xref: /openbmc/linux/fs/ext4/super.c (revision 0547dece8dcbb80983b3c37ad20ceca76a1f06a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static int ext4_mark_recovery_complete(struct super_block *sb,
70 					struct ext4_super_block *es);
71 static int ext4_clear_journal_err(struct super_block *sb,
72 				  struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 		       const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_lock
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_lock
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116 
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 	.owner		= THIS_MODULE,
120 	.name		= "ext2",
121 	.mount		= ext4_mount,
122 	.kill_sb	= kill_block_super,
123 	.fs_flags	= FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131 
132 
133 static struct file_system_type ext3_fs_type = {
134 	.owner		= THIS_MODULE,
135 	.name		= "ext3",
136 	.mount		= ext4_mount,
137 	.kill_sb	= kill_block_super,
138 	.fs_flags	= FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 
144 
145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
146 				  bh_end_io_t *end_io)
147 {
148 	/*
149 	 * buffer's verified bit is no longer valid after reading from
150 	 * disk again due to write out error, clear it to make sure we
151 	 * recheck the buffer contents.
152 	 */
153 	clear_buffer_verified(bh);
154 
155 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
156 	get_bh(bh);
157 	submit_bh(REQ_OP_READ, op_flags, bh);
158 }
159 
160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
161 			 bh_end_io_t *end_io)
162 {
163 	BUG_ON(!buffer_locked(bh));
164 
165 	if (ext4_buffer_uptodate(bh)) {
166 		unlock_buffer(bh);
167 		return;
168 	}
169 	__ext4_read_bh(bh, op_flags, end_io);
170 }
171 
172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
173 {
174 	BUG_ON(!buffer_locked(bh));
175 
176 	if (ext4_buffer_uptodate(bh)) {
177 		unlock_buffer(bh);
178 		return 0;
179 	}
180 
181 	__ext4_read_bh(bh, op_flags, end_io);
182 
183 	wait_on_buffer(bh);
184 	if (buffer_uptodate(bh))
185 		return 0;
186 	return -EIO;
187 }
188 
189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
190 {
191 	if (trylock_buffer(bh)) {
192 		if (wait)
193 			return ext4_read_bh(bh, op_flags, NULL);
194 		ext4_read_bh_nowait(bh, op_flags, NULL);
195 		return 0;
196 	}
197 	if (wait) {
198 		wait_on_buffer(bh);
199 		if (buffer_uptodate(bh))
200 			return 0;
201 		return -EIO;
202 	}
203 	return 0;
204 }
205 
206 /*
207  * This works like __bread_gfp() except it uses ERR_PTR for error
208  * returns.  Currently with sb_bread it's impossible to distinguish
209  * between ENOMEM and EIO situations (since both result in a NULL
210  * return.
211  */
212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
213 					       sector_t block, int op_flags,
214 					       gfp_t gfp)
215 {
216 	struct buffer_head *bh;
217 	int ret;
218 
219 	bh = sb_getblk_gfp(sb, block, gfp);
220 	if (bh == NULL)
221 		return ERR_PTR(-ENOMEM);
222 	if (ext4_buffer_uptodate(bh))
223 		return bh;
224 
225 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
226 	if (ret) {
227 		put_bh(bh);
228 		return ERR_PTR(ret);
229 	}
230 	return bh;
231 }
232 
233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
234 				   int op_flags)
235 {
236 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
237 }
238 
239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
240 					    sector_t block)
241 {
242 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
243 }
244 
245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
246 {
247 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
248 
249 	if (likely(bh)) {
250 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
251 		brelse(bh);
252 	}
253 }
254 
255 static int ext4_verify_csum_type(struct super_block *sb,
256 				 struct ext4_super_block *es)
257 {
258 	if (!ext4_has_feature_metadata_csum(sb))
259 		return 1;
260 
261 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
262 }
263 
264 static __le32 ext4_superblock_csum(struct super_block *sb,
265 				   struct ext4_super_block *es)
266 {
267 	struct ext4_sb_info *sbi = EXT4_SB(sb);
268 	int offset = offsetof(struct ext4_super_block, s_checksum);
269 	__u32 csum;
270 
271 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
272 
273 	return cpu_to_le32(csum);
274 }
275 
276 static int ext4_superblock_csum_verify(struct super_block *sb,
277 				       struct ext4_super_block *es)
278 {
279 	if (!ext4_has_metadata_csum(sb))
280 		return 1;
281 
282 	return es->s_checksum == ext4_superblock_csum(sb, es);
283 }
284 
285 void ext4_superblock_csum_set(struct super_block *sb)
286 {
287 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
288 
289 	if (!ext4_has_metadata_csum(sb))
290 		return;
291 
292 	es->s_checksum = ext4_superblock_csum(sb, es);
293 }
294 
295 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
296 			       struct ext4_group_desc *bg)
297 {
298 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
299 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
300 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
301 }
302 
303 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
304 			       struct ext4_group_desc *bg)
305 {
306 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
307 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
308 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
309 }
310 
311 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
312 			      struct ext4_group_desc *bg)
313 {
314 	return le32_to_cpu(bg->bg_inode_table_lo) |
315 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
316 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
317 }
318 
319 __u32 ext4_free_group_clusters(struct super_block *sb,
320 			       struct ext4_group_desc *bg)
321 {
322 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
323 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
324 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
325 }
326 
327 __u32 ext4_free_inodes_count(struct super_block *sb,
328 			      struct ext4_group_desc *bg)
329 {
330 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
331 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
333 }
334 
335 __u32 ext4_used_dirs_count(struct super_block *sb,
336 			      struct ext4_group_desc *bg)
337 {
338 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
339 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
341 }
342 
343 __u32 ext4_itable_unused_count(struct super_block *sb,
344 			      struct ext4_group_desc *bg)
345 {
346 	return le16_to_cpu(bg->bg_itable_unused_lo) |
347 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
348 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
349 }
350 
351 void ext4_block_bitmap_set(struct super_block *sb,
352 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
353 {
354 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
355 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
356 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
357 }
358 
359 void ext4_inode_bitmap_set(struct super_block *sb,
360 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
361 {
362 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
363 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
364 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
365 }
366 
367 void ext4_inode_table_set(struct super_block *sb,
368 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
369 {
370 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
371 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
372 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
373 }
374 
375 void ext4_free_group_clusters_set(struct super_block *sb,
376 				  struct ext4_group_desc *bg, __u32 count)
377 {
378 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
379 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
380 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
381 }
382 
383 void ext4_free_inodes_set(struct super_block *sb,
384 			  struct ext4_group_desc *bg, __u32 count)
385 {
386 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
387 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
389 }
390 
391 void ext4_used_dirs_set(struct super_block *sb,
392 			  struct ext4_group_desc *bg, __u32 count)
393 {
394 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
395 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
397 }
398 
399 void ext4_itable_unused_set(struct super_block *sb,
400 			  struct ext4_group_desc *bg, __u32 count)
401 {
402 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
403 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
404 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
405 }
406 
407 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
408 {
409 	now = clamp_val(now, 0, (1ull << 40) - 1);
410 
411 	*lo = cpu_to_le32(lower_32_bits(now));
412 	*hi = upper_32_bits(now);
413 }
414 
415 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
416 {
417 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
418 }
419 #define ext4_update_tstamp(es, tstamp) \
420 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
421 			     ktime_get_real_seconds())
422 #define ext4_get_tstamp(es, tstamp) \
423 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
424 
425 /*
426  * The del_gendisk() function uninitializes the disk-specific data
427  * structures, including the bdi structure, without telling anyone
428  * else.  Once this happens, any attempt to call mark_buffer_dirty()
429  * (for example, by ext4_commit_super), will cause a kernel OOPS.
430  * This is a kludge to prevent these oops until we can put in a proper
431  * hook in del_gendisk() to inform the VFS and file system layers.
432  */
433 static int block_device_ejected(struct super_block *sb)
434 {
435 	struct inode *bd_inode = sb->s_bdev->bd_inode;
436 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
437 
438 	return bdi->dev == NULL;
439 }
440 
441 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
442 {
443 	struct super_block		*sb = journal->j_private;
444 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
445 	int				error = is_journal_aborted(journal);
446 	struct ext4_journal_cb_entry	*jce;
447 
448 	BUG_ON(txn->t_state == T_FINISHED);
449 
450 	ext4_process_freed_data(sb, txn->t_tid);
451 
452 	spin_lock(&sbi->s_md_lock);
453 	while (!list_empty(&txn->t_private_list)) {
454 		jce = list_entry(txn->t_private_list.next,
455 				 struct ext4_journal_cb_entry, jce_list);
456 		list_del_init(&jce->jce_list);
457 		spin_unlock(&sbi->s_md_lock);
458 		jce->jce_func(sb, jce, error);
459 		spin_lock(&sbi->s_md_lock);
460 	}
461 	spin_unlock(&sbi->s_md_lock);
462 }
463 
464 /*
465  * This writepage callback for write_cache_pages()
466  * takes care of a few cases after page cleaning.
467  *
468  * write_cache_pages() already checks for dirty pages
469  * and calls clear_page_dirty_for_io(), which we want,
470  * to write protect the pages.
471  *
472  * However, we may have to redirty a page (see below.)
473  */
474 static int ext4_journalled_writepage_callback(struct page *page,
475 					      struct writeback_control *wbc,
476 					      void *data)
477 {
478 	transaction_t *transaction = (transaction_t *) data;
479 	struct buffer_head *bh, *head;
480 	struct journal_head *jh;
481 
482 	bh = head = page_buffers(page);
483 	do {
484 		/*
485 		 * We have to redirty a page in these cases:
486 		 * 1) If buffer is dirty, it means the page was dirty because it
487 		 * contains a buffer that needs checkpointing. So the dirty bit
488 		 * needs to be preserved so that checkpointing writes the buffer
489 		 * properly.
490 		 * 2) If buffer is not part of the committing transaction
491 		 * (we may have just accidentally come across this buffer because
492 		 * inode range tracking is not exact) or if the currently running
493 		 * transaction already contains this buffer as well, dirty bit
494 		 * needs to be preserved so that the buffer gets writeprotected
495 		 * properly on running transaction's commit.
496 		 */
497 		jh = bh2jh(bh);
498 		if (buffer_dirty(bh) ||
499 		    (jh && (jh->b_transaction != transaction ||
500 			    jh->b_next_transaction))) {
501 			redirty_page_for_writepage(wbc, page);
502 			goto out;
503 		}
504 	} while ((bh = bh->b_this_page) != head);
505 
506 out:
507 	return AOP_WRITEPAGE_ACTIVATE;
508 }
509 
510 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
511 {
512 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
513 	struct writeback_control wbc = {
514 		.sync_mode =  WB_SYNC_ALL,
515 		.nr_to_write = LONG_MAX,
516 		.range_start = jinode->i_dirty_start,
517 		.range_end = jinode->i_dirty_end,
518         };
519 
520 	return write_cache_pages(mapping, &wbc,
521 				 ext4_journalled_writepage_callback,
522 				 jinode->i_transaction);
523 }
524 
525 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
526 {
527 	int ret;
528 
529 	if (ext4_should_journal_data(jinode->i_vfs_inode))
530 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
531 	else
532 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
533 
534 	return ret;
535 }
536 
537 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
538 {
539 	int ret = 0;
540 
541 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
542 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
543 
544 	return ret;
545 }
546 
547 static bool system_going_down(void)
548 {
549 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
550 		|| system_state == SYSTEM_RESTART;
551 }
552 
553 struct ext4_err_translation {
554 	int code;
555 	int errno;
556 };
557 
558 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
559 
560 static struct ext4_err_translation err_translation[] = {
561 	EXT4_ERR_TRANSLATE(EIO),
562 	EXT4_ERR_TRANSLATE(ENOMEM),
563 	EXT4_ERR_TRANSLATE(EFSBADCRC),
564 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
565 	EXT4_ERR_TRANSLATE(ENOSPC),
566 	EXT4_ERR_TRANSLATE(ENOKEY),
567 	EXT4_ERR_TRANSLATE(EROFS),
568 	EXT4_ERR_TRANSLATE(EFBIG),
569 	EXT4_ERR_TRANSLATE(EEXIST),
570 	EXT4_ERR_TRANSLATE(ERANGE),
571 	EXT4_ERR_TRANSLATE(EOVERFLOW),
572 	EXT4_ERR_TRANSLATE(EBUSY),
573 	EXT4_ERR_TRANSLATE(ENOTDIR),
574 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
575 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
576 	EXT4_ERR_TRANSLATE(EFAULT),
577 };
578 
579 static int ext4_errno_to_code(int errno)
580 {
581 	int i;
582 
583 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
584 		if (err_translation[i].errno == errno)
585 			return err_translation[i].code;
586 	return EXT4_ERR_UNKNOWN;
587 }
588 
589 static void __save_error_info(struct super_block *sb, int error,
590 			      __u32 ino, __u64 block,
591 			      const char *func, unsigned int line)
592 {
593 	struct ext4_sb_info *sbi = EXT4_SB(sb);
594 
595 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
596 	if (bdev_read_only(sb->s_bdev))
597 		return;
598 	/* We default to EFSCORRUPTED error... */
599 	if (error == 0)
600 		error = EFSCORRUPTED;
601 
602 	spin_lock(&sbi->s_error_lock);
603 	sbi->s_add_error_count++;
604 	sbi->s_last_error_code = error;
605 	sbi->s_last_error_line = line;
606 	sbi->s_last_error_ino = ino;
607 	sbi->s_last_error_block = block;
608 	sbi->s_last_error_func = func;
609 	sbi->s_last_error_time = ktime_get_real_seconds();
610 	if (!sbi->s_first_error_time) {
611 		sbi->s_first_error_code = error;
612 		sbi->s_first_error_line = line;
613 		sbi->s_first_error_ino = ino;
614 		sbi->s_first_error_block = block;
615 		sbi->s_first_error_func = func;
616 		sbi->s_first_error_time = sbi->s_last_error_time;
617 	}
618 	spin_unlock(&sbi->s_error_lock);
619 }
620 
621 static void save_error_info(struct super_block *sb, int error,
622 			    __u32 ino, __u64 block,
623 			    const char *func, unsigned int line)
624 {
625 	__save_error_info(sb, error, ino, block, func, line);
626 	if (!bdev_read_only(sb->s_bdev))
627 		ext4_commit_super(sb, 1);
628 }
629 
630 /* Deal with the reporting of failure conditions on a filesystem such as
631  * inconsistencies detected or read IO failures.
632  *
633  * On ext2, we can store the error state of the filesystem in the
634  * superblock.  That is not possible on ext4, because we may have other
635  * write ordering constraints on the superblock which prevent us from
636  * writing it out straight away; and given that the journal is about to
637  * be aborted, we can't rely on the current, or future, transactions to
638  * write out the superblock safely.
639  *
640  * We'll just use the jbd2_journal_abort() error code to record an error in
641  * the journal instead.  On recovery, the journal will complain about
642  * that error until we've noted it down and cleared it.
643  *
644  * If force_ro is set, we unconditionally force the filesystem into an
645  * ABORT|READONLY state, unless the error response on the fs has been set to
646  * panic in which case we take the easy way out and panic immediately. This is
647  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
648  * at a critical moment in log management.
649  */
650 static void ext4_handle_error(struct super_block *sb, bool force_ro)
651 {
652 	journal_t *journal = EXT4_SB(sb)->s_journal;
653 
654 	if (test_opt(sb, WARN_ON_ERROR))
655 		WARN_ON_ONCE(1);
656 
657 	if (sb_rdonly(sb) || (!force_ro && test_opt(sb, ERRORS_CONT)))
658 		return;
659 
660 	ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
661 	if (journal)
662 		jbd2_journal_abort(journal, -EIO);
663 	/*
664 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
665 	 * could panic during 'reboot -f' as the underlying device got already
666 	 * disabled.
667 	 */
668 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
669 		panic("EXT4-fs (device %s): panic forced after error\n",
670 			sb->s_id);
671 	}
672 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
673 	/*
674 	 * Make sure updated value of ->s_mount_flags will be visible before
675 	 * ->s_flags update
676 	 */
677 	smp_wmb();
678 	sb->s_flags |= SB_RDONLY;
679 }
680 
681 static void flush_stashed_error_work(struct work_struct *work)
682 {
683 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
684 						s_error_work);
685 
686 	ext4_commit_super(sbi->s_sb, 1);
687 }
688 
689 #define ext4_error_ratelimit(sb)					\
690 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
691 			     "EXT4-fs error")
692 
693 void __ext4_error(struct super_block *sb, const char *function,
694 		  unsigned int line, bool force_ro, int error, __u64 block,
695 		  const char *fmt, ...)
696 {
697 	struct va_format vaf;
698 	va_list args;
699 
700 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
701 		return;
702 
703 	trace_ext4_error(sb, function, line);
704 	if (ext4_error_ratelimit(sb)) {
705 		va_start(args, fmt);
706 		vaf.fmt = fmt;
707 		vaf.va = &args;
708 		printk(KERN_CRIT
709 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
710 		       sb->s_id, function, line, current->comm, &vaf);
711 		va_end(args);
712 	}
713 	save_error_info(sb, error, 0, block, function, line);
714 	ext4_handle_error(sb, force_ro);
715 }
716 
717 void __ext4_error_inode(struct inode *inode, const char *function,
718 			unsigned int line, ext4_fsblk_t block, int error,
719 			const char *fmt, ...)
720 {
721 	va_list args;
722 	struct va_format vaf;
723 
724 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
725 		return;
726 
727 	trace_ext4_error(inode->i_sb, function, line);
728 	if (ext4_error_ratelimit(inode->i_sb)) {
729 		va_start(args, fmt);
730 		vaf.fmt = fmt;
731 		vaf.va = &args;
732 		if (block)
733 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
734 			       "inode #%lu: block %llu: comm %s: %pV\n",
735 			       inode->i_sb->s_id, function, line, inode->i_ino,
736 			       block, current->comm, &vaf);
737 		else
738 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
739 			       "inode #%lu: comm %s: %pV\n",
740 			       inode->i_sb->s_id, function, line, inode->i_ino,
741 			       current->comm, &vaf);
742 		va_end(args);
743 	}
744 	save_error_info(inode->i_sb, error, inode->i_ino, block,
745 			function, line);
746 	ext4_handle_error(inode->i_sb, false);
747 }
748 
749 void __ext4_error_file(struct file *file, const char *function,
750 		       unsigned int line, ext4_fsblk_t block,
751 		       const char *fmt, ...)
752 {
753 	va_list args;
754 	struct va_format vaf;
755 	struct inode *inode = file_inode(file);
756 	char pathname[80], *path;
757 
758 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
759 		return;
760 
761 	trace_ext4_error(inode->i_sb, function, line);
762 	if (ext4_error_ratelimit(inode->i_sb)) {
763 		path = file_path(file, pathname, sizeof(pathname));
764 		if (IS_ERR(path))
765 			path = "(unknown)";
766 		va_start(args, fmt);
767 		vaf.fmt = fmt;
768 		vaf.va = &args;
769 		if (block)
770 			printk(KERN_CRIT
771 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
772 			       "block %llu: comm %s: path %s: %pV\n",
773 			       inode->i_sb->s_id, function, line, inode->i_ino,
774 			       block, current->comm, path, &vaf);
775 		else
776 			printk(KERN_CRIT
777 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
778 			       "comm %s: path %s: %pV\n",
779 			       inode->i_sb->s_id, function, line, inode->i_ino,
780 			       current->comm, path, &vaf);
781 		va_end(args);
782 	}
783 	save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
784 			function, line);
785 	ext4_handle_error(inode->i_sb, false);
786 }
787 
788 const char *ext4_decode_error(struct super_block *sb, int errno,
789 			      char nbuf[16])
790 {
791 	char *errstr = NULL;
792 
793 	switch (errno) {
794 	case -EFSCORRUPTED:
795 		errstr = "Corrupt filesystem";
796 		break;
797 	case -EFSBADCRC:
798 		errstr = "Filesystem failed CRC";
799 		break;
800 	case -EIO:
801 		errstr = "IO failure";
802 		break;
803 	case -ENOMEM:
804 		errstr = "Out of memory";
805 		break;
806 	case -EROFS:
807 		if (!sb || (EXT4_SB(sb)->s_journal &&
808 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
809 			errstr = "Journal has aborted";
810 		else
811 			errstr = "Readonly filesystem";
812 		break;
813 	default:
814 		/* If the caller passed in an extra buffer for unknown
815 		 * errors, textualise them now.  Else we just return
816 		 * NULL. */
817 		if (nbuf) {
818 			/* Check for truncated error codes... */
819 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
820 				errstr = nbuf;
821 		}
822 		break;
823 	}
824 
825 	return errstr;
826 }
827 
828 /* __ext4_std_error decodes expected errors from journaling functions
829  * automatically and invokes the appropriate error response.  */
830 
831 void __ext4_std_error(struct super_block *sb, const char *function,
832 		      unsigned int line, int errno)
833 {
834 	char nbuf[16];
835 	const char *errstr;
836 
837 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
838 		return;
839 
840 	/* Special case: if the error is EROFS, and we're not already
841 	 * inside a transaction, then there's really no point in logging
842 	 * an error. */
843 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
844 		return;
845 
846 	if (ext4_error_ratelimit(sb)) {
847 		errstr = ext4_decode_error(sb, errno, nbuf);
848 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
849 		       sb->s_id, function, line, errstr);
850 	}
851 
852 	save_error_info(sb, -errno, 0, 0, function, line);
853 	ext4_handle_error(sb, false);
854 }
855 
856 void __ext4_msg(struct super_block *sb,
857 		const char *prefix, const char *fmt, ...)
858 {
859 	struct va_format vaf;
860 	va_list args;
861 
862 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
863 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
864 		return;
865 
866 	va_start(args, fmt);
867 	vaf.fmt = fmt;
868 	vaf.va = &args;
869 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
870 	va_end(args);
871 }
872 
873 static int ext4_warning_ratelimit(struct super_block *sb)
874 {
875 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
876 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
877 			    "EXT4-fs warning");
878 }
879 
880 void __ext4_warning(struct super_block *sb, const char *function,
881 		    unsigned int line, const char *fmt, ...)
882 {
883 	struct va_format vaf;
884 	va_list args;
885 
886 	if (!ext4_warning_ratelimit(sb))
887 		return;
888 
889 	va_start(args, fmt);
890 	vaf.fmt = fmt;
891 	vaf.va = &args;
892 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
893 	       sb->s_id, function, line, &vaf);
894 	va_end(args);
895 }
896 
897 void __ext4_warning_inode(const struct inode *inode, const char *function,
898 			  unsigned int line, const char *fmt, ...)
899 {
900 	struct va_format vaf;
901 	va_list args;
902 
903 	if (!ext4_warning_ratelimit(inode->i_sb))
904 		return;
905 
906 	va_start(args, fmt);
907 	vaf.fmt = fmt;
908 	vaf.va = &args;
909 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
910 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
911 	       function, line, inode->i_ino, current->comm, &vaf);
912 	va_end(args);
913 }
914 
915 void __ext4_grp_locked_error(const char *function, unsigned int line,
916 			     struct super_block *sb, ext4_group_t grp,
917 			     unsigned long ino, ext4_fsblk_t block,
918 			     const char *fmt, ...)
919 __releases(bitlock)
920 __acquires(bitlock)
921 {
922 	struct va_format vaf;
923 	va_list args;
924 
925 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
926 		return;
927 
928 	trace_ext4_error(sb, function, line);
929 	if (ext4_error_ratelimit(sb)) {
930 		va_start(args, fmt);
931 		vaf.fmt = fmt;
932 		vaf.va = &args;
933 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
934 		       sb->s_id, function, line, grp);
935 		if (ino)
936 			printk(KERN_CONT "inode %lu: ", ino);
937 		if (block)
938 			printk(KERN_CONT "block %llu:",
939 			       (unsigned long long) block);
940 		printk(KERN_CONT "%pV\n", &vaf);
941 		va_end(args);
942 	}
943 
944 	if (test_opt(sb, ERRORS_CONT)) {
945 		if (test_opt(sb, WARN_ON_ERROR))
946 			WARN_ON_ONCE(1);
947 		__save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
948 		schedule_work(&EXT4_SB(sb)->s_error_work);
949 		return;
950 	}
951 	ext4_unlock_group(sb, grp);
952 	save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
953 	ext4_handle_error(sb, false);
954 	/*
955 	 * We only get here in the ERRORS_RO case; relocking the group
956 	 * may be dangerous, but nothing bad will happen since the
957 	 * filesystem will have already been marked read/only and the
958 	 * journal has been aborted.  We return 1 as a hint to callers
959 	 * who might what to use the return value from
960 	 * ext4_grp_locked_error() to distinguish between the
961 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
962 	 * aggressively from the ext4 function in question, with a
963 	 * more appropriate error code.
