1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 457 struct ext4_map_blocks *map) 458 { 459 unsigned int status; 460 int retval; 461 462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 463 retval = ext4_ext_map_blocks(handle, inode, map, 0); 464 else 465 retval = ext4_ind_map_blocks(handle, inode, map, 0); 466 467 if (retval <= 0) 468 return retval; 469 470 if (unlikely(retval != map->m_len)) { 471 ext4_warning(inode->i_sb, 472 "ES len assertion failed for inode " 473 "%lu: retval %d != map->m_len %d", 474 inode->i_ino, retval, map->m_len); 475 WARN_ON(1); 476 } 477 478 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 479 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 480 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 481 map->m_pblk, status); 482 return retval; 483 } 484 485 /* 486 * The ext4_map_blocks() function tries to look up the requested blocks, 487 * and returns if the blocks are already mapped. 488 * 489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 490 * and store the allocated blocks in the result buffer head and mark it 491 * mapped. 492 * 493 * If file type is extents based, it will call ext4_ext_map_blocks(), 494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 495 * based files 496 * 497 * On success, it returns the number of blocks being mapped or allocated. if 498 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 499 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 500 * 501 * It returns 0 if plain look up failed (blocks have not been allocated), in 502 * that case, @map is returned as unmapped but we still do fill map->m_len to 503 * indicate the length of a hole starting at map->m_lblk. 504 * 505 * It returns the error in case of allocation failure. 506 */ 507 int ext4_map_blocks(handle_t *handle, struct inode *inode, 508 struct ext4_map_blocks *map, int flags) 509 { 510 struct extent_status es; 511 int retval; 512 int ret = 0; 513 #ifdef ES_AGGRESSIVE_TEST 514 struct ext4_map_blocks orig_map; 515 516 memcpy(&orig_map, map, sizeof(*map)); 517 #endif 518 519 map->m_flags = 0; 520 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 521 flags, map->m_len, (unsigned long) map->m_lblk); 522 523 /* 524 * ext4_map_blocks returns an int, and m_len is an unsigned int 525 */ 526 if (unlikely(map->m_len > INT_MAX)) 527 map->m_len = INT_MAX; 528 529 /* We can handle the block number less than EXT_MAX_BLOCKS */ 530 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 531 return -EFSCORRUPTED; 532 533 /* Lookup extent status tree firstly */ 534 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 535 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 536 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 537 map->m_pblk = ext4_es_pblock(&es) + 538 map->m_lblk - es.es_lblk; 539 map->m_flags |= ext4_es_is_written(&es) ? 540 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 546 map->m_pblk = 0; 547 retval = es.es_len - (map->m_lblk - es.es_lblk); 548 if (retval > map->m_len) 549 retval = map->m_len; 550 map->m_len = retval; 551 retval = 0; 552 } else { 553 BUG(); 554 } 555 556 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 557 return retval; 558 #ifdef ES_AGGRESSIVE_TEST 559 ext4_map_blocks_es_recheck(handle, inode, map, 560 &orig_map, flags); 561 #endif 562 goto found; 563 } 564 /* 565 * In the query cache no-wait mode, nothing we can do more if we 566 * cannot find extent in the cache. 567 */ 568 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 569 return 0; 570 571 /* 572 * Try to see if we can get the block without requesting a new 573 * file system block. 574 */ 575 down_read(&EXT4_I(inode)->i_data_sem); 576 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 577 retval = ext4_ext_map_blocks(handle, inode, map, 0); 578 } else { 579 retval = ext4_ind_map_blocks(handle, inode, map, 0); 580 } 581 if (retval > 0) { 582 unsigned int status; 583 584 if (unlikely(retval != map->m_len)) { 585 ext4_warning(inode->i_sb, 586 "ES len assertion failed for inode " 587 "%lu: retval %d != map->m_len %d", 588 inode->i_ino, retval, map->m_len); 589 WARN_ON(1); 590 } 591 592 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 594 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 595 !(status & EXTENT_STATUS_WRITTEN) && 596 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 597 map->m_lblk + map->m_len - 1)) 598 status |= EXTENT_STATUS_DELAYED; 599 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 600 map->m_pblk, status); 601 } 602 up_read((&EXT4_I(inode)->i_data_sem)); 603 604 found: 605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 606 ret = check_block_validity(inode, map); 607 if (ret != 0) 608 return ret; 609 } 610 611 /* If it is only a block(s) look up */ 612 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 613 return retval; 614 615 /* 616 * Returns if the blocks have already allocated 617 * 618 * Note that if blocks have been preallocated 619 * ext4_ext_get_block() returns the create = 0 620 * with buffer head unmapped. 621 */ 622 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 623 /* 624 * If we need to convert extent to unwritten 625 * we continue and do the actual work in 626 * ext4_ext_map_blocks() 627 */ 628 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 629 return retval; 630 631 /* 632 * Here we clear m_flags because after allocating an new extent, 633 * it will be set again. 634 */ 635 map->m_flags &= ~EXT4_MAP_FLAGS; 636 637 /* 638 * New blocks allocate and/or writing to unwritten extent 639 * will possibly result in updating i_data, so we take 640 * the write lock of i_data_sem, and call get_block() 641 * with create == 1 flag. 642 */ 643 down_write(&EXT4_I(inode)->i_data_sem); 644 645 /* 646 * We need to check for EXT4 here because migrate 647 * could have changed the inode type in between 648 */ 649 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 650 retval = ext4_ext_map_blocks(handle, inode, map, flags); 651 } else { 652 retval = ext4_ind_map_blocks(handle, inode, map, flags); 653 654 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 655 /* 656 * We allocated new blocks which will result in 657 * i_data's format changing. Force the migrate 658 * to fail by clearing migrate flags 659 */ 660 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 661 } 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 } 712 713 out_sem: 714 up_write((&EXT4_I(inode)->i_data_sem)); 715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 716 ret = check_block_validity(inode, map); 717 if (ret != 0) 718 return ret; 719 720 /* 721 * Inodes with freshly allocated blocks where contents will be 722 * visible after transaction commit must be on transaction's 723 * ordered data list. 724 */ 725 if (map->m_flags & EXT4_MAP_NEW && 726 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 727 !(flags & EXT4_GET_BLOCKS_ZERO) && 728 !ext4_is_quota_file(inode) && 729 ext4_should_order_data(inode)) { 730 loff_t start_byte = 731 (loff_t)map->m_lblk << inode->i_blkbits; 732 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 733 734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 735 ret = ext4_jbd2_inode_add_wait(handle, inode, 736 start_byte, length); 737 else 738 ret = ext4_jbd2_inode_add_write(handle, inode, 739 start_byte, length); 740 if (ret) 741 return ret; 742 } 743 } 744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 745 map->m_flags & EXT4_MAP_MAPPED)) 746 ext4_fc_track_range(handle, inode, map->m_lblk, 747 map->m_lblk + map->m_len - 1); 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 old_state = READ_ONCE(bh->b_state); 775 do { 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 778 } 779 780 static int _ext4_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int flags) 782 { 783 struct ext4_map_blocks map; 784 int ret = 0; 785 786 if (ext4_has_inline_data(inode)) 787 return -ERANGE; 788 789 map.m_lblk = iblock; 790 map.m_len = bh->b_size >> inode->i_blkbits; 791 792 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 793 flags); 794 if (ret > 0) { 795 map_bh(bh, inode->i_sb, map.m_pblk); 796 ext4_update_bh_state(bh, map.m_flags); 797 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 798 ret = 0; 799 } else if (ret == 0) { 800 /* hole case, need to fill in bh->b_size */ 801 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 802 } 803 return ret; 804 } 805 806 int ext4_get_block(struct inode *inode, sector_t iblock, 807 struct buffer_head *bh, int create) 808 { 809 return _ext4_get_block(inode, iblock, bh, 810 create ? EXT4_GET_BLOCKS_CREATE : 0); 811 } 812 813 /* 814 * Get block function used when preparing for buffered write if we require 815 * creating an unwritten extent if blocks haven't been allocated. The extent 816 * will be converted to written after the IO is complete. 817 */ 818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 819 struct buffer_head *bh_result, int create) 820 { 821 int ret = 0; 822 823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 824 inode->i_ino, create); 825 ret = _ext4_get_block(inode, iblock, bh_result, 826 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 827 828 /* 829 * If the buffer is marked unwritten, mark it as new to make sure it is 830 * zeroed out correctly in case of partial writes. Otherwise, there is 831 * a chance of stale data getting exposed. 832 */ 833 if (ret == 0 && buffer_unwritten(bh_result)) 834 set_buffer_new(bh_result); 835 836 return ret; 837 } 838 839 /* Maximum number of blocks we map for direct IO at once. */ 840 #define DIO_MAX_BLOCKS 4096 841 842 /* 843 * `handle' can be NULL if create is zero 844 */ 845 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 846 ext4_lblk_t block, int map_flags) 847 { 848 struct ext4_map_blocks map; 849 struct buffer_head *bh; 850 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 851 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 852 int err; 853 854 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 855 || handle != NULL || create == 0); 856 ASSERT(create == 0 || !nowait); 857 858 map.m_lblk = block; 859 map.m_len = 1; 860 err = ext4_map_blocks(handle, inode, &map, map_flags); 861 862 if (err == 0) 863 return create ? ERR_PTR(-ENOSPC) : NULL; 864 if (err < 0) 865 return ERR_PTR(err); 866 867 if (nowait) 868 return sb_find_get_block(inode->i_sb, map.m_pblk); 869 870 bh = sb_getblk(inode->i_sb, map.m_pblk); 871 if (unlikely(!bh)) 872 return ERR_PTR(-ENOMEM); 873 if (map.m_flags & EXT4_MAP_NEW) { 874 ASSERT(create != 0); 875 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 876 || (handle != NULL)); 877 878 /* 879 * Now that we do not always journal data, we should 880 * keep in mind whether this should always journal the 881 * new buffer as metadata. For now, regular file 882 * writes use ext4_get_block instead, so it's not a 883 * problem. 884 */ 885 lock_buffer(bh); 886 BUFFER_TRACE(bh, "call get_create_access"); 887 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 888 EXT4_JTR_NONE); 889 if (unlikely(err)) { 890 unlock_buffer(bh); 891 goto errout; 892 } 893 if (!buffer_uptodate(bh)) { 894 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 895 set_buffer_uptodate(bh); 896 } 897 unlock_buffer(bh); 898 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 899 err = ext4_handle_dirty_metadata(handle, inode, bh); 900 if (unlikely(err)) 901 goto errout; 902 } else 903 BUFFER_TRACE(bh, "not a new buffer"); 904 return bh; 905 errout: 906 brelse(bh); 907 return ERR_PTR(err); 908 } 909 910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 911 ext4_lblk_t block, int map_flags) 912 { 913 struct buffer_head *bh; 914 int ret; 915 916 bh = ext4_getblk(handle, inode, block, map_flags); 917 if (IS_ERR(bh)) 918 return bh; 919 if (!bh || ext4_buffer_uptodate(bh)) 920 return bh; 921 922 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 923 if (ret) { 924 put_bh(bh); 925 return ERR_PTR(ret); 926 } 927 return bh; 928 } 929 930 /* Read a contiguous batch of blocks. */ 931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 932 bool wait, struct buffer_head **bhs) 933 { 934 int i, err; 935 936 for (i = 0; i < bh_count; i++) { 937 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 938 if (IS_ERR(bhs[i])) { 939 err = PTR_ERR(bhs[i]); 940 bh_count = i; 941 goto out_brelse; 942 } 943 } 944 945 for (i = 0; i < bh_count; i++) 946 /* Note that NULL bhs[i] is valid because of holes. */ 947 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 948 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 949 950 if (!wait) 951 return 0; 952 953 for (i = 0; i < bh_count; i++) 954 if (bhs[i]) 955 wait_on_buffer(bhs[i]); 956 957 for (i = 0; i < bh_count; i++) { 958 if (bhs[i] && !buffer_uptodate(bhs[i])) { 959 err = -EIO; 960 goto out_brelse; 961 } 962 } 963 return 0; 964 965 out_brelse: 966 for (i = 0; i < bh_count; i++) { 967 brelse(bhs[i]); 968 bhs[i] = NULL; 969 } 970 return err; 971 } 972 973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 974 struct buffer_head *head, 975 unsigned from, 976 unsigned to, 977 int *partial, 978 int (*fn)(handle_t *handle, struct inode *inode, 979 struct buffer_head *bh)) 980 { 981 struct buffer_head *bh; 982 unsigned block_start, block_end; 983 unsigned blocksize = head->b_size; 984 int err, ret = 0; 985 struct buffer_head *next; 986 987 for (bh = head, block_start = 0; 988 ret == 0 && (bh != head || !block_start); 989 block_start = block_end, bh = next) { 990 next = bh->b_this_page; 991 block_end = block_start + blocksize; 992 if (block_end <= from || block_start >= to) { 993 if (partial && !buffer_uptodate(bh)) 994 *partial = 1; 995 continue; 996 } 997 err = (*fn)(handle, inode, bh); 998 if (!ret) 999 ret = err; 1000 } 1001 return ret; 1002 } 1003 1004 /* 1005 * Helper for handling dirtying of journalled data. We also mark the folio as 1006 * dirty so that writeback code knows about this page (and inode) contains 1007 * dirty data. ext4_writepages() then commits appropriate transaction to 1008 * make data stable. 1009 */ 1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1011 { 1012 folio_mark_dirty(bh->b_folio); 1013 return ext4_handle_dirty_metadata(handle, NULL, bh); 1014 } 1015 1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1017 struct buffer_head *bh) 1018 { 1019 int dirty = buffer_dirty(bh); 1020 int ret; 1021 1022 if (!buffer_mapped(bh) || buffer_freed(bh)) 1023 return 0; 1024 /* 1025 * __block_write_begin() could have dirtied some buffers. Clean 1026 * the dirty bit as jbd2_journal_get_write_access() could complain 1027 * otherwise about fs integrity issues. Setting of the dirty bit 1028 * by __block_write_begin() isn't a real problem here as we clear 1029 * the bit before releasing a page lock and thus writeback cannot 1030 * ever write the buffer. 1031 */ 1032 if (dirty) 1033 clear_buffer_dirty(bh); 1034 BUFFER_TRACE(bh, "get write access"); 1035 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1036 EXT4_JTR_NONE); 1037 if (!ret && dirty) 1038 ret = ext4_dirty_journalled_data(handle, bh); 1039 return ret; 1040 } 1041 1042 #ifdef CONFIG_FS_ENCRYPTION 1043 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1044 get_block_t *get_block) 1045 { 1046 unsigned from = pos & (PAGE_SIZE - 1); 1047 unsigned to = from + len; 1048 struct inode *inode = folio->mapping->host; 1049 unsigned block_start, block_end; 1050 sector_t block; 1051 int err = 0; 1052 unsigned blocksize = inode->i_sb->s_blocksize; 1053 unsigned bbits; 1054 struct buffer_head *bh, *head, *wait[2]; 1055 int nr_wait = 0; 1056 int i; 1057 1058 BUG_ON(!folio_test_locked(folio)); 1059 BUG_ON(from > PAGE_SIZE); 1060 BUG_ON(to > PAGE_SIZE); 1061 BUG_ON(from > to); 1062 1063 head = folio_buffers(folio); 1064 if (!head) { 1065 create_empty_buffers(&folio->page, blocksize, 0); 1066 head = folio_buffers(folio); 1067 } 1068 bbits = ilog2(blocksize); 1069 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1070 1071 for (bh = head, block_start = 0; bh != head || !block_start; 1072 block++, block_start = block_end, bh = bh->b_this_page) { 1073 block_end = block_start + blocksize; 1074 if (block_end <= from || block_start >= to) { 1075 if (folio_test_uptodate(folio)) { 1076 set_buffer_uptodate(bh); 1077 } 1078 continue; 1079 } 1080 if (buffer_new(bh)) 1081 clear_buffer_new(bh); 1082 if (!buffer_mapped(bh)) { 1083 WARN_ON(bh->b_size != blocksize); 1084 err = get_block(inode, block, bh, 1); 1085 if (err) 1086 break; 1087 if (buffer_new(bh)) { 1088 if (folio_test_uptodate(folio)) { 1089 clear_buffer_new(bh); 1090 set_buffer_uptodate(bh); 1091 mark_buffer_dirty(bh); 1092 continue; 1093 } 1094 if (block_end > to || block_start < from) 1095 folio_zero_segments(folio, to, 1096 block_end, 1097 block_start, from); 1098 continue; 1099 } 1100 } 1101 if (folio_test_uptodate(folio)) { 1102 set_buffer_uptodate(bh); 1103 continue; 1104 } 1105 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1106 !buffer_unwritten(bh) && 1107 (block_start < from || block_end > to)) { 1108 ext4_read_bh_lock(bh, 0, false); 1109 wait[nr_wait++] = bh; 1110 } 1111 } 1112 /* 1113 * If we issued read requests, let them complete. 1114 */ 1115 for (i = 0; i < nr_wait; i++) { 1116 wait_on_buffer(wait[i]); 1117 if (!buffer_uptodate(wait[i])) 1118 err = -EIO; 1119 } 1120 if (unlikely(err)) { 1121 folio_zero_new_buffers(folio, from, to); 1122 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1123 for (i = 0; i < nr_wait; i++) { 1124 int err2; 1125 1126 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1127 blocksize, bh_offset(wait[i])); 1128 if (err2) { 1129 clear_buffer_uptodate(wait[i]); 1130 err = err2; 1131 } 1132 } 1133 } 1134 1135 return err; 1136 } 1137 #endif 1138 1139 /* 1140 * To preserve ordering, it is essential that the hole instantiation and 1141 * the data write be encapsulated in a single transaction. We cannot 1142 * close off a transaction and start a new one between the ext4_get_block() 1143 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1144 * ext4_write_begin() is the right place. 1145 */ 1146 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1147 loff_t pos, unsigned len, 1148 struct page **pagep, void **fsdata) 1149 { 1150 struct inode *inode = mapping->host; 1151 int ret, needed_blocks; 1152 handle_t *handle; 1153 int retries = 0; 1154 struct folio *folio; 1155 pgoff_t index; 1156 unsigned from, to; 1157 1158 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1159 return -EIO; 1160 1161 trace_ext4_write_begin(inode, pos, len); 1162 /* 1163 * Reserve one block more for addition to orphan list in case 1164 * we allocate blocks but write fails for some reason 1165 */ 1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1167 index = pos >> PAGE_SHIFT; 1168 from = pos & (PAGE_SIZE - 1); 1169 to = from + len; 1170 1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1173 pagep); 1174 if (ret < 0) 1175 return ret; 1176 if (ret == 1) 1177 return 0; 1178 } 1179 1180 /* 1181 * __filemap_get_folio() can take a long time if the 1182 * system is thrashing due to memory pressure, or if the folio 1183 * is being written back. So grab it first before we start 1184 * the transaction handle. This also allows us to allocate 1185 * the folio (if needed) without using GFP_NOFS. 1186 */ 1187 retry_grab: 1188 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1189 mapping_gfp_mask(mapping)); 1190 if (IS_ERR(folio)) 1191 return PTR_ERR(folio); 1192 /* 1193 * The same as page allocation, we prealloc buffer heads before 1194 * starting the handle. 1195 */ 1196 if (!folio_buffers(folio)) 1197 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1198 1199 folio_unlock(folio); 1200 1201 retry_journal: 1202 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1203 if (IS_ERR(handle)) { 1204 folio_put(folio); 1205 return PTR_ERR(handle); 1206 } 1207 1208 folio_lock(folio); 1209 if (folio->mapping != mapping) { 1210 /* The folio got truncated from under us */ 1211 folio_unlock(folio); 1212 folio_put(folio); 1213 ext4_journal_stop(handle); 1214 goto retry_grab; 1215 } 1216 /* In case writeback began while the folio was unlocked */ 1217 folio_wait_stable(folio); 1218 1219 #ifdef CONFIG_FS_ENCRYPTION 1220 if (ext4_should_dioread_nolock(inode)) 1221 ret = ext4_block_write_begin(folio, pos, len, 1222 ext4_get_block_unwritten); 1223 else 1224 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1225 #else 1226 if (ext4_should_dioread_nolock(inode)) 1227 ret = __block_write_begin(&folio->page, pos, len, 1228 ext4_get_block_unwritten); 1229 else 1230 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1231 #endif 1232 if (!ret && ext4_should_journal_data(inode)) { 1233 ret = ext4_walk_page_buffers(handle, inode, 1234 folio_buffers(folio), from, to, 1235 NULL, do_journal_get_write_access); 1236 } 1237 1238 if (ret) { 1239 bool extended = (pos + len > inode->i_size) && 1240 !ext4_verity_in_progress(inode); 1241 1242 folio_unlock(folio); 1243 /* 1244 * __block_write_begin may have instantiated a few blocks 1245 * outside i_size. Trim these off again. Don't need 1246 * i_size_read because we hold i_rwsem. 1247 * 1248 * Add inode to orphan list in case we crash before 1249 * truncate finishes 1250 */ 1251 if (extended && ext4_can_truncate(inode)) 1252 ext4_orphan_add(handle, inode); 1253 1254 ext4_journal_stop(handle); 1255 if (extended) { 1256 ext4_truncate_failed_write(inode); 1257 /* 1258 * If truncate failed early the inode might 1259 * still be on the orphan list; we need to 1260 * make sure the inode is removed from the 1261 * orphan list in that case. 1262 */ 1263 if (inode->i_nlink) 1264 ext4_orphan_del(NULL, inode); 1265 } 1266 1267 if (ret == -ENOSPC && 1268 ext4_should_retry_alloc(inode->i_sb, &retries)) 1269 goto retry_journal; 1270 folio_put(folio); 1271 return ret; 1272 } 1273 *pagep = &folio->page; 1274 return ret; 1275 } 1276 1277 /* For write_end() in data=journal mode */ 1278 static int write_end_fn(handle_t *handle, struct inode *inode, 1279 struct buffer_head *bh) 1280 { 1281 int ret; 1282 if (!buffer_mapped(bh) || buffer_freed(bh)) 1283 return 0; 1284 set_buffer_uptodate(bh); 1285 ret = ext4_dirty_journalled_data(handle, bh); 1286 clear_buffer_meta(bh); 1287 clear_buffer_prio(bh); 1288 return ret; 1289 } 1290 1291 /* 1292 * We need to pick up the new inode size which generic_commit_write gave us 1293 * `file' can be NULL - eg, when called from page_symlink(). 1294 * 1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1296 * buffers are managed internally. 