1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 static inline int ext4_begin_ordered_truncate(struct inode *inode, 45 loff_t new_size) 46 { 47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 48 new_size); 49 } 50 51 static void ext4_invalidatepage(struct page *page, unsigned long offset); 52 53 /* 54 * Test whether an inode is a fast symlink. 55 */ 56 static int ext4_inode_is_fast_symlink(struct inode *inode) 57 { 58 int ea_blocks = EXT4_I(inode)->i_file_acl ? 59 (inode->i_sb->s_blocksize >> 9) : 0; 60 61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 62 } 63 64 /* 65 * The ext4 forget function must perform a revoke if we are freeing data 66 * which has been journaled. Metadata (eg. indirect blocks) must be 67 * revoked in all cases. 68 * 69 * "bh" may be NULL: a metadata block may have been freed from memory 70 * but there may still be a record of it in the journal, and that record 71 * still needs to be revoked. 72 */ 73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 74 struct buffer_head *bh, ext4_fsblk_t blocknr) 75 { 76 int err; 77 78 might_sleep(); 79 80 BUFFER_TRACE(bh, "enter"); 81 82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 83 "data mode %lx\n", 84 bh, is_metadata, inode->i_mode, 85 test_opt(inode->i_sb, DATA_FLAGS)); 86 87 /* Never use the revoke function if we are doing full data 88 * journaling: there is no need to, and a V1 superblock won't 89 * support it. Otherwise, only skip the revoke on un-journaled 90 * data blocks. */ 91 92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 93 (!is_metadata && !ext4_should_journal_data(inode))) { 94 if (bh) { 95 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 96 return ext4_journal_forget(handle, bh); 97 } 98 return 0; 99 } 100 101 /* 102 * data!=journal && (is_metadata || should_journal_data(inode)) 103 */ 104 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 105 err = ext4_journal_revoke(handle, blocknr, bh); 106 if (err) 107 ext4_abort(inode->i_sb, __func__, 108 "error %d when attempting revoke", err); 109 BUFFER_TRACE(bh, "exit"); 110 return err; 111 } 112 113 /* 114 * Work out how many blocks we need to proceed with the next chunk of a 115 * truncate transaction. 116 */ 117 static unsigned long blocks_for_truncate(struct inode *inode) 118 { 119 ext4_lblk_t needed; 120 121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 122 123 /* Give ourselves just enough room to cope with inodes in which 124 * i_blocks is corrupt: we've seen disk corruptions in the past 125 * which resulted in random data in an inode which looked enough 126 * like a regular file for ext4 to try to delete it. Things 127 * will go a bit crazy if that happens, but at least we should 128 * try not to panic the whole kernel. */ 129 if (needed < 2) 130 needed = 2; 131 132 /* But we need to bound the transaction so we don't overflow the 133 * journal. */ 134 if (needed > EXT4_MAX_TRANS_DATA) 135 needed = EXT4_MAX_TRANS_DATA; 136 137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 138 } 139 140 /* 141 * Truncate transactions can be complex and absolutely huge. So we need to 142 * be able to restart the transaction at a conventient checkpoint to make 143 * sure we don't overflow the journal. 144 * 145 * start_transaction gets us a new handle for a truncate transaction, 146 * and extend_transaction tries to extend the existing one a bit. If 147 * extend fails, we need to propagate the failure up and restart the 148 * transaction in the top-level truncate loop. --sct 149 */ 150 static handle_t *start_transaction(struct inode *inode) 151 { 152 handle_t *result; 153 154 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 155 if (!IS_ERR(result)) 156 return result; 157 158 ext4_std_error(inode->i_sb, PTR_ERR(result)); 159 return result; 160 } 161 162 /* 163 * Try to extend this transaction for the purposes of truncation. 164 * 165 * Returns 0 if we managed to create more room. If we can't create more 166 * room, and the transaction must be restarted we return 1. 167 */ 168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 169 { 170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 171 return 0; 172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 173 return 0; 174 return 1; 175 } 176 177 /* 178 * Restart the transaction associated with *handle. This does a commit, 179 * so before we call here everything must be consistently dirtied against 180 * this transaction. 181 */ 182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 183 { 184 jbd_debug(2, "restarting handle %p\n", handle); 185 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 186 } 187 188 /* 189 * Called at the last iput() if i_nlink is zero. 190 */ 191 void ext4_delete_inode (struct inode * inode) 192 { 193 handle_t *handle; 194 195 if (ext4_should_order_data(inode)) 196 ext4_begin_ordered_truncate(inode, 0); 197 truncate_inode_pages(&inode->i_data, 0); 198 199 if (is_bad_inode(inode)) 200 goto no_delete; 201 202 handle = start_transaction(inode); 203 if (IS_ERR(handle)) { 204 /* 205 * If we're going to skip the normal cleanup, we still need to 206 * make sure that the in-core orphan linked list is properly 207 * cleaned up. 208 */ 209 ext4_orphan_del(NULL, inode); 210 goto no_delete; 211 } 212 213 if (IS_SYNC(inode)) 214 handle->h_sync = 1; 215 inode->i_size = 0; 216 if (inode->i_blocks) 217 ext4_truncate(inode); 218 /* 219 * Kill off the orphan record which ext4_truncate created. 220 * AKPM: I think this can be inside the above `if'. 221 * Note that ext4_orphan_del() has to be able to cope with the 222 * deletion of a non-existent orphan - this is because we don't 223 * know if ext4_truncate() actually created an orphan record. 224 * (Well, we could do this if we need to, but heck - it works) 225 */ 226 ext4_orphan_del(handle, inode); 227 EXT4_I(inode)->i_dtime = get_seconds(); 228 229 /* 230 * One subtle ordering requirement: if anything has gone wrong 231 * (transaction abort, IO errors, whatever), then we can still 232 * do these next steps (the fs will already have been marked as 233 * having errors), but we can't free the inode if the mark_dirty 234 * fails. 235 */ 236 if (ext4_mark_inode_dirty(handle, inode)) 237 /* If that failed, just do the required in-core inode clear. */ 238 clear_inode(inode); 239 else 240 ext4_free_inode(handle, inode); 241 ext4_journal_stop(handle); 242 return; 243 no_delete: 244 clear_inode(inode); /* We must guarantee clearing of inode... */ 245 } 246 247 typedef struct { 248 __le32 *p; 249 __le32 key; 250 struct buffer_head *bh; 251 } Indirect; 252 253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 254 { 255 p->key = *(p->p = v); 256 p->bh = bh; 257 } 258 259 /** 260 * ext4_block_to_path - parse the block number into array of offsets 261 * @inode: inode in question (we are only interested in its superblock) 262 * @i_block: block number to be parsed 263 * @offsets: array to store the offsets in 264 * @boundary: set this non-zero if the referred-to block is likely to be 265 * followed (on disk) by an indirect block. 266 * 267 * To store the locations of file's data ext4 uses a data structure common 268 * for UNIX filesystems - tree of pointers anchored in the inode, with 269 * data blocks at leaves and indirect blocks in intermediate nodes. 270 * This function translates the block number into path in that tree - 271 * return value is the path length and @offsets[n] is the offset of 272 * pointer to (n+1)th node in the nth one. If @block is out of range 273 * (negative or too large) warning is printed and zero returned. 274 * 275 * Note: function doesn't find node addresses, so no IO is needed. All 276 * we need to know is the capacity of indirect blocks (taken from the 277 * inode->i_sb). 278 */ 279 280 /* 281 * Portability note: the last comparison (check that we fit into triple 282 * indirect block) is spelled differently, because otherwise on an 283 * architecture with 32-bit longs and 8Kb pages we might get into trouble 284 * if our filesystem had 8Kb blocks. We might use long long, but that would 285 * kill us on x86. Oh, well, at least the sign propagation does not matter - 286 * i_block would have to be negative in the very beginning, so we would not 287 * get there at all. 288 */ 289 290 static int ext4_block_to_path(struct inode *inode, 291 ext4_lblk_t i_block, 292 ext4_lblk_t offsets[4], int *boundary) 293 { 294 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 295 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 296 const long direct_blocks = EXT4_NDIR_BLOCKS, 297 indirect_blocks = ptrs, 298 double_blocks = (1 << (ptrs_bits * 2)); 299 int n = 0; 300 int final = 0; 301 302 if (i_block < 0) { 303 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 304 } else if (i_block < direct_blocks) { 305 offsets[n++] = i_block; 306 final = direct_blocks; 307 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 308 offsets[n++] = EXT4_IND_BLOCK; 309 offsets[n++] = i_block; 310 final = ptrs; 311 } else if ((i_block -= indirect_blocks) < double_blocks) { 312 offsets[n++] = EXT4_DIND_BLOCK; 313 offsets[n++] = i_block >> ptrs_bits; 314 offsets[n++] = i_block & (ptrs - 1); 315 final = ptrs; 316 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 317 offsets[n++] = EXT4_TIND_BLOCK; 318 offsets[n++] = i_block >> (ptrs_bits * 2); 319 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 320 offsets[n++] = i_block & (ptrs - 1); 321 final = ptrs; 322 } else { 323 ext4_warning(inode->i_sb, "ext4_block_to_path", 324 "block %lu > max", 325 i_block + direct_blocks + 326 indirect_blocks + double_blocks); 327 } 328 if (boundary) 329 *boundary = final - 1 - (i_block & (ptrs - 1)); 330 return n; 331 } 332 333 /** 334 * ext4_get_branch - read the chain of indirect blocks leading to data 335 * @inode: inode in question 336 * @depth: depth of the chain (1 - direct pointer, etc.) 337 * @offsets: offsets of pointers in inode/indirect blocks 338 * @chain: place to store the result 339 * @err: here we store the error value 340 * 341 * Function fills the array of triples <key, p, bh> and returns %NULL 342 * if everything went OK or the pointer to the last filled triple 343 * (incomplete one) otherwise. Upon the return chain[i].key contains 344 * the number of (i+1)-th block in the chain (as it is stored in memory, 345 * i.e. little-endian 32-bit), chain[i].p contains the address of that 346 * number (it points into struct inode for i==0 and into the bh->b_data 347 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 348 * block for i>0 and NULL for i==0. In other words, it holds the block 349 * numbers of the chain, addresses they were taken from (and where we can 350 * verify that chain did not change) and buffer_heads hosting these 351 * numbers. 352 * 353 * Function stops when it stumbles upon zero pointer (absent block) 354 * (pointer to last triple returned, *@err == 0) 355 * or when it gets an IO error reading an indirect block 356 * (ditto, *@err == -EIO) 357 * or when it reads all @depth-1 indirect blocks successfully and finds 358 * the whole chain, all way to the data (returns %NULL, *err == 0). 359 * 360 * Need to be called with 361 * down_read(&EXT4_I(inode)->i_data_sem) 362 */ 363 static Indirect *ext4_get_branch(struct inode *inode, int depth, 364 ext4_lblk_t *offsets, 365 Indirect chain[4], int *err) 366 { 367 struct super_block *sb = inode->i_sb; 368 Indirect *p = chain; 369 struct buffer_head *bh; 370 371 *err = 0; 372 /* i_data is not going away, no lock needed */ 373 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 374 if (!p->key) 375 goto no_block; 376 while (--depth) { 377 bh = sb_bread(sb, le32_to_cpu(p->key)); 378 if (!bh) 379 goto failure; 380 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 381 /* Reader: end */ 382 if (!p->key) 383 goto no_block; 384 } 385 return NULL; 386 387 failure: 388 *err = -EIO; 389 no_block: 390 return p; 391 } 392 393 /** 394 * ext4_find_near - find a place for allocation with sufficient locality 395 * @inode: owner 396 * @ind: descriptor of indirect block. 397 * 398 * This function returns the preferred place for block allocation. 399 * It is used when heuristic for sequential allocation fails. 400 * Rules are: 401 * + if there is a block to the left of our position - allocate near it. 402 * + if pointer will live in indirect block - allocate near that block. 403 * + if pointer will live in inode - allocate in the same 404 * cylinder group. 405 * 406 * In the latter case we colour the starting block by the callers PID to 407 * prevent it from clashing with concurrent allocations for a different inode 408 * in the same block group. The PID is used here so that functionally related 409 * files will be close-by on-disk. 410 * 411 * Caller must make sure that @ind is valid and will stay that way. 412 */ 413 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 414 { 415 struct ext4_inode_info *ei = EXT4_I(inode); 416 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 417 __le32 *p; 418 ext4_fsblk_t bg_start; 419 ext4_fsblk_t last_block; 420 ext4_grpblk_t colour; 421 422 /* Try to find previous block */ 423 for (p = ind->p - 1; p >= start; p--) { 424 if (*p) 425 return le32_to_cpu(*p); 426 } 427 428 /* No such thing, so let's try location of indirect block */ 429 if (ind->bh) 430 return ind->bh->b_blocknr; 431 432 /* 433 * It is going to be referred to from the inode itself? OK, just put it 434 * into the same cylinder group then. 435 */ 436 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 437 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 438 439 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 440 colour = (current->pid % 16) * 441 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 442 else 443 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 444 return bg_start + colour; 445 } 446 447 /** 448 * ext4_find_goal - find a preferred place for allocation. 449 * @inode: owner 450 * @block: block we want 451 * @partial: pointer to the last triple within a chain 452 * 453 * Normally this function find the preferred place for block allocation, 454 * returns it. 455 */ 456 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 457 Indirect *partial) 458 { 459 struct ext4_block_alloc_info *block_i; 460 461 block_i = EXT4_I(inode)->i_block_alloc_info; 462 463 /* 464 * try the heuristic for sequential allocation, 465 * failing that at least try to get decent locality. 466 */ 467 if (block_i && (block == block_i->last_alloc_logical_block + 1) 468 && (block_i->last_alloc_physical_block != 0)) { 469 return block_i->last_alloc_physical_block + 1; 470 } 471 472 return ext4_find_near(inode, partial); 473 } 474 475 /** 476 * ext4_blks_to_allocate: Look up the block map and count the number 477 * of direct blocks need to be allocated for the given branch. 478 * 479 * @branch: chain of indirect blocks 480 * @k: number of blocks need for indirect blocks 481 * @blks: number of data blocks to be mapped. 482 * @blocks_to_boundary: the offset in the indirect block 483 * 484 * return the total number of blocks to be allocate, including the 485 * direct and indirect blocks. 486 */ 487 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 488 int blocks_to_boundary) 489 { 490 unsigned long count = 0; 491 492 /* 493 * Simple case, [t,d]Indirect block(s) has not allocated yet 494 * then it's clear blocks on that path have not allocated 495 */ 496 if (k > 0) { 497 /* right now we don't handle cross boundary allocation */ 498 if (blks < blocks_to_boundary + 1) 499 count += blks; 500 else 501 count += blocks_to_boundary + 1; 502 return count; 503 } 504 505 count++; 506 while (count < blks && count <= blocks_to_boundary && 507 le32_to_cpu(*(branch[0].p + count)) == 0) { 508 count++; 509 } 510 return count; 511 } 512 513 /** 514 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 515 * @indirect_blks: the number of blocks need to allocate for indirect 516 * blocks 517 * 518 * @new_blocks: on return it will store the new block numbers for 519 * the indirect blocks(if needed) and the first direct block, 520 * @blks: on return it will store the total number of allocated 521 * direct blocks 522 */ 523 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 524 ext4_lblk_t iblock, ext4_fsblk_t goal, 525 int indirect_blks, int blks, 526 ext4_fsblk_t new_blocks[4], int *err) 527 { 528 int target, i; 529 unsigned long count = 0, blk_allocated = 0; 530 int index = 0; 531 ext4_fsblk_t current_block = 0; 532 int ret = 0; 533 534 /* 535 * Here we try to allocate the requested multiple blocks at once, 536 * on a best-effort basis. 