964 	 */
965 	ext4_lock_group(sb, grp);
966 	return;
967 }
968 
969 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
970 				     ext4_group_t group,
971 				     unsigned int flags)
972 {
973 	struct ext4_sb_info *sbi = EXT4_SB(sb);
974 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
975 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
976 	int ret;
977 
978 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
979 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
980 					    &grp->bb_state);
981 		if (!ret)
982 			percpu_counter_sub(&sbi->s_freeclusters_counter,
983 					   grp->bb_free);
984 	}
985 
986 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
987 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
988 					    &grp->bb_state);
989 		if (!ret && gdp) {
990 			int count;
991 
992 			count = ext4_free_inodes_count(sb, gdp);
993 			percpu_counter_sub(&sbi->s_freeinodes_counter,
994 					   count);
995 		}
996 	}
997 }
998 
999 void ext4_update_dynamic_rev(struct super_block *sb)
1000 {
1001 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1002 
1003 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1004 		return;
1005 
1006 	ext4_warning(sb,
1007 		     "updating to rev %d because of new feature flag, "
1008 		     "running e2fsck is recommended",
1009 		     EXT4_DYNAMIC_REV);
1010 
1011 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1012 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1013 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1014 	/* leave es->s_feature_*compat flags alone */
1015 	/* es->s_uuid will be set by e2fsck if empty */
1016 
1017 	/*
1018 	 * The rest of the superblock fields should be zero, and if not it
1019 	 * means they are likely already in use, so leave them alone.  We
1020 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1021 	 */
1022 }
1023 
1024 /*
1025  * Open the external journal device
1026  */
1027 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1028 {
1029 	struct block_device *bdev;
1030 
1031 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1032 	if (IS_ERR(bdev))
1033 		goto fail;
1034 	return bdev;
1035 
1036 fail:
1037 	ext4_msg(sb, KERN_ERR,
1038 		 "failed to open journal device unknown-block(%u,%u) %ld",
1039 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1040 	return NULL;
1041 }
1042 
1043 /*
1044  * Release the journal device
1045  */
1046 static void ext4_blkdev_put(struct block_device *bdev)
1047 {
1048 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1049 }
1050 
1051 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1052 {
1053 	struct block_device *bdev;
1054 	bdev = sbi->s_journal_bdev;
1055 	if (bdev) {
1056 		ext4_blkdev_put(bdev);
1057 		sbi->s_journal_bdev = NULL;
1058 	}
1059 }
1060 
1061 static inline struct inode *orphan_list_entry(struct list_head *l)
1062 {
1063 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1064 }
1065 
1066 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1067 {
1068 	struct list_head *l;
1069 
1070 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1071 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1072 
1073 	printk(KERN_ERR "sb_info orphan list:\n");
1074 	list_for_each(l, &sbi->s_orphan) {
1075 		struct inode *inode = orphan_list_entry(l);
1076 		printk(KERN_ERR "  "
1077 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1078 		       inode->i_sb->s_id, inode->i_ino, inode,
1079 		       inode->i_mode, inode->i_nlink,
1080 		       NEXT_ORPHAN(inode));
1081 	}
1082 }
1083 
1084 #ifdef CONFIG_QUOTA
1085 static int ext4_quota_off(struct super_block *sb, int type);
1086 
1087 static inline void ext4_quota_off_umount(struct super_block *sb)
1088 {
1089 	int type;
1090 
1091 	/* Use our quota_off function to clear inode flags etc. */
1092 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1093 		ext4_quota_off(sb, type);
1094 }
1095 
1096 /*
1097  * This is a helper function which is used in the mount/remount
1098  * codepaths (which holds s_umount) to fetch the quota file name.
1099  */
1100 static inline char *get_qf_name(struct super_block *sb,
1101 				struct ext4_sb_info *sbi,
1102 				int type)
1103 {
1104 	return rcu_dereference_protected(sbi->s_qf_names[type],
1105 					 lockdep_is_held(&sb->s_umount));
1106 }
1107 #else
1108 static inline void ext4_quota_off_umount(struct super_block *sb)
1109 {
1110 }
1111 #endif
1112 
1113 static void ext4_put_super(struct super_block *sb)
1114 {
1115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116 	struct ext4_super_block *es = sbi->s_es;
1117 	struct buffer_head **group_desc;
1118 	struct flex_groups **flex_groups;
1119 	int aborted = 0;
1120 	int i, err;
1121 
1122 	ext4_unregister_li_request(sb);
1123 	ext4_quota_off_umount(sb);
1124 
1125 	flush_work(&sbi->s_error_work);
1126 	destroy_workqueue(sbi->rsv_conversion_wq);
1127 
1128 	/*
1129 	 * Unregister sysfs before destroying jbd2 journal.
1130 	 * Since we could still access attr_journal_task attribute via sysfs
1131 	 * path which could have sbi->s_journal->j_task as NULL
1132 	 */
1133 	ext4_unregister_sysfs(sb);
1134 
1135 	if (sbi->s_journal) {
1136 		aborted = is_journal_aborted(sbi->s_journal);
1137 		err = jbd2_journal_destroy(sbi->s_journal);
1138 		sbi->s_journal = NULL;
1139 		if ((err < 0) && !aborted) {
1140 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1141 		}
1142 	}
1143 
1144 	ext4_es_unregister_shrinker(sbi);
1145 	del_timer_sync(&sbi->s_err_report);
1146 	ext4_release_system_zone(sb);
1147 	ext4_mb_release(sb);
1148 	ext4_ext_release(sb);
1149 
1150 	if (!sb_rdonly(sb) && !aborted) {
1151 		ext4_clear_feature_journal_needs_recovery(sb);
1152 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1153 	}
1154 	if (!sb_rdonly(sb))
1155 		ext4_commit_super(sb, 1);
1156 
1157 	rcu_read_lock();
1158 	group_desc = rcu_dereference(sbi->s_group_desc);
1159 	for (i = 0; i < sbi->s_gdb_count; i++)
1160 		brelse(group_desc[i]);
1161 	kvfree(group_desc);
1162 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1163 	if (flex_groups) {
1164 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1165 			kvfree(flex_groups[i]);
1166 		kvfree(flex_groups);
1167 	}
1168 	rcu_read_unlock();
1169 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1170 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1171 	percpu_counter_destroy(&sbi->s_dirs_counter);
1172 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1173 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1174 #ifdef CONFIG_QUOTA
1175 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1176 		kfree(get_qf_name(sb, sbi, i));
1177 #endif
1178 
1179 	/* Debugging code just in case the in-memory inode orphan list
1180 	 * isn't empty.  The on-disk one can be non-empty if we've
1181 	 * detected an error and taken the fs readonly, but the
1182 	 * in-memory list had better be clean by this point. */
1183 	if (!list_empty(&sbi->s_orphan))
1184 		dump_orphan_list(sb, sbi);
1185 	ASSERT(list_empty(&sbi->s_orphan));
1186 
1187 	sync_blockdev(sb->s_bdev);
1188 	invalidate_bdev(sb->s_bdev);
1189 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1190 		/*
1191 		 * Invalidate the journal device's buffers.  We don't want them
1192 		 * floating about in memory - the physical journal device may
1193 		 * hotswapped, and it breaks the `ro-after' testing code.
1194 		 */
1195 		sync_blockdev(sbi->s_journal_bdev);
1196 		invalidate_bdev(sbi->s_journal_bdev);
1197 		ext4_blkdev_remove(sbi);
1198 	}
1199 
1200 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1201 	sbi->s_ea_inode_cache = NULL;
1202 
1203 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1204 	sbi->s_ea_block_cache = NULL;
1205 
1206 	if (sbi->s_mmp_tsk)
1207 		kthread_stop(sbi->s_mmp_tsk);
1208 	brelse(sbi->s_sbh);
1209 	sb->s_fs_info = NULL;
1210 	/*
1211 	 * Now that we are completely done shutting down the
1212 	 * superblock, we need to actually destroy the kobject.
1213 	 */
1214 	kobject_put(&sbi->s_kobj);
1215 	wait_for_completion(&sbi->s_kobj_unregister);
1216 	if (sbi->s_chksum_driver)
1217 		crypto_free_shash(sbi->s_chksum_driver);
1218 	kfree(sbi->s_blockgroup_lock);
1219 	fs_put_dax(sbi->s_daxdev);
1220 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1221 #ifdef CONFIG_UNICODE
1222 	utf8_unload(sb->s_encoding);
1223 #endif
1224 	kfree(sbi);
1225 }
1226 
1227 static struct kmem_cache *ext4_inode_cachep;
1228 
1229 /*
1230  * Called inside transaction, so use GFP_NOFS
1231  */
1232 static struct inode *ext4_alloc_inode(struct super_block *sb)
1233 {
1234 	struct ext4_inode_info *ei;
1235 
1236 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1237 	if (!ei)
1238 		return NULL;
1239 
1240 	inode_set_iversion(&ei->vfs_inode, 1);
1241 	spin_lock_init(&ei->i_raw_lock);
1242 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1243 	atomic_set(&ei->i_prealloc_active, 0);
1244 	spin_lock_init(&ei->i_prealloc_lock);
1245 	ext4_es_init_tree(&ei->i_es_tree);
1246 	rwlock_init(&ei->i_es_lock);
1247 	INIT_LIST_HEAD(&ei->i_es_list);
1248 	ei->i_es_all_nr = 0;
1249 	ei->i_es_shk_nr = 0;
1250 	ei->i_es_shrink_lblk = 0;
1251 	ei->i_reserved_data_blocks = 0;
1252 	spin_lock_init(&(ei->i_block_reservation_lock));
1253 	ext4_init_pending_tree(&ei->i_pending_tree);
1254 #ifdef CONFIG_QUOTA
1255 	ei->i_reserved_quota = 0;
1256 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1257 #endif
1258 	ei->jinode = NULL;
1259 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1260 	spin_lock_init(&ei->i_completed_io_lock);
1261 	ei->i_sync_tid = 0;
1262 	ei->i_datasync_tid = 0;
1263 	atomic_set(&ei->i_unwritten, 0);
1264 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1265 	ext4_fc_init_inode(&ei->vfs_inode);
1266 	mutex_init(&ei->i_fc_lock);
1267 	return &ei->vfs_inode;
1268 }
1269 
1270 static int ext4_drop_inode(struct inode *inode)
1271 {
1272 	int drop = generic_drop_inode(inode);
1273 
1274 	if (!drop)
1275 		drop = fscrypt_drop_inode(inode);
1276 
1277 	trace_ext4_drop_inode(inode, drop);
1278 	return drop;
1279 }
1280 
1281 static void ext4_free_in_core_inode(struct inode *inode)
1282 {
1283 	fscrypt_free_inode(inode);
1284 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1285 		pr_warn("%s: inode %ld still in fc list",
1286 			__func__, inode->i_ino);
1287 	}
1288 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1289 }
1290 
1291 static void ext4_destroy_inode(struct inode *inode)
1292 {
1293 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1294 		ext4_msg(inode->i_sb, KERN_ERR,
1295 			 "Inode %lu (%p): orphan list check failed!",
1296 			 inode->i_ino, EXT4_I(inode));
1297 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1298 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1299 				true);
1300 		dump_stack();
1301 	}
1302 }
1303 
1304 static void init_once(void *foo)
1305 {
1306 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1307 
1308 	INIT_LIST_HEAD(&ei->i_orphan);
1309 	init_rwsem(&ei->xattr_sem);
1310 	init_rwsem(&ei->i_data_sem);
1311 	init_rwsem(&ei->i_mmap_sem);
1312 	inode_init_once(&ei->vfs_inode);
1313 	ext4_fc_init_inode(&ei->vfs_inode);
1314 }
1315 
1316 static int __init init_inodecache(void)
1317 {
1318 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1319 				sizeof(struct ext4_inode_info), 0,
1320 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1321 					SLAB_ACCOUNT),
1322 				offsetof(struct ext4_inode_info, i_data),
1323 				sizeof_field(struct ext4_inode_info, i_data),
1324 				init_once);
1325 	if (ext4_inode_cachep == NULL)
1326 		return -ENOMEM;
1327 	return 0;
1328 }
1329 
1330 static void destroy_inodecache(void)
1331 {
1332 	/*
1333 	 * Make sure all delayed rcu free inodes are flushed before we
1334 	 * destroy cache.
1335 	 */
1336 	rcu_barrier();
1337 	kmem_cache_destroy(ext4_inode_cachep);
1338 }
1339 
1340 void ext4_clear_inode(struct inode *inode)
1341 {
1342 	ext4_fc_del(inode);
1343 	invalidate_inode_buffers(inode);
1344 	clear_inode(inode);
1345 	ext4_discard_preallocations(inode, 0);
1346 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1347 	dquot_drop(inode);
1348 	if (EXT4_I(inode)->jinode) {
1349 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1350 					       EXT4_I(inode)->jinode);
1351 		jbd2_free_inode(EXT4_I(inode)->jinode);
1352 		EXT4_I(inode)->jinode = NULL;
1353 	}
1354 	fscrypt_put_encryption_info(inode);
1355 	fsverity_cleanup_inode(inode);
1356 }
1357 
1358 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1359 					u64 ino, u32 generation)
1360 {
1361 	struct inode *inode;
1362 
1363 	/*
1364 	 * Currently we don't know the generation for parent directory, so
1365 	 * a generation of 0 means "accept any"
1366 	 */
1367 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1368 	if (IS_ERR(inode))
1369 		return ERR_CAST(inode);
1370 	if (generation && inode->i_generation != generation) {
1371 		iput(inode);
1372 		return ERR_PTR(-ESTALE);
1373 	}
1374 
1375 	return inode;
1376 }
1377 
1378 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1379 					int fh_len, int fh_type)
1380 {
1381 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1382 				    ext4_nfs_get_inode);
1383 }
1384 
1385 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1386 					int fh_len, int fh_type)
1387 {
1388 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1389 				    ext4_nfs_get_inode);
1390 }
1391 
1392 static int ext4_nfs_commit_metadata(struct inode *inode)
1393 {
1394 	struct writeback_control wbc = {
1395 		.sync_mode = WB_SYNC_ALL
1396 	};
1397 
1398 	trace_ext4_nfs_commit_metadata(inode);
1399 	return ext4_write_inode(inode, &wbc);
1400 }
1401 
1402 /*
1403  * Try to release metadata pages (indirect blocks, directories) which are
1404  * mapped via the block device.  Since these pages could have journal heads
1405  * which would prevent try_to_free_buffers() from freeing them, we must use
1406  * jbd2 layer's try_to_free_buffers() function to release them.
1407  */
1408 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1409 				 gfp_t wait)
1410 {
1411 	journal_t *journal = EXT4_SB(sb)->s_journal;
1412 
1413 	WARN_ON(PageChecked(page));
1414 	if (!page_has_buffers(page))
1415 		return 0;
1416 	if (journal)
1417 		return jbd2_journal_try_to_free_buffers(journal, page);
1418 
1419 	return try_to_free_buffers(page);
1420 }
1421 
1422 #ifdef CONFIG_FS_ENCRYPTION
1423 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1424 {
1425 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1426 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1427 }
1428 
1429 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1430 							void *fs_data)
1431 {
1432 	handle_t *handle = fs_data;
1433 	int res, res2, credits, retries = 0;
1434 
1435 	/*
1436 	 * Encrypting the root directory is not allowed because e2fsck expects
1437 	 * lost+found to exist and be unencrypted, and encrypting the root
1438 	 * directory would imply encrypting the lost+found directory as well as
1439 	 * the filename "lost+found" itself.
1440 	 */
1441 	if (inode->i_ino == EXT4_ROOT_INO)
1442 		return -EPERM;
1443 
1444 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1445 		return -EINVAL;
1446 
1447 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1448 		return -EOPNOTSUPP;
1449 
1450 	res = ext4_convert_inline_data(inode);
1451 	if (res)
1452 		return res;
1453 
1454 	/*
1455 	 * If a journal handle was specified, then the encryption context is
1456 	 * being set on a new inode via inheritance and is part of a larger
1457 	 * transaction to create the inode.  Otherwise the encryption context is
1458 	 * being set on an existing inode in its own transaction.  Only in the
1459 	 * latter case should the "retry on ENOSPC" logic be used.
1460 	 */
1461 
1462 	if (handle) {
1463 		res = ext4_xattr_set_handle(handle, inode,
1464 					    EXT4_XATTR_INDEX_ENCRYPTION,
1465 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1466 					    ctx, len, 0);
1467 		if (!res) {
1468 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1469 			ext4_clear_inode_state(inode,
1470 					EXT4_STATE_MAY_INLINE_DATA);
1471 			/*
1472 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1473 			 * S_DAX may be disabled
1474 			 */
1475 			ext4_set_inode_flags(inode, false);
1476 		}
1477 		return res;
1478 	}
1479 
1480 	res = dquot_initialize(inode);
1481 	if (res)
1482 		return res;
1483 retry:
1484 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1485 				     &credits);
1486 	if (res)
1487 		return res;
1488 
1489 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1490 	if (IS_ERR(handle))
1491 		return PTR_ERR(handle);
1492 
1493 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1494 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1495 				    ctx, len, 0);
1496 	if (!res) {
1497 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1498 		/*
1499 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1500 		 * S_DAX may be disabled
1501 		 */
1502 		ext4_set_inode_flags(inode, false);
1503 		res = ext4_mark_inode_dirty(handle, inode);
1504 		if (res)
1505 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1506 	}
1507 	res2 = ext4_journal_stop(handle);
1508 
1509 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1510 		goto retry;
1511 	if (!res)
1512 		res = res2;
1513 	return res;
1514 }
1515 
1516 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1517 {
1518 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1519 }
1520 
1521 static bool ext4_has_stable_inodes(struct super_block *sb)
1522 {
1523 	return ext4_has_feature_stable_inodes(sb);
1524 }
1525 
1526 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1527 				       int *ino_bits_ret, int *lblk_bits_ret)
1528 {
1529 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1530 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1531 }
1532 
1533 static const struct fscrypt_operations ext4_cryptops = {
1534 	.key_prefix		= "ext4:",
1535 	.get_context		= ext4_get_context,
1536 	.set_context		= ext4_set_context,
1537 	.get_dummy_policy	= ext4_get_dummy_policy,
1538 	.empty_dir		= ext4_empty_dir,
1539 	.max_namelen		= EXT4_NAME_LEN,
1540 	.has_stable_inodes	= ext4_has_stable_inodes,
1541 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1542 };
1543 #endif
1544 
1545 #ifdef CONFIG_QUOTA
1546 static const char * const quotatypes[] = INITQFNAMES;
1547 #define QTYPE2NAME(t) (quotatypes[t])
1548 
1549 static int ext4_write_dquot(struct dquot *dquot);
1550 static int ext4_acquire_dquot(struct dquot *dquot);
1551 static int ext4_release_dquot(struct dquot *dquot);
1552 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1553 static int ext4_write_info(struct super_block *sb, int type);
1554 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1555 			 const struct path *path);
1556 static int ext4_quota_on_mount(struct super_block *sb, int type);
1557 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1558 			       size_t len, loff_t off);
1559 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1560 				const char *data, size_t len, loff_t off);
1561 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1562 			     unsigned int flags);
1563 static int ext4_enable_quotas(struct super_block *sb);
1564 
1565 static struct dquot **ext4_get_dquots(struct inode *inode)
1566 {
1567 	return EXT4_I(inode)->i_dquot;
1568 }
1569 
1570 static const struct dquot_operations ext4_quota_operations = {
1571 	.get_reserved_space	= ext4_get_reserved_space,
1572 	.write_dquot		= ext4_write_dquot,
1573 	.acquire_dquot		= ext4_acquire_dquot,
1574 	.release_dquot		= ext4_release_dquot,
1575 	.mark_dirty		= ext4_mark_dquot_dirty,
1576 	.write_info		= ext4_write_info,
1577 	.alloc_dquot		= dquot_alloc,
1578 	.destroy_dquot		= dquot_destroy,
1579 	.get_projid		= ext4_get_projid,
1580 	.get_inode_usage	= ext4_get_inode_usage,
1581 	.get_next_id		= dquot_get_next_id,
1582 };
1583 
1584 static const struct quotactl_ops ext4_qctl_operations = {
1585 	.quota_on	= ext4_quota_on,
1586 	.quota_off	= ext4_quota_off,
1587 	.quota_sync	= dquot_quota_sync,
1588 	.get_state	= dquot_get_state,
1589 	.set_info	= dquot_set_dqinfo,
1590 	.get_dqblk	= dquot_get_dqblk,
1591 	.set_dqblk	= dquot_set_dqblk,
1592 	.get_nextdqblk	= dquot_get_next_dqblk,
1593 };
1594 #endif
1595 
1596 static const struct super_operations ext4_sops = {
1597 	.alloc_inode	= ext4_alloc_inode,
1598 	.free_inode	= ext4_free_in_core_inode,
1599 	.destroy_inode	= ext4_destroy_inode,
1600 	.write_inode	= ext4_write_inode,
1601 	.dirty_inode	= ext4_dirty_inode,
1602 	.drop_inode	= ext4_drop_inode,
1603 	.evict_inode	= ext4_evict_inode,
1604 	.put_super	= ext4_put_super,
1605 	.sync_fs	= ext4_sync_fs,
1606 	.freeze_fs	= ext4_freeze,
1607 	.unfreeze_fs	= ext4_unfreeze,
1608 	.statfs		= ext4_statfs,
1609 	.remount_fs	= ext4_remount,
1610 	.show_options	= ext4_show_options,
1611 #ifdef CONFIG_QUOTA
1612 	.quota_read	= ext4_quota_read,
1613 	.quota_write	= ext4_quota_write,
1614 	.get_dquots	= ext4_get_dquots,
1615 #endif
1616 	.bdev_try_to_free_page = bdev_try_to_free_page,
1617 };
1618 
1619 static const struct export_operations ext4_export_ops = {
1620 	.fh_to_dentry = ext4_fh_to_dentry,
1621 	.fh_to_parent = ext4_fh_to_parent,
1622 	.get_parent = ext4_get_parent,
1623 	.commit_metadata = ext4_nfs_commit_metadata,
1624 };
1625 
1626 enum {
1627 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1628 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1629 	Opt_nouid32, Opt_debug, Opt_removed,
1630 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1631 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1632 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1633 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1634 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1635 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1636 	Opt_inlinecrypt,
1637 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1638 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1639 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1640 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1641 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1642 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1643 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1644 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1645 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1646 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1647 	Opt_dioread_nolock, Opt_dioread_lock,
1648 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1649 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1650 	Opt_prefetch_block_bitmaps,
1651 #ifdef CONFIG_EXT4_DEBUG
1652 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1653 #endif
1654 };
1655 
1656 static const match_table_t tokens = {
1657 	{Opt_bsd_df, "bsddf"},
1658 	{Opt_minix_df, "minixdf"},
1659 	{Opt_grpid, "grpid"},
1660 	{Opt_grpid, "bsdgroups"},
1661 	{Opt_nogrpid, "nogrpid"},
1662 	{Opt_nogrpid, "sysvgroups"},
1663 	{Opt_resgid, "resgid=%u"},
1664 	{Opt_resuid, "resuid=%u"},
1665 	{Opt_sb, "sb=%u"},
1666 	{Opt_err_cont, "errors=continue"},
1667 	{Opt_err_panic, "errors=panic"},
1668 	{Opt_err_ro, "errors=remount-ro"},
1669 	{Opt_nouid32, "nouid32"},
1670 	{Opt_debug, "debug"},
1671 	{Opt_removed, "oldalloc"},
1672 	{Opt_removed, "orlov"},
1673 	{Opt_user_xattr, "user_xattr"},
1674 	{Opt_nouser_xattr, "nouser_xattr"},
1675 	{Opt_acl, "acl"},
1676 	{Opt_noacl, "noacl"},
1677 	{Opt_noload, "norecovery"},
1678 	{Opt_noload, "noload"},
1679 	{Opt_removed, "nobh"},
1680 	{Opt_removed, "bh"},
1681 	{Opt_commit, "commit=%u"},
1682 	{Opt_min_batch_time, "min_batch_time=%u"},
1683 	{Opt_max_batch_time, "max_batch_time=%u"},
1684 	{Opt_journal_dev, "journal_dev=%u"},
1685 	{Opt_journal_path, "journal_path=%s"},
1686 	{Opt_journal_checksum, "journal_checksum"},
1687 	{Opt_nojournal_checksum, "nojournal_checksum"},
1688 	{Opt_journal_async_commit, "journal_async_commit"},
1689 	{Opt_abort, "abort"},
1690 	{Opt_data_journal, "data=journal"},
1691 	{Opt_data_ordered, "data=ordered"},
1692 	{Opt_data_writeback, "data=writeback"},
1693 	{Opt_data_err_abort, "data_err=abort"},
1694 	{Opt_data_err_ignore, "data_err=ignore"},
1695 	{Opt_offusrjquota, "usrjquota="},
1696 	{Opt_usrjquota, "usrjquota=%s"},
1697 	{Opt_offgrpjquota, "grpjquota="},
1698 	{Opt_grpjquota, "grpjquota=%s"},
1699 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1700 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1701 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1702 	{Opt_grpquota, "grpquota"},
1703 	{Opt_noquota, "noquota"},
1704 	{Opt_quota, "quota"},
1705 	{Opt_usrquota, "usrquota"},
1706 	{Opt_prjquota, "prjquota"},
1707 	{Opt_barrier, "barrier=%u"},
1708 	{Opt_barrier, "barrier"},
1709 	{Opt_nobarrier, "nobarrier"},
1710 	{Opt_i_version, "i_version"},
1711 	{Opt_dax, "dax"},
1712 	{Opt_dax_always, "dax=always"},
1713 	{Opt_dax_inode, "dax=inode"},
1714 	{Opt_dax_never, "dax=never"},
1715 	{Opt_stripe, "stripe=%u"},
1716 	{Opt_delalloc, "delalloc"},
1717 	{Opt_warn_on_error, "warn_on_error"},
1718 	{Opt_nowarn_on_error, "nowarn_on_error"},
1719 	{Opt_lazytime, "lazytime"},
1720 	{Opt_nolazytime, "nolazytime"},
1721 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1722 	{Opt_nodelalloc, "nodelalloc"},
1723 	{Opt_removed, "mblk_io_submit"},
1724 	{Opt_removed, "nomblk_io_submit"},
1725 	{Opt_block_validity, "block_validity"},
1726 	{Opt_noblock_validity, "noblock_validity"},
1727 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1728 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1729 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1730 	{Opt_auto_da_alloc, "auto_da_alloc"},
1731 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1732 	{Opt_dioread_nolock, "dioread_nolock"},
1733 	{Opt_dioread_lock, "nodioread_nolock"},
1734 	{Opt_dioread_lock, "dioread_lock"},
1735 	{Opt_discard, "discard"},
1736 	{Opt_nodiscard, "nodiscard"},
1737 	{Opt_init_itable, "init_itable=%u"},
1738 	{Opt_init_itable, "init_itable"},
1739 	{Opt_noinit_itable, "noinit_itable"},
1740 #ifdef CONFIG_EXT4_DEBUG
1741 	{Opt_fc_debug_force, "fc_debug_force"},
1742 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1743 #endif
1744 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1745 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1746 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1747 	{Opt_inlinecrypt, "inlinecrypt"},
1748 	{Opt_nombcache, "nombcache"},
1749 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1750 	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1751 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1752 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1753 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1754 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1755 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1756 	{Opt_err, NULL},
1757 };
1758 
1759 static ext4_fsblk_t get_sb_block(void **data)
1760 {
1761 	ext4_fsblk_t	sb_block;
1762 	char		*options = (char *) *data;
1763 
1764 	if (!options || strncmp(options, "sb=", 3) != 0)
1765 		return 1;	/* Default location */
1766 
1767 	options += 3;
1768 	/* TODO: use simple_strtoll with >32bit ext4 */
1769 	sb_block = simple_strtoul(options, &options, 0);
1770 	if (*options && *options != ',') {
1771 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1772 		       (char *) *data);
1773 		return 1;
1774 	}
1775 	if (*options == ',')
1776 		options++;
1777 	*data = (void *) options;
1778 
1779 	return sb_block;
1780 }
1781 
1782 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1783 static const char deprecated_msg[] =
1784 	"Mount option \"%s\" will be removed by %s\n"
1785 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1786 
1787 #ifdef CONFIG_QUOTA
1788 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1789 {
1790 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1791 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1792 	int ret = -1;
1793 
1794 	if (sb_any_quota_loaded(sb) && !old_qname) {
1795 		ext4_msg(sb, KERN_ERR,
1796 			"Cannot change journaled "
1797 			"quota options when quota turned on");
1798 		return -1;
1799 	}
1800 	if (ext4_has_feature_quota(sb)) {
1801 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1802 			 "ignored when QUOTA feature is enabled");
1803 		return 1;
1804 	}
1805 	qname = match_strdup(args);
1806 	if (!qname) {
1807 		ext4_msg(sb, KERN_ERR,
1808 			"Not enough memory for storing quotafile name");
1809 		return -1;
1810 	}
1811 	if (old_qname) {
1812 		if (strcmp(old_qname, qname) == 0)
1813 			ret = 1;
1814 		else
1815 			ext4_msg(sb, KERN_ERR,
1816 				 "%s quota file already specified",
1817 				 QTYPE2NAME(qtype));
1818 		goto errout;
1819 	}
1820 	if (strchr(qname, '/')) {
1821 		ext4_msg(sb, KERN_ERR,
1822 			"quotafile must be on filesystem root");
1823 		goto errout;
1824 	}
1825 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1826 	set_opt(sb, QUOTA);
1827 	return 1;
1828 errout:
1829 	kfree(qname);
1830 	return ret;
1831 }
1832 
1833 static int clear_qf_name(struct super_block *sb, int qtype)
1834 {
1835 
1836 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1837 	char *old_qname = get_qf_name(sb, sbi, qtype);
1838 
1839 	if (sb_any_quota_loaded(sb) && old_qname) {
1840 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1841 			" when quota turned on");
1842 		return -1;
1843 	}
1844 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1845 	synchronize_rcu();
1846 	kfree(old_qname);
1847 	return 1;
1848 }
1849 #endif
1850 
1851 #define MOPT_SET	0x0001
1852 #define MOPT_CLEAR	0x0002
1853 #define MOPT_NOSUPPORT	0x0004
1854 #define MOPT_EXPLICIT	0x0008
1855 #define MOPT_CLEAR_ERR	0x0010
1856 #define MOPT_GTE0	0x0020
1857 #ifdef CONFIG_QUOTA
1858 #define MOPT_Q		0
1859 #define MOPT_QFMT	0x0040
1860 #else
1861 #define MOPT_Q		MOPT_NOSUPPORT
1862 #define MOPT_QFMT	MOPT_NOSUPPORT
1863 #endif
1864 #define MOPT_DATAJ	0x0080
1865 #define MOPT_NO_EXT2	0x0100
1866 #define MOPT_NO_EXT3	0x0200
1867 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1868 #define MOPT_STRING	0x0400
1869 #define MOPT_SKIP	0x0800
1870 #define	MOPT_2		0x1000
1871 
1872 static const struct mount_opts {
1873 	int	token;
1874 	int	mount_opt;
1875 	int	flags;
1876 } ext4_mount_opts[] = {
1877 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1878 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1879 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1880 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1881 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1882 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1883 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1884 	 MOPT_EXT4_ONLY | MOPT_SET},
1885 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1886 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1887 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1888 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1889 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1890 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1891 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1892 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1893 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1894 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1895 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1896 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1897 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1898 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1899 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1900 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1901 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1902 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1903 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1904 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1905 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1906 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1907 	 MOPT_NO_EXT2},
1908 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1909 	 MOPT_NO_EXT2},
1910 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1911 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1912 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1913 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1914 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1915 	{Opt_commit, 0, MOPT_GTE0},
1916 	{Opt_max_batch_time, 0, MOPT_GTE0},
1917 	{Opt_min_batch_time, 0, MOPT_GTE0},
1918 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1919 	{Opt_init_itable, 0, MOPT_GTE0},
1920 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1921 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1922 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1923 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1924 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1925 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1926 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1927 	{Opt_stripe, 0, MOPT_GTE0},
1928 	{Opt_resuid, 0, MOPT_GTE0},
1929 	{Opt_resgid, 0, MOPT_GTE0},
1930 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1931 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1932 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1933 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1934 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1935 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1936 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1937 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1938 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1939 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1940 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1941 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1942 #else
1943 	{Opt_acl, 0, MOPT_NOSUPPORT},
1944 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1945 #endif
1946 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1947 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1948 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1949 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1950 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1951 							MOPT_SET | MOPT_Q},
1952 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1953 							MOPT_SET | MOPT_Q},
1954 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1955 							MOPT_SET | MOPT_Q},
1956 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1957 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1958 							MOPT_CLEAR | MOPT_Q},
1959 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1960 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1961 	{Opt_offusrjquota, 0, MOPT_Q},
1962 	{Opt_offgrpjquota, 0, MOPT_Q},
1963 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1964 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1965 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1966 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1967 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
1968 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1969 	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
1970 	 MOPT_SET},
1971 #ifdef CONFIG_EXT4_DEBUG
1972 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1973 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1974 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
1975 #endif
1976 	{Opt_err, 0, 0}
1977 };
1978 
1979 #ifdef CONFIG_UNICODE
1980 static const struct ext4_sb_encodings {
1981 	__u16 magic;
1982 	char *name;
1983 	char *version;
1984 } ext4_sb_encoding_map[] = {
1985 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1986 };
1987 
1988 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1989 				 const struct ext4_sb_encodings **encoding,
1990 				 __u16 *flags)
1991 {
1992 	__u16 magic = le16_to_cpu(es->s_encoding);
1993 	int i;
1994 
1995 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1996 		if (magic == ext4_sb_encoding_map[i].magic)
1997 			break;
1998 
1999 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2000 		return -EINVAL;
2001 
2002 	*encoding = &ext4_sb_encoding_map[i];
2003 	*flags = le16_to_cpu(es->s_encoding_flags);
2004 
2005 	return 0;
2006 }
2007 #endif
2008 
2009 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2010 					  const char *opt,
2011 					  const substring_t *arg,
2012 					  bool is_remount)
2013 {
2014 #ifdef CONFIG_FS_ENCRYPTION
2015 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2016 	int err;
2017 
2018 	/*
2019 	 * This mount option is just for testing, and it's not worthwhile to
2020 	 * implement the extra complexity (e.g. RCU protection) that would be
2021 	 * needed to allow it to be set or changed during remount.  We do allow
2022 	 * it to be specified during remount, but only if there is no change.