1297 */ 1298 static int ext4_write_end(struct file *file, 1299 struct address_space *mapping, 1300 loff_t pos, unsigned len, unsigned copied, 1301 struct page *page, void *fsdata) 1302 { 1303 struct folio *folio = page_folio(page); 1304 handle_t *handle = ext4_journal_current_handle(); 1305 struct inode *inode = mapping->host; 1306 loff_t old_size = inode->i_size; 1307 int ret = 0, ret2; 1308 int i_size_changed = 0; 1309 bool verity = ext4_verity_in_progress(inode); 1310 1311 trace_ext4_write_end(inode, pos, len, copied); 1312 1313 if (ext4_has_inline_data(inode) && 1314 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1315 return ext4_write_inline_data_end(inode, pos, len, copied, 1316 folio); 1317 1318 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1319 /* 1320 * it's important to update i_size while still holding folio lock: 1321 * page writeout could otherwise come in and zero beyond i_size. 1322 * 1323 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1324 * blocks are being written past EOF, so skip the i_size update. 1325 */ 1326 if (!verity) 1327 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1328 folio_unlock(folio); 1329 folio_put(folio); 1330 1331 if (old_size < pos && !verity) 1332 pagecache_isize_extended(inode, old_size, pos); 1333 /* 1334 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1335 * makes the holding time of folio lock longer. Second, it forces lock 1336 * ordering of folio lock and transaction start for journaling 1337 * filesystems. 1338 */ 1339 if (i_size_changed) 1340 ret = ext4_mark_inode_dirty(handle, inode); 1341 1342 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1343 /* if we have allocated more blocks and copied 1344 * less. We will have blocks allocated outside 1345 * inode->i_size. So truncate them 1346 */ 1347 ext4_orphan_add(handle, inode); 1348 1349 ret2 = ext4_journal_stop(handle); 1350 if (!ret) 1351 ret = ret2; 1352 1353 if (pos + len > inode->i_size && !verity) { 1354 ext4_truncate_failed_write(inode); 1355 /* 1356 * If truncate failed early the inode might still be 1357 * on the orphan list; we need to make sure the inode 1358 * is removed from the orphan list in that case. 1359 */ 1360 if (inode->i_nlink) 1361 ext4_orphan_del(NULL, inode); 1362 } 1363 1364 return ret ? ret : copied; 1365 } 1366 1367 /* 1368 * This is a private version of folio_zero_new_buffers() which doesn't 1369 * set the buffer to be dirty, since in data=journalled mode we need 1370 * to call ext4_dirty_journalled_data() instead. 1371 */ 1372 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1373 struct inode *inode, 1374 struct folio *folio, 1375 unsigned from, unsigned to) 1376 { 1377 unsigned int block_start = 0, block_end; 1378 struct buffer_head *head, *bh; 1379 1380 bh = head = folio_buffers(folio); 1381 do { 1382 block_end = block_start + bh->b_size; 1383 if (buffer_new(bh)) { 1384 if (block_end > from && block_start < to) { 1385 if (!folio_test_uptodate(folio)) { 1386 unsigned start, size; 1387 1388 start = max(from, block_start); 1389 size = min(to, block_end) - start; 1390 1391 folio_zero_range(folio, start, size); 1392 write_end_fn(handle, inode, bh); 1393 } 1394 clear_buffer_new(bh); 1395 } 1396 } 1397 block_start = block_end; 1398 bh = bh->b_this_page; 1399 } while (bh != head); 1400 } 1401 1402 static int ext4_journalled_write_end(struct file *file, 1403 struct address_space *mapping, 1404 loff_t pos, unsigned len, unsigned copied, 1405 struct page *page, void *fsdata) 1406 { 1407 struct folio *folio = page_folio(page); 1408 handle_t *handle = ext4_journal_current_handle(); 1409 struct inode *inode = mapping->host; 1410 loff_t old_size = inode->i_size; 1411 int ret = 0, ret2; 1412 int partial = 0; 1413 unsigned from, to; 1414 int size_changed = 0; 1415 bool verity = ext4_verity_in_progress(inode); 1416 1417 trace_ext4_journalled_write_end(inode, pos, len, copied); 1418 from = pos & (PAGE_SIZE - 1); 1419 to = from + len; 1420 1421 BUG_ON(!ext4_handle_valid(handle)); 1422 1423 if (ext4_has_inline_data(inode)) 1424 return ext4_write_inline_data_end(inode, pos, len, copied, 1425 folio); 1426 1427 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1428 copied = 0; 1429 ext4_journalled_zero_new_buffers(handle, inode, folio, 1430 from, to); 1431 } else { 1432 if (unlikely(copied < len)) 1433 ext4_journalled_zero_new_buffers(handle, inode, folio, 1434 from + copied, to); 1435 ret = ext4_walk_page_buffers(handle, inode, 1436 folio_buffers(folio), 1437 from, from + copied, &partial, 1438 write_end_fn); 1439 if (!partial) 1440 folio_mark_uptodate(folio); 1441 } 1442 if (!verity) 1443 size_changed = ext4_update_inode_size(inode, pos + copied); 1444 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1445 folio_unlock(folio); 1446 folio_put(folio); 1447 1448 if (old_size < pos && !verity) 1449 pagecache_isize_extended(inode, old_size, pos); 1450 1451 if (size_changed) { 1452 ret2 = ext4_mark_inode_dirty(handle, inode); 1453 if (!ret) 1454 ret = ret2; 1455 } 1456 1457 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1458 /* if we have allocated more blocks and copied 1459 * less. We will have blocks allocated outside 1460 * inode->i_size. So truncate them 1461 */ 1462 ext4_orphan_add(handle, inode); 1463 1464 ret2 = ext4_journal_stop(handle); 1465 if (!ret) 1466 ret = ret2; 1467 if (pos + len > inode->i_size && !verity) { 1468 ext4_truncate_failed_write(inode); 1469 /* 1470 * If truncate failed early the inode might still be 1471 * on the orphan list; we need to make sure the inode 1472 * is removed from the orphan list in that case. 1473 */ 1474 if (inode->i_nlink) 1475 ext4_orphan_del(NULL, inode); 1476 } 1477 1478 return ret ? ret : copied; 1479 } 1480 1481 /* 1482 * Reserve space for a single cluster 1483 */ 1484 static int ext4_da_reserve_space(struct inode *inode) 1485 { 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1487 struct ext4_inode_info *ei = EXT4_I(inode); 1488 int ret; 1489 1490 /* 1491 * We will charge metadata quota at writeout time; this saves 1492 * us from metadata over-estimation, though we may go over by 1493 * a small amount in the end. Here we just reserve for data. 1494 */ 1495 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1496 if (ret) 1497 return ret; 1498 1499 spin_lock(&ei->i_block_reservation_lock); 1500 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1501 spin_unlock(&ei->i_block_reservation_lock); 1502 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1503 return -ENOSPC; 1504 } 1505 ei->i_reserved_data_blocks++; 1506 trace_ext4_da_reserve_space(inode); 1507 spin_unlock(&ei->i_block_reservation_lock); 1508 1509 return 0; /* success */ 1510 } 1511 1512 void ext4_da_release_space(struct inode *inode, int to_free) 1513 { 1514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1515 struct ext4_inode_info *ei = EXT4_I(inode); 1516 1517 if (!to_free) 1518 return; /* Nothing to release, exit */ 1519 1520 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1521 1522 trace_ext4_da_release_space(inode, to_free); 1523 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1524 /* 1525 * if there aren't enough reserved blocks, then the 1526 * counter is messed up somewhere. Since this 1527 * function is called from invalidate page, it's 1528 * harmless to return without any action. 1529 */ 1530 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1531 "ino %lu, to_free %d with only %d reserved " 1532 "data blocks", inode->i_ino, to_free, 1533 ei->i_reserved_data_blocks); 1534 WARN_ON(1); 1535 to_free = ei->i_reserved_data_blocks; 1536 } 1537 ei->i_reserved_data_blocks -= to_free; 1538 1539 /* update fs dirty data blocks counter */ 1540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1541 1542 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1543 1544 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1545 } 1546 1547 /* 1548 * Delayed allocation stuff 1549 */ 1550 1551 struct mpage_da_data { 1552 /* These are input fields for ext4_do_writepages() */ 1553 struct inode *inode; 1554 struct writeback_control *wbc; 1555 unsigned int can_map:1; /* Can writepages call map blocks? */ 1556 1557 /* These are internal state of ext4_do_writepages() */ 1558 pgoff_t first_page; /* The first page to write */ 1559 pgoff_t next_page; /* Current page to examine */ 1560 pgoff_t last_page; /* Last page to examine */ 1561 /* 1562 * Extent to map - this can be after first_page because that can be 1563 * fully mapped. We somewhat abuse m_flags to store whether the extent 1564 * is delalloc or unwritten. 1565 */ 1566 struct ext4_map_blocks map; 1567 struct ext4_io_submit io_submit; /* IO submission data */ 1568 unsigned int do_map:1; 1569 unsigned int scanned_until_end:1; 1570 unsigned int journalled_more_data:1; 1571 }; 1572 1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1574 bool invalidate) 1575 { 1576 unsigned nr, i; 1577 pgoff_t index, end; 1578 struct folio_batch fbatch; 1579 struct inode *inode = mpd->inode; 1580 struct address_space *mapping = inode->i_mapping; 1581 1582 /* This is necessary when next_page == 0. */ 1583 if (mpd->first_page >= mpd->next_page) 1584 return; 1585 1586 mpd->scanned_until_end = 0; 1587 index = mpd->first_page; 1588 end = mpd->next_page - 1; 1589 if (invalidate) { 1590 ext4_lblk_t start, last; 1591 start = index << (PAGE_SHIFT - inode->i_blkbits); 1592 last = end << (PAGE_SHIFT - inode->i_blkbits); 1593 1594 /* 1595 * avoid racing with extent status tree scans made by 1596 * ext4_insert_delayed_block() 1597 */ 1598 down_write(&EXT4_I(inode)->i_data_sem); 1599 ext4_es_remove_extent(inode, start, last - start + 1); 1600 up_write(&EXT4_I(inode)->i_data_sem); 1601 } 1602 1603 folio_batch_init(&fbatch); 1604 while (index <= end) { 1605 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1606 if (nr == 0) 1607 break; 1608 for (i = 0; i < nr; i++) { 1609 struct folio *folio = fbatch.folios[i]; 1610 1611 if (folio->index < mpd->first_page) 1612 continue; 1613 if (folio_next_index(folio) - 1 > end) 1614 continue; 1615 BUG_ON(!folio_test_locked(folio)); 1616 BUG_ON(folio_test_writeback(folio)); 1617 if (invalidate) { 1618 if (folio_mapped(folio)) 1619 folio_clear_dirty_for_io(folio); 1620 block_invalidate_folio(folio, 0, 1621 folio_size(folio)); 1622 folio_clear_uptodate(folio); 1623 } 1624 folio_unlock(folio); 1625 } 1626 folio_batch_release(&fbatch); 1627 } 1628 } 1629 1630 static void ext4_print_free_blocks(struct inode *inode) 1631 { 1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1633 struct super_block *sb = inode->i_sb; 1634 struct ext4_inode_info *ei = EXT4_I(inode); 1635 1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1637 EXT4_C2B(EXT4_SB(inode->i_sb), 1638 ext4_count_free_clusters(sb))); 1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1641 (long long) EXT4_C2B(EXT4_SB(sb), 1642 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1644 (long long) EXT4_C2B(EXT4_SB(sb), 1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1646 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1648 ei->i_reserved_data_blocks); 1649 return; 1650 } 1651 1652 /* 1653 * ext4_insert_delayed_block - adds a delayed block to the extents status 1654 * tree, incrementing the reserved cluster/block 1655 * count or making a pending reservation 1656 * where needed 1657 * 1658 * @inode - file containing the newly added block 1659 * @lblk - logical block to be added 1660 * 1661 * Returns 0 on success, negative error code on failure. 1662 */ 1663 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1664 { 1665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1666 int ret; 1667 bool allocated = false; 1668 1669 /* 1670 * If the cluster containing lblk is shared with a delayed, 1671 * written, or unwritten extent in a bigalloc file system, it's 1672 * already been accounted for and does not need to be reserved. 1673 * A pending reservation must be made for the cluster if it's 1674 * shared with a written or unwritten extent and doesn't already 1675 * have one. Written and unwritten extents can be purged from the 1676 * extents status tree if the system is under memory pressure, so 1677 * it's necessary to examine the extent tree if a search of the 1678 * extents status tree doesn't get a match. 1679 */ 1680 if (sbi->s_cluster_ratio == 1) { 1681 ret = ext4_da_reserve_space(inode); 1682 if (ret != 0) /* ENOSPC */ 1683 return ret; 1684 } else { /* bigalloc */ 1685 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1686 if (!ext4_es_scan_clu(inode, 1687 &ext4_es_is_mapped, lblk)) { 1688 ret = ext4_clu_mapped(inode, 1689 EXT4_B2C(sbi, lblk)); 1690 if (ret < 0) 1691 return ret; 1692 if (ret == 0) { 1693 ret = ext4_da_reserve_space(inode); 1694 if (ret != 0) /* ENOSPC */ 1695 return ret; 1696 } else { 1697 allocated = true; 1698 } 1699 } else { 1700 allocated = true; 1701 } 1702 } 1703 } 1704 1705 ext4_es_insert_delayed_block(inode, lblk, allocated); 1706 return 0; 1707 } 1708 1709 /* 1710 * This function is grabs code from the very beginning of 1711 * ext4_map_blocks, but assumes that the caller is from delayed write 1712 * time. This function looks up the requested blocks and sets the 1713 * buffer delay bit under the protection of i_data_sem. 1714 */ 1715 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1716 struct ext4_map_blocks *map, 1717 struct buffer_head *bh) 1718 { 1719 struct extent_status es; 1720 int retval; 1721 sector_t invalid_block = ~((sector_t) 0xffff); 1722 #ifdef ES_AGGRESSIVE_TEST 1723 struct ext4_map_blocks orig_map; 1724 1725 memcpy(&orig_map, map, sizeof(*map)); 1726 #endif 1727 1728 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1729 invalid_block = ~0; 1730 1731 map->m_flags = 0; 1732 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1733 (unsigned long) map->m_lblk); 1734 1735 /* Lookup extent status tree firstly */ 1736 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1737 if (ext4_es_is_hole(&es)) 1738 goto add_delayed; 1739 1740 /* 1741 * Delayed extent could be allocated by fallocate. 1742 * So we need to check it. 1743 */ 1744 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1745 map_bh(bh, inode->i_sb, invalid_block); 1746 set_buffer_new(bh); 1747 set_buffer_delay(bh); 1748 return 0; 1749 } 1750 1751 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1752 retval = es.es_len - (iblock - es.es_lblk); 1753 if (retval > map->m_len) 1754 retval = map->m_len; 1755 map->m_len = retval; 1756 if (ext4_es_is_written(&es)) 1757 map->m_flags |= EXT4_MAP_MAPPED; 1758 else if (ext4_es_is_unwritten(&es)) 1759 map->m_flags |= EXT4_MAP_UNWRITTEN; 1760 else 1761 BUG(); 1762 1763 #ifdef ES_AGGRESSIVE_TEST 1764 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1765 #endif 1766 return retval; 1767 } 1768 1769 /* 1770 * Try to see if we can get the block without requesting a new 1771 * file system block. 1772 */ 1773 down_read(&EXT4_I(inode)->i_data_sem); 1774 if (ext4_has_inline_data(inode)) 1775 retval = 0; 1776 else 1777 retval = ext4_map_query_blocks(NULL, inode, map); 1778 up_read(&EXT4_I(inode)->i_data_sem); 1779 if (retval) 1780 return retval; 1781 1782 add_delayed: 1783 down_write(&EXT4_I(inode)->i_data_sem); 1784 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1785 up_write(&EXT4_I(inode)->i_data_sem); 1786 if (retval) 1787 return retval; 1788 1789 map_bh(bh, inode->i_sb, invalid_block); 1790 set_buffer_new(bh); 1791 set_buffer_delay(bh); 1792 return retval; 1793 } 1794 1795 /* 1796 * This is a special get_block_t callback which is used by 1797 * ext4_da_write_begin(). It will either return mapped block or 1798 * reserve space for a single block. 1799 * 1800 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1801 * We also have b_blocknr = -1 and b_bdev initialized properly 1802 * 1803 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1804 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1805 * initialized properly. 1806 */ 1807 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1808 struct buffer_head *bh, int create) 1809 { 1810 struct ext4_map_blocks map; 1811 int ret = 0; 1812 1813 BUG_ON(create == 0); 1814 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1815 1816 map.m_lblk = iblock; 1817 map.m_len = 1; 1818 1819 /* 1820 * first, we need to know whether the block is allocated already 1821 * preallocated blocks are unmapped but should treated 1822 * the same as allocated blocks. 1823 */ 1824 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1825 if (ret <= 0) 1826 return ret; 1827 1828 map_bh(bh, inode->i_sb, map.m_pblk); 1829 ext4_update_bh_state(bh, map.m_flags); 1830 1831 if (buffer_unwritten(bh)) { 1832 /* A delayed write to unwritten bh should be marked 1833 * new and mapped. Mapped ensures that we don't do 1834 * get_block multiple times when we write to the same 1835 * offset and new ensures that we do proper zero out 1836 * for partial write. 1837 */ 1838 set_buffer_new(bh); 1839 set_buffer_mapped(bh); 1840 } 1841 return 0; 1842 } 1843 1844 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1845 { 1846 mpd->first_page += folio_nr_pages(folio); 1847 folio_unlock(folio); 1848 } 1849 1850 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1851 { 1852 size_t len; 1853 loff_t size; 1854 int err; 1855 1856 BUG_ON(folio->index != mpd->first_page); 1857 folio_clear_dirty_for_io(folio); 1858 /* 1859 * We have to be very careful here! Nothing protects writeback path 1860 * against i_size changes and the page can be writeably mapped into 1861 * page tables. So an application can be growing i_size and writing 1862 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1863 * write-protects our page in page tables and the page cannot get 1864 * written to again until we release folio lock. So only after 1865 * folio_clear_dirty_for_io() we are safe to sample i_size for 1866 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1867 * on the barrier provided by folio_test_clear_dirty() in 1868 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1869 * after page tables are updated. 1870 */ 1871 size = i_size_read(mpd->inode); 1872 len = folio_size(folio); 1873 if (folio_pos(folio) + len > size && 1874 !ext4_verity_in_progress(mpd->inode)) 1875 len = size & ~PAGE_MASK; 1876 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1877 if (!err) 1878 mpd->wbc->nr_to_write--; 1879 1880 return err; 1881 } 1882 1883 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1884 1885 /* 1886 * mballoc gives us at most this number of blocks... 1887 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1888 * The rest of mballoc seems to handle chunks up to full group size. 1889 */ 1890 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1891 1892 /* 1893 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1894 * 1895 * @mpd - extent of blocks 1896 * @lblk - logical number of the block in the file 1897 * @bh - buffer head we want to add to the extent 1898 * 1899 * The function is used to collect contig. blocks in the same state. If the 1900 * buffer doesn't require mapping for writeback and we haven't started the 1901 * extent of buffers to map yet, the function returns 'true' immediately - the 1902 * caller can write the buffer right away. Otherwise the function returns true 1903 * if the block has been added to the extent, false if the block couldn't be 1904 * added. 1905 */ 1906 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1907 struct buffer_head *bh) 1908 { 1909 struct ext4_map_blocks *map = &mpd->map; 1910 1911 /* Buffer that doesn't need mapping for writeback? */ 1912 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1913 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1914 /* So far no extent to map => we write the buffer right away */ 1915 if (map->m_len == 0) 1916 return true; 1917 return false; 1918 } 1919 1920 /* First block in the extent? */ 1921 if (map->m_len == 0) { 1922 /* We cannot map unless handle is started... */ 1923 if (!mpd->do_map) 1924 return false; 1925 map->m_lblk = lblk; 1926 map->m_len = 1; 1927 map->m_flags = bh->b_state & BH_FLAGS; 1928 return true; 1929 } 1930 1931 /* Don't go larger than mballoc is willing to allocate */ 1932 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1933 return false; 1934 1935 /* Can we merge the block to our big extent? */ 1936 if (lblk == map->m_lblk + map->m_len && 1937 (bh->b_state & BH_FLAGS) == map->m_flags) { 1938 map->m_len++; 1939 return true; 1940 } 1941 return false; 1942 } 1943 1944 /* 1945 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1946 * 1947 * @mpd - extent of blocks for mapping 1948 * @head - the first buffer in the page 1949 * @bh - buffer we should start processing from 1950 * @lblk - logical number of the block in the file corresponding to @bh 1951 * 1952 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1953 * the page for IO if all buffers in this page were mapped and there's no 1954 * accumulated extent of buffers to map or add buffers in the page to the 1955 * extent of buffers to map. The function returns 1 if the caller can continue 1956 * by processing the next page, 0 if it should stop adding buffers to the 1957 * extent to map because we cannot extend it anymore. It can also return value 1958 * < 0 in case of error during IO submission. 1959 */ 1960 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1961 struct buffer_head *head, 1962 struct buffer_head *bh, 1963 ext4_lblk_t lblk) 1964 { 1965 struct inode *inode = mpd->inode; 1966 int err; 1967 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1968 >> inode->i_blkbits; 1969 1970 if (ext4_verity_in_progress(inode)) 1971 blocks = EXT_MAX_BLOCKS; 1972 1973 do { 1974 BUG_ON(buffer_locked(bh)); 1975 1976 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1977 /* Found extent to map? */ 1978 if (mpd->map.m_len) 1979 return 0; 1980 /* Buffer needs mapping and handle is not started? */ 1981 if (!mpd->do_map) 1982 return 0; 1983 /* Everything mapped so far and we hit EOF */ 1984 break; 1985 } 1986 } while (lblk++, (bh = bh->b_this_page) != head); 1987 /* So far everything mapped? Submit the page for IO. */ 1988 if (mpd->map.m_len == 0) { 1989 err = mpage_submit_folio(mpd, head->b_folio); 1990 if (err < 0) 1991 return err; 1992 mpage_folio_done(mpd, head->b_folio); 1993 } 1994 if (lblk >= blocks) { 1995 mpd->scanned_until_end = 1; 1996 return 0; 1997 } 1998 return 1; 1999 } 2000 2001 /* 2002 * mpage_process_folio - update folio buffers corresponding to changed extent 2003 * and may submit fully mapped page for IO 2004 * @mpd: description of extent to map, on return next extent to map 2005 * @folio: Contains these buffers. 2006 * @m_lblk: logical block mapping. 