xref: /openbmc/linux/fs/ext4/super.c (revision 02f310fcf47fa9311d6ba2946a8d19e7d7d11f37)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_lock
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_lock
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116 
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 	.owner		= THIS_MODULE,
120 	.name		= "ext2",
121 	.mount		= ext4_mount,
122 	.kill_sb	= kill_block_super,
123 	.fs_flags	= FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131 
132 
133 static struct file_system_type ext3_fs_type = {
134 	.owner		= THIS_MODULE,
135 	.name		= "ext3",
136 	.mount		= ext4_mount,
137 	.kill_sb	= kill_block_super,
138 	.fs_flags	= FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 
144 
145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
146 				  bh_end_io_t *end_io)
147 {
148 	/*
149 	 * buffer's verified bit is no longer valid after reading from
150 	 * disk again due to write out error, clear it to make sure we
151 	 * recheck the buffer contents.
152 	 */
153 	clear_buffer_verified(bh);
154 
155 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
156 	get_bh(bh);
157 	submit_bh(REQ_OP_READ, op_flags, bh);
158 }
159 
160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
161 			 bh_end_io_t *end_io)
162 {
163 	BUG_ON(!buffer_locked(bh));
164 
165 	if (ext4_buffer_uptodate(bh)) {
166 		unlock_buffer(bh);
167 		return;
168 	}
169 	__ext4_read_bh(bh, op_flags, end_io);
170 }
171 
172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
173 {
174 	BUG_ON(!buffer_locked(bh));
175 
176 	if (ext4_buffer_uptodate(bh)) {
177 		unlock_buffer(bh);
178 		return 0;
179 	}
180 
181 	__ext4_read_bh(bh, op_flags, end_io);
182 
183 	wait_on_buffer(bh);
184 	if (buffer_uptodate(bh))
185 		return 0;
186 	return -EIO;
187 }
188 
189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
190 {
191 	if (trylock_buffer(bh)) {
192 		if (wait)
193 			return ext4_read_bh(bh, op_flags, NULL);
194 		ext4_read_bh_nowait(bh, op_flags, NULL);
195 		return 0;
196 	}
197 	if (wait) {
198 		wait_on_buffer(bh);
199 		if (buffer_uptodate(bh))
200 			return 0;
201 		return -EIO;
202 	}
203 	return 0;
204 }
205 
206 /*
207  * This works like __bread_gfp() except it uses ERR_PTR for error
208  * returns.  Currently with sb_bread it's impossible to distinguish
209  * between ENOMEM and EIO situations (since both result in a NULL
210  * return.
211  */
212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
213 					       sector_t block, int op_flags,
214 					       gfp_t gfp)
215 {
216 	struct buffer_head *bh;
217 	int ret;
218 
219 	bh = sb_getblk_gfp(sb, block, gfp);
220 	if (bh == NULL)
221 		return ERR_PTR(-ENOMEM);
222 	if (ext4_buffer_uptodate(bh))
223 		return bh;
224 
225 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
226 	if (ret) {
227 		put_bh(bh);
228 		return ERR_PTR(ret);
229 	}
230 	return bh;
231 }
232 
233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
234 				   int op_flags)
235 {
236 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
237 }
238 
239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
240 					    sector_t block)
241 {
242 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
243 }
244 
245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
246 {
247 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
248 
249 	if (likely(bh)) {
250 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
251 		brelse(bh);
252 	}
253 }
254 
255 static int ext4_verify_csum_type(struct super_block *sb,
256 				 struct ext4_super_block *es)
257 {
258 	if (!ext4_has_feature_metadata_csum(sb))
259 		return 1;
260 
261 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
262 }
263 
264 static __le32 ext4_superblock_csum(struct super_block *sb,
265 				   struct ext4_super_block *es)
266 {
267 	struct ext4_sb_info *sbi = EXT4_SB(sb);
268 	int offset = offsetof(struct ext4_super_block, s_checksum);
269 	__u32 csum;
270 
271 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
272 
273 	return cpu_to_le32(csum);
274 }
275 
276 static int ext4_superblock_csum_verify(struct super_block *sb,
277 				       struct ext4_super_block *es)
278 {
279 	if (!ext4_has_metadata_csum(sb))
280 		return 1;
281 
282 	return es->s_checksum == ext4_superblock_csum(sb, es);
283 }
284 
285 void ext4_superblock_csum_set(struct super_block *sb)
286 {
287 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
288 
289 	if (!ext4_has_metadata_csum(sb))
290 		return;
291 
292 	es->s_checksum = ext4_superblock_csum(sb, es);
293 }
294 
295 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
296 			       struct ext4_group_desc *bg)
297 {
298 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
299 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
300 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
301 }
302 
303 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
304 			       struct ext4_group_desc *bg)
305 {
306 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
307 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
308 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
309 }
310 
311 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
312 			      struct ext4_group_desc *bg)
313 {
314 	return le32_to_cpu(bg->bg_inode_table_lo) |
315 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
316 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
317 }
318 
319 __u32 ext4_free_group_clusters(struct super_block *sb,
320 			       struct ext4_group_desc *bg)
321 {
322 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
323 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
324 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
325 }
326 
327 __u32 ext4_free_inodes_count(struct super_block *sb,
328 			      struct ext4_group_desc *bg)
329 {
330 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
331 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
333 }
334 
335 __u32 ext4_used_dirs_count(struct super_block *sb,
336 			      struct ext4_group_desc *bg)
337 {
338 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
339 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
341 }
342 
343 __u32 ext4_itable_unused_count(struct super_block *sb,
344 			      struct ext4_group_desc *bg)
345 {
346 	return le16_to_cpu(bg->bg_itable_unused_lo) |
347 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
348 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
349 }
350 
351 void ext4_block_bitmap_set(struct super_block *sb,
352 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
353 {
354 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
355 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
356 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
357 }
358 
359 void ext4_inode_bitmap_set(struct super_block *sb,
360 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
361 {
362 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
363 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
364 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
365 }
366 
367 void ext4_inode_table_set(struct super_block *sb,
368 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
369 {
370 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
371 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
372 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
373 }
374 
375 void ext4_free_group_clusters_set(struct super_block *sb,
376 				  struct ext4_group_desc *bg, __u32 count)
377 {
378 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
379 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
380 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
381 }
382 
383 void ext4_free_inodes_set(struct super_block *sb,
384 			  struct ext4_group_desc *bg, __u32 count)
385 {
386 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
387 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
389 }
390 
391 void ext4_used_dirs_set(struct super_block *sb,
392 			  struct ext4_group_desc *bg, __u32 count)
393 {
394 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
395 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
397 }
398 
399 void ext4_itable_unused_set(struct super_block *sb,
400 			  struct ext4_group_desc *bg, __u32 count)
401 {
402 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
403 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
404 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
405 }
406 
407 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
408 {
409 	now = clamp_val(now, 0, (1ull << 40) - 1);
410 
411 	*lo = cpu_to_le32(lower_32_bits(now));
412 	*hi = upper_32_bits(now);
413 }
414 
415 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
416 {
417 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
418 }
419 #define ext4_update_tstamp(es, tstamp) \
420 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
421 			     ktime_get_real_seconds())
422 #define ext4_get_tstamp(es, tstamp) \
423 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
424 
425 /*
426  * The del_gendisk() function uninitializes the disk-specific data
427  * structures, including the bdi structure, without telling anyone
428  * else.  Once this happens, any attempt to call mark_buffer_dirty()
429  * (for example, by ext4_commit_super), will cause a kernel OOPS.
430  * This is a kludge to prevent these oops until we can put in a proper
431  * hook in del_gendisk() to inform the VFS and file system layers.
432  */
433 static int block_device_ejected(struct super_block *sb)
434 {
435 	struct inode *bd_inode = sb->s_bdev->bd_inode;
436 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
437 
438 	return bdi->dev == NULL;
439 }
440 
441 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
442 {
443 	struct super_block		*sb = journal->j_private;
444 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
445 	int				error = is_journal_aborted(journal);
446 	struct ext4_journal_cb_entry	*jce;
447 
448 	BUG_ON(txn->t_state == T_FINISHED);
449 
450 	ext4_process_freed_data(sb, txn->t_tid);
451 
452 	spin_lock(&sbi->s_md_lock);
453 	while (!list_empty(&txn->t_private_list)) {
454 		jce = list_entry(txn->t_private_list.next,
455 				 struct ext4_journal_cb_entry, jce_list);
456 		list_del_init(&jce->jce_list);
457 		spin_unlock(&sbi->s_md_lock);
458 		jce->jce_func(sb, jce, error);
459 		spin_lock(&sbi->s_md_lock);
460 	}
461 	spin_unlock(&sbi->s_md_lock);
462 }
463 
464 /*
465  * This writepage callback for write_cache_pages()
466  * takes care of a few cases after page cleaning.
467  *
468  * write_cache_pages() already checks for dirty pages
469  * and calls clear_page_dirty_for_io(), which we want,
470  * to write protect the pages.
471  *
472  * However, we may have to redirty a page (see below.)
473  */
474 static int ext4_journalled_writepage_callback(struct page *page,
475 					      struct writeback_control *wbc,
476 					      void *data)
477 {
478 	transaction_t *transaction = (transaction_t *) data;
479 	struct buffer_head *bh, *head;
480 	struct journal_head *jh;
481 
482 	bh = head = page_buffers(page);
483 	do {
484 		/*
485 		 * We have to redirty a page in these cases:
486 		 * 1) If buffer is dirty, it means the page was dirty because it
487 		 * contains a buffer that needs checkpointing. So the dirty bit
488 		 * needs to be preserved so that checkpointing writes the buffer
489 		 * properly.
490 		 * 2) If buffer is not part of the committing transaction
491 		 * (we may have just accidentally come across this buffer because
492 		 * inode range tracking is not exact) or if the currently running
493 		 * transaction already contains this buffer as well, dirty bit
494 		 * needs to be preserved so that the buffer gets writeprotected
495 		 * properly on running transaction's commit.
496 		 */
497 		jh = bh2jh(bh);
498 		if (buffer_dirty(bh) ||
499 		    (jh && (jh->b_transaction != transaction ||
500 			    jh->b_next_transaction))) {
501 			redirty_page_for_writepage(wbc, page);
502 			goto out;
503 		}
504 	} while ((bh = bh->b_this_page) != head);
505 
506 out:
507 	return AOP_WRITEPAGE_ACTIVATE;
508 }
509 
510 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
511 {
512 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
513 	struct writeback_control wbc = {
514 		.sync_mode =  WB_SYNC_ALL,
515 		.nr_to_write = LONG_MAX,
516 		.range_start = jinode->i_dirty_start,
517 		.range_end = jinode->i_dirty_end,
518         };
519 
520 	return write_cache_pages(mapping, &wbc,
521 				 ext4_journalled_writepage_callback,
522 				 jinode->i_transaction);
523 }
524 
525 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
526 {
527 	int ret;
528 
529 	if (ext4_should_journal_data(jinode->i_vfs_inode))
530 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
531 	else
532 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
533 
534 	return ret;
535 }
536 
537 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
538 {
539 	int ret = 0;
540 
541 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
542 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
543 
544 	return ret;
545 }
546 
547 static bool system_going_down(void)
548 {
549 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
550 		|| system_state == SYSTEM_RESTART;
551 }
552 
553 struct ext4_err_translation {
554 	int code;
555 	int errno;
556 };
557 
558 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
559 
560 static struct ext4_err_translation err_translation[] = {
561 	EXT4_ERR_TRANSLATE(EIO),
562 	EXT4_ERR_TRANSLATE(ENOMEM),
563 	EXT4_ERR_TRANSLATE(EFSBADCRC),
564 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
565 	EXT4_ERR_TRANSLATE(ENOSPC),
566 	EXT4_ERR_TRANSLATE(ENOKEY),
567 	EXT4_ERR_TRANSLATE(EROFS),
568 	EXT4_ERR_TRANSLATE(EFBIG),
569 	EXT4_ERR_TRANSLATE(EEXIST),
570 	EXT4_ERR_TRANSLATE(ERANGE),
571 	EXT4_ERR_TRANSLATE(EOVERFLOW),
572 	EXT4_ERR_TRANSLATE(EBUSY),
573 	EXT4_ERR_TRANSLATE(ENOTDIR),
574 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
575 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
576 	EXT4_ERR_TRANSLATE(EFAULT),
577 };
578 
579 static int ext4_errno_to_code(int errno)
580 {
581 	int i;
582 
583 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
584 		if (err_translation[i].errno == errno)
585 			return err_translation[i].code;
586 	return EXT4_ERR_UNKNOWN;
587 }
588 
589 static void save_error_info(struct super_block *sb, int error,
590 			    __u32 ino, __u64 block,
591 			    const char *func, unsigned int line)
592 {
593 	struct ext4_sb_info *sbi = EXT4_SB(sb);
594 
595 	/* We default to EFSCORRUPTED error... */
596 	if (error == 0)
597 		error = EFSCORRUPTED;
598 
599 	spin_lock(&sbi->s_error_lock);
600 	sbi->s_add_error_count++;
601 	sbi->s_last_error_code = error;
602 	sbi->s_last_error_line = line;
603 	sbi->s_last_error_ino = ino;
604 	sbi->s_last_error_block = block;
605 	sbi->s_last_error_func = func;
606 	sbi->s_last_error_time = ktime_get_real_seconds();
607 	if (!sbi->s_first_error_time) {
608 		sbi->s_first_error_code = error;
609 		sbi->s_first_error_line = line;
610 		sbi->s_first_error_ino = ino;
611 		sbi->s_first_error_block = block;
612 		sbi->s_first_error_func = func;
613 		sbi->s_first_error_time = sbi->s_last_error_time;
614 	}
615 	spin_unlock(&sbi->s_error_lock);
616 }
617 
618 /* Deal with the reporting of failure conditions on a filesystem such as
619  * inconsistencies detected or read IO failures.
620  *
621  * On ext2, we can store the error state of the filesystem in the
622  * superblock.  That is not possible on ext4, because we may have other
623  * write ordering constraints on the superblock which prevent us from
624  * writing it out straight away; and given that the journal is about to
625  * be aborted, we can't rely on the current, or future, transactions to
626  * write out the superblock safely.
627  *
628  * We'll just use the jbd2_journal_abort() error code to record an error in
629  * the journal instead.  On recovery, the journal will complain about
630  * that error until we've noted it down and cleared it.
631  *
632  * If force_ro is set, we unconditionally force the filesystem into an
633  * ABORT|READONLY state, unless the error response on the fs has been set to
634  * panic in which case we take the easy way out and panic immediately. This is
635  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
636  * at a critical moment in log management.
637  */
638 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
639 			      __u32 ino, __u64 block,
640 			      const char *func, unsigned int line)
641 {
642 	journal_t *journal = EXT4_SB(sb)->s_journal;
643 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
644 
645 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
646 	if (test_opt(sb, WARN_ON_ERROR))
647 		WARN_ON_ONCE(1);
648 
649 	if (!continue_fs && !sb_rdonly(sb)) {
650 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
651 		if (journal)
652 			jbd2_journal_abort(journal, -EIO);
653 	}
654 
655 	if (!bdev_read_only(sb->s_bdev)) {
656 		save_error_info(sb, error, ino, block, func, line);
657 		/*
658 		 * In case the fs should keep running, we need to writeout
659 		 * superblock through the journal. Due to lock ordering
660 		 * constraints, it may not be safe to do it right here so we
661 		 * defer superblock flushing to a workqueue.
662 		 */
663 		if (continue_fs)
664 			schedule_work(&EXT4_SB(sb)->s_error_work);
665 		else
666 			ext4_commit_super(sb);
667 	}
668 
669 	/*
670 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
671 	 * could panic during 'reboot -f' as the underlying device got already
672 	 * disabled.
673 	 */
674 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
675 		panic("EXT4-fs (device %s): panic forced after error\n",
676 			sb->s_id);
677 	}
678 
679 	if (sb_rdonly(sb) || continue_fs)
680 		return;
681 
682 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
683 	/*
684 	 * Make sure updated value of ->s_mount_flags will be visible before
685 	 * ->s_flags update
686 	 */
687 	smp_wmb();
688 	sb->s_flags |= SB_RDONLY;
689 }
690 
691 static void flush_stashed_error_work(struct work_struct *work)
692 {
693 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
694 						s_error_work);
695 	journal_t *journal = sbi->s_journal;
696 	handle_t *handle;
697 
698 	/*
699 	 * If the journal is still running, we have to write out superblock
700 	 * through the journal to avoid collisions of other journalled sb
701 	 * updates.
702 	 *
703 	 * We use directly jbd2 functions here to avoid recursing back into
704 	 * ext4 error handling code during handling of previous errors.
705 	 */
706 	if (!sb_rdonly(sbi->s_sb) && journal) {
707 		struct buffer_head *sbh = sbi->s_sbh;
708 		handle = jbd2_journal_start(journal, 1);
709 		if (IS_ERR(handle))
710 			goto write_directly;
711 		if (jbd2_journal_get_write_access(handle, sbh)) {
712 			jbd2_journal_stop(handle);
713 			goto write_directly;
714 		}
715 		ext4_update_super(sbi->s_sb);
716 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
717 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
718 				 "superblock detected");
719 			clear_buffer_write_io_error(sbh);
720 			set_buffer_uptodate(sbh);
721 		}
722 
723 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
724 			jbd2_journal_stop(handle);
725 			goto write_directly;
726 		}
727 		jbd2_journal_stop(handle);
728 		ext4_notify_error_sysfs(sbi);
729 		return;
730 	}
731 write_directly:
732 	/*
733 	 * Write through journal failed. Write sb directly to get error info
734 	 * out and hope for the best.
735 	 */
736 	ext4_commit_super(sbi->s_sb);
737 	ext4_notify_error_sysfs(sbi);
738 }
739 
740 #define ext4_error_ratelimit(sb)					\
741 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
742 			     "EXT4-fs error")
743 
744 void __ext4_error(struct super_block *sb, const char *function,
745 		  unsigned int line, bool force_ro, int error, __u64 block,
746 		  const char *fmt, ...)
747 {
748 	struct va_format vaf;
749 	va_list args;
750 
751 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
752 		return;
753 
754 	trace_ext4_error(sb, function, line);
755 	if (ext4_error_ratelimit(sb)) {
756 		va_start(args, fmt);
757 		vaf.fmt = fmt;
758 		vaf.va = &args;
759 		printk(KERN_CRIT
760 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
761 		       sb->s_id, function, line, current->comm, &vaf);
762 		va_end(args);
763 	}
764 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
765 }
766 
767 void __ext4_error_inode(struct inode *inode, const char *function,
768 			unsigned int line, ext4_fsblk_t block, int error,
769 			const char *fmt, ...)
770 {
771 	va_list args;
772 	struct va_format vaf;
773 
774 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
775 		return;
776 
777 	trace_ext4_error(inode->i_sb, function, line);
778 	if (ext4_error_ratelimit(inode->i_sb)) {
779 		va_start(args, fmt);
780 		vaf.fmt = fmt;
781 		vaf.va = &args;
782 		if (block)
783 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
784 			       "inode #%lu: block %llu: comm %s: %pV\n",
785 			       inode->i_sb->s_id, function, line, inode->i_ino,
786 			       block, current->comm, &vaf);
787 		else
788 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
789 			       "inode #%lu: comm %s: %pV\n",
790 			       inode->i_sb->s_id, function, line, inode->i_ino,
791 			       current->comm, &vaf);
792 		va_end(args);
793 	}
794 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
795 			  function, line);
796 }
797 
798 void __ext4_error_file(struct file *file, const char *function,
799 		       unsigned int line, ext4_fsblk_t block,
800 		       const char *fmt, ...)
801 {
802 	va_list args;
803 	struct va_format vaf;
804 	struct inode *inode = file_inode(file);
805 	char pathname[80], *path;
806 
807 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
808 		return;
809 
810 	trace_ext4_error(inode->i_sb, function, line);
811 	if (ext4_error_ratelimit(inode->i_sb)) {
812 		path = file_path(file, pathname, sizeof(pathname));
813 		if (IS_ERR(path))
814 			path = "(unknown)";
815 		va_start(args, fmt);
816 		vaf.fmt = fmt;
817 		vaf.va = &args;
818 		if (block)
819 			printk(KERN_CRIT
820 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
821 			       "block %llu: comm %s: path %s: %pV\n",
822 			       inode->i_sb->s_id, function, line, inode->i_ino,
823 			       block, current->comm, path, &vaf);
824 		else
825 			printk(KERN_CRIT
826 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
827 			       "comm %s: path %s: %pV\n",
828 			       inode->i_sb->s_id, function, line, inode->i_ino,
829 			       current->comm, path, &vaf);
830 		va_end(args);
831 	}
832 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
833 			  function, line);
834 }
835 
836 const char *ext4_decode_error(struct super_block *sb, int errno,
837 			      char nbuf[16])
838 {
839 	char *errstr = NULL;
840 
841 	switch (errno) {
842 	case -EFSCORRUPTED:
843 		errstr = "Corrupt filesystem";
844 		break;
845 	case -EFSBADCRC:
846 		errstr = "Filesystem failed CRC";
847 		break;
848 	case -EIO:
849 		errstr = "IO failure";
850 		break;
851 	case -ENOMEM:
852 		errstr = "Out of memory";
853 		break;
854 	case -EROFS:
855 		if (!sb || (EXT4_SB(sb)->s_journal &&
856 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
857 			errstr = "Journal has aborted";
858 		else
859 			errstr = "Readonly filesystem";
860 		break;
861 	default:
862 		/* If the caller passed in an extra buffer for unknown
863 		 * errors, textualise them now.  Else we just return
864 		 * NULL. */
865 		if (nbuf) {
866 			/* Check for truncated error codes... */
867 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
868 				errstr = nbuf;
869 		}
870 		break;
871 	}
872 
873 	return errstr;
874 }
875 
876 /* __ext4_std_error decodes expected errors from journaling functions
877  * automatically and invokes the appropriate error response.  */
878 
879 void __ext4_std_error(struct super_block *sb, const char *function,
880 		      unsigned int line, int errno)
881 {
882 	char nbuf[16];
883 	const char *errstr;
884 
885 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
886 		return;
887 
888 	/* Special case: if the error is EROFS, and we're not already
889 	 * inside a transaction, then there's really no point in logging
890 	 * an error. */
891 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
892 		return;
893 
894 	if (ext4_error_ratelimit(sb)) {
895 		errstr = ext4_decode_error(sb, errno, nbuf);
896 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
897 		       sb->s_id, function, line, errstr);
898 	}
899 
900 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
901 }
902 
903 void __ext4_msg(struct super_block *sb,
904 		const char *prefix, const char *fmt, ...)
905 {
906 	struct va_format vaf;
907 	va_list args;
908 
909 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
910 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
911 		return;
912 
913 	va_start(args, fmt);
914 	vaf.fmt = fmt;
915 	vaf.va = &args;
916 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
917 	va_end(args);
918 }
919 
920 static int ext4_warning_ratelimit(struct super_block *sb)
921 {
922 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
923 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
924 			    "EXT4-fs warning");
925 }
926 
927 void __ext4_warning(struct super_block *sb, const char *function,
928 		    unsigned int line, const char *fmt, ...)
929 {
930 	struct va_format vaf;
931 	va_list args;
932 
933 	if (!ext4_warning_ratelimit(sb))
934 		return;
935 
936 	va_start(args, fmt);
937 	vaf.fmt = fmt;
938 	vaf.va = &args;
939 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
940 	       sb->s_id, function, line, &vaf);
941 	va_end(args);
942 }
943 
944 void __ext4_warning_inode(const struct inode *inode, const char *function,
945 			  unsigned int line, const char *fmt, ...)
946 {
947 	struct va_format vaf;
948 	va_list args;
949 
950 	if (!ext4_warning_ratelimit(inode->i_sb))
951 		return;
952 
953 	va_start(args, fmt);
954 	vaf.fmt = fmt;
955 	vaf.va = &args;
956 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
957 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
958 	       function, line, inode->i_ino, current->comm, &vaf);
959 	va_end(args);
960 }
961 
962 void __ext4_grp_locked_error(const char *function, unsigned int line,
963 			     struct super_block *sb, ext4_group_t grp,
964 			     unsigned long ino, ext4_fsblk_t block,
965 			     const char *fmt, ...)
966 __releases(bitlock)
967 __acquires(bitlock)
968 {
969 	struct va_format vaf;
970 	va_list args;
971 
972 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
973 		return;
974 
975 	trace_ext4_error(sb, function, line);
976 	if (ext4_error_ratelimit(sb)) {
977 		va_start(args, fmt);
978 		vaf.fmt = fmt;
979 		vaf.va = &args;
980 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
981 		       sb->s_id, function, line, grp);
982 		if (ino)
983 			printk(KERN_CONT "inode %lu: ", ino);
984 		if (block)
985 			printk(KERN_CONT "block %llu:",
986 			       (unsigned long long) block);
987 		printk(KERN_CONT "%pV\n", &vaf);
988 		va_end(args);
989 	}
990 
991 	if (test_opt(sb, ERRORS_CONT)) {
992 		if (test_opt(sb, WARN_ON_ERROR))
993 			WARN_ON_ONCE(1);
994 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
995 		if (!bdev_read_only(sb->s_bdev)) {
996 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
997 					line);
998 			schedule_work(&EXT4_SB(sb)->s_error_work);
999 		}
1000 		return;
1001 	}
1002 	ext4_unlock_group(sb, grp);
1003 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1004 	/*
1005 	 * We only get here in the ERRORS_RO case; relocking the group
1006 	 * may be dangerous, but nothing bad will happen since the
1007 	 * filesystem will have already been marked read/only and the
1008 	 * journal has been aborted.  We return 1 as a hint to callers
1009 	 * who might what to use the return value from
1010 	 * ext4_grp_locked_error() to distinguish between the
1011 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1012 	 * aggressively from the ext4 function in question, with a
1013 	 * more appropriate error code.
