1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/ext4_jbd2.h> 29 #include <linux/jbd2.h> 30 #include <linux/highuid.h> 31 #include <linux/pagemap.h> 32 #include <linux/quotaops.h> 33 #include <linux/string.h> 34 #include <linux/buffer_head.h> 35 #include <linux/writeback.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "xattr.h" 40 #include "acl.h" 41 42 /* 43 * Test whether an inode is a fast symlink. 44 */ 45 static int ext4_inode_is_fast_symlink(struct inode *inode) 46 { 47 int ea_blocks = EXT4_I(inode)->i_file_acl ? 48 (inode->i_sb->s_blocksize >> 9) : 0; 49 50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 51 } 52 53 /* 54 * The ext4 forget function must perform a revoke if we are freeing data 55 * which has been journaled. Metadata (eg. indirect blocks) must be 56 * revoked in all cases. 57 * 58 * "bh" may be NULL: a metadata block may have been freed from memory 59 * but there may still be a record of it in the journal, and that record 60 * still needs to be revoked. 61 */ 62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 63 struct buffer_head *bh, ext4_fsblk_t blocknr) 64 { 65 int err; 66 67 might_sleep(); 68 69 BUFFER_TRACE(bh, "enter"); 70 71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 72 "data mode %lx\n", 73 bh, is_metadata, inode->i_mode, 74 test_opt(inode->i_sb, DATA_FLAGS)); 75 76 /* Never use the revoke function if we are doing full data 77 * journaling: there is no need to, and a V1 superblock won't 78 * support it. Otherwise, only skip the revoke on un-journaled 79 * data blocks. */ 80 81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 82 (!is_metadata && !ext4_should_journal_data(inode))) { 83 if (bh) { 84 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 85 return ext4_journal_forget(handle, bh); 86 } 87 return 0; 88 } 89 90 /* 91 * data!=journal && (is_metadata || should_journal_data(inode)) 92 */ 93 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 94 err = ext4_journal_revoke(handle, blocknr, bh); 95 if (err) 96 ext4_abort(inode->i_sb, __FUNCTION__, 97 "error %d when attempting revoke", err); 98 BUFFER_TRACE(bh, "exit"); 99 return err; 100 } 101 102 /* 103 * Work out how many blocks we need to proceed with the next chunk of a 104 * truncate transaction. 105 */ 106 static unsigned long blocks_for_truncate(struct inode *inode) 107 { 108 ext4_lblk_t needed; 109 110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 111 112 /* Give ourselves just enough room to cope with inodes in which 113 * i_blocks is corrupt: we've seen disk corruptions in the past 114 * which resulted in random data in an inode which looked enough 115 * like a regular file for ext4 to try to delete it. Things 116 * will go a bit crazy if that happens, but at least we should 117 * try not to panic the whole kernel. */ 118 if (needed < 2) 119 needed = 2; 120 121 /* But we need to bound the transaction so we don't overflow the 122 * journal. */ 123 if (needed > EXT4_MAX_TRANS_DATA) 124 needed = EXT4_MAX_TRANS_DATA; 125 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 127 } 128 129 /* 130 * Truncate transactions can be complex and absolutely huge. So we need to 131 * be able to restart the transaction at a conventient checkpoint to make 132 * sure we don't overflow the journal. 133 * 134 * start_transaction gets us a new handle for a truncate transaction, 135 * and extend_transaction tries to extend the existing one a bit. If 136 * extend fails, we need to propagate the failure up and restart the 137 * transaction in the top-level truncate loop. --sct 138 */ 139 static handle_t *start_transaction(struct inode *inode) 140 { 141 handle_t *result; 142 143 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 144 if (!IS_ERR(result)) 145 return result; 146 147 ext4_std_error(inode->i_sb, PTR_ERR(result)); 148 return result; 149 } 150 151 /* 152 * Try to extend this transaction for the purposes of truncation. 153 * 154 * Returns 0 if we managed to create more room. If we can't create more 155 * room, and the transaction must be restarted we return 1. 156 */ 157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 158 { 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 160 return 0; 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 162 return 0; 163 return 1; 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 172 { 173 jbd_debug(2, "restarting handle %p\n", handle); 174 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 175 } 176 177 /* 178 * Called at the last iput() if i_nlink is zero. 179 */ 180 void ext4_delete_inode (struct inode * inode) 181 { 182 handle_t *handle; 183 184 truncate_inode_pages(&inode->i_data, 0); 185 186 if (is_bad_inode(inode)) 187 goto no_delete; 188 189 handle = start_transaction(inode); 190 if (IS_ERR(handle)) { 191 /* 192 * If we're going to skip the normal cleanup, we still need to 193 * make sure that the in-core orphan linked list is properly 194 * cleaned up. 195 */ 196 ext4_orphan_del(NULL, inode); 197 goto no_delete; 198 } 199 200 if (IS_SYNC(inode)) 201 handle->h_sync = 1; 202 inode->i_size = 0; 203 if (inode->i_blocks) 204 ext4_truncate(inode); 205 /* 206 * Kill off the orphan record which ext4_truncate created. 207 * AKPM: I think this can be inside the above `if'. 208 * Note that ext4_orphan_del() has to be able to cope with the 209 * deletion of a non-existent orphan - this is because we don't 210 * know if ext4_truncate() actually created an orphan record. 211 * (Well, we could do this if we need to, but heck - it works) 212 */ 213 ext4_orphan_del(handle, inode); 214 EXT4_I(inode)->i_dtime = get_seconds(); 215 216 /* 217 * One subtle ordering requirement: if anything has gone wrong 218 * (transaction abort, IO errors, whatever), then we can still 219 * do these next steps (the fs will already have been marked as 220 * having errors), but we can't free the inode if the mark_dirty 221 * fails. 222 */ 223 if (ext4_mark_inode_dirty(handle, inode)) 224 /* If that failed, just do the required in-core inode clear. */ 225 clear_inode(inode); 226 else 227 ext4_free_inode(handle, inode); 228 ext4_journal_stop(handle); 229 return; 230 no_delete: 231 clear_inode(inode); /* We must guarantee clearing of inode... */ 232 } 233 234 typedef struct { 235 __le32 *p; 236 __le32 key; 237 struct buffer_head *bh; 238 } Indirect; 239 240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 241 { 242 p->key = *(p->p = v); 243 p->bh = bh; 244 } 245 246 /** 247 * ext4_block_to_path - parse the block number into array of offsets 248 * @inode: inode in question (we are only interested in its superblock) 249 * @i_block: block number to be parsed 250 * @offsets: array to store the offsets in 251 * @boundary: set this non-zero if the referred-to block is likely to be 252 * followed (on disk) by an indirect block. 253 * 254 * To store the locations of file's data ext4 uses a data structure common 255 * for UNIX filesystems - tree of pointers anchored in the inode, with 256 * data blocks at leaves and indirect blocks in intermediate nodes. 257 * This function translates the block number into path in that tree - 258 * return value is the path length and @offsets[n] is the offset of 259 * pointer to (n+1)th node in the nth one. If @block is out of range 260 * (negative or too large) warning is printed and zero returned. 261 * 262 * Note: function doesn't find node addresses, so no IO is needed. All 263 * we need to know is the capacity of indirect blocks (taken from the 264 * inode->i_sb). 265 */ 266 267 /* 268 * Portability note: the last comparison (check that we fit into triple 269 * indirect block) is spelled differently, because otherwise on an 270 * architecture with 32-bit longs and 8Kb pages we might get into trouble 271 * if our filesystem had 8Kb blocks. We might use long long, but that would 272 * kill us on x86. Oh, well, at least the sign propagation does not matter - 273 * i_block would have to be negative in the very beginning, so we would not 274 * get there at all. 275 */ 276 277 static int ext4_block_to_path(struct inode *inode, 278 ext4_lblk_t i_block, 279 ext4_lblk_t offsets[4], int *boundary) 280 { 281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 283 const long direct_blocks = EXT4_NDIR_BLOCKS, 284 indirect_blocks = ptrs, 285 double_blocks = (1 << (ptrs_bits * 2)); 286 int n = 0; 287 int final = 0; 288 289 if (i_block < 0) { 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 291 } else if (i_block < direct_blocks) { 292 offsets[n++] = i_block; 293 final = direct_blocks; 294 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 295 offsets[n++] = EXT4_IND_BLOCK; 296 offsets[n++] = i_block; 297 final = ptrs; 298 } else if ((i_block -= indirect_blocks) < double_blocks) { 299 offsets[n++] = EXT4_DIND_BLOCK; 300 offsets[n++] = i_block >> ptrs_bits; 301 offsets[n++] = i_block & (ptrs - 1); 302 final = ptrs; 303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 304 offsets[n++] = EXT4_TIND_BLOCK; 305 offsets[n++] = i_block >> (ptrs_bits * 2); 306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 307 offsets[n++] = i_block & (ptrs - 1); 308 final = ptrs; 309 } else { 310 ext4_warning(inode->i_sb, "ext4_block_to_path", 311 "block %lu > max", 312 i_block + direct_blocks + 313 indirect_blocks + double_blocks); 314 } 315 if (boundary) 316 *boundary = final - 1 - (i_block & (ptrs - 1)); 317 return n; 318 } 319 320 /** 321 * ext4_get_branch - read the chain of indirect blocks leading to data 322 * @inode: inode in question 323 * @depth: depth of the chain (1 - direct pointer, etc.) 324 * @offsets: offsets of pointers in inode/indirect blocks 325 * @chain: place to store the result 326 * @err: here we store the error value 327 * 328 * Function fills the array of triples <key, p, bh> and returns %NULL 329 * if everything went OK or the pointer to the last filled triple 330 * (incomplete one) otherwise. Upon the return chain[i].key contains 331 * the number of (i+1)-th block in the chain (as it is stored in memory, 332 * i.e. little-endian 32-bit), chain[i].p contains the address of that 333 * number (it points into struct inode for i==0 and into the bh->b_data 334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 335 * block for i>0 and NULL for i==0. In other words, it holds the block 336 * numbers of the chain, addresses they were taken from (and where we can 337 * verify that chain did not change) and buffer_heads hosting these 338 * numbers. 339 * 340 * Function stops when it stumbles upon zero pointer (absent block) 341 * (pointer to last triple returned, *@err == 0) 342 * or when it gets an IO error reading an indirect block 343 * (ditto, *@err == -EIO) 344 * or when it reads all @depth-1 indirect blocks successfully and finds 345 * the whole chain, all way to the data (returns %NULL, *err == 0). 346 * 347 * Need to be called with 348 * down_read(&EXT4_I(inode)->i_data_sem) 349 */ 350 static Indirect *ext4_get_branch(struct inode *inode, int depth, 351 ext4_lblk_t *offsets, 352 Indirect chain[4], int *err) 353 { 354 struct super_block *sb = inode->i_sb; 355 Indirect *p = chain; 356 struct buffer_head *bh; 357 358 *err = 0; 359 /* i_data is not going away, no lock needed */ 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 361 if (!p->key) 362 goto no_block; 363 while (--depth) { 364 bh = sb_bread(sb, le32_to_cpu(p->key)); 365 if (!bh) 366 goto failure; 367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 368 /* Reader: end */ 369 if (!p->key) 370 goto no_block; 371 } 372 return NULL; 373 374 failure: 375 *err = -EIO; 376 no_block: 377 return p; 378 } 379 380 /** 381 * ext4_find_near - find a place for allocation with sufficient locality 382 * @inode: owner 383 * @ind: descriptor of indirect block. 384 * 385 * This function returns the prefered place for block allocation. 386 * It is used when heuristic for sequential allocation fails. 387 * Rules are: 388 * + if there is a block to the left of our position - allocate near it. 389 * + if pointer will live in indirect block - allocate near that block. 390 * + if pointer will live in inode - allocate in the same 391 * cylinder group. 392 * 393 * In the latter case we colour the starting block by the callers PID to 394 * prevent it from clashing with concurrent allocations for a different inode 395 * in the same block group. The PID is used here so that functionally related 396 * files will be close-by on-disk. 397 * 398 * Caller must make sure that @ind is valid and will stay that way. 399 */ 400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 401 { 402 struct ext4_inode_info *ei = EXT4_I(inode); 403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 404 __le32 *p; 405 ext4_fsblk_t bg_start; 406 ext4_grpblk_t colour; 407 408 /* Try to find previous block */ 409 for (p = ind->p - 1; p >= start; p--) { 410 if (*p) 411 return le32_to_cpu(*p); 412 } 413 414 /* No such thing, so let's try location of indirect block */ 415 if (ind->bh) 416 return ind->bh->b_blocknr; 417 418 /* 419 * It is going to be referred to from the inode itself? OK, just put it 420 * into the same cylinder group then. 421 */ 422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 423 colour = (current->pid % 16) * 424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 425 return bg_start + colour; 426 } 427 428 /** 429 * ext4_find_goal - find a prefered place for allocation. 430 * @inode: owner 431 * @block: block we want 432 * @partial: pointer to the last triple within a chain 433 * 434 * Normally this function find the prefered place for block allocation, 435 * returns it. 436 */ 437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 438 Indirect *partial) 439 { 440 struct ext4_block_alloc_info *block_i; 441 442 block_i = EXT4_I(inode)->i_block_alloc_info; 443 444 /* 445 * try the heuristic for sequential allocation, 446 * failing that at least try to get decent locality. 