1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 146 bh_end_io_t *end_io) 147 { 148 /* 149 * buffer's verified bit is no longer valid after reading from 150 * disk again due to write out error, clear it to make sure we 151 * recheck the buffer contents. 152 */ 153 clear_buffer_verified(bh); 154 155 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 156 get_bh(bh); 157 submit_bh(REQ_OP_READ, op_flags, bh); 158 } 159 160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 161 bh_end_io_t *end_io) 162 { 163 BUG_ON(!buffer_locked(bh)); 164 165 if (ext4_buffer_uptodate(bh)) { 166 unlock_buffer(bh); 167 return; 168 } 169 __ext4_read_bh(bh, op_flags, end_io); 170 } 171 172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 173 { 174 BUG_ON(!buffer_locked(bh)); 175 176 if (ext4_buffer_uptodate(bh)) { 177 unlock_buffer(bh); 178 return 0; 179 } 180 181 __ext4_read_bh(bh, op_flags, end_io); 182 183 wait_on_buffer(bh); 184 if (buffer_uptodate(bh)) 185 return 0; 186 return -EIO; 187 } 188 189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 190 { 191 if (trylock_buffer(bh)) { 192 if (wait) 193 return ext4_read_bh(bh, op_flags, NULL); 194 ext4_read_bh_nowait(bh, op_flags, NULL); 195 return 0; 196 } 197 if (wait) { 198 wait_on_buffer(bh); 199 if (buffer_uptodate(bh)) 200 return 0; 201 return -EIO; 202 } 203 return 0; 204 } 205 206 /* 207 * This works like __bread_gfp() except it uses ERR_PTR for error 208 * returns. Currently with sb_bread it's impossible to distinguish 209 * between ENOMEM and EIO situations (since both result in a NULL 210 * return. 211 */ 212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 213 sector_t block, int op_flags, 214 gfp_t gfp) 215 { 216 struct buffer_head *bh; 217 int ret; 218 219 bh = sb_getblk_gfp(sb, block, gfp); 220 if (bh == NULL) 221 return ERR_PTR(-ENOMEM); 222 if (ext4_buffer_uptodate(bh)) 223 return bh; 224 225 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 226 if (ret) { 227 put_bh(bh); 228 return ERR_PTR(ret); 229 } 230 return bh; 231 } 232 233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 234 int op_flags) 235 { 236 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 237 } 238 239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 240 sector_t block) 241 { 242 return __ext4_sb_bread_gfp(sb, block, 0, 0); 243 } 244 245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 246 { 247 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 248 249 if (likely(bh)) { 250 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 251 brelse(bh); 252 } 253 } 254 255 static int ext4_verify_csum_type(struct super_block *sb, 256 struct ext4_super_block *es) 257 { 258 if (!ext4_has_feature_metadata_csum(sb)) 259 return 1; 260 261 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 262 } 263 264 static __le32 ext4_superblock_csum(struct super_block *sb, 265 struct ext4_super_block *es) 266 { 267 struct ext4_sb_info *sbi = EXT4_SB(sb); 268 int offset = offsetof(struct ext4_super_block, s_checksum); 269 __u32 csum; 270 271 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 272 273 return cpu_to_le32(csum); 274 } 275 276 static int ext4_superblock_csum_verify(struct super_block *sb, 277 struct ext4_super_block *es) 278 { 279 if (!ext4_has_metadata_csum(sb)) 280 return 1; 281 282 return es->s_checksum == ext4_superblock_csum(sb, es); 283 } 284 285 void ext4_superblock_csum_set(struct super_block *sb) 286 { 287 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 288 289 if (!ext4_has_metadata_csum(sb)) 290 return; 291 292 es->s_checksum = ext4_superblock_csum(sb, es); 293 } 294 295 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 296 struct ext4_group_desc *bg) 297 { 298 return le32_to_cpu(bg->bg_block_bitmap_lo) | 299 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 300 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 301 } 302 303 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 304 struct ext4_group_desc *bg) 305 { 306 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 307 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 308 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 309 } 310 311 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 312 struct ext4_group_desc *bg) 313 { 314 return le32_to_cpu(bg->bg_inode_table_lo) | 315 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 316 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 317 } 318 319 __u32 ext4_free_group_clusters(struct super_block *sb, 320 struct ext4_group_desc *bg) 321 { 322 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 323 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 324 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 325 } 326 327 __u32 ext4_free_inodes_count(struct super_block *sb, 328 struct ext4_group_desc *bg) 329 { 330 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 332 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 333 } 334 335 __u32 ext4_used_dirs_count(struct super_block *sb, 336 struct ext4_group_desc *bg) 337 { 338 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 340 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 341 } 342 343 __u32 ext4_itable_unused_count(struct super_block *sb, 344 struct ext4_group_desc *bg) 345 { 346 return le16_to_cpu(bg->bg_itable_unused_lo) | 347 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 348 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 349 } 350 351 void ext4_block_bitmap_set(struct super_block *sb, 352 struct ext4_group_desc *bg, ext4_fsblk_t blk) 353 { 354 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 355 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 356 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 357 } 358 359 void ext4_inode_bitmap_set(struct super_block *sb, 360 struct ext4_group_desc *bg, ext4_fsblk_t blk) 361 { 362 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 363 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 364 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 365 } 366 367 void ext4_inode_table_set(struct super_block *sb, 368 struct ext4_group_desc *bg, ext4_fsblk_t blk) 369 { 370 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 371 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 372 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 373 } 374 375 void ext4_free_group_clusters_set(struct super_block *sb, 376 struct ext4_group_desc *bg, __u32 count) 377 { 378 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 379 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 380 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 381 } 382 383 void ext4_free_inodes_set(struct super_block *sb, 384 struct ext4_group_desc *bg, __u32 count) 385 { 386 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 388 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 389 } 390 391 void ext4_used_dirs_set(struct super_block *sb, 392 struct ext4_group_desc *bg, __u32 count) 393 { 394 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 396 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 397 } 398 399 void ext4_itable_unused_set(struct super_block *sb, 400 struct ext4_group_desc *bg, __u32 count) 401 { 402 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 403 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 404 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 405 } 406 407 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 408 { 409 now = clamp_val(now, 0, (1ull << 40) - 1); 410 411 *lo = cpu_to_le32(lower_32_bits(now)); 412 *hi = upper_32_bits(now); 413 } 414 415 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 416 { 417 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 418 } 419 #define ext4_update_tstamp(es, tstamp) \ 420 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 421 ktime_get_real_seconds()) 422 #define ext4_get_tstamp(es, tstamp) \ 423 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 424 425 /* 426 * The del_gendisk() function uninitializes the disk-specific data 427 * structures, including the bdi structure, without telling anyone 428 * else. Once this happens, any attempt to call mark_buffer_dirty() 429 * (for example, by ext4_commit_super), will cause a kernel OOPS. 430 * This is a kludge to prevent these oops until we can put in a proper 431 * hook in del_gendisk() to inform the VFS and file system layers. 432 */ 433 static int block_device_ejected(struct super_block *sb) 434 { 435 struct inode *bd_inode = sb->s_bdev->bd_inode; 436 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 437 438 return bdi->dev == NULL; 439 } 440 441 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 442 { 443 struct super_block *sb = journal->j_private; 444 struct ext4_sb_info *sbi = EXT4_SB(sb); 445 int error = is_journal_aborted(journal); 446 struct ext4_journal_cb_entry *jce; 447 448 BUG_ON(txn->t_state == T_FINISHED); 449 450 ext4_process_freed_data(sb, txn->t_tid); 451 452 spin_lock(&sbi->s_md_lock); 453 while (!list_empty(&txn->t_private_list)) { 454 jce = list_entry(txn->t_private_list.next, 455 struct ext4_journal_cb_entry, jce_list); 456 list_del_init(&jce->jce_list); 457 spin_unlock(&sbi->s_md_lock); 458 jce->jce_func(sb, jce, error); 459 spin_lock(&sbi->s_md_lock); 460 } 461 spin_unlock(&sbi->s_md_lock); 462 } 463 464 /* 465 * This writepage callback for write_cache_pages() 466 * takes care of a few cases after page cleaning. 467 * 468 * write_cache_pages() already checks for dirty pages 469 * and calls clear_page_dirty_for_io(), which we want, 470 * to write protect the pages. 471 * 472 * However, we may have to redirty a page (see below.) 473 */ 474 static int ext4_journalled_writepage_callback(struct page *page, 475 struct writeback_control *wbc, 476 void *data) 477 { 478 transaction_t *transaction = (transaction_t *) data; 479 struct buffer_head *bh, *head; 480 struct journal_head *jh; 481 482 bh = head = page_buffers(page); 483 do { 484 /* 485 * We have to redirty a page in these cases: 486 * 1) If buffer is dirty, it means the page was dirty because it 487 * contains a buffer that needs checkpointing. So the dirty bit 488 * needs to be preserved so that checkpointing writes the buffer 489 * properly. 490 * 2) If buffer is not part of the committing transaction 491 * (we may have just accidentally come across this buffer because 492 * inode range tracking is not exact) or if the currently running 493 * transaction already contains this buffer as well, dirty bit 494 * needs to be preserved so that the buffer gets writeprotected 495 * properly on running transaction's commit. 496 */ 497 jh = bh2jh(bh); 498 if (buffer_dirty(bh) || 499 (jh && (jh->b_transaction != transaction || 500 jh->b_next_transaction))) { 501 redirty_page_for_writepage(wbc, page); 502 goto out; 503 } 504 } while ((bh = bh->b_this_page) != head); 505 506 out: 507 return AOP_WRITEPAGE_ACTIVATE; 508 } 509 510 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 511 { 512 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 513 struct writeback_control wbc = { 514 .sync_mode = WB_SYNC_ALL, 515 .nr_to_write = LONG_MAX, 516 .range_start = jinode->i_dirty_start, 517 .range_end = jinode->i_dirty_end, 518 }; 519 520 return write_cache_pages(mapping, &wbc, 521 ext4_journalled_writepage_callback, 522 jinode->i_transaction); 523 } 524 525 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 526 { 527 int ret; 528 529 if (ext4_should_journal_data(jinode->i_vfs_inode)) 530 ret = ext4_journalled_submit_inode_data_buffers(jinode); 531 else 532 ret = jbd2_journal_submit_inode_data_buffers(jinode); 533 534 return ret; 535 } 536 537 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 538 { 539 int ret = 0; 540 541 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 542 ret = jbd2_journal_finish_inode_data_buffers(jinode); 543 544 return ret; 545 } 546 547 static bool system_going_down(void) 548 { 549 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 550 || system_state == SYSTEM_RESTART; 551 } 552 553 struct ext4_err_translation { 554 int code; 555 int errno; 556 }; 557 558 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 559 560 static struct ext4_err_translation err_translation[] = { 561 EXT4_ERR_TRANSLATE(EIO), 562 EXT4_ERR_TRANSLATE(ENOMEM), 563 EXT4_ERR_TRANSLATE(EFSBADCRC), 564 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 565 EXT4_ERR_TRANSLATE(ENOSPC), 566 EXT4_ERR_TRANSLATE(ENOKEY), 567 EXT4_ERR_TRANSLATE(EROFS), 568 EXT4_ERR_TRANSLATE(EFBIG), 569 EXT4_ERR_TRANSLATE(EEXIST), 570 EXT4_ERR_TRANSLATE(ERANGE), 571 EXT4_ERR_TRANSLATE(EOVERFLOW), 572 EXT4_ERR_TRANSLATE(EBUSY), 573 EXT4_ERR_TRANSLATE(ENOTDIR), 574 EXT4_ERR_TRANSLATE(ENOTEMPTY), 575 EXT4_ERR_TRANSLATE(ESHUTDOWN), 576 EXT4_ERR_TRANSLATE(EFAULT), 577 }; 578 579 static int ext4_errno_to_code(int errno) 580 { 581 int i; 582 583 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 584 if (err_translation[i].errno == errno) 585 return err_translation[i].code; 586 return EXT4_ERR_UNKNOWN; 587 } 588 589 static void save_error_info(struct super_block *sb, int error, 590 __u32 ino, __u64 block, 591 const char *func, unsigned int line) 592 { 593 struct ext4_sb_info *sbi = EXT4_SB(sb); 594 595 /* We default to EFSCORRUPTED error... */ 596 if (error == 0) 597 error = EFSCORRUPTED; 598 599 spin_lock(&sbi->s_error_lock); 600 sbi->s_add_error_count++; 601 sbi->s_last_error_code = error; 602 sbi->s_last_error_line = line; 603 sbi->s_last_error_ino = ino; 604 sbi->s_last_error_block = block; 605 sbi->s_last_error_func = func; 606 sbi->s_last_error_time = ktime_get_real_seconds(); 607 if (!sbi->s_first_error_time) { 608 sbi->s_first_error_code = error; 609 sbi->s_first_error_line = line; 610 sbi->s_first_error_ino = ino; 611 sbi->s_first_error_block = block; 612 sbi->s_first_error_func = func; 613 sbi->s_first_error_time = sbi->s_last_error_time; 614 } 615 spin_unlock(&sbi->s_error_lock); 616 } 617 618 /* Deal with the reporting of failure conditions on a filesystem such as 619 * inconsistencies detected or read IO failures. 620 * 621 * On ext2, we can store the error state of the filesystem in the 622 * superblock. That is not possible on ext4, because we may have other 623 * write ordering constraints on the superblock which prevent us from 624 * writing it out straight away; and given that the journal is about to 625 * be aborted, we can't rely on the current, or future, transactions to 626 * write out the superblock safely. 627 * 628 * We'll just use the jbd2_journal_abort() error code to record an error in 629 * the journal instead. On recovery, the journal will complain about 630 * that error until we've noted it down and cleared it. 631 * 632 * If force_ro is set, we unconditionally force the filesystem into an 633 * ABORT|READONLY state, unless the error response on the fs has been set to 634 * panic in which case we take the easy way out and panic immediately. This is 635 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 636 * at a critical moment in log management. 637 */ 638 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 639 __u32 ino, __u64 block, 640 const char *func, unsigned int line) 641 { 642 journal_t *journal = EXT4_SB(sb)->s_journal; 643 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 644 645 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 646 if (test_opt(sb, WARN_ON_ERROR)) 647 WARN_ON_ONCE(1); 648 649 if (!continue_fs && !sb_rdonly(sb)) { 650 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 651 if (journal) 652 jbd2_journal_abort(journal, -EIO); 653 } 654 655 if (!bdev_read_only(sb->s_bdev)) { 656 save_error_info(sb, error, ino, block, func, line); 657 /* 658 * In case the fs should keep running, we need to writeout 659 * superblock through the journal. Due to lock ordering 660 * constraints, it may not be safe to do it right here so we 661 * defer superblock flushing to a workqueue. 662 */ 663 if (continue_fs) 664 schedule_work(&EXT4_SB(sb)->s_error_work); 665 else 666 ext4_commit_super(sb); 667 } 668 669 /* 670 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 671 * could panic during 'reboot -f' as the underlying device got already 672 * disabled. 673 */ 674 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 675 panic("EXT4-fs (device %s): panic forced after error\n", 676 sb->s_id); 677 } 678 679 if (sb_rdonly(sb) || continue_fs) 680 return; 681 682 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 683 /* 684 * Make sure updated value of ->s_mount_flags will be visible before 685 * ->s_flags update 686 */ 687 smp_wmb(); 688 sb->s_flags |= SB_RDONLY; 689 } 690 691 static void flush_stashed_error_work(struct work_struct *work) 692 { 693 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 694 s_error_work); 695 journal_t *journal = sbi->s_journal; 696 handle_t *handle; 697 698 /* 699 * If the journal is still running, we have to write out superblock 700 * through the journal to avoid collisions of other journalled sb 701 * updates. 702 * 703 * We use directly jbd2 functions here to avoid recursing back into 704 * ext4 error handling code during handling of previous errors. 705 */ 706 if (!sb_rdonly(sbi->s_sb) && journal) { 707 struct buffer_head *sbh = sbi->s_sbh; 708 handle = jbd2_journal_start(journal, 1); 709 if (IS_ERR(handle)) 710 goto write_directly; 711 if (jbd2_journal_get_write_access(handle, sbh)) { 712 jbd2_journal_stop(handle); 713 goto write_directly; 714 } 715 ext4_update_super(sbi->s_sb); 716 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 717 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 718 "superblock detected"); 719 clear_buffer_write_io_error(sbh); 720 set_buffer_uptodate(sbh); 721 } 722 723 if (jbd2_journal_dirty_metadata(handle, sbh)) { 724 jbd2_journal_stop(handle); 725 goto write_directly; 726 } 727 jbd2_journal_stop(handle); 728 ext4_notify_error_sysfs(sbi); 729 return; 730 } 731 write_directly: 732 /* 733 * Write through journal failed. Write sb directly to get error info 734 * out and hope for the best. 735 */ 736 ext4_commit_super(sbi->s_sb); 737 ext4_notify_error_sysfs(sbi); 738 } 739 740 #define ext4_error_ratelimit(sb) \ 741 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 742 "EXT4-fs error") 743 744 void __ext4_error(struct super_block *sb, const char *function, 745 unsigned int line, bool force_ro, int error, __u64 block, 746 const char *fmt, ...) 747 { 748 struct va_format vaf; 749 va_list args; 750 751 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 752 return; 753 754 trace_ext4_error(sb, function, line); 755 if (ext4_error_ratelimit(sb)) { 756 va_start(args, fmt); 757 vaf.fmt = fmt; 758 vaf.va = &args; 759 printk(KERN_CRIT 760 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 761 sb->s_id, function, line, current->comm, &vaf); 762 va_end(args); 763 } 764 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 765 } 766 767 void __ext4_error_inode(struct inode *inode, const char *function, 768 unsigned int line, ext4_fsblk_t block, int error, 769 const char *fmt, ...) 770 { 771 va_list args; 772 struct va_format vaf; 773 774 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 775 return; 776 777 trace_ext4_error(inode->i_sb, function, line); 778 if (ext4_error_ratelimit(inode->i_sb)) { 779 va_start(args, fmt); 780 vaf.fmt = fmt; 781 vaf.va = &args; 782 if (block) 783 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 784 "inode #%lu: block %llu: comm %s: %pV\n", 785 inode->i_sb->s_id, function, line, inode->i_ino, 786 block, current->comm, &vaf); 787 else 788 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 789 "inode #%lu: comm %s: %pV\n", 790 inode->i_sb->s_id, function, line, inode->i_ino, 791 current->comm, &vaf); 792 va_end(args); 793 } 794 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 795 function, line); 796 } 797 798 void __ext4_error_file(struct file *file, const char *function, 799 unsigned int line, ext4_fsblk_t block, 800 const char *fmt, ...) 801 { 802 va_list args; 803 struct va_format vaf; 804 struct inode *inode = file_inode(file); 805 char pathname[80], *path; 806 807 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 808 return; 809 810 trace_ext4_error(inode->i_sb, function, line); 811 if (ext4_error_ratelimit(inode->i_sb)) { 812 path = file_path(file, pathname, sizeof(pathname)); 813 if (IS_ERR(path)) 814 path = "(unknown)"; 815 va_start(args, fmt); 816 vaf.fmt = fmt; 817 vaf.va = &args; 818 if (block) 819 printk(KERN_CRIT 820 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 821 "block %llu: comm %s: path %s: %pV\n", 822 inode->i_sb->s_id, function, line, inode->i_ino, 823 block, current->comm, path, &vaf); 824 else 825 printk(KERN_CRIT 826 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 827 "comm %s: path %s: %pV\n", 828 inode->i_sb->s_id, function, line, inode->i_ino, 829 current->comm, path, &vaf); 830 va_end(args); 831 } 832 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 833 function, line); 834 } 835 836 const char *ext4_decode_error(struct super_block *sb, int errno, 837 char nbuf[16]) 838 { 839 char *errstr = NULL; 840 841 switch (errno) { 842 case -EFSCORRUPTED: 843 errstr = "Corrupt filesystem"; 844 break; 845 case -EFSBADCRC: 846 errstr = "Filesystem failed CRC"; 847 break; 848 case -EIO: 849 errstr = "IO failure"; 850 break; 851 case -ENOMEM: 852 errstr = "Out of memory"; 853 break; 854 case -EROFS: 855 if (!sb || (EXT4_SB(sb)->s_journal && 856 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 857 errstr = "Journal has aborted"; 858 else 859 errstr = "Readonly filesystem"; 860 break; 861 default: 862 /* If the caller passed in an extra buffer for unknown 863 * errors, textualise them now. Else we just return 864 * NULL. */ 865 if (nbuf) { 866 /* Check for truncated error codes... */ 867 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 868 errstr = nbuf; 869 } 870 break; 871 } 872 873 return errstr; 874 } 875 876 /* __ext4_std_error decodes expected errors from journaling functions 877 * automatically and invokes the appropriate error response. */ 878 879 void __ext4_std_error(struct super_block *sb, const char *function, 880 unsigned int line, int errno) 881 { 882 char nbuf[16]; 883 const char *errstr; 884 885 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 886 return; 887 888 /* Special case: if the error is EROFS, and we're not already 889 * inside a transaction, then there's really no point in logging 890 * an error. */ 891 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 892 return; 893 894 if (ext4_error_ratelimit(sb)) { 895 errstr = ext4_decode_error(sb, errno, nbuf); 896 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 897 sb->s_id, function, line, errstr); 898 } 899 900 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 901 } 902 903 void __ext4_msg(struct super_block *sb, 904 const char *prefix, const char *fmt, ...) 905 { 906 struct va_format vaf; 907 va_list args; 908 909 atomic_inc(&EXT4_SB(sb)->s_msg_count); 910 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 911 return; 912 913 va_start(args, fmt); 914 vaf.fmt = fmt; 915 vaf.va = &args; 916 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 917 va_end(args); 918 } 919 920 static int ext4_warning_ratelimit(struct super_block *sb) 921 { 922 atomic_inc(&EXT4_SB(sb)->s_warning_count); 923 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 924 "EXT4-fs warning"); 925 } 926 927 void __ext4_warning(struct super_block *sb, const char *function, 928 unsigned int line, const char *fmt, ...) 929 { 930 struct va_format vaf; 931 va_list args; 932 933 if (!ext4_warning_ratelimit(sb)) 934 return; 935 936 va_start(args, fmt); 937 vaf.fmt = fmt; 938 vaf.va = &args; 939 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 940 sb->s_id, function, line, &vaf); 941 va_end(args); 942 } 943 944 void __ext4_warning_inode(const struct inode *inode, const char *function, 945 unsigned int line, const char *fmt, ...) 946 { 947 struct va_format vaf; 948 va_list args; 949 950 if (!ext4_warning_ratelimit(inode->i_sb)) 951 return; 952 953 va_start(args, fmt); 954 vaf.fmt = fmt; 955 vaf.va = &args; 956 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 957 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 958 function, line, inode->i_ino, current->comm, &vaf); 959 va_end(args); 960 } 961 962 void __ext4_grp_locked_error(const char *function, unsigned int line, 963 struct super_block *sb, ext4_group_t grp, 964 unsigned long ino, ext4_fsblk_t block, 965 const char *fmt, ...) 