1014 	 */
1015 	ext4_lock_group(sb, grp);
1016 	return;
1017 }
1018 
1019 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1020 				     ext4_group_t group,
1021 				     unsigned int flags)
1022 {
1023 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1024 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1025 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1026 	int ret;
1027 
1028 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1029 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1030 					    &grp->bb_state);
1031 		if (!ret)
1032 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1033 					   grp->bb_free);
1034 	}
1035 
1036 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1037 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1038 					    &grp->bb_state);
1039 		if (!ret && gdp) {
1040 			int count;
1041 
1042 			count = ext4_free_inodes_count(sb, gdp);
1043 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1044 					   count);
1045 		}
1046 	}
1047 }
1048 
1049 void ext4_update_dynamic_rev(struct super_block *sb)
1050 {
1051 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1052 
1053 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1054 		return;
1055 
1056 	ext4_warning(sb,
1057 		     "updating to rev %d because of new feature flag, "
1058 		     "running e2fsck is recommended",
1059 		     EXT4_DYNAMIC_REV);
1060 
1061 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1062 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1063 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1064 	/* leave es->s_feature_*compat flags alone */
1065 	/* es->s_uuid will be set by e2fsck if empty */
1066 
1067 	/*
1068 	 * The rest of the superblock fields should be zero, and if not it
1069 	 * means they are likely already in use, so leave them alone.  We
1070 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1071 	 */
1072 }
1073 
1074 /*
1075  * Open the external journal device
1076  */
1077 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1078 {
1079 	struct block_device *bdev;
1080 
1081 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1082 	if (IS_ERR(bdev))
1083 		goto fail;
1084 	return bdev;
1085 
1086 fail:
1087 	ext4_msg(sb, KERN_ERR,
1088 		 "failed to open journal device unknown-block(%u,%u) %ld",
1089 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Release the journal device
1095  */
1096 static void ext4_blkdev_put(struct block_device *bdev)
1097 {
1098 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1099 }
1100 
1101 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1102 {
1103 	struct block_device *bdev;
1104 	bdev = sbi->s_journal_bdev;
1105 	if (bdev) {
1106 		ext4_blkdev_put(bdev);
1107 		sbi->s_journal_bdev = NULL;
1108 	}
1109 }
1110 
1111 static inline struct inode *orphan_list_entry(struct list_head *l)
1112 {
1113 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1114 }
1115 
1116 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1117 {
1118 	struct list_head *l;
1119 
1120 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1121 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1122 
1123 	printk(KERN_ERR "sb_info orphan list:\n");
1124 	list_for_each(l, &sbi->s_orphan) {
1125 		struct inode *inode = orphan_list_entry(l);
1126 		printk(KERN_ERR "  "
1127 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1128 		       inode->i_sb->s_id, inode->i_ino, inode,
1129 		       inode->i_mode, inode->i_nlink,
1130 		       NEXT_ORPHAN(inode));
1131 	}
1132 }
1133 
1134 #ifdef CONFIG_QUOTA
1135 static int ext4_quota_off(struct super_block *sb, int type);
1136 
1137 static inline void ext4_quota_off_umount(struct super_block *sb)
1138 {
1139 	int type;
1140 
1141 	/* Use our quota_off function to clear inode flags etc. */
1142 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1143 		ext4_quota_off(sb, type);
1144 }
1145 
1146 /*
1147  * This is a helper function which is used in the mount/remount
1148  * codepaths (which holds s_umount) to fetch the quota file name.
1149  */
1150 static inline char *get_qf_name(struct super_block *sb,
1151 				struct ext4_sb_info *sbi,
1152 				int type)
1153 {
1154 	return rcu_dereference_protected(sbi->s_qf_names[type],
1155 					 lockdep_is_held(&sb->s_umount));
1156 }
1157 #else
1158 static inline void ext4_quota_off_umount(struct super_block *sb)
1159 {
1160 }
1161 #endif
1162 
1163 static void ext4_put_super(struct super_block *sb)
1164 {
1165 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1166 	struct ext4_super_block *es = sbi->s_es;
1167 	struct buffer_head **group_desc;
1168 	struct flex_groups **flex_groups;
1169 	int aborted = 0;
1170 	int i, err;
1171 
1172 	ext4_unregister_li_request(sb);
1173 	ext4_quota_off_umount(sb);
1174 
1175 	flush_work(&sbi->s_error_work);
1176 	destroy_workqueue(sbi->rsv_conversion_wq);
1177 	ext4_release_orphan_info(sb);
1178 
1179 	/*
1180 	 * Unregister sysfs before destroying jbd2 journal.
1181 	 * Since we could still access attr_journal_task attribute via sysfs
1182 	 * path which could have sbi->s_journal->j_task as NULL
1183 	 */
1184 	ext4_unregister_sysfs(sb);
1185 
1186 	if (sbi->s_journal) {
1187 		aborted = is_journal_aborted(sbi->s_journal);
1188 		err = jbd2_journal_destroy(sbi->s_journal);
1189 		sbi->s_journal = NULL;
1190 		if ((err < 0) && !aborted) {
1191 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1192 		}
1193 	}
1194 
1195 	ext4_es_unregister_shrinker(sbi);
1196 	del_timer_sync(&sbi->s_err_report);
1197 	ext4_release_system_zone(sb);
1198 	ext4_mb_release(sb);
1199 	ext4_ext_release(sb);
1200 
1201 	if (!sb_rdonly(sb) && !aborted) {
1202 		ext4_clear_feature_journal_needs_recovery(sb);
1203 		ext4_clear_feature_orphan_present(sb);
1204 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1205 	}
1206 	if (!sb_rdonly(sb))
1207 		ext4_commit_super(sb);
1208 
1209 	rcu_read_lock();
1210 	group_desc = rcu_dereference(sbi->s_group_desc);
1211 	for (i = 0; i < sbi->s_gdb_count; i++)
1212 		brelse(group_desc[i]);
1213 	kvfree(group_desc);
1214 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1215 	if (flex_groups) {
1216 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1217 			kvfree(flex_groups[i]);
1218 		kvfree(flex_groups);
1219 	}
1220 	rcu_read_unlock();
1221 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1222 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1223 	percpu_counter_destroy(&sbi->s_dirs_counter);
1224 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1225 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1226 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1227 #ifdef CONFIG_QUOTA
1228 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1229 		kfree(get_qf_name(sb, sbi, i));
1230 #endif
1231 
1232 	/* Debugging code just in case the in-memory inode orphan list
1233 	 * isn't empty.  The on-disk one can be non-empty if we've
1234 	 * detected an error and taken the fs readonly, but the
1235 	 * in-memory list had better be clean by this point. */
1236 	if (!list_empty(&sbi->s_orphan))
1237 		dump_orphan_list(sb, sbi);
1238 	ASSERT(list_empty(&sbi->s_orphan));
1239 
1240 	sync_blockdev(sb->s_bdev);
1241 	invalidate_bdev(sb->s_bdev);
1242 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1243 		/*
1244 		 * Invalidate the journal device's buffers.  We don't want them
1245 		 * floating about in memory - the physical journal device may
1246 		 * hotswapped, and it breaks the `ro-after' testing code.
1247 		 */
1248 		sync_blockdev(sbi->s_journal_bdev);
1249 		invalidate_bdev(sbi->s_journal_bdev);
1250 		ext4_blkdev_remove(sbi);
1251 	}
1252 
1253 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1254 	sbi->s_ea_inode_cache = NULL;
1255 
1256 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1257 	sbi->s_ea_block_cache = NULL;
1258 
1259 	ext4_stop_mmpd(sbi);
1260 
1261 	brelse(sbi->s_sbh);
1262 	sb->s_fs_info = NULL;
1263 	/*
1264 	 * Now that we are completely done shutting down the
1265 	 * superblock, we need to actually destroy the kobject.
1266 	 */
1267 	kobject_put(&sbi->s_kobj);
1268 	wait_for_completion(&sbi->s_kobj_unregister);
1269 	if (sbi->s_chksum_driver)
1270 		crypto_free_shash(sbi->s_chksum_driver);
1271 	kfree(sbi->s_blockgroup_lock);
1272 	fs_put_dax(sbi->s_daxdev);
1273 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1274 #ifdef CONFIG_UNICODE
1275 	utf8_unload(sb->s_encoding);
1276 #endif
1277 	kfree(sbi);
1278 }
1279 
1280 static struct kmem_cache *ext4_inode_cachep;
1281 
1282 /*
1283  * Called inside transaction, so use GFP_NOFS
1284  */
1285 static struct inode *ext4_alloc_inode(struct super_block *sb)
1286 {
1287 	struct ext4_inode_info *ei;
1288 
1289 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1290 	if (!ei)
1291 		return NULL;
1292 
1293 	inode_set_iversion(&ei->vfs_inode, 1);
1294 	spin_lock_init(&ei->i_raw_lock);
1295 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1296 	atomic_set(&ei->i_prealloc_active, 0);
1297 	spin_lock_init(&ei->i_prealloc_lock);
1298 	ext4_es_init_tree(&ei->i_es_tree);
1299 	rwlock_init(&ei->i_es_lock);
1300 	INIT_LIST_HEAD(&ei->i_es_list);
1301 	ei->i_es_all_nr = 0;
1302 	ei->i_es_shk_nr = 0;
1303 	ei->i_es_shrink_lblk = 0;
1304 	ei->i_reserved_data_blocks = 0;
1305 	spin_lock_init(&(ei->i_block_reservation_lock));
1306 	ext4_init_pending_tree(&ei->i_pending_tree);
1307 #ifdef CONFIG_QUOTA
1308 	ei->i_reserved_quota = 0;
1309 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1310 #endif
1311 	ei->jinode = NULL;
1312 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1313 	spin_lock_init(&ei->i_completed_io_lock);
1314 	ei->i_sync_tid = 0;
1315 	ei->i_datasync_tid = 0;
1316 	atomic_set(&ei->i_unwritten, 0);
1317 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1318 	ext4_fc_init_inode(&ei->vfs_inode);
1319 	mutex_init(&ei->i_fc_lock);
1320 	return &ei->vfs_inode;
1321 }
1322 
1323 static int ext4_drop_inode(struct inode *inode)
1324 {
1325 	int drop = generic_drop_inode(inode);
1326 
1327 	if (!drop)
1328 		drop = fscrypt_drop_inode(inode);
1329 
1330 	trace_ext4_drop_inode(inode, drop);
1331 	return drop;
1332 }
1333 
1334 static void ext4_free_in_core_inode(struct inode *inode)
1335 {
1336 	fscrypt_free_inode(inode);
1337 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1338 		pr_warn("%s: inode %ld still in fc list",
1339 			__func__, inode->i_ino);
1340 	}
1341 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1342 }
1343 
1344 static void ext4_destroy_inode(struct inode *inode)
1345 {
1346 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1347 		ext4_msg(inode->i_sb, KERN_ERR,
1348 			 "Inode %lu (%p): orphan list check failed!",
1349 			 inode->i_ino, EXT4_I(inode));
1350 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1351 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1352 				true);
1353 		dump_stack();
1354 	}
1355 }
1356 
1357 static void init_once(void *foo)
1358 {
1359 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1360 
1361 	INIT_LIST_HEAD(&ei->i_orphan);
1362 	init_rwsem(&ei->xattr_sem);
1363 	init_rwsem(&ei->i_data_sem);
1364 	init_rwsem(&ei->i_mmap_sem);
1365 	inode_init_once(&ei->vfs_inode);
1366 	ext4_fc_init_inode(&ei->vfs_inode);
1367 }
1368 
1369 static int __init init_inodecache(void)
1370 {
1371 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1372 				sizeof(struct ext4_inode_info), 0,
1373 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1374 					SLAB_ACCOUNT),
1375 				offsetof(struct ext4_inode_info, i_data),
1376 				sizeof_field(struct ext4_inode_info, i_data),
1377 				init_once);
1378 	if (ext4_inode_cachep == NULL)
1379 		return -ENOMEM;
1380 	return 0;
1381 }
1382 
1383 static void destroy_inodecache(void)
1384 {
1385 	/*
1386 	 * Make sure all delayed rcu free inodes are flushed before we
1387 	 * destroy cache.
1388 	 */
1389 	rcu_barrier();
1390 	kmem_cache_destroy(ext4_inode_cachep);
1391 }
1392 
1393 void ext4_clear_inode(struct inode *inode)
1394 {
1395 	ext4_fc_del(inode);
1396 	invalidate_inode_buffers(inode);
1397 	clear_inode(inode);
1398 	ext4_discard_preallocations(inode, 0);
1399 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1400 	dquot_drop(inode);
1401 	if (EXT4_I(inode)->jinode) {
1402 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1403 					       EXT4_I(inode)->jinode);
1404 		jbd2_free_inode(EXT4_I(inode)->jinode);
1405 		EXT4_I(inode)->jinode = NULL;
1406 	}
1407 	fscrypt_put_encryption_info(inode);
1408 	fsverity_cleanup_inode(inode);
1409 }
1410 
1411 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1412 					u64 ino, u32 generation)
1413 {
1414 	struct inode *inode;
1415 
1416 	/*
1417 	 * Currently we don't know the generation for parent directory, so
1418 	 * a generation of 0 means "accept any"
1419 	 */
1420 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1421 	if (IS_ERR(inode))
1422 		return ERR_CAST(inode);
1423 	if (generation && inode->i_generation != generation) {
1424 		iput(inode);
1425 		return ERR_PTR(-ESTALE);
1426 	}
1427 
1428 	return inode;
1429 }
1430 
1431 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1432 					int fh_len, int fh_type)
1433 {
1434 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1435 				    ext4_nfs_get_inode);
1436 }
1437 
1438 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1439 					int fh_len, int fh_type)
1440 {
1441 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1442 				    ext4_nfs_get_inode);
1443 }
1444 
1445 static int ext4_nfs_commit_metadata(struct inode *inode)
1446 {
1447 	struct writeback_control wbc = {
1448 		.sync_mode = WB_SYNC_ALL
1449 	};
1450 
1451 	trace_ext4_nfs_commit_metadata(inode);
1452 	return ext4_write_inode(inode, &wbc);
1453 }
1454 
1455 #ifdef CONFIG_FS_ENCRYPTION
1456 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1457 {
1458 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1459 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1460 }
1461 
1462 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1463 							void *fs_data)
1464 {
1465 	handle_t *handle = fs_data;
1466 	int res, res2, credits, retries = 0;
1467 
1468 	/*
1469 	 * Encrypting the root directory is not allowed because e2fsck expects
1470 	 * lost+found to exist and be unencrypted, and encrypting the root
1471 	 * directory would imply encrypting the lost+found directory as well as
1472 	 * the filename "lost+found" itself.
1473 	 */
1474 	if (inode->i_ino == EXT4_ROOT_INO)
1475 		return -EPERM;
1476 
1477 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1478 		return -EINVAL;
1479 
1480 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1481 		return -EOPNOTSUPP;
1482 
1483 	res = ext4_convert_inline_data(inode);
1484 	if (res)
1485 		return res;
1486 
1487 	/*
1488 	 * If a journal handle was specified, then the encryption context is
1489 	 * being set on a new inode via inheritance and is part of a larger
1490 	 * transaction to create the inode.  Otherwise the encryption context is
1491 	 * being set on an existing inode in its own transaction.  Only in the
1492 	 * latter case should the "retry on ENOSPC" logic be used.
1493 	 */
1494 
1495 	if (handle) {
1496 		res = ext4_xattr_set_handle(handle, inode,
1497 					    EXT4_XATTR_INDEX_ENCRYPTION,
1498 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1499 					    ctx, len, 0);
1500 		if (!res) {
1501 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1502 			ext4_clear_inode_state(inode,
1503 					EXT4_STATE_MAY_INLINE_DATA);
1504 			/*
1505 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1506 			 * S_DAX may be disabled
1507 			 */
1508 			ext4_set_inode_flags(inode, false);
1509 		}
1510 		return res;
1511 	}
1512 
1513 	res = dquot_initialize(inode);
1514 	if (res)
1515 		return res;
1516 retry:
1517 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1518 				     &credits);
1519 	if (res)
1520 		return res;
1521 
1522 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1523 	if (IS_ERR(handle))
1524 		return PTR_ERR(handle);
1525 
1526 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1527 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1528 				    ctx, len, 0);
1529 	if (!res) {
1530 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1531 		/*
1532 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1533 		 * S_DAX may be disabled
1534 		 */
1535 		ext4_set_inode_flags(inode, false);
1536 		res = ext4_mark_inode_dirty(handle, inode);
1537 		if (res)
1538 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1539 	}
1540 	res2 = ext4_journal_stop(handle);
1541 
1542 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1543 		goto retry;
1544 	if (!res)
1545 		res = res2;
1546 	return res;
1547 }
1548 
1549 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1550 {
1551 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1552 }
1553 
1554 static bool ext4_has_stable_inodes(struct super_block *sb)
1555 {
1556 	return ext4_has_feature_stable_inodes(sb);
1557 }
1558 
1559 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1560 				       int *ino_bits_ret, int *lblk_bits_ret)
1561 {
1562 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1563 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1564 }
1565 
1566 static const struct fscrypt_operations ext4_cryptops = {
1567 	.key_prefix		= "ext4:",
1568 	.get_context		= ext4_get_context,
1569 	.set_context		= ext4_set_context,
1570 	.get_dummy_policy	= ext4_get_dummy_policy,
1571 	.empty_dir		= ext4_empty_dir,
1572 	.max_namelen		= EXT4_NAME_LEN,
1573 	.has_stable_inodes	= ext4_has_stable_inodes,
1574 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1575 };
1576 #endif
1577 
1578 #ifdef CONFIG_QUOTA
1579 static const char * const quotatypes[] = INITQFNAMES;
1580 #define QTYPE2NAME(t) (quotatypes[t])
1581 
1582 static int ext4_write_dquot(struct dquot *dquot);
1583 static int ext4_acquire_dquot(struct dquot *dquot);
1584 static int ext4_release_dquot(struct dquot *dquot);
1585 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1586 static int ext4_write_info(struct super_block *sb, int type);
1587 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1588 			 const struct path *path);
1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1590 			       size_t len, loff_t off);
1591 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1592 				const char *data, size_t len, loff_t off);
1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1594 			     unsigned int flags);
1595 
1596 static struct dquot **ext4_get_dquots(struct inode *inode)
1597 {
1598 	return EXT4_I(inode)->i_dquot;
1599 }
1600 
1601 static const struct dquot_operations ext4_quota_operations = {
1602 	.get_reserved_space	= ext4_get_reserved_space,
1603 	.write_dquot		= ext4_write_dquot,
1604 	.acquire_dquot		= ext4_acquire_dquot,
1605 	.release_dquot		= ext4_release_dquot,
1606 	.mark_dirty		= ext4_mark_dquot_dirty,
1607 	.write_info		= ext4_write_info,
1608 	.alloc_dquot		= dquot_alloc,
1609 	.destroy_dquot		= dquot_destroy,
1610 	.get_projid		= ext4_get_projid,
1611 	.get_inode_usage	= ext4_get_inode_usage,
1612 	.get_next_id		= dquot_get_next_id,
1613 };
1614 
1615 static const struct quotactl_ops ext4_qctl_operations = {
1616 	.quota_on	= ext4_quota_on,
1617 	.quota_off	= ext4_quota_off,
1618 	.quota_sync	= dquot_quota_sync,
1619 	.get_state	= dquot_get_state,
1620 	.set_info	= dquot_set_dqinfo,
1621 	.get_dqblk	= dquot_get_dqblk,
1622 	.set_dqblk	= dquot_set_dqblk,
1623 	.get_nextdqblk	= dquot_get_next_dqblk,
1624 };
1625 #endif
1626 
1627 static const struct super_operations ext4_sops = {
1628 	.alloc_inode	= ext4_alloc_inode,
1629 	.free_inode	= ext4_free_in_core_inode,
1630 	.destroy_inode	= ext4_destroy_inode,
1631 	.write_inode	= ext4_write_inode,
1632 	.dirty_inode	= ext4_dirty_inode,
1633 	.drop_inode	= ext4_drop_inode,
1634 	.evict_inode	= ext4_evict_inode,
1635 	.put_super	= ext4_put_super,
1636 	.sync_fs	= ext4_sync_fs,
1637 	.freeze_fs	= ext4_freeze,
1638 	.unfreeze_fs	= ext4_unfreeze,
1639 	.statfs		= ext4_statfs,
1640 	.remount_fs	= ext4_remount,
1641 	.show_options	= ext4_show_options,
1642 #ifdef CONFIG_QUOTA
1643 	.quota_read	= ext4_quota_read,
1644 	.quota_write	= ext4_quota_write,
1645 	.get_dquots	= ext4_get_dquots,
1646 #endif
1647 };
1648 
1649 static const struct export_operations ext4_export_ops = {
1650 	.fh_to_dentry = ext4_fh_to_dentry,
1651 	.fh_to_parent = ext4_fh_to_parent,
1652 	.get_parent = ext4_get_parent,
1653 	.commit_metadata = ext4_nfs_commit_metadata,
1654 };
1655 
1656 enum {
1657 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1658 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1659 	Opt_nouid32, Opt_debug, Opt_removed,
1660 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1661 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1662 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1663 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1664 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1665 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1666 	Opt_inlinecrypt,
1667 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1668 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1669 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1670 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1671 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1672 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1673 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1674 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1675 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1676 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1677 	Opt_dioread_nolock, Opt_dioread_lock,
1678 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1679 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1680 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1681 #ifdef CONFIG_EXT4_DEBUG
1682 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1683 #endif
1684 };
1685 
1686 static const match_table_t tokens = {
1687 	{Opt_bsd_df, "bsddf"},
1688 	{Opt_minix_df, "minixdf"},
1689 	{Opt_grpid, "grpid"},
1690 	{Opt_grpid, "bsdgroups"},
1691 	{Opt_nogrpid, "nogrpid"},
1692 	{Opt_nogrpid, "sysvgroups"},
1693 	{Opt_resgid, "resgid=%u"},
1694 	{Opt_resuid, "resuid=%u"},
1695 	{Opt_sb, "sb=%u"},
1696 	{Opt_err_cont, "errors=continue"},
1697 	{Opt_err_panic, "errors=panic"},
1698 	{Opt_err_ro, "errors=remount-ro"},
1699 	{Opt_nouid32, "nouid32"},
1700 	{Opt_debug, "debug"},
1701 	{Opt_removed, "oldalloc"},
1702 	{Opt_removed, "orlov"},
1703 	{Opt_user_xattr, "user_xattr"},
1704 	{Opt_nouser_xattr, "nouser_xattr"},
1705 	{Opt_acl, "acl"},
1706 	{Opt_noacl, "noacl"},
1707 	{Opt_noload, "norecovery"},
1708 	{Opt_noload, "noload"},
1709 	{Opt_removed, "nobh"},
1710 	{Opt_removed, "bh"},
1711 	{Opt_commit, "commit=%u"},
1712 	{Opt_min_batch_time, "min_batch_time=%u"},
1713 	{Opt_max_batch_time, "max_batch_time=%u"},
1714 	{Opt_journal_dev, "journal_dev=%u"},
1715 	{Opt_journal_path, "journal_path=%s"},
1716 	{Opt_journal_checksum, "journal_checksum"},
1717 	{Opt_nojournal_checksum, "nojournal_checksum"},
1718 	{Opt_journal_async_commit, "journal_async_commit"},
1719 	{Opt_abort, "abort"},
1720 	{Opt_data_journal, "data=journal"},
1721 	{Opt_data_ordered, "data=ordered"},
1722 	{Opt_data_writeback, "data=writeback"},
1723 	{Opt_data_err_abort, "data_err=abort"},
1724 	{Opt_data_err_ignore, "data_err=ignore"},
1725 	{Opt_offusrjquota, "usrjquota="},
1726 	{Opt_usrjquota, "usrjquota=%s"},
1727 	{Opt_offgrpjquota, "grpjquota="},
1728 	{Opt_grpjquota, "grpjquota=%s"},
1729 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1730 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1731 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1732 	{Opt_grpquota, "grpquota"},
1733 	{Opt_noquota, "noquota"},
1734 	{Opt_quota, "quota"},
1735 	{Opt_usrquota, "usrquota"},
1736 	{Opt_prjquota, "prjquota"},
1737 	{Opt_barrier, "barrier=%u"},
1738 	{Opt_barrier, "barrier"},
1739 	{Opt_nobarrier, "nobarrier"},
1740 	{Opt_i_version, "i_version"},
1741 	{Opt_dax, "dax"},
1742 	{Opt_dax_always, "dax=always"},
1743 	{Opt_dax_inode, "dax=inode"},
1744 	{Opt_dax_never, "dax=never"},
1745 	{Opt_stripe, "stripe=%u"},
1746 	{Opt_delalloc, "delalloc"},
1747 	{Opt_warn_on_error, "warn_on_error"},
1748 	{Opt_nowarn_on_error, "nowarn_on_error"},
1749 	{Opt_lazytime, "lazytime"},
1750 	{Opt_nolazytime, "nolazytime"},
1751 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1752 	{Opt_nodelalloc, "nodelalloc"},
1753 	{Opt_removed, "mblk_io_submit"},
1754 	{Opt_removed, "nomblk_io_submit"},
