xref: /openbmc/linux/fs/ext4/inode.c (revision f0e6c98593eb8a77edb7dd0edb22bb9f9368c567)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43 
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 					      loff_t new_size)
46 {
47 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 						   new_size);
49 }
50 
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52 
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 		(inode->i_sb->s_blocksize >> 9) : 0;
60 
61 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63 
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 			struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76 	int err;
77 
78 	might_sleep();
79 
80 	BUFFER_TRACE(bh, "enter");
81 
82 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 		  "data mode %lx\n",
84 		  bh, is_metadata, inode->i_mode,
85 		  test_opt(inode->i_sb, DATA_FLAGS));
86 
87 	/* Never use the revoke function if we are doing full data
88 	 * journaling: there is no need to, and a V1 superblock won't
89 	 * support it.  Otherwise, only skip the revoke on un-journaled
90 	 * data blocks. */
91 
92 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 	    (!is_metadata && !ext4_should_journal_data(inode))) {
94 		if (bh) {
95 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
96 			return ext4_journal_forget(handle, bh);
97 		}
98 		return 0;
99 	}
100 
101 	/*
102 	 * data!=journal && (is_metadata || should_journal_data(inode))
103 	 */
104 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 	err = ext4_journal_revoke(handle, blocknr, bh);
106 	if (err)
107 		ext4_abort(inode->i_sb, __func__,
108 			   "error %d when attempting revoke", err);
109 	BUFFER_TRACE(bh, "exit");
110 	return err;
111 }
112 
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119 	ext4_lblk_t needed;
120 
121 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122 
123 	/* Give ourselves just enough room to cope with inodes in which
124 	 * i_blocks is corrupt: we've seen disk corruptions in the past
125 	 * which resulted in random data in an inode which looked enough
126 	 * like a regular file for ext4 to try to delete it.  Things
127 	 * will go a bit crazy if that happens, but at least we should
128 	 * try not to panic the whole kernel. */
129 	if (needed < 2)
130 		needed = 2;
131 
132 	/* But we need to bound the transaction so we don't overflow the
133 	 * journal. */
134 	if (needed > EXT4_MAX_TRANS_DATA)
135 		needed = EXT4_MAX_TRANS_DATA;
136 
137 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139 
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152 	handle_t *result;
153 
154 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 	if (!IS_ERR(result))
156 		return result;
157 
158 	ext4_std_error(inode->i_sb, PTR_ERR(result));
159 	return result;
160 }
161 
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171 		return 0;
172 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 		return 0;
174 	return 1;
175 }
176 
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184 	jbd_debug(2, "restarting handle %p\n", handle);
185 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187 
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193 	handle_t *handle;
194 
195 	if (ext4_should_order_data(inode))
196 		ext4_begin_ordered_truncate(inode, 0);
197 	truncate_inode_pages(&inode->i_data, 0);
198 
199 	if (is_bad_inode(inode))
200 		goto no_delete;
201 
202 	handle = start_transaction(inode);
203 	if (IS_ERR(handle)) {
204 		/*
205 		 * If we're going to skip the normal cleanup, we still need to
206 		 * make sure that the in-core orphan linked list is properly
207 		 * cleaned up.
208 		 */
209 		ext4_orphan_del(NULL, inode);
210 		goto no_delete;
211 	}
212 
213 	if (IS_SYNC(inode))
214 		handle->h_sync = 1;
215 	inode->i_size = 0;
216 	if (inode->i_blocks)
217 		ext4_truncate(inode);
218 	/*
219 	 * Kill off the orphan record which ext4_truncate created.
220 	 * AKPM: I think this can be inside the above `if'.
221 	 * Note that ext4_orphan_del() has to be able to cope with the
222 	 * deletion of a non-existent orphan - this is because we don't
223 	 * know if ext4_truncate() actually created an orphan record.
224 	 * (Well, we could do this if we need to, but heck - it works)
225 	 */
226 	ext4_orphan_del(handle, inode);
227 	EXT4_I(inode)->i_dtime	= get_seconds();
228 
229 	/*
230 	 * One subtle ordering requirement: if anything has gone wrong
231 	 * (transaction abort, IO errors, whatever), then we can still
232 	 * do these next steps (the fs will already have been marked as
233 	 * having errors), but we can't free the inode if the mark_dirty
234 	 * fails.
235 	 */
236 	if (ext4_mark_inode_dirty(handle, inode))
237 		/* If that failed, just do the required in-core inode clear. */
238 		clear_inode(inode);
239 	else
240 		ext4_free_inode(handle, inode);
241 	ext4_journal_stop(handle);
242 	return;
243 no_delete:
244 	clear_inode(inode);	/* We must guarantee clearing of inode... */
245 }
246 
247 typedef struct {
248 	__le32	*p;
249 	__le32	key;
250 	struct buffer_head *bh;
251 } Indirect;
252 
253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
254 {
255 	p->key = *(p->p = v);
256 	p->bh = bh;
257 }
258 
259 /**
260  *	ext4_block_to_path - parse the block number into array of offsets
261  *	@inode: inode in question (we are only interested in its superblock)
262  *	@i_block: block number to be parsed
263  *	@offsets: array to store the offsets in
264  *	@boundary: set this non-zero if the referred-to block is likely to be
265  *	       followed (on disk) by an indirect block.
266  *
267  *	To store the locations of file's data ext4 uses a data structure common
268  *	for UNIX filesystems - tree of pointers anchored in the inode, with
269  *	data blocks at leaves and indirect blocks in intermediate nodes.
270  *	This function translates the block number into path in that tree -
271  *	return value is the path length and @offsets[n] is the offset of
272  *	pointer to (n+1)th node in the nth one. If @block is out of range
273  *	(negative or too large) warning is printed and zero returned.
274  *
275  *	Note: function doesn't find node addresses, so no IO is needed. All
276  *	we need to know is the capacity of indirect blocks (taken from the
277  *	inode->i_sb).
278  */
279 
280 /*
281  * Portability note: the last comparison (check that we fit into triple
282  * indirect block) is spelled differently, because otherwise on an
283  * architecture with 32-bit longs and 8Kb pages we might get into trouble
284  * if our filesystem had 8Kb blocks. We might use long long, but that would
285  * kill us on x86. Oh, well, at least the sign propagation does not matter -
286  * i_block would have to be negative in the very beginning, so we would not
287  * get there at all.
288  */
289 
290 static int ext4_block_to_path(struct inode *inode,
291 			ext4_lblk_t i_block,
292 			ext4_lblk_t offsets[4], int *boundary)
293 {
294 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
295 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
296 	const long direct_blocks = EXT4_NDIR_BLOCKS,
297 		indirect_blocks = ptrs,
298 		double_blocks = (1 << (ptrs_bits * 2));
299 	int n = 0;
300 	int final = 0;
301 
302 	if (i_block < 0) {
303 		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
304 	} else if (i_block < direct_blocks) {
305 		offsets[n++] = i_block;
306 		final = direct_blocks;
307 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
308 		offsets[n++] = EXT4_IND_BLOCK;
309 		offsets[n++] = i_block;
310 		final = ptrs;
311 	} else if ((i_block -= indirect_blocks) < double_blocks) {
312 		offsets[n++] = EXT4_DIND_BLOCK;
313 		offsets[n++] = i_block >> ptrs_bits;
314 		offsets[n++] = i_block & (ptrs - 1);
315 		final = ptrs;
316 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317 		offsets[n++] = EXT4_TIND_BLOCK;
318 		offsets[n++] = i_block >> (ptrs_bits * 2);
319 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
320 		offsets[n++] = i_block & (ptrs - 1);
321 		final = ptrs;
322 	} else {
323 		ext4_warning(inode->i_sb, "ext4_block_to_path",
324 				"block %lu > max",
325 				i_block + direct_blocks +
326 				indirect_blocks + double_blocks);
327 	}
328 	if (boundary)
329 		*boundary = final - 1 - (i_block & (ptrs - 1));
330 	return n;
331 }
332 
333 /**
334  *	ext4_get_branch - read the chain of indirect blocks leading to data
335  *	@inode: inode in question
336  *	@depth: depth of the chain (1 - direct pointer, etc.)
337  *	@offsets: offsets of pointers in inode/indirect blocks
338  *	@chain: place to store the result
339  *	@err: here we store the error value
340  *
341  *	Function fills the array of triples <key, p, bh> and returns %NULL
342  *	if everything went OK or the pointer to the last filled triple
343  *	(incomplete one) otherwise. Upon the return chain[i].key contains
344  *	the number of (i+1)-th block in the chain (as it is stored in memory,
345  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
346  *	number (it points into struct inode for i==0 and into the bh->b_data
347  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
348  *	block for i>0 and NULL for i==0. In other words, it holds the block
349  *	numbers of the chain, addresses they were taken from (and where we can
350  *	verify that chain did not change) and buffer_heads hosting these
351  *	numbers.
352  *
353  *	Function stops when it stumbles upon zero pointer (absent block)
354  *		(pointer to last triple returned, *@err == 0)
355  *	or when it gets an IO error reading an indirect block
356  *		(ditto, *@err == -EIO)
357  *	or when it reads all @depth-1 indirect blocks successfully and finds
358  *	the whole chain, all way to the data (returns %NULL, *err == 0).
359  *
360  *      Need to be called with
361  *      down_read(&EXT4_I(inode)->i_data_sem)
362  */
363 static Indirect *ext4_get_branch(struct inode *inode, int depth,
364 				 ext4_lblk_t  *offsets,
365 				 Indirect chain[4], int *err)
366 {
367 	struct super_block *sb = inode->i_sb;
368 	Indirect *p = chain;
369 	struct buffer_head *bh;
370 
371 	*err = 0;
372 	/* i_data is not going away, no lock needed */
373 	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
374 	if (!p->key)
375 		goto no_block;
376 	while (--depth) {
377 		bh = sb_bread(sb, le32_to_cpu(p->key));
378 		if (!bh)
379 			goto failure;
380 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
381 		/* Reader: end */
382 		if (!p->key)
383 			goto no_block;
384 	}
385 	return NULL;
386 
387 failure:
388 	*err = -EIO;
389 no_block:
390 	return p;
391 }
392 
393 /**
394  *	ext4_find_near - find a place for allocation with sufficient locality
395  *	@inode: owner
396  *	@ind: descriptor of indirect block.
397  *
398  *	This function returns the preferred place for block allocation.
399  *	It is used when heuristic for sequential allocation fails.
400  *	Rules are:
401  *	  + if there is a block to the left of our position - allocate near it.
402  *	  + if pointer will live in indirect block - allocate near that block.
403  *	  + if pointer will live in inode - allocate in the same
404  *	    cylinder group.
405  *
406  * In the latter case we colour the starting block by the callers PID to
407  * prevent it from clashing with concurrent allocations for a different inode
408  * in the same block group.   The PID is used here so that functionally related
409  * files will be close-by on-disk.
410  *
411  *	Caller must make sure that @ind is valid and will stay that way.
412  */
413 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
414 {
415 	struct ext4_inode_info *ei = EXT4_I(inode);
416 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
417 	__le32 *p;
418 	ext4_fsblk_t bg_start;
419 	ext4_fsblk_t last_block;
420 	ext4_grpblk_t colour;
421 
422 	/* Try to find previous block */
423 	for (p = ind->p - 1; p >= start; p--) {
424 		if (*p)
425 			return le32_to_cpu(*p);
426 	}
427 
428 	/* No such thing, so let's try location of indirect block */
429 	if (ind->bh)
430 		return ind->bh->b_blocknr;
431 
432 	/*
433 	 * It is going to be referred to from the inode itself? OK, just put it
434 	 * into the same cylinder group then.
435 	 */
436 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
437 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
438 
439 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
440 		colour = (current->pid % 16) *
441 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
442 	else
443 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
444 	return bg_start + colour;
445 }
446 
447 /**
448  *	ext4_find_goal - find a preferred place for allocation.
449  *	@inode: owner
450  *	@block:  block we want
451  *	@partial: pointer to the last triple within a chain
452  *
453  *	Normally this function find the preferred place for block allocation,
454  *	returns it.
455  */
456 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
457 		Indirect *partial)
458 {
459 	struct ext4_block_alloc_info *block_i;
460 
461 	block_i =  EXT4_I(inode)->i_block_alloc_info;
462 
463 	/*
464 	 * try the heuristic for sequential allocation,
465 	 * failing that at least try to get decent locality.
466 	 */
467 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
468 		&& (block_i->last_alloc_physical_block != 0)) {
469 		return block_i->last_alloc_physical_block + 1;
470 	}
471 
472 	return ext4_find_near(inode, partial);
473 }
474 
475 /**
476  *	ext4_blks_to_allocate: Look up the block map and count the number
477  *	of direct blocks need to be allocated for the given branch.
478  *
479  *	@branch: chain of indirect blocks
480  *	@k: number of blocks need for indirect blocks
481  *	@blks: number of data blocks to be mapped.
482  *	@blocks_to_boundary:  the offset in the indirect block
483  *
484  *	return the total number of blocks to be allocate, including the
485  *	direct and indirect blocks.
486  */
487 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
488 		int blocks_to_boundary)
489 {
490 	unsigned long count = 0;
491 
492 	/*
493 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
494 	 * then it's clear blocks on that path have not allocated
495 	 */
496 	if (k > 0) {
497 		/* right now we don't handle cross boundary allocation */
498 		if (blks < blocks_to_boundary + 1)
499 			count += blks;
500 		else
501 			count += blocks_to_boundary + 1;
502 		return count;
503 	}
504 
505 	count++;
506 	while (count < blks && count <= blocks_to_boundary &&
507 		le32_to_cpu(*(branch[0].p + count)) == 0) {
508 		count++;
509 	}
510 	return count;
511 }
512 
513 /**
514  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
515  *	@indirect_blks: the number of blocks need to allocate for indirect
516  *			blocks
517  *
518  *	@new_blocks: on return it will store the new block numbers for
519  *	the indirect blocks(if needed) and the first direct block,
520  *	@blks:	on return it will store the total number of allocated
521  *		direct blocks
522  */
523 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
524 				ext4_lblk_t iblock, ext4_fsblk_t goal,
525 				int indirect_blks, int blks,
526 				ext4_fsblk_t new_blocks[4], int *err)
527 {
528 	int target, i;
529 	unsigned long count = 0, blk_allocated = 0;
530 	int index = 0;
531 	ext4_fsblk_t current_block = 0;
532 	int ret = 0;
533 
534 	/*
535 	 * Here we try to allocate the requested multiple blocks at once,
536 	 * on a best-effort basis.
537 	 * To build a branch, we should allocate blocks for
538 	 * the indirect blocks(if not allocated yet), and at least
539 	 * the first direct block of this branch.  That's the
540 	 * minimum number of blocks need to allocate(required)
541 	 */
542 	/* first we try to allocate the indirect blocks */
543 	target = indirect_blks;
544 	while (target > 0) {
545 		count = target;
546 		/* allocating blocks for indirect blocks and direct blocks */
547 		current_block = ext4_new_meta_blocks(handle, inode,
548 							goal, &count, err);
549 		if (*err)
550 			goto failed_out;
551 
552 		target -= count;
553 		/* allocate blocks for indirect blocks */
554 		while (index < indirect_blks && count) {
555 			new_blocks[index++] = current_block++;
556 			count--;
557 		}
558 		if (count > 0) {
559 			/*
560 			 * save the new block number
561 			 * for the first direct block
562 			 */
563 			new_blocks[index] = current_block;
564 			printk(KERN_INFO "%s returned more blocks than "
565 						"requested\n", __func__);
566 			WARN_ON(1);
567 			break;
568 		}
569 	}
570 
571 	target = blks - count ;
572 	blk_allocated = count;
573 	if (!target)
574 		goto allocated;
575 	/* Now allocate data blocks */
576 	count = target;
577 	/* allocating blocks for data blocks */
578 	current_block = ext4_new_blocks(handle, inode, iblock,
579 						goal, &count, err);
580 	if (*err && (target == blks)) {
581 		/*
582 		 * if the allocation failed and we didn't allocate
583 		 * any blocks before
584 		 */
585 		goto failed_out;
586 	}
587 	if (!*err) {
588 		if (target == blks) {
589 		/*
590 		 * save the new block number
591 		 * for the first direct block
592 		 */
593 			new_blocks[index] = current_block;
594 		}
595 		blk_allocated += count;
596 	}
597 allocated:
598 	/* total number of blocks allocated for direct blocks */
599 	ret = blk_allocated;
600 	*err = 0;
601 	return ret;
602 failed_out:
603 	for (i = 0; i <index; i++)
604 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
605 	return ret;
606 }
607 
608 /**
609  *	ext4_alloc_branch - allocate and set up a chain of blocks.
610  *	@inode: owner
611  *	@indirect_blks: number of allocated indirect blocks
612  *	@blks: number of allocated direct blocks
613  *	@offsets: offsets (in the blocks) to store the pointers to next.
614  *	@branch: place to store the chain in.
615  *
616  *	This function allocates blocks, zeroes out all but the last one,
617  *	links them into chain and (if we are synchronous) writes them to disk.
618  *	In other words, it prepares a branch that can be spliced onto the
619  *	inode. It stores the information about that chain in the branch[], in
620  *	the same format as ext4_get_branch() would do. We are calling it after
621  *	we had read the existing part of chain and partial points to the last
622  *	triple of that (one with zero ->key). Upon the exit we have the same
623  *	picture as after the successful ext4_get_block(), except that in one
624  *	place chain is disconnected - *branch->p is still zero (we did not
625  *	set the last link), but branch->key contains the number that should
626  *	be placed into *branch->p to fill that gap.
627  *
628  *	If allocation fails we free all blocks we've allocated (and forget
629  *	their buffer_heads) and return the error value the from failed
630  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631  *	as described above and return 0.
632  */
633 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
634 				ext4_lblk_t iblock, int indirect_blks,
635 				int *blks, ext4_fsblk_t goal,
636 				ext4_lblk_t *offsets, Indirect *branch)
637 {
638 	int blocksize = inode->i_sb->s_blocksize;
639 	int i, n = 0;
640 	int err = 0;
641 	struct buffer_head *bh;
642 	int num;
643 	ext4_fsblk_t new_blocks[4];
644 	ext4_fsblk_t current_block;
645 
646 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
647 				*blks, new_blocks, &err);
648 	if (err)
649 		return err;
650 
651 	branch[0].key = cpu_to_le32(new_blocks[0]);
652 	/*
653 	 * metadata blocks and data blocks are allocated.
654 	 */
655 	for (n = 1; n <= indirect_blks;  n++) {
656 		/*
657 		 * Get buffer_head for parent block, zero it out
658 		 * and set the pointer to new one, then send
659 		 * parent to disk.
