xref: /openbmc/linux/fs/ext4/inode.c (revision fb01bfdac733f1925561eea52c60072f2fbcdc97)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41 
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 		(inode->i_sb->s_blocksize >> 9) : 0;
49 
50 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52 
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65 	int err;
66 
67 	might_sleep();
68 
69 	BUFFER_TRACE(bh, "enter");
70 
71 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 		  "data mode %lx\n",
73 		  bh, is_metadata, inode->i_mode,
74 		  test_opt(inode->i_sb, DATA_FLAGS));
75 
76 	/* Never use the revoke function if we are doing full data
77 	 * journaling: there is no need to, and a V1 superblock won't
78 	 * support it.  Otherwise, only skip the revoke on un-journaled
79 	 * data blocks. */
80 
81 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 	    (!is_metadata && !ext4_should_journal_data(inode))) {
83 		if (bh) {
84 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 			return ext4_journal_forget(handle, bh);
86 		}
87 		return 0;
88 	}
89 
90 	/*
91 	 * data!=journal && (is_metadata || should_journal_data(inode))
92 	 */
93 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 	err = ext4_journal_revoke(handle, blocknr, bh);
95 	if (err)
96 		ext4_abort(inode->i_sb, __FUNCTION__,
97 			   "error %d when attempting revoke", err);
98 	BUFFER_TRACE(bh, "exit");
99 	return err;
100 }
101 
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108 	ext4_lblk_t needed;
109 
110 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111 
112 	/* Give ourselves just enough room to cope with inodes in which
113 	 * i_blocks is corrupt: we've seen disk corruptions in the past
114 	 * which resulted in random data in an inode which looked enough
115 	 * like a regular file for ext4 to try to delete it.  Things
116 	 * will go a bit crazy if that happens, but at least we should
117 	 * try not to panic the whole kernel. */
118 	if (needed < 2)
119 		needed = 2;
120 
121 	/* But we need to bound the transaction so we don't overflow the
122 	 * journal. */
123 	if (needed > EXT4_MAX_TRANS_DATA)
124 		needed = EXT4_MAX_TRANS_DATA;
125 
126 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128 
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141 	handle_t *result;
142 
143 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 	if (!IS_ERR(result))
145 		return result;
146 
147 	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 	return result;
149 }
150 
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 		return 0;
161 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 		return 0;
163 	return 1;
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176 
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182 	handle_t *handle;
183 
184 	truncate_inode_pages(&inode->i_data, 0);
185 
186 	if (is_bad_inode(inode))
187 		goto no_delete;
188 
189 	handle = start_transaction(inode);
190 	if (IS_ERR(handle)) {
191 		/*
192 		 * If we're going to skip the normal cleanup, we still need to
193 		 * make sure that the in-core orphan linked list is properly
194 		 * cleaned up.
195 		 */
196 		ext4_orphan_del(NULL, inode);
197 		goto no_delete;
198 	}
199 
200 	if (IS_SYNC(inode))
201 		handle->h_sync = 1;
202 	inode->i_size = 0;
203 	if (inode->i_blocks)
204 		ext4_truncate(inode);
205 	/*
206 	 * Kill off the orphan record which ext4_truncate created.
207 	 * AKPM: I think this can be inside the above `if'.
208 	 * Note that ext4_orphan_del() has to be able to cope with the
209 	 * deletion of a non-existent orphan - this is because we don't
210 	 * know if ext4_truncate() actually created an orphan record.
211 	 * (Well, we could do this if we need to, but heck - it works)
212 	 */
213 	ext4_orphan_del(handle, inode);
214 	EXT4_I(inode)->i_dtime	= get_seconds();
215 
216 	/*
217 	 * One subtle ordering requirement: if anything has gone wrong
218 	 * (transaction abort, IO errors, whatever), then we can still
219 	 * do these next steps (the fs will already have been marked as
220 	 * having errors), but we can't free the inode if the mark_dirty
221 	 * fails.
222 	 */
223 	if (ext4_mark_inode_dirty(handle, inode))
224 		/* If that failed, just do the required in-core inode clear. */
225 		clear_inode(inode);
226 	else
227 		ext4_free_inode(handle, inode);
228 	ext4_journal_stop(handle);
229 	return;
230 no_delete:
231 	clear_inode(inode);	/* We must guarantee clearing of inode... */
232 }
233 
234 typedef struct {
235 	__le32	*p;
236 	__le32	key;
237 	struct buffer_head *bh;
238 } Indirect;
239 
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242 	p->key = *(p->p = v);
243 	p->bh = bh;
244 }
245 
246 /**
247  *	ext4_block_to_path - parse the block number into array of offsets
248  *	@inode: inode in question (we are only interested in its superblock)
249  *	@i_block: block number to be parsed
250  *	@offsets: array to store the offsets in
251  *	@boundary: set this non-zero if the referred-to block is likely to be
252  *	       followed (on disk) by an indirect block.
253  *
254  *	To store the locations of file's data ext4 uses a data structure common
255  *	for UNIX filesystems - tree of pointers anchored in the inode, with
256  *	data blocks at leaves and indirect blocks in intermediate nodes.
257  *	This function translates the block number into path in that tree -
258  *	return value is the path length and @offsets[n] is the offset of
259  *	pointer to (n+1)th node in the nth one. If @block is out of range
260  *	(negative or too large) warning is printed and zero returned.
261  *
262  *	Note: function doesn't find node addresses, so no IO is needed. All
263  *	we need to know is the capacity of indirect blocks (taken from the
264  *	inode->i_sb).
265  */
266 
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276 
277 static int ext4_block_to_path(struct inode *inode,
278 			ext4_lblk_t i_block,
279 			ext4_lblk_t offsets[4], int *boundary)
280 {
281 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 	const long direct_blocks = EXT4_NDIR_BLOCKS,
284 		indirect_blocks = ptrs,
285 		double_blocks = (1 << (ptrs_bits * 2));
286 	int n = 0;
287 	int final = 0;
288 
289 	if (i_block < 0) {
290 		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 	} else if (i_block < direct_blocks) {
292 		offsets[n++] = i_block;
293 		final = direct_blocks;
294 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 		offsets[n++] = EXT4_IND_BLOCK;
296 		offsets[n++] = i_block;
297 		final = ptrs;
298 	} else if ((i_block -= indirect_blocks) < double_blocks) {
299 		offsets[n++] = EXT4_DIND_BLOCK;
300 		offsets[n++] = i_block >> ptrs_bits;
301 		offsets[n++] = i_block & (ptrs - 1);
302 		final = ptrs;
303 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 		offsets[n++] = EXT4_TIND_BLOCK;
305 		offsets[n++] = i_block >> (ptrs_bits * 2);
306 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 		offsets[n++] = i_block & (ptrs - 1);
308 		final = ptrs;
309 	} else {
310 		ext4_warning(inode->i_sb, "ext4_block_to_path",
311 				"block %lu > max",
312 				i_block + direct_blocks +
313 				indirect_blocks + double_blocks);
314 	}
315 	if (boundary)
316 		*boundary = final - 1 - (i_block & (ptrs - 1));
317 	return n;
318 }
319 
320 /**
321  *	ext4_get_branch - read the chain of indirect blocks leading to data
322  *	@inode: inode in question
323  *	@depth: depth of the chain (1 - direct pointer, etc.)
324  *	@offsets: offsets of pointers in inode/indirect blocks
325  *	@chain: place to store the result
326  *	@err: here we store the error value
327  *
328  *	Function fills the array of triples <key, p, bh> and returns %NULL
329  *	if everything went OK or the pointer to the last filled triple
330  *	(incomplete one) otherwise. Upon the return chain[i].key contains
331  *	the number of (i+1)-th block in the chain (as it is stored in memory,
332  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *	number (it points into struct inode for i==0 and into the bh->b_data
334  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *	block for i>0 and NULL for i==0. In other words, it holds the block
336  *	numbers of the chain, addresses they were taken from (and where we can
337  *	verify that chain did not change) and buffer_heads hosting these
338  *	numbers.
339  *
340  *	Function stops when it stumbles upon zero pointer (absent block)
341  *		(pointer to last triple returned, *@err == 0)
342  *	or when it gets an IO error reading an indirect block
343  *		(ditto, *@err == -EIO)
344  *	or when it reads all @depth-1 indirect blocks successfully and finds
345  *	the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 				 ext4_lblk_t  *offsets,
352 				 Indirect chain[4], int *err)
353 {
354 	struct super_block *sb = inode->i_sb;
355 	Indirect *p = chain;
356 	struct buffer_head *bh;
357 
358 	*err = 0;
359 	/* i_data is not going away, no lock needed */
360 	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 	if (!p->key)
362 		goto no_block;
363 	while (--depth) {
364 		bh = sb_bread(sb, le32_to_cpu(p->key));
365 		if (!bh)
366 			goto failure;
367 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 		/* Reader: end */
369 		if (!p->key)
370 			goto no_block;
371 	}
372 	return NULL;
373 
374 failure:
375 	*err = -EIO;
376 no_block:
377 	return p;
378 }
379 
380 /**
381  *	ext4_find_near - find a place for allocation with sufficient locality
382  *	@inode: owner
383  *	@ind: descriptor of indirect block.
384  *
385  *	This function returns the prefered place for block allocation.
386  *	It is used when heuristic for sequential allocation fails.
387  *	Rules are:
388  *	  + if there is a block to the left of our position - allocate near it.
389  *	  + if pointer will live in indirect block - allocate near that block.
390  *	  + if pointer will live in inode - allocate in the same
391  *	    cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *	Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402 	struct ext4_inode_info *ei = EXT4_I(inode);
403 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 	__le32 *p;
405 	ext4_fsblk_t bg_start;
406 	ext4_grpblk_t colour;
407 
408 	/* Try to find previous block */
409 	for (p = ind->p - 1; p >= start; p--) {
410 		if (*p)
411 			return le32_to_cpu(*p);
412 	}
413 
414 	/* No such thing, so let's try location of indirect block */
415 	if (ind->bh)
416 		return ind->bh->b_blocknr;
417 
418 	/*
419 	 * It is going to be referred to from the inode itself? OK, just put it
420 	 * into the same cylinder group then.
421 	 */
422 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423 	colour = (current->pid % 16) *
424 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 	return bg_start + colour;
426 }
427 
428 /**
429  *	ext4_find_goal - find a prefered place for allocation.
430  *	@inode: owner
431  *	@block:  block we want
432  *	@partial: pointer to the last triple within a chain
433  *
434  *	Normally this function find the prefered place for block allocation,
435  *	returns it.
436  */
437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
438 		Indirect *partial)
439 {
440 	struct ext4_block_alloc_info *block_i;
441 
442 	block_i =  EXT4_I(inode)->i_block_alloc_info;
443 
444 	/*
445 	 * try the heuristic for sequential allocation,
446 	 * failing that at least try to get decent locality.
447 	 */
448 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
449 		&& (block_i->last_alloc_physical_block != 0)) {
450 		return block_i->last_alloc_physical_block + 1;
451 	}
452 
453 	return ext4_find_near(inode, partial);
454 }
455 
456 /**
457  *	ext4_blks_to_allocate: Look up the block map and count the number
458  *	of direct blocks need to be allocated for the given branch.
459  *
460  *	@branch: chain of indirect blocks
461  *	@k: number of blocks need for indirect blocks
462  *	@blks: number of data blocks to be mapped.
463  *	@blocks_to_boundary:  the offset in the indirect block
464  *
465  *	return the total number of blocks to be allocate, including the
466  *	direct and indirect blocks.
467  */
468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469 		int blocks_to_boundary)
470 {
471 	unsigned long count = 0;
472 
473 	/*
474 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
475 	 * then it's clear blocks on that path have not allocated
476 	 */
477 	if (k > 0) {
478 		/* right now we don't handle cross boundary allocation */
479 		if (blks < blocks_to_boundary + 1)
480 			count += blks;
481 		else
482 			count += blocks_to_boundary + 1;
483 		return count;
484 	}
485 
486 	count++;
487 	while (count < blks && count <= blocks_to_boundary &&
488 		le32_to_cpu(*(branch[0].p + count)) == 0) {
489 		count++;
490 	}
491 	return count;
492 }
493 
494 /**
495  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
496  *	@indirect_blks: the number of blocks need to allocate for indirect
497  *			blocks
498  *
499  *	@new_blocks: on return it will store the new block numbers for
500  *	the indirect blocks(if needed) and the first direct block,
501  *	@blks:	on return it will store the total number of allocated
502  *		direct blocks
503  */
504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505 			ext4_fsblk_t goal, int indirect_blks, int blks,
506 			ext4_fsblk_t new_blocks[4], int *err)
507 {
508 	int target, i;
509 	unsigned long count = 0;
510 	int index = 0;
511 	ext4_fsblk_t current_block = 0;
512 	int ret = 0;
513 
514 	/*
515 	 * Here we try to allocate the requested multiple blocks at once,
516 	 * on a best-effort basis.
517 	 * To build a branch, we should allocate blocks for
518 	 * the indirect blocks(if not allocated yet), and at least
519 	 * the first direct block of this branch.  That's the
520 	 * minimum number of blocks need to allocate(required)
521 	 */
522 	target = blks + indirect_blks;
523 
524 	while (1) {
525 		count = target;
526 		/* allocating blocks for indirect blocks and direct blocks */
527 		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
528 		if (*err)
529 			goto failed_out;
530 
531 		target -= count;
532 		/* allocate blocks for indirect blocks */
533 		while (index < indirect_blks && count) {
534 			new_blocks[index++] = current_block++;
535 			count--;
536 		}
537 
538 		if (count > 0)
539 			break;
540 	}
541 
542 	/* save the new block number for the first direct block */
543 	new_blocks[index] = current_block;
544 
545 	/* total number of blocks allocated for direct blocks */
546 	ret = count;
547 	*err = 0;
548 	return ret;
549 failed_out:
550 	for (i = 0; i <index; i++)
551 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
552 	return ret;
553 }
554 
555 /**
556  *	ext4_alloc_branch - allocate and set up a chain of blocks.