447 */ 448 if (block_i && (block == block_i->last_alloc_logical_block + 1) 449 && (block_i->last_alloc_physical_block != 0)) { 450 return block_i->last_alloc_physical_block + 1; 451 } 452 453 return ext4_find_near(inode, partial); 454 } 455 456 /** 457 * ext4_blks_to_allocate: Look up the block map and count the number 458 * of direct blocks need to be allocated for the given branch. 459 * 460 * @branch: chain of indirect blocks 461 * @k: number of blocks need for indirect blocks 462 * @blks: number of data blocks to be mapped. 463 * @blocks_to_boundary: the offset in the indirect block 464 * 465 * return the total number of blocks to be allocate, including the 466 * direct and indirect blocks. 467 */ 468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 469 int blocks_to_boundary) 470 { 471 unsigned long count = 0; 472 473 /* 474 * Simple case, [t,d]Indirect block(s) has not allocated yet 475 * then it's clear blocks on that path have not allocated 476 */ 477 if (k > 0) { 478 /* right now we don't handle cross boundary allocation */ 479 if (blks < blocks_to_boundary + 1) 480 count += blks; 481 else 482 count += blocks_to_boundary + 1; 483 return count; 484 } 485 486 count++; 487 while (count < blks && count <= blocks_to_boundary && 488 le32_to_cpu(*(branch[0].p + count)) == 0) { 489 count++; 490 } 491 return count; 492 } 493 494 /** 495 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 496 * @indirect_blks: the number of blocks need to allocate for indirect 497 * blocks 498 * 499 * @new_blocks: on return it will store the new block numbers for 500 * the indirect blocks(if needed) and the first direct block, 501 * @blks: on return it will store the total number of allocated 502 * direct blocks 503 */ 504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 505 ext4_fsblk_t goal, int indirect_blks, int blks, 506 ext4_fsblk_t new_blocks[4], int *err) 507 { 508 int target, i; 509 unsigned long count = 0; 510 int index = 0; 511 ext4_fsblk_t current_block = 0; 512 int ret = 0; 513 514 /* 515 * Here we try to allocate the requested multiple blocks at once, 516 * on a best-effort basis. 517 * To build a branch, we should allocate blocks for 518 * the indirect blocks(if not allocated yet), and at least 519 * the first direct block of this branch. That's the 520 * minimum number of blocks need to allocate(required) 521 */ 522 target = blks + indirect_blks; 523 524 while (1) { 525 count = target; 526 /* allocating blocks for indirect blocks and direct blocks */ 527 current_block = ext4_new_blocks(handle,inode,goal,&count,err); 528 if (*err) 529 goto failed_out; 530 531 target -= count; 532 /* allocate blocks for indirect blocks */ 533 while (index < indirect_blks && count) { 534 new_blocks[index++] = current_block++; 535 count--; 536 } 537 538 if (count > 0) 539 break; 540 } 541 542 /* save the new block number for the first direct block */ 543 new_blocks[index] = current_block; 544 545 /* total number of blocks allocated for direct blocks */ 546 ret = count; 547 *err = 0; 548 return ret; 549 failed_out: 550 for (i = 0; i <index; i++) 551 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 552 return ret; 553 } 554 555 /** 556 * ext4_alloc_branch - allocate and set up a chain of blocks. 557 * @inode: owner 558 * @indirect_blks: number of allocated indirect blocks 559 * @blks: number of allocated direct blocks 560 * @offsets: offsets (in the blocks) to store the pointers to next. 561 * @branch: place to store the chain in. 562 * 563 * This function allocates blocks, zeroes out all but the last one, 564 * links them into chain and (if we are synchronous) writes them to disk. 565 * In other words, it prepares a branch that can be spliced onto the 566 * inode. It stores the information about that chain in the branch[], in 567 * the same format as ext4_get_branch() would do. We are calling it after 568 * we had read the existing part of chain and partial points to the last 569 * triple of that (one with zero ->key). Upon the exit we have the same 570 * picture as after the successful ext4_get_block(), except that in one 571 * place chain is disconnected - *branch->p is still zero (we did not 572 * set the last link), but branch->key contains the number that should 573 * be placed into *branch->p to fill that gap. 574 * 575 * If allocation fails we free all blocks we've allocated (and forget 576 * their buffer_heads) and return the error value the from failed 577 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 578 * as described above and return 0. 579 */ 580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 581 int indirect_blks, int *blks, ext4_fsblk_t goal, 582 ext4_lblk_t *offsets, Indirect *branch) 583 { 584 int blocksize = inode->i_sb->s_blocksize; 585 int i, n = 0; 586 int err = 0; 587 struct buffer_head *bh; 588 int num; 589 ext4_fsblk_t new_blocks[4]; 590 ext4_fsblk_t current_block; 591 592 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, 593 *blks, new_blocks, &err); 594 if (err) 595 return err; 596 597 branch[0].key = cpu_to_le32(new_blocks[0]); 598 /* 599 * metadata blocks and data blocks are allocated. 600 */ 601 for (n = 1; n <= indirect_blks; n++) { 602 /* 603 * Get buffer_head for parent block, zero it out 604 * and set the pointer to new one, then send 605 * parent to disk. 606 */ 607 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 608 branch[n].bh = bh; 609 lock_buffer(bh); 610 BUFFER_TRACE(bh, "call get_create_access"); 611 err = ext4_journal_get_create_access(handle, bh); 612 if (err) { 613 unlock_buffer(bh); 614 brelse(bh); 615 goto failed; 616 } 617 618 memset(bh->b_data, 0, blocksize); 619 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 620 branch[n].key = cpu_to_le32(new_blocks[n]); 621 *branch[n].p = branch[n].key; 622 if ( n == indirect_blks) { 623 current_block = new_blocks[n]; 624 /* 625 * End of chain, update the last new metablock of 626 * the chain to point to the new allocated 627 * data blocks numbers 628 */ 629 for (i=1; i < num; i++) 630 *(branch[n].p + i) = cpu_to_le32(++current_block); 631 } 632 BUFFER_TRACE(bh, "marking uptodate"); 633 set_buffer_uptodate(bh); 634 unlock_buffer(bh); 635 636 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 637 err = ext4_journal_dirty_metadata(handle, bh); 638 if (err) 639 goto failed; 640 } 641 *blks = num; 642 return err; 643 failed: 644 /* Allocation failed, free what we already allocated */ 645 for (i = 1; i <= n ; i++) { 646 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 647 ext4_journal_forget(handle, branch[i].bh); 648 } 649 for (i = 0; i <indirect_blks; i++) 650 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 651 652 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 653 654 return err; 655 } 656 657 /** 658 * ext4_splice_branch - splice the allocated branch onto inode. 659 * @inode: owner 660 * @block: (logical) number of block we are adding 661 * @chain: chain of indirect blocks (with a missing link - see 662 * ext4_alloc_branch) 663 * @where: location of missing link 664 * @num: number of indirect blocks we are adding 665 * @blks: number of direct blocks we are adding 666 * 667 * This function fills the missing link and does all housekeeping needed in 668 * inode (->i_blocks, etc.). In case of success we end up with the full 669 * chain to new block and return 0. 670 */ 671 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 672 ext4_lblk_t block, Indirect *where, int num, int blks) 673 { 674 int i; 675 int err = 0; 676 struct ext4_block_alloc_info *block_i; 677 ext4_fsblk_t current_block; 678 679 block_i = EXT4_I(inode)->i_block_alloc_info; 680 /* 681 * If we're splicing into a [td]indirect block (as opposed to the 682 * inode) then we need to get write access to the [td]indirect block 683 * before the splice. 684 */ 685 if (where->bh) { 686 BUFFER_TRACE(where->bh, "get_write_access"); 687 err = ext4_journal_get_write_access(handle, where->bh); 688 if (err) 689 goto err_out; 690 } 691 /* That's it */ 692 693 *where->p = where->key; 694 695 /* 696 * Update the host buffer_head or inode to point to more just allocated 697 * direct blocks blocks 698 */ 699 if (num == 0 && blks > 1) { 700 current_block = le32_to_cpu(where->key) + 1; 701 for (i = 1; i < blks; i++) 702 *(where->p + i ) = cpu_to_le32(current_block++); 703 } 704 705 /* 706 * update the most recently allocated logical & physical block 707 * in i_block_alloc_info, to assist find the proper goal block for next 708 * allocation 709 */ 710 if (block_i) { 711 block_i->last_alloc_logical_block = block + blks - 1; 712 block_i->last_alloc_physical_block = 713 le32_to_cpu(where[num].key) + blks - 1; 714 } 715 716 /* We are done with atomic stuff, now do the rest of housekeeping */ 717 718 inode->i_ctime = ext4_current_time(inode); 719 ext4_mark_inode_dirty(handle, inode); 720 721 /* had we spliced it onto indirect block? */ 722 if (where->bh) { 723 /* 724 * If we spliced it onto an indirect block, we haven't 725 * altered the inode. Note however that if it is being spliced 726 * onto an indirect block at the very end of the file (the 727 * file is growing) then we *will* alter the inode to reflect 728 * the new i_size. But that is not done here - it is done in 729 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 730 */ 731 jbd_debug(5, "splicing indirect only\n"); 732 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 733 err = ext4_journal_dirty_metadata(handle, where->bh); 734 if (err) 735 goto err_out; 736 } else { 737 /* 738 * OK, we spliced it into the inode itself on a direct block. 739 * Inode was dirtied above. 740 */ 741 jbd_debug(5, "splicing direct\n"); 742 } 743 return err; 744 745 err_out: 746 for (i = 1; i <= num; i++) { 747 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 748 ext4_journal_forget(handle, where[i].bh); 749 ext4_free_blocks(handle, inode, 750 le32_to_cpu(where[i-1].key), 1, 0); 751 } 752 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 753 754 return err; 755 } 756 757 /* 758 * Allocation strategy is simple: if we have to allocate something, we will 759 * have to go the whole way to leaf. So let's do it before attaching anything 760 * to tree, set linkage between the newborn blocks, write them if sync is 761 * required, recheck the path, free and repeat if check fails, otherwise 762 * set the last missing link (that will protect us from any truncate-generated 763 * removals - all blocks on the path are immune now) and possibly force the 764 * write on the parent block. 765 * That has a nice additional property: no special recovery from the failed 766 * allocations is needed - we simply release blocks and do not touch anything 767 * reachable from inode. 768 * 769 * `handle' can be NULL if create == 0. 770 * 771 * The BKL may not be held on entry here. Be sure to take it early. 772 * return > 0, # of blocks mapped or allocated. 773 * return = 0, if plain lookup failed. 774 * return < 0, error case. 775 * 776 * 777 * Need to be called with 778 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 779 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 780 */ 781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 782 ext4_lblk_t iblock, unsigned long maxblocks, 783 struct buffer_head *bh_result, 784 int create, int extend_disksize) 785 { 786 int err = -EIO; 787 ext4_lblk_t offsets[4]; 788 Indirect chain[4]; 789 Indirect *partial; 790 ext4_fsblk_t goal; 791 int indirect_blks; 792 int blocks_to_boundary = 0; 793 int depth; 794 struct ext4_inode_info *ei = EXT4_I(inode); 795 int count = 0; 796 ext4_fsblk_t first_block = 0; 797 798 799 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 800 J_ASSERT(handle != NULL || create == 0); 801 depth = ext4_block_to_path(inode, iblock, offsets, 802 &blocks_to_boundary); 803 804 if (depth == 0) 805 goto out; 806 807 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 808 809 /* Simplest case - block found, no allocation needed */ 810 if (!partial) { 811 first_block = le32_to_cpu(chain[depth - 1].key); 812 clear_buffer_new(bh_result); 813 count++; 814 /*map more blocks*/ 815 while (count < maxblocks && count <= blocks_to_boundary) { 816 ext4_fsblk_t blk; 817 818 blk = le32_to_cpu(*(chain[depth-1].p + count)); 819 820 if (blk == first_block + count) 821 count++; 822 else 823 break; 824 } 825 goto got_it; 826 } 827 828 /* Next simple case - plain lookup or failed read of indirect block */ 829 if (!create || err == -EIO) 830 goto cleanup; 831 832 /* 833 * Okay, we need to do block allocation. Lazily initialize the block 834 * allocation info here if necessary 835 */ 836 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 837 ext4_init_block_alloc_info(inode); 838 839 goal = ext4_find_goal(inode, iblock, partial); 840 841 /* the number of blocks need to allocate for [d,t]indirect blocks */ 842 indirect_blks = (chain + depth) - partial - 1; 843 844 /* 845 * Next look up the indirect map to count the totoal number of 846 * direct blocks to allocate for this branch. 