tsk); 943 sb->s_fs_info = NULL; 944 /* 945 * Now that we are completely done shutting down the 946 * superblock, we need to actually destroy the kobject. 947 */ 948 unlock_super(sb); 949 kobject_put(&sbi->s_kobj); 950 wait_for_completion(&sbi->s_kobj_unregister); 951 if (sbi->s_chksum_driver) 952 crypto_free_shash(sbi->s_chksum_driver); 953 kfree(sbi->s_blockgroup_lock); 954 kfree(sbi); 955 } 956 957 static struct kmem_cache *ext4_inode_cachep; 958 959 /* 960 * Called inside transaction, so use GFP_NOFS 961 */ 962 static struct inode *ext4_alloc_inode(struct super_block *sb) 963 { 964 struct ext4_inode_info *ei; 965 966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 967 if (!ei) 968 return NULL; 969 970 ei->vfs_inode.i_version = 1; 971 ei->vfs_inode.i_data.writeback_index = 0; 972 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 973 INIT_LIST_HEAD(&ei->i_prealloc_list); 974 spin_lock_init(&ei->i_prealloc_lock); 975 ei->i_reserved_data_blocks = 0; 976 ei->i_reserved_meta_blocks = 0; 977 ei->i_allocated_meta_blocks = 0; 978 ei->i_da_metadata_calc_len = 0; 979 spin_lock_init(&(ei->i_block_reservation_lock)); 980 #ifdef CONFIG_QUOTA 981 ei->i_reserved_quota = 0; 982 #endif 983 ei->jinode = NULL; 984 INIT_LIST_HEAD(&ei->i_completed_io_list); 985 spin_lock_init(&ei->i_completed_io_lock); 986 ei->cur_aio_dio = NULL; 987 ei->i_sync_tid = 0; 988 ei->i_datasync_tid = 0; 989 atomic_set(&ei->i_ioend_count, 0); 990 atomic_set(&ei->i_aiodio_unwritten, 0); 991 992 return &ei->vfs_inode; 993 } 994 995 static int ext4_drop_inode(struct inode *inode) 996 { 997 int drop = generic_drop_inode(inode); 998 999 trace_ext4_drop_inode(inode, drop); 1000 return drop; 1001 } 1002 1003 static void ext4_i_callback(struct rcu_head *head) 1004 { 1005 struct inode *inode = container_of(head, struct inode, i_rcu); 1006 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1007 } 1008 1009 static void ext4_destroy_inode(struct inode *inode) 1010 { 1011 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1012 ext4_msg(inode->i_sb, KERN_ERR, 1013 "Inode %lu (%p): orphan list check failed!", 1014 inode->i_ino, EXT4_I(inode)); 1015 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1016 EXT4_I(inode), sizeof(struct ext4_inode_info), 1017 true); 1018 dump_stack(); 1019 } 1020 call_rcu(&inode->i_rcu, ext4_i_callback); 1021 } 1022 1023 static void init_once(void *foo) 1024 { 1025 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1026 1027 INIT_LIST_HEAD(&ei->i_orphan); 1028 #ifdef CONFIG_EXT4_FS_XATTR 1029 init_rwsem(&ei->xattr_sem); 1030 #endif 1031 init_rwsem(&ei->i_data_sem); 1032 inode_init_once(&ei->vfs_inode); 1033 } 1034 1035 static int init_inodecache(void) 1036 { 1037 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1038 sizeof(struct ext4_inode_info), 1039 0, (SLAB_RECLAIM_ACCOUNT| 1040 SLAB_MEM_SPREAD), 1041 init_once); 1042 if (ext4_inode_cachep == NULL) 1043 return -ENOMEM; 1044 return 0; 1045 } 1046 1047 static void destroy_inodecache(void) 1048 { 1049 kmem_cache_destroy(ext4_inode_cachep); 1050 } 1051 1052 void ext4_clear_inode(struct inode *inode) 1053 { 1054 invalidate_inode_buffers(inode); 1055 clear_inode(inode); 1056 dquot_drop(inode); 1057 ext4_discard_preallocations(inode); 1058 if (EXT4_I(inode)->jinode) { 1059 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1060 EXT4_I(inode)->jinode); 1061 jbd2_free_inode(EXT4_I(inode)->jinode); 1062 EXT4_I(inode)->jinode = NULL; 1063 } 1064 } 1065 1066 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1067 u64 ino, u32 generation) 1068 { 1069 struct inode *inode; 1070 1071 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1072 return ERR_PTR(-ESTALE); 1073 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1074 return ERR_PTR(-ESTALE); 1075 1076 /* iget isn't really right if the inode is currently unallocated!! 1077 * 1078 * ext4_read_inode will return a bad_inode if the inode had been 1079 * deleted, so we should be safe. 1080 * 1081 * Currently we don't know the generation for parent directory, so 1082 * a generation of 0 means "accept any" 1083 */ 1084 inode = ext4_iget(sb, ino); 1085 if (IS_ERR(inode)) 1086 return ERR_CAST(inode); 1087 if (generation && inode->i_generation != generation) { 1088 iput(inode); 1089 return ERR_PTR(-ESTALE); 1090 } 1091 1092 return inode; 1093 } 1094 1095 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1096 int fh_len, int fh_type) 1097 { 1098 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1099 ext4_nfs_get_inode); 1100 } 1101 1102 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1103 int fh_len, int fh_type) 1104 { 1105 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1106 ext4_nfs_get_inode); 1107 } 1108 1109 /* 1110 * Try to release metadata pages (indirect blocks, directories) which are 1111 * mapped via the block device. Since these pages could have journal heads 1112 * which would prevent try_to_free_buffers() from freeing them, we must use 1113 * jbd2 layer's try_to_free_buffers() function to release them. 1114 */ 1115 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1116 gfp_t wait) 1117 { 1118 journal_t *journal = EXT4_SB(sb)->s_journal; 1119 1120 WARN_ON(PageChecked(page)); 1121 if (!page_has_buffers(page)) 1122 return 0; 1123 if (journal) 1124 return jbd2_journal_try_to_free_buffers(journal, page, 1125 wait & ~__GFP_WAIT); 1126 return try_to_free_buffers(page); 1127 } 1128 1129 #ifdef CONFIG_QUOTA 1130 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1131 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1132 1133 static int ext4_write_dquot(struct dquot *dquot); 1134 static int ext4_acquire_dquot(struct dquot *dquot); 1135 static int ext4_release_dquot(struct dquot *dquot); 1136 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1137 static int ext4_write_info(struct super_block *sb, int type); 1138 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1139 struct path *path); 1140 static int ext4_quota_off(struct super_block *sb, int type); 1141 static int ext4_quota_on_mount(struct super_block *sb, int type); 1142 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1143 size_t len, loff_t off); 1144 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1145 const char *data, size_t len, loff_t off); 1146 1147 static const struct dquot_operations ext4_quota_operations = { 1148 .get_reserved_space = ext4_get_reserved_space, 1149 .write_dquot = ext4_write_dquot, 1150 .acquire_dquot = ext4_acquire_dquot, 1151 .release_dquot = ext4_release_dquot, 1152 .mark_dirty = ext4_mark_dquot_dirty, 1153 .write_info = ext4_write_info, 1154 .alloc_dquot = dquot_alloc, 1155 .destroy_dquot = dquot_destroy, 1156 }; 1157 1158 static const struct quotactl_ops ext4_qctl_operations = { 1159 .quota_on = ext4_quota_on, 1160 .quota_off = ext4_quota_off, 1161 .quota_sync = dquot_quota_sync, 1162 .get_info = dquot_get_dqinfo, 1163 .set_info = dquot_set_dqinfo, 1164 .get_dqblk = dquot_get_dqblk, 1165 .set_dqblk = dquot_set_dqblk 1166 }; 1167 #endif 1168 1169 static const struct super_operations ext4_sops = { 1170 .alloc_inode = ext4_alloc_inode, 1171 .destroy_inode = ext4_destroy_inode, 1172 .write_inode = ext4_write_inode, 1173 .dirty_inode = ext4_dirty_inode, 1174 .drop_inode = ext4_drop_inode, 1175 .evict_inode = ext4_evict_inode, 1176 .put_super = ext4_put_super, 1177 .sync_fs = ext4_sync_fs, 1178 .freeze_fs = ext4_freeze, 1179 .unfreeze_fs = ext4_unfreeze, 1180 .statfs = ext4_statfs, 1181 .remount_fs = ext4_remount, 1182 .show_options = ext4_show_options, 1183 #ifdef CONFIG_QUOTA 1184 .quota_read = ext4_quota_read, 1185 .quota_write = ext4_quota_write, 1186 #endif 1187 .bdev_try_to_free_page = bdev_try_to_free_page, 1188 }; 1189 1190 static const struct super_operations ext4_nojournal_sops = { 1191 .alloc_inode = ext4_alloc_inode, 1192 .destroy_inode = ext4_destroy_inode, 1193 .write_inode = ext4_write_inode, 1194 .dirty_inode = ext4_dirty_inode, 1195 .drop_inode = ext4_drop_inode, 1196 .evict_inode = ext4_evict_inode, 1197 .write_super = ext4_write_super, 1198 .put_super = ext4_put_super, 1199 .statfs = ext4_statfs, 1200 .remount_fs = ext4_remount, 1201 .show_options = ext4_show_options, 1202 #ifdef CONFIG_QUOTA 1203 .quota_read = ext4_quota_read, 1204 .quota_write = ext4_quota_write, 1205 #endif 1206 .bdev_try_to_free_page = bdev_try_to_free_page, 1207 }; 1208 1209 static const struct export_operations ext4_export_ops = { 1210 .fh_to_dentry = ext4_fh_to_dentry, 1211 .fh_to_parent = ext4_fh_to_parent, 1212 .get_parent = ext4_get_parent, 1213 }; 1214 1215 enum { 1216 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1217 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1218 Opt_nouid32, Opt_debug, Opt_removed, 1219 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1220 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1221 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1222 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1223 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1224 Opt_data_err_abort, Opt_data_err_ignore, 1225 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1226 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1227 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1228 Opt_usrquota, Opt_grpquota, Opt_i_version, 1229 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1230 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1231 Opt_inode_readahead_blks, Opt_journal_ioprio, 1232 Opt_dioread_nolock, Opt_dioread_lock, 1233 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1234 }; 1235 1236 static const match_table_t tokens = { 1237 {Opt_bsd_df, "bsddf"}, 1238 {Opt_minix_df, "minixdf"}, 1239 {Opt_grpid, "grpid"}, 1240 {Opt_grpid, "bsdgroups"}, 1241 {Opt_nogrpid, "nogrpid"}, 1242 {Opt_nogrpid, "sysvgroups"}, 1243 {Opt_resgid, "resgid=%u"}, 1244 {Opt_resuid, "resuid=%u"}, 1245 {Opt_sb, "sb=%u"}, 1246 {Opt_err_cont, "errors=continue"}, 1247 {Opt_err_panic, "errors=panic"}, 1248 {Opt_err_ro, "errors=remount-ro"}, 1249 {Opt_nouid32, "nouid32"}, 1250 {Opt_debug, "debug"}, 1251 {Opt_removed, "oldalloc"}, 1252 {Opt_removed, "orlov"}, 1253 {Opt_user_xattr, "user_xattr"}, 1254 {Opt_nouser_xattr, "nouser_xattr"}, 1255 {Opt_acl, "acl"}, 1256 {Opt_noacl, "noacl"}, 1257 {Opt_noload, "norecovery"}, 1258 {Opt_noload, "noload"}, 1259 {Opt_removed, "nobh"}, 1260 {Opt_removed, "bh"}, 1261 {Opt_commit, "commit=%u"}, 1262 {Opt_min_batch_time, "min_batch_time=%u"}, 1263 {Opt_max_batch_time, "max_batch_time=%u"}, 1264 {Opt_journal_dev, "journal_dev=%u"}, 1265 {Opt_journal_checksum, "journal_checksum"}, 1266 {Opt_journal_async_commit, "journal_async_commit"}, 1267 {Opt_abort, "abort"}, 1268 {Opt_data_journal, "data=journal"}, 1269 {Opt_data_ordered, "data=ordered"}, 1270 {Opt_data_writeback, "data=writeback"}, 1271 {Opt_data_err_abort, "data_err=abort"}, 1272 {Opt_data_err_ignore, "data_err=ignore"}, 1273 {Opt_offusrjquota, "usrjquota="}, 1274 {Opt_usrjquota, "usrjquota=%s"}, 1275 {Opt_offgrpjquota, "grpjquota="}, 1276 {Opt_grpjquota, "grpjquota=%s"}, 1277 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1278 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1279 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1280 {Opt_grpquota, "grpquota"}, 1281 {Opt_noquota, "noquota"}, 1282 {Opt_quota, "quota"}, 1283 {Opt_usrquota, "usrquota"}, 1284 {Opt_barrier, "barrier=%u"}, 1285 {Opt_barrier, "barrier"}, 1286 {Opt_nobarrier, "nobarrier"}, 1287 {Opt_i_version, "i_version"}, 1288 {Opt_stripe, "stripe=%u"}, 1289 {Opt_delalloc, "delalloc"}, 1290 {Opt_nodelalloc, "nodelalloc"}, 1291 {Opt_mblk_io_submit, "mblk_io_submit"}, 1292 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1293 {Opt_block_validity, "block_validity"}, 1294 {Opt_noblock_validity, "noblock_validity"}, 1295 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1296 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1297 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1298 {Opt_auto_da_alloc, "auto_da_alloc"}, 1299 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1300 {Opt_dioread_nolock, "dioread_nolock"}, 1301 {Opt_dioread_lock, "dioread_lock"}, 1302 {Opt_discard, "discard"}, 1303 {Opt_nodiscard, "nodiscard"}, 1304 {Opt_init_itable, "init_itable=%u"}, 1305 {Opt_init_itable, "init_itable"}, 1306 {Opt_noinit_itable, "noinit_itable"}, 1307 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1308 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1309 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1310 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1311 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1312 {Opt_err, NULL}, 1313 }; 1314 1315 static ext4_fsblk_t get_sb_block(void **data) 1316 { 1317 ext4_fsblk_t sb_block; 1318 char *options = (char *) *data; 1319 1320 if (!options || strncmp(options, "sb=", 3) != 0) 1321 return 1; /* Default location */ 1322 1323 options += 3; 1324 /* TODO: use simple_strtoll with >32bit ext4 */ 1325 sb_block = simple_strtoul(options, &options, 0); 1326 if (*options && *options != ',') { 1327 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1328 (char *) *data); 1329 return 1; 1330 } 1331 if (*options == ',') 1332 options++; 1333 *data = (void *) options; 1334 1335 return sb_block; 1336 } 1337 1338 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1339 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1340 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1341 1342 #ifdef CONFIG_QUOTA 1343 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1344 { 1345 struct ext4_sb_info *sbi = EXT4_SB(sb); 1346 char *qname; 1347 1348 if (sb_any_quota_loaded(sb) && 1349 !sbi->s_qf_names[qtype]) { 1350 ext4_msg(sb, KERN_ERR, 1351 "Cannot change journaled " 1352 "quota options when quota turned on"); 1353 return -1; 1354 } 1355 qname = match_strdup(args); 1356 if (!qname) { 1357 ext4_msg(sb, KERN_ERR, 1358 "Not enough memory for storing quotafile name"); 1359 return -1; 1360 } 1361 if (sbi->s_qf_names[qtype] && 1362 strcmp(sbi->s_qf_names[qtype], qname)) { 1363 ext4_msg(sb, KERN_ERR, 1364 "%s quota file already specified", QTYPE2NAME(qtype)); 1365 kfree(qname); 1366 return -1; 1367 } 1368 sbi->s_qf_names[qtype] = qname; 1369 if (strchr(sbi->s_qf_names[qtype], '/')) { 1370 ext4_msg(sb, KERN_ERR, 1371 "quotafile must be on filesystem root"); 1372 kfree(sbi->s_qf_names[qtype]); 1373 sbi->s_qf_names[qtype] = NULL; 1374 return -1; 1375 } 1376 set_opt(sb, QUOTA); 1377 return 1; 1378 } 1379 1380 static int clear_qf_name(struct super_block *sb, int qtype) 1381 { 1382 1383 struct ext4_sb_info *sbi = EXT4_SB(sb); 1384 1385 if (sb_any_quota_loaded(sb) && 1386 sbi->s_qf_names[qtype]) { 1387 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1388 " when quota turned on"); 1389 return -1; 1390 } 1391 /* 1392 * The space will be released later when all options are confirmed 1393 * to be correct 1394 */ 1395 sbi->s_qf_names[qtype] = NULL; 1396 return 1; 1397 } 1398 #endif 1399 1400 #define MOPT_SET 0x0001 1401 #define MOPT_CLEAR 0x0002 1402 #define MOPT_NOSUPPORT 0x0004 1403 #define MOPT_EXPLICIT 0x0008 1404 #define MOPT_CLEAR_ERR 0x0010 1405 #define MOPT_GTE0 0x0020 1406 #ifdef CONFIG_QUOTA 1407 #define MOPT_Q 0 1408 #define MOPT_QFMT 0x0040 1409 #else 1410 #define MOPT_Q MOPT_NOSUPPORT 1411 #define MOPT_QFMT MOPT_NOSUPPORT 1412 #endif 1413 #define MOPT_DATAJ 0x0080 1414 1415 static const struct mount_opts { 1416 int token; 1417 int mount_opt; 1418 int flags; 1419 } ext4_mount_opts[] = { 1420 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1421 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1422 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1423 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1424 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1425 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1426 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1427 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1428 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1429 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1430 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1431 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1432 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1433 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1434 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1435 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1436 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1437 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1438 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1439 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1440 