557  *	@inode: owner
558  *	@indirect_blks: number of allocated indirect blocks
559  *	@blks: number of allocated direct blocks
560  *	@offsets: offsets (in the blocks) to store the pointers to next.
561  *	@branch: place to store the chain in.
562  *
563  *	This function allocates blocks, zeroes out all but the last one,
564  *	links them into chain and (if we are synchronous) writes them to disk.
565  *	In other words, it prepares a branch that can be spliced onto the
566  *	inode. It stores the information about that chain in the branch[], in
567  *	the same format as ext4_get_branch() would do. We are calling it after
568  *	we had read the existing part of chain and partial points to the last
569  *	triple of that (one with zero ->key). Upon the exit we have the same
570  *	picture as after the successful ext4_get_block(), except that in one
571  *	place chain is disconnected - *branch->p is still zero (we did not
572  *	set the last link), but branch->key contains the number that should
573  *	be placed into *branch->p to fill that gap.
574  *
575  *	If allocation fails we free all blocks we've allocated (and forget
576  *	their buffer_heads) and return the error value the from failed
577  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578  *	as described above and return 0.
579  */
580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581 			int indirect_blks, int *blks, ext4_fsblk_t goal,
582 			ext4_lblk_t *offsets, Indirect *branch)
583 {
584 	int blocksize = inode->i_sb->s_blocksize;
585 	int i, n = 0;
586 	int err = 0;
587 	struct buffer_head *bh;
588 	int num;
589 	ext4_fsblk_t new_blocks[4];
590 	ext4_fsblk_t current_block;
591 
592 	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593 				*blks, new_blocks, &err);
594 	if (err)
595 		return err;
596 
597 	branch[0].key = cpu_to_le32(new_blocks[0]);
598 	/*
599 	 * metadata blocks and data blocks are allocated.
600 	 */
601 	for (n = 1; n <= indirect_blks;  n++) {
602 		/*
603 		 * Get buffer_head for parent block, zero it out
604 		 * and set the pointer to new one, then send
605 		 * parent to disk.
606 		 */
607 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608 		branch[n].bh = bh;
609 		lock_buffer(bh);
610 		BUFFER_TRACE(bh, "call get_create_access");
611 		err = ext4_journal_get_create_access(handle, bh);
612 		if (err) {
613 			unlock_buffer(bh);
614 			brelse(bh);
615 			goto failed;
616 		}
617 
618 		memset(bh->b_data, 0, blocksize);
619 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
620 		branch[n].key = cpu_to_le32(new_blocks[n]);
621 		*branch[n].p = branch[n].key;
622 		if ( n == indirect_blks) {
623 			current_block = new_blocks[n];
624 			/*
625 			 * End of chain, update the last new metablock of
626 			 * the chain to point to the new allocated
627 			 * data blocks numbers
628 			 */
629 			for (i=1; i < num; i++)
630 				*(branch[n].p + i) = cpu_to_le32(++current_block);
631 		}
632 		BUFFER_TRACE(bh, "marking uptodate");
633 		set_buffer_uptodate(bh);
634 		unlock_buffer(bh);
635 
636 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637 		err = ext4_journal_dirty_metadata(handle, bh);
638 		if (err)
639 			goto failed;
640 	}
641 	*blks = num;
642 	return err;
643 failed:
644 	/* Allocation failed, free what we already allocated */
645 	for (i = 1; i <= n ; i++) {
646 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647 		ext4_journal_forget(handle, branch[i].bh);
648 	}
649 	for (i = 0; i <indirect_blks; i++)
650 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
651 
652 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
653 
654 	return err;
655 }
656 
657 /**
658  * ext4_splice_branch - splice the allocated branch onto inode.
659  * @inode: owner
660  * @block: (logical) number of block we are adding
661  * @chain: chain of indirect blocks (with a missing link - see
662  *	ext4_alloc_branch)
663  * @where: location of missing link
664  * @num:   number of indirect blocks we are adding
665  * @blks:  number of direct blocks we are adding
666  *
667  * This function fills the missing link and does all housekeeping needed in
668  * inode (->i_blocks, etc.). In case of success we end up with the full
669  * chain to new block and return 0.
670  */
671 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
672 			ext4_lblk_t block, Indirect *where, int num, int blks)
673 {
674 	int i;
675 	int err = 0;
676 	struct ext4_block_alloc_info *block_i;
677 	ext4_fsblk_t current_block;
678 
679 	block_i = EXT4_I(inode)->i_block_alloc_info;
680 	/*
681 	 * If we're splicing into a [td]indirect block (as opposed to the
682 	 * inode) then we need to get write access to the [td]indirect block
683 	 * before the splice.
684 	 */
685 	if (where->bh) {
686 		BUFFER_TRACE(where->bh, "get_write_access");
687 		err = ext4_journal_get_write_access(handle, where->bh);
688 		if (err)
689 			goto err_out;
690 	}
691 	/* That's it */
692 
693 	*where->p = where->key;
694 
695 	/*
696 	 * Update the host buffer_head or inode to point to more just allocated
697 	 * direct blocks blocks
698 	 */
699 	if (num == 0 && blks > 1) {
700 		current_block = le32_to_cpu(where->key) + 1;
701 		for (i = 1; i < blks; i++)
702 			*(where->p + i ) = cpu_to_le32(current_block++);
703 	}
704 
705 	/*
706 	 * update the most recently allocated logical & physical block
707 	 * in i_block_alloc_info, to assist find the proper goal block for next
708 	 * allocation
709 	 */
710 	if (block_i) {
711 		block_i->last_alloc_logical_block = block + blks - 1;
712 		block_i->last_alloc_physical_block =
713 				le32_to_cpu(where[num].key) + blks - 1;
714 	}
715 
716 	/* We are done with atomic stuff, now do the rest of housekeeping */
717 
718 	inode->i_ctime = ext4_current_time(inode);
719 	ext4_mark_inode_dirty(handle, inode);
720 
721 	/* had we spliced it onto indirect block? */
722 	if (where->bh) {
723 		/*
724 		 * If we spliced it onto an indirect block, we haven't
725 		 * altered the inode.  Note however that if it is being spliced
726 		 * onto an indirect block at the very end of the file (the
727 		 * file is growing) then we *will* alter the inode to reflect
728 		 * the new i_size.  But that is not done here - it is done in
729 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
730 		 */
731 		jbd_debug(5, "splicing indirect only\n");
732 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733 		err = ext4_journal_dirty_metadata(handle, where->bh);
734 		if (err)
735 			goto err_out;
736 	} else {
737 		/*
738 		 * OK, we spliced it into the inode itself on a direct block.
739 		 * Inode was dirtied above.
740 		 */
741 		jbd_debug(5, "splicing direct\n");
742 	}
743 	return err;
744 
745 err_out:
746 	for (i = 1; i <= num; i++) {
747 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748 		ext4_journal_forget(handle, where[i].bh);
749 		ext4_free_blocks(handle, inode,
750 					le32_to_cpu(where[i-1].key), 1, 0);
751 	}
752 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
753 
754 	return err;
755 }
756 
757 /*
758  * Allocation strategy is simple: if we have to allocate something, we will
759  * have to go the whole way to leaf. So let's do it before attaching anything
760  * to tree, set linkage between the newborn blocks, write them if sync is
761  * required, recheck the path, free and repeat if check fails, otherwise
762  * set the last missing link (that will protect us from any truncate-generated
763  * removals - all blocks on the path are immune now) and possibly force the
764  * write on the parent block.
765  * That has a nice additional property: no special recovery from the failed
766  * allocations is needed - we simply release blocks and do not touch anything
767  * reachable from inode.
768  *
769  * `handle' can be NULL if create == 0.
770  *
771  * The BKL may not be held on entry here.  Be sure to take it early.
772  * return > 0, # of blocks mapped or allocated.
773  * return = 0, if plain lookup failed.
774  * return < 0, error case.
775  *
776  *
777  * Need to be called with
778  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
779  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
780  */
781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
782 		ext4_lblk_t iblock, unsigned long maxblocks,
783 		struct buffer_head *bh_result,
784 		int create, int extend_disksize)
785 {
786 	int err = -EIO;
787 	ext4_lblk_t offsets[4];
788 	Indirect chain[4];
789 	Indirect *partial;
790 	ext4_fsblk_t goal;
791 	int indirect_blks;
792 	int blocks_to_boundary = 0;
793 	int depth;
794 	struct ext4_inode_info *ei = EXT4_I(inode);
795 	int count = 0;
796 	ext4_fsblk_t first_block = 0;
797 
798 
799 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
800 	J_ASSERT(handle != NULL || create == 0);
801 	depth = ext4_block_to_path(inode, iblock, offsets,
802 					&blocks_to_boundary);
803 
804 	if (depth == 0)
805 		goto out;
806 
807 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
808 
809 	/* Simplest case - block found, no allocation needed */
810 	if (!partial) {
811 		first_block = le32_to_cpu(chain[depth - 1].key);
812 		clear_buffer_new(bh_result);
813 		count++;
814 		/*map more blocks*/
815 		while (count < maxblocks && count <= blocks_to_boundary) {
816 			ext4_fsblk_t blk;
817 
818 			blk = le32_to_cpu(*(chain[depth-1].p + count));
819 
820 			if (blk == first_block + count)
821 				count++;
822 			else
823 				break;
824 		}
825 		goto got_it;
826 	}
827 
828 	/* Next simple case - plain lookup or failed read of indirect block */
829 	if (!create || err == -EIO)
830 		goto cleanup;
831 
832 	/*
833 	 * Okay, we need to do block allocation.  Lazily initialize the block
834 	 * allocation info here if necessary
835 	*/
836 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
837 		ext4_init_block_alloc_info(inode);
838 
839 	goal = ext4_find_goal(inode, iblock, partial);
840 
841 	/* the number of blocks need to allocate for [d,t]indirect blocks */
842 	indirect_blks = (chain + depth) - partial - 1;
843 
844 	/*
845 	 * Next look up the indirect map to count the totoal number of
846 	 * direct blocks to allocate for this branch.
847 	 */
848 	count = ext4_blks_to_allocate(partial, indirect_blks,
849 					maxblocks, blocks_to_boundary);
850 	/*
851 	 * Block out ext4_truncate while we alter the tree
852 	 */
853 	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
854 				offsets + (partial - chain), partial);
855 
856 	/*
857 	 * The ext4_splice_branch call will free and forget any buffers
858 	 * on the new chain if there is a failure, but that risks using
859 	 * up transaction credits, especially for bitmaps where the
860 	 * credits cannot be returned.  Can we handle this somehow?  We
861 	 * may need to return -EAGAIN upwards in the worst case.  --sct
862 	 */
863 	if (!err)
864 		err = ext4_splice_branch(handle, inode, iblock,
865 					partial, indirect_blks, count);
866 	/*
867 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
868 	 * protect it if you're about to implement concurrent
869 	 * ext4_get_block() -bzzz
870 	*/
871 	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
872 		ei->i_disksize = inode->i_size;
873 	if (err)
874 		goto cleanup;
875 
876 	set_buffer_new(bh_result);
877 got_it:
878 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
879 	if (count > blocks_to_boundary)
880 		set_buffer_boundary(bh_result);
881 	err = count;
882 	/* Clean up and exit */
883 	partial = chain + depth - 1;	/* the whole chain */
884 cleanup:
885 	while (partial > chain) {
886 		BUFFER_TRACE(partial->bh, "call brelse");
887 		brelse(partial->bh);
888 		partial--;
889 	}
890 	BUFFER_TRACE(bh_result, "returned");
891 out:
892 	return err;
893 }
894 
895 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
896 
897 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
898 			unsigned long max_blocks, struct buffer_head *bh,
899 			int create, int extend_disksize)
900 {
901 	int retval;
902 	/*
903 	 * Try to see if we can get  the block without requesting
904 	 * for new file system block.
905 	 */
906 	down_read((&EXT4_I(inode)->i_data_sem));
907 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
908 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
909 				bh, 0, 0);
910 	} else {
911 		retval = ext4_get_blocks_handle(handle,
912 				inode, block, max_blocks, bh, 0, 0);
913 	}
914 	up_read((&EXT4_I(inode)->i_data_sem));
915 	if (!create || (retval > 0))
916 		return retval;
917 
918 	/*
919 	 * We need to allocate new blocks which will result
920 	 * in i_data update
921 	 */
922 	down_write((&EXT4_I(inode)->i_data_sem));
923 	/*
924 	 * We need to check for EXT4 here because migrate
925 	 * could have changed the inode type in between
926 	 */
927 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
928 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
929 				bh, create, extend_disksize);
930 	} else {
931 		retval = ext4_get_blocks_handle(handle, inode, block,
932 				max_blocks, bh, create, extend_disksize);
933 	}
934 	up_write((&EXT4_I(inode)->i_data_sem));
935 	return retval;
936 }
937 
938 static int ext4_get_block(struct inode *inode, sector_t iblock,
939 			struct buffer_head *bh_result, int create)
940 {
941 	handle_t *handle = ext4_journal_current_handle();
942 	int ret = 0;
943 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
944 
945 	if (!create)
946 		goto get_block;		/* A read */
947 
948 	if (max_blocks == 1)
949 		goto get_block;		/* A single block get */
950 
951 	if (handle->h_transaction->t_state == T_LOCKED) {
952 		/*
953 		 * Huge direct-io writes can hold off commits for long
954 		 * periods of time.  Let this commit run.
955 		 */
956 		ext4_journal_stop(handle);
957 		handle = ext4_journal_start(inode, DIO_CREDITS);
958 		if (IS_ERR(handle))
959 			ret = PTR_ERR(handle);
960 		goto get_block;
961 	}
962 
963 	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
964 		/*
965 		 * Getting low on buffer credits...
966 		 */
967 		ret = ext4_journal_extend(handle, DIO_CREDITS);
968 		if (ret > 0) {
969 			/*
970 			 * Couldn't extend the transaction.  Start a new one.
