1 /* 2 * linux/fs/ext4/page-io.c 3 * 4 * This contains the new page_io functions for ext4 5 * 6 * Written by Theodore Ts'o, 2010. 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/time.h> 11 #include <linux/jbd2.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/aio.h> 22 #include <linux/uio.h> 23 #include <linux/bio.h> 24 #include <linux/workqueue.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 35 int __init ext4_init_pageio(void) 36 { 37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 38 if (io_end_cachep == NULL) 39 return -ENOMEM; 40 return 0; 41 } 42 43 void ext4_exit_pageio(void) 44 { 45 kmem_cache_destroy(io_end_cachep); 46 } 47 48 /* 49 * This function is called by ext4_evict_inode() to make sure there is 50 * no more pending I/O completion work left to do. 51 */ 52 void ext4_ioend_shutdown(struct inode *inode) 53 { 54 wait_queue_head_t *wq = ext4_ioend_wq(inode); 55 56 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0)); 57 /* 58 * We need to make sure the work structure is finished being 59 * used before we let the inode get destroyed. 60 */ 61 if (work_pending(&EXT4_I(inode)->i_rsv_conversion_work)) 62 cancel_work_sync(&EXT4_I(inode)->i_rsv_conversion_work); 63 if (work_pending(&EXT4_I(inode)->i_unrsv_conversion_work)) 64 cancel_work_sync(&EXT4_I(inode)->i_unrsv_conversion_work); 65 } 66 67 /* 68 * Print an buffer I/O error compatible with the fs/buffer.c. This 69 * provides compatibility with dmesg scrapers that look for a specific 70 * buffer I/O error message. We really need a unified error reporting 71 * structure to userspace ala Digital Unix's uerf system, but it's 72 * probably not going to happen in my lifetime, due to LKML politics... 73 */ 74 static void buffer_io_error(struct buffer_head *bh) 75 { 76 char b[BDEVNAME_SIZE]; 77 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", 78 bdevname(bh->b_bdev, b), 79 (unsigned long long)bh->b_blocknr); 80 } 81 82 static void ext4_finish_bio(struct bio *bio) 83 { 84 int i; 85 int error = !test_bit(BIO_UPTODATE, &bio->bi_flags); 86 87 for (i = 0; i < bio->bi_vcnt; i++) { 88 struct bio_vec *bvec = &bio->bi_io_vec[i]; 89 struct page *page = bvec->bv_page; 90 struct buffer_head *bh, *head; 91 unsigned bio_start = bvec->bv_offset; 92 unsigned bio_end = bio_start + bvec->bv_len; 93 unsigned under_io = 0; 94 unsigned long flags; 95 96 if (!page) 97 continue; 98 99 if (error) { 100 SetPageError(page); 101 set_bit(AS_EIO, &page->mapping->flags); 102 } 103 bh = head = page_buffers(page); 104 /* 105 * We check all buffers in the page under BH_Uptodate_Lock 106 * to avoid races with other end io clearing async_write flags 107 */ 108 local_irq_save(flags); 109 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 110 do { 111 if (bh_offset(bh) < bio_start || 112 bh_offset(bh) + bh->b_size > bio_end) { 113 if (buffer_async_write(bh)) 114 under_io++; 115 continue; 116 } 117 clear_buffer_async_write(bh); 118 if (error) 119 buffer_io_error(bh); 120 } while ((bh = bh->b_this_page) != head); 121 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 122 local_irq_restore(flags); 123 if (!under_io) 124 end_page_writeback(page); 125 } 126 } 127 128 static void ext4_release_io_end(ext4_io_end_t *io_end) 129 { 130 struct bio *bio, *next_bio; 131 132 BUG_ON(!list_empty(&io_end->list)); 133 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 134 WARN_ON(io_end->handle); 135 136 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count)) 137 wake_up_all(ext4_ioend_wq(io_end->inode)); 138 139 for (bio = io_end->bio; bio; bio = next_bio) { 140 next_bio = bio->bi_private; 141 ext4_finish_bio(bio); 142 bio_put(bio); 143 } 144 if (io_end->flag & EXT4_IO_END_DIRECT) 145 inode_dio_done(io_end->inode); 146 if (io_end->iocb) 147 aio_complete(io_end->iocb, io_end->result, 0); 148 kmem_cache_free(io_end_cachep, io_end); 149 } 150 151 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end) 152 { 153 struct inode *inode = io_end->inode; 154 155 io_end->flag &= ~EXT4_IO_END_UNWRITTEN; 156 /* Wake up anyone waiting on unwritten extent conversion */ 157 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) 158 wake_up_all(ext4_ioend_wq(inode)); 159 } 160 161 /* 162 * Check a range of space and convert unwritten extents to written. Note that 163 * we are protected from truncate touching same part of extent tree by the 164 * fact that truncate code waits for all DIO to finish (thus exclusion from 165 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 166 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 167 * completed (happens from ext4_free_ioend()). 168 */ 169 static int ext4_end_io(ext4_io_end_t *io) 170 { 171 struct inode *inode = io->inode; 172 loff_t offset = io->offset; 173 ssize_t size = io->size; 174 handle_t *handle = io->handle; 175 int ret = 0; 176 177 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 178 "list->prev 0x%p\n", 179 io, inode->i_ino, io->list.next, io->list.prev); 180 181 io->handle = NULL; /* Following call will use up the handle */ 182 ret = ext4_convert_unwritten_extents(handle, inode, offset, size); 183 if (ret < 0) { 184 ext4_msg(inode->i_sb, KERN_EMERG, 185 "failed to convert unwritten extents to written " 186 "extents -- potential data loss! " 187 "(inode %lu, offset %llu, size %zd, error %d)", 188 inode->i_ino, offset, size, ret); 189 } 190 ext4_clear_io_unwritten_flag(io); 191 ext4_release_io_end(io); 192 return ret; 193 } 194 195 static void dump_completed_IO(struct inode *inode, struct list_head *head) 196 { 197 #ifdef EXT4FS_DEBUG 198 struct list_head *cur, *before, *after; 199 ext4_io_end_t *io, *io0, *io1; 200 201 if (list_empty(head)) 202 return; 203 204 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 205 list_for_each_entry(io, head, list) { 206 cur = &io->list; 207 before = cur->prev; 208 io0 = container_of(before, ext4_io_end_t, list); 209 after = cur->next; 210 io1 = container_of(after, ext4_io_end_t, list); 211 212 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 213 io, inode->i_ino, io0, io1); 214 } 215 #endif 216 } 217 218 /* Add the io_end to per-inode completed end_io list. */ 219 static void ext4_add_complete_io(ext4_io_end_t *io_end) 220 { 221 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 222 struct workqueue_struct *wq; 223 unsigned long flags; 224 225 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 226 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 227 if (io_end->handle) { 228 wq = EXT4_SB(io_end->inode->i_sb)->rsv_conversion_wq; 229 if (list_empty(&ei->i_rsv_conversion_list)) 230 queue_work(wq, &ei->i_rsv_conversion_work); 231 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 232 } else { 233 wq = EXT4_SB(io_end->inode->i_sb)->unrsv_conversion_wq; 234 if (list_empty(&ei->i_unrsv_conversion_list)) 235 queue_work(wq, &ei->i_unrsv_conversion_work); 236 list_add_tail(&io_end->list, &ei->i_unrsv_conversion_list); 237 } 238 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 239 } 240 241 static int ext4_do_flush_completed_IO(struct inode *inode, 242 struct list_head *head) 243 { 244 ext4_io_end_t *io; 245 struct list_head unwritten; 246 unsigned long flags; 247 struct ext4_inode_info *ei = EXT4_I(inode); 248 int err, ret = 0; 249 250 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 251 dump_completed_IO(inode, head); 