847 */ 848 count = ext4_blks_to_allocate(partial, indirect_blks, 849 maxblocks, blocks_to_boundary); 850 /* 851 * Block out ext4_truncate while we alter the tree 852 */ 853 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, 854 offsets + (partial - chain), partial); 855 856 /* 857 * The ext4_splice_branch call will free and forget any buffers 858 * on the new chain if there is a failure, but that risks using 859 * up transaction credits, especially for bitmaps where the 860 * credits cannot be returned. Can we handle this somehow? We 861 * may need to return -EAGAIN upwards in the worst case. --sct 862 */ 863 if (!err) 864 err = ext4_splice_branch(handle, inode, iblock, 865 partial, indirect_blks, count); 866 /* 867 * i_disksize growing is protected by i_data_sem. Don't forget to 868 * protect it if you're about to implement concurrent 869 * ext4_get_block() -bzzz 870 */ 871 if (!err && extend_disksize && inode->i_size > ei->i_disksize) 872 ei->i_disksize = inode->i_size; 873 if (err) 874 goto cleanup; 875 876 set_buffer_new(bh_result); 877 got_it: 878 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 879 if (count > blocks_to_boundary) 880 set_buffer_boundary(bh_result); 881 err = count; 882 /* Clean up and exit */ 883 partial = chain + depth - 1; /* the whole chain */ 884 cleanup: 885 while (partial > chain) { 886 BUFFER_TRACE(partial->bh, "call brelse"); 887 brelse(partial->bh); 888 partial--; 889 } 890 BUFFER_TRACE(bh_result, "returned"); 891 out: 892 return err; 893 } 894 895 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32) 896 897 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 898 unsigned long max_blocks, struct buffer_head *bh, 899 int create, int extend_disksize) 900 { 901 int retval; 902 /* 903 * Try to see if we can get the block without requesting 904 * for new file system block. 905 */ 906 down_read((&EXT4_I(inode)->i_data_sem)); 907 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 908 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 909 bh, 0, 0); 910 } else { 911 retval = ext4_get_blocks_handle(handle, 912 inode, block, max_blocks, bh, 0, 0); 913 } 914 up_read((&EXT4_I(inode)->i_data_sem)); 915 if (!create || (retval > 0)) 916 return retval; 917 918 /* 919 * We need to allocate new blocks which will result 920 * in i_data update 921 */ 922 down_write((&EXT4_I(inode)->i_data_sem)); 923 /* 924 * We need to check for EXT4 here because migrate 925 * could have changed the inode type in between 926 */ 927 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 928 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 929 bh, create, extend_disksize); 930 } else { 931 retval = ext4_get_blocks_handle(handle, inode, block, 932 max_blocks, bh, create, extend_disksize); 933 } 934 up_write((&EXT4_I(inode)->i_data_sem)); 935 return retval; 936 } 937 938 static int ext4_get_block(struct inode *inode, sector_t iblock, 939 struct buffer_head *bh_result, int create) 940 { 941 handle_t *handle = ext4_journal_current_handle(); 942 int ret = 0; 943 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 944 945 if (!create) 946 goto get_block; /* A read */ 947 948 if (max_blocks == 1) 949 goto get_block; /* A single block get */ 950 951 if (handle->h_transaction->t_state == T_LOCKED) { 952 /* 953 * Huge direct-io writes can hold off commits for long 954 * periods of time. Let this commit run. 955 */ 956 ext4_journal_stop(handle); 957 handle = ext4_journal_start(inode, DIO_CREDITS); 958 if (IS_ERR(handle)) 959 ret = PTR_ERR(handle); 960 goto get_block; 961 } 962 963 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) { 964 /* 965 * Getting low on buffer credits... 966 */ 967 ret = ext4_journal_extend(handle, DIO_CREDITS); 968 if (ret > 0) { 969 /* 970 * Couldn't extend the transaction. Start a new one. 971 */ 972 ret = ext4_journal_restart(handle, DIO_CREDITS); 973 } 974 } 975 976 get_block: 977 if (ret == 0) { 978 ret = ext4_get_blocks_wrap(handle, inode, iblock, 979 max_blocks, bh_result, create, 0); 980 if (ret > 0) { 981 bh_result->b_size = (ret << inode->i_blkbits); 982 ret = 0; 983 } 984 } 985 return ret; 986 } 987 988 /* 989 * `handle' can be NULL if create is zero 990 */ 991 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 992 ext4_lblk_t block, int create, int *errp) 993 { 994 struct buffer_head dummy; 995 int fatal = 0, err; 996 997 J_ASSERT(handle != NULL || create == 0); 998 999 dummy.b_state = 0; 1000 dummy.b_blocknr = -1000; 1001 buffer_trace_init(&dummy.b_history); 1002 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1003 &dummy, create, 1); 1004 /* 1005 * ext4_get_blocks_handle() returns number of blocks 1006 * mapped. 0 in case of a HOLE. 1007 */ 1008 if (err > 0) { 1009 if (err > 1) 1010 WARN_ON(1); 1011 err = 0; 1012 } 1013 *errp = err; 1014 if (!err && buffer_mapped(&dummy)) { 1015 struct buffer_head *bh; 1016 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1017 if (!bh) { 1018 *errp = -EIO; 1019 goto err; 1020 } 1021 if (buffer_new(&dummy)) { 1022 J_ASSERT(create != 0); 1023 J_ASSERT(handle != NULL); 1024 1025 /* 1026 * Now that we do not always journal data, we should 1027 * keep in mind whether this should always journal the 1028 * new buffer as metadata. For now, regular file 1029 * writes use ext4_get_block instead, so it's not a 1030 * problem. 1031 */ 1032 lock_buffer(bh); 1033 BUFFER_TRACE(bh, "call get_create_access"); 1034 fatal = ext4_journal_get_create_access(handle, bh); 1035 if (!fatal && !buffer_uptodate(bh)) { 1036 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1037 set_buffer_uptodate(bh); 1038 } 1039 unlock_buffer(bh); 1040 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1041 err = ext4_journal_dirty_metadata(handle, bh); 1042 if (!fatal) 1043 fatal = err; 1044 } else { 1045 BUFFER_TRACE(bh, "not a new buffer"); 1046 } 1047 if (fatal) { 1048 *errp = fatal; 1049 brelse(bh); 1050 bh = NULL; 1051 } 1052 return bh; 1053 } 1054 err: 1055 return NULL; 1056 } 1057 1058 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1059 ext4_lblk_t block, int create, int *err) 1060 { 1061 struct buffer_head * bh; 1062 1063 bh = ext4_getblk(handle, inode, block, create, err); 1064 if (!bh) 1065 return bh; 1066 if (buffer_uptodate(bh)) 1067 return bh; 1068 ll_rw_block(READ_META, 1, &bh); 1069 wait_on_buffer(bh); 1070 if (buffer_uptodate(bh)) 1071 return bh; 1072 put_bh(bh); 1073 *err = -EIO; 1074 return NULL; 1075 } 1076 1077 static int walk_page_buffers( handle_t *handle, 1078 struct buffer_head *head, 1079 unsigned from, 1080 unsigned to, 1081 int *partial, 1082 int (*fn)( handle_t *handle, 1083 struct buffer_head *bh)) 1084 { 1085 struct buffer_head *bh; 1086 unsigned block_start, block_end; 1087 unsigned blocksize = head->b_size; 1088 int err, ret = 0; 1089 struct buffer_head *next; 1090 1091 for ( bh = head, block_start = 0; 1092 ret == 0 && (bh != head || !block_start); 1093 block_start = block_end, bh = next) 1094 { 1095 next = bh->b_this_page; 1096 block_end = block_start + blocksize; 1097 if (block_end <= from || block_start >= to) { 1098 if (partial && !buffer_uptodate(bh)) 1099 *partial = 1; 1100 continue; 1101 } 1102 err = (*fn)(handle, bh); 1103 if (!ret) 1104 ret = err; 1105 } 1106 return ret; 1107 } 1108 1109 /* 1110 * To preserve ordering, it is essential that the hole instantiation and 1111 * the data write be encapsulated in a single transaction. We cannot 1112 * close off a transaction and start a new one between the ext4_get_block() 1113 * and the commit_write(). So doing the jbd2_journal_start at the start of 1114 * prepare_write() is the right place. 1115 * 1116 * Also, this function can nest inside ext4_writepage() -> 1117 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1118 * has generated enough buffer credits to do the whole page. So we won't 1119 * block on the journal in that case, which is good, because the caller may 1120 * be PF_MEMALLOC. 1121 * 1122 * By accident, ext4 can be reentered when a transaction is open via 1123 * quota file writes. If we were to commit the transaction while thus 1124 * reentered, there can be a deadlock - we would be holding a quota 1125 * lock, and the commit would never complete if another thread had a 1126 * transaction open and was blocking on the quota lock - a ranking 1127 * violation. 1128 * 1129 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1130 * will _not_ run commit under these circumstances because handle->h_ref 1131 * is elevated. We'll still have enough credits for the tiny quotafile 1132 * write. 1133 */ 1134 static int do_journal_get_write_access(handle_t *handle, 1135 struct buffer_head *bh) 1136 { 1137 if (!buffer_mapped(bh) || buffer_freed(bh)) 1138 return 0; 1139 return ext4_journal_get_write_access(handle, bh); 1140 } 1141 1142 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1143 loff_t pos, unsigned len, unsigned flags, 1144 struct page **pagep, void **fsdata) 1145 { 1146 struct inode *inode = mapping->host; 1147 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1148 handle_t *handle; 1149 int retries = 0; 1150 struct page *page; 1151 pgoff_t index; 1152 unsigned from, to; 1153 1154 index = pos >> PAGE_CACHE_SHIFT; 1155 from = pos & (PAGE_CACHE_SIZE - 1); 1156 to = from + len; 1157 1158 retry: 1159 page = __grab_cache_page(mapping, index); 1160 if (!page) 1161 return -ENOMEM; 1162 *pagep = page; 1163 1164 handle = ext4_journal_start(inode, needed_blocks); 1165 if (IS_ERR(handle)) { 1166 unlock_page(page); 1167 page_cache_release(page); 1168 ret = PTR_ERR(handle); 1169 goto out; 1170 } 1171 1172 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1173 ext4_get_block); 1174 1175 if (!ret && ext4_should_journal_data(inode)) { 1176 ret = walk_page_buffers(handle, page_buffers(page), 1177 from, to, NULL, do_journal_get_write_access); 1178 } 1179 1180 if (ret) { 1181 ext4_journal_stop(handle); 1182 unlock_page(page); 1183 page_cache_release(page); 1184 } 1185 1186 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1187 goto retry; 1188 out: 1189 return ret; 1190 } 1191 1192 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1193 { 1194 int err = jbd2_journal_dirty_data(handle, bh); 1195 if (err) 1196 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__, 1197 bh, handle, err); 1198 return err; 1199 } 1200 1201 /* For write_end() in data=journal mode */ 1202 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1203 { 1204 if (!buffer_mapped(bh) || buffer_freed(bh)) 1205 return 0; 1206 set_buffer_uptodate(bh); 1207 return ext4_journal_dirty_metadata(handle, bh); 1208 } 1209 1210 /* 1211 * Generic write_end handler for ordered and writeback ext4 journal modes. 1212 * We can't use generic_write_end, because that unlocks the page and we need to 1213 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run 1214 * after block_write_end. 1215 */ 1216 static int ext4_generic_write_end(struct file *file, 1217 struct address_space *mapping, 1218 loff_t pos, unsigned len, unsigned copied, 1219 struct page *page, void *fsdata) 1220 { 1221 struct inode *inode = file->f_mapping->host; 1222 1223 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1224 1225 if (pos+copied > inode->i_size) { 1226 i_size_write(inode, pos+copied); 1227 mark_inode_dirty(inode); 1228 } 1229 1230 return copied; 1231 } 1232 1233 /* 1234 * We need to pick up the new inode size which generic_commit_write gave us 1235 * `file' can be NULL - eg, when called from page_symlink(). 1236 * 1237 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1238 * buffers are managed internally. 1239 */ 1240 static int ext4_ordered_write_end(struct file *file, 1241 struct address_space *mapping, 1242 loff_t pos, unsigned len, unsigned copied, 1243 struct page *page, void *fsdata) 1244 { 1245 handle_t *handle = ext4_journal_current_handle(); 1246 struct inode *inode = file->f_mapping->host; 1247 unsigned from, to; 1248 int ret = 0, ret2; 1249 1250 from = pos & (PAGE_CACHE_SIZE - 1); 1251 to = from + len; 1252 1253 ret = walk_page_buffers(handle, page_buffers(page), 1254 from, to, NULL, ext4_journal_dirty_data); 1255 1256 if (ret == 0) { 1257 /* 1258 * generic_write_end() will run mark_inode_dirty() if i_size 1259 * changes. So let's piggyback the i_disksize mark_inode_dirty 1260 * into that. 1261 */ 1262 loff_t new_i_size; 1263 1264 new_i_size = pos + copied; 1265 if (new_i_size > EXT4_I(inode)->i_disksize) 1266 EXT4_I(inode)->i_disksize = new_i_size; 1267 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1268 page, fsdata); 1269 if (copied < 0) 1270 ret = copied; 1271 } 1272 ret2 = ext4_journal_stop(handle); 1273 if (!ret) 1274 ret = ret2; 1275 unlock_page(page); 1276 page_cache_release(page); 1277 1278 return ret ? ret : copied; 1279 } 1280 1281 static int ext4_writeback_write_end(struct file *file, 1282 struct address_space *mapping, 1283 loff_t pos, unsigned len, unsigned copied, 1284 struct page *page, void *fsdata) 1285 { 1286 handle_t *handle = ext4_journal_current_handle(); 1287 struct inode *inode = file->f_mapping->host; 1288 int ret = 0, ret2; 1289 loff_t new_i_size; 1290 1291 new_i_size = pos + copied; 1292 if (new_i_size > EXT4_I(inode)->i_disksize) 1293 EXT4_I(inode)->i_disksize = new_i_size; 1294 1295 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1296 page, fsdata); 1297 if (copied < 0) 1298 ret = copied; 1299 1300 ret2 = ext4_journal_stop(handle); 1301 if (!ret) 1302 ret = ret2; 1303 unlock_page(page); 1304 page_cache_release(page); 1305 1306 return ret ? ret : copied; 1307 } 1308 1309 static int ext4_journalled_write_end(struct file *file, 1310 struct address_space *mapping, 1311 loff_t pos, unsigned len, unsigned copied, 1312 struct page *page, void *fsdata) 1313 { 1314 handle_t *handle = ext4_journal_current_handle(); 1315 struct inode *inode = mapping->host; 1316 int ret = 0, ret2; 1317 int partial = 0; 1318 unsigned from, to; 1319 1320 from = pos & (PAGE_CACHE_SIZE - 1); 1321 to = from + len; 1322 1323 if (copied < len) { 1324 if (!PageUptodate(page)) 1325 copied = 0; 1326 page_zero_new_buffers(page, from+copied, to); 1327 } 1328 1329 ret = walk_page_buffers(handle, page_buffers(page), from, 1330 to, &partial, write_end_fn); 1331 if (!partial) 1332 SetPageUptodate(page); 1333 if (pos+copied > inode->i_size) 1334 i_size_write(inode, pos+copied); 1335 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1336 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1337 EXT4_I(inode)->i_disksize = inode->i_size; 1338 ret2 = ext4_mark_inode_dirty(handle, inode); 1339 if (!ret) 1340 ret = ret2; 1341 } 1342 1343 ret2 = ext4_journal_stop(handle); 1344 if (!ret) 1345 ret = ret2; 1346 unlock_page(page); 1347 page_cache_release(page); 1348 1349 return ret ? ret : copied; 1350 } 1351 1352 /* 1353 * bmap() is special. It gets used by applications such as lilo and by 1354 * the swapper to find the on-disk block of a specific piece of data. 1355 * 1356 * Naturally, this is dangerous if the block concerned is still in the 1357 * journal. If somebody makes a swapfile on an ext4 data-journaling 1358 * filesystem and enables swap, then they may get a nasty shock when the 1359 * data getting swapped to that swapfile suddenly gets overwritten by 1360 * the original zero's written out previously to the journal and 1361 * awaiting writeback in the kernel's buffer cache. 