971 			 */
972 			ret = ext4_journal_restart(handle, DIO_CREDITS);
973 		}
974 	}
975 
976 get_block:
977 	if (ret == 0) {
978 		ret = ext4_get_blocks_wrap(handle, inode, iblock,
979 					max_blocks, bh_result, create, 0);
980 		if (ret > 0) {
981 			bh_result->b_size = (ret << inode->i_blkbits);
982 			ret = 0;
983 		}
984 	}
985 	return ret;
986 }
987 
988 /*
989  * `handle' can be NULL if create is zero
990  */
991 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
992 				ext4_lblk_t block, int create, int *errp)
993 {
994 	struct buffer_head dummy;
995 	int fatal = 0, err;
996 
997 	J_ASSERT(handle != NULL || create == 0);
998 
999 	dummy.b_state = 0;
1000 	dummy.b_blocknr = -1000;
1001 	buffer_trace_init(&dummy.b_history);
1002 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1003 					&dummy, create, 1);
1004 	/*
1005 	 * ext4_get_blocks_handle() returns number of blocks
1006 	 * mapped. 0 in case of a HOLE.
1007 	 */
1008 	if (err > 0) {
1009 		if (err > 1)
1010 			WARN_ON(1);
1011 		err = 0;
1012 	}
1013 	*errp = err;
1014 	if (!err && buffer_mapped(&dummy)) {
1015 		struct buffer_head *bh;
1016 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1017 		if (!bh) {
1018 			*errp = -EIO;
1019 			goto err;
1020 		}
1021 		if (buffer_new(&dummy)) {
1022 			J_ASSERT(create != 0);
1023 			J_ASSERT(handle != NULL);
1024 
1025 			/*
1026 			 * Now that we do not always journal data, we should
1027 			 * keep in mind whether this should always journal the
1028 			 * new buffer as metadata.  For now, regular file
1029 			 * writes use ext4_get_block instead, so it's not a
1030 			 * problem.
1031 			 */
1032 			lock_buffer(bh);
1033 			BUFFER_TRACE(bh, "call get_create_access");
1034 			fatal = ext4_journal_get_create_access(handle, bh);
1035 			if (!fatal && !buffer_uptodate(bh)) {
1036 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1037 				set_buffer_uptodate(bh);
1038 			}
1039 			unlock_buffer(bh);
1040 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1041 			err = ext4_journal_dirty_metadata(handle, bh);
1042 			if (!fatal)
1043 				fatal = err;
1044 		} else {
1045 			BUFFER_TRACE(bh, "not a new buffer");
1046 		}
1047 		if (fatal) {
1048 			*errp = fatal;
1049 			brelse(bh);
1050 			bh = NULL;
1051 		}
1052 		return bh;
1053 	}
1054 err:
1055 	return NULL;
1056 }
1057 
1058 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1059 			       ext4_lblk_t block, int create, int *err)
1060 {
1061 	struct buffer_head * bh;
1062 
1063 	bh = ext4_getblk(handle, inode, block, create, err);
1064 	if (!bh)
1065 		return bh;
1066 	if (buffer_uptodate(bh))
1067 		return bh;
1068 	ll_rw_block(READ_META, 1, &bh);
1069 	wait_on_buffer(bh);
1070 	if (buffer_uptodate(bh))
1071 		return bh;
1072 	put_bh(bh);
1073 	*err = -EIO;
1074 	return NULL;
1075 }
1076 
1077 static int walk_page_buffers(	handle_t *handle,
1078 				struct buffer_head *head,
1079 				unsigned from,
1080 				unsigned to,
1081 				int *partial,
1082 				int (*fn)(	handle_t *handle,
1083 						struct buffer_head *bh))
1084 {
1085 	struct buffer_head *bh;
1086 	unsigned block_start, block_end;
1087 	unsigned blocksize = head->b_size;
1088 	int err, ret = 0;
1089 	struct buffer_head *next;
1090 
1091 	for (	bh = head, block_start = 0;
1092 		ret == 0 && (bh != head || !block_start);
1093 		block_start = block_end, bh = next)
1094 	{
1095 		next = bh->b_this_page;
1096 		block_end = block_start + blocksize;
1097 		if (block_end <= from || block_start >= to) {
1098 			if (partial && !buffer_uptodate(bh))
1099 				*partial = 1;
1100 			continue;
1101 		}
1102 		err = (*fn)(handle, bh);
1103 		if (!ret)
1104 			ret = err;
1105 	}
1106 	return ret;
1107 }
1108 
1109 /*
1110  * To preserve ordering, it is essential that the hole instantiation and
1111  * the data write be encapsulated in a single transaction.  We cannot
1112  * close off a transaction and start a new one between the ext4_get_block()
1113  * and the commit_write().  So doing the jbd2_journal_start at the start of
1114  * prepare_write() is the right place.
1115  *
1116  * Also, this function can nest inside ext4_writepage() ->
1117  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1118  * has generated enough buffer credits to do the whole page.  So we won't
1119  * block on the journal in that case, which is good, because the caller may
1120  * be PF_MEMALLOC.
1121  *
1122  * By accident, ext4 can be reentered when a transaction is open via
1123  * quota file writes.  If we were to commit the transaction while thus
1124  * reentered, there can be a deadlock - we would be holding a quota
1125  * lock, and the commit would never complete if another thread had a
1126  * transaction open and was blocking on the quota lock - a ranking
1127  * violation.
1128  *
1129  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1130  * will _not_ run commit under these circumstances because handle->h_ref
1131  * is elevated.  We'll still have enough credits for the tiny quotafile
1132  * write.
1133  */
1134 static int do_journal_get_write_access(handle_t *handle,
1135 					struct buffer_head *bh)
1136 {
1137 	if (!buffer_mapped(bh) || buffer_freed(bh))
1138 		return 0;
1139 	return ext4_journal_get_write_access(handle, bh);
1140 }
1141 
1142 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143 				loff_t pos, unsigned len, unsigned flags,
1144 				struct page **pagep, void **fsdata)
1145 {
1146  	struct inode *inode = mapping->host;
1147 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1148 	handle_t *handle;
1149 	int retries = 0;
1150  	struct page *page;
1151  	pgoff_t index;
1152  	unsigned from, to;
1153 
1154  	index = pos >> PAGE_CACHE_SHIFT;
1155  	from = pos & (PAGE_CACHE_SIZE - 1);
1156  	to = from + len;
1157 
1158 retry:
1159  	page = __grab_cache_page(mapping, index);
1160  	if (!page)
1161  		return -ENOMEM;
1162  	*pagep = page;
1163 
1164   	handle = ext4_journal_start(inode, needed_blocks);
1165   	if (IS_ERR(handle)) {
1166  		unlock_page(page);
1167  		page_cache_release(page);
1168   		ret = PTR_ERR(handle);
1169   		goto out;
1170 	}
1171 
1172 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1173 							ext4_get_block);
1174 
1175 	if (!ret && ext4_should_journal_data(inode)) {
1176 		ret = walk_page_buffers(handle, page_buffers(page),
1177 				from, to, NULL, do_journal_get_write_access);
1178 	}
1179 
1180 	if (ret) {
1181 		ext4_journal_stop(handle);
1182  		unlock_page(page);
1183  		page_cache_release(page);
1184 	}
1185 
1186 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1187 		goto retry;
1188 out:
1189 	return ret;
1190 }
1191 
1192 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1193 {
1194 	int err = jbd2_journal_dirty_data(handle, bh);
1195 	if (err)
1196 		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1197 						bh, handle, err);
1198 	return err;
1199 }
1200 
1201 /* For write_end() in data=journal mode */
1202 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1203 {
1204 	if (!buffer_mapped(bh) || buffer_freed(bh))
1205 		return 0;
1206 	set_buffer_uptodate(bh);
1207 	return ext4_journal_dirty_metadata(handle, bh);
1208 }
1209 
1210 /*
1211  * Generic write_end handler for ordered and writeback ext4 journal modes.
1212  * We can't use generic_write_end, because that unlocks the page and we need to
1213  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1214  * after block_write_end.
1215  */
1216 static int ext4_generic_write_end(struct file *file,
1217 				struct address_space *mapping,
1218 				loff_t pos, unsigned len, unsigned copied,
1219 				struct page *page, void *fsdata)
1220 {
1221 	struct inode *inode = file->f_mapping->host;
1222 
1223 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1224 
1225 	if (pos+copied > inode->i_size) {
1226 		i_size_write(inode, pos+copied);
1227 		mark_inode_dirty(inode);
1228 	}
1229 
1230 	return copied;
1231 }
1232 
1233 /*
1234  * We need to pick up the new inode size which generic_commit_write gave us
1235  * `file' can be NULL - eg, when called from page_symlink().
1236  *
1237  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1238  * buffers are managed internally.
1239  */
1240 static int ext4_ordered_write_end(struct file *file,
1241 				struct address_space *mapping,
1242 				loff_t pos, unsigned len, unsigned copied,
1243 				struct page *page, void *fsdata)
1244 {
1245 	handle_t *handle = ext4_journal_current_handle();
1246 	struct inode *inode = file->f_mapping->host;
1247 	unsigned from, to;
1248 	int ret = 0, ret2;
1249 
1250 	from = pos & (PAGE_CACHE_SIZE - 1);
1251 	to = from + len;
1252 
1253 	ret = walk_page_buffers(handle, page_buffers(page),
1254 		from, to, NULL, ext4_journal_dirty_data);
1255 
1256 	if (ret == 0) {
1257 		/*
1258 		 * generic_write_end() will run mark_inode_dirty() if i_size
1259 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1260 		 * into that.
1261 		 */
1262 		loff_t new_i_size;
1263 
1264 		new_i_size = pos + copied;
1265 		if (new_i_size > EXT4_I(inode)->i_disksize)
1266 			EXT4_I(inode)->i_disksize = new_i_size;
1267 		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1268 							page, fsdata);
1269 		if (copied < 0)
1270 			ret = copied;
1271 	}
1272 	ret2 = ext4_journal_stop(handle);
1273 	if (!ret)
1274 		ret = ret2;
1275 	unlock_page(page);
1276 	page_cache_release(page);
1277 
1278 	return ret ? ret : copied;
1279 }
1280 
1281 static int ext4_writeback_write_end(struct file *file,
1282 				struct address_space *mapping,
1283 				loff_t pos, unsigned len, unsigned copied,
1284 				struct page *page, void *fsdata)
1285 {
1286 	handle_t *handle = ext4_journal_current_handle();
1287 	struct inode *inode = file->f_mapping->host;
1288 	int ret = 0, ret2;
1289 	loff_t new_i_size;
1290 
1291 	new_i_size = pos + copied;
1292 	if (new_i_size > EXT4_I(inode)->i_disksize)
1293 		EXT4_I(inode)->i_disksize = new_i_size;
1294 
1295 	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1296 							page, fsdata);
1297 	if (copied < 0)
1298 		ret = copied;
1299 
1300 	ret2 = ext4_journal_stop(handle);
1301 	if (!ret)
1302 		ret = ret2;
1303 	unlock_page(page);
1304 	page_cache_release(page);
1305 
1306 	return ret ? ret : copied;
1307 }
1308 
1309 static int ext4_journalled_write_end(struct file *file,
1310 				struct address_space *mapping,
1311 				loff_t pos, unsigned len, unsigned copied,
1312 				struct page *page, void *fsdata)
1313 {
1314 	handle_t *handle = ext4_journal_current_handle();
1315 	struct inode *inode = mapping->host;
1316 	int ret = 0, ret2;
1317 	int partial = 0;
1318 	unsigned from, to;
1319 
1320 	from = pos & (PAGE_CACHE_SIZE - 1);
1321 	to = from + len;
1322 
1323 	if (copied < len) {
1324 		if (!PageUptodate(page))
1325 			copied = 0;
1326 		page_zero_new_buffers(page, from+copied, to);
1327 	}
1328 
1329 	ret = walk_page_buffers(handle, page_buffers(page), from,
1330 				to, &partial, write_end_fn);
1331 	if (!partial)
1332 		SetPageUptodate(page);
1333 	if (pos+copied > inode->i_size)
1334 		i_size_write(inode, pos+copied);
1335 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1336 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1337 		EXT4_I(inode)->i_disksize = inode->i_size;
1338 		ret2 = ext4_mark_inode_dirty(handle, inode);
1339 		if (!ret)
1340 			ret = ret2;
1341 	}
1342 
1343 	ret2 = ext4_journal_stop(handle);
1344 	if (!ret)
1345 		ret = ret2;
1346 	unlock_page(page);
1347 	page_cache_release(page);
1348 
1349 	return ret ? ret : copied;
1350 }
1351 
1352 /*
1353  * bmap() is special.  It gets used by applications such as lilo and by
1354  * the swapper to find the on-disk block of a specific piece of data.
1355  *
1356  * Naturally, this is dangerous if the block concerned is still in the
1357  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1358  * filesystem and enables swap, then they may get a nasty shock when the
1359  * data getting swapped to that swapfile suddenly gets overwritten by
1360  * the original zero's written out previously to the journal and
1361  * awaiting writeback in the kernel's buffer cache.
1362  *
1363  * So, if we see any bmap calls here on a modified, data-journaled file,
1364  * take extra steps to flush any blocks which might be in the cache.
1365  */
1366 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1367 {
1368 	struct inode *inode = mapping->host;
1369 	journal_t *journal;
1370 	int err;
1371 
1372 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1373 		/*
1374 		 * This is a REALLY heavyweight approach, but the use of
1375 		 * bmap on dirty files is expected to be extremely rare:
1376 		 * only if we run lilo or swapon on a freshly made file
1377 		 * do we expect this to happen.
1378 		 *
1379 		 * (bmap requires CAP_SYS_RAWIO so this does not
1380 		 * represent an unprivileged user DOS attack --- we'd be
1381 		 * in trouble if mortal users could trigger this path at
1382 		 * will.)
1383 		 *
1384 		 * NB. EXT4_STATE_JDATA is not set on files other than
1385 		 * regular files.  If somebody wants to bmap a directory
1386 		 * or symlink and gets confused because the buffer
1387 		 * hasn't yet been flushed to disk, they deserve
1388 		 * everything they get.