1755 	{Opt_block_validity, "block_validity"},
1756 	{Opt_noblock_validity, "noblock_validity"},
1757 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1758 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1759 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1760 	{Opt_auto_da_alloc, "auto_da_alloc"},
1761 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1762 	{Opt_dioread_nolock, "dioread_nolock"},
1763 	{Opt_dioread_lock, "nodioread_nolock"},
1764 	{Opt_dioread_lock, "dioread_lock"},
1765 	{Opt_discard, "discard"},
1766 	{Opt_nodiscard, "nodiscard"},
1767 	{Opt_init_itable, "init_itable=%u"},
1768 	{Opt_init_itable, "init_itable"},
1769 	{Opt_noinit_itable, "noinit_itable"},
1770 #ifdef CONFIG_EXT4_DEBUG
1771 	{Opt_fc_debug_force, "fc_debug_force"},
1772 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1773 #endif
1774 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1775 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1776 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1777 	{Opt_inlinecrypt, "inlinecrypt"},
1778 	{Opt_nombcache, "nombcache"},
1779 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1780 	{Opt_removed, "prefetch_block_bitmaps"},
1781 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1782 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1783 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1784 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1785 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1786 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1787 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1788 	{Opt_err, NULL},
1789 };
1790 
1791 static ext4_fsblk_t get_sb_block(void **data)
1792 {
1793 	ext4_fsblk_t	sb_block;
1794 	char		*options = (char *) *data;
1795 
1796 	if (!options || strncmp(options, "sb=", 3) != 0)
1797 		return 1;	/* Default location */
1798 
1799 	options += 3;
1800 	/* TODO: use simple_strtoll with >32bit ext4 */
1801 	sb_block = simple_strtoul(options, &options, 0);
1802 	if (*options && *options != ',') {
1803 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1804 		       (char *) *data);
1805 		return 1;
1806 	}
1807 	if (*options == ',')
1808 		options++;
1809 	*data = (void *) options;
1810 
1811 	return sb_block;
1812 }
1813 
1814 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1815 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1816 
1817 static const char deprecated_msg[] =
1818 	"Mount option \"%s\" will be removed by %s\n"
1819 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1820 
1821 #ifdef CONFIG_QUOTA
1822 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1823 {
1824 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1826 	int ret = -1;
1827 
1828 	if (sb_any_quota_loaded(sb) && !old_qname) {
1829 		ext4_msg(sb, KERN_ERR,
1830 			"Cannot change journaled "
1831 			"quota options when quota turned on");
1832 		return -1;
1833 	}
1834 	if (ext4_has_feature_quota(sb)) {
1835 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1836 			 "ignored when QUOTA feature is enabled");
1837 		return 1;
1838 	}
1839 	qname = match_strdup(args);
1840 	if (!qname) {
1841 		ext4_msg(sb, KERN_ERR,
1842 			"Not enough memory for storing quotafile name");
1843 		return -1;
1844 	}
1845 	if (old_qname) {
1846 		if (strcmp(old_qname, qname) == 0)
1847 			ret = 1;
1848 		else
1849 			ext4_msg(sb, KERN_ERR,
1850 				 "%s quota file already specified",
1851 				 QTYPE2NAME(qtype));
1852 		goto errout;
1853 	}
1854 	if (strchr(qname, '/')) {
1855 		ext4_msg(sb, KERN_ERR,
1856 			"quotafile must be on filesystem root");
1857 		goto errout;
1858 	}
1859 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1860 	set_opt(sb, QUOTA);
1861 	return 1;
1862 errout:
1863 	kfree(qname);
1864 	return ret;
1865 }
1866 
1867 static int clear_qf_name(struct super_block *sb, int qtype)
1868 {
1869 
1870 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1871 	char *old_qname = get_qf_name(sb, sbi, qtype);
1872 
1873 	if (sb_any_quota_loaded(sb) && old_qname) {
1874 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1875 			" when quota turned on");
1876 		return -1;
1877 	}
1878 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1879 	synchronize_rcu();
1880 	kfree(old_qname);
1881 	return 1;
1882 }
1883 #endif
1884 
1885 #define MOPT_SET	0x0001
1886 #define MOPT_CLEAR	0x0002
1887 #define MOPT_NOSUPPORT	0x0004
1888 #define MOPT_EXPLICIT	0x0008
1889 #define MOPT_CLEAR_ERR	0x0010
1890 #define MOPT_GTE0	0x0020
1891 #ifdef CONFIG_QUOTA
1892 #define MOPT_Q		0
1893 #define MOPT_QFMT	0x0040
1894 #else
1895 #define MOPT_Q		MOPT_NOSUPPORT
1896 #define MOPT_QFMT	MOPT_NOSUPPORT
1897 #endif
1898 #define MOPT_DATAJ	0x0080
1899 #define MOPT_NO_EXT2	0x0100
1900 #define MOPT_NO_EXT3	0x0200
1901 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1902 #define MOPT_STRING	0x0400
1903 #define MOPT_SKIP	0x0800
1904 #define	MOPT_2		0x1000
1905 
1906 static const struct mount_opts {
1907 	int	token;
1908 	int	mount_opt;
1909 	int	flags;
1910 } ext4_mount_opts[] = {
1911 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1912 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1913 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1914 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1915 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1916 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1917 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1918 	 MOPT_EXT4_ONLY | MOPT_SET},
1919 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1920 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1921 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1922 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1923 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1924 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1925 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1926 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1927 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1928 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1929 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1930 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1931 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1932 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1933 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1934 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1935 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1937 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1938 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1939 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1940 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1941 	 MOPT_NO_EXT2},
1942 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1943 	 MOPT_NO_EXT2},
1944 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1945 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1946 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1947 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1948 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1949 	{Opt_commit, 0, MOPT_GTE0},
1950 	{Opt_max_batch_time, 0, MOPT_GTE0},
1951 	{Opt_min_batch_time, 0, MOPT_GTE0},
1952 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1953 	{Opt_init_itable, 0, MOPT_GTE0},
1954 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1955 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1956 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1957 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1958 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1959 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1960 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1961 	{Opt_stripe, 0, MOPT_GTE0},
1962 	{Opt_resuid, 0, MOPT_GTE0},
1963 	{Opt_resgid, 0, MOPT_GTE0},
1964 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1965 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1966 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1967 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1968 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1969 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1970 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1971 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1972 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1973 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1974 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1975 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1976 #else
1977 	{Opt_acl, 0, MOPT_NOSUPPORT},
1978 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1979 #endif
1980 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1981 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1982 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1983 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1984 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1985 							MOPT_SET | MOPT_Q},
1986 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1987 							MOPT_SET | MOPT_Q},
1988 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1989 							MOPT_SET | MOPT_Q},
1990 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1991 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1992 							MOPT_CLEAR | MOPT_Q},
1993 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1994 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1995 	{Opt_offusrjquota, 0, MOPT_Q},
1996 	{Opt_offgrpjquota, 0, MOPT_Q},
1997 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1998 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1999 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2000 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2001 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2002 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2003 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2004 	 MOPT_SET},
2005 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2006 #ifdef CONFIG_EXT4_DEBUG
2007 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2008 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2009 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2010 #endif
2011 	{Opt_err, 0, 0}
2012 };
2013 
2014 #ifdef CONFIG_UNICODE
2015 static const struct ext4_sb_encodings {
2016 	__u16 magic;
2017 	char *name;
2018 	char *version;
2019 } ext4_sb_encoding_map[] = {
2020 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2021 };
2022 
2023 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2024 				 const struct ext4_sb_encodings **encoding,
2025 				 __u16 *flags)
2026 {
2027 	__u16 magic = le16_to_cpu(es->s_encoding);
2028 	int i;
2029 
2030 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2031 		if (magic == ext4_sb_encoding_map[i].magic)
2032 			break;
2033 
2034 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2035 		return -EINVAL;
2036 
2037 	*encoding = &ext4_sb_encoding_map[i];
2038 	*flags = le16_to_cpu(es->s_encoding_flags);
2039 
2040 	return 0;
2041 }
2042 #endif
2043 
2044 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2045 					  const char *opt,
2046 					  const substring_t *arg,
2047 					  bool is_remount)
2048 {
2049 #ifdef CONFIG_FS_ENCRYPTION
2050 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2051 	int err;
2052 
2053 	/*
2054 	 * This mount option is just for testing, and it's not worthwhile to
2055 	 * implement the extra complexity (e.g. RCU protection) that would be
2056 	 * needed to allow it to be set or changed during remount.  We do allow
2057 	 * it to be specified during remount, but only if there is no change.
2058 	 */
2059 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2060 		ext4_msg(sb, KERN_WARNING,
2061 			 "Can't set test_dummy_encryption on remount");
2062 		return -1;
2063 	}
2064 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2065 						&sbi->s_dummy_enc_policy);
2066 	if (err) {
2067 		if (err == -EEXIST)
2068 			ext4_msg(sb, KERN_WARNING,
2069 				 "Can't change test_dummy_encryption on remount");
2070 		else if (err == -EINVAL)
2071 			ext4_msg(sb, KERN_WARNING,
2072 				 "Value of option \"%s\" is unrecognized", opt);
2073 		else
2074 			ext4_msg(sb, KERN_WARNING,
2075 				 "Error processing option \"%s\" [%d]",
2076 				 opt, err);
2077 		return -1;
2078 	}
2079 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2080 #else
2081 	ext4_msg(sb, KERN_WARNING,
2082 		 "Test dummy encryption mount option ignored");
2083 #endif
2084 	return 1;
2085 }
2086 
2087 struct ext4_parsed_options {
2088 	unsigned long journal_devnum;
2089 	unsigned int journal_ioprio;
2090 	int mb_optimize_scan;
2091 };
2092 
2093 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2094 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2095 			    int is_remount)
2096 {
2097 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2098 	const struct mount_opts *m;
2099 	kuid_t uid;
2100 	kgid_t gid;
2101 	int arg = 0;
2102 
2103 #ifdef CONFIG_QUOTA
2104 	if (token == Opt_usrjquota)
2105 		return set_qf_name(sb, USRQUOTA, &args[0]);
2106 	else if (token == Opt_grpjquota)
2107 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2108 	else if (token == Opt_offusrjquota)
2109 		return clear_qf_name(sb, USRQUOTA);
2110 	else if (token == Opt_offgrpjquota)
2111 		return clear_qf_name(sb, GRPQUOTA);
2112 #endif
2113 	switch (token) {
2114 	case Opt_noacl:
2115 	case Opt_nouser_xattr:
2116 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2117 		break;
2118 	case Opt_sb:
2119 		return 1;	/* handled by get_sb_block() */
2120 	case Opt_removed:
2121 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2122 		return 1;
2123 	case Opt_abort:
2124 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2125 		return 1;
2126 	case Opt_i_version:
2127 		sb->s_flags |= SB_I_VERSION;
2128 		return 1;
2129 	case Opt_lazytime:
2130 		sb->s_flags |= SB_LAZYTIME;
2131 		return 1;
2132 	case Opt_nolazytime:
2133 		sb->s_flags &= ~SB_LAZYTIME;
2134 		return 1;
2135 	case Opt_inlinecrypt:
2136 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2137 		sb->s_flags |= SB_INLINECRYPT;
2138 #else
2139 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2140 #endif
2141 		return 1;
2142 	}
2143 
2144 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2145 		if (token == m->token)
2146 			break;
2147 
2148 	if (m->token == Opt_err) {
2149 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2150 			 "or missing value", opt);
2151 		return -1;
2152 	}
2153 
2154 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2155 		ext4_msg(sb, KERN_ERR,
2156 			 "Mount option \"%s\" incompatible with ext2", opt);
2157 		return -1;
2158 	}
2159 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2160 		ext4_msg(sb, KERN_ERR,
2161 			 "Mount option \"%s\" incompatible with ext3", opt);
2162 		return -1;
2163 	}
2164 
2165 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2166 		return -1;
2167 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2168 		return -1;
2169 	if (m->flags & MOPT_EXPLICIT) {
2170 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2171 			set_opt2(sb, EXPLICIT_DELALLOC);
2172 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2173 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2174 		} else
2175 			return -1;
2176 	}
2177 	if (m->flags & MOPT_CLEAR_ERR)
2178 		clear_opt(sb, ERRORS_MASK);
2179 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2180 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2181 			 "options when quota turned on");
2182 		return -1;
2183 	}
2184 
2185 	if (m->flags & MOPT_NOSUPPORT) {
2186 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2187 	} else if (token == Opt_commit) {
2188 		if (arg == 0)
2189 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2190 		else if (arg > INT_MAX / HZ) {
2191 			ext4_msg(sb, KERN_ERR,
2192 				 "Invalid commit interval %d, "
2193 				 "must be smaller than %d",
2194 				 arg, INT_MAX / HZ);
2195 			return -1;
2196 		}
2197 		sbi->s_commit_interval = HZ * arg;
2198 	} else if (token == Opt_debug_want_extra_isize) {
2199 		if ((arg & 1) ||
2200 		    (arg < 4) ||
2201 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2202 			ext4_msg(sb, KERN_ERR,
2203 				 "Invalid want_extra_isize %d", arg);
2204 			return -1;
2205 		}
2206 		sbi->s_want_extra_isize = arg;
2207 	} else if (token == Opt_max_batch_time) {
2208 		sbi->s_max_batch_time = arg;
2209 	} else if (token == Opt_min_batch_time) {
2210 		sbi->s_min_batch_time = arg;
2211 	} else if (token == Opt_inode_readahead_blks) {
2212 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2213 			ext4_msg(sb, KERN_ERR,
2214 				 "EXT4-fs: inode_readahead_blks must be "
2215 				 "0 or a power of 2 smaller than 2^31");
2216 			return -1;
2217 		}
2218 		sbi->s_inode_readahead_blks = arg;
2219 	} else if (token == Opt_init_itable) {
2220 		set_opt(sb, INIT_INODE_TABLE);
2221 		if (!args->from)
2222 			arg = EXT4_DEF_LI_WAIT_MULT;
2223 		sbi->s_li_wait_mult = arg;
2224 	} else if (token == Opt_max_dir_size_kb) {
2225 		sbi->s_max_dir_size_kb = arg;
2226 #ifdef CONFIG_EXT4_DEBUG
2227 	} else if (token == Opt_fc_debug_max_replay) {
2228 		sbi->s_fc_debug_max_replay = arg;
2229 #endif
2230 	} else if (token == Opt_stripe) {
2231 		sbi->s_stripe = arg;
2232 	} else if (token == Opt_resuid) {
2233 		uid = make_kuid(current_user_ns(), arg);
2234 		if (!uid_valid(uid)) {
2235 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2236 			return -1;
2237 		}
2238 		sbi->s_resuid = uid;
2239 	} else if (token == Opt_resgid) {
2240 		gid = make_kgid(current_user_ns(), arg);
2241 		if (!gid_valid(gid)) {
2242 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2243 			return -1;
2244 		}
2245 		sbi->s_resgid = gid;
2246 	} else if (token == Opt_journal_dev) {
2247 		if (is_remount) {
2248 			ext4_msg(sb, KERN_ERR,
2249 				 "Cannot specify journal on remount");
2250 			return -1;
2251 		}
2252 		parsed_opts->journal_devnum = arg;
2253 	} else if (token == Opt_journal_path) {
2254 		char *journal_path;
2255 		struct inode *journal_inode;
2256 		struct path path;
2257 		int error;
2258 
2259 		if (is_remount) {
2260 			ext4_msg(sb, KERN_ERR,
2261 				 "Cannot specify journal on remount");
2262 			return -1;
2263 		}
2264 		journal_path = match_strdup(&args[0]);
2265 		if (!journal_path) {
2266 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2267 				"journal device string");
2268 			return -1;
2269 		}
2270 
2271 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2272 		if (error) {
2273 			ext4_msg(sb, KERN_ERR, "error: could not find "
2274 				"journal device path: error %d", error);
2275 			kfree(journal_path);
2276 			return -1;
2277 		}
2278 
2279 		journal_inode = d_inode(path.dentry);
2280 		if (!S_ISBLK(journal_inode->i_mode)) {
2281 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2282 				"is not a block device", journal_path);
2283 			path_put(&path);
2284 			kfree(journal_path);
2285 			return -1;
2286 		}
2287 
2288 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2289 		path_put(&path);
2290 		kfree(journal_path);
2291 	} else if (token == Opt_journal_ioprio) {
2292 		if (arg > 7) {
2293 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2294 				 " (must be 0-7)");
2295 			return -1;
2296 		}
2297 		parsed_opts->journal_ioprio =
2298 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2299 	} else if (token == Opt_test_dummy_encryption) {
2300 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2301 						      is_remount);
2302 	} else if (m->flags & MOPT_DATAJ) {
2303 		if (is_remount) {
2304 			if (!sbi->s_journal)
2305 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2306 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2307 				ext4_msg(sb, KERN_ERR,
2308 					 "Cannot change data mode on remount");
2309 				return -1;
2310 			}
2311 		} else {
2312 			clear_opt(sb, DATA_FLAGS);
2313 			sbi->s_mount_opt |= m->mount_opt;
2314 		}
2315 #ifdef CONFIG_QUOTA
2316 	} else if (m->flags & MOPT_QFMT) {
2317 		if (sb_any_quota_loaded(sb) &&
2318 		    sbi->s_jquota_fmt != m->mount_opt) {
2319 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2320 				 "quota options when quota turned on");
2321 			return -1;
2322 		}
2323 		if (ext4_has_feature_quota(sb)) {
2324 			ext4_msg(sb, KERN_INFO,
2325 				 "Quota format mount options ignored "
2326 				 "when QUOTA feature is enabled");
2327 			return 1;
2328 		}
2329 		sbi->s_jquota_fmt = m->mount_opt;
2330 #endif
2331 	} else if (token == Opt_dax || token == Opt_dax_always ||
2332 		   token == Opt_dax_inode || token == Opt_dax_never) {
2333 #ifdef CONFIG_FS_DAX
2334 		switch (token) {
2335 		case Opt_dax:
2336 		case Opt_dax_always:
2337 			if (is_remount &&
2338 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2339 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2340 			fail_dax_change_remount:
2341 				ext4_msg(sb, KERN_ERR, "can't change "
2342 					 "dax mount option while remounting");
2343 				return -1;
2344 			}
2345 			if (is_remount &&
2346 			    (test_opt(sb, DATA_FLAGS) ==
2347 			     EXT4_MOUNT_JOURNAL_DATA)) {
2348 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2349 					     "both data=journal and dax");
2350 				    return -1;
2351 			}
2352 			ext4_msg(sb, KERN_WARNING,
2353 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2354 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2355 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2356 			break;
2357 		case Opt_dax_never:
2358 			if (is_remount &&
2359 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2360 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2361 				goto fail_dax_change_remount;
2362 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2363 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2364 			break;
2365 		case Opt_dax_inode:
2366 			if (is_remount &&
2367 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2368 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2369 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2370 				goto fail_dax_change_remount;
2371 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2372 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2373 			/* Strictly for printing options */
2374 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2375 			break;
2376 		}
2377 #else
2378 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2379 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2380 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2381 		return -1;
2382 #endif
2383 	} else if (token == Opt_data_err_abort) {
2384 		sbi->s_mount_opt |= m->mount_opt;
2385 	} else if (token == Opt_data_err_ignore) {
2386 		sbi->s_mount_opt &= ~m->mount_opt;
2387 	} else if (token == Opt_mb_optimize_scan) {
2388 		if (arg != 0 && arg != 1) {
2389 			ext4_msg(sb, KERN_WARNING,
2390 				 "mb_optimize_scan should be set to 0 or 1.");
2391 			return -1;
2392 		}
2393 		parsed_opts->mb_optimize_scan = arg;
2394 	} else {
2395 		if (!args->from)
2396 			arg = 1;
2397 		if (m->flags & MOPT_CLEAR)
2398 			arg = !arg;
2399 		else if (unlikely(!(m->flags & MOPT_SET))) {
2400 			ext4_msg(sb, KERN_WARNING,
2401 				 "buggy handling of option %s", opt);
2402 			WARN_ON(1);
2403 			return -1;
2404 		}
2405 		if (m->flags & MOPT_2) {
2406 			if (arg != 0)
2407 				sbi->s_mount_opt2 |= m->mount_opt;
2408 			else
2409 				sbi->s_mount_opt2 &= ~m->mount_opt;
2410 		} else {
2411 			if (arg != 0)
2412 				sbi->s_mount_opt |= m->mount_opt;
2413 			else
2414 				sbi->s_mount_opt &= ~m->mount_opt;
2415 		}
2416 	}
2417 	return 1;
2418 }
2419 
2420 static int parse_options(char *options, struct super_block *sb,
2421 			 struct ext4_parsed_options *ret_opts,
2422 			 int is_remount)
2423 {
2424 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2425 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2426 	substring_t args[MAX_OPT_ARGS];
2427 	int token;
2428 
2429 	if (!options)
2430 		return 1;
2431 
2432 	while ((p = strsep(&options, ",")) != NULL) {
2433 		if (!*p)
2434 			continue;
2435 		/*
2436 		 * Initialize args struct so we know whether arg was
2437 		 * found; some options take optional arguments.
2438 		 */
2439 		args[0].to = args[0].from = NULL;
2440 		token = match_token(p, tokens, args);
2441 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2442 				     is_remount) < 0)
2443 			return 0;
2444 	}
2445 #ifdef CONFIG_QUOTA
2446 	/*
2447 	 * We do the test below only for project quotas. 'usrquota' and
2448 	 * 'grpquota' mount options are allowed even without quota feature
2449 	 * to support legacy quotas in quota files.