537 * To build a branch, we should allocate blocks for 538 * the indirect blocks(if not allocated yet), and at least 539 * the first direct block of this branch. That's the 540 * minimum number of blocks need to allocate(required) 541 */ 542 /* first we try to allocate the indirect blocks */ 543 target = indirect_blks; 544 while (target > 0) { 545 count = target; 546 /* allocating blocks for indirect blocks and direct blocks */ 547 current_block = ext4_new_meta_blocks(handle, inode, 548 goal, &count, err); 549 if (*err) 550 goto failed_out; 551 552 target -= count; 553 /* allocate blocks for indirect blocks */ 554 while (index < indirect_blks && count) { 555 new_blocks[index++] = current_block++; 556 count--; 557 } 558 if (count > 0) { 559 /* 560 * save the new block number 561 * for the first direct block 562 */ 563 new_blocks[index] = current_block; 564 printk(KERN_INFO "%s returned more blocks than " 565 "requested\n", __func__); 566 WARN_ON(1); 567 break; 568 } 569 } 570 571 target = blks - count ; 572 blk_allocated = count; 573 if (!target) 574 goto allocated; 575 /* Now allocate data blocks */ 576 count = target; 577 /* allocating blocks for data blocks */ 578 current_block = ext4_new_blocks(handle, inode, iblock, 579 goal, &count, err); 580 if (*err && (target == blks)) { 581 /* 582 * if the allocation failed and we didn't allocate 583 * any blocks before 584 */ 585 goto failed_out; 586 } 587 if (!*err) { 588 if (target == blks) { 589 /* 590 * save the new block number 591 * for the first direct block 592 */ 593 new_blocks[index] = current_block; 594 } 595 blk_allocated += count; 596 } 597 allocated: 598 /* total number of blocks allocated for direct blocks */ 599 ret = blk_allocated; 600 *err = 0; 601 return ret; 602 failed_out: 603 for (i = 0; i <index; i++) 604 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 605 return ret; 606 } 607 608 /** 609 * ext4_alloc_branch - allocate and set up a chain of blocks. 610 * @inode: owner 611 * @indirect_blks: number of allocated indirect blocks 612 * @blks: number of allocated direct blocks 613 * @offsets: offsets (in the blocks) to store the pointers to next. 614 * @branch: place to store the chain in. 615 * 616 * This function allocates blocks, zeroes out all but the last one, 617 * links them into chain and (if we are synchronous) writes them to disk. 618 * In other words, it prepares a branch that can be spliced onto the 619 * inode. It stores the information about that chain in the branch[], in 620 * the same format as ext4_get_branch() would do. We are calling it after 621 * we had read the existing part of chain and partial points to the last 622 * triple of that (one with zero ->key). Upon the exit we have the same 623 * picture as after the successful ext4_get_block(), except that in one 624 * place chain is disconnected - *branch->p is still zero (we did not 625 * set the last link), but branch->key contains the number that should 626 * be placed into *branch->p to fill that gap. 627 * 628 * If allocation fails we free all blocks we've allocated (and forget 629 * their buffer_heads) and return the error value the from failed 630 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 631 * as described above and return 0. 632 */ 633 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 634 ext4_lblk_t iblock, int indirect_blks, 635 int *blks, ext4_fsblk_t goal, 636 ext4_lblk_t *offsets, Indirect *branch) 637 { 638 int blocksize = inode->i_sb->s_blocksize; 639 int i, n = 0; 640 int err = 0; 641 struct buffer_head *bh; 642 int num; 643 ext4_fsblk_t new_blocks[4]; 644 ext4_fsblk_t current_block; 645 646 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 647 *blks, new_blocks, &err); 648 if (err) 649 return err; 650 651 branch[0].key = cpu_to_le32(new_blocks[0]); 652 /* 653 * metadata blocks and data blocks are allocated. 654 */ 655 for (n = 1; n <= indirect_blks; n++) { 656 /* 657 * Get buffer_head for parent block, zero it out 658 * and set the pointer to new one, then send 659 * parent to disk. 660 */ 661 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 662 branch[n].bh = bh; 663 lock_buffer(bh); 664 BUFFER_TRACE(bh, "call get_create_access"); 665 err = ext4_journal_get_create_access(handle, bh); 666 if (err) { 667 unlock_buffer(bh); 668 brelse(bh); 669 goto failed; 670 } 671 672 memset(bh->b_data, 0, blocksize); 673 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 674 branch[n].key = cpu_to_le32(new_blocks[n]); 675 *branch[n].p = branch[n].key; 676 if ( n == indirect_blks) { 677 current_block = new_blocks[n]; 678 /* 679 * End of chain, update the last new metablock of 680 * the chain to point to the new allocated 681 * data blocks numbers 682 */ 683 for (i=1; i < num; i++) 684 *(branch[n].p + i) = cpu_to_le32(++current_block); 685 } 686 BUFFER_TRACE(bh, "marking uptodate"); 687 set_buffer_uptodate(bh); 688 unlock_buffer(bh); 689 690 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 691 err = ext4_journal_dirty_metadata(handle, bh); 692 if (err) 693 goto failed; 694 } 695 *blks = num; 696 return err; 697 failed: 698 /* Allocation failed, free what we already allocated */ 699 for (i = 1; i <= n ; i++) { 700 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 701 ext4_journal_forget(handle, branch[i].bh); 702 } 703 for (i = 0; i <indirect_blks; i++) 704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 705 706 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 707 708 return err; 709 } 710 711 /** 712 * ext4_splice_branch - splice the allocated branch onto inode. 713 * @inode: owner 714 * @block: (logical) number of block we are adding 715 * @chain: chain of indirect blocks (with a missing link - see 716 * ext4_alloc_branch) 717 * @where: location of missing link 718 * @num: number of indirect blocks we are adding 719 * @blks: number of direct blocks we are adding 720 * 721 * This function fills the missing link and does all housekeeping needed in 722 * inode (->i_blocks, etc.). In case of success we end up with the full 723 * chain to new block and return 0. 724 */ 725 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 726 ext4_lblk_t block, Indirect *where, int num, int blks) 727 { 728 int i; 729 int err = 0; 730 struct ext4_block_alloc_info *block_i; 731 ext4_fsblk_t current_block; 732 733 block_i = EXT4_I(inode)->i_block_alloc_info; 734 /* 735 * If we're splicing into a [td]indirect block (as opposed to the 736 * inode) then we need to get write access to the [td]indirect block 737 * before the splice. 738 */ 739 if (where->bh) { 740 BUFFER_TRACE(where->bh, "get_write_access"); 741 err = ext4_journal_get_write_access(handle, where->bh); 742 if (err) 743 goto err_out; 744 } 745 /* That's it */ 746 747 *where->p = where->key; 748 749 /* 750 * Update the host buffer_head or inode to point to more just allocated 751 * direct blocks blocks 752 */ 753 if (num == 0 && blks > 1) { 754 current_block = le32_to_cpu(where->key) + 1; 755 for (i = 1; i < blks; i++) 756 *(where->p + i ) = cpu_to_le32(current_block++); 757 } 758 759 /* 760 * update the most recently allocated logical & physical block 761 * in i_block_alloc_info, to assist find the proper goal block for next 762 * allocation 763 */ 764 if (block_i) { 765 block_i->last_alloc_logical_block = block + blks - 1; 766 block_i->last_alloc_physical_block = 767 le32_to_cpu(where[num].key) + blks - 1; 768 } 769 770 /* We are done with atomic stuff, now do the rest of housekeeping */ 771 772 inode->i_ctime = ext4_current_time(inode); 773 ext4_mark_inode_dirty(handle, inode); 774 775 /* had we spliced it onto indirect block? */ 776 if (where->bh) { 777 /* 778 * If we spliced it onto an indirect block, we haven't 779 * altered the inode. Note however that if it is being spliced 780 * onto an indirect block at the very end of the file (the 781 * file is growing) then we *will* alter the inode to reflect 782 * the new i_size. But that is not done here - it is done in 783 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 784 */ 785 jbd_debug(5, "splicing indirect only\n"); 786 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 787 err = ext4_journal_dirty_metadata(handle, where->bh); 788 if (err) 789 goto err_out; 790 } else { 791 /* 792 * OK, we spliced it into the inode itself on a direct block. 793 * Inode was dirtied above. 794 */ 795 jbd_debug(5, "splicing direct\n"); 796 } 797 return err; 798 799 err_out: 800 for (i = 1; i <= num; i++) { 801 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 802 ext4_journal_forget(handle, where[i].bh); 803 ext4_free_blocks(handle, inode, 804 le32_to_cpu(where[i-1].key), 1, 0); 805 } 806 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 807 808 return err; 809 } 810 811 /* 812 * Allocation strategy is simple: if we have to allocate something, we will 813 * have to go the whole way to leaf. So let's do it before attaching anything 814 * to tree, set linkage between the newborn blocks, write them if sync is 815 * required, recheck the path, free and repeat if check fails, otherwise 816 * set the last missing link (that will protect us from any truncate-generated 817 * removals - all blocks on the path are immune now) and possibly force the 818 * write on the parent block. 819 * That has a nice additional property: no special recovery from the failed 820 * allocations is needed - we simply release blocks and do not touch anything 821 * reachable from inode. 822 * 823 * `handle' can be NULL if create == 0. 824 * 825 * return > 0, # of blocks mapped or allocated. 826 * return = 0, if plain lookup failed. 827 * return < 0, error case. 828 * 829 * 830 * Need to be called with 831 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 832 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 833 */ 834 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 835 ext4_lblk_t iblock, unsigned long maxblocks, 836 struct buffer_head *bh_result, 837 int create, int extend_disksize) 838 { 839 int err = -EIO; 840 ext4_lblk_t offsets[4]; 841 Indirect chain[4]; 842 Indirect *partial; 843 ext4_fsblk_t goal; 844 int indirect_blks; 845 int blocks_to_boundary = 0; 846 int depth; 847 struct ext4_inode_info *ei = EXT4_I(inode); 848 int count = 0; 849 ext4_fsblk_t first_block = 0; 850 loff_t disksize; 851 852 853 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 854 J_ASSERT(handle != NULL || create == 0); 855 depth = ext4_block_to_path(inode, iblock, offsets, 856 &blocks_to_boundary); 857 858 if (depth == 0) 859 goto out; 860 861 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 862 863 /* Simplest case - block found, no allocation needed */ 864 if (!partial) { 865 first_block = le32_to_cpu(chain[depth - 1].key); 866 clear_buffer_new(bh_result); 867 count++; 868 /*map more blocks*/ 869 while (count < maxblocks && count <= blocks_to_boundary) { 870 ext4_fsblk_t blk; 871 872 blk = le32_to_cpu(*(chain[depth-1].p + count)); 873 874 if (blk == first_block + count) 875 count++; 876 else 877 break; 878 } 879 goto got_it; 880 } 881 882 /* Next simple case - plain lookup or failed read of indirect block */ 883 if (!create || err == -EIO) 884 goto cleanup; 885 886 /* 887 * Okay, we need to do block allocation. Lazily initialize the block 888 * allocation info here if necessary 889 */ 890 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 891 ext4_init_block_alloc_info(inode); 892 893 goal = ext4_find_goal(inode, iblock, partial); 894 895 /* the number of blocks need to allocate for [d,t]indirect blocks */ 896 indirect_blks = (chain + depth) - partial - 1; 897 898 /* 899 * Next look up the indirect map to count the totoal number of 900 * direct blocks to allocate for this branch. 901 */ 902 count = ext4_blks_to_allocate(partial, indirect_blks, 903 maxblocks, blocks_to_boundary); 904 /* 905 * Block out ext4_truncate while we alter the tree 906 */ 907 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 908 &count, goal, 909 offsets + (partial - chain), partial); 910 911 /* 912 * The ext4_splice_branch call will free and forget any buffers 913 * on the new chain if there is a failure, but that risks using 914 * up transaction credits, especially for bitmaps where the 915 * credits cannot be returned. Can we handle this somehow? We 916 * may need to return -EAGAIN upwards in the worst case. --sct 917 */ 918 if (!err) 919 err = ext4_splice_branch(handle, inode, iblock, 920 partial, indirect_blks, count); 921 /* 922 * i_disksize growing is protected by i_data_sem. Don't forget to 923 * protect it if you're about to implement concurrent 924 * ext4_get_block() -bzzz 925 */ 926 if (!err && extend_disksize) { 927 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 928 if (disksize > i_size_read(inode)) 929 disksize = i_size_read(inode); 930 if (disksize > ei->i_disksize) 931 ei->i_disksize = disksize; 932 } 933 if (err) 934 goto cleanup; 935 936 set_buffer_new(bh_result); 937 got_it: 938 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 939 if (count > blocks_to_boundary) 940 set_buffer_boundary(bh_result); 941 err = count; 942 /* Clean up and exit */ 943 partial = chain + depth - 1; /* the whole chain */ 944 cleanup: 945 while (partial > chain) { 946 BUFFER_TRACE(partial->bh, "call brelse"); 947 brelse(partial->bh); 948 partial--; 949 } 950 BUFFER_TRACE(bh_result, "returned"); 951 out: 952 return err; 953 } 954 955 /* Maximum number of blocks we map for direct IO at once. */ 956 #define DIO_MAX_BLOCKS 4096 957 /* 958 * Number of credits we need for writing DIO_MAX_BLOCKS: 959 * We need sb + group descriptor + bitmap + inode -> 4 960 * For B blocks with A block pointers per block we need: 961 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 962 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 963 */ 964 #define DIO_CREDITS 25 965 966 967 /* 968 * 969 * 970 * ext4_ext4 get_block() wrapper function 971 * It will do a look up first, and returns if the blocks already mapped. 972 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 973 * and store the allocated blocks in the result buffer head and mark it 974 * mapped. 975 * 976 * If file type is extents based, it will call ext4_ext_get_blocks(), 977 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 978 * based files 979 * 980 * On success, it returns the number of blocks being mapped or allocate. 981 * if create==0 and the blocks are pre-allocated and uninitialized block, 982 * the result buffer head is unmapped. If the create ==1, it will make sure 983 * the buffer head is mapped. 984 * 985 * It returns 0 if plain look up failed (blocks have not been allocated), in 986 * that casem, buffer head is unmapped 987 * 988 * It returns the error in case of allocation failure. 989 */ 990 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 991 unsigned long max_blocks, struct buffer_head *bh, 992 int create, int extend_disksize, int flag) 993 { 994 int retval; 995 996 clear_buffer_mapped(bh); 997 998 /* 999 * Try to see if we can get the block without requesting 1000 * for new file system block. 1001 */ 1002 down_read((&EXT4_I(inode)->i_data_sem)); 1003 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1004 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1005 bh, 0, 0); 1006 } else { 1007 retval = ext4_get_blocks_handle(handle, 1008 inode, block, max_blocks, bh, 0, 0); 1009 } 1010 up_read((&EXT4_I(inode)->i_data_sem)); 1011 1012 /* If it is only a block(s) look up */ 1013 if (!create) 1014 return retval; 1015 1016 /* 1017 * Returns if the blocks have already allocated 1018 * 1019 * Note that if blocks have been preallocated 1020 * ext4_ext_get_block() returns th create = 0 1021 * with buffer head unmapped. 