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1441 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1442 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1443 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1444 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1445 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1446 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1447 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1448 {Opt_commit, 0, MOPT_GTE0}, 1449 {Opt_max_batch_time, 0, MOPT_GTE0}, 1450 {Opt_min_batch_time, 0, MOPT_GTE0}, 1451 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1452 {Opt_init_itable, 0, MOPT_GTE0}, 1453 {Opt_stripe, 0, MOPT_GTE0}, 1454 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1455 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1456 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1457 #ifdef CONFIG_EXT4_FS_XATTR 1458 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1459 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1460 #else 1461 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1462 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1463 #endif 1464 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1465 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1466 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1467 #else 1468 {Opt_acl, 0, MOPT_NOSUPPORT}, 1469 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1470 #endif 1471 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1472 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1473 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1474 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1475 MOPT_SET | MOPT_Q}, 1476 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1477 MOPT_SET | MOPT_Q}, 1478 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1479 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1480 {Opt_usrjquota, 0, MOPT_Q}, 1481 {Opt_grpjquota, 0, MOPT_Q}, 1482 {Opt_offusrjquota, 0, MOPT_Q}, 1483 {Opt_offgrpjquota, 0, MOPT_Q}, 1484 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1485 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1486 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1487 {Opt_err, 0, 0} 1488 }; 1489 1490 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1491 substring_t *args, unsigned long *journal_devnum, 1492 unsigned int *journal_ioprio, int is_remount) 1493 { 1494 struct ext4_sb_info *sbi = EXT4_SB(sb); 1495 const struct mount_opts *m; 1496 kuid_t uid; 1497 kgid_t gid; 1498 int arg = 0; 1499 1500 #ifdef CONFIG_QUOTA 1501 if (token == Opt_usrjquota) 1502 return set_qf_name(sb, USRQUOTA, &args[0]); 1503 else if (token == Opt_grpjquota) 1504 return set_qf_name(sb, GRPQUOTA, &args[0]); 1505 else if (token == Opt_offusrjquota) 1506 return clear_qf_name(sb, USRQUOTA); 1507 else if (token == Opt_offgrpjquota) 1508 return clear_qf_name(sb, GRPQUOTA); 1509 #endif 1510 if (args->from && match_int(args, &arg)) 1511 return -1; 1512 switch (token) { 1513 case Opt_noacl: 1514 case Opt_nouser_xattr: 1515 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1516 break; 1517 case Opt_sb: 1518 return 1; /* handled by get_sb_block() */ 1519 case Opt_removed: 1520 ext4_msg(sb, KERN_WARNING, 1521 "Ignoring removed %s option", opt); 1522 return 1; 1523 case Opt_resuid: 1524 uid = make_kuid(current_user_ns(), arg); 1525 if (!uid_valid(uid)) { 1526 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1527 return -1; 1528 } 1529 sbi->s_resuid = uid; 1530 return 1; 1531 case Opt_resgid: 1532 gid = make_kgid(current_user_ns(), arg); 1533 if (!gid_valid(gid)) { 1534 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1535 return -1; 1536 } 1537 sbi->s_resgid = gid; 1538 return 1; 1539 case Opt_abort: 1540 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1541 return 1; 1542 case Opt_i_version: 1543 sb->s_flags |= MS_I_VERSION; 1544 return 1; 1545 case Opt_journal_dev: 1546 if (is_remount) { 1547 ext4_msg(sb, KERN_ERR, 1548 "Cannot specify journal on remount"); 1549 return -1; 1550 } 1551 *journal_devnum = arg; 1552 return 1; 1553 case Opt_journal_ioprio: 1554 if (arg < 0 || arg > 7) 1555 return -1; 1556 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1557 return 1; 1558 } 1559 1560 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1561 if (token != m->token) 1562 continue; 1563 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1564 return -1; 1565 if (m->flags & MOPT_EXPLICIT) 1566 set_opt2(sb, EXPLICIT_DELALLOC); 1567 if (m->flags & MOPT_CLEAR_ERR) 1568 clear_opt(sb, ERRORS_MASK); 1569 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1570 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1571 "options when quota turned on"); 1572 return -1; 1573 } 1574 1575 if (m->flags & MOPT_NOSUPPORT) { 1576 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1577 } else if (token == Opt_commit) { 1578 if (arg == 0) 1579 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1580 sbi->s_commit_interval = HZ * arg; 1581 } else if (token == Opt_max_batch_time) { 1582 if (arg == 0) 1583 arg = EXT4_DEF_MAX_BATCH_TIME; 1584 sbi->s_max_batch_time = arg; 1585 } else if (token == Opt_min_batch_time) { 1586 sbi->s_min_batch_time = arg; 1587 } else if (token == Opt_inode_readahead_blks) { 1588 if (arg > (1 << 30)) 1589 return -1; 1590 if (arg && !is_power_of_2(arg)) { 1591 ext4_msg(sb, KERN_ERR, 1592 "EXT4-fs: inode_readahead_blks" 1593 " must be a power of 2"); 1594 return -1; 1595 } 1596 sbi->s_inode_readahead_blks = arg; 1597 } else if (token == Opt_init_itable) { 1598 set_opt(sb, INIT_INODE_TABLE); 1599 if (!args->from) 1600 arg = EXT4_DEF_LI_WAIT_MULT; 1601 sbi->s_li_wait_mult = arg; 1602 } else if (token == Opt_stripe) { 1603 sbi->s_stripe = arg; 1604 } else if (m->flags & MOPT_DATAJ) { 1605 if (is_remount) { 1606 if (!sbi->s_journal) 1607 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1608 else if (test_opt(sb, DATA_FLAGS) != 1609 m->mount_opt) { 1610 ext4_msg(sb, KERN_ERR, 1611 "Cannot change data mode on remount"); 1612 return -1; 1613 } 1614 } else { 1615 clear_opt(sb, DATA_FLAGS); 1616 sbi->s_mount_opt |= m->mount_opt; 1617 } 1618 #ifdef CONFIG_QUOTA 1619 } else if (m->flags & MOPT_QFMT) { 1620 if (sb_any_quota_loaded(sb) && 1621 sbi->s_jquota_fmt != m->mount_opt) { 1622 ext4_msg(sb, KERN_ERR, "Cannot " 1623 "change journaled quota options " 1624 "when quota turned on"); 1625 return -1; 1626 } 1627 sbi->s_jquota_fmt = m->mount_opt; 1628 #endif 1629 } else { 1630 if (!args->from) 1631 arg = 1; 1632 if (m->flags & MOPT_CLEAR) 1633 arg = !arg; 1634 else if (unlikely(!(m->flags & MOPT_SET))) { 1635 ext4_msg(sb, KERN_WARNING, 1636 "buggy handling of option %s", opt); 1637 WARN_ON(1); 1638 return -1; 1639 } 1640 if (arg != 0) 1641 sbi->s_mount_opt |= m->mount_opt; 1642 else 1643 sbi->s_mount_opt &= ~m->mount_opt; 1644 } 1645 return 1; 1646 } 1647 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1648 "or missing value", opt); 1649 return -1; 1650 } 1651 1652 static int parse_options(char *options, struct super_block *sb, 1653 unsigned long *journal_devnum, 1654 unsigned int *journal_ioprio, 1655 int is_remount) 1656 { 1657 #ifdef CONFIG_QUOTA 1658 struct ext4_sb_info *sbi = EXT4_SB(sb); 1659 #endif 1660 char *p; 1661 substring_t args[MAX_OPT_ARGS]; 1662 int token; 1663 1664 if (!options) 1665 return 1; 1666 1667 while ((p = strsep(&options, ",")) != NULL) { 1668 if (!*p) 1669 continue; 1670 /* 1671 * Initialize args struct so we know whether arg was 1672 * found; some options take optional arguments. 1673 */ 1674 args[0].to = args[0].from = 0; 1675 token = match_token(p, tokens, args); 1676 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1677 journal_ioprio, is_remount) < 0) 1678 return 0; 1679 } 1680 #ifdef CONFIG_QUOTA 1681 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1682 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1683 clear_opt(sb, USRQUOTA); 1684 1685 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1686 clear_opt(sb, GRPQUOTA); 1687 1688 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1689 ext4_msg(sb, KERN_ERR, "old and new quota " 1690 "format mixing"); 1691 return 0; 1692 } 1693 1694 if (!sbi->s_jquota_fmt) { 1695 ext4_msg(sb, KERN_ERR, "journaled quota format " 1696 "not specified"); 1697 return 0; 1698 } 1699 } else { 1700 if (sbi->s_jquota_fmt) { 1701 ext4_msg(sb, KERN_ERR, "journaled quota format " 1702 "specified with no journaling " 1703 "enabled"); 1704 return 0; 1705 } 1706 } 1707 #endif 1708 return 1; 1709 } 1710 1711 static inline void ext4_show_quota_options(struct seq_file *seq, 1712 struct super_block *sb) 1713 { 1714 #if defined(CONFIG_QUOTA) 1715 struct ext4_sb_info *sbi = EXT4_SB(sb); 1716 1717 if (sbi->s_jquota_fmt) { 1718 char *fmtname = ""; 1719 1720 switch (sbi->s_jquota_fmt) { 1721 case QFMT_VFS_OLD: 1722 fmtname = "vfsold"; 1723 break; 1724 case QFMT_VFS_V0: 1725 fmtname = "vfsv0"; 1726 break; 1727 case QFMT_VFS_V1: 1728 fmtname = "vfsv1"; 1729 break; 1730 } 1731 seq_printf(seq, ",jqfmt=%s", fmtname); 1732 } 1733 1734 if (sbi->s_qf_names[USRQUOTA]) 1735 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1736 1737 if (sbi->s_qf_names[GRPQUOTA]) 1738 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1739 1740 if (test_opt(sb, USRQUOTA)) 1741 seq_puts(seq, ",usrquota"); 1742 1743 if (test_opt(sb, GRPQUOTA)) 1744 seq_puts(seq, ",grpquota"); 1745 #endif 1746 } 1747 1748 static const char *token2str(int token) 1749 { 1750 static const struct match_token *t; 1751 1752 for (t = tokens; t->token != Opt_err; t++) 1753 if (t->token == token && !strchr(t->pattern, '=')) 1754 break; 1755 return t->pattern; 1756 } 1757 1758 /* 1759 * Show an option if 1760 * - it's set to a non-default value OR 1761 * - if the per-sb default is different from the global default 1762 */ 1763 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1764 int nodefs) 1765 { 1766 struct ext4_sb_info *sbi = EXT4_SB(sb); 1767 struct ext4_super_block *es = sbi->s_es; 1768 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1769 const struct mount_opts *m; 1770 char sep = nodefs ? '\n' : ','; 1771 1772 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1773 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1774 1775 if (sbi->s_sb_block != 1) 1776 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1777 1778 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1779 int want_set = m->flags & MOPT_SET; 1780 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1781 (m->flags & MOPT_CLEAR_ERR)) 1782 continue; 1783 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1784 continue; /* skip if same as the default */ 1785 if ((want_set && 1786 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1787 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1788 continue; /* select Opt_noFoo vs Opt_Foo */ 1789 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1790 } 1791 1792 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1793 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1794 SEQ_OPTS_PRINT("resuid=%u", 1795 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1796 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1797 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1798 SEQ_OPTS_PRINT("resgid=%u", 1799 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1800 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1801 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1802 SEQ_OPTS_PUTS("errors=remount-ro"); 1803 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1804 SEQ_OPTS_PUTS("errors=continue"); 1805 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1806 SEQ_OPTS_PUTS("errors=panic"); 1807 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1808 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1809 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1810 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1811 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1812 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1813 if (sb->s_flags & MS_I_VERSION) 1814 SEQ_OPTS_PUTS("i_version"); 1815 if (nodefs || sbi->s_stripe) 1816 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1817 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1818 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1819 SEQ_OPTS_PUTS("data=journal"); 1820 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1821 SEQ_OPTS_PUTS("data=ordered"); 1822 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1823 SEQ_OPTS_PUTS("data=writeback"); 1824 } 1825 if (nodefs || 1826 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1827 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1828 sbi->s_inode_readahead_blks); 1829 1830 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1831 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1832 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1833 1834 ext4_show_quota_options(seq, sb); 1835 return 0; 1836 } 1837 1838 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1839 { 1840 return _ext4_show_options(seq, root->d_sb, 0); 1841 } 1842 1843 static int options_seq_show(struct seq_file *seq, void *offset) 1844 { 1845 struct super_block *sb = seq->private; 1846 int rc; 1847 1848 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1849 rc = _ext4_show_options(seq, sb, 1); 1850 seq_puts(seq, "\n"); 1851 return rc; 1852 } 1853 1854 static int options_open_fs(struct inode *inode, struct file *file) 1855 { 1856 return single_open(file, options_seq_show, PDE(inode)->data); 1857 } 1858 1859 static const struct file_operations ext4_seq_options_fops = { 1860 .owner = THIS_MODULE, 1861 .open = options_open_fs, 1862 .read = seq_read, 1863 .llseek = seq_lseek, 1864 .release = single_release, 1865 }; 1866 1867 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1868 int read_only) 1869 { 1870 struct ext4_sb_info *sbi = EXT4_SB(sb); 1871 int res = 0; 1872 1873 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1874 ext4_msg(sb, KERN_ERR, "revision level too high, " 1875 "forcing read-only mode"); 1876 res = MS_RDONLY; 1877 } 1878 if (read_only) 1879 goto done; 1880 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1881 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1882 "running e2fsck is recommended"); 1883 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1884 ext4_msg(sb, KERN_WARNING, 1885 "warning: mounting fs with errors, " 1886 "running e2fsck is recommended"); 1887 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1888 le16_to_cpu(es->s_mnt_count) >= 1889 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1890 ext4_msg(sb, KERN_WARNING, 1891 "warning: maximal mount count reached, " 1892 "running e2fsck is recommended"); 1893 else if (le32_to_cpu(es->s_checkinterval) && 1894 (le32_to_cpu(es->s_lastcheck) + 1895 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1896 ext4_msg(sb, KERN_WARNING, 1897 "warning: checktime reached, " 1898 "running e2fsck is recommended"); 1899 if (!sbi->s_journal) 1900 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1901 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1902 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1903 le16_add_cpu(&es->s_mnt_count, 1); 1904 es->s_mtime = cpu_to_le32(get_seconds()); 1905 ext4_update_dynamic_rev(sb); 1906 if (sbi->s_journal) 1907 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1908 1909 ext4_commit_super(sb, 1); 1910 done: 1911 if (test_opt(sb, DEBUG)) 1912 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1913 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1914 sb->s_blocksize, 1915 sbi->s_groups_count, 1916 EXT4_BLOCKS_PER_GROUP(sb), 1917 EXT4_INODES_PER_GROUP(sb), 1918 sbi->s_mount_opt, sbi->s_mount_opt2); 1919 1920 cleancache_init_fs(sb); 1921 return res; 1922 } 1923 1924 static int ext4_fill_flex_info(struct super_block *sb) 1925 { 1926 struct ext4_sb_info *sbi = EXT4_SB(sb); 1927 struct ext4_group_desc *gdp = NULL; 1928 ext4_group_t flex_group_count; 1929 ext4_group_t flex_group; 1930 unsigned int groups_per_flex = 0; 1931 size_t size; 1932 int i; 1933 1934 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1935 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1936 sbi->s_log_groups_per_flex = 0; 1937 return 1; 1938 } 1939 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1940 1941 /* We allocate both existing and potentially added groups */ 1942 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1943 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1944 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1945 size = flex_group_count * sizeof(struct flex_groups); 1946 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL); 1947 if (sbi->s_flex_groups == NULL) { 1948 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups", 1949 flex_group_count); 1950 goto failed; 1951 } 1952 1953 for (i = 0; i < sbi->s_groups_count; i++) { 1954 gdp = ext4_get_group_desc(sb, i, NULL); 1955 1956 flex_group = ext4_flex_group(sbi, i); 1957 atomic_add(ext4_free_inodes_count(sb, gdp), 1958 &sbi->s_flex_groups[flex_group].free_inodes); 1959 atomic_add(ext4_free_group_clusters(sb, gdp), 1960 &sbi->s_flex_groups[flex_group].free_clusters); 1961 atomic_add(ext4_used_dirs_count(sb, gdp), 1962 &sbi->s_flex_groups[flex_group].used_dirs); 1963 } 1964 1965 return 1; 1966 failed: 1967 return 0; 1968 } 1969 1970 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1971 struct ext4_group_desc *gdp) 1972 { 1973 int offset; 1974 __u16 crc = 0; 1975 __le32 le_group = cpu_to_le32(block_group); 1976 1977 if ((sbi->s_es->s_feature_ro_compat & 1978 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1979 /* Use new metadata_csum algorithm */ 1980 __u16 old_csum; 1981 __u32 csum32; 1982 1983 old_csum = gdp->bg_checksum; 1984 gdp->bg_checksum = 0; 1985 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1986 sizeof(le_group)); 1987 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1988 sbi->s_desc_size); 1989 gdp->bg_checksum = old_csum; 1990 1991 crc = csum32 & 0xFFFF; 1992 goto out; 1993 } 1994 1995 /* old crc16 code */ 1996 offset = offsetof(struct ext4_group_desc, bg_checksum); 1997 1998 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1999 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2000 crc = crc16(crc, (__u8 *)gdp, offset); 2001 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2002 /* for checksum of struct ext4_group_desc do the rest...