966 __releases(bitlock) 967 __acquires(bitlock) 968 { 969 struct va_format vaf; 970 va_list args; 971 972 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 973 return; 974 975 trace_ext4_error(sb, function, line); 976 if (ext4_error_ratelimit(sb)) { 977 va_start(args, fmt); 978 vaf.fmt = fmt; 979 vaf.va = &args; 980 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 981 sb->s_id, function, line, grp); 982 if (ino) 983 printk(KERN_CONT "inode %lu: ", ino); 984 if (block) 985 printk(KERN_CONT "block %llu:", 986 (unsigned long long) block); 987 printk(KERN_CONT "%pV\n", &vaf); 988 va_end(args); 989 } 990 991 if (test_opt(sb, ERRORS_CONT)) { 992 if (test_opt(sb, WARN_ON_ERROR)) 993 WARN_ON_ONCE(1); 994 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 995 if (!bdev_read_only(sb->s_bdev)) { 996 save_error_info(sb, EFSCORRUPTED, ino, block, function, 997 line); 998 schedule_work(&EXT4_SB(sb)->s_error_work); 999 } 1000 return; 1001 } 1002 ext4_unlock_group(sb, grp); 1003 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1004 /* 1005 * We only get here in the ERRORS_RO case; relocking the group 1006 * may be dangerous, but nothing bad will happen since the 1007 * filesystem will have already been marked read/only and the 1008 * journal has been aborted. We return 1 as a hint to callers 1009 * who might what to use the return value from 1010 * ext4_grp_locked_error() to distinguish between the 1011 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1012 * aggressively from the ext4 function in question, with a 1013 * more appropriate error code. 1014 */ 1015 ext4_lock_group(sb, grp); 1016 return; 1017 } 1018 1019 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1020 ext4_group_t group, 1021 unsigned int flags) 1022 { 1023 struct ext4_sb_info *sbi = EXT4_SB(sb); 1024 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1025 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1026 int ret; 1027 1028 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1029 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1030 &grp->bb_state); 1031 if (!ret) 1032 percpu_counter_sub(&sbi->s_freeclusters_counter, 1033 grp->bb_free); 1034 } 1035 1036 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1037 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1038 &grp->bb_state); 1039 if (!ret && gdp) { 1040 int count; 1041 1042 count = ext4_free_inodes_count(sb, gdp); 1043 percpu_counter_sub(&sbi->s_freeinodes_counter, 1044 count); 1045 } 1046 } 1047 } 1048 1049 void ext4_update_dynamic_rev(struct super_block *sb) 1050 { 1051 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1052 1053 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1054 return; 1055 1056 ext4_warning(sb, 1057 "updating to rev %d because of new feature flag, " 1058 "running e2fsck is recommended", 1059 EXT4_DYNAMIC_REV); 1060 1061 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1062 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1063 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1064 /* leave es->s_feature_*compat flags alone */ 1065 /* es->s_uuid will be set by e2fsck if empty */ 1066 1067 /* 1068 * The rest of the superblock fields should be zero, and if not it 1069 * means they are likely already in use, so leave them alone. We 1070 * can leave it up to e2fsck to clean up any inconsistencies there. 1071 */ 1072 } 1073 1074 /* 1075 * Open the external journal device 1076 */ 1077 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1078 { 1079 struct block_device *bdev; 1080 1081 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1082 if (IS_ERR(bdev)) 1083 goto fail; 1084 return bdev; 1085 1086 fail: 1087 ext4_msg(sb, KERN_ERR, 1088 "failed to open journal device unknown-block(%u,%u) %ld", 1089 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1090 return NULL; 1091 } 1092 1093 /* 1094 * Release the journal device 1095 */ 1096 static void ext4_blkdev_put(struct block_device *bdev) 1097 { 1098 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1099 } 1100 1101 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1102 { 1103 struct block_device *bdev; 1104 bdev = sbi->s_journal_bdev; 1105 if (bdev) { 1106 ext4_blkdev_put(bdev); 1107 sbi->s_journal_bdev = NULL; 1108 } 1109 } 1110 1111 static inline struct inode *orphan_list_entry(struct list_head *l) 1112 { 1113 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1114 } 1115 1116 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1117 { 1118 struct list_head *l; 1119 1120 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1121 le32_to_cpu(sbi->s_es->s_last_orphan)); 1122 1123 printk(KERN_ERR "sb_info orphan list:\n"); 1124 list_for_each(l, &sbi->s_orphan) { 1125 struct inode *inode = orphan_list_entry(l); 1126 printk(KERN_ERR " " 1127 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1128 inode->i_sb->s_id, inode->i_ino, inode, 1129 inode->i_mode, inode->i_nlink, 1130 NEXT_ORPHAN(inode)); 1131 } 1132 } 1133 1134 #ifdef CONFIG_QUOTA 1135 static int ext4_quota_off(struct super_block *sb, int type); 1136 1137 static inline void ext4_quota_off_umount(struct super_block *sb) 1138 { 1139 int type; 1140 1141 /* Use our quota_off function to clear inode flags etc. */ 1142 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1143 ext4_quota_off(sb, type); 1144 } 1145 1146 /* 1147 * This is a helper function which is used in the mount/remount 1148 * codepaths (which holds s_umount) to fetch the quota file name. 1149 */ 1150 static inline char *get_qf_name(struct super_block *sb, 1151 struct ext4_sb_info *sbi, 1152 int type) 1153 { 1154 return rcu_dereference_protected(sbi->s_qf_names[type], 1155 lockdep_is_held(&sb->s_umount)); 1156 } 1157 #else 1158 static inline void ext4_quota_off_umount(struct super_block *sb) 1159 { 1160 } 1161 #endif 1162 1163 static void ext4_put_super(struct super_block *sb) 1164 { 1165 struct ext4_sb_info *sbi = EXT4_SB(sb); 1166 struct ext4_super_block *es = sbi->s_es; 1167 struct buffer_head **group_desc; 1168 struct flex_groups **flex_groups; 1169 int aborted = 0; 1170 int i, err; 1171 1172 ext4_unregister_li_request(sb); 1173 ext4_quota_off_umount(sb); 1174 1175 flush_work(&sbi->s_error_work); 1176 destroy_workqueue(sbi->rsv_conversion_wq); 1177 ext4_release_orphan_info(sb); 1178 1179 /* 1180 * Unregister sysfs before destroying jbd2 journal. 1181 * Since we could still access attr_journal_task attribute via sysfs 1182 * path which could have sbi->s_journal->j_task as NULL 1183 */ 1184 ext4_unregister_sysfs(sb); 1185 1186 if (sbi->s_journal) { 1187 aborted = is_journal_aborted(sbi->s_journal); 1188 err = jbd2_journal_destroy(sbi->s_journal); 1189 sbi->s_journal = NULL; 1190 if ((err < 0) && !aborted) { 1191 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1192 } 1193 } 1194 1195 ext4_es_unregister_shrinker(sbi); 1196 del_timer_sync(&sbi->s_err_report); 1197 ext4_release_system_zone(sb); 1198 ext4_mb_release(sb); 1199 ext4_ext_release(sb); 1200 1201 if (!sb_rdonly(sb) && !aborted) { 1202 ext4_clear_feature_journal_needs_recovery(sb); 1203 ext4_clear_feature_orphan_present(sb); 1204 es->s_state = cpu_to_le16(sbi->s_mount_state); 1205 } 1206 if (!sb_rdonly(sb)) 1207 ext4_commit_super(sb); 1208 1209 rcu_read_lock(); 1210 group_desc = rcu_dereference(sbi->s_group_desc); 1211 for (i = 0; i < sbi->s_gdb_count; i++) 1212 brelse(group_desc[i]); 1213 kvfree(group_desc); 1214 flex_groups = rcu_dereference(sbi->s_flex_groups); 1215 if (flex_groups) { 1216 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1217 kvfree(flex_groups[i]); 1218 kvfree(flex_groups); 1219 } 1220 rcu_read_unlock(); 1221 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1222 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1223 percpu_counter_destroy(&sbi->s_dirs_counter); 1224 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1225 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1226 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1227 #ifdef CONFIG_QUOTA 1228 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1229 kfree(get_qf_name(sb, sbi, i)); 1230 #endif 1231 1232 /* Debugging code just in case the in-memory inode orphan list 1233 * isn't empty. The on-disk one can be non-empty if we've 1234 * detected an error and taken the fs readonly, but the 1235 * in-memory list had better be clean by this point. */ 1236 if (!list_empty(&sbi->s_orphan)) 1237 dump_orphan_list(sb, sbi); 1238 ASSERT(list_empty(&sbi->s_orphan)); 1239 1240 sync_blockdev(sb->s_bdev); 1241 invalidate_bdev(sb->s_bdev); 1242 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1243 /* 1244 * Invalidate the journal device's buffers. We don't want them 1245 * floating about in memory - the physical journal device may 1246 * hotswapped, and it breaks the `ro-after' testing code. 1247 */ 1248 sync_blockdev(sbi->s_journal_bdev); 1249 invalidate_bdev(sbi->s_journal_bdev); 1250 ext4_blkdev_remove(sbi); 1251 } 1252 1253 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1254 sbi->s_ea_inode_cache = NULL; 1255 1256 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1257 sbi->s_ea_block_cache = NULL; 1258 1259 ext4_stop_mmpd(sbi); 1260 1261 brelse(sbi->s_sbh); 1262 sb->s_fs_info = NULL; 1263 /* 1264 * Now that we are completely done shutting down the 1265 * superblock, we need to actually destroy the kobject. 1266 */ 1267 kobject_put(&sbi->s_kobj); 1268 wait_for_completion(&sbi->s_kobj_unregister); 1269 if (sbi->s_chksum_driver) 1270 crypto_free_shash(sbi->s_chksum_driver); 1271 kfree(sbi->s_blockgroup_lock); 1272 fs_put_dax(sbi->s_daxdev); 1273 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1274 #ifdef CONFIG_UNICODE 1275 utf8_unload(sb->s_encoding); 1276 #endif 1277 kfree(sbi); 1278 } 1279 1280 static struct kmem_cache *ext4_inode_cachep; 1281 1282 /* 1283 * Called inside transaction, so use GFP_NOFS 1284 */ 1285 static struct inode *ext4_alloc_inode(struct super_block *sb) 1286 { 1287 struct ext4_inode_info *ei; 1288 1289 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1290 if (!ei) 1291 return NULL; 1292 1293 inode_set_iversion(&ei->vfs_inode, 1); 1294 spin_lock_init(&ei->i_raw_lock); 1295 INIT_LIST_HEAD(&ei->i_prealloc_list); 1296 atomic_set(&ei->i_prealloc_active, 0); 1297 spin_lock_init(&ei->i_prealloc_lock); 1298 ext4_es_init_tree(&ei->i_es_tree); 1299 rwlock_init(&ei->i_es_lock); 1300 INIT_LIST_HEAD(&ei->i_es_list); 1301 ei->i_es_all_nr = 0; 1302 ei->i_es_shk_nr = 0; 1303 ei->i_es_shrink_lblk = 0; 1304 ei->i_reserved_data_blocks = 0; 1305 spin_lock_init(&(ei->i_block_reservation_lock)); 1306 ext4_init_pending_tree(&ei->i_pending_tree); 1307 #ifdef CONFIG_QUOTA 1308 ei->i_reserved_quota = 0; 1309 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1310 #endif 1311 ei->jinode = NULL; 1312 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1313 spin_lock_init(&ei->i_completed_io_lock); 1314 ei->i_sync_tid = 0; 1315 ei->i_datasync_tid = 0; 1316 atomic_set(&ei->i_unwritten, 0); 1317 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1318 ext4_fc_init_inode(&ei->vfs_inode); 1319 mutex_init(&ei->i_fc_lock); 1320 return &ei->vfs_inode; 1321 } 1322 1323 static int ext4_drop_inode(struct inode *inode) 1324 { 1325 int drop = generic_drop_inode(inode); 1326 1327 if (!drop) 1328 drop = fscrypt_drop_inode(inode); 1329 1330 trace_ext4_drop_inode(inode, drop); 1331 return drop; 1332 } 1333 1334 static void ext4_free_in_core_inode(struct inode *inode) 1335 { 1336 fscrypt_free_inode(inode); 1337 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1338 pr_warn("%s: inode %ld still in fc list", 1339 __func__, inode->i_ino); 1340 } 1341 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1342 } 1343 1344 static void ext4_destroy_inode(struct inode *inode) 1345 { 1346 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1347 ext4_msg(inode->i_sb, KERN_ERR, 1348 "Inode %lu (%p): orphan list check failed!", 1349 inode->i_ino, EXT4_I(inode)); 1350 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1351 EXT4_I(inode), sizeof(struct ext4_inode_info), 1352 true); 1353 dump_stack(); 1354 } 1355 } 1356 1357 static void init_once(void *foo) 1358 { 1359 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1360 1361 INIT_LIST_HEAD(&ei->i_orphan); 1362 init_rwsem(&ei->xattr_sem); 1363 init_rwsem(&ei->i_data_sem); 1364 init_rwsem(&ei->i_mmap_sem); 1365 inode_init_once(&ei->vfs_inode); 1366 ext4_fc_init_inode(&ei->vfs_inode); 1367 } 1368 1369 static int __init init_inodecache(void) 1370 { 1371 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1372 sizeof(struct ext4_inode_info), 0, 1373 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1374 SLAB_ACCOUNT), 1375 offsetof(struct ext4_inode_info, i_data), 1376 sizeof_field(struct ext4_inode_info, i_data), 1377 init_once); 1378 if (ext4_inode_cachep == NULL) 1379 return -ENOMEM; 1380 return 0; 1381 } 1382 1383 static void destroy_inodecache(void) 1384 { 1385 /* 1386 * Make sure all delayed rcu free inodes are flushed before we 1387 * destroy cache. 1388 */ 1389 rcu_barrier(); 1390 kmem_cache_destroy(ext4_inode_cachep); 1391 } 1392 1393 void ext4_clear_inode(struct inode *inode) 1394 { 1395 ext4_fc_del(inode); 1396 invalidate_inode_buffers(inode); 1397 clear_inode(inode); 1398 ext4_discard_preallocations(inode, 0); 1399 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1400 dquot_drop(inode); 1401 if (EXT4_I(inode)->jinode) { 1402 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1403 EXT4_I(inode)->jinode); 1404 jbd2_free_inode(EXT4_I(inode)->jinode); 1405 EXT4_I(inode)->jinode = NULL; 1406 } 1407 fscrypt_put_encryption_info(inode); 1408 fsverity_cleanup_inode(inode); 1409 } 1410 1411 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1412 u64 ino, u32 generation) 1413 { 1414 struct inode *inode; 1415 1416 /* 1417 * Currently we don't know the generation for parent directory, so 1418 * a generation of 0 means "accept any" 1419 */ 1420 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1421 if (IS_ERR(inode)) 1422 return ERR_CAST(inode); 1423 if (generation && inode->i_generation != generation) { 1424 iput(inode); 1425 return ERR_PTR(-ESTALE); 1426 } 1427 1428 return inode; 1429 } 1430 1431 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1432 int fh_len, int fh_type) 1433 { 1434 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1435 ext4_nfs_get_inode); 1436 } 1437 1438 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1439 int fh_len, int fh_type) 1440 { 1441 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1442 ext4_nfs_get_inode); 1443 } 1444 1445 static int ext4_nfs_commit_metadata(struct inode *inode) 1446 { 1447 struct writeback_control wbc = { 1448 .sync_mode = WB_SYNC_ALL 1449 }; 1450 1451 trace_ext4_nfs_commit_metadata(inode); 1452 return ext4_write_inode(inode, &wbc); 1453 } 1454 1455 #ifdef CONFIG_FS_ENCRYPTION 1456 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1457 { 1458 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1459 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1460 } 1461 1462 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1463 void *fs_data) 1464 { 1465 handle_t *handle = fs_data; 1466 int res, res2, credits, retries = 0; 1467 1468 /* 1469 * Encrypting the root directory is not allowed because e2fsck expects 1470 * lost+found to exist and be unencrypted, and encrypting the root 1471 * directory would imply encrypting the lost+found directory as well as 1472 * the filename "lost+found" itself. 1473 */ 1474 if (inode->i_ino == EXT4_ROOT_INO) 1475 return -EPERM; 1476 1477 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1478 return -EINVAL; 1479 1480 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1481 return -EOPNOTSUPP; 1482 1483 res = ext4_convert_inline_data(inode); 1484 if (res) 1485 return res; 1486 1487 /* 1488 * If a journal handle was specified, then the encryption context is 1489 * being set on a new inode via inheritance and is part of a larger 1490 * transaction to create the inode. Otherwise the encryption context is 1491 * being set on an existing inode in its own transaction. Only in the 1492 * latter case should the "retry on ENOSPC" logic be used. 1493 */ 1494 1495 if (handle) { 1496 res = ext4_xattr_set_handle(handle, inode, 1497 EXT4_XATTR_INDEX_ENCRYPTION, 1498 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1499 ctx, len, 0); 1500 if (!res) { 1501 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1502 ext4_clear_inode_state(inode, 1503 EXT4_STATE_MAY_INLINE_DATA); 1504 /* 1505 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1506 * S_DAX may be disabled 1507 */ 1508 ext4_set_inode_flags(inode, false); 1509 } 1510 return res; 1511 } 1512 1513 res = dquot_initialize(inode); 1514 if (res) 1515 return res; 1516 retry: 1517 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1518 &credits); 1519 if (res) 1520 return res; 1521 1522 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1523 if (IS_ERR(handle)) 1524 return PTR_ERR(handle); 1525 1526 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1527 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1528 ctx, len, 0); 1529 if (!res) { 1530 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1531 /* 1532 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1533 * S_DAX may be disabled 1534 */ 1535 ext4_set_inode_flags(inode, false); 1536 res = ext4_mark_inode_dirty(handle, inode); 1537 if (res) 1538 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1539 } 1540 res2 = ext4_journal_stop(handle); 1541 1542 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1543 goto retry; 1544 if (!res) 1545 res = res2; 1546 return res; 1547 } 1548 1549 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1550 { 1551 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1552 } 1553 1554 static bool ext4_has_stable_inodes(struct super_block *sb) 1555 { 1556 return ext4_has_feature_stable_inodes(sb); 1557 } 1558 1559 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1560 int *ino_bits_ret, int *lblk_bits_ret) 1561 { 1562 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1563 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1564 } 1565 1566 static const struct fscrypt_operations ext4_cryptops = { 1567 .key_prefix = "ext4:", 1568 .get_context = ext4_get_context, 1569 .set_context = ext4_set_context, 1570 .get_dummy_policy = ext4_get_dummy_policy, 1571 .empty_dir = ext4_empty_dir, 1572 .max_namelen = EXT4_NAME_LEN, 1573 .has_stable_inodes = ext4_has_stable_inodes, 1574 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1575 }; 1576 #endif 1577 1578 #ifdef CONFIG_QUOTA 1579 static const char * const quotatypes[] = INITQFNAMES; 1580 #define QTYPE2NAME(t) (quotatypes[t]) 1581 1582 static int ext4_write_dquot(struct dquot *dquot); 1583 static int ext4_acquire_dquot(struct dquot *dquot); 1584 static int ext4_release_dquot(struct dquot *dquot); 1585 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1586 static int ext4_write_info(struct super_block *sb, int type); 1587 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1588 const struct path *path); 1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1590 size_t len, loff_t off); 1591 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1592 const char *data, size_t len, loff_t off); 1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1594 unsigned int flags); 1595 1596 static struct dquot **ext4_get_dquots(struct inode *inode) 1597 { 1598 return EXT4_I(inode)->i_dquot; 1599 } 1600 1601 static const struct dquot_operations ext4_quota_operations = { 1602 .get_reserved_space = ext4_get_reserved_space, 1603 .write_dquot = ext4_write_dquot, 1604 .acquire_dquot = ext4_acquire_dquot, 1605 .release_dquot = ext4_release_dquot, 1606 .mark_dirty = ext4_mark_dquot_dirty, 1607 .write_info = ext4_write_info, 1608 .alloc_dquot = dquot_alloc, 1609 .destroy_dquot = dquot_destroy, 1610 .get_projid = ext4_get_projid, 1611 .get_inode_usage = ext4_get_inode_usage, 1612 .get_next_id = dquot_get_next_id, 1613 }; 1614 1615 static const struct quotactl_ops ext4_qctl_operations = { 1616 .quota_on = ext4_quota_on, 1617 .quota_off = ext4_quota_off, 1618 .quota_sync = dquot_quota_sync, 1619 .get_state = dquot_get_state, 1620 .set_info = dquot_set_dqinfo, 1621 .get_dqblk = dquot_get_dqblk, 1622 .set_dqblk = dquot_set_dqblk, 1623 .get_nextdqblk = dquot_get_next_dqblk, 1624 }; 1625 #endif 1626 1627 static const struct super_operations ext4_sops = { 1628 .alloc_inode = ext4_alloc_inode, 1629 .free_inode = ext4_free_in_core_inode, 1630 .destroy_inode = ext4_destroy_inode, 1631 .write_inode = ext4_write_inode, 1632 .dirty_inode = ext4_dirty_inode, 1633 .drop_inode = ext4_drop_inode, 1634 .evict_inode = ext4_evict_inode, 1635 .put_super = ext4_put_super, 1636 .sync_fs = ext4_sync_fs, 1637 .freeze_fs = ext4_freeze, 1638 .unfreeze_fs = ext4_unfreeze, 1639 .statfs = ext4_statfs, 1640 .remount_fs = ext4_remount, 1641 .show_options = ext4_show_options, 1642 #ifdef CONFIG_QUOTA 1643 .quota_read = ext4_quota_read, 1644 .quota_write = ext4_quota_write, 1645 .get_dquots = ext4_get_dquots, 1646 #endif 1647 }; 1648 1649 static const struct export_operations ext4_export_ops = { 1650 .fh_to_dentry = ext4_fh_to_dentry, 1651 .fh_to_parent = ext4_fh_to_parent, 1652 .get_parent = ext4_get_parent, 1653 .commit_metadata = ext4_nfs_commit_metadata, 1654 }; 1655 1656 enum { 1657 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1658 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1659 Opt_nouid32, Opt_debug, Opt_removed, 1660 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1661 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1662 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1663 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1664 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1665 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1666 Opt_inlinecrypt, 1667 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1668 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1669 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1670 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1671 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1672 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1673 Opt_nowarn_on_error, Opt_mblk_io_submit, 1674 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1675 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1676 Opt_inode_readahead_blks, Opt_journal_ioprio, 1677 Opt_dioread_nolock, Opt_dioread_lock, 1678 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1679 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1680 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1681 #ifdef CONFIG_EXT4_DEBUG 1682 Opt_fc_debug_max_replay, Opt_fc_debug_force 1683 #endif 1684 }; 1685 1686 static const match_table_t tokens = { 1687 {Opt_bsd_df, "bsddf"}, 1688 {Opt_minix_df, "minixdf"}, 1689 {Opt_grpid, "grpid"}, 1690 {Opt_grpid, "bsdgroups"}, 1691 {Opt_nogrpid, "nogrpid"}, 1692 {Opt_nogrpid, "sysvgroups"}, 1693 {Opt_resgid, "resgid=%u"}, 1694 {Opt_resuid, "resuid=%u"}, 1695 {Opt_sb, "sb=%u"}, 1696 {Opt_err_cont, "errors=continue"}, 1697 {Opt_err_panic, "errors=panic"}, 1698 {Opt_err_ro, "errors=remount-ro"}, 1699 {Opt_nouid32, "nouid32"}, 1700 {Opt_debug, "debug"}, 1701 {Opt_removed, "oldalloc"}, 1702 {Opt_removed, "orlov"}, 1703 {Opt_user_xattr, "user_xattr"}, 1704 {Opt_nouser_xattr, "nouser_xattr"}, 1705 {Opt_acl, "acl"}, 1706 {Opt_noacl, "noacl"}, 1707 {Opt_noload, "norecovery"}, 1708 {Opt_noload, "noload"}, 1709 {Opt_removed, "nobh"}, 1710 {Opt_removed, "bh"}, 1711 {Opt_commit, "commit=%u"}, 1712 {Opt_min_batch_time, "min_batch_time=%u"}, 1713 {Opt_max_batch_time, "max_batch_time=%u"}, 1714 {Opt_journal_dev, "journal_dev=%u"}, 1715 {Opt_journal_path, "journal_path=%s"}, 1716 {Opt_journal_checksum, "journal_checksum"}, 1717 {Opt_nojournal_checksum, "nojournal_checksum"}, 1718 {Opt_journal_async_commit, "journal_async_commit"}, 1719 {Opt_abort, "abort"}, 1720 {Opt_data_journal, "data=journal"}, 1721 {Opt_data_ordered, "data=ordered"}, 1722 {Opt_data_writeback, "data=writeback"}, 1723 {Opt_data_err_abort, "data_err=abort"}, 1724 {Opt_data_err_ignore, "data_err=ignore"}, 1725 {Opt_offusrjquota, "usrjquota="}, 1726 {Opt_usrjquota, "usrjquota=%s"}, 1727 {Opt_offgrpjquota, "grpjquota="}, 1728 {Opt_grpjquota, "grpjquota=%s"}, 1729 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1730 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1731 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1732 {Opt_grpquota, "grpquota"}, 1733 {Opt_noquota, "noquota"}, 1734 {Opt_quota, "quota"}, 1735 {Opt_usrquota, "usrquota"}, 1736 {Opt_prjquota, "prjquota"}, 1737 {Opt_barrier, "barrier=%u"}, 1738 {Opt_barrier, "barrier"}, 1739 {Opt_nobarrier, "nobarrier"}, 1740 {Opt_i_version, "i_version"}, 1741 {Opt_dax, "dax"}, 1742 {Opt_dax_always, "dax=always"}, 1743 {Opt_dax_inode, "dax=inode"}, 1744 {Opt_dax_never, "dax=never"}, 1745 {Opt_stripe, "stripe=%u"}, 1746 {Opt_delalloc, "delalloc"}, 1747 {Opt_warn_on_error, "warn_on_error"}, 1748 {Opt_nowarn_on_error, "nowarn_on_error"}, 1749 {Opt_lazytime, "lazytime"}, 1750 {Opt_nolazytime, "nolazytime"}, 1751 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1752 {Opt_nodelalloc, "nodelalloc"}, 1753 {Opt_removed, "mblk_io_submit"}, 1754 {Opt_removed, "nomblk_io_submit"}, 1755 {Opt_block_validity, "block_validity"}, 1756 {Opt_noblock_validity, "noblock_validity"}, 1757 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1758 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1759 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1760 {Opt_auto_da_alloc, "auto_da_alloc"}, 1761 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1762 {Opt_dioread_nolock, "dioread_nolock"}, 1763 {Opt_dioread_lock, "nodioread_nolock"}, 1764 {Opt_dioread_lock, "dioread_lock"}, 1765 {Opt_discard, "discard"}, 1766 {Opt_nodiscard, "nodiscard"}, 1767 {Opt_init_itable, "init_itable=%u"}, 1768 {Opt_init_itable, "init_itable"}, 1769 {Opt_noinit_itable, "noinit_itable"}, 1770 #ifdef CONFIG_EXT4_DEBUG 1771 {Opt_fc_debug_force, "fc_debug_force"}, 1772 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1773 #endif 1774 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1775 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1776 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1777 {Opt_inlinecrypt, "inlinecrypt"}, 1778 {Opt_nombcache, "nombcache"}, 1779 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1780 {Opt_removed, "prefetch_block_bitmaps"}, 1781 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1782 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1783 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1784 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1785 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1786 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1787 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1788 {Opt_err, NULL}, 1789 }; 1790 1791 static ext4_fsblk_t get_sb_block(void **data) 1792 { 1793 ext4_fsblk_t sb_block; 1794 char *options = (char *) *data; 1795 1796 if (!options || strncmp(options, "sb=", 3) != 0) 1797 return 1; /* Default location */ 