1022 */ 1023 if (retval > 0 && buffer_mapped(bh)) 1024 return retval; 1025 1026 /* 1027 * New blocks allocate and/or writing to uninitialized extent 1028 * will possibly result in updating i_data, so we take 1029 * the write lock of i_data_sem, and call get_blocks() 1030 * with create == 1 flag. 1031 */ 1032 down_write((&EXT4_I(inode)->i_data_sem)); 1033 1034 /* 1035 * if the caller is from delayed allocation writeout path 1036 * we have already reserved fs blocks for allocation 1037 * let the underlying get_block() function know to 1038 * avoid double accounting 1039 */ 1040 if (flag) 1041 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1042 /* 1043 * We need to check for EXT4 here because migrate 1044 * could have changed the inode type in between 1045 */ 1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1047 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1048 bh, create, extend_disksize); 1049 } else { 1050 retval = ext4_get_blocks_handle(handle, inode, block, 1051 max_blocks, bh, create, extend_disksize); 1052 1053 if (retval > 0 && buffer_new(bh)) { 1054 /* 1055 * We allocated new blocks which will result in 1056 * i_data's format changing. Force the migrate 1057 * to fail by clearing migrate flags 1058 */ 1059 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1060 ~EXT4_EXT_MIGRATE; 1061 } 1062 } 1063 1064 if (flag) { 1065 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1066 /* 1067 * Update reserved blocks/metadata blocks 1068 * after successful block allocation 1069 * which were deferred till now 1070 */ 1071 if ((retval > 0) && buffer_delay(bh)) 1072 ext4_da_release_space(inode, retval, 0); 1073 } 1074 1075 up_write((&EXT4_I(inode)->i_data_sem)); 1076 return retval; 1077 } 1078 1079 static int ext4_get_block(struct inode *inode, sector_t iblock, 1080 struct buffer_head *bh_result, int create) 1081 { 1082 handle_t *handle = ext4_journal_current_handle(); 1083 int ret = 0, started = 0; 1084 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1085 1086 if (create && !handle) { 1087 /* Direct IO write... */ 1088 if (max_blocks > DIO_MAX_BLOCKS) 1089 max_blocks = DIO_MAX_BLOCKS; 1090 handle = ext4_journal_start(inode, DIO_CREDITS + 1091 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb)); 1092 if (IS_ERR(handle)) { 1093 ret = PTR_ERR(handle); 1094 goto out; 1095 } 1096 started = 1; 1097 } 1098 1099 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1100 max_blocks, bh_result, create, 0, 0); 1101 if (ret > 0) { 1102 bh_result->b_size = (ret << inode->i_blkbits); 1103 ret = 0; 1104 } 1105 if (started) 1106 ext4_journal_stop(handle); 1107 out: 1108 return ret; 1109 } 1110 1111 /* 1112 * `handle' can be NULL if create is zero 1113 */ 1114 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1115 ext4_lblk_t block, int create, int *errp) 1116 { 1117 struct buffer_head dummy; 1118 int fatal = 0, err; 1119 1120 J_ASSERT(handle != NULL || create == 0); 1121 1122 dummy.b_state = 0; 1123 dummy.b_blocknr = -1000; 1124 buffer_trace_init(&dummy.b_history); 1125 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1126 &dummy, create, 1, 0); 1127 /* 1128 * ext4_get_blocks_handle() returns number of blocks 1129 * mapped. 0 in case of a HOLE. 1130 */ 1131 if (err > 0) { 1132 if (err > 1) 1133 WARN_ON(1); 1134 err = 0; 1135 } 1136 *errp = err; 1137 if (!err && buffer_mapped(&dummy)) { 1138 struct buffer_head *bh; 1139 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1140 if (!bh) { 1141 *errp = -EIO; 1142 goto err; 1143 } 1144 if (buffer_new(&dummy)) { 1145 J_ASSERT(create != 0); 1146 J_ASSERT(handle != NULL); 1147 1148 /* 1149 * Now that we do not always journal data, we should 1150 * keep in mind whether this should always journal the 1151 * new buffer as metadata. For now, regular file 1152 * writes use ext4_get_block instead, so it's not a 1153 * problem. 1154 */ 1155 lock_buffer(bh); 1156 BUFFER_TRACE(bh, "call get_create_access"); 1157 fatal = ext4_journal_get_create_access(handle, bh); 1158 if (!fatal && !buffer_uptodate(bh)) { 1159 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1160 set_buffer_uptodate(bh); 1161 } 1162 unlock_buffer(bh); 1163 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1164 err = ext4_journal_dirty_metadata(handle, bh); 1165 if (!fatal) 1166 fatal = err; 1167 } else { 1168 BUFFER_TRACE(bh, "not a new buffer"); 1169 } 1170 if (fatal) { 1171 *errp = fatal; 1172 brelse(bh); 1173 bh = NULL; 1174 } 1175 return bh; 1176 } 1177 err: 1178 return NULL; 1179 } 1180 1181 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1182 ext4_lblk_t block, int create, int *err) 1183 { 1184 struct buffer_head * bh; 1185 1186 bh = ext4_getblk(handle, inode, block, create, err); 1187 if (!bh) 1188 return bh; 1189 if (buffer_uptodate(bh)) 1190 return bh; 1191 ll_rw_block(READ_META, 1, &bh); 1192 wait_on_buffer(bh); 1193 if (buffer_uptodate(bh)) 1194 return bh; 1195 put_bh(bh); 1196 *err = -EIO; 1197 return NULL; 1198 } 1199 1200 static int walk_page_buffers( handle_t *handle, 1201 struct buffer_head *head, 1202 unsigned from, 1203 unsigned to, 1204 int *partial, 1205 int (*fn)( handle_t *handle, 1206 struct buffer_head *bh)) 1207 { 1208 struct buffer_head *bh; 1209 unsigned block_start, block_end; 1210 unsigned blocksize = head->b_size; 1211 int err, ret = 0; 1212 struct buffer_head *next; 1213 1214 for ( bh = head, block_start = 0; 1215 ret == 0 && (bh != head || !block_start); 1216 block_start = block_end, bh = next) 1217 { 1218 next = bh->b_this_page; 1219 block_end = block_start + blocksize; 1220 if (block_end <= from || block_start >= to) { 1221 if (partial && !buffer_uptodate(bh)) 1222 *partial = 1; 1223 continue; 1224 } 1225 err = (*fn)(handle, bh); 1226 if (!ret) 1227 ret = err; 1228 } 1229 return ret; 1230 } 1231 1232 /* 1233 * To preserve ordering, it is essential that the hole instantiation and 1234 * the data write be encapsulated in a single transaction. We cannot 1235 * close off a transaction and start a new one between the ext4_get_block() 1236 * and the commit_write(). So doing the jbd2_journal_start at the start of 1237 * prepare_write() is the right place. 1238 * 1239 * Also, this function can nest inside ext4_writepage() -> 1240 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1241 * has generated enough buffer credits to do the whole page. So we won't 1242 * block on the journal in that case, which is good, because the caller may 1243 * be PF_MEMALLOC. 1244 * 1245 * By accident, ext4 can be reentered when a transaction is open via 1246 * quota file writes. If we were to commit the transaction while thus 1247 * reentered, there can be a deadlock - we would be holding a quota 1248 * lock, and the commit would never complete if another thread had a 1249 * transaction open and was blocking on the quota lock - a ranking 1250 * violation. 1251 * 1252 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1253 * will _not_ run commit under these circumstances because handle->h_ref 1254 * is elevated. We'll still have enough credits for the tiny quotafile 1255 * write. 1256 */ 1257 static int do_journal_get_write_access(handle_t *handle, 1258 struct buffer_head *bh) 1259 { 1260 if (!buffer_mapped(bh) || buffer_freed(bh)) 1261 return 0; 1262 return ext4_journal_get_write_access(handle, bh); 1263 } 1264 1265 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1266 loff_t pos, unsigned len, unsigned flags, 1267 struct page **pagep, void **fsdata) 1268 { 1269 struct inode *inode = mapping->host; 1270 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1271 handle_t *handle; 1272 int retries = 0; 1273 struct page *page; 1274 pgoff_t index; 1275 unsigned from, to; 1276 1277 index = pos >> PAGE_CACHE_SHIFT; 1278 from = pos & (PAGE_CACHE_SIZE - 1); 1279 to = from + len; 1280 1281 retry: 1282 handle = ext4_journal_start(inode, needed_blocks); 1283 if (IS_ERR(handle)) { 1284 ret = PTR_ERR(handle); 1285 goto out; 1286 } 1287 1288 page = __grab_cache_page(mapping, index); 1289 if (!page) { 1290 ext4_journal_stop(handle); 1291 ret = -ENOMEM; 1292 goto out; 1293 } 1294 *pagep = page; 1295 1296 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1297 ext4_get_block); 1298 1299 if (!ret && ext4_should_journal_data(inode)) { 1300 ret = walk_page_buffers(handle, page_buffers(page), 1301 from, to, NULL, do_journal_get_write_access); 1302 } 1303 1304 if (ret) { 1305 unlock_page(page); 1306 ext4_journal_stop(handle); 1307 page_cache_release(page); 1308 } 1309 1310 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1311 goto retry; 1312 out: 1313 return ret; 1314 } 1315 1316 /* For write_end() in data=journal mode */ 1317 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1318 { 1319 if (!buffer_mapped(bh) || buffer_freed(bh)) 1320 return 0; 1321 set_buffer_uptodate(bh); 1322 return ext4_journal_dirty_metadata(handle, bh); 1323 } 1324 1325 /* 1326 * We need to pick up the new inode size which generic_commit_write gave us 1327 * `file' can be NULL - eg, when called from page_symlink(). 1328 * 1329 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1330 * buffers are managed internally. 1331 */ 1332 static int ext4_ordered_write_end(struct file *file, 1333 struct address_space *mapping, 1334 loff_t pos, unsigned len, unsigned copied, 1335 struct page *page, void *fsdata) 1336 { 1337 handle_t *handle = ext4_journal_current_handle(); 1338 struct inode *inode = mapping->host; 1339 unsigned from, to; 1340 int ret = 0, ret2; 1341 1342 from = pos & (PAGE_CACHE_SIZE - 1); 1343 to = from + len; 1344 1345 ret = ext4_jbd2_file_inode(handle, inode); 1346 1347 if (ret == 0) { 1348 /* 1349 * generic_write_end() will run mark_inode_dirty() if i_size 1350 * changes. So let's piggyback the i_disksize mark_inode_dirty 1351 * into that. 1352 */ 1353 loff_t new_i_size; 1354 1355 new_i_size = pos + copied; 1356 if (new_i_size > EXT4_I(inode)->i_disksize) 1357 EXT4_I(inode)->i_disksize = new_i_size; 1358 ret2 = generic_write_end(file, mapping, pos, len, copied, 1359 page, fsdata); 1360 copied = ret2; 1361 if (ret2 < 0) 1362 ret = ret2; 1363 } 1364 ret2 = ext4_journal_stop(handle); 1365 if (!ret) 1366 ret = ret2; 1367 1368 return ret ? ret : copied; 1369 } 1370 1371 static int ext4_writeback_write_end(struct file *file, 1372 struct address_space *mapping, 1373 loff_t pos, unsigned len, unsigned copied, 1374 struct page *page, void *fsdata) 1375 { 1376 handle_t *handle = ext4_journal_current_handle(); 1377 struct inode *inode = mapping->host; 1378 int ret = 0, ret2; 1379 loff_t new_i_size; 1380 1381 new_i_size = pos + copied; 1382 if (new_i_size > EXT4_I(inode)->i_disksize) 1383 EXT4_I(inode)->i_disksize = new_i_size; 1384 1385 ret2 = generic_write_end(file, mapping, pos, len, copied, 1386 page, fsdata); 1387 copied = ret2; 1388 if (ret2 < 0) 1389 ret = ret2; 1390 1391 ret2 = ext4_journal_stop(handle); 1392 if (!ret) 1393 ret = ret2; 1394 1395 return ret ? ret : copied; 1396 } 1397 1398 static int ext4_journalled_write_end(struct file *file, 1399 struct address_space *mapping, 1400 loff_t pos, unsigned len, unsigned copied, 1401 struct page *page, void *fsdata) 1402 { 1403 handle_t *handle = ext4_journal_current_handle(); 1404 struct inode *inode = mapping->host; 1405 int ret = 0, ret2; 1406 int partial = 0; 1407 unsigned from, to; 1408 1409 from = pos & (PAGE_CACHE_SIZE - 1); 1410 to = from + len; 1411 1412 if (copied < len) { 1413 if (!PageUptodate(page)) 1414 copied = 0; 1415 page_zero_new_buffers(page, from+copied, to); 1416 } 1417 1418 ret = walk_page_buffers(handle, page_buffers(page), from, 1419 to, &partial, write_end_fn); 1420 if (!partial) 1421 SetPageUptodate(page); 1422 if (pos+copied > inode->i_size) 1423 i_size_write(inode, pos+copied); 1424 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1425 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1426 EXT4_I(inode)->i_disksize = inode->i_size; 1427 ret2 = ext4_mark_inode_dirty(handle, inode); 1428 if (!ret) 1429 ret = ret2; 1430 } 1431 1432 unlock_page(page); 1433 ret2 = ext4_journal_stop(handle); 1434 if (!ret) 1435 ret = ret2; 1436 page_cache_release(page); 1437 1438 return ret ? ret : copied; 1439 } 1440 /* 1441 * Calculate the number of metadata blocks need to reserve 1442 * to allocate @blocks for non extent file based file 1443 */ 1444 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 1445 { 1446 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1447 int ind_blks, dind_blks, tind_blks; 1448 1449 /* number of new indirect blocks needed */ 1450 ind_blks = (blocks + icap - 1) / icap; 1451 1452 dind_blks = (ind_blks + icap - 1) / icap; 1453 1454 tind_blks = 1; 1455 1456 return ind_blks + dind_blks + tind_blks; 1457 } 1458 1459 /* 1460 * Calculate the number of metadata blocks need to reserve 1461 * to allocate given number of blocks 1462 */ 1463 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1464 { 1465 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1466 return ext4_ext_calc_metadata_amount(inode, blocks); 1467 1468 return ext4_indirect_calc_metadata_amount(inode, blocks); 1469 } 1470 1471 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 unsigned long md_needed, mdblocks, total = 0; 1475 1476 /* 1477 * recalculate the amount of metadata blocks to reserve 1478 * in order to allocate nrblocks 1479 * worse case is one extent per block 1480 */ 1481 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1482 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1483 mdblocks = ext4_calc_metadata_amount(inode, total); 1484 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1485 1486 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1487 total = md_needed + nrblocks; 1488 1489 if (ext4_has_free_blocks(sbi, total) < total) { 1490 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1491 return -ENOSPC; 1492 } 1493 1494 /* reduce fs free blocks counter */ 1495 percpu_counter_sub(&sbi->s_freeblocks_counter, total); 1496 1497 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1498 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1499 1500 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1501 return 0; /* success */ 1502 } 1503 1504 void ext4_da_release_space(struct inode *inode, int used, int to_free) 1505 { 1506 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1507 int total, mdb, mdb_free, release; 1508 1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1510 /* recalculate the number of metablocks still need to be reserved */ 1511 total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free; 1512 mdb = ext4_calc_metadata_amount(inode, total); 1513 1514 /* figure out how many metablocks to release */ 1515 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1516 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1517 1518 /* Account for allocated meta_blocks */ 1519 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1520 1521 release = to_free + mdb_free; 1522 1523 /* update fs free blocks counter for truncate case */ 1524 percpu_counter_add(&sbi->s_freeblocks_counter, release); 1525 1526 /* update per-inode reservations */ 1527 BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks); 1528 EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free); 1529 1530 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1531 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1532 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1533 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1534 } 1535 1536 static void ext4_da_page_release_reservation(struct page *page, 1537 unsigned long offset) 1538 { 1539 int to_release = 0; 1540 struct buffer_head *head, *bh; 1541 unsigned int curr_off = 0; 1542 1543 head = page_buffers(page); 1544 bh = head; 1545 do { 1546 unsigned int next_off = curr_off + bh->b_size; 1547 1548 if ((offset <= curr_off) && (buffer_delay(bh))) { 1549 to_release++; 1550 clear_buffer_delay(bh); 1551 } 1552 curr_off = next_off; 1553 } while ((bh = bh->b_this_page) != head); 1554 ext4_da_release_space(page->mapping->host, 0, to_release); 1555 } 1556 1557 /* 1558 * Delayed allocation stuff 1559 */ 1560 1561 struct mpage_da_data { 1562 struct inode *inode; 1563 struct buffer_head lbh; /* extent of blocks */ 1564 unsigned long first_page, next_page; /* extent of pages */ 1565 get_block_t *get_block; 1566 struct writeback_control *wbc; 1567 }; 1568 1569 /* 1570 * mpage_da_submit_io - walks through extent of pages and try to write 1571 * them with __mpage_writepage() 1572 * 1573 * @mpd->inode: inode 1574 * @mpd->first_page: first page of the extent 1575 * @mpd->next_page: page after the last page of the extent 1576 * @mpd->get_block: the filesystem's block mapper function 1577 * 1578 * By the time mpage_da_submit_io() is called we expect all blocks 1579 * to be allocated. this may be wrong if allocation failed. 