2450 	 */
2451 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2452 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2453 			 "Cannot enable project quota enforcement.");
2454 		return 0;
2455 	}
2456 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2457 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2458 	if (usr_qf_name || grp_qf_name) {
2459 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2460 			clear_opt(sb, USRQUOTA);
2461 
2462 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2463 			clear_opt(sb, GRPQUOTA);
2464 
2465 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2466 			ext4_msg(sb, KERN_ERR, "old and new quota "
2467 					"format mixing");
2468 			return 0;
2469 		}
2470 
2471 		if (!sbi->s_jquota_fmt) {
2472 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2473 					"not specified");
2474 			return 0;
2475 		}
2476 	}
2477 #endif
2478 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2479 		int blocksize =
2480 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2481 		if (blocksize < PAGE_SIZE)
2482 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2483 				 "experimental mount option 'dioread_nolock' "
2484 				 "for blocksize < PAGE_SIZE");
2485 	}
2486 	return 1;
2487 }
2488 
2489 static inline void ext4_show_quota_options(struct seq_file *seq,
2490 					   struct super_block *sb)
2491 {
2492 #if defined(CONFIG_QUOTA)
2493 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2494 	char *usr_qf_name, *grp_qf_name;
2495 
2496 	if (sbi->s_jquota_fmt) {
2497 		char *fmtname = "";
2498 
2499 		switch (sbi->s_jquota_fmt) {
2500 		case QFMT_VFS_OLD:
2501 			fmtname = "vfsold";
2502 			break;
2503 		case QFMT_VFS_V0:
2504 			fmtname = "vfsv0";
2505 			break;
2506 		case QFMT_VFS_V1:
2507 			fmtname = "vfsv1";
2508 			break;
2509 		}
2510 		seq_printf(seq, ",jqfmt=%s", fmtname);
2511 	}
2512 
2513 	rcu_read_lock();
2514 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2515 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2516 	if (usr_qf_name)
2517 		seq_show_option(seq, "usrjquota", usr_qf_name);
2518 	if (grp_qf_name)
2519 		seq_show_option(seq, "grpjquota", grp_qf_name);
2520 	rcu_read_unlock();
2521 #endif
2522 }
2523 
2524 static const char *token2str(int token)
2525 {
2526 	const struct match_token *t;
2527 
2528 	for (t = tokens; t->token != Opt_err; t++)
2529 		if (t->token == token && !strchr(t->pattern, '='))
2530 			break;
2531 	return t->pattern;
2532 }
2533 
2534 /*
2535  * Show an option if
2536  *  - it's set to a non-default value OR
2537  *  - if the per-sb default is different from the global default
2538  */
2539 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2540 			      int nodefs)
2541 {
2542 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2543 	struct ext4_super_block *es = sbi->s_es;
2544 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2545 	const struct mount_opts *m;
2546 	char sep = nodefs ? '\n' : ',';
2547 
2548 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2549 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2550 
2551 	if (sbi->s_sb_block != 1)
2552 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2553 
2554 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2555 		int want_set = m->flags & MOPT_SET;
2556 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2557 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2558 			continue;
2559 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2560 			continue; /* skip if same as the default */
2561 		if ((want_set &&
2562 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2563 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2564 			continue; /* select Opt_noFoo vs Opt_Foo */
2565 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2566 	}
2567 
2568 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2569 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2570 		SEQ_OPTS_PRINT("resuid=%u",
2571 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2572 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2573 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2574 		SEQ_OPTS_PRINT("resgid=%u",
2575 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2576 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2577 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2578 		SEQ_OPTS_PUTS("errors=remount-ro");
2579 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2580 		SEQ_OPTS_PUTS("errors=continue");
2581 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2582 		SEQ_OPTS_PUTS("errors=panic");
2583 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2584 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2585 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2586 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2587 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2588 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2589 	if (sb->s_flags & SB_I_VERSION)
2590 		SEQ_OPTS_PUTS("i_version");
2591 	if (nodefs || sbi->s_stripe)
2592 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2593 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2594 			(sbi->s_mount_opt ^ def_mount_opt)) {
2595 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2596 			SEQ_OPTS_PUTS("data=journal");
2597 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2598 			SEQ_OPTS_PUTS("data=ordered");
2599 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2600 			SEQ_OPTS_PUTS("data=writeback");
2601 	}
2602 	if (nodefs ||
2603 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2604 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2605 			       sbi->s_inode_readahead_blks);
2606 
2607 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2608 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2609 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2610 	if (nodefs || sbi->s_max_dir_size_kb)
2611 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2612 	if (test_opt(sb, DATA_ERR_ABORT))
2613 		SEQ_OPTS_PUTS("data_err=abort");
2614 
2615 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2616 
2617 	if (sb->s_flags & SB_INLINECRYPT)
2618 		SEQ_OPTS_PUTS("inlinecrypt");
2619 
2620 	if (test_opt(sb, DAX_ALWAYS)) {
2621 		if (IS_EXT2_SB(sb))
2622 			SEQ_OPTS_PUTS("dax");
2623 		else
2624 			SEQ_OPTS_PUTS("dax=always");
2625 	} else if (test_opt2(sb, DAX_NEVER)) {
2626 		SEQ_OPTS_PUTS("dax=never");
2627 	} else if (test_opt2(sb, DAX_INODE)) {
2628 		SEQ_OPTS_PUTS("dax=inode");
2629 	}
2630 	ext4_show_quota_options(seq, sb);
2631 	return 0;
2632 }
2633 
2634 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2635 {
2636 	return _ext4_show_options(seq, root->d_sb, 0);
2637 }
2638 
2639 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2640 {
2641 	struct super_block *sb = seq->private;
2642 	int rc;
2643 
2644 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2645 	rc = _ext4_show_options(seq, sb, 1);
2646 	seq_puts(seq, "\n");
2647 	return rc;
2648 }
2649 
2650 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2651 			    int read_only)
2652 {
2653 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2654 	int err = 0;
2655 
2656 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2657 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2658 			 "forcing read-only mode");
2659 		err = -EROFS;
2660 		goto done;
2661 	}
2662 	if (read_only)
2663 		goto done;
2664 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2665 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2666 			 "running e2fsck is recommended");
2667 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2668 		ext4_msg(sb, KERN_WARNING,
2669 			 "warning: mounting fs with errors, "
2670 			 "running e2fsck is recommended");
2671 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2672 		 le16_to_cpu(es->s_mnt_count) >=
2673 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2674 		ext4_msg(sb, KERN_WARNING,
2675 			 "warning: maximal mount count reached, "
2676 			 "running e2fsck is recommended");
2677 	else if (le32_to_cpu(es->s_checkinterval) &&
2678 		 (ext4_get_tstamp(es, s_lastcheck) +
2679 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2680 		ext4_msg(sb, KERN_WARNING,
2681 			 "warning: checktime reached, "
2682 			 "running e2fsck is recommended");
2683 	if (!sbi->s_journal)
2684 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2685 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2686 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2687 	le16_add_cpu(&es->s_mnt_count, 1);
2688 	ext4_update_tstamp(es, s_mtime);
2689 	if (sbi->s_journal) {
2690 		ext4_set_feature_journal_needs_recovery(sb);
2691 		if (ext4_has_feature_orphan_file(sb))
2692 			ext4_set_feature_orphan_present(sb);
2693 	}
2694 
2695 	err = ext4_commit_super(sb);
2696 done:
2697 	if (test_opt(sb, DEBUG))
2698 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2699 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2700 			sb->s_blocksize,
2701 			sbi->s_groups_count,
2702 			EXT4_BLOCKS_PER_GROUP(sb),
2703 			EXT4_INODES_PER_GROUP(sb),
2704 			sbi->s_mount_opt, sbi->s_mount_opt2);
2705 
2706 	cleancache_init_fs(sb);
2707 	return err;
2708 }
2709 
2710 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2711 {
2712 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2713 	struct flex_groups **old_groups, **new_groups;
2714 	int size, i, j;
2715 
2716 	if (!sbi->s_log_groups_per_flex)
2717 		return 0;
2718 
2719 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2720 	if (size <= sbi->s_flex_groups_allocated)
2721 		return 0;
2722 
2723 	new_groups = kvzalloc(roundup_pow_of_two(size *
2724 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2725 	if (!new_groups) {
2726 		ext4_msg(sb, KERN_ERR,
2727 			 "not enough memory for %d flex group pointers", size);
2728 		return -ENOMEM;
2729 	}
2730 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2731 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2732 					 sizeof(struct flex_groups)),
2733 					 GFP_KERNEL);
2734 		if (!new_groups[i]) {
2735 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2736 				kvfree(new_groups[j]);
2737 			kvfree(new_groups);
2738 			ext4_msg(sb, KERN_ERR,
2739 				 "not enough memory for %d flex groups", size);
2740 			return -ENOMEM;
2741 		}
2742 	}
2743 	rcu_read_lock();
2744 	old_groups = rcu_dereference(sbi->s_flex_groups);
2745 	if (old_groups)
2746 		memcpy(new_groups, old_groups,
2747 		       (sbi->s_flex_groups_allocated *
2748 			sizeof(struct flex_groups *)));
2749 	rcu_read_unlock();
2750 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2751 	sbi->s_flex_groups_allocated = size;
2752 	if (old_groups)
2753 		ext4_kvfree_array_rcu(old_groups);
2754 	return 0;
2755 }
2756 
2757 static int ext4_fill_flex_info(struct super_block *sb)
2758 {
2759 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2760 	struct ext4_group_desc *gdp = NULL;
2761 	struct flex_groups *fg;
2762 	ext4_group_t flex_group;
2763 	int i, err;
2764 
2765 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2766 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2767 		sbi->s_log_groups_per_flex = 0;
2768 		return 1;
2769 	}
2770 
2771 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2772 	if (err)
2773 		goto failed;
2774 
2775 	for (i = 0; i < sbi->s_groups_count; i++) {
2776 		gdp = ext4_get_group_desc(sb, i, NULL);
2777 
2778 		flex_group = ext4_flex_group(sbi, i);
2779 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2780 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2781 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2782 			     &fg->free_clusters);
2783 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2784 	}
2785 
2786 	return 1;
2787 failed:
2788 	return 0;
2789 }
2790 
2791 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2792 				   struct ext4_group_desc *gdp)
2793 {
2794 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2795 	__u16 crc = 0;
2796 	__le32 le_group = cpu_to_le32(block_group);
2797 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2798 
2799 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2800 		/* Use new metadata_csum algorithm */
2801 		__u32 csum32;
2802 		__u16 dummy_csum = 0;
2803 
2804 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2805 				     sizeof(le_group));
2806 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2807 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2808 				     sizeof(dummy_csum));
2809 		offset += sizeof(dummy_csum);
2810 		if (offset < sbi->s_desc_size)
2811 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2812 					     sbi->s_desc_size - offset);
2813 
2814 		crc = csum32 & 0xFFFF;
2815 		goto out;
2816 	}
2817 
2818 	/* old crc16 code */
2819 	if (!ext4_has_feature_gdt_csum(sb))
2820 		return 0;
2821 
2822 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2823 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2824 	crc = crc16(crc, (__u8 *)gdp, offset);
2825 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2826 	/* for checksum of struct ext4_group_desc do the rest...*/
2827 	if (ext4_has_feature_64bit(sb) &&
2828 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2829 		crc = crc16(crc, (__u8 *)gdp + offset,
2830 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2831 				offset);
2832 
2833 out:
2834 	return cpu_to_le16(crc);
2835 }
2836 
2837 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2838 				struct ext4_group_desc *gdp)
2839 {
2840 	if (ext4_has_group_desc_csum(sb) &&
2841 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2842 		return 0;
2843 
2844 	return 1;
2845 }
2846 
2847 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2848 			      struct ext4_group_desc *gdp)
2849 {
2850 	if (!ext4_has_group_desc_csum(sb))
2851 		return;
2852 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2853 }
2854 
2855 /* Called at mount-time, super-block is locked */
2856 static int ext4_check_descriptors(struct super_block *sb,
2857 				  ext4_fsblk_t sb_block,
2858 				  ext4_group_t *first_not_zeroed)
2859 {
2860 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2861 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2862 	ext4_fsblk_t last_block;
2863 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2864 	ext4_fsblk_t block_bitmap;
2865 	ext4_fsblk_t inode_bitmap;
2866 	ext4_fsblk_t inode_table;
2867 	int flexbg_flag = 0;
2868 	ext4_group_t i, grp = sbi->s_groups_count;
2869 
2870 	if (ext4_has_feature_flex_bg(sb))
2871 		flexbg_flag = 1;
2872 
2873 	ext4_debug("Checking group descriptors");
2874 
2875 	for (i = 0; i < sbi->s_groups_count; i++) {
2876 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2877 
2878 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2879 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2880 		else
2881 			last_block = first_block +
2882 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2883 
2884 		if ((grp == sbi->s_groups_count) &&
2885 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2886 			grp = i;
2887 
2888 		block_bitmap = ext4_block_bitmap(sb, gdp);
2889 		if (block_bitmap == sb_block) {
2890 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2891 				 "Block bitmap for group %u overlaps "
2892 				 "superblock", i);
2893 			if (!sb_rdonly(sb))
2894 				return 0;
2895 		}
2896 		if (block_bitmap >= sb_block + 1 &&
2897 		    block_bitmap <= last_bg_block) {
2898 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2899 				 "Block bitmap for group %u overlaps "
2900 				 "block group descriptors", i);
2901 			if (!sb_rdonly(sb))
2902 				return 0;
2903 		}
2904 		if (block_bitmap < first_block || block_bitmap > last_block) {
2905 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2906 			       "Block bitmap for group %u not in group "
2907 			       "(block %llu)!", i, block_bitmap);
2908 			return 0;
2909 		}
2910 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2911 		if (inode_bitmap == sb_block) {
2912 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2913 				 "Inode bitmap for group %u overlaps "
2914 				 "superblock", i);
2915 			if (!sb_rdonly(sb))
2916 				return 0;
2917 		}
2918 		if (inode_bitmap >= sb_block + 1 &&
2919 		    inode_bitmap <= last_bg_block) {
2920 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2921 				 "Inode bitmap for group %u overlaps "
2922 				 "block group descriptors", i);
2923 			if (!sb_rdonly(sb))
2924 				return 0;
2925 		}
2926 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2927 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2928 			       "Inode bitmap for group %u not in group "
2929 			       "(block %llu)!", i, inode_bitmap);
2930 			return 0;
2931 		}
2932 		inode_table = ext4_inode_table(sb, gdp);
2933 		if (inode_table == sb_block) {
2934 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2935 				 "Inode table for group %u overlaps "
2936 				 "superblock", i);
2937 			if (!sb_rdonly(sb))
2938 				return 0;
2939 		}
2940 		if (inode_table >= sb_block + 1 &&
2941 		    inode_table <= last_bg_block) {
2942 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2943 				 "Inode table for group %u overlaps "
2944 				 "block group descriptors", i);
2945 			if (!sb_rdonly(sb))
2946 				return 0;
2947 		}
2948 		if (inode_table < first_block ||
2949 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2950 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2951 			       "Inode table for group %u not in group "
2952 			       "(block %llu)!", i, inode_table);
2953 			return 0;
2954 		}
2955 		ext4_lock_group(sb, i);
2956 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2957 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2958 				 "Checksum for group %u failed (%u!=%u)",
2959 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2960 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2961 			if (!sb_rdonly(sb)) {
2962 				ext4_unlock_group(sb, i);
2963 				return 0;
2964 			}
2965 		}
2966 		ext4_unlock_group(sb, i);
2967 		if (!flexbg_flag)
2968 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2969 	}
2970 	if (NULL != first_not_zeroed)
2971 		*first_not_zeroed = grp;
2972 	return 1;
2973 }
2974 
2975 /*
2976  * Maximal extent format file size.
2977  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2978  * extent format containers, within a sector_t, and within i_blocks
2979  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2980  * so that won't be a limiting factor.
2981  *
2982  * However there is other limiting factor. We do store extents in the form
2983  * of starting block and length, hence the resulting length of the extent
2984  * covering maximum file size must fit into on-disk format containers as
2985  * well. Given that length is always by 1 unit bigger than max unit (because
2986  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2987  *
2988  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2989  */
2990 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2991 {
2992 	loff_t res;
2993 	loff_t upper_limit = MAX_LFS_FILESIZE;
2994 
2995 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2996 
2997 	if (!has_huge_files) {
2998 		upper_limit = (1LL << 32) - 1;
2999 
3000 		/* total blocks in file system block size */
3001 		upper_limit >>= (blkbits - 9);
3002 		upper_limit <<= blkbits;
3003 	}
3004 
3005 	/*
3006 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3007 	 * by one fs block, so ee_len can cover the extent of maximum file
3008 	 * size
3009 	 */
3010 	res = (1LL << 32) - 1;
3011 	res <<= blkbits;
3012 
3013 	/* Sanity check against vm- & vfs- imposed limits */
3014 	if (res > upper_limit)
3015 		res = upper_limit;
3016 
3017 	return res;
3018 }
3019 
3020 /*
3021  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3022  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3023  * We need to be 1 filesystem block less than the 2^48 sector limit.
3024  */
3025 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3026 {
3027 	loff_t res = EXT4_NDIR_BLOCKS;
3028 	int meta_blocks;
3029 	loff_t upper_limit;
3030 	/* This is calculated to be the largest file size for a dense, block
3031 	 * mapped file such that the file's total number of 512-byte sectors,
3032 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3033 	 *
3034 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3035 	 * number of 512-byte sectors of the file.
3036 	 */
3037 
3038 	if (!has_huge_files) {
3039 		/*
3040 		 * !has_huge_files or implies that the inode i_block field
3041 		 * represents total file blocks in 2^32 512-byte sectors ==
3042 		 * size of vfs inode i_blocks * 8
3043 		 */
3044 		upper_limit = (1LL << 32) - 1;
3045 
3046 		/* total blocks in file system block size */
3047 		upper_limit >>= (bits - 9);
3048 
3049 	} else {
3050 		/*
3051 		 * We use 48 bit ext4_inode i_blocks
3052 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3053 		 * represent total number of blocks in
3054 		 * file system block size
3055 		 */
3056 		upper_limit = (1LL << 48) - 1;
3057 
3058 	}
3059 
3060 	/* indirect blocks */
3061 	meta_blocks = 1;
3062 	/* double indirect blocks */
3063 	meta_blocks += 1 + (1LL << (bits-2));
3064 	/* tripple indirect blocks */
3065 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3066 
3067 	upper_limit -= meta_blocks;
3068 	upper_limit <<= bits;
3069 
3070 	res += 1LL << (bits-2);
3071 	res += 1LL << (2*(bits-2));
3072 	res += 1LL << (3*(bits-2));
3073 	res <<= bits;
3074 	if (res > upper_limit)
3075 		res = upper_limit;
3076 
3077 	if (res > MAX_LFS_FILESIZE)
3078 		res = MAX_LFS_FILESIZE;
3079 
3080 	return res;
3081 }
3082 
3083 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3084 				   ext4_fsblk_t logical_sb_block, int nr)
3085 {
3086 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3087 	ext4_group_t bg, first_meta_bg;
3088 	int has_super = 0;
3089 
3090 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3091 
3092 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3093 		return logical_sb_block + nr + 1;
3094 	bg = sbi->s_desc_per_block * nr;
3095 	if (ext4_bg_has_super(sb, bg))
3096 		has_super = 1;
3097 
3098 	/*
3099 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3100 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3101 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3102 	 * compensate.
3103 	 */
3104 	if (sb->s_blocksize == 1024 && nr == 0 &&
3105 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3106 		has_super++;
3107 
3108 	return (has_super + ext4_group_first_block_no(sb, bg));
3109 }
3110 
3111 /**
3112  * ext4_get_stripe_size: Get the stripe size.
3113  * @sbi: In memory super block info
3114  *
3115  * If we have specified it via mount option, then
3116  * use the mount option value. If the value specified at mount time is
3117  * greater than the blocks per group use the super block value.
3118  * If the super block value is greater than blocks per group return 0.
3119  * Allocator needs it be less than blocks per group.
3120  *
3121  */
3122 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3123 {
3124 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3125 	unsigned long stripe_width =
3126 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3127 	int ret;
3128 
3129 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3130 		ret = sbi->s_stripe;
3131 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3132 		ret = stripe_width;
3133 	else if (stride && stride <= sbi->s_blocks_per_group)
3134 		ret = stride;
3135 	else
3136 		ret = 0;
3137 
3138 	/*
3139 	 * If the stripe width is 1, this makes no sense and
3140 	 * we set it to 0 to turn off stripe handling code.
3141 	 */
3142 	if (ret <= 1)
3143 		ret = 0;
3144 
3145 	return ret;
3146 }
3147 
3148 /*
3149  * Check whether this filesystem can be mounted based on
3150  * the features present and the RDONLY/RDWR mount requested.
3151  * Returns 1 if this filesystem can be mounted as requested,
3152  * 0 if it cannot be.
3153  */
3154 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3155 {
3156 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3157 		ext4_msg(sb, KERN_ERR,
3158 			"Couldn't mount because of "
3159 			"unsupported optional features (%x)",
3160 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3161 			~EXT4_FEATURE_INCOMPAT_SUPP));
3162 		return 0;
3163 	}
3164 
3165 #ifndef CONFIG_UNICODE
3166 	if (ext4_has_feature_casefold(sb)) {
3167 		ext4_msg(sb, KERN_ERR,
3168 			 "Filesystem with casefold feature cannot be "
3169 			 "mounted without CONFIG_UNICODE");
3170 		return 0;
3171 	}
3172 #endif
3173 
3174 	if (readonly)
3175 		return 1;
3176 
3177 	if (ext4_has_feature_readonly(sb)) {
3178 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3179 		sb->s_flags |= SB_RDONLY;
3180 		return 1;
3181 	}
3182 
3183 	/* Check that feature set is OK for a read-write mount */
3184 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3185 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3186 			 "unsupported optional features (%x)",
3187 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3188 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3189 		return 0;
3190 	}
3191 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3192 		ext4_msg(sb, KERN_ERR,
3193 			 "Can't support bigalloc feature without "
3194 			 "extents feature\n");
3195 		return 0;
3196 	}
3197 
3198 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3199 	if (!readonly && (ext4_has_feature_quota(sb) ||
3200 			  ext4_has_feature_project(sb))) {
3201 		ext4_msg(sb, KERN_ERR,
3202 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3203 		return 0;
3204 	}
3205 #endif  /* CONFIG_QUOTA */
3206 	return 1;
3207 }
3208 
3209 /*
3210  * This function is called once a day if we have errors logged
3211  * on the file system
3212  */
3213 static void print_daily_error_info(struct timer_list *t)
3214 {
3215 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3216 	struct super_block *sb = sbi->s_sb;
3217 	struct ext4_super_block *es = sbi->s_es;
3218 
3219 	if (es->s_error_count)
3220 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3221 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3222 			 le32_to_cpu(es->s_error_count));
3223 	if (es->s_first_error_time) {
3224 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3225 		       sb->s_id,
3226 		       ext4_get_tstamp(es, s_first_error_time),
3227 		       (int) sizeof(es->s_first_error_func),
3228 		       es->s_first_error_func,
3229 		       le32_to_cpu(es->s_first_error_line));
3230 		if (es->s_first_error_ino)
3231 			printk(KERN_CONT ": inode %u",
3232 			       le32_to_cpu(es->s_first_error_ino));
3233 		if (es->s_first_error_block)
3234 			printk(KERN_CONT ": block %llu", (unsigned long long)
3235 			       le64_to_cpu(es->s_first_error_block));
3236 		printk(KERN_CONT "\n");
3237 	}
3238 	if (es->s_last_error_time) {
3239 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3240 		       sb->s_id,
3241 		       ext4_get_tstamp(es, s_last_error_time),
3242 		       (int) sizeof(es->s_last_error_func),
3243 		       es->s_last_error_func,
3244 		       le32_to_cpu(es->s_last_error_line));
3245 		if (es->s_last_error_ino)
3246 			printk(KERN_CONT ": inode %u",
3247 			       le32_to_cpu(es->s_last_error_ino));
3248 		if (es->s_last_error_block)
3249 			printk(KERN_CONT ": block %llu", (unsigned long long)
3250 			       le64_to_cpu(es->s_last_error_block));
3251 		printk(KERN_CONT "\n");
3252 	}
3253 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3254 }
3255 
3256 /* Find next suitable group and run ext4_init_inode_table */
3257 static int ext4_run_li_request(struct ext4_li_request *elr)
3258 {
3259 	struct ext4_group_desc *gdp = NULL;
3260 	struct super_block *sb = elr->lr_super;
3261 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3262 	ext4_group_t group = elr->lr_next_group;
3263 	unsigned long timeout = 0;
3264 	unsigned int prefetch_ios = 0;
3265 	int ret = 0;
3266 
3267 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3268 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3269 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3270 		if (prefetch_ios)
3271 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3272 					      prefetch_ios);
3273 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3274 					    prefetch_ios);
3275 		if (group >= elr->lr_next_group) {
3276 			ret = 1;
3277 			if (elr->lr_first_not_zeroed != ngroups &&
3278 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3279 				elr->lr_next_group = elr->lr_first_not_zeroed;
3280 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3281 				ret = 0;
3282 			}
3283 		}
3284 		return ret;
3285 	}
3286 
3287 	for (; group < ngroups; group++) {
3288 		gdp = ext4_get_group_desc(sb, group, NULL);
3289 		if (!gdp) {
3290 			ret = 1;
3291 			break;
3292 		}
3293 
3294 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3295 			break;
3296 	}
3297 
3298 	if (group >= ngroups)
3299 		ret = 1;
3300 
3301 	if (!ret) {
3302 		timeout = jiffies;
3303 		ret = ext4_init_inode_table(sb, group,
3304 					    elr->lr_timeout ? 0 : 1);
3305 		trace_ext4_lazy_itable_init(sb, group);
3306 		if (elr->lr_timeout == 0) {
3307 			timeout = (jiffies - timeout) *
3308 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3309 			elr->lr_timeout = timeout;
3310 		}
3311 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3312 		elr->lr_next_group = group + 1;
3313 	}
3314 	return ret;
3315 }
3316 
3317 /*
3318  * Remove lr_request from the list_request and free the
3319  * request structure. Should be called with li_list_mtx held
3320  */
3321 static void ext4_remove_li_request(struct ext4_li_request *elr)
3322 {
3323 	if (!elr)
3324 		return;
3325 
3326 	list_del(&elr->lr_request);
3327 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3328 	kfree(elr);
3329 }
3330 
3331 static void ext4_unregister_li_request(struct super_block *sb)
3332 {
3333 	mutex_lock(&ext4_li_mtx);
3334 	if (!ext4_li_info) {
3335 		mutex_unlock(&ext4_li_mtx);
3336 		return;
3337 	}
3338 
3339 	mutex_lock(&ext4_li_info->li_list_mtx);
3340 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3341 	mutex_unlock(&ext4_li_info->li_list_mtx);
3342 	mutex_unlock(&ext4_li_mtx);
3343 }
3344 
3345 static struct task_struct *ext4_lazyinit_task;
3346 
3347 /*
3348  * This is the function where ext4lazyinit thread lives. It walks
3349  * through the request list searching for next scheduled filesystem.
3350  * When such a fs is found, run the lazy initialization request
3351  * (ext4_rn_li_request) and keep track of the time spend in this
3352  * function. Based on that time we compute next schedule time of
3353  * the request. When walking through the list is complete, compute
3354  * next waking time and put itself into sleep.
3355  */
3356 static int ext4_lazyinit_thread(void *arg)
3357 {
3358 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3359 	struct list_head *pos, *n;
3360 	struct ext4_li_request *elr;
3361 	unsigned long next_wakeup, cur;
3362 
3363 	BUG_ON(NULL == eli);
3364 
3365 cont_thread:
3366 	while (true) {
3367 		next_wakeup = MAX_JIFFY_OFFSET;
3368 
3369 		mutex_lock(&eli->li_list_mtx);
3370 		if (list_empty(&eli->li_request_list)) {
3371 			mutex_unlock(&eli->li_list_mtx);
3372 			goto exit_thread;
3373 		}
3374 		list_for_each_safe(pos, n, &eli->li_request_list) {
3375 			int err = 0;
3376 			int progress = 0;
3377 			elr = list_entry(pos, struct ext4_li_request,
3378 					 lr_request);
3379 
3380 			if (time_before(jiffies, elr->lr_next_sched)) {
3381 				if (time_before(elr->lr_next_sched, next_wakeup))
3382 					next_wakeup = elr->lr_next_sched;
3383 				continue;
3384 			}
3385 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3386 				if (sb_start_write_trylock(elr->lr_super)) {
3387 					progress = 1;
3388 					/*
3389 					 * We hold sb->s_umount, sb can not
3390 					 * be removed from the list, it is
3391 					 * now safe to drop li_list_mtx
3392 					 */
3393 					mutex_unlock(&eli->li_list_mtx);
3394 					err = ext4_run_li_request(elr);
3395 					sb_end_write(elr->lr_super);
3396 					mutex_lock(&eli->li_list_mtx);
3397 					n = pos->next;
3398 				}
3399 				up_read((&elr->lr_super->s_umount));
3400 			}
3401 			/* error, remove the lazy_init job */
3402 			if (err) {
3403 				ext4_remove_li_request(elr);
3404 				continue;
3405 			}
3406 			if (!progress) {
3407 				elr->lr_next_sched = jiffies +
3408 					(prandom_u32()
3409 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3410 			}
3411 			if (time_before(elr->lr_next_sched, next_wakeup))
3412 				next_wakeup = elr->lr_next_sched;
3413 		}
3414 		mutex_unlock(&eli->li_list_mtx);
3415 
3416 		try_to_freeze();
3417 
3418 		cur = jiffies;
3419 		if ((time_after_eq(cur, next_wakeup)) ||
3420 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3421 			cond_resched();
3422 			continue;
3423 		}
3424 
3425 		schedule_timeout_interruptible(next_wakeup - cur);
3426 
3427 		if (kthread_should_stop()) {
3428 			ext4_clear_request_list();
3429 			goto exit_thread;
3430 		}
3431 	}
3432 
3433 exit_thread:
3434 	/*
3435 	 * It looks like the request list is empty, but we need
3436 	 * to check it under the li_list_mtx lock, to prevent any
3437 	 * additions into it, and of course we should lock ext4_li_mtx
3438 	 * to atomically free the list and ext4_li_info, because at
3439 	 * this point another ext4 filesystem could be registering
3440 	 * new one.