1798 1799 options += 3; 1800 /* TODO: use simple_strtoll with >32bit ext4 */ 1801 sb_block = simple_strtoul(options, &options, 0); 1802 if (*options && *options != ',') { 1803 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1804 (char *) *data); 1805 return 1; 1806 } 1807 if (*options == ',') 1808 options++; 1809 *data = (void *) options; 1810 1811 return sb_block; 1812 } 1813 1814 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1815 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1816 1817 static const char deprecated_msg[] = 1818 "Mount option \"%s\" will be removed by %s\n" 1819 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1820 1821 #ifdef CONFIG_QUOTA 1822 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1823 { 1824 struct ext4_sb_info *sbi = EXT4_SB(sb); 1825 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1826 int ret = -1; 1827 1828 if (sb_any_quota_loaded(sb) && !old_qname) { 1829 ext4_msg(sb, KERN_ERR, 1830 "Cannot change journaled " 1831 "quota options when quota turned on"); 1832 return -1; 1833 } 1834 if (ext4_has_feature_quota(sb)) { 1835 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1836 "ignored when QUOTA feature is enabled"); 1837 return 1; 1838 } 1839 qname = match_strdup(args); 1840 if (!qname) { 1841 ext4_msg(sb, KERN_ERR, 1842 "Not enough memory for storing quotafile name"); 1843 return -1; 1844 } 1845 if (old_qname) { 1846 if (strcmp(old_qname, qname) == 0) 1847 ret = 1; 1848 else 1849 ext4_msg(sb, KERN_ERR, 1850 "%s quota file already specified", 1851 QTYPE2NAME(qtype)); 1852 goto errout; 1853 } 1854 if (strchr(qname, '/')) { 1855 ext4_msg(sb, KERN_ERR, 1856 "quotafile must be on filesystem root"); 1857 goto errout; 1858 } 1859 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1860 set_opt(sb, QUOTA); 1861 return 1; 1862 errout: 1863 kfree(qname); 1864 return ret; 1865 } 1866 1867 static int clear_qf_name(struct super_block *sb, int qtype) 1868 { 1869 1870 struct ext4_sb_info *sbi = EXT4_SB(sb); 1871 char *old_qname = get_qf_name(sb, sbi, qtype); 1872 1873 if (sb_any_quota_loaded(sb) && old_qname) { 1874 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1875 " when quota turned on"); 1876 return -1; 1877 } 1878 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1879 synchronize_rcu(); 1880 kfree(old_qname); 1881 return 1; 1882 } 1883 #endif 1884 1885 #define MOPT_SET 0x0001 1886 #define MOPT_CLEAR 0x0002 1887 #define MOPT_NOSUPPORT 0x0004 1888 #define MOPT_EXPLICIT 0x0008 1889 #define MOPT_CLEAR_ERR 0x0010 1890 #define MOPT_GTE0 0x0020 1891 #ifdef CONFIG_QUOTA 1892 #define MOPT_Q 0 1893 #define MOPT_QFMT 0x0040 1894 #else 1895 #define MOPT_Q MOPT_NOSUPPORT 1896 #define MOPT_QFMT MOPT_NOSUPPORT 1897 #endif 1898 #define MOPT_DATAJ 0x0080 1899 #define MOPT_NO_EXT2 0x0100 1900 #define MOPT_NO_EXT3 0x0200 1901 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1902 #define MOPT_STRING 0x0400 1903 #define MOPT_SKIP 0x0800 1904 #define MOPT_2 0x1000 1905 1906 static const struct mount_opts { 1907 int token; 1908 int mount_opt; 1909 int flags; 1910 } ext4_mount_opts[] = { 1911 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1912 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1913 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1914 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1915 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1916 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1917 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1918 MOPT_EXT4_ONLY | MOPT_SET}, 1919 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1920 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1921 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1922 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1923 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1924 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1925 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1926 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1927 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1928 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1929 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1930 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1931 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1932 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1933 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1934 EXT4_MOUNT_JOURNAL_CHECKSUM), 1935 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1936 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1937 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1938 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1939 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1940 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1941 MOPT_NO_EXT2}, 1942 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1943 MOPT_NO_EXT2}, 1944 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1945 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1946 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1947 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1948 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1949 {Opt_commit, 0, MOPT_GTE0}, 1950 {Opt_max_batch_time, 0, MOPT_GTE0}, 1951 {Opt_min_batch_time, 0, MOPT_GTE0}, 1952 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1953 {Opt_init_itable, 0, MOPT_GTE0}, 1954 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1955 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1956 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1957 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1958 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1959 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1960 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1961 {Opt_stripe, 0, MOPT_GTE0}, 1962 {Opt_resuid, 0, MOPT_GTE0}, 1963 {Opt_resgid, 0, MOPT_GTE0}, 1964 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1965 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1966 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1967 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1968 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1969 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1970 MOPT_NO_EXT2 | MOPT_DATAJ}, 1971 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1972 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1973 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1974 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1975 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1976 #else 1977 {Opt_acl, 0, MOPT_NOSUPPORT}, 1978 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1979 #endif 1980 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1981 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1982 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1983 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1984 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1985 MOPT_SET | MOPT_Q}, 1986 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1987 MOPT_SET | MOPT_Q}, 1988 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1989 MOPT_SET | MOPT_Q}, 1990 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1991 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1992 MOPT_CLEAR | MOPT_Q}, 1993 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1994 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1995 {Opt_offusrjquota, 0, MOPT_Q}, 1996 {Opt_offgrpjquota, 0, MOPT_Q}, 1997 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1998 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1999 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2000 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2001 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2002 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2003 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2004 MOPT_SET}, 2005 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2006 #ifdef CONFIG_EXT4_DEBUG 2007 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2008 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2009 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2010 #endif 2011 {Opt_err, 0, 0} 2012 }; 2013 2014 #ifdef CONFIG_UNICODE 2015 static const struct ext4_sb_encodings { 2016 __u16 magic; 2017 char *name; 2018 char *version; 2019 } ext4_sb_encoding_map[] = { 2020 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2021 }; 2022 2023 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2024 const struct ext4_sb_encodings **encoding, 2025 __u16 *flags) 2026 { 2027 __u16 magic = le16_to_cpu(es->s_encoding); 2028 int i; 2029 2030 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2031 if (magic == ext4_sb_encoding_map[i].magic) 2032 break; 2033 2034 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2035 return -EINVAL; 2036 2037 *encoding = &ext4_sb_encoding_map[i]; 2038 *flags = le16_to_cpu(es->s_encoding_flags); 2039 2040 return 0; 2041 } 2042 #endif 2043 2044 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2045 const char *opt, 2046 const substring_t *arg, 2047 bool is_remount) 2048 { 2049 #ifdef CONFIG_FS_ENCRYPTION 2050 struct ext4_sb_info *sbi = EXT4_SB(sb); 2051 int err; 2052 2053 /* 2054 * This mount option is just for testing, and it's not worthwhile to 2055 * implement the extra complexity (e.g. RCU protection) that would be 2056 * needed to allow it to be set or changed during remount. We do allow 2057 * it to be specified during remount, but only if there is no change. 2058 */ 2059 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2060 ext4_msg(sb, KERN_WARNING, 2061 "Can't set test_dummy_encryption on remount"); 2062 return -1; 2063 } 2064 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2065 &sbi->s_dummy_enc_policy); 2066 if (err) { 2067 if (err == -EEXIST) 2068 ext4_msg(sb, KERN_WARNING, 2069 "Can't change test_dummy_encryption on remount"); 2070 else if (err == -EINVAL) 2071 ext4_msg(sb, KERN_WARNING, 2072 "Value of option \"%s\" is unrecognized", opt); 2073 else 2074 ext4_msg(sb, KERN_WARNING, 2075 "Error processing option \"%s\" [%d]", 2076 opt, err); 2077 return -1; 2078 } 2079 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2080 #else 2081 ext4_msg(sb, KERN_WARNING, 2082 "Test dummy encryption mount option ignored"); 2083 #endif 2084 return 1; 2085 } 2086 2087 struct ext4_parsed_options { 2088 unsigned long journal_devnum; 2089 unsigned int journal_ioprio; 2090 int mb_optimize_scan; 2091 }; 2092 2093 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2094 substring_t *args, struct ext4_parsed_options *parsed_opts, 2095 int is_remount) 2096 { 2097 struct ext4_sb_info *sbi = EXT4_SB(sb); 2098 const struct mount_opts *m; 2099 kuid_t uid; 2100 kgid_t gid; 2101 int arg = 0; 2102 2103 #ifdef CONFIG_QUOTA 2104 if (token == Opt_usrjquota) 2105 return set_qf_name(sb, USRQUOTA, &args[0]); 2106 else if (token == Opt_grpjquota) 2107 return set_qf_name(sb, GRPQUOTA, &args[0]); 2108 else if (token == Opt_offusrjquota) 2109 return clear_qf_name(sb, USRQUOTA); 2110 else if (token == Opt_offgrpjquota) 2111 return clear_qf_name(sb, GRPQUOTA); 2112 #endif 2113 switch (token) { 2114 case Opt_noacl: 2115 case Opt_nouser_xattr: 2116 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2117 break; 2118 case Opt_sb: 2119 return 1; /* handled by get_sb_block() */ 2120 case Opt_removed: 2121 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2122 return 1; 2123 case Opt_abort: 2124 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2125 return 1; 2126 case Opt_i_version: 2127 sb->s_flags |= SB_I_VERSION; 2128 return 1; 2129 case Opt_lazytime: 2130 sb->s_flags |= SB_LAZYTIME; 2131 return 1; 2132 case Opt_nolazytime: 2133 sb->s_flags &= ~SB_LAZYTIME; 2134 return 1; 2135 case Opt_inlinecrypt: 2136 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2137 sb->s_flags |= SB_INLINECRYPT; 2138 #else 2139 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2140 #endif 2141 return 1; 2142 } 2143 2144 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2145 if (token == m->token) 2146 break; 2147 2148 if (m->token == Opt_err) { 2149 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2150 "or missing value", opt); 2151 return -1; 2152 } 2153 2154 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2155 ext4_msg(sb, KERN_ERR, 2156 "Mount option \"%s\" incompatible with ext2", opt); 2157 return -1; 2158 } 2159 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2160 ext4_msg(sb, KERN_ERR, 2161 "Mount option \"%s\" incompatible with ext3", opt); 2162 return -1; 2163 } 2164 2165 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2166 return -1; 2167 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2168 return -1; 2169 if (m->flags & MOPT_EXPLICIT) { 2170 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2171 set_opt2(sb, EXPLICIT_DELALLOC); 2172 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2173 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2174 } else 2175 return -1; 2176 } 2177 if (m->flags & MOPT_CLEAR_ERR) 2178 clear_opt(sb, ERRORS_MASK); 2179 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2180 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2181 "options when quota turned on"); 2182 return -1; 2183 } 2184 2185 if (m->flags & MOPT_NOSUPPORT) { 2186 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2187 } else if (token == Opt_commit) { 2188 if (arg == 0) 2189 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2190 else if (arg > INT_MAX / HZ) { 2191 ext4_msg(sb, KERN_ERR, 2192 "Invalid commit interval %d, " 2193 "must be smaller than %d", 2194 arg, INT_MAX / HZ); 2195 return -1; 2196 } 2197 sbi->s_commit_interval = HZ * arg; 2198 } else if (token == Opt_debug_want_extra_isize) { 2199 if ((arg & 1) || 2200 (arg < 4) || 2201 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2202 ext4_msg(sb, KERN_ERR, 2203 "Invalid want_extra_isize %d", arg); 2204 return -1; 2205 } 2206 sbi->s_want_extra_isize = arg; 2207 } else if (token == Opt_max_batch_time) { 2208 sbi->s_max_batch_time = arg; 2209 } else if (token == Opt_min_batch_time) { 2210 sbi->s_min_batch_time = arg; 2211 } else if (token == Opt_inode_readahead_blks) { 2212 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2213 ext4_msg(sb, KERN_ERR, 2214 "EXT4-fs: inode_readahead_blks must be " 2215 "0 or a power of 2 smaller than 2^31"); 2216 return -1; 2217 } 2218 sbi->s_inode_readahead_blks = arg; 2219 } else if (token == Opt_init_itable) { 2220 set_opt(sb, INIT_INODE_TABLE); 2221 if (!args->from) 2222 arg = EXT4_DEF_LI_WAIT_MULT; 2223 sbi->s_li_wait_mult = arg; 2224 } else if (token == Opt_max_dir_size_kb) { 2225 sbi->s_max_dir_size_kb = arg; 2226 #ifdef CONFIG_EXT4_DEBUG 2227 } else if (token == Opt_fc_debug_max_replay) { 2228 sbi->s_fc_debug_max_replay = arg; 2229 #endif 2230 } else if (token == Opt_stripe) { 2231 sbi->s_stripe = arg; 2232 } else if (token == Opt_resuid) { 2233 uid = make_kuid(current_user_ns(), arg); 2234 if (!uid_valid(uid)) { 2235 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2236 return -1; 2237 } 2238 sbi->s_resuid = uid; 2239 } else if (token == Opt_resgid) { 2240 gid = make_kgid(current_user_ns(), arg); 2241 if (!gid_valid(gid)) { 2242 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2243 return -1; 2244 } 2245 sbi->s_resgid = gid; 2246 } else if (token == Opt_journal_dev) { 2247 if (is_remount) { 2248 ext4_msg(sb, KERN_ERR, 2249 "Cannot specify journal on remount"); 2250 return -1; 2251 } 2252 parsed_opts->journal_devnum = arg; 2253 } else if (token == Opt_journal_path) { 2254 char *journal_path; 2255 struct inode *journal_inode; 2256 struct path path; 2257 int error; 2258 2259 if (is_remount) { 2260 ext4_msg(sb, KERN_ERR, 2261 "Cannot specify journal on remount"); 2262 return -1; 2263 } 2264 journal_path = match_strdup(&args[0]); 2265 if (!journal_path) { 2266 ext4_msg(sb, KERN_ERR, "error: could not dup " 2267 "journal device string"); 2268 return -1; 2269 } 2270 2271 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2272 if (error) { 2273 ext4_msg(sb, KERN_ERR, "error: could not find " 2274 "journal device path: error %d", error); 2275 kfree(journal_path); 2276 return -1; 2277 } 2278 2279 journal_inode = d_inode(path.dentry); 2280 if (!S_ISBLK(journal_inode->i_mode)) { 2281 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2282 "is not a block device", journal_path); 2283 path_put(&path); 2284 kfree(journal_path); 2285 return -1; 2286 } 2287 2288 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2289 path_put(&path); 2290 kfree(journal_path); 2291 } else if (token == Opt_journal_ioprio) { 2292 if (arg > 7) { 2293 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2294 " (must be 0-7)"); 2295 return -1; 2296 } 2297 parsed_opts->journal_ioprio = 2298 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2299 } else if (token == Opt_test_dummy_encryption) { 2300 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2301 is_remount); 2302 } else if (m->flags & MOPT_DATAJ) { 2303 if (is_remount) { 2304 if (!sbi->s_journal) 2305 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2306 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2307 ext4_msg(sb, KERN_ERR, 2308 "Cannot change data mode on remount"); 2309 return -1; 2310 } 2311 } else { 2312 clear_opt(sb, DATA_FLAGS); 2313 sbi->s_mount_opt |= m->mount_opt; 2314 } 2315 #ifdef CONFIG_QUOTA 2316 } else if (m->flags & MOPT_QFMT) { 2317 if (sb_any_quota_loaded(sb) && 2318 sbi->s_jquota_fmt != m->mount_opt) { 2319 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2320 "quota options when quota turned on"); 2321 return -1; 2322 } 2323 if (ext4_has_feature_quota(sb)) { 2324 ext4_msg(sb, KERN_INFO, 2325 "Quota format mount options ignored " 2326 "when QUOTA feature is enabled"); 2327 return 1; 2328 } 2329 sbi->s_jquota_fmt = m->mount_opt; 2330 #endif 2331 } else if (token == Opt_dax || token == Opt_dax_always || 2332 token == Opt_dax_inode || token == Opt_dax_never) { 2333 #ifdef CONFIG_FS_DAX 2334 switch (token) { 2335 case Opt_dax: 2336 case Opt_dax_always: 2337 if (is_remount && 2338 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2339 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2340 fail_dax_change_remount: 2341 ext4_msg(sb, KERN_ERR, "can't change " 2342 "dax mount option while remounting"); 2343 return -1; 2344 } 2345 if (is_remount && 2346 (test_opt(sb, DATA_FLAGS) == 2347 EXT4_MOUNT_JOURNAL_DATA)) { 2348 ext4_msg(sb, KERN_ERR, "can't mount with " 2349 "both data=journal and dax"); 2350 return -1; 2351 } 2352 ext4_msg(sb, KERN_WARNING, 2353 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2354 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2355 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2356 break; 2357 case Opt_dax_never: 2358 if (is_remount && 2359 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2360 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2361 goto fail_dax_change_remount; 2362 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2363 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2364 break; 2365 case Opt_dax_inode: 2366 if (is_remount && 2367 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2368 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2369 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2370 goto fail_dax_change_remount; 2371 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2372 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2373 /* Strictly for printing options */ 2374 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2375 break; 2376 } 2377 #else 2378 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2379 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2380 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2381 return -1; 2382 #endif 2383 } else if (token == Opt_data_err_abort) { 2384 sbi->s_mount_opt |= m->mount_opt; 2385 } else if (token == Opt_data_err_ignore) { 2386 sbi->s_mount_opt &= ~m->mount_opt; 2387 } else if (token == Opt_mb_optimize_scan) { 2388 if (arg != 0 && arg != 1) { 2389 ext4_msg(sb, KERN_WARNING, 2390 "mb_optimize_scan should be set to 0 or 1."); 2391 return -1; 2392 } 2393 parsed_opts->mb_optimize_scan = arg; 2394 } else { 2395 if (!args->from) 2396 arg = 1; 2397 if (m->flags & MOPT_CLEAR) 2398 arg = !arg; 2399 else if (unlikely(!(m->flags & MOPT_SET))) { 2400 ext4_msg(sb, KERN_WARNING, 2401 "buggy handling of option %s", opt); 2402 WARN_ON(1); 2403 return -1; 2404 } 2405 if (m->flags & MOPT_2) { 2406 if (arg != 0) 2407 sbi->s_mount_opt2 |= m->mount_opt; 2408 else 2409 sbi->s_mount_opt2 &= ~m->mount_opt; 2410 } else { 2411 if (arg != 0) 2412 sbi->s_mount_opt |= m->mount_opt; 2413 else 2414 sbi->s_mount_opt &= ~m->mount_opt; 2415 } 2416 } 2417 return 1; 2418 } 2419 2420 static int parse_options(char *options, struct super_block *sb, 2421 struct ext4_parsed_options *ret_opts, 2422 int is_remount) 2423 { 2424 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2425 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2426 substring_t args[MAX_OPT_ARGS]; 2427 int token; 2428 2429 if (!options) 2430 return 1; 2431 2432 while ((p = strsep(&options, ",")) != NULL) { 2433 if (!*p) 2434 continue; 2435 /* 2436 * Initialize args struct so we know whether arg was 2437 * found; some options take optional arguments. 2438 */ 2439 args[0].to = args[0].from = NULL; 2440 token = match_token(p, tokens, args); 2441 if (handle_mount_opt(sb, p, token, args, ret_opts, 2442 is_remount) < 0) 2443 return 0; 2444 } 2445 #ifdef CONFIG_QUOTA 2446 /* 2447 * We do the test below only for project quotas. 'usrquota' and 2448 * 'grpquota' mount options are allowed even without quota feature 2449 * to support legacy quotas in quota files. 2450 */ 2451 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2452 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2453 "Cannot enable project quota enforcement."); 2454 return 0; 2455 } 2456 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2457 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2458 if (usr_qf_name || grp_qf_name) { 2459 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2460 clear_opt(sb, USRQUOTA); 2461 2462 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2463 clear_opt(sb, GRPQUOTA); 2464 2465 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2466 ext4_msg(sb, KERN_ERR, "old and new quota " 2467 "format mixing"); 2468 return 0; 2469 } 2470 2471 if (!sbi->s_jquota_fmt) { 2472 ext4_msg(sb, KERN_ERR, "journaled quota format " 2473 "not specified"); 2474 return 0; 2475 } 2476 } 2477 #endif 2478 if (test_opt(sb, DIOREAD_NOLOCK)) { 2479 int blocksize = 2480 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2481 if (blocksize < PAGE_SIZE) 2482 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2483 "experimental mount option 'dioread_nolock' " 2484 "for blocksize < PAGE_SIZE"); 2485 } 2486 return 1; 2487 } 2488 2489 static inline void ext4_show_quota_options(struct seq_file *seq, 2490 struct super_block *sb) 2491 { 2492 #if defined(CONFIG_QUOTA) 2493 struct ext4_sb_info *sbi = EXT4_SB(sb); 2494 char *usr_qf_name, *grp_qf_name; 2495 2496 if (sbi->s_jquota_fmt) { 2497 char *fmtname = ""; 2498 2499 switch (sbi->s_jquota_fmt) { 2500 case QFMT_VFS_OLD: 2501 fmtname = "vfsold"; 2502 break; 2503 case QFMT_VFS_V0: 2504 fmtname = "vfsv0"; 2505 break; 2506 case QFMT_VFS_V1: 2507 fmtname = "vfsv1"; 2508 break; 2509 } 2510 seq_printf(seq, ",jqfmt=%s", fmtname); 2511 } 2512 2513 rcu_read_lock(); 2514 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2515 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2516 if (usr_qf_name) 2517 seq_show_option(seq, "usrjquota", usr_qf_name); 2518 if (grp_qf_name) 2519 seq_show_option(seq, "grpjquota", grp_qf_name); 2520 rcu_read_unlock(); 2521 #endif 2522 } 2523 2524 static const char *token2str(int token) 2525 { 2526 const struct match_token *t; 2527 2528 for (t = tokens; t->token != Opt_err; t++) 2529 if (t->token == token && !strchr(t->pattern, '=')) 2530 break; 2531 return t->pattern; 2532 } 2533 2534 /* 2535 * Show an option if 2536 * - it's set to a non-default value OR 2537 * - if the per-sb default is different from the global default 2538 */ 2539 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2540 int nodefs) 2541 { 2542 struct ext4_sb_info *sbi = EXT4_SB(sb); 2543 struct ext4_super_block *es = sbi->s_es; 2544 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2545 const struct mount_opts *m; 2546 char sep = nodefs ? '\n' : ','; 2547 2548 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2549 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2550 2551 if (sbi->s_sb_block != 1) 2552 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2553 2554 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2555 int want_set = m->flags & MOPT_SET; 2556 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2557 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2558 continue; 2559 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2560 continue; /* skip if same as the default */ 2561 if ((want_set && 2562 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2563 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2564 continue; /* select Opt_noFoo vs Opt_Foo */ 2565 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2566 } 2567 2568 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2569 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2570 SEQ_OPTS_PRINT("resuid=%u", 2571 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2572 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2573 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2574 SEQ_OPTS_PRINT("resgid=%u", 2575 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2576 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2577 