1580 * 1581 * As pages are already locked by write_cache_pages(), we can't use it 1582 */ 1583 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1584 { 1585 struct address_space *mapping = mpd->inode->i_mapping; 1586 struct mpage_data mpd_pp = { 1587 .bio = NULL, 1588 .last_block_in_bio = 0, 1589 .get_block = mpd->get_block, 1590 .use_writepage = 1, 1591 }; 1592 int ret = 0, err, nr_pages, i; 1593 unsigned long index, end; 1594 struct pagevec pvec; 1595 1596 BUG_ON(mpd->next_page <= mpd->first_page); 1597 1598 pagevec_init(&pvec, 0); 1599 index = mpd->first_page; 1600 end = mpd->next_page - 1; 1601 1602 while (index <= end) { 1603 /* XXX: optimize tail */ 1604 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1605 if (nr_pages == 0) 1606 break; 1607 for (i = 0; i < nr_pages; i++) { 1608 struct page *page = pvec.pages[i]; 1609 1610 index = page->index; 1611 if (index > end) 1612 break; 1613 index++; 1614 1615 err = __mpage_writepage(page, mpd->wbc, &mpd_pp); 1616 1617 /* 1618 * In error case, we have to continue because 1619 * remaining pages are still locked 1620 * XXX: unlock and re-dirty them? 1621 */ 1622 if (ret == 0) 1623 ret = err; 1624 } 1625 pagevec_release(&pvec); 1626 } 1627 if (mpd_pp.bio) 1628 mpage_bio_submit(WRITE, mpd_pp.bio); 1629 1630 return ret; 1631 } 1632 1633 /* 1634 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1635 * 1636 * @mpd->inode - inode to walk through 1637 * @exbh->b_blocknr - first block on a disk 1638 * @exbh->b_size - amount of space in bytes 1639 * @logical - first logical block to start assignment with 1640 * 1641 * the function goes through all passed space and put actual disk 1642 * block numbers into buffer heads, dropping BH_Delay 1643 */ 1644 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1645 struct buffer_head *exbh) 1646 { 1647 struct inode *inode = mpd->inode; 1648 struct address_space *mapping = inode->i_mapping; 1649 int blocks = exbh->b_size >> inode->i_blkbits; 1650 sector_t pblock = exbh->b_blocknr, cur_logical; 1651 struct buffer_head *head, *bh; 1652 unsigned long index, end; 1653 struct pagevec pvec; 1654 int nr_pages, i; 1655 1656 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1657 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1658 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1659 1660 pagevec_init(&pvec, 0); 1661 1662 while (index <= end) { 1663 /* XXX: optimize tail */ 1664 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1665 if (nr_pages == 0) 1666 break; 1667 for (i = 0; i < nr_pages; i++) { 1668 struct page *page = pvec.pages[i]; 1669 1670 index = page->index; 1671 if (index > end) 1672 break; 1673 index++; 1674 1675 BUG_ON(!PageLocked(page)); 1676 BUG_ON(PageWriteback(page)); 1677 BUG_ON(!page_has_buffers(page)); 1678 1679 bh = page_buffers(page); 1680 head = bh; 1681 1682 /* skip blocks out of the range */ 1683 do { 1684 if (cur_logical >= logical) 1685 break; 1686 cur_logical++; 1687 } while ((bh = bh->b_this_page) != head); 1688 1689 do { 1690 if (cur_logical >= logical + blocks) 1691 break; 1692 if (buffer_delay(bh)) { 1693 bh->b_blocknr = pblock; 1694 clear_buffer_delay(bh); 1695 } else if (buffer_mapped(bh)) 1696 BUG_ON(bh->b_blocknr != pblock); 1697 1698 cur_logical++; 1699 pblock++; 1700 } while ((bh = bh->b_this_page) != head); 1701 } 1702 pagevec_release(&pvec); 1703 } 1704 } 1705 1706 1707 /* 1708 * __unmap_underlying_blocks - just a helper function to unmap 1709 * set of blocks described by @bh 1710 */ 1711 static inline void __unmap_underlying_blocks(struct inode *inode, 1712 struct buffer_head *bh) 1713 { 1714 struct block_device *bdev = inode->i_sb->s_bdev; 1715 int blocks, i; 1716 1717 blocks = bh->b_size >> inode->i_blkbits; 1718 for (i = 0; i < blocks; i++) 1719 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1720 } 1721 1722 /* 1723 * mpage_da_map_blocks - go through given space 1724 * 1725 * @mpd->lbh - bh describing space 1726 * @mpd->get_block - the filesystem's block mapper function 1727 * 1728 * The function skips space we know is already mapped to disk blocks. 1729 * 1730 * The function ignores errors ->get_block() returns, thus real 1731 * error handling is postponed to __mpage_writepage() 1732 */ 1733 static void mpage_da_map_blocks(struct mpage_da_data *mpd) 1734 { 1735 struct buffer_head *lbh = &mpd->lbh; 1736 int err = 0, remain = lbh->b_size; 1737 sector_t next = lbh->b_blocknr; 1738 struct buffer_head new; 1739 1740 /* 1741 * We consider only non-mapped and non-allocated blocks 1742 */ 1743 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1744 return; 1745 1746 while (remain) { 1747 new.b_state = lbh->b_state; 1748 new.b_blocknr = 0; 1749 new.b_size = remain; 1750 err = mpd->get_block(mpd->inode, next, &new, 1); 1751 if (err) { 1752 /* 1753 * Rather than implement own error handling 1754 * here, we just leave remaining blocks 1755 * unallocated and try again with ->writepage() 1756 */ 1757 break; 1758 } 1759 BUG_ON(new.b_size == 0); 1760 1761 if (buffer_new(&new)) 1762 __unmap_underlying_blocks(mpd->inode, &new); 1763 1764 /* 1765 * If blocks are delayed marked, we need to 1766 * put actual blocknr and drop delayed bit 1767 */ 1768 if (buffer_delay(lbh)) 1769 mpage_put_bnr_to_bhs(mpd, next, &new); 1770 1771 /* go for the remaining blocks */ 1772 next += new.b_size >> mpd->inode->i_blkbits; 1773 remain -= new.b_size; 1774 } 1775 } 1776 1777 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay)) 1778 1779 /* 1780 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1781 * 1782 * @mpd->lbh - extent of blocks 1783 * @logical - logical number of the block in the file 1784 * @bh - bh of the block (used to access block's state) 1785 * 1786 * the function is used to collect contig. blocks in same state 1787 */ 1788 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1789 sector_t logical, struct buffer_head *bh) 1790 { 1791 struct buffer_head *lbh = &mpd->lbh; 1792 sector_t next; 1793 1794 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits); 1795 1796 /* 1797 * First block in the extent 1798 */ 1799 if (lbh->b_size == 0) { 1800 lbh->b_blocknr = logical; 1801 lbh->b_size = bh->b_size; 1802 lbh->b_state = bh->b_state & BH_FLAGS; 1803 return; 1804 } 1805 1806 /* 1807 * Can we merge the block to our big extent? 1808 */ 1809 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1810 lbh->b_size += bh->b_size; 1811 return; 1812 } 1813 1814 /* 1815 * We couldn't merge the block to our extent, so we 1816 * need to flush current extent and start new one 1817 */ 1818 mpage_da_map_blocks(mpd); 1819 1820 /* 1821 * Now start a new extent 1822 */ 1823 lbh->b_size = bh->b_size; 1824 lbh->b_state = bh->b_state & BH_FLAGS; 1825 lbh->b_blocknr = logical; 1826 } 1827 1828 /* 1829 * __mpage_da_writepage - finds extent of pages and blocks 1830 * 1831 * @page: page to consider 1832 * @wbc: not used, we just follow rules 1833 * @data: context 1834 * 1835 * The function finds extents of pages and scan them for all blocks. 1836 */ 1837 static int __mpage_da_writepage(struct page *page, 1838 struct writeback_control *wbc, void *data) 1839 { 1840 struct mpage_da_data *mpd = data; 1841 struct inode *inode = mpd->inode; 1842 struct buffer_head *bh, *head, fake; 1843 sector_t logical; 1844 1845 /* 1846 * Can we merge this page to current extent? 1847 */ 1848 if (mpd->next_page != page->index) { 1849 /* 1850 * Nope, we can't. So, we map non-allocated blocks 1851 * and start IO on them using __mpage_writepage() 1852 */ 1853 if (mpd->next_page != mpd->first_page) { 1854 mpage_da_map_blocks(mpd); 1855 mpage_da_submit_io(mpd); 1856 } 1857 1858 /* 1859 * Start next extent of pages ... 1860 */ 1861 mpd->first_page = page->index; 1862 1863 /* 1864 * ... and blocks 1865 */ 1866 mpd->lbh.b_size = 0; 1867 mpd->lbh.b_state = 0; 1868 mpd->lbh.b_blocknr = 0; 1869 } 1870 1871 mpd->next_page = page->index + 1; 1872 logical = (sector_t) page->index << 1873 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1874 1875 if (!page_has_buffers(page)) { 1876 /* 1877 * There is no attached buffer heads yet (mmap?) 1878 * we treat the page asfull of dirty blocks 1879 */ 1880 bh = &fake; 1881 bh->b_size = PAGE_CACHE_SIZE; 1882 bh->b_state = 0; 1883 set_buffer_dirty(bh); 1884 set_buffer_uptodate(bh); 1885 mpage_add_bh_to_extent(mpd, logical, bh); 1886 } else { 1887 /* 1888 * Page with regular buffer heads, just add all dirty ones 1889 */ 1890 head = page_buffers(page); 1891 bh = head; 1892 do { 1893 BUG_ON(buffer_locked(bh)); 1894 if (buffer_dirty(bh)) 1895 mpage_add_bh_to_extent(mpd, logical, bh); 1896 logical++; 1897 } while ((bh = bh->b_this_page) != head); 1898 } 1899 1900 return 0; 1901 } 1902 1903 /* 1904 * mpage_da_writepages - walk the list of dirty pages of the given 1905 * address space, allocates non-allocated blocks, maps newly-allocated 1906 * blocks to existing bhs and issue IO them 1907 * 1908 * @mapping: address space structure to write 1909 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1910 * @get_block: the filesystem's block mapper function. 1911 * 1912 * This is a library function, which implements the writepages() 1913 * address_space_operation. 1914 * 1915 * In order to avoid duplication of logic that deals with partial pages, 1916 * multiple bio per page, etc, we find non-allocated blocks, allocate 1917 * them with minimal calls to ->get_block() and re-use __mpage_writepage() 1918 * 1919 * It's important that we call __mpage_writepage() only once for each 1920 * involved page, otherwise we'd have to implement more complicated logic 1921 * to deal with pages w/o PG_lock or w/ PG_writeback and so on. 1922 * 1923 * See comments to mpage_writepages() 1924 */ 1925 static int mpage_da_writepages(struct address_space *mapping, 1926 struct writeback_control *wbc, 1927 get_block_t get_block) 1928 { 1929 struct mpage_da_data mpd; 1930 int ret; 1931 1932 if (!get_block) 1933 return generic_writepages(mapping, wbc); 1934 1935 mpd.wbc = wbc; 1936 mpd.inode = mapping->host; 1937 mpd.lbh.b_size = 0; 1938 mpd.lbh.b_state = 0; 1939 mpd.lbh.b_blocknr = 0; 1940 mpd.first_page = 0; 1941 mpd.next_page = 0; 1942 mpd.get_block = get_block; 1943 1944 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd); 1945 1946 /* 1947 * Handle last extent of pages 1948 */ 1949 if (mpd.next_page != mpd.first_page) { 1950 mpage_da_map_blocks(&mpd); 1951 mpage_da_submit_io(&mpd); 1952 } 1953 1954 return ret; 1955 } 1956 1957 /* 1958 * this is a special callback for ->write_begin() only 1959 * it's intention is to return mapped block or reserve space 1960 */ 1961 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1962 struct buffer_head *bh_result, int create) 1963 { 1964 int ret = 0; 1965 1966 BUG_ON(create == 0); 1967 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1968 1969 /* 1970 * first, we need to know whether the block is allocated already 1971 * preallocated blocks are unmapped but should treated 1972 * the same as allocated blocks. 1973 */ 1974 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 1975 if ((ret == 0) && !buffer_delay(bh_result)) { 1976 /* the block isn't (pre)allocated yet, let's reserve space */ 1977 /* 1978 * XXX: __block_prepare_write() unmaps passed block, 1979 * is it OK? 1980 */ 1981 ret = ext4_da_reserve_space(inode, 1); 1982 if (ret) 1983 /* not enough space to reserve */ 1984 return ret; 1985 1986 map_bh(bh_result, inode->i_sb, 0); 1987 set_buffer_new(bh_result); 1988 set_buffer_delay(bh_result); 1989 } else if (ret > 0) { 1990 bh_result->b_size = (ret << inode->i_blkbits); 1991 ret = 0; 1992 } 1993 1994 return ret; 1995 } 1996 #define EXT4_DELALLOC_RSVED 1 1997 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 1998 struct buffer_head *bh_result, int create) 1999 { 2000 int ret; 2001 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2002 loff_t disksize = EXT4_I(inode)->i_disksize; 2003 handle_t *handle = NULL; 2004 2005 handle = ext4_journal_current_handle(); 2006 if (!handle) { 2007 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2008 bh_result, 0, 0, 0); 2009 BUG_ON(!ret); 2010 } else { 2011 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2012 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2013 } 2014 2015 if (ret > 0) { 2016 bh_result->b_size = (ret << inode->i_blkbits); 2017 2018 /* 2019 * Update on-disk size along with block allocation 2020 * we don't use 'extend_disksize' as size may change 2021 * within already allocated block -bzzz 2022 */ 2023 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2024 if (disksize > i_size_read(inode)) 2025 disksize = i_size_read(inode); 2026 if (disksize > EXT4_I(inode)->i_disksize) { 2027 /* 2028 * XXX: replace with spinlock if seen contended -bzzz 2029 */ 2030 down_write(&EXT4_I(inode)->i_data_sem); 2031 if (disksize > EXT4_I(inode)->i_disksize) 2032 EXT4_I(inode)->i_disksize = disksize; 2033 up_write(&EXT4_I(inode)->i_data_sem); 2034 2035 if (EXT4_I(inode)->i_disksize == disksize) { 2036 ret = ext4_mark_inode_dirty(handle, inode); 2037 return ret; 2038 } 2039 } 2040 ret = 0; 2041 } 2042 return ret; 2043 } 2044 2045 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2046 { 2047 /* 2048 * unmapped buffer is possible for holes. 2049 * delay buffer is possible with delayed allocation 2050 */ 2051 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2052 } 2053 2054 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2055 struct buffer_head *bh_result, int create) 2056 { 2057 int ret = 0; 2058 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2059 2060 /* 2061 * we don't want to do block allocation in writepage 2062 * so call get_block_wrap with create = 0 2063 */ 2064 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2065 bh_result, 0, 0, 0); 2066 if (ret > 0) { 2067 bh_result->b_size = (ret << inode->i_blkbits); 2068 ret = 0; 2069 } 2070 return ret; 2071 } 2072 2073 /* 2074 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2075 * get called via journal_submit_inode_data_buffers (no journal handle) 2076 * get called via shrink_page_list via pdflush (no journal handle) 2077 * or grab_page_cache when doing write_begin (have journal handle) 2078 */ 2079 static int ext4_da_writepage(struct page *page, 2080 struct writeback_control *wbc) 2081 { 2082 int ret = 0; 2083 loff_t size; 2084 unsigned long len; 2085 struct buffer_head *page_bufs; 2086 struct inode *inode = page->mapping->host; 2087 2088 size = i_size_read(inode); 2089 if (page->index == size >> PAGE_CACHE_SHIFT) 2090 len = size & ~PAGE_CACHE_MASK; 2091 else 2092 len = PAGE_CACHE_SIZE; 2093 2094 if (page_has_buffers(page)) { 2095 page_bufs = page_buffers(page); 2096 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2097 ext4_bh_unmapped_or_delay)) { 2098 /* 2099 * We don't want to do block allocation 2100 * So redirty the page and return 2101 * We may reach here when we do a journal commit 2102 * via journal_submit_inode_data_buffers. 2103 * If we don't have mapping block we just ignore 2104 * them. We can also reach here via shrink_page_list 2105 */ 2106 redirty_page_for_writepage(wbc, page); 2107 unlock_page(page); 2108 return 0; 2109 } 2110 } else { 2111 /* 2112 * The test for page_has_buffers() is subtle: 2113 * We know the page is dirty but it lost buffers. That means 2114 * that at some moment in time after write_begin()/write_end() 2115 * has been called all buffers have been clean and thus they 2116 * must have been written at least once. So they are all 2117 * mapped and we can happily proceed with mapping them 2118 * and writing the page. 2119 * 2120 * Try to initialize the buffer_heads and check whether 2121 * all are mapped and non delay. We don't want to 2122 * do block allocation here. 2123 */ 2124 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2125 ext4_normal_get_block_write); 2126 if (!ret) { 2127 page_bufs = page_buffers(page); 2128 /* check whether all are mapped and non delay */ 2129 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2130 ext4_bh_unmapped_or_delay)) { 2131 redirty_page_for_writepage(wbc, page); 2132 unlock_page(page); 2133 return 0; 2134 } 2135 } else { 2136 /* 2137 * We can't do block allocation here 2138 * so just redity the page and unlock 2139 * and return 2140 */ 2141 redirty_page_for_writepage(wbc, page); 2142 unlock_page(page); 2143 return 0; 2144 } 2145 } 2146 2147 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2148 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2149 else 2150 ret = block_write_full_page(page, 2151 ext4_normal_get_block_write, 2152 wbc); 2153 2154 return ret; 2155 } 2156 2157 /* 2158 * For now just follow the DIO way to estimate the max credits 2159 * needed to write out EXT4_MAX_WRITEBACK_PAGES. 2160 * todo: need to calculate the max credits need for 2161 * extent based files, currently the DIO credits is based on 2162 * indirect-blocks mapping way. 2163 * 2164 * Probably should have a generic way to calculate credits 2165 * for DIO, writepages, and truncate 2166 */ 2167 #define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS 2168 #define EXT4_MAX_WRITEBACK_CREDITS DIO_CREDITS 2169 2170 static int ext4_da_writepages(struct address_space *mapping, 2171 struct writeback_control *wbc) 2172 { 2173 struct inode *inode = mapping->host; 2174 handle_t *handle = NULL; 2175 int needed_blocks; 2176 int ret = 0; 2177 long to_write; 2178 loff_t range_start = 0; 2179 2180 /* 2181 * No pages to write? This is mainly a kludge to avoid starting 2182 * a transaction for special inodes like journal inode on last iput() 2183 * because that could violate lock ordering on umount 2184 */ 2185 if (!mapping->nrpages) 2186 return 0; 2187 2188 /* 2189 * Estimate the worse case needed credits to write out 2190 * EXT4_MAX_BUF_BLOCKS pages 2191 */ 2192 needed_blocks = EXT4_MAX_WRITEBACK_CREDITS; 2193 2194 to_write = wbc->nr_to_write; 2195 if (!wbc->range_cyclic) { 2196 /* 2197 * If range_cyclic is not set force range_cont 2198 * and save the old writeback_index 2199 */ 2200 wbc->range_cont = 1; 2201 range_start = wbc->range_start; 2202 } 2203 2204 while (!ret && to_write) { 2205 /* start a new transaction*/ 2206 handle = ext4_journal_start(inode, needed_blocks); 2207 if (IS_ERR(handle)) { 2208 ret = PTR_ERR(handle); 2209 goto out_writepages; 2210 } 2211 if (ext4_should_order_data(inode)) { 2212 /* 2213 * With ordered mode we need to add 2214 * the inode to the journal handle 2215 * when we do block allocation. 