2007 * @m_pblk: corresponding physical mapping. 2008 * @map_bh: determines on return whether this page requires any further 2009 * mapping or not. 2010 * 2011 * Scan given folio buffers corresponding to changed extent and update buffer 2012 * state according to new extent state. 2013 * We map delalloc buffers to their physical location, clear unwritten bits. 2014 * If the given folio is not fully mapped, we update @mpd to the next extent in 2015 * the given folio that needs mapping & return @map_bh as true. 2016 */ 2017 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2018 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2019 bool *map_bh) 2020 { 2021 struct buffer_head *head, *bh; 2022 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2023 ext4_lblk_t lblk = *m_lblk; 2024 ext4_fsblk_t pblock = *m_pblk; 2025 int err = 0; 2026 int blkbits = mpd->inode->i_blkbits; 2027 ssize_t io_end_size = 0; 2028 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2029 2030 bh = head = folio_buffers(folio); 2031 do { 2032 if (lblk < mpd->map.m_lblk) 2033 continue; 2034 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2035 /* 2036 * Buffer after end of mapped extent. 2037 * Find next buffer in the folio to map. 2038 */ 2039 mpd->map.m_len = 0; 2040 mpd->map.m_flags = 0; 2041 io_end_vec->size += io_end_size; 2042 2043 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2044 if (err > 0) 2045 err = 0; 2046 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2047 io_end_vec = ext4_alloc_io_end_vec(io_end); 2048 if (IS_ERR(io_end_vec)) { 2049 err = PTR_ERR(io_end_vec); 2050 goto out; 2051 } 2052 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2053 } 2054 *map_bh = true; 2055 goto out; 2056 } 2057 if (buffer_delay(bh)) { 2058 clear_buffer_delay(bh); 2059 bh->b_blocknr = pblock++; 2060 } 2061 clear_buffer_unwritten(bh); 2062 io_end_size += (1 << blkbits); 2063 } while (lblk++, (bh = bh->b_this_page) != head); 2064 2065 io_end_vec->size += io_end_size; 2066 *map_bh = false; 2067 out: 2068 *m_lblk = lblk; 2069 *m_pblk = pblock; 2070 return err; 2071 } 2072 2073 /* 2074 * mpage_map_buffers - update buffers corresponding to changed extent and 2075 * submit fully mapped pages for IO 2076 * 2077 * @mpd - description of extent to map, on return next extent to map 2078 * 2079 * Scan buffers corresponding to changed extent (we expect corresponding pages 2080 * to be already locked) and update buffer state according to new extent state. 2081 * We map delalloc buffers to their physical location, clear unwritten bits, 2082 * and mark buffers as uninit when we perform writes to unwritten extents 2083 * and do extent conversion after IO is finished. If the last page is not fully 2084 * mapped, we update @map to the next extent in the last page that needs 2085 * mapping. Otherwise we submit the page for IO. 2086 */ 2087 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2088 { 2089 struct folio_batch fbatch; 2090 unsigned nr, i; 2091 struct inode *inode = mpd->inode; 2092 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2093 pgoff_t start, end; 2094 ext4_lblk_t lblk; 2095 ext4_fsblk_t pblock; 2096 int err; 2097 bool map_bh = false; 2098 2099 start = mpd->map.m_lblk >> bpp_bits; 2100 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2101 lblk = start << bpp_bits; 2102 pblock = mpd->map.m_pblk; 2103 2104 folio_batch_init(&fbatch); 2105 while (start <= end) { 2106 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2107 if (nr == 0) 2108 break; 2109 for (i = 0; i < nr; i++) { 2110 struct folio *folio = fbatch.folios[i]; 2111 2112 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2113 &map_bh); 2114 /* 2115 * If map_bh is true, means page may require further bh 2116 * mapping, or maybe the page was submitted for IO. 2117 * So we return to call further extent mapping. 2118 */ 2119 if (err < 0 || map_bh) 2120 goto out; 2121 /* Page fully mapped - let IO run! */ 2122 err = mpage_submit_folio(mpd, folio); 2123 if (err < 0) 2124 goto out; 2125 mpage_folio_done(mpd, folio); 2126 } 2127 folio_batch_release(&fbatch); 2128 } 2129 /* Extent fully mapped and matches with page boundary. We are done. */ 2130 mpd->map.m_len = 0; 2131 mpd->map.m_flags = 0; 2132 return 0; 2133 out: 2134 folio_batch_release(&fbatch); 2135 return err; 2136 } 2137 2138 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2139 { 2140 struct inode *inode = mpd->inode; 2141 struct ext4_map_blocks *map = &mpd->map; 2142 int get_blocks_flags; 2143 int err, dioread_nolock; 2144 2145 trace_ext4_da_write_pages_extent(inode, map); 2146 /* 2147 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2148 * to convert an unwritten extent to be initialized (in the case 2149 * where we have written into one or more preallocated blocks). It is 2150 * possible that we're going to need more metadata blocks than 2151 * previously reserved. However we must not fail because we're in 2152 * writeback and there is nothing we can do about it so it might result 2153 * in data loss. So use reserved blocks to allocate metadata if 2154 * possible. 2155 * 2156 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2157 * the blocks in question are delalloc blocks. This indicates 2158 * that the blocks and quotas has already been checked when 2159 * the data was copied into the page cache. 2160 */ 2161 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2162 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2163 EXT4_GET_BLOCKS_IO_SUBMIT; 2164 dioread_nolock = ext4_should_dioread_nolock(inode); 2165 if (dioread_nolock) 2166 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2167 if (map->m_flags & BIT(BH_Delay)) 2168 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2169 2170 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2171 if (err < 0) 2172 return err; 2173 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2174 if (!mpd->io_submit.io_end->handle && 2175 ext4_handle_valid(handle)) { 2176 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2177 handle->h_rsv_handle = NULL; 2178 } 2179 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2180 } 2181 2182 BUG_ON(map->m_len == 0); 2183 return 0; 2184 } 2185 2186 /* 2187 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2188 * mpd->len and submit pages underlying it for IO 2189 * 2190 * @handle - handle for journal operations 2191 * @mpd - extent to map 2192 * @give_up_on_write - we set this to true iff there is a fatal error and there 2193 * is no hope of writing the data. The caller should discard 2194 * dirty pages to avoid infinite loops. 2195 * 2196 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2197 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2198 * them to initialized or split the described range from larger unwritten 2199 * extent. Note that we need not map all the described range since allocation 2200 * can return less blocks or the range is covered by more unwritten extents. We 2201 * cannot map more because we are limited by reserved transaction credits. On 2202 * the other hand we always make sure that the last touched page is fully 2203 * mapped so that it can be written out (and thus forward progress is 2204 * guaranteed). After mapping we submit all mapped pages for IO. 2205 */ 2206 static int mpage_map_and_submit_extent(handle_t *handle, 2207 struct mpage_da_data *mpd, 2208 bool *give_up_on_write) 2209 { 2210 struct inode *inode = mpd->inode; 2211 struct ext4_map_blocks *map = &mpd->map; 2212 int err; 2213 loff_t disksize; 2214 int progress = 0; 2215 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2216 struct ext4_io_end_vec *io_end_vec; 2217 2218 io_end_vec = ext4_alloc_io_end_vec(io_end); 2219 if (IS_ERR(io_end_vec)) 2220 return PTR_ERR(io_end_vec); 2221 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2222 do { 2223 err = mpage_map_one_extent(handle, mpd); 2224 if (err < 0) { 2225 struct super_block *sb = inode->i_sb; 2226 2227 if (ext4_forced_shutdown(sb)) 2228 goto invalidate_dirty_pages; 2229 /* 2230 * Let the uper layers retry transient errors. 2231 * In the case of ENOSPC, if ext4_count_free_blocks() 2232 * is non-zero, a commit should free up blocks. 2233 */ 2234 if ((err == -ENOMEM) || 2235 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2236 if (progress) 2237 goto update_disksize; 2238 return err; 2239 } 2240 ext4_msg(sb, KERN_CRIT, 2241 "Delayed block allocation failed for " 2242 "inode %lu at logical offset %llu with" 2243 " max blocks %u with error %d", 2244 inode->i_ino, 2245 (unsigned long long)map->m_lblk, 2246 (unsigned)map->m_len, -err); 2247 ext4_msg(sb, KERN_CRIT, 2248 "This should not happen!! Data will " 2249 "be lost\n"); 2250 if (err == -ENOSPC) 2251 ext4_print_free_blocks(inode); 2252 invalidate_dirty_pages: 2253 *give_up_on_write = true; 2254 return err; 2255 } 2256 progress = 1; 2257 /* 2258 * Update buffer state, submit mapped pages, and get us new 2259 * extent to map 2260 */ 2261 err = mpage_map_and_submit_buffers(mpd); 2262 if (err < 0) 2263 goto update_disksize; 2264 } while (map->m_len); 2265 2266 update_disksize: 2267 /* 2268 * Update on-disk size after IO is submitted. Races with 2269 * truncate are avoided by checking i_size under i_data_sem. 2270 */ 2271 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2272 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2273 int err2; 2274 loff_t i_size; 2275 2276 down_write(&EXT4_I(inode)->i_data_sem); 2277 i_size = i_size_read(inode); 2278 if (disksize > i_size) 2279 disksize = i_size; 2280 if (disksize > EXT4_I(inode)->i_disksize) 2281 EXT4_I(inode)->i_disksize = disksize; 2282 up_write(&EXT4_I(inode)->i_data_sem); 2283 err2 = ext4_mark_inode_dirty(handle, inode); 2284 if (err2) { 2285 ext4_error_err(inode->i_sb, -err2, 2286 "Failed to mark inode %lu dirty", 2287 inode->i_ino); 2288 } 2289 if (!err) 2290 err = err2; 2291 } 2292 return err; 2293 } 2294 2295 /* 2296 * Calculate the total number of credits to reserve for one writepages 2297 * iteration. This is called from ext4_writepages(). We map an extent of 2298 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2299 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2300 * bpp - 1 blocks in bpp different extents. 2301 */ 2302 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2303 { 2304 int bpp = ext4_journal_blocks_per_page(inode); 2305 2306 return ext4_meta_trans_blocks(inode, 2307 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2308 } 2309 2310 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2311 size_t len) 2312 { 2313 struct buffer_head *page_bufs = folio_buffers(folio); 2314 struct inode *inode = folio->mapping->host; 2315 int ret, err; 2316 2317 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2318 NULL, do_journal_get_write_access); 2319 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2320 NULL, write_end_fn); 2321 if (ret == 0) 2322 ret = err; 2323 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2324 if (ret == 0) 2325 ret = err; 2326 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2327 2328 return ret; 2329 } 2330 2331 static int mpage_journal_page_buffers(handle_t *handle, 2332 struct mpage_da_data *mpd, 2333 struct folio *folio) 2334 { 2335 struct inode *inode = mpd->inode; 2336 loff_t size = i_size_read(inode); 2337 size_t len = folio_size(folio); 2338 2339 folio_clear_checked(folio); 2340 mpd->wbc->nr_to_write--; 2341 2342 if (folio_pos(folio) + len > size && 2343 !ext4_verity_in_progress(inode)) 2344 len = size & (len - 1); 2345 2346 return ext4_journal_folio_buffers(handle, folio, len); 2347 } 2348 2349 /* 2350 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2351 * needing mapping, submit mapped pages 2352 * 2353 * @mpd - where to look for pages 2354 * 2355 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2356 * IO immediately. If we cannot map blocks, we submit just already mapped 2357 * buffers in the page for IO and keep page dirty. When we can map blocks and 2358 * we find a page which isn't mapped we start accumulating extent of buffers 2359 * underlying these pages that needs mapping (formed by either delayed or 2360 * unwritten buffers). We also lock the pages containing these buffers. The 2361 * extent found is returned in @mpd structure (starting at mpd->lblk with 2362 * length mpd->len blocks). 2363 * 2364 * Note that this function can attach bios to one io_end structure which are 2365 * neither logically nor physically contiguous. Although it may seem as an 2366 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2367 * case as we need to track IO to all buffers underlying a page in one io_end. 2368 */ 2369 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2370 { 2371 struct address_space *mapping = mpd->inode->i_mapping; 2372 struct folio_batch fbatch; 2373 unsigned int nr_folios; 2374 pgoff_t index = mpd->first_page; 2375 pgoff_t end = mpd->last_page; 2376 xa_mark_t tag; 2377 int i, err = 0; 2378 int blkbits = mpd->inode->i_blkbits; 2379 ext4_lblk_t lblk; 2380 struct buffer_head *head; 2381 handle_t *handle = NULL; 2382 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2383 2384 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2385 tag = PAGECACHE_TAG_TOWRITE; 2386 else 2387 tag = PAGECACHE_TAG_DIRTY; 2388 2389 mpd->map.m_len = 0; 2390 mpd->next_page = index; 2391 if (ext4_should_journal_data(mpd->inode)) { 2392 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2393 bpp); 2394 if (IS_ERR(handle)) 2395 return PTR_ERR(handle); 2396 } 2397 folio_batch_init(&fbatch); 2398 while (index <= end) { 2399 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2400 tag, &fbatch); 2401 if (nr_folios == 0) 2402 break; 2403 2404 for (i = 0; i < nr_folios; i++) { 2405 struct folio *folio = fbatch.folios[i]; 2406 2407 /* 2408 * Accumulated enough dirty pages? This doesn't apply 2409 * to WB_SYNC_ALL mode. For integrity sync we have to 2410 * keep going because someone may be concurrently 2411 * dirtying pages, and we might have synced a lot of 2412 * newly appeared dirty pages, but have not synced all 2413 * of the old dirty pages. 2414 */ 2415 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2416 mpd->wbc->nr_to_write <= 2417 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2418 goto out; 2419 2420 /* If we can't merge this page, we are done. */ 2421 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2422 goto out; 2423 2424 if (handle) { 2425 err = ext4_journal_ensure_credits(handle, bpp, 2426 0); 2427 if (err < 0) 2428 goto out; 2429 } 2430 2431 folio_lock(folio); 2432 /* 2433 * If the page is no longer dirty, or its mapping no 2434 * longer corresponds to inode we are writing (which 2435 * means it has been truncated or invalidated), or the 2436 * page is already under writeback and we are not doing 2437 * a data integrity writeback, skip the page 2438 */ 2439 if (!folio_test_dirty(folio) || 2440 (folio_test_writeback(folio) && 2441 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2442 unlikely(folio->mapping != mapping)) { 2443 folio_unlock(folio); 2444 continue; 2445 } 2446 2447 folio_wait_writeback(folio); 2448 BUG_ON(folio_test_writeback(folio)); 2449 2450 /* 2451 * Should never happen but for buggy code in 2452 * other subsystems that call 2453 * set_page_dirty() without properly warning 2454 * the file system first. See [1] for more 2455 * information. 2456 * 2457 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2458 */ 2459 if (!folio_buffers(folio)) { 2460 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2461 folio_clear_dirty(folio); 2462 folio_unlock(folio); 2463 continue; 2464 } 2465 2466 if (mpd->map.m_len == 0) 2467 mpd->first_page = folio->index; 2468 mpd->next_page = folio_next_index(folio); 2469 /* 2470 * Writeout when we cannot modify metadata is simple. 2471 * Just submit the page. For data=journal mode we 2472 * first handle writeout of the page for checkpoint and 2473 * only after that handle delayed page dirtying. This 2474 * makes sure current data is checkpointed to the final 2475 * location before possibly journalling it again which 2476 * is desirable when the page is frequently dirtied 2477 * through a pin. 2478 */ 2479 if (!mpd->can_map) { 2480 err = mpage_submit_folio(mpd, folio); 2481 if (err < 0) 2482 goto out; 2483 /* Pending dirtying of journalled data? */ 2484 if (folio_test_checked(folio)) { 2485 err = mpage_journal_page_buffers(handle, 2486 mpd, folio); 2487 if (err < 0) 2488 goto out; 2489 mpd->journalled_more_data = 1; 2490 } 2491 mpage_folio_done(mpd, folio); 2492 } else { 2493 /* Add all dirty buffers to mpd */ 2494 lblk = ((ext4_lblk_t)folio->index) << 2495 (PAGE_SHIFT - blkbits); 2496 head = folio_buffers(folio); 2497 err = mpage_process_page_bufs(mpd, head, head, 2498 lblk); 2499 if (err <= 0) 2500 goto out; 2501 err = 0; 2502 } 2503 } 2504 folio_batch_release(&fbatch); 2505 cond_resched(); 2506 } 2507 mpd->scanned_until_end = 1; 2508 if (handle) 2509 ext4_journal_stop(handle); 2510 return 0; 2511 out: 2512 folio_batch_release(&fbatch); 2513 if (handle) 2514 ext4_journal_stop(handle); 2515 return err; 2516 } 2517 2518 static int ext4_do_writepages(struct mpage_da_data *mpd) 2519 { 2520 struct writeback_control *wbc = mpd->wbc; 2521 pgoff_t writeback_index = 0; 2522 long nr_to_write = wbc->nr_to_write; 2523 int range_whole = 0; 2524 int cycled = 1; 2525 handle_t *handle = NULL; 2526 struct inode *inode = mpd->inode; 2527 struct address_space *mapping = inode->i_mapping; 2528 int needed_blocks, rsv_blocks = 0, ret = 0; 2529 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2530 struct blk_plug plug; 2531 bool give_up_on_write = false; 2532 2533 trace_ext4_writepages(inode, wbc); 2534 2535 /* 2536 * No pages to write? This is mainly a kludge to avoid starting 2537 * a transaction for special inodes like journal inode on last iput() 2538 * because that could violate lock ordering on umount 2539 */ 2540 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2541 goto out_writepages; 2542 2543 /* 2544 * If the filesystem has aborted, it is read-only, so return 2545 * right away instead of dumping stack traces later on that 2546 * will obscure the real source of the problem. We test 2547 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2548 * the latter could be true if the filesystem is mounted 2549 * read-only, and in that case, ext4_writepages should 2550 * *never* be called, so if that ever happens, we would want 2551 * the stack trace. 2552 */ 2553 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2554 ret = -EROFS; 2555 goto out_writepages; 2556 } 2557 2558 /* 2559 * If we have inline data and arrive here, it means that 2560 * we will soon create the block for the 1st page, so 2561 * we'd better clear the inline data here. 2562 */ 2563 if (ext4_has_inline_data(inode)) { 2564 /* Just inode will be modified... */ 2565 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2566 if (IS_ERR(handle)) { 2567 ret = PTR_ERR(handle); 2568 goto out_writepages; 2569 } 2570 BUG_ON(ext4_test_inode_state(inode, 2571 EXT4_STATE_MAY_INLINE_DATA)); 2572 ext4_destroy_inline_data(handle, inode); 2573 ext4_journal_stop(handle); 2574 } 2575 2576 /* 2577 * data=journal mode does not do delalloc so we just need to writeout / 2578 * journal already mapped buffers. On the other hand we need to commit 2579 * transaction to make data stable. We expect all the data to be 2580 * already in the journal (the only exception are DMA pinned pages 2581 * dirtied behind our back) so we commit transaction here and run the 2582 * writeback loop to checkpoint them. The checkpointing is not actually 2583 * necessary to make data persistent *but* quite a few places (extent 2584 * shifting operations, fsverity, ...) depend on being able to drop 2585 * pagecache pages after calling filemap_write_and_wait() and for that 2586 * checkpointing needs to happen. 2587 */ 2588 if (ext4_should_journal_data(inode)) { 2589 mpd->can_map = 0; 2590 if (wbc->sync_mode == WB_SYNC_ALL) 2591 ext4_fc_commit(sbi->s_journal, 2592 EXT4_I(inode)->i_datasync_tid); 2593 } 2594 mpd->journalled_more_data = 0; 2595 2596 if (ext4_should_dioread_nolock(inode)) { 2597 /* 2598 * We may need to convert up to one extent per block in 2599 * the page and we may dirty the inode. 2600 */ 2601 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2602 PAGE_SIZE >> inode->i_blkbits); 2603 } 2604 2605 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2606 range_whole = 1; 2607 2608 if (wbc->range_cyclic) { 2609 writeback_index = mapping->writeback_index; 2610 if (writeback_index) 2611 cycled = 0; 2612 mpd->first_page = writeback_index; 2613 mpd->last_page = -1; 2614 } else { 2615 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2616 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2617 } 2618 2619 ext4_io_submit_init(&mpd->io_submit, wbc); 2620 retry: 2621 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2622 tag_pages_for_writeback(mapping, mpd->first_page, 2623 mpd->last_page); 2624 blk_start_plug(&plug); 2625 2626 /* 2627 * First writeback pages that don't need mapping - we can avoid 2628 * starting a transaction unnecessarily and also avoid being blocked 2629 * in the block layer on device congestion while having transaction 2630 * started. 2631 */ 2632 mpd->do_map = 0; 2633 mpd->scanned_until_end = 0; 2634 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2635 if (!mpd->io_submit.io_end) { 2636 ret = -ENOMEM; 2637 goto unplug; 2638 } 2639 ret = mpage_prepare_extent_to_map(mpd); 2640 /* Unlock pages we didn't use */ 2641 mpage_release_unused_pages(mpd, false); 2642 /* Submit prepared bio */ 2643 ext4_io_submit(&mpd->io_submit); 2644 ext4_put_io_end_defer(mpd->io_submit.io_end); 2645 mpd->io_submit.io_end = NULL; 2646 if (ret < 0) 2647 goto unplug; 2648 2649 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2650 /* For each extent of pages we use new io_end */ 2651 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2652 if (!mpd->io_submit.io_end) { 2653 ret = -ENOMEM; 2654 break; 2655 } 2656 2657 WARN_ON_ONCE(!mpd->can_map); 2658 /* 2659 * We have two constraints: We find one extent to map and we 2660 * must always write out whole page (makes a difference when 2661 * blocksize < pagesize) so that we don't block on IO when we 2662 * try to write out the rest of the page. Journalled mode is 2663 * not supported by delalloc. 