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2578 SEQ_OPTS_PUTS("errors=remount-ro"); 2579 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2580 SEQ_OPTS_PUTS("errors=continue"); 2581 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2582 SEQ_OPTS_PUTS("errors=panic"); 2583 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2584 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2585 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2586 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2587 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2588 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2589 if (sb->s_flags & SB_I_VERSION) 2590 SEQ_OPTS_PUTS("i_version"); 2591 if (nodefs || sbi->s_stripe) 2592 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2593 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2594 (sbi->s_mount_opt ^ def_mount_opt)) { 2595 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2596 SEQ_OPTS_PUTS("data=journal"); 2597 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2598 SEQ_OPTS_PUTS("data=ordered"); 2599 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2600 SEQ_OPTS_PUTS("data=writeback"); 2601 } 2602 if (nodefs || 2603 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2604 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2605 sbi->s_inode_readahead_blks); 2606 2607 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2608 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2609 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2610 if (nodefs || sbi->s_max_dir_size_kb) 2611 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2612 if (test_opt(sb, DATA_ERR_ABORT)) 2613 SEQ_OPTS_PUTS("data_err=abort"); 2614 2615 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2616 2617 if (sb->s_flags & SB_INLINECRYPT) 2618 SEQ_OPTS_PUTS("inlinecrypt"); 2619 2620 if (test_opt(sb, DAX_ALWAYS)) { 2621 if (IS_EXT2_SB(sb)) 2622 SEQ_OPTS_PUTS("dax"); 2623 else 2624 SEQ_OPTS_PUTS("dax=always"); 2625 } else if (test_opt2(sb, DAX_NEVER)) { 2626 SEQ_OPTS_PUTS("dax=never"); 2627 } else if (test_opt2(sb, DAX_INODE)) { 2628 SEQ_OPTS_PUTS("dax=inode"); 2629 } 2630 ext4_show_quota_options(seq, sb); 2631 return 0; 2632 } 2633 2634 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2635 { 2636 return _ext4_show_options(seq, root->d_sb, 0); 2637 } 2638 2639 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2640 { 2641 struct super_block *sb = seq->private; 2642 int rc; 2643 2644 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2645 rc = _ext4_show_options(seq, sb, 1); 2646 seq_puts(seq, "\n"); 2647 return rc; 2648 } 2649 2650 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2651 int read_only) 2652 { 2653 struct ext4_sb_info *sbi = EXT4_SB(sb); 2654 int err = 0; 2655 2656 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2657 ext4_msg(sb, KERN_ERR, "revision level too high, " 2658 "forcing read-only mode"); 2659 err = -EROFS; 2660 goto done; 2661 } 2662 if (read_only) 2663 goto done; 2664 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2665 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2666 "running e2fsck is recommended"); 2667 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2668 ext4_msg(sb, KERN_WARNING, 2669 "warning: mounting fs with errors, " 2670 "running e2fsck is recommended"); 2671 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2672 le16_to_cpu(es->s_mnt_count) >= 2673 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2674 ext4_msg(sb, KERN_WARNING, 2675 "warning: maximal mount count reached, " 2676 "running e2fsck is recommended"); 2677 else if (le32_to_cpu(es->s_checkinterval) && 2678 (ext4_get_tstamp(es, s_lastcheck) + 2679 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2680 ext4_msg(sb, KERN_WARNING, 2681 "warning: checktime reached, " 2682 "running e2fsck is recommended"); 2683 if (!sbi->s_journal) 2684 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2685 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2686 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2687 le16_add_cpu(&es->s_mnt_count, 1); 2688 ext4_update_tstamp(es, s_mtime); 2689 if (sbi->s_journal) { 2690 ext4_set_feature_journal_needs_recovery(sb); 2691 if (ext4_has_feature_orphan_file(sb)) 2692 ext4_set_feature_orphan_present(sb); 2693 } 2694 2695 err = ext4_commit_super(sb); 2696 done: 2697 if (test_opt(sb, DEBUG)) 2698 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2699 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2700 sb->s_blocksize, 2701 sbi->s_groups_count, 2702 EXT4_BLOCKS_PER_GROUP(sb), 2703 EXT4_INODES_PER_GROUP(sb), 2704 sbi->s_mount_opt, sbi->s_mount_opt2); 2705 2706 cleancache_init_fs(sb); 2707 return err; 2708 } 2709 2710 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2711 { 2712 struct ext4_sb_info *sbi = EXT4_SB(sb); 2713 struct flex_groups **old_groups, **new_groups; 2714 int size, i, j; 2715 2716 if (!sbi->s_log_groups_per_flex) 2717 return 0; 2718 2719 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2720 if (size <= sbi->s_flex_groups_allocated) 2721 return 0; 2722 2723 new_groups = kvzalloc(roundup_pow_of_two(size * 2724 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2725 if (!new_groups) { 2726 ext4_msg(sb, KERN_ERR, 2727 "not enough memory for %d flex group pointers", size); 2728 return -ENOMEM; 2729 } 2730 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2731 new_groups[i] = kvzalloc(roundup_pow_of_two( 2732 sizeof(struct flex_groups)), 2733 GFP_KERNEL); 2734 if (!new_groups[i]) { 2735 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2736 kvfree(new_groups[j]); 2737 kvfree(new_groups); 2738 ext4_msg(sb, KERN_ERR, 2739 "not enough memory for %d flex groups", size); 2740 return -ENOMEM; 2741 } 2742 } 2743 rcu_read_lock(); 2744 old_groups = rcu_dereference(sbi->s_flex_groups); 2745 if (old_groups) 2746 memcpy(new_groups, old_groups, 2747 (sbi->s_flex_groups_allocated * 2748 sizeof(struct flex_groups *))); 2749 rcu_read_unlock(); 2750 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2751 sbi->s_flex_groups_allocated = size; 2752 if (old_groups) 2753 ext4_kvfree_array_rcu(old_groups); 2754 return 0; 2755 } 2756 2757 static int ext4_fill_flex_info(struct super_block *sb) 2758 { 2759 struct ext4_sb_info *sbi = EXT4_SB(sb); 2760 struct ext4_group_desc *gdp = NULL; 2761 struct flex_groups *fg; 2762 ext4_group_t flex_group; 2763 int i, err; 2764 2765 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2766 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2767 sbi->s_log_groups_per_flex = 0; 2768 return 1; 2769 } 2770 2771 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2772 if (err) 2773 goto failed; 2774 2775 for (i = 0; i < sbi->s_groups_count; i++) { 2776 gdp = ext4_get_group_desc(sb, i, NULL); 2777 2778 flex_group = ext4_flex_group(sbi, i); 2779 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2780 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2781 atomic64_add(ext4_free_group_clusters(sb, gdp), 2782 &fg->free_clusters); 2783 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2784 } 2785 2786 return 1; 2787 failed: 2788 return 0; 2789 } 2790 2791 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2792 struct ext4_group_desc *gdp) 2793 { 2794 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2795 __u16 crc = 0; 2796 __le32 le_group = cpu_to_le32(block_group); 2797 struct ext4_sb_info *sbi = EXT4_SB(sb); 2798 2799 if (ext4_has_metadata_csum(sbi->s_sb)) { 2800 /* Use new metadata_csum algorithm */ 2801 __u32 csum32; 2802 __u16 dummy_csum = 0; 2803 2804 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2805 sizeof(le_group)); 2806 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2807 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2808 sizeof(dummy_csum)); 2809 offset += sizeof(dummy_csum); 2810 if (offset < sbi->s_desc_size) 2811 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2812 sbi->s_desc_size - offset); 2813 2814 crc = csum32 & 0xFFFF; 2815 goto out; 2816 } 2817 2818 /* old crc16 code */ 2819 if (!ext4_has_feature_gdt_csum(sb)) 2820 return 0; 2821 2822 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2823 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2824 crc = crc16(crc, (__u8 *)gdp, offset); 2825 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2826 /* for checksum of struct ext4_group_desc do the rest...*/ 2827 if (ext4_has_feature_64bit(sb) && 2828 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2829 crc = crc16(crc, (__u8 *)gdp + offset, 2830 le16_to_cpu(sbi->s_es->s_desc_size) - 2831 offset); 2832 2833 out: 2834 return cpu_to_le16(crc); 2835 } 2836 2837 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2838 struct ext4_group_desc *gdp) 2839 { 2840 if (ext4_has_group_desc_csum(sb) && 2841 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2842 return 0; 2843 2844 return 1; 2845 } 2846 2847 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2848 struct ext4_group_desc *gdp) 2849 { 2850 if (!ext4_has_group_desc_csum(sb)) 2851 return; 2852 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2853 } 2854 2855 /* Called at mount-time, super-block is locked */ 2856 static int ext4_check_descriptors(struct super_block *sb, 2857 ext4_fsblk_t sb_block, 2858 ext4_group_t *first_not_zeroed) 2859 { 2860 struct ext4_sb_info *sbi = EXT4_SB(sb); 2861 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2862 ext4_fsblk_t last_block; 2863 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2864 ext4_fsblk_t block_bitmap; 2865 ext4_fsblk_t inode_bitmap; 2866 ext4_fsblk_t inode_table; 2867 int flexbg_flag = 0; 2868 ext4_group_t i, grp = sbi->s_groups_count; 2869 2870 if (ext4_has_feature_flex_bg(sb)) 2871 flexbg_flag = 1; 2872 2873 ext4_debug("Checking group descriptors"); 2874 2875 for (i = 0; i < sbi->s_groups_count; i++) { 2876 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2877 2878 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2879 last_block = ext4_blocks_count(sbi->s_es) - 1; 2880 else 2881 last_block = first_block + 2882 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2883 2884 if ((grp == sbi->s_groups_count) && 2885 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2886 grp = i; 2887 2888 block_bitmap = ext4_block_bitmap(sb, gdp); 2889 if (block_bitmap == sb_block) { 2890 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2891 "Block bitmap for group %u overlaps " 2892 "superblock", i); 2893 if (!sb_rdonly(sb)) 2894 return 0; 2895 } 2896 if (block_bitmap >= sb_block + 1 && 2897 block_bitmap <= last_bg_block) { 2898 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2899 "Block bitmap for group %u overlaps " 2900 "block group descriptors", i); 2901 if (!sb_rdonly(sb)) 2902 return 0; 2903 } 2904 if (block_bitmap < first_block || block_bitmap > last_block) { 2905 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2906 "Block bitmap for group %u not in group " 2907 "(block %llu)!", i, block_bitmap); 2908 return 0; 2909 } 2910 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2911 if (inode_bitmap == sb_block) { 2912 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2913 "Inode bitmap for group %u overlaps " 2914 "superblock", i); 2915 if (!sb_rdonly(sb)) 2916 return 0; 2917 } 2918 if (inode_bitmap >= sb_block + 1 && 2919 inode_bitmap <= last_bg_block) { 2920 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2921 "Inode bitmap for group %u overlaps " 2922 "block group descriptors", i); 2923 if (!sb_rdonly(sb)) 2924 return 0; 2925 } 2926 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2927 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2928 "Inode bitmap for group %u not in group " 2929 "(block %llu)!", i, inode_bitmap); 2930 return 0; 2931 } 2932 inode_table = ext4_inode_table(sb, gdp); 2933 if (inode_table == sb_block) { 2934 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2935 "Inode table for group %u overlaps " 2936 "superblock", i); 2937 if (!sb_rdonly(sb)) 2938 return 0; 2939 } 2940 if (inode_table >= sb_block + 1 && 2941 inode_table <= last_bg_block) { 2942 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2943 "Inode table for group %u overlaps " 2944 "block group descriptors", i); 2945 if (!sb_rdonly(sb)) 2946 return 0; 2947 } 2948 if (inode_table < first_block || 2949 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2950 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2951 "Inode table for group %u not in group " 2952 "(block %llu)!", i, inode_table); 2953 return 0; 2954 } 2955 ext4_lock_group(sb, i); 2956 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2957 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2958 "Checksum for group %u failed (%u!=%u)", 2959 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2960 gdp)), le16_to_cpu(gdp->bg_checksum)); 2961 if (!sb_rdonly(sb)) { 2962 ext4_unlock_group(sb, i); 2963 return 0; 2964 } 2965 } 2966 ext4_unlock_group(sb, i); 2967 if (!flexbg_flag) 2968 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2969 } 2970 if (NULL != first_not_zeroed) 2971 *first_not_zeroed = grp; 2972 return 1; 2973 } 2974 2975 /* 2976 * Maximal extent format file size. 2977 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2978 * extent format containers, within a sector_t, and within i_blocks 2979 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2980 * so that won't be a limiting factor. 2981 * 2982 * However there is other limiting factor. We do store extents in the form 2983 * of starting block and length, hence the resulting length of the extent 2984 * covering maximum file size must fit into on-disk format containers as 2985 * well. Given that length is always by 1 unit bigger than max unit (because 2986 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2987 * 2988 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2989 */ 2990 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2991 { 2992 loff_t res; 2993 loff_t upper_limit = MAX_LFS_FILESIZE; 2994 2995 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2996 2997 if (!has_huge_files) { 2998 upper_limit = (1LL << 32) - 1; 2999 3000 /* total blocks in file system block size */ 3001 upper_limit >>= (blkbits - 9); 3002 upper_limit <<= blkbits; 3003 } 3004 3005 /* 3006 * 32-bit extent-start container, ee_block. We lower the maxbytes 3007 * by one fs block, so ee_len can cover the extent of maximum file 3008 * size 3009 */ 3010 res = (1LL << 32) - 1; 3011 res <<= blkbits; 3012 3013 /* Sanity check against vm- & vfs- imposed limits */ 3014 if (res > upper_limit) 3015 res = upper_limit; 3016 3017 return res; 3018 } 3019 3020 /* 3021 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3022 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3023 * We need to be 1 filesystem block less than the 2^48 sector limit. 3024 */ 3025 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3026 { 3027 loff_t res = EXT4_NDIR_BLOCKS; 3028 int meta_blocks; 3029 loff_t upper_limit; 3030 /* This is calculated to be the largest file size for a dense, block 3031 * mapped file such that the file's total number of 512-byte sectors, 3032 * including data and all indirect blocks, does not exceed (2^48 - 1). 3033 * 3034 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3035 * number of 512-byte sectors of the file. 3036 */ 3037 3038 if (!has_huge_files) { 3039 /* 3040 * !has_huge_files or implies that the inode i_block field 3041 * represents total file blocks in 2^32 512-byte sectors == 3042 * size of vfs inode i_blocks * 8 3043 */ 3044 upper_limit = (1LL << 32) - 1; 3045 3046 /* total blocks in file system block size */ 3047 upper_limit >>= (bits - 9); 3048 3049 } else { 3050 /* 3051 * We use 48 bit ext4_inode i_blocks 3052 * With EXT4_HUGE_FILE_FL set the i_blocks 3053 * represent total number of blocks in 3054 * file system block size 3055 */ 3056 upper_limit = (1LL << 48) - 1; 3057 3058 } 3059 3060 /* indirect blocks */ 3061 meta_blocks = 1; 3062 /* double indirect blocks */ 3063 meta_blocks += 1 + (1LL << (bits-2)); 3064 /* tripple indirect blocks */ 3065 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3066 3067 upper_limit -= meta_blocks; 3068 upper_limit <<= bits; 3069 3070 res += 1LL << (bits-2); 3071 res += 1LL << (2*(bits-2)); 3072 res += 1LL << (3*(bits-2)); 3073 res <<= bits; 3074 if (res > upper_limit) 3075 res = upper_limit; 3076 3077 if (res > MAX_LFS_FILESIZE) 3078 res = MAX_LFS_FILESIZE; 3079 3080 return res; 3081 } 3082 3083 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3084 ext4_fsblk_t logical_sb_block, int nr) 3085 { 3086 struct ext4_sb_info *sbi = EXT4_SB(sb); 3087 ext4_group_t bg, first_meta_bg; 3088 int has_super = 0; 3089 3090 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3091 3092 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3093 return logical_sb_block + nr + 1; 3094 bg = sbi->s_desc_per_block * nr; 3095 if (ext4_bg_has_super(sb, bg)) 3096 has_super = 1; 3097 3098 /* 3099 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3100 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3101 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3102 * compensate. 3103 */ 3104 if (sb->s_blocksize == 1024 && nr == 0 && 3105 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3106 has_super++; 3107 3108 return (has_super + ext4_group_first_block_no(sb, bg)); 3109 } 3110 3111 /** 3112 * ext4_get_stripe_size: Get the stripe size. 3113 * @sbi: In memory super block info 3114 * 3115 * If we have specified it via mount option, then 3116 * use the mount option value. If the value specified at mount time is 3117 * greater than the blocks per group use the super block value. 3118 * If the super block value is greater than blocks per group return 0. 3119 * Allocator needs it be less than blocks per group. 3120 * 3121 */ 3122 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3123 { 3124 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3125 unsigned long stripe_width = 3126 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3127 int ret; 3128 3129 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3130 ret = sbi->s_stripe; 3131 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3132 ret = stripe_width; 3133 else if (stride && stride <= sbi->s_blocks_per_group) 3134 ret = stride; 3135 else 3136 ret = 0; 3137 3138 /* 3139 * If the stripe width is 1, this makes no sense and 3140 * we set it to 0 to turn off stripe handling code. 3141 */ 3142 if (ret <= 1) 3143 ret = 0; 3144 3145 return ret; 3146 } 3147 3148 /* 3149 * Check whether this filesystem can be mounted based on 3150 * the features present and the RDONLY/RDWR mount requested. 3151 * Returns 1 if this filesystem can be mounted as requested, 3152 * 0 if it cannot be. 3153 */ 3154 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3155 { 3156 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3157 ext4_msg(sb, KERN_ERR, 3158 "Couldn't mount because of " 3159 "unsupported optional features (%x)", 3160 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3161 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3162 return 0; 3163 } 3164 3165 #ifndef CONFIG_UNICODE 3166 if (ext4_has_feature_casefold(sb)) { 3167 ext4_msg(sb, KERN_ERR, 3168 "Filesystem with casefold feature cannot be " 3169 "mounted without CONFIG_UNICODE"); 3170 return 0; 3171 } 3172 #endif 3173 3174 if (readonly) 3175 return 1; 3176 3177 if (ext4_has_feature_readonly(sb)) { 3178 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3179 sb->s_flags |= SB_RDONLY; 3180 return 1; 3181 } 3182 3183 /* Check that feature set is OK for a read-write mount */ 3184 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3185 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3186 "unsupported optional features (%x)", 3187 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3188 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3189 return 0; 3190 } 3191 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3192 ext4_msg(sb, KERN_ERR, 3193 "Can't support bigalloc feature without " 3194 "extents feature\n"); 3195 return 0; 3196 } 3197 3198 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3199 if (!readonly && (ext4_has_feature_quota(sb) || 3200 ext4_has_feature_project(sb))) { 3201 ext4_msg(sb, KERN_ERR, 3202 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3203 return 0; 3204 } 3205 #endif /* CONFIG_QUOTA */ 3206 return 1; 3207 } 3208 3209 /* 3210 * This function is called once a day if we have errors logged 3211 * on the file system 3212 */ 3213 static void print_daily_error_info(struct timer_list *t) 3214 { 3215 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3216 struct super_block *sb = sbi->s_sb; 3217 struct ext4_super_block *es = sbi->s_es; 3218 3219 if (es->s_error_count) 3220 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3221 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3222 le32_to_cpu(es->s_error_count)); 3223 if (es->s_first_error_time) { 3224 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3225 sb->s_id, 3226 ext4_get_tstamp(es, s_first_error_time), 3227 (int) sizeof(es->s_first_error_func), 3228 es->s_first_error_func, 3229 le32_to_cpu(es->s_first_error_line)); 3230 if (es->s_first_error_ino) 3231 printk(KERN_CONT ": inode %u", 3232 le32_to_cpu(es->s_first_error_ino)); 3233 if (es->s_first_error_block) 3234 printk(KERN_CONT ": block %llu", (unsigned long long) 3235 le64_to_cpu(es->s_first_error_block)); 3236 printk(KERN_CONT "\n"); 3237 } 3238 if (es->s_last_error_time) { 3239 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3240 sb->s_id, 3241 ext4_get_tstamp(es, s_last_error_time), 3242 (int) sizeof(es->s_last_error_func), 3243 es->s_last_error_func, 3244 le32_to_cpu(es->s_last_error_line)); 3245 if (es->s_last_error_ino) 3246 printk(KERN_CONT ": inode %u", 3247 le32_to_cpu(es->s_last_error_ino)); 3248 if (es->s_last_error_block) 3249 printk(KERN_CONT ": block %llu", (unsigned long long) 3250 le64_to_cpu(es->s_last_error_block)); 3251 printk(KERN_CONT "\n"); 3252 } 3253 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3254 } 3255 3256 /* Find next suitable group and run ext4_init_inode_table */ 3257 static int ext4_run_li_request(struct ext4_li_request *elr) 3258 { 3259 struct ext4_group_desc *gdp = NULL; 3260 struct super_block *sb = elr->lr_super; 3261 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3262 ext4_group_t group = elr->lr_next_group; 3263 unsigned long timeout = 0; 3264 unsigned int prefetch_ios = 0; 3265 int ret = 0; 3266 3267 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3268 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3269 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3270 if (prefetch_ios) 3271 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3272 prefetch_ios); 3273 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3274 prefetch_ios); 3275 if (group >= elr->lr_next_group) { 3276 ret = 1; 3277 if (elr->lr_first_not_zeroed != ngroups && 3278 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3279 elr->lr_next_group = elr->lr_first_not_zeroed; 3280 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3281 ret = 0; 3282 } 3283 } 3284 return ret; 3285 } 3286 3287 for (; group < ngroups; group++) { 3288 gdp = ext4_get_group_desc(sb, group, NULL); 3289 if (!gdp) { 3290 ret = 1; 3291 break; 3292 } 3293 3294 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3295 break; 3296 } 3297 3298 if (group >= ngroups) 3299 ret = 1; 3300 3301 if (!ret) { 3302 timeout = jiffies; 3303 ret = ext4_init_inode_table(sb, group, 3304 elr->lr_timeout ? 0 : 1); 3305 trace_ext4_lazy_itable_init(sb, group); 3306 if (elr->lr_timeout == 0) { 3307 timeout = (jiffies - timeout) * 3308 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3309 elr->lr_timeout = timeout; 3310 } 3311 elr->lr_next_sched = jiffies + elr->lr_timeout; 3312 elr->lr_next_group = group + 1; 3313 } 3314 return ret; 3315 } 3316 3317 /* 3318 * Remove lr_request from the list_request and free the 3319 * request structure. Should be called with li_list_mtx held 3320 */ 3321 static void ext4_remove_li_request(struct ext4_li_request *elr) 3322 { 3323 if (!elr) 3324 return; 3325 3326 list_del(&elr->lr_request); 3327 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3328 kfree(elr); 3329 } 3330 3331 static void ext4_unregister_li_request(struct super_block *sb) 3332 { 3333 mutex_lock(&ext4_li_mtx); 3334 if (!ext4_li_info) { 3335 mutex_unlock(&ext4_li_mtx); 3336 return; 3337 } 3338 3339 mutex_lock(&ext4_li_info->li_list_mtx); 3340 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3341 mutex_unlock(&ext4_li_info->li_list_mtx); 3342 mutex_unlock(&ext4_li_mtx); 3343 } 3344 3345 static struct task_struct *ext4_lazyinit_task; 3346 3347 /* 3348 * This is the function where ext4lazyinit thread lives. It walks 3349 * through the request list searching for next scheduled filesystem. 3350 * When such a fs is found, run the lazy initialization request 3351 * (ext4_rn_li_request) and keep track of the time spend in this 3352 * function. Based on that time we compute next schedule time of 3353 * the request. When walking through the list is complete, compute 3354 * next waking time and put itself into sleep. 