2216 */ 2217 ret = ext4_jbd2_file_inode(handle, inode); 2218 if (ret) { 2219 ext4_journal_stop(handle); 2220 goto out_writepages; 2221 } 2222 2223 } 2224 /* 2225 * set the max dirty pages could be write at a time 2226 * to fit into the reserved transaction credits 2227 */ 2228 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES) 2229 wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES; 2230 2231 to_write -= wbc->nr_to_write; 2232 ret = mpage_da_writepages(mapping, wbc, 2233 ext4_da_get_block_write); 2234 ext4_journal_stop(handle); 2235 if (wbc->nr_to_write) { 2236 /* 2237 * There is no more writeout needed 2238 * or we requested for a noblocking writeout 2239 * and we found the device congested 2240 */ 2241 to_write += wbc->nr_to_write; 2242 break; 2243 } 2244 wbc->nr_to_write = to_write; 2245 } 2246 2247 out_writepages: 2248 wbc->nr_to_write = to_write; 2249 if (range_start) 2250 wbc->range_start = range_start; 2251 return ret; 2252 } 2253 2254 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2255 loff_t pos, unsigned len, unsigned flags, 2256 struct page **pagep, void **fsdata) 2257 { 2258 int ret, retries = 0; 2259 struct page *page; 2260 pgoff_t index; 2261 unsigned from, to; 2262 struct inode *inode = mapping->host; 2263 handle_t *handle; 2264 2265 index = pos >> PAGE_CACHE_SHIFT; 2266 from = pos & (PAGE_CACHE_SIZE - 1); 2267 to = from + len; 2268 2269 retry: 2270 /* 2271 * With delayed allocation, we don't log the i_disksize update 2272 * if there is delayed block allocation. But we still need 2273 * to journalling the i_disksize update if writes to the end 2274 * of file which has an already mapped buffer. 2275 */ 2276 handle = ext4_journal_start(inode, 1); 2277 if (IS_ERR(handle)) { 2278 ret = PTR_ERR(handle); 2279 goto out; 2280 } 2281 2282 page = __grab_cache_page(mapping, index); 2283 if (!page) 2284 return -ENOMEM; 2285 *pagep = page; 2286 2287 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2288 ext4_da_get_block_prep); 2289 if (ret < 0) { 2290 unlock_page(page); 2291 ext4_journal_stop(handle); 2292 page_cache_release(page); 2293 } 2294 2295 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2296 goto retry; 2297 out: 2298 return ret; 2299 } 2300 2301 static int ext4_da_write_end(struct file *file, 2302 struct address_space *mapping, 2303 loff_t pos, unsigned len, unsigned copied, 2304 struct page *page, void *fsdata) 2305 { 2306 struct inode *inode = mapping->host; 2307 int ret = 0, ret2; 2308 handle_t *handle = ext4_journal_current_handle(); 2309 loff_t new_i_size; 2310 2311 /* 2312 * generic_write_end() will run mark_inode_dirty() if i_size 2313 * changes. So let's piggyback the i_disksize mark_inode_dirty 2314 * into that. 2315 */ 2316 2317 new_i_size = pos + copied; 2318 if (new_i_size > EXT4_I(inode)->i_disksize) 2319 if (!walk_page_buffers(NULL, page_buffers(page), 2320 0, len, NULL, ext4_bh_unmapped_or_delay)){ 2321 /* 2322 * Updating i_disksize when extending file without 2323 * needing block allocation 2324 */ 2325 if (ext4_should_order_data(inode)) 2326 ret = ext4_jbd2_file_inode(handle, inode); 2327 2328 EXT4_I(inode)->i_disksize = new_i_size; 2329 } 2330 ret2 = generic_write_end(file, mapping, pos, len, copied, 2331 page, fsdata); 2332 copied = ret2; 2333 if (ret2 < 0) 2334 ret = ret2; 2335 ret2 = ext4_journal_stop(handle); 2336 if (!ret) 2337 ret = ret2; 2338 2339 return ret ? ret : copied; 2340 } 2341 2342 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2343 { 2344 /* 2345 * Drop reserved blocks 2346 */ 2347 BUG_ON(!PageLocked(page)); 2348 if (!page_has_buffers(page)) 2349 goto out; 2350 2351 ext4_da_page_release_reservation(page, offset); 2352 2353 out: 2354 ext4_invalidatepage(page, offset); 2355 2356 return; 2357 } 2358 2359 2360 /* 2361 * bmap() is special. It gets used by applications such as lilo and by 2362 * the swapper to find the on-disk block of a specific piece of data. 2363 * 2364 * Naturally, this is dangerous if the block concerned is still in the 2365 * journal. If somebody makes a swapfile on an ext4 data-journaling 2366 * filesystem and enables swap, then they may get a nasty shock when the 2367 * data getting swapped to that swapfile suddenly gets overwritten by 2368 * the original zero's written out previously to the journal and 2369 * awaiting writeback in the kernel's buffer cache. 2370 * 2371 * So, if we see any bmap calls here on a modified, data-journaled file, 2372 * take extra steps to flush any blocks which might be in the cache. 2373 */ 2374 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2375 { 2376 struct inode *inode = mapping->host; 2377 journal_t *journal; 2378 int err; 2379 2380 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2381 test_opt(inode->i_sb, DELALLOC)) { 2382 /* 2383 * With delalloc we want to sync the file 2384 * so that we can make sure we allocate 2385 * blocks for file 2386 */ 2387 filemap_write_and_wait(mapping); 2388 } 2389 2390 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2391 /* 2392 * This is a REALLY heavyweight approach, but the use of 2393 * bmap on dirty files is expected to be extremely rare: 2394 * only if we run lilo or swapon on a freshly made file 2395 * do we expect this to happen. 2396 * 2397 * (bmap requires CAP_SYS_RAWIO so this does not 2398 * represent an unprivileged user DOS attack --- we'd be 2399 * in trouble if mortal users could trigger this path at 2400 * will.) 2401 * 2402 * NB. EXT4_STATE_JDATA is not set on files other than 2403 * regular files. If somebody wants to bmap a directory 2404 * or symlink and gets confused because the buffer 2405 * hasn't yet been flushed to disk, they deserve 2406 * everything they get. 2407 */ 2408 2409 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2410 journal = EXT4_JOURNAL(inode); 2411 jbd2_journal_lock_updates(journal); 2412 err = jbd2_journal_flush(journal); 2413 jbd2_journal_unlock_updates(journal); 2414 2415 if (err) 2416 return 0; 2417 } 2418 2419 return generic_block_bmap(mapping,block,ext4_get_block); 2420 } 2421 2422 static int bget_one(handle_t *handle, struct buffer_head *bh) 2423 { 2424 get_bh(bh); 2425 return 0; 2426 } 2427 2428 static int bput_one(handle_t *handle, struct buffer_head *bh) 2429 { 2430 put_bh(bh); 2431 return 0; 2432 } 2433 2434 /* 2435 * Note that we don't need to start a transaction unless we're journaling data 2436 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2437 * need to file the inode to the transaction's list in ordered mode because if 2438 * we are writing back data added by write(), the inode is already there and if 2439 * we are writing back data modified via mmap(), noone guarantees in which 2440 * transaction the data will hit the disk. In case we are journaling data, we 2441 * cannot start transaction directly because transaction start ranks above page 2442 * lock so we have to do some magic. 2443 * 2444 * In all journaling modes block_write_full_page() will start the I/O. 2445 * 2446 * Problem: 2447 * 2448 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2449 * ext4_writepage() 2450 * 2451 * Similar for: 2452 * 2453 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2454 * 2455 * Same applies to ext4_get_block(). We will deadlock on various things like 2456 * lock_journal and i_data_sem 2457 * 2458 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2459 * allocations fail. 2460 * 2461 * 16May01: If we're reentered then journal_current_handle() will be 2462 * non-zero. We simply *return*. 2463 * 2464 * 1 July 2001: @@@ FIXME: 2465 * In journalled data mode, a data buffer may be metadata against the 2466 * current transaction. But the same file is part of a shared mapping 2467 * and someone does a writepage() on it. 2468 * 2469 * We will move the buffer onto the async_data list, but *after* it has 2470 * been dirtied. So there's a small window where we have dirty data on 2471 * BJ_Metadata. 2472 * 2473 * Note that this only applies to the last partial page in the file. The 2474 * bit which block_write_full_page() uses prepare/commit for. (That's 2475 * broken code anyway: it's wrong for msync()). 2476 * 2477 * It's a rare case: affects the final partial page, for journalled data 2478 * where the file is subject to bith write() and writepage() in the same 2479 * transction. To fix it we'll need a custom block_write_full_page(). 2480 * We'll probably need that anyway for journalling writepage() output. 2481 * 2482 * We don't honour synchronous mounts for writepage(). That would be 2483 * disastrous. Any write() or metadata operation will sync the fs for 2484 * us. 2485 * 2486 */ 2487 static int __ext4_normal_writepage(struct page *page, 2488 struct writeback_control *wbc) 2489 { 2490 struct inode *inode = page->mapping->host; 2491 2492 if (test_opt(inode->i_sb, NOBH)) 2493 return nobh_writepage(page, 2494 ext4_normal_get_block_write, wbc); 2495 else 2496 return block_write_full_page(page, 2497 ext4_normal_get_block_write, 2498 wbc); 2499 } 2500 2501 static int ext4_normal_writepage(struct page *page, 2502 struct writeback_control *wbc) 2503 { 2504 struct inode *inode = page->mapping->host; 2505 loff_t size = i_size_read(inode); 2506 loff_t len; 2507 2508 J_ASSERT(PageLocked(page)); 2509 if (page->index == size >> PAGE_CACHE_SHIFT) 2510 len = size & ~PAGE_CACHE_MASK; 2511 else 2512 len = PAGE_CACHE_SIZE; 2513 2514 if (page_has_buffers(page)) { 2515 /* if page has buffers it should all be mapped 2516 * and allocated. If there are not buffers attached 2517 * to the page we know the page is dirty but it lost 2518 * buffers. That means that at some moment in time 2519 * after write_begin() / write_end() has been called 2520 * all buffers have been clean and thus they must have been 2521 * written at least once. So they are all mapped and we can 2522 * happily proceed with mapping them and writing the page. 2523 */ 2524 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2525 ext4_bh_unmapped_or_delay)); 2526 } 2527 2528 if (!ext4_journal_current_handle()) 2529 return __ext4_normal_writepage(page, wbc); 2530 2531 redirty_page_for_writepage(wbc, page); 2532 unlock_page(page); 2533 return 0; 2534 } 2535 2536 static int __ext4_journalled_writepage(struct page *page, 2537 struct writeback_control *wbc) 2538 { 2539 struct address_space *mapping = page->mapping; 2540 struct inode *inode = mapping->host; 2541 struct buffer_head *page_bufs; 2542 handle_t *handle = NULL; 2543 int ret = 0; 2544 int err; 2545 2546 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2547 ext4_normal_get_block_write); 2548 if (ret != 0) 2549 goto out_unlock; 2550 2551 page_bufs = page_buffers(page); 2552 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2553 bget_one); 2554 /* As soon as we unlock the page, it can go away, but we have 2555 * references to buffers so we are safe */ 2556 unlock_page(page); 2557 2558 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2559 if (IS_ERR(handle)) { 2560 ret = PTR_ERR(handle); 2561 goto out; 2562 } 2563 2564 ret = walk_page_buffers(handle, page_bufs, 0, 2565 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2566 2567 err = walk_page_buffers(handle, page_bufs, 0, 2568 PAGE_CACHE_SIZE, NULL, write_end_fn); 2569 if (ret == 0) 2570 ret = err; 2571 err = ext4_journal_stop(handle); 2572 if (!ret) 2573 ret = err; 2574 2575 walk_page_buffers(handle, page_bufs, 0, 2576 PAGE_CACHE_SIZE, NULL, bput_one); 2577 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2578 goto out; 2579 2580 out_unlock: 2581 unlock_page(page); 2582 out: 2583 return ret; 2584 } 2585 2586 static int ext4_journalled_writepage(struct page *page, 2587 struct writeback_control *wbc) 2588 { 2589 struct inode *inode = page->mapping->host; 2590 loff_t size = i_size_read(inode); 2591 loff_t len; 2592 2593 J_ASSERT(PageLocked(page)); 2594 if (page->index == size >> PAGE_CACHE_SHIFT) 2595 len = size & ~PAGE_CACHE_MASK; 2596 else 2597 len = PAGE_CACHE_SIZE; 2598 2599 if (page_has_buffers(page)) { 2600 /* if page has buffers it should all be mapped 2601 * and allocated. If there are not buffers attached 2602 * to the page we know the page is dirty but it lost 2603 * buffers. That means that at some moment in time 2604 * after write_begin() / write_end() has been called 2605 * all buffers have been clean and thus they must have been 2606 * written at least once. So they are all mapped and we can 2607 * happily proceed with mapping them and writing the page. 2608 */ 2609 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2610 ext4_bh_unmapped_or_delay)); 2611 } 2612 2613 if (ext4_journal_current_handle()) 2614 goto no_write; 2615 2616 if (PageChecked(page)) { 2617 /* 2618 * It's mmapped pagecache. Add buffers and journal it. There 2619 * doesn't seem much point in redirtying the page here. 2620 */ 2621 ClearPageChecked(page); 2622 return __ext4_journalled_writepage(page, wbc); 2623 } else { 2624 /* 2625 * It may be a page full of checkpoint-mode buffers. We don't 2626 * really know unless we go poke around in the buffer_heads. 2627 * But block_write_full_page will do the right thing. 2628 */ 2629 return block_write_full_page(page, 2630 ext4_normal_get_block_write, 2631 wbc); 2632 } 2633 no_write: 2634 redirty_page_for_writepage(wbc, page); 2635 unlock_page(page); 2636 return 0; 2637 } 2638 2639 static int ext4_readpage(struct file *file, struct page *page) 2640 { 2641 return mpage_readpage(page, ext4_get_block); 2642 } 2643 2644 static int 2645 ext4_readpages(struct file *file, struct address_space *mapping, 2646 struct list_head *pages, unsigned nr_pages) 2647 { 2648 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2649 } 2650 2651 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2652 { 2653 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2654 2655 /* 2656 * If it's a full truncate we just forget about the pending dirtying 2657 */ 2658 if (offset == 0) 2659 ClearPageChecked(page); 2660 2661 jbd2_journal_invalidatepage(journal, page, offset); 2662 } 2663 2664 static int ext4_releasepage(struct page *page, gfp_t wait) 2665 { 2666 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2667 2668 WARN_ON(PageChecked(page)); 2669 if (!page_has_buffers(page)) 2670 return 0; 2671 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2672 } 2673 2674 /* 2675 * If the O_DIRECT write will extend the file then add this inode to the 2676 * orphan list. So recovery will truncate it back to the original size 2677 * if the machine crashes during the write. 2678 * 2679 * If the O_DIRECT write is intantiating holes inside i_size and the machine 2680 * crashes then stale disk data _may_ be exposed inside the file. But current 2681 * VFS code falls back into buffered path in that case so we are safe. 2682 */ 2683 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2684 const struct iovec *iov, loff_t offset, 2685 unsigned long nr_segs) 2686 { 2687 struct file *file = iocb->ki_filp; 2688 struct inode *inode = file->f_mapping->host; 2689 struct ext4_inode_info *ei = EXT4_I(inode); 2690 handle_t *handle; 2691 ssize_t ret; 2692 int orphan = 0; 2693 size_t count = iov_length(iov, nr_segs); 2694 2695 if (rw == WRITE) { 2696 loff_t final_size = offset + count; 2697 2698 if (final_size > inode->i_size) { 2699 /* Credits for sb + inode write */ 2700 handle = ext4_journal_start(inode, 2); 2701 if (IS_ERR(handle)) { 2702 ret = PTR_ERR(handle); 2703 goto out; 2704 } 2705 ret = ext4_orphan_add(handle, inode); 2706 if (ret) { 2707 ext4_journal_stop(handle); 2708 goto out; 2709 } 2710 orphan = 1; 2711 ei->i_disksize = inode->i_size; 2712 ext4_journal_stop(handle); 2713 } 2714 } 2715 2716 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2717 offset, nr_segs, 2718 ext4_get_block, NULL); 2719 2720 if (orphan) { 2721 int err; 2722 2723 /* Credits for sb + inode write */ 2724 handle = ext4_journal_start(inode, 2); 2725 if (IS_ERR(handle)) { 2726 /* This is really bad luck. We've written the data 2727 * but cannot extend i_size. Bail out and pretend 2728 * the write failed... */ 2729 ret = PTR_ERR(handle); 2730 goto out; 2731 } 2732 if (inode->i_nlink) 2733 ext4_orphan_del(handle, inode); 2734 if (ret > 0) { 2735 loff_t end = offset + ret; 2736 if (end > inode->i_size) { 2737 ei->i_disksize = end; 2738 i_size_write(inode, end); 2739 /* 2740 * We're going to return a positive `ret' 2741 * here due to non-zero-length I/O, so there's 2742 * no way of reporting error returns from 2743 * ext4_mark_inode_dirty() to userspace. So 2744 * ignore it. 2745 */ 2746 ext4_mark_inode_dirty(handle, inode); 2747 } 2748 } 2749 err = ext4_journal_stop(handle); 2750 if (ret == 0) 2751 ret = err; 2752 } 2753 out: 2754 return ret; 2755 } 2756 2757 /* 2758 * Pages can be marked dirty completely asynchronously from ext4's journalling 2759 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 2760 * much here because ->set_page_dirty is called under VFS locks. The page is 2761 * not necessarily locked. 