2664 */ 2665 BUG_ON(ext4_should_journal_data(inode)); 2666 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2667 2668 /* start a new transaction */ 2669 handle = ext4_journal_start_with_reserve(inode, 2670 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2671 if (IS_ERR(handle)) { 2672 ret = PTR_ERR(handle); 2673 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2674 "%ld pages, ino %lu; err %d", __func__, 2675 wbc->nr_to_write, inode->i_ino, ret); 2676 /* Release allocated io_end */ 2677 ext4_put_io_end(mpd->io_submit.io_end); 2678 mpd->io_submit.io_end = NULL; 2679 break; 2680 } 2681 mpd->do_map = 1; 2682 2683 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2684 ret = mpage_prepare_extent_to_map(mpd); 2685 if (!ret && mpd->map.m_len) 2686 ret = mpage_map_and_submit_extent(handle, mpd, 2687 &give_up_on_write); 2688 /* 2689 * Caution: If the handle is synchronous, 2690 * ext4_journal_stop() can wait for transaction commit 2691 * to finish which may depend on writeback of pages to 2692 * complete or on page lock to be released. In that 2693 * case, we have to wait until after we have 2694 * submitted all the IO, released page locks we hold, 2695 * and dropped io_end reference (for extent conversion 2696 * to be able to complete) before stopping the handle. 2697 */ 2698 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2699 ext4_journal_stop(handle); 2700 handle = NULL; 2701 mpd->do_map = 0; 2702 } 2703 /* Unlock pages we didn't use */ 2704 mpage_release_unused_pages(mpd, give_up_on_write); 2705 /* Submit prepared bio */ 2706 ext4_io_submit(&mpd->io_submit); 2707 2708 /* 2709 * Drop our io_end reference we got from init. We have 2710 * to be careful and use deferred io_end finishing if 2711 * we are still holding the transaction as we can 2712 * release the last reference to io_end which may end 2713 * up doing unwritten extent conversion. 2714 */ 2715 if (handle) { 2716 ext4_put_io_end_defer(mpd->io_submit.io_end); 2717 ext4_journal_stop(handle); 2718 } else 2719 ext4_put_io_end(mpd->io_submit.io_end); 2720 mpd->io_submit.io_end = NULL; 2721 2722 if (ret == -ENOSPC && sbi->s_journal) { 2723 /* 2724 * Commit the transaction which would 2725 * free blocks released in the transaction 2726 * and try again 2727 */ 2728 jbd2_journal_force_commit_nested(sbi->s_journal); 2729 ret = 0; 2730 continue; 2731 } 2732 /* Fatal error - ENOMEM, EIO... */ 2733 if (ret) 2734 break; 2735 } 2736 unplug: 2737 blk_finish_plug(&plug); 2738 if (!ret && !cycled && wbc->nr_to_write > 0) { 2739 cycled = 1; 2740 mpd->last_page = writeback_index - 1; 2741 mpd->first_page = 0; 2742 goto retry; 2743 } 2744 2745 /* Update index */ 2746 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2747 /* 2748 * Set the writeback_index so that range_cyclic 2749 * mode will write it back later 2750 */ 2751 mapping->writeback_index = mpd->first_page; 2752 2753 out_writepages: 2754 trace_ext4_writepages_result(inode, wbc, ret, 2755 nr_to_write - wbc->nr_to_write); 2756 return ret; 2757 } 2758 2759 static int ext4_writepages(struct address_space *mapping, 2760 struct writeback_control *wbc) 2761 { 2762 struct super_block *sb = mapping->host->i_sb; 2763 struct mpage_da_data mpd = { 2764 .inode = mapping->host, 2765 .wbc = wbc, 2766 .can_map = 1, 2767 }; 2768 int ret; 2769 int alloc_ctx; 2770 2771 if (unlikely(ext4_forced_shutdown(sb))) 2772 return -EIO; 2773 2774 alloc_ctx = ext4_writepages_down_read(sb); 2775 ret = ext4_do_writepages(&mpd); 2776 /* 2777 * For data=journal writeback we could have come across pages marked 2778 * for delayed dirtying (PageChecked) which were just added to the 2779 * running transaction. Try once more to get them to stable storage. 2780 */ 2781 if (!ret && mpd.journalled_more_data) 2782 ret = ext4_do_writepages(&mpd); 2783 ext4_writepages_up_read(sb, alloc_ctx); 2784 2785 return ret; 2786 } 2787 2788 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2789 { 2790 struct writeback_control wbc = { 2791 .sync_mode = WB_SYNC_ALL, 2792 .nr_to_write = LONG_MAX, 2793 .range_start = jinode->i_dirty_start, 2794 .range_end = jinode->i_dirty_end, 2795 }; 2796 struct mpage_da_data mpd = { 2797 .inode = jinode->i_vfs_inode, 2798 .wbc = &wbc, 2799 .can_map = 0, 2800 }; 2801 return ext4_do_writepages(&mpd); 2802 } 2803 2804 static int ext4_dax_writepages(struct address_space *mapping, 2805 struct writeback_control *wbc) 2806 { 2807 int ret; 2808 long nr_to_write = wbc->nr_to_write; 2809 struct inode *inode = mapping->host; 2810 int alloc_ctx; 2811 2812 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2813 return -EIO; 2814 2815 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2816 trace_ext4_writepages(inode, wbc); 2817 2818 ret = dax_writeback_mapping_range(mapping, 2819 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2820 trace_ext4_writepages_result(inode, wbc, ret, 2821 nr_to_write - wbc->nr_to_write); 2822 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2823 return ret; 2824 } 2825 2826 static int ext4_nonda_switch(struct super_block *sb) 2827 { 2828 s64 free_clusters, dirty_clusters; 2829 struct ext4_sb_info *sbi = EXT4_SB(sb); 2830 2831 /* 2832 * switch to non delalloc mode if we are running low 2833 * on free block. The free block accounting via percpu 2834 * counters can get slightly wrong with percpu_counter_batch getting 2835 * accumulated on each CPU without updating global counters 2836 * Delalloc need an accurate free block accounting. So switch 2837 * to non delalloc when we are near to error range. 2838 */ 2839 free_clusters = 2840 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2841 dirty_clusters = 2842 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2843 /* 2844 * Start pushing delalloc when 1/2 of free blocks are dirty. 2845 */ 2846 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2847 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2848 2849 if (2 * free_clusters < 3 * dirty_clusters || 2850 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2851 /* 2852 * free block count is less than 150% of dirty blocks 2853 * or free blocks is less than watermark 2854 */ 2855 return 1; 2856 } 2857 return 0; 2858 } 2859 2860 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2861 loff_t pos, unsigned len, 2862 struct page **pagep, void **fsdata) 2863 { 2864 int ret, retries = 0; 2865 struct folio *folio; 2866 pgoff_t index; 2867 struct inode *inode = mapping->host; 2868 2869 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2870 return -EIO; 2871 2872 index = pos >> PAGE_SHIFT; 2873 2874 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2875 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2876 return ext4_write_begin(file, mapping, pos, 2877 len, pagep, fsdata); 2878 } 2879 *fsdata = (void *)0; 2880 trace_ext4_da_write_begin(inode, pos, len); 2881 2882 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2883 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2884 pagep, fsdata); 2885 if (ret < 0) 2886 return ret; 2887 if (ret == 1) 2888 return 0; 2889 } 2890 2891 retry: 2892 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2893 mapping_gfp_mask(mapping)); 2894 if (IS_ERR(folio)) 2895 return PTR_ERR(folio); 2896 2897 #ifdef CONFIG_FS_ENCRYPTION 2898 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2899 #else 2900 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2901 #endif 2902 if (ret < 0) { 2903 folio_unlock(folio); 2904 folio_put(folio); 2905 /* 2906 * block_write_begin may have instantiated a few blocks 2907 * outside i_size. Trim these off again. Don't need 2908 * i_size_read because we hold inode lock. 2909 */ 2910 if (pos + len > inode->i_size) 2911 ext4_truncate_failed_write(inode); 2912 2913 if (ret == -ENOSPC && 2914 ext4_should_retry_alloc(inode->i_sb, &retries)) 2915 goto retry; 2916 return ret; 2917 } 2918 2919 *pagep = &folio->page; 2920 return ret; 2921 } 2922 2923 /* 2924 * Check if we should update i_disksize 2925 * when write to the end of file but not require block allocation 2926 */ 2927 static int ext4_da_should_update_i_disksize(struct folio *folio, 2928 unsigned long offset) 2929 { 2930 struct buffer_head *bh; 2931 struct inode *inode = folio->mapping->host; 2932 unsigned int idx; 2933 int i; 2934 2935 bh = folio_buffers(folio); 2936 idx = offset >> inode->i_blkbits; 2937 2938 for (i = 0; i < idx; i++) 2939 bh = bh->b_this_page; 2940 2941 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2942 return 0; 2943 return 1; 2944 } 2945 2946 static int ext4_da_do_write_end(struct address_space *mapping, 2947 loff_t pos, unsigned len, unsigned copied, 2948 struct page *page) 2949 { 2950 struct inode *inode = mapping->host; 2951 loff_t old_size = inode->i_size; 2952 bool disksize_changed = false; 2953 loff_t new_i_size; 2954 2955 /* 2956 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2957 * flag, which all that's needed to trigger page writeback. 2958 */ 2959 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL); 2960 new_i_size = pos + copied; 2961 2962 /* 2963 * It's important to update i_size while still holding page lock, 2964 * because page writeout could otherwise come in and zero beyond 2965 * i_size. 2966 * 2967 * Since we are holding inode lock, we are sure i_disksize <= 2968 * i_size. We also know that if i_disksize < i_size, there are 2969 * delalloc writes pending in the range up to i_size. If the end of 2970 * the current write is <= i_size, there's no need to touch 2971 * i_disksize since writeback will push i_disksize up to i_size 2972 * eventually. If the end of the current write is > i_size and 2973 * inside an allocated block which ext4_da_should_update_i_disksize() 2974 * checked, we need to update i_disksize here as certain 2975 * ext4_writepages() paths not allocating blocks and update i_disksize. 2976 */ 2977 if (new_i_size > inode->i_size) { 2978 unsigned long end; 2979 2980 i_size_write(inode, new_i_size); 2981 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2982 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) { 2983 ext4_update_i_disksize(inode, new_i_size); 2984 disksize_changed = true; 2985 } 2986 } 2987 2988 unlock_page(page); 2989 put_page(page); 2990 2991 if (old_size < pos) 2992 pagecache_isize_extended(inode, old_size, pos); 2993 2994 if (disksize_changed) { 2995 handle_t *handle; 2996 2997 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 2998 if (IS_ERR(handle)) 2999 return PTR_ERR(handle); 3000 ext4_mark_inode_dirty(handle, inode); 3001 ext4_journal_stop(handle); 3002 } 3003 3004 return copied; 3005 } 3006 3007 static int ext4_da_write_end(struct file *file, 3008 struct address_space *mapping, 3009 loff_t pos, unsigned len, unsigned copied, 3010 struct page *page, void *fsdata) 3011 { 3012 struct inode *inode = mapping->host; 3013 int write_mode = (int)(unsigned long)fsdata; 3014 struct folio *folio = page_folio(page); 3015 3016 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3017 return ext4_write_end(file, mapping, pos, 3018 len, copied, &folio->page, fsdata); 3019 3020 trace_ext4_da_write_end(inode, pos, len, copied); 3021 3022 if (write_mode != CONVERT_INLINE_DATA && 3023 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3024 ext4_has_inline_data(inode)) 3025 return ext4_write_inline_data_end(inode, pos, len, copied, 3026 folio); 3027 3028 if (unlikely(copied < len) && !PageUptodate(page)) 3029 copied = 0; 3030 3031 return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page); 3032 } 3033 3034 /* 3035 * Force all delayed allocation blocks to be allocated for a given inode. 3036 */ 3037 int ext4_alloc_da_blocks(struct inode *inode) 3038 { 3039 trace_ext4_alloc_da_blocks(inode); 3040 3041 if (!EXT4_I(inode)->i_reserved_data_blocks) 3042 return 0; 3043 3044 /* 3045 * We do something simple for now. The filemap_flush() will 3046 * also start triggering a write of the data blocks, which is 3047 * not strictly speaking necessary (and for users of 3048 * laptop_mode, not even desirable). However, to do otherwise 3049 * would require replicating code paths in: 3050 * 3051 * ext4_writepages() -> 3052 * write_cache_pages() ---> (via passed in callback function) 3053 * __mpage_da_writepage() --> 3054 * mpage_add_bh_to_extent() 3055 * mpage_da_map_blocks() 3056 * 3057 * The problem is that write_cache_pages(), located in 3058 * mm/page-writeback.c, marks pages clean in preparation for 3059 * doing I/O, which is not desirable if we're not planning on 3060 * doing I/O at all. 3061 * 3062 * We could call write_cache_pages(), and then redirty all of 3063 * the pages by calling redirty_page_for_writepage() but that 3064 * would be ugly in the extreme. So instead we would need to 3065 * replicate parts of the code in the above functions, 3066 * simplifying them because we wouldn't actually intend to 3067 * write out the pages, but rather only collect contiguous 3068 * logical block extents, call the multi-block allocator, and 3069 * then update the buffer heads with the block allocations. 3070 * 3071 * For now, though, we'll cheat by calling filemap_flush(), 3072 * which will map the blocks, and start the I/O, but not 3073 * actually wait for the I/O to complete. 3074 */ 3075 return filemap_flush(inode->i_mapping); 3076 } 3077 3078 /* 3079 * bmap() is special. It gets used by applications such as lilo and by 3080 * the swapper to find the on-disk block of a specific piece of data. 3081 * 3082 * Naturally, this is dangerous if the block concerned is still in the 3083 * journal. If somebody makes a swapfile on an ext4 data-journaling 3084 * filesystem and enables swap, then they may get a nasty shock when the 3085 * data getting swapped to that swapfile suddenly gets overwritten by 3086 * the original zero's written out previously to the journal and 3087 * awaiting writeback in the kernel's buffer cache. 3088 * 3089 * So, if we see any bmap calls here on a modified, data-journaled file, 3090 * take extra steps to flush any blocks which might be in the cache. 3091 */ 3092 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3093 { 3094 struct inode *inode = mapping->host; 3095 sector_t ret = 0; 3096 3097 inode_lock_shared(inode); 3098 /* 3099 * We can get here for an inline file via the FIBMAP ioctl 3100 */ 3101 if (ext4_has_inline_data(inode)) 3102 goto out; 3103 3104 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3105 (test_opt(inode->i_sb, DELALLOC) || 3106 ext4_should_journal_data(inode))) { 3107 /* 3108 * With delalloc or journalled data we want to sync the file so 3109 * that we can make sure we allocate blocks for file and data 3110 * is in place for the user to see it 3111 */ 3112 filemap_write_and_wait(mapping); 3113 } 3114 3115 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3116 3117 out: 3118 inode_unlock_shared(inode); 3119 return ret; 3120 } 3121 3122 static int ext4_read_folio(struct file *file, struct folio *folio) 3123 { 3124 int ret = -EAGAIN; 3125 struct inode *inode = folio->mapping->host; 3126 3127 trace_ext4_read_folio(inode, folio); 3128 3129 if (ext4_has_inline_data(inode)) 3130 ret = ext4_readpage_inline(inode, folio); 3131 3132 if (ret == -EAGAIN) 3133 return ext4_mpage_readpages(inode, NULL, folio); 3134 3135 return ret; 3136 } 3137 3138 static void ext4_readahead(struct readahead_control *rac) 3139 { 3140 struct inode *inode = rac->mapping->host; 3141 3142 /* If the file has inline data, no need to do readahead. */ 3143 if (ext4_has_inline_data(inode)) 3144 return; 3145 3146 ext4_mpage_readpages(inode, rac, NULL); 3147 } 3148 3149 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3150 size_t length) 3151 { 3152 trace_ext4_invalidate_folio(folio, offset, length); 3153 3154 /* No journalling happens on data buffers when this function is used */ 3155 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3156 3157 block_invalidate_folio(folio, offset, length); 3158 } 3159 3160 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3161 size_t offset, size_t length) 3162 { 3163 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3164 3165 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3166 3167 /* 3168 * If it's a full truncate we just forget about the pending dirtying 3169 */ 3170 if (offset == 0 && length == folio_size(folio)) 3171 folio_clear_checked(folio); 3172 3173 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3174 } 3175 3176 /* Wrapper for aops... */ 3177 static void ext4_journalled_invalidate_folio(struct folio *folio, 3178 size_t offset, 3179 size_t length) 3180 { 3181 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3182 } 3183 3184 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3185 { 3186 struct inode *inode = folio->mapping->host; 3187 journal_t *journal = EXT4_JOURNAL(inode); 3188 3189 trace_ext4_release_folio(inode, folio); 3190 3191 /* Page has dirty journalled data -> cannot release */ 3192 if (folio_test_checked(folio)) 3193 return false; 3194 if (journal) 3195 return jbd2_journal_try_to_free_buffers(journal, folio); 3196 else 3197 return try_to_free_buffers(folio); 3198 } 3199 3200 static bool ext4_inode_datasync_dirty(struct inode *inode) 3201 { 3202 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3203 3204 if (journal) { 3205 if (jbd2_transaction_committed(journal, 3206 EXT4_I(inode)->i_datasync_tid)) 3207 return false; 3208 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3209 return !list_empty(&EXT4_I(inode)->i_fc_list); 3210 return true; 3211 } 3212 3213 /* Any metadata buffers to write? */ 3214 if (!list_empty(&inode->i_mapping->private_list)) 3215 return true; 3216 return inode->i_state & I_DIRTY_DATASYNC; 3217 } 3218 3219 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3220 struct ext4_map_blocks *map, loff_t offset, 3221 loff_t length, unsigned int flags) 3222 { 3223 u8 blkbits = inode->i_blkbits; 3224 3225 /* 3226 * Writes that span EOF might trigger an I/O size update on completion, 3227 * so consider them to be dirty for the purpose of O_DSYNC, even if 3228 * there is no other metadata changes being made or are pending. 3229 */ 3230 iomap->flags = 0; 3231 if (ext4_inode_datasync_dirty(inode) || 3232 offset + length > i_size_read(inode)) 3233 iomap->flags |= IOMAP_F_DIRTY; 3234 3235 if (map->m_flags & EXT4_MAP_NEW) 3236 iomap->flags |= IOMAP_F_NEW; 3237 3238 if (flags & IOMAP_DAX) 3239 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3240 else 3241 iomap->bdev = inode->i_sb->s_bdev; 3242 iomap->offset = (u64) map->m_lblk << blkbits; 3243 iomap->length = (u64) map->m_len << blkbits; 3244 3245 if ((map->m_flags & EXT4_MAP_MAPPED) && 3246 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3247 iomap->flags |= IOMAP_F_MERGED; 3248 3249 /* 3250 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3251 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3252 * set. In order for any allocated unwritten extents to be converted 3253 * into written extents correctly within the ->end_io() handler, we 3254 * need to ensure that the iomap->type is set appropriately. Hence, the 3255 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3256 * been set first. 3257 */ 3258 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3259 iomap->type = IOMAP_UNWRITTEN; 3260 iomap->addr = (u64) map->m_pblk << blkbits; 3261 if (flags & IOMAP_DAX) 3262 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3263 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3264 iomap->type = IOMAP_MAPPED; 3265 iomap->addr = (u64) map->m_pblk << blkbits; 3266 if (flags & IOMAP_DAX) 3267 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3268 } else { 3269 iomap->type = IOMAP_HOLE; 3270 iomap->addr = IOMAP_NULL_ADDR; 3271 } 3272 } 3273 3274 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3275 unsigned int flags) 3276 { 3277 handle_t *handle; 3278 u8 blkbits = inode->i_blkbits; 3279 int ret, dio_credits, m_flags = 0, retries = 0; 3280 3281 /* 3282 * Trim the mapping request to the maximum value that we can map at 3283 * once for direct I/O. 3284 */ 3285 if (map->m_len > DIO_MAX_BLOCKS) 3286 map->m_len = DIO_MAX_BLOCKS; 3287 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3288 3289 retry: 3290 /* 3291 * Either we allocate blocks and then don't get an unwritten extent, so 3292 * in that case we have reserved enough credits. Or, the blocks are 3293 * already allocated and unwritten. In that case, the extent conversion 3294 * fits into the credits as well. 3295 */ 3296 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3297 if (IS_ERR(handle)) 3298 return PTR_ERR(handle); 3299 3300 /* 3301 * DAX and direct I/O are the only two operations that are currently 3302 * supported with IOMAP_WRITE. 3303 */ 3304 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3305 if (flags & IOMAP_DAX) 3306 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3307 /* 3308 * We use i_size instead of i_disksize here because delalloc writeback 3309 * can complete at any point during the I/O and subsequently push the 3310 * i_disksize out to i_size. This could be beyond where direct I/O is 3311 * happening and thus expose allocated blocks to direct I/O reads. 3312 */ 3313 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3314 m_flags = EXT4_GET_BLOCKS_CREATE; 3315 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3316 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3317 3318 ret = ext4_map_blocks(handle, inode, map, m_flags); 3319 3320 /* 3321 * We cannot fill holes in indirect tree based inodes as that could 3322 * expose stale data in the case of a crash. Use the magic error code 3323 * to fallback to buffered I/O. 3324 */ 3325 if (!m_flags && !ret) 3326 ret = -ENOTBLK; 3327 3328 ext4_journal_stop(handle); 3329 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3330 goto retry; 3331 3332 return ret; 3333 } 3334 3335 3336 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3337 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3338 { 3339 int ret; 3340 struct ext4_map_blocks map; 3341 u8 blkbits = inode->i_blkbits; 3342 3343 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3344 return -EINVAL; 3345 3346 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3347 return -ERANGE; 3348 3349 /* 3350 * Calculate the first and last logical blocks respectively. 3351 */ 3352 map.m_lblk = offset >> blkbits; 3353 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3354 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3355 3356 if (flags & IOMAP_WRITE) { 3357 /* 3358 * We check here if the blocks are already allocated, then we 3359 * don't need to start a journal txn and we can directly return 3360 * the mapping information. This could boost performance 3361 * especially in multi-threaded overwrite requests. 