*/ 2003 if ((sbi->s_es->s_feature_incompat & 2004 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2005 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2006 crc = crc16(crc, (__u8 *)gdp + offset, 2007 le16_to_cpu(sbi->s_es->s_desc_size) - 2008 offset); 2009 2010 out: 2011 return cpu_to_le16(crc); 2012 } 2013 2014 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2015 struct ext4_group_desc *gdp) 2016 { 2017 if (ext4_has_group_desc_csum(sb) && 2018 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2019 block_group, gdp))) 2020 return 0; 2021 2022 return 1; 2023 } 2024 2025 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2026 struct ext4_group_desc *gdp) 2027 { 2028 if (!ext4_has_group_desc_csum(sb)) 2029 return; 2030 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2031 } 2032 2033 /* Called at mount-time, super-block is locked */ 2034 static int ext4_check_descriptors(struct super_block *sb, 2035 ext4_group_t *first_not_zeroed) 2036 { 2037 struct ext4_sb_info *sbi = EXT4_SB(sb); 2038 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2039 ext4_fsblk_t last_block; 2040 ext4_fsblk_t block_bitmap; 2041 ext4_fsblk_t inode_bitmap; 2042 ext4_fsblk_t inode_table; 2043 int flexbg_flag = 0; 2044 ext4_group_t i, grp = sbi->s_groups_count; 2045 2046 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2047 flexbg_flag = 1; 2048 2049 ext4_debug("Checking group descriptors"); 2050 2051 for (i = 0; i < sbi->s_groups_count; i++) { 2052 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2053 2054 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2055 last_block = ext4_blocks_count(sbi->s_es) - 1; 2056 else 2057 last_block = first_block + 2058 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2059 2060 if ((grp == sbi->s_groups_count) && 2061 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2062 grp = i; 2063 2064 block_bitmap = ext4_block_bitmap(sb, gdp); 2065 if (block_bitmap < first_block || block_bitmap > last_block) { 2066 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2067 "Block bitmap for group %u not in group " 2068 "(block %llu)!", i, block_bitmap); 2069 return 0; 2070 } 2071 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2072 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2073 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2074 "Inode bitmap for group %u not in group " 2075 "(block %llu)!", i, inode_bitmap); 2076 return 0; 2077 } 2078 inode_table = ext4_inode_table(sb, gdp); 2079 if (inode_table < first_block || 2080 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2081 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2082 "Inode table for group %u not in group " 2083 "(block %llu)!", i, inode_table); 2084 return 0; 2085 } 2086 ext4_lock_group(sb, i); 2087 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2089 "Checksum for group %u failed (%u!=%u)", 2090 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2091 gdp)), le16_to_cpu(gdp->bg_checksum)); 2092 if (!(sb->s_flags & MS_RDONLY)) { 2093 ext4_unlock_group(sb, i); 2094 return 0; 2095 } 2096 } 2097 ext4_unlock_group(sb, i); 2098 if (!flexbg_flag) 2099 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2100 } 2101 if (NULL != first_not_zeroed) 2102 *first_not_zeroed = grp; 2103 2104 ext4_free_blocks_count_set(sbi->s_es, 2105 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2106 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2107 return 1; 2108 } 2109 2110 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2111 * the superblock) which were deleted from all directories, but held open by 2112 * a process at the time of a crash. We walk the list and try to delete these 2113 * inodes at recovery time (only with a read-write filesystem). 2114 * 2115 * In order to keep the orphan inode chain consistent during traversal (in 2116 * case of crash during recovery), we link each inode into the superblock 2117 * orphan list_head and handle it the same way as an inode deletion during 2118 * normal operation (which journals the operations for us). 2119 * 2120 * We only do an iget() and an iput() on each inode, which is very safe if we 2121 * accidentally point at an in-use or already deleted inode. The worst that 2122 * can happen in this case is that we get a "bit already cleared" message from 2123 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2124 * e2fsck was run on this filesystem, and it must have already done the orphan 2125 * inode cleanup for us, so we can safely abort without any further action. 2126 */ 2127 static void ext4_orphan_cleanup(struct super_block *sb, 2128 struct ext4_super_block *es) 2129 { 2130 unsigned int s_flags = sb->s_flags; 2131 int nr_orphans = 0, nr_truncates = 0; 2132 #ifdef CONFIG_QUOTA 2133 int i; 2134 #endif 2135 if (!es->s_last_orphan) { 2136 jbd_debug(4, "no orphan inodes to clean up\n"); 2137 return; 2138 } 2139 2140 if (bdev_read_only(sb->s_bdev)) { 2141 ext4_msg(sb, KERN_ERR, "write access " 2142 "unavailable, skipping orphan cleanup"); 2143 return; 2144 } 2145 2146 /* Check if feature set would not allow a r/w mount */ 2147 if (!ext4_feature_set_ok(sb, 0)) { 2148 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2149 "unknown ROCOMPAT features"); 2150 return; 2151 } 2152 2153 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2154 if (es->s_last_orphan) 2155 jbd_debug(1, "Errors on filesystem, " 2156 "clearing orphan list.\n"); 2157 es->s_last_orphan = 0; 2158 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2159 return; 2160 } 2161 2162 if (s_flags & MS_RDONLY) { 2163 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2164 sb->s_flags &= ~MS_RDONLY; 2165 } 2166 #ifdef CONFIG_QUOTA 2167 /* Needed for iput() to work correctly and not trash data */ 2168 sb->s_flags |= MS_ACTIVE; 2169 /* Turn on quotas so that they are updated correctly */ 2170 for (i = 0; i < MAXQUOTAS; i++) { 2171 if (EXT4_SB(sb)->s_qf_names[i]) { 2172 int ret = ext4_quota_on_mount(sb, i); 2173 if (ret < 0) 2174 ext4_msg(sb, KERN_ERR, 2175 "Cannot turn on journaled " 2176 "quota: error %d", ret); 2177 } 2178 } 2179 #endif 2180 2181 while (es->s_last_orphan) { 2182 struct inode *inode; 2183 2184 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2185 if (IS_ERR(inode)) { 2186 es->s_last_orphan = 0; 2187 break; 2188 } 2189 2190 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2191 dquot_initialize(inode); 2192 if (inode->i_nlink) { 2193 ext4_msg(sb, KERN_DEBUG, 2194 "%s: truncating inode %lu to %lld bytes", 2195 __func__, inode->i_ino, inode->i_size); 2196 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2197 inode->i_ino, inode->i_size); 2198 ext4_truncate(inode); 2199 nr_truncates++; 2200 } else { 2201 ext4_msg(sb, KERN_DEBUG, 2202 "%s: deleting unreferenced inode %lu", 2203 __func__, inode->i_ino); 2204 jbd_debug(2, "deleting unreferenced inode %lu\n", 2205 inode->i_ino); 2206 nr_orphans++; 2207 } 2208 iput(inode); /* The delete magic happens here! */ 2209 } 2210 2211 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2212 2213 if (nr_orphans) 2214 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2215 PLURAL(nr_orphans)); 2216 if (nr_truncates) 2217 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2218 PLURAL(nr_truncates)); 2219 #ifdef CONFIG_QUOTA 2220 /* Turn quotas off */ 2221 for (i = 0; i < MAXQUOTAS; i++) { 2222 if (sb_dqopt(sb)->files[i]) 2223 dquot_quota_off(sb, i); 2224 } 2225 #endif 2226 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2227 } 2228 2229 /* 2230 * Maximal extent format file size. 2231 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2232 * extent format containers, within a sector_t, and within i_blocks 2233 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2234 * so that won't be a limiting factor. 2235 * 2236 * However there is other limiting factor. We do store extents in the form 2237 * of starting block and length, hence the resulting length of the extent 2238 * covering maximum file size must fit into on-disk format containers as 2239 * well. Given that length is always by 1 unit bigger than max unit (because 2240 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2241 * 2242 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2243 */ 2244 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2245 { 2246 loff_t res; 2247 loff_t upper_limit = MAX_LFS_FILESIZE; 2248 2249 /* small i_blocks in vfs inode? */ 2250 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2251 /* 2252 * CONFIG_LBDAF is not enabled implies the inode 2253 * i_block represent total blocks in 512 bytes 2254 * 32 == size of vfs inode i_blocks * 8 2255 */ 2256 upper_limit = (1LL << 32) - 1; 2257 2258 /* total blocks in file system block size */ 2259 upper_limit >>= (blkbits - 9); 2260 upper_limit <<= blkbits; 2261 } 2262 2263 /* 2264 * 32-bit extent-start container, ee_block. We lower the maxbytes 2265 * by one fs block, so ee_len can cover the extent of maximum file 2266 * size 2267 */ 2268 res = (1LL << 32) - 1; 2269 res <<= blkbits; 2270 2271 /* Sanity check against vm- & vfs- imposed limits */ 2272 if (res > upper_limit) 2273 res = upper_limit; 2274 2275 return res; 2276 } 2277 2278 /* 2279 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2280 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2281 * We need to be 1 filesystem block less than the 2^48 sector limit. 2282 */ 2283 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2284 { 2285 loff_t res = EXT4_NDIR_BLOCKS; 2286 int meta_blocks; 2287 loff_t upper_limit; 2288 /* This is calculated to be the largest file size for a dense, block 2289 * mapped file such that the file's total number of 512-byte sectors, 2290 * including data and all indirect blocks, does not exceed (2^48 - 1). 2291 * 2292 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2293 * number of 512-byte sectors of the file. 2294 */ 2295 2296 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2297 /* 2298 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2299 * the inode i_block field represents total file blocks in 2300 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2301 */ 2302 upper_limit = (1LL << 32) - 1; 2303 2304 /* total blocks in file system block size */ 2305 upper_limit >>= (bits - 9); 2306 2307 } else { 2308 /* 2309 * We use 48 bit ext4_inode i_blocks 2310 * With EXT4_HUGE_FILE_FL set the i_blocks 2311 * represent total number of blocks in 2312 * file system block size 2313 */ 2314 upper_limit = (1LL << 48) - 1; 2315 2316 } 2317 2318 /* indirect blocks */ 2319 meta_blocks = 1; 2320 /* double indirect blocks */ 2321 meta_blocks += 1 + (1LL << (bits-2)); 2322 /* tripple indirect blocks */ 2323 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2324 2325 upper_limit -= meta_blocks; 2326 upper_limit <<= bits; 2327 2328 res += 1LL << (bits-2); 2329 res += 1LL << (2*(bits-2)); 2330 res += 1LL << (3*(bits-2)); 2331 res <<= bits; 2332 if (res > upper_limit) 2333 res = upper_limit; 2334 2335 if (res > MAX_LFS_FILESIZE) 2336 res = MAX_LFS_FILESIZE; 2337 2338 return res; 2339 } 2340 2341 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2342 ext4_fsblk_t logical_sb_block, int nr) 2343 { 2344 struct ext4_sb_info *sbi = EXT4_SB(sb); 2345 ext4_group_t bg, first_meta_bg; 2346 int has_super = 0; 2347 2348 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2349 2350 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2351 nr < first_meta_bg) 2352 return logical_sb_block + nr + 1; 2353 bg = sbi->s_desc_per_block * nr; 2354 if (ext4_bg_has_super(sb, bg)) 2355 has_super = 1; 2356 2357 return (has_super + ext4_group_first_block_no(sb, bg)); 2358 } 2359 2360 /** 2361 * ext4_get_stripe_size: Get the stripe size. 2362 * @sbi: In memory super block info 2363 * 2364 * If we have specified it via mount option, then 2365 * use the mount option value. If the value specified at mount time is 2366 * greater than the blocks per group use the super block value. 2367 * If the super block value is greater than blocks per group return 0. 2368 * Allocator needs it be less than blocks per group. 2369 * 2370 */ 2371 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2372 { 2373 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2374 unsigned long stripe_width = 2375 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2376 int ret; 2377 2378 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2379 ret = sbi->s_stripe; 2380 else if (stripe_width <= sbi->s_blocks_per_group) 2381 ret = stripe_width; 2382 else if (stride <= sbi->s_blocks_per_group) 2383 ret = stride; 2384 else 2385 ret = 0; 2386 2387 /* 2388 * If the stripe width is 1, this makes no sense and 2389 * we set it to 0 to turn off stripe handling code. 2390 */ 2391 if (ret <= 1) 2392 ret = 0; 2393 2394 return ret; 2395 } 2396 2397 /* sysfs supprt */ 2398 2399 struct ext4_attr { 2400 struct attribute attr; 2401 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2402 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2403 const char *, size_t); 2404 int offset; 2405 }; 2406 2407 static int parse_strtoul(const char *buf, 2408 unsigned long max, unsigned long *value) 2409 { 2410 char *endp; 2411 2412 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2413 endp = skip_spaces(endp); 2414 if (*endp || *value > max) 2415 return -EINVAL; 2416 2417 return 0; 2418 } 2419 2420 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2421 struct ext4_sb_info *sbi, 2422 char *buf) 2423 { 2424 return snprintf(buf, PAGE_SIZE, "%llu\n", 2425 (s64) EXT4_C2B(sbi, 2426 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2427 } 2428 2429 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2430 struct ext4_sb_info *sbi, char *buf) 2431 { 2432 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2433 2434 if (!sb->s_bdev->bd_part) 2435 return snprintf(buf, PAGE_SIZE, "0\n"); 2436 return snprintf(buf, PAGE_SIZE, "%lu\n", 2437 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2438 sbi->s_sectors_written_start) >> 1); 2439 } 2440 2441 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2442 struct ext4_sb_info *sbi, char *buf) 2443 { 2444 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2445 2446 if (!sb->s_bdev->bd_part) 2447 return snprintf(buf, PAGE_SIZE, "0\n"); 2448 return snprintf(buf, PAGE_SIZE, "%llu\n", 2449 (unsigned long long)(sbi->s_kbytes_written + 2450 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2451 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2452 } 2453 2454 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2455 struct ext4_sb_info *sbi, 2456 const char *buf, size_t count) 2457 { 2458 unsigned long t; 2459 2460 if (parse_strtoul(buf, 0x40000000, &t)) 2461 return -EINVAL; 2462 2463 if (t && !is_power_of_2(t)) 2464 return -EINVAL; 2465 2466 sbi->s_inode_readahead_blks = t; 2467 return count; 2468 } 2469 2470 static ssize_t sbi_ui_show(struct ext4_attr *a, 2471 struct ext4_sb_info *sbi, char *buf) 2472 { 2473 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2474 2475 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2476 } 2477 2478 static ssize_t sbi_ui_store(struct ext4_attr *a, 2479 struct ext4_sb_info *sbi, 2480 const char *buf, size_t count) 2481 { 2482 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2483 unsigned long t; 2484 2485 if (parse_strtoul(buf, 0xffffffff, &t)) 2486 return -EINVAL; 2487 *ui = t; 2488 return count; 2489 } 2490 2491 static ssize_t trigger_test_error(struct ext4_attr *a, 2492 struct ext4_sb_info *sbi, 2493 const char *buf, size_t count) 2494 { 2495 int len = count; 2496 2497 if (!capable(CAP_SYS_ADMIN)) 2498 return -EPERM; 2499 2500 if (len && buf[len-1] == '\n') 2501 len--; 2502 2503 if (len) 2504 ext4_error(sbi->s_sb, "%.