2023 	 */
2024 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2025 		ext4_msg(sb, KERN_WARNING,
2026 			 "Can't set test_dummy_encryption on remount");
2027 		return -1;
2028 	}
2029 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2030 						&sbi->s_dummy_enc_policy);
2031 	if (err) {
2032 		if (err == -EEXIST)
2033 			ext4_msg(sb, KERN_WARNING,
2034 				 "Can't change test_dummy_encryption on remount");
2035 		else if (err == -EINVAL)
2036 			ext4_msg(sb, KERN_WARNING,
2037 				 "Value of option \"%s\" is unrecognized", opt);
2038 		else
2039 			ext4_msg(sb, KERN_WARNING,
2040 				 "Error processing option \"%s\" [%d]",
2041 				 opt, err);
2042 		return -1;
2043 	}
2044 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2045 #else
2046 	ext4_msg(sb, KERN_WARNING,
2047 		 "Test dummy encryption mount option ignored");
2048 #endif
2049 	return 1;
2050 }
2051 
2052 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2053 			    substring_t *args, unsigned long *journal_devnum,
2054 			    unsigned int *journal_ioprio, int is_remount)
2055 {
2056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2057 	const struct mount_opts *m;
2058 	kuid_t uid;
2059 	kgid_t gid;
2060 	int arg = 0;
2061 
2062 #ifdef CONFIG_QUOTA
2063 	if (token == Opt_usrjquota)
2064 		return set_qf_name(sb, USRQUOTA, &args[0]);
2065 	else if (token == Opt_grpjquota)
2066 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2067 	else if (token == Opt_offusrjquota)
2068 		return clear_qf_name(sb, USRQUOTA);
2069 	else if (token == Opt_offgrpjquota)
2070 		return clear_qf_name(sb, GRPQUOTA);
2071 #endif
2072 	switch (token) {
2073 	case Opt_noacl:
2074 	case Opt_nouser_xattr:
2075 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2076 		break;
2077 	case Opt_sb:
2078 		return 1;	/* handled by get_sb_block() */
2079 	case Opt_removed:
2080 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2081 		return 1;
2082 	case Opt_abort:
2083 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2084 		return 1;
2085 	case Opt_i_version:
2086 		sb->s_flags |= SB_I_VERSION;
2087 		return 1;
2088 	case Opt_lazytime:
2089 		sb->s_flags |= SB_LAZYTIME;
2090 		return 1;
2091 	case Opt_nolazytime:
2092 		sb->s_flags &= ~SB_LAZYTIME;
2093 		return 1;
2094 	case Opt_inlinecrypt:
2095 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2096 		sb->s_flags |= SB_INLINECRYPT;
2097 #else
2098 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2099 #endif
2100 		return 1;
2101 	}
2102 
2103 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2104 		if (token == m->token)
2105 			break;
2106 
2107 	if (m->token == Opt_err) {
2108 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2109 			 "or missing value", opt);
2110 		return -1;
2111 	}
2112 
2113 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2114 		ext4_msg(sb, KERN_ERR,
2115 			 "Mount option \"%s\" incompatible with ext2", opt);
2116 		return -1;
2117 	}
2118 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2119 		ext4_msg(sb, KERN_ERR,
2120 			 "Mount option \"%s\" incompatible with ext3", opt);
2121 		return -1;
2122 	}
2123 
2124 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2125 		return -1;
2126 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2127 		return -1;
2128 	if (m->flags & MOPT_EXPLICIT) {
2129 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2130 			set_opt2(sb, EXPLICIT_DELALLOC);
2131 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2132 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2133 		} else
2134 			return -1;
2135 	}
2136 	if (m->flags & MOPT_CLEAR_ERR)
2137 		clear_opt(sb, ERRORS_MASK);
2138 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2139 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2140 			 "options when quota turned on");
2141 		return -1;
2142 	}
2143 
2144 	if (m->flags & MOPT_NOSUPPORT) {
2145 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2146 	} else if (token == Opt_commit) {
2147 		if (arg == 0)
2148 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2149 		else if (arg > INT_MAX / HZ) {
2150 			ext4_msg(sb, KERN_ERR,
2151 				 "Invalid commit interval %d, "
2152 				 "must be smaller than %d",
2153 				 arg, INT_MAX / HZ);
2154 			return -1;
2155 		}
2156 		sbi->s_commit_interval = HZ * arg;
2157 	} else if (token == Opt_debug_want_extra_isize) {
2158 		if ((arg & 1) ||
2159 		    (arg < 4) ||
2160 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2161 			ext4_msg(sb, KERN_ERR,
2162 				 "Invalid want_extra_isize %d", arg);
2163 			return -1;
2164 		}
2165 		sbi->s_want_extra_isize = arg;
2166 	} else if (token == Opt_max_batch_time) {
2167 		sbi->s_max_batch_time = arg;
2168 	} else if (token == Opt_min_batch_time) {
2169 		sbi->s_min_batch_time = arg;
2170 	} else if (token == Opt_inode_readahead_blks) {
2171 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2172 			ext4_msg(sb, KERN_ERR,
2173 				 "EXT4-fs: inode_readahead_blks must be "
2174 				 "0 or a power of 2 smaller than 2^31");
2175 			return -1;
2176 		}
2177 		sbi->s_inode_readahead_blks = arg;
2178 	} else if (token == Opt_init_itable) {
2179 		set_opt(sb, INIT_INODE_TABLE);
2180 		if (!args->from)
2181 			arg = EXT4_DEF_LI_WAIT_MULT;
2182 		sbi->s_li_wait_mult = arg;
2183 	} else if (token == Opt_max_dir_size_kb) {
2184 		sbi->s_max_dir_size_kb = arg;
2185 #ifdef CONFIG_EXT4_DEBUG
2186 	} else if (token == Opt_fc_debug_max_replay) {
2187 		sbi->s_fc_debug_max_replay = arg;
2188 #endif
2189 	} else if (token == Opt_stripe) {
2190 		sbi->s_stripe = arg;
2191 	} else if (token == Opt_resuid) {
2192 		uid = make_kuid(current_user_ns(), arg);
2193 		if (!uid_valid(uid)) {
2194 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2195 			return -1;
2196 		}
2197 		sbi->s_resuid = uid;
2198 	} else if (token == Opt_resgid) {
2199 		gid = make_kgid(current_user_ns(), arg);
2200 		if (!gid_valid(gid)) {
2201 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2202 			return -1;
2203 		}
2204 		sbi->s_resgid = gid;
2205 	} else if (token == Opt_journal_dev) {
2206 		if (is_remount) {
2207 			ext4_msg(sb, KERN_ERR,
2208 				 "Cannot specify journal on remount");
2209 			return -1;
2210 		}
2211 		*journal_devnum = arg;
2212 	} else if (token == Opt_journal_path) {
2213 		char *journal_path;
2214 		struct inode *journal_inode;
2215 		struct path path;
2216 		int error;
2217 
2218 		if (is_remount) {
2219 			ext4_msg(sb, KERN_ERR,
2220 				 "Cannot specify journal on remount");
2221 			return -1;
2222 		}
2223 		journal_path = match_strdup(&args[0]);
2224 		if (!journal_path) {
2225 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2226 				"journal device string");
2227 			return -1;
2228 		}
2229 
2230 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2231 		if (error) {
2232 			ext4_msg(sb, KERN_ERR, "error: could not find "
2233 				"journal device path: error %d", error);
2234 			kfree(journal_path);
2235 			return -1;
2236 		}
2237 
2238 		journal_inode = d_inode(path.dentry);
2239 		if (!S_ISBLK(journal_inode->i_mode)) {
2240 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2241 				"is not a block device", journal_path);
2242 			path_put(&path);
2243 			kfree(journal_path);
2244 			return -1;
2245 		}
2246 
2247 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2248 		path_put(&path);
2249 		kfree(journal_path);
2250 	} else if (token == Opt_journal_ioprio) {
2251 		if (arg > 7) {
2252 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2253 				 " (must be 0-7)");
2254 			return -1;
2255 		}
2256 		*journal_ioprio =
2257 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2258 	} else if (token == Opt_test_dummy_encryption) {
2259 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2260 						      is_remount);
2261 	} else if (m->flags & MOPT_DATAJ) {
2262 		if (is_remount) {
2263 			if (!sbi->s_journal)
2264 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2265 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2266 				ext4_msg(sb, KERN_ERR,
2267 					 "Cannot change data mode on remount");
2268 				return -1;
2269 			}
2270 		} else {
2271 			clear_opt(sb, DATA_FLAGS);
2272 			sbi->s_mount_opt |= m->mount_opt;
2273 		}
2274 #ifdef CONFIG_QUOTA
2275 	} else if (m->flags & MOPT_QFMT) {
2276 		if (sb_any_quota_loaded(sb) &&
2277 		    sbi->s_jquota_fmt != m->mount_opt) {
2278 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2279 				 "quota options when quota turned on");
2280 			return -1;
2281 		}
2282 		if (ext4_has_feature_quota(sb)) {
2283 			ext4_msg(sb, KERN_INFO,
2284 				 "Quota format mount options ignored "
2285 				 "when QUOTA feature is enabled");
2286 			return 1;
2287 		}
2288 		sbi->s_jquota_fmt = m->mount_opt;
2289 #endif
2290 	} else if (token == Opt_dax || token == Opt_dax_always ||
2291 		   token == Opt_dax_inode || token == Opt_dax_never) {
2292 #ifdef CONFIG_FS_DAX
2293 		switch (token) {
2294 		case Opt_dax:
2295 		case Opt_dax_always:
2296 			if (is_remount &&
2297 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2298 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2299 			fail_dax_change_remount:
2300 				ext4_msg(sb, KERN_ERR, "can't change "
2301 					 "dax mount option while remounting");
2302 				return -1;
2303 			}
2304 			if (is_remount &&
2305 			    (test_opt(sb, DATA_FLAGS) ==
2306 			     EXT4_MOUNT_JOURNAL_DATA)) {
2307 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2308 					     "both data=journal and dax");
2309 				    return -1;
2310 			}
2311 			ext4_msg(sb, KERN_WARNING,
2312 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2313 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2314 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2315 			break;
2316 		case Opt_dax_never:
2317 			if (is_remount &&
2318 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2319 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2320 				goto fail_dax_change_remount;
2321 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2322 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2323 			break;
2324 		case Opt_dax_inode:
2325 			if (is_remount &&
2326 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2327 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2328 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2329 				goto fail_dax_change_remount;
2330 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2331 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2332 			/* Strictly for printing options */
2333 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2334 			break;
2335 		}
2336 #else
2337 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2338 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2339 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2340 		return -1;
2341 #endif
2342 	} else if (token == Opt_data_err_abort) {
2343 		sbi->s_mount_opt |= m->mount_opt;
2344 	} else if (token == Opt_data_err_ignore) {
2345 		sbi->s_mount_opt &= ~m->mount_opt;
2346 	} else {
2347 		if (!args->from)
2348 			arg = 1;
2349 		if (m->flags & MOPT_CLEAR)
2350 			arg = !arg;
2351 		else if (unlikely(!(m->flags & MOPT_SET))) {
2352 			ext4_msg(sb, KERN_WARNING,
2353 				 "buggy handling of option %s", opt);
2354 			WARN_ON(1);
2355 			return -1;
2356 		}
2357 		if (m->flags & MOPT_2) {
2358 			if (arg != 0)
2359 				sbi->s_mount_opt2 |= m->mount_opt;
2360 			else
2361 				sbi->s_mount_opt2 &= ~m->mount_opt;
2362 		} else {
2363 			if (arg != 0)
2364 				sbi->s_mount_opt |= m->mount_opt;
2365 			else
2366 				sbi->s_mount_opt &= ~m->mount_opt;
2367 		}
2368 	}
2369 	return 1;
2370 }
2371 
2372 static int parse_options(char *options, struct super_block *sb,
2373 			 unsigned long *journal_devnum,
2374 			 unsigned int *journal_ioprio,
2375 			 int is_remount)
2376 {
2377 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2378 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2379 	substring_t args[MAX_OPT_ARGS];
2380 	int token;
2381 
2382 	if (!options)
2383 		return 1;
2384 
2385 	while ((p = strsep(&options, ",")) != NULL) {
2386 		if (!*p)
2387 			continue;
2388 		/*
2389 		 * Initialize args struct so we know whether arg was
2390 		 * found; some options take optional arguments.
2391 		 */
2392 		args[0].to = args[0].from = NULL;
2393 		token = match_token(p, tokens, args);
2394 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2395 				     journal_ioprio, is_remount) < 0)
2396 			return 0;
2397 	}
2398 #ifdef CONFIG_QUOTA
2399 	/*
2400 	 * We do the test below only for project quotas. 'usrquota' and
2401 	 * 'grpquota' mount options are allowed even without quota feature
2402 	 * to support legacy quotas in quota files.