3441 	 */
3442 	mutex_lock(&ext4_li_mtx);
3443 	mutex_lock(&eli->li_list_mtx);
3444 	if (!list_empty(&eli->li_request_list)) {
3445 		mutex_unlock(&eli->li_list_mtx);
3446 		mutex_unlock(&ext4_li_mtx);
3447 		goto cont_thread;
3448 	}
3449 	mutex_unlock(&eli->li_list_mtx);
3450 	kfree(ext4_li_info);
3451 	ext4_li_info = NULL;
3452 	mutex_unlock(&ext4_li_mtx);
3453 
3454 	return 0;
3455 }
3456 
3457 static void ext4_clear_request_list(void)
3458 {
3459 	struct list_head *pos, *n;
3460 	struct ext4_li_request *elr;
3461 
3462 	mutex_lock(&ext4_li_info->li_list_mtx);
3463 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3464 		elr = list_entry(pos, struct ext4_li_request,
3465 				 lr_request);
3466 		ext4_remove_li_request(elr);
3467 	}
3468 	mutex_unlock(&ext4_li_info->li_list_mtx);
3469 }
3470 
3471 static int ext4_run_lazyinit_thread(void)
3472 {
3473 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3474 					 ext4_li_info, "ext4lazyinit");
3475 	if (IS_ERR(ext4_lazyinit_task)) {
3476 		int err = PTR_ERR(ext4_lazyinit_task);
3477 		ext4_clear_request_list();
3478 		kfree(ext4_li_info);
3479 		ext4_li_info = NULL;
3480 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3481 				 "initialization thread\n",
3482 				 err);
3483 		return err;
3484 	}
3485 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3486 	return 0;
3487 }
3488 
3489 /*
3490  * Check whether it make sense to run itable init. thread or not.
3491  * If there is at least one uninitialized inode table, return
3492  * corresponding group number, else the loop goes through all
3493  * groups and return total number of groups.
3494  */
3495 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3496 {
3497 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3498 	struct ext4_group_desc *gdp = NULL;
3499 
3500 	if (!ext4_has_group_desc_csum(sb))
3501 		return ngroups;
3502 
3503 	for (group = 0; group < ngroups; group++) {
3504 		gdp = ext4_get_group_desc(sb, group, NULL);
3505 		if (!gdp)
3506 			continue;
3507 
3508 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3509 			break;
3510 	}
3511 
3512 	return group;
3513 }
3514 
3515 static int ext4_li_info_new(void)
3516 {
3517 	struct ext4_lazy_init *eli = NULL;
3518 
3519 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3520 	if (!eli)
3521 		return -ENOMEM;
3522 
3523 	INIT_LIST_HEAD(&eli->li_request_list);
3524 	mutex_init(&eli->li_list_mtx);
3525 
3526 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3527 
3528 	ext4_li_info = eli;
3529 
3530 	return 0;
3531 }
3532 
3533 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3534 					    ext4_group_t start)
3535 {
3536 	struct ext4_li_request *elr;
3537 
3538 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3539 	if (!elr)
3540 		return NULL;
3541 
3542 	elr->lr_super = sb;
3543 	elr->lr_first_not_zeroed = start;
3544 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3545 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3546 		elr->lr_next_group = start;
3547 	} else {
3548 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3549 	}
3550 
3551 	/*
3552 	 * Randomize first schedule time of the request to
3553 	 * spread the inode table initialization requests
3554 	 * better.
3555 	 */
3556 	elr->lr_next_sched = jiffies + (prandom_u32() %
3557 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3558 	return elr;
3559 }
3560 
3561 int ext4_register_li_request(struct super_block *sb,
3562 			     ext4_group_t first_not_zeroed)
3563 {
3564 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3565 	struct ext4_li_request *elr = NULL;
3566 	ext4_group_t ngroups = sbi->s_groups_count;
3567 	int ret = 0;
3568 
3569 	mutex_lock(&ext4_li_mtx);
3570 	if (sbi->s_li_request != NULL) {
3571 		/*
3572 		 * Reset timeout so it can be computed again, because
3573 		 * s_li_wait_mult might have changed.
3574 		 */
3575 		sbi->s_li_request->lr_timeout = 0;
3576 		goto out;
3577 	}
3578 
3579 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3580 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3581 	     !test_opt(sb, INIT_INODE_TABLE)))
3582 		goto out;
3583 
3584 	elr = ext4_li_request_new(sb, first_not_zeroed);
3585 	if (!elr) {
3586 		ret = -ENOMEM;
3587 		goto out;
3588 	}
3589 
3590 	if (NULL == ext4_li_info) {
3591 		ret = ext4_li_info_new();
3592 		if (ret)
3593 			goto out;
3594 	}
3595 
3596 	mutex_lock(&ext4_li_info->li_list_mtx);
3597 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3598 	mutex_unlock(&ext4_li_info->li_list_mtx);
3599 
3600 	sbi->s_li_request = elr;
3601 	/*
3602 	 * set elr to NULL here since it has been inserted to
3603 	 * the request_list and the removal and free of it is
3604 	 * handled by ext4_clear_request_list from now on.
3605 	 */
3606 	elr = NULL;
3607 
3608 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3609 		ret = ext4_run_lazyinit_thread();
3610 		if (ret)
3611 			goto out;
3612 	}
3613 out:
3614 	mutex_unlock(&ext4_li_mtx);
3615 	if (ret)
3616 		kfree(elr);
3617 	return ret;
3618 }
3619 
3620 /*
3621  * We do not need to lock anything since this is called on
3622  * module unload.
3623  */
3624 static void ext4_destroy_lazyinit_thread(void)
3625 {
3626 	/*
3627 	 * If thread exited earlier
3628 	 * there's nothing to be done.
3629 	 */
3630 	if (!ext4_li_info || !ext4_lazyinit_task)
3631 		return;
3632 
3633 	kthread_stop(ext4_lazyinit_task);
3634 }
3635 
3636 static int set_journal_csum_feature_set(struct super_block *sb)
3637 {
3638 	int ret = 1;
3639 	int compat, incompat;
3640 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3641 
3642 	if (ext4_has_metadata_csum(sb)) {
3643 		/* journal checksum v3 */
3644 		compat = 0;
3645 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3646 	} else {
3647 		/* journal checksum v1 */
3648 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3649 		incompat = 0;
3650 	}
3651 
3652 	jbd2_journal_clear_features(sbi->s_journal,
3653 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3654 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3655 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3656 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3657 		ret = jbd2_journal_set_features(sbi->s_journal,
3658 				compat, 0,
3659 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3660 				incompat);
3661 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3662 		ret = jbd2_journal_set_features(sbi->s_journal,
3663 				compat, 0,
3664 				incompat);
3665 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3666 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3667 	} else {
3668 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3669 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3670 	}
3671 
3672 	return ret;
3673 }
3674 
3675 /*
3676  * Note: calculating the overhead so we can be compatible with
3677  * historical BSD practice is quite difficult in the face of
3678  * clusters/bigalloc.  This is because multiple metadata blocks from
3679  * different block group can end up in the same allocation cluster.
3680  * Calculating the exact overhead in the face of clustered allocation
3681  * requires either O(all block bitmaps) in memory or O(number of block
3682  * groups**2) in time.  We will still calculate the superblock for
3683  * older file systems --- and if we come across with a bigalloc file
3684  * system with zero in s_overhead_clusters the estimate will be close to
3685  * correct especially for very large cluster sizes --- but for newer
3686  * file systems, it's better to calculate this figure once at mkfs
3687  * time, and store it in the superblock.  If the superblock value is
3688  * present (even for non-bigalloc file systems), we will use it.
3689  */
3690 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3691 			  char *buf)
3692 {
3693 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3694 	struct ext4_group_desc	*gdp;
3695 	ext4_fsblk_t		first_block, last_block, b;
3696 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3697 	int			s, j, count = 0;
3698 
3699 	if (!ext4_has_feature_bigalloc(sb))
3700 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3701 			sbi->s_itb_per_group + 2);
3702 
3703 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3704 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3705 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3706 	for (i = 0; i < ngroups; i++) {
3707 		gdp = ext4_get_group_desc(sb, i, NULL);
3708 		b = ext4_block_bitmap(sb, gdp);
3709 		if (b >= first_block && b <= last_block) {
3710 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3711 			count++;
3712 		}
3713 		b = ext4_inode_bitmap(sb, gdp);
3714 		if (b >= first_block && b <= last_block) {
3715 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3716 			count++;
3717 		}
3718 		b = ext4_inode_table(sb, gdp);
3719 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3720 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3721 				int c = EXT4_B2C(sbi, b - first_block);
3722 				ext4_set_bit(c, buf);
3723 				count++;
3724 			}
3725 		if (i != grp)
3726 			continue;
3727 		s = 0;
3728 		if (ext4_bg_has_super(sb, grp)) {
3729 			ext4_set_bit(s++, buf);
3730 			count++;
3731 		}
3732 		j = ext4_bg_num_gdb(sb, grp);
3733 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3734 			ext4_error(sb, "Invalid number of block group "
3735 				   "descriptor blocks: %d", j);
3736 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3737 		}
3738 		count += j;
3739 		for (; j > 0; j--)
3740 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3741 	}
3742 	if (!count)
3743 		return 0;
3744 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3745 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3746 }
3747 
3748 /*
3749  * Compute the overhead and stash it in sbi->s_overhead
3750  */
3751 int ext4_calculate_overhead(struct super_block *sb)
3752 {
3753 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3754 	struct ext4_super_block *es = sbi->s_es;
3755 	struct inode *j_inode;
3756 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3757 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3758 	ext4_fsblk_t overhead = 0;
3759 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3760 
3761 	if (!buf)
3762 		return -ENOMEM;
3763 
3764 	/*
3765 	 * Compute the overhead (FS structures).  This is constant
3766 	 * for a given filesystem unless the number of block groups
3767 	 * changes so we cache the previous value until it does.
3768 	 */
3769 
3770 	/*
3771 	 * All of the blocks before first_data_block are overhead
3772 	 */
3773 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3774 
3775 	/*
3776 	 * Add the overhead found in each block group
3777 	 */
3778 	for (i = 0; i < ngroups; i++) {
3779 		int blks;
3780 
3781 		blks = count_overhead(sb, i, buf);
3782 		overhead += blks;
3783 		if (blks)
3784 			memset(buf, 0, PAGE_SIZE);
3785 		cond_resched();
3786 	}
3787 
3788 	/*
3789 	 * Add the internal journal blocks whether the journal has been
3790 	 * loaded or not
3791 	 */
3792 	if (sbi->s_journal && !sbi->s_journal_bdev)
3793 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3794 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3795 		/* j_inum for internal journal is non-zero */
3796 		j_inode = ext4_get_journal_inode(sb, j_inum);
3797 		if (j_inode) {
3798 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3799 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3800 			iput(j_inode);
3801 		} else {
3802 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3803 		}
3804 	}
3805 	sbi->s_overhead = overhead;
3806 	smp_wmb();
3807 	free_page((unsigned long) buf);
3808 	return 0;
3809 }
3810 
3811 static void ext4_set_resv_clusters(struct super_block *sb)
3812 {
3813 	ext4_fsblk_t resv_clusters;
3814 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3815 
3816 	/*
3817 	 * There's no need to reserve anything when we aren't using extents.
3818 	 * The space estimates are exact, there are no unwritten extents,
3819 	 * hole punching doesn't need new metadata... This is needed especially
3820 	 * to keep ext2/3 backward compatibility.
3821 	 */
3822 	if (!ext4_has_feature_extents(sb))
3823 		return;
3824 	/*
3825 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3826 	 * This should cover the situations where we can not afford to run
3827 	 * out of space like for example punch hole, or converting
3828 	 * unwritten extents in delalloc path. In most cases such
3829 	 * allocation would require 1, or 2 blocks, higher numbers are
3830 	 * very rare.
3831 	 */
3832 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3833 			 sbi->s_cluster_bits);
3834 
3835 	do_div(resv_clusters, 50);
3836 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3837 
3838 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3839 }
3840 
3841 static const char *ext4_quota_mode(struct super_block *sb)
3842 {
3843 #ifdef CONFIG_QUOTA
3844 	if (!ext4_quota_capable(sb))
3845 		return "none";
3846 
3847 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3848 		return "journalled";
3849 	else
3850 		return "writeback";
3851 #else
3852 	return "disabled";
3853 #endif
3854 }
3855 
3856 static void ext4_setup_csum_trigger(struct super_block *sb,
3857 				    enum ext4_journal_trigger_type type,
3858 				    void (*trigger)(
3859 					struct jbd2_buffer_trigger_type *type,
3860 					struct buffer_head *bh,
3861 					void *mapped_data,
3862 					size_t size))
3863 {
3864 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3865 
3866 	sbi->s_journal_triggers[type].sb = sb;
3867 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3868 }
3869 
3870 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3871 {
3872 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3873 	char *orig_data = kstrdup(data, GFP_KERNEL);
3874 	struct buffer_head *bh, **group_desc;
3875 	struct ext4_super_block *es = NULL;
3876 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3877 	struct flex_groups **flex_groups;
3878 	ext4_fsblk_t block;
3879 	ext4_fsblk_t sb_block = get_sb_block(&data);
3880 	ext4_fsblk_t logical_sb_block;
3881 	unsigned long offset = 0;
3882 	unsigned long def_mount_opts;
3883 	struct inode *root;
3884 	const char *descr;
3885 	int ret = -ENOMEM;
3886 	int blocksize, clustersize;
3887 	unsigned int db_count;
3888 	unsigned int i;
3889 	int needs_recovery, has_huge_files;
3890 	__u64 blocks_count;
3891 	int err = 0;
3892 	ext4_group_t first_not_zeroed;
3893 	struct ext4_parsed_options parsed_opts;
3894 
3895 	/* Set defaults for the variables that will be set during parsing */
3896 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3897 	parsed_opts.journal_devnum = 0;
3898 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3899 
3900 	if ((data && !orig_data) || !sbi)
3901 		goto out_free_base;
3902 
3903 	sbi->s_daxdev = dax_dev;
3904 	sbi->s_blockgroup_lock =
3905 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3906 	if (!sbi->s_blockgroup_lock)
3907 		goto out_free_base;
3908 
3909 	sb->s_fs_info = sbi;
3910 	sbi->s_sb = sb;
3911 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3912 	sbi->s_sb_block = sb_block;
3913 	sbi->s_sectors_written_start =
3914 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3915 
3916 	/* Cleanup superblock name */
3917 	strreplace(sb->s_id, '/', '!');
3918 
3919 	/* -EINVAL is default */
3920 	ret = -EINVAL;
3921 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3922 	if (!blocksize) {
3923 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3924 		goto out_fail;
3925 	}
3926 
3927 	/*
3928 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3929 	 * block sizes.  We need to calculate the offset from buffer start.
3930 	 */
3931 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3932 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3933 		offset = do_div(logical_sb_block, blocksize);
3934 	} else {
3935 		logical_sb_block = sb_block;
3936 	}
3937 
3938 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3939 	if (IS_ERR(bh)) {
3940 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3941 		ret = PTR_ERR(bh);
3942 		goto out_fail;
3943 	}
3944 	/*
3945 	 * Note: s_es must be initialized as soon as possible because
3946 	 *       some ext4 macro-instructions depend on its value
3947 	 */
3948 	es = (struct ext4_super_block *) (bh->b_data + offset);
3949 	sbi->s_es = es;
3950 	sb->s_magic = le16_to_cpu(es->s_magic);
3951 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3952 		goto cantfind_ext4;
3953 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3954 
3955 	/* Warn if metadata_csum and gdt_csum are both set. */
3956 	if (ext4_has_feature_metadata_csum(sb) &&
3957 	    ext4_has_feature_gdt_csum(sb))
3958 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3959 			     "redundant flags; please run fsck.");
3960 
3961 	/* Check for a known checksum algorithm */
3962 	if (!ext4_verify_csum_type(sb, es)) {
3963 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3964 			 "unknown checksum algorithm.");
3965 		silent = 1;
3966 		goto cantfind_ext4;
3967 	}
3968 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3969 				ext4_orphan_file_block_trigger);
3970 
3971 	/* Load the checksum driver */
3972 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3973 	if (IS_ERR(sbi->s_chksum_driver)) {
3974 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3975 		ret = PTR_ERR(sbi->s_chksum_driver);
3976 		sbi->s_chksum_driver = NULL;
3977 		goto failed_mount;
3978 	}
3979 
3980 	/* Check superblock checksum */
3981 	if (!ext4_superblock_csum_verify(sb, es)) {
3982 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3983 			 "invalid superblock checksum.  Run e2fsck?");
3984 		silent = 1;
3985 		ret = -EFSBADCRC;
3986 		goto cantfind_ext4;
3987 	}
3988 
3989 	/* Precompute checksum seed for all metadata */
3990 	if (ext4_has_feature_csum_seed(sb))
3991 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3992 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3993 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3994 					       sizeof(es->s_uuid));
3995 
3996 	/* Set defaults before we parse the mount options */
3997 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3998 	set_opt(sb, INIT_INODE_TABLE);
3999 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4000 		set_opt(sb, DEBUG);
4001 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4002 		set_opt(sb, GRPID);
4003 	if (def_mount_opts & EXT4_DEFM_UID16)
4004 		set_opt(sb, NO_UID32);
4005 	/* xattr user namespace & acls are now defaulted on */
4006 	set_opt(sb, XATTR_USER);
4007 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4008 	set_opt(sb, POSIX_ACL);
4009 #endif
4010 	if (ext4_has_feature_fast_commit(sb))
4011 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4012 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4013 	if (ext4_has_metadata_csum(sb))
4014 		set_opt(sb, JOURNAL_CHECKSUM);
4015 
4016 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4017 		set_opt(sb, JOURNAL_DATA);
4018 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4019 		set_opt(sb, ORDERED_DATA);
4020 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4021 		set_opt(sb, WRITEBACK_DATA);
4022 
4023 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4024 		set_opt(sb, ERRORS_PANIC);
4025 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4026 		set_opt(sb, ERRORS_CONT);
4027 	else
4028 		set_opt(sb, ERRORS_RO);
4029 	/* block_validity enabled by default; disable with noblock_validity */
4030 	set_opt(sb, BLOCK_VALIDITY);
4031 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4032 		set_opt(sb, DISCARD);
4033 
4034 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4035 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4036 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4037 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4038 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4039 
4040 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4041 		set_opt(sb, BARRIER);
4042 
4043 	/*
4044 	 * enable delayed allocation by default
4045 	 * Use -o nodelalloc to turn it off
4046 	 */
4047 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4048 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4049 		set_opt(sb, DELALLOC);
4050 
4051 	/*
4052 	 * set default s_li_wait_mult for lazyinit, for the case there is
4053 	 * no mount option specified.
4054 	 */
4055 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4056 
4057 	if (le32_to_cpu(es->s_log_block_size) >
4058 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4059 		ext4_msg(sb, KERN_ERR,
4060 			 "Invalid log block size: %u",
4061 			 le32_to_cpu(es->s_log_block_size));
4062 		goto failed_mount;
4063 	}
4064 	if (le32_to_cpu(es->s_log_cluster_size) >
4065 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4066 		ext4_msg(sb, KERN_ERR,
4067 			 "Invalid log cluster size: %u",
4068 			 le32_to_cpu(es->s_log_cluster_size));
4069 		goto failed_mount;
4070 	}
4071 
4072 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4073 
4074 	if (blocksize == PAGE_SIZE)
4075 		set_opt(sb, DIOREAD_NOLOCK);
4076 
4077 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4078 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4079 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4080 	} else {
4081 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4082 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4083 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4084 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4085 				 sbi->s_first_ino);
4086 			goto failed_mount;
4087 		}
4088 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4089 		    (!is_power_of_2(sbi->s_inode_size)) ||
4090 		    (sbi->s_inode_size > blocksize)) {
4091 			ext4_msg(sb, KERN_ERR,
4092 			       "unsupported inode size: %d",
4093 			       sbi->s_inode_size);
4094 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4095 			goto failed_mount;
4096 		}
4097 		/*
4098 		 * i_atime_extra is the last extra field available for
4099 		 * [acm]times in struct ext4_inode. Checking for that
4100 		 * field should suffice to ensure we have extra space
4101 		 * for all three.
4102 		 */
4103 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4104 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4105 			sb->s_time_gran = 1;
4106 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4107 		} else {
4108 			sb->s_time_gran = NSEC_PER_SEC;
4109 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4110 		}
4111 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4112 	}
4113 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4114 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4115 			EXT4_GOOD_OLD_INODE_SIZE;
4116 		if (ext4_has_feature_extra_isize(sb)) {
4117 			unsigned v, max = (sbi->s_inode_size -
4118 					   EXT4_GOOD_OLD_INODE_SIZE);
4119 
4120 			v = le16_to_cpu(es->s_want_extra_isize);
4121 			if (v > max) {
4122 				ext4_msg(sb, KERN_ERR,
4123 					 "bad s_want_extra_isize: %d", v);
4124 				goto failed_mount;
4125 			}
4126 			if (sbi->s_want_extra_isize < v)
4127 				sbi->s_want_extra_isize = v;
4128 
4129 			v = le16_to_cpu(es->s_min_extra_isize);
4130 			if (v > max) {
4131 				ext4_msg(sb, KERN_ERR,
4132 					 "bad s_min_extra_isize: %d", v);
4133 				goto failed_mount;
4134 			}
4135 			if (sbi->s_want_extra_isize < v)
4136 				sbi->s_want_extra_isize = v;
4137 		}
4138 	}
4139 
4140 	if (sbi->s_es->s_mount_opts[0]) {
4141 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4142 					      sizeof(sbi->s_es->s_mount_opts),
4143 					      GFP_KERNEL);
4144 		if (!s_mount_opts)
4145 			goto failed_mount;
4146 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4147 			ext4_msg(sb, KERN_WARNING,
4148 				 "failed to parse options in superblock: %s",
4149 				 s_mount_opts);
4150 		}
4151 		kfree(s_mount_opts);
4152 	}
4153 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4154 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4155 		goto failed_mount;
4156 
4157 #ifdef CONFIG_UNICODE
4158 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4159 		const struct ext4_sb_encodings *encoding_info;
4160 		struct unicode_map *encoding;
4161 		__u16 encoding_flags;
4162 
4163 		if (ext4_sb_read_encoding(es, &encoding_info,
4164 					  &encoding_flags)) {
4165 			ext4_msg(sb, KERN_ERR,
4166 				 "Encoding requested by superblock is unknown");
4167 			goto failed_mount;
4168 		}
4169 
4170 		encoding = utf8_load(encoding_info->version);
4171 		if (IS_ERR(encoding)) {
4172 			ext4_msg(sb, KERN_ERR,
4173 				 "can't mount with superblock charset: %s-%s "
4174 				 "not supported by the kernel. flags: 0x%x.",
4175 				 encoding_info->name, encoding_info->version,
4176 				 encoding_flags);
4177 			goto failed_mount;
4178 		}
4179 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4180 			 "%s-%s with flags 0x%hx", encoding_info->name,
4181 			 encoding_info->version?:"\b", encoding_flags);
4182 
4183 		sb->s_encoding = encoding;
4184 		sb->s_encoding_flags = encoding_flags;
4185 	}
4186 #endif
4187 
4188 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4189 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4190 		/* can't mount with both data=journal and dioread_nolock. */
4191 		clear_opt(sb, DIOREAD_NOLOCK);
4192 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4193 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4194 			ext4_msg(sb, KERN_ERR, "can't mount with "
4195 				 "both data=journal and delalloc");
4196 			goto failed_mount;
4197 		}
4198 		if (test_opt(sb, DAX_ALWAYS)) {
4199 			ext4_msg(sb, KERN_ERR, "can't mount with "
4200 				 "both data=journal and dax");
4201 			goto failed_mount;
4202 		}
4203 		if (ext4_has_feature_encrypt(sb)) {
4204 			ext4_msg(sb, KERN_WARNING,
4205 				 "encrypted files will use data=ordered "
4206 				 "instead of data journaling mode");
4207 		}
4208 		if (test_opt(sb, DELALLOC))
4209 			clear_opt(sb, DELALLOC);
4210 	} else {
4211 		sb->s_iflags |= SB_I_CGROUPWB;
4212 	}
4213 
4214 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4215 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4216 
4217 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4218 	    (ext4_has_compat_features(sb) ||
4219 	     ext4_has_ro_compat_features(sb) ||
4220 	     ext4_has_incompat_features(sb)))
4221 		ext4_msg(sb, KERN_WARNING,
4222 		       "feature flags set on rev 0 fs, "
4223 		       "running e2fsck is recommended");
4224 
4225 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4226 		set_opt2(sb, HURD_COMPAT);
4227 		if (ext4_has_feature_64bit(sb)) {
4228 			ext4_msg(sb, KERN_ERR,
4229 				 "The Hurd can't support 64-bit file systems");
4230 			goto failed_mount;
4231 		}
4232 
4233 		/*
4234 		 * ea_inode feature uses l_i_version field which is not
4235 		 * available in HURD_COMPAT mode.