1362 * 1363 * So, if we see any bmap calls here on a modified, data-journaled file, 1364 * take extra steps to flush any blocks which might be in the cache. 1365 */ 1366 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 1367 { 1368 struct inode *inode = mapping->host; 1369 journal_t *journal; 1370 int err; 1371 1372 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 1373 /* 1374 * This is a REALLY heavyweight approach, but the use of 1375 * bmap on dirty files is expected to be extremely rare: 1376 * only if we run lilo or swapon on a freshly made file 1377 * do we expect this to happen. 1378 * 1379 * (bmap requires CAP_SYS_RAWIO so this does not 1380 * represent an unprivileged user DOS attack --- we'd be 1381 * in trouble if mortal users could trigger this path at 1382 * will.) 1383 * 1384 * NB. EXT4_STATE_JDATA is not set on files other than 1385 * regular files. If somebody wants to bmap a directory 1386 * or symlink and gets confused because the buffer 1387 * hasn't yet been flushed to disk, they deserve 1388 * everything they get. 1389 */ 1390 1391 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 1392 journal = EXT4_JOURNAL(inode); 1393 jbd2_journal_lock_updates(journal); 1394 err = jbd2_journal_flush(journal); 1395 jbd2_journal_unlock_updates(journal); 1396 1397 if (err) 1398 return 0; 1399 } 1400 1401 return generic_block_bmap(mapping,block,ext4_get_block); 1402 } 1403 1404 static int bget_one(handle_t *handle, struct buffer_head *bh) 1405 { 1406 get_bh(bh); 1407 return 0; 1408 } 1409 1410 static int bput_one(handle_t *handle, struct buffer_head *bh) 1411 { 1412 put_bh(bh); 1413 return 0; 1414 } 1415 1416 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1417 { 1418 if (buffer_mapped(bh)) 1419 return ext4_journal_dirty_data(handle, bh); 1420 return 0; 1421 } 1422 1423 /* 1424 * Note that we always start a transaction even if we're not journalling 1425 * data. This is to preserve ordering: any hole instantiation within 1426 * __block_write_full_page -> ext4_get_block() should be journalled 1427 * along with the data so we don't crash and then get metadata which 1428 * refers to old data. 1429 * 1430 * In all journalling modes block_write_full_page() will start the I/O. 1431 * 1432 * Problem: 1433 * 1434 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1435 * ext4_writepage() 1436 * 1437 * Similar for: 1438 * 1439 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1440 * 1441 * Same applies to ext4_get_block(). We will deadlock on various things like 1442 * lock_journal and i_data_sem 1443 * 1444 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1445 * allocations fail. 1446 * 1447 * 16May01: If we're reentered then journal_current_handle() will be 1448 * non-zero. We simply *return*. 1449 * 1450 * 1 July 2001: @@@ FIXME: 1451 * In journalled data mode, a data buffer may be metadata against the 1452 * current transaction. But the same file is part of a shared mapping 1453 * and someone does a writepage() on it. 1454 * 1455 * We will move the buffer onto the async_data list, but *after* it has 1456 * been dirtied. So there's a small window where we have dirty data on 1457 * BJ_Metadata. 1458 * 1459 * Note that this only applies to the last partial page in the file. The 1460 * bit which block_write_full_page() uses prepare/commit for. (That's 1461 * broken code anyway: it's wrong for msync()). 1462 * 1463 * It's a rare case: affects the final partial page, for journalled data 1464 * where the file is subject to bith write() and writepage() in the same 1465 * transction. To fix it we'll need a custom block_write_full_page(). 1466 * We'll probably need that anyway for journalling writepage() output. 1467 * 1468 * We don't honour synchronous mounts for writepage(). That would be 1469 * disastrous. Any write() or metadata operation will sync the fs for 1470 * us. 1471 * 1472 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1473 * we don't need to open a transaction here. 1474 */ 1475 static int ext4_ordered_writepage(struct page *page, 1476 struct writeback_control *wbc) 1477 { 1478 struct inode *inode = page->mapping->host; 1479 struct buffer_head *page_bufs; 1480 handle_t *handle = NULL; 1481 int ret = 0; 1482 int err; 1483 1484 J_ASSERT(PageLocked(page)); 1485 1486 /* 1487 * We give up here if we're reentered, because it might be for a 1488 * different filesystem. 1489 */ 1490 if (ext4_journal_current_handle()) 1491 goto out_fail; 1492 1493 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1494 1495 if (IS_ERR(handle)) { 1496 ret = PTR_ERR(handle); 1497 goto out_fail; 1498 } 1499 1500 if (!page_has_buffers(page)) { 1501 create_empty_buffers(page, inode->i_sb->s_blocksize, 1502 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1503 } 1504 page_bufs = page_buffers(page); 1505 walk_page_buffers(handle, page_bufs, 0, 1506 PAGE_CACHE_SIZE, NULL, bget_one); 1507 1508 ret = block_write_full_page(page, ext4_get_block, wbc); 1509 1510 /* 1511 * The page can become unlocked at any point now, and 1512 * truncate can then come in and change things. So we 1513 * can't touch *page from now on. But *page_bufs is 1514 * safe due to elevated refcount. 1515 */ 1516 1517 /* 1518 * And attach them to the current transaction. But only if 1519 * block_write_full_page() succeeded. Otherwise they are unmapped, 1520 * and generally junk. 1521 */ 1522 if (ret == 0) { 1523 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1524 NULL, jbd2_journal_dirty_data_fn); 1525 if (!ret) 1526 ret = err; 1527 } 1528 walk_page_buffers(handle, page_bufs, 0, 1529 PAGE_CACHE_SIZE, NULL, bput_one); 1530 err = ext4_journal_stop(handle); 1531 if (!ret) 1532 ret = err; 1533 return ret; 1534 1535 out_fail: 1536 redirty_page_for_writepage(wbc, page); 1537 unlock_page(page); 1538 return ret; 1539 } 1540 1541 static int ext4_writeback_writepage(struct page *page, 1542 struct writeback_control *wbc) 1543 { 1544 struct inode *inode = page->mapping->host; 1545 handle_t *handle = NULL; 1546 int ret = 0; 1547 int err; 1548 1549 if (ext4_journal_current_handle()) 1550 goto out_fail; 1551 1552 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1553 if (IS_ERR(handle)) { 1554 ret = PTR_ERR(handle); 1555 goto out_fail; 1556 } 1557 1558 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1559 ret = nobh_writepage(page, ext4_get_block, wbc); 1560 else 1561 ret = block_write_full_page(page, ext4_get_block, wbc); 1562 1563 err = ext4_journal_stop(handle); 1564 if (!ret) 1565 ret = err; 1566 return ret; 1567 1568 out_fail: 1569 redirty_page_for_writepage(wbc, page); 1570 unlock_page(page); 1571 return ret; 1572 } 1573 1574 static int ext4_journalled_writepage(struct page *page, 1575 struct writeback_control *wbc) 1576 { 1577 struct inode *inode = page->mapping->host; 1578 handle_t *handle = NULL; 1579 int ret = 0; 1580 int err; 1581 1582 if (ext4_journal_current_handle()) 1583 goto no_write; 1584 1585 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1586 if (IS_ERR(handle)) { 1587 ret = PTR_ERR(handle); 1588 goto no_write; 1589 } 1590 1591 if (!page_has_buffers(page) || PageChecked(page)) { 1592 /* 1593 * It's mmapped pagecache. Add buffers and journal it. There 1594 * doesn't seem much point in redirtying the page here. 1595 */ 1596 ClearPageChecked(page); 1597 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 1598 ext4_get_block); 1599 if (ret != 0) { 1600 ext4_journal_stop(handle); 1601 goto out_unlock; 1602 } 1603 ret = walk_page_buffers(handle, page_buffers(page), 0, 1604 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1605 1606 err = walk_page_buffers(handle, page_buffers(page), 0, 1607 PAGE_CACHE_SIZE, NULL, write_end_fn); 1608 if (ret == 0) 1609 ret = err; 1610 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1611 unlock_page(page); 1612 } else { 1613 /* 1614 * It may be a page full of checkpoint-mode buffers. We don't 1615 * really know unless we go poke around in the buffer_heads. 1616 * But block_write_full_page will do the right thing. 1617 */ 1618 ret = block_write_full_page(page, ext4_get_block, wbc); 1619 } 1620 err = ext4_journal_stop(handle); 1621 if (!ret) 1622 ret = err; 1623 out: 1624 return ret; 1625 1626 no_write: 1627 redirty_page_for_writepage(wbc, page); 1628 out_unlock: 1629 unlock_page(page); 1630 goto out; 1631 } 1632 1633 static int ext4_readpage(struct file *file, struct page *page) 1634 { 1635 return mpage_readpage(page, ext4_get_block); 1636 } 1637 1638 static int 1639 ext4_readpages(struct file *file, struct address_space *mapping, 1640 struct list_head *pages, unsigned nr_pages) 1641 { 1642 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 1643 } 1644 1645 static void ext4_invalidatepage(struct page *page, unsigned long offset) 1646 { 1647 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1648 1649 /* 1650 * If it's a full truncate we just forget about the pending dirtying 1651 */ 1652 if (offset == 0) 1653 ClearPageChecked(page); 1654 1655 jbd2_journal_invalidatepage(journal, page, offset); 1656 } 1657 1658 static int ext4_releasepage(struct page *page, gfp_t wait) 1659 { 1660 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1661 1662 WARN_ON(PageChecked(page)); 1663 if (!page_has_buffers(page)) 1664 return 0; 1665 return jbd2_journal_try_to_free_buffers(journal, page, wait); 1666 } 1667 1668 /* 1669 * If the O_DIRECT write will extend the file then add this inode to the 1670 * orphan list. So recovery will truncate it back to the original size 1671 * if the machine crashes during the write. 1672 * 1673 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1674 * crashes then stale disk data _may_ be exposed inside the file. 1675 */ 1676 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 1677 const struct iovec *iov, loff_t offset, 1678 unsigned long nr_segs) 1679 { 1680 struct file *file = iocb->ki_filp; 1681 struct inode *inode = file->f_mapping->host; 1682 struct ext4_inode_info *ei = EXT4_I(inode); 1683 handle_t *handle = NULL; 1684 ssize_t ret; 1685 int orphan = 0; 1686 size_t count = iov_length(iov, nr_segs); 1687 1688 if (rw == WRITE) { 1689 loff_t final_size = offset + count; 1690 1691 handle = ext4_journal_start(inode, DIO_CREDITS); 1692 if (IS_ERR(handle)) { 1693 ret = PTR_ERR(handle); 1694 goto out; 1695 } 1696 if (final_size > inode->i_size) { 1697 ret = ext4_orphan_add(handle, inode); 1698 if (ret) 1699 goto out_stop; 1700 orphan = 1; 1701 ei->i_disksize = inode->i_size; 1702 } 1703 } 1704 1705 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1706 offset, nr_segs, 1707 ext4_get_block, NULL); 1708 1709 /* 1710 * Reacquire the handle: ext4_get_block() can restart the transaction 1711 */ 1712 handle = ext4_journal_current_handle(); 1713 1714 out_stop: 1715 if (handle) { 1716 int err; 1717 1718 if (orphan && inode->i_nlink) 1719 ext4_orphan_del(handle, inode); 1720 if (orphan && ret > 0) { 1721 loff_t end = offset + ret; 1722 if (end > inode->i_size) { 1723 ei->i_disksize = end; 1724 i_size_write(inode, end); 1725 /* 1726 * We're going to return a positive `ret' 1727 * here due to non-zero-length I/O, so there's 1728 * no way of reporting error returns from 1729 * ext4_mark_inode_dirty() to userspace. So 1730 * ignore it. 1731 */ 1732 ext4_mark_inode_dirty(handle, inode); 1733 } 1734 } 1735 err = ext4_journal_stop(handle); 1736 if (ret == 0) 1737 ret = err; 1738 } 1739 out: 1740 return ret; 1741 } 1742 1743 /* 1744 * Pages can be marked dirty completely asynchronously from ext4's journalling 1745 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1746 * much here because ->set_page_dirty is called under VFS locks. The page is 1747 * not necessarily locked. 1748 * 1749 * We cannot just dirty the page and leave attached buffers clean, because the 1750 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1751 * or jbddirty because all the journalling code will explode. 1752 * 1753 * So what we do is to mark the page "pending dirty" and next time writepage 1754 * is called, propagate that into the buffers appropriately. 1755 */ 1756 static int ext4_journalled_set_page_dirty(struct page *page) 1757 { 1758 SetPageChecked(page); 1759 return __set_page_dirty_nobuffers(page); 1760 } 1761 1762 static const struct address_space_operations ext4_ordered_aops = { 1763 .readpage = ext4_readpage, 1764 .readpages = ext4_readpages, 1765 .writepage = ext4_ordered_writepage, 1766 .sync_page = block_sync_page, 1767 .write_begin = ext4_write_begin, 1768 .write_end = ext4_ordered_write_end, 1769 .bmap = ext4_bmap, 1770 .invalidatepage = ext4_invalidatepage, 1771 .releasepage = ext4_releasepage, 1772 .direct_IO = ext4_direct_IO, 1773 .migratepage = buffer_migrate_page, 1774 }; 1775 1776 static const struct address_space_operations ext4_writeback_aops = { 1777 .readpage = ext4_readpage, 1778 .readpages = ext4_readpages, 1779 .writepage = ext4_writeback_writepage, 1780 .sync_page = block_sync_page, 1781 .write_begin = ext4_write_begin, 1782 .write_end = ext4_writeback_write_end, 1783 .bmap = ext4_bmap, 1784 .invalidatepage = ext4_invalidatepage, 1785 .releasepage = ext4_releasepage, 1786 .direct_IO = ext4_direct_IO, 1787 .migratepage = buffer_migrate_page, 1788 }; 1789 1790 static const struct address_space_operations ext4_journalled_aops = { 1791 .readpage = ext4_readpage, 1792 .readpages = ext4_readpages, 1793 .writepage = ext4_journalled_writepage, 1794 .sync_page = block_sync_page, 1795 .write_begin = ext4_write_begin, 1796 .write_end = ext4_journalled_write_end, 1797 .set_page_dirty = ext4_journalled_set_page_dirty, 1798 .bmap = ext4_bmap, 1799 .invalidatepage = ext4_invalidatepage, 1800 .releasepage = ext4_releasepage, 1801 }; 1802 1803 void ext4_set_aops(struct inode *inode) 1804 { 1805 if (ext4_should_order_data(inode)) 1806 inode->i_mapping->a_ops = &ext4_ordered_aops; 1807 else if (ext4_should_writeback_data(inode)) 1808 inode->i_mapping->a_ops = &ext4_writeback_aops; 1809 else 1810 inode->i_mapping->a_ops = &ext4_journalled_aops; 1811 } 1812 1813 /* 1814 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 1815 * up to the end of the block which corresponds to `from'. 