660 		 */
661 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
662 		branch[n].bh = bh;
663 		lock_buffer(bh);
664 		BUFFER_TRACE(bh, "call get_create_access");
665 		err = ext4_journal_get_create_access(handle, bh);
666 		if (err) {
667 			unlock_buffer(bh);
668 			brelse(bh);
669 			goto failed;
670 		}
671 
672 		memset(bh->b_data, 0, blocksize);
673 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
674 		branch[n].key = cpu_to_le32(new_blocks[n]);
675 		*branch[n].p = branch[n].key;
676 		if ( n == indirect_blks) {
677 			current_block = new_blocks[n];
678 			/*
679 			 * End of chain, update the last new metablock of
680 			 * the chain to point to the new allocated
681 			 * data blocks numbers
682 			 */
683 			for (i=1; i < num; i++)
684 				*(branch[n].p + i) = cpu_to_le32(++current_block);
685 		}
686 		BUFFER_TRACE(bh, "marking uptodate");
687 		set_buffer_uptodate(bh);
688 		unlock_buffer(bh);
689 
690 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
691 		err = ext4_journal_dirty_metadata(handle, bh);
692 		if (err)
693 			goto failed;
694 	}
695 	*blks = num;
696 	return err;
697 failed:
698 	/* Allocation failed, free what we already allocated */
699 	for (i = 1; i <= n ; i++) {
700 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
701 		ext4_journal_forget(handle, branch[i].bh);
702 	}
703 	for (i = 0; i <indirect_blks; i++)
704 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705 
706 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
707 
708 	return err;
709 }
710 
711 /**
712  * ext4_splice_branch - splice the allocated branch onto inode.
713  * @inode: owner
714  * @block: (logical) number of block we are adding
715  * @chain: chain of indirect blocks (with a missing link - see
716  *	ext4_alloc_branch)
717  * @where: location of missing link
718  * @num:   number of indirect blocks we are adding
719  * @blks:  number of direct blocks we are adding
720  *
721  * This function fills the missing link and does all housekeeping needed in
722  * inode (->i_blocks, etc.). In case of success we end up with the full
723  * chain to new block and return 0.
724  */
725 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
726 			ext4_lblk_t block, Indirect *where, int num, int blks)
727 {
728 	int i;
729 	int err = 0;
730 	struct ext4_block_alloc_info *block_i;
731 	ext4_fsblk_t current_block;
732 
733 	block_i = EXT4_I(inode)->i_block_alloc_info;
734 	/*
735 	 * If we're splicing into a [td]indirect block (as opposed to the
736 	 * inode) then we need to get write access to the [td]indirect block
737 	 * before the splice.
738 	 */
739 	if (where->bh) {
740 		BUFFER_TRACE(where->bh, "get_write_access");
741 		err = ext4_journal_get_write_access(handle, where->bh);
742 		if (err)
743 			goto err_out;
744 	}
745 	/* That's it */
746 
747 	*where->p = where->key;
748 
749 	/*
750 	 * Update the host buffer_head or inode to point to more just allocated
751 	 * direct blocks blocks
752 	 */
753 	if (num == 0 && blks > 1) {
754 		current_block = le32_to_cpu(where->key) + 1;
755 		for (i = 1; i < blks; i++)
756 			*(where->p + i ) = cpu_to_le32(current_block++);
757 	}
758 
759 	/*
760 	 * update the most recently allocated logical & physical block
761 	 * in i_block_alloc_info, to assist find the proper goal block for next
762 	 * allocation
763 	 */
764 	if (block_i) {
765 		block_i->last_alloc_logical_block = block + blks - 1;
766 		block_i->last_alloc_physical_block =
767 				le32_to_cpu(where[num].key) + blks - 1;
768 	}
769 
770 	/* We are done with atomic stuff, now do the rest of housekeeping */
771 
772 	inode->i_ctime = ext4_current_time(inode);
773 	ext4_mark_inode_dirty(handle, inode);
774 
775 	/* had we spliced it onto indirect block? */
776 	if (where->bh) {
777 		/*
778 		 * If we spliced it onto an indirect block, we haven't
779 		 * altered the inode.  Note however that if it is being spliced
780 		 * onto an indirect block at the very end of the file (the
781 		 * file is growing) then we *will* alter the inode to reflect
782 		 * the new i_size.  But that is not done here - it is done in
783 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
784 		 */
785 		jbd_debug(5, "splicing indirect only\n");
786 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
787 		err = ext4_journal_dirty_metadata(handle, where->bh);
788 		if (err)
789 			goto err_out;
790 	} else {
791 		/*
792 		 * OK, we spliced it into the inode itself on a direct block.
793 		 * Inode was dirtied above.
794 		 */
795 		jbd_debug(5, "splicing direct\n");
796 	}
797 	return err;
798 
799 err_out:
800 	for (i = 1; i <= num; i++) {
801 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
802 		ext4_journal_forget(handle, where[i].bh);
803 		ext4_free_blocks(handle, inode,
804 					le32_to_cpu(where[i-1].key), 1, 0);
805 	}
806 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
807 
808 	return err;
809 }
810 
811 /*
812  * Allocation strategy is simple: if we have to allocate something, we will
813  * have to go the whole way to leaf. So let's do it before attaching anything
814  * to tree, set linkage between the newborn blocks, write them if sync is
815  * required, recheck the path, free and repeat if check fails, otherwise
816  * set the last missing link (that will protect us from any truncate-generated
817  * removals - all blocks on the path are immune now) and possibly force the
818  * write on the parent block.
819  * That has a nice additional property: no special recovery from the failed
820  * allocations is needed - we simply release blocks and do not touch anything
821  * reachable from inode.
822  *
823  * `handle' can be NULL if create == 0.
824  *
825  * return > 0, # of blocks mapped or allocated.
826  * return = 0, if plain lookup failed.
827  * return < 0, error case.
828  *
829  *
830  * Need to be called with
831  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
832  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
833  */
834 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
835 		ext4_lblk_t iblock, unsigned long maxblocks,
836 		struct buffer_head *bh_result,
837 		int create, int extend_disksize)
838 {
839 	int err = -EIO;
840 	ext4_lblk_t offsets[4];
841 	Indirect chain[4];
842 	Indirect *partial;
843 	ext4_fsblk_t goal;
844 	int indirect_blks;
845 	int blocks_to_boundary = 0;
846 	int depth;
847 	struct ext4_inode_info *ei = EXT4_I(inode);
848 	int count = 0;
849 	ext4_fsblk_t first_block = 0;
850 	loff_t disksize;
851 
852 
853 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
854 	J_ASSERT(handle != NULL || create == 0);
855 	depth = ext4_block_to_path(inode, iblock, offsets,
856 					&blocks_to_boundary);
857 
858 	if (depth == 0)
859 		goto out;
860 
861 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
862 
863 	/* Simplest case - block found, no allocation needed */
864 	if (!partial) {
865 		first_block = le32_to_cpu(chain[depth - 1].key);
866 		clear_buffer_new(bh_result);
867 		count++;
868 		/*map more blocks*/
869 		while (count < maxblocks && count <= blocks_to_boundary) {
870 			ext4_fsblk_t blk;
871 
872 			blk = le32_to_cpu(*(chain[depth-1].p + count));
873 
874 			if (blk == first_block + count)
875 				count++;
876 			else
877 				break;
878 		}
879 		goto got_it;
880 	}
881 
882 	/* Next simple case - plain lookup or failed read of indirect block */
883 	if (!create || err == -EIO)
884 		goto cleanup;
885 
886 	/*
887 	 * Okay, we need to do block allocation.  Lazily initialize the block
888 	 * allocation info here if necessary
889 	*/
890 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
891 		ext4_init_block_alloc_info(inode);
892 
893 	goal = ext4_find_goal(inode, iblock, partial);
894 
895 	/* the number of blocks need to allocate for [d,t]indirect blocks */
896 	indirect_blks = (chain + depth) - partial - 1;
897 
898 	/*
899 	 * Next look up the indirect map to count the totoal number of
900 	 * direct blocks to allocate for this branch.
901 	 */
902 	count = ext4_blks_to_allocate(partial, indirect_blks,
903 					maxblocks, blocks_to_boundary);
904 	/*
905 	 * Block out ext4_truncate while we alter the tree
906 	 */
907 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
908 					&count, goal,
909 					offsets + (partial - chain), partial);
910 
911 	/*
912 	 * The ext4_splice_branch call will free and forget any buffers
913 	 * on the new chain if there is a failure, but that risks using
914 	 * up transaction credits, especially for bitmaps where the
915 	 * credits cannot be returned.  Can we handle this somehow?  We
916 	 * may need to return -EAGAIN upwards in the worst case.  --sct
917 	 */
918 	if (!err)
919 		err = ext4_splice_branch(handle, inode, iblock,
920 					partial, indirect_blks, count);
921 	/*
922 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
923 	 * protect it if you're about to implement concurrent
924 	 * ext4_get_block() -bzzz
925 	*/
926 	if (!err && extend_disksize) {
927 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
928 		if (disksize > i_size_read(inode))
929 			disksize = i_size_read(inode);
930 		if (disksize > ei->i_disksize)
931 			ei->i_disksize = disksize;
932 	}
933 	if (err)
934 		goto cleanup;
935 
936 	set_buffer_new(bh_result);
937 got_it:
938 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
939 	if (count > blocks_to_boundary)
940 		set_buffer_boundary(bh_result);
941 	err = count;
942 	/* Clean up and exit */
943 	partial = chain + depth - 1;	/* the whole chain */
944 cleanup:
945 	while (partial > chain) {
946 		BUFFER_TRACE(partial->bh, "call brelse");
947 		brelse(partial->bh);
948 		partial--;
949 	}
950 	BUFFER_TRACE(bh_result, "returned");
951 out:
952 	return err;
953 }
954 
955 /* Maximum number of blocks we map for direct IO at once. */
956 #define DIO_MAX_BLOCKS 4096
957 /*
958  * Number of credits we need for writing DIO_MAX_BLOCKS:
959  * We need sb + group descriptor + bitmap + inode -> 4
960  * For B blocks with A block pointers per block we need:
961  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
962  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
963  */
964 #define DIO_CREDITS 25
965 
966 
967 /*
968  *
969  *
970  * ext4_ext4 get_block() wrapper function
971  * It will do a look up first, and returns if the blocks already mapped.
972  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
973  * and store the allocated blocks in the result buffer head and mark it
974  * mapped.
975  *
976  * If file type is extents based, it will call ext4_ext_get_blocks(),
977  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
978  * based files
979  *
980  * On success, it returns the number of blocks being mapped or allocate.
981  * if create==0 and the blocks are pre-allocated and uninitialized block,
982  * the result buffer head is unmapped. If the create ==1, it will make sure
983  * the buffer head is mapped.
984  *
985  * It returns 0 if plain look up failed (blocks have not been allocated), in
986  * that casem, buffer head is unmapped
987  *
988  * It returns the error in case of allocation failure.
989  */
990 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
991 			unsigned long max_blocks, struct buffer_head *bh,
992 			int create, int extend_disksize, int flag)
993 {
994 	int retval;
995 
996 	clear_buffer_mapped(bh);
997 
998 	/*
999 	 * Try to see if we can get  the block without requesting
1000 	 * for new file system block.
1001 	 */
1002 	down_read((&EXT4_I(inode)->i_data_sem));
1003 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1004 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1005 				bh, 0, 0);
1006 	} else {
1007 		retval = ext4_get_blocks_handle(handle,
1008 				inode, block, max_blocks, bh, 0, 0);
1009 	}
1010 	up_read((&EXT4_I(inode)->i_data_sem));
1011 
1012 	/* If it is only a block(s) look up */
1013 	if (!create)
1014 		return retval;
1015 
1016 	/*
1017 	 * Returns if the blocks have already allocated
1018 	 *
1019 	 * Note that if blocks have been preallocated
1020 	 * ext4_ext_get_block() returns th create = 0
1021 	 * with buffer head unmapped.
1022 	 */
1023 	if (retval > 0 && buffer_mapped(bh))
1024 		return retval;
1025 
1026 	/*
1027 	 * New blocks allocate and/or writing to uninitialized extent
1028 	 * will possibly result in updating i_data, so we take
1029 	 * the write lock of i_data_sem, and call get_blocks()
1030 	 * with create == 1 flag.
1031 	 */
1032 	down_write((&EXT4_I(inode)->i_data_sem));
1033 
1034 	/*
1035 	 * if the caller is from delayed allocation writeout path
1036 	 * we have already reserved fs blocks for allocation
1037 	 * let the underlying get_block() function know to
1038 	 * avoid double accounting
1039 	 */
1040 	if (flag)
1041 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1042 	/*
1043 	 * We need to check for EXT4 here because migrate
1044 	 * could have changed the inode type in between
1045 	 */
1046 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1047 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1048 				bh, create, extend_disksize);
1049 	} else {
1050 		retval = ext4_get_blocks_handle(handle, inode, block,
1051 				max_blocks, bh, create, extend_disksize);
1052 
1053 		if (retval > 0 && buffer_new(bh)) {
1054 			/*
1055 			 * We allocated new blocks which will result in
1056 			 * i_data's format changing.  Force the migrate
1057 			 * to fail by clearing migrate flags
1058 			 */
1059 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1060 							~EXT4_EXT_MIGRATE;
1061 		}
1062 	}
1063 
1064 	if (flag) {
1065 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1066 		/*
1067 		 * Update reserved blocks/metadata blocks
1068 		 * after successful block allocation
1069 		 * which were deferred till now
1070 		 */
1071 		if ((retval > 0) && buffer_delay(bh))
1072 			ext4_da_release_space(inode, retval, 0);
1073 	}
1074 
1075 	up_write((&EXT4_I(inode)->i_data_sem));
1076 	return retval;
1077 }
1078 
1079 static int ext4_get_block(struct inode *inode, sector_t iblock,
1080 			struct buffer_head *bh_result, int create)
1081 {
1082 	handle_t *handle = ext4_journal_current_handle();
1083 	int ret = 0, started = 0;
1084 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1085 
1086 	if (create && !handle) {
1087 		/* Direct IO write... */
1088 		if (max_blocks > DIO_MAX_BLOCKS)
1089 			max_blocks = DIO_MAX_BLOCKS;
1090 		handle = ext4_journal_start(inode, DIO_CREDITS +
1091 			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1092 		if (IS_ERR(handle)) {
1093 			ret = PTR_ERR(handle);
1094 			goto out;
1095 		}
1096 		started = 1;
1097 	}
1098 
1099 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1100 					max_blocks, bh_result, create, 0, 0);
1101 	if (ret > 0) {
1102 		bh_result->b_size = (ret << inode->i_blkbits);
1103 		ret = 0;
1104 	}
1105 	if (started)
1106 		ext4_journal_stop(handle);
1107 out:
1108 	return ret;
1109 }
1110 
1111 /*
1112  * `handle' can be NULL if create is zero
1113  */
1114 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1115 				ext4_lblk_t block, int create, int *errp)
1116 {
1117 	struct buffer_head dummy;
1118 	int fatal = 0, err;
1119 
1120 	J_ASSERT(handle != NULL || create == 0);
1121 
1122 	dummy.b_state = 0;
1123 	dummy.b_blocknr = -1000;
1124 	buffer_trace_init(&dummy.b_history);
1125 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1126 					&dummy, create, 1, 0);
1127 	/*
1128 	 * ext4_get_blocks_handle() returns number of blocks
1129 	 * mapped. 0 in case of a HOLE.
1130 	 */
1131 	if (err > 0) {
1132 		if (err > 1)
1133 			WARN_ON(1);
1134 		err = 0;
1135 	}
1136 	*errp = err;
1137 	if (!err && buffer_mapped(&dummy)) {
1138 		struct buffer_head *bh;
1139 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1140 		if (!bh) {
1141 			*errp = -EIO;
1142 			goto err;
1143 		}
1144 		if (buffer_new(&dummy)) {
1145 			J_ASSERT(create != 0);
1146 			J_ASSERT(handle != NULL);
1147 
1148 			/*
1149 			 * Now that we do not always journal data, we should
1150 			 * keep in mind whether this should always journal the
1151 			 * new buffer as metadata.  For now, regular file
1152 			 * writes use ext4_get_block instead, so it's not a
1153 			 * problem.
1154 			 */
1155 			lock_buffer(bh);
1156 			BUFFER_TRACE(bh, "call get_create_access");
1157 			fatal = ext4_journal_get_create_access(handle, bh);
1158 			if (!fatal && !buffer_uptodate(bh)) {
1159 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1160 				set_buffer_uptodate(bh);
1161 			}
1162 			unlock_buffer(bh);
1163 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1164 			err = ext4_journal_dirty_metadata(handle, bh);
1165 			if (!fatal)
1166 				fatal = err;
1167 		} else {
1168 			BUFFER_TRACE(bh, "not a new buffer");
1169 		}
1170 		if (fatal) {
1171 			*errp = fatal;
1172 			brelse(bh);
1173 			bh = NULL;
1174 		}
1175 		return bh;
1176 	}
1177 err:
1178 	return NULL;
1179 }
1180 
1181 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1182 			       ext4_lblk_t block, int create, int *err)
1183 {
1184 	struct buffer_head * bh;
1185 
1186 	bh = ext4_getblk(handle, inode, block, create, err);
1187 	if (!bh)
1188 		return bh;
1189 	if (buffer_uptodate(bh))
1190 		return bh;
1191 	ll_rw_block(READ_META, 1, &bh);
1192 	wait_on_buffer(bh);
1193 	if (buffer_uptodate(bh))
1194 		return bh;
1195 	put_bh(bh);
1196 	*err = -EIO;
1197 	return NULL;
1198 }
1199 
1200 static int walk_page_buffers(	handle_t *handle,
1201 				struct buffer_head *head,
1202 				unsigned from,
1203 				unsigned to,
1204 				int *partial,
1205 				int (*fn)(	handle_t *handle,
1206 						struct buffer_head *bh))
1207 {
1208 	struct buffer_head *bh;
1209 	unsigned block_start, block_end;
1210 	unsigned blocksize = head->b_size;
1211 	int err, ret = 0;
1212 	struct buffer_head *next;
1213 
1214 	for (	bh = head, block_start = 0;
1215 		ret == 0 && (bh != head || !block_start);
1216 		block_start = block_end, bh = next)
1217 	{
1218 		next = bh->b_this_page;
1219 		block_end = block_start + blocksize;
1220 		if (block_end <= from || block_start >= to) {
1221 			if (partial && !buffer_uptodate(bh))
1222 				*partial = 1;
1223 			continue;
1224 		}
1225 		err = (*fn)(handle, bh);
1226 		if (!ret)
1227 			ret = err;
1228 	}
1229 	return ret;
1230 }
1231 
1232 /*
1233  * To preserve ordering, it is essential that the hole instantiation and
1234  * the data write be encapsulated in a single transaction.  We cannot
1235  * close off a transaction and start a new one between the ext4_get_block()
1236  * and the commit_write().  So doing the jbd2_journal_start at the start of
1237  * prepare_write() is the right place.