3355 */ 3356 static int ext4_lazyinit_thread(void *arg) 3357 { 3358 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3359 struct list_head *pos, *n; 3360 struct ext4_li_request *elr; 3361 unsigned long next_wakeup, cur; 3362 3363 BUG_ON(NULL == eli); 3364 3365 cont_thread: 3366 while (true) { 3367 next_wakeup = MAX_JIFFY_OFFSET; 3368 3369 mutex_lock(&eli->li_list_mtx); 3370 if (list_empty(&eli->li_request_list)) { 3371 mutex_unlock(&eli->li_list_mtx); 3372 goto exit_thread; 3373 } 3374 list_for_each_safe(pos, n, &eli->li_request_list) { 3375 int err = 0; 3376 int progress = 0; 3377 elr = list_entry(pos, struct ext4_li_request, 3378 lr_request); 3379 3380 if (time_before(jiffies, elr->lr_next_sched)) { 3381 if (time_before(elr->lr_next_sched, next_wakeup)) 3382 next_wakeup = elr->lr_next_sched; 3383 continue; 3384 } 3385 if (down_read_trylock(&elr->lr_super->s_umount)) { 3386 if (sb_start_write_trylock(elr->lr_super)) { 3387 progress = 1; 3388 /* 3389 * We hold sb->s_umount, sb can not 3390 * be removed from the list, it is 3391 * now safe to drop li_list_mtx 3392 */ 3393 mutex_unlock(&eli->li_list_mtx); 3394 err = ext4_run_li_request(elr); 3395 sb_end_write(elr->lr_super); 3396 mutex_lock(&eli->li_list_mtx); 3397 n = pos->next; 3398 } 3399 up_read((&elr->lr_super->s_umount)); 3400 } 3401 /* error, remove the lazy_init job */ 3402 if (err) { 3403 ext4_remove_li_request(elr); 3404 continue; 3405 } 3406 if (!progress) { 3407 elr->lr_next_sched = jiffies + 3408 (prandom_u32() 3409 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3410 } 3411 if (time_before(elr->lr_next_sched, next_wakeup)) 3412 next_wakeup = elr->lr_next_sched; 3413 } 3414 mutex_unlock(&eli->li_list_mtx); 3415 3416 try_to_freeze(); 3417 3418 cur = jiffies; 3419 if ((time_after_eq(cur, next_wakeup)) || 3420 (MAX_JIFFY_OFFSET == next_wakeup)) { 3421 cond_resched(); 3422 continue; 3423 } 3424 3425 schedule_timeout_interruptible(next_wakeup - cur); 3426 3427 if (kthread_should_stop()) { 3428 ext4_clear_request_list(); 3429 goto exit_thread; 3430 } 3431 } 3432 3433 exit_thread: 3434 /* 3435 * It looks like the request list is empty, but we need 3436 * to check it under the li_list_mtx lock, to prevent any 3437 * additions into it, and of course we should lock ext4_li_mtx 3438 * to atomically free the list and ext4_li_info, because at 3439 * this point another ext4 filesystem could be registering 3440 * new one. 3441 */ 3442 mutex_lock(&ext4_li_mtx); 3443 mutex_lock(&eli->li_list_mtx); 3444 if (!list_empty(&eli->li_request_list)) { 3445 mutex_unlock(&eli->li_list_mtx); 3446 mutex_unlock(&ext4_li_mtx); 3447 goto cont_thread; 3448 } 3449 mutex_unlock(&eli->li_list_mtx); 3450 kfree(ext4_li_info); 3451 ext4_li_info = NULL; 3452 mutex_unlock(&ext4_li_mtx); 3453 3454 return 0; 3455 } 3456 3457 static void ext4_clear_request_list(void) 3458 { 3459 struct list_head *pos, *n; 3460 struct ext4_li_request *elr; 3461 3462 mutex_lock(&ext4_li_info->li_list_mtx); 3463 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3464 elr = list_entry(pos, struct ext4_li_request, 3465 lr_request); 3466 ext4_remove_li_request(elr); 3467 } 3468 mutex_unlock(&ext4_li_info->li_list_mtx); 3469 } 3470 3471 static int ext4_run_lazyinit_thread(void) 3472 { 3473 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3474 ext4_li_info, "ext4lazyinit"); 3475 if (IS_ERR(ext4_lazyinit_task)) { 3476 int err = PTR_ERR(ext4_lazyinit_task); 3477 ext4_clear_request_list(); 3478 kfree(ext4_li_info); 3479 ext4_li_info = NULL; 3480 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3481 "initialization thread\n", 3482 err); 3483 return err; 3484 } 3485 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3486 return 0; 3487 } 3488 3489 /* 3490 * Check whether it make sense to run itable init. thread or not. 3491 * If there is at least one uninitialized inode table, return 3492 * corresponding group number, else the loop goes through all 3493 * groups and return total number of groups. 3494 */ 3495 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3496 { 3497 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3498 struct ext4_group_desc *gdp = NULL; 3499 3500 if (!ext4_has_group_desc_csum(sb)) 3501 return ngroups; 3502 3503 for (group = 0; group < ngroups; group++) { 3504 gdp = ext4_get_group_desc(sb, group, NULL); 3505 if (!gdp) 3506 continue; 3507 3508 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3509 break; 3510 } 3511 3512 return group; 3513 } 3514 3515 static int ext4_li_info_new(void) 3516 { 3517 struct ext4_lazy_init *eli = NULL; 3518 3519 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3520 if (!eli) 3521 return -ENOMEM; 3522 3523 INIT_LIST_HEAD(&eli->li_request_list); 3524 mutex_init(&eli->li_list_mtx); 3525 3526 eli->li_state |= EXT4_LAZYINIT_QUIT; 3527 3528 ext4_li_info = eli; 3529 3530 return 0; 3531 } 3532 3533 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3534 ext4_group_t start) 3535 { 3536 struct ext4_li_request *elr; 3537 3538 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3539 if (!elr) 3540 return NULL; 3541 3542 elr->lr_super = sb; 3543 elr->lr_first_not_zeroed = start; 3544 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3545 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3546 elr->lr_next_group = start; 3547 } else { 3548 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3549 } 3550 3551 /* 3552 * Randomize first schedule time of the request to 3553 * spread the inode table initialization requests 3554 * better. 3555 */ 3556 elr->lr_next_sched = jiffies + (prandom_u32() % 3557 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3558 return elr; 3559 } 3560 3561 int ext4_register_li_request(struct super_block *sb, 3562 ext4_group_t first_not_zeroed) 3563 { 3564 struct ext4_sb_info *sbi = EXT4_SB(sb); 3565 struct ext4_li_request *elr = NULL; 3566 ext4_group_t ngroups = sbi->s_groups_count; 3567 int ret = 0; 3568 3569 mutex_lock(&ext4_li_mtx); 3570 if (sbi->s_li_request != NULL) { 3571 /* 3572 * Reset timeout so it can be computed again, because 3573 * s_li_wait_mult might have changed. 3574 */ 3575 sbi->s_li_request->lr_timeout = 0; 3576 goto out; 3577 } 3578 3579 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3580 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3581 !test_opt(sb, INIT_INODE_TABLE))) 3582 goto out; 3583 3584 elr = ext4_li_request_new(sb, first_not_zeroed); 3585 if (!elr) { 3586 ret = -ENOMEM; 3587 goto out; 3588 } 3589 3590 if (NULL == ext4_li_info) { 3591 ret = ext4_li_info_new(); 3592 if (ret) 3593 goto out; 3594 } 3595 3596 mutex_lock(&ext4_li_info->li_list_mtx); 3597 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3598 mutex_unlock(&ext4_li_info->li_list_mtx); 3599 3600 sbi->s_li_request = elr; 3601 /* 3602 * set elr to NULL here since it has been inserted to 3603 * the request_list and the removal and free of it is 3604 * handled by ext4_clear_request_list from now on. 3605 */ 3606 elr = NULL; 3607 3608 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3609 ret = ext4_run_lazyinit_thread(); 3610 if (ret) 3611 goto out; 3612 } 3613 out: 3614 mutex_unlock(&ext4_li_mtx); 3615 if (ret) 3616 kfree(elr); 3617 return ret; 3618 } 3619 3620 /* 3621 * We do not need to lock anything since this is called on 3622 * module unload. 3623 */ 3624 static void ext4_destroy_lazyinit_thread(void) 3625 { 3626 /* 3627 * If thread exited earlier 3628 * there's nothing to be done. 3629 */ 3630 if (!ext4_li_info || !ext4_lazyinit_task) 3631 return; 3632 3633 kthread_stop(ext4_lazyinit_task); 3634 } 3635 3636 static int set_journal_csum_feature_set(struct super_block *sb) 3637 { 3638 int ret = 1; 3639 int compat, incompat; 3640 struct ext4_sb_info *sbi = EXT4_SB(sb); 3641 3642 if (ext4_has_metadata_csum(sb)) { 3643 /* journal checksum v3 */ 3644 compat = 0; 3645 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3646 } else { 3647 /* journal checksum v1 */ 3648 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3649 incompat = 0; 3650 } 3651 3652 jbd2_journal_clear_features(sbi->s_journal, 3653 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3654 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3655 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3656 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3657 ret = jbd2_journal_set_features(sbi->s_journal, 3658 compat, 0, 3659 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3660 incompat); 3661 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3662 ret = jbd2_journal_set_features(sbi->s_journal, 3663 compat, 0, 3664 incompat); 3665 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3666 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3667 } else { 3668 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3669 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3670 } 3671 3672 return ret; 3673 } 3674 3675 /* 3676 * Note: calculating the overhead so we can be compatible with 3677 * historical BSD practice is quite difficult in the face of 3678 * clusters/bigalloc. This is because multiple metadata blocks from 3679 * different block group can end up in the same allocation cluster. 3680 * Calculating the exact overhead in the face of clustered allocation 3681 * requires either O(all block bitmaps) in memory or O(number of block 3682 * groups**2) in time. We will still calculate the superblock for 3683 * older file systems --- and if we come across with a bigalloc file 3684 * system with zero in s_overhead_clusters the estimate will be close to 3685 * correct especially for very large cluster sizes --- but for newer 3686 * file systems, it's better to calculate this figure once at mkfs 3687 * time, and store it in the superblock. If the superblock value is 3688 * present (even for non-bigalloc file systems), we will use it. 3689 */ 3690 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3691 char *buf) 3692 { 3693 struct ext4_sb_info *sbi = EXT4_SB(sb); 3694 struct ext4_group_desc *gdp; 3695 ext4_fsblk_t first_block, last_block, b; 3696 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3697 int s, j, count = 0; 3698 3699 if (!ext4_has_feature_bigalloc(sb)) 3700 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3701 sbi->s_itb_per_group + 2); 3702 3703 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3704 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3705 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3706 for (i = 0; i < ngroups; i++) { 3707 gdp = ext4_get_group_desc(sb, i, NULL); 3708 b = ext4_block_bitmap(sb, gdp); 3709 if (b >= first_block && b <= last_block) { 3710 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3711 count++; 3712 } 3713 b = ext4_inode_bitmap(sb, gdp); 3714 if (b >= first_block && b <= last_block) { 3715 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3716 count++; 3717 } 3718 b = ext4_inode_table(sb, gdp); 3719 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3720 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3721 int c = EXT4_B2C(sbi, b - first_block); 3722 ext4_set_bit(c, buf); 3723 count++; 3724 } 3725 if (i != grp) 3726 continue; 3727 s = 0; 3728 if (ext4_bg_has_super(sb, grp)) { 3729 ext4_set_bit(s++, buf); 3730 count++; 3731 } 3732 j = ext4_bg_num_gdb(sb, grp); 3733 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3734 ext4_error(sb, "Invalid number of block group " 3735 "descriptor blocks: %d", j); 3736 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3737 } 3738 count += j; 3739 for (; j > 0; j--) 3740 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3741 } 3742 if (!count) 3743 return 0; 3744 return EXT4_CLUSTERS_PER_GROUP(sb) - 3745 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3746 } 3747 3748 /* 3749 * Compute the overhead and stash it in sbi->s_overhead 3750 */ 3751 int ext4_calculate_overhead(struct super_block *sb) 3752 { 3753 struct ext4_sb_info *sbi = EXT4_SB(sb); 3754 struct ext4_super_block *es = sbi->s_es; 3755 struct inode *j_inode; 3756 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3757 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3758 ext4_fsblk_t overhead = 0; 3759 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3760 3761 if (!buf) 3762 return -ENOMEM; 3763 3764 /* 3765 * Compute the overhead (FS structures). This is constant 3766 * for a given filesystem unless the number of block groups 3767 * changes so we cache the previous value until it does. 3768 */ 3769 3770 /* 3771 * All of the blocks before first_data_block are overhead 3772 */ 3773 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3774 3775 /* 3776 * Add the overhead found in each block group 3777 */ 3778 for (i = 0; i < ngroups; i++) { 3779 int blks; 3780 3781 blks = count_overhead(sb, i, buf); 3782 overhead += blks; 3783 if (blks) 3784 memset(buf, 0, PAGE_SIZE); 3785 cond_resched(); 3786 } 3787 3788 /* 3789 * Add the internal journal blocks whether the journal has been 3790 * loaded or not 3791 */ 3792 if (sbi->s_journal && !sbi->s_journal_bdev) 3793 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3794 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3795 /* j_inum for internal journal is non-zero */ 3796 j_inode = ext4_get_journal_inode(sb, j_inum); 3797 if (j_inode) { 3798 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3799 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3800 iput(j_inode); 3801 } else { 3802 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3803 } 3804 } 3805 sbi->s_overhead = overhead; 3806 smp_wmb(); 3807 free_page((unsigned long) buf); 3808 return 0; 3809 } 3810 3811 static void ext4_set_resv_clusters(struct super_block *sb) 3812 { 3813 ext4_fsblk_t resv_clusters; 3814 struct ext4_sb_info *sbi = EXT4_SB(sb); 3815 3816 /* 3817 * There's no need to reserve anything when we aren't using extents. 3818 * The space estimates are exact, there are no unwritten extents, 3819 * hole punching doesn't need new metadata... This is needed especially 3820 * to keep ext2/3 backward compatibility. 3821 */ 3822 if (!ext4_has_feature_extents(sb)) 3823 return; 3824 /* 3825 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3826 * This should cover the situations where we can not afford to run 3827 * out of space like for example punch hole, or converting 3828 * unwritten extents in delalloc path. In most cases such 3829 * allocation would require 1, or 2 blocks, higher numbers are 3830 * very rare. 3831 */ 3832 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3833 sbi->s_cluster_bits); 3834 3835 do_div(resv_clusters, 50); 3836 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3837 3838 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3839 } 3840 3841 static const char *ext4_quota_mode(struct super_block *sb) 3842 { 3843 #ifdef CONFIG_QUOTA 3844 if (!ext4_quota_capable(sb)) 3845 return "none"; 3846 3847 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3848 return "journalled"; 3849 else 3850 return "writeback"; 3851 #else 3852 return "disabled"; 3853 #endif 3854 } 3855 3856 static void ext4_setup_csum_trigger(struct super_block *sb, 3857 enum ext4_journal_trigger_type type, 3858 void (*trigger)( 3859 struct jbd2_buffer_trigger_type *type, 3860 struct buffer_head *bh, 3861 void *mapped_data, 3862 size_t size)) 3863 { 3864 struct ext4_sb_info *sbi = EXT4_SB(sb); 3865 3866 sbi->s_journal_triggers[type].sb = sb; 3867 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 3868 } 3869 3870 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3871 { 3872 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3873 char *orig_data = kstrdup(data, GFP_KERNEL); 3874 struct buffer_head *bh, **group_desc; 3875 struct ext4_super_block *es = NULL; 3876 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3877 struct flex_groups **flex_groups; 3878 ext4_fsblk_t block; 3879 ext4_fsblk_t sb_block = get_sb_block(&data); 3880 ext4_fsblk_t logical_sb_block; 3881 unsigned long offset = 0; 3882 unsigned long def_mount_opts; 3883 struct inode *root; 3884 const char *descr; 3885 int ret = -ENOMEM; 3886 int blocksize, clustersize; 3887 unsigned int db_count; 3888 unsigned int i; 3889 int needs_recovery, has_huge_files; 3890 __u64 blocks_count; 3891 int err = 0; 3892 ext4_group_t first_not_zeroed; 3893 struct ext4_parsed_options parsed_opts; 3894 3895 /* Set defaults for the variables that will be set during parsing */ 3896 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3897 parsed_opts.journal_devnum = 0; 3898 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 3899 3900 if ((data && !orig_data) || !sbi) 3901 goto out_free_base; 3902 3903 sbi->s_daxdev = dax_dev; 3904 sbi->s_blockgroup_lock = 3905 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3906 if (!sbi->s_blockgroup_lock) 3907 goto out_free_base; 3908 3909 sb->s_fs_info = sbi; 3910 sbi->s_sb = sb; 3911 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3912 sbi->s_sb_block = sb_block; 3913 sbi->s_sectors_written_start = 3914 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 3915 3916 /* Cleanup superblock name */ 3917 strreplace(sb->s_id, '/', '!'); 3918 3919 /* -EINVAL is default */ 3920 ret = -EINVAL; 3921 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3922 if (!blocksize) { 3923 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3924 goto out_fail; 3925 } 3926 3927 /* 3928 * The ext4 superblock will not be buffer aligned for other than 1kB 3929 * block sizes. We need to calculate the offset from buffer start. 3930 */ 3931 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3932 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3933 offset = do_div(logical_sb_block, blocksize); 3934 } else { 3935 logical_sb_block = sb_block; 3936 } 3937 3938 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 3939 if (IS_ERR(bh)) { 3940 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3941 ret = PTR_ERR(bh); 3942 goto out_fail; 3943 } 3944 /* 3945 * Note: s_es must be initialized as soon as possible because 3946 * some ext4 macro-instructions depend on its value 3947 */ 3948 es = (struct ext4_super_block *) (bh->b_data + offset); 3949 sbi->s_es = es; 3950 sb->s_magic = le16_to_cpu(es->s_magic); 3951 if (sb->s_magic != EXT4_SUPER_MAGIC) 3952 goto cantfind_ext4; 3953 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3954 3955 /* Warn if metadata_csum and gdt_csum are both set. */ 3956 if (ext4_has_feature_metadata_csum(sb) && 3957 ext4_has_feature_gdt_csum(sb)) 3958 ext4_warning(sb, "metadata_csum and uninit_bg are " 3959 "redundant flags; please run fsck."); 3960 3961 /* Check for a known checksum algorithm */ 3962 if (!ext4_verify_csum_type(sb, es)) { 3963 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3964 "unknown checksum algorithm."); 3965 silent = 1; 3966 goto cantfind_ext4; 3967 } 3968 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 3969 ext4_orphan_file_block_trigger); 3970 3971 /* Load the checksum driver */ 3972 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3973 if (IS_ERR(sbi->s_chksum_driver)) { 3974 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3975 ret = PTR_ERR(sbi->s_chksum_driver); 3976 sbi->s_chksum_driver = NULL; 3977 goto failed_mount; 3978 } 3979 3980 /* Check superblock checksum */ 3981 if (!ext4_superblock_csum_verify(sb, es)) { 3982 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3983 "invalid superblock checksum. Run e2fsck?"); 3984 silent = 1; 3985 ret = -EFSBADCRC; 3986 goto cantfind_ext4; 3987 } 3988 3989 /* Precompute checksum seed for all metadata */ 3990 if (ext4_has_feature_csum_seed(sb)) 3991 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3992 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3993 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3994 sizeof(es->s_uuid)); 3995 3996 /* Set defaults before we parse the mount options */ 3997 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3998 set_opt(sb, INIT_INODE_TABLE); 3999 if (def_mount_opts & EXT4_DEFM_DEBUG) 4000 set_opt(sb, DEBUG); 4001 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4002 set_opt(sb, GRPID); 4003 if (def_mount_opts & EXT4_DEFM_UID16) 4004 set_opt(sb, NO_UID32); 4005 /* xattr user namespace & acls are now defaulted on */ 4006 set_opt(sb, XATTR_USER); 4007 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4008 set_opt(sb, POSIX_ACL); 4009 #endif 4010 if (ext4_has_feature_fast_commit(sb)) 4011 set_opt2(sb, JOURNAL_FAST_COMMIT); 4012 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4013 if (ext4_has_metadata_csum(sb)) 4014 set_opt(sb, JOURNAL_CHECKSUM); 4015 4016 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4017 set_opt(sb, JOURNAL_DATA); 4018 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4019 set_opt(sb, ORDERED_DATA); 4020 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4021 set_opt(sb, WRITEBACK_DATA); 4022 4023 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4024 set_opt(sb, ERRORS_PANIC); 4025 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4026 set_opt(sb, ERRORS_CONT); 4027 else 4028 set_opt(sb, ERRORS_RO); 4029 /* block_validity enabled by default; disable with noblock_validity */ 4030 set_opt(sb, BLOCK_VALIDITY); 4031 if (def_mount_opts & EXT4_DEFM_DISCARD) 4032 set_opt(sb, DISCARD); 4033 4034 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4035 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4036 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4037 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4038 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4039 4040 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4041 set_opt(sb, BARRIER); 4042 4043 /* 4044 * enable delayed allocation by default 4045 * Use -o nodelalloc to turn it off 4046 */ 4047 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4048 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4049 set_opt(sb, DELALLOC); 4050 4051 /* 4052 * set default s_li_wait_mult for lazyinit, for the case there is 4053 * no mount option specified. 4054 */ 4055 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4056 4057 if (le32_to_cpu(es->s_log_block_size) > 4058 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4059 ext4_msg(sb, KERN_ERR, 4060 "Invalid log block size: %u", 4061 le32_to_cpu(es->s_log_block_size)); 4062 goto failed_mount; 4063 } 4064 if (le32_to_cpu(es->s_log_cluster_size) > 4065 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4066 ext4_msg(sb, KERN_ERR, 4067 "Invalid log cluster size: %u", 4068 le32_to_cpu(es->s_log_cluster_size)); 4069 goto failed_mount; 4070 } 4071 4072 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4073 4074 if (blocksize == PAGE_SIZE) 4075 set_opt(sb, DIOREAD_NOLOCK); 4076 4077 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4078 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4079 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4080 } else { 4081 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4082 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4083 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4084 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4085 sbi->s_first_ino); 4086 goto failed_mount; 4087 } 4088 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4089 (!is_power_of_2(sbi->s_inode_size)) || 4090 (sbi->s_inode_size > blocksize)) { 4091 ext4_msg(sb, KERN_ERR, 4092 "unsupported inode size: %d", 4093 sbi->s_inode_size); 4094 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4095 goto failed_mount; 4096 } 4097 /* 4098 * i_atime_extra is the last extra field available for 4099 * [acm]times in struct ext4_inode. Checking for that 4100 * field should suffice to ensure we have extra space 4101 * for all three. 4102 */ 4103 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4104 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4105 sb->s_time_gran = 1; 4106 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4107 } else { 4108 sb->s_time_gran = NSEC_PER_SEC; 4109 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4110 } 4111 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4112 } 4113 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4114 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4115 EXT4_GOOD_OLD_INODE_SIZE; 4116 if (ext4_has_feature_extra_isize(sb)) { 4117 unsigned v, max = (sbi->s_inode_size - 4118 EXT4_GOOD_OLD_INODE_SIZE); 4119 4120 v = le16_to_cpu(es->s_want_extra_isize); 4121 if (v > max) { 4122 ext4_msg(sb, KERN_ERR, 4123 "bad s_want_extra_isize: %d", v); 4124 goto failed_mount; 4125 } 4126 if (sbi->s_want_extra_isize < v) 4127 sbi->s_want_extra_isize = v; 4128 4129 v = le16_to_cpu(es->s_min_extra_isize); 4130 if (v > max) { 4131 ext4_msg(sb, KERN_ERR, 4132 "bad s_min_extra_isize: %d", v); 4133 goto failed_mount; 4134 } 4135 if (sbi->s_want_extra_isize < v) 4136 sbi->s_want_extra_isize = v; 4137 } 4138 } 4139 4140 if (sbi->s_es->s_mount_opts[0]) { 4141 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4142 sizeof(sbi->s_es->s_mount_opts), 4143 GFP_KERNEL); 4144 if (!s_mount_opts) 4145 goto failed_mount; 4146 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4147 ext4_msg(sb, KERN_WARNING, 4148 "failed to parse options in superblock: %s", 4149 s_mount_opts); 4150 } 4151 kfree(s_mount_opts); 4152 } 4153 sbi->s_def_mount_opt = sbi->s_mount_opt; 4154 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4155 goto failed_mount; 4156 4157 #ifdef CONFIG_UNICODE 4158 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4159 const struct ext4_sb_encodings *encoding_info; 4160 struct unicode_map *encoding; 4161 __u16 encoding_flags; 4162 4163 if (ext4_sb_read_encoding(es, &encoding_info, 4164 &encoding_flags)) { 4165 ext4_msg(sb, KERN_ERR, 4166 "Encoding requested by superblock is unknown"); 4167 goto failed_mount; 4168 } 4169 4170 encoding = utf8_load(encoding_info->version); 4171 if (IS_ERR(encoding)) { 4172 ext4_msg(sb, KERN_ERR, 4173 "can't mount with superblock charset: %s-%s " 4174 "not supported by the kernel. flags: 0x%x.", 4175 encoding_info->name, encoding_info->version, 4176 encoding_flags); 4177 goto failed_mount; 4178 } 4179 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4180 "%s-%s with flags 0x%hx", encoding_info->name, 4181 encoding_info->version?:"\b", encoding_flags); 4182 4183 sb->s_encoding = encoding; 4184 sb->s_encoding_flags = encoding_flags; 4185 } 4186 #endif 4187 4188 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4189 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4190 /* can't mount with both data=journal and dioread_nolock. */ 4191 clear_opt(sb, DIOREAD_NOLOCK); 4192 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4193 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4194 ext4_msg(sb, KERN_ERR, "can't mount with " 4195 "both data=journal and delalloc"); 4196 goto failed_mount; 4197 } 4198 if (test_opt(sb, DAX_ALWAYS)) { 4199 ext4_msg(sb, KERN_ERR, "can't mount with " 4200 "both data=journal and dax"); 4201 goto failed_mount; 4202 } 4203 if (ext4_has_feature_encrypt(sb)) { 4204 ext4_msg(sb, KERN_WARNING, 4205 "encrypted files will use data=ordered " 4206 "instead of data journaling mode"); 4207 } 4208 if (test_opt(sb, DELALLOC)) 4209 clear_opt(sb, DELALLOC); 4210 } else { 4211 sb->s_iflags |= SB_I_CGROUPWB; 4212 } 4213 4214 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4215 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4216 4217 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4218 (ext4_has_compat_features(sb) || 4219 ext4_has_ro_compat_features(sb) || 4220 ext4_has_incompat_features(sb))) 4221 ext4_msg(sb, KERN_WARNING, 4222 "feature flags set on rev 0 fs, " 4223 "running e2fsck is recommended"); 4224 4225 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4226 set_opt2(sb, HURD_COMPAT); 4227 if (ext4_has_feature_64bit(sb)) { 4228 ext4_msg(sb, KERN_ERR, 4229 "The Hurd can't support 64-bit file systems"); 4230 goto failed_mount; 4231 } 4232 4233 /* 4234 * ea_inode feature uses l_i_version field which is not 4235 * available in HURD_COMPAT mode. 4236 */ 4237 if (ext4_has_feature_ea_inode(sb)) { 4238 ext4_msg(sb, KERN_ERR, 4239 "ea_inode feature is not supported for Hurd"); 4240 goto failed_mount; 4241 } 4242 } 4243 4244 if (IS_EXT2_SB(sb)) { 4245 if (ext2_feature_set_ok(sb)) 4246 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4247 "using the ext4 subsystem"); 4248 else { 4249 /* 4250 * If we're probing be silent, if this looks like 4251 * it's actually an ext[34] filesystem. 