1816 * This required during truncate. We need to physically zero the tail end 1817 * of that block so it doesn't yield old data if the file is later grown. 1818 */ 1819 int ext4_block_truncate_page(handle_t *handle, struct page *page, 1820 struct address_space *mapping, loff_t from) 1821 { 1822 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1823 unsigned offset = from & (PAGE_CACHE_SIZE-1); 1824 unsigned blocksize, length, pos; 1825 ext4_lblk_t iblock; 1826 struct inode *inode = mapping->host; 1827 struct buffer_head *bh; 1828 int err = 0; 1829 1830 blocksize = inode->i_sb->s_blocksize; 1831 length = blocksize - (offset & (blocksize - 1)); 1832 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1833 1834 /* 1835 * For "nobh" option, we can only work if we don't need to 1836 * read-in the page - otherwise we create buffers to do the IO. 1837 */ 1838 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 1839 ext4_should_writeback_data(inode) && PageUptodate(page)) { 1840 zero_user(page, offset, length); 1841 set_page_dirty(page); 1842 goto unlock; 1843 } 1844 1845 if (!page_has_buffers(page)) 1846 create_empty_buffers(page, blocksize, 0); 1847 1848 /* Find the buffer that contains "offset" */ 1849 bh = page_buffers(page); 1850 pos = blocksize; 1851 while (offset >= pos) { 1852 bh = bh->b_this_page; 1853 iblock++; 1854 pos += blocksize; 1855 } 1856 1857 err = 0; 1858 if (buffer_freed(bh)) { 1859 BUFFER_TRACE(bh, "freed: skip"); 1860 goto unlock; 1861 } 1862 1863 if (!buffer_mapped(bh)) { 1864 BUFFER_TRACE(bh, "unmapped"); 1865 ext4_get_block(inode, iblock, bh, 0); 1866 /* unmapped? It's a hole - nothing to do */ 1867 if (!buffer_mapped(bh)) { 1868 BUFFER_TRACE(bh, "still unmapped"); 1869 goto unlock; 1870 } 1871 } 1872 1873 /* Ok, it's mapped. Make sure it's up-to-date */ 1874 if (PageUptodate(page)) 1875 set_buffer_uptodate(bh); 1876 1877 if (!buffer_uptodate(bh)) { 1878 err = -EIO; 1879 ll_rw_block(READ, 1, &bh); 1880 wait_on_buffer(bh); 1881 /* Uhhuh. Read error. Complain and punt. */ 1882 if (!buffer_uptodate(bh)) 1883 goto unlock; 1884 } 1885 1886 if (ext4_should_journal_data(inode)) { 1887 BUFFER_TRACE(bh, "get write access"); 1888 err = ext4_journal_get_write_access(handle, bh); 1889 if (err) 1890 goto unlock; 1891 } 1892 1893 zero_user(page, offset, length); 1894 1895 BUFFER_TRACE(bh, "zeroed end of block"); 1896 1897 err = 0; 1898 if (ext4_should_journal_data(inode)) { 1899 err = ext4_journal_dirty_metadata(handle, bh); 1900 } else { 1901 if (ext4_should_order_data(inode)) 1902 err = ext4_journal_dirty_data(handle, bh); 1903 mark_buffer_dirty(bh); 1904 } 1905 1906 unlock: 1907 unlock_page(page); 1908 page_cache_release(page); 1909 return err; 1910 } 1911 1912 /* 1913 * Probably it should be a library function... search for first non-zero word 1914 * or memcmp with zero_page, whatever is better for particular architecture. 1915 * Linus? 1916 */ 1917 static inline int all_zeroes(__le32 *p, __le32 *q) 1918 { 1919 while (p < q) 1920 if (*p++) 1921 return 0; 1922 return 1; 1923 } 1924 1925 /** 1926 * ext4_find_shared - find the indirect blocks for partial truncation. 1927 * @inode: inode in question 1928 * @depth: depth of the affected branch 1929 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 1930 * @chain: place to store the pointers to partial indirect blocks 1931 * @top: place to the (detached) top of branch 1932 * 1933 * This is a helper function used by ext4_truncate(). 1934 * 1935 * When we do truncate() we may have to clean the ends of several 1936 * indirect blocks but leave the blocks themselves alive. Block is 1937 * partially truncated if some data below the new i_size is refered 1938 * from it (and it is on the path to the first completely truncated 1939 * data block, indeed). We have to free the top of that path along 1940 * with everything to the right of the path. Since no allocation 1941 * past the truncation point is possible until ext4_truncate() 1942 * finishes, we may safely do the latter, but top of branch may 1943 * require special attention - pageout below the truncation point 1944 * might try to populate it. 1945 * 1946 * We atomically detach the top of branch from the tree, store the 1947 * block number of its root in *@top, pointers to buffer_heads of 1948 * partially truncated blocks - in @chain[].bh and pointers to 1949 * their last elements that should not be removed - in 1950 * @chain[].p. Return value is the pointer to last filled element 1951 * of @chain. 1952 * 1953 * The work left to caller to do the actual freeing of subtrees: 1954 * a) free the subtree starting from *@top 1955 * b) free the subtrees whose roots are stored in 1956 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1957 * c) free the subtrees growing from the inode past the @chain[0]. 1958 * (no partially truncated stuff there). */ 1959 1960 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1961 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 1962 { 1963 Indirect *partial, *p; 1964 int k, err; 1965 1966 *top = 0; 1967 /* Make k index the deepest non-null offest + 1 */ 1968 for (k = depth; k > 1 && !offsets[k-1]; k--) 1969 ; 1970 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1971 /* Writer: pointers */ 1972 if (!partial) 1973 partial = chain + k-1; 1974 /* 1975 * If the branch acquired continuation since we've looked at it - 1976 * fine, it should all survive and (new) top doesn't belong to us. 1977 */ 1978 if (!partial->key && *partial->p) 1979 /* Writer: end */ 1980 goto no_top; 1981 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 1982 ; 1983 /* 1984 * OK, we've found the last block that must survive. The rest of our 1985 * branch should be detached before unlocking. However, if that rest 1986 * of branch is all ours and does not grow immediately from the inode 1987 * it's easier to cheat and just decrement partial->p. 1988 */ 1989 if (p == chain + k - 1 && p > chain) { 1990 p->p--; 1991 } else { 1992 *top = *p->p; 1993 /* Nope, don't do this in ext4. Must leave the tree intact */ 1994 #if 0 1995 *p->p = 0; 1996 #endif 1997 } 1998 /* Writer: end */ 1999 2000 while(partial > p) { 2001 brelse(partial->bh); 2002 partial--; 2003 } 2004 no_top: 2005 return partial; 2006 } 2007 2008 /* 2009 * Zero a number of block pointers in either an inode or an indirect block. 2010 * If we restart the transaction we must again get write access to the 2011 * indirect block for further modification. 2012 * 2013 * We release `count' blocks on disk, but (last - first) may be greater 2014 * than `count' because there can be holes in there. 2015 */ 2016 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 2017 struct buffer_head *bh, ext4_fsblk_t block_to_free, 2018 unsigned long count, __le32 *first, __le32 *last) 2019 { 2020 __le32 *p; 2021 if (try_to_extend_transaction(handle, inode)) { 2022 if (bh) { 2023 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2024 ext4_journal_dirty_metadata(handle, bh); 2025 } 2026 ext4_mark_inode_dirty(handle, inode); 2027 ext4_journal_test_restart(handle, inode); 2028 if (bh) { 2029 BUFFER_TRACE(bh, "retaking write access"); 2030 ext4_journal_get_write_access(handle, bh); 2031 } 2032 } 2033 2034 /* 2035 * Any buffers which are on the journal will be in memory. We find 2036 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 2037 * on them. We've already detached each block from the file, so 2038 * bforget() in jbd2_journal_forget() should be safe. 2039 * 2040 * AKPM: turn on bforget in jbd2_journal_forget()!!! 2041 */ 2042 for (p = first; p < last; p++) { 2043 u32 nr = le32_to_cpu(*p); 2044 if (nr) { 2045 struct buffer_head *tbh; 2046 2047 *p = 0; 2048 tbh = sb_find_get_block(inode->i_sb, nr); 2049 ext4_forget(handle, 0, inode, tbh, nr); 2050 } 2051 } 2052 2053 ext4_free_blocks(handle, inode, block_to_free, count, 0); 2054 } 2055 2056 /** 2057 * ext4_free_data - free a list of data blocks 2058 * @handle: handle for this transaction 2059 * @inode: inode we are dealing with 2060 * @this_bh: indirect buffer_head which contains *@first and *@last 2061 * @first: array of block numbers 2062 * @last: points immediately past the end of array 2063 * 2064 * We are freeing all blocks refered from that array (numbers are stored as 2065 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2066 * 2067 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2068 * blocks are contiguous then releasing them at one time will only affect one 2069 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2070 * actually use a lot of journal space. 2071 * 2072 * @this_bh will be %NULL if @first and @last point into the inode's direct 2073 * block pointers. 2074 */ 2075 static void ext4_free_data(handle_t *handle, struct inode *inode, 2076 struct buffer_head *this_bh, 2077 __le32 *first, __le32 *last) 2078 { 2079 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2080 unsigned long count = 0; /* Number of blocks in the run */ 2081 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2082 corresponding to 2083 block_to_free */ 2084 ext4_fsblk_t nr; /* Current block # */ 2085 __le32 *p; /* Pointer into inode/ind 2086 for current block */ 2087 int err; 2088 2089 if (this_bh) { /* For indirect block */ 2090 BUFFER_TRACE(this_bh, "get_write_access"); 2091 err = ext4_journal_get_write_access(handle, this_bh); 2092 /* Important: if we can't update the indirect pointers 2093 * to the blocks, we can't free them. */ 2094 if (err) 2095 return; 2096 } 2097 2098 for (p = first; p < last; p++) { 2099 nr = le32_to_cpu(*p); 2100 if (nr) { 2101 /* accumulate blocks to free if they're contiguous */ 2102 if (count == 0) { 2103 block_to_free = nr; 2104 block_to_free_p = p; 2105 count = 1; 2106 } else if (nr == block_to_free + count) { 2107 count++; 2108 } else { 2109 ext4_clear_blocks(handle, inode, this_bh, 2110 block_to_free, 2111 count, block_to_free_p, p); 2112 block_to_free = nr; 2113 block_to_free_p = p; 2114 count = 1; 2115 } 2116 } 2117 } 2118 2119 if (count > 0) 2120 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 2121 count, block_to_free_p, p); 2122 2123 if (this_bh) { 2124 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 2125 ext4_journal_dirty_metadata(handle, this_bh); 2126 } 2127 } 2128 2129 /** 2130 * ext4_free_branches - free an array of branches 2131 * @handle: JBD handle for this transaction 2132 * @inode: inode we are dealing with 2133 * @parent_bh: the buffer_head which contains *@first and *@last 2134 * @first: array of block numbers 2135 * @last: pointer immediately past the end of array 2136 * @depth: depth of the branches to free 2137 * 2138 * We are freeing all blocks refered from these branches (numbers are 2139 * stored as little-endian 32-bit) and updating @inode->i_blocks 2140 * appropriately. 2141 */ 2142 static void ext4_free_branches(handle_t *handle, struct inode *inode, 2143 struct buffer_head *parent_bh, 2144 __le32 *first, __le32 *last, int depth) 2145 { 2146 ext4_fsblk_t nr; 2147 __le32 *p; 2148 2149 if (is_handle_aborted(handle)) 2150 return; 2151 2152 if (depth--) { 2153 struct buffer_head *bh; 2154 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2155 p = last; 2156 while (--p >= first) { 2157 nr = le32_to_cpu(*p); 2158 if (!nr) 2159 continue; /* A hole */ 2160 2161 /* Go read the buffer for the next level down */ 2162 bh = sb_bread(inode->i_sb, nr); 2163 2164 /* 2165 * A read failure? Report error and clear slot 2166 * (should be rare). 2167 */ 2168 if (!bh) { 2169 ext4_error(inode->i_sb, "ext4_free_branches", 2170 "Read failure, inode=%lu, block=%llu", 2171 inode->i_ino, nr); 2172 continue; 2173 } 2174 2175 /* This zaps the entire block. Bottom up. */ 2176 BUFFER_TRACE(bh, "free child branches"); 2177 ext4_free_branches(handle, inode, bh, 2178 (__le32*)bh->b_data, 2179 (__le32*)bh->b_data + addr_per_block, 2180 depth); 2181 2182 /* 2183 * We've probably journalled the indirect block several 2184 * times during the truncate. But it's no longer 2185 * needed and we now drop it from the transaction via 2186 * jbd2_journal_revoke(). 2187 * 2188 * That's easy if it's exclusively part of this 2189 * transaction. But if it's part of the committing 2190 * transaction then jbd2_journal_forget() will simply 2191 * brelse() it. That means that if the underlying 2192 * block is reallocated in ext4_get_block(), 2193 * unmap_underlying_metadata() will find this block 2194 * and will try to get rid of it. damn, damn. 2195 * 2196 * If this block has already been committed to the 2197 * journal, a revoke record will be written. And 2198 * revoke records must be emitted *before* clearing 2199 * this block's bit in the bitmaps. 