1238  *
1239  * Also, this function can nest inside ext4_writepage() ->
1240  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1241  * has generated enough buffer credits to do the whole page.  So we won't
1242  * block on the journal in that case, which is good, because the caller may
1243  * be PF_MEMALLOC.
1244  *
1245  * By accident, ext4 can be reentered when a transaction is open via
1246  * quota file writes.  If we were to commit the transaction while thus
1247  * reentered, there can be a deadlock - we would be holding a quota
1248  * lock, and the commit would never complete if another thread had a
1249  * transaction open and was blocking on the quota lock - a ranking
1250  * violation.
1251  *
1252  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1253  * will _not_ run commit under these circumstances because handle->h_ref
1254  * is elevated.  We'll still have enough credits for the tiny quotafile
1255  * write.
1256  */
1257 static int do_journal_get_write_access(handle_t *handle,
1258 					struct buffer_head *bh)
1259 {
1260 	if (!buffer_mapped(bh) || buffer_freed(bh))
1261 		return 0;
1262 	return ext4_journal_get_write_access(handle, bh);
1263 }
1264 
1265 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1266 				loff_t pos, unsigned len, unsigned flags,
1267 				struct page **pagep, void **fsdata)
1268 {
1269  	struct inode *inode = mapping->host;
1270 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1271 	handle_t *handle;
1272 	int retries = 0;
1273  	struct page *page;
1274  	pgoff_t index;
1275  	unsigned from, to;
1276 
1277  	index = pos >> PAGE_CACHE_SHIFT;
1278  	from = pos & (PAGE_CACHE_SIZE - 1);
1279  	to = from + len;
1280 
1281 retry:
1282   	handle = ext4_journal_start(inode, needed_blocks);
1283   	if (IS_ERR(handle)) {
1284   		ret = PTR_ERR(handle);
1285   		goto out;
1286 	}
1287 
1288 	page = __grab_cache_page(mapping, index);
1289 	if (!page) {
1290 		ext4_journal_stop(handle);
1291 		ret = -ENOMEM;
1292 		goto out;
1293 	}
1294 	*pagep = page;
1295 
1296 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1297 							ext4_get_block);
1298 
1299 	if (!ret && ext4_should_journal_data(inode)) {
1300 		ret = walk_page_buffers(handle, page_buffers(page),
1301 				from, to, NULL, do_journal_get_write_access);
1302 	}
1303 
1304 	if (ret) {
1305  		unlock_page(page);
1306 		ext4_journal_stop(handle);
1307  		page_cache_release(page);
1308 	}
1309 
1310 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1311 		goto retry;
1312 out:
1313 	return ret;
1314 }
1315 
1316 /* For write_end() in data=journal mode */
1317 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1318 {
1319 	if (!buffer_mapped(bh) || buffer_freed(bh))
1320 		return 0;
1321 	set_buffer_uptodate(bh);
1322 	return ext4_journal_dirty_metadata(handle, bh);
1323 }
1324 
1325 /*
1326  * We need to pick up the new inode size which generic_commit_write gave us
1327  * `file' can be NULL - eg, when called from page_symlink().
1328  *
1329  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1330  * buffers are managed internally.
1331  */
1332 static int ext4_ordered_write_end(struct file *file,
1333 				struct address_space *mapping,
1334 				loff_t pos, unsigned len, unsigned copied,
1335 				struct page *page, void *fsdata)
1336 {
1337 	handle_t *handle = ext4_journal_current_handle();
1338 	struct inode *inode = mapping->host;
1339 	unsigned from, to;
1340 	int ret = 0, ret2;
1341 
1342 	from = pos & (PAGE_CACHE_SIZE - 1);
1343 	to = from + len;
1344 
1345 	ret = ext4_jbd2_file_inode(handle, inode);
1346 
1347 	if (ret == 0) {
1348 		/*
1349 		 * generic_write_end() will run mark_inode_dirty() if i_size
1350 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1351 		 * into that.
1352 		 */
1353 		loff_t new_i_size;
1354 
1355 		new_i_size = pos + copied;
1356 		if (new_i_size > EXT4_I(inode)->i_disksize)
1357 			EXT4_I(inode)->i_disksize = new_i_size;
1358 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1359 							page, fsdata);
1360 		copied = ret2;
1361 		if (ret2 < 0)
1362 			ret = ret2;
1363 	}
1364 	ret2 = ext4_journal_stop(handle);
1365 	if (!ret)
1366 		ret = ret2;
1367 
1368 	return ret ? ret : copied;
1369 }
1370 
1371 static int ext4_writeback_write_end(struct file *file,
1372 				struct address_space *mapping,
1373 				loff_t pos, unsigned len, unsigned copied,
1374 				struct page *page, void *fsdata)
1375 {
1376 	handle_t *handle = ext4_journal_current_handle();
1377 	struct inode *inode = mapping->host;
1378 	int ret = 0, ret2;
1379 	loff_t new_i_size;
1380 
1381 	new_i_size = pos + copied;
1382 	if (new_i_size > EXT4_I(inode)->i_disksize)
1383 		EXT4_I(inode)->i_disksize = new_i_size;
1384 
1385 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1386 							page, fsdata);
1387 	copied = ret2;
1388 	if (ret2 < 0)
1389 		ret = ret2;
1390 
1391 	ret2 = ext4_journal_stop(handle);
1392 	if (!ret)
1393 		ret = ret2;
1394 
1395 	return ret ? ret : copied;
1396 }
1397 
1398 static int ext4_journalled_write_end(struct file *file,
1399 				struct address_space *mapping,
1400 				loff_t pos, unsigned len, unsigned copied,
1401 				struct page *page, void *fsdata)
1402 {
1403 	handle_t *handle = ext4_journal_current_handle();
1404 	struct inode *inode = mapping->host;
1405 	int ret = 0, ret2;
1406 	int partial = 0;
1407 	unsigned from, to;
1408 
1409 	from = pos & (PAGE_CACHE_SIZE - 1);
1410 	to = from + len;
1411 
1412 	if (copied < len) {
1413 		if (!PageUptodate(page))
1414 			copied = 0;
1415 		page_zero_new_buffers(page, from+copied, to);
1416 	}
1417 
1418 	ret = walk_page_buffers(handle, page_buffers(page), from,
1419 				to, &partial, write_end_fn);
1420 	if (!partial)
1421 		SetPageUptodate(page);
1422 	if (pos+copied > inode->i_size)
1423 		i_size_write(inode, pos+copied);
1424 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1425 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1426 		EXT4_I(inode)->i_disksize = inode->i_size;
1427 		ret2 = ext4_mark_inode_dirty(handle, inode);
1428 		if (!ret)
1429 			ret = ret2;
1430 	}
1431 
1432 	unlock_page(page);
1433 	ret2 = ext4_journal_stop(handle);
1434 	if (!ret)
1435 		ret = ret2;
1436 	page_cache_release(page);
1437 
1438 	return ret ? ret : copied;
1439 }
1440 /*
1441  * Calculate the number of metadata blocks need to reserve
1442  * to allocate @blocks for non extent file based file
1443  */
1444 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1445 {
1446 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1447 	int ind_blks, dind_blks, tind_blks;
1448 
1449 	/* number of new indirect blocks needed */
1450 	ind_blks = (blocks + icap - 1) / icap;
1451 
1452 	dind_blks = (ind_blks + icap - 1) / icap;
1453 
1454 	tind_blks = 1;
1455 
1456 	return ind_blks + dind_blks + tind_blks;
1457 }
1458 
1459 /*
1460  * Calculate the number of metadata blocks need to reserve
1461  * to allocate given number of blocks
1462  */
1463 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1464 {
1465 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1466 		return ext4_ext_calc_metadata_amount(inode, blocks);
1467 
1468 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1469 }
1470 
1471 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1472 {
1473        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474        unsigned long md_needed, mdblocks, total = 0;
1475 
1476 	/*
1477 	 * recalculate the amount of metadata blocks to reserve
1478 	 * in order to allocate nrblocks
1479 	 * worse case is one extent per block
1480 	 */
1481 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1482 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1483 	mdblocks = ext4_calc_metadata_amount(inode, total);
1484 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1485 
1486 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1487 	total = md_needed + nrblocks;
1488 
1489 	if (ext4_has_free_blocks(sbi, total) < total) {
1490 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1491 		return -ENOSPC;
1492 	}
1493 
1494 	/* reduce fs free blocks counter */
1495 	percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1496 
1497 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1498 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1499 
1500 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1501 	return 0;       /* success */
1502 }
1503 
1504 void ext4_da_release_space(struct inode *inode, int used, int to_free)
1505 {
1506 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1507 	int total, mdb, mdb_free, release;
1508 
1509 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510 	/* recalculate the number of metablocks still need to be reserved */
1511 	total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
1512 	mdb = ext4_calc_metadata_amount(inode, total);
1513 
1514 	/* figure out how many metablocks to release */
1515 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1516 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1517 
1518 	/* Account for allocated meta_blocks */
1519 	mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1520 
1521 	release = to_free + mdb_free;
1522 
1523 	/* update fs free blocks counter for truncate case */
1524 	percpu_counter_add(&sbi->s_freeblocks_counter, release);
1525 
1526 	/* update per-inode reservations */
1527 	BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
1528 	EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);
1529 
1530 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1531 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1532 	EXT4_I(inode)->i_allocated_meta_blocks = 0;
1533 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1534 }
1535 
1536 static void ext4_da_page_release_reservation(struct page *page,
1537 						unsigned long offset)
1538 {
1539 	int to_release = 0;
1540 	struct buffer_head *head, *bh;
1541 	unsigned int curr_off = 0;
1542 
1543 	head = page_buffers(page);
1544 	bh = head;
1545 	do {
1546 		unsigned int next_off = curr_off + bh->b_size;
1547 
1548 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1549 			to_release++;
1550 			clear_buffer_delay(bh);
1551 		}
1552 		curr_off = next_off;
1553 	} while ((bh = bh->b_this_page) != head);
1554 	ext4_da_release_space(page->mapping->host, 0, to_release);
1555 }
1556 
1557 /*
1558  * Delayed allocation stuff
1559  */
1560 
1561 struct mpage_da_data {
1562 	struct inode *inode;
1563 	struct buffer_head lbh;			/* extent of blocks */
1564 	unsigned long first_page, next_page;	/* extent of pages */
1565 	get_block_t *get_block;
1566 	struct writeback_control *wbc;
1567 };
1568 
1569 /*
1570  * mpage_da_submit_io - walks through extent of pages and try to write
1571  * them with __mpage_writepage()
1572  *
1573  * @mpd->inode: inode
1574  * @mpd->first_page: first page of the extent
1575  * @mpd->next_page: page after the last page of the extent
1576  * @mpd->get_block: the filesystem's block mapper function
1577  *
1578  * By the time mpage_da_submit_io() is called we expect all blocks
1579  * to be allocated. this may be wrong if allocation failed.
1580  *
1581  * As pages are already locked by write_cache_pages(), we can't use it
1582  */
1583 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1584 {
1585 	struct address_space *mapping = mpd->inode->i_mapping;
1586 	struct mpage_data mpd_pp = {
1587 		.bio = NULL,
1588 		.last_block_in_bio = 0,
1589 		.get_block = mpd->get_block,
1590 		.use_writepage = 1,
1591 	};
1592 	int ret = 0, err, nr_pages, i;
1593 	unsigned long index, end;
1594 	struct pagevec pvec;
1595 
1596 	BUG_ON(mpd->next_page <= mpd->first_page);
1597 
1598 	pagevec_init(&pvec, 0);
1599 	index = mpd->first_page;
1600 	end = mpd->next_page - 1;
1601 
1602 	while (index <= end) {
1603 		/* XXX: optimize tail */
1604 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605 		if (nr_pages == 0)
1606 			break;
1607 		for (i = 0; i < nr_pages; i++) {
1608 			struct page *page = pvec.pages[i];
1609 
1610 			index = page->index;
1611 			if (index > end)
1612 				break;
1613 			index++;
1614 
1615 			err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1616 
1617 			/*
1618 			 * In error case, we have to continue because
1619 			 * remaining pages are still locked
1620 			 * XXX: unlock and re-dirty them?
1621 			 */
1622 			if (ret == 0)
1623 				ret = err;
1624 		}
1625 		pagevec_release(&pvec);
1626 	}
1627 	if (mpd_pp.bio)
1628 		mpage_bio_submit(WRITE, mpd_pp.bio);
1629 
1630 	return ret;
1631 }
1632 
1633 /*
1634  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1635  *
1636  * @mpd->inode - inode to walk through
1637  * @exbh->b_blocknr - first block on a disk
1638  * @exbh->b_size - amount of space in bytes
1639  * @logical - first logical block to start assignment with
1640  *
1641  * the function goes through all passed space and put actual disk
1642  * block numbers into buffer heads, dropping BH_Delay
1643  */
1644 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1645 				 struct buffer_head *exbh)
1646 {
1647 	struct inode *inode = mpd->inode;
1648 	struct address_space *mapping = inode->i_mapping;
1649 	int blocks = exbh->b_size >> inode->i_blkbits;
1650 	sector_t pblock = exbh->b_blocknr, cur_logical;
1651 	struct buffer_head *head, *bh;
1652 	unsigned long index, end;
1653 	struct pagevec pvec;
1654 	int nr_pages, i;
1655 
1656 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1657 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1658 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1659 
1660 	pagevec_init(&pvec, 0);
1661 
1662 	while (index <= end) {
1663 		/* XXX: optimize tail */
1664 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1665 		if (nr_pages == 0)
1666 			break;
1667 		for (i = 0; i < nr_pages; i++) {
1668 			struct page *page = pvec.pages[i];
1669 
1670 			index = page->index;
1671 			if (index > end)
1672 				break;
1673 			index++;
1674 
1675 			BUG_ON(!PageLocked(page));
1676 			BUG_ON(PageWriteback(page));
1677 			BUG_ON(!page_has_buffers(page));
1678 
1679 			bh = page_buffers(page);
1680 			head = bh;
1681 
1682 			/* skip blocks out of the range */
1683 			do {
1684 				if (cur_logical >= logical)
1685 					break;
1686 				cur_logical++;
1687 			} while ((bh = bh->b_this_page) != head);
1688 
1689 			do {
1690 				if (cur_logical >= logical + blocks)
1691 					break;
1692 				if (buffer_delay(bh)) {
1693 					bh->b_blocknr = pblock;
1694 					clear_buffer_delay(bh);
1695 				} else if (buffer_mapped(bh))
1696 					BUG_ON(bh->b_blocknr != pblock);
1697 
1698 				cur_logical++;
1699 				pblock++;
1700 			} while ((bh = bh->b_this_page) != head);
1701 		}
1702 		pagevec_release(&pvec);
1703 	}
1704 }
1705 
1706 
1707 /*
1708  * __unmap_underlying_blocks - just a helper function to unmap
1709  * set of blocks described by @bh
1710  */
1711 static inline void __unmap_underlying_blocks(struct inode *inode,
1712 					     struct buffer_head *bh)
1713 {
1714 	struct block_device *bdev = inode->i_sb->s_bdev;
1715 	int blocks, i;
1716 
1717 	blocks = bh->b_size >> inode->i_blkbits;
1718 	for (i = 0; i < blocks; i++)
1719 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1720 }
1721 
1722 /*
1723  * mpage_da_map_blocks - go through given space
1724  *
1725  * @mpd->lbh - bh describing space
1726  * @mpd->get_block - the filesystem's block mapper function
1727  *
1728  * The function skips space we know is already mapped to disk blocks.
1729  *
1730  * The function ignores errors ->get_block() returns, thus real
1731  * error handling is postponed to __mpage_writepage()
1732  */
1733 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1734 {
1735 	struct buffer_head *lbh = &mpd->lbh;
1736 	int err = 0, remain = lbh->b_size;
1737 	sector_t next = lbh->b_blocknr;
1738 	struct buffer_head new;
1739 
1740 	/*
1741 	 * We consider only non-mapped and non-allocated blocks
1742 	 */
1743 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1744 		return;
1745 
1746 	while (remain) {
1747 		new.b_state = lbh->b_state;
1748 		new.b_blocknr = 0;
1749 		new.b_size = remain;
1750 		err = mpd->get_block(mpd->inode, next, &new, 1);
1751 		if (err) {
1752 			/*
1753 			 * Rather than implement own error handling
1754 			 * here, we just leave remaining blocks
1755 			 * unallocated and try again with ->writepage()
1756 			 */
1757 			break;
1758 		}
1759 		BUG_ON(new.b_size == 0);
1760 
1761 		if (buffer_new(&new))
1762 			__unmap_underlying_blocks(mpd->inode, &new);
1763 
1764 		/*
1765 		 * If blocks are delayed marked, we need to
1766 		 * put actual blocknr and drop delayed bit
1767 		 */
1768 		if (buffer_delay(lbh))
1769 			mpage_put_bnr_to_bhs(mpd, next, &new);
1770 
1771 		/* go for the remaining blocks */
1772 		next += new.b_size >> mpd->inode->i_blkbits;
1773 		remain -= new.b_size;
1774 	}
1775 }
1776 
1777 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1778 
1779 /*
1780  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1781  *
1782  * @mpd->lbh - extent of blocks
1783  * @logical - logical number of the block in the file
1784  * @bh - bh of the block (used to access block's state)
1785  *
1786  * the function is used to collect contig. blocks in same state
1787  */
1788 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1789 				   sector_t logical, struct buffer_head *bh)
1790 {
1791 	struct buffer_head *lbh = &mpd->lbh;
1792 	sector_t next;
1793 
1794 	next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1795 
1796 	/*
1797 	 * First block in the extent
1798 	 */
1799 	if (lbh->b_size == 0) {
1800 		lbh->b_blocknr = logical;
1801 		lbh->b_size = bh->b_size;
1802 		lbh->b_state = bh->b_state & BH_FLAGS;
1803 		return;
1804 	}
1805 
1806 	/*
1807 	 * Can we merge the block to our big extent?
1808 	 */
1809 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1810 		lbh->b_size += bh->b_size;
1811 		return;
1812 	}
1813 
1814 	/*
1815 	 * We couldn't merge the block to our extent, so we
1816 	 * need to flush current  extent and start new one
1817 	 */
1818 	mpage_da_map_blocks(mpd);
1819 
1820 	/*
1821 	 * Now start a new extent
1822 	 */
1823 	lbh->b_size = bh->b_size;
1824 	lbh->b_state = bh->b_state & BH_FLAGS;
1825 	lbh->b_blocknr = logical;
1826 }
1827 
1828 /*
1829  * __mpage_da_writepage - finds extent of pages and blocks
1830  *
1831  * @page: page to consider
1832  * @wbc: not used, we just follow rules
1833  * @data: context
1834  *
1835  * The function finds extents of pages and scan them for all blocks.