2762 * 2763 * We cannot just dirty the page and leave attached buffers clean, because the 2764 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 2765 * or jbddirty because all the journalling code will explode. 2766 * 2767 * So what we do is to mark the page "pending dirty" and next time writepage 2768 * is called, propagate that into the buffers appropriately. 2769 */ 2770 static int ext4_journalled_set_page_dirty(struct page *page) 2771 { 2772 SetPageChecked(page); 2773 return __set_page_dirty_nobuffers(page); 2774 } 2775 2776 static const struct address_space_operations ext4_ordered_aops = { 2777 .readpage = ext4_readpage, 2778 .readpages = ext4_readpages, 2779 .writepage = ext4_normal_writepage, 2780 .sync_page = block_sync_page, 2781 .write_begin = ext4_write_begin, 2782 .write_end = ext4_ordered_write_end, 2783 .bmap = ext4_bmap, 2784 .invalidatepage = ext4_invalidatepage, 2785 .releasepage = ext4_releasepage, 2786 .direct_IO = ext4_direct_IO, 2787 .migratepage = buffer_migrate_page, 2788 }; 2789 2790 static const struct address_space_operations ext4_writeback_aops = { 2791 .readpage = ext4_readpage, 2792 .readpages = ext4_readpages, 2793 .writepage = ext4_normal_writepage, 2794 .sync_page = block_sync_page, 2795 .write_begin = ext4_write_begin, 2796 .write_end = ext4_writeback_write_end, 2797 .bmap = ext4_bmap, 2798 .invalidatepage = ext4_invalidatepage, 2799 .releasepage = ext4_releasepage, 2800 .direct_IO = ext4_direct_IO, 2801 .migratepage = buffer_migrate_page, 2802 }; 2803 2804 static const struct address_space_operations ext4_journalled_aops = { 2805 .readpage = ext4_readpage, 2806 .readpages = ext4_readpages, 2807 .writepage = ext4_journalled_writepage, 2808 .sync_page = block_sync_page, 2809 .write_begin = ext4_write_begin, 2810 .write_end = ext4_journalled_write_end, 2811 .set_page_dirty = ext4_journalled_set_page_dirty, 2812 .bmap = ext4_bmap, 2813 .invalidatepage = ext4_invalidatepage, 2814 .releasepage = ext4_releasepage, 2815 }; 2816 2817 static const struct address_space_operations ext4_da_aops = { 2818 .readpage = ext4_readpage, 2819 .readpages = ext4_readpages, 2820 .writepage = ext4_da_writepage, 2821 .writepages = ext4_da_writepages, 2822 .sync_page = block_sync_page, 2823 .write_begin = ext4_da_write_begin, 2824 .write_end = ext4_da_write_end, 2825 .bmap = ext4_bmap, 2826 .invalidatepage = ext4_da_invalidatepage, 2827 .releasepage = ext4_releasepage, 2828 .direct_IO = ext4_direct_IO, 2829 .migratepage = buffer_migrate_page, 2830 }; 2831 2832 void ext4_set_aops(struct inode *inode) 2833 { 2834 if (ext4_should_order_data(inode) && 2835 test_opt(inode->i_sb, DELALLOC)) 2836 inode->i_mapping->a_ops = &ext4_da_aops; 2837 else if (ext4_should_order_data(inode)) 2838 inode->i_mapping->a_ops = &ext4_ordered_aops; 2839 else if (ext4_should_writeback_data(inode) && 2840 test_opt(inode->i_sb, DELALLOC)) 2841 inode->i_mapping->a_ops = &ext4_da_aops; 2842 else if (ext4_should_writeback_data(inode)) 2843 inode->i_mapping->a_ops = &ext4_writeback_aops; 2844 else 2845 inode->i_mapping->a_ops = &ext4_journalled_aops; 2846 } 2847 2848 /* 2849 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 2850 * up to the end of the block which corresponds to `from'. 2851 * This required during truncate. We need to physically zero the tail end 2852 * of that block so it doesn't yield old data if the file is later grown. 2853 */ 2854 int ext4_block_truncate_page(handle_t *handle, 2855 struct address_space *mapping, loff_t from) 2856 { 2857 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2858 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2859 unsigned blocksize, length, pos; 2860 ext4_lblk_t iblock; 2861 struct inode *inode = mapping->host; 2862 struct buffer_head *bh; 2863 struct page *page; 2864 int err = 0; 2865 2866 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 2867 if (!page) 2868 return -EINVAL; 2869 2870 blocksize = inode->i_sb->s_blocksize; 2871 length = blocksize - (offset & (blocksize - 1)); 2872 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2873 2874 /* 2875 * For "nobh" option, we can only work if we don't need to 2876 * read-in the page - otherwise we create buffers to do the IO. 2877 */ 2878 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 2879 ext4_should_writeback_data(inode) && PageUptodate(page)) { 2880 zero_user(page, offset, length); 2881 set_page_dirty(page); 2882 goto unlock; 2883 } 2884 2885 if (!page_has_buffers(page)) 2886 create_empty_buffers(page, blocksize, 0); 2887 2888 /* Find the buffer that contains "offset" */ 2889 bh = page_buffers(page); 2890 pos = blocksize; 2891 while (offset >= pos) { 2892 bh = bh->b_this_page; 2893 iblock++; 2894 pos += blocksize; 2895 } 2896 2897 err = 0; 2898 if (buffer_freed(bh)) { 2899 BUFFER_TRACE(bh, "freed: skip"); 2900 goto unlock; 2901 } 2902 2903 if (!buffer_mapped(bh)) { 2904 BUFFER_TRACE(bh, "unmapped"); 2905 ext4_get_block(inode, iblock, bh, 0); 2906 /* unmapped? It's a hole - nothing to do */ 2907 if (!buffer_mapped(bh)) { 2908 BUFFER_TRACE(bh, "still unmapped"); 2909 goto unlock; 2910 } 2911 } 2912 2913 /* Ok, it's mapped. Make sure it's up-to-date */ 2914 if (PageUptodate(page)) 2915 set_buffer_uptodate(bh); 2916 2917 if (!buffer_uptodate(bh)) { 2918 err = -EIO; 2919 ll_rw_block(READ, 1, &bh); 2920 wait_on_buffer(bh); 2921 /* Uhhuh. Read error. Complain and punt. */ 2922 if (!buffer_uptodate(bh)) 2923 goto unlock; 2924 } 2925 2926 if (ext4_should_journal_data(inode)) { 2927 BUFFER_TRACE(bh, "get write access"); 2928 err = ext4_journal_get_write_access(handle, bh); 2929 if (err) 2930 goto unlock; 2931 } 2932 2933 zero_user(page, offset, length); 2934 2935 BUFFER_TRACE(bh, "zeroed end of block"); 2936 2937 err = 0; 2938 if (ext4_should_journal_data(inode)) { 2939 err = ext4_journal_dirty_metadata(handle, bh); 2940 } else { 2941 if (ext4_should_order_data(inode)) 2942 err = ext4_jbd2_file_inode(handle, inode); 2943 mark_buffer_dirty(bh); 2944 } 2945 2946 unlock: 2947 unlock_page(page); 2948 page_cache_release(page); 2949 return err; 2950 } 2951 2952 /* 2953 * Probably it should be a library function... search for first non-zero word 2954 * or memcmp with zero_page, whatever is better for particular architecture. 2955 * Linus? 2956 */ 2957 static inline int all_zeroes(__le32 *p, __le32 *q) 2958 { 2959 while (p < q) 2960 if (*p++) 2961 return 0; 2962 return 1; 2963 } 2964 2965 /** 2966 * ext4_find_shared - find the indirect blocks for partial truncation. 2967 * @inode: inode in question 2968 * @depth: depth of the affected branch 2969 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 2970 * @chain: place to store the pointers to partial indirect blocks 2971 * @top: place to the (detached) top of branch 2972 * 2973 * This is a helper function used by ext4_truncate(). 2974 * 2975 * When we do truncate() we may have to clean the ends of several 2976 * indirect blocks but leave the blocks themselves alive. Block is 2977 * partially truncated if some data below the new i_size is refered 2978 * from it (and it is on the path to the first completely truncated 2979 * data block, indeed). We have to free the top of that path along 2980 * with everything to the right of the path. Since no allocation 2981 * past the truncation point is possible until ext4_truncate() 2982 * finishes, we may safely do the latter, but top of branch may 2983 * require special attention - pageout below the truncation point 2984 * might try to populate it. 2985 * 2986 * We atomically detach the top of branch from the tree, store the 2987 * block number of its root in *@top, pointers to buffer_heads of 2988 * partially truncated blocks - in @chain[].bh and pointers to 2989 * their last elements that should not be removed - in 2990 * @chain[].p. Return value is the pointer to last filled element 2991 * of @chain. 2992 * 2993 * The work left to caller to do the actual freeing of subtrees: 2994 * a) free the subtree starting from *@top 2995 * b) free the subtrees whose roots are stored in 2996 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2997 * c) free the subtrees growing from the inode past the @chain[0]. 2998 * (no partially truncated stuff there). */ 2999 3000 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3001 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3002 { 3003 Indirect *partial, *p; 3004 int k, err; 3005 3006 *top = 0; 3007 /* Make k index the deepest non-null offest + 1 */ 3008 for (k = depth; k > 1 && !offsets[k-1]; k--) 3009 ; 3010 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3011 /* Writer: pointers */ 3012 if (!partial) 3013 partial = chain + k-1; 3014 /* 3015 * If the branch acquired continuation since we've looked at it - 3016 * fine, it should all survive and (new) top doesn't belong to us. 3017 */ 3018 if (!partial->key && *partial->p) 3019 /* Writer: end */ 3020 goto no_top; 3021 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 3022 ; 3023 /* 3024 * OK, we've found the last block that must survive. The rest of our 3025 * branch should be detached before unlocking. However, if that rest 3026 * of branch is all ours and does not grow immediately from the inode 3027 * it's easier to cheat and just decrement partial->p. 3028 */ 3029 if (p == chain + k - 1 && p > chain) { 3030 p->p--; 3031 } else { 3032 *top = *p->p; 3033 /* Nope, don't do this in ext4. Must leave the tree intact */ 3034 #if 0 3035 *p->p = 0; 3036 #endif 3037 } 3038 /* Writer: end */ 3039 3040 while(partial > p) { 3041 brelse(partial->bh); 3042 partial--; 3043 } 3044 no_top: 3045 return partial; 3046 } 3047 3048 /* 3049 * Zero a number of block pointers in either an inode or an indirect block. 3050 * If we restart the transaction we must again get write access to the 3051 * indirect block for further modification. 3052 * 3053 * We release `count' blocks on disk, but (last - first) may be greater 3054 * than `count' because there can be holes in there. 3055 */ 3056 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3057 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3058 unsigned long count, __le32 *first, __le32 *last) 3059 { 3060 __le32 *p; 3061 if (try_to_extend_transaction(handle, inode)) { 3062 if (bh) { 3063 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3064 ext4_journal_dirty_metadata(handle, bh); 3065 } 3066 ext4_mark_inode_dirty(handle, inode); 3067 ext4_journal_test_restart(handle, inode); 3068 if (bh) { 3069 BUFFER_TRACE(bh, "retaking write access"); 3070 ext4_journal_get_write_access(handle, bh); 3071 } 3072 } 3073 3074 /* 3075 * Any buffers which are on the journal will be in memory. We find 3076 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3077 * on them. We've already detached each block from the file, so 3078 * bforget() in jbd2_journal_forget() should be safe. 3079 * 3080 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3081 */ 3082 for (p = first; p < last; p++) { 3083 u32 nr = le32_to_cpu(*p); 3084 if (nr) { 3085 struct buffer_head *tbh; 3086 3087 *p = 0; 3088 tbh = sb_find_get_block(inode->i_sb, nr); 3089 ext4_forget(handle, 0, inode, tbh, nr); 3090 } 3091 } 3092 3093 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3094 } 3095 3096 /** 3097 * ext4_free_data - free a list of data blocks 3098 * @handle: handle for this transaction 3099 * @inode: inode we are dealing with 3100 * @this_bh: indirect buffer_head which contains *@first and *@last 3101 * @first: array of block numbers 3102 * @last: points immediately past the end of array 3103 * 3104 * We are freeing all blocks refered from that array (numbers are stored as 3105 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3106 * 3107 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3108 * blocks are contiguous then releasing them at one time will only affect one 3109 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3110 * actually use a lot of journal space. 3111 * 3112 * @this_bh will be %NULL if @first and @last point into the inode's direct 3113 * block pointers. 3114 */ 3115 static void ext4_free_data(handle_t *handle, struct inode *inode, 3116 struct buffer_head *this_bh, 3117 __le32 *first, __le32 *last) 3118 { 3119 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3120 unsigned long count = 0; /* Number of blocks in the run */ 3121 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3122 corresponding to 3123 block_to_free */ 3124 ext4_fsblk_t nr; /* Current block # */ 3125 __le32 *p; /* Pointer into inode/ind 3126 for current block */ 3127 int err; 3128 3129 if (this_bh) { /* For indirect block */ 3130 BUFFER_TRACE(this_bh, "get_write_access"); 3131 err = ext4_journal_get_write_access(handle, this_bh); 3132 /* Important: if we can't update the indirect pointers 3133 * to the blocks, we can't free them. */ 3134 if (err) 3135 return; 3136 } 3137 3138 for (p = first; p < last; p++) { 3139 nr = le32_to_cpu(*p); 3140 if (nr) { 3141 /* accumulate blocks to free if they're contiguous */ 3142 if (count == 0) { 3143 block_to_free = nr; 3144 block_to_free_p = p; 3145 count = 1; 3146 } else if (nr == block_to_free + count) { 3147 count++; 3148 } else { 3149 ext4_clear_blocks(handle, inode, this_bh, 3150 block_to_free, 3151 count, block_to_free_p, p); 3152 block_to_free = nr; 3153 block_to_free_p = p; 3154 count = 1; 3155 } 3156 } 3157 } 3158 3159 if (count > 0) 3160 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3161 count, block_to_free_p, p); 3162 3163 if (this_bh) { 3164 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3165 3166 /* 3167 * The buffer head should have an attached journal head at this 3168 * point. However, if the data is corrupted and an indirect 3169 * block pointed to itself, it would have been detached when 3170 * the block was cleared. Check for this instead of OOPSing. 3171 */ 3172 if (bh2jh(this_bh)) 3173 ext4_journal_dirty_metadata(handle, this_bh); 3174 else 3175 ext4_error(inode->i_sb, __func__, 3176 "circular indirect block detected, " 3177 "inode=%lu, block=%llu", 3178 inode->i_ino, 3179 (unsigned long long) this_bh->b_blocknr); 3180 } 3181 } 3182 3183 /** 3184 * ext4_free_branches - free an array of branches 3185 * @handle: JBD handle for this transaction 3186 * @inode: inode we are dealing with 3187 * @parent_bh: the buffer_head which contains *@first and *@last 3188 * @first: array of block numbers 3189 * @last: pointer immediately past the end of array 3190 * @depth: depth of the branches to free 3191 * 3192 * We are freeing all blocks refered from these branches (numbers are 3193 * stored as little-endian 32-bit) and updating @inode->i_blocks 3194 * appropriately. 3195 */ 3196 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3197 struct buffer_head *parent_bh, 3198 __le32 *first, __le32 *last, int depth) 3199 { 3200 ext4_fsblk_t nr; 3201 __le32 *p; 3202 3203 if (is_handle_aborted(handle)) 3204 return; 3205 3206 if (depth--) { 3207 struct buffer_head *bh; 3208 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3209 p = last; 3210 while (--p >= first) { 3211 nr = le32_to_cpu(*p); 3212 if (!nr) 3213 continue; /* A hole */ 3214 3215 /* Go read the buffer for the next level down */ 3216 bh = sb_bread(inode->i_sb, nr); 3217 3218 /* 3219 * A read failure? Report error and clear slot 3220 * (should be rare). 3221 */ 3222 if (!bh) { 3223 ext4_error(inode->i_sb, "ext4_free_branches", 3224 "Read failure, inode=%lu, block=%llu", 3225 inode->i_ino, nr); 3226 continue; 3227 } 3228 3229 /* This zaps the entire block. Bottom up. */ 3230 BUFFER_TRACE(bh, "free child branches"); 3231 ext4_free_branches(handle, inode, bh, 3232 (__le32*)bh->b_data, 3233 (__le32*)bh->b_data + addr_per_block, 3234 depth); 3235 3236 /* 3237 * We've probably journalled the indirect block several 3238 * times during the truncate. But it's no longer 3239 * needed and we now drop it from the transaction via 3240 * jbd2_journal_revoke(). 