4252 */ 4253 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4254 goto failed_mount; 4255 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4256 "to feature incompatibilities"); 4257 goto failed_mount; 4258 } 4259 } 4260 4261 if (IS_EXT3_SB(sb)) { 4262 if (ext3_feature_set_ok(sb)) 4263 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4264 "using the ext4 subsystem"); 4265 else { 4266 /* 4267 * If we're probing be silent, if this looks like 4268 * it's actually an ext4 filesystem. 4269 */ 4270 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4271 goto failed_mount; 4272 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4273 "to feature incompatibilities"); 4274 goto failed_mount; 4275 } 4276 } 4277 4278 /* 4279 * Check feature flags regardless of the revision level, since we 4280 * previously didn't change the revision level when setting the flags, 4281 * so there is a chance incompat flags are set on a rev 0 filesystem. 4282 */ 4283 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4284 goto failed_mount; 4285 4286 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4287 ext4_msg(sb, KERN_ERR, 4288 "Number of reserved GDT blocks insanely large: %d", 4289 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4290 goto failed_mount; 4291 } 4292 4293 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4294 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4295 4296 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4297 if (ext4_has_feature_inline_data(sb)) { 4298 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4299 " that may contain inline data"); 4300 goto failed_mount; 4301 } 4302 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4303 ext4_msg(sb, KERN_ERR, 4304 "DAX unsupported by block device."); 4305 goto failed_mount; 4306 } 4307 } 4308 4309 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4310 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4311 es->s_encryption_level); 4312 goto failed_mount; 4313 } 4314 4315 if (sb->s_blocksize != blocksize) { 4316 /* 4317 * bh must be released before kill_bdev(), otherwise 4318 * it won't be freed and its page also. kill_bdev() 4319 * is called by sb_set_blocksize(). 4320 */ 4321 brelse(bh); 4322 /* Validate the filesystem blocksize */ 4323 if (!sb_set_blocksize(sb, blocksize)) { 4324 ext4_msg(sb, KERN_ERR, "bad block size %d", 4325 blocksize); 4326 bh = NULL; 4327 goto failed_mount; 4328 } 4329 4330 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4331 offset = do_div(logical_sb_block, blocksize); 4332 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4333 if (IS_ERR(bh)) { 4334 ext4_msg(sb, KERN_ERR, 4335 "Can't read superblock on 2nd try"); 4336 ret = PTR_ERR(bh); 4337 bh = NULL; 4338 goto failed_mount; 4339 } 4340 es = (struct ext4_super_block *)(bh->b_data + offset); 4341 sbi->s_es = es; 4342 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4343 ext4_msg(sb, KERN_ERR, 4344 "Magic mismatch, very weird!"); 4345 goto failed_mount; 4346 } 4347 } 4348 4349 has_huge_files = ext4_has_feature_huge_file(sb); 4350 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4351 has_huge_files); 4352 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4353 4354 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4355 if (ext4_has_feature_64bit(sb)) { 4356 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4357 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4358 !is_power_of_2(sbi->s_desc_size)) { 4359 ext4_msg(sb, KERN_ERR, 4360 "unsupported descriptor size %lu", 4361 sbi->s_desc_size); 4362 goto failed_mount; 4363 } 4364 } else 4365 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4366 4367 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4368 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4369 4370 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4371 if (sbi->s_inodes_per_block == 0) 4372 goto cantfind_ext4; 4373 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4374 sbi->s_inodes_per_group > blocksize * 8) { 4375 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4376 sbi->s_inodes_per_group); 4377 goto failed_mount; 4378 } 4379 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4380 sbi->s_inodes_per_block; 4381 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4382 sbi->s_sbh = bh; 4383 sbi->s_mount_state = le16_to_cpu(es->s_state); 4384 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4385 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4386 4387 for (i = 0; i < 4; i++) 4388 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4389 sbi->s_def_hash_version = es->s_def_hash_version; 4390 if (ext4_has_feature_dir_index(sb)) { 4391 i = le32_to_cpu(es->s_flags); 4392 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4393 sbi->s_hash_unsigned = 3; 4394 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4395 #ifdef __CHAR_UNSIGNED__ 4396 if (!sb_rdonly(sb)) 4397 es->s_flags |= 4398 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4399 sbi->s_hash_unsigned = 3; 4400 #else 4401 if (!sb_rdonly(sb)) 4402 es->s_flags |= 4403 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4404 #endif 4405 } 4406 } 4407 4408 /* Handle clustersize */ 4409 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4410 if (ext4_has_feature_bigalloc(sb)) { 4411 if (clustersize < blocksize) { 4412 ext4_msg(sb, KERN_ERR, 4413 "cluster size (%d) smaller than " 4414 "block size (%d)", clustersize, blocksize); 4415 goto failed_mount; 4416 } 4417 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4418 le32_to_cpu(es->s_log_block_size); 4419 sbi->s_clusters_per_group = 4420 le32_to_cpu(es->s_clusters_per_group); 4421 if (sbi->s_clusters_per_group > blocksize * 8) { 4422 ext4_msg(sb, KERN_ERR, 4423 "#clusters per group too big: %lu", 4424 sbi->s_clusters_per_group); 4425 goto failed_mount; 4426 } 4427 if (sbi->s_blocks_per_group != 4428 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4429 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4430 "clusters per group (%lu) inconsistent", 4431 sbi->s_blocks_per_group, 4432 sbi->s_clusters_per_group); 4433 goto failed_mount; 4434 } 4435 } else { 4436 if (clustersize != blocksize) { 4437 ext4_msg(sb, KERN_ERR, 4438 "fragment/cluster size (%d) != " 4439 "block size (%d)", clustersize, blocksize); 4440 goto failed_mount; 4441 } 4442 if (sbi->s_blocks_per_group > blocksize * 8) { 4443 ext4_msg(sb, KERN_ERR, 4444 "#blocks per group too big: %lu", 4445 sbi->s_blocks_per_group); 4446 goto failed_mount; 4447 } 4448 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4449 sbi->s_cluster_bits = 0; 4450 } 4451 sbi->s_cluster_ratio = clustersize / blocksize; 4452 4453 /* Do we have standard group size of clustersize * 8 blocks ? */ 4454 if (sbi->s_blocks_per_group == clustersize << 3) 4455 set_opt2(sb, STD_GROUP_SIZE); 4456 4457 /* 4458 * Test whether we have more sectors than will fit in sector_t, 4459 * and whether the max offset is addressable by the page cache. 4460 */ 4461 err = generic_check_addressable(sb->s_blocksize_bits, 4462 ext4_blocks_count(es)); 4463 if (err) { 4464 ext4_msg(sb, KERN_ERR, "filesystem" 4465 " too large to mount safely on this system"); 4466 goto failed_mount; 4467 } 4468 4469 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4470 goto cantfind_ext4; 4471 4472 /* check blocks count against device size */ 4473 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4474 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4475 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4476 "exceeds size of device (%llu blocks)", 4477 ext4_blocks_count(es), blocks_count); 4478 goto failed_mount; 4479 } 4480 4481 /* 4482 * It makes no sense for the first data block to be beyond the end 4483 * of the filesystem. 4484 */ 4485 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4486 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4487 "block %u is beyond end of filesystem (%llu)", 4488 le32_to_cpu(es->s_first_data_block), 4489 ext4_blocks_count(es)); 4490 goto failed_mount; 4491 } 4492 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4493 (sbi->s_cluster_ratio == 1)) { 4494 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4495 "block is 0 with a 1k block and cluster size"); 4496 goto failed_mount; 4497 } 4498 4499 blocks_count = (ext4_blocks_count(es) - 4500 le32_to_cpu(es->s_first_data_block) + 4501 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4502 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4503 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4504 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4505 "(block count %llu, first data block %u, " 4506 "blocks per group %lu)", blocks_count, 4507 ext4_blocks_count(es), 4508 le32_to_cpu(es->s_first_data_block), 4509 EXT4_BLOCKS_PER_GROUP(sb)); 4510 goto failed_mount; 4511 } 4512 sbi->s_groups_count = blocks_count; 4513 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4514 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4515 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4516 le32_to_cpu(es->s_inodes_count)) { 4517 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4518 le32_to_cpu(es->s_inodes_count), 4519 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4520 ret = -EINVAL; 4521 goto failed_mount; 4522 } 4523 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4524 EXT4_DESC_PER_BLOCK(sb); 4525 if (ext4_has_feature_meta_bg(sb)) { 4526 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4527 ext4_msg(sb, KERN_WARNING, 4528 "first meta block group too large: %u " 4529 "(group descriptor block count %u)", 4530 le32_to_cpu(es->s_first_meta_bg), db_count); 4531 goto failed_mount; 4532 } 4533 } 4534 rcu_assign_pointer(sbi->s_group_desc, 4535 kvmalloc_array(db_count, 4536 sizeof(struct buffer_head *), 4537 GFP_KERNEL)); 4538 if (sbi->s_group_desc == NULL) { 4539 ext4_msg(sb, KERN_ERR, "not enough memory"); 4540 ret = -ENOMEM; 4541 goto failed_mount; 4542 } 4543 4544 bgl_lock_init(sbi->s_blockgroup_lock); 4545 4546 /* Pre-read the descriptors into the buffer cache */ 4547 for (i = 0; i < db_count; i++) { 4548 block = descriptor_loc(sb, logical_sb_block, i); 4549 ext4_sb_breadahead_unmovable(sb, block); 4550 } 4551 4552 for (i = 0; i < db_count; i++) { 4553 struct buffer_head *bh; 4554 4555 block = descriptor_loc(sb, logical_sb_block, i); 4556 bh = ext4_sb_bread_unmovable(sb, block); 4557 if (IS_ERR(bh)) { 4558 ext4_msg(sb, KERN_ERR, 4559 "can't read group descriptor %d", i); 4560 db_count = i; 4561 ret = PTR_ERR(bh); 4562 goto failed_mount2; 4563 } 4564 rcu_read_lock(); 4565 rcu_dereference(sbi->s_group_desc)[i] = bh; 4566 rcu_read_unlock(); 4567 } 4568 sbi->s_gdb_count = db_count; 4569 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4570 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4571 ret = -EFSCORRUPTED; 4572 goto failed_mount2; 4573 } 4574 4575 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4576 spin_lock_init(&sbi->s_error_lock); 4577 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4578 4579 /* Register extent status tree shrinker */ 4580 if (ext4_es_register_shrinker(sbi)) 4581 goto failed_mount3; 4582 4583 sbi->s_stripe = ext4_get_stripe_size(sbi); 4584 sbi->s_extent_max_zeroout_kb = 32; 4585 4586 /* 4587 * set up enough so that it can read an inode 4588 */ 4589 sb->s_op = &ext4_sops; 4590 sb->s_export_op = &ext4_export_ops; 4591 sb->s_xattr = ext4_xattr_handlers; 4592 #ifdef CONFIG_FS_ENCRYPTION 4593 sb->s_cop = &ext4_cryptops; 4594 #endif 4595 #ifdef CONFIG_FS_VERITY 4596 sb->s_vop = &ext4_verityops; 4597 #endif 4598 #ifdef CONFIG_QUOTA 4599 sb->dq_op = &ext4_quota_operations; 4600 if (ext4_has_feature_quota(sb)) 4601 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4602 else 4603 sb->s_qcop = &ext4_qctl_operations; 4604 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4605 #endif 4606 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4607 4608 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4609 mutex_init(&sbi->s_orphan_lock); 4610 4611 /* Initialize fast commit stuff */ 4612 atomic_set(&sbi->s_fc_subtid, 0); 4613 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4614 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4615 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4616 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4617 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4618 sbi->s_fc_bytes = 0; 4619 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4620 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4621 spin_lock_init(&sbi->s_fc_lock); 4622 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4623 sbi->s_fc_replay_state.fc_regions = NULL; 4624 sbi->s_fc_replay_state.fc_regions_size = 0; 4625 sbi->s_fc_replay_state.fc_regions_used = 0; 4626 sbi->s_fc_replay_state.fc_regions_valid = 0; 4627 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4628 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4629 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4630 4631 sb->s_root = NULL; 4632 4633 needs_recovery = (es->s_last_orphan != 0 || 4634 ext4_has_feature_orphan_present(sb) || 4635 ext4_has_feature_journal_needs_recovery(sb)); 4636 4637 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4638 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4639 goto failed_mount3a; 4640 4641 /* 4642 * The first inode we look at is the journal inode. Don't try 4643 * root first: it may be modified in the journal! 4644 */ 4645 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4646 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4647 if (err) 4648 goto failed_mount3a; 4649 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4650 ext4_has_feature_journal_needs_recovery(sb)) { 4651 ext4_msg(sb, KERN_ERR, "required journal recovery " 4652 "suppressed and not mounted read-only"); 4653 goto failed_mount_wq; 4654 } else { 4655 /* Nojournal mode, all journal mount options are illegal */ 4656 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4657 ext4_msg(sb, KERN_ERR, "can't mount with " 4658 "journal_checksum, fs mounted w/o journal"); 4659 goto failed_mount_wq; 4660 } 4661 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4662 ext4_msg(sb, KERN_ERR, "can't mount with " 4663 "journal_async_commit, fs mounted w/o journal"); 4664 goto failed_mount_wq; 4665 } 4666 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4667 ext4_msg(sb, KERN_ERR, "can't mount with " 4668 "commit=%lu, fs mounted w/o journal", 4669 sbi->s_commit_interval / HZ); 4670 goto failed_mount_wq; 4671 } 4672 if (EXT4_MOUNT_DATA_FLAGS & 4673 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4674 ext4_msg(sb, KERN_ERR, "can't mount with " 4675 "data=, fs mounted w/o journal"); 4676 goto failed_mount_wq; 4677 } 4678 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4679 clear_opt(sb, JOURNAL_CHECKSUM); 4680 clear_opt(sb, DATA_FLAGS); 4681 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4682 sbi->s_journal = NULL; 4683 needs_recovery = 0; 4684 goto no_journal; 4685 } 4686 4687 if (ext4_has_feature_64bit(sb) && 4688 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4689 JBD2_FEATURE_INCOMPAT_64BIT)) { 4690 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4691 goto failed_mount_wq; 4692 } 4693 4694 if (!set_journal_csum_feature_set(sb)) { 4695 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4696 "feature set"); 4697 goto failed_mount_wq; 4698 } 4699 4700 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4701 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4702 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4703 ext4_msg(sb, KERN_ERR, 4704 "Failed to set fast commit journal feature"); 4705 goto failed_mount_wq; 4706 } 4707 4708 /* We have now updated the journal if required, so we can 4709 * validate the data journaling mode. */ 4710 switch (test_opt(sb, DATA_FLAGS)) { 4711 case 0: 4712 /* No mode set, assume a default based on the journal 4713 * capabilities: ORDERED_DATA if the journal can 4714 * cope, else JOURNAL_DATA 4715 */ 4716 if (jbd2_journal_check_available_features 4717 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4718 set_opt(sb, ORDERED_DATA); 4719 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4720 } else { 4721 set_opt(sb, JOURNAL_DATA); 4722 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4723 } 4724 break; 4725 4726 case EXT4_MOUNT_ORDERED_DATA: 4727 case EXT4_MOUNT_WRITEBACK_DATA: 4728 if (!jbd2_journal_check_available_features 4729 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4730 ext4_msg(sb, KERN_ERR, "Journal does not support " 4731 "requested data journaling mode"); 4732 goto failed_mount_wq; 4733 } 4734 break; 4735 default: 4736 break; 4737 } 4738 4739 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4740 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4741 ext4_msg(sb, KERN_ERR, "can't mount with " 4742 "journal_async_commit in data=ordered mode"); 4743 goto failed_mount_wq; 4744 } 4745 4746 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4747 4748 sbi->s_journal->j_submit_inode_data_buffers = 4749 ext4_journal_submit_inode_data_buffers; 4750 sbi->s_journal->j_finish_inode_data_buffers = 4751 ext4_journal_finish_inode_data_buffers; 4752 4753 no_journal: 4754 if (!test_opt(sb, NO_MBCACHE)) { 4755 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4756 if (!sbi->s_ea_block_cache) { 4757 ext4_msg(sb, KERN_ERR, 4758 "Failed to create ea_block_cache"); 4759 goto failed_mount_wq; 4760 } 4761 4762 if (ext4_has_feature_ea_inode(sb)) { 4763 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4764 if (!sbi->s_ea_inode_cache) { 4765 ext4_msg(sb, KERN_ERR, 4766 "Failed to create ea_inode_cache"); 4767 goto failed_mount_wq; 4768 } 4769 } 4770 } 4771 4772 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4773 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4774 goto failed_mount_wq; 4775 } 4776 4777 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4778 !ext4_has_feature_encrypt(sb)) { 4779 ext4_set_feature_encrypt(sb); 4780 ext4_commit_super(sb); 4781 } 4782 4783 /* 4784 * Get the # of file system overhead blocks from the 4785 * superblock if present. 4786 */ 4787 if (es->s_overhead_clusters) 4788 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4789 else { 4790 err = ext4_calculate_overhead(sb); 4791 if (err) 4792 goto failed_mount_wq; 4793 } 4794 4795 /* 4796 * The maximum number of concurrent works can be high and 4797 * concurrency isn't really necessary. Limit it to 1. 4798 */ 4799 EXT4_SB(sb)->rsv_conversion_wq = 4800 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4801 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4802 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4803 ret = -ENOMEM; 4804 goto failed_mount4; 4805 } 4806 4807 /* 4808 * The jbd2_journal_load will have done any necessary log recovery, 4809 * so we can safely mount the rest of the filesystem now. 4810 */ 4811 4812 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4813 if (IS_ERR(root)) { 4814 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4815 ret = PTR_ERR(root); 4816 root = NULL; 4817 goto failed_mount4; 4818 } 4819 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4820 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4821 iput(root); 4822 goto failed_mount4; 4823 } 4824 4825 sb->s_root = d_make_root(root); 4826 if (!sb->s_root) { 4827 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4828 ret = -ENOMEM; 4829 goto failed_mount4; 4830 } 4831 4832 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4833 if (ret == -EROFS) { 4834 sb->s_flags |= SB_RDONLY; 4835 ret = 0; 4836 } else if (ret) 4837 goto failed_mount4a; 4838 4839 ext4_set_resv_clusters(sb); 4840 4841 if (test_opt(sb, BLOCK_VALIDITY)) { 4842 err = ext4_setup_system_zone(sb); 4843 if (err) { 4844 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4845 "zone (%d)", err); 4846 goto failed_mount4a; 4847 } 4848 } 4849 ext4_fc_replay_cleanup(sb); 4850 4851 ext4_ext_init(sb); 4852 4853 /* 4854 * Enable optimize_scan if number of groups is > threshold. This can be 4855 * turned off by passing "mb_optimize_scan=0". This can also be 4856 * turned on forcefully by passing "mb_optimize_scan=1". 4857 */ 4858 if (parsed_opts.mb_optimize_scan == 1) 4859 set_opt2(sb, MB_OPTIMIZE_SCAN); 4860 else if (parsed_opts.mb_optimize_scan == 0) 4861 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4862 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 4863 set_opt2(sb, MB_OPTIMIZE_SCAN); 4864 4865 err = ext4_mb_init(sb); 4866 if (err) { 4867 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4868 err); 4869 goto failed_mount5; 4870 } 4871 4872 /* 4873 * We can only set up the journal commit callback once 4874 * mballoc is initialized 4875 */ 4876 if (sbi->s_journal) 4877 sbi->s_journal->j_commit_callback = 4878 ext4_journal_commit_callback; 4879 4880 block = ext4_count_free_clusters(sb); 4881 ext4_free_blocks_count_set(sbi->s_es, 4882 EXT4_C2B(sbi, block)); 4883 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4884 GFP_KERNEL); 4885 if (!err) { 4886 unsigned long freei = ext4_count_free_inodes(sb); 4887 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4888 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4889 GFP_KERNEL); 4890 } 4891 /* 4892 * Update the checksum after updating free space/inode 4893 * counters. Otherwise the superblock can have an incorrect 4894 * checksum in the buffer cache until it is written out and 4895 * e2fsprogs programs trying to open a file system immediately 4896 * after it is mounted can fail. 4897 */ 4898 ext4_superblock_csum_set(sb); 4899 if (!err) 4900 err = percpu_counter_init(&sbi->s_dirs_counter, 4901 ext4_count_dirs(sb), GFP_KERNEL); 4902 if (!err) 4903 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4904 GFP_KERNEL); 4905 if (!err) 4906 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 4907 GFP_KERNEL); 4908 if (!err) 4909 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4910 4911 if (err) { 4912 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4913 goto failed_mount6; 4914 } 4915 4916 if (ext4_has_feature_flex_bg(sb)) 4917 if (!ext4_fill_flex_info(sb)) { 4918 ext4_msg(sb, KERN_ERR, 4919 "unable to initialize " 4920 "flex_bg meta info!"); 4921 ret = -ENOMEM; 4922 goto failed_mount6; 4923 } 4924 4925 err = ext4_register_li_request(sb, first_not_zeroed); 4926 if (err) 4927 goto failed_mount6; 4928 4929 err = ext4_register_sysfs(sb); 4930 if (err) 4931 goto failed_mount7; 4932 4933 err = ext4_init_orphan_info(sb); 4934 if (err) 4935 goto failed_mount8; 4936 #ifdef CONFIG_QUOTA 4937 /* Enable quota usage during mount. */ 4938 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4939 err = ext4_enable_quotas(sb); 4940 if (err) 4941 goto failed_mount9; 4942 } 4943 #endif /* CONFIG_QUOTA */ 4944 4945 /* 4946 * Save the original bdev mapping's wb_err value which could be 4947 * used to detect the metadata async write error. 4948 */ 4949 spin_lock_init(&sbi->s_bdev_wb_lock); 4950 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4951 &sbi->s_bdev_wb_err); 4952 sb->s_bdev->bd_super = sb; 4953 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4954 ext4_orphan_cleanup(sb, es); 4955 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4956 if (needs_recovery) { 4957 ext4_msg(sb, KERN_INFO, "recovery complete"); 4958 err = ext4_mark_recovery_complete(sb, es); 4959 if (err) 4960 goto failed_mount9; 4961 } 4962 if (EXT4_SB(sb)->s_journal) { 4963 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4964 descr = " journalled data mode"; 4965 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4966 descr = " ordered data mode"; 4967 else 4968 descr = " writeback data mode"; 4969 } else 4970 descr = "out journal"; 4971 4972 if (test_opt(sb, DISCARD)) { 4973 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4974 if (!blk_queue_discard(q)) 4975 ext4_msg(sb, KERN_WARNING, 4976 "mounting with \"discard\" option, but " 4977 "the device does not support discard"); 4978 } 4979 4980 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4981 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4982 "Opts: %.