2403 	 */
2404 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2405 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2406 			 "Cannot enable project quota enforcement.");
2407 		return 0;
2408 	}
2409 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2410 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2411 	if (usr_qf_name || grp_qf_name) {
2412 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2413 			clear_opt(sb, USRQUOTA);
2414 
2415 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2416 			clear_opt(sb, GRPQUOTA);
2417 
2418 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2419 			ext4_msg(sb, KERN_ERR, "old and new quota "
2420 					"format mixing");
2421 			return 0;
2422 		}
2423 
2424 		if (!sbi->s_jquota_fmt) {
2425 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2426 					"not specified");
2427 			return 0;
2428 		}
2429 	}
2430 #endif
2431 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2432 		int blocksize =
2433 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2434 		if (blocksize < PAGE_SIZE)
2435 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2436 				 "experimental mount option 'dioread_nolock' "
2437 				 "for blocksize < PAGE_SIZE");
2438 	}
2439 	return 1;
2440 }
2441 
2442 static inline void ext4_show_quota_options(struct seq_file *seq,
2443 					   struct super_block *sb)
2444 {
2445 #if defined(CONFIG_QUOTA)
2446 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2447 	char *usr_qf_name, *grp_qf_name;
2448 
2449 	if (sbi->s_jquota_fmt) {
2450 		char *fmtname = "";
2451 
2452 		switch (sbi->s_jquota_fmt) {
2453 		case QFMT_VFS_OLD:
2454 			fmtname = "vfsold";
2455 			break;
2456 		case QFMT_VFS_V0:
2457 			fmtname = "vfsv0";
2458 			break;
2459 		case QFMT_VFS_V1:
2460 			fmtname = "vfsv1";
2461 			break;
2462 		}
2463 		seq_printf(seq, ",jqfmt=%s", fmtname);
2464 	}
2465 
2466 	rcu_read_lock();
2467 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2468 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2469 	if (usr_qf_name)
2470 		seq_show_option(seq, "usrjquota", usr_qf_name);
2471 	if (grp_qf_name)
2472 		seq_show_option(seq, "grpjquota", grp_qf_name);
2473 	rcu_read_unlock();
2474 #endif
2475 }
2476 
2477 static const char *token2str(int token)
2478 {
2479 	const struct match_token *t;
2480 
2481 	for (t = tokens; t->token != Opt_err; t++)
2482 		if (t->token == token && !strchr(t->pattern, '='))
2483 			break;
2484 	return t->pattern;
2485 }
2486 
2487 /*
2488  * Show an option if
2489  *  - it's set to a non-default value OR
2490  *  - if the per-sb default is different from the global default
2491  */
2492 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2493 			      int nodefs)
2494 {
2495 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2496 	struct ext4_super_block *es = sbi->s_es;
2497 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2498 	const struct mount_opts *m;
2499 	char sep = nodefs ? '\n' : ',';
2500 
2501 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2502 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2503 
2504 	if (sbi->s_sb_block != 1)
2505 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2506 
2507 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2508 		int want_set = m->flags & MOPT_SET;
2509 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2510 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2511 			continue;
2512 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2513 			continue; /* skip if same as the default */
2514 		if ((want_set &&
2515 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2516 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2517 			continue; /* select Opt_noFoo vs Opt_Foo */
2518 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2519 	}
2520 
2521 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2522 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2523 		SEQ_OPTS_PRINT("resuid=%u",
2524 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2525 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2526 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2527 		SEQ_OPTS_PRINT("resgid=%u",
2528 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2529 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2530 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2531 		SEQ_OPTS_PUTS("errors=remount-ro");
2532 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2533 		SEQ_OPTS_PUTS("errors=continue");
2534 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2535 		SEQ_OPTS_PUTS("errors=panic");
2536 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2537 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2538 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2539 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2540 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2541 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2542 	if (sb->s_flags & SB_I_VERSION)
2543 		SEQ_OPTS_PUTS("i_version");
2544 	if (nodefs || sbi->s_stripe)
2545 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2546 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2547 			(sbi->s_mount_opt ^ def_mount_opt)) {
2548 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2549 			SEQ_OPTS_PUTS("data=journal");
2550 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2551 			SEQ_OPTS_PUTS("data=ordered");
2552 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2553 			SEQ_OPTS_PUTS("data=writeback");
2554 	}
2555 	if (nodefs ||
2556 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2557 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2558 			       sbi->s_inode_readahead_blks);
2559 
2560 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2561 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2562 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2563 	if (nodefs || sbi->s_max_dir_size_kb)
2564 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2565 	if (test_opt(sb, DATA_ERR_ABORT))
2566 		SEQ_OPTS_PUTS("data_err=abort");
2567 
2568 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2569 
2570 	if (sb->s_flags & SB_INLINECRYPT)
2571 		SEQ_OPTS_PUTS("inlinecrypt");
2572 
2573 	if (test_opt(sb, DAX_ALWAYS)) {
2574 		if (IS_EXT2_SB(sb))
2575 			SEQ_OPTS_PUTS("dax");
2576 		else
2577 			SEQ_OPTS_PUTS("dax=always");
2578 	} else if (test_opt2(sb, DAX_NEVER)) {
2579 		SEQ_OPTS_PUTS("dax=never");
2580 	} else if (test_opt2(sb, DAX_INODE)) {
2581 		SEQ_OPTS_PUTS("dax=inode");
2582 	}
2583 	ext4_show_quota_options(seq, sb);
2584 	return 0;
2585 }
2586 
2587 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2588 {
2589 	return _ext4_show_options(seq, root->d_sb, 0);
2590 }
2591 
2592 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2593 {
2594 	struct super_block *sb = seq->private;
2595 	int rc;
2596 
2597 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2598 	rc = _ext4_show_options(seq, sb, 1);
2599 	seq_puts(seq, "\n");
2600 	return rc;
2601 }
2602 
2603 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2604 			    int read_only)
2605 {
2606 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2607 	int err = 0;
2608 
2609 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2610 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2611 			 "forcing read-only mode");
2612 		err = -EROFS;
2613 		goto done;
2614 	}
2615 	if (read_only)
2616 		goto done;
2617 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2618 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2619 			 "running e2fsck is recommended");
2620 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2621 		ext4_msg(sb, KERN_WARNING,
2622 			 "warning: mounting fs with errors, "
2623 			 "running e2fsck is recommended");
2624 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2625 		 le16_to_cpu(es->s_mnt_count) >=
2626 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2627 		ext4_msg(sb, KERN_WARNING,
2628 			 "warning: maximal mount count reached, "
2629 			 "running e2fsck is recommended");
2630 	else if (le32_to_cpu(es->s_checkinterval) &&
2631 		 (ext4_get_tstamp(es, s_lastcheck) +
2632 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2633 		ext4_msg(sb, KERN_WARNING,
2634 			 "warning: checktime reached, "
2635 			 "running e2fsck is recommended");
2636 	if (!sbi->s_journal)
2637 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2638 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2639 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2640 	le16_add_cpu(&es->s_mnt_count, 1);
2641 	ext4_update_tstamp(es, s_mtime);
2642 	if (sbi->s_journal)
2643 		ext4_set_feature_journal_needs_recovery(sb);
2644 
2645 	err = ext4_commit_super(sb, 1);
2646 done:
2647 	if (test_opt(sb, DEBUG))
2648 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2649 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2650 			sb->s_blocksize,
2651 			sbi->s_groups_count,
2652 			EXT4_BLOCKS_PER_GROUP(sb),
2653 			EXT4_INODES_PER_GROUP(sb),
2654 			sbi->s_mount_opt, sbi->s_mount_opt2);
2655 
2656 	cleancache_init_fs(sb);
2657 	return err;
2658 }
2659 
2660 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2661 {
2662 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2663 	struct flex_groups **old_groups, **new_groups;
2664 	int size, i, j;
2665 
2666 	if (!sbi->s_log_groups_per_flex)
2667 		return 0;
2668 
2669 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2670 	if (size <= sbi->s_flex_groups_allocated)
2671 		return 0;
2672 
2673 	new_groups = kvzalloc(roundup_pow_of_two(size *
2674 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2675 	if (!new_groups) {
2676 		ext4_msg(sb, KERN_ERR,
2677 			 "not enough memory for %d flex group pointers", size);
2678 		return -ENOMEM;
2679 	}
2680 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2681 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2682 					 sizeof(struct flex_groups)),
2683 					 GFP_KERNEL);
2684 		if (!new_groups[i]) {
2685 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2686 				kvfree(new_groups[j]);
2687 			kvfree(new_groups);
2688 			ext4_msg(sb, KERN_ERR,
2689 				 "not enough memory for %d flex groups", size);
2690 			return -ENOMEM;
2691 		}
2692 	}
2693 	rcu_read_lock();
2694 	old_groups = rcu_dereference(sbi->s_flex_groups);
2695 	if (old_groups)
2696 		memcpy(new_groups, old_groups,
2697 		       (sbi->s_flex_groups_allocated *
2698 			sizeof(struct flex_groups *)));
2699 	rcu_read_unlock();
2700 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2701 	sbi->s_flex_groups_allocated = size;
2702 	if (old_groups)
2703 		ext4_kvfree_array_rcu(old_groups);
2704 	return 0;
2705 }
2706 
2707 static int ext4_fill_flex_info(struct super_block *sb)
2708 {
2709 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2710 	struct ext4_group_desc *gdp = NULL;
2711 	struct flex_groups *fg;
2712 	ext4_group_t flex_group;
2713 	int i, err;
2714 
2715 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2716 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2717 		sbi->s_log_groups_per_flex = 0;
2718 		return 1;
2719 	}
2720 
2721 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2722 	if (err)
2723 		goto failed;
2724 
2725 	for (i = 0; i < sbi->s_groups_count; i++) {
2726 		gdp = ext4_get_group_desc(sb, i, NULL);
2727 
2728 		flex_group = ext4_flex_group(sbi, i);
2729 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2730 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2731 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2732 			     &fg->free_clusters);
2733 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2734 	}
2735 
2736 	return 1;
2737 failed:
2738 	return 0;
2739 }
2740 
2741 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2742 				   struct ext4_group_desc *gdp)
2743 {
2744 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2745 	__u16 crc = 0;
2746 	__le32 le_group = cpu_to_le32(block_group);
2747 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2748 
2749 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2750 		/* Use new metadata_csum algorithm */
2751 		__u32 csum32;
2752 		__u16 dummy_csum = 0;
2753 
2754 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2755 				     sizeof(le_group));
2756 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2757 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2758 				     sizeof(dummy_csum));
2759 		offset += sizeof(dummy_csum);
2760 		if (offset < sbi->s_desc_size)
2761 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2762 					     sbi->s_desc_size - offset);
2763 
2764 		crc = csum32 & 0xFFFF;
2765 		goto out;
2766 	}
2767 
2768 	/* old crc16 code */
2769 	if (!ext4_has_feature_gdt_csum(sb))
2770 		return 0;
2771 
2772 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2773 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2774 	crc = crc16(crc, (__u8 *)gdp, offset);
2775 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2776 	/* for checksum of struct ext4_group_desc do the rest...*/
2777 	if (ext4_has_feature_64bit(sb) &&
2778 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2779 		crc = crc16(crc, (__u8 *)gdp + offset,
2780 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2781 				offset);
2782 
2783 out:
2784 	return cpu_to_le16(crc);
2785 }
2786 
2787 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2788 				struct ext4_group_desc *gdp)
2789 {
2790 	if (ext4_has_group_desc_csum(sb) &&
2791 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2792 		return 0;
2793 
2794 	return 1;
2795 }
2796 
2797 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2798 			      struct ext4_group_desc *gdp)
2799 {
2800 	if (!ext4_has_group_desc_csum(sb))
2801 		return;
2802 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2803 }
2804 
2805 /* Called at mount-time, super-block is locked */
2806 static int ext4_check_descriptors(struct super_block *sb,
2807 				  ext4_fsblk_t sb_block,
2808 				  ext4_group_t *first_not_zeroed)
2809 {
2810 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2811 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2812 	ext4_fsblk_t last_block;
2813 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2814 	ext4_fsblk_t block_bitmap;
2815 	ext4_fsblk_t inode_bitmap;
2816 	ext4_fsblk_t inode_table;
2817 	int flexbg_flag = 0;
2818 	ext4_group_t i, grp = sbi->s_groups_count;
2819 
2820 	if (ext4_has_feature_flex_bg(sb))
2821 		flexbg_flag = 1;
2822 
2823 	ext4_debug("Checking group descriptors");
2824 
2825 	for (i = 0; i < sbi->s_groups_count; i++) {
2826 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2827 
2828 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2829 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2830 		else
2831 			last_block = first_block +
2832 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2833 
2834 		if ((grp == sbi->s_groups_count) &&
2835 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2836 			grp = i;
2837 
2838 		block_bitmap = ext4_block_bitmap(sb, gdp);
2839 		if (block_bitmap == sb_block) {
2840 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2841 				 "Block bitmap for group %u overlaps "
2842 				 "superblock", i);
2843 			if (!sb_rdonly(sb))
2844 				return 0;
2845 		}
2846 		if (block_bitmap >= sb_block + 1 &&
2847 		    block_bitmap <= last_bg_block) {
2848 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2849 				 "Block bitmap for group %u overlaps "
2850 				 "block group descriptors", i);
2851 			if (!sb_rdonly(sb))
2852 				return 0;
2853 		}
2854 		if (block_bitmap < first_block || block_bitmap > last_block) {
2855 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2856 			       "Block bitmap for group %u not in group "
2857 			       "(block %llu)!", i, block_bitmap);
2858 			return 0;
2859 		}
2860 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2861 		if (inode_bitmap == sb_block) {
2862 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2863 				 "Inode bitmap for group %u overlaps "
2864 				 "superblock", i);
2865 			if (!sb_rdonly(sb))
2866 				return 0;
2867 		}
2868 		if (inode_bitmap >= sb_block + 1 &&
2869 		    inode_bitmap <= last_bg_block) {
2870 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2871 				 "Inode bitmap for group %u overlaps "
2872 				 "block group descriptors", i);
2873 			if (!sb_rdonly(sb))
2874 				return 0;
2875 		}
2876 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2877 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2878 			       "Inode bitmap for group %u not in group "
2879 			       "(block %llu)!", i, inode_bitmap);
2880 			return 0;
2881 		}
2882 		inode_table = ext4_inode_table(sb, gdp);
2883 		if (inode_table == sb_block) {
2884 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2885 				 "Inode table for group %u overlaps "
2886 				 "superblock", i);
2887 			if (!sb_rdonly(sb))
2888 				return 0;
2889 		}
2890 		if (inode_table >= sb_block + 1 &&
2891 		    inode_table <= last_bg_block) {
2892 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2893 				 "Inode table for group %u overlaps "
2894 				 "block group descriptors", i);
2895 			if (!sb_rdonly(sb))
2896 				return 0;
2897 		}
2898 		if (inode_table < first_block ||
2899 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2900 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2901 			       "Inode table for group %u not in group "
2902 			       "(block %llu)!", i, inode_table);
2903 			return 0;
2904 		}
2905 		ext4_lock_group(sb, i);
2906 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2907 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2908 				 "Checksum for group %u failed (%u!=%u)",
2909 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2910 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2911 			if (!sb_rdonly(sb)) {
2912 				ext4_unlock_group(sb, i);
2913 				return 0;
2914 			}
2915 		}
2916 		ext4_unlock_group(sb, i);
2917 		if (!flexbg_flag)
2918 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2919 	}
2920 	if (NULL != first_not_zeroed)
2921 		*first_not_zeroed = grp;
2922 	return 1;
2923 }
2924 
2925 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2926  * the superblock) which were deleted from all directories, but held open by
2927  * a process at the time of a crash.  We walk the list and try to delete these
2928  * inodes at recovery time (only with a read-write filesystem).
2929  *
2930  * In order to keep the orphan inode chain consistent during traversal (in
2931  * case of crash during recovery), we link each inode into the superblock
2932  * orphan list_head and handle it the same way as an inode deletion during
2933  * normal operation (which journals the operations for us).
2934  *
2935  * We only do an iget() and an iput() on each inode, which is very safe if we
2936  * accidentally point at an in-use or already deleted inode.  The worst that
2937  * can happen in this case is that we get a "bit already cleared" message from
2938  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2939  * e2fsck was run on this filesystem, and it must have already done the orphan
2940  * inode cleanup for us, so we can safely abort without any further action.
2941  */
2942 static void ext4_orphan_cleanup(struct super_block *sb,
2943 				struct ext4_super_block *es)
2944 {
2945 	unsigned int s_flags = sb->s_flags;
2946 	int ret, nr_orphans = 0, nr_truncates = 0;
2947 #ifdef CONFIG_QUOTA
2948 	int quota_update = 0;
2949 	int i;
2950 #endif
2951 	if (!es->s_last_orphan) {
2952 		jbd_debug(4, "no orphan inodes to clean up\n");
2953 		return;
2954 	}
2955 
2956 	if (bdev_read_only(sb->s_bdev)) {
2957 		ext4_msg(sb, KERN_ERR, "write access "
2958 			"unavailable, skipping orphan cleanup");
2959 		return;
2960 	}
2961 
2962 	/* Check if feature set would not allow a r/w mount */
2963 	if (!ext4_feature_set_ok(sb, 0)) {
2964 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2965 			 "unknown ROCOMPAT features");
2966 		return;
2967 	}
2968 
2969 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2970 		/* don't clear list on RO mount w/ errors */
2971 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2972 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2973 				  "clearing orphan list.\n");
2974 			es->s_last_orphan = 0;
2975 		}
2976 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2977 		return;
2978 	}
2979 
2980 	if (s_flags & SB_RDONLY) {
2981 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2982 		sb->s_flags &= ~SB_RDONLY;
2983 	}
2984 #ifdef CONFIG_QUOTA
2985 	/* Needed for iput() to work correctly and not trash data */
2986 	sb->s_flags |= SB_ACTIVE;
2987 
2988 	/*
2989 	 * Turn on quotas which were not enabled for read-only mounts if
2990 	 * filesystem has quota feature, so that they are updated correctly.
2991 	 */
2992 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2993 		int ret = ext4_enable_quotas(sb);
2994 
2995 		if (!ret)
2996 			quota_update = 1;
2997 		else
2998 			ext4_msg(sb, KERN_ERR,
2999 				"Cannot turn on quotas: error %d", ret);
3000 	}
3001 
3002 	/* Turn on journaled quotas used for old sytle */
3003 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3004 		if (EXT4_SB(sb)->s_qf_names[i]) {
3005 			int ret = ext4_quota_on_mount(sb, i);
3006 
3007 			if (!ret)
3008 				quota_update = 1;
3009 			else
3010 				ext4_msg(sb, KERN_ERR,
3011 					"Cannot turn on journaled "
3012 					"quota: type %d: error %d", i, ret);
3013 		}
3014 	}
3015 #endif
3016 
3017 	while (es->s_last_orphan) {
3018 		struct inode *inode;
3019 
3020 		/*
3021 		 * We may have encountered an error during cleanup; if
3022 		 * so, skip the rest.
3023 		 */
3024 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3025 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3026 			es->s_last_orphan = 0;
3027 			break;
3028 		}
3029 
3030 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3031 		if (IS_ERR(inode)) {
3032 			es->s_last_orphan = 0;
3033 			break;
3034 		}
3035 
3036 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3037 		dquot_initialize(inode);
3038 		if (inode->i_nlink) {
3039 			if (test_opt(sb, DEBUG))
3040 				ext4_msg(sb, KERN_DEBUG,
3041 					"%s: truncating inode %lu to %lld bytes",
3042 					__func__, inode->i_ino, inode->i_size);
3043 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3044 				  inode->i_ino, inode->i_size);
3045 			inode_lock(inode);
3046 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3047 			ret = ext4_truncate(inode);
3048 			if (ret)
3049 				ext4_std_error(inode->i_sb, ret);
3050 			inode_unlock(inode);
3051 			nr_truncates++;
3052 		} else {
3053 			if (test_opt(sb, DEBUG))
3054 				ext4_msg(sb, KERN_DEBUG,
3055 					"%s: deleting unreferenced inode %lu",
3056 					__func__, inode->i_ino);
3057 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3058 				  inode->i_ino);
3059 			nr_orphans++;
3060 		}
3061 		iput(inode);  /* The delete magic happens here! */
3062 	}
3063 
3064 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3065 
3066 	if (nr_orphans)
3067 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3068 		       PLURAL(nr_orphans));
3069 	if (nr_truncates)
3070 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3071 		       PLURAL(nr_truncates));
3072 #ifdef CONFIG_QUOTA
3073 	/* Turn off quotas if they were enabled for orphan cleanup */
3074 	if (quota_update) {
3075 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3076 			if (sb_dqopt(sb)->files[i])
3077 				dquot_quota_off(sb, i);
3078 		}
3079 	}
3080 #endif
3081 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3082 }
3083 
3084 /*
3085  * Maximal extent format file size.
3086  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3087  * extent format containers, within a sector_t, and within i_blocks
3088  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3089  * so that won't be a limiting factor.
3090  *
3091  * However there is other limiting factor. We do store extents in the form
3092  * of starting block and length, hence the resulting length of the extent
3093  * covering maximum file size must fit into on-disk format containers as
3094  * well. Given that length is always by 1 unit bigger than max unit (because
3095  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3096  *
3097  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3098  */
3099 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3100 {
3101 	loff_t res;
3102 	loff_t upper_limit = MAX_LFS_FILESIZE;
3103 
3104 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3105 
3106 	if (!has_huge_files) {
3107 		upper_limit = (1LL << 32) - 1;
3108 
3109 		/* total blocks in file system block size */
3110 		upper_limit >>= (blkbits - 9);
3111 		upper_limit <<= blkbits;
3112 	}
3113 
3114 	/*
3115 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3116 	 * by one fs block, so ee_len can cover the extent of maximum file
3117 	 * size
3118 	 */
3119 	res = (1LL << 32) - 1;
3120 	res <<= blkbits;
3121 
3122 	/* Sanity check against vm- & vfs- imposed limits */
3123 	if (res > upper_limit)
3124 		res = upper_limit;
3125 
3126 	return res;
3127 }
3128 
3129 /*
3130  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3131  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3132  * We need to be 1 filesystem block less than the 2^48 sector limit.
3133  */
3134 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3135 {
3136 	loff_t res = EXT4_NDIR_BLOCKS;
3137 	int meta_blocks;
3138 	loff_t upper_limit;
3139 	/* This is calculated to be the largest file size for a dense, block
3140 	 * mapped file such that the file's total number of 512-byte sectors,
3141 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3142 	 *
3143 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3144 	 * number of 512-byte sectors of the file.
3145 	 */
3146 
3147 	if (!has_huge_files) {
3148 		/*
3149 		 * !has_huge_files or implies that the inode i_block field
3150 		 * represents total file blocks in 2^32 512-byte sectors ==
3151 		 * size of vfs inode i_blocks * 8
3152 		 */
3153 		upper_limit = (1LL << 32) - 1;
3154 
3155 		/* total blocks in file system block size */
3156 		upper_limit >>= (bits - 9);
3157 
3158 	} else {
3159 		/*
3160 		 * We use 48 bit ext4_inode i_blocks
3161 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3162 		 * represent total number of blocks in
3163 		 * file system block size
3164 		 */
3165 		upper_limit = (1LL << 48) - 1;
3166 
3167 	}
3168 
3169 	/* indirect blocks */
3170 	meta_blocks = 1;
3171 	/* double indirect blocks */
3172 	meta_blocks += 1 + (1LL << (bits-2));
3173 	/* tripple indirect blocks */
3174 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3175 
3176 	upper_limit -= meta_blocks;
3177 	upper_limit <<= bits;
3178 
3179 	res += 1LL << (bits-2);
3180 	res += 1LL << (2*(bits-2));
3181 	res += 1LL << (3*(bits-2));
3182 	res <<= bits;
3183 	if (res > upper_limit)
3184 		res = upper_limit;
3185 
3186 	if (res > MAX_LFS_FILESIZE)
3187 		res = MAX_LFS_FILESIZE;
3188 
3189 	return res;
3190 }
3191 
3192 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3193 				   ext4_fsblk_t logical_sb_block, int nr)
3194 {
3195 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3196 	ext4_group_t bg, first_meta_bg;
3197 	int has_super = 0;
3198 
3199 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3200 
3201 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3202 		return logical_sb_block + nr + 1;
3203 	bg = sbi->s_desc_per_block * nr;
3204 	if (ext4_bg_has_super(sb, bg))
3205 		has_super = 1;
3206 
3207 	/*
3208 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3209 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3210 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3211 	 * compensate.
3212 	 */
3213 	if (sb->s_blocksize == 1024 && nr == 0 &&
3214 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3215 		has_super++;
3216 
3217 	return (has_super + ext4_group_first_block_no(sb, bg));
3218 }
3219 
3220 /**
3221  * ext4_get_stripe_size: Get the stripe size.
3222  * @sbi: In memory super block info
3223  *
3224  * If we have specified it via mount option, then
3225  * use the mount option value. If the value specified at mount time is
3226  * greater than the blocks per group use the super block value.
3227  * If the super block value is greater than blocks per group return 0.
3228  * Allocator needs it be less than blocks per group.
3229  *
3230  */
3231 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3232 {
3233 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3234 	unsigned long stripe_width =
3235 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3236 	int ret;
3237 
3238 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3239 		ret = sbi->s_stripe;
3240 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3241 		ret = stripe_width;
3242 	else if (stride && stride <= sbi->s_blocks_per_group)
3243 		ret = stride;
3244 	else
3245 		ret = 0;
3246 
3247 	/*
3248 	 * If the stripe width is 1, this makes no sense and
3249 	 * we set it to 0 to turn off stripe handling code.
3250 	 */
3251 	if (ret <= 1)
3252 		ret = 0;
3253 
3254 	return ret;
3255 }
3256 
3257 /*
3258  * Check whether this filesystem can be mounted based on
3259  * the features present and the RDONLY/RDWR mount requested.
3260  * Returns 1 if this filesystem can be mounted as requested,
3261  * 0 if it cannot be.
3262  */
3263 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3264 {
3265 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3266 		ext4_msg(sb, KERN_ERR,
3267 			"Couldn't mount because of "
3268 			"unsupported optional features (%x)",
3269 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3270 			~EXT4_FEATURE_INCOMPAT_SUPP));
3271 		return 0;
3272 	}
3273 
3274 #ifndef CONFIG_UNICODE
3275 	if (ext4_has_feature_casefold(sb)) {
3276 		ext4_msg(sb, KERN_ERR,
3277 			 "Filesystem with casefold feature cannot be "
3278 			 "mounted without CONFIG_UNICODE");
3279 		return 0;
3280 	}
3281 #endif
3282 
3283 	if (readonly)
3284 		return 1;
3285 
3286 	if (ext4_has_feature_readonly(sb)) {
3287 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3288 		sb->s_flags |= SB_RDONLY;
3289 		return 1;
3290 	}
3291 
3292 	/* Check that feature set is OK for a read-write mount */
3293 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3294 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3295 			 "unsupported optional features (%x)",
3296 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3297 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3298 		return 0;
3299 	}
3300 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3301 		ext4_msg(sb, KERN_ERR,
3302 			 "Can't support bigalloc feature without "
3303 			 "extents feature\n");
3304 		return 0;
3305 	}
3306 
3307 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3308 	if (!readonly && (ext4_has_feature_quota(sb) ||
3309 			  ext4_has_feature_project(sb))) {
3310 		ext4_msg(sb, KERN_ERR,
3311 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3312 		return 0;
3313 	}
3314 #endif  /* CONFIG_QUOTA */
3315 	return 1;
3316 }
3317 
3318 /*
3319  * This function is called once a day if we have errors logged
3320  * on the file system
3321  */
3322 static void print_daily_error_info(struct timer_list *t)
3323 {
3324 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3325 	struct super_block *sb = sbi->s_sb;
3326 	struct ext4_super_block *es = sbi->s_es;
3327 
3328 	if (es->s_error_count)
3329 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3330 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3331 			 le32_to_cpu(es->s_error_count));
3332 	if (es->s_first_error_time) {
3333 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3334 		       sb->s_id,
3335 		       ext4_get_tstamp(es, s_first_error_time),
3336 		       (int) sizeof(es->s_first_error_func),
3337 		       es->s_first_error_func,
3338 		       le32_to_cpu(es->s_first_error_line));
3339 		if (es->s_first_error_ino)
3340 			printk(KERN_CONT ": inode %u",
3341 			       le32_to_cpu(es->s_first_error_ino));
3342 		if (es->s_first_error_block)
3343 			printk(KERN_CONT ": block %llu", (unsigned long long)
3344 			       le64_to_cpu(es->s_first_error_block));
3345 		printk(KERN_CONT "\n");
3346 	}
3347 	if (es->s_last_error_time) {
3348 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3349 		       sb->s_id,
3350 		       ext4_get_tstamp(es, s_last_error_time),
3351 		       (int) sizeof(es->s_last_error_func),
3352 		       es->s_last_error_func,
3353 		       le32_to_cpu(es->s_last_error_line));
3354 		if (es->s_last_error_ino)
3355 			printk(KERN_CONT ": inode %u",
3356 			       le32_to_cpu(es->s_last_error_ino));
3357 		if (es->s_last_error_block)
3358 			printk(KERN_CONT ": block %llu", (unsigned long long)
3359 			       le64_to_cpu(es->s_last_error_block));
3360 		printk(KERN_CONT "\n");
3361 	}
3362 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3363 }
3364 
3365 /* Find next suitable group and run ext4_init_inode_table */
3366 static int ext4_run_li_request(struct ext4_li_request *elr)
3367 {
3368 	struct ext4_group_desc *gdp = NULL;
3369 	struct super_block *sb = elr->lr_super;
3370 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3371 	ext4_group_t group = elr->lr_next_group;
3372 	unsigned long timeout = 0;
3373 	unsigned int prefetch_ios = 0;
3374 	int ret = 0;
3375 
3376 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3377 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3378 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3379 		if (prefetch_ios)
3380 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3381 					      prefetch_ios);
3382 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3383 					    prefetch_ios);
3384 		if (group >= elr->lr_next_group) {
3385 			ret = 1;
3386 			if (elr->lr_first_not_zeroed != ngroups &&
3387 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3388 				elr->lr_next_group = elr->lr_first_not_zeroed;
3389 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3390 				ret = 0;
3391 			}
3392 		}
3393 		return ret;
3394 	}
3395 
3396 	for (; group < ngroups; group++) {
3397 		gdp = ext4_get_group_desc(sb, group, NULL);
3398 		if (!gdp) {
3399 			ret = 1;
3400 			break;
3401 		}
3402 
3403 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3404 			break;
3405 	}
3406 
3407 	if (group >= ngroups)
3408 		ret = 1;
3409 
3410 	if (!ret) {
3411 		timeout = jiffies;
3412 		ret = ext4_init_inode_table(sb, group,
3413 					    elr->lr_timeout ? 0 : 1);
3414 		trace_ext4_lazy_itable_init(sb, group);
3415 		if (elr->lr_timeout == 0) {
3416 			timeout = (jiffies - timeout) *
3417 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3418 			elr->lr_timeout = timeout;
3419 		}
3420 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3421 		elr->lr_next_group = group + 1;
3422 	}
3423 	return ret;
3424 }
3425 
3426 /*
3427  * Remove lr_request from the list_request and free the
3428  * request structure. Should be called with li_list_mtx held
3429  */
3430 static void ext4_remove_li_request(struct ext4_li_request *elr)
3431 {
3432 	if (!elr)
3433 		return;
3434 
3435 	list_del(&elr->lr_request);
3436 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3437 	kfree(elr);
3438 }
3439 
3440 static void ext4_unregister_li_request(struct super_block *sb)
3441 {
3442 	mutex_lock(&ext4_li_mtx);
3443 	if (!ext4_li_info) {
3444 		mutex_unlock(&ext4_li_mtx);
3445 		return;
3446 	}
3447 
3448 	mutex_lock(&ext4_li_info->li_list_mtx);
3449 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3450 	mutex_unlock(&ext4_li_info->li_list_mtx);
3451 	mutex_unlock(&ext4_li_mtx);
3452 }
3453 
3454 static struct task_struct *ext4_lazyinit_task;
3455 
3456 /*
3457  * This is the function where ext4lazyinit thread lives. It walks
3458  * through the request list searching for next scheduled filesystem.