1389 		 */
1390 
1391 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1392 		journal = EXT4_JOURNAL(inode);
1393 		jbd2_journal_lock_updates(journal);
1394 		err = jbd2_journal_flush(journal);
1395 		jbd2_journal_unlock_updates(journal);
1396 
1397 		if (err)
1398 			return 0;
1399 	}
1400 
1401 	return generic_block_bmap(mapping,block,ext4_get_block);
1402 }
1403 
1404 static int bget_one(handle_t *handle, struct buffer_head *bh)
1405 {
1406 	get_bh(bh);
1407 	return 0;
1408 }
1409 
1410 static int bput_one(handle_t *handle, struct buffer_head *bh)
1411 {
1412 	put_bh(bh);
1413 	return 0;
1414 }
1415 
1416 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1417 {
1418 	if (buffer_mapped(bh))
1419 		return ext4_journal_dirty_data(handle, bh);
1420 	return 0;
1421 }
1422 
1423 /*
1424  * Note that we always start a transaction even if we're not journalling
1425  * data.  This is to preserve ordering: any hole instantiation within
1426  * __block_write_full_page -> ext4_get_block() should be journalled
1427  * along with the data so we don't crash and then get metadata which
1428  * refers to old data.
1429  *
1430  * In all journalling modes block_write_full_page() will start the I/O.
1431  *
1432  * Problem:
1433  *
1434  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1435  *		ext4_writepage()
1436  *
1437  * Similar for:
1438  *
1439  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1440  *
1441  * Same applies to ext4_get_block().  We will deadlock on various things like
1442  * lock_journal and i_data_sem
1443  *
1444  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1445  * allocations fail.
1446  *
1447  * 16May01: If we're reentered then journal_current_handle() will be
1448  *	    non-zero. We simply *return*.
1449  *
1450  * 1 July 2001: @@@ FIXME:
1451  *   In journalled data mode, a data buffer may be metadata against the
1452  *   current transaction.  But the same file is part of a shared mapping
1453  *   and someone does a writepage() on it.
1454  *
1455  *   We will move the buffer onto the async_data list, but *after* it has
1456  *   been dirtied. So there's a small window where we have dirty data on
1457  *   BJ_Metadata.
1458  *
1459  *   Note that this only applies to the last partial page in the file.  The
1460  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1461  *   broken code anyway: it's wrong for msync()).
1462  *
1463  *   It's a rare case: affects the final partial page, for journalled data
1464  *   where the file is subject to bith write() and writepage() in the same
1465  *   transction.  To fix it we'll need a custom block_write_full_page().
1466  *   We'll probably need that anyway for journalling writepage() output.
1467  *
1468  * We don't honour synchronous mounts for writepage().  That would be
1469  * disastrous.  Any write() or metadata operation will sync the fs for
1470  * us.
1471  *
1472  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1473  * we don't need to open a transaction here.
1474  */
1475 static int ext4_ordered_writepage(struct page *page,
1476 				struct writeback_control *wbc)
1477 {
1478 	struct inode *inode = page->mapping->host;
1479 	struct buffer_head *page_bufs;
1480 	handle_t *handle = NULL;
1481 	int ret = 0;
1482 	int err;
1483 
1484 	J_ASSERT(PageLocked(page));
1485 
1486 	/*
1487 	 * We give up here if we're reentered, because it might be for a
1488 	 * different filesystem.
1489 	 */
1490 	if (ext4_journal_current_handle())
1491 		goto out_fail;
1492 
1493 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1494 
1495 	if (IS_ERR(handle)) {
1496 		ret = PTR_ERR(handle);
1497 		goto out_fail;
1498 	}
1499 
1500 	if (!page_has_buffers(page)) {
1501 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1502 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1503 	}
1504 	page_bufs = page_buffers(page);
1505 	walk_page_buffers(handle, page_bufs, 0,
1506 			PAGE_CACHE_SIZE, NULL, bget_one);
1507 
1508 	ret = block_write_full_page(page, ext4_get_block, wbc);
1509 
1510 	/*
1511 	 * The page can become unlocked at any point now, and
1512 	 * truncate can then come in and change things.  So we
1513 	 * can't touch *page from now on.  But *page_bufs is
1514 	 * safe due to elevated refcount.
1515 	 */
1516 
1517 	/*
1518 	 * And attach them to the current transaction.  But only if
1519 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1520 	 * and generally junk.
1521 	 */
1522 	if (ret == 0) {
1523 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1524 					NULL, jbd2_journal_dirty_data_fn);
1525 		if (!ret)
1526 			ret = err;
1527 	}
1528 	walk_page_buffers(handle, page_bufs, 0,
1529 			PAGE_CACHE_SIZE, NULL, bput_one);
1530 	err = ext4_journal_stop(handle);
1531 	if (!ret)
1532 		ret = err;
1533 	return ret;
1534 
1535 out_fail:
1536 	redirty_page_for_writepage(wbc, page);
1537 	unlock_page(page);
1538 	return ret;
1539 }
1540 
1541 static int ext4_writeback_writepage(struct page *page,
1542 				struct writeback_control *wbc)
1543 {
1544 	struct inode *inode = page->mapping->host;
1545 	handle_t *handle = NULL;
1546 	int ret = 0;
1547 	int err;
1548 
1549 	if (ext4_journal_current_handle())
1550 		goto out_fail;
1551 
1552 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1553 	if (IS_ERR(handle)) {
1554 		ret = PTR_ERR(handle);
1555 		goto out_fail;
1556 	}
1557 
1558 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1559 		ret = nobh_writepage(page, ext4_get_block, wbc);
1560 	else
1561 		ret = block_write_full_page(page, ext4_get_block, wbc);
1562 
1563 	err = ext4_journal_stop(handle);
1564 	if (!ret)
1565 		ret = err;
1566 	return ret;
1567 
1568 out_fail:
1569 	redirty_page_for_writepage(wbc, page);
1570 	unlock_page(page);
1571 	return ret;
1572 }
1573 
1574 static int ext4_journalled_writepage(struct page *page,
1575 				struct writeback_control *wbc)
1576 {
1577 	struct inode *inode = page->mapping->host;
1578 	handle_t *handle = NULL;
1579 	int ret = 0;
1580 	int err;
1581 
1582 	if (ext4_journal_current_handle())
1583 		goto no_write;
1584 
1585 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1586 	if (IS_ERR(handle)) {
1587 		ret = PTR_ERR(handle);
1588 		goto no_write;
1589 	}
1590 
1591 	if (!page_has_buffers(page) || PageChecked(page)) {
1592 		/*
1593 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1594 		 * doesn't seem much point in redirtying the page here.
1595 		 */
1596 		ClearPageChecked(page);
1597 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1598 					ext4_get_block);
1599 		if (ret != 0) {
1600 			ext4_journal_stop(handle);
1601 			goto out_unlock;
1602 		}
1603 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1604 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1605 
1606 		err = walk_page_buffers(handle, page_buffers(page), 0,
1607 				PAGE_CACHE_SIZE, NULL, write_end_fn);
1608 		if (ret == 0)
1609 			ret = err;
1610 		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1611 		unlock_page(page);
1612 	} else {
1613 		/*
1614 		 * It may be a page full of checkpoint-mode buffers.  We don't
1615 		 * really know unless we go poke around in the buffer_heads.
1616 		 * But block_write_full_page will do the right thing.
1617 		 */
1618 		ret = block_write_full_page(page, ext4_get_block, wbc);
1619 	}
1620 	err = ext4_journal_stop(handle);
1621 	if (!ret)
1622 		ret = err;
1623 out:
1624 	return ret;
1625 
1626 no_write:
1627 	redirty_page_for_writepage(wbc, page);
1628 out_unlock:
1629 	unlock_page(page);
1630 	goto out;
1631 }
1632 
1633 static int ext4_readpage(struct file *file, struct page *page)
1634 {
1635 	return mpage_readpage(page, ext4_get_block);
1636 }
1637 
1638 static int
1639 ext4_readpages(struct file *file, struct address_space *mapping,
1640 		struct list_head *pages, unsigned nr_pages)
1641 {
1642 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1643 }
1644 
1645 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1646 {
1647 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1648 
1649 	/*
1650 	 * If it's a full truncate we just forget about the pending dirtying
1651 	 */
1652 	if (offset == 0)
1653 		ClearPageChecked(page);
1654 
1655 	jbd2_journal_invalidatepage(journal, page, offset);
1656 }
1657 
1658 static int ext4_releasepage(struct page *page, gfp_t wait)
1659 {
1660 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1661 
1662 	WARN_ON(PageChecked(page));
1663 	if (!page_has_buffers(page))
1664 		return 0;
1665 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1666 }
1667 
1668 /*
1669  * If the O_DIRECT write will extend the file then add this inode to the
1670  * orphan list.  So recovery will truncate it back to the original size
1671  * if the machine crashes during the write.
1672  *
1673  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1674  * crashes then stale disk data _may_ be exposed inside the file.
1675  */
1676 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1677 			const struct iovec *iov, loff_t offset,
1678 			unsigned long nr_segs)
1679 {
1680 	struct file *file = iocb->ki_filp;
1681 	struct inode *inode = file->f_mapping->host;
1682 	struct ext4_inode_info *ei = EXT4_I(inode);
1683 	handle_t *handle = NULL;
1684 	ssize_t ret;
1685 	int orphan = 0;
1686 	size_t count = iov_length(iov, nr_segs);
1687 
1688 	if (rw == WRITE) {
1689 		loff_t final_size = offset + count;
1690 
1691 		handle = ext4_journal_start(inode, DIO_CREDITS);
1692 		if (IS_ERR(handle)) {
1693 			ret = PTR_ERR(handle);
1694 			goto out;
1695 		}
1696 		if (final_size > inode->i_size) {
1697 			ret = ext4_orphan_add(handle, inode);
1698 			if (ret)
1699 				goto out_stop;
1700 			orphan = 1;
1701 			ei->i_disksize = inode->i_size;
1702 		}
1703 	}
1704 
1705 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1706 				 offset, nr_segs,
1707 				 ext4_get_block, NULL);
1708 
1709 	/*
1710 	 * Reacquire the handle: ext4_get_block() can restart the transaction
1711 	 */
1712 	handle = ext4_journal_current_handle();
1713 
1714 out_stop:
1715 	if (handle) {
1716 		int err;
1717 
1718 		if (orphan && inode->i_nlink)
1719 			ext4_orphan_del(handle, inode);
1720 		if (orphan && ret > 0) {
1721 			loff_t end = offset + ret;
1722 			if (end > inode->i_size) {
1723 				ei->i_disksize = end;
1724 				i_size_write(inode, end);
1725 				/*
1726 				 * We're going to return a positive `ret'
1727 				 * here due to non-zero-length I/O, so there's
1728 				 * no way of reporting error returns from
1729 				 * ext4_mark_inode_dirty() to userspace.  So
1730 				 * ignore it.
1731 				 */
1732 				ext4_mark_inode_dirty(handle, inode);
1733 			}
1734 		}
1735 		err = ext4_journal_stop(handle);
1736 		if (ret == 0)
1737 			ret = err;
1738 	}
1739 out:
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Pages can be marked dirty completely asynchronously from ext4's journalling
1745  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1746  * much here because ->set_page_dirty is called under VFS locks.  The page is
1747  * not necessarily locked.
1748  *
1749  * We cannot just dirty the page and leave attached buffers clean, because the
1750  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1751  * or jbddirty because all the journalling code will explode.
1752  *
1753  * So what we do is to mark the page "pending dirty" and next time writepage
1754  * is called, propagate that into the buffers appropriately.
1755  */
1756 static int ext4_journalled_set_page_dirty(struct page *page)
1757 {
1758 	SetPageChecked(page);
1759 	return __set_page_dirty_nobuffers(page);
1760 }
1761 
1762 static const struct address_space_operations ext4_ordered_aops = {
1763 	.readpage	= ext4_readpage,
1764 	.readpages	= ext4_readpages,
1765 	.writepage	= ext4_ordered_writepage,
1766 	.sync_page	= block_sync_page,
1767 	.write_begin	= ext4_write_begin,
1768 	.write_end	= ext4_ordered_write_end,
1769 	.bmap		= ext4_bmap,
1770 	.invalidatepage	= ext4_invalidatepage,
1771 	.releasepage	= ext4_releasepage,
1772 	.direct_IO	= ext4_direct_IO,
1773 	.migratepage	= buffer_migrate_page,
1774 };
1775 
1776 static const struct address_space_operations ext4_writeback_aops = {
1777 	.readpage	= ext4_readpage,
1778 	.readpages	= ext4_readpages,
1779 	.writepage	= ext4_writeback_writepage,
1780 	.sync_page	= block_sync_page,
1781 	.write_begin	= ext4_write_begin,
1782 	.write_end	= ext4_writeback_write_end,
1783 	.bmap		= ext4_bmap,
1784 	.invalidatepage	= ext4_invalidatepage,
1785 	.releasepage	= ext4_releasepage,
1786 	.direct_IO	= ext4_direct_IO,
1787 	.migratepage	= buffer_migrate_page,
1788 };
1789 
1790 static const struct address_space_operations ext4_journalled_aops = {
1791 	.readpage	= ext4_readpage,
1792 	.readpages	= ext4_readpages,
1793 	.writepage	= ext4_journalled_writepage,
1794 	.sync_page	= block_sync_page,
1795 	.write_begin	= ext4_write_begin,
1796 	.write_end	= ext4_journalled_write_end,
1797 	.set_page_dirty	= ext4_journalled_set_page_dirty,
1798 	.bmap		= ext4_bmap,
1799 	.invalidatepage	= ext4_invalidatepage,
1800 	.releasepage	= ext4_releasepage,
1801 };
1802 
1803 void ext4_set_aops(struct inode *inode)
1804 {
1805 	if (ext4_should_order_data(inode))
1806 		inode->i_mapping->a_ops = &ext4_ordered_aops;
1807 	else if (ext4_should_writeback_data(inode))
1808 		inode->i_mapping->a_ops = &ext4_writeback_aops;
1809 	else
1810 		inode->i_mapping->a_ops = &ext4_journalled_aops;
1811 }
1812 
1813 /*
1814  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1815  * up to the end of the block which corresponds to `from'.
1816  * This required during truncate. We need to physically zero the tail end
1817  * of that block so it doesn't yield old data if the file is later grown.