3241 * 3242 * That's easy if it's exclusively part of this 3243 * transaction. But if it's part of the committing 3244 * transaction then jbd2_journal_forget() will simply 3245 * brelse() it. That means that if the underlying 3246 * block is reallocated in ext4_get_block(), 3247 * unmap_underlying_metadata() will find this block 3248 * and will try to get rid of it. damn, damn. 3249 * 3250 * If this block has already been committed to the 3251 * journal, a revoke record will be written. And 3252 * revoke records must be emitted *before* clearing 3253 * this block's bit in the bitmaps. 3254 */ 3255 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3256 3257 /* 3258 * Everything below this this pointer has been 3259 * released. Now let this top-of-subtree go. 3260 * 3261 * We want the freeing of this indirect block to be 3262 * atomic in the journal with the updating of the 3263 * bitmap block which owns it. So make some room in 3264 * the journal. 3265 * 3266 * We zero the parent pointer *after* freeing its 3267 * pointee in the bitmaps, so if extend_transaction() 3268 * for some reason fails to put the bitmap changes and 3269 * the release into the same transaction, recovery 3270 * will merely complain about releasing a free block, 3271 * rather than leaking blocks. 3272 */ 3273 if (is_handle_aborted(handle)) 3274 return; 3275 if (try_to_extend_transaction(handle, inode)) { 3276 ext4_mark_inode_dirty(handle, inode); 3277 ext4_journal_test_restart(handle, inode); 3278 } 3279 3280 ext4_free_blocks(handle, inode, nr, 1, 1); 3281 3282 if (parent_bh) { 3283 /* 3284 * The block which we have just freed is 3285 * pointed to by an indirect block: journal it 3286 */ 3287 BUFFER_TRACE(parent_bh, "get_write_access"); 3288 if (!ext4_journal_get_write_access(handle, 3289 parent_bh)){ 3290 *p = 0; 3291 BUFFER_TRACE(parent_bh, 3292 "call ext4_journal_dirty_metadata"); 3293 ext4_journal_dirty_metadata(handle, 3294 parent_bh); 3295 } 3296 } 3297 } 3298 } else { 3299 /* We have reached the bottom of the tree. */ 3300 BUFFER_TRACE(parent_bh, "free data blocks"); 3301 ext4_free_data(handle, inode, parent_bh, first, last); 3302 } 3303 } 3304 3305 int ext4_can_truncate(struct inode *inode) 3306 { 3307 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3308 return 0; 3309 if (S_ISREG(inode->i_mode)) 3310 return 1; 3311 if (S_ISDIR(inode->i_mode)) 3312 return 1; 3313 if (S_ISLNK(inode->i_mode)) 3314 return !ext4_inode_is_fast_symlink(inode); 3315 return 0; 3316 } 3317 3318 /* 3319 * ext4_truncate() 3320 * 3321 * We block out ext4_get_block() block instantiations across the entire 3322 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3323 * simultaneously on behalf of the same inode. 3324 * 3325 * As we work through the truncate and commmit bits of it to the journal there 3326 * is one core, guiding principle: the file's tree must always be consistent on 3327 * disk. We must be able to restart the truncate after a crash. 3328 * 3329 * The file's tree may be transiently inconsistent in memory (although it 3330 * probably isn't), but whenever we close off and commit a journal transaction, 3331 * the contents of (the filesystem + the journal) must be consistent and 3332 * restartable. It's pretty simple, really: bottom up, right to left (although 3333 * left-to-right works OK too). 3334 * 3335 * Note that at recovery time, journal replay occurs *before* the restart of 3336 * truncate against the orphan inode list. 3337 * 3338 * The committed inode has the new, desired i_size (which is the same as 3339 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3340 * that this inode's truncate did not complete and it will again call 3341 * ext4_truncate() to have another go. So there will be instantiated blocks 3342 * to the right of the truncation point in a crashed ext4 filesystem. But 3343 * that's fine - as long as they are linked from the inode, the post-crash 3344 * ext4_truncate() run will find them and release them. 3345 */ 3346 void ext4_truncate(struct inode *inode) 3347 { 3348 handle_t *handle; 3349 struct ext4_inode_info *ei = EXT4_I(inode); 3350 __le32 *i_data = ei->i_data; 3351 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3352 struct address_space *mapping = inode->i_mapping; 3353 ext4_lblk_t offsets[4]; 3354 Indirect chain[4]; 3355 Indirect *partial; 3356 __le32 nr = 0; 3357 int n; 3358 ext4_lblk_t last_block; 3359 unsigned blocksize = inode->i_sb->s_blocksize; 3360 3361 if (!ext4_can_truncate(inode)) 3362 return; 3363 3364 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3365 ext4_ext_truncate(inode); 3366 return; 3367 } 3368 3369 handle = start_transaction(inode); 3370 if (IS_ERR(handle)) 3371 return; /* AKPM: return what? */ 3372 3373 last_block = (inode->i_size + blocksize-1) 3374 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3375 3376 if (inode->i_size & (blocksize - 1)) 3377 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3378 goto out_stop; 3379 3380 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3381 if (n == 0) 3382 goto out_stop; /* error */ 3383 3384 /* 3385 * OK. This truncate is going to happen. We add the inode to the 3386 * orphan list, so that if this truncate spans multiple transactions, 3387 * and we crash, we will resume the truncate when the filesystem 3388 * recovers. It also marks the inode dirty, to catch the new size. 3389 * 3390 * Implication: the file must always be in a sane, consistent 3391 * truncatable state while each transaction commits. 3392 */ 3393 if (ext4_orphan_add(handle, inode)) 3394 goto out_stop; 3395 3396 /* 3397 * The orphan list entry will now protect us from any crash which 3398 * occurs before the truncate completes, so it is now safe to propagate 3399 * the new, shorter inode size (held for now in i_size) into the 3400 * on-disk inode. We do this via i_disksize, which is the value which 3401 * ext4 *really* writes onto the disk inode. 3402 */ 3403 ei->i_disksize = inode->i_size; 3404 3405 /* 3406 * From here we block out all ext4_get_block() callers who want to 3407 * modify the block allocation tree. 3408 */ 3409 down_write(&ei->i_data_sem); 3410 3411 if (n == 1) { /* direct blocks */ 3412 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3413 i_data + EXT4_NDIR_BLOCKS); 3414 goto do_indirects; 3415 } 3416 3417 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3418 /* Kill the top of shared branch (not detached) */ 3419 if (nr) { 3420 if (partial == chain) { 3421 /* Shared branch grows from the inode */ 3422 ext4_free_branches(handle, inode, NULL, 3423 &nr, &nr+1, (chain+n-1) - partial); 3424 *partial->p = 0; 3425 /* 3426 * We mark the inode dirty prior to restart, 3427 * and prior to stop. No need for it here. 3428 */ 3429 } else { 3430 /* Shared branch grows from an indirect block */ 3431 BUFFER_TRACE(partial->bh, "get_write_access"); 3432 ext4_free_branches(handle, inode, partial->bh, 3433 partial->p, 3434 partial->p+1, (chain+n-1) - partial); 3435 } 3436 } 3437 /* Clear the ends of indirect blocks on the shared branch */ 3438 while (partial > chain) { 3439 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3440 (__le32*)partial->bh->b_data+addr_per_block, 3441 (chain+n-1) - partial); 3442 BUFFER_TRACE(partial->bh, "call brelse"); 3443 brelse (partial->bh); 3444 partial--; 3445 } 3446 do_indirects: 3447 /* Kill the remaining (whole) subtrees */ 3448 switch (offsets[0]) { 3449 default: 3450 nr = i_data[EXT4_IND_BLOCK]; 3451 if (nr) { 3452 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3453 i_data[EXT4_IND_BLOCK] = 0; 3454 } 3455 case EXT4_IND_BLOCK: 3456 nr = i_data[EXT4_DIND_BLOCK]; 3457 if (nr) { 3458 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3459 i_data[EXT4_DIND_BLOCK] = 0; 3460 } 3461 case EXT4_DIND_BLOCK: 3462 nr = i_data[EXT4_TIND_BLOCK]; 3463 if (nr) { 3464 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3465 i_data[EXT4_TIND_BLOCK] = 0; 3466 } 3467 case EXT4_TIND_BLOCK: 3468 ; 3469 } 3470 3471 ext4_discard_reservation(inode); 3472 3473 up_write(&ei->i_data_sem); 3474 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3475 ext4_mark_inode_dirty(handle, inode); 3476 3477 /* 3478 * In a multi-transaction truncate, we only make the final transaction 3479 * synchronous 3480 */ 3481 if (IS_SYNC(inode)) 3482 handle->h_sync = 1; 3483 out_stop: 3484 /* 3485 * If this was a simple ftruncate(), and the file will remain alive 3486 * then we need to clear up the orphan record which we created above. 3487 * However, if this was a real unlink then we were called by 3488 * ext4_delete_inode(), and we allow that function to clean up the 3489 * orphan info for us. 3490 */ 3491 if (inode->i_nlink) 3492 ext4_orphan_del(handle, inode); 3493 3494 ext4_journal_stop(handle); 3495 } 3496 3497 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 3498 unsigned long ino, struct ext4_iloc *iloc) 3499 { 3500 ext4_group_t block_group; 3501 unsigned long offset; 3502 ext4_fsblk_t block; 3503 struct ext4_group_desc *gdp; 3504 3505 if (!ext4_valid_inum(sb, ino)) { 3506 /* 3507 * This error is already checked for in namei.c unless we are 3508 * looking at an NFS filehandle, in which case no error 3509 * report is needed 3510 */ 3511 return 0; 3512 } 3513 3514 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 3515 gdp = ext4_get_group_desc(sb, block_group, NULL); 3516 if (!gdp) 3517 return 0; 3518 3519 /* 3520 * Figure out the offset within the block group inode table 3521 */ 3522 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 3523 EXT4_INODE_SIZE(sb); 3524 block = ext4_inode_table(sb, gdp) + 3525 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 3526 3527 iloc->block_group = block_group; 3528 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 3529 return block; 3530 } 3531 3532 /* 3533 * ext4_get_inode_loc returns with an extra refcount against the inode's 3534 * underlying buffer_head on success. If 'in_mem' is true, we have all 3535 * data in memory that is needed to recreate the on-disk version of this 3536 * inode. 3537 */ 3538 static int __ext4_get_inode_loc(struct inode *inode, 3539 struct ext4_iloc *iloc, int in_mem) 3540 { 3541 ext4_fsblk_t block; 3542 struct buffer_head *bh; 3543 3544 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 3545 if (!block) 3546 return -EIO; 3547 3548 bh = sb_getblk(inode->i_sb, block); 3549 if (!bh) { 3550 ext4_error (inode->i_sb, "ext4_get_inode_loc", 3551 "unable to read inode block - " 3552 "inode=%lu, block=%llu", 3553 inode->i_ino, block); 3554 return -EIO; 3555 } 3556 if (!buffer_uptodate(bh)) { 3557 lock_buffer(bh); 3558 if (buffer_uptodate(bh)) { 3559 /* someone brought it uptodate while we waited */ 3560 unlock_buffer(bh); 3561 goto has_buffer; 3562 } 3563 3564 /* 3565 * If we have all information of the inode in memory and this 3566 * is the only valid inode in the block, we need not read the 3567 * block. 3568 */ 3569 if (in_mem) { 3570 struct buffer_head *bitmap_bh; 3571 struct ext4_group_desc *desc; 3572 int inodes_per_buffer; 3573 int inode_offset, i; 3574 ext4_group_t block_group; 3575 int start; 3576 3577 block_group = (inode->i_ino - 1) / 3578 EXT4_INODES_PER_GROUP(inode->i_sb); 3579 inodes_per_buffer = bh->b_size / 3580 EXT4_INODE_SIZE(inode->i_sb); 3581 inode_offset = ((inode->i_ino - 1) % 3582 EXT4_INODES_PER_GROUP(inode->i_sb)); 3583 start = inode_offset & ~(inodes_per_buffer - 1); 3584 3585 /* Is the inode bitmap in cache? */ 3586 desc = ext4_get_group_desc(inode->i_sb, 3587 block_group, NULL); 3588 if (!desc) 3589 goto make_io; 3590 3591 bitmap_bh = sb_getblk(inode->i_sb, 3592 ext4_inode_bitmap(inode->i_sb, desc)); 3593 if (!bitmap_bh) 3594 goto make_io; 3595 3596 /* 3597 * If the inode bitmap isn't in cache then the 3598 * optimisation may end up performing two reads instead 3599 * of one, so skip it. 3600 */ 3601 if (!buffer_uptodate(bitmap_bh)) { 3602 brelse(bitmap_bh); 3603 goto make_io; 3604 } 3605 for (i = start; i < start + inodes_per_buffer; i++) { 3606 if (i == inode_offset) 3607 continue; 3608 if (ext4_test_bit(i, bitmap_bh->b_data)) 3609 break; 3610 } 3611 brelse(bitmap_bh); 3612 if (i == start + inodes_per_buffer) { 3613 /* all other inodes are free, so skip I/O */ 3614 memset(bh->b_data, 0, bh->b_size); 3615 set_buffer_uptodate(bh); 3616 unlock_buffer(bh); 3617 goto has_buffer; 3618 } 3619 } 3620 3621 make_io: 3622 /* 3623 * There are other valid inodes in the buffer, this inode 3624 * has in-inode xattrs, or we don't have this inode in memory. 3625 * Read the block from disk. 3626 */ 3627 get_bh(bh); 3628 bh->b_end_io = end_buffer_read_sync; 3629 submit_bh(READ_META, bh); 3630 wait_on_buffer(bh); 3631 if (!buffer_uptodate(bh)) { 3632 ext4_error(inode->i_sb, "ext4_get_inode_loc", 3633 "unable to read inode block - " 3634 "inode=%lu, block=%llu", 3635 inode->i_ino, block); 3636 brelse(bh); 3637 return -EIO; 3638 } 3639 } 3640 has_buffer: 3641 iloc->bh = bh; 3642 return 0; 3643 } 3644 3645 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3646 { 3647 /* We have all inode data except xattrs in memory here. */ 3648 return __ext4_get_inode_loc(inode, iloc, 3649 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3650 } 3651 3652 void ext4_set_inode_flags(struct inode *inode) 3653 { 3654 unsigned int flags = EXT4_I(inode)->i_flags; 3655 3656 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3657 if (flags & EXT4_SYNC_FL) 3658 inode->i_flags |= S_SYNC; 3659 if (flags & EXT4_APPEND_FL) 3660 inode->i_flags |= S_APPEND; 3661 if (flags & EXT4_IMMUTABLE_FL) 3662 inode->i_flags |= S_IMMUTABLE; 3663 if (flags & EXT4_NOATIME_FL) 3664 inode->i_flags |= S_NOATIME; 3665 if (flags & EXT4_DIRSYNC_FL) 3666 inode->i_flags |= S_DIRSYNC; 3667 } 3668 3669 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3670 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3671 { 3672 unsigned int flags = ei->vfs_inode.i_flags; 3673 3674 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3675 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 3676 if (flags & S_SYNC) 3677 ei->i_flags |= EXT4_SYNC_FL; 3678 if (flags & S_APPEND) 3679 ei->i_flags |= EXT4_APPEND_FL; 3680 if (flags & S_IMMUTABLE) 3681 ei->i_flags |= EXT4_IMMUTABLE_FL; 3682 if (flags & S_NOATIME) 3683 ei->i_flags |= EXT4_NOATIME_FL; 3684 if (flags & S_DIRSYNC) 3685 ei->i_flags |= EXT4_DIRSYNC_FL; 3686 } 3687 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3688 struct ext4_inode_info *ei) 3689 { 3690 blkcnt_t i_blocks ; 3691 struct inode *inode = &(ei->vfs_inode); 3692 struct super_block *sb = inode->i_sb; 3693 3694 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3695 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3696 /* we are using combined 48 bit field */ 3697 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3698 le32_to_cpu(raw_inode->i_blocks_lo); 3699 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 3700 /* i_blocks represent file system block size */ 3701 return i_blocks << (inode->i_blkbits - 9); 3702 } else { 3703 return i_blocks; 3704 } 3705 } else { 3706 return le32_to_cpu(raw_inode->i_blocks_lo); 3707 } 3708 } 3709 3710 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3711 { 3712 struct ext4_iloc iloc; 3713 struct ext4_inode *raw_inode; 3714 struct ext4_inode_info *ei; 3715 struct buffer_head *bh; 3716 struct inode *inode; 3717 long ret; 3718 int block; 3719 3720 inode = iget_locked(sb, ino); 3721 if (!inode) 3722 return ERR_PTR(-ENOMEM); 3723 if (!(inode->i_state & I_NEW)) 3724 return inode; 3725 3726 ei = EXT4_I(inode); 3727 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 3728 ei->i_acl = EXT4_ACL_NOT_CACHED; 3729 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 3730 #endif 3731 ei->i_block_alloc_info = NULL; 3732 3733 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3734 if (ret < 0) 3735 goto bad_inode; 3736 bh = iloc.bh; 3737 raw_inode = ext4_raw_inode(&iloc); 3738 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3739 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3740 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3741 if(!