*s", len, buf); 2505 return count; 2506 } 2507 2508 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2509 static struct ext4_attr ext4_attr_##_name = { \ 2510 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2511 .show = _show, \ 2512 .store = _store, \ 2513 .offset = offsetof(struct ext4_sb_info, _elname), \ 2514 } 2515 #define EXT4_ATTR(name, mode, show, store) \ 2516 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2517 2518 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2519 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2520 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2521 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2522 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2523 #define ATTR_LIST(name) &ext4_attr_##name.attr 2524 2525 EXT4_RO_ATTR(delayed_allocation_blocks); 2526 EXT4_RO_ATTR(session_write_kbytes); 2527 EXT4_RO_ATTR(lifetime_write_kbytes); 2528 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2529 inode_readahead_blks_store, s_inode_readahead_blks); 2530 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2531 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2532 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2533 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2534 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2535 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2536 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2537 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2538 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2539 2540 static struct attribute *ext4_attrs[] = { 2541 ATTR_LIST(delayed_allocation_blocks), 2542 ATTR_LIST(session_write_kbytes), 2543 ATTR_LIST(lifetime_write_kbytes), 2544 ATTR_LIST(inode_readahead_blks), 2545 ATTR_LIST(inode_goal), 2546 ATTR_LIST(mb_stats), 2547 ATTR_LIST(mb_max_to_scan), 2548 ATTR_LIST(mb_min_to_scan), 2549 ATTR_LIST(mb_order2_req), 2550 ATTR_LIST(mb_stream_req), 2551 ATTR_LIST(mb_group_prealloc), 2552 ATTR_LIST(max_writeback_mb_bump), 2553 ATTR_LIST(trigger_fs_error), 2554 NULL, 2555 }; 2556 2557 /* Features this copy of ext4 supports */ 2558 EXT4_INFO_ATTR(lazy_itable_init); 2559 EXT4_INFO_ATTR(batched_discard); 2560 2561 static struct attribute *ext4_feat_attrs[] = { 2562 ATTR_LIST(lazy_itable_init), 2563 ATTR_LIST(batched_discard), 2564 NULL, 2565 }; 2566 2567 static ssize_t ext4_attr_show(struct kobject *kobj, 2568 struct attribute *attr, char *buf) 2569 { 2570 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2571 s_kobj); 2572 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2573 2574 return a->show ? a->show(a, sbi, buf) : 0; 2575 } 2576 2577 static ssize_t ext4_attr_store(struct kobject *kobj, 2578 struct attribute *attr, 2579 const char *buf, size_t len) 2580 { 2581 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2582 s_kobj); 2583 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2584 2585 return a->store ? a->store(a, sbi, buf, len) : 0; 2586 } 2587 2588 static void ext4_sb_release(struct kobject *kobj) 2589 { 2590 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2591 s_kobj); 2592 complete(&sbi->s_kobj_unregister); 2593 } 2594 2595 static const struct sysfs_ops ext4_attr_ops = { 2596 .show = ext4_attr_show, 2597 .store = ext4_attr_store, 2598 }; 2599 2600 static struct kobj_type ext4_ktype = { 2601 .default_attrs = ext4_attrs, 2602 .sysfs_ops = &ext4_attr_ops, 2603 .release = ext4_sb_release, 2604 }; 2605 2606 static void ext4_feat_release(struct kobject *kobj) 2607 { 2608 complete(&ext4_feat->f_kobj_unregister); 2609 } 2610 2611 static struct kobj_type ext4_feat_ktype = { 2612 .default_attrs = ext4_feat_attrs, 2613 .sysfs_ops = &ext4_attr_ops, 2614 .release = ext4_feat_release, 2615 }; 2616 2617 /* 2618 * Check whether this filesystem can be mounted based on 2619 * the features present and the RDONLY/RDWR mount requested. 2620 * Returns 1 if this filesystem can be mounted as requested, 2621 * 0 if it cannot be. 2622 */ 2623 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2624 { 2625 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2626 ext4_msg(sb, KERN_ERR, 2627 "Couldn't mount because of " 2628 "unsupported optional features (%x)", 2629 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2630 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2631 return 0; 2632 } 2633 2634 if (readonly) 2635 return 1; 2636 2637 /* Check that feature set is OK for a read-write mount */ 2638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2639 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2640 "unsupported optional features (%x)", 2641 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2642 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2643 return 0; 2644 } 2645 /* 2646 * Large file size enabled file system can only be mounted 2647 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2648 */ 2649 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2650 if (sizeof(blkcnt_t) < sizeof(u64)) { 2651 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2652 "cannot be mounted RDWR without " 2653 "CONFIG_LBDAF"); 2654 return 0; 2655 } 2656 } 2657 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2658 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2659 ext4_msg(sb, KERN_ERR, 2660 "Can't support bigalloc feature without " 2661 "extents feature\n"); 2662 return 0; 2663 } 2664 return 1; 2665 } 2666 2667 /* 2668 * This function is called once a day if we have errors logged 2669 * on the file system 2670 */ 2671 static void print_daily_error_info(unsigned long arg) 2672 { 2673 struct super_block *sb = (struct super_block *) arg; 2674 struct ext4_sb_info *sbi; 2675 struct ext4_super_block *es; 2676 2677 sbi = EXT4_SB(sb); 2678 es = sbi->s_es; 2679 2680 if (es->s_error_count) 2681 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2682 le32_to_cpu(es->s_error_count)); 2683 if (es->s_first_error_time) { 2684 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2685 sb->s_id, le32_to_cpu(es->s_first_error_time), 2686 (int) sizeof(es->s_first_error_func), 2687 es->s_first_error_func, 2688 le32_to_cpu(es->s_first_error_line)); 2689 if (es->s_first_error_ino) 2690 printk(": inode %u", 2691 le32_to_cpu(es->s_first_error_ino)); 2692 if (es->s_first_error_block) 2693 printk(": block %llu", (unsigned long long) 2694 le64_to_cpu(es->s_first_error_block)); 2695 printk("\n"); 2696 } 2697 if (es->s_last_error_time) { 2698 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2699 sb->s_id, le32_to_cpu(es->s_last_error_time), 2700 (int) sizeof(es->s_last_error_func), 2701 es->s_last_error_func, 2702 le32_to_cpu(es->s_last_error_line)); 2703 if (es->s_last_error_ino) 2704 printk(": inode %u", 2705 le32_to_cpu(es->s_last_error_ino)); 2706 if (es->s_last_error_block) 2707 printk(": block %llu", (unsigned long long) 2708 le64_to_cpu(es->s_last_error_block)); 2709 printk("\n"); 2710 } 2711 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2712 } 2713 2714 /* Find next suitable group and run ext4_init_inode_table */ 2715 static int ext4_run_li_request(struct ext4_li_request *elr) 2716 { 2717 struct ext4_group_desc *gdp = NULL; 2718 ext4_group_t group, ngroups; 2719 struct super_block *sb; 2720 unsigned long timeout = 0; 2721 int ret = 0; 2722 2723 sb = elr->lr_super; 2724 ngroups = EXT4_SB(sb)->s_groups_count; 2725 2726 for (group = elr->lr_next_group; group < ngroups; group++) { 2727 gdp = ext4_get_group_desc(sb, group, NULL); 2728 if (!gdp) { 2729 ret = 1; 2730 break; 2731 } 2732 2733 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2734 break; 2735 } 2736 2737 if (group == ngroups) 2738 ret = 1; 2739 2740 if (!ret) { 2741 timeout = jiffies; 2742 ret = ext4_init_inode_table(sb, group, 2743 elr->lr_timeout ? 0 : 1); 2744 if (elr->lr_timeout == 0) { 2745 timeout = (jiffies - timeout) * 2746 elr->lr_sbi->s_li_wait_mult; 2747 elr->lr_timeout = timeout; 2748 } 2749 elr->lr_next_sched = jiffies + elr->lr_timeout; 2750 elr->lr_next_group = group + 1; 2751 } 2752 2753 return ret; 2754 } 2755 2756 /* 2757 * Remove lr_request from the list_request and free the 2758 * request structure. Should be called with li_list_mtx held 2759 */ 2760 static void ext4_remove_li_request(struct ext4_li_request *elr) 2761 { 2762 struct ext4_sb_info *sbi; 2763 2764 if (!elr) 2765 return; 2766 2767 sbi = elr->lr_sbi; 2768 2769 list_del(&elr->lr_request); 2770 sbi->s_li_request = NULL; 2771 kfree(elr); 2772 } 2773 2774 static void ext4_unregister_li_request(struct super_block *sb) 2775 { 2776 mutex_lock(&ext4_li_mtx); 2777 if (!ext4_li_info) { 2778 mutex_unlock(&ext4_li_mtx); 2779 return; 2780 } 2781 2782 mutex_lock(&ext4_li_info->li_list_mtx); 2783 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2784 mutex_unlock(&ext4_li_info->li_list_mtx); 2785 mutex_unlock(&ext4_li_mtx); 2786 } 2787 2788 static struct task_struct *ext4_lazyinit_task; 2789 2790 /* 2791 * This is the function where ext4lazyinit thread lives. It walks 2792 * through the request list searching for next scheduled filesystem. 2793 * When such a fs is found, run the lazy initialization request 2794 * (ext4_rn_li_request) and keep track of the time spend in this 2795 * function. Based on that time we compute next schedule time of 2796 * the request. When walking through the list is complete, compute 2797 * next waking time and put itself into sleep. 2798 */ 2799 static int ext4_lazyinit_thread(void *arg) 2800 { 2801 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2802 struct list_head *pos, *n; 2803 struct ext4_li_request *elr; 2804 unsigned long next_wakeup, cur; 2805 2806 BUG_ON(NULL == eli); 2807 2808 cont_thread: 2809 while (true) { 2810 next_wakeup = MAX_JIFFY_OFFSET; 2811 2812 mutex_lock(&eli->li_list_mtx); 2813 if (list_empty(&eli->li_request_list)) { 2814 mutex_unlock(&eli->li_list_mtx); 2815 goto exit_thread; 2816 } 2817 2818 list_for_each_safe(pos, n, &eli->li_request_list) { 2819 elr = list_entry(pos, struct ext4_li_request, 2820 lr_request); 2821 2822 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2823 if (ext4_run_li_request(elr) != 0) { 2824 /* error, remove the lazy_init job */ 2825 ext4_remove_li_request(elr); 2826 continue; 2827 } 2828 } 2829 2830 if (time_before(elr->lr_next_sched, next_wakeup)) 2831 next_wakeup = elr->lr_next_sched; 2832 } 2833 mutex_unlock(&eli->li_list_mtx); 2834 2835 try_to_freeze(); 2836 2837 cur = jiffies; 2838 if ((time_after_eq(cur, next_wakeup)) || 2839 (MAX_JIFFY_OFFSET == next_wakeup)) { 2840 cond_resched(); 2841 continue; 2842 } 2843 2844 schedule_timeout_interruptible(next_wakeup - cur); 2845 2846 if (kthread_should_stop()) { 2847 ext4_clear_request_list(); 2848 goto exit_thread; 2849 } 2850 } 2851 2852 exit_thread: 2853 /* 2854 * It looks like the request list is empty, but we need 2855 * to check it under the li_list_mtx lock, to prevent any 2856 * additions into it, and of course we should lock ext4_li_mtx 2857 * to atomically free the list and ext4_li_info, because at 2858 * this point another ext4 filesystem could be registering 2859 * new one. 2860 */ 2861 mutex_lock(&ext4_li_mtx); 2862 mutex_lock(&eli->li_list_mtx); 2863 if (!list_empty(&eli->li_request_list)) { 2864 mutex_unlock(&eli->li_list_mtx); 2865 mutex_unlock(&ext4_li_mtx); 2866 goto cont_thread; 2867 } 2868 mutex_unlock(&eli->li_list_mtx); 2869 kfree(ext4_li_info); 2870 ext4_li_info = NULL; 2871 mutex_unlock(&ext4_li_mtx); 2872 2873 return 0; 2874 } 2875 2876 static void ext4_clear_request_list(void) 2877 { 2878 struct list_head *pos, *n; 2879 struct ext4_li_request *elr; 2880 2881 mutex_lock(&ext4_li_info->li_list_mtx); 2882 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2883 elr = list_entry(pos, struct ext4_li_request, 2884 lr_request); 2885 ext4_remove_li_request(elr); 2886 } 2887 mutex_unlock(&ext4_li_info->li_list_mtx); 2888 } 2889 2890 static int ext4_run_lazyinit_thread(void) 2891 { 2892 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2893 ext4_li_info, "ext4lazyinit"); 2894 if (IS_ERR(ext4_lazyinit_task)) { 2895 int err = PTR_ERR(ext4_lazyinit_task); 2896 ext4_clear_request_list(); 2897 kfree(ext4_li_info); 2898 ext4_li_info = NULL; 2899 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2900 "initialization thread\n", 2901 err); 2902 return err; 2903 } 2904 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2905 return 0; 2906 } 2907 2908 /* 2909 * Check whether it make sense to run itable init. thread or not. 2910 * If there is at least one uninitialized inode table, return 2911 * corresponding group number, else the loop goes through all 2912 * groups and return total number of groups. 2913 */ 2914 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2915 { 2916 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2917 struct ext4_group_desc *gdp = NULL; 2918 2919 for (group = 0; group < ngroups; group++) { 2920 gdp = ext4_get_group_desc(sb, group, NULL); 2921 if (!gdp) 2922 continue; 2923 2924 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2925 break; 2926 } 2927 2928 return group; 2929 } 2930 2931 static int ext4_li_info_new(void) 2932 { 2933 struct ext4_lazy_init *eli = NULL; 2934 2935 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2936 if (!eli) 2937 return -ENOMEM; 2938 2939 INIT_LIST_HEAD(&eli->li_request_list); 2940 mutex_init(&eli->li_list_mtx); 2941 2942 eli->li_state |= EXT4_LAZYINIT_QUIT; 2943 2944 ext4_li_info = eli; 2945 2946 return 0; 2947 } 2948 2949 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2950 ext4_group_t start) 2951 { 2952 struct ext4_sb_info *sbi = EXT4_SB(sb); 2953 struct ext4_li_request *elr; 2954 unsigned long rnd; 2955 2956 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2957 if (!elr) 2958 return NULL; 2959 2960 elr->lr_super = sb; 2961 elr->lr_sbi = sbi; 2962 elr->lr_next_group = start; 2963 2964 /* 2965 * Randomize first schedule time of the request to 2966 * spread the inode table initialization requests 2967 * better. 2968 */ 2969 get_random_bytes(&rnd, sizeof(rnd)); 2970 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2971 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2972 2973 return elr; 2974 } 2975 2976 static int ext4_register_li_request(struct super_block *sb, 2977 ext4_group_t first_not_zeroed) 2978 { 2979 struct ext4_sb_info *sbi = EXT4_SB(sb); 2980 struct ext4_li_request *elr; 2981 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2982 int ret = 0; 2983 2984 if (sbi->s_li_request != NULL) { 2985 /* 2986 * Reset timeout so it can be computed again, because 2987 * s_li_wait_mult might have changed. 2988 */ 2989 sbi->s_li_request->lr_timeout = 0; 2990 return 0; 2991 } 2992 2993 if (first_not_zeroed == ngroups || 2994 (sb->s_flags & MS_RDONLY) || 2995 !test_opt(sb, INIT_INODE_TABLE)) 2996 return 0; 2997 2998 elr = ext4_li_request_new(sb, first_not_zeroed); 2999 if (!elr) 3000 return -ENOMEM; 3001 3002 mutex_lock(&ext4_li_mtx); 3003 3004 if (NULL == ext4_li_info) { 3005 ret = ext4_li_info_new(); 3006 if (ret) 3007 goto out; 3008 } 3009 3010 mutex_lock(&ext4_li_info->li_list_mtx); 3011 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3012 mutex_unlock(&ext4_li_info->li_list_mtx); 3013 3014 sbi->s_li_request = elr; 3015 /* 3016 * set elr to NULL here since it has been inserted to 3017 * the request_list and the removal and free of it is 3018 * handled by ext4_clear_request_list from now on. 3019 */ 3020 elr = NULL; 3021 3022 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3023 ret = ext4_run_lazyinit_thread(); 3024 if (ret) 3025 goto out; 3026 } 3027 out: 3028 mutex_unlock(&ext4_li_mtx); 3029 if (ret) 3030 kfree(elr); 3031 return ret; 3032 } 3033 3034 /* 3035 * We do not need to lock anything since this is called on 3036 * module unload. 