1818  */
1819 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1820 		struct address_space *mapping, loff_t from)
1821 {
1822 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1823 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1824 	unsigned blocksize, length, pos;
1825 	ext4_lblk_t iblock;
1826 	struct inode *inode = mapping->host;
1827 	struct buffer_head *bh;
1828 	int err = 0;
1829 
1830 	blocksize = inode->i_sb->s_blocksize;
1831 	length = blocksize - (offset & (blocksize - 1));
1832 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1833 
1834 	/*
1835 	 * For "nobh" option,  we can only work if we don't need to
1836 	 * read-in the page - otherwise we create buffers to do the IO.
1837 	 */
1838 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1839 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1840 		zero_user(page, offset, length);
1841 		set_page_dirty(page);
1842 		goto unlock;
1843 	}
1844 
1845 	if (!page_has_buffers(page))
1846 		create_empty_buffers(page, blocksize, 0);
1847 
1848 	/* Find the buffer that contains "offset" */
1849 	bh = page_buffers(page);
1850 	pos = blocksize;
1851 	while (offset >= pos) {
1852 		bh = bh->b_this_page;
1853 		iblock++;
1854 		pos += blocksize;
1855 	}
1856 
1857 	err = 0;
1858 	if (buffer_freed(bh)) {
1859 		BUFFER_TRACE(bh, "freed: skip");
1860 		goto unlock;
1861 	}
1862 
1863 	if (!buffer_mapped(bh)) {
1864 		BUFFER_TRACE(bh, "unmapped");
1865 		ext4_get_block(inode, iblock, bh, 0);
1866 		/* unmapped? It's a hole - nothing to do */
1867 		if (!buffer_mapped(bh)) {
1868 			BUFFER_TRACE(bh, "still unmapped");
1869 			goto unlock;
1870 		}
1871 	}
1872 
1873 	/* Ok, it's mapped. Make sure it's up-to-date */
1874 	if (PageUptodate(page))
1875 		set_buffer_uptodate(bh);
1876 
1877 	if (!buffer_uptodate(bh)) {
1878 		err = -EIO;
1879 		ll_rw_block(READ, 1, &bh);
1880 		wait_on_buffer(bh);
1881 		/* Uhhuh. Read error. Complain and punt. */
1882 		if (!buffer_uptodate(bh))
1883 			goto unlock;
1884 	}
1885 
1886 	if (ext4_should_journal_data(inode)) {
1887 		BUFFER_TRACE(bh, "get write access");
1888 		err = ext4_journal_get_write_access(handle, bh);
1889 		if (err)
1890 			goto unlock;
1891 	}
1892 
1893 	zero_user(page, offset, length);
1894 
1895 	BUFFER_TRACE(bh, "zeroed end of block");
1896 
1897 	err = 0;
1898 	if (ext4_should_journal_data(inode)) {
1899 		err = ext4_journal_dirty_metadata(handle, bh);
1900 	} else {
1901 		if (ext4_should_order_data(inode))
1902 			err = ext4_journal_dirty_data(handle, bh);
1903 		mark_buffer_dirty(bh);
1904 	}
1905 
1906 unlock:
1907 	unlock_page(page);
1908 	page_cache_release(page);
1909 	return err;
1910 }
1911 
1912 /*
1913  * Probably it should be a library function... search for first non-zero word
1914  * or memcmp with zero_page, whatever is better for particular architecture.
1915  * Linus?
1916  */
1917 static inline int all_zeroes(__le32 *p, __le32 *q)
1918 {
1919 	while (p < q)
1920 		if (*p++)
1921 			return 0;
1922 	return 1;
1923 }
1924 
1925 /**
1926  *	ext4_find_shared - find the indirect blocks for partial truncation.
1927  *	@inode:	  inode in question
1928  *	@depth:	  depth of the affected branch
1929  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1930  *	@chain:	  place to store the pointers to partial indirect blocks
1931  *	@top:	  place to the (detached) top of branch
1932  *
1933  *	This is a helper function used by ext4_truncate().
1934  *
1935  *	When we do truncate() we may have to clean the ends of several
1936  *	indirect blocks but leave the blocks themselves alive. Block is
1937  *	partially truncated if some data below the new i_size is refered
1938  *	from it (and it is on the path to the first completely truncated
1939  *	data block, indeed).  We have to free the top of that path along
1940  *	with everything to the right of the path. Since no allocation
1941  *	past the truncation point is possible until ext4_truncate()
1942  *	finishes, we may safely do the latter, but top of branch may
1943  *	require special attention - pageout below the truncation point
1944  *	might try to populate it.
1945  *
1946  *	We atomically detach the top of branch from the tree, store the
1947  *	block number of its root in *@top, pointers to buffer_heads of
1948  *	partially truncated blocks - in @chain[].bh and pointers to
1949  *	their last elements that should not be removed - in
1950  *	@chain[].p. Return value is the pointer to last filled element
1951  *	of @chain.
1952  *
1953  *	The work left to caller to do the actual freeing of subtrees:
1954  *		a) free the subtree starting from *@top
1955  *		b) free the subtrees whose roots are stored in
1956  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1957  *		c) free the subtrees growing from the inode past the @chain[0].
1958  *			(no partially truncated stuff there).  */
1959 
1960 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1961 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1962 {
1963 	Indirect *partial, *p;
1964 	int k, err;
1965 
1966 	*top = 0;
1967 	/* Make k index the deepest non-null offest + 1 */
1968 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1969 		;
1970 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1971 	/* Writer: pointers */
1972 	if (!partial)
1973 		partial = chain + k-1;
1974 	/*
1975 	 * If the branch acquired continuation since we've looked at it -
1976 	 * fine, it should all survive and (new) top doesn't belong to us.
1977 	 */
1978 	if (!partial->key && *partial->p)
1979 		/* Writer: end */
1980 		goto no_top;
1981 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1982 		;
1983 	/*
1984 	 * OK, we've found the last block that must survive. The rest of our
1985 	 * branch should be detached before unlocking. However, if that rest
1986 	 * of branch is all ours and does not grow immediately from the inode
1987 	 * it's easier to cheat and just decrement partial->p.
1988 	 */
1989 	if (p == chain + k - 1 && p > chain) {
1990 		p->p--;
1991 	} else {
1992 		*top = *p->p;
1993 		/* Nope, don't do this in ext4.  Must leave the tree intact */
1994 #if 0
1995 		*p->p = 0;
1996 #endif
1997 	}
1998 	/* Writer: end */
1999 
2000 	while(partial > p) {
2001 		brelse(partial->bh);
2002 		partial--;
2003 	}
2004 no_top:
2005 	return partial;
2006 }
2007 
2008 /*
2009  * Zero a number of block pointers in either an inode or an indirect block.
2010  * If we restart the transaction we must again get write access to the
2011  * indirect block for further modification.
2012  *
2013  * We release `count' blocks on disk, but (last - first) may be greater
2014  * than `count' because there can be holes in there.
2015  */
2016 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2017 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2018 		unsigned long count, __le32 *first, __le32 *last)
2019 {
2020 	__le32 *p;
2021 	if (try_to_extend_transaction(handle, inode)) {
2022 		if (bh) {
2023 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2024 			ext4_journal_dirty_metadata(handle, bh);
2025 		}
2026 		ext4_mark_inode_dirty(handle, inode);
2027 		ext4_journal_test_restart(handle, inode);
2028 		if (bh) {
2029 			BUFFER_TRACE(bh, "retaking write access");
2030 			ext4_journal_get_write_access(handle, bh);
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * Any buffers which are on the journal will be in memory. We find
2036 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2037 	 * on them.  We've already detached each block from the file, so
2038 	 * bforget() in jbd2_journal_forget() should be safe.
2039 	 *
2040 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2041 	 */
2042 	for (p = first; p < last; p++) {
2043 		u32 nr = le32_to_cpu(*p);
2044 		if (nr) {
2045 			struct buffer_head *tbh;
2046 
2047 			*p = 0;
2048 			tbh = sb_find_get_block(inode->i_sb, nr);
2049 			ext4_forget(handle, 0, inode, tbh, nr);
2050 		}
2051 	}
2052 
2053 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2054 }
2055 
2056 /**
2057  * ext4_free_data - free a list of data blocks
2058  * @handle:	handle for this transaction
2059  * @inode:	inode we are dealing with
2060  * @this_bh:	indirect buffer_head which contains *@first and *@last
2061  * @first:	array of block numbers
2062  * @last:	points immediately past the end of array
2063  *
2064  * We are freeing all blocks refered from that array (numbers are stored as
2065  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2066  *
2067  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2068  * blocks are contiguous then releasing them at one time will only affect one
2069  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2070  * actually use a lot of journal space.
2071  *
2072  * @this_bh will be %NULL if @first and @last point into the inode's direct
2073  * block pointers.
2074  */
2075 static void ext4_free_data(handle_t *handle, struct inode *inode,
2076 			   struct buffer_head *this_bh,
2077 			   __le32 *first, __le32 *last)
2078 {
2079 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2080 	unsigned long count = 0;	    /* Number of blocks in the run */
2081 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2082 					       corresponding to
2083 					       block_to_free */
2084 	ext4_fsblk_t nr;		    /* Current block # */
2085 	__le32 *p;			    /* Pointer into inode/ind
2086 					       for current block */
2087 	int err;
2088 
2089 	if (this_bh) {				/* For indirect block */
2090 		BUFFER_TRACE(this_bh, "get_write_access");
2091 		err = ext4_journal_get_write_access(handle, this_bh);
2092 		/* Important: if we can't update the indirect pointers
2093 		 * to the blocks, we can't free them. */
2094 		if (err)
2095 			return;
2096 	}
2097 
2098 	for (p = first; p < last; p++) {
2099 		nr = le32_to_cpu(*p);
2100 		if (nr) {
2101 			/* accumulate blocks to free if they're contiguous */
2102 			if (count == 0) {
2103 				block_to_free = nr;
2104 				block_to_free_p = p;
2105 				count = 1;
2106 			} else if (nr == block_to_free + count) {
2107 				count++;
2108 			} else {
2109 				ext4_clear_blocks(handle, inode, this_bh,
2110 						  block_to_free,
2111 						  count, block_to_free_p, p);
2112 				block_to_free = nr;
2113 				block_to_free_p = p;
2114 				count = 1;
2115 			}
2116 		}
2117 	}
2118 
2119 	if (count > 0)
2120 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2121 				  count, block_to_free_p, p);
2122 
2123 	if (this_bh) {
2124 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2125 		ext4_journal_dirty_metadata(handle, this_bh);
2126 	}
2127 }
2128 
2129 /**
2130  *	ext4_free_branches - free an array of branches
2131  *	@handle: JBD handle for this transaction
2132  *	@inode:	inode we are dealing with
2133  *	@parent_bh: the buffer_head which contains *@first and *@last
2134  *	@first:	array of block numbers
2135  *	@last:	pointer immediately past the end of array
2136  *	@depth:	depth of the branches to free
2137  *
2138  *	We are freeing all blocks refered from these branches (numbers are
2139  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2140  *	appropriately.
2141  */
2142 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2143 			       struct buffer_head *parent_bh,
2144 			       __le32 *first, __le32 *last, int depth)
2145 {
2146 	ext4_fsblk_t nr;
2147 	__le32 *p;
2148 
2149 	if (is_handle_aborted(handle))
2150 		return;
2151 
2152 	if (depth--) {
2153 		struct buffer_head *bh;
2154 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2155 		p = last;
2156 		while (--p >= first) {
2157 			nr = le32_to_cpu(*p);
2158 			if (!nr)
2159 				continue;		/* A hole */
2160 
2161 			/* Go read the buffer for the next level down */
2162 			bh = sb_bread(inode->i_sb, nr);
2163 
2164 			/*
2165 			 * A read failure? Report error and clear slot
2166 			 * (should be rare).
2167 			 */
2168 			if (!bh) {
2169 				ext4_error(inode->i_sb, "ext4_free_branches",
2170 					   "Read failure, inode=%lu, block=%llu",
2171 					   inode->i_ino, nr);
2172 				continue;
2173 			}
2174 
2175 			/* This zaps the entire block.  Bottom up. */
2176 			BUFFER_TRACE(bh, "free child branches");
2177 			ext4_free_branches(handle, inode, bh,
2178 					   (__le32*)bh->b_data,
2179 					   (__le32*)bh->b_data + addr_per_block,
2180 					   depth);
2181 
2182 			/*
2183 			 * We've probably journalled the indirect block several
2184 			 * times during the truncate.  But it's no longer
2185 			 * needed and we now drop it from the transaction via
2186 			 * jbd2_journal_revoke().
2187 			 *
2188 			 * That's easy if it's exclusively part of this
2189 			 * transaction.  But if it's part of the committing
2190 			 * transaction then jbd2_journal_forget() will simply
2191 			 * brelse() it.  That means that if the underlying
2192 			 * block is reallocated in ext4_get_block(),
2193 			 * unmap_underlying_metadata() will find this block
2194 			 * and will try to get rid of it.  damn, damn.
2195 			 *
2196 			 * If this block has already been committed to the
2197 			 * journal, a revoke record will be written.  And
2198 			 * revoke records must be emitted *before* clearing
2199 			 * this block's bit in the bitmaps.
2200 			 */
2201 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2202 
2203 			/*
2204 			 * Everything below this this pointer has been
2205 			 * released.  Now let this top-of-subtree go.
2206 			 *
2207 			 * We want the freeing of this indirect block to be
2208 			 * atomic in the journal with the updating of the
2209 			 * bitmap block which owns it.  So make some room in
2210 			 * the journal.
2211 			 *
2212 			 * We zero the parent pointer *after* freeing its
2213 			 * pointee in the bitmaps, so if extend_transaction()
2214 			 * for some reason fails to put the bitmap changes and
2215 			 * the release into the same transaction, recovery
2216 			 * will merely complain about releasing a free block,
2217 			 * rather than leaking blocks.