3362 */ 3363 if (offset + length <= i_size_read(inode)) { 3364 ret = ext4_map_blocks(NULL, inode, &map, 0); 3365 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3366 goto out; 3367 } 3368 ret = ext4_iomap_alloc(inode, &map, flags); 3369 } else { 3370 ret = ext4_map_blocks(NULL, inode, &map, 0); 3371 } 3372 3373 if (ret < 0) 3374 return ret; 3375 out: 3376 /* 3377 * When inline encryption is enabled, sometimes I/O to an encrypted file 3378 * has to be broken up to guarantee DUN contiguity. Handle this by 3379 * limiting the length of the mapping returned. 3380 */ 3381 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3382 3383 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3384 3385 return 0; 3386 } 3387 3388 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3389 loff_t length, unsigned flags, struct iomap *iomap, 3390 struct iomap *srcmap) 3391 { 3392 int ret; 3393 3394 /* 3395 * Even for writes we don't need to allocate blocks, so just pretend 3396 * we are reading to save overhead of starting a transaction. 3397 */ 3398 flags &= ~IOMAP_WRITE; 3399 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3400 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3401 return ret; 3402 } 3403 3404 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3405 ssize_t written, unsigned flags, struct iomap *iomap) 3406 { 3407 /* 3408 * Check to see whether an error occurred while writing out the data to 3409 * the allocated blocks. If so, return the magic error code so that we 3410 * fallback to buffered I/O and attempt to complete the remainder of 3411 * the I/O. Any blocks that may have been allocated in preparation for 3412 * the direct I/O will be reused during buffered I/O. 3413 */ 3414 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3415 return -ENOTBLK; 3416 3417 return 0; 3418 } 3419 3420 const struct iomap_ops ext4_iomap_ops = { 3421 .iomap_begin = ext4_iomap_begin, 3422 .iomap_end = ext4_iomap_end, 3423 }; 3424 3425 const struct iomap_ops ext4_iomap_overwrite_ops = { 3426 .iomap_begin = ext4_iomap_overwrite_begin, 3427 .iomap_end = ext4_iomap_end, 3428 }; 3429 3430 static bool ext4_iomap_is_delalloc(struct inode *inode, 3431 struct ext4_map_blocks *map) 3432 { 3433 struct extent_status es; 3434 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3435 3436 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3437 map->m_lblk, end, &es); 3438 3439 if (!es.es_len || es.es_lblk > end) 3440 return false; 3441 3442 if (es.es_lblk > map->m_lblk) { 3443 map->m_len = es.es_lblk - map->m_lblk; 3444 return false; 3445 } 3446 3447 offset = map->m_lblk - es.es_lblk; 3448 map->m_len = es.es_len - offset; 3449 3450 return true; 3451 } 3452 3453 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3454 loff_t length, unsigned int flags, 3455 struct iomap *iomap, struct iomap *srcmap) 3456 { 3457 int ret; 3458 bool delalloc = false; 3459 struct ext4_map_blocks map; 3460 u8 blkbits = inode->i_blkbits; 3461 3462 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3463 return -EINVAL; 3464 3465 if (ext4_has_inline_data(inode)) { 3466 ret = ext4_inline_data_iomap(inode, iomap); 3467 if (ret != -EAGAIN) { 3468 if (ret == 0 && offset >= iomap->length) 3469 ret = -ENOENT; 3470 return ret; 3471 } 3472 } 3473 3474 /* 3475 * Calculate the first and last logical block respectively. 3476 */ 3477 map.m_lblk = offset >> blkbits; 3478 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3479 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3480 3481 /* 3482 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3483 * So handle it here itself instead of querying ext4_map_blocks(). 3484 * Since ext4_map_blocks() will warn about it and will return 3485 * -EIO error. 3486 */ 3487 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3488 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3489 3490 if (offset >= sbi->s_bitmap_maxbytes) { 3491 map.m_flags = 0; 3492 goto set_iomap; 3493 } 3494 } 3495 3496 ret = ext4_map_blocks(NULL, inode, &map, 0); 3497 if (ret < 0) 3498 return ret; 3499 if (ret == 0) 3500 delalloc = ext4_iomap_is_delalloc(inode, &map); 3501 3502 set_iomap: 3503 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3504 if (delalloc && iomap->type == IOMAP_HOLE) 3505 iomap->type = IOMAP_DELALLOC; 3506 3507 return 0; 3508 } 3509 3510 const struct iomap_ops ext4_iomap_report_ops = { 3511 .iomap_begin = ext4_iomap_begin_report, 3512 }; 3513 3514 /* 3515 * For data=journal mode, folio should be marked dirty only when it was 3516 * writeably mapped. When that happens, it was already attached to the 3517 * transaction and marked as jbddirty (we take care of this in 3518 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3519 * so we should have nothing to do here, except for the case when someone 3520 * had the page pinned and dirtied the page through this pin (e.g. by doing 3521 * direct IO to it). In that case we'd need to attach buffers here to the 3522 * transaction but we cannot due to lock ordering. We cannot just dirty the 3523 * folio and leave attached buffers clean, because the buffers' dirty state is 3524 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3525 * the journalling code will explode. So what we do is to mark the folio 3526 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3527 * to the transaction appropriately. 3528 */ 3529 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3530 struct folio *folio) 3531 { 3532 WARN_ON_ONCE(!folio_buffers(folio)); 3533 if (folio_maybe_dma_pinned(folio)) 3534 folio_set_checked(folio); 3535 return filemap_dirty_folio(mapping, folio); 3536 } 3537 3538 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3539 { 3540 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3541 WARN_ON_ONCE(!folio_buffers(folio)); 3542 return block_dirty_folio(mapping, folio); 3543 } 3544 3545 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3546 struct file *file, sector_t *span) 3547 { 3548 return iomap_swapfile_activate(sis, file, span, 3549 &ext4_iomap_report_ops); 3550 } 3551 3552 static const struct address_space_operations ext4_aops = { 3553 .read_folio = ext4_read_folio, 3554 .readahead = ext4_readahead, 3555 .writepages = ext4_writepages, 3556 .write_begin = ext4_write_begin, 3557 .write_end = ext4_write_end, 3558 .dirty_folio = ext4_dirty_folio, 3559 .bmap = ext4_bmap, 3560 .invalidate_folio = ext4_invalidate_folio, 3561 .release_folio = ext4_release_folio, 3562 .direct_IO = noop_direct_IO, 3563 .migrate_folio = buffer_migrate_folio, 3564 .is_partially_uptodate = block_is_partially_uptodate, 3565 .error_remove_page = generic_error_remove_page, 3566 .swap_activate = ext4_iomap_swap_activate, 3567 }; 3568 3569 static const struct address_space_operations ext4_journalled_aops = { 3570 .read_folio = ext4_read_folio, 3571 .readahead = ext4_readahead, 3572 .writepages = ext4_writepages, 3573 .write_begin = ext4_write_begin, 3574 .write_end = ext4_journalled_write_end, 3575 .dirty_folio = ext4_journalled_dirty_folio, 3576 .bmap = ext4_bmap, 3577 .invalidate_folio = ext4_journalled_invalidate_folio, 3578 .release_folio = ext4_release_folio, 3579 .direct_IO = noop_direct_IO, 3580 .migrate_folio = buffer_migrate_folio_norefs, 3581 .is_partially_uptodate = block_is_partially_uptodate, 3582 .error_remove_page = generic_error_remove_page, 3583 .swap_activate = ext4_iomap_swap_activate, 3584 }; 3585 3586 static const struct address_space_operations ext4_da_aops = { 3587 .read_folio = ext4_read_folio, 3588 .readahead = ext4_readahead, 3589 .writepages = ext4_writepages, 3590 .write_begin = ext4_da_write_begin, 3591 .write_end = ext4_da_write_end, 3592 .dirty_folio = ext4_dirty_folio, 3593 .bmap = ext4_bmap, 3594 .invalidate_folio = ext4_invalidate_folio, 3595 .release_folio = ext4_release_folio, 3596 .direct_IO = noop_direct_IO, 3597 .migrate_folio = buffer_migrate_folio, 3598 .is_partially_uptodate = block_is_partially_uptodate, 3599 .error_remove_page = generic_error_remove_page, 3600 .swap_activate = ext4_iomap_swap_activate, 3601 }; 3602 3603 static const struct address_space_operations ext4_dax_aops = { 3604 .writepages = ext4_dax_writepages, 3605 .direct_IO = noop_direct_IO, 3606 .dirty_folio = noop_dirty_folio, 3607 .bmap = ext4_bmap, 3608 .swap_activate = ext4_iomap_swap_activate, 3609 }; 3610 3611 void ext4_set_aops(struct inode *inode) 3612 { 3613 switch (ext4_inode_journal_mode(inode)) { 3614 case EXT4_INODE_ORDERED_DATA_MODE: 3615 case EXT4_INODE_WRITEBACK_DATA_MODE: 3616 break; 3617 case EXT4_INODE_JOURNAL_DATA_MODE: 3618 inode->i_mapping->a_ops = &ext4_journalled_aops; 3619 return; 3620 default: 3621 BUG(); 3622 } 3623 if (IS_DAX(inode)) 3624 inode->i_mapping->a_ops = &ext4_dax_aops; 3625 else if (test_opt(inode->i_sb, DELALLOC)) 3626 inode->i_mapping->a_ops = &ext4_da_aops; 3627 else 3628 inode->i_mapping->a_ops = &ext4_aops; 3629 } 3630 3631 static int __ext4_block_zero_page_range(handle_t *handle, 3632 struct address_space *mapping, loff_t from, loff_t length) 3633 { 3634 ext4_fsblk_t index = from >> PAGE_SHIFT; 3635 unsigned offset = from & (PAGE_SIZE-1); 3636 unsigned blocksize, pos; 3637 ext4_lblk_t iblock; 3638 struct inode *inode = mapping->host; 3639 struct buffer_head *bh; 3640 struct folio *folio; 3641 int err = 0; 3642 3643 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3644 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3645 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3646 if (IS_ERR(folio)) 3647 return PTR_ERR(folio); 3648 3649 blocksize = inode->i_sb->s_blocksize; 3650 3651 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3652 3653 bh = folio_buffers(folio); 3654 if (!bh) { 3655 create_empty_buffers(&folio->page, blocksize, 0); 3656 bh = folio_buffers(folio); 3657 } 3658 3659 /* Find the buffer that contains "offset" */ 3660 pos = blocksize; 3661 while (offset >= pos) { 3662 bh = bh->b_this_page; 3663 iblock++; 3664 pos += blocksize; 3665 } 3666 if (buffer_freed(bh)) { 3667 BUFFER_TRACE(bh, "freed: skip"); 3668 goto unlock; 3669 } 3670 if (!buffer_mapped(bh)) { 3671 BUFFER_TRACE(bh, "unmapped"); 3672 ext4_get_block(inode, iblock, bh, 0); 3673 /* unmapped? It's a hole - nothing to do */ 3674 if (!buffer_mapped(bh)) { 3675 BUFFER_TRACE(bh, "still unmapped"); 3676 goto unlock; 3677 } 3678 } 3679 3680 /* Ok, it's mapped. Make sure it's up-to-date */ 3681 if (folio_test_uptodate(folio)) 3682 set_buffer_uptodate(bh); 3683 3684 if (!buffer_uptodate(bh)) { 3685 err = ext4_read_bh_lock(bh, 0, true); 3686 if (err) 3687 goto unlock; 3688 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3689 /* We expect the key to be set. */ 3690 BUG_ON(!fscrypt_has_encryption_key(inode)); 3691 err = fscrypt_decrypt_pagecache_blocks(folio, 3692 blocksize, 3693 bh_offset(bh)); 3694 if (err) { 3695 clear_buffer_uptodate(bh); 3696 goto unlock; 3697 } 3698 } 3699 } 3700 if (ext4_should_journal_data(inode)) { 3701 BUFFER_TRACE(bh, "get write access"); 3702 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3703 EXT4_JTR_NONE); 3704 if (err) 3705 goto unlock; 3706 } 3707 folio_zero_range(folio, offset, length); 3708 BUFFER_TRACE(bh, "zeroed end of block"); 3709 3710 if (ext4_should_journal_data(inode)) { 3711 err = ext4_dirty_journalled_data(handle, bh); 3712 } else { 3713 err = 0; 3714 mark_buffer_dirty(bh); 3715 if (ext4_should_order_data(inode)) 3716 err = ext4_jbd2_inode_add_write(handle, inode, from, 3717 length); 3718 } 3719 3720 unlock: 3721 folio_unlock(folio); 3722 folio_put(folio); 3723 return err; 3724 } 3725 3726 /* 3727 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3728 * starting from file offset 'from'. The range to be zero'd must 3729 * be contained with in one block. If the specified range exceeds 3730 * the end of the block it will be shortened to end of the block 3731 * that corresponds to 'from' 3732 */ 3733 static int ext4_block_zero_page_range(handle_t *handle, 3734 struct address_space *mapping, loff_t from, loff_t length) 3735 { 3736 struct inode *inode = mapping->host; 3737 unsigned offset = from & (PAGE_SIZE-1); 3738 unsigned blocksize = inode->i_sb->s_blocksize; 3739 unsigned max = blocksize - (offset & (blocksize - 1)); 3740 3741 /* 3742 * correct length if it does not fall between 3743 * 'from' and the end of the block 3744 */ 3745 if (length > max || length < 0) 3746 length = max; 3747 3748 if (IS_DAX(inode)) { 3749 return dax_zero_range(inode, from, length, NULL, 3750 &ext4_iomap_ops); 3751 } 3752 return __ext4_block_zero_page_range(handle, mapping, from, length); 3753 } 3754 3755 /* 3756 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3757 * up to the end of the block which corresponds to `from'. 3758 * This required during truncate. We need to physically zero the tail end 3759 * of that block so it doesn't yield old data if the file is later grown. 3760 */ 3761 static int ext4_block_truncate_page(handle_t *handle, 3762 struct address_space *mapping, loff_t from) 3763 { 3764 unsigned offset = from & (PAGE_SIZE-1); 3765 unsigned length; 3766 unsigned blocksize; 3767 struct inode *inode = mapping->host; 3768 3769 /* If we are processing an encrypted inode during orphan list handling */ 3770 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3771 return 0; 3772 3773 blocksize = inode->i_sb->s_blocksize; 3774 length = blocksize - (offset & (blocksize - 1)); 3775 3776 return ext4_block_zero_page_range(handle, mapping, from, length); 3777 } 3778 3779 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3780 loff_t lstart, loff_t length) 3781 { 3782 struct super_block *sb = inode->i_sb; 3783 struct address_space *mapping = inode->i_mapping; 3784 unsigned partial_start, partial_end; 3785 ext4_fsblk_t start, end; 3786 loff_t byte_end = (lstart + length - 1); 3787 int err = 0; 3788 3789 partial_start = lstart & (sb->s_blocksize - 1); 3790 partial_end = byte_end & (sb->s_blocksize - 1); 3791 3792 start = lstart >> sb->s_blocksize_bits; 3793 end = byte_end >> sb->s_blocksize_bits; 3794 3795 /* Handle partial zero within the single block */ 3796 if (start == end && 3797 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3798 err = ext4_block_zero_page_range(handle, mapping, 3799 lstart, length); 3800 return err; 3801 } 3802 /* Handle partial zero out on the start of the range */ 3803 if (partial_start) { 3804 err = ext4_block_zero_page_range(handle, mapping, 3805 lstart, sb->s_blocksize); 3806 if (err) 3807 return err; 3808 } 3809 /* Handle partial zero out on the end of the range */ 3810 if (partial_end != sb->s_blocksize - 1) 3811 err = ext4_block_zero_page_range(handle, mapping, 3812 byte_end - partial_end, 3813 partial_end + 1); 3814 return err; 3815 } 3816 3817 int ext4_can_truncate(struct inode *inode) 3818 { 3819 if (S_ISREG(inode->i_mode)) 3820 return 1; 3821 if (S_ISDIR(inode->i_mode)) 3822 return 1; 3823 if (S_ISLNK(inode->i_mode)) 3824 return !ext4_inode_is_fast_symlink(inode); 3825 return 0; 3826 } 3827 3828 /* 3829 * We have to make sure i_disksize gets properly updated before we truncate 3830 * page cache due to hole punching or zero range. Otherwise i_disksize update 3831 * can get lost as it may have been postponed to submission of writeback but 3832 * that will never happen after we truncate page cache. 3833 */ 3834 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3835 loff_t len) 3836 { 3837 handle_t *handle; 3838 int ret; 3839 3840 loff_t size = i_size_read(inode); 3841 3842 WARN_ON(!inode_is_locked(inode)); 3843 if (offset > size || offset + len < size) 3844 return 0; 3845 3846 if (EXT4_I(inode)->i_disksize >= size) 3847 return 0; 3848 3849 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3850 if (IS_ERR(handle)) 3851 return PTR_ERR(handle); 3852 ext4_update_i_disksize(inode, size); 3853 ret = ext4_mark_inode_dirty(handle, inode); 3854 ext4_journal_stop(handle); 3855 3856 return ret; 3857 } 3858 3859 static void ext4_wait_dax_page(struct inode *inode) 3860 { 3861 filemap_invalidate_unlock(inode->i_mapping); 3862 schedule(); 3863 filemap_invalidate_lock(inode->i_mapping); 3864 } 3865 3866 int ext4_break_layouts(struct inode *inode) 3867 { 3868 struct page *page; 3869 int error; 3870 3871 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3872 return -EINVAL; 3873 3874 do { 3875 page = dax_layout_busy_page(inode->i_mapping); 3876 if (!page) 3877 return 0; 3878 3879 error = ___wait_var_event(&page->_refcount, 3880 atomic_read(&page->_refcount) == 1, 3881 TASK_INTERRUPTIBLE, 0, 0, 3882 ext4_wait_dax_page(inode)); 3883 } while (error == 0); 3884 3885 return error; 3886 } 3887 3888 /* 3889 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3890 * associated with the given offset and length 3891 * 3892 * @inode: File inode 3893 * @offset: The offset where the hole will begin 3894 * @len: The length of the hole 3895 * 3896 * Returns: 0 on success or negative on failure 3897 */ 3898 3899 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3900 { 3901 struct inode *inode = file_inode(file); 3902 struct super_block *sb = inode->i_sb; 3903 ext4_lblk_t first_block, stop_block; 3904 struct address_space *mapping = inode->i_mapping; 3905 loff_t first_block_offset, last_block_offset, max_length; 3906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3907 handle_t *handle; 3908 unsigned int credits; 3909 int ret = 0, ret2 = 0; 3910 3911 trace_ext4_punch_hole(inode, offset, length, 0); 3912 3913 /* 3914 * Write out all dirty pages to avoid race conditions 3915 * Then release them. 3916 */ 3917 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3918 ret = filemap_write_and_wait_range(mapping, offset, 3919 offset + length - 1); 3920 if (ret) 3921 return ret; 3922 } 3923 3924 inode_lock(inode); 3925 3926 /* No need to punch hole beyond i_size */ 3927 if (offset >= inode->i_size) 3928 goto out_mutex; 3929 3930 /* 3931 * If the hole extends beyond i_size, set the hole 3932 * to end after the page that contains i_size 3933 */ 3934 if (offset + length > inode->i_size) { 3935 length = inode->i_size + 3936 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3937 offset; 3938 } 3939 3940 /* 3941 * For punch hole the length + offset needs to be within one block 3942 * before last range. Adjust the length if it goes beyond that limit. 3943 */ 3944 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3945 if (offset + length > max_length) 3946 length = max_length - offset; 3947 3948 if (offset & (sb->s_blocksize - 1) || 3949 (offset + length) & (sb->s_blocksize - 1)) { 3950 /* 3951 * Attach jinode to inode for jbd2 if we do any zeroing of 3952 * partial block 3953 */ 3954 ret = ext4_inode_attach_jinode(inode); 3955 if (ret < 0) 3956 goto out_mutex; 3957 3958 } 3959 3960 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3961 inode_dio_wait(inode); 3962 3963 ret = file_modified(file); 3964 if (ret) 3965 goto out_mutex; 3966 3967 /* 3968 * Prevent page faults from reinstantiating pages we have released from 3969 * page cache. 3970 */ 3971 filemap_invalidate_lock(mapping); 3972 3973 ret = ext4_break_layouts(inode); 3974 if (ret) 3975 goto out_dio; 3976 3977 first_block_offset = round_up(offset, sb->s_blocksize); 3978 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3979 3980 /* Now release the pages and zero block aligned part of pages*/ 3981 if (last_block_offset > first_block_offset) { 3982 ret = ext4_update_disksize_before_punch(inode, offset, length); 3983 if (ret) 3984 goto out_dio; 3985 truncate_pagecache_range(inode, first_block_offset, 3986 last_block_offset); 3987 } 3988 3989 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3990 credits = ext4_writepage_trans_blocks(inode); 3991 else 3992 credits = ext4_blocks_for_truncate(inode); 3993 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3994 if (IS_ERR(handle)) { 3995 ret = PTR_ERR(handle); 3996 ext4_std_error(sb, ret); 3997 goto out_dio; 3998 } 3999 4000 ret = ext4_zero_partial_blocks(handle, inode, offset, 4001 length); 4002 if (ret) 4003 goto out_stop; 4004 4005 first_block = (offset + sb->s_blocksize - 1) >> 4006 EXT4_BLOCK_SIZE_BITS(sb); 4007 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4008 4009 /* If there are blocks to remove, do it */ 4010 if (stop_block > first_block) { 4011 4012 down_write(&EXT4_I(inode)->i_data_sem); 4013 ext4_discard_preallocations(inode, 0); 4014 4015 ext4_es_remove_extent(inode, first_block, 4016 stop_block - first_block); 4017 4018 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4019 ret = ext4_ext_remove_space(inode, first_block, 4020 stop_block - 1); 4021 else 4022 ret = ext4_ind_remove_space(handle, inode, first_block, 4023 stop_block); 4024 4025 up_write(&EXT4_I(inode)->i_data_sem); 4026 } 4027 ext4_fc_track_range(handle, inode, first_block, stop_block); 4028 if (IS_SYNC(inode)) 4029 ext4_handle_sync(handle); 4030 4031 inode->i_mtime = inode_set_ctime_current(inode); 4032 ret2 = ext4_mark_inode_dirty(handle, inode); 4033 if (unlikely(ret2)) 4034 ret = ret2; 4035 if (ret >= 0) 4036 ext4_update_inode_fsync_trans(handle, inode, 1); 4037 out_stop: 4038 ext4_journal_stop(handle); 4039 out_dio: 4040 filemap_invalidate_unlock(mapping); 4041 out_mutex: 4042 inode_unlock(inode); 4043 return ret; 4044 } 4045 4046 int ext4_inode_attach_jinode(struct inode *inode) 4047 { 4048 struct ext4_inode_info *ei = EXT4_I(inode); 4049 struct jbd2_inode *jinode; 4050 4051 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4052 return 0; 4053 4054 jinode = jbd2_alloc_inode(GFP_KERNEL); 4055 spin_lock(&inode->i_lock); 4056 if (!ei->jinode) { 4057 if (!jinode) { 4058 spin_unlock(&inode->i_lock); 4059 return -ENOMEM; 4060 } 4061 ei->jinode = jinode; 4062 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4063 jinode = NULL; 4064 } 4065 spin_unlock(&inode->i_lock); 4066 if (unlikely(jinode != NULL)) 4067 jbd2_free_inode(jinode); 4068 return 0; 4069 } 4070 4071 /* 4072 * ext4_truncate() 4073 * 4074 * We block out ext4_get_block() block instantiations across the entire 4075 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4076 * simultaneously on behalf of the same inode. 4077 * 4078 * As we work through the truncate and commit bits of it to the journal there 4079 * is one core, guiding principle: the file's tree must always be consistent on 4080 * disk. We must be able to restart the truncate after a crash. 4081 * 4082 * The file's tree may be transiently inconsistent in memory (although it 4083 * probably isn't), but whenever we close off and commit a journal transaction, 4084 * the contents of (the filesystem + the journal) must be consistent and 4085 * restartable. It's pretty simple, really: bottom up, right to left (although 4086 * left-to-right works OK too). 