*s%s%s. Quota mode: %s.", descr, 4983 (int) sizeof(sbi->s_es->s_mount_opts), 4984 sbi->s_es->s_mount_opts, 4985 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 4986 ext4_quota_mode(sb)); 4987 4988 if (es->s_error_count) 4989 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4990 4991 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4992 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4993 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4994 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4995 atomic_set(&sbi->s_warning_count, 0); 4996 atomic_set(&sbi->s_msg_count, 0); 4997 4998 kfree(orig_data); 4999 return 0; 5000 5001 cantfind_ext4: 5002 if (!silent) 5003 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5004 goto failed_mount; 5005 5006 failed_mount9: 5007 ext4_release_orphan_info(sb); 5008 failed_mount8: 5009 ext4_unregister_sysfs(sb); 5010 kobject_put(&sbi->s_kobj); 5011 failed_mount7: 5012 ext4_unregister_li_request(sb); 5013 failed_mount6: 5014 ext4_mb_release(sb); 5015 rcu_read_lock(); 5016 flex_groups = rcu_dereference(sbi->s_flex_groups); 5017 if (flex_groups) { 5018 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5019 kvfree(flex_groups[i]); 5020 kvfree(flex_groups); 5021 } 5022 rcu_read_unlock(); 5023 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5024 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5025 percpu_counter_destroy(&sbi->s_dirs_counter); 5026 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5027 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5028 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5029 failed_mount5: 5030 ext4_ext_release(sb); 5031 ext4_release_system_zone(sb); 5032 failed_mount4a: 5033 dput(sb->s_root); 5034 sb->s_root = NULL; 5035 failed_mount4: 5036 ext4_msg(sb, KERN_ERR, "mount failed"); 5037 if (EXT4_SB(sb)->rsv_conversion_wq) 5038 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5039 failed_mount_wq: 5040 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5041 sbi->s_ea_inode_cache = NULL; 5042 5043 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5044 sbi->s_ea_block_cache = NULL; 5045 5046 if (sbi->s_journal) { 5047 jbd2_journal_destroy(sbi->s_journal); 5048 sbi->s_journal = NULL; 5049 } 5050 failed_mount3a: 5051 ext4_es_unregister_shrinker(sbi); 5052 failed_mount3: 5053 flush_work(&sbi->s_error_work); 5054 del_timer_sync(&sbi->s_err_report); 5055 ext4_stop_mmpd(sbi); 5056 failed_mount2: 5057 rcu_read_lock(); 5058 group_desc = rcu_dereference(sbi->s_group_desc); 5059 for (i = 0; i < db_count; i++) 5060 brelse(group_desc[i]); 5061 kvfree(group_desc); 5062 rcu_read_unlock(); 5063 failed_mount: 5064 if (sbi->s_chksum_driver) 5065 crypto_free_shash(sbi->s_chksum_driver); 5066 5067 #ifdef CONFIG_UNICODE 5068 utf8_unload(sb->s_encoding); 5069 #endif 5070 5071 #ifdef CONFIG_QUOTA 5072 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5073 kfree(get_qf_name(sb, sbi, i)); 5074 #endif 5075 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5076 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5077 brelse(bh); 5078 ext4_blkdev_remove(sbi); 5079 out_fail: 5080 sb->s_fs_info = NULL; 5081 kfree(sbi->s_blockgroup_lock); 5082 out_free_base: 5083 kfree(sbi); 5084 kfree(orig_data); 5085 fs_put_dax(dax_dev); 5086 return err ? err : ret; 5087 } 5088 5089 /* 5090 * Setup any per-fs journal parameters now. We'll do this both on 5091 * initial mount, once the journal has been initialised but before we've 5092 * done any recovery; and again on any subsequent remount. 5093 */ 5094 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5095 { 5096 struct ext4_sb_info *sbi = EXT4_SB(sb); 5097 5098 journal->j_commit_interval = sbi->s_commit_interval; 5099 journal->j_min_batch_time = sbi->s_min_batch_time; 5100 journal->j_max_batch_time = sbi->s_max_batch_time; 5101 ext4_fc_init(sb, journal); 5102 5103 write_lock(&journal->j_state_lock); 5104 if (test_opt(sb, BARRIER)) 5105 journal->j_flags |= JBD2_BARRIER; 5106 else 5107 journal->j_flags &= ~JBD2_BARRIER; 5108 if (test_opt(sb, DATA_ERR_ABORT)) 5109 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5110 else 5111 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5112 write_unlock(&journal->j_state_lock); 5113 } 5114 5115 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5116 unsigned int journal_inum) 5117 { 5118 struct inode *journal_inode; 5119 5120 /* 5121 * Test for the existence of a valid inode on disk. Bad things 5122 * happen if we iget() an unused inode, as the subsequent iput() 5123 * will try to delete it. 5124 */ 5125 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5126 if (IS_ERR(journal_inode)) { 5127 ext4_msg(sb, KERN_ERR, "no journal found"); 5128 return NULL; 5129 } 5130 if (!journal_inode->i_nlink) { 5131 make_bad_inode(journal_inode); 5132 iput(journal_inode); 5133 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5134 return NULL; 5135 } 5136 5137 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5138 journal_inode, journal_inode->i_size); 5139 if (!S_ISREG(journal_inode->i_mode)) { 5140 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5141 iput(journal_inode); 5142 return NULL; 5143 } 5144 return journal_inode; 5145 } 5146 5147 static journal_t *ext4_get_journal(struct super_block *sb, 5148 unsigned int journal_inum) 5149 { 5150 struct inode *journal_inode; 5151 journal_t *journal; 5152 5153 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5154 return NULL; 5155 5156 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5157 if (!journal_inode) 5158 return NULL; 5159 5160 journal = jbd2_journal_init_inode(journal_inode); 5161 if (!journal) { 5162 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5163 iput(journal_inode); 5164 return NULL; 5165 } 5166 journal->j_private = sb; 5167 ext4_init_journal_params(sb, journal); 5168 return journal; 5169 } 5170 5171 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5172 dev_t j_dev) 5173 { 5174 struct buffer_head *bh; 5175 journal_t *journal; 5176 ext4_fsblk_t start; 5177 ext4_fsblk_t len; 5178 int hblock, blocksize; 5179 ext4_fsblk_t sb_block; 5180 unsigned long offset; 5181 struct ext4_super_block *es; 5182 struct block_device *bdev; 5183 5184 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5185 return NULL; 5186 5187 bdev = ext4_blkdev_get(j_dev, sb); 5188 if (bdev == NULL) 5189 return NULL; 5190 5191 blocksize = sb->s_blocksize; 5192 hblock = bdev_logical_block_size(bdev); 5193 if (blocksize < hblock) { 5194 ext4_msg(sb, KERN_ERR, 5195 "blocksize too small for journal device"); 5196 goto out_bdev; 5197 } 5198 5199 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5200 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5201 set_blocksize(bdev, blocksize); 5202 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5203 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5204 "external journal"); 5205 goto out_bdev; 5206 } 5207 5208 es = (struct ext4_super_block *) (bh->b_data + offset); 5209 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5210 !(le32_to_cpu(es->s_feature_incompat) & 5211 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5212 ext4_msg(sb, KERN_ERR, "external journal has " 5213 "bad superblock"); 5214 brelse(bh); 5215 goto out_bdev; 5216 } 5217 5218 if ((le32_to_cpu(es->s_feature_ro_compat) & 5219 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5220 es->s_checksum != ext4_superblock_csum(sb, es)) { 5221 ext4_msg(sb, KERN_ERR, "external journal has " 5222 "corrupt superblock"); 5223 brelse(bh); 5224 goto out_bdev; 5225 } 5226 5227 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5228 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5229 brelse(bh); 5230 goto out_bdev; 5231 } 5232 5233 len = ext4_blocks_count(es); 5234 start = sb_block + 1; 5235 brelse(bh); /* we're done with the superblock */ 5236 5237 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5238 start, len, blocksize); 5239 if (!journal) { 5240 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5241 goto out_bdev; 5242 } 5243 journal->j_private = sb; 5244 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5245 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5246 goto out_journal; 5247 } 5248 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5249 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5250 "user (unsupported) - %d", 5251 be32_to_cpu(journal->j_superblock->s_nr_users)); 5252 goto out_journal; 5253 } 5254 EXT4_SB(sb)->s_journal_bdev = bdev; 5255 ext4_init_journal_params(sb, journal); 5256 return journal; 5257 5258 out_journal: 5259 jbd2_journal_destroy(journal); 5260 out_bdev: 5261 ext4_blkdev_put(bdev); 5262 return NULL; 5263 } 5264 5265 static int ext4_load_journal(struct super_block *sb, 5266 struct ext4_super_block *es, 5267 unsigned long journal_devnum) 5268 { 5269 journal_t *journal; 5270 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5271 dev_t journal_dev; 5272 int err = 0; 5273 int really_read_only; 5274 int journal_dev_ro; 5275 5276 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5277 return -EFSCORRUPTED; 5278 5279 if (journal_devnum && 5280 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5281 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5282 "numbers have changed"); 5283 journal_dev = new_decode_dev(journal_devnum); 5284 } else 5285 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5286 5287 if (journal_inum && journal_dev) { 5288 ext4_msg(sb, KERN_ERR, 5289 "filesystem has both journal inode and journal device!"); 5290 return -EINVAL; 5291 } 5292 5293 if (journal_inum) { 5294 journal = ext4_get_journal(sb, journal_inum); 5295 if (!journal) 5296 return -EINVAL; 5297 } else { 5298 journal = ext4_get_dev_journal(sb, journal_dev); 5299 if (!journal) 5300 return -EINVAL; 5301 } 5302 5303 journal_dev_ro = bdev_read_only(journal->j_dev); 5304 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5305 5306 if (journal_dev_ro && !sb_rdonly(sb)) { 5307 ext4_msg(sb, KERN_ERR, 5308 "journal device read-only, try mounting with '-o ro'"); 5309 err = -EROFS; 5310 goto err_out; 5311 } 5312 5313 /* 5314 * Are we loading a blank journal or performing recovery after a 5315 * crash? For recovery, we need to check in advance whether we 5316 * can get read-write access to the device. 5317 */ 5318 if (ext4_has_feature_journal_needs_recovery(sb)) { 5319 if (sb_rdonly(sb)) { 5320 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5321 "required on readonly filesystem"); 5322 if (really_read_only) { 5323 ext4_msg(sb, KERN_ERR, "write access " 5324 "unavailable, cannot proceed " 5325 "(try mounting with noload)"); 5326 err = -EROFS; 5327 goto err_out; 5328 } 5329 ext4_msg(sb, KERN_INFO, "write access will " 5330 "be enabled during recovery"); 5331 } 5332 } 5333 5334 if (!(journal->j_flags & JBD2_BARRIER)) 5335 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5336 5337 if (!ext4_has_feature_journal_needs_recovery(sb)) 5338 err = jbd2_journal_wipe(journal, !really_read_only); 5339 if (!err) { 5340 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5341 if (save) 5342 memcpy(save, ((char *) es) + 5343 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5344 err = jbd2_journal_load(journal); 5345 if (save) 5346 memcpy(((char *) es) + EXT4_S_ERR_START, 5347 save, EXT4_S_ERR_LEN); 5348 kfree(save); 5349 } 5350 5351 if (err) { 5352 ext4_msg(sb, KERN_ERR, "error loading journal"); 5353 goto err_out; 5354 } 5355 5356 EXT4_SB(sb)->s_journal = journal; 5357 err = ext4_clear_journal_err(sb, es); 5358 if (err) { 5359 EXT4_SB(sb)->s_journal = NULL; 5360 jbd2_journal_destroy(journal); 5361 return err; 5362 } 5363 5364 if (!really_read_only && journal_devnum && 5365 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5366 es->s_journal_dev = cpu_to_le32(journal_devnum); 5367 5368 /* Make sure we flush the recovery flag to disk. */ 5369 ext4_commit_super(sb); 5370 } 5371 5372 return 0; 5373 5374 err_out: 5375 jbd2_journal_destroy(journal); 5376 return err; 5377 } 5378 5379 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5380 static void ext4_update_super(struct super_block *sb) 5381 { 5382 struct ext4_sb_info *sbi = EXT4_SB(sb); 5383 struct ext4_super_block *es = sbi->s_es; 5384 struct buffer_head *sbh = sbi->s_sbh; 5385 5386 lock_buffer(sbh); 5387 /* 5388 * If the file system is mounted read-only, don't update the 5389 * superblock write time. This avoids updating the superblock 5390 * write time when we are mounting the root file system 5391 * read/only but we need to replay the journal; at that point, 5392 * for people who are east of GMT and who make their clock 5393 * tick in localtime for Windows bug-for-bug compatibility, 5394 * the clock is set in the future, and this will cause e2fsck 5395 * to complain and force a full file system check. 5396 */ 5397 if (!(sb->s_flags & SB_RDONLY)) 5398 ext4_update_tstamp(es, s_wtime); 5399 es->s_kbytes_written = 5400 cpu_to_le64(sbi->s_kbytes_written + 5401 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5402 sbi->s_sectors_written_start) >> 1)); 5403 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5404 ext4_free_blocks_count_set(es, 5405 EXT4_C2B(sbi, percpu_counter_sum_positive( 5406 &sbi->s_freeclusters_counter))); 5407 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5408 es->s_free_inodes_count = 5409 cpu_to_le32(percpu_counter_sum_positive( 5410 &sbi->s_freeinodes_counter)); 5411 /* Copy error information to the on-disk superblock */ 5412 spin_lock(&sbi->s_error_lock); 5413 if (sbi->s_add_error_count > 0) { 5414 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5415 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5416 __ext4_update_tstamp(&es->s_first_error_time, 5417 &es->s_first_error_time_hi, 5418 sbi->s_first_error_time); 5419 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5420 sizeof(es->s_first_error_func)); 5421 es->s_first_error_line = 5422 cpu_to_le32(sbi->s_first_error_line); 5423 es->s_first_error_ino = 5424 cpu_to_le32(sbi->s_first_error_ino); 5425 es->s_first_error_block = 5426 cpu_to_le64(sbi->s_first_error_block); 5427 es->s_first_error_errcode = 5428 ext4_errno_to_code(sbi->s_first_error_code); 5429 } 5430 __ext4_update_tstamp(&es->s_last_error_time, 5431 &es->s_last_error_time_hi, 5432 sbi->s_last_error_time); 5433 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5434 sizeof(es->s_last_error_func)); 5435 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5436 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5437 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5438 es->s_last_error_errcode = 5439 ext4_errno_to_code(sbi->s_last_error_code); 5440 /* 5441 * Start the daily error reporting function if it hasn't been 5442 * started already 5443 */ 5444 if (!es->s_error_count) 5445 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5446 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5447 sbi->s_add_error_count = 0; 5448 } 5449 spin_unlock(&sbi->s_error_lock); 5450 5451 ext4_superblock_csum_set(sb); 5452 unlock_buffer(sbh); 5453 } 5454 5455 static int ext4_commit_super(struct super_block *sb) 5456 { 5457 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5458 int error = 0; 5459 5460 if (!sbh) 5461 return -EINVAL; 5462 if (block_device_ejected(sb)) 5463 return -ENODEV; 5464 5465 ext4_update_super(sb); 5466 5467 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5468 /* 5469 * Oh, dear. A previous attempt to write the 5470 * superblock failed. This could happen because the 5471 * USB device was yanked out. Or it could happen to 5472 * be a transient write error and maybe the block will 5473 * be remapped. Nothing we can do but to retry the 5474 * write and hope for the best. 5475 */ 5476 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5477 "superblock detected"); 5478 clear_buffer_write_io_error(sbh); 5479 set_buffer_uptodate(sbh); 5480 } 5481 BUFFER_TRACE(sbh, "marking dirty"); 5482 mark_buffer_dirty(sbh); 5483 error = __sync_dirty_buffer(sbh, 5484 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5485 if (buffer_write_io_error(sbh)) { 5486 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5487 "superblock"); 5488 clear_buffer_write_io_error(sbh); 5489 set_buffer_uptodate(sbh); 5490 } 5491 return error; 5492 } 5493 5494 /* 5495 * Have we just finished recovery? If so, and if we are mounting (or 5496 * remounting) the filesystem readonly, then we will end up with a 5497 * consistent fs on disk. Record that fact. 5498 */ 5499 static int ext4_mark_recovery_complete(struct super_block *sb, 5500 struct ext4_super_block *es) 5501 { 5502 int err; 5503 journal_t *journal = EXT4_SB(sb)->s_journal; 5504 5505 if (!ext4_has_feature_journal(sb)) { 5506 if (journal != NULL) { 5507 ext4_error(sb, "Journal got removed while the fs was " 5508 "mounted!"); 5509 return -EFSCORRUPTED; 5510 } 5511 return 0; 5512 } 5513 jbd2_journal_lock_updates(journal); 5514 err = jbd2_journal_flush(journal, 0); 5515 if (err < 0) 5516 goto out; 5517 5518 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5519 ext4_has_feature_orphan_present(sb))) { 5520 if (!ext4_orphan_file_empty(sb)) { 5521 ext4_error(sb, "Orphan file not empty on read-only fs."); 5522 err = -EFSCORRUPTED; 5523 goto out; 5524 } 5525 ext4_clear_feature_journal_needs_recovery(sb); 5526 ext4_clear_feature_orphan_present(sb); 5527 ext4_commit_super(sb); 5528 } 5529 out: 5530 jbd2_journal_unlock_updates(journal); 5531 return err; 5532 } 5533 5534 /* 5535 * If we are mounting (or read-write remounting) a filesystem whose journal 5536 * has recorded an error from a previous lifetime, move that error to the 5537 * main filesystem now. 5538 */ 5539 static int ext4_clear_journal_err(struct super_block *sb, 5540 struct ext4_super_block *es) 5541 { 5542 journal_t *journal; 5543 int j_errno; 5544 const char *errstr; 5545 5546 if (!ext4_has_feature_journal(sb)) { 5547 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5548 return -EFSCORRUPTED; 5549 } 5550 5551 journal = EXT4_SB(sb)->s_journal; 5552 5553 /* 5554 * Now check for any error status which may have been recorded in the 5555 * journal by a prior ext4_error() or ext4_abort() 5556 */ 5557 5558 j_errno = jbd2_journal_errno(journal); 5559 if (j_errno) { 5560 char nbuf[16]; 5561 5562 errstr = ext4_decode_error(sb, j_errno, nbuf); 5563 ext4_warning(sb, "Filesystem error recorded " 5564 "from previous mount: %s", errstr); 5565 ext4_warning(sb, "Marking fs in need of filesystem check."); 5566 5567 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5568 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5569 ext4_commit_super(sb); 5570 5571 jbd2_journal_clear_err(journal); 5572 jbd2_journal_update_sb_errno(journal); 5573 } 5574 return 0; 5575 } 5576 5577 /* 5578 * Force the running and committing transactions to commit, 5579 * and wait on the commit. 5580 */ 5581 int ext4_force_commit(struct super_block *sb) 5582 { 5583 journal_t *journal; 5584 5585 if (sb_rdonly(sb)) 5586 return 0; 5587 5588 journal = EXT4_SB(sb)->s_journal; 5589 return ext4_journal_force_commit(journal); 5590 } 5591 5592 static int ext4_sync_fs(struct super_block *sb, int wait) 5593 { 5594 int ret = 0; 5595 tid_t target; 5596 bool needs_barrier = false; 5597 struct ext4_sb_info *sbi = EXT4_SB(sb); 5598 5599 if (unlikely(ext4_forced_shutdown(sbi))) 5600 return 0; 5601 5602 trace_ext4_sync_fs(sb, wait); 5603 flush_workqueue(sbi->rsv_conversion_wq); 5604 /* 5605 * Writeback quota in non-journalled quota case - journalled quota has 5606 * no dirty dquots 5607 */ 5608 dquot_writeback_dquots(sb, -1); 5609 /* 5610 * Data writeback is possible w/o journal transaction, so barrier must 5611 * being sent at the end of the function. But we can skip it if 5612 * transaction_commit will do it for us. 5613 */ 5614 if (sbi->s_journal) { 5615 target = jbd2_get_latest_transaction(sbi->s_journal); 5616 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5617 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5618 needs_barrier = true; 5619 5620 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5621 if (wait) 5622 ret = jbd2_log_wait_commit(sbi->s_journal, 5623 target); 5624 } 5625 } else if (wait && test_opt(sb, BARRIER)) 5626 needs_barrier = true; 5627 if (needs_barrier) { 5628 int err; 5629 err = blkdev_issue_flush(sb->s_bdev); 5630 if (!ret) 5631 ret = err; 5632 } 5633 5634 return ret; 5635 } 5636 5637 /* 5638 * LVM calls this function before a (read-only) snapshot is created. This 5639 * gives us a chance to flush the journal completely and mark the fs clean. 5640 * 5641 * Note that only this function cannot bring a filesystem to be in a clean 5642 * state independently. It relies on upper layer to stop all data & metadata 5643 * modifications. 5644 */ 5645 static int ext4_freeze(struct super_block *sb) 5646 { 5647 int error = 0; 5648 journal_t *journal; 5649 5650 if (sb_rdonly(sb)) 5651 return 0; 5652 5653 journal = EXT4_SB(sb)->s_journal; 5654 5655 if (journal) { 5656 /* Now we set up the journal barrier. */ 5657 jbd2_journal_lock_updates(journal); 5658 5659 /* 5660 * Don't clear the needs_recovery flag if we failed to 5661 * flush the journal. 5662 */ 5663 error = jbd2_journal_flush(journal, 0); 5664 if (error < 0) 5665 goto out; 5666 5667 /* Journal blocked and flushed, clear needs_recovery flag. */ 5668 ext4_clear_feature_journal_needs_recovery(sb); 5669 if (ext4_orphan_file_empty(sb)) 5670 ext4_clear_feature_orphan_present(sb); 5671 } 5672 5673 error = ext4_commit_super(sb); 5674 out: 5675 if (journal) 5676 /* we rely on upper layer to stop further updates */ 5677 jbd2_journal_unlock_updates(journal); 5678 return error; 5679 } 5680 5681 /* 5682 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5683 * flag here, even though the filesystem is not technically dirty yet. 5684 */ 5685 static int ext4_unfreeze(struct super_block *sb) 5686 { 5687 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5688 return 0; 5689 5690 if (EXT4_SB(sb)->s_journal) { 5691 /* Reset the needs_recovery flag before the fs is unlocked. */ 5692 ext4_set_feature_journal_needs_recovery(sb); 5693 if (ext4_has_feature_orphan_file(sb)) 5694 ext4_set_feature_orphan_present(sb); 5695 } 5696 5697 ext4_commit_super(sb); 5698 return 0; 5699 } 5700 5701 /* 5702 * Structure to save mount options for ext4_remount's benefit 5703 */ 5704 struct ext4_mount_options { 5705 unsigned long s_mount_opt; 5706 unsigned long s_mount_opt2; 5707 kuid_t s_resuid; 5708 kgid_t s_resgid; 5709 unsigned long s_commit_interval; 5710 u32 s_min_batch_time, s_max_batch_time; 5711 #ifdef CONFIG_QUOTA 5712 int s_jquota_fmt; 5713 char *s_qf_names[EXT4_MAXQUOTAS]; 5714 #endif 5715 }; 5716 5717 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5718 { 5719 struct ext4_super_block *es; 5720 struct ext4_sb_info *sbi = EXT4_SB(sb); 5721 unsigned long old_sb_flags, vfs_flags; 5722 struct ext4_mount_options old_opts; 5723 int enable_quota = 0; 5724 ext4_group_t g; 5725 int err = 0; 5726 #ifdef CONFIG_QUOTA 5727 int i, j; 5728 char *to_free[EXT4_MAXQUOTAS]; 5729 #endif 5730 char *orig_data = kstrdup(data, GFP_KERNEL); 5731 struct ext4_parsed_options parsed_opts; 5732 5733 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5734 parsed_opts.journal_devnum = 0; 5735 5736 if (data && !orig_data) 5737 return -ENOMEM; 5738 5739 /* Store the original options */ 5740 old_sb_flags = sb->s_flags; 5741 old_opts.s_mount_opt = sbi->s_mount_opt; 5742 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5743 old_opts.s_resuid = sbi->s_resuid; 5744 old_opts.s_resgid = sbi->s_resgid; 5745 old_opts.s_commit_interval = sbi->s_commit_interval; 5746 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5747 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5748 #ifdef CONFIG_QUOTA 5749 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5750 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5751 if (sbi->s_qf_names[i]) { 5752 char *qf_name = get_qf_name(sb, sbi, i); 5753 5754 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5755 if (!old_opts.s_qf_names[i]) { 5756 for (j = 0; j < i; j++) 5757 kfree(old_opts.s_qf_names[j]); 5758 kfree(orig_data); 5759 return -ENOMEM; 5760 } 5761 } else 5762 old_opts.s_qf_names[i] = NULL; 5763 #endif 5764 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5765 parsed_opts.journal_ioprio = 5766 sbi->s_journal->j_task->io_context->ioprio; 5767 5768 /* 5769 * Some options can be enabled by ext4 and/or by VFS mount flag 5770 * either way we need to make sure it matches in both *flags and 5771 * s_flags. Copy those selected flags from *flags to s_flags 5772 */ 5773 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5774 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5775 5776 if (!parse_options(data, sb, &parsed_opts, 1)) { 5777 err = -EINVAL; 5778 goto restore_opts; 5779 } 5780 5781 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5782 test_opt(sb, JOURNAL_CHECKSUM)) { 5783 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5784 "during remount not supported; ignoring"); 5785 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5786 } 5787 5788 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5789 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5790 ext4_msg(sb, KERN_ERR, "can't mount with " 5791 "both data=journal and delalloc"); 5792 err = -EINVAL; 5793 goto restore_opts; 5794 } 5795 if (test_opt(sb, DIOREAD_NOLOCK)) { 5796 ext4_msg(sb, KERN_ERR, "can't mount with " 5797 "both data=journal and dioread_nolock"); 5798 err = -EINVAL; 5799 goto restore_opts; 5800 } 5801 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5802 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5803 ext4_msg(sb, KERN_ERR, "can't mount with " 5804 "journal_async_commit in data=ordered mode"); 5805 err = -EINVAL; 5806 goto restore_opts; 5807 } 5808 } 5809 5810 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5811 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5812 err = -EINVAL; 5813 goto restore_opts; 5814 } 5815 5816 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5817 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5818 5819 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5820 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5821 5822 es = sbi->s_es; 5823 5824 if (sbi->s_journal) { 5825 ext4_init_journal_params(sb, sbi->s_journal); 5826 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5827 } 5828 5829 /* Flush outstanding errors before changing fs state */ 5830 flush_work(&sbi->s_error_work); 5831 5832 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5833 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5834 err = -EROFS; 5835 goto restore_opts; 5836 } 5837 5838 if (*flags & SB_RDONLY) { 5839 err = sync_filesystem(sb); 5840 if (err < 0) 5841 goto restore_opts; 5842 err = dquot_suspend(sb, -1); 5843 if (err < 0) 5844 goto restore_opts; 5845 5846 /* 5847 * First of all, the unconditional stuff we have to do 5848 * to disable replay of the journal when we next remount 5849 */ 5850 sb->s_flags |= SB_RDONLY; 5851 5852 /* 5853 * OK, test if we are remounting a valid rw partition 5854 * readonly, and if so set the rdonly flag and then 5855 * mark the partition as valid again. 