2218 			 */
2219 			if (is_handle_aborted(handle))
2220 				return;
2221 			if (try_to_extend_transaction(handle, inode)) {
2222 				ext4_mark_inode_dirty(handle, inode);
2223 				ext4_journal_test_restart(handle, inode);
2224 			}
2225 
2226 			ext4_free_blocks(handle, inode, nr, 1, 1);
2227 
2228 			if (parent_bh) {
2229 				/*
2230 				 * The block which we have just freed is
2231 				 * pointed to by an indirect block: journal it
2232 				 */
2233 				BUFFER_TRACE(parent_bh, "get_write_access");
2234 				if (!ext4_journal_get_write_access(handle,
2235 								   parent_bh)){
2236 					*p = 0;
2237 					BUFFER_TRACE(parent_bh,
2238 					"call ext4_journal_dirty_metadata");
2239 					ext4_journal_dirty_metadata(handle,
2240 								    parent_bh);
2241 				}
2242 			}
2243 		}
2244 	} else {
2245 		/* We have reached the bottom of the tree. */
2246 		BUFFER_TRACE(parent_bh, "free data blocks");
2247 		ext4_free_data(handle, inode, parent_bh, first, last);
2248 	}
2249 }
2250 
2251 /*
2252  * ext4_truncate()
2253  *
2254  * We block out ext4_get_block() block instantiations across the entire
2255  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2256  * simultaneously on behalf of the same inode.
2257  *
2258  * As we work through the truncate and commmit bits of it to the journal there
2259  * is one core, guiding principle: the file's tree must always be consistent on
2260  * disk.  We must be able to restart the truncate after a crash.
2261  *
2262  * The file's tree may be transiently inconsistent in memory (although it
2263  * probably isn't), but whenever we close off and commit a journal transaction,
2264  * the contents of (the filesystem + the journal) must be consistent and
2265  * restartable.  It's pretty simple, really: bottom up, right to left (although
2266  * left-to-right works OK too).
2267  *
2268  * Note that at recovery time, journal replay occurs *before* the restart of
2269  * truncate against the orphan inode list.
2270  *
2271  * The committed inode has the new, desired i_size (which is the same as
2272  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2273  * that this inode's truncate did not complete and it will again call
2274  * ext4_truncate() to have another go.  So there will be instantiated blocks
2275  * to the right of the truncation point in a crashed ext4 filesystem.  But
2276  * that's fine - as long as they are linked from the inode, the post-crash
2277  * ext4_truncate() run will find them and release them.
2278  */
2279 void ext4_truncate(struct inode *inode)
2280 {
2281 	handle_t *handle;
2282 	struct ext4_inode_info *ei = EXT4_I(inode);
2283 	__le32 *i_data = ei->i_data;
2284 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2285 	struct address_space *mapping = inode->i_mapping;
2286 	ext4_lblk_t offsets[4];
2287 	Indirect chain[4];
2288 	Indirect *partial;
2289 	__le32 nr = 0;
2290 	int n;
2291 	ext4_lblk_t last_block;
2292 	unsigned blocksize = inode->i_sb->s_blocksize;
2293 	struct page *page;
2294 
2295 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2296 	    S_ISLNK(inode->i_mode)))
2297 		return;
2298 	if (ext4_inode_is_fast_symlink(inode))
2299 		return;
2300 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2301 		return;
2302 
2303 	/*
2304 	 * We have to lock the EOF page here, because lock_page() nests
2305 	 * outside jbd2_journal_start().
2306 	 */
2307 	if ((inode->i_size & (blocksize - 1)) == 0) {
2308 		/* Block boundary? Nothing to do */
2309 		page = NULL;
2310 	} else {
2311 		page = grab_cache_page(mapping,
2312 				inode->i_size >> PAGE_CACHE_SHIFT);
2313 		if (!page)
2314 			return;
2315 	}
2316 
2317 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2318 		ext4_ext_truncate(inode, page);
2319 		return;
2320 	}
2321 
2322 	handle = start_transaction(inode);
2323 	if (IS_ERR(handle)) {
2324 		if (page) {
2325 			clear_highpage(page);
2326 			flush_dcache_page(page);
2327 			unlock_page(page);
2328 			page_cache_release(page);
2329 		}
2330 		return;		/* AKPM: return what? */
2331 	}
2332 
2333 	last_block = (inode->i_size + blocksize-1)
2334 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2335 
2336 	if (page)
2337 		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2338 
2339 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2340 	if (n == 0)
2341 		goto out_stop;	/* error */
2342 
2343 	/*
2344 	 * OK.  This truncate is going to happen.  We add the inode to the
2345 	 * orphan list, so that if this truncate spans multiple transactions,
2346 	 * and we crash, we will resume the truncate when the filesystem
2347 	 * recovers.  It also marks the inode dirty, to catch the new size.
2348 	 *
2349 	 * Implication: the file must always be in a sane, consistent
2350 	 * truncatable state while each transaction commits.
2351 	 */
2352 	if (ext4_orphan_add(handle, inode))
2353 		goto out_stop;
2354 
2355 	/*
2356 	 * The orphan list entry will now protect us from any crash which
2357 	 * occurs before the truncate completes, so it is now safe to propagate
2358 	 * the new, shorter inode size (held for now in i_size) into the
2359 	 * on-disk inode. We do this via i_disksize, which is the value which
2360 	 * ext4 *really* writes onto the disk inode.
2361 	 */
2362 	ei->i_disksize = inode->i_size;
2363 
2364 	/*
2365 	 * From here we block out all ext4_get_block() callers who want to
2366 	 * modify the block allocation tree.
2367 	 */
2368 	down_write(&ei->i_data_sem);
2369 
2370 	if (n == 1) {		/* direct blocks */
2371 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2372 			       i_data + EXT4_NDIR_BLOCKS);
2373 		goto do_indirects;
2374 	}
2375 
2376 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2377 	/* Kill the top of shared branch (not detached) */
2378 	if (nr) {
2379 		if (partial == chain) {
2380 			/* Shared branch grows from the inode */
2381 			ext4_free_branches(handle, inode, NULL,
2382 					   &nr, &nr+1, (chain+n-1) - partial);
2383 			*partial->p = 0;
2384 			/*
2385 			 * We mark the inode dirty prior to restart,
2386 			 * and prior to stop.  No need for it here.
2387 			 */
2388 		} else {
2389 			/* Shared branch grows from an indirect block */
2390 			BUFFER_TRACE(partial->bh, "get_write_access");
2391 			ext4_free_branches(handle, inode, partial->bh,
2392 					partial->p,
2393 					partial->p+1, (chain+n-1) - partial);
2394 		}
2395 	}
2396 	/* Clear the ends of indirect blocks on the shared branch */
2397 	while (partial > chain) {
2398 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2399 				   (__le32*)partial->bh->b_data+addr_per_block,
2400 				   (chain+n-1) - partial);
2401 		BUFFER_TRACE(partial->bh, "call brelse");
2402 		brelse (partial->bh);
2403 		partial--;
2404 	}
2405 do_indirects:
2406 	/* Kill the remaining (whole) subtrees */
2407 	switch (offsets[0]) {
2408 	default:
2409 		nr = i_data[EXT4_IND_BLOCK];
2410 		if (nr) {
2411 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2412 			i_data[EXT4_IND_BLOCK] = 0;
2413 		}
2414 	case EXT4_IND_BLOCK:
2415 		nr = i_data[EXT4_DIND_BLOCK];
2416 		if (nr) {
2417 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2418 			i_data[EXT4_DIND_BLOCK] = 0;
2419 		}
2420 	case EXT4_DIND_BLOCK:
2421 		nr = i_data[EXT4_TIND_BLOCK];
2422 		if (nr) {
2423 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2424 			i_data[EXT4_TIND_BLOCK] = 0;
2425 		}
2426 	case EXT4_TIND_BLOCK:
2427 		;
2428 	}
2429 
2430 	ext4_discard_reservation(inode);
2431 
2432 	up_write(&ei->i_data_sem);
2433 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2434 	ext4_mark_inode_dirty(handle, inode);
2435 
2436 	/*
2437 	 * In a multi-transaction truncate, we only make the final transaction
2438 	 * synchronous
2439 	 */
2440 	if (IS_SYNC(inode))
2441 		handle->h_sync = 1;
2442 out_stop:
2443 	/*
2444 	 * If this was a simple ftruncate(), and the file will remain alive
2445 	 * then we need to clear up the orphan record which we created above.
2446 	 * However, if this was a real unlink then we were called by
2447 	 * ext4_delete_inode(), and we allow that function to clean up the
2448 	 * orphan info for us.
2449 	 */
2450 	if (inode->i_nlink)
2451 		ext4_orphan_del(handle, inode);
2452 
2453 	ext4_journal_stop(handle);
2454 }
2455 
2456 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2457 		unsigned long ino, struct ext4_iloc *iloc)
2458 {
2459 	unsigned long desc, group_desc;
2460 	ext4_group_t block_group;
2461 	unsigned long offset;
2462 	ext4_fsblk_t block;
2463 	struct buffer_head *bh;
2464 	struct ext4_group_desc * gdp;
2465 
2466 	if (!ext4_valid_inum(sb, ino)) {
2467 		/*
2468 		 * This error is already checked for in namei.c unless we are
2469 		 * looking at an NFS filehandle, in which case no error
2470 		 * report is needed
2471 		 */
2472 		return 0;
2473 	}
2474 
2475 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2476 	if (block_group >= EXT4_SB(sb)->s_groups_count) {
2477 		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2478 		return 0;
2479 	}
2480 	smp_rmb();
2481 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2482 	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2483 	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2484 	if (!bh) {
2485 		ext4_error (sb, "ext4_get_inode_block",
2486 			    "Descriptor not loaded");
2487 		return 0;
2488 	}
2489 
2490 	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2491 		desc * EXT4_DESC_SIZE(sb));
2492 	/*
2493 	 * Figure out the offset within the block group inode table
2494 	 */
2495 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2496 		EXT4_INODE_SIZE(sb);
2497 	block = ext4_inode_table(sb, gdp) +
2498 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2499 
2500 	iloc->block_group = block_group;
2501 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2502 	return block;
2503 }
2504 
2505 /*
2506  * ext4_get_inode_loc returns with an extra refcount against the inode's
2507  * underlying buffer_head on success. If 'in_mem' is true, we have all
2508  * data in memory that is needed to recreate the on-disk version of this
2509  * inode.
2510  */
2511 static int __ext4_get_inode_loc(struct inode *inode,
2512 				struct ext4_iloc *iloc, int in_mem)
2513 {
2514 	ext4_fsblk_t block;
2515 	struct buffer_head *bh;
2516 
2517 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2518 	if (!block)
2519 		return -EIO;
2520 
2521 	bh = sb_getblk(inode->i_sb, block);
2522 	if (!bh) {
2523 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2524 				"unable to read inode block - "
2525 				"inode=%lu, block=%llu",
2526 				 inode->i_ino, block);
2527 		return -EIO;
2528 	}
2529 	if (!buffer_uptodate(bh)) {
2530 		lock_buffer(bh);
2531 		if (buffer_uptodate(bh)) {
2532 			/* someone brought it uptodate while we waited */
2533 			unlock_buffer(bh);
2534 			goto has_buffer;
2535 		}
2536 
2537 		/*
2538 		 * If we have all information of the inode in memory and this
2539 		 * is the only valid inode in the block, we need not read the
2540 		 * block.
2541 		 */
2542 		if (in_mem) {
2543 			struct buffer_head *bitmap_bh;
2544 			struct ext4_group_desc *desc;
2545 			int inodes_per_buffer;
2546 			int inode_offset, i;
2547 			ext4_group_t block_group;
2548 			int start;
2549 
2550 			block_group = (inode->i_ino - 1) /
2551 					EXT4_INODES_PER_GROUP(inode->i_sb);
2552 			inodes_per_buffer = bh->b_size /
2553 				EXT4_INODE_SIZE(inode->i_sb);
2554 			inode_offset = ((inode->i_ino - 1) %
2555 					EXT4_INODES_PER_GROUP(inode->i_sb));
2556 			start = inode_offset & ~(inodes_per_buffer - 1);
2557 
2558 			/* Is the inode bitmap in cache? */
2559 			desc = ext4_get_group_desc(inode->i_sb,
2560 						block_group, NULL);
2561 			if (!desc)
2562 				goto make_io;
2563 
2564 			bitmap_bh = sb_getblk(inode->i_sb,
2565 				ext4_inode_bitmap(inode->i_sb, desc));
2566 			if (!bitmap_bh)
2567 				goto make_io;
2568 
2569 			/*
2570 			 * If the inode bitmap isn't in cache then the
2571 			 * optimisation may end up performing two reads instead
2572 			 * of one, so skip it.
2573 			 */
2574 			if (!buffer_uptodate(bitmap_bh)) {
2575 				brelse(bitmap_bh);
2576 				goto make_io;
2577 			}
2578 			for (i = start; i < start + inodes_per_buffer; i++) {
2579 				if (i == inode_offset)
2580 					continue;
2581 				if (ext4_test_bit(i, bitmap_bh->b_data))
2582 					break;
2583 			}
2584 			brelse(bitmap_bh);
2585 			if (i == start + inodes_per_buffer) {
2586 				/* all other inodes are free, so skip I/O */
2587 				memset(bh->b_data, 0, bh->b_size);
2588 				set_buffer_uptodate(bh);
2589 				unlock_buffer(bh);
2590 				goto has_buffer;
2591 			}
2592 		}
2593 
2594 make_io:
2595 		/*
2596 		 * There are other valid inodes in the buffer, this inode
2597 		 * has in-inode xattrs, or we don't have this inode in memory.
2598 		 * Read the block from disk.