1836  */
1837 static int __mpage_da_writepage(struct page *page,
1838 				struct writeback_control *wbc, void *data)
1839 {
1840 	struct mpage_da_data *mpd = data;
1841 	struct inode *inode = mpd->inode;
1842 	struct buffer_head *bh, *head, fake;
1843 	sector_t logical;
1844 
1845 	/*
1846 	 * Can we merge this page to current extent?
1847 	 */
1848 	if (mpd->next_page != page->index) {
1849 		/*
1850 		 * Nope, we can't. So, we map non-allocated blocks
1851 		 * and start IO on them using __mpage_writepage()
1852 		 */
1853 		if (mpd->next_page != mpd->first_page) {
1854 			mpage_da_map_blocks(mpd);
1855 			mpage_da_submit_io(mpd);
1856 		}
1857 
1858 		/*
1859 		 * Start next extent of pages ...
1860 		 */
1861 		mpd->first_page = page->index;
1862 
1863 		/*
1864 		 * ... and blocks
1865 		 */
1866 		mpd->lbh.b_size = 0;
1867 		mpd->lbh.b_state = 0;
1868 		mpd->lbh.b_blocknr = 0;
1869 	}
1870 
1871 	mpd->next_page = page->index + 1;
1872 	logical = (sector_t) page->index <<
1873 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
1874 
1875 	if (!page_has_buffers(page)) {
1876 		/*
1877 		 * There is no attached buffer heads yet (mmap?)
1878 		 * we treat the page asfull of dirty blocks
1879 		 */
1880 		bh = &fake;
1881 		bh->b_size = PAGE_CACHE_SIZE;
1882 		bh->b_state = 0;
1883 		set_buffer_dirty(bh);
1884 		set_buffer_uptodate(bh);
1885 		mpage_add_bh_to_extent(mpd, logical, bh);
1886 	} else {
1887 		/*
1888 		 * Page with regular buffer heads, just add all dirty ones
1889 		 */
1890 		head = page_buffers(page);
1891 		bh = head;
1892 		do {
1893 			BUG_ON(buffer_locked(bh));
1894 			if (buffer_dirty(bh))
1895 				mpage_add_bh_to_extent(mpd, logical, bh);
1896 			logical++;
1897 		} while ((bh = bh->b_this_page) != head);
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * mpage_da_writepages - walk the list of dirty pages of the given
1905  * address space, allocates non-allocated blocks, maps newly-allocated
1906  * blocks to existing bhs and issue IO them
1907  *
1908  * @mapping: address space structure to write
1909  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1910  * @get_block: the filesystem's block mapper function.
1911  *
1912  * This is a library function, which implements the writepages()
1913  * address_space_operation.
1914  *
1915  * In order to avoid duplication of logic that deals with partial pages,
1916  * multiple bio per page, etc, we find non-allocated blocks, allocate
1917  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1918  *
1919  * It's important that we call __mpage_writepage() only once for each
1920  * involved page, otherwise we'd have to implement more complicated logic
1921  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1922  *
1923  * See comments to mpage_writepages()
1924  */
1925 static int mpage_da_writepages(struct address_space *mapping,
1926 			       struct writeback_control *wbc,
1927 			       get_block_t get_block)
1928 {
1929 	struct mpage_da_data mpd;
1930 	int ret;
1931 
1932 	if (!get_block)
1933 		return generic_writepages(mapping, wbc);
1934 
1935 	mpd.wbc = wbc;
1936 	mpd.inode = mapping->host;
1937 	mpd.lbh.b_size = 0;
1938 	mpd.lbh.b_state = 0;
1939 	mpd.lbh.b_blocknr = 0;
1940 	mpd.first_page = 0;
1941 	mpd.next_page = 0;
1942 	mpd.get_block = get_block;
1943 
1944 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1945 
1946 	/*
1947 	 * Handle last extent of pages
1948 	 */
1949 	if (mpd.next_page != mpd.first_page) {
1950 		mpage_da_map_blocks(&mpd);
1951 		mpage_da_submit_io(&mpd);
1952 	}
1953 
1954 	return ret;
1955 }
1956 
1957 /*
1958  * this is a special callback for ->write_begin() only
1959  * it's intention is to return mapped block or reserve space
1960  */
1961 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1962 				  struct buffer_head *bh_result, int create)
1963 {
1964 	int ret = 0;
1965 
1966 	BUG_ON(create == 0);
1967 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1968 
1969 	/*
1970 	 * first, we need to know whether the block is allocated already
1971 	 * preallocated blocks are unmapped but should treated
1972 	 * the same as allocated blocks.
1973 	 */
1974 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
1975 	if ((ret == 0) && !buffer_delay(bh_result)) {
1976 		/* the block isn't (pre)allocated yet, let's reserve space */
1977 		/*
1978 		 * XXX: __block_prepare_write() unmaps passed block,
1979 		 * is it OK?
1980 		 */
1981 		ret = ext4_da_reserve_space(inode, 1);
1982 		if (ret)
1983 			/* not enough space to reserve */
1984 			return ret;
1985 
1986 		map_bh(bh_result, inode->i_sb, 0);
1987 		set_buffer_new(bh_result);
1988 		set_buffer_delay(bh_result);
1989 	} else if (ret > 0) {
1990 		bh_result->b_size = (ret << inode->i_blkbits);
1991 		ret = 0;
1992 	}
1993 
1994 	return ret;
1995 }
1996 #define		EXT4_DELALLOC_RSVED	1
1997 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1998 				   struct buffer_head *bh_result, int create)
1999 {
2000 	int ret;
2001 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2002 	loff_t disksize = EXT4_I(inode)->i_disksize;
2003 	handle_t *handle = NULL;
2004 
2005 	handle = ext4_journal_current_handle();
2006 	if (!handle) {
2007 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2008 				   bh_result, 0, 0, 0);
2009 		BUG_ON(!ret);
2010 	} else {
2011 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2012 				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
2013 	}
2014 
2015 	if (ret > 0) {
2016 		bh_result->b_size = (ret << inode->i_blkbits);
2017 
2018 		/*
2019 		 * Update on-disk size along with block allocation
2020 		 * we don't use 'extend_disksize' as size may change
2021 		 * within already allocated block -bzzz
2022 		 */
2023 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2024 		if (disksize > i_size_read(inode))
2025 			disksize = i_size_read(inode);
2026 		if (disksize > EXT4_I(inode)->i_disksize) {
2027 			/*
2028 			 * XXX: replace with spinlock if seen contended -bzzz
2029 			 */
2030 			down_write(&EXT4_I(inode)->i_data_sem);
2031 			if (disksize > EXT4_I(inode)->i_disksize)
2032 				EXT4_I(inode)->i_disksize = disksize;
2033 			up_write(&EXT4_I(inode)->i_data_sem);
2034 
2035 			if (EXT4_I(inode)->i_disksize == disksize) {
2036 				ret = ext4_mark_inode_dirty(handle, inode);
2037 				return ret;
2038 			}
2039 		}
2040 		ret = 0;
2041 	}
2042 	return ret;
2043 }
2044 
2045 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2046 {
2047 	/*
2048 	 * unmapped buffer is possible for holes.
2049 	 * delay buffer is possible with delayed allocation
2050 	 */
2051 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2052 }
2053 
2054 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2055 				   struct buffer_head *bh_result, int create)
2056 {
2057 	int ret = 0;
2058 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2059 
2060 	/*
2061 	 * we don't want to do block allocation in writepage
2062 	 * so call get_block_wrap with create = 0
2063 	 */
2064 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2065 				   bh_result, 0, 0, 0);
2066 	if (ret > 0) {
2067 		bh_result->b_size = (ret << inode->i_blkbits);
2068 		ret = 0;
2069 	}
2070 	return ret;
2071 }
2072 
2073 /*
2074  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2075  * get called via journal_submit_inode_data_buffers (no journal handle)
2076  * get called via shrink_page_list via pdflush (no journal handle)
2077  * or grab_page_cache when doing write_begin (have journal handle)
2078  */
2079 static int ext4_da_writepage(struct page *page,
2080 				struct writeback_control *wbc)
2081 {
2082 	int ret = 0;
2083 	loff_t size;
2084 	unsigned long len;
2085 	struct buffer_head *page_bufs;
2086 	struct inode *inode = page->mapping->host;
2087 
2088 	size = i_size_read(inode);
2089 	if (page->index == size >> PAGE_CACHE_SHIFT)
2090 		len = size & ~PAGE_CACHE_MASK;
2091 	else
2092 		len = PAGE_CACHE_SIZE;
2093 
2094 	if (page_has_buffers(page)) {
2095 		page_bufs = page_buffers(page);
2096 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2097 					ext4_bh_unmapped_or_delay)) {
2098 			/*
2099 			 * We don't want to do  block allocation
2100 			 * So redirty the page and return
2101 			 * We may reach here when we do a journal commit
2102 			 * via journal_submit_inode_data_buffers.
2103 			 * If we don't have mapping block we just ignore
2104 			 * them. We can also reach here via shrink_page_list
2105 			 */
2106 			redirty_page_for_writepage(wbc, page);
2107 			unlock_page(page);
2108 			return 0;
2109 		}
2110 	} else {
2111 		/*
2112 		 * The test for page_has_buffers() is subtle:
2113 		 * We know the page is dirty but it lost buffers. That means
2114 		 * that at some moment in time after write_begin()/write_end()
2115 		 * has been called all buffers have been clean and thus they
2116 		 * must have been written at least once. So they are all
2117 		 * mapped and we can happily proceed with mapping them
2118 		 * and writing the page.
2119 		 *
2120 		 * Try to initialize the buffer_heads and check whether
2121 		 * all are mapped and non delay. We don't want to
2122 		 * do block allocation here.
2123 		 */
2124 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2125 						ext4_normal_get_block_write);
2126 		if (!ret) {
2127 			page_bufs = page_buffers(page);
2128 			/* check whether all are mapped and non delay */
2129 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2130 						ext4_bh_unmapped_or_delay)) {
2131 				redirty_page_for_writepage(wbc, page);
2132 				unlock_page(page);
2133 				return 0;
2134 			}
2135 		} else {
2136 			/*
2137 			 * We can't do block allocation here
2138 			 * so just redity the page and unlock
2139 			 * and return
2140 			 */
2141 			redirty_page_for_writepage(wbc, page);
2142 			unlock_page(page);
2143 			return 0;
2144 		}
2145 	}
2146 
2147 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2148 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2149 	else
2150 		ret = block_write_full_page(page,
2151 						ext4_normal_get_block_write,
2152 						wbc);
2153 
2154 	return ret;
2155 }
2156 
2157 /*
2158  * For now just follow the DIO way to estimate the max credits
2159  * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2160  * todo: need to calculate the max credits need for
2161  * extent based files, currently the DIO credits is based on
2162  * indirect-blocks mapping way.
2163  *
2164  * Probably should have a generic way to calculate credits
2165  * for DIO, writepages, and truncate
2166  */
2167 #define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
2168 #define EXT4_MAX_WRITEBACK_CREDITS    DIO_CREDITS
2169 
2170 static int ext4_da_writepages(struct address_space *mapping,
2171 				struct writeback_control *wbc)
2172 {
2173 	struct inode *inode = mapping->host;
2174 	handle_t *handle = NULL;
2175 	int needed_blocks;
2176 	int ret = 0;
2177 	long to_write;
2178 	loff_t range_start = 0;
2179 
2180 	/*
2181 	 * No pages to write? This is mainly a kludge to avoid starting
2182 	 * a transaction for special inodes like journal inode on last iput()
2183 	 * because that could violate lock ordering on umount
2184 	 */
2185 	if (!mapping->nrpages)
2186 		return 0;
2187 
2188 	/*
2189 	 * Estimate the worse case needed credits to write out
2190 	 * EXT4_MAX_BUF_BLOCKS pages
2191 	 */
2192 	needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2193 
2194 	to_write = wbc->nr_to_write;
2195 	if (!wbc->range_cyclic) {
2196 		/*
2197 		 * If range_cyclic is not set force range_cont
2198 		 * and save the old writeback_index
2199 		 */
2200 		wbc->range_cont = 1;
2201 		range_start =  wbc->range_start;
2202 	}
2203 
2204 	while (!ret && to_write) {
2205 		/* start a new transaction*/
2206 		handle = ext4_journal_start(inode, needed_blocks);
2207 		if (IS_ERR(handle)) {
2208 			ret = PTR_ERR(handle);
2209 			goto out_writepages;
2210 		}
2211 		if (ext4_should_order_data(inode)) {
2212 			/*
2213 			 * With ordered mode we need to add
2214 			 * the inode to the journal handle
2215 			 * when we do block allocation.
2216 			 */
2217 			ret = ext4_jbd2_file_inode(handle, inode);
2218 			if (ret) {
2219 				ext4_journal_stop(handle);
2220 				goto out_writepages;
2221 			}
2222 
2223 		}
2224 		/*
2225 		 * set the max dirty pages could be write at a time
2226 		 * to fit into the reserved transaction credits
2227 		 */
2228 		if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2229 			wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2230 
2231 		to_write -= wbc->nr_to_write;
2232 		ret = mpage_da_writepages(mapping, wbc,
2233 						ext4_da_get_block_write);
2234 		ext4_journal_stop(handle);
2235 		if (wbc->nr_to_write) {
2236 			/*
2237 			 * There is no more writeout needed
2238 			 * or we requested for a noblocking writeout
2239 			 * and we found the device congested
2240 			 */
2241 			to_write += wbc->nr_to_write;
2242 			break;
2243 		}
2244 		wbc->nr_to_write = to_write;
2245 	}
2246 
2247 out_writepages:
2248 	wbc->nr_to_write = to_write;
2249 	if (range_start)
2250 		wbc->range_start = range_start;
2251 	return ret;
2252 }
2253 
2254 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2255 				loff_t pos, unsigned len, unsigned flags,
2256 				struct page **pagep, void **fsdata)
2257 {
2258 	int ret, retries = 0;
2259 	struct page *page;
2260 	pgoff_t index;
2261 	unsigned from, to;
2262 	struct inode *inode = mapping->host;
2263 	handle_t *handle;
2264 
2265 	index = pos >> PAGE_CACHE_SHIFT;
2266 	from = pos & (PAGE_CACHE_SIZE - 1);
2267 	to = from + len;
2268 
2269 retry:
2270 	/*
2271 	 * With delayed allocation, we don't log the i_disksize update
2272 	 * if there is delayed block allocation. But we still need
2273 	 * to journalling the i_disksize update if writes to the end
2274 	 * of file which has an already mapped buffer.
2275 	 */
2276 	handle = ext4_journal_start(inode, 1);
2277 	if (IS_ERR(handle)) {
2278 		ret = PTR_ERR(handle);
2279 		goto out;
2280 	}
2281 
2282 	page = __grab_cache_page(mapping, index);
2283 	if (!page)
2284 		return -ENOMEM;
2285 	*pagep = page;
2286 
2287 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2288 							ext4_da_get_block_prep);
2289 	if (ret < 0) {
2290 		unlock_page(page);
2291 		ext4_journal_stop(handle);
2292 		page_cache_release(page);
2293 	}
2294 
2295 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2296 		goto retry;
2297 out:
2298 	return ret;
2299 }
2300 
2301 static int ext4_da_write_end(struct file *file,
2302 				struct address_space *mapping,
2303 				loff_t pos, unsigned len, unsigned copied,
2304 				struct page *page, void *fsdata)
2305 {
2306 	struct inode *inode = mapping->host;
2307 	int ret = 0, ret2;
2308 	handle_t *handle = ext4_journal_current_handle();
2309 	loff_t new_i_size;
2310 
2311 	/*
2312 	 * generic_write_end() will run mark_inode_dirty() if i_size
2313 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2314 	 * into that.
2315 	 */
2316 
2317 	new_i_size = pos + copied;
2318 	if (new_i_size > EXT4_I(inode)->i_disksize)
2319 		if (!walk_page_buffers(NULL, page_buffers(page),
2320 				       0, len, NULL, ext4_bh_unmapped_or_delay)){
2321 			/*
2322 			 * Updating i_disksize when extending file without
2323 			 * needing block allocation
2324 			 */
2325 			if (ext4_should_order_data(inode))
2326 				ret = ext4_jbd2_file_inode(handle, inode);
2327 
2328 			EXT4_I(inode)->i_disksize = new_i_size;
2329 		}
2330 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2331 							page, fsdata);
2332 	copied = ret2;
2333 	if (ret2 < 0)
2334 		ret = ret2;
2335 	ret2 = ext4_journal_stop(handle);
2336 	if (!ret)
2337 		ret = ret2;
2338 
2339 	return ret ? ret : copied;
2340 }
2341 
2342 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2343 {
2344 	/*
2345 	 * Drop reserved blocks
2346 	 */
2347 	BUG_ON(!PageLocked(page));
2348 	if (!page_has_buffers(page))
2349 		goto out;
2350 
2351 	ext4_da_page_release_reservation(page, offset);
2352 
2353 out:
2354 	ext4_invalidatepage(page, offset);
2355 
2356 	return;
2357 }
2358 
2359 
2360 /*
2361  * bmap() is special.  It gets used by applications such as lilo and by
2362  * the swapper to find the on-disk block of a specific piece of data.
2363  *
2364  * Naturally, this is dangerous if the block concerned is still in the
2365  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2366  * filesystem and enables swap, then they may get a nasty shock when the
2367  * data getting swapped to that swapfile suddenly gets overwritten by
2368  * the original zero's written out previously to the journal and
2369  * awaiting writeback in the kernel's buffer cache.
2370  *
2371  * So, if we see any bmap calls here on a modified, data-journaled file,
2372  * take extra steps to flush any blocks which might be in the cache.
2373  */
2374 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2375 {
2376 	struct inode *inode = mapping->host;
2377 	journal_t *journal;
2378 	int err;
2379 
2380 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2381 			test_opt(inode->i_sb, DELALLOC)) {
2382 		/*
2383 		 * With delalloc we want to sync the file
2384 		 * so that we can make sure we allocate
2385 		 * blocks for file
2386 		 */
2387 		filemap_write_and_wait(mapping);
2388 	}
2389 
2390 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2391 		/*
2392 		 * This is a REALLY heavyweight approach, but the use of
2393 		 * bmap on dirty files is expected to be extremely rare:
2394 		 * only if we run lilo or swapon on a freshly made file
2395 		 * do we expect this to happen.
2396 		 *
2397 		 * (bmap requires CAP_SYS_RAWIO so this does not
2398 		 * represent an unprivileged user DOS attack --- we'd be
2399 		 * in trouble if mortal users could trigger this path at
2400 		 * will.)