252 list_replace_init(head, &unwritten); 253 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 254 255 while (!list_empty(&unwritten)) { 256 io = list_entry(unwritten.next, ext4_io_end_t, list); 257 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 258 list_del_init(&io->list); 259 260 err = ext4_end_io(io); 261 if (unlikely(!ret && err)) 262 ret = err; 263 } 264 return ret; 265 } 266 267 /* 268 * work on completed IO, to convert unwritten extents to extents 269 */ 270 void ext4_end_io_rsv_work(struct work_struct *work) 271 { 272 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 273 i_rsv_conversion_work); 274 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 275 } 276 277 void ext4_end_io_unrsv_work(struct work_struct *work) 278 { 279 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 280 i_unrsv_conversion_work); 281 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_unrsv_conversion_list); 282 } 283 284 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 285 { 286 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 287 if (io) { 288 atomic_inc(&EXT4_I(inode)->i_ioend_count); 289 io->inode = inode; 290 INIT_LIST_HEAD(&io->list); 291 atomic_set(&io->count, 1); 292 } 293 return io; 294 } 295 296 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 297 { 298 if (atomic_dec_and_test(&io_end->count)) { 299 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) { 300 ext4_release_io_end(io_end); 301 return; 302 } 303 ext4_add_complete_io(io_end); 304 } 305 } 306 307 int ext4_put_io_end(ext4_io_end_t *io_end) 308 { 309 int err = 0; 310 311 if (atomic_dec_and_test(&io_end->count)) { 312 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 313 err = ext4_convert_unwritten_extents(io_end->handle, 314 io_end->inode, io_end->offset, 315 io_end->size); 316 io_end->handle = NULL; 317 ext4_clear_io_unwritten_flag(io_end); 318 } 319 ext4_release_io_end(io_end); 320 } 321 return err; 322 } 323 324 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 325 { 326 atomic_inc(&io_end->count); 327 return io_end; 328 } 329 330 static void ext4_end_bio(struct bio *bio, int error) 331 { 332 ext4_io_end_t *io_end = bio->bi_private; 333 sector_t bi_sector = bio->bi_sector; 334 335 BUG_ON(!io_end); 336 bio->bi_end_io = NULL; 337 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 338 error = 0; 339 340 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 341 /* 342 * Link bio into list hanging from io_end. We have to do it 343 * atomically as bio completions can be racing against each 344 * other. 345 */ 346 bio->bi_private = xchg(&io_end->bio, bio); 347 } else { 348 ext4_finish_bio(bio); 349 bio_put(bio); 350 } 351 352 if (error) { 353 struct inode *inode = io_end->inode; 354 355 ext4_warning(inode->i_sb, "I/O error writing to inode %lu " 356 "(offset %llu size %ld starting block %llu)", 357 inode->i_ino, 358 (unsigned long long) io_end->offset, 359 (long) io_end->size, 360 (unsigned long long) 361 bi_sector >> (inode->i_blkbits - 9)); 362 } 363 ext4_put_io_end_defer(io_end); 364 } 365 366 void ext4_io_submit(struct ext4_io_submit *io) 367 { 368 struct bio *bio = io->io_bio; 369 370 if (bio) { 371 bio_get(io->io_bio); 372 submit_bio(io->io_op, io->io_bio); 373 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); 374 bio_put(io->io_bio); 375 } 376 io->io_bio = NULL; 377 } 378 379 void ext4_io_submit_init(struct ext4_io_submit *io, 380 struct writeback_control *wbc) 381 { 382 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 383 io->io_bio = NULL; 384 io->io_end = NULL; 385 } 386 387 static int io_submit_init_bio(struct ext4_io_submit *io, 388 struct buffer_head *bh) 389 { 390 int