3037 */ 3038 static void ext4_destroy_lazyinit_thread(void) 3039 { 3040 /* 3041 * If thread exited earlier 3042 * there's nothing to be done. 3043 */ 3044 if (!ext4_li_info || !ext4_lazyinit_task) 3045 return; 3046 3047 kthread_stop(ext4_lazyinit_task); 3048 } 3049 3050 static int set_journal_csum_feature_set(struct super_block *sb) 3051 { 3052 int ret = 1; 3053 int compat, incompat; 3054 struct ext4_sb_info *sbi = EXT4_SB(sb); 3055 3056 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3057 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3058 /* journal checksum v2 */ 3059 compat = 0; 3060 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3061 } else { 3062 /* journal checksum v1 */ 3063 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3064 incompat = 0; 3065 } 3066 3067 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3068 ret = jbd2_journal_set_features(sbi->s_journal, 3069 compat, 0, 3070 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3071 incompat); 3072 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3073 ret = jbd2_journal_set_features(sbi->s_journal, 3074 compat, 0, 3075 incompat); 3076 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3077 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3078 } else { 3079 jbd2_journal_clear_features(sbi->s_journal, 3080 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3081 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3082 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3083 } 3084 3085 return ret; 3086 } 3087 3088 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3089 { 3090 char *orig_data = kstrdup(data, GFP_KERNEL); 3091 struct buffer_head *bh; 3092 struct ext4_super_block *es = NULL; 3093 struct ext4_sb_info *sbi; 3094 ext4_fsblk_t block; 3095 ext4_fsblk_t sb_block = get_sb_block(&data); 3096 ext4_fsblk_t logical_sb_block; 3097 unsigned long offset = 0; 3098 unsigned long journal_devnum = 0; 3099 unsigned long def_mount_opts; 3100 struct inode *root; 3101 char *cp; 3102 const char *descr; 3103 int ret = -ENOMEM; 3104 int blocksize, clustersize; 3105 unsigned int db_count; 3106 unsigned int i; 3107 int needs_recovery, has_huge_files, has_bigalloc; 3108 __u64 blocks_count; 3109 int err; 3110 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3111 ext4_group_t first_not_zeroed; 3112 3113 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3114 if (!sbi) 3115 goto out_free_orig; 3116 3117 sbi->s_blockgroup_lock = 3118 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3119 if (!sbi->s_blockgroup_lock) { 3120 kfree(sbi); 3121 goto out_free_orig; 3122 } 3123 sb->s_fs_info = sbi; 3124 sbi->s_sb = sb; 3125 sbi->s_mount_opt = 0; 3126 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 3127 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 3128 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3129 sbi->s_sb_block = sb_block; 3130 if (sb->s_bdev->bd_part) 3131 sbi->s_sectors_written_start = 3132 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3133 3134 /* Cleanup superblock name */ 3135 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3136 *cp = '!'; 3137 3138 ret = -EINVAL; 3139 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3140 if (!blocksize) { 3141 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3142 goto out_fail; 3143 } 3144 3145 /* 3146 * The ext4 superblock will not be buffer aligned for other than 1kB 3147 * block sizes. We need to calculate the offset from buffer start. 3148 */ 3149 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3150 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3151 offset = do_div(logical_sb_block, blocksize); 3152 } else { 3153 logical_sb_block = sb_block; 3154 } 3155 3156 if (!(bh = sb_bread(sb, logical_sb_block))) { 3157 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3158 goto out_fail; 3159 } 3160 /* 3161 * Note: s_es must be initialized as soon as possible because 3162 * some ext4 macro-instructions depend on its value 3163 */ 3164 es = (struct ext4_super_block *) (bh->b_data + offset); 3165 sbi->s_es = es; 3166 sb->s_magic = le16_to_cpu(es->s_magic); 3167 if (sb->s_magic != EXT4_SUPER_MAGIC) 3168 goto cantfind_ext4; 3169 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3170 3171 /* Warn if metadata_csum and gdt_csum are both set. */ 3172 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3173 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3174 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3175 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3176 "redundant flags; please run fsck."); 3177 3178 /* Check for a known checksum algorithm */ 3179 if (!ext4_verify_csum_type(sb, es)) { 3180 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3181 "unknown checksum algorithm."); 3182 silent = 1; 3183 goto cantfind_ext4; 3184 } 3185 3186 /* Load the checksum driver */ 3187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3188 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3189 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3190 if (IS_ERR(sbi->s_chksum_driver)) { 3191 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3192 ret = PTR_ERR(sbi->s_chksum_driver); 3193 sbi->s_chksum_driver = NULL; 3194 goto failed_mount; 3195 } 3196 } 3197 3198 /* Check superblock checksum */ 3199 if (!ext4_superblock_csum_verify(sb, es)) { 3200 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3201 "invalid superblock checksum. Run e2fsck?"); 3202 silent = 1; 3203 goto cantfind_ext4; 3204 } 3205 3206 /* Precompute checksum seed for all metadata */ 3207 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3208 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3209 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3210 sizeof(es->s_uuid)); 3211 3212 /* Set defaults before we parse the mount options */ 3213 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3214 set_opt(sb, INIT_INODE_TABLE); 3215 if (def_mount_opts & EXT4_DEFM_DEBUG) 3216 set_opt(sb, DEBUG); 3217 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3218 set_opt(sb, GRPID); 3219 if (def_mount_opts & EXT4_DEFM_UID16) 3220 set_opt(sb, NO_UID32); 3221 /* xattr user namespace & acls are now defaulted on */ 3222 #ifdef CONFIG_EXT4_FS_XATTR 3223 set_opt(sb, XATTR_USER); 3224 #endif 3225 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3226 set_opt(sb, POSIX_ACL); 3227 #endif 3228 set_opt(sb, MBLK_IO_SUBMIT); 3229 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3230 set_opt(sb, JOURNAL_DATA); 3231 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3232 set_opt(sb, ORDERED_DATA); 3233 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3234 set_opt(sb, WRITEBACK_DATA); 3235 3236 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3237 set_opt(sb, ERRORS_PANIC); 3238 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3239 set_opt(sb, ERRORS_CONT); 3240 else 3241 set_opt(sb, ERRORS_RO); 3242 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3243 set_opt(sb, BLOCK_VALIDITY); 3244 if (def_mount_opts & EXT4_DEFM_DISCARD) 3245 set_opt(sb, DISCARD); 3246 3247 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3248 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3249 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3250 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3251 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3252 3253 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3254 set_opt(sb, BARRIER); 3255 3256 /* 3257 * enable delayed allocation by default 3258 * Use -o nodelalloc to turn it off 3259 */ 3260 if (!IS_EXT3_SB(sb) && 3261 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3262 set_opt(sb, DELALLOC); 3263 3264 /* 3265 * set default s_li_wait_mult for lazyinit, for the case there is 3266 * no mount option specified. 3267 */ 3268 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3269 3270 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3271 &journal_devnum, &journal_ioprio, 0)) { 3272 ext4_msg(sb, KERN_WARNING, 3273 "failed to parse options in superblock: %s", 3274 sbi->s_es->s_mount_opts); 3275 } 3276 sbi->s_def_mount_opt = sbi->s_mount_opt; 3277 if (!parse_options((char *) data, sb, &journal_devnum, 3278 &journal_ioprio, 0)) 3279 goto failed_mount; 3280 3281 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3282 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3283 "with data=journal disables delayed " 3284 "allocation and O_DIRECT support!\n"); 3285 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3286 ext4_msg(sb, KERN_ERR, "can't mount with " 3287 "both data=journal and delalloc"); 3288 goto failed_mount; 3289 } 3290 if (test_opt(sb, DIOREAD_NOLOCK)) { 3291 ext4_msg(sb, KERN_ERR, "can't mount with " 3292 "both data=journal and delalloc"); 3293 goto failed_mount; 3294 } 3295 if (test_opt(sb, DELALLOC)) 3296 clear_opt(sb, DELALLOC); 3297 } 3298 3299 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3300 if (test_opt(sb, DIOREAD_NOLOCK)) { 3301 if (blocksize < PAGE_SIZE) { 3302 ext4_msg(sb, KERN_ERR, "can't mount with " 3303 "dioread_nolock if block size != PAGE_SIZE"); 3304 goto failed_mount; 3305 } 3306 } 3307 3308 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3309 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3310 3311 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3312 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3313 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3314 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3315 ext4_msg(sb, KERN_WARNING, 3316 "feature flags set on rev 0 fs, " 3317 "running e2fsck is recommended"); 3318 3319 if (IS_EXT2_SB(sb)) { 3320 if (ext2_feature_set_ok(sb)) 3321 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3322 "using the ext4 subsystem"); 3323 else { 3324 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3325 "to feature incompatibilities"); 3326 goto failed_mount; 3327 } 3328 } 3329 3330 if (IS_EXT3_SB(sb)) { 3331 if (ext3_feature_set_ok(sb)) 3332 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3333 "using the ext4 subsystem"); 3334 else { 3335 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3336 "to feature incompatibilities"); 3337 goto failed_mount; 3338 } 3339 } 3340 3341 /* 3342 * Check feature flags regardless of the revision level, since we 3343 * previously didn't change the revision level when setting the flags, 3344 * so there is a chance incompat flags are set on a rev 0 filesystem. 3345 */ 3346 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3347 goto failed_mount; 3348 3349 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3350 blocksize > EXT4_MAX_BLOCK_SIZE) { 3351 ext4_msg(sb, KERN_ERR, 3352 "Unsupported filesystem blocksize %d", blocksize); 3353 goto failed_mount; 3354 } 3355 3356 if (sb->s_blocksize != blocksize) { 3357 /* Validate the filesystem blocksize */ 3358 if (!sb_set_blocksize(sb, blocksize)) { 3359 ext4_msg(sb, KERN_ERR, "bad block size %d", 3360 blocksize); 3361 goto failed_mount; 3362 } 3363 3364 brelse(bh); 3365 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3366 offset = do_div(logical_sb_block, blocksize); 3367 bh = sb_bread(sb, logical_sb_block); 3368 if (!bh) { 3369 ext4_msg(sb, KERN_ERR, 3370 "Can't read superblock on 2nd try"); 3371 goto failed_mount; 3372 } 3373 es = (struct ext4_super_block *)(bh->b_data + offset); 3374 sbi->s_es = es; 3375 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3376 ext4_msg(sb, KERN_ERR, 3377 "Magic mismatch, very weird!"); 3378 goto failed_mount; 3379 } 3380 } 3381 3382 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3383 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3384 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3385 has_huge_files); 3386 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3387 3388 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3389 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3390 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3391 } else { 3392 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3393 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3394 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3395 (!is_power_of_2(sbi->s_inode_size)) || 3396 (sbi->s_inode_size > blocksize)) { 3397 ext4_msg(sb, KERN_ERR, 3398 "unsupported inode size: %d", 3399 sbi->s_inode_size); 3400 goto failed_mount; 3401 } 3402 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3403 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3404 } 3405 3406 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3407 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3408 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3409 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3410 !is_power_of_2(sbi->s_desc_size)) { 3411 ext4_msg(sb, KERN_ERR, 3412 "unsupported descriptor size %lu", 3413 sbi->s_desc_size); 3414 goto failed_mount; 3415 } 3416 } else 3417 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3418 3419 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3420 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3421 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3422 goto cantfind_ext4; 3423 3424 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3425 if (sbi->s_inodes_per_block == 0) 3426 goto cantfind_ext4; 3427 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3428 sbi->s_inodes_per_block; 3429 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3430 sbi->s_sbh = bh; 3431 sbi->s_mount_state = le16_to_cpu(es->s_state); 3432 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3433 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3434 3435 for (i = 0; i < 4; i++) 3436 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3437 sbi->s_def_hash_version = es->s_def_hash_version; 3438 i = le32_to_cpu(es->s_flags); 3439 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3440 sbi->s_hash_unsigned = 3; 3441 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3442 #ifdef __CHAR_UNSIGNED__ 3443 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3444 sbi->s_hash_unsigned = 3; 3445 #else 3446 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3447 #endif 3448 } 3449 3450 /* Handle clustersize */ 3451 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3452 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3453 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3454 if (has_bigalloc) { 3455 if (clustersize < blocksize) { 3456 ext4_msg(sb, KERN_ERR, 3457 "cluster size (%d) smaller than " 3458 "block size (%d)", clustersize, blocksize); 3459 goto failed_mount; 3460 } 3461 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3462 le32_to_cpu(es->s_log_block_size); 3463 sbi->s_clusters_per_group = 3464 le32_to_cpu(es->s_clusters_per_group); 3465 if (sbi->s_clusters_per_group > blocksize * 8) { 3466 ext4_msg(sb, KERN_ERR, 3467 "#clusters per group too big: %lu", 3468 sbi->s_clusters_per_group); 3469 goto failed_mount; 3470 } 3471 if (sbi->s_blocks_per_group != 3472 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3473 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3474 "clusters per group (%lu) inconsistent", 3475 sbi->s_blocks_per_group, 3476 sbi->s_clusters_per_group); 3477 goto failed_mount; 3478 } 3479 } else { 3480 if (clustersize != blocksize) { 3481 ext4_warning(sb, "fragment/cluster size (%d) != " 3482 "block size (%d)", clustersize, 3483 blocksize); 3484 clustersize = blocksize; 3485 } 3486 if (sbi->s_blocks_per_group > blocksize * 8) { 3487 ext4_msg(sb, KERN_ERR, 3488 "#blocks per group too big: %lu", 3489 sbi->s_blocks_per_group); 3490 goto failed_mount; 3491 } 3492 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3493 sbi->s_cluster_bits = 0; 3494 } 3495 sbi->s_cluster_ratio = clustersize / blocksize; 3496 3497 if (sbi->s_inodes_per_group > blocksize * 8) { 3498 ext4_msg(sb, KERN_ERR, 3499 "#inodes per group too big: %lu", 3500 sbi->s_inodes_per_group); 3501 goto failed_mount; 3502 } 3503 3504 /* 3505 * Test whether we have more sectors than will fit in sector_t, 3506 * and whether the max offset is addressable by the page cache. 3507 */ 3508 err = generic_check_addressable(sb->s_blocksize_bits, 3509 ext4_blocks_count(es)); 3510 if (err) { 3511 ext4_msg(sb, KERN_ERR, "filesystem" 3512 " too large to mount safely on this system"); 3513 if (sizeof(sector_t) < 8) 3514 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3515 ret = err; 3516 goto failed_mount; 3517 } 3518 3519 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3520 goto cantfind_ext4; 3521 3522 /* check blocks count against device size */ 3523 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3524 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3525 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3526 "exceeds size of device (%llu blocks)", 3527 ext4_blocks_count(es), blocks_count); 3528 goto failed_mount; 3529 } 3530 3531 /* 3532 * It makes no sense for the first data block to be beyond the end 3533 * of the filesystem. 