2401 		 *
2402 		 * NB. EXT4_STATE_JDATA is not set on files other than
2403 		 * regular files.  If somebody wants to bmap a directory
2404 		 * or symlink and gets confused because the buffer
2405 		 * hasn't yet been flushed to disk, they deserve
2406 		 * everything they get.
2407 		 */
2408 
2409 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2410 		journal = EXT4_JOURNAL(inode);
2411 		jbd2_journal_lock_updates(journal);
2412 		err = jbd2_journal_flush(journal);
2413 		jbd2_journal_unlock_updates(journal);
2414 
2415 		if (err)
2416 			return 0;
2417 	}
2418 
2419 	return generic_block_bmap(mapping,block,ext4_get_block);
2420 }
2421 
2422 static int bget_one(handle_t *handle, struct buffer_head *bh)
2423 {
2424 	get_bh(bh);
2425 	return 0;
2426 }
2427 
2428 static int bput_one(handle_t *handle, struct buffer_head *bh)
2429 {
2430 	put_bh(bh);
2431 	return 0;
2432 }
2433 
2434 /*
2435  * Note that we don't need to start a transaction unless we're journaling data
2436  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2437  * need to file the inode to the transaction's list in ordered mode because if
2438  * we are writing back data added by write(), the inode is already there and if
2439  * we are writing back data modified via mmap(), noone guarantees in which
2440  * transaction the data will hit the disk. In case we are journaling data, we
2441  * cannot start transaction directly because transaction start ranks above page
2442  * lock so we have to do some magic.
2443  *
2444  * In all journaling modes block_write_full_page() will start the I/O.
2445  *
2446  * Problem:
2447  *
2448  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2449  *		ext4_writepage()
2450  *
2451  * Similar for:
2452  *
2453  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2454  *
2455  * Same applies to ext4_get_block().  We will deadlock on various things like
2456  * lock_journal and i_data_sem
2457  *
2458  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2459  * allocations fail.
2460  *
2461  * 16May01: If we're reentered then journal_current_handle() will be
2462  *	    non-zero. We simply *return*.
2463  *
2464  * 1 July 2001: @@@ FIXME:
2465  *   In journalled data mode, a data buffer may be metadata against the
2466  *   current transaction.  But the same file is part of a shared mapping
2467  *   and someone does a writepage() on it.
2468  *
2469  *   We will move the buffer onto the async_data list, but *after* it has
2470  *   been dirtied. So there's a small window where we have dirty data on
2471  *   BJ_Metadata.
2472  *
2473  *   Note that this only applies to the last partial page in the file.  The
2474  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2475  *   broken code anyway: it's wrong for msync()).
2476  *
2477  *   It's a rare case: affects the final partial page, for journalled data
2478  *   where the file is subject to bith write() and writepage() in the same
2479  *   transction.  To fix it we'll need a custom block_write_full_page().
2480  *   We'll probably need that anyway for journalling writepage() output.
2481  *
2482  * We don't honour synchronous mounts for writepage().  That would be
2483  * disastrous.  Any write() or metadata operation will sync the fs for
2484  * us.
2485  *
2486  */
2487 static int __ext4_normal_writepage(struct page *page,
2488 				struct writeback_control *wbc)
2489 {
2490 	struct inode *inode = page->mapping->host;
2491 
2492 	if (test_opt(inode->i_sb, NOBH))
2493 		return nobh_writepage(page,
2494 					ext4_normal_get_block_write, wbc);
2495 	else
2496 		return block_write_full_page(page,
2497 						ext4_normal_get_block_write,
2498 						wbc);
2499 }
2500 
2501 static int ext4_normal_writepage(struct page *page,
2502 				struct writeback_control *wbc)
2503 {
2504 	struct inode *inode = page->mapping->host;
2505 	loff_t size = i_size_read(inode);
2506 	loff_t len;
2507 
2508 	J_ASSERT(PageLocked(page));
2509 	if (page->index == size >> PAGE_CACHE_SHIFT)
2510 		len = size & ~PAGE_CACHE_MASK;
2511 	else
2512 		len = PAGE_CACHE_SIZE;
2513 
2514 	if (page_has_buffers(page)) {
2515 		/* if page has buffers it should all be mapped
2516 		 * and allocated. If there are not buffers attached
2517 		 * to the page we know the page is dirty but it lost
2518 		 * buffers. That means that at some moment in time
2519 		 * after write_begin() / write_end() has been called
2520 		 * all buffers have been clean and thus they must have been
2521 		 * written at least once. So they are all mapped and we can
2522 		 * happily proceed with mapping them and writing the page.
2523 		 */
2524 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2525 					ext4_bh_unmapped_or_delay));
2526 	}
2527 
2528 	if (!ext4_journal_current_handle())
2529 		return __ext4_normal_writepage(page, wbc);
2530 
2531 	redirty_page_for_writepage(wbc, page);
2532 	unlock_page(page);
2533 	return 0;
2534 }
2535 
2536 static int __ext4_journalled_writepage(struct page *page,
2537 				struct writeback_control *wbc)
2538 {
2539 	struct address_space *mapping = page->mapping;
2540 	struct inode *inode = mapping->host;
2541 	struct buffer_head *page_bufs;
2542 	handle_t *handle = NULL;
2543 	int ret = 0;
2544 	int err;
2545 
2546 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2547 					ext4_normal_get_block_write);
2548 	if (ret != 0)
2549 		goto out_unlock;
2550 
2551 	page_bufs = page_buffers(page);
2552 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2553 								bget_one);
2554 	/* As soon as we unlock the page, it can go away, but we have
2555 	 * references to buffers so we are safe */
2556 	unlock_page(page);
2557 
2558 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2559 	if (IS_ERR(handle)) {
2560 		ret = PTR_ERR(handle);
2561 		goto out;
2562 	}
2563 
2564 	ret = walk_page_buffers(handle, page_bufs, 0,
2565 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2566 
2567 	err = walk_page_buffers(handle, page_bufs, 0,
2568 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2569 	if (ret == 0)
2570 		ret = err;
2571 	err = ext4_journal_stop(handle);
2572 	if (!ret)
2573 		ret = err;
2574 
2575 	walk_page_buffers(handle, page_bufs, 0,
2576 				PAGE_CACHE_SIZE, NULL, bput_one);
2577 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2578 	goto out;
2579 
2580 out_unlock:
2581 	unlock_page(page);
2582 out:
2583 	return ret;
2584 }
2585 
2586 static int ext4_journalled_writepage(struct page *page,
2587 				struct writeback_control *wbc)
2588 {
2589 	struct inode *inode = page->mapping->host;
2590 	loff_t size = i_size_read(inode);
2591 	loff_t len;
2592 
2593 	J_ASSERT(PageLocked(page));
2594 	if (page->index == size >> PAGE_CACHE_SHIFT)
2595 		len = size & ~PAGE_CACHE_MASK;
2596 	else
2597 		len = PAGE_CACHE_SIZE;
2598 
2599 	if (page_has_buffers(page)) {
2600 		/* if page has buffers it should all be mapped
2601 		 * and allocated. If there are not buffers attached
2602 		 * to the page we know the page is dirty but it lost
2603 		 * buffers. That means that at some moment in time
2604 		 * after write_begin() / write_end() has been called
2605 		 * all buffers have been clean and thus they must have been
2606 		 * written at least once. So they are all mapped and we can
2607 		 * happily proceed with mapping them and writing the page.
2608 		 */
2609 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2610 					ext4_bh_unmapped_or_delay));
2611 	}
2612 
2613 	if (ext4_journal_current_handle())
2614 		goto no_write;
2615 
2616 	if (PageChecked(page)) {
2617 		/*
2618 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2619 		 * doesn't seem much point in redirtying the page here.
2620 		 */
2621 		ClearPageChecked(page);
2622 		return __ext4_journalled_writepage(page, wbc);
2623 	} else {
2624 		/*
2625 		 * It may be a page full of checkpoint-mode buffers.  We don't
2626 		 * really know unless we go poke around in the buffer_heads.
2627 		 * But block_write_full_page will do the right thing.
2628 		 */
2629 		return block_write_full_page(page,
2630 						ext4_normal_get_block_write,
2631 						wbc);
2632 	}
2633 no_write:
2634 	redirty_page_for_writepage(wbc, page);
2635 	unlock_page(page);
2636 	return 0;
2637 }
2638 
2639 static int ext4_readpage(struct file *file, struct page *page)
2640 {
2641 	return mpage_readpage(page, ext4_get_block);
2642 }
2643 
2644 static int
2645 ext4_readpages(struct file *file, struct address_space *mapping,
2646 		struct list_head *pages, unsigned nr_pages)
2647 {
2648 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2649 }
2650 
2651 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2652 {
2653 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2654 
2655 	/*
2656 	 * If it's a full truncate we just forget about the pending dirtying
2657 	 */
2658 	if (offset == 0)
2659 		ClearPageChecked(page);
2660 
2661 	jbd2_journal_invalidatepage(journal, page, offset);
2662 }
2663 
2664 static int ext4_releasepage(struct page *page, gfp_t wait)
2665 {
2666 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2667 
2668 	WARN_ON(PageChecked(page));
2669 	if (!page_has_buffers(page))
2670 		return 0;
2671 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2672 }
2673 
2674 /*
2675  * If the O_DIRECT write will extend the file then add this inode to the
2676  * orphan list.  So recovery will truncate it back to the original size
2677  * if the machine crashes during the write.
2678  *
2679  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2680  * crashes then stale disk data _may_ be exposed inside the file. But current
2681  * VFS code falls back into buffered path in that case so we are safe.
2682  */
2683 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2684 			const struct iovec *iov, loff_t offset,
2685 			unsigned long nr_segs)
2686 {
2687 	struct file *file = iocb->ki_filp;
2688 	struct inode *inode = file->f_mapping->host;
2689 	struct ext4_inode_info *ei = EXT4_I(inode);
2690 	handle_t *handle;
2691 	ssize_t ret;
2692 	int orphan = 0;
2693 	size_t count = iov_length(iov, nr_segs);
2694 
2695 	if (rw == WRITE) {
2696 		loff_t final_size = offset + count;
2697 
2698 		if (final_size > inode->i_size) {
2699 			/* Credits for sb + inode write */
2700 			handle = ext4_journal_start(inode, 2);
2701 			if (IS_ERR(handle)) {
2702 				ret = PTR_ERR(handle);
2703 				goto out;
2704 			}
2705 			ret = ext4_orphan_add(handle, inode);
2706 			if (ret) {
2707 				ext4_journal_stop(handle);
2708 				goto out;
2709 			}
2710 			orphan = 1;
2711 			ei->i_disksize = inode->i_size;
2712 			ext4_journal_stop(handle);
2713 		}
2714 	}
2715 
2716 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2717 				 offset, nr_segs,
2718 				 ext4_get_block, NULL);
2719 
2720 	if (orphan) {
2721 		int err;
2722 
2723 		/* Credits for sb + inode write */
2724 		handle = ext4_journal_start(inode, 2);
2725 		if (IS_ERR(handle)) {
2726 			/* This is really bad luck. We've written the data
2727 			 * but cannot extend i_size. Bail out and pretend
2728 			 * the write failed... */
2729 			ret = PTR_ERR(handle);
2730 			goto out;
2731 		}
2732 		if (inode->i_nlink)
2733 			ext4_orphan_del(handle, inode);
2734 		if (ret > 0) {
2735 			loff_t end = offset + ret;
2736 			if (end > inode->i_size) {
2737 				ei->i_disksize = end;
2738 				i_size_write(inode, end);
2739 				/*
2740 				 * We're going to return a positive `ret'
2741 				 * here due to non-zero-length I/O, so there's
2742 				 * no way of reporting error returns from
2743 				 * ext4_mark_inode_dirty() to userspace.  So
2744 				 * ignore it.
2745 				 */
2746 				ext4_mark_inode_dirty(handle, inode);
2747 			}
2748 		}
2749 		err = ext4_journal_stop(handle);
2750 		if (ret == 0)
2751 			ret = err;
2752 	}
2753 out:
2754 	return ret;
2755 }
2756 
2757 /*
2758  * Pages can be marked dirty completely asynchronously from ext4's journalling
2759  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2760  * much here because ->set_page_dirty is called under VFS locks.  The page is
2761  * not necessarily locked.
2762  *
2763  * We cannot just dirty the page and leave attached buffers clean, because the
2764  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2765  * or jbddirty because all the journalling code will explode.
2766  *
2767  * So what we do is to mark the page "pending dirty" and next time writepage
2768  * is called, propagate that into the buffers appropriately.
2769  */
2770 static int ext4_journalled_set_page_dirty(struct page *page)
2771 {
2772 	SetPageChecked(page);
2773 	return __set_page_dirty_nobuffers(page);
2774 }
2775 
2776 static const struct address_space_operations ext4_ordered_aops = {
2777 	.readpage	= ext4_readpage,
2778 	.readpages	= ext4_readpages,
2779 	.writepage	= ext4_normal_writepage,
2780 	.sync_page	= block_sync_page,
2781 	.write_begin	= ext4_write_begin,
2782 	.write_end	= ext4_ordered_write_end,
2783 	.bmap		= ext4_bmap,
2784 	.invalidatepage	= ext4_invalidatepage,
2785 	.releasepage	= ext4_releasepage,
2786 	.direct_IO	= ext4_direct_IO,
2787 	.migratepage	= buffer_migrate_page,
2788 };
2789 
2790 static const struct address_space_operations ext4_writeback_aops = {
2791 	.readpage	= ext4_readpage,
2792 	.readpages	= ext4_readpages,
2793 	.writepage	= ext4_normal_writepage,
2794 	.sync_page	= block_sync_page,
2795 	.write_begin	= ext4_write_begin,
2796 	.write_end	= ext4_writeback_write_end,
2797 	.bmap		= ext4_bmap,
2798 	.invalidatepage	= ext4_invalidatepage,
2799 	.releasepage	= ext4_releasepage,
2800 	.direct_IO	= ext4_direct_IO,
2801 	.migratepage	= buffer_migrate_page,
2802 };
2803 
2804 static const struct address_space_operations ext4_journalled_aops = {
2805 	.readpage	= ext4_readpage,
2806 	.readpages	= ext4_readpages,
2807 	.writepage	= ext4_journalled_writepage,
2808 	.sync_page	= block_sync_page,
2809 	.write_begin	= ext4_write_begin,
2810 	.write_end	= ext4_journalled_write_end,
2811 	.set_page_dirty	= ext4_journalled_set_page_dirty,
2812 	.bmap		= ext4_bmap,
2813 	.invalidatepage	= ext4_invalidatepage,
2814 	.releasepage	= ext4_releasepage,
2815 };
2816 
2817 static const struct address_space_operations ext4_da_aops = {
2818 	.readpage	= ext4_readpage,
2819 	.readpages	= ext4_readpages,
2820 	.writepage	= ext4_da_writepage,
2821 	.writepages	= ext4_da_writepages,
2822 	.sync_page	= block_sync_page,
2823 	.write_begin	= ext4_da_write_begin,
2824 	.write_end	= ext4_da_write_end,
2825 	.bmap		= ext4_bmap,
2826 	.invalidatepage	= ext4_da_invalidatepage,
2827 	.releasepage	= ext4_releasepage,
2828 	.direct_IO	= ext4_direct_IO,
2829 	.migratepage	= buffer_migrate_page,
2830 };
2831 
2832 void ext4_set_aops(struct inode *inode)
2833 {
2834 	if (ext4_should_order_data(inode) &&
2835 		test_opt(inode->i_sb, DELALLOC))
2836 		inode->i_mapping->a_ops = &ext4_da_aops;
2837 	else if (ext4_should_order_data(inode))
2838 		inode->i_mapping->a_ops = &ext4_ordered_aops;
2839 	else if (ext4_should_writeback_data(inode) &&
2840 		 test_opt(inode->i_sb, DELALLOC))
2841 		inode->i_mapping->a_ops = &ext4_da_aops;
2842 	else if (ext4_should_writeback_data(inode))
2843 		inode->i_mapping->a_ops = &ext4_writeback_aops;
2844 	else
2845 		inode->i_mapping->a_ops = &ext4_journalled_aops;
2846 }
2847 
2848 /*
2849  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2850  * up to the end of the block which corresponds to `from'.
2851  * This required during truncate. We need to physically zero the tail end
2852  * of that block so it doesn't yield old data if the file is later grown.
2853  */
2854 int ext4_block_truncate_page(handle_t *handle,
2855 		struct address_space *mapping, loff_t from)
2856 {
2857 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2858 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2859 	unsigned blocksize, length, pos;
2860 	ext4_lblk_t iblock;
2861 	struct inode *inode = mapping->host;
2862 	struct buffer_head *bh;
2863 	struct page *page;
2864 	int err = 0;
2865 
2866 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2867 	if (!page)
2868 		return -EINVAL;
2869 
2870 	blocksize = inode->i_sb->s_blocksize;
2871 	length = blocksize - (offset & (blocksize - 1));
2872 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2873 
2874 	/*
2875 	 * For "nobh" option,  we can only work if we don't need to
2876 	 * read-in the page - otherwise we create buffers to do the IO.
2877 	 */
2878 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2879 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
2880 		zero_user(page, offset, length);
2881 		set_page_dirty(page);
2882 		goto unlock;
2883 	}
2884 
2885 	if (!page_has_buffers(page))
2886 		create_empty_buffers(page, blocksize, 0);
2887 
2888 	/* Find the buffer that contains "offset" */
2889 	bh = page_buffers(page);
2890 	pos = blocksize;
2891 	while (offset >= pos) {
2892 		bh = bh->b_this_page;
2893 		iblock++;
2894 		pos += blocksize;
2895 	}
2896 
2897 	err = 0;
2898 	if (buffer_freed(bh)) {
2899 		BUFFER_TRACE(bh, "freed: skip");
2900 		goto unlock;
2901 	}
2902 
2903 	if (!buffer_mapped(bh)) {
2904 		BUFFER_TRACE(bh, "unmapped");
2905 		ext4_get_block(inode, iblock, bh, 0);
2906 		/* unmapped? It's a hole - nothing to do */
2907 		if (!buffer_mapped(bh)) {
2908 			BUFFER_TRACE(bh, "still unmapped");
2909 			goto unlock;
2910 		}
2911 	}
2912 
2913 	/* Ok, it's mapped. Make sure it's up-to-date */
2914 	if (PageUptodate(page))
2915 		set_buffer_uptodate(bh);
2916 
2917 	if (!buffer_uptodate(bh)) {
2918 		err = -EIO;
2919 		ll_rw_block(READ, 1, &bh);
2920 		wait_on_buffer(bh);
2921 		/* Uhhuh. Read error. Complain and punt. */
2922 		if (!buffer_uptodate(bh))
2923 			goto unlock;
2924 	}
2925 
2926 	if (ext4_should_journal_data(inode)) {
2927 		BUFFER_TRACE(bh, "get write access");
2928 		err = ext4_journal_get_write_access(handle, bh);
2929 		if (err)
2930 			goto unlock;
2931 	}
2932 
2933 	zero_user(page, offset, length);
2934 
2935 	BUFFER_TRACE(bh, "zeroed end of block");
2936 
2937 	err = 0;
2938 	if (ext4_should_journal_data(inode)) {
2939 		err = ext4_journal_dirty_metadata(handle, bh);
2940 	} else {
2941 		if (ext4_should_order_data(inode))
2942 			err = ext4_jbd2_file_inode(handle, inode);
2943 		mark_buffer_dirty(bh);
2944 	}
2945 
2946 unlock:
2947 	unlock_page(page);
2948 	page_cache_release(page);
2949 	return err;
2950 }
2951 
2952 /*
2953  * Probably it should be a library function... search for first non-zero word
2954  * or memcmp with zero_page, whatever is better for particular architecture.