2200 */ 2201 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 2202 2203 /* 2204 * Everything below this this pointer has been 2205 * released. Now let this top-of-subtree go. 2206 * 2207 * We want the freeing of this indirect block to be 2208 * atomic in the journal with the updating of the 2209 * bitmap block which owns it. So make some room in 2210 * the journal. 2211 * 2212 * We zero the parent pointer *after* freeing its 2213 * pointee in the bitmaps, so if extend_transaction() 2214 * for some reason fails to put the bitmap changes and 2215 * the release into the same transaction, recovery 2216 * will merely complain about releasing a free block, 2217 * rather than leaking blocks. 2218 */ 2219 if (is_handle_aborted(handle)) 2220 return; 2221 if (try_to_extend_transaction(handle, inode)) { 2222 ext4_mark_inode_dirty(handle, inode); 2223 ext4_journal_test_restart(handle, inode); 2224 } 2225 2226 ext4_free_blocks(handle, inode, nr, 1, 1); 2227 2228 if (parent_bh) { 2229 /* 2230 * The block which we have just freed is 2231 * pointed to by an indirect block: journal it 2232 */ 2233 BUFFER_TRACE(parent_bh, "get_write_access"); 2234 if (!ext4_journal_get_write_access(handle, 2235 parent_bh)){ 2236 *p = 0; 2237 BUFFER_TRACE(parent_bh, 2238 "call ext4_journal_dirty_metadata"); 2239 ext4_journal_dirty_metadata(handle, 2240 parent_bh); 2241 } 2242 } 2243 } 2244 } else { 2245 /* We have reached the bottom of the tree. */ 2246 BUFFER_TRACE(parent_bh, "free data blocks"); 2247 ext4_free_data(handle, inode, parent_bh, first, last); 2248 } 2249 } 2250 2251 /* 2252 * ext4_truncate() 2253 * 2254 * We block out ext4_get_block() block instantiations across the entire 2255 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 2256 * simultaneously on behalf of the same inode. 2257 * 2258 * As we work through the truncate and commmit bits of it to the journal there 2259 * is one core, guiding principle: the file's tree must always be consistent on 2260 * disk. We must be able to restart the truncate after a crash. 2261 * 2262 * The file's tree may be transiently inconsistent in memory (although it 2263 * probably isn't), but whenever we close off and commit a journal transaction, 2264 * the contents of (the filesystem + the journal) must be consistent and 2265 * restartable. It's pretty simple, really: bottom up, right to left (although 2266 * left-to-right works OK too). 2267 * 2268 * Note that at recovery time, journal replay occurs *before* the restart of 2269 * truncate against the orphan inode list. 2270 * 2271 * The committed inode has the new, desired i_size (which is the same as 2272 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 2273 * that this inode's truncate did not complete and it will again call 2274 * ext4_truncate() to have another go. So there will be instantiated blocks 2275 * to the right of the truncation point in a crashed ext4 filesystem. But 2276 * that's fine - as long as they are linked from the inode, the post-crash 2277 * ext4_truncate() run will find them and release them. 2278 */ 2279 void ext4_truncate(struct inode *inode) 2280 { 2281 handle_t *handle; 2282 struct ext4_inode_info *ei = EXT4_I(inode); 2283 __le32 *i_data = ei->i_data; 2284 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2285 struct address_space *mapping = inode->i_mapping; 2286 ext4_lblk_t offsets[4]; 2287 Indirect chain[4]; 2288 Indirect *partial; 2289 __le32 nr = 0; 2290 int n; 2291 ext4_lblk_t last_block; 2292 unsigned blocksize = inode->i_sb->s_blocksize; 2293 struct page *page; 2294 2295 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2296 S_ISLNK(inode->i_mode))) 2297 return; 2298 if (ext4_inode_is_fast_symlink(inode)) 2299 return; 2300 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2301 return; 2302 2303 /* 2304 * We have to lock the EOF page here, because lock_page() nests 2305 * outside jbd2_journal_start(). 2306 */ 2307 if ((inode->i_size & (blocksize - 1)) == 0) { 2308 /* Block boundary? Nothing to do */ 2309 page = NULL; 2310 } else { 2311 page = grab_cache_page(mapping, 2312 inode->i_size >> PAGE_CACHE_SHIFT); 2313 if (!page) 2314 return; 2315 } 2316 2317 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 2318 ext4_ext_truncate(inode, page); 2319 return; 2320 } 2321 2322 handle = start_transaction(inode); 2323 if (IS_ERR(handle)) { 2324 if (page) { 2325 clear_highpage(page); 2326 flush_dcache_page(page); 2327 unlock_page(page); 2328 page_cache_release(page); 2329 } 2330 return; /* AKPM: return what? */ 2331 } 2332 2333 last_block = (inode->i_size + blocksize-1) 2334 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 2335 2336 if (page) 2337 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2338 2339 n = ext4_block_to_path(inode, last_block, offsets, NULL); 2340 if (n == 0) 2341 goto out_stop; /* error */ 2342 2343 /* 2344 * OK. This truncate is going to happen. We add the inode to the 2345 * orphan list, so that if this truncate spans multiple transactions, 2346 * and we crash, we will resume the truncate when the filesystem 2347 * recovers. It also marks the inode dirty, to catch the new size. 2348 * 2349 * Implication: the file must always be in a sane, consistent 2350 * truncatable state while each transaction commits. 2351 */ 2352 if (ext4_orphan_add(handle, inode)) 2353 goto out_stop; 2354 2355 /* 2356 * The orphan list entry will now protect us from any crash which 2357 * occurs before the truncate completes, so it is now safe to propagate 2358 * the new, shorter inode size (held for now in i_size) into the 2359 * on-disk inode. We do this via i_disksize, which is the value which 2360 * ext4 *really* writes onto the disk inode. 2361 */ 2362 ei->i_disksize = inode->i_size; 2363 2364 /* 2365 * From here we block out all ext4_get_block() callers who want to 2366 * modify the block allocation tree. 2367 */ 2368 down_write(&ei->i_data_sem); 2369 2370 if (n == 1) { /* direct blocks */ 2371 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 2372 i_data + EXT4_NDIR_BLOCKS); 2373 goto do_indirects; 2374 } 2375 2376 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 2377 /* Kill the top of shared branch (not detached) */ 2378 if (nr) { 2379 if (partial == chain) { 2380 /* Shared branch grows from the inode */ 2381 ext4_free_branches(handle, inode, NULL, 2382 &nr, &nr+1, (chain+n-1) - partial); 2383 *partial->p = 0; 2384 /* 2385 * We mark the inode dirty prior to restart, 2386 * and prior to stop. No need for it here. 2387 */ 2388 } else { 2389 /* Shared branch grows from an indirect block */ 2390 BUFFER_TRACE(partial->bh, "get_write_access"); 2391 ext4_free_branches(handle, inode, partial->bh, 2392 partial->p, 2393 partial->p+1, (chain+n-1) - partial); 2394 } 2395 } 2396 /* Clear the ends of indirect blocks on the shared branch */ 2397 while (partial > chain) { 2398 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 2399 (__le32*)partial->bh->b_data+addr_per_block, 2400 (chain+n-1) - partial); 2401 BUFFER_TRACE(partial->bh, "call brelse"); 2402 brelse (partial->bh); 2403 partial--; 2404 } 2405 do_indirects: 2406 /* Kill the remaining (whole) subtrees */ 2407 switch (offsets[0]) { 2408 default: 2409 nr = i_data[EXT4_IND_BLOCK]; 2410 if (nr) { 2411 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2412 i_data[EXT4_IND_BLOCK] = 0; 2413 } 2414 case EXT4_IND_BLOCK: 2415 nr = i_data[EXT4_DIND_BLOCK]; 2416 if (nr) { 2417 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2418 i_data[EXT4_DIND_BLOCK] = 0; 2419 } 2420 case EXT4_DIND_BLOCK: 2421 nr = i_data[EXT4_TIND_BLOCK]; 2422 if (nr) { 2423 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2424 i_data[EXT4_TIND_BLOCK] = 0; 2425 } 2426 case EXT4_TIND_BLOCK: 2427 ; 2428 } 2429 2430 ext4_discard_reservation(inode); 2431 2432 up_write(&ei->i_data_sem); 2433 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 2434 ext4_mark_inode_dirty(handle, inode); 2435 2436 /* 2437 * In a multi-transaction truncate, we only make the final transaction 2438 * synchronous 2439 */ 2440 if (IS_SYNC(inode)) 2441 handle->h_sync = 1; 2442 out_stop: 2443 /* 2444 * If this was a simple ftruncate(), and the file will remain alive 2445 * then we need to clear up the orphan record which we created above. 2446 * However, if this was a real unlink then we were called by 2447 * ext4_delete_inode(), and we allow that function to clean up the 2448 * orphan info for us. 2449 */ 2450 if (inode->i_nlink) 2451 ext4_orphan_del(handle, inode); 2452 2453 ext4_journal_stop(handle); 2454 } 2455 2456 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 2457 unsigned long ino, struct ext4_iloc *iloc) 2458 { 2459 unsigned long desc, group_desc; 2460 ext4_group_t block_group; 2461 unsigned long offset; 2462 ext4_fsblk_t block; 2463 struct buffer_head *bh; 2464 struct ext4_group_desc * gdp; 2465 2466 if (!ext4_valid_inum(sb, ino)) { 2467 /* 2468 * This error is already checked for in namei.c unless we are 2469 * looking at an NFS filehandle, in which case no error 2470 * report is needed 2471 */ 2472 return 0; 2473 } 2474 2475 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 2476 if (block_group >= EXT4_SB(sb)->s_groups_count) { 2477 ext4_error(sb,"ext4_get_inode_block","group >= groups count"); 2478 return 0; 2479 } 2480 smp_rmb(); 2481 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2482 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2483 bh = EXT4_SB(sb)->s_group_desc[group_desc]; 2484 if (!bh) { 2485 ext4_error (sb, "ext4_get_inode_block", 2486 "Descriptor not loaded"); 2487 return 0; 2488 } 2489 2490 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data + 2491 desc * EXT4_DESC_SIZE(sb)); 2492 /* 2493 * Figure out the offset within the block group inode table 2494 */ 2495 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 2496 EXT4_INODE_SIZE(sb); 2497 block = ext4_inode_table(sb, gdp) + 2498 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 2499 2500 iloc->block_group = block_group; 2501 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 2502 return block; 2503 } 2504 2505 /* 2506 * ext4_get_inode_loc returns with an extra refcount against the inode's 2507 * underlying buffer_head on success. If 'in_mem' is true, we have all 2508 * data in memory that is needed to recreate the on-disk version of this 2509 * inode. 2510 */ 2511 static int __ext4_get_inode_loc(struct inode *inode, 2512 struct ext4_iloc *iloc, int in_mem) 2513 { 2514 ext4_fsblk_t block; 2515 struct buffer_head *bh; 2516 2517 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2518 if (!block) 2519 return -EIO; 2520 2521 bh = sb_getblk(inode->i_sb, block); 2522 if (!bh) { 2523 ext4_error (inode->i_sb, "ext4_get_inode_loc", 2524 "unable to read inode block - " 2525 "inode=%lu, block=%llu", 2526 inode->i_ino, block); 2527 return -EIO; 2528 } 2529 if (!buffer_uptodate(bh)) { 2530 lock_buffer(bh); 2531 if (buffer_uptodate(bh)) { 2532 /* someone brought it uptodate while we waited */ 2533 unlock_buffer(bh); 2534 goto has_buffer; 2535 } 2536 2537 /* 2538 * If we have all information of the inode in memory and this 2539 * is the only valid inode in the block, we need not read the 2540 * block. 2541 */ 2542 if (in_mem) { 2543 struct buffer_head *bitmap_bh; 2544 struct ext4_group_desc *desc; 2545 int inodes_per_buffer; 2546 int inode_offset, i; 2547 ext4_group_t block_group; 2548 int start; 2549 2550 block_group = (inode->i_ino - 1) / 2551 EXT4_INODES_PER_GROUP(inode->i_sb); 2552 inodes_per_buffer = bh->b_size / 2553 EXT4_INODE_SIZE(inode->i_sb); 2554 inode_offset = ((inode->i_ino - 1) % 2555 EXT4_INODES_PER_GROUP(inode->i_sb)); 2556 start = inode_offset & ~(inodes_per_buffer - 1); 2557 2558 /* Is the inode bitmap in cache? */ 2559 desc = ext4_get_group_desc(inode->i_sb, 2560 block_group, NULL); 2561 if (!desc) 2562 goto make_io; 2563 2564 bitmap_bh = sb_getblk(inode->i_sb, 2565 ext4_inode_bitmap(inode->i_sb, desc)); 2566 if (!bitmap_bh) 2567 goto make_io; 2568 2569 /* 2570 * If the inode bitmap isn't in cache then the 2571 * optimisation may end up performing two reads instead 2572 * of one, so skip it. 2573 */ 2574 if (!buffer_uptodate(bitmap_bh)) { 2575 brelse(bitmap_bh); 2576 goto make_io; 2577 } 2578 for (i = start; i < start + inodes_per_buffer; i++) { 2579 if (i == inode_offset) 2580 continue; 2581 if (ext4_test_bit(i, bitmap_bh->b_data)) 2582 break; 2583 } 2584 brelse(bitmap_bh); 2585 if (i == start + inodes_per_buffer) { 2586 /* all other inodes are free, so skip I/O */ 2587 memset(bh->b_data, 0, bh->b_size); 2588 set_buffer_uptodate(bh); 2589 unlock_buffer(bh); 2590 goto has_buffer; 2591 } 2592 } 2593 2594 make_io: 2595 /* 2596 * There are other valid inodes in the buffer, this inode 2597 * has in-inode xattrs, or we don't have this inode in memory. 