4087 * 4088 * Note that at recovery time, journal replay occurs *before* the restart of 4089 * truncate against the orphan inode list. 4090 * 4091 * The committed inode has the new, desired i_size (which is the same as 4092 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4093 * that this inode's truncate did not complete and it will again call 4094 * ext4_truncate() to have another go. So there will be instantiated blocks 4095 * to the right of the truncation point in a crashed ext4 filesystem. But 4096 * that's fine - as long as they are linked from the inode, the post-crash 4097 * ext4_truncate() run will find them and release them. 4098 */ 4099 int ext4_truncate(struct inode *inode) 4100 { 4101 struct ext4_inode_info *ei = EXT4_I(inode); 4102 unsigned int credits; 4103 int err = 0, err2; 4104 handle_t *handle; 4105 struct address_space *mapping = inode->i_mapping; 4106 4107 /* 4108 * There is a possibility that we're either freeing the inode 4109 * or it's a completely new inode. In those cases we might not 4110 * have i_rwsem locked because it's not necessary. 4111 */ 4112 if (!(inode->i_state & (I_NEW|I_FREEING))) 4113 WARN_ON(!inode_is_locked(inode)); 4114 trace_ext4_truncate_enter(inode); 4115 4116 if (!ext4_can_truncate(inode)) 4117 goto out_trace; 4118 4119 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4120 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4121 4122 if (ext4_has_inline_data(inode)) { 4123 int has_inline = 1; 4124 4125 err = ext4_inline_data_truncate(inode, &has_inline); 4126 if (err || has_inline) 4127 goto out_trace; 4128 } 4129 4130 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4131 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4132 err = ext4_inode_attach_jinode(inode); 4133 if (err) 4134 goto out_trace; 4135 } 4136 4137 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4138 credits = ext4_writepage_trans_blocks(inode); 4139 else 4140 credits = ext4_blocks_for_truncate(inode); 4141 4142 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4143 if (IS_ERR(handle)) { 4144 err = PTR_ERR(handle); 4145 goto out_trace; 4146 } 4147 4148 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4149 ext4_block_truncate_page(handle, mapping, inode->i_size); 4150 4151 /* 4152 * We add the inode to the orphan list, so that if this 4153 * truncate spans multiple transactions, and we crash, we will 4154 * resume the truncate when the filesystem recovers. It also 4155 * marks the inode dirty, to catch the new size. 4156 * 4157 * Implication: the file must always be in a sane, consistent 4158 * truncatable state while each transaction commits. 4159 */ 4160 err = ext4_orphan_add(handle, inode); 4161 if (err) 4162 goto out_stop; 4163 4164 down_write(&EXT4_I(inode)->i_data_sem); 4165 4166 ext4_discard_preallocations(inode, 0); 4167 4168 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4169 err = ext4_ext_truncate(handle, inode); 4170 else 4171 ext4_ind_truncate(handle, inode); 4172 4173 up_write(&ei->i_data_sem); 4174 if (err) 4175 goto out_stop; 4176 4177 if (IS_SYNC(inode)) 4178 ext4_handle_sync(handle); 4179 4180 out_stop: 4181 /* 4182 * If this was a simple ftruncate() and the file will remain alive, 4183 * then we need to clear up the orphan record which we created above. 4184 * However, if this was a real unlink then we were called by 4185 * ext4_evict_inode(), and we allow that function to clean up the 4186 * orphan info for us. 4187 */ 4188 if (inode->i_nlink) 4189 ext4_orphan_del(handle, inode); 4190 4191 inode->i_mtime = inode_set_ctime_current(inode); 4192 err2 = ext4_mark_inode_dirty(handle, inode); 4193 if (unlikely(err2 && !err)) 4194 err = err2; 4195 ext4_journal_stop(handle); 4196 4197 out_trace: 4198 trace_ext4_truncate_exit(inode); 4199 return err; 4200 } 4201 4202 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4203 { 4204 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4205 return inode_peek_iversion_raw(inode); 4206 else 4207 return inode_peek_iversion(inode); 4208 } 4209 4210 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4211 struct ext4_inode_info *ei) 4212 { 4213 struct inode *inode = &(ei->vfs_inode); 4214 u64 i_blocks = READ_ONCE(inode->i_blocks); 4215 struct super_block *sb = inode->i_sb; 4216 4217 if (i_blocks <= ~0U) { 4218 /* 4219 * i_blocks can be represented in a 32 bit variable 4220 * as multiple of 512 bytes 4221 */ 4222 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4223 raw_inode->i_blocks_high = 0; 4224 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4225 return 0; 4226 } 4227 4228 /* 4229 * This should never happen since sb->s_maxbytes should not have 4230 * allowed this, sb->s_maxbytes was set according to the huge_file 4231 * feature in ext4_fill_super(). 4232 */ 4233 if (!ext4_has_feature_huge_file(sb)) 4234 return -EFSCORRUPTED; 4235 4236 if (i_blocks <= 0xffffffffffffULL) { 4237 /* 4238 * i_blocks can be represented in a 48 bit variable 4239 * as multiple of 512 bytes 4240 */ 4241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4242 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4243 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4244 } else { 4245 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4246 /* i_block is stored in file system block size */ 4247 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4248 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4249 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4250 } 4251 return 0; 4252 } 4253 4254 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4255 { 4256 struct ext4_inode_info *ei = EXT4_I(inode); 4257 uid_t i_uid; 4258 gid_t i_gid; 4259 projid_t i_projid; 4260 int block; 4261 int err; 4262 4263 err = ext4_inode_blocks_set(raw_inode, ei); 4264 4265 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4266 i_uid = i_uid_read(inode); 4267 i_gid = i_gid_read(inode); 4268 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4269 if (!(test_opt(inode->i_sb, NO_UID32))) { 4270 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4271 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4272 /* 4273 * Fix up interoperability with old kernels. Otherwise, 4274 * old inodes get re-used with the upper 16 bits of the 4275 * uid/gid intact. 4276 */ 4277 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4278 raw_inode->i_uid_high = 0; 4279 raw_inode->i_gid_high = 0; 4280 } else { 4281 raw_inode->i_uid_high = 4282 cpu_to_le16(high_16_bits(i_uid)); 4283 raw_inode->i_gid_high = 4284 cpu_to_le16(high_16_bits(i_gid)); 4285 } 4286 } else { 4287 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4288 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4289 raw_inode->i_uid_high = 0; 4290 raw_inode->i_gid_high = 0; 4291 } 4292 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4293 4294 EXT4_INODE_SET_CTIME(inode, raw_inode); 4295 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4296 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4297 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4298 4299 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4300 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4301 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4302 raw_inode->i_file_acl_high = 4303 cpu_to_le16(ei->i_file_acl >> 32); 4304 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4305 ext4_isize_set(raw_inode, ei->i_disksize); 4306 4307 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4308 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4309 if (old_valid_dev(inode->i_rdev)) { 4310 raw_inode->i_block[0] = 4311 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4312 raw_inode->i_block[1] = 0; 4313 } else { 4314 raw_inode->i_block[0] = 0; 4315 raw_inode->i_block[1] = 4316 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4317 raw_inode->i_block[2] = 0; 4318 } 4319 } else if (!ext4_has_inline_data(inode)) { 4320 for (block = 0; block < EXT4_N_BLOCKS; block++) 4321 raw_inode->i_block[block] = ei->i_data[block]; 4322 } 4323 4324 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4325 u64 ivers = ext4_inode_peek_iversion(inode); 4326 4327 raw_inode->i_disk_version = cpu_to_le32(ivers); 4328 if (ei->i_extra_isize) { 4329 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4330 raw_inode->i_version_hi = 4331 cpu_to_le32(ivers >> 32); 4332 raw_inode->i_extra_isize = 4333 cpu_to_le16(ei->i_extra_isize); 4334 } 4335 } 4336 4337 if (i_projid != EXT4_DEF_PROJID && 4338 !ext4_has_feature_project(inode->i_sb)) 4339 err = err ?: -EFSCORRUPTED; 4340 4341 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4342 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4343 raw_inode->i_projid = cpu_to_le32(i_projid); 4344 4345 ext4_inode_csum_set(inode, raw_inode, ei); 4346 return err; 4347 } 4348 4349 /* 4350 * ext4_get_inode_loc returns with an extra refcount against the inode's 4351 * underlying buffer_head on success. If we pass 'inode' and it does not 4352 * have in-inode xattr, we have all inode data in memory that is needed 4353 * to recreate the on-disk version of this inode. 4354 */ 4355 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4356 struct inode *inode, struct ext4_iloc *iloc, 4357 ext4_fsblk_t *ret_block) 4358 { 4359 struct ext4_group_desc *gdp; 4360 struct buffer_head *bh; 4361 ext4_fsblk_t block; 4362 struct blk_plug plug; 4363 int inodes_per_block, inode_offset; 4364 4365 iloc->bh = NULL; 4366 if (ino < EXT4_ROOT_INO || 4367 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4368 return -EFSCORRUPTED; 4369 4370 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4371 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4372 if (!gdp) 4373 return -EIO; 4374 4375 /* 4376 * Figure out the offset within the block group inode table 4377 */ 4378 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4379 inode_offset = ((ino - 1) % 4380 EXT4_INODES_PER_GROUP(sb)); 4381 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4382 4383 block = ext4_inode_table(sb, gdp); 4384 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4385 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4386 ext4_error(sb, "Invalid inode table block %llu in " 4387 "block_group %u", block, iloc->block_group); 4388 return -EFSCORRUPTED; 4389 } 4390 block += (inode_offset / inodes_per_block); 4391 4392 bh = sb_getblk(sb, block); 4393 if (unlikely(!bh)) 4394 return -ENOMEM; 4395 if (ext4_buffer_uptodate(bh)) 4396 goto has_buffer; 4397 4398 lock_buffer(bh); 4399 if (ext4_buffer_uptodate(bh)) { 4400 /* Someone brought it uptodate while we waited */ 4401 unlock_buffer(bh); 4402 goto has_buffer; 4403 } 4404 4405 /* 4406 * If we have all information of the inode in memory and this 4407 * is the only valid inode in the block, we need not read the 4408 * block. 4409 */ 4410 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4411 struct buffer_head *bitmap_bh; 4412 int i, start; 4413 4414 start = inode_offset & ~(inodes_per_block - 1); 4415 4416 /* Is the inode bitmap in cache? */ 4417 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4418 if (unlikely(!bitmap_bh)) 4419 goto make_io; 4420 4421 /* 4422 * If the inode bitmap isn't in cache then the 4423 * optimisation may end up performing two reads instead 4424 * of one, so skip it. 4425 */ 4426 if (!buffer_uptodate(bitmap_bh)) { 4427 brelse(bitmap_bh); 4428 goto make_io; 4429 } 4430 for (i = start; i < start + inodes_per_block; i++) { 4431 if (i == inode_offset) 4432 continue; 4433 if (ext4_test_bit(i, bitmap_bh->b_data)) 4434 break; 4435 } 4436 brelse(bitmap_bh); 4437 if (i == start + inodes_per_block) { 4438 struct ext4_inode *raw_inode = 4439 (struct ext4_inode *) (bh->b_data + iloc->offset); 4440 4441 /* all other inodes are free, so skip I/O */ 4442 memset(bh->b_data, 0, bh->b_size); 4443 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4444 ext4_fill_raw_inode(inode, raw_inode); 4445 set_buffer_uptodate(bh); 4446 unlock_buffer(bh); 4447 goto has_buffer; 4448 } 4449 } 4450 4451 make_io: 4452 /* 4453 * If we need to do any I/O, try to pre-readahead extra 4454 * blocks from the inode table. 4455 */ 4456 blk_start_plug(&plug); 4457 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4458 ext4_fsblk_t b, end, table; 4459 unsigned num; 4460 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4461 4462 table = ext4_inode_table(sb, gdp); 4463 /* s_inode_readahead_blks is always a power of 2 */ 4464 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4465 if (table > b) 4466 b = table; 4467 end = b + ra_blks; 4468 num = EXT4_INODES_PER_GROUP(sb); 4469 if (ext4_has_group_desc_csum(sb)) 4470 num -= ext4_itable_unused_count(sb, gdp); 4471 table += num / inodes_per_block; 4472 if (end > table) 4473 end = table; 4474 while (b <= end) 4475 ext4_sb_breadahead_unmovable(sb, b++); 4476 } 4477 4478 /* 4479 * There are other valid inodes in the buffer, this inode 4480 * has in-inode xattrs, or we don't have this inode in memory. 4481 * Read the block from disk. 4482 */ 4483 trace_ext4_load_inode(sb, ino); 4484 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4485 blk_finish_plug(&plug); 4486 wait_on_buffer(bh); 4487 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4488 if (!buffer_uptodate(bh)) { 4489 if (ret_block) 4490 *ret_block = block; 4491 brelse(bh); 4492 return -EIO; 4493 } 4494 has_buffer: 4495 iloc->bh = bh; 4496 return 0; 4497 } 4498 4499 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4500 struct ext4_iloc *iloc) 4501 { 4502 ext4_fsblk_t err_blk = 0; 4503 int ret; 4504 4505 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4506 &err_blk); 4507 4508 if (ret == -EIO) 4509 ext4_error_inode_block(inode, err_blk, EIO, 4510 "unable to read itable block"); 4511 4512 return ret; 4513 } 4514 4515 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4516 { 4517 ext4_fsblk_t err_blk = 0; 4518 int ret; 4519 4520 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4521 &err_blk); 4522 4523 if (ret == -EIO) 4524 ext4_error_inode_block(inode, err_blk, EIO, 4525 "unable to read itable block"); 4526 4527 return ret; 4528 } 4529 4530 4531 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4532 struct ext4_iloc *iloc) 4533 { 4534 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4535 } 4536 4537 static bool ext4_should_enable_dax(struct inode *inode) 4538 { 4539 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4540 4541 if (test_opt2(inode->i_sb, DAX_NEVER)) 4542 return false; 4543 if (!S_ISREG(inode->i_mode)) 4544 return false; 4545 if (ext4_should_journal_data(inode)) 4546 return false; 4547 if (ext4_has_inline_data(inode)) 4548 return false; 4549 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4550 return false; 4551 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4552 return false; 4553 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4554 return false; 4555 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4556 return true; 4557 4558 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4559 } 4560 4561 void ext4_set_inode_flags(struct inode *inode, bool init) 4562 { 4563 unsigned int flags = EXT4_I(inode)->i_flags; 4564 unsigned int new_fl = 0; 4565 4566 WARN_ON_ONCE(IS_DAX(inode) && init); 4567 4568 if (flags & EXT4_SYNC_FL) 4569 new_fl |= S_SYNC; 4570 if (flags & EXT4_APPEND_FL) 4571 new_fl |= S_APPEND; 4572 if (flags & EXT4_IMMUTABLE_FL) 4573 new_fl |= S_IMMUTABLE; 4574 if (flags & EXT4_NOATIME_FL) 4575 new_fl |= S_NOATIME; 4576 if (flags & EXT4_DIRSYNC_FL) 4577 new_fl |= S_DIRSYNC; 4578 4579 /* Because of the way inode_set_flags() works we must preserve S_DAX 4580 * here if already set. */ 4581 new_fl |= (inode->i_flags & S_DAX); 4582 if (init && ext4_should_enable_dax(inode)) 4583 new_fl |= S_DAX; 4584 4585 if (flags & EXT4_ENCRYPT_FL) 4586 new_fl |= S_ENCRYPTED; 4587 if (flags & EXT4_CASEFOLD_FL) 4588 new_fl |= S_CASEFOLD; 4589 if (flags & EXT4_VERITY_FL) 4590 new_fl |= S_VERITY; 4591 inode_set_flags(inode, new_fl, 4592 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4593 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4594 } 4595 4596 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4597 struct ext4_inode_info *ei) 4598 { 4599 blkcnt_t i_blocks ; 4600 struct inode *inode = &(ei->vfs_inode); 4601 struct super_block *sb = inode->i_sb; 4602 4603 if (ext4_has_feature_huge_file(sb)) { 4604 /* we are using combined 48 bit field */ 4605 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4606 le32_to_cpu(raw_inode->i_blocks_lo); 4607 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4608 /* i_blocks represent file system block size */ 4609 return i_blocks << (inode->i_blkbits - 9); 4610 } else { 4611 return i_blocks; 4612 } 4613 } else { 4614 return le32_to_cpu(raw_inode->i_blocks_lo); 4615 } 4616 } 4617 4618 static inline int ext4_iget_extra_inode(struct inode *inode, 4619 struct ext4_inode *raw_inode, 4620 struct ext4_inode_info *ei) 4621 { 4622 __le32 *magic = (void *)raw_inode + 4623 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4624 4625 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4626 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4627 int err; 4628 4629 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4630 err = ext4_find_inline_data_nolock(inode); 4631 if (!err && ext4_has_inline_data(inode)) 4632 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4633 return err; 4634 } else 4635 EXT4_I(inode)->i_inline_off = 0; 4636 return 0; 4637 } 4638 4639 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4640 { 4641 if (!ext4_has_feature_project(inode->i_sb)) 4642 return -EOPNOTSUPP; 4643 *projid = EXT4_I(inode)->i_projid; 4644 return 0; 4645 } 4646 4647 /* 4648 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4649 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4650 * set. 4651 */ 4652 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4653 { 4654 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4655 inode_set_iversion_raw(inode, val); 4656 else 4657 inode_set_iversion_queried(inode, val); 4658 } 4659 4660 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4661 4662 { 4663 if (flags & EXT4_IGET_EA_INODE) { 4664 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4665 return "missing EA_INODE flag"; 4666 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4667 EXT4_I(inode)->i_file_acl) 4668 return "ea_inode with extended attributes"; 4669 } else { 4670 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4671 return "unexpected EA_INODE flag"; 4672 } 4673 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4674 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4675 return NULL; 4676 } 4677 4678 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4679 ext4_iget_flags flags, const char *function, 4680 unsigned int line) 4681 { 4682 struct ext4_iloc iloc; 4683 struct ext4_inode *raw_inode; 4684 struct ext4_inode_info *ei; 4685 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4686 struct inode *inode; 4687 const char *err_str; 4688 journal_t *journal = EXT4_SB(sb)->s_journal; 4689 long ret; 4690 loff_t size; 4691 int block; 4692 uid_t i_uid; 4693 gid_t i_gid; 4694 projid_t i_projid; 4695 4696 if ((!(flags & EXT4_IGET_SPECIAL) && 4697 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4698 ino == le32_to_cpu(es->s_usr_quota_inum) || 4699 ino == le32_to_cpu(es->s_grp_quota_inum) || 4700 ino == le32_to_cpu(es->s_prj_quota_inum) || 4701 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4702 (ino < EXT4_ROOT_INO) || 4703 (ino > le32_to_cpu(es->s_inodes_count))) { 4704 if (flags & EXT4_IGET_HANDLE) 4705 return ERR_PTR(-ESTALE); 4706 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4707 "inode #%lu: comm %s: iget: illegal inode #", 4708 ino, current->comm); 4709 return ERR_PTR(-EFSCORRUPTED); 4710 } 4711 4712 inode = iget_locked(sb, ino); 4713 if (!inode) 4714 return ERR_PTR(-ENOMEM); 4715 if (!(inode->i_state & I_NEW)) { 4716 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4717 ext4_error_inode(inode, function, line, 0, err_str); 4718 iput(inode); 4719 return ERR_PTR(-EFSCORRUPTED); 4720 } 4721 return inode; 4722 } 4723 4724 ei = EXT4_I(inode); 4725 iloc.bh = NULL; 4726 4727 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4728 if (ret < 0) 4729 goto bad_inode; 4730 raw_inode = ext4_raw_inode(&iloc); 4731 4732 if ((flags & EXT4_IGET_HANDLE) && 4733 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4734 ret = -ESTALE; 4735 goto bad_inode; 4736 } 4737 4738 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4739 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4740 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4741 EXT4_INODE_SIZE(inode->i_sb) || 4742 (ei->i_extra_isize & 3)) { 4743 ext4_error_inode(inode, function, line, 0, 4744 "iget: bad extra_isize %u " 4745 "(inode size %u)", 4746 ei->i_extra_isize, 4747 EXT4_INODE_SIZE(inode->i_sb)); 4748 ret = -EFSCORRUPTED; 4749 goto bad_inode; 4750 } 4751 } else 4752 ei->i_extra_isize = 0; 4753 4754 /* Precompute checksum seed for inode metadata */ 4755 if (ext4_has_metadata_csum(sb)) { 4756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4757 __u32 csum; 4758 __le32 inum = cpu_to_le32(inode->i_ino); 4759 __le32 gen = raw_inode->i_generation; 4760 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4761 sizeof(inum)); 4762 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4763 sizeof(gen)); 4764 } 4765 4766 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4767 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4768 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4769 ext4_error_inode_err(inode, function, line, 0, 4770 EFSBADCRC, "iget: checksum invalid"); 4771 ret = -EFSBADCRC; 4772 goto bad_inode; 4773 } 4774 4775 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4776 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4777 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4778 if (ext4_has_feature_project(sb) && 4779 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4780 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4781 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4782 else 4783 i_projid = EXT4_DEF_PROJID; 4784 4785 if (!