2955  * Linus?
2956  */
2957 static inline int all_zeroes(__le32 *p, __le32 *q)
2958 {
2959 	while (p < q)
2960 		if (*p++)
2961 			return 0;
2962 	return 1;
2963 }
2964 
2965 /**
2966  *	ext4_find_shared - find the indirect blocks for partial truncation.
2967  *	@inode:	  inode in question
2968  *	@depth:	  depth of the affected branch
2969  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
2970  *	@chain:	  place to store the pointers to partial indirect blocks
2971  *	@top:	  place to the (detached) top of branch
2972  *
2973  *	This is a helper function used by ext4_truncate().
2974  *
2975  *	When we do truncate() we may have to clean the ends of several
2976  *	indirect blocks but leave the blocks themselves alive. Block is
2977  *	partially truncated if some data below the new i_size is refered
2978  *	from it (and it is on the path to the first completely truncated
2979  *	data block, indeed).  We have to free the top of that path along
2980  *	with everything to the right of the path. Since no allocation
2981  *	past the truncation point is possible until ext4_truncate()
2982  *	finishes, we may safely do the latter, but top of branch may
2983  *	require special attention - pageout below the truncation point
2984  *	might try to populate it.
2985  *
2986  *	We atomically detach the top of branch from the tree, store the
2987  *	block number of its root in *@top, pointers to buffer_heads of
2988  *	partially truncated blocks - in @chain[].bh and pointers to
2989  *	their last elements that should not be removed - in
2990  *	@chain[].p. Return value is the pointer to last filled element
2991  *	of @chain.
2992  *
2993  *	The work left to caller to do the actual freeing of subtrees:
2994  *		a) free the subtree starting from *@top
2995  *		b) free the subtrees whose roots are stored in
2996  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
2997  *		c) free the subtrees growing from the inode past the @chain[0].
2998  *			(no partially truncated stuff there).  */
2999 
3000 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3001 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3002 {
3003 	Indirect *partial, *p;
3004 	int k, err;
3005 
3006 	*top = 0;
3007 	/* Make k index the deepest non-null offest + 1 */
3008 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3009 		;
3010 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3011 	/* Writer: pointers */
3012 	if (!partial)
3013 		partial = chain + k-1;
3014 	/*
3015 	 * If the branch acquired continuation since we've looked at it -
3016 	 * fine, it should all survive and (new) top doesn't belong to us.
3017 	 */
3018 	if (!partial->key && *partial->p)
3019 		/* Writer: end */
3020 		goto no_top;
3021 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3022 		;
3023 	/*
3024 	 * OK, we've found the last block that must survive. The rest of our
3025 	 * branch should be detached before unlocking. However, if that rest
3026 	 * of branch is all ours and does not grow immediately from the inode
3027 	 * it's easier to cheat and just decrement partial->p.
3028 	 */
3029 	if (p == chain + k - 1 && p > chain) {
3030 		p->p--;
3031 	} else {
3032 		*top = *p->p;
3033 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3034 #if 0
3035 		*p->p = 0;
3036 #endif
3037 	}
3038 	/* Writer: end */
3039 
3040 	while(partial > p) {
3041 		brelse(partial->bh);
3042 		partial--;
3043 	}
3044 no_top:
3045 	return partial;
3046 }
3047 
3048 /*
3049  * Zero a number of block pointers in either an inode or an indirect block.
3050  * If we restart the transaction we must again get write access to the
3051  * indirect block for further modification.
3052  *
3053  * We release `count' blocks on disk, but (last - first) may be greater
3054  * than `count' because there can be holes in there.
3055  */
3056 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3057 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3058 		unsigned long count, __le32 *first, __le32 *last)
3059 {
3060 	__le32 *p;
3061 	if (try_to_extend_transaction(handle, inode)) {
3062 		if (bh) {
3063 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3064 			ext4_journal_dirty_metadata(handle, bh);
3065 		}
3066 		ext4_mark_inode_dirty(handle, inode);
3067 		ext4_journal_test_restart(handle, inode);
3068 		if (bh) {
3069 			BUFFER_TRACE(bh, "retaking write access");
3070 			ext4_journal_get_write_access(handle, bh);
3071 		}
3072 	}
3073 
3074 	/*
3075 	 * Any buffers which are on the journal will be in memory. We find
3076 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3077 	 * on them.  We've already detached each block from the file, so
3078 	 * bforget() in jbd2_journal_forget() should be safe.
3079 	 *
3080 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3081 	 */
3082 	for (p = first; p < last; p++) {
3083 		u32 nr = le32_to_cpu(*p);
3084 		if (nr) {
3085 			struct buffer_head *tbh;
3086 
3087 			*p = 0;
3088 			tbh = sb_find_get_block(inode->i_sb, nr);
3089 			ext4_forget(handle, 0, inode, tbh, nr);
3090 		}
3091 	}
3092 
3093 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3094 }
3095 
3096 /**
3097  * ext4_free_data - free a list of data blocks
3098  * @handle:	handle for this transaction
3099  * @inode:	inode we are dealing with
3100  * @this_bh:	indirect buffer_head which contains *@first and *@last
3101  * @first:	array of block numbers
3102  * @last:	points immediately past the end of array
3103  *
3104  * We are freeing all blocks refered from that array (numbers are stored as
3105  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3106  *
3107  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3108  * blocks are contiguous then releasing them at one time will only affect one
3109  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3110  * actually use a lot of journal space.
3111  *
3112  * @this_bh will be %NULL if @first and @last point into the inode's direct
3113  * block pointers.
3114  */
3115 static void ext4_free_data(handle_t *handle, struct inode *inode,
3116 			   struct buffer_head *this_bh,
3117 			   __le32 *first, __le32 *last)
3118 {
3119 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3120 	unsigned long count = 0;	    /* Number of blocks in the run */
3121 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3122 					       corresponding to
3123 					       block_to_free */
3124 	ext4_fsblk_t nr;		    /* Current block # */
3125 	__le32 *p;			    /* Pointer into inode/ind
3126 					       for current block */
3127 	int err;
3128 
3129 	if (this_bh) {				/* For indirect block */
3130 		BUFFER_TRACE(this_bh, "get_write_access");
3131 		err = ext4_journal_get_write_access(handle, this_bh);
3132 		/* Important: if we can't update the indirect pointers
3133 		 * to the blocks, we can't free them. */
3134 		if (err)
3135 			return;
3136 	}
3137 
3138 	for (p = first; p < last; p++) {
3139 		nr = le32_to_cpu(*p);
3140 		if (nr) {
3141 			/* accumulate blocks to free if they're contiguous */
3142 			if (count == 0) {
3143 				block_to_free = nr;
3144 				block_to_free_p = p;
3145 				count = 1;
3146 			} else if (nr == block_to_free + count) {
3147 				count++;
3148 			} else {
3149 				ext4_clear_blocks(handle, inode, this_bh,
3150 						  block_to_free,
3151 						  count, block_to_free_p, p);
3152 				block_to_free = nr;
3153 				block_to_free_p = p;
3154 				count = 1;
3155 			}
3156 		}
3157 	}
3158 
3159 	if (count > 0)
3160 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3161 				  count, block_to_free_p, p);
3162 
3163 	if (this_bh) {
3164 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3165 
3166 		/*
3167 		 * The buffer head should have an attached journal head at this
3168 		 * point. However, if the data is corrupted and an indirect
3169 		 * block pointed to itself, it would have been detached when
3170 		 * the block was cleared. Check for this instead of OOPSing.
3171 		 */
3172 		if (bh2jh(this_bh))
3173 			ext4_journal_dirty_metadata(handle, this_bh);
3174 		else
3175 			ext4_error(inode->i_sb, __func__,
3176 				   "circular indirect block detected, "
3177 				   "inode=%lu, block=%llu",
3178 				   inode->i_ino,
3179 				   (unsigned long long) this_bh->b_blocknr);
3180 	}
3181 }
3182 
3183 /**
3184  *	ext4_free_branches - free an array of branches
3185  *	@handle: JBD handle for this transaction
3186  *	@inode:	inode we are dealing with
3187  *	@parent_bh: the buffer_head which contains *@first and *@last
3188  *	@first:	array of block numbers
3189  *	@last:	pointer immediately past the end of array
3190  *	@depth:	depth of the branches to free
3191  *
3192  *	We are freeing all blocks refered from these branches (numbers are
3193  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3194  *	appropriately.
3195  */
3196 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3197 			       struct buffer_head *parent_bh,
3198 			       __le32 *first, __le32 *last, int depth)
3199 {
3200 	ext4_fsblk_t nr;
3201 	__le32 *p;
3202 
3203 	if (is_handle_aborted(handle))
3204 		return;
3205 
3206 	if (depth--) {
3207 		struct buffer_head *bh;
3208 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3209 		p = last;
3210 		while (--p >= first) {
3211 			nr = le32_to_cpu(*p);
3212 			if (!nr)
3213 				continue;		/* A hole */
3214 
3215 			/* Go read the buffer for the next level down */
3216 			bh = sb_bread(inode->i_sb, nr);
3217 
3218 			/*
3219 			 * A read failure? Report error and clear slot
3220 			 * (should be rare).
3221 			 */
3222 			if (!bh) {
3223 				ext4_error(inode->i_sb, "ext4_free_branches",
3224 					   "Read failure, inode=%lu, block=%llu",
3225 					   inode->i_ino, nr);
3226 				continue;
3227 			}
3228 
3229 			/* This zaps the entire block.  Bottom up. */
3230 			BUFFER_TRACE(bh, "free child branches");
3231 			ext4_free_branches(handle, inode, bh,
3232 					   (__le32*)bh->b_data,
3233 					   (__le32*)bh->b_data + addr_per_block,
3234 					   depth);
3235 
3236 			/*
3237 			 * We've probably journalled the indirect block several
3238 			 * times during the truncate.  But it's no longer
3239 			 * needed and we now drop it from the transaction via
3240 			 * jbd2_journal_revoke().
3241 			 *
3242 			 * That's easy if it's exclusively part of this
3243 			 * transaction.  But if it's part of the committing
3244 			 * transaction then jbd2_journal_forget() will simply
3245 			 * brelse() it.  That means that if the underlying
3246 			 * block is reallocated in ext4_get_block(),
3247 			 * unmap_underlying_metadata() will find this block
3248 			 * and will try to get rid of it.  damn, damn.
3249 			 *
3250 			 * If this block has already been committed to the
3251 			 * journal, a revoke record will be written.  And
3252 			 * revoke records must be emitted *before* clearing
3253 			 * this block's bit in the bitmaps.
3254 			 */
3255 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3256 
3257 			/*
3258 			 * Everything below this this pointer has been
3259 			 * released.  Now let this top-of-subtree go.
3260 			 *
3261 			 * We want the freeing of this indirect block to be
3262 			 * atomic in the journal with the updating of the
3263 			 * bitmap block which owns it.  So make some room in
3264 			 * the journal.
3265 			 *
3266 			 * We zero the parent pointer *after* freeing its
3267 			 * pointee in the bitmaps, so if extend_transaction()
3268 			 * for some reason fails to put the bitmap changes and
3269 			 * the release into the same transaction, recovery
3270 			 * will merely complain about releasing a free block,
3271 			 * rather than leaking blocks.
3272 			 */
3273 			if (is_handle_aborted(handle))
3274 				return;
3275 			if (try_to_extend_transaction(handle, inode)) {
3276 				ext4_mark_inode_dirty(handle, inode);
3277 				ext4_journal_test_restart(handle, inode);
3278 			}
3279 
3280 			ext4_free_blocks(handle, inode, nr, 1, 1);
3281 
3282 			if (parent_bh) {
3283 				/*
3284 				 * The block which we have just freed is
3285 				 * pointed to by an indirect block: journal it
3286 				 */
3287 				BUFFER_TRACE(parent_bh, "get_write_access");
3288 				if (!ext4_journal_get_write_access(handle,
3289 								   parent_bh)){
3290 					*p = 0;
3291 					BUFFER_TRACE(parent_bh,
3292 					"call ext4_journal_dirty_metadata");
3293 					ext4_journal_dirty_metadata(handle,
3294 								    parent_bh);
3295 				}
3296 			}
3297 		}
3298 	} else {
3299 		/* We have reached the bottom of the tree. */
3300 		BUFFER_TRACE(parent_bh, "free data blocks");
3301 		ext4_free_data(handle, inode, parent_bh, first, last);
3302 	}
3303 }
3304 
3305 int ext4_can_truncate(struct inode *inode)
3306 {
3307 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3308 		return 0;
3309 	if (S_ISREG(inode->i_mode))
3310 		return 1;
3311 	if (S_ISDIR(inode->i_mode))
3312 		return 1;
3313 	if (S_ISLNK(inode->i_mode))
3314 		return !ext4_inode_is_fast_symlink(inode);
3315 	return 0;
3316 }
3317 
3318 /*
3319  * ext4_truncate()
3320  *
3321  * We block out ext4_get_block() block instantiations across the entire
3322  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3323  * simultaneously on behalf of the same inode.
3324  *
3325  * As we work through the truncate and commmit bits of it to the journal there
3326  * is one core, guiding principle: the file's tree must always be consistent on
3327  * disk.  We must be able to restart the truncate after a crash.
3328  *
3329  * The file's tree may be transiently inconsistent in memory (although it
3330  * probably isn't), but whenever we close off and commit a journal transaction,
3331  * the contents of (the filesystem + the journal) must be consistent and
3332  * restartable.  It's pretty simple, really: bottom up, right to left (although
3333  * left-to-right works OK too).
3334  *
3335  * Note that at recovery time, journal replay occurs *before* the restart of
3336  * truncate against the orphan inode list.
3337  *
3338  * The committed inode has the new, desired i_size (which is the same as
3339  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3340  * that this inode's truncate did not complete and it will again call
3341  * ext4_truncate() to have another go.  So there will be instantiated blocks
3342  * to the right of the truncation point in a crashed ext4 filesystem.  But
3343  * that's fine - as long as they are linked from the inode, the post-crash
3344  * ext4_truncate() run will find them and release them.
3345  */
3346 void ext4_truncate(struct inode *inode)
3347 {
3348 	handle_t *handle;
3349 	struct ext4_inode_info *ei = EXT4_I(inode);
3350 	__le32 *i_data = ei->i_data;
3351 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3352 	struct address_space *mapping = inode->i_mapping;
3353 	ext4_lblk_t offsets[4];
3354 	Indirect chain[4];
3355 	Indirect *partial;
3356 	__le32 nr = 0;
3357 	int n;
3358 	ext4_lblk_t last_block;
3359 	unsigned blocksize = inode->i_sb->s_blocksize;
3360 
3361 	if (!ext4_can_truncate(inode))
3362 		return;
3363 
3364 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3365 		ext4_ext_truncate(inode);
3366 		return;
3367 	}
3368 
3369 	handle = start_transaction(inode);
3370 	if (IS_ERR(handle))
3371 		return;		/* AKPM: return what? */
3372 
3373 	last_block = (inode->i_size + blocksize-1)
3374 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3375 
3376 	if (inode->i_size & (blocksize - 1))
3377 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3378 			goto out_stop;
3379 
3380 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3381 	if (n == 0)
3382 		goto out_stop;	/* error */
3383 
3384 	/*
3385 	 * OK.  This truncate is going to happen.  We add the inode to the
3386 	 * orphan list, so that if this truncate spans multiple transactions,
3387 	 * and we crash, we will resume the truncate when the filesystem
3388 	 * recovers.  It also marks the inode dirty, to catch the new size.
3389 	 *
3390 	 * Implication: the file must always be in a sane, consistent
3391 	 * truncatable state while each transaction commits.
3392 	 */
3393 	if (ext4_orphan_add(handle, inode))
3394 		goto out_stop;
3395 
3396 	/*
3397 	 * The orphan list entry will now protect us from any crash which
3398 	 * occurs before the truncate completes, so it is now safe to propagate
3399 	 * the new, shorter inode size (held for now in i_size) into the
3400 	 * on-disk inode. We do this via i_disksize, which is the value which
3401 	 * ext4 *really* writes onto the disk inode.
3402 	 */
3403 	ei->i_disksize = inode->i_size;
3404 
3405 	/*
3406 	 * From here we block out all ext4_get_block() callers who want to
3407 	 * modify the block allocation tree.
3408 	 */
3409 	down_write(&ei->i_data_sem);
3410 
3411 	if (n == 1) {		/* direct blocks */
3412 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3413 			       i_data + EXT4_NDIR_BLOCKS);
3414 		goto do_indirects;
3415 	}
3416 
3417 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3418 	/* Kill the top of shared branch (not detached) */
3419 	if (nr) {
3420 		if (partial == chain) {
3421 			/* Shared branch grows from the inode */
3422 			ext4_free_branches(handle, inode, NULL,
3423 					   &nr, &nr+1, (chain+n-1) - partial);
3424 			*partial->p = 0;
3425 			/*
3426 			 * We mark the inode dirty prior to restart,
3427 			 * and prior to stop.  No need for it here.