nvecs = bio_get_nr_vecs(bh->b_bdev); 391 struct bio *bio; 392 393 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES)); 394 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 395 bio->bi_bdev = bh->b_bdev; 396 bio->bi_end_io = ext4_end_bio; 397 bio->bi_private = ext4_get_io_end(io->io_end); 398 io->io_bio = bio; 399 io->io_next_block = bh->b_blocknr; 400 return 0; 401 } 402 403 static int io_submit_add_bh(struct ext4_io_submit *io, 404 struct inode *inode, 405 struct buffer_head *bh) 406 { 407 int ret; 408 409 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 410 submit_and_retry: 411 ext4_io_submit(io); 412 } 413 if (io->io_bio == NULL) { 414 ret = io_submit_init_bio(io, bh); 415 if (ret) 416 return ret; 417 } 418 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); 419 if (ret != bh->b_size) 420 goto submit_and_retry; 421 io->io_next_block++; 422 return 0; 423 } 424 425 int ext4_bio_write_page(struct ext4_io_submit *io, 426 struct page *page, 427 int len, 428 struct writeback_control *wbc) 429 { 430 struct inode *inode = page->mapping->host; 431 unsigned block_start, blocksize; 432 struct buffer_head *bh, *head; 433 int ret = 0; 434 int nr_submitted = 0; 435 436 blocksize = 1 << inode->i_blkbits; 437 438 BUG_ON(!PageLocked(page)); 439 BUG_ON(PageWriteback(page)); 440 441 set_page_writeback(page); 442 ClearPageError(page); 443 444 /* 445 * In the first loop we prepare and mark buffers to submit. We have to 446 * mark all buffers in the page before submitting so that 447 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 448 * on the first buffer finishes and we are still working on submitting 449 * the second buffer. 450 */ 451 bh = head = page_buffers(page); 452 do { 453 block_start = bh_offset(bh); 454 if (block_start >= len) { 455 /* 456 * Comments copied from block_write_full_page_endio: 457 * 458 * The page straddles i_size. It must be zeroed out on 459 * each and every writepage invocation because it may 460 * be mmapped. "A file is mapped in multiples of the 461 * page size. For a file that is not a multiple of 462 * the page size, the remaining memory is zeroed when 463 * mapped, and writes to that region are not written 464 * out to the file." 465 */ 466 zero_user_segment(page, block_start, 467 block_start + blocksize); 468 clear_buffer_dirty(bh); 469 set_buffer_uptodate(bh); 470 continue; 471 } 472 if (!buffer_dirty(bh) || buffer_delay(bh) || 473 !buffer_mapped(bh) || buffer_unwritten(bh)) { 474 /* A hole? We can safely clear the dirty bit */ 475 if (!buffer_mapped(bh)) 476 clear_buffer_dirty(bh); 477 if (io->io_bio) 478 ext4_io_submit(io); 479 continue; 480 } 481 if (buffer_new(bh)) { 482 clear_buffer_new(bh); 483 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 484 } 485 set_buffer_async_write(bh); 486 } while ((bh = bh->b_this_page) != head); 487 488 /* Now submit buffers to write */ 489 bh = head = page_buffers(page); 490 do { 491 if (!buffer_async_write(bh)) 492 continue; 493 ret = io_submit_add_bh(io, inode, bh); 494 if (ret) { 495 /* 496 * We only get here on ENOMEM. Not much else 497 * we can do but mark the page as dirty, and 498 * better luck next time. 499 */ 500 redirty_page_for_writepage(wbc, page); 501 break; 502 } 503 nr_submitted++; 504 clear_buffer_dirty(bh); 505 } while ((bh = bh->b_this_page) != head); 506 507 /* Error stopped previous loop? Clean up buffers... */ 508 if (ret) { 509 do { 510 clear_buffer_async_write(bh); 511 bh = bh->b_this_page; 512 } while (bh != head); 513 } 514 unlock_page(page); 515 /* Nothing submitted - we have to end page writeback */ 516 if (!nr_submitted) 517 end_page_writeback(page); 518 return ret; 519 } 520