xref: /openbmc/linux/fs/ext4/page-io.c (revision c724585b62411f7abdea5b1054b9f1e1e7c964be)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/jbd2.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/aio.h>
22 #include <linux/uio.h>
23 #include <linux/bio.h>
24 #include <linux/workqueue.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 
35 int __init ext4_init_pageio(void)
36 {
37 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 	if (io_end_cachep == NULL)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
43 void ext4_exit_pageio(void)
44 {
45 	kmem_cache_destroy(io_end_cachep);
46 }
47 
48 /*
49  * This function is called by ext4_evict_inode() to make sure there is
50  * no more pending I/O completion work left to do.
51  */
52 void ext4_ioend_shutdown(struct inode *inode)
53 {
54 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
55 
56 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
57 	/*
58 	 * We need to make sure the work structure is finished being
59 	 * used before we let the inode get destroyed.
60 	 */
61 	if (work_pending(&EXT4_I(inode)->i_rsv_conversion_work))
62 		cancel_work_sync(&EXT4_I(inode)->i_rsv_conversion_work);
63 	if (work_pending(&EXT4_I(inode)->i_unrsv_conversion_work))
64 		cancel_work_sync(&EXT4_I(inode)->i_unrsv_conversion_work);
65 }
66 
67 /*
68  * Print an buffer I/O error compatible with the fs/buffer.c.  This
69  * provides compatibility with dmesg scrapers that look for a specific
70  * buffer I/O error message.  We really need a unified error reporting
71  * structure to userspace ala Digital Unix's uerf system, but it's
72  * probably not going to happen in my lifetime, due to LKML politics...
73  */
74 static void buffer_io_error(struct buffer_head *bh)
75 {
76 	char b[BDEVNAME_SIZE];
77 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
78 			bdevname(bh->b_bdev, b),
79 			(unsigned long long)bh->b_blocknr);
80 }
81 
82 static void ext4_finish_bio(struct bio *bio)
83 {
84 	int i;
85 	int error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
86 
87 	for (i = 0; i < bio->bi_vcnt; i++) {
88 		struct bio_vec *bvec = &bio->bi_io_vec[i];
89 		struct page *page = bvec->bv_page;
90 		struct buffer_head *bh, *head;
91 		unsigned bio_start = bvec->bv_offset;
92 		unsigned bio_end = bio_start + bvec->bv_len;
93 		unsigned under_io = 0;
94 		unsigned long flags;
95 
96 		if (!page)
97 			continue;
98 
99 		if (error) {
100 			SetPageError(page);
101 			set_bit(AS_EIO, &page->mapping->flags);
102 		}
103 		bh = head = page_buffers(page);
104 		/*
105 		 * We check all buffers in the page under BH_Uptodate_Lock
106 		 * to avoid races with other end io clearing async_write flags
107 		 */
108 		local_irq_save(flags);
109 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
110 		do {
111 			if (bh_offset(bh) < bio_start ||
112 			    bh_offset(bh) + bh->b_size > bio_end) {
113 				if (buffer_async_write(bh))
114 					under_io++;
115 				continue;
116 			}
117 			clear_buffer_async_write(bh);
118 			if (error)
119 				buffer_io_error(bh);
120 		} while ((bh = bh->b_this_page) != head);
121 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
122 		local_irq_restore(flags);
123 		if (!under_io)
124 			end_page_writeback(page);
125 	}
126 }
127 
128 static void ext4_release_io_end(ext4_io_end_t *io_end)
129 {
130 	struct bio *bio, *next_bio;
131 
132 	BUG_ON(!list_empty(&io_end->list));
133 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
134 	WARN_ON(io_end->handle);
135 
136 	if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
137 		wake_up_all(ext4_ioend_wq(io_end->inode));
138 
139 	for (bio = io_end->bio; bio; bio = next_bio) {
140 		next_bio = bio->bi_private;
141 		ext4_finish_bio(bio);
142 		bio_put(bio);
143 	}
144 	if (io_end->flag & EXT4_IO_END_DIRECT)
145 		inode_dio_done(io_end->inode);
146 	if (io_end->iocb)
147 		aio_complete(io_end->iocb, io_end->result, 0);
148 	kmem_cache_free(io_end_cachep, io_end);
149 }
150 
151 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
152 {
153 	struct inode *inode = io_end->inode;
154 
155 	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
156 	/* Wake up anyone waiting on unwritten extent conversion */
157 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
158 		wake_up_all(ext4_ioend_wq(inode));
159 }
160 
161 /*
162  * Check a range of space and convert unwritten extents to written. Note that
163  * we are protected from truncate touching same part of extent tree by the
164  * fact that truncate code waits for all DIO to finish (thus exclusion from
165  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
166  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
167  * completed (happens from ext4_free_ioend()).