3459  * When such a fs is found, run the lazy initialization request
3460  * (ext4_rn_li_request) and keep track of the time spend in this
3461  * function. Based on that time we compute next schedule time of
3462  * the request. When walking through the list is complete, compute
3463  * next waking time and put itself into sleep.
3464  */
3465 static int ext4_lazyinit_thread(void *arg)
3466 {
3467 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3468 	struct list_head *pos, *n;
3469 	struct ext4_li_request *elr;
3470 	unsigned long next_wakeup, cur;
3471 
3472 	BUG_ON(NULL == eli);
3473 
3474 cont_thread:
3475 	while (true) {
3476 		next_wakeup = MAX_JIFFY_OFFSET;
3477 
3478 		mutex_lock(&eli->li_list_mtx);
3479 		if (list_empty(&eli->li_request_list)) {
3480 			mutex_unlock(&eli->li_list_mtx);
3481 			goto exit_thread;
3482 		}
3483 		list_for_each_safe(pos, n, &eli->li_request_list) {
3484 			int err = 0;
3485 			int progress = 0;
3486 			elr = list_entry(pos, struct ext4_li_request,
3487 					 lr_request);
3488 
3489 			if (time_before(jiffies, elr->lr_next_sched)) {
3490 				if (time_before(elr->lr_next_sched, next_wakeup))
3491 					next_wakeup = elr->lr_next_sched;
3492 				continue;
3493 			}
3494 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3495 				if (sb_start_write_trylock(elr->lr_super)) {
3496 					progress = 1;
3497 					/*
3498 					 * We hold sb->s_umount, sb can not
3499 					 * be removed from the list, it is
3500 					 * now safe to drop li_list_mtx
3501 					 */
3502 					mutex_unlock(&eli->li_list_mtx);
3503 					err = ext4_run_li_request(elr);
3504 					sb_end_write(elr->lr_super);
3505 					mutex_lock(&eli->li_list_mtx);
3506 					n = pos->next;
3507 				}
3508 				up_read((&elr->lr_super->s_umount));
3509 			}
3510 			/* error, remove the lazy_init job */
3511 			if (err) {
3512 				ext4_remove_li_request(elr);
3513 				continue;
3514 			}
3515 			if (!progress) {
3516 				elr->lr_next_sched = jiffies +
3517 					(prandom_u32()
3518 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3519 			}
3520 			if (time_before(elr->lr_next_sched, next_wakeup))
3521 				next_wakeup = elr->lr_next_sched;
3522 		}
3523 		mutex_unlock(&eli->li_list_mtx);
3524 
3525 		try_to_freeze();
3526 
3527 		cur = jiffies;
3528 		if ((time_after_eq(cur, next_wakeup)) ||
3529 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3530 			cond_resched();
3531 			continue;
3532 		}
3533 
3534 		schedule_timeout_interruptible(next_wakeup - cur);
3535 
3536 		if (kthread_should_stop()) {
3537 			ext4_clear_request_list();
3538 			goto exit_thread;
3539 		}
3540 	}
3541 
3542 exit_thread:
3543 	/*
3544 	 * It looks like the request list is empty, but we need
3545 	 * to check it under the li_list_mtx lock, to prevent any
3546 	 * additions into it, and of course we should lock ext4_li_mtx
3547 	 * to atomically free the list and ext4_li_info, because at
3548 	 * this point another ext4 filesystem could be registering
3549 	 * new one.
3550 	 */
3551 	mutex_lock(&ext4_li_mtx);
3552 	mutex_lock(&eli->li_list_mtx);
3553 	if (!list_empty(&eli->li_request_list)) {
3554 		mutex_unlock(&eli->li_list_mtx);
3555 		mutex_unlock(&ext4_li_mtx);
3556 		goto cont_thread;
3557 	}
3558 	mutex_unlock(&eli->li_list_mtx);
3559 	kfree(ext4_li_info);
3560 	ext4_li_info = NULL;
3561 	mutex_unlock(&ext4_li_mtx);
3562 
3563 	return 0;
3564 }
3565 
3566 static void ext4_clear_request_list(void)
3567 {
3568 	struct list_head *pos, *n;
3569 	struct ext4_li_request *elr;
3570 
3571 	mutex_lock(&ext4_li_info->li_list_mtx);
3572 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3573 		elr = list_entry(pos, struct ext4_li_request,
3574 				 lr_request);
3575 		ext4_remove_li_request(elr);
3576 	}
3577 	mutex_unlock(&ext4_li_info->li_list_mtx);
3578 }
3579 
3580 static int ext4_run_lazyinit_thread(void)
3581 {
3582 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3583 					 ext4_li_info, "ext4lazyinit");
3584 	if (IS_ERR(ext4_lazyinit_task)) {
3585 		int err = PTR_ERR(ext4_lazyinit_task);
3586 		ext4_clear_request_list();
3587 		kfree(ext4_li_info);
3588 		ext4_li_info = NULL;
3589 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3590 				 "initialization thread\n",
3591 				 err);
3592 		return err;
3593 	}
3594 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3595 	return 0;
3596 }
3597 
3598 /*
3599  * Check whether it make sense to run itable init. thread or not.
3600  * If there is at least one uninitialized inode table, return
3601  * corresponding group number, else the loop goes through all
3602  * groups and return total number of groups.
3603  */
3604 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3605 {
3606 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3607 	struct ext4_group_desc *gdp = NULL;
3608 
3609 	if (!ext4_has_group_desc_csum(sb))
3610 		return ngroups;
3611 
3612 	for (group = 0; group < ngroups; group++) {
3613 		gdp = ext4_get_group_desc(sb, group, NULL);
3614 		if (!gdp)
3615 			continue;
3616 
3617 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3618 			break;
3619 	}
3620 
3621 	return group;
3622 }
3623 
3624 static int ext4_li_info_new(void)
3625 {
3626 	struct ext4_lazy_init *eli = NULL;
3627 
3628 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3629 	if (!eli)
3630 		return -ENOMEM;
3631 
3632 	INIT_LIST_HEAD(&eli->li_request_list);
3633 	mutex_init(&eli->li_list_mtx);
3634 
3635 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3636 
3637 	ext4_li_info = eli;
3638 
3639 	return 0;
3640 }
3641 
3642 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3643 					    ext4_group_t start)
3644 {
3645 	struct ext4_li_request *elr;
3646 
3647 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3648 	if (!elr)
3649 		return NULL;
3650 
3651 	elr->lr_super = sb;
3652 	elr->lr_first_not_zeroed = start;
3653 	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3654 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3655 	else {
3656 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3657 		elr->lr_next_group = start;
3658 	}
3659 
3660 	/*
3661 	 * Randomize first schedule time of the request to
3662 	 * spread the inode table initialization requests
3663 	 * better.
3664 	 */
3665 	elr->lr_next_sched = jiffies + (prandom_u32() %
3666 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3667 	return elr;
3668 }
3669 
3670 int ext4_register_li_request(struct super_block *sb,
3671 			     ext4_group_t first_not_zeroed)
3672 {
3673 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3674 	struct ext4_li_request *elr = NULL;
3675 	ext4_group_t ngroups = sbi->s_groups_count;
3676 	int ret = 0;
3677 
3678 	mutex_lock(&ext4_li_mtx);
3679 	if (sbi->s_li_request != NULL) {
3680 		/*
3681 		 * Reset timeout so it can be computed again, because
3682 		 * s_li_wait_mult might have changed.
3683 		 */
3684 		sbi->s_li_request->lr_timeout = 0;
3685 		goto out;
3686 	}
3687 
3688 	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3689 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3690 	     !test_opt(sb, INIT_INODE_TABLE)))
3691 		goto out;
3692 
3693 	elr = ext4_li_request_new(sb, first_not_zeroed);
3694 	if (!elr) {
3695 		ret = -ENOMEM;
3696 		goto out;
3697 	}
3698 
3699 	if (NULL == ext4_li_info) {
3700 		ret = ext4_li_info_new();
3701 		if (ret)
3702 			goto out;
3703 	}
3704 
3705 	mutex_lock(&ext4_li_info->li_list_mtx);
3706 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3707 	mutex_unlock(&ext4_li_info->li_list_mtx);
3708 
3709 	sbi->s_li_request = elr;
3710 	/*
3711 	 * set elr to NULL here since it has been inserted to
3712 	 * the request_list and the removal and free of it is
3713 	 * handled by ext4_clear_request_list from now on.
3714 	 */
3715 	elr = NULL;
3716 
3717 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3718 		ret = ext4_run_lazyinit_thread();
3719 		if (ret)
3720 			goto out;
3721 	}
3722 out:
3723 	mutex_unlock(&ext4_li_mtx);
3724 	if (ret)
3725 		kfree(elr);
3726 	return ret;
3727 }
3728 
3729 /*
3730  * We do not need to lock anything since this is called on
3731  * module unload.
3732  */
3733 static void ext4_destroy_lazyinit_thread(void)
3734 {
3735 	/*
3736 	 * If thread exited earlier
3737 	 * there's nothing to be done.
3738 	 */
3739 	if (!ext4_li_info || !ext4_lazyinit_task)
3740 		return;
3741 
3742 	kthread_stop(ext4_lazyinit_task);
3743 }
3744 
3745 static int set_journal_csum_feature_set(struct super_block *sb)
3746 {
3747 	int ret = 1;
3748 	int compat, incompat;
3749 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3750 
3751 	if (ext4_has_metadata_csum(sb)) {
3752 		/* journal checksum v3 */
3753 		compat = 0;
3754 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3755 	} else {
3756 		/* journal checksum v1 */
3757 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3758 		incompat = 0;
3759 	}
3760 
3761 	jbd2_journal_clear_features(sbi->s_journal,
3762 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3763 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3764 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3765 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3766 		ret = jbd2_journal_set_features(sbi->s_journal,
3767 				compat, 0,
3768 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3769 				incompat);
3770 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3771 		ret = jbd2_journal_set_features(sbi->s_journal,
3772 				compat, 0,
3773 				incompat);
3774 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3775 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3776 	} else {
3777 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3778 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3779 	}
3780 
3781 	return ret;
3782 }
3783 
3784 /*
3785  * Note: calculating the overhead so we can be compatible with
3786  * historical BSD practice is quite difficult in the face of
3787  * clusters/bigalloc.  This is because multiple metadata blocks from
3788  * different block group can end up in the same allocation cluster.
3789  * Calculating the exact overhead in the face of clustered allocation
3790  * requires either O(all block bitmaps) in memory or O(number of block
3791  * groups**2) in time.  We will still calculate the superblock for
3792  * older file systems --- and if we come across with a bigalloc file
3793  * system with zero in s_overhead_clusters the estimate will be close to
3794  * correct especially for very large cluster sizes --- but for newer
3795  * file systems, it's better to calculate this figure once at mkfs
3796  * time, and store it in the superblock.  If the superblock value is
3797  * present (even for non-bigalloc file systems), we will use it.
3798  */
3799 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3800 			  char *buf)
3801 {
3802 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3803 	struct ext4_group_desc	*gdp;
3804 	ext4_fsblk_t		first_block, last_block, b;
3805 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3806 	int			s, j, count = 0;
3807 
3808 	if (!ext4_has_feature_bigalloc(sb))
3809 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3810 			sbi->s_itb_per_group + 2);
3811 
3812 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3813 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3814 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3815 	for (i = 0; i < ngroups; i++) {
3816 		gdp = ext4_get_group_desc(sb, i, NULL);
3817 		b = ext4_block_bitmap(sb, gdp);
3818 		if (b >= first_block && b <= last_block) {
3819 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3820 			count++;
3821 		}
3822 		b = ext4_inode_bitmap(sb, gdp);
3823 		if (b >= first_block && b <= last_block) {
3824 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3825 			count++;
3826 		}
3827 		b = ext4_inode_table(sb, gdp);
3828 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3829 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3830 				int c = EXT4_B2C(sbi, b - first_block);
3831 				ext4_set_bit(c, buf);
3832 				count++;
3833 			}
3834 		if (i != grp)
3835 			continue;
3836 		s = 0;
3837 		if (ext4_bg_has_super(sb, grp)) {
3838 			ext4_set_bit(s++, buf);
3839 			count++;
3840 		}
3841 		j = ext4_bg_num_gdb(sb, grp);
3842 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3843 			ext4_error(sb, "Invalid number of block group "
3844 				   "descriptor blocks: %d", j);
3845 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3846 		}
3847 		count += j;
3848 		for (; j > 0; j--)
3849 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3850 	}
3851 	if (!count)
3852 		return 0;
3853 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3854 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3855 }
3856 
3857 /*
3858  * Compute the overhead and stash it in sbi->s_overhead
3859  */
3860 int ext4_calculate_overhead(struct super_block *sb)
3861 {
3862 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3863 	struct ext4_super_block *es = sbi->s_es;
3864 	struct inode *j_inode;
3865 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3866 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3867 	ext4_fsblk_t overhead = 0;
3868 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3869 
3870 	if (!buf)
3871 		return -ENOMEM;
3872 
3873 	/*
3874 	 * Compute the overhead (FS structures).  This is constant
3875 	 * for a given filesystem unless the number of block groups
3876 	 * changes so we cache the previous value until it does.
3877 	 */
3878 
3879 	/*
3880 	 * All of the blocks before first_data_block are overhead
3881 	 */
3882 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3883 
3884 	/*
3885 	 * Add the overhead found in each block group
3886 	 */
3887 	for (i = 0; i < ngroups; i++) {
3888 		int blks;
3889 
3890 		blks = count_overhead(sb, i, buf);
3891 		overhead += blks;
3892 		if (blks)
3893 			memset(buf, 0, PAGE_SIZE);
3894 		cond_resched();
3895 	}
3896 
3897 	/*
3898 	 * Add the internal journal blocks whether the journal has been
3899 	 * loaded or not
3900 	 */
3901 	if (sbi->s_journal && !sbi->s_journal_bdev)
3902 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3903 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3904 		/* j_inum for internal journal is non-zero */
3905 		j_inode = ext4_get_journal_inode(sb, j_inum);
3906 		if (j_inode) {
3907 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3908 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3909 			iput(j_inode);
3910 		} else {
3911 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3912 		}
3913 	}
3914 	sbi->s_overhead = overhead;
3915 	smp_wmb();
3916 	free_page((unsigned long) buf);
3917 	return 0;
3918 }
3919 
3920 static void ext4_set_resv_clusters(struct super_block *sb)
3921 {
3922 	ext4_fsblk_t resv_clusters;
3923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3924 
3925 	/*
3926 	 * There's no need to reserve anything when we aren't using extents.
3927 	 * The space estimates are exact, there are no unwritten extents,
3928 	 * hole punching doesn't need new metadata... This is needed especially
3929 	 * to keep ext2/3 backward compatibility.
3930 	 */
3931 	if (!ext4_has_feature_extents(sb))
3932 		return;
3933 	/*
3934 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3935 	 * This should cover the situations where we can not afford to run
3936 	 * out of space like for example punch hole, or converting
3937 	 * unwritten extents in delalloc path. In most cases such
3938 	 * allocation would require 1, or 2 blocks, higher numbers are
3939 	 * very rare.
3940 	 */
3941 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3942 			 sbi->s_cluster_bits);
3943 
3944 	do_div(resv_clusters, 50);
3945 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3946 
3947 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3948 }
3949 
3950 static const char *ext4_quota_mode(struct super_block *sb)
3951 {
3952 #ifdef CONFIG_QUOTA
3953 	if (!ext4_quota_capable(sb))
3954 		return "none";
3955 
3956 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3957 		return "journalled";
3958 	else
3959 		return "writeback";
3960 #else
3961 	return "disabled";
3962 #endif
3963 }
3964 
3965 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3966 {
3967 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3968 	char *orig_data = kstrdup(data, GFP_KERNEL);
3969 	struct buffer_head *bh, **group_desc;
3970 	struct ext4_super_block *es = NULL;
3971 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3972 	struct flex_groups **flex_groups;
3973 	ext4_fsblk_t block;
3974 	ext4_fsblk_t sb_block = get_sb_block(&data);
3975 	ext4_fsblk_t logical_sb_block;
3976 	unsigned long offset = 0;
3977 	unsigned long journal_devnum = 0;
3978 	unsigned long def_mount_opts;
3979 	struct inode *root;
3980 	const char *descr;
3981 	int ret = -ENOMEM;
3982 	int blocksize, clustersize;
3983 	unsigned int db_count;
3984 	unsigned int i;
3985 	int needs_recovery, has_huge_files;
3986 	__u64 blocks_count;
3987 	int err = 0;
3988 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3989 	ext4_group_t first_not_zeroed;
3990 
3991 	if ((data && !orig_data) || !sbi)
3992 		goto out_free_base;
3993 
3994 	sbi->s_daxdev = dax_dev;
3995 	sbi->s_blockgroup_lock =
3996 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3997 	if (!sbi->s_blockgroup_lock)
3998 		goto out_free_base;
3999 
4000 	sb->s_fs_info = sbi;
4001 	sbi->s_sb = sb;
4002 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4003 	sbi->s_sb_block = sb_block;
4004 	sbi->s_sectors_written_start =
4005 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4006 
4007 	/* Cleanup superblock name */
4008 	strreplace(sb->s_id, '/', '!');
4009 
4010 	/* -EINVAL is default */
4011 	ret = -EINVAL;
4012 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4013 	if (!blocksize) {
4014 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4015 		goto out_fail;
4016 	}
4017 
4018 	/*
4019 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4020 	 * block sizes.  We need to calculate the offset from buffer start.
4021 	 */
4022 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4023 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4024 		offset = do_div(logical_sb_block, blocksize);
4025 	} else {
4026 		logical_sb_block = sb_block;
4027 	}
4028 
4029 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4030 	if (IS_ERR(bh)) {
4031 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4032 		ret = PTR_ERR(bh);
4033 		goto out_fail;
4034 	}
4035 	/*
4036 	 * Note: s_es must be initialized as soon as possible because
4037 	 *       some ext4 macro-instructions depend on its value
4038 	 */
4039 	es = (struct ext4_super_block *) (bh->b_data + offset);
4040 	sbi->s_es = es;
4041 	sb->s_magic = le16_to_cpu(es->s_magic);
4042 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4043 		goto cantfind_ext4;
4044 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4045 
4046 	/* Warn if metadata_csum and gdt_csum are both set. */
4047 	if (ext4_has_feature_metadata_csum(sb) &&
4048 	    ext4_has_feature_gdt_csum(sb))
4049 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4050 			     "redundant flags; please run fsck.");
4051 
4052 	/* Check for a known checksum algorithm */
4053 	if (!ext4_verify_csum_type(sb, es)) {
4054 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4055 			 "unknown checksum algorithm.");
4056 		silent = 1;
4057 		goto cantfind_ext4;
4058 	}
4059 
4060 	/* Load the checksum driver */
4061 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4062 	if (IS_ERR(sbi->s_chksum_driver)) {
4063 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4064 		ret = PTR_ERR(sbi->s_chksum_driver);
4065 		sbi->s_chksum_driver = NULL;
4066 		goto failed_mount;
4067 	}
4068 
4069 	/* Check superblock checksum */
4070 	if (!ext4_superblock_csum_verify(sb, es)) {
4071 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4072 			 "invalid superblock checksum.  Run e2fsck?");
4073 		silent = 1;
4074 		ret = -EFSBADCRC;
4075 		goto cantfind_ext4;
4076 	}
4077 
4078 	/* Precompute checksum seed for all metadata */
4079 	if (ext4_has_feature_csum_seed(sb))
4080 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4081 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4082 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4083 					       sizeof(es->s_uuid));
4084 
4085 	/* Set defaults before we parse the mount options */
4086 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4087 	set_opt(sb, INIT_INODE_TABLE);
4088 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4089 		set_opt(sb, DEBUG);
4090 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4091 		set_opt(sb, GRPID);
4092 	if (def_mount_opts & EXT4_DEFM_UID16)
4093 		set_opt(sb, NO_UID32);
4094 	/* xattr user namespace & acls are now defaulted on */
4095 	set_opt(sb, XATTR_USER);
4096 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4097 	set_opt(sb, POSIX_ACL);
4098 #endif
4099 	if (ext4_has_feature_fast_commit(sb))
4100 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4101 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4102 	if (ext4_has_metadata_csum(sb))
4103 		set_opt(sb, JOURNAL_CHECKSUM);
4104 
4105 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4106 		set_opt(sb, JOURNAL_DATA);
4107 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4108 		set_opt(sb, ORDERED_DATA);
4109 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4110 		set_opt(sb, WRITEBACK_DATA);
4111 
4112 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4113 		set_opt(sb, ERRORS_PANIC);
4114 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4115 		set_opt(sb, ERRORS_CONT);
4116 	else
4117 		set_opt(sb, ERRORS_RO);
4118 	/* block_validity enabled by default; disable with noblock_validity */
4119 	set_opt(sb, BLOCK_VALIDITY);
4120 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4121 		set_opt(sb, DISCARD);
4122 
4123 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4124 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4125 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4126 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4127 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4128 
4129 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4130 		set_opt(sb, BARRIER);
4131 
4132 	/*
4133 	 * enable delayed allocation by default
4134 	 * Use -o nodelalloc to turn it off
4135 	 */
4136 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4137 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4138 		set_opt(sb, DELALLOC);
4139 
4140 	/*
4141 	 * set default s_li_wait_mult for lazyinit, for the case there is
4142 	 * no mount option specified.
4143 	 */
4144 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4145 
4146 	if (le32_to_cpu(es->s_log_block_size) >
4147 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4148 		ext4_msg(sb, KERN_ERR,
4149 			 "Invalid log block size: %u",
4150 			 le32_to_cpu(es->s_log_block_size));
4151 		goto failed_mount;
4152 	}
4153 	if (le32_to_cpu(es->s_log_cluster_size) >
4154 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4155 		ext4_msg(sb, KERN_ERR,
4156 			 "Invalid log cluster size: %u",
4157 			 le32_to_cpu(es->s_log_cluster_size));
4158 		goto failed_mount;
4159 	}
4160 
4161 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4162 
4163 	if (blocksize == PAGE_SIZE)
4164 		set_opt(sb, DIOREAD_NOLOCK);
4165 
4166 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4167 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4168 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4169 	} else {
4170 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4171 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4172 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4173 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4174 				 sbi->s_first_ino);
4175 			goto failed_mount;
4176 		}
4177 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4178 		    (!is_power_of_2(sbi->s_inode_size)) ||
4179 		    (sbi->s_inode_size > blocksize)) {
4180 			ext4_msg(sb, KERN_ERR,
4181 			       "unsupported inode size: %d",
4182 			       sbi->s_inode_size);
4183 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4184 			goto failed_mount;
4185 		}
4186 		/*
4187 		 * i_atime_extra is the last extra field available for
4188 		 * [acm]times in struct ext4_inode. Checking for that
4189 		 * field should suffice to ensure we have extra space
4190 		 * for all three.