3534 */ 3535 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3536 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3537 "block %u is beyond end of filesystem (%llu)", 3538 le32_to_cpu(es->s_first_data_block), 3539 ext4_blocks_count(es)); 3540 goto failed_mount; 3541 } 3542 blocks_count = (ext4_blocks_count(es) - 3543 le32_to_cpu(es->s_first_data_block) + 3544 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3545 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3546 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3547 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3548 "(block count %llu, first data block %u, " 3549 "blocks per group %lu)", sbi->s_groups_count, 3550 ext4_blocks_count(es), 3551 le32_to_cpu(es->s_first_data_block), 3552 EXT4_BLOCKS_PER_GROUP(sb)); 3553 goto failed_mount; 3554 } 3555 sbi->s_groups_count = blocks_count; 3556 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3557 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3558 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3559 EXT4_DESC_PER_BLOCK(sb); 3560 sbi->s_group_desc = ext4_kvmalloc(db_count * 3561 sizeof(struct buffer_head *), 3562 GFP_KERNEL); 3563 if (sbi->s_group_desc == NULL) { 3564 ext4_msg(sb, KERN_ERR, "not enough memory"); 3565 ret = -ENOMEM; 3566 goto failed_mount; 3567 } 3568 3569 if (ext4_proc_root) 3570 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3571 3572 if (sbi->s_proc) 3573 proc_create_data("options", S_IRUGO, sbi->s_proc, 3574 &ext4_seq_options_fops, sb); 3575 3576 bgl_lock_init(sbi->s_blockgroup_lock); 3577 3578 for (i = 0; i < db_count; i++) { 3579 block = descriptor_loc(sb, logical_sb_block, i); 3580 sbi->s_group_desc[i] = sb_bread(sb, block); 3581 if (!sbi->s_group_desc[i]) { 3582 ext4_msg(sb, KERN_ERR, 3583 "can't read group descriptor %d", i); 3584 db_count = i; 3585 goto failed_mount2; 3586 } 3587 } 3588 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3589 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3590 goto failed_mount2; 3591 } 3592 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3593 if (!ext4_fill_flex_info(sb)) { 3594 ext4_msg(sb, KERN_ERR, 3595 "unable to initialize " 3596 "flex_bg meta info!"); 3597 goto failed_mount2; 3598 } 3599 3600 sbi->s_gdb_count = db_count; 3601 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3602 spin_lock_init(&sbi->s_next_gen_lock); 3603 3604 init_timer(&sbi->s_err_report); 3605 sbi->s_err_report.function = print_daily_error_info; 3606 sbi->s_err_report.data = (unsigned long) sb; 3607 3608 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3609 ext4_count_free_clusters(sb)); 3610 if (!err) { 3611 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3612 ext4_count_free_inodes(sb)); 3613 } 3614 if (!err) { 3615 err = percpu_counter_init(&sbi->s_dirs_counter, 3616 ext4_count_dirs(sb)); 3617 } 3618 if (!err) { 3619 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3620 } 3621 if (err) { 3622 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3623 ret = err; 3624 goto failed_mount3; 3625 } 3626 3627 sbi->s_stripe = ext4_get_stripe_size(sbi); 3628 sbi->s_max_writeback_mb_bump = 128; 3629 3630 /* 3631 * set up enough so that it can read an inode 3632 */ 3633 if (!test_opt(sb, NOLOAD) && 3634 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3635 sb->s_op = &ext4_sops; 3636 else 3637 sb->s_op = &ext4_nojournal_sops; 3638 sb->s_export_op = &ext4_export_ops; 3639 sb->s_xattr = ext4_xattr_handlers; 3640 #ifdef CONFIG_QUOTA 3641 sb->s_qcop = &ext4_qctl_operations; 3642 sb->dq_op = &ext4_quota_operations; 3643 #endif 3644 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3645 3646 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3647 mutex_init(&sbi->s_orphan_lock); 3648 sbi->s_resize_flags = 0; 3649 3650 sb->s_root = NULL; 3651 3652 needs_recovery = (es->s_last_orphan != 0 || 3653 EXT4_HAS_INCOMPAT_FEATURE(sb, 3654 EXT4_FEATURE_INCOMPAT_RECOVER)); 3655 3656 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3657 !(sb->s_flags & MS_RDONLY)) 3658 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3659 goto failed_mount3; 3660 3661 /* 3662 * The first inode we look at is the journal inode. Don't try 3663 * root first: it may be modified in the journal! 3664 */ 3665 if (!test_opt(sb, NOLOAD) && 3666 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3667 if (ext4_load_journal(sb, es, journal_devnum)) 3668 goto failed_mount3; 3669 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3670 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3671 ext4_msg(sb, KERN_ERR, "required journal recovery " 3672 "suppressed and not mounted read-only"); 3673 goto failed_mount_wq; 3674 } else { 3675 clear_opt(sb, DATA_FLAGS); 3676 sbi->s_journal = NULL; 3677 needs_recovery = 0; 3678 goto no_journal; 3679 } 3680 3681 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3682 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3683 JBD2_FEATURE_INCOMPAT_64BIT)) { 3684 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3685 goto failed_mount_wq; 3686 } 3687 3688 if (!set_journal_csum_feature_set(sb)) { 3689 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3690 "feature set"); 3691 goto failed_mount_wq; 3692 } 3693 3694 /* We have now updated the journal if required, so we can 3695 * validate the data journaling mode. */ 3696 switch (test_opt(sb, DATA_FLAGS)) { 3697 case 0: 3698 /* No mode set, assume a default based on the journal 3699 * capabilities: ORDERED_DATA if the journal can 3700 * cope, else JOURNAL_DATA 3701 */ 3702 if (jbd2_journal_check_available_features 3703 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3704 set_opt(sb, ORDERED_DATA); 3705 else 3706 set_opt(sb, JOURNAL_DATA); 3707 break; 3708 3709 case EXT4_MOUNT_ORDERED_DATA: 3710 case EXT4_MOUNT_WRITEBACK_DATA: 3711 if (!jbd2_journal_check_available_features 3712 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3713 ext4_msg(sb, KERN_ERR, "Journal does not support " 3714 "requested data journaling mode"); 3715 goto failed_mount_wq; 3716 } 3717 default: 3718 break; 3719 } 3720 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3721 3722 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3723 3724 /* 3725 * The journal may have updated the bg summary counts, so we 3726 * need to update the global counters. 3727 */ 3728 percpu_counter_set(&sbi->s_freeclusters_counter, 3729 ext4_count_free_clusters(sb)); 3730 percpu_counter_set(&sbi->s_freeinodes_counter, 3731 ext4_count_free_inodes(sb)); 3732 percpu_counter_set(&sbi->s_dirs_counter, 3733 ext4_count_dirs(sb)); 3734 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3735 3736 no_journal: 3737 /* 3738 * The maximum number of concurrent works can be high and 3739 * concurrency isn't really necessary. Limit it to 1. 3740 */ 3741 EXT4_SB(sb)->dio_unwritten_wq = 3742 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3743 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3744 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3745 goto failed_mount_wq; 3746 } 3747 3748 /* 3749 * The jbd2_journal_load will have done any necessary log recovery, 3750 * so we can safely mount the rest of the filesystem now. 3751 */ 3752 3753 root = ext4_iget(sb, EXT4_ROOT_INO); 3754 if (IS_ERR(root)) { 3755 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3756 ret = PTR_ERR(root); 3757 root = NULL; 3758 goto failed_mount4; 3759 } 3760 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3761 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3762 iput(root); 3763 goto failed_mount4; 3764 } 3765 sb->s_root = d_make_root(root); 3766 if (!sb->s_root) { 3767 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3768 ret = -ENOMEM; 3769 goto failed_mount4; 3770 } 3771 3772 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3773 sb->s_flags |= MS_RDONLY; 3774 3775 /* determine the minimum size of new large inodes, if present */ 3776 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3777 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3778 EXT4_GOOD_OLD_INODE_SIZE; 3779 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3780 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3781 if (sbi->s_want_extra_isize < 3782 le16_to_cpu(es->s_want_extra_isize)) 3783 sbi->s_want_extra_isize = 3784 le16_to_cpu(es->s_want_extra_isize); 3785 if (sbi->s_want_extra_isize < 3786 le16_to_cpu(es->s_min_extra_isize)) 3787 sbi->s_want_extra_isize = 3788 le16_to_cpu(es->s_min_extra_isize); 3789 } 3790 } 3791 /* Check if enough inode space is available */ 3792 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3793 sbi->s_inode_size) { 3794 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3795 EXT4_GOOD_OLD_INODE_SIZE; 3796 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3797 "available"); 3798 } 3799 3800 err = ext4_setup_system_zone(sb); 3801 if (err) { 3802 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3803 "zone (%d)", err); 3804 goto failed_mount4a; 3805 } 3806 3807 ext4_ext_init(sb); 3808 err = ext4_mb_init(sb); 3809 if (err) { 3810 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3811 err); 3812 goto failed_mount5; 3813 } 3814 3815 err = ext4_register_li_request(sb, first_not_zeroed); 3816 if (err) 3817 goto failed_mount6; 3818 3819 sbi->s_kobj.kset = ext4_kset; 3820 init_completion(&sbi->s_kobj_unregister); 3821 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3822 "%s", sb->s_id); 3823 if (err) 3824 goto failed_mount7; 3825 3826 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3827 ext4_orphan_cleanup(sb, es); 3828 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3829 if (needs_recovery) { 3830 ext4_msg(sb, KERN_INFO, "recovery complete"); 3831 ext4_mark_recovery_complete(sb, es); 3832 } 3833 if (EXT4_SB(sb)->s_journal) { 3834 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3835 descr = " journalled data mode"; 3836 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3837 descr = " ordered data mode"; 3838 else 3839 descr = " writeback data mode"; 3840 } else 3841 descr = "out journal"; 3842 3843 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3844 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3845 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3846 3847 if (es->s_error_count) 3848 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3849 3850 kfree(orig_data); 3851 return 0; 3852 3853 cantfind_ext4: 3854 if (!silent) 3855 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3856 goto failed_mount; 3857 3858 failed_mount7: 3859 ext4_unregister_li_request(sb); 3860 failed_mount6: 3861 ext4_mb_release(sb); 3862 failed_mount5: 3863 ext4_ext_release(sb); 3864 ext4_release_system_zone(sb); 3865 failed_mount4a: 3866 dput(sb->s_root); 3867 sb->s_root = NULL; 3868 failed_mount4: 3869 ext4_msg(sb, KERN_ERR, "mount failed"); 3870 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3871 failed_mount_wq: 3872 if (sbi->s_journal) { 3873 jbd2_journal_destroy(sbi->s_journal); 3874 sbi->s_journal = NULL; 3875 } 3876 failed_mount3: 3877 del_timer(&sbi->s_err_report); 3878 if (sbi->s_flex_groups) 3879 ext4_kvfree(sbi->s_flex_groups); 3880 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3881 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3882 percpu_counter_destroy(&sbi->s_dirs_counter); 3883 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3884 if (sbi->s_mmp_tsk) 3885 kthread_stop(sbi->s_mmp_tsk); 3886 failed_mount2: 3887 for (i = 0; i < db_count; i++) 3888 brelse(sbi->s_group_desc[i]); 3889 ext4_kvfree(sbi->s_group_desc); 3890 failed_mount: 3891 if (sbi->s_chksum_driver) 3892 crypto_free_shash(sbi->s_chksum_driver); 3893 if (sbi->s_proc) { 3894 remove_proc_entry("options", sbi->s_proc); 3895 remove_proc_entry(sb->s_id, ext4_proc_root); 3896 } 3897 #ifdef CONFIG_QUOTA 3898 for (i = 0; i < MAXQUOTAS; i++) 3899 kfree(sbi->s_qf_names[i]); 3900 #endif 3901 ext4_blkdev_remove(sbi); 3902 brelse(bh); 3903 out_fail: 3904 sb->s_fs_info = NULL; 3905 kfree(sbi->s_blockgroup_lock); 3906 kfree(sbi); 3907 out_free_orig: 3908 kfree(orig_data); 3909 return ret; 3910 } 3911 3912 /* 3913 * Setup any per-fs journal parameters now. We'll do this both on 3914 * initial mount, once the journal has been initialised but before we've 3915 * done any recovery; and again on any subsequent remount. 3916 */ 3917 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3918 { 3919 struct ext4_sb_info *sbi = EXT4_SB(sb); 3920 3921 journal->j_commit_interval = sbi->s_commit_interval; 3922 journal->j_min_batch_time = sbi->s_min_batch_time; 3923 journal->j_max_batch_time = sbi->s_max_batch_time; 3924 3925 write_lock(&journal->j_state_lock); 3926 if (test_opt(sb, BARRIER)) 3927 journal->j_flags |= JBD2_BARRIER; 3928 else 3929 journal->j_flags &= ~JBD2_BARRIER; 3930 if (test_opt(sb, DATA_ERR_ABORT)) 3931 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3932 else 3933 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3934 write_unlock(&journal->j_state_lock); 3935 } 3936 3937 static journal_t *ext4_get_journal(struct super_block *sb, 3938 unsigned int journal_inum) 3939 { 3940 struct inode *journal_inode; 3941 journal_t *journal; 3942 3943 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3944 3945 /* First, test for the existence of a valid inode on disk. Bad 3946 * things happen if we iget() an unused inode, as the subsequent 3947 * iput() will try to delete it. */ 3948 3949 journal_inode = ext4_iget(sb, journal_inum); 3950 if (IS_ERR(journal_inode)) { 3951 ext4_msg(sb, KERN_ERR, "no journal found"); 3952 return NULL; 3953 } 3954 if (!journal_inode->i_nlink) { 3955 make_bad_inode(journal_inode); 3956 iput(journal_inode); 3957 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3958 return NULL; 3959 } 3960 3961 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3962 journal_inode, journal_inode->i_size); 3963 if (!S_ISREG(journal_inode->i_mode)) { 3964 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3965 iput(journal_inode); 3966 return NULL; 3967 } 3968 3969 journal = jbd2_journal_init_inode(journal_inode); 3970 if (!journal) { 3971 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3972 iput(journal_inode); 3973 return NULL; 3974 } 3975 journal->j_private = sb; 3976 ext4_init_journal_params(sb, journal); 3977 return journal; 3978 } 3979 3980 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3981 dev_t j_dev) 3982 { 3983 struct buffer_head *bh; 3984 journal_t *journal; 3985 ext4_fsblk_t start; 3986 ext4_fsblk_t len; 3987 int hblock, blocksize; 3988 ext4_fsblk_t sb_block; 3989 unsigned long offset; 3990 struct ext4_super_block *es; 3991 struct block_device *bdev; 3992 3993 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3994 3995 bdev = ext4_blkdev_get(j_dev, sb); 3996 if (bdev == NULL) 3997 return NULL; 3998 3999 blocksize = sb->s_blocksize; 4000 hblock = bdev_logical_block_size(bdev); 4001 if (blocksize < hblock) { 4002 ext4_msg(sb, KERN_ERR, 4003 "blocksize too small for journal device"); 4004 goto out_bdev; 4005 } 4006 4007 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4008 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4009 set_blocksize(bdev, blocksize); 4010 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4011 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4012 "external journal"); 4013 goto out_bdev; 4014 } 4015 4016 es = (struct ext4_super_block *) (bh->b_data + offset); 4017 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4018 !