2599 		 */
2600 		get_bh(bh);
2601 		bh->b_end_io = end_buffer_read_sync;
2602 		submit_bh(READ_META, bh);
2603 		wait_on_buffer(bh);
2604 		if (!buffer_uptodate(bh)) {
2605 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2606 					"unable to read inode block - "
2607 					"inode=%lu, block=%llu",
2608 					inode->i_ino, block);
2609 			brelse(bh);
2610 			return -EIO;
2611 		}
2612 	}
2613 has_buffer:
2614 	iloc->bh = bh;
2615 	return 0;
2616 }
2617 
2618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2619 {
2620 	/* We have all inode data except xattrs in memory here. */
2621 	return __ext4_get_inode_loc(inode, iloc,
2622 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2623 }
2624 
2625 void ext4_set_inode_flags(struct inode *inode)
2626 {
2627 	unsigned int flags = EXT4_I(inode)->i_flags;
2628 
2629 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2630 	if (flags & EXT4_SYNC_FL)
2631 		inode->i_flags |= S_SYNC;
2632 	if (flags & EXT4_APPEND_FL)
2633 		inode->i_flags |= S_APPEND;
2634 	if (flags & EXT4_IMMUTABLE_FL)
2635 		inode->i_flags |= S_IMMUTABLE;
2636 	if (flags & EXT4_NOATIME_FL)
2637 		inode->i_flags |= S_NOATIME;
2638 	if (flags & EXT4_DIRSYNC_FL)
2639 		inode->i_flags |= S_DIRSYNC;
2640 }
2641 
2642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2643 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2644 {
2645 	unsigned int flags = ei->vfs_inode.i_flags;
2646 
2647 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2648 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2649 	if (flags & S_SYNC)
2650 		ei->i_flags |= EXT4_SYNC_FL;
2651 	if (flags & S_APPEND)
2652 		ei->i_flags |= EXT4_APPEND_FL;
2653 	if (flags & S_IMMUTABLE)
2654 		ei->i_flags |= EXT4_IMMUTABLE_FL;
2655 	if (flags & S_NOATIME)
2656 		ei->i_flags |= EXT4_NOATIME_FL;
2657 	if (flags & S_DIRSYNC)
2658 		ei->i_flags |= EXT4_DIRSYNC_FL;
2659 }
2660 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2661 					struct ext4_inode_info *ei)
2662 {
2663 	blkcnt_t i_blocks ;
2664 	struct inode *inode = &(ei->vfs_inode);
2665 	struct super_block *sb = inode->i_sb;
2666 
2667 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2668 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2669 		/* we are using combined 48 bit field */
2670 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2671 					le32_to_cpu(raw_inode->i_blocks_lo);
2672 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2673 			/* i_blocks represent file system block size */
2674 			return i_blocks  << (inode->i_blkbits - 9);
2675 		} else {
2676 			return i_blocks;
2677 		}
2678 	} else {
2679 		return le32_to_cpu(raw_inode->i_blocks_lo);
2680 	}
2681 }
2682 
2683 void ext4_read_inode(struct inode * inode)
2684 {
2685 	struct ext4_iloc iloc;
2686 	struct ext4_inode *raw_inode;
2687 	struct ext4_inode_info *ei = EXT4_I(inode);
2688 	struct buffer_head *bh;
2689 	int block;
2690 
2691 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2692 	ei->i_acl = EXT4_ACL_NOT_CACHED;
2693 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2694 #endif
2695 	ei->i_block_alloc_info = NULL;
2696 
2697 	if (__ext4_get_inode_loc(inode, &iloc, 0))
2698 		goto bad_inode;
2699 	bh = iloc.bh;
2700 	raw_inode = ext4_raw_inode(&iloc);
2701 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2702 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2703 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2704 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2705 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2706 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2707 	}
2708 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2709 
2710 	ei->i_state = 0;
2711 	ei->i_dir_start_lookup = 0;
2712 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2713 	/* We now have enough fields to check if the inode was active or not.
2714 	 * This is needed because nfsd might try to access dead inodes
2715 	 * the test is that same one that e2fsck uses
2716 	 * NeilBrown 1999oct15
2717 	 */
2718 	if (inode->i_nlink == 0) {
2719 		if (inode->i_mode == 0 ||
2720 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2721 			/* this inode is deleted */
2722 			brelse (bh);
2723 			goto bad_inode;
2724 		}
2725 		/* The only unlinked inodes we let through here have
2726 		 * valid i_mode and are being read by the orphan
2727 		 * recovery code: that's fine, we're about to complete
2728 		 * the process of deleting those. */
2729 	}
2730 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2731 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2732 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2733 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2734 	    cpu_to_le32(EXT4_OS_HURD)) {
2735 		ei->i_file_acl |=
2736 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2737 	}
2738 	inode->i_size = ext4_isize(raw_inode);
2739 	ei->i_disksize = inode->i_size;
2740 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2741 	ei->i_block_group = iloc.block_group;
2742 	/*
2743 	 * NOTE! The in-memory inode i_data array is in little-endian order
2744 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2745 	 */
2746 	for (block = 0; block < EXT4_N_BLOCKS; block++)
2747 		ei->i_data[block] = raw_inode->i_block[block];
2748 	INIT_LIST_HEAD(&ei->i_orphan);
2749 
2750 	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2751 	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2752 		/*
2753 		 * When mke2fs creates big inodes it does not zero out
2754 		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2755 		 * so ignore those first few inodes.
2756 		 */
2757 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2758 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2759 		    EXT4_INODE_SIZE(inode->i_sb)) {
2760 			brelse (bh);
2761 			goto bad_inode;
2762 		}
2763 		if (ei->i_extra_isize == 0) {
2764 			/* The extra space is currently unused. Use it. */
2765 			ei->i_extra_isize = sizeof(struct ext4_inode) -
2766 					    EXT4_GOOD_OLD_INODE_SIZE;
2767 		} else {
2768 			__le32 *magic = (void *)raw_inode +
2769 					EXT4_GOOD_OLD_INODE_SIZE +
2770 					ei->i_extra_isize;
2771 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2772 				 ei->i_state |= EXT4_STATE_XATTR;
2773 		}
2774 	} else
2775 		ei->i_extra_isize = 0;
2776 
2777 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2778 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2779 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2780 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2781 
2782 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2783 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2784 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2785 			inode->i_version |=
2786 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2787 	}
2788 
2789 	if (S_ISREG(inode->i_mode)) {
2790 		inode->i_op = &ext4_file_inode_operations;
2791 		inode->i_fop = &ext4_file_operations;
2792 		ext4_set_aops(inode);
2793 	} else if (S_ISDIR(inode->i_mode)) {
2794 		inode->i_op = &ext4_dir_inode_operations;
2795 		inode->i_fop = &ext4_dir_operations;
2796 	} else if (S_ISLNK(inode->i_mode)) {
2797 		if (ext4_inode_is_fast_symlink(inode))
2798 			inode->i_op = &ext4_fast_symlink_inode_operations;
2799 		else {
2800 			inode->i_op = &ext4_symlink_inode_operations;
2801 			ext4_set_aops(inode);
2802 		}
2803 	} else {
2804 		inode->i_op = &ext4_special_inode_operations;
2805 		if (raw_inode->i_block[0])
2806 			init_special_inode(inode, inode->i_mode,
2807 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2808 		else
2809 			init_special_inode(inode, inode->i_mode,
2810 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2811 	}
2812 	brelse (iloc.bh);
2813 	ext4_set_inode_flags(inode);
2814 	return;
2815 
2816 bad_inode:
2817 	make_bad_inode(inode);
2818 	return;
2819 }
2820 
2821 static int ext4_inode_blocks_set(handle_t *handle,
2822 				struct ext4_inode *raw_inode,
2823 				struct ext4_inode_info *ei)
2824 {
2825 	struct inode *inode = &(ei->vfs_inode);
2826 	u64 i_blocks = inode->i_blocks;
2827 	struct super_block *sb = inode->i_sb;
2828 	int err = 0;
2829 
2830 	if (i_blocks <= ~0U) {
2831 		/*
2832 		 * i_blocks can be represnted in a 32 bit variable
2833 		 * as multiple of 512 bytes
2834 		 */
2835 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2836 		raw_inode->i_blocks_high = 0;
2837 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2838 	} else if (i_blocks <= 0xffffffffffffULL) {
2839 		/*
2840 		 * i_blocks can be represented in a 48 bit variable
2841 		 * as multiple of 512 bytes
2842 		 */
2843 		err = ext4_update_rocompat_feature(handle, sb,
2844 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2845 		if (err)
2846 			goto  err_out;
2847 		/* i_block is stored in the split  48 bit fields */
2848 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2849 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2850 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2851 	} else {
2852 		/*
2853 		 * i_blocks should be represented in a 48 bit variable
2854 		 * as multiple of  file system block size
2855 		 */
2856 		err = ext4_update_rocompat_feature(handle, sb,
2857 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2858 		if (err)
2859 			goto  err_out;
2860 		ei->i_flags |= EXT4_HUGE_FILE_FL;
2861 		/* i_block is stored in file system block size */
2862 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
2863 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2864 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2865 	}
2866 err_out:
2867 	return err;
2868 }
2869 
2870 /*
2871  * Post the struct inode info into an on-disk inode location in the
2872  * buffer-cache.  This gobbles the caller's reference to the
2873  * buffer_head in the inode location struct.
2874  *
2875  * The caller must have write access to iloc->bh.
2876  */
2877 static int ext4_do_update_inode(handle_t *handle,
2878 				struct inode *inode,
2879 				struct ext4_iloc *iloc)
2880 {
2881 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2882 	struct ext4_inode_info *ei = EXT4_I(inode);
2883 	struct buffer_head *bh = iloc->bh;
2884 	int err = 0, rc, block;
2885 
2886 	/* For fields not not tracking in the in-memory inode,
2887 	 * initialise them to zero for new inodes. */
2888 	if (ei->i_state & EXT4_STATE_NEW)
2889 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2890 
2891 	ext4_get_inode_flags(ei);
2892 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2893 	if(!(test_opt(inode->i_sb, NO_UID32))) {
2894 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2895 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2896 /*
2897  * Fix up interoperability with old kernels. Otherwise, old inodes get
2898  * re-used with the upper 16 bits of the uid/gid intact
2899  */
2900 		if(!ei->i_dtime) {
2901 			raw_inode->i_uid_high =
2902 				cpu_to_le16(high_16_bits(inode->i_uid));
2903 			raw_inode->i_gid_high =
2904 				cpu_to_le16(high_16_bits(inode->i_gid));
2905 		} else {
2906 			raw_inode->i_uid_high = 0;
2907 			raw_inode->i_gid_high = 0;
2908 		}
2909 	} else {
2910 		raw_inode->i_uid_low =
2911 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2912 		raw_inode->i_gid_low =
2913 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2914 		raw_inode->i_uid_high = 0;
2915 		raw_inode->i_gid_high = 0;
2916 	}
2917 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2918 
2919 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2920 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2921 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2922 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2923 
2924 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
2925 		goto out_brelse;
2926 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2927 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2928 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2929 	    cpu_to_le32(EXT4_OS_HURD))
2930 		raw_inode->i_file_acl_high =
2931 			cpu_to_le16(ei->i_file_acl >> 32);
2932 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2933 	ext4_isize_set(raw_inode, ei->i_disksize);
2934 	if (ei->i_disksize > 0x7fffffffULL) {
2935 		struct super_block *sb = inode->i_sb;
2936 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2937 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2938 				EXT4_SB(sb)->s_es->s_rev_level ==
2939 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2940 			/* If this is the first large file
2941 			 * created, add a flag to the superblock.
2942 			 */
2943 			err = ext4_journal_get_write_access(handle,
2944 					EXT4_SB(sb)->s_sbh);
2945 			if (err)
2946 				goto out_brelse;
2947 			ext4_update_dynamic_rev(sb);
2948 			EXT4_SET_RO_COMPAT_FEATURE(sb,
2949 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2950 			sb->s_dirt = 1;
2951 			handle->h_sync = 1;
2952 			err = ext4_journal_dirty_metadata(handle,
2953 					EXT4_SB(sb)->s_sbh);
2954 		}
2955 	}
2956 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2957 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2958 		if (old_valid_dev(inode->i_rdev)) {
2959 			raw_inode->i_block[0] =
2960 				cpu_to_le32(old_encode_dev(inode->i_rdev));
2961 			raw_inode->i_block[1] = 0;
2962 		} else {
2963 			raw_inode->i_block[0] = 0;
2964 			raw_inode->i_block[1] =
2965 				cpu_to_le32(new_encode_dev(inode->i_rdev));
2966 			raw_inode->i_block[2] = 0;
2967 		}
2968 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2969 		raw_inode->i_block[block] = ei->i_data[block];
2970 
2971 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2972 	if (ei->i_extra_isize) {
2973 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2974 			raw_inode->i_version_hi =
2975 			cpu_to_le32(inode->i_version >> 32);
2976 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2977 	}
2978 
2979 
2980 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2981 	rc = ext4_journal_dirty_metadata(handle, bh);
2982 	if (!err)
2983 		err = rc;
2984 	ei->i_state &= ~EXT4_STATE_NEW;
2985 
2986 out_brelse:
2987 	brelse (bh);
2988 	ext4_std_error(inode->i_sb, err);
2989 	return err;
2990 }
2991 
2992 /*
2993  * ext4_write_inode()
2994  *
2995  * We are called from a few places:
2996  *
2997  * - Within generic_file_write() for O_SYNC files.
2998  *   Here, there will be no transaction running. We wait for any running
2999  *   trasnaction to commit.
3000  *
3001  * - Within sys_sync(), kupdate and such.
3002  *   We wait on commit, if tol to.
3003  *
3004  * - Within prune_icache() (PF_MEMALLOC == true)
3005  *   Here we simply return.  We can't afford to block kswapd on the
3006  *   journal commit.
3007  *
3008  * In all cases it is actually safe for us to return without doing anything,
3009  * because the inode has been copied into a raw inode buffer in
3010  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3011  * knfsd.
3012  *
3013  * Note that we are absolutely dependent upon all inode dirtiers doing the
3014  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3015  * which we are interested.
3016  *
3017  * It would be a bug for them to not do this.  The code:
3018  *
3019  *	mark_inode_dirty(inode)
3020  *	stuff();
3021  *	inode->i_size = expr;
3022  *
3023  * is in error because a kswapd-driven write_inode() could occur while
3024  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3025  * will no longer be on the superblock's dirty inode list.
3026  */
3027 int ext4_write_inode(struct inode *inode, int wait)
3028 {
3029 	if (current->flags & PF_MEMALLOC)
3030 		return 0;
3031 
3032 	if (ext4_journal_current_handle()) {
3033 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3034 		dump_stack();
3035 		return -EIO;
3036 	}
3037 
3038 	if (!wait)
3039 		return 0;
3040 
3041 	return ext4_force_commit(inode->i_sb);
3042 }
3043 
3044 /*
3045  * ext4_setattr()
3046  *
3047  * Called from notify_change.