168  */
169 static int ext4_end_io(ext4_io_end_t *io)
170 {
171 	struct inode *inode = io->inode;
172 	loff_t offset = io->offset;
173 	ssize_t size = io->size;
174 	handle_t *handle = io->handle;
175 	int ret = 0;
176 
177 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
178 		   "list->prev 0x%p\n",
179 		   io, inode->i_ino, io->list.next, io->list.prev);
180 
181 	io->handle = NULL;	/* Following call will use up the handle */
182 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
183 	if (ret < 0) {
184 		ext4_msg(inode->i_sb, KERN_EMERG,
185 			 "failed to convert unwritten extents to written "
186 			 "extents -- potential data loss!  "
187 			 "(inode %lu, offset %llu, size %zd, error %d)",
188 			 inode->i_ino, offset, size, ret);
189 	}
190 	ext4_clear_io_unwritten_flag(io);
191 	ext4_release_io_end(io);
192 	return ret;
193 }
194 
195 static void dump_completed_IO(struct inode *inode, struct list_head *head)
196 {
197 #ifdef	EXT4FS_DEBUG
198 	struct list_head *cur, *before, *after;
199 	ext4_io_end_t *io, *io0, *io1;
200 
201 	if (list_empty(head))
202 		return;
203 
204 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
205 	list_for_each_entry(io, head, list) {
206 		cur = &io->list;
207 		before = cur->prev;
208 		io0 = container_of(before, ext4_io_end_t, list);
209 		after = cur->next;
210 		io1 = container_of(after, ext4_io_end_t, list);
211 
212 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
213 			    io, inode->i_ino, io0, io1);
214 	}
215 #endif
216 }
217 
218 /* Add the io_end to per-inode completed end_io list. */
219 static void ext4_add_complete_io(ext4_io_end_t *io_end)
220 {
221 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
222 	struct workqueue_struct *wq;
223 	unsigned long flags;
224 
225 	BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
226 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
227 	if (io_end->handle) {
228 		wq = EXT4_SB(io_end->inode->i_sb)->rsv_conversion_wq;
229 		if (list_empty(&ei->i_rsv_conversion_list))
230 			queue_work(wq, &ei->i_rsv_conversion_work);
231 		list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
232 	} else {
233 		wq = EXT4_SB(io_end->inode->i_sb)->unrsv_conversion_wq;
234 		if (list_empty(&ei->i_unrsv_conversion_list))
235 			queue_work(wq, &ei->i_unrsv_conversion_work);
236 		list_add_tail(&io_end->list, &ei->i_unrsv_conversion_list);
237 	}
238 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
239 }
240 
241 static int ext4_do_flush_completed_IO(struct inode *inode,
242 				      struct list_head *head)
243 {
244 	ext4_io_end_t *io;
245 	struct list_head unwritten;
246 	unsigned long flags;
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 	int err, ret = 0;
249 
250 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
251 	dump_completed_IO(inode, head);
252 	list_replace_init(head, &unwritten);
253 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
254 
255 	while (!list_empty(&unwritten)) {
256 		io = list_entry(unwritten.next, ext4_io_end_t, list);
257 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
258 		list_del_init(&io->list);
259 
260 		err = ext4_end_io(io);
261 		if (unlikely(!ret && err))
262 			ret = err;
263 	}
264 	return ret;
265 }
266 
267 /*
268  * work on completed IO, to convert unwritten extents to extents
269  */
270 void ext4_end_io_rsv_work(struct work_struct *work)
271 {
272 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
273 						  i_rsv_conversion_work);
274 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