4191 		 */
4192 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4193 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4194 			sb->s_time_gran = 1;
4195 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4196 		} else {
4197 			sb->s_time_gran = NSEC_PER_SEC;
4198 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4199 		}
4200 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4201 	}
4202 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4203 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4204 			EXT4_GOOD_OLD_INODE_SIZE;
4205 		if (ext4_has_feature_extra_isize(sb)) {
4206 			unsigned v, max = (sbi->s_inode_size -
4207 					   EXT4_GOOD_OLD_INODE_SIZE);
4208 
4209 			v = le16_to_cpu(es->s_want_extra_isize);
4210 			if (v > max) {
4211 				ext4_msg(sb, KERN_ERR,
4212 					 "bad s_want_extra_isize: %d", v);
4213 				goto failed_mount;
4214 			}
4215 			if (sbi->s_want_extra_isize < v)
4216 				sbi->s_want_extra_isize = v;
4217 
4218 			v = le16_to_cpu(es->s_min_extra_isize);
4219 			if (v > max) {
4220 				ext4_msg(sb, KERN_ERR,
4221 					 "bad s_min_extra_isize: %d", v);
4222 				goto failed_mount;
4223 			}
4224 			if (sbi->s_want_extra_isize < v)
4225 				sbi->s_want_extra_isize = v;
4226 		}
4227 	}
4228 
4229 	if (sbi->s_es->s_mount_opts[0]) {
4230 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4231 					      sizeof(sbi->s_es->s_mount_opts),
4232 					      GFP_KERNEL);
4233 		if (!s_mount_opts)
4234 			goto failed_mount;
4235 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4236 				   &journal_ioprio, 0)) {
4237 			ext4_msg(sb, KERN_WARNING,
4238 				 "failed to parse options in superblock: %s",
4239 				 s_mount_opts);
4240 		}
4241 		kfree(s_mount_opts);
4242 	}
4243 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4244 	if (!parse_options((char *) data, sb, &journal_devnum,
4245 			   &journal_ioprio, 0))
4246 		goto failed_mount;
4247 
4248 #ifdef CONFIG_UNICODE
4249 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4250 		const struct ext4_sb_encodings *encoding_info;
4251 		struct unicode_map *encoding;
4252 		__u16 encoding_flags;
4253 
4254 		if (ext4_has_feature_encrypt(sb)) {
4255 			ext4_msg(sb, KERN_ERR,
4256 				 "Can't mount with encoding and encryption");
4257 			goto failed_mount;
4258 		}
4259 
4260 		if (ext4_sb_read_encoding(es, &encoding_info,
4261 					  &encoding_flags)) {
4262 			ext4_msg(sb, KERN_ERR,
4263 				 "Encoding requested by superblock is unknown");
4264 			goto failed_mount;
4265 		}
4266 
4267 		encoding = utf8_load(encoding_info->version);
4268 		if (IS_ERR(encoding)) {
4269 			ext4_msg(sb, KERN_ERR,
4270 				 "can't mount with superblock charset: %s-%s "
4271 				 "not supported by the kernel. flags: 0x%x.",
4272 				 encoding_info->name, encoding_info->version,
4273 				 encoding_flags);
4274 			goto failed_mount;
4275 		}
4276 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4277 			 "%s-%s with flags 0x%hx", encoding_info->name,
4278 			 encoding_info->version?:"\b", encoding_flags);
4279 
4280 		sb->s_encoding = encoding;
4281 		sb->s_encoding_flags = encoding_flags;
4282 	}
4283 #endif
4284 
4285 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4286 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4287 		/* can't mount with both data=journal and dioread_nolock. */
4288 		clear_opt(sb, DIOREAD_NOLOCK);
4289 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4290 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4291 			ext4_msg(sb, KERN_ERR, "can't mount with "
4292 				 "both data=journal and delalloc");
4293 			goto failed_mount;
4294 		}
4295 		if (test_opt(sb, DAX_ALWAYS)) {
4296 			ext4_msg(sb, KERN_ERR, "can't mount with "
4297 				 "both data=journal and dax");
4298 			goto failed_mount;
4299 		}
4300 		if (ext4_has_feature_encrypt(sb)) {
4301 			ext4_msg(sb, KERN_WARNING,
4302 				 "encrypted files will use data=ordered "
4303 				 "instead of data journaling mode");
4304 		}
4305 		if (test_opt(sb, DELALLOC))
4306 			clear_opt(sb, DELALLOC);
4307 	} else {
4308 		sb->s_iflags |= SB_I_CGROUPWB;
4309 	}
4310 
4311 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4312 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4313 
4314 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4315 	    (ext4_has_compat_features(sb) ||
4316 	     ext4_has_ro_compat_features(sb) ||
4317 	     ext4_has_incompat_features(sb)))
4318 		ext4_msg(sb, KERN_WARNING,
4319 		       "feature flags set on rev 0 fs, "
4320 		       "running e2fsck is recommended");
4321 
4322 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4323 		set_opt2(sb, HURD_COMPAT);
4324 		if (ext4_has_feature_64bit(sb)) {
4325 			ext4_msg(sb, KERN_ERR,
4326 				 "The Hurd can't support 64-bit file systems");
4327 			goto failed_mount;
4328 		}
4329 
4330 		/*
4331 		 * ea_inode feature uses l_i_version field which is not
4332 		 * available in HURD_COMPAT mode.
4333 		 */
4334 		if (ext4_has_feature_ea_inode(sb)) {
4335 			ext4_msg(sb, KERN_ERR,
4336 				 "ea_inode feature is not supported for Hurd");
4337 			goto failed_mount;
4338 		}
4339 	}
4340 
4341 	if (IS_EXT2_SB(sb)) {
4342 		if (ext2_feature_set_ok(sb))
4343 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4344 				 "using the ext4 subsystem");
4345 		else {
4346 			/*
4347 			 * If we're probing be silent, if this looks like
4348 			 * it's actually an ext[34] filesystem.
4349 			 */
4350 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4351 				goto failed_mount;
4352 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4353 				 "to feature incompatibilities");
4354 			goto failed_mount;
4355 		}
4356 	}
4357 
4358 	if (IS_EXT3_SB(sb)) {
4359 		if (ext3_feature_set_ok(sb))
4360 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4361 				 "using the ext4 subsystem");
4362 		else {
4363 			/*
4364 			 * If we're probing be silent, if this looks like
4365 			 * it's actually an ext4 filesystem.
4366 			 */
4367 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4368 				goto failed_mount;
4369 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4370 				 "to feature incompatibilities");
4371 			goto failed_mount;
4372 		}
4373 	}
4374 
4375 	/*
4376 	 * Check feature flags regardless of the revision level, since we
4377 	 * previously didn't change the revision level when setting the flags,
4378 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4379 	 */
4380 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4381 		goto failed_mount;
4382 
4383 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4384 		ext4_msg(sb, KERN_ERR,
4385 			 "Number of reserved GDT blocks insanely large: %d",
4386 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4387 		goto failed_mount;
4388 	}
4389 
4390 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4391 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4392 
4393 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4394 		if (ext4_has_feature_inline_data(sb)) {
4395 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4396 					" that may contain inline data");
4397 			goto failed_mount;
4398 		}
4399 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4400 			ext4_msg(sb, KERN_ERR,
4401 				"DAX unsupported by block device.");
4402 			goto failed_mount;
4403 		}
4404 	}
4405 
4406 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4407 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4408 			 es->s_encryption_level);
4409 		goto failed_mount;
4410 	}
4411 
4412 	if (sb->s_blocksize != blocksize) {
4413 		/* Validate the filesystem blocksize */
4414 		if (!sb_set_blocksize(sb, blocksize)) {
4415 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4416 					blocksize);
4417 			goto failed_mount;
4418 		}
4419 
4420 		brelse(bh);
4421 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4422 		offset = do_div(logical_sb_block, blocksize);
4423 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4424 		if (IS_ERR(bh)) {
4425 			ext4_msg(sb, KERN_ERR,
4426 			       "Can't read superblock on 2nd try");
4427 			ret = PTR_ERR(bh);
4428 			bh = NULL;
4429 			goto failed_mount;
4430 		}
4431 		es = (struct ext4_super_block *)(bh->b_data + offset);
4432 		sbi->s_es = es;
4433 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4434 			ext4_msg(sb, KERN_ERR,
4435 			       "Magic mismatch, very weird!");
4436 			goto failed_mount;
4437 		}
4438 	}
4439 
4440 	has_huge_files = ext4_has_feature_huge_file(sb);
4441 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4442 						      has_huge_files);
4443 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4444 
4445 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4446 	if (ext4_has_feature_64bit(sb)) {
4447 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4448 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4449 		    !is_power_of_2(sbi->s_desc_size)) {
4450 			ext4_msg(sb, KERN_ERR,
4451 			       "unsupported descriptor size %lu",
4452 			       sbi->s_desc_size);
4453 			goto failed_mount;
4454 		}
4455 	} else
4456 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4457 
4458 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4459 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4460 
4461 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4462 	if (sbi->s_inodes_per_block == 0)
4463 		goto cantfind_ext4;
4464 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4465 	    sbi->s_inodes_per_group > blocksize * 8) {
4466 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4467 			 sbi->s_inodes_per_group);
4468 		goto failed_mount;
4469 	}
4470 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4471 					sbi->s_inodes_per_block;
4472 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4473 	sbi->s_sbh = bh;
4474 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4475 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4476 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4477 
4478 	for (i = 0; i < 4; i++)
4479 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4480 	sbi->s_def_hash_version = es->s_def_hash_version;
4481 	if (ext4_has_feature_dir_index(sb)) {
4482 		i = le32_to_cpu(es->s_flags);
4483 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4484 			sbi->s_hash_unsigned = 3;
4485 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4486 #ifdef __CHAR_UNSIGNED__
4487 			if (!sb_rdonly(sb))
4488 				es->s_flags |=
4489 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4490 			sbi->s_hash_unsigned = 3;
4491 #else
4492 			if (!sb_rdonly(sb))
4493 				es->s_flags |=
4494 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4495 #endif
4496 		}
4497 	}
4498 
4499 	/* Handle clustersize */
4500 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4501 	if (ext4_has_feature_bigalloc(sb)) {
4502 		if (clustersize < blocksize) {
4503 			ext4_msg(sb, KERN_ERR,
4504 				 "cluster size (%d) smaller than "
4505 				 "block size (%d)", clustersize, blocksize);
4506 			goto failed_mount;
4507 		}
4508 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4509 			le32_to_cpu(es->s_log_block_size);
4510 		sbi->s_clusters_per_group =
4511 			le32_to_cpu(es->s_clusters_per_group);
4512 		if (sbi->s_clusters_per_group > blocksize * 8) {
4513 			ext4_msg(sb, KERN_ERR,
4514 				 "#clusters per group too big: %lu",
4515 				 sbi->s_clusters_per_group);
4516 			goto failed_mount;
4517 		}
4518 		if (sbi->s_blocks_per_group !=
4519 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4520 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4521 				 "clusters per group (%lu) inconsistent",
4522 				 sbi->s_blocks_per_group,
4523 				 sbi->s_clusters_per_group);
4524 			goto failed_mount;
4525 		}
4526 	} else {
4527 		if (clustersize != blocksize) {
4528 			ext4_msg(sb, KERN_ERR,
4529 				 "fragment/cluster size (%d) != "
4530 				 "block size (%d)", clustersize, blocksize);
4531 			goto failed_mount;
4532 		}
4533 		if (sbi->s_blocks_per_group > blocksize * 8) {
4534 			ext4_msg(sb, KERN_ERR,
4535 				 "#blocks per group too big: %lu",
4536 				 sbi->s_blocks_per_group);
4537 			goto failed_mount;
4538 		}
4539 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4540 		sbi->s_cluster_bits = 0;
4541 	}
4542 	sbi->s_cluster_ratio = clustersize / blocksize;
4543 
4544 	/* Do we have standard group size of clustersize * 8 blocks ? */
4545 	if (sbi->s_blocks_per_group == clustersize << 3)
4546 		set_opt2(sb, STD_GROUP_SIZE);
4547 
4548 	/*
4549 	 * Test whether we have more sectors than will fit in sector_t,
4550 	 * and whether the max offset is addressable by the page cache.
4551 	 */
4552 	err = generic_check_addressable(sb->s_blocksize_bits,
4553 					ext4_blocks_count(es));
4554 	if (err) {
4555 		ext4_msg(sb, KERN_ERR, "filesystem"
4556 			 " too large to mount safely on this system");
4557 		goto failed_mount;
4558 	}
4559 
4560 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4561 		goto cantfind_ext4;
4562 
4563 	/* check blocks count against device size */
4564 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4565 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4566 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4567 		       "exceeds size of device (%llu blocks)",
4568 		       ext4_blocks_count(es), blocks_count);
4569 		goto failed_mount;
4570 	}
4571 
4572 	/*
4573 	 * It makes no sense for the first data block to be beyond the end
4574 	 * of the filesystem.
4575 	 */
4576 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4577 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4578 			 "block %u is beyond end of filesystem (%llu)",
4579 			 le32_to_cpu(es->s_first_data_block),
4580 			 ext4_blocks_count(es));
4581 		goto failed_mount;
4582 	}
4583 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4584 	    (sbi->s_cluster_ratio == 1)) {
4585 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4586 			 "block is 0 with a 1k block and cluster size");
4587 		goto failed_mount;
4588 	}
4589 
4590 	blocks_count = (ext4_blocks_count(es) -
4591 			le32_to_cpu(es->s_first_data_block) +
4592 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4593 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4594 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4595 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4596 		       "(block count %llu, first data block %u, "
4597 		       "blocks per group %lu)", blocks_count,
4598 		       ext4_blocks_count(es),
4599 		       le32_to_cpu(es->s_first_data_block),
4600 		       EXT4_BLOCKS_PER_GROUP(sb));
4601 		goto failed_mount;
4602 	}
4603 	sbi->s_groups_count = blocks_count;
4604 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4605 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4606 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4607 	    le32_to_cpu(es->s_inodes_count)) {
4608 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4609 			 le32_to_cpu(es->s_inodes_count),
4610 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4611 		ret = -EINVAL;
4612 		goto failed_mount;
4613 	}
4614 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4615 		   EXT4_DESC_PER_BLOCK(sb);
4616 	if (ext4_has_feature_meta_bg(sb)) {
4617 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4618 			ext4_msg(sb, KERN_WARNING,
4619 				 "first meta block group too large: %u "
4620 				 "(group descriptor block count %u)",
4621 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4622 			goto failed_mount;
4623 		}
4624 	}
4625 	rcu_assign_pointer(sbi->s_group_desc,
4626 			   kvmalloc_array(db_count,
4627 					  sizeof(struct buffer_head *),
4628 					  GFP_KERNEL));
4629 	if (sbi->s_group_desc == NULL) {
4630 		ext4_msg(sb, KERN_ERR, "not enough memory");
4631 		ret = -ENOMEM;
4632 		goto failed_mount;
4633 	}
4634 
4635 	bgl_lock_init(sbi->s_blockgroup_lock);
4636 
4637 	/* Pre-read the descriptors into the buffer cache */
4638 	for (i = 0; i < db_count; i++) {
4639 		block = descriptor_loc(sb, logical_sb_block, i);
4640 		ext4_sb_breadahead_unmovable(sb, block);
4641 	}
4642 
4643 	for (i = 0; i < db_count; i++) {
4644 		struct buffer_head *bh;
4645 
4646 		block = descriptor_loc(sb, logical_sb_block, i);
4647 		bh = ext4_sb_bread_unmovable(sb, block);
4648 		if (IS_ERR(bh)) {
4649 			ext4_msg(sb, KERN_ERR,
4650 			       "can't read group descriptor %d", i);
4651 			db_count = i;
4652 			ret = PTR_ERR(bh);
4653 			goto failed_mount2;
4654 		}
4655 		rcu_read_lock();
4656 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4657 		rcu_read_unlock();
4658 	}
4659 	sbi->s_gdb_count = db_count;
4660 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4661 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4662 		ret = -EFSCORRUPTED;
4663 		goto failed_mount2;
4664 	}
4665 
4666 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4667 	spin_lock_init(&sbi->s_error_lock);
4668 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4669 
4670 	/* Register extent status tree shrinker */
4671 	if (ext4_es_register_shrinker(sbi))
4672 		goto failed_mount3;
4673 
4674 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4675 	sbi->s_extent_max_zeroout_kb = 32;
4676 
4677 	/*
4678 	 * set up enough so that it can read an inode
4679 	 */
4680 	sb->s_op = &ext4_sops;
4681 	sb->s_export_op = &ext4_export_ops;
4682 	sb->s_xattr = ext4_xattr_handlers;
4683 #ifdef CONFIG_FS_ENCRYPTION
4684 	sb->s_cop = &ext4_cryptops;
4685 #endif
4686 #ifdef CONFIG_FS_VERITY
4687 	sb->s_vop = &ext4_verityops;
4688 #endif
4689 #ifdef CONFIG_QUOTA
4690 	sb->dq_op = &ext4_quota_operations;
4691 	if (ext4_has_feature_quota(sb))
4692 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4693 	else
4694 		sb->s_qcop = &ext4_qctl_operations;
4695 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4696 #endif
4697 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4698 
4699 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4700 	mutex_init(&sbi->s_orphan_lock);
4701 
4702 	/* Initialize fast commit stuff */
4703 	atomic_set(&sbi->s_fc_subtid, 0);
4704 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4705 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4706 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4707 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4708 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4709 	sbi->s_fc_bytes = 0;
4710 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4711 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4712 	spin_lock_init(&sbi->s_fc_lock);
4713 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4714 	sbi->s_fc_replay_state.fc_regions = NULL;
4715 	sbi->s_fc_replay_state.fc_regions_size = 0;
4716 	sbi->s_fc_replay_state.fc_regions_used = 0;
4717 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4718 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4719 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4720 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4721 
4722 	sb->s_root = NULL;
4723 
4724 	needs_recovery = (es->s_last_orphan != 0 ||
4725 			  ext4_has_feature_journal_needs_recovery(sb));
4726 
4727 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4728 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4729 			goto failed_mount3a;
4730 
4731 	/*
4732 	 * The first inode we look at is the journal inode.  Don't try
4733 	 * root first: it may be modified in the journal!
4734 	 */
4735 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4736 		err = ext4_load_journal(sb, es, journal_devnum);
4737 		if (err)
4738 			goto failed_mount3a;
4739 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4740 		   ext4_has_feature_journal_needs_recovery(sb)) {
4741 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4742 		       "suppressed and not mounted read-only");
4743 		goto failed_mount_wq;
4744 	} else {
4745 		/* Nojournal mode, all journal mount options are illegal */
4746 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4747 			ext4_msg(sb, KERN_ERR, "can't mount with "
4748 				 "journal_checksum, fs mounted w/o journal");
4749 			goto failed_mount_wq;
4750 		}
4751 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4752 			ext4_msg(sb, KERN_ERR, "can't mount with "
4753 				 "journal_async_commit, fs mounted w/o journal");
4754 			goto failed_mount_wq;
4755 		}
4756 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4757 			ext4_msg(sb, KERN_ERR, "can't mount with "
4758 				 "commit=%lu, fs mounted w/o journal",
4759 				 sbi->s_commit_interval / HZ);
4760 			goto failed_mount_wq;
4761 		}
4762 		if (EXT4_MOUNT_DATA_FLAGS &
4763 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4764 			ext4_msg(sb, KERN_ERR, "can't mount with "
4765 				 "data=, fs mounted w/o journal");
4766 			goto failed_mount_wq;
4767 		}
4768 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4769 		clear_opt(sb, JOURNAL_CHECKSUM);
4770 		clear_opt(sb, DATA_FLAGS);
4771 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4772 		sbi->s_journal = NULL;
4773 		needs_recovery = 0;
4774 		goto no_journal;
4775 	}
4776 
4777 	if (ext4_has_feature_64bit(sb) &&
4778 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4779 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4780 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4781 		goto failed_mount_wq;
4782 	}
4783 
4784 	if (!set_journal_csum_feature_set(sb)) {
4785 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4786 			 "feature set");
4787 		goto failed_mount_wq;
4788 	}
4789 
4790 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4791 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4792 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4793 		ext4_msg(sb, KERN_ERR,
4794 			"Failed to set fast commit journal feature");
4795 		goto failed_mount_wq;
4796 	}
4797 
4798 	/* We have now updated the journal if required, so we can
4799 	 * validate the data journaling mode. */
4800 	switch (test_opt(sb, DATA_FLAGS)) {
4801 	case 0:
4802 		/* No mode set, assume a default based on the journal
4803 		 * capabilities: ORDERED_DATA if the journal can
4804 		 * cope, else JOURNAL_DATA
4805 		 */
4806 		if (jbd2_journal_check_available_features
4807 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4808 			set_opt(sb, ORDERED_DATA);
4809 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4810 		} else {
4811 			set_opt(sb, JOURNAL_DATA);
4812 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4813 		}
4814 		break;
4815 
4816 	case EXT4_MOUNT_ORDERED_DATA:
4817 	case EXT4_MOUNT_WRITEBACK_DATA:
4818 		if (!jbd2_journal_check_available_features
4819 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4820 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4821 			       "requested data journaling mode");
4822 			goto failed_mount_wq;
4823 		}
4824 		break;
4825 	default:
4826 		break;
4827 	}
4828 
4829 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4830 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4831 		ext4_msg(sb, KERN_ERR, "can't mount with "
4832 			"journal_async_commit in data=ordered mode");
4833 		goto failed_mount_wq;
4834 	}
4835 
4836 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4837 
4838 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4839 	sbi->s_journal->j_submit_inode_data_buffers =
4840 		ext4_journal_submit_inode_data_buffers;
4841 	sbi->s_journal->j_finish_inode_data_buffers =
4842 		ext4_journal_finish_inode_data_buffers;
4843 
4844 no_journal:
4845 	if (!test_opt(sb, NO_MBCACHE)) {
4846 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4847 		if (!sbi->s_ea_block_cache) {
4848 			ext4_msg(sb, KERN_ERR,
4849 				 "Failed to create ea_block_cache");
4850 			goto failed_mount_wq;
4851 		}
4852 
4853 		if (ext4_has_feature_ea_inode(sb)) {
4854 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4855 			if (!sbi->s_ea_inode_cache) {
4856 				ext4_msg(sb, KERN_ERR,
4857 					 "Failed to create ea_inode_cache");
4858 				goto failed_mount_wq;
4859 			}
4860 		}
4861 	}
4862 
4863 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4864 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4865 		goto failed_mount_wq;
4866 	}
4867 
4868 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4869 	    !ext4_has_feature_encrypt(sb)) {
4870 		ext4_set_feature_encrypt(sb);
4871 		ext4_commit_super(sb, 1);
4872 	}
4873 
4874 	/*
4875 	 * Get the # of file system overhead blocks from the
4876 	 * superblock if present.
4877 	 */
4878 	if (es->s_overhead_clusters)
4879 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4880 	else {
4881 		err = ext4_calculate_overhead(sb);
4882 		if (err)
4883 			goto failed_mount_wq;
4884 	}
4885 
4886 	/*
4887 	 * The maximum number of concurrent works can be high and
4888 	 * concurrency isn't really necessary.  Limit it to 1.
4889 	 */
4890 	EXT4_SB(sb)->rsv_conversion_wq =
4891 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4892 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4893 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4894 		ret = -ENOMEM;
4895 		goto failed_mount4;
4896 	}
4897 
4898 	/*
4899 	 * The jbd2_journal_load will have done any necessary log recovery,
4900 	 * so we can safely mount the rest of the filesystem now.
4901 	 */
4902 
4903 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4904 	if (IS_ERR(root)) {
4905 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4906 		ret = PTR_ERR(root);
4907 		root = NULL;
4908 		goto failed_mount4;
4909 	}
4910 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4911 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4912 		iput(root);
4913 		goto failed_mount4;
4914 	}
4915 
4916 	sb->s_root = d_make_root(root);
4917 	if (!sb->s_root) {
4918 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4919 		ret = -ENOMEM;
4920 		goto failed_mount4;
4921 	}
4922 
4923 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4924 	if (ret == -EROFS) {
4925 		sb->s_flags |= SB_RDONLY;
4926 		ret = 0;
4927 	} else if (ret)
4928 		goto failed_mount4a;
4929 
4930 	ext4_set_resv_clusters(sb);
4931 
4932 	if (test_opt(sb, BLOCK_VALIDITY)) {
4933 		err = ext4_setup_system_zone(sb);
4934 		if (err) {
4935 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4936 				 "zone (%d)", err);
4937 			goto failed_mount4a;
4938 		}
4939 	}
4940 	ext4_fc_replay_cleanup(sb);
4941 
4942 	ext4_ext_init(sb);
4943 	err = ext4_mb_init(sb);
4944 	if (err) {
4945 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4946 			 err);
4947 		goto failed_mount5;
4948 	}
4949 
4950 	block = ext4_count_free_clusters(sb);
4951 	ext4_free_blocks_count_set(sbi->s_es,
4952 				   EXT4_C2B(sbi, block));
4953 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4954 				  GFP_KERNEL);
4955 	if (!err) {
4956 		unsigned long freei = ext4_count_free_inodes(sb);
4957 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4958 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4959 					  GFP_KERNEL);
4960 	}
4961 	if (!err)
4962 		err = percpu_counter_init(&sbi->s_dirs_counter,
4963 					  ext4_count_dirs(sb), GFP_KERNEL);
4964 	if (!err)
4965 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4966 					  GFP_KERNEL);
4967 	if (!err)
4968 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4969 
4970 	if (err) {
4971 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4972 		goto failed_mount6;
4973 	}
4974 
4975 	if (ext4_has_feature_flex_bg(sb))
4976 		if (!ext4_fill_flex_info(sb)) {
4977 			ext4_msg(sb, KERN_ERR,
4978 			       "unable to initialize "
4979 			       "flex_bg meta info!");
4980 			goto failed_mount6;
4981 		}
4982 
4983 	err = ext4_register_li_request(sb, first_not_zeroed);
4984 	if (err)
4985 		goto failed_mount6;
4986 
4987 	err = ext4_register_sysfs(sb);
4988 	if (err)
4989 		goto failed_mount7;
4990 
4991 #ifdef CONFIG_QUOTA
4992 	/* Enable quota usage during mount. */
4993 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4994 		err = ext4_enable_quotas(sb);
4995 		if (err)
4996 			goto failed_mount8;
4997 	}
4998 #endif  /* CONFIG_QUOTA */
4999 
5000 	/*
5001 	 * Save the original bdev mapping's wb_err value which could be
5002 	 * used to detect the metadata async write error.