3428 			 */
3429 		} else {
3430 			/* Shared branch grows from an indirect block */
3431 			BUFFER_TRACE(partial->bh, "get_write_access");
3432 			ext4_free_branches(handle, inode, partial->bh,
3433 					partial->p,
3434 					partial->p+1, (chain+n-1) - partial);
3435 		}
3436 	}
3437 	/* Clear the ends of indirect blocks on the shared branch */
3438 	while (partial > chain) {
3439 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3440 				   (__le32*)partial->bh->b_data+addr_per_block,
3441 				   (chain+n-1) - partial);
3442 		BUFFER_TRACE(partial->bh, "call brelse");
3443 		brelse (partial->bh);
3444 		partial--;
3445 	}
3446 do_indirects:
3447 	/* Kill the remaining (whole) subtrees */
3448 	switch (offsets[0]) {
3449 	default:
3450 		nr = i_data[EXT4_IND_BLOCK];
3451 		if (nr) {
3452 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3453 			i_data[EXT4_IND_BLOCK] = 0;
3454 		}
3455 	case EXT4_IND_BLOCK:
3456 		nr = i_data[EXT4_DIND_BLOCK];
3457 		if (nr) {
3458 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3459 			i_data[EXT4_DIND_BLOCK] = 0;
3460 		}
3461 	case EXT4_DIND_BLOCK:
3462 		nr = i_data[EXT4_TIND_BLOCK];
3463 		if (nr) {
3464 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3465 			i_data[EXT4_TIND_BLOCK] = 0;
3466 		}
3467 	case EXT4_TIND_BLOCK:
3468 		;
3469 	}
3470 
3471 	ext4_discard_reservation(inode);
3472 
3473 	up_write(&ei->i_data_sem);
3474 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3475 	ext4_mark_inode_dirty(handle, inode);
3476 
3477 	/*
3478 	 * In a multi-transaction truncate, we only make the final transaction
3479 	 * synchronous
3480 	 */
3481 	if (IS_SYNC(inode))
3482 		handle->h_sync = 1;
3483 out_stop:
3484 	/*
3485 	 * If this was a simple ftruncate(), and the file will remain alive
3486 	 * then we need to clear up the orphan record which we created above.
3487 	 * However, if this was a real unlink then we were called by
3488 	 * ext4_delete_inode(), and we allow that function to clean up the
3489 	 * orphan info for us.
3490 	 */
3491 	if (inode->i_nlink)
3492 		ext4_orphan_del(handle, inode);
3493 
3494 	ext4_journal_stop(handle);
3495 }
3496 
3497 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3498 		unsigned long ino, struct ext4_iloc *iloc)
3499 {
3500 	ext4_group_t block_group;
3501 	unsigned long offset;
3502 	ext4_fsblk_t block;
3503 	struct ext4_group_desc *gdp;
3504 
3505 	if (!ext4_valid_inum(sb, ino)) {
3506 		/*
3507 		 * This error is already checked for in namei.c unless we are
3508 		 * looking at an NFS filehandle, in which case no error
3509 		 * report is needed
3510 		 */
3511 		return 0;
3512 	}
3513 
3514 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3515 	gdp = ext4_get_group_desc(sb, block_group, NULL);
3516 	if (!gdp)
3517 		return 0;
3518 
3519 	/*
3520 	 * Figure out the offset within the block group inode table
3521 	 */
3522 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3523 		EXT4_INODE_SIZE(sb);
3524 	block = ext4_inode_table(sb, gdp) +
3525 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3526 
3527 	iloc->block_group = block_group;
3528 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3529 	return block;
3530 }
3531 
3532 /*
3533  * ext4_get_inode_loc returns with an extra refcount against the inode's
3534  * underlying buffer_head on success. If 'in_mem' is true, we have all
3535  * data in memory that is needed to recreate the on-disk version of this
3536  * inode.
3537  */
3538 static int __ext4_get_inode_loc(struct inode *inode,
3539 				struct ext4_iloc *iloc, int in_mem)
3540 {
3541 	ext4_fsblk_t block;
3542 	struct buffer_head *bh;
3543 
3544 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3545 	if (!block)
3546 		return -EIO;
3547 
3548 	bh = sb_getblk(inode->i_sb, block);
3549 	if (!bh) {
3550 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3551 				"unable to read inode block - "
3552 				"inode=%lu, block=%llu",
3553 				 inode->i_ino, block);
3554 		return -EIO;
3555 	}
3556 	if (!buffer_uptodate(bh)) {
3557 		lock_buffer(bh);
3558 		if (buffer_uptodate(bh)) {
3559 			/* someone brought it uptodate while we waited */
3560 			unlock_buffer(bh);
3561 			goto has_buffer;
3562 		}
3563 
3564 		/*
3565 		 * If we have all information of the inode in memory and this
3566 		 * is the only valid inode in the block, we need not read the
3567 		 * block.
3568 		 */
3569 		if (in_mem) {
3570 			struct buffer_head *bitmap_bh;
3571 			struct ext4_group_desc *desc;
3572 			int inodes_per_buffer;
3573 			int inode_offset, i;
3574 			ext4_group_t block_group;
3575 			int start;
3576 
3577 			block_group = (inode->i_ino - 1) /
3578 					EXT4_INODES_PER_GROUP(inode->i_sb);
3579 			inodes_per_buffer = bh->b_size /
3580 				EXT4_INODE_SIZE(inode->i_sb);
3581 			inode_offset = ((inode->i_ino - 1) %
3582 					EXT4_INODES_PER_GROUP(inode->i_sb));
3583 			start = inode_offset & ~(inodes_per_buffer - 1);
3584 
3585 			/* Is the inode bitmap in cache? */
3586 			desc = ext4_get_group_desc(inode->i_sb,
3587 						block_group, NULL);
3588 			if (!desc)
3589 				goto make_io;
3590 
3591 			bitmap_bh = sb_getblk(inode->i_sb,
3592 				ext4_inode_bitmap(inode->i_sb, desc));
3593 			if (!bitmap_bh)
3594 				goto make_io;
3595 
3596 			/*
3597 			 * If the inode bitmap isn't in cache then the
3598 			 * optimisation may end up performing two reads instead
3599 			 * of one, so skip it.
3600 			 */
3601 			if (!buffer_uptodate(bitmap_bh)) {
3602 				brelse(bitmap_bh);
3603 				goto make_io;
3604 			}
3605 			for (i = start; i < start + inodes_per_buffer; i++) {
3606 				if (i == inode_offset)
3607 					continue;
3608 				if (ext4_test_bit(i, bitmap_bh->b_data))
3609 					break;
3610 			}
3611 			brelse(bitmap_bh);
3612 			if (i == start + inodes_per_buffer) {
3613 				/* all other inodes are free, so skip I/O */
3614 				memset(bh->b_data, 0, bh->b_size);
3615 				set_buffer_uptodate(bh);
3616 				unlock_buffer(bh);
3617 				goto has_buffer;
3618 			}
3619 		}
3620 
3621 make_io:
3622 		/*
3623 		 * There are other valid inodes in the buffer, this inode
3624 		 * has in-inode xattrs, or we don't have this inode in memory.
3625 		 * Read the block from disk.
3626 		 */
3627 		get_bh(bh);
3628 		bh->b_end_io = end_buffer_read_sync;
3629 		submit_bh(READ_META, bh);
3630 		wait_on_buffer(bh);
3631 		if (!buffer_uptodate(bh)) {
3632 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3633 					"unable to read inode block - "
3634 					"inode=%lu, block=%llu",
3635 					inode->i_ino, block);
3636 			brelse(bh);
3637 			return -EIO;
3638 		}
3639 	}
3640 has_buffer:
3641 	iloc->bh = bh;
3642 	return 0;
3643 }
3644 
3645 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3646 {
3647 	/* We have all inode data except xattrs in memory here. */
3648 	return __ext4_get_inode_loc(inode, iloc,
3649 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3650 }
3651 
3652 void ext4_set_inode_flags(struct inode *inode)
3653 {
3654 	unsigned int flags = EXT4_I(inode)->i_flags;
3655 
3656 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3657 	if (flags & EXT4_SYNC_FL)
3658 		inode->i_flags |= S_SYNC;
3659 	if (flags & EXT4_APPEND_FL)
3660 		inode->i_flags |= S_APPEND;
3661 	if (flags & EXT4_IMMUTABLE_FL)
3662 		inode->i_flags |= S_IMMUTABLE;
3663 	if (flags & EXT4_NOATIME_FL)
3664 		inode->i_flags |= S_NOATIME;
3665 	if (flags & EXT4_DIRSYNC_FL)
3666 		inode->i_flags |= S_DIRSYNC;
3667 }
3668 
3669 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3670 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3671 {
3672 	unsigned int flags = ei->vfs_inode.i_flags;
3673 
3674 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3675 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3676 	if (flags & S_SYNC)
3677 		ei->i_flags |= EXT4_SYNC_FL;
3678 	if (flags & S_APPEND)
3679 		ei->i_flags |= EXT4_APPEND_FL;
3680 	if (flags & S_IMMUTABLE)
3681 		ei->i_flags |= EXT4_IMMUTABLE_FL;
3682 	if (flags & S_NOATIME)
3683 		ei->i_flags |= EXT4_NOATIME_FL;
3684 	if (flags & S_DIRSYNC)
3685 		ei->i_flags |= EXT4_DIRSYNC_FL;
3686 }
3687 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3688 					struct ext4_inode_info *ei)
3689 {
3690 	blkcnt_t i_blocks ;
3691 	struct inode *inode = &(ei->vfs_inode);
3692 	struct super_block *sb = inode->i_sb;
3693 
3694 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3695 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3696 		/* we are using combined 48 bit field */
3697 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3698 					le32_to_cpu(raw_inode->i_blocks_lo);
3699 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3700 			/* i_blocks represent file system block size */
3701 			return i_blocks  << (inode->i_blkbits - 9);
3702 		} else {
3703 			return i_blocks;
3704 		}
3705 	} else {
3706 		return le32_to_cpu(raw_inode->i_blocks_lo);
3707 	}
3708 }
3709 
3710 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3711 {
3712 	struct ext4_iloc iloc;
3713 	struct ext4_inode *raw_inode;
3714 	struct ext4_inode_info *ei;
3715 	struct buffer_head *bh;
3716 	struct inode *inode;
3717 	long ret;
3718 	int block;
3719 
3720 	inode = iget_locked(sb, ino);
3721 	if (!inode)
3722 		return ERR_PTR(-ENOMEM);
3723 	if (!(inode->i_state & I_NEW))
3724 		return inode;
3725 
3726 	ei = EXT4_I(inode);
3727 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3728 	ei->i_acl = EXT4_ACL_NOT_CACHED;
3729 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3730 #endif
3731 	ei->i_block_alloc_info = NULL;
3732 
3733 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3734 	if (ret < 0)
3735 		goto bad_inode;
3736 	bh = iloc.bh;
3737 	raw_inode = ext4_raw_inode(&iloc);
3738 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3739 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3740 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3741 	if(!(test_opt (inode->i_sb, NO_UID32))) {
3742 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3743 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3744 	}
3745 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3746 
3747 	ei->i_state = 0;
3748 	ei->i_dir_start_lookup = 0;
3749 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3750 	/* We now have enough fields to check if the inode was active or not.
3751 	 * This is needed because nfsd might try to access dead inodes
3752 	 * the test is that same one that e2fsck uses
3753 	 * NeilBrown 1999oct15
3754 	 */
3755 	if (inode->i_nlink == 0) {
3756 		if (inode->i_mode == 0 ||
3757 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3758 			/* this inode is deleted */
3759 			brelse (bh);
3760 			ret = -ESTALE;
3761 			goto bad_inode;
3762 		}
3763 		/* The only unlinked inodes we let through here have
3764 		 * valid i_mode and are being read by the orphan
3765 		 * recovery code: that's fine, we're about to complete
3766 		 * the process of deleting those. */
3767 	}
3768 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3769 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3770 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3771 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3772 	    cpu_to_le32(EXT4_OS_HURD)) {
3773 		ei->i_file_acl |=
3774 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3775 	}
3776 	inode->i_size = ext4_isize(raw_inode);
3777 	ei->i_disksize = inode->i_size;
3778 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3779 	ei->i_block_group = iloc.block_group;
3780 	/*
3781 	 * NOTE! The in-memory inode i_data array is in little-endian order
3782 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3783 	 */
3784 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3785 		ei->i_data[block] = raw_inode->i_block[block];
3786 	INIT_LIST_HEAD(&ei->i_orphan);
3787 
3788 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3789 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3790 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3791 		    EXT4_INODE_SIZE(inode->i_sb)) {
3792 			brelse (bh);
3793 			ret = -EIO;
3794 			goto bad_inode;
3795 		}
3796 		if (ei->i_extra_isize == 0) {
3797 			/* The extra space is currently unused. Use it. */
3798 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3799 					    EXT4_GOOD_OLD_INODE_SIZE;
3800 		} else {
3801 			__le32 *magic = (void *)raw_inode +
3802 					EXT4_GOOD_OLD_INODE_SIZE +
3803 					ei->i_extra_isize;
3804 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3805 				 ei->i_state |= EXT4_STATE_XATTR;
3806 		}
3807 	} else
3808 		ei->i_extra_isize = 0;
3809 
3810 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3811 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3812 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3813 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3814 
3815 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3816 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3817 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3818 			inode->i_version |=
3819 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3820 	}
3821 
3822 	if (S_ISREG(inode->i_mode)) {
3823 		inode->i_op = &ext4_file_inode_operations;
3824 		inode->i_fop = &ext4_file_operations;
3825 		ext4_set_aops(inode);
3826 	} else if (S_ISDIR(inode->i_mode)) {
3827 		inode->i_op = &ext4_dir_inode_operations;
3828 		inode->i_fop = &ext4_dir_operations;
3829 	} else if (S_ISLNK(inode->i_mode)) {
3830 		if (ext4_inode_is_fast_symlink(inode))
3831 			inode->i_op = &ext4_fast_symlink_inode_operations;
3832 		else {
3833 			inode->i_op = &ext4_symlink_inode_operations;
3834 			ext4_set_aops(inode);
3835 		}
3836 	} else {
3837 		inode->i_op = &ext4_special_inode_operations;
3838 		if (raw_inode->i_block[0])
3839 			init_special_inode(inode, inode->i_mode,
3840 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3841 		else
3842 			init_special_inode(inode, inode->i_mode,
3843 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3844 	}
3845 	brelse (iloc.bh);
3846 	ext4_set_inode_flags(inode);
3847 	unlock_new_inode(inode);
3848 	return inode;
3849 
3850 bad_inode:
3851 	iget_failed(inode);
3852 	return ERR_PTR(ret);
3853 }
3854 
3855 static int ext4_inode_blocks_set(handle_t *handle,
3856 				struct ext4_inode *raw_inode,
3857 				struct ext4_inode_info *ei)
3858 {
3859 	struct inode *inode = &(ei->vfs_inode);
3860 	u64 i_blocks = inode->i_blocks;
3861 	struct super_block *sb = inode->i_sb;
3862 	int err = 0;
3863 
3864 	if (i_blocks <= ~0U) {
3865 		/*
3866 		 * i_blocks can be represnted in a 32 bit variable
3867 		 * as multiple of 512 bytes
3868 		 */
3869 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3870 		raw_inode->i_blocks_high = 0;
3871 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3872 	} else if (i_blocks <= 0xffffffffffffULL) {
3873 		/*
3874 		 * i_blocks can be represented in a 48 bit variable
3875 		 * as multiple of 512 bytes
3876 		 */
3877 		err = ext4_update_rocompat_feature(handle, sb,
3878 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3879 		if (err)
3880 			goto  err_out;
3881 		/* i_block is stored in the split  48 bit fields */
3882 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3883 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3884 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3885 	} else {
3886 		/*
3887 		 * i_blocks should be represented in a 48 bit variable
3888 		 * as multiple of  file system block size
3889 		 */
3890 		err = ext4_update_rocompat_feature(handle, sb,
3891 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3892 		if (err)
3893 			goto  err_out;
3894 		ei->i_flags |= EXT4_HUGE_FILE_FL;
3895 		/* i_block is stored in file system block size */
3896 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3897 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3898 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3899 	}
3900 err_out:
3901 	return err;
3902 }
3903 
3904 /*
3905  * Post the struct inode info into an on-disk inode location in the
3906  * buffer-cache.  This gobbles the caller's reference to the
3907  * buffer_head in the inode location struct.
3908  *
3909  * The caller must have write access to iloc->bh.
3910  */
3911 static int ext4_do_update_inode(handle_t *handle,
3912 				struct inode *inode,
3913 				struct ext4_iloc *iloc)
3914 {
3915 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3916 	struct ext4_inode_info *ei = EXT4_I(inode);
3917 	struct buffer_head *bh = iloc->bh;
3918 	int err = 0, rc, block;
3919 
3920 	/* For fields not not tracking in the in-memory inode,
3921 	 * initialise them to zero for new inodes. */
3922 	if (ei->i_state & EXT4_STATE_NEW)
3923 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3924 
3925 	ext4_get_inode_flags(ei);
3926 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3927 	if(!(test_opt(inode->i_sb, NO_UID32))) {
3928 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3929 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3930 /*
3931  * Fix up interoperability with old kernels. Otherwise, old inodes get
3932  * re-used with the upper 16 bits of the uid/gid intact
3933  */
3934 		if(!ei->i_dtime) {
3935 			raw_inode->i_uid_high =
3936 				cpu_to_le16(high_16_bits(inode->i_uid));
3937 			raw_inode->i_gid_high =
3938 				cpu_to_le16(high_16_bits(inode->i_gid));
3939 		} else {
3940 			raw_inode->i_uid_high = 0;
3941 			raw_inode->i_gid_high = 0;
3942 		}
3943 	} else {
3944 		raw_inode->i_uid_low =
3945 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3946 		raw_inode->i_gid_low =
3947 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3948 		raw_inode->i_uid_high = 0;
3949 		raw_inode->i_gid_high = 0;
3950 	}
3951 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3952 
3953 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3954 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3955 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3956 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3957 
3958 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3959 		goto out_brelse;
3960 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3961 	/* clear the migrate flag in the raw_inode */
3962 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3963 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3964 	    cpu_to_le32(EXT4_OS_HURD))
3965 		raw_inode->i_file_acl_high =
3966 			cpu_to_le16(ei->i_file_acl >> 32);
3967 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3968 	ext4_isize_set(raw_inode, ei->i_disksize);
3969 	if (ei->i_disksize > 0x7fffffffULL) {
3970 		struct super_block *sb = inode->i_sb;
3971 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3972 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3973 				EXT4_SB(sb)->s_es->s_rev_level ==
3974 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3975 			/* If this is the first large file
3976 			 * created, add a flag to the superblock.
3977 			 */
3978 			err = ext4_journal_get_write_access(handle,
3979 					EXT4_SB(sb)->s_sbh);
3980 			if (err)
3981 				goto out_brelse;
3982 			ext4_update_dynamic_rev(sb);
3983 			EXT4_SET_RO_COMPAT_FEATURE(sb,
3984 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3985 			sb->s_dirt = 1;
3986 			handle->h_sync = 1;
3987 			err = ext4_journal_dirty_metadata(handle,
3988 					EXT4_SB(sb)->s_sbh);
3989 		}
3990 	}
3991 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3992 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3993 		if (old_valid_dev(inode->i_rdev)) {
3994 			raw_inode->i_block[0] =
3995 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3996 			raw_inode->i_block[1] = 0;
3997 		} else {
3998 			raw_inode->i_block[0] = 0;
3999 			raw_inode->i_block[1] =
4000 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4001 			raw_inode->i_block[2] = 0;
4002 		}
4003 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4004 		raw_inode->i_block[block] = ei->i_data[block];
4005 
4006 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4007 	if (ei->i_extra_isize) {
4008 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4009 			raw_inode->i_version_hi =
4010 			cpu_to_le32(inode->i_version >> 32);
4011 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4012 	}
4013 
4014 
4015 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4016 	rc = ext4_journal_dirty_metadata(handle, bh);
4017 	if (!err)
4018 		err = rc;
4019 	ei->i_state &= ~EXT4_STATE_NEW;
4020 
4021 out_brelse:
4022 	brelse (bh);
4023 	ext4_std_error(inode->i_sb, err);
4024 	return err;
4025 }
4026 
4027 /*
4028  * ext4_write_inode()
4029  *
4030  * We are called from a few places:
4031  *
4032  * - Within generic_file_write() for O_SYNC files.