275 }
276 
277 void ext4_end_io_unrsv_work(struct work_struct *work)
278 {
279 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
280 						  i_unrsv_conversion_work);
281 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_unrsv_conversion_list);
282 }
283 
284 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
285 {
286 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
287 	if (io) {
288 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
289 		io->inode = inode;
290 		INIT_LIST_HEAD(&io->list);
291 		atomic_set(&io->count, 1);
292 	}
293 	return io;
294 }
295 
296 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
297 {
298 	if (atomic_dec_and_test(&io_end->count)) {
299 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
300 			ext4_release_io_end(io_end);
301 			return;
302 		}
303 		ext4_add_complete_io(io_end);
304 	}
305 }
306 
307 int ext4_put_io_end(ext4_io_end_t *io_end)
308 {
309 	int err = 0;
310 
311 	if (atomic_dec_and_test(&io_end->count)) {
312 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
313 			err = ext4_convert_unwritten_extents(io_end->handle,
314 						io_end->inode, io_end->offset,
315 						io_end->size);
316 			io_end->handle = NULL;
317 			ext4_clear_io_unwritten_flag(io_end);
318 		}
319 		ext4_release_io_end(io_end);
320 	}
321 	return err;
322 }
323 
324 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
325 {
326 	atomic_inc(&io_end->count);
327 	return io_end;
328 }
329 
330 static void ext4_end_bio(struct bio *bio, int error)
331 {
332 	ext4_io_end_t *io_end = bio->bi_private;
333 	sector_t bi_sector = bio->bi_sector;
334 
335 	BUG_ON(!io_end);
336 	bio->bi_end_io = NULL;
337 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
338 		error = 0;
339 
340 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
341 		/*
342 		 * Link bio into list hanging from io_end. We have to do it
343 		 * atomically as bio completions can be racing against each
344 		 * other.
345 		 */
346 		bio->bi_private = xchg(&io_end->bio, bio);
347 	} else {
348 		ext4_finish_bio(bio);
349 		bio_put(bio);
350 	}
351 
352 	if (error) {
353 		struct inode *inode = io_end->inode;
354 
355 		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
356 			     "(offset %llu size %ld starting block %llu)",
357 			     inode->i_ino,
358 			     (unsigned long long) io_end->offset,
359 			     (long) io_end->size,
360 			     (unsigned long long)
361 			     bi_sector >> (inode->i_blkbits - 9));
362 	}
363 	ext4_put_io_end_defer(io_end);
364 }
365 
366 void ext4_io_submit(struct ext4_io_submit *io)
367 {
368 	struct bio *bio = io->io_bio;
369 
370 	if (bio) {
371 		bio_get(io->io_bio);
372 		submit_bio(io->io_op, io->io_bio);
373 		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
374 		bio_put(io->io_bio);
375 	}
376 	io->io_bio = NULL;
377 }
378 
379 void ext4_io_submit_init(struct ext4_io_submit *io,
380 			 struct writeback_control *wbc)
381 {
382 	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
383 	io->io_bio = NULL;
384 	io->io_end = NULL;
385 }
386 
387 static int io_submit_init_bio(struct ext4_io_submit *io,
388 			      struct buffer_head *bh)
389 {
390 	int nvecs = bio_get_nr_vecs(bh->b_bdev);
391 	struct bio *bio;
392 
393 	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
394 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
395 	bio->bi_bdev = bh->b_bdev;
396 	bio->bi_end_io = ext4_end_bio;
397 	bio->bi_private = ext4_get_io_end(io->io_end);
398 	io->io_bio = bio;
399 	io->io_next_block = bh->b_blocknr;
400 	return 0;