2598 * Read the block from disk. 2599 */ 2600 get_bh(bh); 2601 bh->b_end_io = end_buffer_read_sync; 2602 submit_bh(READ_META, bh); 2603 wait_on_buffer(bh); 2604 if (!buffer_uptodate(bh)) { 2605 ext4_error(inode->i_sb, "ext4_get_inode_loc", 2606 "unable to read inode block - " 2607 "inode=%lu, block=%llu", 2608 inode->i_ino, block); 2609 brelse(bh); 2610 return -EIO; 2611 } 2612 } 2613 has_buffer: 2614 iloc->bh = bh; 2615 return 0; 2616 } 2617 2618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 2619 { 2620 /* We have all inode data except xattrs in memory here. */ 2621 return __ext4_get_inode_loc(inode, iloc, 2622 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 2623 } 2624 2625 void ext4_set_inode_flags(struct inode *inode) 2626 { 2627 unsigned int flags = EXT4_I(inode)->i_flags; 2628 2629 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2630 if (flags & EXT4_SYNC_FL) 2631 inode->i_flags |= S_SYNC; 2632 if (flags & EXT4_APPEND_FL) 2633 inode->i_flags |= S_APPEND; 2634 if (flags & EXT4_IMMUTABLE_FL) 2635 inode->i_flags |= S_IMMUTABLE; 2636 if (flags & EXT4_NOATIME_FL) 2637 inode->i_flags |= S_NOATIME; 2638 if (flags & EXT4_DIRSYNC_FL) 2639 inode->i_flags |= S_DIRSYNC; 2640 } 2641 2642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 2643 void ext4_get_inode_flags(struct ext4_inode_info *ei) 2644 { 2645 unsigned int flags = ei->vfs_inode.i_flags; 2646 2647 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 2648 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 2649 if (flags & S_SYNC) 2650 ei->i_flags |= EXT4_SYNC_FL; 2651 if (flags & S_APPEND) 2652 ei->i_flags |= EXT4_APPEND_FL; 2653 if (flags & S_IMMUTABLE) 2654 ei->i_flags |= EXT4_IMMUTABLE_FL; 2655 if (flags & S_NOATIME) 2656 ei->i_flags |= EXT4_NOATIME_FL; 2657 if (flags & S_DIRSYNC) 2658 ei->i_flags |= EXT4_DIRSYNC_FL; 2659 } 2660 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 2661 struct ext4_inode_info *ei) 2662 { 2663 blkcnt_t i_blocks ; 2664 struct inode *inode = &(ei->vfs_inode); 2665 struct super_block *sb = inode->i_sb; 2666 2667 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2668 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2669 /* we are using combined 48 bit field */ 2670 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 2671 le32_to_cpu(raw_inode->i_blocks_lo); 2672 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 2673 /* i_blocks represent file system block size */ 2674 return i_blocks << (inode->i_blkbits - 9); 2675 } else { 2676 return i_blocks; 2677 } 2678 } else { 2679 return le32_to_cpu(raw_inode->i_blocks_lo); 2680 } 2681 } 2682 2683 void ext4_read_inode(struct inode * inode) 2684 { 2685 struct ext4_iloc iloc; 2686 struct ext4_inode *raw_inode; 2687 struct ext4_inode_info *ei = EXT4_I(inode); 2688 struct buffer_head *bh; 2689 int block; 2690 2691 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 2692 ei->i_acl = EXT4_ACL_NOT_CACHED; 2693 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 2694 #endif 2695 ei->i_block_alloc_info = NULL; 2696 2697 if (__ext4_get_inode_loc(inode, &iloc, 0)) 2698 goto bad_inode; 2699 bh = iloc.bh; 2700 raw_inode = ext4_raw_inode(&iloc); 2701 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2702 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2703 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2704 if(!(test_opt (inode->i_sb, NO_UID32))) { 2705 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2706 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2707 } 2708 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 2709 2710 ei->i_state = 0; 2711 ei->i_dir_start_lookup = 0; 2712 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2713 /* We now have enough fields to check if the inode was active or not. 2714 * This is needed because nfsd might try to access dead inodes 2715 * the test is that same one that e2fsck uses 2716 * NeilBrown 1999oct15 2717 */ 2718 if (inode->i_nlink == 0) { 2719 if (inode->i_mode == 0 || 2720 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 2721 /* this inode is deleted */ 2722 brelse (bh); 2723 goto bad_inode; 2724 } 2725 /* The only unlinked inodes we let through here have 2726 * valid i_mode and are being read by the orphan 2727 * recovery code: that's fine, we're about to complete 2728 * the process of deleting those. */ 2729 } 2730 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2731 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 2732 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 2733 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2734 cpu_to_le32(EXT4_OS_HURD)) { 2735 ei->i_file_acl |= 2736 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 2737 } 2738 inode->i_size = ext4_isize(raw_inode); 2739 ei->i_disksize = inode->i_size; 2740 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2741 ei->i_block_group = iloc.block_group; 2742 /* 2743 * NOTE! The in-memory inode i_data array is in little-endian order 2744 * even on big-endian machines: we do NOT byteswap the block numbers! 2745 */ 2746 for (block = 0; block < EXT4_N_BLOCKS; block++) 2747 ei->i_data[block] = raw_inode->i_block[block]; 2748 INIT_LIST_HEAD(&ei->i_orphan); 2749 2750 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 && 2751 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2752 /* 2753 * When mke2fs creates big inodes it does not zero out 2754 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE, 2755 * so ignore those first few inodes. 2756 */ 2757 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2758 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2759 EXT4_INODE_SIZE(inode->i_sb)) { 2760 brelse (bh); 2761 goto bad_inode; 2762 } 2763 if (ei->i_extra_isize == 0) { 2764 /* The extra space is currently unused. Use it. */ 2765 ei->i_extra_isize = sizeof(struct ext4_inode) - 2766 EXT4_GOOD_OLD_INODE_SIZE; 2767 } else { 2768 __le32 *magic = (void *)raw_inode + 2769 EXT4_GOOD_OLD_INODE_SIZE + 2770 ei->i_extra_isize; 2771 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 2772 ei->i_state |= EXT4_STATE_XATTR; 2773 } 2774 } else 2775 ei->i_extra_isize = 0; 2776 2777 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 2778 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 2779 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 2780 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 2781 2782 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 2783 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2784 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 2785 inode->i_version |= 2786 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 2787 } 2788 2789 if (S_ISREG(inode->i_mode)) { 2790 inode->i_op = &ext4_file_inode_operations; 2791 inode->i_fop = &ext4_file_operations; 2792 ext4_set_aops(inode); 2793 } else if (S_ISDIR(inode->i_mode)) { 2794 inode->i_op = &ext4_dir_inode_operations; 2795 inode->i_fop = &ext4_dir_operations; 2796 } else if (S_ISLNK(inode->i_mode)) { 2797 if (ext4_inode_is_fast_symlink(inode)) 2798 inode->i_op = &ext4_fast_symlink_inode_operations; 2799 else { 2800 inode->i_op = &ext4_symlink_inode_operations; 2801 ext4_set_aops(inode); 2802 } 2803 } else { 2804 inode->i_op = &ext4_special_inode_operations; 2805 if (raw_inode->i_block[0]) 2806 init_special_inode(inode, inode->i_mode, 2807 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 2808 else 2809 init_special_inode(inode, inode->i_mode, 2810 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 2811 } 2812 brelse (iloc.bh); 2813 ext4_set_inode_flags(inode); 2814 return; 2815 2816 bad_inode: 2817 make_bad_inode(inode); 2818 return; 2819 } 2820 2821 static int ext4_inode_blocks_set(handle_t *handle, 2822 struct ext4_inode *raw_inode, 2823 struct ext4_inode_info *ei) 2824 { 2825 struct inode *inode = &(ei->vfs_inode); 2826 u64 i_blocks = inode->i_blocks; 2827 struct super_block *sb = inode->i_sb; 2828 int err = 0; 2829 2830 if (i_blocks <= ~0U) { 2831 /* 2832 * i_blocks can be represnted in a 32 bit variable 2833 * as multiple of 512 bytes 2834 */ 2835 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2836 raw_inode->i_blocks_high = 0; 2837 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2838 } else if (i_blocks <= 0xffffffffffffULL) { 2839 /* 2840 * i_blocks can be represented in a 48 bit variable 2841 * as multiple of 512 bytes 2842 */ 2843 err = ext4_update_rocompat_feature(handle, sb, 2844 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2845 if (err) 2846 goto err_out; 2847 /* i_block is stored in the split 48 bit fields */ 2848 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2849 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2850 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2851 } else { 2852 /* 2853 * i_blocks should be represented in a 48 bit variable 2854 * as multiple of file system block size 2855 */ 2856 err = ext4_update_rocompat_feature(handle, sb, 2857 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2858 if (err) 2859 goto err_out; 2860 ei->i_flags |= EXT4_HUGE_FILE_FL; 2861 /* i_block is stored in file system block size */ 2862 i_blocks = i_blocks >> (inode->i_blkbits - 9); 2863 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2864 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2865 } 2866 err_out: 2867 return err; 2868 } 2869 2870 /* 2871 * Post the struct inode info into an on-disk inode location in the 2872 * buffer-cache. This gobbles the caller's reference to the 2873 * buffer_head in the inode location struct. 2874 * 2875 * The caller must have write access to iloc->bh. 2876 */ 2877 static int ext4_do_update_inode(handle_t *handle, 2878 struct inode *inode, 2879 struct ext4_iloc *iloc) 2880 { 2881 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 2882 struct ext4_inode_info *ei = EXT4_I(inode); 2883 struct buffer_head *bh = iloc->bh; 2884 int err = 0, rc, block; 2885 2886 /* For fields not not tracking in the in-memory inode, 2887 * initialise them to zero for new inodes. */ 2888 if (ei->i_state & EXT4_STATE_NEW) 2889 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 2890 2891 ext4_get_inode_flags(ei); 2892 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 2893 if(!(test_opt(inode->i_sb, NO_UID32))) { 2894 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 2895 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 2896 /* 2897 * Fix up interoperability with old kernels. Otherwise, old inodes get 2898 * re-used with the upper 16 bits of the uid/gid intact 2899 */ 2900 if(!ei->i_dtime) { 2901 raw_inode->i_uid_high = 2902 cpu_to_le16(high_16_bits(inode->i_uid)); 2903 raw_inode->i_gid_high = 2904 cpu_to_le16(high_16_bits(inode->i_gid)); 2905 } else { 2906 raw_inode->i_uid_high = 0; 2907 raw_inode->i_gid_high = 0; 2908 } 2909 } else { 2910 raw_inode->i_uid_low = 2911 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 2912 raw_inode->i_gid_low = 2913 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 2914 raw_inode->i_uid_high = 0; 2915 raw_inode->i_gid_high = 0; 2916 } 2917 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 2918 2919 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 2920 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 2921 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 2922 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 2923 2924 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 2925 goto out_brelse; 2926 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 2927 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 2928 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2929 cpu_to_le32(EXT4_OS_HURD)) 2930 raw_inode->i_file_acl_high = 2931 cpu_to_le16(ei->i_file_acl >> 32); 2932 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 2933 ext4_isize_set(raw_inode, ei->i_disksize); 2934 if (ei->i_disksize > 0x7fffffffULL) { 2935 struct super_block *sb = inode->i_sb; 2936 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 2937 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 2938 EXT4_SB(sb)->s_es->s_rev_level == 2939 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 2940 /* If this is the first large file 2941 * created, add a flag to the superblock. 2942 */ 2943 err = ext4_journal_get_write_access(handle, 2944 EXT4_SB(sb)->s_sbh); 2945 if (err) 2946 goto out_brelse; 2947 ext4_update_dynamic_rev(sb); 2948 EXT4_SET_RO_COMPAT_FEATURE(sb, 2949 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 2950 sb->s_dirt = 1; 2951 handle->h_sync = 1; 2952 err = ext4_journal_dirty_metadata(handle, 2953 EXT4_SB(sb)->s_sbh); 2954 } 2955 } 2956 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 2957 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 2958 if (old_valid_dev(inode->i_rdev)) { 2959 raw_inode->i_block[0] = 2960 cpu_to_le32(old_encode_dev(inode->i_rdev)); 2961 raw_inode->i_block[1] = 0; 2962 } else { 2963 raw_inode->i_block[0] = 0; 2964 raw_inode->i_block[1] = 2965 cpu_to_le32(new_encode_dev(inode->i_rdev)); 2966 raw_inode->i_block[2] = 0; 2967 } 2968 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 2969 raw_inode->i_block[block] = ei->i_data[block]; 2970 2971 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 2972 if (ei->i_extra_isize) { 2973 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 2974 raw_inode->i_version_hi = 2975 cpu_to_le32(inode->i_version >> 32); 2976 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 2977 } 2978 2979 2980 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2981 rc = ext4_journal_dirty_metadata(handle, bh); 2982 if (!err) 2983 err = rc; 2984 ei->i_state &= ~EXT4_STATE_NEW; 2985 2986 out_brelse: 2987 brelse (bh); 2988 ext4_std_error(inode->i_sb, err); 2989 return err; 2990 } 2991 2992 /* 2993 * ext4_write_inode() 2994 * 2995 * We are called from a few places: 2996 * 2997 * - Within generic_file_write() for O_SYNC files. 2998 * Here, there will be no transaction running. We wait for any running 2999 * trasnaction to commit. 3000 * 3001 * - Within sys_sync(), kupdate and such. 3002 * We wait on commit, if tol to. 3003 * 3004 * - Within prune_icache() (PF_MEMALLOC == true) 3005 * Here we simply return. We can't afford to block kswapd on the 3006 * journal commit. 3007 * 3008 * In all cases it is actually safe for us to return without doing anything, 3009 * because the inode has been copied into a raw inode buffer in 3010 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3011 * knfsd. 3012 * 3013 * Note that we are absolutely dependent upon all inode dirtiers doing the 3014 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3015 * which we are interested. 3016 * 3017 * It would be a bug for them to not do this. The code: 3018 * 3019 * mark_inode_dirty(inode) 3020 * stuff(); 3021 * inode->i_size = expr; 3022 * 3023 * is in error because a kswapd-driven write_inode() could occur while 3024 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3025 * will no longer be on the superblock's dirty inode list. 3026 */ 3027 int ext4_write_inode(struct inode *inode, int wait) 3028 { 3029 if (current->flags & PF_MEMALLOC) 3030 return 0; 3031 3032 if (ext4_journal_current_handle()) { 3033 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3034 dump_stack(); 3035 return -EIO; 3036 } 3037 3038 if (!wait) 3039 return 0; 3040 3041 return ext4_force_commit(inode->i_sb); 3042 } 3043 3044 /* 3045 * ext4_setattr() 3046 * 3047 * Called from notify_change. 