4033  *   Here, there will be no transaction running. We wait for any running
4034  *   trasnaction to commit.
4035  *
4036  * - Within sys_sync(), kupdate and such.
4037  *   We wait on commit, if tol to.
4038  *
4039  * - Within prune_icache() (PF_MEMALLOC == true)
4040  *   Here we simply return.  We can't afford to block kswapd on the
4041  *   journal commit.
4042  *
4043  * In all cases it is actually safe for us to return without doing anything,
4044  * because the inode has been copied into a raw inode buffer in
4045  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4046  * knfsd.
4047  *
4048  * Note that we are absolutely dependent upon all inode dirtiers doing the
4049  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4050  * which we are interested.
4051  *
4052  * It would be a bug for them to not do this.  The code:
4053  *
4054  *	mark_inode_dirty(inode)
4055  *	stuff();
4056  *	inode->i_size = expr;
4057  *
4058  * is in error because a kswapd-driven write_inode() could occur while
4059  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4060  * will no longer be on the superblock's dirty inode list.
4061  */
4062 int ext4_write_inode(struct inode *inode, int wait)
4063 {
4064 	if (current->flags & PF_MEMALLOC)
4065 		return 0;
4066 
4067 	if (ext4_journal_current_handle()) {
4068 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4069 		dump_stack();
4070 		return -EIO;
4071 	}
4072 
4073 	if (!wait)
4074 		return 0;
4075 
4076 	return ext4_force_commit(inode->i_sb);
4077 }
4078 
4079 /*
4080  * ext4_setattr()
4081  *
4082  * Called from notify_change.
4083  *
4084  * We want to trap VFS attempts to truncate the file as soon as
4085  * possible.  In particular, we want to make sure that when the VFS
4086  * shrinks i_size, we put the inode on the orphan list and modify
4087  * i_disksize immediately, so that during the subsequent flushing of
4088  * dirty pages and freeing of disk blocks, we can guarantee that any
4089  * commit will leave the blocks being flushed in an unused state on
4090  * disk.  (On recovery, the inode will get truncated and the blocks will
4091  * be freed, so we have a strong guarantee that no future commit will
4092  * leave these blocks visible to the user.)
4093  *
4094  * Another thing we have to assure is that if we are in ordered mode
4095  * and inode is still attached to the committing transaction, we must
4096  * we start writeout of all the dirty pages which are being truncated.
4097  * This way we are sure that all the data written in the previous
4098  * transaction are already on disk (truncate waits for pages under
4099  * writeback).
4100  *
4101  * Called with inode->i_mutex down.
4102  */
4103 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4104 {
4105 	struct inode *inode = dentry->d_inode;
4106 	int error, rc = 0;
4107 	const unsigned int ia_valid = attr->ia_valid;
4108 
4109 	error = inode_change_ok(inode, attr);
4110 	if (error)
4111 		return error;
4112 
4113 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4114 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4115 		handle_t *handle;
4116 
4117 		/* (user+group)*(old+new) structure, inode write (sb,
4118 		 * inode block, ? - but truncate inode update has it) */
4119 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4120 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4121 		if (IS_ERR(handle)) {
4122 			error = PTR_ERR(handle);
4123 			goto err_out;
4124 		}
4125 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4126 		if (error) {
4127 			ext4_journal_stop(handle);
4128 			return error;
4129 		}
4130 		/* Update corresponding info in inode so that everything is in
4131 		 * one transaction */
4132 		if (attr->ia_valid & ATTR_UID)
4133 			inode->i_uid = attr->ia_uid;
4134 		if (attr->ia_valid & ATTR_GID)
4135 			inode->i_gid = attr->ia_gid;
4136 		error = ext4_mark_inode_dirty(handle, inode);
4137 		ext4_journal_stop(handle);
4138 	}
4139 
4140 	if (attr->ia_valid & ATTR_SIZE) {
4141 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4142 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4143 
4144 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4145 				error = -EFBIG;
4146 				goto err_out;
4147 			}
4148 		}
4149 	}
4150 
4151 	if (S_ISREG(inode->i_mode) &&
4152 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4153 		handle_t *handle;
4154 
4155 		handle = ext4_journal_start(inode, 3);
4156 		if (IS_ERR(handle)) {
4157 			error = PTR_ERR(handle);
4158 			goto err_out;
4159 		}
4160 
4161 		error = ext4_orphan_add(handle, inode);
4162 		EXT4_I(inode)->i_disksize = attr->ia_size;
4163 		rc = ext4_mark_inode_dirty(handle, inode);
4164 		if (!error)
4165 			error = rc;
4166 		ext4_journal_stop(handle);
4167 
4168 		if (ext4_should_order_data(inode)) {
4169 			error = ext4_begin_ordered_truncate(inode,
4170 							    attr->ia_size);
4171 			if (error) {
4172 				/* Do as much error cleanup as possible */
4173 				handle = ext4_journal_start(inode, 3);
4174 				if (IS_ERR(handle)) {
4175 					ext4_orphan_del(NULL, inode);
4176 					goto err_out;
4177 				}
4178 				ext4_orphan_del(handle, inode);
4179 				ext4_journal_stop(handle);
4180 				goto err_out;
4181 			}
4182 		}
4183 	}
4184 
4185 	rc = inode_setattr(inode, attr);
4186 
4187 	/* If inode_setattr's call to ext4_truncate failed to get a
4188 	 * transaction handle at all, we need to clean up the in-core
4189 	 * orphan list manually. */
4190 	if (inode->i_nlink)
4191 		ext4_orphan_del(NULL, inode);
4192 
4193 	if (!rc && (ia_valid & ATTR_MODE))
4194 		rc = ext4_acl_chmod(inode);
4195 
4196 err_out:
4197 	ext4_std_error(inode->i_sb, error);
4198 	if (!error)
4199 		error = rc;
4200 	return error;
4201 }
4202 
4203 
4204 /*
4205  * How many blocks doth make a writepage()?
4206  *
4207  * With N blocks per page, it may be:
4208  * N data blocks
4209  * 2 indirect block
4210  * 2 dindirect
4211  * 1 tindirect
4212  * N+5 bitmap blocks (from the above)
4213  * N+5 group descriptor summary blocks
4214  * 1 inode block
4215  * 1 superblock.
4216  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4217  *
4218  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4219  *
4220  * With ordered or writeback data it's the same, less the N data blocks.
4221  *
4222  * If the inode's direct blocks can hold an integral number of pages then a
4223  * page cannot straddle two indirect blocks, and we can only touch one indirect
4224  * and dindirect block, and the "5" above becomes "3".
4225  *
4226  * This still overestimates under most circumstances.  If we were to pass the
4227  * start and end offsets in here as well we could do block_to_path() on each
4228  * block and work out the exact number of indirects which are touched.  Pah.
4229  */
4230 
4231 int ext4_writepage_trans_blocks(struct inode *inode)
4232 {
4233 	int bpp = ext4_journal_blocks_per_page(inode);
4234 	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4235 	int ret;
4236 
4237 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4238 		return ext4_ext_writepage_trans_blocks(inode, bpp);
4239 
4240 	if (ext4_should_journal_data(inode))
4241 		ret = 3 * (bpp + indirects) + 2;
4242 	else
4243 		ret = 2 * (bpp + indirects) + 2;
4244 
4245 #ifdef CONFIG_QUOTA
4246 	/* We know that structure was already allocated during DQUOT_INIT so
4247 	 * we will be updating only the data blocks + inodes */
4248 	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4249 #endif
4250 
4251 	return ret;
4252 }
4253 
4254 /*
4255  * The caller must have previously called ext4_reserve_inode_write().
4256  * Give this, we know that the caller already has write access to iloc->bh.
4257  */
4258 int ext4_mark_iloc_dirty(handle_t *handle,
4259 		struct inode *inode, struct ext4_iloc *iloc)
4260 {
4261 	int err = 0;
4262 
4263 	if (test_opt(inode->i_sb, I_VERSION))
4264 		inode_inc_iversion(inode);
4265 
4266 	/* the do_update_inode consumes one bh->b_count */
4267 	get_bh(iloc->bh);
4268 
4269 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4270 	err = ext4_do_update_inode(handle, inode, iloc);
4271 	put_bh(iloc->bh);
4272 	return err;
4273 }
4274 
4275 /*
4276  * On success, We end up with an outstanding reference count against
4277  * iloc->bh.  This _must_ be cleaned up later.
4278  */
4279 
4280 int
4281 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4282 			 struct ext4_iloc *iloc)
4283 {
4284 	int err = 0;
4285 	if (handle) {
4286 		err = ext4_get_inode_loc(inode, iloc);
4287 		if (!err) {
4288 			BUFFER_TRACE(iloc->bh, "get_write_access");
4289 			err = ext4_journal_get_write_access(handle, iloc->bh);
4290 			if (err) {
4291 				brelse(iloc->bh);
4292 				iloc->bh = NULL;
4293 			}
4294 		}
4295 	}
4296 	ext4_std_error(inode->i_sb, err);
4297 	return err;
4298 }
4299 
4300 /*
4301  * Expand an inode by new_extra_isize bytes.
4302  * Returns 0 on success or negative error number on failure.
4303  */
4304 static int ext4_expand_extra_isize(struct inode *inode,
4305 				   unsigned int new_extra_isize,
4306 				   struct ext4_iloc iloc,
4307 				   handle_t *handle)
4308 {
4309 	struct ext4_inode *raw_inode;
4310 	struct ext4_xattr_ibody_header *header;
4311 	struct ext4_xattr_entry *entry;
4312 
4313 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4314 		return 0;
4315 
4316 	raw_inode = ext4_raw_inode(&iloc);
4317 
4318 	header = IHDR(inode, raw_inode);
4319 	entry = IFIRST(header);
4320 
4321 	/* No extended attributes present */
4322 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4323 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4324 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4325 			new_extra_isize);
4326 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4327 		return 0;
4328 	}
4329 
4330 	/* try to expand with EAs present */
4331 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4332 					  raw_inode, handle);
4333 }
4334 
4335 /*
4336  * What we do here is to mark the in-core inode as clean with respect to inode
4337  * dirtiness (it may still be data-dirty).
4338  * This means that the in-core inode may be reaped by prune_icache
4339  * without having to perform any I/O.  This is a very good thing,
4340  * because *any* task may call prune_icache - even ones which
4341  * have a transaction open against a different journal.
4342  *
4343  * Is this cheating?  Not really.  Sure, we haven't written the
4344  * inode out, but prune_icache isn't a user-visible syncing function.
4345  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4346  * we start and wait on commits.
4347  *
4348  * Is this efficient/effective?  Well, we're being nice to the system
4349  * by cleaning up our inodes proactively so they can be reaped
4350  * without I/O.  But we are potentially leaving up to five seconds'
4351  * worth of inodes floating about which prune_icache wants us to
4352  * write out.  One way to fix that would be to get prune_icache()
4353  * to do a write_super() to free up some memory.  It has the desired
4354  * effect.
4355  */
4356 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4357 {
4358 	struct ext4_iloc iloc;
4359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4360 	static unsigned int mnt_count;
4361 	int err, ret;
4362 
4363 	might_sleep();
4364 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4365 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4366 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4367 		/*
4368 		 * We need extra buffer credits since we may write into EA block
4369 		 * with this same handle. If journal_extend fails, then it will
4370 		 * only result in a minor loss of functionality for that inode.
4371 		 * If this is felt to be critical, then e2fsck should be run to
4372 		 * force a large enough s_min_extra_isize.
4373 		 */
4374 		if ((jbd2_journal_extend(handle,
4375 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4376 			ret = ext4_expand_extra_isize(inode,
4377 						      sbi->s_want_extra_isize,
4378 						      iloc, handle);
4379 			if (ret) {
4380 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4381 				if (mnt_count !=
4382 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4383 					ext4_warning(inode->i_sb, __func__,
4384 					"Unable to expand inode %lu. Delete"
4385 					" some EAs or run e2fsck.",
4386 					inode->i_ino);
4387 					mnt_count =
4388 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4389 				}
4390 			}
4391 		}
4392 	}
4393 	if (!err)
4394 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4395 	return err;
4396 }
4397 
4398 /*
4399  * ext4_dirty_inode() is called from __mark_inode_dirty()
4400  *
4401  * We're really interested in the case where a file is being extended.
4402  * i_size has been changed by generic_commit_write() and we thus need
4403  * to include the updated inode in the current transaction.
4404  *
4405  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4406  * are allocated to the file.
4407  *
4408  * If the inode is marked synchronous, we don't honour that here - doing
4409  * so would cause a commit on atime updates, which we don't bother doing.
4410  * We handle synchronous inodes at the highest possible level.
4411  */
4412 void ext4_dirty_inode(struct inode *inode)
4413 {
4414 	handle_t *current_handle = ext4_journal_current_handle();
4415 	handle_t *handle;
4416 
4417 	handle = ext4_journal_start(inode, 2);
4418 	if (IS_ERR(handle))
4419 		goto out;
4420 	if (current_handle &&
4421 		current_handle->h_transaction != handle->h_transaction) {
4422 		/* This task has a transaction open against a different fs */
4423 		printk(KERN_EMERG "%s: transactions do not match!\n",
4424 		       __func__);
4425 	} else {
4426 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4427 				current_handle);
4428 		ext4_mark_inode_dirty(handle, inode);
4429 	}
4430 	ext4_journal_stop(handle);
4431 out:
4432 	return;
4433 }
4434 
4435 #if 0
4436 /*
4437  * Bind an inode's backing buffer_head into this transaction, to prevent
4438  * it from being flushed to disk early.  Unlike
4439  * ext4_reserve_inode_write, this leaves behind no bh reference and
4440  * returns no iloc structure, so the caller needs to repeat the iloc
4441  * lookup to mark the inode dirty later.
4442  */
4443 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4444 {
4445 	struct ext4_iloc iloc;
4446 
4447 	int err = 0;
4448 	if (handle) {
4449 		err = ext4_get_inode_loc(inode, &iloc);
4450 		if (!err) {
4451 			BUFFER_TRACE(iloc.bh, "get_write_access");
4452 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4453 			if (!err)
4454 				err = ext4_journal_dirty_metadata(handle,
4455 								  iloc.bh);
4456 			brelse(iloc.bh);
4457 		}
4458 	}
4459 	ext4_std_error(inode->i_sb, err);
4460 	return err;
4461 }
4462 #endif
4463 
4464 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4465 {
4466 	journal_t *journal;
4467 	handle_t *handle;
4468 	int err;
4469 
4470 	/*
4471 	 * We have to be very careful here: changing a data block's
4472 	 * journaling status dynamically is dangerous.  If we write a
4473 	 * data block to the journal, change the status and then delete
4474 	 * that block, we risk forgetting to revoke the old log record
4475 	 * from the journal and so a subsequent replay can corrupt data.
4476 	 * So, first we make sure that the journal is empty and that
4477 	 * nobody is changing anything.
4478 	 */
4479 
4480 	journal = EXT4_JOURNAL(inode);
4481 	if (is_journal_aborted(journal))
4482 		return -EROFS;
4483 
4484 	jbd2_journal_lock_updates(journal);
4485 	jbd2_journal_flush(journal);
4486 
4487 	/*
4488 	 * OK, there are no updates running now, and all cached data is
4489 	 * synced to disk.  We are now in a completely consistent state
4490 	 * which doesn't have anything in the journal, and we know that
4491 	 * no filesystem updates are running, so it is safe to modify
4492 	 * the inode's in-core data-journaling state flag now.
4493 	 */
4494 
4495 	if (val)
4496 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4497 	else
4498 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4499 	ext4_set_aops(inode);
4500 
4501 	jbd2_journal_unlock_updates(journal);
4502 
4503 	/* Finally we can mark the inode as dirty. */
4504 
4505 	handle = ext4_journal_start(inode, 1);
4506 	if (IS_ERR(handle))
4507 		return PTR_ERR(handle);
4508 
4509 	err = ext4_mark_inode_dirty(handle, inode);
4510 	handle->h_sync = 1;
4511 	ext4_journal_stop(handle);
4512 	ext4_std_error(inode->i_sb, err);
4513 
4514 	return err;
4515 }
4516 
4517 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4518 {
4519 	return !buffer_mapped(bh);
4520 }
4521 
4522 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4523 {
4524 	loff_t size;
4525 	unsigned long len;
4526 	int ret = -EINVAL;
4527 	struct file *file = vma->vm_file;
4528 	struct inode *inode = file->f_path.dentry->d_inode;
4529 	struct address_space *mapping = inode->i_mapping;
4530 
4531 	/*
4532 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4533 	 * get i_mutex because we are already holding mmap_sem.
4534 	 */
4535 	down_read(&inode->i_alloc_sem);
4536 	size = i_size_read(inode);
4537 	if (page->mapping != mapping || size <= page_offset(page)
4538 	    || !PageUptodate(page)) {
4539 		/* page got truncated from under us? */
4540 		goto out_unlock;
4541 	}
4542 	ret = 0;
4543 	if (PageMappedToDisk(page))
4544 		goto out_unlock;
4545 
4546 	if (page->index == size >> PAGE_CACHE_SHIFT)
4547 		len = size & ~PAGE_CACHE_MASK;
4548 	else
4549 		len = PAGE_CACHE_SIZE;
4550 
4551 	if (page_has_buffers(page)) {
4552 		/* return if we have all the buffers mapped */
4553 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4554 				       ext4_bh_unmapped))
4555 			goto out_unlock;
4556 	}
4557 	/*
4558 	 * OK, we need to fill the hole... Do write_begin write_end
4559 	 * to do block allocation/reservation.We are not holding
4560 	 * inode.i__mutex here. That allow * parallel write_begin,
4561 	 * write_end call. lock_page prevent this from happening
4562 	 * on the same page though
4563 	 */
4564 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4565 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4566 	if (ret < 0)
4567 		goto out_unlock;
4568 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4569 			len, len, page, NULL);
4570 	if (ret < 0)
4571 		goto out_unlock;
4572 	ret = 0;
4573 out_unlock:
4574 	up_read(&inode->i_alloc_sem);
4575 	return ret;
4576 }
4577