5003 	 */
5004 	spin_lock_init(&sbi->s_bdev_wb_lock);
5005 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5006 				 &sbi->s_bdev_wb_err);
5007 	sb->s_bdev->bd_super = sb;
5008 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5009 	ext4_orphan_cleanup(sb, es);
5010 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5011 	if (needs_recovery) {
5012 		ext4_msg(sb, KERN_INFO, "recovery complete");
5013 		err = ext4_mark_recovery_complete(sb, es);
5014 		if (err)
5015 			goto failed_mount8;
5016 	}
5017 	if (EXT4_SB(sb)->s_journal) {
5018 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5019 			descr = " journalled data mode";
5020 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5021 			descr = " ordered data mode";
5022 		else
5023 			descr = " writeback data mode";
5024 	} else
5025 		descr = "out journal";
5026 
5027 	if (test_opt(sb, DISCARD)) {
5028 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5029 		if (!blk_queue_discard(q))
5030 			ext4_msg(sb, KERN_WARNING,
5031 				 "mounting with \"discard\" option, but "
5032 				 "the device does not support discard");
5033 	}
5034 
5035 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5036 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5037 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5038 			 (int) sizeof(sbi->s_es->s_mount_opts),
5039 			 sbi->s_es->s_mount_opts,
5040 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5041 			 ext4_quota_mode(sb));
5042 
5043 	if (es->s_error_count)
5044 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5045 
5046 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5047 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5048 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5049 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5050 	atomic_set(&sbi->s_warning_count, 0);
5051 	atomic_set(&sbi->s_msg_count, 0);
5052 
5053 	kfree(orig_data);
5054 	return 0;
5055 
5056 cantfind_ext4:
5057 	if (!silent)
5058 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5059 	goto failed_mount;
5060 
5061 failed_mount8:
5062 	ext4_unregister_sysfs(sb);
5063 	kobject_put(&sbi->s_kobj);
5064 failed_mount7:
5065 	ext4_unregister_li_request(sb);
5066 failed_mount6:
5067 	ext4_mb_release(sb);
5068 	rcu_read_lock();
5069 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5070 	if (flex_groups) {
5071 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5072 			kvfree(flex_groups[i]);
5073 		kvfree(flex_groups);
5074 	}
5075 	rcu_read_unlock();
5076 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5077 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5078 	percpu_counter_destroy(&sbi->s_dirs_counter);
5079 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5080 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5081 failed_mount5:
5082 	ext4_ext_release(sb);
5083 	ext4_release_system_zone(sb);
5084 failed_mount4a:
5085 	dput(sb->s_root);
5086 	sb->s_root = NULL;
5087 failed_mount4:
5088 	ext4_msg(sb, KERN_ERR, "mount failed");
5089 	if (EXT4_SB(sb)->rsv_conversion_wq)
5090 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5091 failed_mount_wq:
5092 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5093 	sbi->s_ea_inode_cache = NULL;
5094 
5095 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5096 	sbi->s_ea_block_cache = NULL;
5097 
5098 	if (sbi->s_journal) {
5099 		jbd2_journal_destroy(sbi->s_journal);
5100 		sbi->s_journal = NULL;
5101 	}
5102 failed_mount3a:
5103 	ext4_es_unregister_shrinker(sbi);
5104 failed_mount3:
5105 	del_timer_sync(&sbi->s_err_report);
5106 	flush_work(&sbi->s_error_work);
5107 	if (sbi->s_mmp_tsk)
5108 		kthread_stop(sbi->s_mmp_tsk);
5109 failed_mount2:
5110 	rcu_read_lock();
5111 	group_desc = rcu_dereference(sbi->s_group_desc);
5112 	for (i = 0; i < db_count; i++)
5113 		brelse(group_desc[i]);
5114 	kvfree(group_desc);
5115 	rcu_read_unlock();
5116 failed_mount:
5117 	if (sbi->s_chksum_driver)
5118 		crypto_free_shash(sbi->s_chksum_driver);
5119 
5120 #ifdef CONFIG_UNICODE
5121 	utf8_unload(sb->s_encoding);
5122 #endif
5123 
5124 #ifdef CONFIG_QUOTA
5125 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5126 		kfree(get_qf_name(sb, sbi, i));
5127 #endif
5128 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5129 	ext4_blkdev_remove(sbi);
5130 	brelse(bh);
5131 out_fail:
5132 	sb->s_fs_info = NULL;
5133 	kfree(sbi->s_blockgroup_lock);
5134 out_free_base:
5135 	kfree(sbi);
5136 	kfree(orig_data);
5137 	fs_put_dax(dax_dev);
5138 	return err ? err : ret;
5139 }
5140 
5141 /*
5142  * Setup any per-fs journal parameters now.  We'll do this both on
5143  * initial mount, once the journal has been initialised but before we've
5144  * done any recovery; and again on any subsequent remount.
5145  */
5146 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5147 {
5148 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5149 
5150 	journal->j_commit_interval = sbi->s_commit_interval;
5151 	journal->j_min_batch_time = sbi->s_min_batch_time;
5152 	journal->j_max_batch_time = sbi->s_max_batch_time;
5153 	ext4_fc_init(sb, journal);
5154 
5155 	write_lock(&journal->j_state_lock);
5156 	if (test_opt(sb, BARRIER))
5157 		journal->j_flags |= JBD2_BARRIER;
5158 	else
5159 		journal->j_flags &= ~JBD2_BARRIER;
5160 	if (test_opt(sb, DATA_ERR_ABORT))
5161 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5162 	else
5163 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5164 	write_unlock(&journal->j_state_lock);
5165 }
5166 
5167 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5168 					     unsigned int journal_inum)
5169 {
5170 	struct inode *journal_inode;
5171 
5172 	/*
5173 	 * Test for the existence of a valid inode on disk.  Bad things
5174 	 * happen if we iget() an unused inode, as the subsequent iput()
5175 	 * will try to delete it.
5176 	 */
5177 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5178 	if (IS_ERR(journal_inode)) {
5179 		ext4_msg(sb, KERN_ERR, "no journal found");
5180 		return NULL;
5181 	}
5182 	if (!journal_inode->i_nlink) {
5183 		make_bad_inode(journal_inode);
5184 		iput(journal_inode);
5185 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5186 		return NULL;
5187 	}
5188 
5189 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5190 		  journal_inode, journal_inode->i_size);
5191 	if (!S_ISREG(journal_inode->i_mode)) {
5192 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5193 		iput(journal_inode);
5194 		return NULL;
5195 	}
5196 	return journal_inode;
5197 }
5198 
5199 static journal_t *ext4_get_journal(struct super_block *sb,
5200 				   unsigned int journal_inum)
5201 {
5202 	struct inode *journal_inode;
5203 	journal_t *journal;
5204 
5205 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5206 		return NULL;
5207 
5208 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5209 	if (!journal_inode)
5210 		return NULL;
5211 
5212 	journal = jbd2_journal_init_inode(journal_inode);
5213 	if (!journal) {
5214 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5215 		iput(journal_inode);
5216 		return NULL;
5217 	}
5218 	journal->j_private = sb;
5219 	ext4_init_journal_params(sb, journal);
5220 	return journal;
5221 }
5222 
5223 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5224 				       dev_t j_dev)
5225 {
5226 	struct buffer_head *bh;
5227 	journal_t *journal;
5228 	ext4_fsblk_t start;
5229 	ext4_fsblk_t len;
5230 	int hblock, blocksize;
5231 	ext4_fsblk_t sb_block;
5232 	unsigned long offset;
5233 	struct ext4_super_block *es;
5234 	struct block_device *bdev;
5235 
5236 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5237 		return NULL;
5238 
5239 	bdev = ext4_blkdev_get(j_dev, sb);
5240 	if (bdev == NULL)
5241 		return NULL;
5242 
5243 	blocksize = sb->s_blocksize;
5244 	hblock = bdev_logical_block_size(bdev);
5245 	if (blocksize < hblock) {
5246 		ext4_msg(sb, KERN_ERR,
5247 			"blocksize too small for journal device");
5248 		goto out_bdev;
5249 	}
5250 
5251 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5252 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5253 	set_blocksize(bdev, blocksize);
5254 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5255 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5256 		       "external journal");
5257 		goto out_bdev;
5258 	}
5259 
5260 	es = (struct ext4_super_block *) (bh->b_data + offset);
5261 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5262 	    !(le32_to_cpu(es->s_feature_incompat) &
5263 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5264 		ext4_msg(sb, KERN_ERR, "external journal has "
5265 					"bad superblock");
5266 		brelse(bh);
5267 		goto out_bdev;
5268 	}
5269 
5270 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5271 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5272 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5273 		ext4_msg(sb, KERN_ERR, "external journal has "
5274 				       "corrupt superblock");
5275 		brelse(bh);
5276 		goto out_bdev;
5277 	}
5278 
5279 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5280 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5281 		brelse(bh);
5282 		goto out_bdev;
5283 	}
5284 
5285 	len = ext4_blocks_count(es);
5286 	start = sb_block + 1;
5287 	brelse(bh);	/* we're done with the superblock */
5288 
5289 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5290 					start, len, blocksize);
5291 	if (!journal) {
5292 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5293 		goto out_bdev;
5294 	}
5295 	journal->j_private = sb;
5296 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5297 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5298 		goto out_journal;
5299 	}
5300 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5301 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5302 					"user (unsupported) - %d",
5303 			be32_to_cpu(journal->j_superblock->s_nr_users));
5304 		goto out_journal;
5305 	}
5306 	EXT4_SB(sb)->s_journal_bdev = bdev;
5307 	ext4_init_journal_params(sb, journal);
5308 	return journal;
5309 
5310 out_journal:
5311 	jbd2_journal_destroy(journal);
5312 out_bdev:
5313 	ext4_blkdev_put(bdev);
5314 	return NULL;
5315 }
5316 
5317 static int ext4_load_journal(struct super_block *sb,
5318 			     struct ext4_super_block *es,
5319 			     unsigned long journal_devnum)
5320 {
5321 	journal_t *journal;
5322 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5323 	dev_t journal_dev;
5324 	int err = 0;
5325 	int really_read_only;
5326 	int journal_dev_ro;
5327 
5328 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5329 		return -EFSCORRUPTED;
5330 
5331 	if (journal_devnum &&
5332 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5333 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5334 			"numbers have changed");
5335 		journal_dev = new_decode_dev(journal_devnum);
5336 	} else
5337 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5338 
5339 	if (journal_inum && journal_dev) {
5340 		ext4_msg(sb, KERN_ERR,
5341 			 "filesystem has both journal inode and journal device!");
5342 		return -EINVAL;
5343 	}
5344 
5345 	if (journal_inum) {
5346 		journal = ext4_get_journal(sb, journal_inum);
5347 		if (!journal)
5348 			return -EINVAL;
5349 	} else {
5350 		journal = ext4_get_dev_journal(sb, journal_dev);
5351 		if (!journal)
5352 			return -EINVAL;
5353 	}
5354 
5355 	journal_dev_ro = bdev_read_only(journal->j_dev);
5356 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5357 
5358 	if (journal_dev_ro && !sb_rdonly(sb)) {
5359 		ext4_msg(sb, KERN_ERR,
5360 			 "journal device read-only, try mounting with '-o ro'");
5361 		err = -EROFS;
5362 		goto err_out;
5363 	}
5364 
5365 	/*
5366 	 * Are we loading a blank journal or performing recovery after a
5367 	 * crash?  For recovery, we need to check in advance whether we
5368 	 * can get read-write access to the device.
5369 	 */
5370 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5371 		if (sb_rdonly(sb)) {
5372 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5373 					"required on readonly filesystem");
5374 			if (really_read_only) {
5375 				ext4_msg(sb, KERN_ERR, "write access "
5376 					"unavailable, cannot proceed "
5377 					"(try mounting with noload)");
5378 				err = -EROFS;
5379 				goto err_out;
5380 			}
5381 			ext4_msg(sb, KERN_INFO, "write access will "
5382 			       "be enabled during recovery");
5383 		}
5384 	}
5385 
5386 	if (!(journal->j_flags & JBD2_BARRIER))
5387 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5388 
5389 	if (!ext4_has_feature_journal_needs_recovery(sb))
5390 		err = jbd2_journal_wipe(journal, !really_read_only);
5391 	if (!err) {
5392 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5393 		if (save)
5394 			memcpy(save, ((char *) es) +
5395 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5396 		err = jbd2_journal_load(journal);
5397 		if (save)
5398 			memcpy(((char *) es) + EXT4_S_ERR_START,
5399 			       save, EXT4_S_ERR_LEN);
5400 		kfree(save);
5401 	}
5402 
5403 	if (err) {
5404 		ext4_msg(sb, KERN_ERR, "error loading journal");
5405 		goto err_out;
5406 	}
5407 
5408 	EXT4_SB(sb)->s_journal = journal;
5409 	err = ext4_clear_journal_err(sb, es);
5410 	if (err) {
5411 		EXT4_SB(sb)->s_journal = NULL;
5412 		jbd2_journal_destroy(journal);
5413 		return err;
5414 	}
5415 
5416 	if (!really_read_only && journal_devnum &&
5417 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5418 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5419 
5420 		/* Make sure we flush the recovery flag to disk. */
5421 		ext4_commit_super(sb, 1);
5422 	}
5423 
5424 	return 0;
5425 
5426 err_out:
5427 	jbd2_journal_destroy(journal);
5428 	return err;
5429 }
5430 
5431 static int ext4_commit_super(struct super_block *sb, int sync)
5432 {
5433 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5434 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5435 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5436 	int error = 0;
5437 
5438 	if (!sbh || block_device_ejected(sb))
5439 		return error;
5440 
5441 	/*
5442 	 * If the file system is mounted read-only, don't update the
5443 	 * superblock write time.  This avoids updating the superblock
5444 	 * write time when we are mounting the root file system
5445 	 * read/only but we need to replay the journal; at that point,
5446 	 * for people who are east of GMT and who make their clock
5447 	 * tick in localtime for Windows bug-for-bug compatibility,
5448 	 * the clock is set in the future, and this will cause e2fsck
5449 	 * to complain and force a full file system check.
5450 	 */
5451 	if (!(sb->s_flags & SB_RDONLY))
5452 		ext4_update_tstamp(es, s_wtime);
5453 	es->s_kbytes_written =
5454 		cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5455 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5456 		      EXT4_SB(sb)->s_sectors_written_start) >> 1));
5457 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5458 		ext4_free_blocks_count_set(es,
5459 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5460 				&EXT4_SB(sb)->s_freeclusters_counter)));
5461 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5462 		es->s_free_inodes_count =
5463 			cpu_to_le32(percpu_counter_sum_positive(
5464 				&EXT4_SB(sb)->s_freeinodes_counter));
5465 	/* Copy error information to the on-disk superblock */
5466 	spin_lock(&sbi->s_error_lock);
5467 	if (sbi->s_add_error_count > 0) {
5468 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5469 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5470 			__ext4_update_tstamp(&es->s_first_error_time,
5471 					     &es->s_first_error_time_hi,
5472 					     sbi->s_first_error_time);
5473 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5474 				sizeof(es->s_first_error_func));
5475 			es->s_first_error_line =
5476 				cpu_to_le32(sbi->s_first_error_line);
5477 			es->s_first_error_ino =
5478 				cpu_to_le32(sbi->s_first_error_ino);
5479 			es->s_first_error_block =
5480 				cpu_to_le64(sbi->s_first_error_block);
5481 			es->s_first_error_errcode =
5482 				ext4_errno_to_code(sbi->s_first_error_code);
5483 		}
5484 		__ext4_update_tstamp(&es->s_last_error_time,
5485 				     &es->s_last_error_time_hi,
5486 				     sbi->s_last_error_time);
5487 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5488 			sizeof(es->s_last_error_func));
5489 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5490 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5491 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5492 		es->s_last_error_errcode =
5493 				ext4_errno_to_code(sbi->s_last_error_code);
5494 		/*
5495 		 * Start the daily error reporting function if it hasn't been
5496 		 * started already
5497 		 */
5498 		if (!es->s_error_count)
5499 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5500 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5501 		sbi->s_add_error_count = 0;
5502 	}
5503 	spin_unlock(&sbi->s_error_lock);
5504 
5505 	BUFFER_TRACE(sbh, "marking dirty");
5506 	ext4_superblock_csum_set(sb);
5507 	if (sync)
5508 		lock_buffer(sbh);
5509 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5510 		/*
5511 		 * Oh, dear.  A previous attempt to write the
5512 		 * superblock failed.  This could happen because the
5513 		 * USB device was yanked out.  Or it could happen to
5514 		 * be a transient write error and maybe the block will
5515 		 * be remapped.  Nothing we can do but to retry the
5516 		 * write and hope for the best.
5517 		 */
5518 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5519 		       "superblock detected");
5520 		clear_buffer_write_io_error(sbh);
5521 		set_buffer_uptodate(sbh);
5522 	}
5523 	mark_buffer_dirty(sbh);
5524 	if (sync) {
5525 		unlock_buffer(sbh);
5526 		error = __sync_dirty_buffer(sbh,
5527 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5528 		if (buffer_write_io_error(sbh)) {
5529 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
5530 			       "superblock");
5531 			clear_buffer_write_io_error(sbh);
5532 			set_buffer_uptodate(sbh);
5533 		}
5534 	}
5535 	return error;
5536 }
5537 
5538 /*
5539  * Have we just finished recovery?  If so, and if we are mounting (or
5540  * remounting) the filesystem readonly, then we will end up with a
5541  * consistent fs on disk.  Record that fact.
5542  */
5543 static int ext4_mark_recovery_complete(struct super_block *sb,
5544 				       struct ext4_super_block *es)
5545 {
5546 	int err;
5547 	journal_t *journal = EXT4_SB(sb)->s_journal;
5548 
5549 	if (!ext4_has_feature_journal(sb)) {
5550 		if (journal != NULL) {
5551 			ext4_error(sb, "Journal got removed while the fs was "
5552 				   "mounted!");
5553 			return -EFSCORRUPTED;
5554 		}
5555 		return 0;
5556 	}
5557 	jbd2_journal_lock_updates(journal);
5558 	err = jbd2_journal_flush(journal);
5559 	if (err < 0)
5560 		goto out;
5561 
5562 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5563 		ext4_clear_feature_journal_needs_recovery(sb);
5564 		ext4_commit_super(sb, 1);
5565 	}
5566 out:
5567 	jbd2_journal_unlock_updates(journal);
5568 	return err;
5569 }
5570 
5571 /*
5572  * If we are mounting (or read-write remounting) a filesystem whose journal
5573  * has recorded an error from a previous lifetime, move that error to the
5574  * main filesystem now.
5575  */
5576 static int ext4_clear_journal_err(struct super_block *sb,
5577 				   struct ext4_super_block *es)
5578 {
5579 	journal_t *journal;
5580 	int j_errno;
5581 	const char *errstr;
5582 
5583 	if (!ext4_has_feature_journal(sb)) {
5584 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5585 		return -EFSCORRUPTED;
5586 	}
5587 
5588 	journal = EXT4_SB(sb)->s_journal;
5589 
5590 	/*
5591 	 * Now check for any error status which may have been recorded in the
5592 	 * journal by a prior ext4_error() or ext4_abort()
5593 	 */
5594 
5595 	j_errno = jbd2_journal_errno(journal);
5596 	if (j_errno) {
5597 		char nbuf[16];
5598 
5599 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5600 		ext4_warning(sb, "Filesystem error recorded "
5601 			     "from previous mount: %s", errstr);
5602 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5603 
5604 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5605 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5606 		ext4_commit_super(sb, 1);
5607 
5608 		jbd2_journal_clear_err(journal);
5609 		jbd2_journal_update_sb_errno(journal);
5610 	}
5611 	return 0;
5612 }
5613 
5614 /*
5615  * Force the running and committing transactions to commit,
5616  * and wait on the commit.
5617  */
5618 int ext4_force_commit(struct super_block *sb)
5619 {
5620 	journal_t *journal;
5621 
5622 	if (sb_rdonly(sb))
5623 		return 0;
5624 
5625 	journal = EXT4_SB(sb)->s_journal;
5626 	return ext4_journal_force_commit(journal);
5627 }
5628 
5629 static int ext4_sync_fs(struct super_block *sb, int wait)
5630 {
5631 	int ret = 0;
5632 	tid_t target;
5633 	bool needs_barrier = false;
5634 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5635 
5636 	if (unlikely(ext4_forced_shutdown(sbi)))
5637 		return 0;
5638 
5639 	trace_ext4_sync_fs(sb, wait);
5640 	flush_workqueue(sbi->rsv_conversion_wq);
5641 	/*
5642 	 * Writeback quota in non-journalled quota case - journalled quota has
5643 	 * no dirty dquots
5644 	 */
5645 	dquot_writeback_dquots(sb, -1);
5646 	/*
5647 	 * Data writeback is possible w/o journal transaction, so barrier must
5648 	 * being sent at the end of the function. But we can skip it if
5649 	 * transaction_commit will do it for us.
5650 	 */
5651 	if (sbi->s_journal) {
5652 		target = jbd2_get_latest_transaction(sbi->s_journal);
5653 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5654 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5655 			needs_barrier = true;
5656 
5657 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5658 			if (wait)
5659 				ret = jbd2_log_wait_commit(sbi->s_journal,
5660 							   target);
5661 		}
5662 	} else if (wait && test_opt(sb, BARRIER))
5663 		needs_barrier = true;
5664 	if (needs_barrier) {
5665 		int err;
5666 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5667 		if (!ret)
5668 			ret = err;
5669 	}
5670 
5671 	return ret;
5672 }
5673 
5674 /*
5675  * LVM calls this function before a (read-only) snapshot is created.  This
5676  * gives us a chance to flush the journal completely and mark the fs clean.
5677  *
5678  * Note that only this function cannot bring a filesystem to be in a clean
5679  * state independently. It relies on upper layer to stop all data & metadata
5680  * modifications.
5681  */
5682 static int ext4_freeze(struct super_block *sb)
5683 {
5684 	int error = 0;
5685 	journal_t *journal;
5686 
5687 	if (sb_rdonly(sb))
5688 		return 0;
5689 
5690 	journal = EXT4_SB(sb)->s_journal;
5691 
5692 	if (journal) {
5693 		/* Now we set up the journal barrier. */
5694 		jbd2_journal_lock_updates(journal);
5695 
5696 		/*
5697 		 * Don't clear the needs_recovery flag if we failed to
5698 		 * flush the journal.
5699 		 */
5700 		error = jbd2_journal_flush(journal);
5701 		if (error < 0)
5702 			goto out;
5703 
5704 		/* Journal blocked and flushed, clear needs_recovery flag. */
5705 		ext4_clear_feature_journal_needs_recovery(sb);
5706 	}
5707 
5708 	error = ext4_commit_super(sb, 1);
5709 out:
5710 	if (journal)
5711 		/* we rely on upper layer to stop further updates */
5712 		jbd2_journal_unlock_updates(journal);
5713 	return error;
5714 }
5715 
5716 /*
5717  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5718  * flag here, even though the filesystem is not technically dirty yet.
5719  */
5720 static int ext4_unfreeze(struct super_block *sb)
5721 {
5722 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5723 		return 0;
5724 
5725 	if (EXT4_SB(sb)->s_journal) {
5726 		/* Reset the needs_recovery flag before the fs is unlocked. */
5727 		ext4_set_feature_journal_needs_recovery(sb);
5728 	}
5729 
5730 	ext4_commit_super(sb, 1);
5731 	return 0;
5732 }
5733 
5734 /*
5735  * Structure to save mount options for ext4_remount's benefit
5736  */
5737 struct ext4_mount_options {
5738 	unsigned long s_mount_opt;
5739 	unsigned long s_mount_opt2;
5740 	kuid_t s_resuid;
5741 	kgid_t s_resgid;
5742 	unsigned long s_commit_interval;
5743 	u32 s_min_batch_time, s_max_batch_time;
5744 #ifdef CONFIG_QUOTA
5745 	int s_jquota_fmt;
5746 	char *s_qf_names[EXT4_MAXQUOTAS];
5747 #endif
5748 };
5749 
5750 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5751 {
5752 	struct ext4_super_block *es;
5753 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5754 	unsigned long old_sb_flags, vfs_flags;
5755 	struct ext4_mount_options old_opts;
5756 	int enable_quota = 0;
5757 	ext4_group_t g;
5758 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5759 	int err = 0;
5760 #ifdef CONFIG_QUOTA
5761 	int i, j;
5762 	char *to_free[EXT4_MAXQUOTAS];
5763 #endif
5764 	char *orig_data = kstrdup(data, GFP_KERNEL);
5765 
5766 	if (data && !orig_data)
5767 		return -ENOMEM;
5768 
5769 	/* Store the original options */
5770 	old_sb_flags = sb->s_flags;
5771 	old_opts.s_mount_opt = sbi->s_mount_opt;
5772 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5773 	old_opts.s_resuid = sbi->s_resuid;
5774 	old_opts.s_resgid = sbi->s_resgid;
5775 	old_opts.s_commit_interval = sbi->s_commit_interval;
5776 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5777 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5778 #ifdef CONFIG_QUOTA
5779 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5780 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5781 		if (sbi->s_qf_names[i]) {
5782 			char *qf_name = get_qf_name(sb, sbi, i);
5783 
5784 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5785 			if (!old_opts.s_qf_names[i]) {
5786 				for (j = 0; j < i; j++)
5787 					kfree(old_opts.s_qf_names[j]);
5788 				kfree(orig_data);
5789 				return -ENOMEM;
5790 			}
5791 		} else
5792 			old_opts.s_qf_names[i] = NULL;
5793 #endif
5794 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5795 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5796 
5797 	/*
5798 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5799 	 * either way we need to make sure it matches in both *flags and
5800 	 * s_flags. Copy those selected flags from *flags to s_flags
5801 	 */
5802 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5803 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5804 
5805 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5806 		err = -EINVAL;
5807 		goto restore_opts;
5808 	}
5809 
5810 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5811 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5812 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5813 			 "during remount not supported; ignoring");
5814 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5815 	}
5816 
5817 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5818 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5819 			ext4_msg(sb, KERN_ERR, "can't mount with "
5820 				 "both data=journal and delalloc");
5821 			err = -EINVAL;
5822 			goto restore_opts;
5823 		}
5824 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5825 			ext4_msg(sb, KERN_ERR, "can't mount with "
5826 				 "both data=journal and dioread_nolock");
5827 			err = -EINVAL;
5828 			goto restore_opts;
5829 		}
5830 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5831 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5832 			ext4_msg(sb, KERN_ERR, "can't mount with "
5833 				"journal_async_commit in data=ordered mode");
5834 			err = -EINVAL;
5835 			goto restore_opts;
5836 		}
5837 	}
5838 
5839 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5840 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5841 		err = -EINVAL;
5842 		goto restore_opts;
5843 	}
5844 
5845 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5846 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5847 
5848 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5849 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5850 
5851 	es = sbi->s_es;
5852 
5853 	if (sbi->s_journal) {
5854 		ext4_init_journal_params(sb, sbi->s_journal);
5855 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5856 	}
5857 
5858 	/* Flush outstanding errors before changing fs state */
5859 	flush_work(&sbi->s_error_work);
5860 
5861 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5862 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5863 			err = -EROFS;
5864 			goto restore_opts;
5865 		}
5866 
5867 		if (*flags & SB_RDONLY) {
5868 			err = sync_filesystem(sb);
5869 			if (err < 0)
5870 				goto restore_opts;
5871 			err = dquot_suspend(sb, -1);
5872 			if (err < 0)
5873 				goto restore_opts;
5874 
5875 			/*
5876 			 * First of all, the unconditional stuff we have to do
5877 			 * to disable replay of the journal when we next remount
5878 			 */
5879 			sb->s_flags |= SB_RDONLY;
5880 
5881 			/*
5882 			 * OK, test if we are remounting a valid rw partition
5883 			 * readonly, and if so set the rdonly flag and then
5884 			 * mark the partition as valid again.