3048 * 3049 * We want to trap VFS attempts to truncate the file as soon as 3050 * possible. In particular, we want to make sure that when the VFS 3051 * shrinks i_size, we put the inode on the orphan list and modify 3052 * i_disksize immediately, so that during the subsequent flushing of 3053 * dirty pages and freeing of disk blocks, we can guarantee that any 3054 * commit will leave the blocks being flushed in an unused state on 3055 * disk. (On recovery, the inode will get truncated and the blocks will 3056 * be freed, so we have a strong guarantee that no future commit will 3057 * leave these blocks visible to the user.) 3058 * 3059 * Called with inode->sem down. 3060 */ 3061 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3062 { 3063 struct inode *inode = dentry->d_inode; 3064 int error, rc = 0; 3065 const unsigned int ia_valid = attr->ia_valid; 3066 3067 error = inode_change_ok(inode, attr); 3068 if (error) 3069 return error; 3070 3071 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3072 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3073 handle_t *handle; 3074 3075 /* (user+group)*(old+new) structure, inode write (sb, 3076 * inode block, ? - but truncate inode update has it) */ 3077 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 3078 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 3079 if (IS_ERR(handle)) { 3080 error = PTR_ERR(handle); 3081 goto err_out; 3082 } 3083 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3084 if (error) { 3085 ext4_journal_stop(handle); 3086 return error; 3087 } 3088 /* Update corresponding info in inode so that everything is in 3089 * one transaction */ 3090 if (attr->ia_valid & ATTR_UID) 3091 inode->i_uid = attr->ia_uid; 3092 if (attr->ia_valid & ATTR_GID) 3093 inode->i_gid = attr->ia_gid; 3094 error = ext4_mark_inode_dirty(handle, inode); 3095 ext4_journal_stop(handle); 3096 } 3097 3098 if (attr->ia_valid & ATTR_SIZE) { 3099 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 3100 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3101 3102 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 3103 error = -EFBIG; 3104 goto err_out; 3105 } 3106 } 3107 } 3108 3109 if (S_ISREG(inode->i_mode) && 3110 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3111 handle_t *handle; 3112 3113 handle = ext4_journal_start(inode, 3); 3114 if (IS_ERR(handle)) { 3115 error = PTR_ERR(handle); 3116 goto err_out; 3117 } 3118 3119 error = ext4_orphan_add(handle, inode); 3120 EXT4_I(inode)->i_disksize = attr->ia_size; 3121 rc = ext4_mark_inode_dirty(handle, inode); 3122 if (!error) 3123 error = rc; 3124 ext4_journal_stop(handle); 3125 } 3126 3127 rc = inode_setattr(inode, attr); 3128 3129 /* If inode_setattr's call to ext4_truncate failed to get a 3130 * transaction handle at all, we need to clean up the in-core 3131 * orphan list manually. */ 3132 if (inode->i_nlink) 3133 ext4_orphan_del(NULL, inode); 3134 3135 if (!rc && (ia_valid & ATTR_MODE)) 3136 rc = ext4_acl_chmod(inode); 3137 3138 err_out: 3139 ext4_std_error(inode->i_sb, error); 3140 if (!error) 3141 error = rc; 3142 return error; 3143 } 3144 3145 3146 /* 3147 * How many blocks doth make a writepage()? 3148 * 3149 * With N blocks per page, it may be: 3150 * N data blocks 3151 * 2 indirect block 3152 * 2 dindirect 3153 * 1 tindirect 3154 * N+5 bitmap blocks (from the above) 3155 * N+5 group descriptor summary blocks 3156 * 1 inode block 3157 * 1 superblock. 3158 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 3159 * 3160 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 3161 * 3162 * With ordered or writeback data it's the same, less the N data blocks. 3163 * 3164 * If the inode's direct blocks can hold an integral number of pages then a 3165 * page cannot straddle two indirect blocks, and we can only touch one indirect 3166 * and dindirect block, and the "5" above becomes "3". 3167 * 3168 * This still overestimates under most circumstances. If we were to pass the 3169 * start and end offsets in here as well we could do block_to_path() on each 3170 * block and work out the exact number of indirects which are touched. Pah. 3171 */ 3172 3173 int ext4_writepage_trans_blocks(struct inode *inode) 3174 { 3175 int bpp = ext4_journal_blocks_per_page(inode); 3176 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 3177 int ret; 3178 3179 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3180 return ext4_ext_writepage_trans_blocks(inode, bpp); 3181 3182 if (ext4_should_journal_data(inode)) 3183 ret = 3 * (bpp + indirects) + 2; 3184 else 3185 ret = 2 * (bpp + indirects) + 2; 3186 3187 #ifdef CONFIG_QUOTA 3188 /* We know that structure was already allocated during DQUOT_INIT so 3189 * we will be updating only the data blocks + inodes */ 3190 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 3191 #endif 3192 3193 return ret; 3194 } 3195 3196 /* 3197 * The caller must have previously called ext4_reserve_inode_write(). 3198 * Give this, we know that the caller already has write access to iloc->bh. 3199 */ 3200 int ext4_mark_iloc_dirty(handle_t *handle, 3201 struct inode *inode, struct ext4_iloc *iloc) 3202 { 3203 int err = 0; 3204 3205 if (test_opt(inode->i_sb, I_VERSION)) 3206 inode_inc_iversion(inode); 3207 3208 /* the do_update_inode consumes one bh->b_count */ 3209 get_bh(iloc->bh); 3210 3211 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 3212 err = ext4_do_update_inode(handle, inode, iloc); 3213 put_bh(iloc->bh); 3214 return err; 3215 } 3216 3217 /* 3218 * On success, We end up with an outstanding reference count against 3219 * iloc->bh. This _must_ be cleaned up later. 3220 */ 3221 3222 int 3223 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 3224 struct ext4_iloc *iloc) 3225 { 3226 int err = 0; 3227 if (handle) { 3228 err = ext4_get_inode_loc(inode, iloc); 3229 if (!err) { 3230 BUFFER_TRACE(iloc->bh, "get_write_access"); 3231 err = ext4_journal_get_write_access(handle, iloc->bh); 3232 if (err) { 3233 brelse(iloc->bh); 3234 iloc->bh = NULL; 3235 } 3236 } 3237 } 3238 ext4_std_error(inode->i_sb, err); 3239 return err; 3240 } 3241 3242 /* 3243 * Expand an inode by new_extra_isize bytes. 3244 * Returns 0 on success or negative error number on failure. 3245 */ 3246 static int ext4_expand_extra_isize(struct inode *inode, 3247 unsigned int new_extra_isize, 3248 struct ext4_iloc iloc, 3249 handle_t *handle) 3250 { 3251 struct ext4_inode *raw_inode; 3252 struct ext4_xattr_ibody_header *header; 3253 struct ext4_xattr_entry *entry; 3254 3255 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 3256 return 0; 3257 3258 raw_inode = ext4_raw_inode(&iloc); 3259 3260 header = IHDR(inode, raw_inode); 3261 entry = IFIRST(header); 3262 3263 /* No extended attributes present */ 3264 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 3265 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 3266 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 3267 new_extra_isize); 3268 EXT4_I(inode)->i_extra_isize = new_extra_isize; 3269 return 0; 3270 } 3271 3272 /* try to expand with EAs present */ 3273 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 3274 raw_inode, handle); 3275 } 3276 3277 /* 3278 * What we do here is to mark the in-core inode as clean with respect to inode 3279 * dirtiness (it may still be data-dirty). 3280 * This means that the in-core inode may be reaped by prune_icache 3281 * without having to perform any I/O. This is a very good thing, 3282 * because *any* task may call prune_icache - even ones which 3283 * have a transaction open against a different journal. 3284 * 3285 * Is this cheating? Not really. Sure, we haven't written the 3286 * inode out, but prune_icache isn't a user-visible syncing function. 3287 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3288 * we start and wait on commits. 3289 * 3290 * Is this efficient/effective? Well, we're being nice to the system 3291 * by cleaning up our inodes proactively so they can be reaped 3292 * without I/O. But we are potentially leaving up to five seconds' 3293 * worth of inodes floating about which prune_icache wants us to 3294 * write out. One way to fix that would be to get prune_icache() 3295 * to do a write_super() to free up some memory. It has the desired 3296 * effect. 3297 */ 3298 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 3299 { 3300 struct ext4_iloc iloc; 3301 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3302 static unsigned int mnt_count; 3303 int err, ret; 3304 3305 might_sleep(); 3306 err = ext4_reserve_inode_write(handle, inode, &iloc); 3307 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 3308 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 3309 /* 3310 * We need extra buffer credits since we may write into EA block 3311 * with this same handle. If journal_extend fails, then it will 3312 * only result in a minor loss of functionality for that inode. 3313 * If this is felt to be critical, then e2fsck should be run to 3314 * force a large enough s_min_extra_isize. 3315 */ 3316 if ((jbd2_journal_extend(handle, 3317 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 3318 ret = ext4_expand_extra_isize(inode, 3319 sbi->s_want_extra_isize, 3320 iloc, handle); 3321 if (ret) { 3322 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 3323 if (mnt_count != 3324 le16_to_cpu(sbi->s_es->s_mnt_count)) { 3325 ext4_warning(inode->i_sb, __FUNCTION__, 3326 "Unable to expand inode %lu. Delete" 3327 " some EAs or run e2fsck.", 3328 inode->i_ino); 3329 mnt_count = 3330 le16_to_cpu(sbi->s_es->s_mnt_count); 3331 } 3332 } 3333 } 3334 } 3335 if (!err) 3336 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3337 return err; 3338 } 3339 3340 /* 3341 * ext4_dirty_inode() is called from __mark_inode_dirty() 3342 * 3343 * We're really interested in the case where a file is being extended. 3344 * i_size has been changed by generic_commit_write() and we thus need 3345 * to include the updated inode in the current transaction. 3346 * 3347 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 3348 * are allocated to the file. 3349 * 3350 * If the inode is marked synchronous, we don't honour that here - doing 3351 * so would cause a commit on atime updates, which we don't bother doing. 3352 * We handle synchronous inodes at the highest possible level. 3353 */ 3354 void ext4_dirty_inode(struct inode *inode) 3355 { 3356 handle_t *current_handle = ext4_journal_current_handle(); 3357 handle_t *handle; 3358 3359 handle = ext4_journal_start(inode, 2); 3360 if (IS_ERR(handle)) 3361 goto out; 3362 if (current_handle && 3363 current_handle->h_transaction != handle->h_transaction) { 3364 /* This task has a transaction open against a different fs */ 3365 printk(KERN_EMERG "%s: transactions do not match!\n", 3366 __FUNCTION__); 3367 } else { 3368 jbd_debug(5, "marking dirty. outer handle=%p\n", 3369 current_handle); 3370 ext4_mark_inode_dirty(handle, inode); 3371 } 3372 ext4_journal_stop(handle); 3373 out: 3374 return; 3375 } 3376 3377 #if 0 3378 /* 3379 * Bind an inode's backing buffer_head into this transaction, to prevent 3380 * it from being flushed to disk early. Unlike 3381 * ext4_reserve_inode_write, this leaves behind no bh reference and 3382 * returns no iloc structure, so the caller needs to repeat the iloc 3383 * lookup to mark the inode dirty later. 3384 */ 3385 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 3386 { 3387 struct ext4_iloc iloc; 3388 3389 int err = 0; 3390 if (handle) { 3391 err = ext4_get_inode_loc(inode, &iloc); 3392 if (!err) { 3393 BUFFER_TRACE(iloc.bh, "get_write_access"); 3394 err = jbd2_journal_get_write_access(handle, iloc.bh); 3395 if (!err) 3396 err = ext4_journal_dirty_metadata(handle, 3397 iloc.bh); 3398 brelse(iloc.bh); 3399 } 3400 } 3401 ext4_std_error(inode->i_sb, err); 3402 return err; 3403 } 3404 #endif 3405 3406 int ext4_change_inode_journal_flag(struct inode *inode, int val) 3407 { 3408 journal_t *journal; 3409 handle_t *handle; 3410 int err; 3411 3412 /* 3413 * We have to be very careful here: changing a data block's 3414 * journaling status dynamically is dangerous. If we write a 3415 * data block to the journal, change the status and then delete 3416 * that block, we risk forgetting to revoke the old log record 3417 * from the journal and so a subsequent replay can corrupt data. 3418 * So, first we make sure that the journal is empty and that 3419 * nobody is changing anything. 3420 */ 3421 3422 journal = EXT4_JOURNAL(inode); 3423 if (is_journal_aborted(journal)) 3424 return -EROFS; 3425 3426 jbd2_journal_lock_updates(journal); 3427 jbd2_journal_flush(journal); 3428 3429 /* 3430 * OK, there are no updates running now, and all cached data is 3431 * synced to disk. We are now in a completely consistent state 3432 * which doesn't have anything in the journal, and we know that 3433 * no filesystem updates are running, so it is safe to modify 3434 * the inode's in-core data-journaling state flag now. 3435 */ 3436 3437 if (val) 3438 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 3439 else 3440 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 3441 ext4_set_aops(inode); 3442 3443 jbd2_journal_unlock_updates(journal); 3444 3445 /* Finally we can mark the inode as dirty. */ 3446 3447 handle = ext4_journal_start(inode, 1); 3448 if (IS_ERR(handle)) 3449 return PTR_ERR(handle); 3450 3451 err = ext4_mark_inode_dirty(handle, inode); 3452 handle->h_sync = 1; 3453 ext4_journal_stop(handle); 3454 ext4_std_error(inode->i_sb, err); 3455 3456 return err; 3457 } 3458