5856 */ 5857 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5858 (sbi->s_mount_state & EXT4_VALID_FS)) 5859 es->s_state = cpu_to_le16(sbi->s_mount_state); 5860 5861 if (sbi->s_journal) { 5862 /* 5863 * We let remount-ro finish even if marking fs 5864 * as clean failed... 5865 */ 5866 ext4_mark_recovery_complete(sb, es); 5867 } 5868 } else { 5869 /* Make sure we can mount this feature set readwrite */ 5870 if (ext4_has_feature_readonly(sb) || 5871 !ext4_feature_set_ok(sb, 0)) { 5872 err = -EROFS; 5873 goto restore_opts; 5874 } 5875 /* 5876 * Make sure the group descriptor checksums 5877 * are sane. If they aren't, refuse to remount r/w. 5878 */ 5879 for (g = 0; g < sbi->s_groups_count; g++) { 5880 struct ext4_group_desc *gdp = 5881 ext4_get_group_desc(sb, g, NULL); 5882 5883 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5884 ext4_msg(sb, KERN_ERR, 5885 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5886 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5887 le16_to_cpu(gdp->bg_checksum)); 5888 err = -EFSBADCRC; 5889 goto restore_opts; 5890 } 5891 } 5892 5893 /* 5894 * If we have an unprocessed orphan list hanging 5895 * around from a previously readonly bdev mount, 5896 * require a full umount/remount for now. 5897 */ 5898 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 5899 ext4_msg(sb, KERN_WARNING, "Couldn't " 5900 "remount RDWR because of unprocessed " 5901 "orphan inode list. Please " 5902 "umount/remount instead"); 5903 err = -EINVAL; 5904 goto restore_opts; 5905 } 5906 5907 /* 5908 * Mounting a RDONLY partition read-write, so reread 5909 * and store the current valid flag. (It may have 5910 * been changed by e2fsck since we originally mounted 5911 * the partition.) 5912 */ 5913 if (sbi->s_journal) { 5914 err = ext4_clear_journal_err(sb, es); 5915 if (err) 5916 goto restore_opts; 5917 } 5918 sbi->s_mount_state = le16_to_cpu(es->s_state); 5919 5920 err = ext4_setup_super(sb, es, 0); 5921 if (err) 5922 goto restore_opts; 5923 5924 sb->s_flags &= ~SB_RDONLY; 5925 if (ext4_has_feature_mmp(sb)) 5926 if (ext4_multi_mount_protect(sb, 5927 le64_to_cpu(es->s_mmp_block))) { 5928 err = -EROFS; 5929 goto restore_opts; 5930 } 5931 enable_quota = 1; 5932 } 5933 } 5934 5935 /* 5936 * Reinitialize lazy itable initialization thread based on 5937 * current settings 5938 */ 5939 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5940 ext4_unregister_li_request(sb); 5941 else { 5942 ext4_group_t first_not_zeroed; 5943 first_not_zeroed = ext4_has_uninit_itable(sb); 5944 ext4_register_li_request(sb, first_not_zeroed); 5945 } 5946 5947 /* 5948 * Handle creation of system zone data early because it can fail. 5949 * Releasing of existing data is done when we are sure remount will 5950 * succeed. 5951 */ 5952 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5953 err = ext4_setup_system_zone(sb); 5954 if (err) 5955 goto restore_opts; 5956 } 5957 5958 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5959 err = ext4_commit_super(sb); 5960 if (err) 5961 goto restore_opts; 5962 } 5963 5964 #ifdef CONFIG_QUOTA 5965 /* Release old quota file names */ 5966 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5967 kfree(old_opts.s_qf_names[i]); 5968 if (enable_quota) { 5969 if (sb_any_quota_suspended(sb)) 5970 dquot_resume(sb, -1); 5971 else if (ext4_has_feature_quota(sb)) { 5972 err = ext4_enable_quotas(sb); 5973 if (err) 5974 goto restore_opts; 5975 } 5976 } 5977 #endif 5978 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 5979 ext4_release_system_zone(sb); 5980 5981 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 5982 ext4_stop_mmpd(sbi); 5983 5984 /* 5985 * Some options can be enabled by ext4 and/or by VFS mount flag 5986 * either way we need to make sure it matches in both *flags and 5987 * s_flags. Copy those selected flags from s_flags to *flags 5988 */ 5989 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 5990 5991 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 5992 orig_data, ext4_quota_mode(sb)); 5993 kfree(orig_data); 5994 return 0; 5995 5996 restore_opts: 5997 sb->s_flags = old_sb_flags; 5998 sbi->s_mount_opt = old_opts.s_mount_opt; 5999 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6000 sbi->s_resuid = old_opts.s_resuid; 6001 sbi->s_resgid = old_opts.s_resgid; 6002 sbi->s_commit_interval = old_opts.s_commit_interval; 6003 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6004 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6005 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6006 ext4_release_system_zone(sb); 6007 #ifdef CONFIG_QUOTA 6008 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6009 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6010 to_free[i] = get_qf_name(sb, sbi, i); 6011 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6012 } 6013 synchronize_rcu(); 6014 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6015 kfree(to_free[i]); 6016 #endif 6017 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6018 ext4_stop_mmpd(sbi); 6019 kfree(orig_data); 6020 return err; 6021 } 6022 6023 #ifdef CONFIG_QUOTA 6024 static int ext4_statfs_project(struct super_block *sb, 6025 kprojid_t projid, struct kstatfs *buf) 6026 { 6027 struct kqid qid; 6028 struct dquot *dquot; 6029 u64 limit; 6030 u64 curblock; 6031 6032 qid = make_kqid_projid(projid); 6033 dquot = dqget(sb, qid); 6034 if (IS_ERR(dquot)) 6035 return PTR_ERR(dquot); 6036 spin_lock(&dquot->dq_dqb_lock); 6037 6038 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6039 dquot->dq_dqb.dqb_bhardlimit); 6040 limit >>= sb->s_blocksize_bits; 6041 6042 if (limit && buf->f_blocks > limit) { 6043 curblock = (dquot->dq_dqb.dqb_curspace + 6044 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6045 buf->f_blocks = limit; 6046 buf->f_bfree = buf->f_bavail = 6047 (buf->f_blocks > curblock) ? 6048 (buf->f_blocks - curblock) : 0; 6049 } 6050 6051 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6052 dquot->dq_dqb.dqb_ihardlimit); 6053 if (limit && buf->f_files > limit) { 6054 buf->f_files = limit; 6055 buf->f_ffree = 6056 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6057 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6058 } 6059 6060 spin_unlock(&dquot->dq_dqb_lock); 6061 dqput(dquot); 6062 return 0; 6063 } 6064 #endif 6065 6066 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6067 { 6068 struct super_block *sb = dentry->d_sb; 6069 struct ext4_sb_info *sbi = EXT4_SB(sb); 6070 struct ext4_super_block *es = sbi->s_es; 6071 ext4_fsblk_t overhead = 0, resv_blocks; 6072 s64 bfree; 6073 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6074 6075 if (!test_opt(sb, MINIX_DF)) 6076 overhead = sbi->s_overhead; 6077 6078 buf->f_type = EXT4_SUPER_MAGIC; 6079 buf->f_bsize = sb->s_blocksize; 6080 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6081 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6082 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6083 /* prevent underflow in case that few free space is available */ 6084 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6085 buf->f_bavail = buf->f_bfree - 6086 (ext4_r_blocks_count(es) + resv_blocks); 6087 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6088 buf->f_bavail = 0; 6089 buf->f_files = le32_to_cpu(es->s_inodes_count); 6090 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6091 buf->f_namelen = EXT4_NAME_LEN; 6092 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6093 6094 #ifdef CONFIG_QUOTA 6095 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6096 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6097 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6098 #endif 6099 return 0; 6100 } 6101 6102 6103 #ifdef CONFIG_QUOTA 6104 6105 /* 6106 * Helper functions so that transaction is started before we acquire dqio_sem 6107 * to keep correct lock ordering of transaction > dqio_sem 6108 */ 6109 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6110 { 6111 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6112 } 6113 6114 static int ext4_write_dquot(struct dquot *dquot) 6115 { 6116 int ret, err; 6117 handle_t *handle; 6118 struct inode *inode; 6119 6120 inode = dquot_to_inode(dquot); 6121 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6122 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6123 if (IS_ERR(handle)) 6124 return PTR_ERR(handle); 6125 ret = dquot_commit(dquot); 6126 err = ext4_journal_stop(handle); 6127 if (!ret) 6128 ret = err; 6129 return ret; 6130 } 6131 6132 static int ext4_acquire_dquot(struct dquot *dquot) 6133 { 6134 int ret, err; 6135 handle_t *handle; 6136 6137 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6138 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6139 if (IS_ERR(handle)) 6140 return PTR_ERR(handle); 6141 ret = dquot_acquire(dquot); 6142 err = ext4_journal_stop(handle); 6143 if (!ret) 6144 ret = err; 6145 return ret; 6146 } 6147 6148 static int ext4_release_dquot(struct dquot *dquot) 6149 { 6150 int ret, err; 6151 handle_t *handle; 6152 6153 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6154 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6155 if (IS_ERR(handle)) { 6156 /* Release dquot anyway to avoid endless cycle in dqput() */ 6157 dquot_release(dquot); 6158 return PTR_ERR(handle); 6159 } 6160 ret = dquot_release(dquot); 6161 err = ext4_journal_stop(handle); 6162 if (!ret) 6163 ret = err; 6164 return ret; 6165 } 6166 6167 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6168 { 6169 struct super_block *sb = dquot->dq_sb; 6170 6171 if (ext4_is_quota_journalled(sb)) { 6172 dquot_mark_dquot_dirty(dquot); 6173 return ext4_write_dquot(dquot); 6174 } else { 6175 return dquot_mark_dquot_dirty(dquot); 6176 } 6177 } 6178 6179 static int ext4_write_info(struct super_block *sb, int type) 6180 { 6181 int ret, err; 6182 handle_t *handle; 6183 6184 /* Data block + inode block */ 6185 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6186 if (IS_ERR(handle)) 6187 return PTR_ERR(handle); 6188 ret = dquot_commit_info(sb, type); 6189 err = ext4_journal_stop(handle); 6190 if (!ret) 6191 ret = err; 6192 return ret; 6193 } 6194 6195 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6196 { 6197 struct ext4_inode_info *ei = EXT4_I(inode); 6198 6199 /* The first argument of lockdep_set_subclass has to be 6200 * *exactly* the same as the argument to init_rwsem() --- in 6201 * this case, in init_once() --- or lockdep gets unhappy 6202 * because the name of the lock is set using the 6203 * stringification of the argument to init_rwsem(). 6204 */ 6205 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6206 lockdep_set_subclass(&ei->i_data_sem, subclass); 6207 } 6208 6209 /* 6210 * Standard function to be called on quota_on 6211 */ 6212 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6213 const struct path *path) 6214 { 6215 int err; 6216 6217 if (!test_opt(sb, QUOTA)) 6218 return -EINVAL; 6219 6220 /* Quotafile not on the same filesystem? */ 6221 if (path->dentry->d_sb != sb) 6222 return -EXDEV; 6223 6224 /* Quota already enabled for this file? */ 6225 if (IS_NOQUOTA(d_inode(path->dentry))) 6226 return -EBUSY; 6227 6228 /* Journaling quota? */ 6229 if (EXT4_SB(sb)->s_qf_names[type]) { 6230 /* Quotafile not in fs root? */ 6231 if (path->dentry->d_parent != sb->s_root) 6232 ext4_msg(sb, KERN_WARNING, 6233 "Quota file not on filesystem root. " 6234 "Journaled quota will not work"); 6235 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6236 } else { 6237 /* 6238 * Clear the flag just in case mount options changed since 6239 * last time. 6240 */ 6241 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6242 } 6243 6244 /* 6245 * When we journal data on quota file, we have to flush journal to see 6246 * all updates to the file when we bypass pagecache... 6247 */ 6248 if (EXT4_SB(sb)->s_journal && 6249 ext4_should_journal_data(d_inode(path->dentry))) { 6250 /* 6251 * We don't need to lock updates but journal_flush() could 6252 * otherwise be livelocked... 6253 */ 6254 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6255 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6256 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6257 if (err) 6258 return err; 6259 } 6260 6261 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6262 err = dquot_quota_on(sb, type, format_id, path); 6263 if (err) { 6264 lockdep_set_quota_inode(path->dentry->d_inode, 6265 I_DATA_SEM_NORMAL); 6266 } else { 6267 struct inode *inode = d_inode(path->dentry); 6268 handle_t *handle; 6269 6270 /* 6271 * Set inode flags to prevent userspace from messing with quota 6272 * files. If this fails, we return success anyway since quotas 6273 * are already enabled and this is not a hard failure. 6274 */ 6275 inode_lock(inode); 6276 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6277 if (IS_ERR(handle)) 6278 goto unlock_inode; 6279 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6280 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6281 S_NOATIME | S_IMMUTABLE); 6282 err = ext4_mark_inode_dirty(handle, inode); 6283 ext4_journal_stop(handle); 6284 unlock_inode: 6285 inode_unlock(inode); 6286 } 6287 return err; 6288 } 6289 6290 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6291 unsigned int flags) 6292 { 6293 int err; 6294 struct inode *qf_inode; 6295 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6296 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6297 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6298 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6299 }; 6300 6301 BUG_ON(!ext4_has_feature_quota(sb)); 6302 6303 if (!qf_inums[type]) 6304 return -EPERM; 6305 6306 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6307 if (IS_ERR(qf_inode)) { 6308 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6309 return PTR_ERR(qf_inode); 6310 } 6311 6312 /* Don't account quota for quota files to avoid recursion */ 6313 qf_inode->i_flags |= S_NOQUOTA; 6314 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6315 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6316 if (err) 6317 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6318 iput(qf_inode); 6319 6320 return err; 6321 } 6322 6323 /* Enable usage tracking for all quota types. */ 6324 int ext4_enable_quotas(struct super_block *sb) 6325 { 6326 int type, err = 0; 6327 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6328 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6329 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6330 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6331 }; 6332 bool quota_mopt[EXT4_MAXQUOTAS] = { 6333 test_opt(sb, USRQUOTA), 6334 test_opt(sb, GRPQUOTA), 6335 test_opt(sb, PRJQUOTA), 6336 }; 6337 6338 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6339 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6340 if (qf_inums[type]) { 6341 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6342 DQUOT_USAGE_ENABLED | 6343 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6344 if (err) { 6345 ext4_warning(sb, 6346 "Failed to enable quota tracking " 6347 "(type=%d, err=%d). Please run " 6348 "e2fsck to fix.", type, err); 6349 for (type--; type >= 0; type--) 6350 dquot_quota_off(sb, type); 6351 6352 return err; 6353 } 6354 } 6355 } 6356 return 0; 6357 } 6358 6359 static int ext4_quota_off(struct super_block *sb, int type) 6360 { 6361 struct inode *inode = sb_dqopt(sb)->files[type]; 6362 handle_t *handle; 6363 int err; 6364 6365 /* Force all delayed allocation blocks to be allocated. 6366 * Caller already holds s_umount sem */ 6367 if (test_opt(sb, DELALLOC)) 6368 sync_filesystem(sb); 6369 6370 if (!inode || !igrab(inode)) 6371 goto out; 6372 6373 err = dquot_quota_off(sb, type); 6374 if (err || ext4_has_feature_quota(sb)) 6375 goto out_put; 6376 6377 inode_lock(inode); 6378 /* 6379 * Update modification times of quota files when userspace can 6380 * start looking at them. If we fail, we return success anyway since 6381 * this is not a hard failure and quotas are already disabled. 6382 */ 6383 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6384 if (IS_ERR(handle)) { 6385 err = PTR_ERR(handle); 6386 goto out_unlock; 6387 } 6388 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6389 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6390 inode->i_mtime = inode->i_ctime = current_time(inode); 6391 err = ext4_mark_inode_dirty(handle, inode); 6392 ext4_journal_stop(handle); 6393 out_unlock: 6394 inode_unlock(inode); 6395 out_put: 6396 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6397 iput(inode); 6398 return err; 6399 out: 6400 return dquot_quota_off(sb, type); 6401 } 6402 6403 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6404 * acquiring the locks... As quota files are never truncated and quota code 6405 * itself serializes the operations (and no one else should touch the files) 6406 * we don't have to be afraid of races */ 6407 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6408 size_t len, loff_t off) 6409 { 6410 struct inode *inode = sb_dqopt(sb)->files[type]; 6411 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6412 int offset = off & (sb->s_blocksize - 1); 6413 int tocopy; 6414 size_t toread; 6415 struct buffer_head *bh; 6416 loff_t i_size = i_size_read(inode); 6417 6418 if (off > i_size) 6419 return 0; 6420 if (off+len > i_size) 6421 len = i_size-off; 6422 toread = len; 6423 while (toread > 0) { 6424 tocopy = sb->s_blocksize - offset < toread ? 6425 sb->s_blocksize - offset : toread; 6426 bh = ext4_bread(NULL, inode, blk, 0); 6427 if (IS_ERR(bh)) 6428 return PTR_ERR(bh); 6429 if (!bh) /* A hole? */ 6430 memset(data, 0, tocopy); 6431 else 6432 memcpy(data, bh->b_data+offset, tocopy); 6433 brelse(bh); 6434 offset = 0; 6435 toread -= tocopy; 6436 data += tocopy; 6437 blk++; 6438 } 6439 return len; 6440 } 6441 6442 /* Write to quotafile (we know the transaction is already started and has 6443 * enough credits) */ 6444 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6445 const char *data, size_t len, loff_t off) 6446 { 6447 struct inode *inode = sb_dqopt(sb)->files[type]; 6448 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6449 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6450 int retries = 0; 6451 struct buffer_head *bh; 6452 handle_t *handle = journal_current_handle(); 6453 6454 if (EXT4_SB(sb)->s_journal && !handle) { 6455 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6456 " cancelled because transaction is not started", 6457 (unsigned long long)off, (unsigned long long)len); 6458 return -EIO; 6459 } 6460 /* 6461 * Since we account only one data block in transaction credits, 6462 * then it is impossible to cross a block boundary. 6463 */ 6464 if (sb->s_blocksize - offset < len) { 6465 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6466 " cancelled because not block aligned", 6467 (unsigned long long)off, (unsigned long long)len); 6468 return -EIO; 6469 } 6470 6471 do { 6472 bh = ext4_bread(handle, inode, blk, 6473 EXT4_GET_BLOCKS_CREATE | 6474 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6475 } while (PTR_ERR(bh) == -ENOSPC && 6476 ext4_should_retry_alloc(inode->i_sb, &retries)); 6477 if (IS_ERR(bh)) 6478 return PTR_ERR(bh); 6479 if (!bh) 6480 goto out; 6481 BUFFER_TRACE(bh, "get write access"); 6482 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6483 if (err) { 6484 brelse(bh); 6485 return err; 6486 } 6487 lock_buffer(bh); 6488 memcpy(bh->b_data+offset, data, len); 6489 flush_dcache_page(bh->b_page); 6490 unlock_buffer(bh); 6491 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6492 brelse(bh); 6493 out: 6494 if (inode->i_size < off + len) { 6495 i_size_write(inode, off + len); 6496 EXT4_I(inode)->i_disksize = inode->i_size; 6497 err2 = ext4_mark_inode_dirty(handle, inode); 6498 if (unlikely(err2 && !err)) 6499 err = err2; 6500 } 6501 return err ? err : len; 6502 } 6503 #endif 6504 6505 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6506 const char *dev_name, void *data) 6507 { 6508 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6509 } 6510 6511 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6512 static inline void register_as_ext2(void) 6513 { 6514 int err = register_filesystem(&ext2_fs_type); 6515 if (err) 6516 printk(KERN_WARNING 6517 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6518 } 6519 6520 static inline void unregister_as_ext2(void) 6521 { 6522 unregister_filesystem(&ext2_fs_type); 6523 } 6524 6525 static inline int ext2_feature_set_ok(struct super_block *sb) 6526 { 6527 if (ext4_has_unknown_ext2_incompat_features(sb)) 6528 return 0; 6529 if (sb_rdonly(sb)) 6530 return 1; 6531 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6532 return 0; 6533 return 1; 6534 } 6535 #else 6536 static inline void register_as_ext2(void) { } 6537 static inline void unregister_as_ext2(void) { } 6538 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6539 #endif 6540 6541 static inline void register_as_ext3(void) 6542 { 6543 int err = register_filesystem(&ext3_fs_type); 6544 if (err) 6545 printk(KERN_WARNING 6546 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6547 } 6548 6549 static inline void unregister_as_ext3(void) 6550 { 6551 unregister_filesystem(&ext3_fs_type); 6552 } 6553 6554 static inline int ext3_feature_set_ok(struct super_block *sb) 6555 { 6556 if (ext4_has_unknown_ext3_incompat_features(sb)) 6557 return 0; 6558 if (!ext4_has_feature_journal(sb)) 6559 return 0; 6560 if (sb_rdonly(sb)) 6561 return 1; 6562 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6563 return 0; 6564 return 1; 6565 } 6566 6567 static struct file_system_type ext4_fs_type = { 6568 .owner = THIS_MODULE, 6569 .name = "ext4", 6570 .mount = ext4_mount, 6571 .kill_sb = kill_block_super, 6572 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6573 }; 6574 MODULE_ALIAS_FS("ext4"); 6575 6576 /* Shared across all ext4 file systems */ 6577 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6578 6579 static int __init ext4_init_fs(void) 6580 { 6581 int i, err; 6582 6583 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6584 ext4_li_info = NULL; 6585 6586 /* Build-time check for flags consistency */ 6587 ext4_check_flag_values(); 6588 6589 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6590 init_waitqueue_head(&ext4__ioend_wq[i]); 6591 6592 err = ext4_init_es(); 6593 if (err) 6594 return err; 6595 6596 err = ext4_init_pending(); 6597 if (err) 6598 goto out7; 6599 6600 err = ext4_init_post_read_processing(); 6601 if (err) 6602 goto out6; 6603 6604 err = ext4_init_pageio(); 6605 if (err) 6606 goto out5; 6607 6608 err = ext4_init_system_zone(); 6609 if (err) 6610 goto out4; 6611 6612 err = ext4_init_sysfs(); 6613 if (err) 6614 goto out3; 6615 6616 err = ext4_init_mballoc(); 6617 if (err) 6618 goto out2; 6619 err = init_inodecache(); 6620 if (err) 6621 goto out1; 6622 6623 err = ext4_fc_init_dentry_cache(); 6624 if (err) 6625 goto out05; 6626 6627 register_as_ext3(); 6628 register_as_ext2(); 6629 err = register_filesystem(&ext4_fs_type); 6630 if (err) 6631 goto out; 6632 6633 return 0; 6634 out: 6635 unregister_as_ext2(); 6636 unregister_as_ext3(); 6637 out05: 6638 destroy_inodecache(); 6639 out1: 6640 ext4_exit_mballoc(); 6641 out2: 6642 ext4_exit_sysfs(); 6643 out3: 6644 ext4_exit_system_zone(); 6645 out4: 6646 ext4_exit_pageio(); 6647 out5: 6648 ext4_exit_post_read_processing(); 6649 out6: 6650 ext4_exit_pending(); 6651 out7: 6652 ext4_exit_es(); 6653 6654 return err; 6655 } 6656 6657 static void __exit ext4_exit_fs(void) 6658 { 6659 ext4_destroy_lazyinit_thread(); 6660 unregister_as_ext2(); 6661 unregister_as_ext3(); 6662 unregister_filesystem(&ext4_fs_type); 6663 destroy_inodecache(); 6664 ext4_exit_mballoc(); 6665 ext4_exit_sysfs(); 6666 ext4_exit_system_zone(); 6667 ext4_exit_pageio(); 6668 ext4_exit_post_read_processing(); 6669 ext4_exit_es(); 6670 ext4_exit_pending(); 6671 } 6672 6673 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6674 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6675 MODULE_LICENSE("GPL"); 6676 MODULE_SOFTDEP("pre: crc32c"); 6677 module_init(ext4_init_fs) 6678 module_exit(ext4_exit_fs) 6679