4236 		 */
4237 		if (ext4_has_feature_ea_inode(sb)) {
4238 			ext4_msg(sb, KERN_ERR,
4239 				 "ea_inode feature is not supported for Hurd");
4240 			goto failed_mount;
4241 		}
4242 	}
4243 
4244 	if (IS_EXT2_SB(sb)) {
4245 		if (ext2_feature_set_ok(sb))
4246 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4247 				 "using the ext4 subsystem");
4248 		else {
4249 			/*
4250 			 * If we're probing be silent, if this looks like
4251 			 * it's actually an ext[34] filesystem.
4252 			 */
4253 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4254 				goto failed_mount;
4255 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4256 				 "to feature incompatibilities");
4257 			goto failed_mount;
4258 		}
4259 	}
4260 
4261 	if (IS_EXT3_SB(sb)) {
4262 		if (ext3_feature_set_ok(sb))
4263 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4264 				 "using the ext4 subsystem");
4265 		else {
4266 			/*
4267 			 * If we're probing be silent, if this looks like
4268 			 * it's actually an ext4 filesystem.
4269 			 */
4270 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4271 				goto failed_mount;
4272 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4273 				 "to feature incompatibilities");
4274 			goto failed_mount;
4275 		}
4276 	}
4277 
4278 	/*
4279 	 * Check feature flags regardless of the revision level, since we
4280 	 * previously didn't change the revision level when setting the flags,
4281 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4282 	 */
4283 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4284 		goto failed_mount;
4285 
4286 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4287 		ext4_msg(sb, KERN_ERR,
4288 			 "Number of reserved GDT blocks insanely large: %d",
4289 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4290 		goto failed_mount;
4291 	}
4292 
4293 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4294 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4295 
4296 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4297 		if (ext4_has_feature_inline_data(sb)) {
4298 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4299 					" that may contain inline data");
4300 			goto failed_mount;
4301 		}
4302 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4303 			ext4_msg(sb, KERN_ERR,
4304 				"DAX unsupported by block device.");
4305 			goto failed_mount;
4306 		}
4307 	}
4308 
4309 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4310 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4311 			 es->s_encryption_level);
4312 		goto failed_mount;
4313 	}
4314 
4315 	if (sb->s_blocksize != blocksize) {
4316 		/*
4317 		 * bh must be released before kill_bdev(), otherwise
4318 		 * it won't be freed and its page also. kill_bdev()
4319 		 * is called by sb_set_blocksize().
4320 		 */
4321 		brelse(bh);
4322 		/* Validate the filesystem blocksize */
4323 		if (!sb_set_blocksize(sb, blocksize)) {
4324 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4325 					blocksize);
4326 			bh = NULL;
4327 			goto failed_mount;
4328 		}
4329 
4330 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4331 		offset = do_div(logical_sb_block, blocksize);
4332 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4333 		if (IS_ERR(bh)) {
4334 			ext4_msg(sb, KERN_ERR,
4335 			       "Can't read superblock on 2nd try");
4336 			ret = PTR_ERR(bh);
4337 			bh = NULL;
4338 			goto failed_mount;
4339 		}
4340 		es = (struct ext4_super_block *)(bh->b_data + offset);
4341 		sbi->s_es = es;
4342 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4343 			ext4_msg(sb, KERN_ERR,
4344 			       "Magic mismatch, very weird!");
4345 			goto failed_mount;
4346 		}
4347 	}
4348 
4349 	has_huge_files = ext4_has_feature_huge_file(sb);
4350 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4351 						      has_huge_files);
4352 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4353 
4354 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4355 	if (ext4_has_feature_64bit(sb)) {
4356 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4357 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4358 		    !is_power_of_2(sbi->s_desc_size)) {
4359 			ext4_msg(sb, KERN_ERR,
4360 			       "unsupported descriptor size %lu",
4361 			       sbi->s_desc_size);
4362 			goto failed_mount;
4363 		}
4364 	} else
4365 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4366 
4367 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4368 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4369 
4370 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4371 	if (sbi->s_inodes_per_block == 0)
4372 		goto cantfind_ext4;
4373 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4374 	    sbi->s_inodes_per_group > blocksize * 8) {
4375 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4376 			 sbi->s_inodes_per_group);
4377 		goto failed_mount;
4378 	}
4379 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4380 					sbi->s_inodes_per_block;
4381 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4382 	sbi->s_sbh = bh;
4383 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4384 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4385 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4386 
4387 	for (i = 0; i < 4; i++)
4388 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4389 	sbi->s_def_hash_version = es->s_def_hash_version;
4390 	if (ext4_has_feature_dir_index(sb)) {
4391 		i = le32_to_cpu(es->s_flags);
4392 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4393 			sbi->s_hash_unsigned = 3;
4394 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4395 #ifdef __CHAR_UNSIGNED__
4396 			if (!sb_rdonly(sb))
4397 				es->s_flags |=
4398 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4399 			sbi->s_hash_unsigned = 3;
4400 #else
4401 			if (!sb_rdonly(sb))
4402 				es->s_flags |=
4403 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4404 #endif
4405 		}
4406 	}
4407 
4408 	/* Handle clustersize */
4409 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4410 	if (ext4_has_feature_bigalloc(sb)) {
4411 		if (clustersize < blocksize) {
4412 			ext4_msg(sb, KERN_ERR,
4413 				 "cluster size (%d) smaller than "
4414 				 "block size (%d)", clustersize, blocksize);
4415 			goto failed_mount;
4416 		}
4417 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4418 			le32_to_cpu(es->s_log_block_size);
4419 		sbi->s_clusters_per_group =
4420 			le32_to_cpu(es->s_clusters_per_group);
4421 		if (sbi->s_clusters_per_group > blocksize * 8) {
4422 			ext4_msg(sb, KERN_ERR,
4423 				 "#clusters per group too big: %lu",
4424 				 sbi->s_clusters_per_group);
4425 			goto failed_mount;
4426 		}
4427 		if (sbi->s_blocks_per_group !=
4428 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4429 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4430 				 "clusters per group (%lu) inconsistent",
4431 				 sbi->s_blocks_per_group,
4432 				 sbi->s_clusters_per_group);
4433 			goto failed_mount;
4434 		}
4435 	} else {
4436 		if (clustersize != blocksize) {
4437 			ext4_msg(sb, KERN_ERR,
4438 				 "fragment/cluster size (%d) != "
4439 				 "block size (%d)", clustersize, blocksize);
4440 			goto failed_mount;
4441 		}
4442 		if (sbi->s_blocks_per_group > blocksize * 8) {
4443 			ext4_msg(sb, KERN_ERR,
4444 				 "#blocks per group too big: %lu",
4445 				 sbi->s_blocks_per_group);
4446 			goto failed_mount;
4447 		}
4448 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4449 		sbi->s_cluster_bits = 0;
4450 	}
4451 	sbi->s_cluster_ratio = clustersize / blocksize;
4452 
4453 	/* Do we have standard group size of clustersize * 8 blocks ? */
4454 	if (sbi->s_blocks_per_group == clustersize << 3)
4455 		set_opt2(sb, STD_GROUP_SIZE);
4456 
4457 	/*
4458 	 * Test whether we have more sectors than will fit in sector_t,
4459 	 * and whether the max offset is addressable by the page cache.
4460 	 */
4461 	err = generic_check_addressable(sb->s_blocksize_bits,
4462 					ext4_blocks_count(es));
4463 	if (err) {
4464 		ext4_msg(sb, KERN_ERR, "filesystem"
4465 			 " too large to mount safely on this system");
4466 		goto failed_mount;
4467 	}
4468 
4469 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4470 		goto cantfind_ext4;
4471 
4472 	/* check blocks count against device size */
4473 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4474 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4475 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4476 		       "exceeds size of device (%llu blocks)",
4477 		       ext4_blocks_count(es), blocks_count);
4478 		goto failed_mount;
4479 	}
4480 
4481 	/*
4482 	 * It makes no sense for the first data block to be beyond the end
4483 	 * of the filesystem.
4484 	 */
4485 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4486 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4487 			 "block %u is beyond end of filesystem (%llu)",
4488 			 le32_to_cpu(es->s_first_data_block),
4489 			 ext4_blocks_count(es));
4490 		goto failed_mount;
4491 	}
4492 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4493 	    (sbi->s_cluster_ratio == 1)) {
4494 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4495 			 "block is 0 with a 1k block and cluster size");
4496 		goto failed_mount;
4497 	}
4498 
4499 	blocks_count = (ext4_blocks_count(es) -
4500 			le32_to_cpu(es->s_first_data_block) +
4501 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4502 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4503 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4504 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4505 		       "(block count %llu, first data block %u, "
4506 		       "blocks per group %lu)", blocks_count,
4507 		       ext4_blocks_count(es),
4508 		       le32_to_cpu(es->s_first_data_block),
4509 		       EXT4_BLOCKS_PER_GROUP(sb));
4510 		goto failed_mount;
4511 	}
4512 	sbi->s_groups_count = blocks_count;
4513 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4514 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4515 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4516 	    le32_to_cpu(es->s_inodes_count)) {
4517 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4518 			 le32_to_cpu(es->s_inodes_count),
4519 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4520 		ret = -EINVAL;
4521 		goto failed_mount;
4522 	}
4523 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4524 		   EXT4_DESC_PER_BLOCK(sb);
4525 	if (ext4_has_feature_meta_bg(sb)) {
4526 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4527 			ext4_msg(sb, KERN_WARNING,
4528 				 "first meta block group too large: %u "
4529 				 "(group descriptor block count %u)",
4530 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4531 			goto failed_mount;
4532 		}
4533 	}
4534 	rcu_assign_pointer(sbi->s_group_desc,
4535 			   kvmalloc_array(db_count,
4536 					  sizeof(struct buffer_head *),
4537 					  GFP_KERNEL));
4538 	if (sbi->s_group_desc == NULL) {
4539 		ext4_msg(sb, KERN_ERR, "not enough memory");
4540 		ret = -ENOMEM;
4541 		goto failed_mount;
4542 	}
4543 
4544 	bgl_lock_init(sbi->s_blockgroup_lock);
4545 
4546 	/* Pre-read the descriptors into the buffer cache */
4547 	for (i = 0; i < db_count; i++) {
4548 		block = descriptor_loc(sb, logical_sb_block, i);
4549 		ext4_sb_breadahead_unmovable(sb, block);
4550 	}
4551 
4552 	for (i = 0; i < db_count; i++) {
4553 		struct buffer_head *bh;
4554 
4555 		block = descriptor_loc(sb, logical_sb_block, i);
4556 		bh = ext4_sb_bread_unmovable(sb, block);
4557 		if (IS_ERR(bh)) {
4558 			ext4_msg(sb, KERN_ERR,
4559 			       "can't read group descriptor %d", i);
4560 			db_count = i;
4561 			ret = PTR_ERR(bh);
4562 			goto failed_mount2;
4563 		}
4564 		rcu_read_lock();
4565 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4566 		rcu_read_unlock();
4567 	}
4568 	sbi->s_gdb_count = db_count;
4569 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4570 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4571 		ret = -EFSCORRUPTED;
4572 		goto failed_mount2;
4573 	}
4574 
4575 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4576 	spin_lock_init(&sbi->s_error_lock);
4577 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4578 
4579 	/* Register extent status tree shrinker */
4580 	if (ext4_es_register_shrinker(sbi))
4581 		goto failed_mount3;
4582 
4583 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4584 	sbi->s_extent_max_zeroout_kb = 32;
4585 
4586 	/*
4587 	 * set up enough so that it can read an inode
4588 	 */
4589 	sb->s_op = &ext4_sops;
4590 	sb->s_export_op = &ext4_export_ops;
4591 	sb->s_xattr = ext4_xattr_handlers;
4592 #ifdef CONFIG_FS_ENCRYPTION
4593 	sb->s_cop = &ext4_cryptops;
4594 #endif
4595 #ifdef CONFIG_FS_VERITY
4596 	sb->s_vop = &ext4_verityops;
4597 #endif
4598 #ifdef CONFIG_QUOTA
4599 	sb->dq_op = &ext4_quota_operations;
4600 	if (ext4_has_feature_quota(sb))
4601 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4602 	else
4603 		sb->s_qcop = &ext4_qctl_operations;
4604 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4605 #endif
4606 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4607 
4608 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4609 	mutex_init(&sbi->s_orphan_lock);
4610 
4611 	/* Initialize fast commit stuff */
4612 	atomic_set(&sbi->s_fc_subtid, 0);
4613 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4614 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4615 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4616 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4617 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4618 	sbi->s_fc_bytes = 0;
4619 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4620 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4621 	spin_lock_init(&sbi->s_fc_lock);
4622 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4623 	sbi->s_fc_replay_state.fc_regions = NULL;
4624 	sbi->s_fc_replay_state.fc_regions_size = 0;
4625 	sbi->s_fc_replay_state.fc_regions_used = 0;
4626 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4627 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4628 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4629 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4630 
4631 	sb->s_root = NULL;
4632 
4633 	needs_recovery = (es->s_last_orphan != 0 ||
4634 			  ext4_has_feature_orphan_present(sb) ||
4635 			  ext4_has_feature_journal_needs_recovery(sb));
4636 
4637 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4638 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4639 			goto failed_mount3a;
4640 
4641 	/*
4642 	 * The first inode we look at is the journal inode.  Don't try
4643 	 * root first: it may be modified in the journal!
4644 	 */
4645 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4646 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4647 		if (err)
4648 			goto failed_mount3a;
4649 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4650 		   ext4_has_feature_journal_needs_recovery(sb)) {
4651 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4652 		       "suppressed and not mounted read-only");
4653 		goto failed_mount_wq;
4654 	} else {
4655 		/* Nojournal mode, all journal mount options are illegal */
4656 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4657 			ext4_msg(sb, KERN_ERR, "can't mount with "
4658 				 "journal_checksum, fs mounted w/o journal");
4659 			goto failed_mount_wq;
4660 		}
4661 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4662 			ext4_msg(sb, KERN_ERR, "can't mount with "
4663 				 "journal_async_commit, fs mounted w/o journal");
4664 			goto failed_mount_wq;
4665 		}
4666 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4667 			ext4_msg(sb, KERN_ERR, "can't mount with "
4668 				 "commit=%lu, fs mounted w/o journal",
4669 				 sbi->s_commit_interval / HZ);
4670 			goto failed_mount_wq;
4671 		}
4672 		if (EXT4_MOUNT_DATA_FLAGS &
4673 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4674 			ext4_msg(sb, KERN_ERR, "can't mount with "
4675 				 "data=, fs mounted w/o journal");
4676 			goto failed_mount_wq;
4677 		}
4678 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4679 		clear_opt(sb, JOURNAL_CHECKSUM);
4680 		clear_opt(sb, DATA_FLAGS);
4681 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4682 		sbi->s_journal = NULL;
4683 		needs_recovery = 0;
4684 		goto no_journal;
4685 	}
4686 
4687 	if (ext4_has_feature_64bit(sb) &&
4688 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4689 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4690 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4691 		goto failed_mount_wq;
4692 	}
4693 
4694 	if (!set_journal_csum_feature_set(sb)) {
4695 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4696 			 "feature set");
4697 		goto failed_mount_wq;
4698 	}
4699 
4700 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4701 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4702 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4703 		ext4_msg(sb, KERN_ERR,
4704 			"Failed to set fast commit journal feature");
4705 		goto failed_mount_wq;
4706 	}
4707 
4708 	/* We have now updated the journal if required, so we can
4709 	 * validate the data journaling mode. */
4710 	switch (test_opt(sb, DATA_FLAGS)) {
4711 	case 0:
4712 		/* No mode set, assume a default based on the journal
4713 		 * capabilities: ORDERED_DATA if the journal can
4714 		 * cope, else JOURNAL_DATA
4715 		 */
4716 		if (jbd2_journal_check_available_features
4717 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4718 			set_opt(sb, ORDERED_DATA);
4719 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4720 		} else {
4721 			set_opt(sb, JOURNAL_DATA);
4722 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4723 		}
4724 		break;
4725 
4726 	case EXT4_MOUNT_ORDERED_DATA:
4727 	case EXT4_MOUNT_WRITEBACK_DATA:
4728 		if (!jbd2_journal_check_available_features
4729 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4730 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4731 			       "requested data journaling mode");
4732 			goto failed_mount_wq;
4733 		}
4734 		break;
4735 	default:
4736 		break;
4737 	}
4738 
4739 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4740 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4741 		ext4_msg(sb, KERN_ERR, "can't mount with "
4742 			"journal_async_commit in data=ordered mode");
4743 		goto failed_mount_wq;
4744 	}
4745 
4746 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4747 
4748 	sbi->s_journal->j_submit_inode_data_buffers =
4749 		ext4_journal_submit_inode_data_buffers;
4750 	sbi->s_journal->j_finish_inode_data_buffers =
4751 		ext4_journal_finish_inode_data_buffers;
4752 
4753 no_journal:
4754 	if (!test_opt(sb, NO_MBCACHE)) {
4755 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4756 		if (!sbi->s_ea_block_cache) {
4757 			ext4_msg(sb, KERN_ERR,
4758 				 "Failed to create ea_block_cache");
4759 			goto failed_mount_wq;
4760 		}
4761 
4762 		if (ext4_has_feature_ea_inode(sb)) {
4763 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4764 			if (!sbi->s_ea_inode_cache) {
4765 				ext4_msg(sb, KERN_ERR,
4766 					 "Failed to create ea_inode_cache");
4767 				goto failed_mount_wq;
4768 			}
4769 		}
4770 	}
4771 
4772 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4773 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4774 		goto failed_mount_wq;
4775 	}
4776 
4777 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4778 	    !ext4_has_feature_encrypt(sb)) {
4779 		ext4_set_feature_encrypt(sb);
4780 		ext4_commit_super(sb);
4781 	}
4782 
4783 	/*
4784 	 * Get the # of file system overhead blocks from the
4785 	 * superblock if present.
4786 	 */
4787 	if (es->s_overhead_clusters)
4788 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4789 	else {
4790 		err = ext4_calculate_overhead(sb);
4791 		if (err)
4792 			goto failed_mount_wq;
4793 	}
4794 
4795 	/*
4796 	 * The maximum number of concurrent works can be high and
4797 	 * concurrency isn't really necessary.  Limit it to 1.
4798 	 */
4799 	EXT4_SB(sb)->rsv_conversion_wq =
4800 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4801 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4802 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4803 		ret = -ENOMEM;
4804 		goto failed_mount4;
4805 	}
4806 
4807 	/*
4808 	 * The jbd2_journal_load will have done any necessary log recovery,
4809 	 * so we can safely mount the rest of the filesystem now.
4810 	 */
4811 
4812 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4813 	if (IS_ERR(root)) {
4814 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4815 		ret = PTR_ERR(root);
4816 		root = NULL;
4817 		goto failed_mount4;
4818 	}
4819 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4820 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4821 		iput(root);
4822 		goto failed_mount4;
4823 	}
4824 
4825 	sb->s_root = d_make_root(root);
4826 	if (!sb->s_root) {
4827 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4828 		ret = -ENOMEM;
4829 		goto failed_mount4;
4830 	}
4831 
4832 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4833 	if (ret == -EROFS) {
4834 		sb->s_flags |= SB_RDONLY;
4835 		ret = 0;
4836 	} else if (ret)
4837 		goto failed_mount4a;
4838 
4839 	ext4_set_resv_clusters(sb);
4840 
4841 	if (test_opt(sb, BLOCK_VALIDITY)) {
4842 		err = ext4_setup_system_zone(sb);
4843 		if (err) {
4844 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4845 				 "zone (%d)", err);
4846 			goto failed_mount4a;
4847 		}
4848 	}
4849 	ext4_fc_replay_cleanup(sb);
4850 
4851 	ext4_ext_init(sb);
4852 
4853 	/*
4854 	 * Enable optimize_scan if number of groups is > threshold. This can be
4855 	 * turned off by passing "mb_optimize_scan=0". This can also be
4856 	 * turned on forcefully by passing "mb_optimize_scan=1".
4857 	 */
4858 	if (parsed_opts.mb_optimize_scan == 1)
4859 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4860 	else if (parsed_opts.mb_optimize_scan == 0)
4861 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
4862 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4863 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4864 
4865 	err = ext4_mb_init(sb);
4866 	if (err) {
4867 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4868 			 err);
4869 		goto failed_mount5;
4870 	}
4871 
4872 	/*
4873 	 * We can only set up the journal commit callback once
4874 	 * mballoc is initialized
4875 	 */
4876 	if (sbi->s_journal)
4877 		sbi->s_journal->j_commit_callback =
4878 			ext4_journal_commit_callback;
4879 
4880 	block = ext4_count_free_clusters(sb);
4881 	ext4_free_blocks_count_set(sbi->s_es,
4882 				   EXT4_C2B(sbi, block));
4883 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4884 				  GFP_KERNEL);
4885 	if (!err) {
4886 		unsigned long freei = ext4_count_free_inodes(sb);
4887 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4888 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4889 					  GFP_KERNEL);
4890 	}
4891 	/*
4892 	 * Update the checksum after updating free space/inode
4893 	 * counters.  Otherwise the superblock can have an incorrect
4894 	 * checksum in the buffer cache until it is written out and
4895 	 * e2fsprogs programs trying to open a file system immediately
4896 	 * after it is mounted can fail.
4897 	 */
4898 	ext4_superblock_csum_set(sb);
4899 	if (!err)
4900 		err = percpu_counter_init(&sbi->s_dirs_counter,
4901 					  ext4_count_dirs(sb), GFP_KERNEL);
4902 	if (!err)
4903 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4904 					  GFP_KERNEL);
4905 	if (!err)
4906 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4907 					  GFP_KERNEL);
4908 	if (!err)
4909 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4910 
4911 	if (err) {
4912 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4913 		goto failed_mount6;
4914 	}
4915 
4916 	if (ext4_has_feature_flex_bg(sb))
4917 		if (!ext4_fill_flex_info(sb)) {
4918 			ext4_msg(sb, KERN_ERR,
4919 			       "unable to initialize "
4920 			       "flex_bg meta info!");
4921 			ret = -ENOMEM;
4922 			goto failed_mount6;
4923 		}
4924 
4925 	err = ext4_register_li_request(sb, first_not_zeroed);
4926 	if (err)
4927 		goto failed_mount6;
4928 
4929 	err = ext4_register_sysfs(sb);
4930 	if (err)
4931 		goto failed_mount7;
4932 
4933 	err = ext4_init_orphan_info(sb);
4934 	if (err)
4935 		goto failed_mount8;
4936 #ifdef CONFIG_QUOTA
4937 	/* Enable quota usage during mount. */
4938 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4939 		err = ext4_enable_quotas(sb);
4940 		if (err)
4941 			goto failed_mount9;
4942 	}
4943 #endif  /* CONFIG_QUOTA */
4944 
4945 	/*
4946 	 * Save the original bdev mapping's wb_err value which could be
4947 	 * used to detect the metadata async write error.
4948 	 */
4949 	spin_lock_init(&sbi->s_bdev_wb_lock);
4950 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4951 				 &sbi->s_bdev_wb_err);
4952 	sb->s_bdev->bd_super = sb;
4953 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4954 	ext4_orphan_cleanup(sb, es);
4955 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4956 	if (needs_recovery) {
4957 		ext4_msg(sb, KERN_INFO, "recovery complete");
4958 		err = ext4_mark_recovery_complete(sb, es);
4959 		if (err)
4960 			goto failed_mount9;
4961 	}
4962 	if (EXT4_SB(sb)->s_journal) {
4963 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4964 			descr = " journalled data mode";
4965 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4966 			descr = " ordered data mode";
4967 		else
4968 			descr = " writeback data mode";
4969 	} else
4970 		descr = "out journal";
4971 
4972 	if (test_opt(sb, DISCARD)) {
4973 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4974 		if (!blk_queue_discard(q))
4975 			ext4_msg(sb, KERN_WARNING,
4976 				 "mounting with \"discard\" option, but "
4977 				 "the device does not support discard");
4978 	}
4979 
4980 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4981 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4982 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
4983 			 (int) sizeof(sbi->s_es->s_mount_opts),
4984 			 sbi->s_es->s_mount_opts,
4985 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
4986 			 ext4_quota_mode(sb));
4987 
4988 	if (es->s_error_count)
4989 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4990 
4991 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4992 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4993 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4994 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4995 	atomic_set(&sbi->s_warning_count, 0);
4996 	atomic_set(&sbi->s_msg_count, 0);
4997 
4998 	kfree(orig_data);
4999 	return 0;
5000 
5001 cantfind_ext4:
5002 	if (!silent)
5003 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5004 	goto failed_mount;
5005 
5006 failed_mount9:
5007 	ext4_release_orphan_info(sb);
5008 failed_mount8:
5009 	ext4_unregister_sysfs(sb);
5010 	kobject_put(&sbi->s_kobj);
5011 failed_mount7:
5012 	ext4_unregister_li_request(sb);
5013 failed_mount6:
5014 	ext4_mb_release(sb);
5015 	rcu_read_lock();
5016 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5017 	if (flex_groups) {
5018 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5019 			kvfree(flex_groups[i]);
5020 		kvfree(flex_groups);
5021 	}
5022 	rcu_read_unlock();
5023 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5024 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5025 	percpu_counter_destroy(&sbi->s_dirs_counter);
5026 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5027 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5028 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5029 failed_mount5:
5030 	ext4_ext_release(sb);
5031 	ext4_release_system_zone(sb);
5032 failed_mount4a:
5033 	dput(sb->s_root);
5034 	sb->s_root = NULL;
5035 failed_mount4:
5036 	ext4_msg(sb, KERN_ERR, "mount failed");
5037 	if (EXT4_SB(sb)->rsv_conversion_wq)
5038 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5039 failed_mount_wq:
5040 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5041 	sbi->s_ea_inode_cache = NULL;
5042 
5043 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5044 	sbi->s_ea_block_cache = NULL;
5045 
5046 	if (sbi->s_journal) {
5047 		jbd2_journal_destroy(sbi->s_journal);
5048 		sbi->s_journal = NULL;
5049 	}
5050 failed_mount3a:
5051 	ext4_es_unregister_shrinker(sbi);
5052 failed_mount3:
5053 	flush_work(&sbi->s_error_work);
5054 	del_timer_sync(&sbi->s_err_report);
5055 	ext4_stop_mmpd(sbi);
5056 failed_mount2:
5057 	rcu_read_lock();
5058 	group_desc = rcu_dereference(sbi->s_group_desc);
5059 	for (i = 0; i < db_count; i++)
5060 		brelse(group_desc[i]);
5061 	kvfree(group_desc);
5062 	rcu_read_unlock();
5063 failed_mount:
5064 	if (sbi->s_chksum_driver)
5065 		crypto_free_shash(sbi->s_chksum_driver);
5066 
5067 #ifdef CONFIG_UNICODE
5068 	utf8_unload(sb->s_encoding);
5069 #endif
5070 
5071 #ifdef CONFIG_QUOTA
5072 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5073 		kfree(get_qf_name(sb, sbi, i));
5074 #endif
5075 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5076 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5077 	brelse(bh);
5078 	ext4_blkdev_remove(sbi);
5079 out_fail:
5080 	sb->s_fs_info = NULL;
5081 	kfree(sbi->s_blockgroup_lock);
5082 out_free_base:
5083 	kfree(sbi);
5084 	kfree(orig_data);
5085 	fs_put_dax(dax_dev);
5086 	return err ? err : ret;
5087 }
5088 
5089 /*
5090  * Setup any per-fs journal parameters now.  We'll do this both on
5091  * initial mount, once the journal has been initialised but before we've
5092  * done any recovery; and again on any subsequent remount.