5885 			 */
5886 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5887 			    (sbi->s_mount_state & EXT4_VALID_FS))
5888 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5889 
5890 			if (sbi->s_journal) {
5891 				/*
5892 				 * We let remount-ro finish even if marking fs
5893 				 * as clean failed...
5894 				 */
5895 				ext4_mark_recovery_complete(sb, es);
5896 			}
5897 			if (sbi->s_mmp_tsk)
5898 				kthread_stop(sbi->s_mmp_tsk);
5899 		} else {
5900 			/* Make sure we can mount this feature set readwrite */
5901 			if (ext4_has_feature_readonly(sb) ||
5902 			    !ext4_feature_set_ok(sb, 0)) {
5903 				err = -EROFS;
5904 				goto restore_opts;
5905 			}
5906 			/*
5907 			 * Make sure the group descriptor checksums
5908 			 * are sane.  If they aren't, refuse to remount r/w.
5909 			 */
5910 			for (g = 0; g < sbi->s_groups_count; g++) {
5911 				struct ext4_group_desc *gdp =
5912 					ext4_get_group_desc(sb, g, NULL);
5913 
5914 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5915 					ext4_msg(sb, KERN_ERR,
5916 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5917 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5918 					       le16_to_cpu(gdp->bg_checksum));
5919 					err = -EFSBADCRC;
5920 					goto restore_opts;
5921 				}
5922 			}
5923 
5924 			/*
5925 			 * If we have an unprocessed orphan list hanging
5926 			 * around from a previously readonly bdev mount,
5927 			 * require a full umount/remount for now.
5928 			 */
5929 			if (es->s_last_orphan) {
5930 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5931 				       "remount RDWR because of unprocessed "
5932 				       "orphan inode list.  Please "
5933 				       "umount/remount instead");
5934 				err = -EINVAL;
5935 				goto restore_opts;
5936 			}
5937 
5938 			/*
5939 			 * Mounting a RDONLY partition read-write, so reread
5940 			 * and store the current valid flag.  (It may have
5941 			 * been changed by e2fsck since we originally mounted
5942 			 * the partition.)
5943 			 */
5944 			if (sbi->s_journal) {
5945 				err = ext4_clear_journal_err(sb, es);
5946 				if (err)
5947 					goto restore_opts;
5948 			}
5949 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5950 
5951 			err = ext4_setup_super(sb, es, 0);
5952 			if (err)
5953 				goto restore_opts;
5954 
5955 			sb->s_flags &= ~SB_RDONLY;
5956 			if (ext4_has_feature_mmp(sb))
5957 				if (ext4_multi_mount_protect(sb,
5958 						le64_to_cpu(es->s_mmp_block))) {
5959 					err = -EROFS;
5960 					goto restore_opts;
5961 				}
5962 			enable_quota = 1;
5963 		}
5964 	}
5965 
5966 	/*
5967 	 * Reinitialize lazy itable initialization thread based on
5968 	 * current settings
5969 	 */
5970 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5971 		ext4_unregister_li_request(sb);
5972 	else {
5973 		ext4_group_t first_not_zeroed;
5974 		first_not_zeroed = ext4_has_uninit_itable(sb);
5975 		ext4_register_li_request(sb, first_not_zeroed);
5976 	}
5977 
5978 	/*
5979 	 * Handle creation of system zone data early because it can fail.
5980 	 * Releasing of existing data is done when we are sure remount will
5981 	 * succeed.
5982 	 */
5983 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5984 		err = ext4_setup_system_zone(sb);
5985 		if (err)
5986 			goto restore_opts;
5987 	}
5988 
5989 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5990 		err = ext4_commit_super(sb, 1);
5991 		if (err)
5992 			goto restore_opts;
5993 	}
5994 
5995 #ifdef CONFIG_QUOTA
5996 	/* Release old quota file names */
5997 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5998 		kfree(old_opts.s_qf_names[i]);
5999 	if (enable_quota) {
6000 		if (sb_any_quota_suspended(sb))
6001 			dquot_resume(sb, -1);
6002 		else if (ext4_has_feature_quota(sb)) {
6003 			err = ext4_enable_quotas(sb);
6004 			if (err)
6005 				goto restore_opts;
6006 		}
6007 	}
6008 #endif
6009 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6010 		ext4_release_system_zone(sb);
6011 
6012 	/*
6013 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6014 	 * either way we need to make sure it matches in both *flags and
6015 	 * s_flags. Copy those selected flags from s_flags to *flags
6016 	 */
6017 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6018 
6019 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6020 		 orig_data, ext4_quota_mode(sb));
6021 	kfree(orig_data);
6022 	return 0;
6023 
6024 restore_opts:
6025 	sb->s_flags = old_sb_flags;
6026 	sbi->s_mount_opt = old_opts.s_mount_opt;
6027 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6028 	sbi->s_resuid = old_opts.s_resuid;
6029 	sbi->s_resgid = old_opts.s_resgid;
6030 	sbi->s_commit_interval = old_opts.s_commit_interval;
6031 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6032 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6033 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6034 		ext4_release_system_zone(sb);
6035 #ifdef CONFIG_QUOTA
6036 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6037 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6038 		to_free[i] = get_qf_name(sb, sbi, i);
6039 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6040 	}
6041 	synchronize_rcu();
6042 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6043 		kfree(to_free[i]);
6044 #endif
6045 	kfree(orig_data);
6046 	return err;
6047 }
6048 
6049 #ifdef CONFIG_QUOTA
6050 static int ext4_statfs_project(struct super_block *sb,
6051 			       kprojid_t projid, struct kstatfs *buf)
6052 {
6053 	struct kqid qid;
6054 	struct dquot *dquot;
6055 	u64 limit;
6056 	u64 curblock;
6057 
6058 	qid = make_kqid_projid(projid);
6059 	dquot = dqget(sb, qid);
6060 	if (IS_ERR(dquot))
6061 		return PTR_ERR(dquot);
6062 	spin_lock(&dquot->dq_dqb_lock);
6063 
6064 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6065 			     dquot->dq_dqb.dqb_bhardlimit);
6066 	limit >>= sb->s_blocksize_bits;
6067 
6068 	if (limit && buf->f_blocks > limit) {
6069 		curblock = (dquot->dq_dqb.dqb_curspace +
6070 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6071 		buf->f_blocks = limit;
6072 		buf->f_bfree = buf->f_bavail =
6073 			(buf->f_blocks > curblock) ?
6074 			 (buf->f_blocks - curblock) : 0;
6075 	}
6076 
6077 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6078 			     dquot->dq_dqb.dqb_ihardlimit);
6079 	if (limit && buf->f_files > limit) {
6080 		buf->f_files = limit;
6081 		buf->f_ffree =
6082 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6083 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6084 	}
6085 
6086 	spin_unlock(&dquot->dq_dqb_lock);
6087 	dqput(dquot);
6088 	return 0;
6089 }
6090 #endif
6091 
6092 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6093 {
6094 	struct super_block *sb = dentry->d_sb;
6095 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6096 	struct ext4_super_block *es = sbi->s_es;
6097 	ext4_fsblk_t overhead = 0, resv_blocks;
6098 	u64 fsid;
6099 	s64 bfree;
6100 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6101 
6102 	if (!test_opt(sb, MINIX_DF))
6103 		overhead = sbi->s_overhead;
6104 
6105 	buf->f_type = EXT4_SUPER_MAGIC;
6106 	buf->f_bsize = sb->s_blocksize;
6107 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6108 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6109 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6110 	/* prevent underflow in case that few free space is available */
6111 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6112 	buf->f_bavail = buf->f_bfree -
6113 			(ext4_r_blocks_count(es) + resv_blocks);
6114 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6115 		buf->f_bavail = 0;
6116 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6117 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6118 	buf->f_namelen = EXT4_NAME_LEN;
6119 	fsid = le64_to_cpup((void *)es->s_uuid) ^
6120 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6121 	buf->f_fsid = u64_to_fsid(fsid);
6122 
6123 #ifdef CONFIG_QUOTA
6124 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6125 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6126 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6127 #endif
6128 	return 0;
6129 }
6130 
6131 
6132 #ifdef CONFIG_QUOTA
6133 
6134 /*
6135  * Helper functions so that transaction is started before we acquire dqio_sem
6136  * to keep correct lock ordering of transaction > dqio_sem
6137  */
6138 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6139 {
6140 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6141 }
6142 
6143 static int ext4_write_dquot(struct dquot *dquot)
6144 {
6145 	int ret, err;
6146 	handle_t *handle;
6147 	struct inode *inode;
6148 
6149 	inode = dquot_to_inode(dquot);
6150 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6151 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6152 	if (IS_ERR(handle))
6153 		return PTR_ERR(handle);
6154 	ret = dquot_commit(dquot);
6155 	err = ext4_journal_stop(handle);
6156 	if (!ret)
6157 		ret = err;
6158 	return ret;
6159 }
6160 
6161 static int ext4_acquire_dquot(struct dquot *dquot)
6162 {
6163 	int ret, err;
6164 	handle_t *handle;
6165 
6166 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6167 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6168 	if (IS_ERR(handle))
6169 		return PTR_ERR(handle);
6170 	ret = dquot_acquire(dquot);
6171 	err = ext4_journal_stop(handle);
6172 	if (!ret)
6173 		ret = err;
6174 	return ret;
6175 }
6176 
6177 static int ext4_release_dquot(struct dquot *dquot)
6178 {
6179 	int ret, err;
6180 	handle_t *handle;
6181 
6182 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6183 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6184 	if (IS_ERR(handle)) {
6185 		/* Release dquot anyway to avoid endless cycle in dqput() */
6186 		dquot_release(dquot);
6187 		return PTR_ERR(handle);
6188 	}
6189 	ret = dquot_release(dquot);
6190 	err = ext4_journal_stop(handle);
6191 	if (!ret)
6192 		ret = err;
6193 	return ret;
6194 }
6195 
6196 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6197 {
6198 	struct super_block *sb = dquot->dq_sb;
6199 
6200 	if (ext4_is_quota_journalled(sb)) {
6201 		dquot_mark_dquot_dirty(dquot);
6202 		return ext4_write_dquot(dquot);
6203 	} else {
6204 		return dquot_mark_dquot_dirty(dquot);
6205 	}
6206 }
6207 
6208 static int ext4_write_info(struct super_block *sb, int type)
6209 {
6210 	int ret, err;
6211 	handle_t *handle;
6212 
6213 	/* Data block + inode block */
6214 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6215 	if (IS_ERR(handle))
6216 		return PTR_ERR(handle);
6217 	ret = dquot_commit_info(sb, type);
6218 	err = ext4_journal_stop(handle);
6219 	if (!ret)
6220 		ret = err;
6221 	return ret;
6222 }
6223 
6224 /*
6225  * Turn on quotas during mount time - we need to find
6226  * the quota file and such...
6227  */
6228 static int ext4_quota_on_mount(struct super_block *sb, int type)
6229 {
6230 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6231 					EXT4_SB(sb)->s_jquota_fmt, type);
6232 }
6233 
6234 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6235 {
6236 	struct ext4_inode_info *ei = EXT4_I(inode);
6237 
6238 	/* The first argument of lockdep_set_subclass has to be
6239 	 * *exactly* the same as the argument to init_rwsem() --- in
6240 	 * this case, in init_once() --- or lockdep gets unhappy
6241 	 * because the name of the lock is set using the
6242 	 * stringification of the argument to init_rwsem().
6243 	 */
6244 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6245 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6246 }
6247 
6248 /*
6249  * Standard function to be called on quota_on
6250  */
6251 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6252 			 const struct path *path)
6253 {
6254 	int err;
6255 
6256 	if (!test_opt(sb, QUOTA))
6257 		return -EINVAL;
6258 
6259 	/* Quotafile not on the same filesystem? */
6260 	if (path->dentry->d_sb != sb)
6261 		return -EXDEV;
6262 
6263 	/* Quota already enabled for this file? */
6264 	if (IS_NOQUOTA(d_inode(path->dentry)))
6265 		return -EBUSY;
6266 
6267 	/* Journaling quota? */
6268 	if (EXT4_SB(sb)->s_qf_names[type]) {
6269 		/* Quotafile not in fs root? */
6270 		if (path->dentry->d_parent != sb->s_root)
6271 			ext4_msg(sb, KERN_WARNING,
6272 				"Quota file not on filesystem root. "
6273 				"Journaled quota will not work");
6274 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6275 	} else {
6276 		/*
6277 		 * Clear the flag just in case mount options changed since
6278 		 * last time.
6279 		 */
6280 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6281 	}
6282 
6283 	/*
6284 	 * When we journal data on quota file, we have to flush journal to see
6285 	 * all updates to the file when we bypass pagecache...
6286 	 */
6287 	if (EXT4_SB(sb)->s_journal &&
6288 	    ext4_should_journal_data(d_inode(path->dentry))) {
6289 		/*
6290 		 * We don't need to lock updates but journal_flush() could
6291 		 * otherwise be livelocked...
6292 		 */
6293 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6294 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6295 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6296 		if (err)
6297 			return err;
6298 	}
6299 
6300 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6301 	err = dquot_quota_on(sb, type, format_id, path);
6302 	if (err) {
6303 		lockdep_set_quota_inode(path->dentry->d_inode,
6304 					     I_DATA_SEM_NORMAL);
6305 	} else {
6306 		struct inode *inode = d_inode(path->dentry);
6307 		handle_t *handle;
6308 
6309 		/*
6310 		 * Set inode flags to prevent userspace from messing with quota
6311 		 * files. If this fails, we return success anyway since quotas
6312 		 * are already enabled and this is not a hard failure.
6313 		 */
6314 		inode_lock(inode);
6315 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6316 		if (IS_ERR(handle))
6317 			goto unlock_inode;
6318 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6319 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6320 				S_NOATIME | S_IMMUTABLE);
6321 		err = ext4_mark_inode_dirty(handle, inode);
6322 		ext4_journal_stop(handle);
6323 	unlock_inode:
6324 		inode_unlock(inode);
6325 	}
6326 	return err;
6327 }
6328 
6329 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6330 			     unsigned int flags)
6331 {
6332 	int err;
6333 	struct inode *qf_inode;
6334 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6335 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6336 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6337 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6338 	};
6339 
6340 	BUG_ON(!ext4_has_feature_quota(sb));
6341 
6342 	if (!qf_inums[type])
6343 		return -EPERM;
6344 
6345 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6346 	if (IS_ERR(qf_inode)) {
6347 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6348 		return PTR_ERR(qf_inode);
6349 	}
6350 
6351 	/* Don't account quota for quota files to avoid recursion */
6352 	qf_inode->i_flags |= S_NOQUOTA;
6353 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6354 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6355 	if (err)
6356 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6357 	iput(qf_inode);
6358 
6359 	return err;
6360 }
6361 
6362 /* Enable usage tracking for all quota types. */
6363 static int ext4_enable_quotas(struct super_block *sb)
6364 {
6365 	int type, err = 0;
6366 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6367 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6368 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6369 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6370 	};
6371 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6372 		test_opt(sb, USRQUOTA),
6373 		test_opt(sb, GRPQUOTA),
6374 		test_opt(sb, PRJQUOTA),
6375 	};
6376 
6377 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6378 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6379 		if (qf_inums[type]) {
6380 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6381 				DQUOT_USAGE_ENABLED |
6382 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6383 			if (err) {
6384 				ext4_warning(sb,
6385 					"Failed to enable quota tracking "
6386 					"(type=%d, err=%d). Please run "
6387 					"e2fsck to fix.", type, err);
6388 				for (type--; type >= 0; type--)
6389 					dquot_quota_off(sb, type);
6390 
6391 				return err;
6392 			}
6393 		}
6394 	}
6395 	return 0;
6396 }
6397 
6398 static int ext4_quota_off(struct super_block *sb, int type)
6399 {
6400 	struct inode *inode = sb_dqopt(sb)->files[type];
6401 	handle_t *handle;
6402 	int err;
6403 
6404 	/* Force all delayed allocation blocks to be allocated.
6405 	 * Caller already holds s_umount sem */
6406 	if (test_opt(sb, DELALLOC))
6407 		sync_filesystem(sb);
6408 
6409 	if (!inode || !igrab(inode))
6410 		goto out;
6411 
6412 	err = dquot_quota_off(sb, type);
6413 	if (err || ext4_has_feature_quota(sb))
6414 		goto out_put;
6415 
6416 	inode_lock(inode);
6417 	/*
6418 	 * Update modification times of quota files when userspace can
6419 	 * start looking at them. If we fail, we return success anyway since
6420 	 * this is not a hard failure and quotas are already disabled.
6421 	 */
6422 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6423 	if (IS_ERR(handle)) {
6424 		err = PTR_ERR(handle);
6425 		goto out_unlock;
6426 	}
6427 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6428 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6429 	inode->i_mtime = inode->i_ctime = current_time(inode);
6430 	err = ext4_mark_inode_dirty(handle, inode);
6431 	ext4_journal_stop(handle);
6432 out_unlock:
6433 	inode_unlock(inode);
6434 out_put:
6435 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6436 	iput(inode);
6437 	return err;
6438 out:
6439 	return dquot_quota_off(sb, type);
6440 }
6441 
6442 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6443  * acquiring the locks... As quota files are never truncated and quota code
6444  * itself serializes the operations (and no one else should touch the files)
6445  * we don't have to be afraid of races */
6446 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6447 			       size_t len, loff_t off)
6448 {
6449 	struct inode *inode = sb_dqopt(sb)->files[type];
6450 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6451 	int offset = off & (sb->s_blocksize - 1);
6452 	int tocopy;
6453 	size_t toread;
6454 	struct buffer_head *bh;
6455 	loff_t i_size = i_size_read(inode);
6456 
6457 	if (off > i_size)
6458 		return 0;
6459 	if (off+len > i_size)
6460 		len = i_size-off;
6461 	toread = len;
6462 	while (toread > 0) {
6463 		tocopy = sb->s_blocksize - offset < toread ?
6464 				sb->s_blocksize - offset : toread;
6465 		bh = ext4_bread(NULL, inode, blk, 0);
6466 		if (IS_ERR(bh))
6467 			return PTR_ERR(bh);
6468 		if (!bh)	/* A hole? */
6469 			memset(data, 0, tocopy);
6470 		else
6471 			memcpy(data, bh->b_data+offset, tocopy);
6472 		brelse(bh);
6473 		offset = 0;
6474 		toread -= tocopy;
6475 		data += tocopy;
6476 		blk++;
6477 	}
6478 	return len;
6479 }
6480 
6481 /* Write to quotafile (we know the transaction is already started and has
6482  * enough credits) */
6483 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6484 				const char *data, size_t len, loff_t off)
6485 {
6486 	struct inode *inode = sb_dqopt(sb)->files[type];
6487 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6488 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6489 	int retries = 0;
6490 	struct buffer_head *bh;
6491 	handle_t *handle = journal_current_handle();
6492 
6493 	if (EXT4_SB(sb)->s_journal && !handle) {
6494 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6495 			" cancelled because transaction is not started",
6496 			(unsigned long long)off, (unsigned long long)len);
6497 		return -EIO;
6498 	}
6499 	/*
6500 	 * Since we account only one data block in transaction credits,
6501 	 * then it is impossible to cross a block boundary.
6502 	 */
6503 	if (sb->s_blocksize - offset < len) {
6504 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6505 			" cancelled because not block aligned",
6506 			(unsigned long long)off, (unsigned long long)len);
6507 		return -EIO;
6508 	}
6509 
6510 	do {
6511 		bh = ext4_bread(handle, inode, blk,
6512 				EXT4_GET_BLOCKS_CREATE |
6513 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6514 	} while (PTR_ERR(bh) == -ENOSPC &&
6515 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6516 	if (IS_ERR(bh))
6517 		return PTR_ERR(bh);
6518 	if (!bh)
6519 		goto out;
6520 	BUFFER_TRACE(bh, "get write access");
6521 	err = ext4_journal_get_write_access(handle, bh);
6522 	if (err) {
6523 		brelse(bh);
6524 		return err;
6525 	}
6526 	lock_buffer(bh);
6527 	memcpy(bh->b_data+offset, data, len);
6528 	flush_dcache_page(bh->b_page);
6529 	unlock_buffer(bh);
6530 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6531 	brelse(bh);
6532 out:
6533 	if (inode->i_size < off + len) {
6534 		i_size_write(inode, off + len);
6535 		EXT4_I(inode)->i_disksize = inode->i_size;
6536 		err2 = ext4_mark_inode_dirty(handle, inode);
6537 		if (unlikely(err2 && !err))
6538 			err = err2;
6539 	}
6540 	return err ? err : len;
6541 }
6542 #endif
6543 
6544 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6545 		       const char *dev_name, void *data)
6546 {
6547 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6548 }
6549 
6550 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6551 static inline void register_as_ext2(void)
6552 {
6553 	int err = register_filesystem(&ext2_fs_type);
6554 	if (err)
6555 		printk(KERN_WARNING
6556 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6557 }
6558 
6559 static inline void unregister_as_ext2(void)
6560 {
6561 	unregister_filesystem(&ext2_fs_type);
6562 }
6563 
6564 static inline int ext2_feature_set_ok(struct super_block *sb)
6565 {
6566 	if (ext4_has_unknown_ext2_incompat_features(sb))
6567 		return 0;
6568 	if (sb_rdonly(sb))
6569 		return 1;
6570 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6571 		return 0;
6572 	return 1;
6573 }
6574 #else
6575 static inline void register_as_ext2(void) { }
6576 static inline void unregister_as_ext2(void) { }
6577 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6578 #endif
6579 
6580 static inline void register_as_ext3(void)
6581 {
6582 	int err = register_filesystem(&ext3_fs_type);
6583 	if (err)
6584 		printk(KERN_WARNING
6585 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6586 }
6587 
6588 static inline void unregister_as_ext3(void)
6589 {
6590 	unregister_filesystem(&ext3_fs_type);
6591 }
6592 
6593 static inline int ext3_feature_set_ok(struct super_block *sb)
6594 {
6595 	if (ext4_has_unknown_ext3_incompat_features(sb))
6596 		return 0;
6597 	if (!ext4_has_feature_journal(sb))
6598 		return 0;
6599 	if (sb_rdonly(sb))
6600 		return 1;
6601 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6602 		return 0;
6603 	return 1;
6604 }
6605 
6606 static struct file_system_type ext4_fs_type = {
6607 	.owner		= THIS_MODULE,
6608 	.name		= "ext4",
6609 	.mount		= ext4_mount,
6610 	.kill_sb	= kill_block_super,
6611 	.fs_flags	= FS_REQUIRES_DEV,
6612 };
6613 MODULE_ALIAS_FS("ext4");
6614 
6615 /* Shared across all ext4 file systems */
6616 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6617 
6618 static int __init ext4_init_fs(void)
6619 {
6620 	int i, err;
6621 
6622 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6623 	ext4_li_info = NULL;
6624 	mutex_init(&ext4_li_mtx);
6625 
6626 	/* Build-time check for flags consistency */
6627 	ext4_check_flag_values();
6628 
6629 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6630 		init_waitqueue_head(&ext4__ioend_wq[i]);
6631 
6632 	err = ext4_init_es();
6633 	if (err)
6634 		return err;
6635 
6636 	err = ext4_init_pending();
6637 	if (err)
6638 		goto out7;
6639 
6640 	err = ext4_init_post_read_processing();
6641 	if (err)
6642 		goto out6;
6643 
6644 	err = ext4_init_pageio();
6645 	if (err)
6646 		goto out5;
6647 
6648 	err = ext4_init_system_zone();
6649 	if (err)
6650 		goto out4;
6651 
6652 	err = ext4_init_sysfs();
6653 	if (err)
6654 		goto out3;
6655 
6656 	err = ext4_init_mballoc();
6657 	if (err)
6658 		goto out2;
6659 	err = init_inodecache();
6660 	if (err)
6661 		goto out1;
6662 
6663 	err = ext4_fc_init_dentry_cache();
6664 	if (err)
6665 		goto out05;
6666 
6667 	register_as_ext3();
6668 	register_as_ext2();
6669 	err = register_filesystem(&ext4_fs_type);
6670 	if (err)
6671 		goto out;
6672 
6673 	return 0;
6674 out:
6675 	unregister_as_ext2();
6676 	unregister_as_ext3();
6677 out05:
6678 	destroy_inodecache();
6679 out1:
6680 	ext4_exit_mballoc();
6681 out2:
6682 	ext4_exit_sysfs();
6683 out3:
6684 	ext4_exit_system_zone();
6685 out4:
6686 	ext4_exit_pageio();
6687 out5:
6688 	ext4_exit_post_read_processing();
6689 out6:
6690 	ext4_exit_pending();
6691 out7:
6692 	ext4_exit_es();
6693 
6694 	return err;
6695 }
6696 
6697 static void __exit ext4_exit_fs(void)
6698 {
6699 	ext4_destroy_lazyinit_thread();
6700 	unregister_as_ext2();
6701 	unregister_as_ext3();
6702 	unregister_filesystem(&ext4_fs_type);
6703 	destroy_inodecache();
6704 	ext4_exit_mballoc();
6705 	ext4_exit_sysfs();
6706 	ext4_exit_system_zone();
6707 	ext4_exit_pageio();
6708 	ext4_exit_post_read_processing();
6709 	ext4_exit_es();
6710 	ext4_exit_pending();
6711 }
6712 
6713 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6714 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6715 MODULE_LICENSE("GPL");
6716 MODULE_SOFTDEP("pre: crc32c");
6717 module_init(ext4_init_fs)
6718 module_exit(ext4_exit_fs)
6719