(test_opt(inode->i_sb, NO_UID32))) { 4786 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4787 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4788 } 4789 i_uid_write(inode, i_uid); 4790 i_gid_write(inode, i_gid); 4791 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4792 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4793 4794 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4795 ei->i_inline_off = 0; 4796 ei->i_dir_start_lookup = 0; 4797 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4798 /* We now have enough fields to check if the inode was active or not. 4799 * This is needed because nfsd might try to access dead inodes 4800 * the test is that same one that e2fsck uses 4801 * NeilBrown 1999oct15 4802 */ 4803 if (inode->i_nlink == 0) { 4804 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4805 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4806 ino != EXT4_BOOT_LOADER_INO) { 4807 /* this inode is deleted or unallocated */ 4808 if (flags & EXT4_IGET_SPECIAL) { 4809 ext4_error_inode(inode, function, line, 0, 4810 "iget: special inode unallocated"); 4811 ret = -EFSCORRUPTED; 4812 } else 4813 ret = -ESTALE; 4814 goto bad_inode; 4815 } 4816 /* The only unlinked inodes we let through here have 4817 * valid i_mode and are being read by the orphan 4818 * recovery code: that's fine, we're about to complete 4819 * the process of deleting those. 4820 * OR it is the EXT4_BOOT_LOADER_INO which is 4821 * not initialized on a new filesystem. */ 4822 } 4823 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4824 ext4_set_inode_flags(inode, true); 4825 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4826 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4827 if (ext4_has_feature_64bit(sb)) 4828 ei->i_file_acl |= 4829 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4830 inode->i_size = ext4_isize(sb, raw_inode); 4831 if ((size = i_size_read(inode)) < 0) { 4832 ext4_error_inode(inode, function, line, 0, 4833 "iget: bad i_size value: %lld", size); 4834 ret = -EFSCORRUPTED; 4835 goto bad_inode; 4836 } 4837 /* 4838 * If dir_index is not enabled but there's dir with INDEX flag set, 4839 * we'd normally treat htree data as empty space. But with metadata 4840 * checksumming that corrupts checksums so forbid that. 4841 */ 4842 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4843 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4844 ext4_error_inode(inode, function, line, 0, 4845 "iget: Dir with htree data on filesystem without dir_index feature."); 4846 ret = -EFSCORRUPTED; 4847 goto bad_inode; 4848 } 4849 ei->i_disksize = inode->i_size; 4850 #ifdef CONFIG_QUOTA 4851 ei->i_reserved_quota = 0; 4852 #endif 4853 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4854 ei->i_block_group = iloc.block_group; 4855 ei->i_last_alloc_group = ~0; 4856 /* 4857 * NOTE! The in-memory inode i_data array is in little-endian order 4858 * even on big-endian machines: we do NOT byteswap the block numbers! 4859 */ 4860 for (block = 0; block < EXT4_N_BLOCKS; block++) 4861 ei->i_data[block] = raw_inode->i_block[block]; 4862 INIT_LIST_HEAD(&ei->i_orphan); 4863 ext4_fc_init_inode(&ei->vfs_inode); 4864 4865 /* 4866 * Set transaction id's of transactions that have to be committed 4867 * to finish f[data]sync. We set them to currently running transaction 4868 * as we cannot be sure that the inode or some of its metadata isn't 4869 * part of the transaction - the inode could have been reclaimed and 4870 * now it is reread from disk. 4871 */ 4872 if (journal) { 4873 transaction_t *transaction; 4874 tid_t tid; 4875 4876 read_lock(&journal->j_state_lock); 4877 if (journal->j_running_transaction) 4878 transaction = journal->j_running_transaction; 4879 else 4880 transaction = journal->j_committing_transaction; 4881 if (transaction) 4882 tid = transaction->t_tid; 4883 else 4884 tid = journal->j_commit_sequence; 4885 read_unlock(&journal->j_state_lock); 4886 ei->i_sync_tid = tid; 4887 ei->i_datasync_tid = tid; 4888 } 4889 4890 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4891 if (ei->i_extra_isize == 0) { 4892 /* The extra space is currently unused. Use it. */ 4893 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4894 ei->i_extra_isize = sizeof(struct ext4_inode) - 4895 EXT4_GOOD_OLD_INODE_SIZE; 4896 } else { 4897 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4898 if (ret) 4899 goto bad_inode; 4900 } 4901 } 4902 4903 EXT4_INODE_GET_CTIME(inode, raw_inode); 4904 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4905 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4906 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4907 4908 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4909 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4910 4911 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4912 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4913 ivers |= 4914 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4915 } 4916 ext4_inode_set_iversion_queried(inode, ivers); 4917 } 4918 4919 ret = 0; 4920 if (ei->i_file_acl && 4921 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4922 ext4_error_inode(inode, function, line, 0, 4923 "iget: bad extended attribute block %llu", 4924 ei->i_file_acl); 4925 ret = -EFSCORRUPTED; 4926 goto bad_inode; 4927 } else if (!ext4_has_inline_data(inode)) { 4928 /* validate the block references in the inode */ 4929 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4930 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4931 (S_ISLNK(inode->i_mode) && 4932 !ext4_inode_is_fast_symlink(inode)))) { 4933 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4934 ret = ext4_ext_check_inode(inode); 4935 else 4936 ret = ext4_ind_check_inode(inode); 4937 } 4938 } 4939 if (ret) 4940 goto bad_inode; 4941 4942 if (S_ISREG(inode->i_mode)) { 4943 inode->i_op = &ext4_file_inode_operations; 4944 inode->i_fop = &ext4_file_operations; 4945 ext4_set_aops(inode); 4946 } else if (S_ISDIR(inode->i_mode)) { 4947 inode->i_op = &ext4_dir_inode_operations; 4948 inode->i_fop = &ext4_dir_operations; 4949 } else if (S_ISLNK(inode->i_mode)) { 4950 /* VFS does not allow setting these so must be corruption */ 4951 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4952 ext4_error_inode(inode, function, line, 0, 4953 "iget: immutable or append flags " 4954 "not allowed on symlinks"); 4955 ret = -EFSCORRUPTED; 4956 goto bad_inode; 4957 } 4958 if (IS_ENCRYPTED(inode)) { 4959 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4960 } else if (ext4_inode_is_fast_symlink(inode)) { 4961 inode->i_link = (char *)ei->i_data; 4962 inode->i_op = &ext4_fast_symlink_inode_operations; 4963 nd_terminate_link(ei->i_data, inode->i_size, 4964 sizeof(ei->i_data) - 1); 4965 } else { 4966 inode->i_op = &ext4_symlink_inode_operations; 4967 } 4968 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4969 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4970 inode->i_op = &ext4_special_inode_operations; 4971 if (raw_inode->i_block[0]) 4972 init_special_inode(inode, inode->i_mode, 4973 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4974 else 4975 init_special_inode(inode, inode->i_mode, 4976 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4977 } else if (ino == EXT4_BOOT_LOADER_INO) { 4978 make_bad_inode(inode); 4979 } else { 4980 ret = -EFSCORRUPTED; 4981 ext4_error_inode(inode, function, line, 0, 4982 "iget: bogus i_mode (%o)", inode->i_mode); 4983 goto bad_inode; 4984 } 4985 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4986 ext4_error_inode(inode, function, line, 0, 4987 "casefold flag without casefold feature"); 4988 ret = -EFSCORRUPTED; 4989 goto bad_inode; 4990 } 4991 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4992 ext4_error_inode(inode, function, line, 0, err_str); 4993 ret = -EFSCORRUPTED; 4994 goto bad_inode; 4995 } 4996 4997 brelse(iloc.bh); 4998 unlock_new_inode(inode); 4999 return inode; 5000 5001 bad_inode: 5002 brelse(iloc.bh); 5003 iget_failed(inode); 5004 return ERR_PTR(ret); 5005 } 5006 5007 static void __ext4_update_other_inode_time(struct super_block *sb, 5008 unsigned long orig_ino, 5009 unsigned long ino, 5010 struct ext4_inode *raw_inode) 5011 { 5012 struct inode *inode; 5013 5014 inode = find_inode_by_ino_rcu(sb, ino); 5015 if (!inode) 5016 return; 5017 5018 if (!inode_is_dirtytime_only(inode)) 5019 return; 5020 5021 spin_lock(&inode->i_lock); 5022 if (inode_is_dirtytime_only(inode)) { 5023 struct ext4_inode_info *ei = EXT4_I(inode); 5024 5025 inode->i_state &= ~I_DIRTY_TIME; 5026 spin_unlock(&inode->i_lock); 5027 5028 spin_lock(&ei->i_raw_lock); 5029 EXT4_INODE_SET_CTIME(inode, raw_inode); 5030 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5031 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5032 ext4_inode_csum_set(inode, raw_inode, ei); 5033 spin_unlock(&ei->i_raw_lock); 5034 trace_ext4_other_inode_update_time(inode, orig_ino); 5035 return; 5036 } 5037 spin_unlock(&inode->i_lock); 5038 } 5039 5040 /* 5041 * Opportunistically update the other time fields for other inodes in 5042 * the same inode table block. 5043 */ 5044 static void ext4_update_other_inodes_time(struct super_block *sb, 5045 unsigned long orig_ino, char *buf) 5046 { 5047 unsigned long ino; 5048 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5049 int inode_size = EXT4_INODE_SIZE(sb); 5050 5051 /* 5052 * Calculate the first inode in the inode table block. Inode 5053 * numbers are one-based. That is, the first inode in a block 5054 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5055 */ 5056 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5057 rcu_read_lock(); 5058 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5059 if (ino == orig_ino) 5060 continue; 5061 __ext4_update_other_inode_time(sb, orig_ino, ino, 5062 (struct ext4_inode *)buf); 5063 } 5064 rcu_read_unlock(); 5065 } 5066 5067 /* 5068 * Post the struct inode info into an on-disk inode location in the 5069 * buffer-cache. This gobbles the caller's reference to the 5070 * buffer_head in the inode location struct. 5071 * 5072 * The caller must have write access to iloc->bh. 5073 */ 5074 static int ext4_do_update_inode(handle_t *handle, 5075 struct inode *inode, 5076 struct ext4_iloc *iloc) 5077 { 5078 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5079 struct ext4_inode_info *ei = EXT4_I(inode); 5080 struct buffer_head *bh = iloc->bh; 5081 struct super_block *sb = inode->i_sb; 5082 int err; 5083 int need_datasync = 0, set_large_file = 0; 5084 5085 spin_lock(&ei->i_raw_lock); 5086 5087 /* 5088 * For fields not tracked in the in-memory inode, initialise them 5089 * to zero for new inodes. 5090 */ 5091 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5092 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5093 5094 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5095 need_datasync = 1; 5096 if (ei->i_disksize > 0x7fffffffULL) { 5097 if (!ext4_has_feature_large_file(sb) || 5098 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5099 set_large_file = 1; 5100 } 5101 5102 err = ext4_fill_raw_inode(inode, raw_inode); 5103 spin_unlock(&ei->i_raw_lock); 5104 if (err) { 5105 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5106 goto out_brelse; 5107 } 5108 5109 if (inode->i_sb->s_flags & SB_LAZYTIME) 5110 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5111 bh->b_data); 5112 5113 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5114 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5115 if (err) 5116 goto out_error; 5117 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5118 if (set_large_file) { 5119 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5120 err = ext4_journal_get_write_access(handle, sb, 5121 EXT4_SB(sb)->s_sbh, 5122 EXT4_JTR_NONE); 5123 if (err) 5124 goto out_error; 5125 lock_buffer(EXT4_SB(sb)->s_sbh); 5126 ext4_set_feature_large_file(sb); 5127 ext4_superblock_csum_set(sb); 5128 unlock_buffer(EXT4_SB(sb)->s_sbh); 5129 ext4_handle_sync(handle); 5130 err = ext4_handle_dirty_metadata(handle, NULL, 5131 EXT4_SB(sb)->s_sbh); 5132 } 5133 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5134 out_error: 5135 ext4_std_error(inode->i_sb, err); 5136 out_brelse: 5137 brelse(bh); 5138 return err; 5139 } 5140 5141 /* 5142 * ext4_write_inode() 5143 * 5144 * We are called from a few places: 5145 * 5146 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5147 * Here, there will be no transaction running. We wait for any running 5148 * transaction to commit. 5149 * 5150 * - Within flush work (sys_sync(), kupdate and such). 5151 * We wait on commit, if told to. 5152 * 5153 * - Within iput_final() -> write_inode_now() 5154 * We wait on commit, if told to. 5155 * 5156 * In all cases it is actually safe for us to return without doing anything, 5157 * because the inode has been copied into a raw inode buffer in 5158 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5159 * writeback. 5160 * 5161 * Note that we are absolutely dependent upon all inode dirtiers doing the 5162 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5163 * which we are interested. 5164 * 5165 * It would be a bug for them to not do this. The code: 5166 * 5167 * mark_inode_dirty(inode) 5168 * stuff(); 5169 * inode->i_size = expr; 5170 * 5171 * is in error because write_inode() could occur while `stuff()' is running, 5172 * and the new i_size will be lost. Plus the inode will no longer be on the 5173 * superblock's dirty inode list. 5174 */ 5175 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5176 { 5177 int err; 5178 5179 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5180 return 0; 5181 5182 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5183 return -EIO; 5184 5185 if (EXT4_SB(inode->i_sb)->s_journal) { 5186 if (ext4_journal_current_handle()) { 5187 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5188 dump_stack(); 5189 return -EIO; 5190 } 5191 5192 /* 5193 * No need to force transaction in WB_SYNC_NONE mode. Also 5194 * ext4_sync_fs() will force the commit after everything is 5195 * written. 5196 */ 5197 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5198 return 0; 5199 5200 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5201 EXT4_I(inode)->i_sync_tid); 5202 } else { 5203 struct ext4_iloc iloc; 5204 5205 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5206 if (err) 5207 return err; 5208 /* 5209 * sync(2) will flush the whole buffer cache. No need to do 5210 * it here separately for each inode. 5211 */ 5212 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5213 sync_dirty_buffer(iloc.bh); 5214 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5215 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5216 "IO error syncing inode"); 5217 err = -EIO; 5218 } 5219 brelse(iloc.bh); 5220 } 5221 return err; 5222 } 5223 5224 /* 5225 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5226 * buffers that are attached to a folio straddling i_size and are undergoing 5227 * commit. In that case we have to wait for commit to finish and try again. 5228 */ 5229 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5230 { 5231 unsigned offset; 5232 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5233 tid_t commit_tid = 0; 5234 int ret; 5235 5236 offset = inode->i_size & (PAGE_SIZE - 1); 5237 /* 5238 * If the folio is fully truncated, we don't need to wait for any commit 5239 * (and we even should not as __ext4_journalled_invalidate_folio() may 5240 * strip all buffers from the folio but keep the folio dirty which can then 5241 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5242 * buffers). Also we don't need to wait for any commit if all buffers in 5243 * the folio remain valid. This is most beneficial for the common case of 5244 * blocksize == PAGESIZE. 5245 */ 5246 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5247 return; 5248 while (1) { 5249 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5250 inode->i_size >> PAGE_SHIFT); 5251 if (IS_ERR(folio)) 5252 return; 5253 ret = __ext4_journalled_invalidate_folio(folio, offset, 5254 folio_size(folio) - offset); 5255 folio_unlock(folio); 5256 folio_put(folio); 5257 if (ret != -EBUSY) 5258 return; 5259 commit_tid = 0; 5260 read_lock(&journal->j_state_lock); 5261 if (journal->j_committing_transaction) 5262 commit_tid = journal->j_committing_transaction->t_tid; 5263 read_unlock(&journal->j_state_lock); 5264 if (commit_tid) 5265 jbd2_log_wait_commit(journal, commit_tid); 5266 } 5267 } 5268 5269 /* 5270 * ext4_setattr() 5271 * 5272 * Called from notify_change. 5273 * 5274 * We want to trap VFS attempts to truncate the file as soon as 5275 * possible. In particular, we want to make sure that when the VFS 5276 * shrinks i_size, we put the inode on the orphan list and modify 5277 * i_disksize immediately, so that during the subsequent flushing of 5278 * dirty pages and freeing of disk blocks, we can guarantee that any 5279 * commit will leave the blocks being flushed in an unused state on 5280 * disk. (On recovery, the inode will get truncated and the blocks will 5281 * be freed, so we have a strong guarantee that no future commit will 5282 * leave these blocks visible to the user.) 5283 * 5284 * Another thing we have to assure is that if we are in ordered mode 5285 * and inode is still attached to the committing transaction, we must 5286 * we start writeout of all the dirty pages which are being truncated. 5287 * This way we are sure that all the data written in the previous 5288 * transaction are already on disk (truncate waits for pages under 5289 * writeback). 5290 * 5291 * Called with inode->i_rwsem down. 5292 */ 5293 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5294 struct iattr *attr) 5295 { 5296 struct inode *inode = d_inode(dentry); 5297 int error, rc = 0; 5298 int orphan = 0; 5299 const unsigned int ia_valid = attr->ia_valid; 5300 bool inc_ivers = true; 5301 5302 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5303 return -EIO; 5304 5305 if (unlikely(IS_IMMUTABLE(inode))) 5306 return -EPERM; 5307 5308 if (unlikely(IS_APPEND(inode) && 5309 (ia_valid & (ATTR_MODE | ATTR_UID | 5310 ATTR_GID | ATTR_TIMES_SET)))) 5311 return -EPERM; 5312 5313 error = setattr_prepare(idmap, dentry, attr); 5314 if (error) 5315 return error; 5316 5317 error = fscrypt_prepare_setattr(dentry, attr); 5318 if (error) 5319 return error; 5320 5321 error = fsverity_prepare_setattr(dentry, attr); 5322 if (error) 5323 return error; 5324 5325 if (is_quota_modification(idmap, inode, attr)) { 5326 error = dquot_initialize(inode); 5327 if (error) 5328 return error; 5329 } 5330 5331 if (i_uid_needs_update(idmap, attr, inode) || 5332 i_gid_needs_update(idmap, attr, inode)) { 5333 handle_t *handle; 5334 5335 /* (user+group)*(old+new) structure, inode write (sb, 5336 * inode block, ? - but truncate inode update has it) */ 5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5338 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5339 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5340 if (IS_ERR(handle)) { 5341 error = PTR_ERR(handle); 5342 goto err_out; 5343 } 5344 5345 /* dquot_transfer() calls back ext4_get_inode_usage() which 5346 * counts xattr inode references. 5347 */ 5348 down_read(&EXT4_I(inode)->xattr_sem); 5349 error = dquot_transfer(idmap, inode, attr); 5350 up_read(&EXT4_I(inode)->xattr_sem); 5351 5352 if (error) { 5353 ext4_journal_stop(handle); 5354 return error; 5355 } 5356 /* Update corresponding info in inode so that everything is in 5357 * one transaction */ 5358 i_uid_update(idmap, attr, inode); 5359 i_gid_update(idmap, attr, inode); 5360 error = ext4_mark_inode_dirty(handle, inode); 5361 ext4_journal_stop(handle); 5362 if (unlikely(error)) { 5363 return error; 5364 } 5365 } 5366 5367 if (attr->ia_valid & ATTR_SIZE) { 5368 handle_t *handle; 5369 loff_t oldsize = inode->i_size; 5370 loff_t old_disksize; 5371 int shrink = (attr->ia_size < inode->i_size); 5372 5373 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5374 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5375 5376 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5377 return -EFBIG; 5378 } 5379 } 5380 if (!S_ISREG(inode->i_mode)) { 5381 return -EINVAL; 5382 } 5383 5384 if (attr->ia_size == inode->i_size) 5385 inc_ivers = false; 5386 5387 if (shrink) { 5388 if (ext4_should_order_data(inode)) { 5389 error = ext4_begin_ordered_truncate(inode, 5390 attr->ia_size); 5391 if (error) 5392 goto err_out; 5393 } 5394 /* 5395 * Blocks are going to be removed from the inode. Wait 5396 * for dio in flight. 5397 */ 5398 inode_dio_wait(inode); 5399 } 5400 5401 filemap_invalidate_lock(inode->i_mapping); 5402 5403 rc = ext4_break_layouts(inode); 5404 if (rc) { 5405 filemap_invalidate_unlock(inode->i_mapping); 5406 goto err_out; 5407 } 5408 5409 if (attr->ia_size != inode->i_size) { 5410 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5411 if (IS_ERR(handle)) { 5412 error = PTR_ERR(handle); 5413 goto out_mmap_sem; 5414 } 5415 if (ext4_handle_valid(handle) && shrink) { 5416 error = ext4_orphan_add(handle, inode); 5417 orphan = 1; 5418 } 5419 /* 5420 * Update c/mtime on truncate up, ext4_truncate() will 5421 * update c/mtime in shrink case below 5422 */ 5423 if (!shrink) 5424 inode->i_mtime = inode_set_ctime_current(inode); 5425 5426 if (shrink) 5427 ext4_fc_track_range(handle, inode, 5428 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5429 inode->i_sb->s_blocksize_bits, 5430 EXT_MAX_BLOCKS - 1); 5431 else 5432 ext4_fc_track_range( 5433 handle, inode, 5434 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5435 inode->i_sb->s_blocksize_bits, 5436 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5437 inode->i_sb->s_blocksize_bits); 5438 5439 down_write(&EXT4_I(inode)->i_data_sem); 5440 old_disksize = EXT4_I(inode)->i_disksize; 5441 EXT4_I(inode)->i_disksize = attr->ia_size; 5442 rc = ext4_mark_inode_dirty(handle, inode); 5443 if (!error) 5444 error = rc; 5445 /* 5446 * We have to update i_size under i_data_sem together 5447 * with i_disksize to avoid races with writeback code 5448 * running ext4_wb_update_i_disksize(). 5449 */ 5450 if (!error) 5451 i_size_write(inode, attr->ia_size); 5452 else 5453 EXT4_I(inode)->i_disksize = old_disksize; 5454 up_write(&EXT4_I(inode)->i_data_sem); 5455 ext4_journal_stop(handle); 5456 if (error) 5457 goto out_mmap_sem; 5458 if (!shrink) { 5459 pagecache_isize_extended(inode, oldsize, 5460 inode->i_size); 5461 } else if (ext4_should_journal_data(inode)) { 5462 ext4_wait_for_tail_page_commit(inode); 5463 } 5464 } 5465 5466 /* 5467 * Truncate pagecache after we've waited for commit 5468 * in data=journal mode to make pages freeable. 5469 */ 5470 truncate_pagecache(inode, inode->i_size); 5471 /* 5472 * Call ext4_truncate() even if i_size didn't change to 5473 * truncate possible preallocated blocks. 