5093  */
5094 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5095 {
5096 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5097 
5098 	journal->j_commit_interval = sbi->s_commit_interval;
5099 	journal->j_min_batch_time = sbi->s_min_batch_time;
5100 	journal->j_max_batch_time = sbi->s_max_batch_time;
5101 	ext4_fc_init(sb, journal);
5102 
5103 	write_lock(&journal->j_state_lock);
5104 	if (test_opt(sb, BARRIER))
5105 		journal->j_flags |= JBD2_BARRIER;
5106 	else
5107 		journal->j_flags &= ~JBD2_BARRIER;
5108 	if (test_opt(sb, DATA_ERR_ABORT))
5109 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5110 	else
5111 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5112 	write_unlock(&journal->j_state_lock);
5113 }
5114 
5115 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5116 					     unsigned int journal_inum)
5117 {
5118 	struct inode *journal_inode;
5119 
5120 	/*
5121 	 * Test for the existence of a valid inode on disk.  Bad things
5122 	 * happen if we iget() an unused inode, as the subsequent iput()
5123 	 * will try to delete it.
5124 	 */
5125 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5126 	if (IS_ERR(journal_inode)) {
5127 		ext4_msg(sb, KERN_ERR, "no journal found");
5128 		return NULL;
5129 	}
5130 	if (!journal_inode->i_nlink) {
5131 		make_bad_inode(journal_inode);
5132 		iput(journal_inode);
5133 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5134 		return NULL;
5135 	}
5136 
5137 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5138 		  journal_inode, journal_inode->i_size);
5139 	if (!S_ISREG(journal_inode->i_mode)) {
5140 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5141 		iput(journal_inode);
5142 		return NULL;
5143 	}
5144 	return journal_inode;
5145 }
5146 
5147 static journal_t *ext4_get_journal(struct super_block *sb,
5148 				   unsigned int journal_inum)
5149 {
5150 	struct inode *journal_inode;
5151 	journal_t *journal;
5152 
5153 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5154 		return NULL;
5155 
5156 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5157 	if (!journal_inode)
5158 		return NULL;
5159 
5160 	journal = jbd2_journal_init_inode(journal_inode);
5161 	if (!journal) {
5162 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5163 		iput(journal_inode);
5164 		return NULL;
5165 	}
5166 	journal->j_private = sb;
5167 	ext4_init_journal_params(sb, journal);
5168 	return journal;
5169 }
5170 
5171 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5172 				       dev_t j_dev)
5173 {
5174 	struct buffer_head *bh;
5175 	journal_t *journal;
5176 	ext4_fsblk_t start;
5177 	ext4_fsblk_t len;
5178 	int hblock, blocksize;
5179 	ext4_fsblk_t sb_block;
5180 	unsigned long offset;
5181 	struct ext4_super_block *es;
5182 	struct block_device *bdev;
5183 
5184 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5185 		return NULL;
5186 
5187 	bdev = ext4_blkdev_get(j_dev, sb);
5188 	if (bdev == NULL)
5189 		return NULL;
5190 
5191 	blocksize = sb->s_blocksize;
5192 	hblock = bdev_logical_block_size(bdev);
5193 	if (blocksize < hblock) {
5194 		ext4_msg(sb, KERN_ERR,
5195 			"blocksize too small for journal device");
5196 		goto out_bdev;
5197 	}
5198 
5199 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5200 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5201 	set_blocksize(bdev, blocksize);
5202 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5203 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5204 		       "external journal");
5205 		goto out_bdev;
5206 	}
5207 
5208 	es = (struct ext4_super_block *) (bh->b_data + offset);
5209 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5210 	    !(le32_to_cpu(es->s_feature_incompat) &
5211 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5212 		ext4_msg(sb, KERN_ERR, "external journal has "
5213 					"bad superblock");
5214 		brelse(bh);
5215 		goto out_bdev;
5216 	}
5217 
5218 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5219 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5220 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5221 		ext4_msg(sb, KERN_ERR, "external journal has "
5222 				       "corrupt superblock");
5223 		brelse(bh);
5224 		goto out_bdev;
5225 	}
5226 
5227 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5228 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5229 		brelse(bh);
5230 		goto out_bdev;
5231 	}
5232 
5233 	len = ext4_blocks_count(es);
5234 	start = sb_block + 1;
5235 	brelse(bh);	/* we're done with the superblock */
5236 
5237 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5238 					start, len, blocksize);
5239 	if (!journal) {
5240 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5241 		goto out_bdev;
5242 	}
5243 	journal->j_private = sb;
5244 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5245 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5246 		goto out_journal;
5247 	}
5248 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5249 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5250 					"user (unsupported) - %d",
5251 			be32_to_cpu(journal->j_superblock->s_nr_users));
5252 		goto out_journal;
5253 	}
5254 	EXT4_SB(sb)->s_journal_bdev = bdev;
5255 	ext4_init_journal_params(sb, journal);
5256 	return journal;
5257 
5258 out_journal:
5259 	jbd2_journal_destroy(journal);
5260 out_bdev:
5261 	ext4_blkdev_put(bdev);
5262 	return NULL;
5263 }
5264 
5265 static int ext4_load_journal(struct super_block *sb,
5266 			     struct ext4_super_block *es,
5267 			     unsigned long journal_devnum)
5268 {
5269 	journal_t *journal;
5270 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5271 	dev_t journal_dev;
5272 	int err = 0;
5273 	int really_read_only;
5274 	int journal_dev_ro;
5275 
5276 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5277 		return -EFSCORRUPTED;
5278 
5279 	if (journal_devnum &&
5280 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5281 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5282 			"numbers have changed");
5283 		journal_dev = new_decode_dev(journal_devnum);
5284 	} else
5285 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5286 
5287 	if (journal_inum && journal_dev) {
5288 		ext4_msg(sb, KERN_ERR,
5289 			 "filesystem has both journal inode and journal device!");
5290 		return -EINVAL;
5291 	}
5292 
5293 	if (journal_inum) {
5294 		journal = ext4_get_journal(sb, journal_inum);
5295 		if (!journal)
5296 			return -EINVAL;
5297 	} else {
5298 		journal = ext4_get_dev_journal(sb, journal_dev);
5299 		if (!journal)
5300 			return -EINVAL;
5301 	}
5302 
5303 	journal_dev_ro = bdev_read_only(journal->j_dev);
5304 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5305 
5306 	if (journal_dev_ro && !sb_rdonly(sb)) {
5307 		ext4_msg(sb, KERN_ERR,
5308 			 "journal device read-only, try mounting with '-o ro'");
5309 		err = -EROFS;
5310 		goto err_out;
5311 	}
5312 
5313 	/*
5314 	 * Are we loading a blank journal or performing recovery after a
5315 	 * crash?  For recovery, we need to check in advance whether we
5316 	 * can get read-write access to the device.
5317 	 */
5318 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5319 		if (sb_rdonly(sb)) {
5320 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5321 					"required on readonly filesystem");
5322 			if (really_read_only) {
5323 				ext4_msg(sb, KERN_ERR, "write access "
5324 					"unavailable, cannot proceed "
5325 					"(try mounting with noload)");
5326 				err = -EROFS;
5327 				goto err_out;
5328 			}
5329 			ext4_msg(sb, KERN_INFO, "write access will "
5330 			       "be enabled during recovery");
5331 		}
5332 	}
5333 
5334 	if (!(journal->j_flags & JBD2_BARRIER))
5335 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5336 
5337 	if (!ext4_has_feature_journal_needs_recovery(sb))
5338 		err = jbd2_journal_wipe(journal, !really_read_only);
5339 	if (!err) {
5340 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5341 		if (save)
5342 			memcpy(save, ((char *) es) +
5343 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5344 		err = jbd2_journal_load(journal);
5345 		if (save)
5346 			memcpy(((char *) es) + EXT4_S_ERR_START,
5347 			       save, EXT4_S_ERR_LEN);
5348 		kfree(save);
5349 	}
5350 
5351 	if (err) {
5352 		ext4_msg(sb, KERN_ERR, "error loading journal");
5353 		goto err_out;
5354 	}
5355 
5356 	EXT4_SB(sb)->s_journal = journal;
5357 	err = ext4_clear_journal_err(sb, es);
5358 	if (err) {
5359 		EXT4_SB(sb)->s_journal = NULL;
5360 		jbd2_journal_destroy(journal);
5361 		return err;
5362 	}
5363 
5364 	if (!really_read_only && journal_devnum &&
5365 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5366 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5367 
5368 		/* Make sure we flush the recovery flag to disk. */
5369 		ext4_commit_super(sb);
5370 	}
5371 
5372 	return 0;
5373 
5374 err_out:
5375 	jbd2_journal_destroy(journal);
5376 	return err;
5377 }
5378 
5379 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5380 static void ext4_update_super(struct super_block *sb)
5381 {
5382 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5383 	struct ext4_super_block *es = sbi->s_es;
5384 	struct buffer_head *sbh = sbi->s_sbh;
5385 
5386 	lock_buffer(sbh);
5387 	/*
5388 	 * If the file system is mounted read-only, don't update the
5389 	 * superblock write time.  This avoids updating the superblock
5390 	 * write time when we are mounting the root file system
5391 	 * read/only but we need to replay the journal; at that point,
5392 	 * for people who are east of GMT and who make their clock
5393 	 * tick in localtime for Windows bug-for-bug compatibility,
5394 	 * the clock is set in the future, and this will cause e2fsck
5395 	 * to complain and force a full file system check.
5396 	 */
5397 	if (!(sb->s_flags & SB_RDONLY))
5398 		ext4_update_tstamp(es, s_wtime);
5399 	es->s_kbytes_written =
5400 		cpu_to_le64(sbi->s_kbytes_written +
5401 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5402 		      sbi->s_sectors_written_start) >> 1));
5403 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5404 		ext4_free_blocks_count_set(es,
5405 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5406 				&sbi->s_freeclusters_counter)));
5407 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5408 		es->s_free_inodes_count =
5409 			cpu_to_le32(percpu_counter_sum_positive(
5410 				&sbi->s_freeinodes_counter));
5411 	/* Copy error information to the on-disk superblock */
5412 	spin_lock(&sbi->s_error_lock);
5413 	if (sbi->s_add_error_count > 0) {
5414 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5415 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5416 			__ext4_update_tstamp(&es->s_first_error_time,
5417 					     &es->s_first_error_time_hi,
5418 					     sbi->s_first_error_time);
5419 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5420 				sizeof(es->s_first_error_func));
5421 			es->s_first_error_line =
5422 				cpu_to_le32(sbi->s_first_error_line);
5423 			es->s_first_error_ino =
5424 				cpu_to_le32(sbi->s_first_error_ino);
5425 			es->s_first_error_block =
5426 				cpu_to_le64(sbi->s_first_error_block);
5427 			es->s_first_error_errcode =
5428 				ext4_errno_to_code(sbi->s_first_error_code);
5429 		}
5430 		__ext4_update_tstamp(&es->s_last_error_time,
5431 				     &es->s_last_error_time_hi,
5432 				     sbi->s_last_error_time);
5433 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5434 			sizeof(es->s_last_error_func));
5435 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5436 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5437 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5438 		es->s_last_error_errcode =
5439 				ext4_errno_to_code(sbi->s_last_error_code);
5440 		/*
5441 		 * Start the daily error reporting function if it hasn't been
5442 		 * started already
5443 		 */
5444 		if (!es->s_error_count)
5445 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5446 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5447 		sbi->s_add_error_count = 0;
5448 	}
5449 	spin_unlock(&sbi->s_error_lock);
5450 
5451 	ext4_superblock_csum_set(sb);
5452 	unlock_buffer(sbh);
5453 }
5454 
5455 static int ext4_commit_super(struct super_block *sb)
5456 {
5457 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5458 	int error = 0;
5459 
5460 	if (!sbh)
5461 		return -EINVAL;
5462 	if (block_device_ejected(sb))
5463 		return -ENODEV;
5464 
5465 	ext4_update_super(sb);
5466 
5467 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5468 		/*
5469 		 * Oh, dear.  A previous attempt to write the
5470 		 * superblock failed.  This could happen because the
5471 		 * USB device was yanked out.  Or it could happen to
5472 		 * be a transient write error and maybe the block will
5473 		 * be remapped.  Nothing we can do but to retry the
5474 		 * write and hope for the best.
5475 		 */
5476 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5477 		       "superblock detected");
5478 		clear_buffer_write_io_error(sbh);
5479 		set_buffer_uptodate(sbh);
5480 	}
5481 	BUFFER_TRACE(sbh, "marking dirty");
5482 	mark_buffer_dirty(sbh);
5483 	error = __sync_dirty_buffer(sbh,
5484 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5485 	if (buffer_write_io_error(sbh)) {
5486 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5487 		       "superblock");
5488 		clear_buffer_write_io_error(sbh);
5489 		set_buffer_uptodate(sbh);
5490 	}
5491 	return error;
5492 }
5493 
5494 /*
5495  * Have we just finished recovery?  If so, and if we are mounting (or
5496  * remounting) the filesystem readonly, then we will end up with a
5497  * consistent fs on disk.  Record that fact.
5498  */
5499 static int ext4_mark_recovery_complete(struct super_block *sb,
5500 				       struct ext4_super_block *es)
5501 {
5502 	int err;
5503 	journal_t *journal = EXT4_SB(sb)->s_journal;
5504 
5505 	if (!ext4_has_feature_journal(sb)) {
5506 		if (journal != NULL) {
5507 			ext4_error(sb, "Journal got removed while the fs was "
5508 				   "mounted!");
5509 			return -EFSCORRUPTED;
5510 		}
5511 		return 0;
5512 	}
5513 	jbd2_journal_lock_updates(journal);
5514 	err = jbd2_journal_flush(journal, 0);
5515 	if (err < 0)
5516 		goto out;
5517 
5518 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5519 	    ext4_has_feature_orphan_present(sb))) {
5520 		if (!ext4_orphan_file_empty(sb)) {
5521 			ext4_error(sb, "Orphan file not empty on read-only fs.");
5522 			err = -EFSCORRUPTED;
5523 			goto out;
5524 		}
5525 		ext4_clear_feature_journal_needs_recovery(sb);
5526 		ext4_clear_feature_orphan_present(sb);
5527 		ext4_commit_super(sb);
5528 	}
5529 out:
5530 	jbd2_journal_unlock_updates(journal);
5531 	return err;
5532 }
5533 
5534 /*
5535  * If we are mounting (or read-write remounting) a filesystem whose journal
5536  * has recorded an error from a previous lifetime, move that error to the
5537  * main filesystem now.
5538  */
5539 static int ext4_clear_journal_err(struct super_block *sb,
5540 				   struct ext4_super_block *es)
5541 {
5542 	journal_t *journal;
5543 	int j_errno;
5544 	const char *errstr;
5545 
5546 	if (!ext4_has_feature_journal(sb)) {
5547 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5548 		return -EFSCORRUPTED;
5549 	}
5550 
5551 	journal = EXT4_SB(sb)->s_journal;
5552 
5553 	/*
5554 	 * Now check for any error status which may have been recorded in the
5555 	 * journal by a prior ext4_error() or ext4_abort()
5556 	 */
5557 
5558 	j_errno = jbd2_journal_errno(journal);
5559 	if (j_errno) {
5560 		char nbuf[16];
5561 
5562 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5563 		ext4_warning(sb, "Filesystem error recorded "
5564 			     "from previous mount: %s", errstr);
5565 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5566 
5567 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5568 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5569 		ext4_commit_super(sb);
5570 
5571 		jbd2_journal_clear_err(journal);
5572 		jbd2_journal_update_sb_errno(journal);
5573 	}
5574 	return 0;
5575 }
5576 
5577 /*
5578  * Force the running and committing transactions to commit,
5579  * and wait on the commit.
5580  */
5581 int ext4_force_commit(struct super_block *sb)
5582 {
5583 	journal_t *journal;
5584 
5585 	if (sb_rdonly(sb))
5586 		return 0;
5587 
5588 	journal = EXT4_SB(sb)->s_journal;
5589 	return ext4_journal_force_commit(journal);
5590 }
5591 
5592 static int ext4_sync_fs(struct super_block *sb, int wait)
5593 {
5594 	int ret = 0;
5595 	tid_t target;
5596 	bool needs_barrier = false;
5597 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5598 
5599 	if (unlikely(ext4_forced_shutdown(sbi)))
5600 		return 0;
5601 
5602 	trace_ext4_sync_fs(sb, wait);
5603 	flush_workqueue(sbi->rsv_conversion_wq);
5604 	/*
5605 	 * Writeback quota in non-journalled quota case - journalled quota has
5606 	 * no dirty dquots
5607 	 */
5608 	dquot_writeback_dquots(sb, -1);
5609 	/*
5610 	 * Data writeback is possible w/o journal transaction, so barrier must
5611 	 * being sent at the end of the function. But we can skip it if
5612 	 * transaction_commit will do it for us.
5613 	 */
5614 	if (sbi->s_journal) {
5615 		target = jbd2_get_latest_transaction(sbi->s_journal);
5616 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5617 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5618 			needs_barrier = true;
5619 
5620 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5621 			if (wait)
5622 				ret = jbd2_log_wait_commit(sbi->s_journal,
5623 							   target);
5624 		}
5625 	} else if (wait && test_opt(sb, BARRIER))
5626 		needs_barrier = true;
5627 	if (needs_barrier) {
5628 		int err;
5629 		err = blkdev_issue_flush(sb->s_bdev);
5630 		if (!ret)
5631 			ret = err;
5632 	}
5633 
5634 	return ret;
5635 }
5636 
5637 /*
5638  * LVM calls this function before a (read-only) snapshot is created.  This
5639  * gives us a chance to flush the journal completely and mark the fs clean.
5640  *
5641  * Note that only this function cannot bring a filesystem to be in a clean
5642  * state independently. It relies on upper layer to stop all data & metadata
5643  * modifications.
5644  */
5645 static int ext4_freeze(struct super_block *sb)
5646 {
5647 	int error = 0;
5648 	journal_t *journal;
5649 
5650 	if (sb_rdonly(sb))
5651 		return 0;
5652 
5653 	journal = EXT4_SB(sb)->s_journal;
5654 
5655 	if (journal) {
5656 		/* Now we set up the journal barrier. */
5657 		jbd2_journal_lock_updates(journal);
5658 
5659 		/*
5660 		 * Don't clear the needs_recovery flag if we failed to
5661 		 * flush the journal.
5662 		 */
5663 		error = jbd2_journal_flush(journal, 0);
5664 		if (error < 0)
5665 			goto out;
5666 
5667 		/* Journal blocked and flushed, clear needs_recovery flag. */
5668 		ext4_clear_feature_journal_needs_recovery(sb);
5669 		if (ext4_orphan_file_empty(sb))
5670 			ext4_clear_feature_orphan_present(sb);
5671 	}
5672 
5673 	error = ext4_commit_super(sb);
5674 out:
5675 	if (journal)
5676 		/* we rely on upper layer to stop further updates */
5677 		jbd2_journal_unlock_updates(journal);
5678 	return error;
5679 }
5680 
5681 /*
5682  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5683  * flag here, even though the filesystem is not technically dirty yet.
5684  */
5685 static int ext4_unfreeze(struct super_block *sb)
5686 {
5687 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5688 		return 0;
5689 
5690 	if (EXT4_SB(sb)->s_journal) {
5691 		/* Reset the needs_recovery flag before the fs is unlocked. */
5692 		ext4_set_feature_journal_needs_recovery(sb);
5693 		if (ext4_has_feature_orphan_file(sb))
5694 			ext4_set_feature_orphan_present(sb);
5695 	}
5696 
5697 	ext4_commit_super(sb);
5698 	return 0;
5699 }
5700 
5701 /*
5702  * Structure to save mount options for ext4_remount's benefit
5703  */
5704 struct ext4_mount_options {
5705 	unsigned long s_mount_opt;
5706 	unsigned long s_mount_opt2;
5707 	kuid_t s_resuid;
5708 	kgid_t s_resgid;
5709 	unsigned long s_commit_interval;
5710 	u32 s_min_batch_time, s_max_batch_time;
5711 #ifdef CONFIG_QUOTA
5712 	int s_jquota_fmt;
5713 	char *s_qf_names[EXT4_MAXQUOTAS];
5714 #endif
5715 };
5716 
5717 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5718 {
5719 	struct ext4_super_block *es;
5720 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5721 	unsigned long old_sb_flags, vfs_flags;
5722 	struct ext4_mount_options old_opts;
5723 	int enable_quota = 0;
5724 	ext4_group_t g;
5725 	int err = 0;
5726 #ifdef CONFIG_QUOTA
5727 	int i, j;
5728 	char *to_free[EXT4_MAXQUOTAS];
5729 #endif
5730 	char *orig_data = kstrdup(data, GFP_KERNEL);
5731 	struct ext4_parsed_options parsed_opts;
5732 
5733 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5734 	parsed_opts.journal_devnum = 0;
5735 
5736 	if (data && !orig_data)
5737 		return -ENOMEM;
5738 
5739 	/* Store the original options */
5740 	old_sb_flags = sb->s_flags;
5741 	old_opts.s_mount_opt = sbi->s_mount_opt;
5742 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5743 	old_opts.s_resuid = sbi->s_resuid;
5744 	old_opts.s_resgid = sbi->s_resgid;
5745 	old_opts.s_commit_interval = sbi->s_commit_interval;
5746 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5747 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5748 #ifdef CONFIG_QUOTA
5749 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5750 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5751 		if (sbi->s_qf_names[i]) {
5752 			char *qf_name = get_qf_name(sb, sbi, i);
5753 
5754 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5755 			if (!old_opts.s_qf_names[i]) {
5756 				for (j = 0; j < i; j++)
5757 					kfree(old_opts.s_qf_names[j]);
5758 				kfree(orig_data);
5759 				return -ENOMEM;
5760 			}
5761 		} else
5762 			old_opts.s_qf_names[i] = NULL;
5763 #endif
5764 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5765 		parsed_opts.journal_ioprio =
5766 			sbi->s_journal->j_task->io_context->ioprio;
5767 
5768 	/*
5769 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5770 	 * either way we need to make sure it matches in both *flags and
5771 	 * s_flags. Copy those selected flags from *flags to s_flags
5772 	 */
5773 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5774 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5775 
5776 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5777 		err = -EINVAL;
5778 		goto restore_opts;
5779 	}
5780 
5781 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5782 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5783 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5784 			 "during remount not supported; ignoring");
5785 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5786 	}
5787 
5788 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5789 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5790 			ext4_msg(sb, KERN_ERR, "can't mount with "
5791 				 "both data=journal and delalloc");
5792 			err = -EINVAL;
5793 			goto restore_opts;
5794 		}
5795 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5796 			ext4_msg(sb, KERN_ERR, "can't mount with "
5797 				 "both data=journal and dioread_nolock");
5798 			err = -EINVAL;
5799 			goto restore_opts;
5800 		}
5801 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5802 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5803 			ext4_msg(sb, KERN_ERR, "can't mount with "
5804 				"journal_async_commit in data=ordered mode");
5805 			err = -EINVAL;
5806 			goto restore_opts;
5807 		}
5808 	}
5809 
5810 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5811 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5812 		err = -EINVAL;
5813 		goto restore_opts;
5814 	}
5815 
5816 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5817 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5818 
5819 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5820 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5821 
5822 	es = sbi->s_es;
5823 
5824 	if (sbi->s_journal) {
5825 		ext4_init_journal_params(sb, sbi->s_journal);
5826 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5827 	}
5828 
5829 	/* Flush outstanding errors before changing fs state */
5830 	flush_work(&sbi->s_error_work);
5831 
5832 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5833 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5834 			err = -EROFS;
5835 			goto restore_opts;
5836 		}
5837 
5838 		if (*flags & SB_RDONLY) {
5839 			err = sync_filesystem(sb);
5840 			if (err < 0)
5841 				goto restore_opts;
5842 			err = dquot_suspend(sb, -1);
5843 			if (err < 0)
5844 				goto restore_opts;
5845 
5846 			/*
5847 			 * First of all, the unconditional stuff we have to do
5848 			 * to disable replay of the journal when we next remount
5849 			 */
5850 			sb->s_flags |= SB_RDONLY;
5851 
5852 			/*
5853 			 * OK, test if we are remounting a valid rw partition
5854 			 * readonly, and if so set the rdonly flag and then
5855 			 * mark the partition as valid again.