(le32_to_cpu(es->s_feature_incompat) & 4019 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4020 ext4_msg(sb, KERN_ERR, "external journal has " 4021 "bad superblock"); 4022 brelse(bh); 4023 goto out_bdev; 4024 } 4025 4026 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4027 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4028 brelse(bh); 4029 goto out_bdev; 4030 } 4031 4032 len = ext4_blocks_count(es); 4033 start = sb_block + 1; 4034 brelse(bh); /* we're done with the superblock */ 4035 4036 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4037 start, len, blocksize); 4038 if (!journal) { 4039 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4040 goto out_bdev; 4041 } 4042 journal->j_private = sb; 4043 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4044 wait_on_buffer(journal->j_sb_buffer); 4045 if (!buffer_uptodate(journal->j_sb_buffer)) { 4046 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4047 goto out_journal; 4048 } 4049 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4050 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4051 "user (unsupported) - %d", 4052 be32_to_cpu(journal->j_superblock->s_nr_users)); 4053 goto out_journal; 4054 } 4055 EXT4_SB(sb)->journal_bdev = bdev; 4056 ext4_init_journal_params(sb, journal); 4057 return journal; 4058 4059 out_journal: 4060 jbd2_journal_destroy(journal); 4061 out_bdev: 4062 ext4_blkdev_put(bdev); 4063 return NULL; 4064 } 4065 4066 static int ext4_load_journal(struct super_block *sb, 4067 struct ext4_super_block *es, 4068 unsigned long journal_devnum) 4069 { 4070 journal_t *journal; 4071 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4072 dev_t journal_dev; 4073 int err = 0; 4074 int really_read_only; 4075 4076 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4077 4078 if (journal_devnum && 4079 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4080 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4081 "numbers have changed"); 4082 journal_dev = new_decode_dev(journal_devnum); 4083 } else 4084 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4085 4086 really_read_only = bdev_read_only(sb->s_bdev); 4087 4088 /* 4089 * Are we loading a blank journal or performing recovery after a 4090 * crash? For recovery, we need to check in advance whether we 4091 * can get read-write access to the device. 4092 */ 4093 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4094 if (sb->s_flags & MS_RDONLY) { 4095 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4096 "required on readonly filesystem"); 4097 if (really_read_only) { 4098 ext4_msg(sb, KERN_ERR, "write access " 4099 "unavailable, cannot proceed"); 4100 return -EROFS; 4101 } 4102 ext4_msg(sb, KERN_INFO, "write access will " 4103 "be enabled during recovery"); 4104 } 4105 } 4106 4107 if (journal_inum && journal_dev) { 4108 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4109 "and inode journals!"); 4110 return -EINVAL; 4111 } 4112 4113 if (journal_inum) { 4114 if (!(journal = ext4_get_journal(sb, journal_inum))) 4115 return -EINVAL; 4116 } else { 4117 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4118 return -EINVAL; 4119 } 4120 4121 if (!(journal->j_flags & JBD2_BARRIER)) 4122 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4123 4124 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4125 err = jbd2_journal_wipe(journal, !really_read_only); 4126 if (!err) { 4127 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4128 if (save) 4129 memcpy(save, ((char *) es) + 4130 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4131 err = jbd2_journal_load(journal); 4132 if (save) 4133 memcpy(((char *) es) + EXT4_S_ERR_START, 4134 save, EXT4_S_ERR_LEN); 4135 kfree(save); 4136 } 4137 4138 if (err) { 4139 ext4_msg(sb, KERN_ERR, "error loading journal"); 4140 jbd2_journal_destroy(journal); 4141 return err; 4142 } 4143 4144 EXT4_SB(sb)->s_journal = journal; 4145 ext4_clear_journal_err(sb, es); 4146 4147 if (!really_read_only && journal_devnum && 4148 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4149 es->s_journal_dev = cpu_to_le32(journal_devnum); 4150 4151 /* Make sure we flush the recovery flag to disk. */ 4152 ext4_commit_super(sb, 1); 4153 } 4154 4155 return 0; 4156 } 4157 4158 static int ext4_commit_super(struct super_block *sb, int sync) 4159 { 4160 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4161 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4162 int error = 0; 4163 4164 if (!sbh || block_device_ejected(sb)) 4165 return error; 4166 if (buffer_write_io_error(sbh)) { 4167 /* 4168 * Oh, dear. A previous attempt to write the 4169 * superblock failed. This could happen because the 4170 * USB device was yanked out. Or it could happen to 4171 * be a transient write error and maybe the block will 4172 * be remapped. Nothing we can do but to retry the 4173 * write and hope for the best. 4174 */ 4175 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4176 "superblock detected"); 4177 clear_buffer_write_io_error(sbh); 4178 set_buffer_uptodate(sbh); 4179 } 4180 /* 4181 * If the file system is mounted read-only, don't update the 4182 * superblock write time. This avoids updating the superblock 4183 * write time when we are mounting the root file system 4184 * read/only but we need to replay the journal; at that point, 4185 * for people who are east of GMT and who make their clock 4186 * tick in localtime for Windows bug-for-bug compatibility, 4187 * the clock is set in the future, and this will cause e2fsck 4188 * to complain and force a full file system check. 4189 */ 4190 if (!(sb->s_flags & MS_RDONLY)) 4191 es->s_wtime = cpu_to_le32(get_seconds()); 4192 if (sb->s_bdev->bd_part) 4193 es->s_kbytes_written = 4194 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4195 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4196 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4197 else 4198 es->s_kbytes_written = 4199 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4200 ext4_free_blocks_count_set(es, 4201 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4202 &EXT4_SB(sb)->s_freeclusters_counter))); 4203 es->s_free_inodes_count = 4204 cpu_to_le32(percpu_counter_sum_positive( 4205 &EXT4_SB(sb)->s_freeinodes_counter)); 4206 sb->s_dirt = 0; 4207 BUFFER_TRACE(sbh, "marking dirty"); 4208 ext4_superblock_csum_set(sb, es); 4209 mark_buffer_dirty(sbh); 4210 if (sync) { 4211 error = sync_dirty_buffer(sbh); 4212 if (error) 4213 return error; 4214 4215 error = buffer_write_io_error(sbh); 4216 if (error) { 4217 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4218 "superblock"); 4219 clear_buffer_write_io_error(sbh); 4220 set_buffer_uptodate(sbh); 4221 } 4222 } 4223 return error; 4224 } 4225 4226 /* 4227 * Have we just finished recovery? If so, and if we are mounting (or 4228 * remounting) the filesystem readonly, then we will end up with a 4229 * consistent fs on disk. Record that fact. 4230 */ 4231 static void ext4_mark_recovery_complete(struct super_block *sb, 4232 struct ext4_super_block *es) 4233 { 4234 journal_t *journal = EXT4_SB(sb)->s_journal; 4235 4236 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4237 BUG_ON(journal != NULL); 4238 return; 4239 } 4240 jbd2_journal_lock_updates(journal); 4241 if (jbd2_journal_flush(journal) < 0) 4242 goto out; 4243 4244 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4245 sb->s_flags & MS_RDONLY) { 4246 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4247 ext4_commit_super(sb, 1); 4248 } 4249 4250 out: 4251 jbd2_journal_unlock_updates(journal); 4252 } 4253 4254 /* 4255 * If we are mounting (or read-write remounting) a filesystem whose journal 4256 * has recorded an error from a previous lifetime, move that error to the 4257 * main filesystem now. 4258 */ 4259 static void ext4_clear_journal_err(struct super_block *sb, 4260 struct ext4_super_block *es) 4261 { 4262 journal_t *journal; 4263 int j_errno; 4264 const char *errstr; 4265 4266 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4267 4268 journal = EXT4_SB(sb)->s_journal; 4269 4270 /* 4271 * Now check for any error status which may have been recorded in the 4272 * journal by a prior ext4_error() or ext4_abort() 4273 */ 4274 4275 j_errno = jbd2_journal_errno(journal); 4276 if (j_errno) { 4277 char nbuf[16]; 4278 4279 errstr = ext4_decode_error(sb, j_errno, nbuf); 4280 ext4_warning(sb, "Filesystem error recorded " 4281 "from previous mount: %s", errstr); 4282 ext4_warning(sb, "Marking fs in need of filesystem check."); 4283 4284 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4285 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4286 ext4_commit_super(sb, 1); 4287 4288 jbd2_journal_clear_err(journal); 4289 } 4290 } 4291 4292 /* 4293 * Force the running and committing transactions to commit, 4294 * and wait on the commit. 4295 */ 4296 int ext4_force_commit(struct super_block *sb) 4297 { 4298 journal_t *journal; 4299 int ret = 0; 4300 4301 if (sb->s_flags & MS_RDONLY) 4302 return 0; 4303 4304 journal = EXT4_SB(sb)->s_journal; 4305 if (journal) { 4306 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4307 ret = ext4_journal_force_commit(journal); 4308 } 4309 4310 return ret; 4311 } 4312 4313 static void ext4_write_super(struct super_block *sb) 4314 { 4315 lock_super(sb); 4316 ext4_commit_super(sb, 1); 4317 unlock_super(sb); 4318 } 4319 4320 static int ext4_sync_fs(struct super_block *sb, int wait) 4321 { 4322 int ret = 0; 4323 tid_t target; 4324 struct ext4_sb_info *sbi = EXT4_SB(sb); 4325 4326 trace_ext4_sync_fs(sb, wait); 4327 flush_workqueue(sbi->dio_unwritten_wq); 4328 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4329 if (wait) 4330 jbd2_log_wait_commit(sbi->s_journal, target); 4331 } 4332 return ret; 4333 } 4334 4335 /* 4336 * LVM calls this function before a (read-only) snapshot is created. This 4337 * gives us a chance to flush the journal completely and mark the fs clean. 4338 * 4339 * Note that only this function cannot bring a filesystem to be in a clean 4340 * state independently, because ext4 prevents a new handle from being started 4341 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4342 * the upper layer. 4343 */ 4344 static int ext4_freeze(struct super_block *sb) 4345 { 4346 int error = 0; 4347 journal_t *journal; 4348 4349 if (sb->s_flags & MS_RDONLY) 4350 return 0; 4351 4352 journal = EXT4_SB(sb)->s_journal; 4353 4354 /* Now we set up the journal barrier. */ 4355 jbd2_journal_lock_updates(journal); 4356 4357 /* 4358 * Don't clear the needs_recovery flag if we failed to flush 4359 * the journal. 4360 */ 4361 error = jbd2_journal_flush(journal); 4362 if (error < 0) 4363 goto out; 4364 4365 /* Journal blocked and flushed, clear needs_recovery flag. */ 4366 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4367 error = ext4_commit_super(sb, 1); 4368 out: 4369 /* we rely on s_frozen to stop further updates */ 4370 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4371 return error; 4372 } 4373 4374 /* 4375 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4376 * flag here, even though the filesystem is not technically dirty yet. 4377 */ 4378 static int ext4_unfreeze(struct super_block *sb) 4379 { 4380 if (sb->s_flags & MS_RDONLY) 4381 return 0; 4382 4383 lock_super(sb); 4384 /* Reset the needs_recovery flag before the fs is unlocked. */ 4385 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4386 ext4_commit_super(sb, 1); 4387 unlock_super(sb); 4388 return 0; 4389 } 4390 4391 /* 4392 * Structure to save mount options for ext4_remount's benefit 4393 */ 4394 struct ext4_mount_options { 4395 unsigned long s_mount_opt; 4396 unsigned long s_mount_opt2; 4397 kuid_t s_resuid; 4398 kgid_t s_resgid; 4399 unsigned long s_commit_interval; 4400 u32 s_min_batch_time, s_max_batch_time; 4401 #ifdef CONFIG_QUOTA 4402 int s_jquota_fmt; 4403 char *s_qf_names[MAXQUOTAS]; 4404 #endif 4405 }; 4406 4407 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4408 { 4409 struct ext4_super_block *es; 4410 struct ext4_sb_info *sbi = EXT4_SB(sb); 4411 unsigned long old_sb_flags; 4412 struct ext4_mount_options old_opts; 4413 int enable_quota = 0; 4414 ext4_group_t g; 4415 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4416 int err = 0; 4417 #ifdef CONFIG_QUOTA 4418 int i; 4419 #endif 4420 char *orig_data = kstrdup(data, GFP_KERNEL); 4421 4422 /* Store the original options */ 4423 lock_super(sb); 4424 old_sb_flags = sb->s_flags; 4425 old_opts.s_mount_opt = sbi->s_mount_opt; 4426 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4427 old_opts.s_resuid = sbi->s_resuid; 4428 old_opts.s_resgid = sbi->s_resgid; 4429 old_opts.s_commit_interval = sbi->s_commit_interval; 4430 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4431 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4432 #ifdef CONFIG_QUOTA 4433 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4434 for (i = 0; i < MAXQUOTAS; i++) 4435 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4436 #endif 4437 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4438 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4439 4440 /* 4441 * Allow the "check" option to be passed as a remount option. 4442 */ 4443 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4444 err = -EINVAL; 4445 goto restore_opts; 4446 } 4447 4448 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4449 ext4_abort(sb, "Abort forced by user"); 4450 4451 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4452 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4453 4454 es = sbi->s_es; 4455 4456 if (sbi->s_journal) { 4457 ext4_init_journal_params(sb, sbi->s_journal); 4458 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4459 } 4460 4461 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4462 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4463 err = -EROFS; 4464 goto restore_opts; 4465 } 4466 4467 if (*flags & MS_RDONLY) { 4468 err = dquot_suspend(sb, -1); 4469 if (err < 0) 4470 goto restore_opts; 4471 4472 /* 4473 * First of all, the unconditional stuff we have to do 4474 * to disable replay of the journal when we next remount 4475 */ 4476 sb->s_flags |= MS_RDONLY; 4477 4478 /* 4479 * OK, test if we are remounting a valid rw partition 4480 * readonly, and if so set the rdonly flag and then 4481 * mark the partition as valid again. 4482 */ 4483 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4484 (sbi->s_mount_state & EXT4_VALID_FS)) 4485 es->s_state = cpu_to_le16(sbi->s_mount_state); 4486 4487 if (sbi->s_journal) 4488 ext4_mark_recovery_complete(sb, es); 4489 } else { 4490 /* Make sure we can mount this feature set readwrite */ 4491 if (!ext4_feature_set_ok(sb, 0)) { 4492 err = -EROFS; 4493 goto restore_opts; 4494 } 4495 /* 4496 * Make sure the group descriptor checksums 4497 * are sane. If they aren't, refuse to remount r/w. 4498 */ 4499 for (g = 0; g < sbi->s_groups_count; g++) { 4500 struct ext4_group_desc *gdp = 4501 ext4_get_group_desc(sb, g, NULL); 4502 4503 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4504 ext4_msg(sb, KERN_ERR, 4505 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4506 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4507 le16_to_cpu(gdp->bg_checksum)); 4508 err = -EINVAL; 4509 goto restore_opts; 4510 } 4511 } 4512 4513 /* 4514 * If we have an unprocessed orphan list hanging 4515 * around from a previously readonly bdev mount, 4516 * require a full umount/remount for now. 4517 */ 4518 if (es->s_last_orphan) { 4519 ext4_msg(sb, KERN_WARNING, "Couldn't " 4520 "remount RDWR because of unprocessed " 4521 "orphan inode list. Please " 4522 "umount/remount instead"); 4523 err = -EINVAL; 4524 goto restore_opts; 4525 } 4526 4527 /* 4528 * Mounting a RDONLY partition read-write, so reread 4529 * and store the current valid flag. (It may have 4530 * been changed by e2fsck since we originally mounted 4531 * the partition.) 4532 */ 4533 if (sbi->s_journal) 4534 ext4_clear_journal_err(sb, es); 4535 sbi->s_mount_state = le16_to_cpu(es->s_state); 4536 if (!ext4_setup_super(sb, es, 0)) 4537 sb->s_flags &= ~MS_RDONLY; 4538 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4539 EXT4_FEATURE_INCOMPAT_MMP)) 4540 if (ext4_multi_mount_protect(sb, 4541 le64_to_cpu(es->s_mmp_block))) { 4542 err = -EROFS; 4543 goto restore_opts; 4544 } 4545 enable_quota = 1; 4546 } 4547 } 4548 4549 /* 4550 * Reinitialize lazy itable initialization thread based on 4551 * current settings 4552 */ 4553 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4554 ext4_unregister_li_request(sb); 4555 else { 4556 ext4_group_t first_not_zeroed; 4557 first_not_zeroed = ext4_has_uninit_itable(sb); 4558 ext4_register_li_request(sb, first_not_zeroed); 4559 } 4560 4561 ext4_setup_system_zone(sb); 4562 if (sbi->s_journal == NULL) 4563 ext4_commit_super(sb, 1); 4564 4565 #ifdef CONFIG_QUOTA 4566 /* Release old quota file names */ 4567 for (i = 0; i < MAXQUOTAS; i++) 4568 if (old_opts.s_qf_names[i] && 4569 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4570 kfree(old_opts.s_qf_names[i]); 4571 #endif 4572 unlock_super(sb); 4573 if (enable_quota) 4574 dquot_resume(sb, -1); 4575 4576 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4577 kfree(orig_data); 4578 return 0; 4579 4580 restore_opts: 4581 sb->s_flags = old_sb_flags; 4582 sbi->s_mount_opt = old_opts.s_mount_opt; 4583 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4584 sbi->s_resuid = old_opts.s_resuid; 4585 sbi->s_resgid = old_opts.s_resgid; 4586 sbi->s_commit_interval = old_opts.s_commit_interval; 4587 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4588 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4589 #ifdef CONFIG_QUOTA 4590 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4591 for (i = 0; i < MAXQUOTAS; i++) { 4592 if (sbi->s_qf_names[i] && 4593 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4594 kfree(sbi->s_qf_names[i]); 4595 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4596 } 4597 #endif 4598 unlock_super(sb); 4599 kfree(orig_data); 4600 return err; 4601 } 4602 4603 /* 4604 * Note: calculating the overhead so we can be compatible with 4605 * historical BSD practice is quite difficult in the face of 4606 * clusters/bigalloc. This is because multiple metadata blocks from 4607 * different block group can end up in the same allocation cluster. 