5474 */ 5475 if (attr->ia_size <= oldsize) { 5476 rc = ext4_truncate(inode); 5477 if (rc) 5478 error = rc; 5479 } 5480 out_mmap_sem: 5481 filemap_invalidate_unlock(inode->i_mapping); 5482 } 5483 5484 if (!error) { 5485 if (inc_ivers) 5486 inode_inc_iversion(inode); 5487 setattr_copy(idmap, inode, attr); 5488 mark_inode_dirty(inode); 5489 } 5490 5491 /* 5492 * If the call to ext4_truncate failed to get a transaction handle at 5493 * all, we need to clean up the in-core orphan list manually. 5494 */ 5495 if (orphan && inode->i_nlink) 5496 ext4_orphan_del(NULL, inode); 5497 5498 if (!error && (ia_valid & ATTR_MODE)) 5499 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5500 5501 err_out: 5502 if (error) 5503 ext4_std_error(inode->i_sb, error); 5504 if (!error) 5505 error = rc; 5506 return error; 5507 } 5508 5509 u32 ext4_dio_alignment(struct inode *inode) 5510 { 5511 if (fsverity_active(inode)) 5512 return 0; 5513 if (ext4_should_journal_data(inode)) 5514 return 0; 5515 if (ext4_has_inline_data(inode)) 5516 return 0; 5517 if (IS_ENCRYPTED(inode)) { 5518 if (!fscrypt_dio_supported(inode)) 5519 return 0; 5520 return i_blocksize(inode); 5521 } 5522 return 1; /* use the iomap defaults */ 5523 } 5524 5525 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5526 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5527 { 5528 struct inode *inode = d_inode(path->dentry); 5529 struct ext4_inode *raw_inode; 5530 struct ext4_inode_info *ei = EXT4_I(inode); 5531 unsigned int flags; 5532 5533 if ((request_mask & STATX_BTIME) && 5534 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5535 stat->result_mask |= STATX_BTIME; 5536 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5537 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5538 } 5539 5540 /* 5541 * Return the DIO alignment restrictions if requested. We only return 5542 * this information when requested, since on encrypted files it might 5543 * take a fair bit of work to get if the file wasn't opened recently. 5544 */ 5545 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5546 u32 dio_align = ext4_dio_alignment(inode); 5547 5548 stat->result_mask |= STATX_DIOALIGN; 5549 if (dio_align == 1) { 5550 struct block_device *bdev = inode->i_sb->s_bdev; 5551 5552 /* iomap defaults */ 5553 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5554 stat->dio_offset_align = bdev_logical_block_size(bdev); 5555 } else { 5556 stat->dio_mem_align = dio_align; 5557 stat->dio_offset_align = dio_align; 5558 } 5559 } 5560 5561 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5562 if (flags & EXT4_APPEND_FL) 5563 stat->attributes |= STATX_ATTR_APPEND; 5564 if (flags & EXT4_COMPR_FL) 5565 stat->attributes |= STATX_ATTR_COMPRESSED; 5566 if (flags & EXT4_ENCRYPT_FL) 5567 stat->attributes |= STATX_ATTR_ENCRYPTED; 5568 if (flags & EXT4_IMMUTABLE_FL) 5569 stat->attributes |= STATX_ATTR_IMMUTABLE; 5570 if (flags & EXT4_NODUMP_FL) 5571 stat->attributes |= STATX_ATTR_NODUMP; 5572 if (flags & EXT4_VERITY_FL) 5573 stat->attributes |= STATX_ATTR_VERITY; 5574 5575 stat->attributes_mask |= (STATX_ATTR_APPEND | 5576 STATX_ATTR_COMPRESSED | 5577 STATX_ATTR_ENCRYPTED | 5578 STATX_ATTR_IMMUTABLE | 5579 STATX_ATTR_NODUMP | 5580 STATX_ATTR_VERITY); 5581 5582 generic_fillattr(idmap, request_mask, inode, stat); 5583 return 0; 5584 } 5585 5586 int ext4_file_getattr(struct mnt_idmap *idmap, 5587 const struct path *path, struct kstat *stat, 5588 u32 request_mask, unsigned int query_flags) 5589 { 5590 struct inode *inode = d_inode(path->dentry); 5591 u64 delalloc_blocks; 5592 5593 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5594 5595 /* 5596 * If there is inline data in the inode, the inode will normally not 5597 * have data blocks allocated (it may have an external xattr block). 5598 * Report at least one sector for such files, so tools like tar, rsync, 5599 * others don't incorrectly think the file is completely sparse. 5600 */ 5601 if (unlikely(ext4_has_inline_data(inode))) 5602 stat->blocks += (stat->size + 511) >> 9; 5603 5604 /* 5605 * We can't update i_blocks if the block allocation is delayed 5606 * otherwise in the case of system crash before the real block 5607 * allocation is done, we will have i_blocks inconsistent with 5608 * on-disk file blocks. 5609 * We always keep i_blocks updated together with real 5610 * allocation. But to not confuse with user, stat 5611 * will return the blocks that include the delayed allocation 5612 * blocks for this file. 5613 */ 5614 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5615 EXT4_I(inode)->i_reserved_data_blocks); 5616 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5617 return 0; 5618 } 5619 5620 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5621 int pextents) 5622 { 5623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5624 return ext4_ind_trans_blocks(inode, lblocks); 5625 return ext4_ext_index_trans_blocks(inode, pextents); 5626 } 5627 5628 /* 5629 * Account for index blocks, block groups bitmaps and block group 5630 * descriptor blocks if modify datablocks and index blocks 5631 * worse case, the indexs blocks spread over different block groups 5632 * 5633 * If datablocks are discontiguous, they are possible to spread over 5634 * different block groups too. If they are contiguous, with flexbg, 5635 * they could still across block group boundary. 5636 * 5637 * Also account for superblock, inode, quota and xattr blocks 5638 */ 5639 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5640 int pextents) 5641 { 5642 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5643 int gdpblocks; 5644 int idxblocks; 5645 int ret; 5646 5647 /* 5648 * How many index blocks need to touch to map @lblocks logical blocks 5649 * to @pextents physical extents? 5650 */ 5651 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5652 5653 ret = idxblocks; 5654 5655 /* 5656 * Now let's see how many group bitmaps and group descriptors need 5657 * to account 5658 */ 5659 groups = idxblocks + pextents; 5660 gdpblocks = groups; 5661 if (groups > ngroups) 5662 groups = ngroups; 5663 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5664 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5665 5666 /* bitmaps and block group descriptor blocks */ 5667 ret += groups + gdpblocks; 5668 5669 /* Blocks for super block, inode, quota and xattr blocks */ 5670 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5671 5672 return ret; 5673 } 5674 5675 /* 5676 * Calculate the total number of credits to reserve to fit 5677 * the modification of a single pages into a single transaction, 5678 * which may include multiple chunks of block allocations. 5679 * 5680 * This could be called via ext4_write_begin() 5681 * 5682 * We need to consider the worse case, when 5683 * one new block per extent. 5684 */ 5685 int ext4_writepage_trans_blocks(struct inode *inode) 5686 { 5687 int bpp = ext4_journal_blocks_per_page(inode); 5688 int ret; 5689 5690 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5691 5692 /* Account for data blocks for journalled mode */ 5693 if (ext4_should_journal_data(inode)) 5694 ret += bpp; 5695 return ret; 5696 } 5697 5698 /* 5699 * Calculate the journal credits for a chunk of data modification. 5700 * 5701 * This is called from DIO, fallocate or whoever calling 5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5703 * 5704 * journal buffers for data blocks are not included here, as DIO 5705 * and fallocate do no need to journal data buffers. 5706 */ 5707 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5708 { 5709 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5710 } 5711 5712 /* 5713 * The caller must have previously called ext4_reserve_inode_write(). 5714 * Give this, we know that the caller already has write access to iloc->bh. 5715 */ 5716 int ext4_mark_iloc_dirty(handle_t *handle, 5717 struct inode *inode, struct ext4_iloc *iloc) 5718 { 5719 int err = 0; 5720 5721 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5722 put_bh(iloc->bh); 5723 return -EIO; 5724 } 5725 ext4_fc_track_inode(handle, inode); 5726 5727 /* the do_update_inode consumes one bh->b_count */ 5728 get_bh(iloc->bh); 5729 5730 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5731 err = ext4_do_update_inode(handle, inode, iloc); 5732 put_bh(iloc->bh); 5733 return err; 5734 } 5735 5736 /* 5737 * On success, We end up with an outstanding reference count against 5738 * iloc->bh. This _must_ be cleaned up later. 5739 */ 5740 5741 int 5742 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5743 struct ext4_iloc *iloc) 5744 { 5745 int err; 5746 5747 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5748 return -EIO; 5749 5750 err = ext4_get_inode_loc(inode, iloc); 5751 if (!err) { 5752 BUFFER_TRACE(iloc->bh, "get_write_access"); 5753 err = ext4_journal_get_write_access(handle, inode->i_sb, 5754 iloc->bh, EXT4_JTR_NONE); 5755 if (err) { 5756 brelse(iloc->bh); 5757 iloc->bh = NULL; 5758 } 5759 } 5760 ext4_std_error(inode->i_sb, err); 5761 return err; 5762 } 5763 5764 static int __ext4_expand_extra_isize(struct inode *inode, 5765 unsigned int new_extra_isize, 5766 struct ext4_iloc *iloc, 5767 handle_t *handle, int *no_expand) 5768 { 5769 struct ext4_inode *raw_inode; 5770 struct ext4_xattr_ibody_header *header; 5771 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5772 struct ext4_inode_info *ei = EXT4_I(inode); 5773 int error; 5774 5775 /* this was checked at iget time, but double check for good measure */ 5776 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5777 (ei->i_extra_isize & 3)) { 5778 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5779 ei->i_extra_isize, 5780 EXT4_INODE_SIZE(inode->i_sb)); 5781 return -EFSCORRUPTED; 5782 } 5783 if ((new_extra_isize < ei->i_extra_isize) || 5784 (new_extra_isize < 4) || 5785 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5786 return -EINVAL; /* Should never happen */ 5787 5788 raw_inode = ext4_raw_inode(iloc); 5789 5790 header = IHDR(inode, raw_inode); 5791 5792 /* No extended attributes present */ 5793 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5794 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5795 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5796 EXT4_I(inode)->i_extra_isize, 0, 5797 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5798 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5799 return 0; 5800 } 5801 5802 /* 5803 * We may need to allocate external xattr block so we need quotas 5804 * initialized. Here we can be called with various locks held so we 5805 * cannot affort to initialize quotas ourselves. So just bail. 5806 */ 5807 if (dquot_initialize_needed(inode)) 5808 return -EAGAIN; 5809 5810 /* try to expand with EAs present */ 5811 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5812 raw_inode, handle); 5813 if (error) { 5814 /* 5815 * Inode size expansion failed; don't try again 5816 */ 5817 *no_expand = 1; 5818 } 5819 5820 return error; 5821 } 5822 5823 /* 5824 * Expand an inode by new_extra_isize bytes. 5825 * Returns 0 on success or negative error number on failure. 5826 */ 5827 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5828 unsigned int new_extra_isize, 5829 struct ext4_iloc iloc, 5830 handle_t *handle) 5831 { 5832 int no_expand; 5833 int error; 5834 5835 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5836 return -EOVERFLOW; 5837 5838 /* 5839 * In nojournal mode, we can immediately attempt to expand 5840 * the inode. When journaled, we first need to obtain extra 5841 * buffer credits since we may write into the EA block 5842 * with this same handle. If journal_extend fails, then it will 5843 * only result in a minor loss of functionality for that inode. 5844 * If this is felt to be critical, then e2fsck should be run to 5845 * force a large enough s_min_extra_isize. 5846 */ 5847 if (ext4_journal_extend(handle, 5848 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5849 return -ENOSPC; 5850 5851 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5852 return -EBUSY; 5853 5854 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5855 handle, &no_expand); 5856 ext4_write_unlock_xattr(inode, &no_expand); 5857 5858 return error; 5859 } 5860 5861 int ext4_expand_extra_isize(struct inode *inode, 5862 unsigned int new_extra_isize, 5863 struct ext4_iloc *iloc) 5864 { 5865 handle_t *handle; 5866 int no_expand; 5867 int error, rc; 5868 5869 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5870 brelse(iloc->bh); 5871 return -EOVERFLOW; 5872 } 5873 5874 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5875 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5876 if (IS_ERR(handle)) { 5877 error = PTR_ERR(handle); 5878 brelse(iloc->bh); 5879 return error; 5880 } 5881 5882 ext4_write_lock_xattr(inode, &no_expand); 5883 5884 BUFFER_TRACE(iloc->bh, "get_write_access"); 5885 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5886 EXT4_JTR_NONE); 5887 if (error) { 5888 brelse(iloc->bh); 5889 goto out_unlock; 5890 } 5891 5892 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5893 handle, &no_expand); 5894 5895 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5896 if (!error) 5897 error = rc; 5898 5899 out_unlock: 5900 ext4_write_unlock_xattr(inode, &no_expand); 5901 ext4_journal_stop(handle); 5902 return error; 5903 } 5904 5905 /* 5906 * What we do here is to mark the in-core inode as clean with respect to inode 5907 * dirtiness (it may still be data-dirty). 5908 * This means that the in-core inode may be reaped by prune_icache 5909 * without having to perform any I/O. This is a very good thing, 5910 * because *any* task may call prune_icache - even ones which 5911 * have a transaction open against a different journal. 5912 * 5913 * Is this cheating? Not really. Sure, we haven't written the 5914 * inode out, but prune_icache isn't a user-visible syncing function. 5915 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5916 * we start and wait on commits. 5917 */ 5918 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5919 const char *func, unsigned int line) 5920 { 5921 struct ext4_iloc iloc; 5922 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5923 int err; 5924 5925 might_sleep(); 5926 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5927 err = ext4_reserve_inode_write(handle, inode, &iloc); 5928 if (err) 5929 goto out; 5930 5931 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5932 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5933 iloc, handle); 5934 5935 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5936 out: 5937 if (unlikely(err)) 5938 ext4_error_inode_err(inode, func, line, 0, err, 5939 "mark_inode_dirty error"); 5940 return err; 5941 } 5942 5943 /* 5944 * ext4_dirty_inode() is called from __mark_inode_dirty() 5945 * 5946 * We're really interested in the case where a file is being extended. 5947 * i_size has been changed by generic_commit_write() and we thus need 5948 * to include the updated inode in the current transaction. 5949 * 5950 * Also, dquot_alloc_block() will always dirty the inode when blocks 5951 * are allocated to the file. 5952 * 5953 * If the inode is marked synchronous, we don't honour that here - doing 5954 * so would cause a commit on atime updates, which we don't bother doing. 5955 * We handle synchronous inodes at the highest possible level. 5956 */ 5957 void ext4_dirty_inode(struct inode *inode, int flags) 5958 { 5959 handle_t *handle; 5960 5961 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5962 if (IS_ERR(handle)) 5963 return; 5964 ext4_mark_inode_dirty(handle, inode); 5965 ext4_journal_stop(handle); 5966 } 5967 5968 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5969 { 5970 journal_t *journal; 5971 handle_t *handle; 5972 int err; 5973 int alloc_ctx; 5974 5975 /* 5976 * We have to be very careful here: changing a data block's 5977 * journaling status dynamically is dangerous. If we write a 5978 * data block to the journal, change the status and then delete 5979 * that block, we risk forgetting to revoke the old log record 5980 * from the journal and so a subsequent replay can corrupt data. 5981 * So, first we make sure that the journal is empty and that 5982 * nobody is changing anything. 5983 */ 5984 5985 journal = EXT4_JOURNAL(inode); 5986 if (!journal) 5987 return 0; 5988 if (is_journal_aborted(journal)) 5989 return -EROFS; 5990 5991 /* Wait for all existing dio workers */ 5992 inode_dio_wait(inode); 5993 5994 /* 5995 * Before flushing the journal and switching inode's aops, we have 5996 * to flush all dirty data the inode has. There can be outstanding 5997 * delayed allocations, there can be unwritten extents created by 5998 * fallocate or buffered writes in dioread_nolock mode covered by 5999 * dirty data which can be converted only after flushing the dirty 6000 * data (and journalled aops don't know how to handle these cases). 6001 */ 6002 if (val) { 6003 filemap_invalidate_lock(inode->i_mapping); 6004 err = filemap_write_and_wait(inode->i_mapping); 6005 if (err < 0) { 6006 filemap_invalidate_unlock(inode->i_mapping); 6007 return err; 6008 } 6009 } 6010 6011 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6012 jbd2_journal_lock_updates(journal); 6013 6014 /* 6015 * OK, there are no updates running now, and all cached data is 6016 * synced to disk. We are now in a completely consistent state 6017 * which doesn't have anything in the journal, and we know that 6018 * no filesystem updates are running, so it is safe to modify 6019 * the inode's in-core data-journaling state flag now. 6020 */ 6021 6022 if (val) 6023 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6024 else { 6025 err = jbd2_journal_flush(journal, 0); 6026 if (err < 0) { 6027 jbd2_journal_unlock_updates(journal); 6028 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6029 return err; 6030 } 6031 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6032 } 6033 ext4_set_aops(inode); 6034 6035 jbd2_journal_unlock_updates(journal); 6036 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6037 6038 if (val) 6039 filemap_invalidate_unlock(inode->i_mapping); 6040 6041 /* Finally we can mark the inode as dirty. */ 6042 6043 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6044 if (IS_ERR(handle)) 6045 return PTR_ERR(handle); 6046 6047 ext4_fc_mark_ineligible(inode->i_sb, 6048 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6049 err = ext4_mark_inode_dirty(handle, inode); 6050 ext4_handle_sync(handle); 6051 ext4_journal_stop(handle); 6052 ext4_std_error(inode->i_sb, err); 6053 6054 return err; 6055 } 6056 6057 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6058 struct buffer_head *bh) 6059 { 6060 return !buffer_mapped(bh); 6061 } 6062 6063 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6064 { 6065 struct vm_area_struct *vma = vmf->vma; 6066 struct folio *folio = page_folio(vmf->page); 6067 loff_t size; 6068 unsigned long len; 6069 int err; 6070 vm_fault_t ret; 6071 struct file *file = vma->vm_file; 6072 struct inode *inode = file_inode(file); 6073 struct address_space *mapping = inode->i_mapping; 6074 handle_t *handle; 6075 get_block_t *get_block; 6076 int retries = 0; 6077 6078 if (unlikely(IS_IMMUTABLE(inode))) 6079 return VM_FAULT_SIGBUS; 6080 6081 sb_start_pagefault(inode->i_sb); 6082 file_update_time(vma->vm_file); 6083 6084 filemap_invalidate_lock_shared(mapping); 6085 6086 err = ext4_convert_inline_data(inode); 6087 if (err) 6088 goto out_ret; 6089 6090 /* 6091 * On data journalling we skip straight to the transaction handle: 6092 * there's no delalloc; page truncated will be checked later; the 6093 * early return w/ all buffers mapped (calculates size/len) can't 6094 * be used; and there's no dioread_nolock, so only ext4_get_block. 6095 */ 6096 if (ext4_should_journal_data(inode)) 6097 goto retry_alloc; 6098 6099 /* Delalloc case is easy... */ 6100 if (test_opt(inode->i_sb, DELALLOC) && 6101 !ext4_nonda_switch(inode->i_sb)) { 6102 do { 6103 err = block_page_mkwrite(vma, vmf, 6104 ext4_da_get_block_prep); 6105 } while (err == -ENOSPC && 6106 ext4_should_retry_alloc(inode->i_sb, &retries)); 6107 goto out_ret; 6108 } 6109 6110 folio_lock(folio); 6111 size = i_size_read(inode); 6112 /* Page got truncated from under us? */ 6113 if (folio->mapping != mapping || folio_pos(folio) > size) { 6114 folio_unlock(folio); 6115 ret = VM_FAULT_NOPAGE; 6116 goto out; 6117 } 6118 6119 len = folio_size(folio); 6120 if (folio_pos(folio) + len > size) 6121 len = size - folio_pos(folio); 6122 /* 6123 * Return if we have all the buffers mapped. This avoids the need to do 6124 * journal_start/journal_stop which can block and take a long time 6125 * 6126 * This cannot be done for data journalling, as we have to add the 6127 * inode to the transaction's list to writeprotect pages on commit. 6128 */ 6129 if (folio_buffers(folio)) { 6130 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6131 0, len, NULL, 6132 ext4_bh_unmapped)) { 6133 /* Wait so that we don't change page under IO */ 6134 folio_wait_stable(folio); 6135 ret = VM_FAULT_LOCKED; 6136 goto out; 6137 } 6138 } 6139 folio_unlock(folio); 6140 /* OK, we need to fill the hole... */ 6141 if (ext4_should_dioread_nolock(inode)) 6142 get_block = ext4_get_block_unwritten; 6143 else 6144 get_block = ext4_get_block; 6145 retry_alloc: 6146 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6147 ext4_writepage_trans_blocks(inode)); 6148 if (IS_ERR(handle)) { 6149 ret = VM_FAULT_SIGBUS; 6150 goto out; 6151 } 6152 /* 6153 * Data journalling can't use block_page_mkwrite() because it 6154 * will set_buffer_dirty() before do_journal_get_write_access() 6155 * thus might hit warning messages for dirty metadata buffers. 6156 */ 6157 if (!ext4_should_journal_data(inode)) { 6158 err = block_page_mkwrite(vma, vmf, get_block); 6159 } else { 6160 folio_lock(folio); 6161 size = i_size_read(inode); 6162 /* Page got truncated from under us? */ 6163 if (folio->mapping != mapping || folio_pos(folio) > size) { 6164 ret = VM_FAULT_NOPAGE; 6165 goto out_error; 6166 } 6167 6168 len = folio_size(folio); 6169 if (folio_pos(folio) + len > size) 6170 len = size - folio_pos(folio); 6171 6172 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6173 if (!err) { 6174 ret = VM_FAULT_SIGBUS; 6175 if (ext4_journal_folio_buffers(handle, folio, len)) 6176 goto out_error; 6177 } else { 6178 folio_unlock(folio); 6179 } 6180 } 6181 ext4_journal_stop(handle); 6182 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6183 goto retry_alloc; 6184 out_ret: 6185 ret = vmf_fs_error(err); 6186 out: 6187 filemap_invalidate_unlock_shared(mapping); 6188 sb_end_pagefault(inode->i_sb); 6189 return ret; 6190 out_error: 6191 folio_unlock(folio); 6192 ext4_journal_stop(handle); 6193 goto out; 6194 } 6195