5856 			 */
5857 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5858 			    (sbi->s_mount_state & EXT4_VALID_FS))
5859 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5860 
5861 			if (sbi->s_journal) {
5862 				/*
5863 				 * We let remount-ro finish even if marking fs
5864 				 * as clean failed...
5865 				 */
5866 				ext4_mark_recovery_complete(sb, es);
5867 			}
5868 		} else {
5869 			/* Make sure we can mount this feature set readwrite */
5870 			if (ext4_has_feature_readonly(sb) ||
5871 			    !ext4_feature_set_ok(sb, 0)) {
5872 				err = -EROFS;
5873 				goto restore_opts;
5874 			}
5875 			/*
5876 			 * Make sure the group descriptor checksums
5877 			 * are sane.  If they aren't, refuse to remount r/w.
5878 			 */
5879 			for (g = 0; g < sbi->s_groups_count; g++) {
5880 				struct ext4_group_desc *gdp =
5881 					ext4_get_group_desc(sb, g, NULL);
5882 
5883 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5884 					ext4_msg(sb, KERN_ERR,
5885 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5886 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5887 					       le16_to_cpu(gdp->bg_checksum));
5888 					err = -EFSBADCRC;
5889 					goto restore_opts;
5890 				}
5891 			}
5892 
5893 			/*
5894 			 * If we have an unprocessed orphan list hanging
5895 			 * around from a previously readonly bdev mount,
5896 			 * require a full umount/remount for now.
5897 			 */
5898 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5899 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5900 				       "remount RDWR because of unprocessed "
5901 				       "orphan inode list.  Please "
5902 				       "umount/remount instead");
5903 				err = -EINVAL;
5904 				goto restore_opts;
5905 			}
5906 
5907 			/*
5908 			 * Mounting a RDONLY partition read-write, so reread
5909 			 * and store the current valid flag.  (It may have
5910 			 * been changed by e2fsck since we originally mounted
5911 			 * the partition.)
5912 			 */
5913 			if (sbi->s_journal) {
5914 				err = ext4_clear_journal_err(sb, es);
5915 				if (err)
5916 					goto restore_opts;
5917 			}
5918 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5919 
5920 			err = ext4_setup_super(sb, es, 0);
5921 			if (err)
5922 				goto restore_opts;
5923 
5924 			sb->s_flags &= ~SB_RDONLY;
5925 			if (ext4_has_feature_mmp(sb))
5926 				if (ext4_multi_mount_protect(sb,
5927 						le64_to_cpu(es->s_mmp_block))) {
5928 					err = -EROFS;
5929 					goto restore_opts;
5930 				}
5931 			enable_quota = 1;
5932 		}
5933 	}
5934 
5935 	/*
5936 	 * Reinitialize lazy itable initialization thread based on
5937 	 * current settings
5938 	 */
5939 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5940 		ext4_unregister_li_request(sb);
5941 	else {
5942 		ext4_group_t first_not_zeroed;
5943 		first_not_zeroed = ext4_has_uninit_itable(sb);
5944 		ext4_register_li_request(sb, first_not_zeroed);
5945 	}
5946 
5947 	/*
5948 	 * Handle creation of system zone data early because it can fail.
5949 	 * Releasing of existing data is done when we are sure remount will
5950 	 * succeed.
5951 	 */
5952 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5953 		err = ext4_setup_system_zone(sb);
5954 		if (err)
5955 			goto restore_opts;
5956 	}
5957 
5958 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5959 		err = ext4_commit_super(sb);
5960 		if (err)
5961 			goto restore_opts;
5962 	}
5963 
5964 #ifdef CONFIG_QUOTA
5965 	/* Release old quota file names */
5966 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5967 		kfree(old_opts.s_qf_names[i]);
5968 	if (enable_quota) {
5969 		if (sb_any_quota_suspended(sb))
5970 			dquot_resume(sb, -1);
5971 		else if (ext4_has_feature_quota(sb)) {
5972 			err = ext4_enable_quotas(sb);
5973 			if (err)
5974 				goto restore_opts;
5975 		}
5976 	}
5977 #endif
5978 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5979 		ext4_release_system_zone(sb);
5980 
5981 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
5982 		ext4_stop_mmpd(sbi);
5983 
5984 	/*
5985 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5986 	 * either way we need to make sure it matches in both *flags and
5987 	 * s_flags. Copy those selected flags from s_flags to *flags
5988 	 */
5989 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5990 
5991 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
5992 		 orig_data, ext4_quota_mode(sb));
5993 	kfree(orig_data);
5994 	return 0;
5995 
5996 restore_opts:
5997 	sb->s_flags = old_sb_flags;
5998 	sbi->s_mount_opt = old_opts.s_mount_opt;
5999 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6000 	sbi->s_resuid = old_opts.s_resuid;
6001 	sbi->s_resgid = old_opts.s_resgid;
6002 	sbi->s_commit_interval = old_opts.s_commit_interval;
6003 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6004 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6005 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6006 		ext4_release_system_zone(sb);
6007 #ifdef CONFIG_QUOTA
6008 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6009 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6010 		to_free[i] = get_qf_name(sb, sbi, i);
6011 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6012 	}
6013 	synchronize_rcu();
6014 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6015 		kfree(to_free[i]);
6016 #endif
6017 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6018 		ext4_stop_mmpd(sbi);
6019 	kfree(orig_data);
6020 	return err;
6021 }
6022 
6023 #ifdef CONFIG_QUOTA
6024 static int ext4_statfs_project(struct super_block *sb,
6025 			       kprojid_t projid, struct kstatfs *buf)
6026 {
6027 	struct kqid qid;
6028 	struct dquot *dquot;
6029 	u64 limit;
6030 	u64 curblock;
6031 
6032 	qid = make_kqid_projid(projid);
6033 	dquot = dqget(sb, qid);
6034 	if (IS_ERR(dquot))
6035 		return PTR_ERR(dquot);
6036 	spin_lock(&dquot->dq_dqb_lock);
6037 
6038 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6039 			     dquot->dq_dqb.dqb_bhardlimit);
6040 	limit >>= sb->s_blocksize_bits;
6041 
6042 	if (limit && buf->f_blocks > limit) {
6043 		curblock = (dquot->dq_dqb.dqb_curspace +
6044 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6045 		buf->f_blocks = limit;
6046 		buf->f_bfree = buf->f_bavail =
6047 			(buf->f_blocks > curblock) ?
6048 			 (buf->f_blocks - curblock) : 0;
6049 	}
6050 
6051 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6052 			     dquot->dq_dqb.dqb_ihardlimit);
6053 	if (limit && buf->f_files > limit) {
6054 		buf->f_files = limit;
6055 		buf->f_ffree =
6056 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6057 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6058 	}
6059 
6060 	spin_unlock(&dquot->dq_dqb_lock);
6061 	dqput(dquot);
6062 	return 0;
6063 }
6064 #endif
6065 
6066 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6067 {
6068 	struct super_block *sb = dentry->d_sb;
6069 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6070 	struct ext4_super_block *es = sbi->s_es;
6071 	ext4_fsblk_t overhead = 0, resv_blocks;
6072 	s64 bfree;
6073 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6074 
6075 	if (!test_opt(sb, MINIX_DF))
6076 		overhead = sbi->s_overhead;
6077 
6078 	buf->f_type = EXT4_SUPER_MAGIC;
6079 	buf->f_bsize = sb->s_blocksize;
6080 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6081 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6082 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6083 	/* prevent underflow in case that few free space is available */
6084 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6085 	buf->f_bavail = buf->f_bfree -
6086 			(ext4_r_blocks_count(es) + resv_blocks);
6087 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6088 		buf->f_bavail = 0;
6089 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6090 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6091 	buf->f_namelen = EXT4_NAME_LEN;
6092 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6093 
6094 #ifdef CONFIG_QUOTA
6095 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6096 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6097 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6098 #endif
6099 	return 0;
6100 }
6101 
6102 
6103 #ifdef CONFIG_QUOTA
6104 
6105 /*
6106  * Helper functions so that transaction is started before we acquire dqio_sem
6107  * to keep correct lock ordering of transaction > dqio_sem
6108  */
6109 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6110 {
6111 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6112 }
6113 
6114 static int ext4_write_dquot(struct dquot *dquot)
6115 {
6116 	int ret, err;
6117 	handle_t *handle;
6118 	struct inode *inode;
6119 
6120 	inode = dquot_to_inode(dquot);
6121 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6122 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6123 	if (IS_ERR(handle))
6124 		return PTR_ERR(handle);
6125 	ret = dquot_commit(dquot);
6126 	err = ext4_journal_stop(handle);
6127 	if (!ret)
6128 		ret = err;
6129 	return ret;
6130 }
6131 
6132 static int ext4_acquire_dquot(struct dquot *dquot)
6133 {
6134 	int ret, err;
6135 	handle_t *handle;
6136 
6137 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6138 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6139 	if (IS_ERR(handle))
6140 		return PTR_ERR(handle);
6141 	ret = dquot_acquire(dquot);
6142 	err = ext4_journal_stop(handle);
6143 	if (!ret)
6144 		ret = err;
6145 	return ret;
6146 }
6147 
6148 static int ext4_release_dquot(struct dquot *dquot)
6149 {
6150 	int ret, err;
6151 	handle_t *handle;
6152 
6153 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6154 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6155 	if (IS_ERR(handle)) {
6156 		/* Release dquot anyway to avoid endless cycle in dqput() */
6157 		dquot_release(dquot);
6158 		return PTR_ERR(handle);
6159 	}
6160 	ret = dquot_release(dquot);
6161 	err = ext4_journal_stop(handle);
6162 	if (!ret)
6163 		ret = err;
6164 	return ret;
6165 }
6166 
6167 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6168 {
6169 	struct super_block *sb = dquot->dq_sb;
6170 
6171 	if (ext4_is_quota_journalled(sb)) {
6172 		dquot_mark_dquot_dirty(dquot);
6173 		return ext4_write_dquot(dquot);
6174 	} else {
6175 		return dquot_mark_dquot_dirty(dquot);
6176 	}
6177 }
6178 
6179 static int ext4_write_info(struct super_block *sb, int type)
6180 {
6181 	int ret, err;
6182 	handle_t *handle;
6183 
6184 	/* Data block + inode block */
6185 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6186 	if (IS_ERR(handle))
6187 		return PTR_ERR(handle);
6188 	ret = dquot_commit_info(sb, type);
6189 	err = ext4_journal_stop(handle);
6190 	if (!ret)
6191 		ret = err;
6192 	return ret;
6193 }
6194 
6195 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6196 {
6197 	struct ext4_inode_info *ei = EXT4_I(inode);
6198 
6199 	/* The first argument of lockdep_set_subclass has to be
6200 	 * *exactly* the same as the argument to init_rwsem() --- in
6201 	 * this case, in init_once() --- or lockdep gets unhappy
6202 	 * because the name of the lock is set using the
6203 	 * stringification of the argument to init_rwsem().
6204 	 */
6205 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6206 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6207 }
6208 
6209 /*
6210  * Standard function to be called on quota_on
6211  */
6212 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6213 			 const struct path *path)
6214 {
6215 	int err;
6216 
6217 	if (!test_opt(sb, QUOTA))
6218 		return -EINVAL;
6219 
6220 	/* Quotafile not on the same filesystem? */
6221 	if (path->dentry->d_sb != sb)
6222 		return -EXDEV;
6223 
6224 	/* Quota already enabled for this file? */
6225 	if (IS_NOQUOTA(d_inode(path->dentry)))
6226 		return -EBUSY;
6227 
6228 	/* Journaling quota? */
6229 	if (EXT4_SB(sb)->s_qf_names[type]) {
6230 		/* Quotafile not in fs root? */
6231 		if (path->dentry->d_parent != sb->s_root)
6232 			ext4_msg(sb, KERN_WARNING,
6233 				"Quota file not on filesystem root. "
6234 				"Journaled quota will not work");
6235 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6236 	} else {
6237 		/*
6238 		 * Clear the flag just in case mount options changed since
6239 		 * last time.
6240 		 */
6241 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6242 	}
6243 
6244 	/*
6245 	 * When we journal data on quota file, we have to flush journal to see
6246 	 * all updates to the file when we bypass pagecache...
6247 	 */
6248 	if (EXT4_SB(sb)->s_journal &&
6249 	    ext4_should_journal_data(d_inode(path->dentry))) {
6250 		/*
6251 		 * We don't need to lock updates but journal_flush() could
6252 		 * otherwise be livelocked...
6253 		 */
6254 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6255 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6256 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6257 		if (err)
6258 			return err;
6259 	}
6260 
6261 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6262 	err = dquot_quota_on(sb, type, format_id, path);
6263 	if (err) {
6264 		lockdep_set_quota_inode(path->dentry->d_inode,
6265 					     I_DATA_SEM_NORMAL);
6266 	} else {
6267 		struct inode *inode = d_inode(path->dentry);
6268 		handle_t *handle;
6269 
6270 		/*
6271 		 * Set inode flags to prevent userspace from messing with quota
6272 		 * files. If this fails, we return success anyway since quotas
6273 		 * are already enabled and this is not a hard failure.
6274 		 */
6275 		inode_lock(inode);
6276 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6277 		if (IS_ERR(handle))
6278 			goto unlock_inode;
6279 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6280 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6281 				S_NOATIME | S_IMMUTABLE);
6282 		err = ext4_mark_inode_dirty(handle, inode);
6283 		ext4_journal_stop(handle);
6284 	unlock_inode:
6285 		inode_unlock(inode);
6286 	}
6287 	return err;
6288 }
6289 
6290 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6291 			     unsigned int flags)
6292 {
6293 	int err;
6294 	struct inode *qf_inode;
6295 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6296 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6297 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6298 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6299 	};
6300 
6301 	BUG_ON(!ext4_has_feature_quota(sb));
6302 
6303 	if (!qf_inums[type])
6304 		return -EPERM;
6305 
6306 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6307 	if (IS_ERR(qf_inode)) {
6308 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6309 		return PTR_ERR(qf_inode);
6310 	}
6311 
6312 	/* Don't account quota for quota files to avoid recursion */
6313 	qf_inode->i_flags |= S_NOQUOTA;
6314 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6315 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6316 	if (err)
6317 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6318 	iput(qf_inode);
6319 
6320 	return err;
6321 }
6322 
6323 /* Enable usage tracking for all quota types. */
6324 int ext4_enable_quotas(struct super_block *sb)
6325 {
6326 	int type, err = 0;
6327 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6328 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6329 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6330 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6331 	};
6332 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6333 		test_opt(sb, USRQUOTA),
6334 		test_opt(sb, GRPQUOTA),
6335 		test_opt(sb, PRJQUOTA),
6336 	};
6337 
6338 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6339 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6340 		if (qf_inums[type]) {
6341 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6342 				DQUOT_USAGE_ENABLED |
6343 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6344 			if (err) {
6345 				ext4_warning(sb,
6346 					"Failed to enable quota tracking "
6347 					"(type=%d, err=%d). Please run "
6348 					"e2fsck to fix.", type, err);
6349 				for (type--; type >= 0; type--)
6350 					dquot_quota_off(sb, type);
6351 
6352 				return err;
6353 			}
6354 		}
6355 	}
6356 	return 0;
6357 }
6358 
6359 static int ext4_quota_off(struct super_block *sb, int type)
6360 {
6361 	struct inode *inode = sb_dqopt(sb)->files[type];
6362 	handle_t *handle;
6363 	int err;
6364 
6365 	/* Force all delayed allocation blocks to be allocated.
6366 	 * Caller already holds s_umount sem */
6367 	if (test_opt(sb, DELALLOC))
6368 		sync_filesystem(sb);
6369 
6370 	if (!inode || !igrab(inode))
6371 		goto out;
6372 
6373 	err = dquot_quota_off(sb, type);
6374 	if (err || ext4_has_feature_quota(sb))
6375 		goto out_put;
6376 
6377 	inode_lock(inode);
6378 	/*
6379 	 * Update modification times of quota files when userspace can
6380 	 * start looking at them. If we fail, we return success anyway since
6381 	 * this is not a hard failure and quotas are already disabled.
6382 	 */
6383 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6384 	if (IS_ERR(handle)) {
6385 		err = PTR_ERR(handle);
6386 		goto out_unlock;
6387 	}
6388 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6389 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6390 	inode->i_mtime = inode->i_ctime = current_time(inode);
6391 	err = ext4_mark_inode_dirty(handle, inode);
6392 	ext4_journal_stop(handle);
6393 out_unlock:
6394 	inode_unlock(inode);
6395 out_put:
6396 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6397 	iput(inode);
6398 	return err;
6399 out:
6400 	return dquot_quota_off(sb, type);
6401 }
6402 
6403 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6404  * acquiring the locks... As quota files are never truncated and quota code
6405  * itself serializes the operations (and no one else should touch the files)
6406  * we don't have to be afraid of races */
6407 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6408 			       size_t len, loff_t off)
6409 {
6410 	struct inode *inode = sb_dqopt(sb)->files[type];
6411 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6412 	int offset = off & (sb->s_blocksize - 1);
6413 	int tocopy;
6414 	size_t toread;
6415 	struct buffer_head *bh;
6416 	loff_t i_size = i_size_read(inode);
6417 
6418 	if (off > i_size)
6419 		return 0;
6420 	if (off+len > i_size)
6421 		len = i_size-off;
6422 	toread = len;
6423 	while (toread > 0) {
6424 		tocopy = sb->s_blocksize - offset < toread ?
6425 				sb->s_blocksize - offset : toread;
6426 		bh = ext4_bread(NULL, inode, blk, 0);
6427 		if (IS_ERR(bh))
6428 			return PTR_ERR(bh);
6429 		if (!bh)	/* A hole? */
6430 			memset(data, 0, tocopy);
6431 		else
6432 			memcpy(data, bh->b_data+offset, tocopy);
6433 		brelse(bh);
6434 		offset = 0;
6435 		toread -= tocopy;
6436 		data += tocopy;
6437 		blk++;
6438 	}
6439 	return len;
6440 }
6441 
6442 /* Write to quotafile (we know the transaction is already started and has
6443  * enough credits) */
6444 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6445 				const char *data, size_t len, loff_t off)
6446 {
6447 	struct inode *inode = sb_dqopt(sb)->files[type];
6448 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6449 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6450 	int retries = 0;
6451 	struct buffer_head *bh;
6452 	handle_t *handle = journal_current_handle();
6453 
6454 	if (EXT4_SB(sb)->s_journal && !handle) {
6455 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6456 			" cancelled because transaction is not started",
6457 			(unsigned long long)off, (unsigned long long)len);
6458 		return -EIO;
6459 	}
6460 	/*
6461 	 * Since we account only one data block in transaction credits,
6462 	 * then it is impossible to cross a block boundary.
6463 	 */
6464 	if (sb->s_blocksize - offset < len) {
6465 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6466 			" cancelled because not block aligned",
6467 			(unsigned long long)off, (unsigned long long)len);
6468 		return -EIO;
6469 	}
6470 
6471 	do {
6472 		bh = ext4_bread(handle, inode, blk,
6473 				EXT4_GET_BLOCKS_CREATE |
6474 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6475 	} while (PTR_ERR(bh) == -ENOSPC &&
6476 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6477 	if (IS_ERR(bh))
6478 		return PTR_ERR(bh);
6479 	if (!bh)
6480 		goto out;
6481 	BUFFER_TRACE(bh, "get write access");
6482 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6483 	if (err) {
6484 		brelse(bh);
6485 		return err;
6486 	}
6487 	lock_buffer(bh);
6488 	memcpy(bh->b_data+offset, data, len);
6489 	flush_dcache_page(bh->b_page);
6490 	unlock_buffer(bh);
6491 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6492 	brelse(bh);
6493 out:
6494 	if (inode->i_size < off + len) {
6495 		i_size_write(inode, off + len);
6496 		EXT4_I(inode)->i_disksize = inode->i_size;
6497 		err2 = ext4_mark_inode_dirty(handle, inode);
6498 		if (unlikely(err2 && !err))
6499 			err = err2;
6500 	}
6501 	return err ? err : len;
6502 }
6503 #endif
6504 
6505 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6506 		       const char *dev_name, void *data)
6507 {
6508 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6509 }
6510 
6511 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6512 static inline void register_as_ext2(void)
6513 {
6514 	int err = register_filesystem(&ext2_fs_type);
6515 	if (err)
6516 		printk(KERN_WARNING
6517 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6518 }
6519 
6520 static inline void unregister_as_ext2(void)
6521 {
6522 	unregister_filesystem(&ext2_fs_type);
6523 }
6524 
6525 static inline int ext2_feature_set_ok(struct super_block *sb)
6526 {
6527 	if (ext4_has_unknown_ext2_incompat_features(sb))
6528 		return 0;
6529 	if (sb_rdonly(sb))
6530 		return 1;
6531 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6532 		return 0;
6533 	return 1;
6534 }
6535 #else
6536 static inline void register_as_ext2(void) { }
6537 static inline void unregister_as_ext2(void) { }
6538 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6539 #endif
6540 
6541 static inline void register_as_ext3(void)
6542 {
6543 	int err = register_filesystem(&ext3_fs_type);
6544 	if (err)
6545 		printk(KERN_WARNING
6546 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6547 }
6548 
6549 static inline void unregister_as_ext3(void)
6550 {
6551 	unregister_filesystem(&ext3_fs_type);
6552 }
6553 
6554 static inline int ext3_feature_set_ok(struct super_block *sb)
6555 {
6556 	if (ext4_has_unknown_ext3_incompat_features(sb))
6557 		return 0;
6558 	if (!ext4_has_feature_journal(sb))
6559 		return 0;
6560 	if (sb_rdonly(sb))
6561 		return 1;
6562 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6563 		return 0;
6564 	return 1;
6565 }
6566 
6567 static struct file_system_type ext4_fs_type = {
6568 	.owner		= THIS_MODULE,
6569 	.name		= "ext4",
6570 	.mount		= ext4_mount,
6571 	.kill_sb	= kill_block_super,
6572 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6573 };
6574 MODULE_ALIAS_FS("ext4");
6575 
6576 /* Shared across all ext4 file systems */
6577 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6578 
6579 static int __init ext4_init_fs(void)
6580 {
6581 	int i, err;
6582 
6583 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6584 	ext4_li_info = NULL;
6585 
6586 	/* Build-time check for flags consistency */
6587 	ext4_check_flag_values();
6588 
6589 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6590 		init_waitqueue_head(&ext4__ioend_wq[i]);
6591 
6592 	err = ext4_init_es();
6593 	if (err)
6594 		return err;
6595 
6596 	err = ext4_init_pending();
6597 	if (err)
6598 		goto out7;
6599 
6600 	err = ext4_init_post_read_processing();
6601 	if (err)
6602 		goto out6;
6603 
6604 	err = ext4_init_pageio();
6605 	if (err)
6606 		goto out5;
6607 
6608 	err = ext4_init_system_zone();
6609 	if (err)
6610 		goto out4;
6611 
6612 	err = ext4_init_sysfs();
6613 	if (err)
6614 		goto out3;
6615 
6616 	err = ext4_init_mballoc();
6617 	if (err)
6618 		goto out2;
6619 	err = init_inodecache();
6620 	if (err)
6621 		goto out1;
6622 
6623 	err = ext4_fc_init_dentry_cache();
6624 	if (err)
6625 		goto out05;
6626 
6627 	register_as_ext3();
6628 	register_as_ext2();
6629 	err = register_filesystem(&ext4_fs_type);
6630 	if (err)
6631 		goto out;
6632 
6633 	return 0;
6634 out:
6635 	unregister_as_ext2();
6636 	unregister_as_ext3();
6637 out05:
6638 	destroy_inodecache();
6639 out1:
6640 	ext4_exit_mballoc();
6641 out2:
6642 	ext4_exit_sysfs();
6643 out3:
6644 	ext4_exit_system_zone();
6645 out4:
6646 	ext4_exit_pageio();
6647 out5:
6648 	ext4_exit_post_read_processing();
6649 out6:
6650 	ext4_exit_pending();
6651 out7:
6652 	ext4_exit_es();
6653 
6654 	return err;
6655 }
6656 
6657 static void __exit ext4_exit_fs(void)
6658 {
6659 	ext4_destroy_lazyinit_thread();
6660 	unregister_as_ext2();
6661 	unregister_as_ext3();
6662 	unregister_filesystem(&ext4_fs_type);
6663 	destroy_inodecache();
6664 	ext4_exit_mballoc();
6665 	ext4_exit_sysfs();
6666 	ext4_exit_system_zone();
6667 	ext4_exit_pageio();
6668 	ext4_exit_post_read_processing();
6669 	ext4_exit_es();
6670 	ext4_exit_pending();
6671 }
6672 
6673 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6674 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6675 MODULE_LICENSE("GPL");
6676 MODULE_SOFTDEP("pre: crc32c");
6677 module_init(ext4_init_fs)
6678 module_exit(ext4_exit_fs)
6679