401 }
402 
403 static int io_submit_add_bh(struct ext4_io_submit *io,
404 			    struct inode *inode,
405 			    struct buffer_head *bh)
406 {
407 	int ret;
408 
409 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
410 submit_and_retry:
411 		ext4_io_submit(io);
412 	}
413 	if (io->io_bio == NULL) {
414 		ret = io_submit_init_bio(io, bh);
415 		if (ret)
416 			return ret;
417 	}
418 	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
419 	if (ret != bh->b_size)
420 		goto submit_and_retry;
421 	io->io_next_block++;
422 	return 0;
423 }
424 
425 int ext4_bio_write_page(struct ext4_io_submit *io,
426 			struct page *page,
427 			int len,
428 			struct writeback_control *wbc)
429 {
430 	struct inode *inode = page->mapping->host;
431 	unsigned block_start, blocksize;
432 	struct buffer_head *bh, *head;
433 	int ret = 0;
434 	int nr_submitted = 0;
435 
436 	blocksize = 1 << inode->i_blkbits;
437 
438 	BUG_ON(!PageLocked(page));
439 	BUG_ON(PageWriteback(page));
440 
441 	set_page_writeback(page);
442 	ClearPageError(page);
443 
444 	/*
445 	 * In the first loop we prepare and mark buffers to submit. We have to
446 	 * mark all buffers in the page before submitting so that
447 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
448 	 * on the first buffer finishes and we are still working on submitting
449 	 * the second buffer.
450 	 */
451 	bh = head = page_buffers(page);
452 	do {
453 		block_start = bh_offset(bh);
454 		if (block_start >= len) {
455 			/*
456 			 * Comments copied from block_write_full_page_endio:
457 			 *
458 			 * The page straddles i_size.  It must be zeroed out on
459 			 * each and every writepage invocation because it may
460 			 * be mmapped.  "A file is mapped in multiples of the
461 			 * page size.  For a file that is not a multiple of
462 			 * the  page size, the remaining memory is zeroed when
463 			 * mapped, and writes to that region are not written
464 			 * out to the file."
465 			 */
466 			zero_user_segment(page, block_start,
467 					  block_start + blocksize);
468 			clear_buffer_dirty(bh);
469 			set_buffer_uptodate(bh);
470 			continue;
471 		}
472 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
473 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
474 			/* A hole? We can safely clear the dirty bit */
475 			if (!buffer_mapped(bh))
476 				clear_buffer_dirty(bh);
477 			if (io->io_bio)
478 				ext4_io_submit(io);
479 			continue;
480 		}
481 		if (buffer_new(bh)) {
482 			clear_buffer_new(bh);
483 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
484 		}
485 		set_buffer_async_write(bh);
486 	} while ((bh = bh->b_this_page) != head);
487 
488 	/* Now submit buffers to write */
489 	bh = head = page_buffers(page);
490 	do {
491 		if (!buffer_async_write(bh))
492 			continue;
493 		ret = io_submit_add_bh(io, inode, bh);
494 		if (ret) {
495 			/*
496 			 * We only get here on ENOMEM.  Not much else
497 			 * we can do but mark the page as dirty, and
498 			 * better luck next time.
499 			 */
500 			redirty_page_for_writepage(wbc, page);
501 			break;
502 		}
503 		nr_submitted++;
504 		clear_buffer_dirty(bh);
505 	} while ((bh = bh->b_this_page) != head);
506 
507 	/* Error stopped previous loop? Clean up buffers... */
508 	if (ret) {
509 		do {
510 			clear_buffer_async_write(bh);
511 			bh = bh->b_this_page;
512 		} while (bh != head);
513 	}
514 	unlock_page(page);
515 	/* Nothing submitted - we have to end page writeback */
516 	if (!nr_submitted)
517 		end_page_writeback(page);
518 	return ret;
519 }
520