3048  *
3049  * We want to trap VFS attempts to truncate the file as soon as
3050  * possible.  In particular, we want to make sure that when the VFS
3051  * shrinks i_size, we put the inode on the orphan list and modify
3052  * i_disksize immediately, so that during the subsequent flushing of
3053  * dirty pages and freeing of disk blocks, we can guarantee that any
3054  * commit will leave the blocks being flushed in an unused state on
3055  * disk.  (On recovery, the inode will get truncated and the blocks will
3056  * be freed, so we have a strong guarantee that no future commit will
3057  * leave these blocks visible to the user.)
3058  *
3059  * Called with inode->sem down.
3060  */
3061 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3062 {
3063 	struct inode *inode = dentry->d_inode;
3064 	int error, rc = 0;
3065 	const unsigned int ia_valid = attr->ia_valid;
3066 
3067 	error = inode_change_ok(inode, attr);
3068 	if (error)
3069 		return error;
3070 
3071 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3072 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3073 		handle_t *handle;
3074 
3075 		/* (user+group)*(old+new) structure, inode write (sb,
3076 		 * inode block, ? - but truncate inode update has it) */
3077 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3078 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3079 		if (IS_ERR(handle)) {
3080 			error = PTR_ERR(handle);
3081 			goto err_out;
3082 		}
3083 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3084 		if (error) {
3085 			ext4_journal_stop(handle);
3086 			return error;
3087 		}
3088 		/* Update corresponding info in inode so that everything is in
3089 		 * one transaction */
3090 		if (attr->ia_valid & ATTR_UID)
3091 			inode->i_uid = attr->ia_uid;
3092 		if (attr->ia_valid & ATTR_GID)
3093 			inode->i_gid = attr->ia_gid;
3094 		error = ext4_mark_inode_dirty(handle, inode);
3095 		ext4_journal_stop(handle);
3096 	}
3097 
3098 	if (attr->ia_valid & ATTR_SIZE) {
3099 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3100 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3101 
3102 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3103 				error = -EFBIG;
3104 				goto err_out;
3105 			}
3106 		}
3107 	}
3108 
3109 	if (S_ISREG(inode->i_mode) &&
3110 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3111 		handle_t *handle;
3112 
3113 		handle = ext4_journal_start(inode, 3);
3114 		if (IS_ERR(handle)) {
3115 			error = PTR_ERR(handle);
3116 			goto err_out;
3117 		}
3118 
3119 		error = ext4_orphan_add(handle, inode);
3120 		EXT4_I(inode)->i_disksize = attr->ia_size;
3121 		rc = ext4_mark_inode_dirty(handle, inode);
3122 		if (!error)
3123 			error = rc;
3124 		ext4_journal_stop(handle);
3125 	}
3126 
3127 	rc = inode_setattr(inode, attr);
3128 
3129 	/* If inode_setattr's call to ext4_truncate failed to get a
3130 	 * transaction handle at all, we need to clean up the in-core
3131 	 * orphan list manually. */
3132 	if (inode->i_nlink)
3133 		ext4_orphan_del(NULL, inode);
3134 
3135 	if (!rc && (ia_valid & ATTR_MODE))
3136 		rc = ext4_acl_chmod(inode);
3137 
3138 err_out:
3139 	ext4_std_error(inode->i_sb, error);
3140 	if (!error)
3141 		error = rc;
3142 	return error;
3143 }
3144 
3145 
3146 /*
3147  * How many blocks doth make a writepage()?
3148  *
3149  * With N blocks per page, it may be:
3150  * N data blocks
3151  * 2 indirect block
3152  * 2 dindirect
3153  * 1 tindirect
3154  * N+5 bitmap blocks (from the above)
3155  * N+5 group descriptor summary blocks
3156  * 1 inode block
3157  * 1 superblock.
3158  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3159  *
3160  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3161  *
3162  * With ordered or writeback data it's the same, less the N data blocks.
3163  *
3164  * If the inode's direct blocks can hold an integral number of pages then a
3165  * page cannot straddle two indirect blocks, and we can only touch one indirect
3166  * and dindirect block, and the "5" above becomes "3".
3167  *
3168  * This still overestimates under most circumstances.  If we were to pass the
3169  * start and end offsets in here as well we could do block_to_path() on each
3170  * block and work out the exact number of indirects which are touched.  Pah.
3171  */
3172 
3173 int ext4_writepage_trans_blocks(struct inode *inode)
3174 {
3175 	int bpp = ext4_journal_blocks_per_page(inode);
3176 	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3177 	int ret;
3178 
3179 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3180 		return ext4_ext_writepage_trans_blocks(inode, bpp);
3181 
3182 	if (ext4_should_journal_data(inode))
3183 		ret = 3 * (bpp + indirects) + 2;
3184 	else
3185 		ret = 2 * (bpp + indirects) + 2;
3186 
3187 #ifdef CONFIG_QUOTA
3188 	/* We know that structure was already allocated during DQUOT_INIT so
3189 	 * we will be updating only the data blocks + inodes */
3190 	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3191 #endif
3192 
3193 	return ret;
3194 }
3195 
3196 /*
3197  * The caller must have previously called ext4_reserve_inode_write().
3198  * Give this, we know that the caller already has write access to iloc->bh.
3199  */
3200 int ext4_mark_iloc_dirty(handle_t *handle,
3201 		struct inode *inode, struct ext4_iloc *iloc)
3202 {
3203 	int err = 0;
3204 
3205 	if (test_opt(inode->i_sb, I_VERSION))
3206 		inode_inc_iversion(inode);
3207 
3208 	/* the do_update_inode consumes one bh->b_count */
3209 	get_bh(iloc->bh);
3210 
3211 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3212 	err = ext4_do_update_inode(handle, inode, iloc);
3213 	put_bh(iloc->bh);
3214 	return err;
3215 }
3216 
3217 /*
3218  * On success, We end up with an outstanding reference count against
3219  * iloc->bh.  This _must_ be cleaned up later.
3220  */
3221 
3222 int
3223 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3224 			 struct ext4_iloc *iloc)
3225 {
3226 	int err = 0;
3227 	if (handle) {
3228 		err = ext4_get_inode_loc(inode, iloc);
3229 		if (!err) {
3230 			BUFFER_TRACE(iloc->bh, "get_write_access");
3231 			err = ext4_journal_get_write_access(handle, iloc->bh);
3232 			if (err) {
3233 				brelse(iloc->bh);
3234 				iloc->bh = NULL;
3235 			}
3236 		}
3237 	}
3238 	ext4_std_error(inode->i_sb, err);
3239 	return err;
3240 }
3241 
3242 /*
3243  * Expand an inode by new_extra_isize bytes.
3244  * Returns 0 on success or negative error number on failure.
3245  */
3246 static int ext4_expand_extra_isize(struct inode *inode,
3247 				   unsigned int new_extra_isize,
3248 				   struct ext4_iloc iloc,
3249 				   handle_t *handle)
3250 {
3251 	struct ext4_inode *raw_inode;
3252 	struct ext4_xattr_ibody_header *header;
3253 	struct ext4_xattr_entry *entry;
3254 
3255 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3256 		return 0;
3257 
3258 	raw_inode = ext4_raw_inode(&iloc);
3259 
3260 	header = IHDR(inode, raw_inode);
3261 	entry = IFIRST(header);
3262 
3263 	/* No extended attributes present */
3264 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3265 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3266 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3267 			new_extra_isize);
3268 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
3269 		return 0;
3270 	}
3271 
3272 	/* try to expand with EAs present */
3273 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3274 					  raw_inode, handle);
3275 }
3276 
3277 /*
3278  * What we do here is to mark the in-core inode as clean with respect to inode
3279  * dirtiness (it may still be data-dirty).
3280  * This means that the in-core inode may be reaped by prune_icache
3281  * without having to perform any I/O.  This is a very good thing,
3282  * because *any* task may call prune_icache - even ones which
3283  * have a transaction open against a different journal.
3284  *
3285  * Is this cheating?  Not really.  Sure, we haven't written the
3286  * inode out, but prune_icache isn't a user-visible syncing function.
3287  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3288  * we start and wait on commits.
3289  *
3290  * Is this efficient/effective?  Well, we're being nice to the system
3291  * by cleaning up our inodes proactively so they can be reaped
3292  * without I/O.  But we are potentially leaving up to five seconds'
3293  * worth of inodes floating about which prune_icache wants us to
3294  * write out.  One way to fix that would be to get prune_icache()
3295  * to do a write_super() to free up some memory.  It has the desired
3296  * effect.
3297  */
3298 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3299 {
3300 	struct ext4_iloc iloc;
3301 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3302 	static unsigned int mnt_count;
3303 	int err, ret;
3304 
3305 	might_sleep();
3306 	err = ext4_reserve_inode_write(handle, inode, &iloc);
3307 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3308 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3309 		/*
3310 		 * We need extra buffer credits since we may write into EA block
3311 		 * with this same handle. If journal_extend fails, then it will
3312 		 * only result in a minor loss of functionality for that inode.
3313 		 * If this is felt to be critical, then e2fsck should be run to
3314 		 * force a large enough s_min_extra_isize.
3315 		 */
3316 		if ((jbd2_journal_extend(handle,
3317 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3318 			ret = ext4_expand_extra_isize(inode,
3319 						      sbi->s_want_extra_isize,
3320 						      iloc, handle);
3321 			if (ret) {
3322 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3323 				if (mnt_count !=
3324 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3325 					ext4_warning(inode->i_sb, __FUNCTION__,
3326 					"Unable to expand inode %lu. Delete"
3327 					" some EAs or run e2fsck.",
3328 					inode->i_ino);
3329 					mnt_count =
3330 					  le16_to_cpu(sbi->s_es->s_mnt_count);
3331 				}
3332 			}
3333 		}
3334 	}
3335 	if (!err)
3336 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3337 	return err;
3338 }
3339 
3340 /*
3341  * ext4_dirty_inode() is called from __mark_inode_dirty()
3342  *
3343  * We're really interested in the case where a file is being extended.
3344  * i_size has been changed by generic_commit_write() and we thus need
3345  * to include the updated inode in the current transaction.
3346  *
3347  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3348  * are allocated to the file.
3349  *
3350  * If the inode is marked synchronous, we don't honour that here - doing
3351  * so would cause a commit on atime updates, which we don't bother doing.
3352  * We handle synchronous inodes at the highest possible level.
3353  */
3354 void ext4_dirty_inode(struct inode *inode)
3355 {
3356 	handle_t *current_handle = ext4_journal_current_handle();
3357 	handle_t *handle;
3358 
3359 	handle = ext4_journal_start(inode, 2);
3360 	if (IS_ERR(handle))
3361 		goto out;
3362 	if (current_handle &&
3363 		current_handle->h_transaction != handle->h_transaction) {
3364 		/* This task has a transaction open against a different fs */
3365 		printk(KERN_EMERG "%s: transactions do not match!\n",
3366 		       __FUNCTION__);
3367 	} else {
3368 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3369 				current_handle);
3370 		ext4_mark_inode_dirty(handle, inode);
3371 	}
3372 	ext4_journal_stop(handle);
3373 out:
3374 	return;
3375 }
3376 
3377 #if 0
3378 /*
3379  * Bind an inode's backing buffer_head into this transaction, to prevent
3380  * it from being flushed to disk early.  Unlike
3381  * ext4_reserve_inode_write, this leaves behind no bh reference and
3382  * returns no iloc structure, so the caller needs to repeat the iloc
3383  * lookup to mark the inode dirty later.
3384  */
3385 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3386 {
3387 	struct ext4_iloc iloc;
3388 
3389 	int err = 0;
3390 	if (handle) {
3391 		err = ext4_get_inode_loc(inode, &iloc);
3392 		if (!err) {
3393 			BUFFER_TRACE(iloc.bh, "get_write_access");
3394 			err = jbd2_journal_get_write_access(handle, iloc.bh);
3395 			if (!err)
3396 				err = ext4_journal_dirty_metadata(handle,
3397 								  iloc.bh);
3398 			brelse(iloc.bh);
3399 		}
3400 	}
3401 	ext4_std_error(inode->i_sb, err);
3402 	return err;
3403 }
3404 #endif
3405 
3406 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3407 {
3408 	journal_t *journal;
3409 	handle_t *handle;
3410 	int err;
3411 
3412 	/*
3413 	 * We have to be very careful here: changing a data block's
3414 	 * journaling status dynamically is dangerous.  If we write a
3415 	 * data block to the journal, change the status and then delete
3416 	 * that block, we risk forgetting to revoke the old log record
3417 	 * from the journal and so a subsequent replay can corrupt data.
3418 	 * So, first we make sure that the journal is empty and that
3419 	 * nobody is changing anything.
3420 	 */
3421 
3422 	journal = EXT4_JOURNAL(inode);
3423 	if (is_journal_aborted(journal))
3424 		return -EROFS;
3425 
3426 	jbd2_journal_lock_updates(journal);
3427 	jbd2_journal_flush(journal);
3428 
3429 	/*
3430 	 * OK, there are no updates running now, and all cached data is
3431 	 * synced to disk.  We are now in a completely consistent state
3432 	 * which doesn't have anything in the journal, and we know that
3433 	 * no filesystem updates are running, so it is safe to modify
3434 	 * the inode's in-core data-journaling state flag now.
3435 	 */
3436 
3437 	if (val)
3438 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3439 	else
3440 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3441 	ext4_set_aops(inode);
3442 
3443 	jbd2_journal_unlock_updates(journal);
3444 
3445 	/* Finally we can mark the inode as dirty. */
3446 
3447 	handle = ext4_journal_start(inode, 1);
3448 	if (IS_ERR(handle))
3449 		return PTR_ERR(handle);
3450 
3451 	err = ext4_mark_inode_dirty(handle, inode);
3452 	handle->h_sync = 1;
3453 	ext4_journal_stop(handle);
3454 	ext4_std_error(inode->i_sb, err);
3455 
3456 	return err;
3457 }
3458