4608 * Calculating the exact overhead in the face of clustered allocation 4609 * requires either O(all block bitmaps) in memory or O(number of block 4610 * groups**2) in time. We will still calculate the superblock for 4611 * older file systems --- and if we come across with a bigalloc file 4612 * system with zero in s_overhead_clusters the estimate will be close to 4613 * correct especially for very large cluster sizes --- but for newer 4614 * file systems, it's better to calculate this figure once at mkfs 4615 * time, and store it in the superblock. If the superblock value is 4616 * present (even for non-bigalloc file systems), we will use it. 4617 */ 4618 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4619 { 4620 struct super_block *sb = dentry->d_sb; 4621 struct ext4_sb_info *sbi = EXT4_SB(sb); 4622 struct ext4_super_block *es = sbi->s_es; 4623 struct ext4_group_desc *gdp; 4624 u64 fsid; 4625 s64 bfree; 4626 4627 if (test_opt(sb, MINIX_DF)) { 4628 sbi->s_overhead_last = 0; 4629 } else if (es->s_overhead_clusters) { 4630 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters); 4631 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4632 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4633 ext4_fsblk_t overhead = 0; 4634 4635 /* 4636 * Compute the overhead (FS structures). This is constant 4637 * for a given filesystem unless the number of block groups 4638 * changes so we cache the previous value until it does. 4639 */ 4640 4641 /* 4642 * All of the blocks before first_data_block are 4643 * overhead 4644 */ 4645 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4646 4647 /* 4648 * Add the overhead found in each block group 4649 */ 4650 for (i = 0; i < ngroups; i++) { 4651 gdp = ext4_get_group_desc(sb, i, NULL); 4652 overhead += ext4_num_overhead_clusters(sb, i, gdp); 4653 cond_resched(); 4654 } 4655 sbi->s_overhead_last = overhead; 4656 smp_wmb(); 4657 sbi->s_blocks_last = ext4_blocks_count(es); 4658 } 4659 4660 buf->f_type = EXT4_SUPER_MAGIC; 4661 buf->f_bsize = sb->s_blocksize; 4662 buf->f_blocks = (ext4_blocks_count(es) - 4663 EXT4_C2B(sbi, sbi->s_overhead_last)); 4664 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4665 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4666 /* prevent underflow in case that few free space is available */ 4667 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4668 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4669 if (buf->f_bfree < ext4_r_blocks_count(es)) 4670 buf->f_bavail = 0; 4671 buf->f_files = le32_to_cpu(es->s_inodes_count); 4672 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4673 buf->f_namelen = EXT4_NAME_LEN; 4674 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4675 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4676 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4677 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4678 4679 return 0; 4680 } 4681 4682 /* Helper function for writing quotas on sync - we need to start transaction 4683 * before quota file is locked for write. Otherwise the are possible deadlocks: 4684 * Process 1 Process 2 4685 * ext4_create() quota_sync() 4686 * jbd2_journal_start() write_dquot() 4687 * dquot_initialize() down(dqio_mutex) 4688 * down(dqio_mutex) jbd2_journal_start() 4689 * 4690 */ 4691 4692 #ifdef CONFIG_QUOTA 4693 4694 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4695 { 4696 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4697 } 4698 4699 static int ext4_write_dquot(struct dquot *dquot) 4700 { 4701 int ret, err; 4702 handle_t *handle; 4703 struct inode *inode; 4704 4705 inode = dquot_to_inode(dquot); 4706 handle = ext4_journal_start(inode, 4707 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4708 if (IS_ERR(handle)) 4709 return PTR_ERR(handle); 4710 ret = dquot_commit(dquot); 4711 err = ext4_journal_stop(handle); 4712 if (!ret) 4713 ret = err; 4714 return ret; 4715 } 4716 4717 static int ext4_acquire_dquot(struct dquot *dquot) 4718 { 4719 int ret, err; 4720 handle_t *handle; 4721 4722 handle = ext4_journal_start(dquot_to_inode(dquot), 4723 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4724 if (IS_ERR(handle)) 4725 return PTR_ERR(handle); 4726 ret = dquot_acquire(dquot); 4727 err = ext4_journal_stop(handle); 4728 if (!ret) 4729 ret = err; 4730 return ret; 4731 } 4732 4733 static int ext4_release_dquot(struct dquot *dquot) 4734 { 4735 int ret, err; 4736 handle_t *handle; 4737 4738 handle = ext4_journal_start(dquot_to_inode(dquot), 4739 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4740 if (IS_ERR(handle)) { 4741 /* Release dquot anyway to avoid endless cycle in dqput() */ 4742 dquot_release(dquot); 4743 return PTR_ERR(handle); 4744 } 4745 ret = dquot_release(dquot); 4746 err = ext4_journal_stop(handle); 4747 if (!ret) 4748 ret = err; 4749 return ret; 4750 } 4751 4752 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4753 { 4754 /* Are we journaling quotas? */ 4755 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4756 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4757 dquot_mark_dquot_dirty(dquot); 4758 return ext4_write_dquot(dquot); 4759 } else { 4760 return dquot_mark_dquot_dirty(dquot); 4761 } 4762 } 4763 4764 static int ext4_write_info(struct super_block *sb, int type) 4765 { 4766 int ret, err; 4767 handle_t *handle; 4768 4769 /* Data block + inode block */ 4770 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4771 if (IS_ERR(handle)) 4772 return PTR_ERR(handle); 4773 ret = dquot_commit_info(sb, type); 4774 err = ext4_journal_stop(handle); 4775 if (!ret) 4776 ret = err; 4777 return ret; 4778 } 4779 4780 /* 4781 * Turn on quotas during mount time - we need to find 4782 * the quota file and such... 4783 */ 4784 static int ext4_quota_on_mount(struct super_block *sb, int type) 4785 { 4786 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4787 EXT4_SB(sb)->s_jquota_fmt, type); 4788 } 4789 4790 /* 4791 * Standard function to be called on quota_on 4792 */ 4793 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4794 struct path *path) 4795 { 4796 int err; 4797 4798 if (!test_opt(sb, QUOTA)) 4799 return -EINVAL; 4800 4801 /* Quotafile not on the same filesystem? */ 4802 if (path->dentry->d_sb != sb) 4803 return -EXDEV; 4804 /* Journaling quota? */ 4805 if (EXT4_SB(sb)->s_qf_names[type]) { 4806 /* Quotafile not in fs root? */ 4807 if (path->dentry->d_parent != sb->s_root) 4808 ext4_msg(sb, KERN_WARNING, 4809 "Quota file not on filesystem root. " 4810 "Journaled quota will not work"); 4811 } 4812 4813 /* 4814 * When we journal data on quota file, we have to flush journal to see 4815 * all updates to the file when we bypass pagecache... 4816 */ 4817 if (EXT4_SB(sb)->s_journal && 4818 ext4_should_journal_data(path->dentry->d_inode)) { 4819 /* 4820 * We don't need to lock updates but journal_flush() could 4821 * otherwise be livelocked... 4822 */ 4823 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4824 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4825 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4826 if (err) 4827 return err; 4828 } 4829 4830 return dquot_quota_on(sb, type, format_id, path); 4831 } 4832 4833 static int ext4_quota_off(struct super_block *sb, int type) 4834 { 4835 struct inode *inode = sb_dqopt(sb)->files[type]; 4836 handle_t *handle; 4837 4838 /* Force all delayed allocation blocks to be allocated. 4839 * Caller already holds s_umount sem */ 4840 if (test_opt(sb, DELALLOC)) 4841 sync_filesystem(sb); 4842 4843 if (!inode) 4844 goto out; 4845 4846 /* Update modification times of quota files when userspace can 4847 * start looking at them */ 4848 handle = ext4_journal_start(inode, 1); 4849 if (IS_ERR(handle)) 4850 goto out; 4851 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4852 ext4_mark_inode_dirty(handle, inode); 4853 ext4_journal_stop(handle); 4854 4855 out: 4856 return dquot_quota_off(sb, type); 4857 } 4858 4859 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4860 * acquiring the locks... As quota files are never truncated and quota code 4861 * itself serializes the operations (and no one else should touch the files) 4862 * we don't have to be afraid of races */ 4863 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4864 size_t len, loff_t off) 4865 { 4866 struct inode *inode = sb_dqopt(sb)->files[type]; 4867 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4868 int err = 0; 4869 int offset = off & (sb->s_blocksize - 1); 4870 int tocopy; 4871 size_t toread; 4872 struct buffer_head *bh; 4873 loff_t i_size = i_size_read(inode); 4874 4875 if (off > i_size) 4876 return 0; 4877 if (off+len > i_size) 4878 len = i_size-off; 4879 toread = len; 4880 while (toread > 0) { 4881 tocopy = sb->s_blocksize - offset < toread ? 4882 sb->s_blocksize - offset : toread; 4883 bh = ext4_bread(NULL, inode, blk, 0, &err); 4884 if (err) 4885 return err; 4886 if (!bh) /* A hole? */ 4887 memset(data, 0, tocopy); 4888 else 4889 memcpy(data, bh->b_data+offset, tocopy); 4890 brelse(bh); 4891 offset = 0; 4892 toread -= tocopy; 4893 data += tocopy; 4894 blk++; 4895 } 4896 return len; 4897 } 4898 4899 /* Write to quotafile (we know the transaction is already started and has 4900 * enough credits) */ 4901 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4902 const char *data, size_t len, loff_t off) 4903 { 4904 struct inode *inode = sb_dqopt(sb)->files[type]; 4905 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4906 int err = 0; 4907 int offset = off & (sb->s_blocksize - 1); 4908 struct buffer_head *bh; 4909 handle_t *handle = journal_current_handle(); 4910 4911 if (EXT4_SB(sb)->s_journal && !handle) { 4912 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4913 " cancelled because transaction is not started", 4914 (unsigned long long)off, (unsigned long long)len); 4915 return -EIO; 4916 } 4917 /* 4918 * Since we account only one data block in transaction credits, 4919 * then it is impossible to cross a block boundary. 4920 */ 4921 if (sb->s_blocksize - offset < len) { 4922 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4923 " cancelled because not block aligned", 4924 (unsigned long long)off, (unsigned long long)len); 4925 return -EIO; 4926 } 4927 4928 bh = ext4_bread(handle, inode, blk, 1, &err); 4929 if (!bh) 4930 goto out; 4931 err = ext4_journal_get_write_access(handle, bh); 4932 if (err) { 4933 brelse(bh); 4934 goto out; 4935 } 4936 lock_buffer(bh); 4937 memcpy(bh->b_data+offset, data, len); 4938 flush_dcache_page(bh->b_page); 4939 unlock_buffer(bh); 4940 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4941 brelse(bh); 4942 out: 4943 if (err) 4944 return err; 4945 if (inode->i_size < off + len) { 4946 i_size_write(inode, off + len); 4947 EXT4_I(inode)->i_disksize = inode->i_size; 4948 ext4_mark_inode_dirty(handle, inode); 4949 } 4950 return len; 4951 } 4952 4953 #endif 4954 4955 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4956 const char *dev_name, void *data) 4957 { 4958 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4959 } 4960 4961 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4962 static inline void register_as_ext2(void) 4963 { 4964 int err = register_filesystem(&ext2_fs_type); 4965 if (err) 4966 printk(KERN_WARNING 4967 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4968 } 4969 4970 static inline void unregister_as_ext2(void) 4971 { 4972 unregister_filesystem(&ext2_fs_type); 4973 } 4974 4975 static inline int ext2_feature_set_ok(struct super_block *sb) 4976 { 4977 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 4978 return 0; 4979 if (sb->s_flags & MS_RDONLY) 4980 return 1; 4981 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 4982 return 0; 4983 return 1; 4984 } 4985 MODULE_ALIAS("ext2"); 4986 #else 4987 static inline void register_as_ext2(void) { } 4988 static inline void unregister_as_ext2(void) { } 4989 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 4990 #endif 4991 4992 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4993 static inline void register_as_ext3(void) 4994 { 4995 int err = register_filesystem(&ext3_fs_type); 4996 if (err) 4997 printk(KERN_WARNING 4998 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4999 } 5000 5001 static inline void unregister_as_ext3(void) 5002 { 5003 unregister_filesystem(&ext3_fs_type); 5004 } 5005 5006 static inline int ext3_feature_set_ok(struct super_block *sb) 5007 { 5008 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5009 return 0; 5010 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5011 return 0; 5012 if (sb->s_flags & MS_RDONLY) 5013 return 1; 5014 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5015 return 0; 5016 return 1; 5017 } 5018 MODULE_ALIAS("ext3"); 5019 #else 5020 static inline void register_as_ext3(void) { } 5021 static inline void unregister_as_ext3(void) { } 5022 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5023 #endif 5024 5025 static struct file_system_type ext4_fs_type = { 5026 .owner = THIS_MODULE, 5027 .name = "ext4", 5028 .mount = ext4_mount, 5029 .kill_sb = kill_block_super, 5030 .fs_flags = FS_REQUIRES_DEV, 5031 }; 5032 5033 static int __init ext4_init_feat_adverts(void) 5034 { 5035 struct ext4_features *ef; 5036 int ret = -ENOMEM; 5037 5038 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5039 if (!ef) 5040 goto out; 5041 5042 ef->f_kobj.kset = ext4_kset; 5043 init_completion(&ef->f_kobj_unregister); 5044 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5045 "features"); 5046 if (ret) { 5047 kfree(ef); 5048 goto out; 5049 } 5050 5051 ext4_feat = ef; 5052 ret = 0; 5053 out: 5054 return ret; 5055 } 5056 5057 static void ext4_exit_feat_adverts(void) 5058 { 5059 kobject_put(&ext4_feat->f_kobj); 5060 wait_for_completion(&ext4_feat->f_kobj_unregister); 5061 kfree(ext4_feat); 5062 } 5063 5064 /* Shared across all ext4 file systems */ 5065 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5066 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5067 5068 static int __init ext4_init_fs(void) 5069 { 5070 int i, err; 5071 5072 ext4_li_info = NULL; 5073 mutex_init(&ext4_li_mtx); 5074 5075 ext4_check_flag_values(); 5076 5077 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5078 mutex_init(&ext4__aio_mutex[i]); 5079 init_waitqueue_head(&ext4__ioend_wq[i]); 5080 } 5081 5082 err = ext4_init_pageio(); 5083 if (err) 5084 return err; 5085 err = ext4_init_system_zone(); 5086 if (err) 5087 goto out6; 5088 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5089 if (!ext4_kset) 5090 goto out5; 5091 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5092 5093 err = ext4_init_feat_adverts(); 5094 if (err) 5095 goto out4; 5096 5097 err = ext4_init_mballoc(); 5098 if (err) 5099 goto out3; 5100 5101 err = ext4_init_xattr(); 5102 if (err) 5103 goto out2; 5104 err = init_inodecache(); 5105 if (err) 5106 goto out1; 5107 register_as_ext3(); 5108 register_as_ext2(); 5109 err = register_filesystem(&ext4_fs_type); 5110 if (err) 5111 goto out; 5112 5113 return 0; 5114 out: 5115 unregister_as_ext2(); 5116 unregister_as_ext3(); 5117 destroy_inodecache(); 5118 out1: 5119 ext4_exit_xattr(); 5120 out2: 5121 ext4_exit_mballoc(); 5122 out3: 5123 ext4_exit_feat_adverts(); 5124 out4: 5125 if (ext4_proc_root) 5126 remove_proc_entry("fs/ext4", NULL); 5127 kset_unregister(ext4_kset); 5128 out5: 5129 ext4_exit_system_zone(); 5130 out6: 5131 ext4_exit_pageio(); 5132 return err; 5133 } 5134 5135 static void __exit ext4_exit_fs(void) 5136 { 5137 ext4_destroy_lazyinit_thread(); 5138 unregister_as_ext2(); 5139 unregister_as_ext3(); 5140 unregister_filesystem(&ext4_fs_type); 5141 destroy_inodecache(); 5142 ext4_exit_xattr(); 5143 ext4_exit_mballoc(); 5144 ext4_exit_feat_adverts(); 5145 remove_proc_entry("fs/ext4", NULL); 5146 kset_unregister(ext4_kset); 5147 ext4_exit_system_zone(); 5148 ext4_exit_pageio(); 5149 } 5150 5151 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5152 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5153 MODULE_LICENSE("GPL"); 5154 module_init(ext4_init_fs) 5155 module_exit(ext4_exit_fs) 5156