(test_opt (inode->i_sb, NO_UID32))) { 3742 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3743 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3744 } 3745 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3746 3747 ei->i_state = 0; 3748 ei->i_dir_start_lookup = 0; 3749 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3750 /* We now have enough fields to check if the inode was active or not. 3751 * This is needed because nfsd might try to access dead inodes 3752 * the test is that same one that e2fsck uses 3753 * NeilBrown 1999oct15 3754 */ 3755 if (inode->i_nlink == 0) { 3756 if (inode->i_mode == 0 || 3757 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3758 /* this inode is deleted */ 3759 brelse (bh); 3760 ret = -ESTALE; 3761 goto bad_inode; 3762 } 3763 /* The only unlinked inodes we let through here have 3764 * valid i_mode and are being read by the orphan 3765 * recovery code: that's fine, we're about to complete 3766 * the process of deleting those. */ 3767 } 3768 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3769 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3770 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3771 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3772 cpu_to_le32(EXT4_OS_HURD)) { 3773 ei->i_file_acl |= 3774 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3775 } 3776 inode->i_size = ext4_isize(raw_inode); 3777 ei->i_disksize = inode->i_size; 3778 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3779 ei->i_block_group = iloc.block_group; 3780 /* 3781 * NOTE! The in-memory inode i_data array is in little-endian order 3782 * even on big-endian machines: we do NOT byteswap the block numbers! 3783 */ 3784 for (block = 0; block < EXT4_N_BLOCKS; block++) 3785 ei->i_data[block] = raw_inode->i_block[block]; 3786 INIT_LIST_HEAD(&ei->i_orphan); 3787 3788 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3789 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3790 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3791 EXT4_INODE_SIZE(inode->i_sb)) { 3792 brelse (bh); 3793 ret = -EIO; 3794 goto bad_inode; 3795 } 3796 if (ei->i_extra_isize == 0) { 3797 /* The extra space is currently unused. Use it. */ 3798 ei->i_extra_isize = sizeof(struct ext4_inode) - 3799 EXT4_GOOD_OLD_INODE_SIZE; 3800 } else { 3801 __le32 *magic = (void *)raw_inode + 3802 EXT4_GOOD_OLD_INODE_SIZE + 3803 ei->i_extra_isize; 3804 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3805 ei->i_state |= EXT4_STATE_XATTR; 3806 } 3807 } else 3808 ei->i_extra_isize = 0; 3809 3810 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3811 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3812 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3813 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3814 3815 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3816 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3817 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3818 inode->i_version |= 3819 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3820 } 3821 3822 if (S_ISREG(inode->i_mode)) { 3823 inode->i_op = &ext4_file_inode_operations; 3824 inode->i_fop = &ext4_file_operations; 3825 ext4_set_aops(inode); 3826 } else if (S_ISDIR(inode->i_mode)) { 3827 inode->i_op = &ext4_dir_inode_operations; 3828 inode->i_fop = &ext4_dir_operations; 3829 } else if (S_ISLNK(inode->i_mode)) { 3830 if (ext4_inode_is_fast_symlink(inode)) 3831 inode->i_op = &ext4_fast_symlink_inode_operations; 3832 else { 3833 inode->i_op = &ext4_symlink_inode_operations; 3834 ext4_set_aops(inode); 3835 } 3836 } else { 3837 inode->i_op = &ext4_special_inode_operations; 3838 if (raw_inode->i_block[0]) 3839 init_special_inode(inode, inode->i_mode, 3840 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3841 else 3842 init_special_inode(inode, inode->i_mode, 3843 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3844 } 3845 brelse (iloc.bh); 3846 ext4_set_inode_flags(inode); 3847 unlock_new_inode(inode); 3848 return inode; 3849 3850 bad_inode: 3851 iget_failed(inode); 3852 return ERR_PTR(ret); 3853 } 3854 3855 static int ext4_inode_blocks_set(handle_t *handle, 3856 struct ext4_inode *raw_inode, 3857 struct ext4_inode_info *ei) 3858 { 3859 struct inode *inode = &(ei->vfs_inode); 3860 u64 i_blocks = inode->i_blocks; 3861 struct super_block *sb = inode->i_sb; 3862 int err = 0; 3863 3864 if (i_blocks <= ~0U) { 3865 /* 3866 * i_blocks can be represnted in a 32 bit variable 3867 * as multiple of 512 bytes 3868 */ 3869 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3870 raw_inode->i_blocks_high = 0; 3871 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 3872 } else if (i_blocks <= 0xffffffffffffULL) { 3873 /* 3874 * i_blocks can be represented in a 48 bit variable 3875 * as multiple of 512 bytes 3876 */ 3877 err = ext4_update_rocompat_feature(handle, sb, 3878 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3879 if (err) 3880 goto err_out; 3881 /* i_block is stored in the split 48 bit fields */ 3882 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3883 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3884 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 3885 } else { 3886 /* 3887 * i_blocks should be represented in a 48 bit variable 3888 * as multiple of file system block size 3889 */ 3890 err = ext4_update_rocompat_feature(handle, sb, 3891 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3892 if (err) 3893 goto err_out; 3894 ei->i_flags |= EXT4_HUGE_FILE_FL; 3895 /* i_block is stored in file system block size */ 3896 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3897 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3898 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3899 } 3900 err_out: 3901 return err; 3902 } 3903 3904 /* 3905 * Post the struct inode info into an on-disk inode location in the 3906 * buffer-cache. This gobbles the caller's reference to the 3907 * buffer_head in the inode location struct. 3908 * 3909 * The caller must have write access to iloc->bh. 3910 */ 3911 static int ext4_do_update_inode(handle_t *handle, 3912 struct inode *inode, 3913 struct ext4_iloc *iloc) 3914 { 3915 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3916 struct ext4_inode_info *ei = EXT4_I(inode); 3917 struct buffer_head *bh = iloc->bh; 3918 int err = 0, rc, block; 3919 3920 /* For fields not not tracking in the in-memory inode, 3921 * initialise them to zero for new inodes. */ 3922 if (ei->i_state & EXT4_STATE_NEW) 3923 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3924 3925 ext4_get_inode_flags(ei); 3926 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3927 if(!(test_opt(inode->i_sb, NO_UID32))) { 3928 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3929 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3930 /* 3931 * Fix up interoperability with old kernels. Otherwise, old inodes get 3932 * re-used with the upper 16 bits of the uid/gid intact 3933 */ 3934 if(!ei->i_dtime) { 3935 raw_inode->i_uid_high = 3936 cpu_to_le16(high_16_bits(inode->i_uid)); 3937 raw_inode->i_gid_high = 3938 cpu_to_le16(high_16_bits(inode->i_gid)); 3939 } else { 3940 raw_inode->i_uid_high = 0; 3941 raw_inode->i_gid_high = 0; 3942 } 3943 } else { 3944 raw_inode->i_uid_low = 3945 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3946 raw_inode->i_gid_low = 3947 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3948 raw_inode->i_uid_high = 0; 3949 raw_inode->i_gid_high = 0; 3950 } 3951 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3952 3953 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 3954 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 3955 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 3956 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 3957 3958 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 3959 goto out_brelse; 3960 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3961 /* clear the migrate flag in the raw_inode */ 3962 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 3963 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3964 cpu_to_le32(EXT4_OS_HURD)) 3965 raw_inode->i_file_acl_high = 3966 cpu_to_le16(ei->i_file_acl >> 32); 3967 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 3968 ext4_isize_set(raw_inode, ei->i_disksize); 3969 if (ei->i_disksize > 0x7fffffffULL) { 3970 struct super_block *sb = inode->i_sb; 3971 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 3972 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 3973 EXT4_SB(sb)->s_es->s_rev_level == 3974 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 3975 /* If this is the first large file 3976 * created, add a flag to the superblock. 3977 */ 3978 err = ext4_journal_get_write_access(handle, 3979 EXT4_SB(sb)->s_sbh); 3980 if (err) 3981 goto out_brelse; 3982 ext4_update_dynamic_rev(sb); 3983 EXT4_SET_RO_COMPAT_FEATURE(sb, 3984 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3985 sb->s_dirt = 1; 3986 handle->h_sync = 1; 3987 err = ext4_journal_dirty_metadata(handle, 3988 EXT4_SB(sb)->s_sbh); 3989 } 3990 } 3991 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3992 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3993 if (old_valid_dev(inode->i_rdev)) { 3994 raw_inode->i_block[0] = 3995 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3996 raw_inode->i_block[1] = 0; 3997 } else { 3998 raw_inode->i_block[0] = 0; 3999 raw_inode->i_block[1] = 4000 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4001 raw_inode->i_block[2] = 0; 4002 } 4003 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4004 raw_inode->i_block[block] = ei->i_data[block]; 4005 4006 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4007 if (ei->i_extra_isize) { 4008 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4009 raw_inode->i_version_hi = 4010 cpu_to_le32(inode->i_version >> 32); 4011 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4012 } 4013 4014 4015 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4016 rc = ext4_journal_dirty_metadata(handle, bh); 4017 if (!err) 4018 err = rc; 4019 ei->i_state &= ~EXT4_STATE_NEW; 4020 4021 out_brelse: 4022 brelse (bh); 4023 ext4_std_error(inode->i_sb, err); 4024 return err; 4025 } 4026 4027 /* 4028 * ext4_write_inode() 4029 * 4030 * We are called from a few places: 4031 * 4032 * - Within generic_file_write() for O_SYNC files. 4033 * Here, there will be no transaction running. We wait for any running 4034 * trasnaction to commit. 4035 * 4036 * - Within sys_sync(), kupdate and such. 4037 * We wait on commit, if tol to. 4038 * 4039 * - Within prune_icache() (PF_MEMALLOC == true) 4040 * Here we simply return. We can't afford to block kswapd on the 4041 * journal commit. 4042 * 4043 * In all cases it is actually safe for us to return without doing anything, 4044 * because the inode has been copied into a raw inode buffer in 4045 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4046 * knfsd. 4047 * 4048 * Note that we are absolutely dependent upon all inode dirtiers doing the 4049 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4050 * which we are interested. 4051 * 4052 * It would be a bug for them to not do this. The code: 4053 * 4054 * mark_inode_dirty(inode) 4055 * stuff(); 4056 * inode->i_size = expr; 4057 * 4058 * is in error because a kswapd-driven write_inode() could occur while 4059 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4060 * will no longer be on the superblock's dirty inode list. 4061 */ 4062 int ext4_write_inode(struct inode *inode, int wait) 4063 { 4064 if (current->flags & PF_MEMALLOC) 4065 return 0; 4066 4067 if (ext4_journal_current_handle()) { 4068 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4069 dump_stack(); 4070 return -EIO; 4071 } 4072 4073 if (!wait) 4074 return 0; 4075 4076 return ext4_force_commit(inode->i_sb); 4077 } 4078 4079 /* 4080 * ext4_setattr() 4081 * 4082 * Called from notify_change. 4083 * 4084 * We want to trap VFS attempts to truncate the file as soon as 4085 * possible. In particular, we want to make sure that when the VFS 4086 * shrinks i_size, we put the inode on the orphan list and modify 4087 * i_disksize immediately, so that during the subsequent flushing of 4088 * dirty pages and freeing of disk blocks, we can guarantee that any 4089 * commit will leave the blocks being flushed in an unused state on 4090 * disk. (On recovery, the inode will get truncated and the blocks will 4091 * be freed, so we have a strong guarantee that no future commit will 4092 * leave these blocks visible to the user.) 4093 * 4094 * Another thing we have to assure is that if we are in ordered mode 4095 * and inode is still attached to the committing transaction, we must 4096 * we start writeout of all the dirty pages which are being truncated. 4097 * This way we are sure that all the data written in the previous 4098 * transaction are already on disk (truncate waits for pages under 4099 * writeback). 4100 * 4101 * Called with inode->i_mutex down. 4102 */ 4103 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4104 { 4105 struct inode *inode = dentry->d_inode; 4106 int error, rc = 0; 4107 const unsigned int ia_valid = attr->ia_valid; 4108 4109 error = inode_change_ok(inode, attr); 4110 if (error) 4111 return error; 4112 4113 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4114 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4115 handle_t *handle; 4116 4117 /* (user+group)*(old+new) structure, inode write (sb, 4118 * inode block, ? - but truncate inode update has it) */ 4119 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4120 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4121 if (IS_ERR(handle)) { 4122 error = PTR_ERR(handle); 4123 goto err_out; 4124 } 4125 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4126 if (error) { 4127 ext4_journal_stop(handle); 4128 return error; 4129 } 4130 /* Update corresponding info in inode so that everything is in 4131 * one transaction */ 4132 if (attr->ia_valid & ATTR_UID) 4133 inode->i_uid = attr->ia_uid; 4134 if (attr->ia_valid & ATTR_GID) 4135 inode->i_gid = attr->ia_gid; 4136 error = ext4_mark_inode_dirty(handle, inode); 4137 ext4_journal_stop(handle); 4138 } 4139 4140 if (attr->ia_valid & ATTR_SIZE) { 4141 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4143 4144 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4145 error = -EFBIG; 4146 goto err_out; 4147 } 4148 } 4149 } 4150 4151 if (S_ISREG(inode->i_mode) && 4152 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4153 handle_t *handle; 4154 4155 handle = ext4_journal_start(inode, 3); 4156 if (IS_ERR(handle)) { 4157 error = PTR_ERR(handle); 4158 goto err_out; 4159 } 4160 4161 error = ext4_orphan_add(handle, inode); 4162 EXT4_I(inode)->i_disksize = attr->ia_size; 4163 rc = ext4_mark_inode_dirty(handle, inode); 4164 if (!error) 4165 error = rc; 4166 ext4_journal_stop(handle); 4167 4168 if (ext4_should_order_data(inode)) { 4169 error = ext4_begin_ordered_truncate(inode, 4170 attr->ia_size); 4171 if (error) { 4172 /* Do as much error cleanup as possible */ 4173 handle = ext4_journal_start(inode, 3); 4174 if (IS_ERR(handle)) { 4175 ext4_orphan_del(NULL, inode); 4176 goto err_out; 4177 } 4178 ext4_orphan_del(handle, inode); 4179 ext4_journal_stop(handle); 4180 goto err_out; 4181 } 4182 } 4183 } 4184 4185 rc = inode_setattr(inode, attr); 4186 4187 /* If inode_setattr's call to ext4_truncate failed to get a 4188 * transaction handle at all, we need to clean up the in-core 4189 * orphan list manually. */ 4190 if (inode->i_nlink) 4191 ext4_orphan_del(NULL, inode); 4192 4193 if (!rc && (ia_valid & ATTR_MODE)) 4194 rc = ext4_acl_chmod(inode); 4195 4196 err_out: 4197 ext4_std_error(inode->i_sb, error); 4198 if (!error) 4199 error = rc; 4200 return error; 4201 } 4202 4203 4204 /* 4205 * How many blocks doth make a writepage()? 4206 * 4207 * With N blocks per page, it may be: 4208 * N data blocks 4209 * 2 indirect block 4210 * 2 dindirect 4211 * 1 tindirect 4212 * N+5 bitmap blocks (from the above) 4213 * N+5 group descriptor summary blocks 4214 * 1 inode block 4215 * 1 superblock. 4216 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 4217 * 4218 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 4219 * 4220 * With ordered or writeback data it's the same, less the N data blocks. 4221 * 4222 * If the inode's direct blocks can hold an integral number of pages then a 4223 * page cannot straddle two indirect blocks, and we can only touch one indirect 4224 * and dindirect block, and the "5" above becomes "3". 4225 * 4226 * This still overestimates under most circumstances. If we were to pass the 4227 * start and end offsets in here as well we could do block_to_path() on each 4228 * block and work out the exact number of indirects which are touched. Pah. 4229 */ 4230 4231 int ext4_writepage_trans_blocks(struct inode *inode) 4232 { 4233 int bpp = ext4_journal_blocks_per_page(inode); 4234 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 4235 int ret; 4236 4237 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 4238 return ext4_ext_writepage_trans_blocks(inode, bpp); 4239 4240 if (ext4_should_journal_data(inode)) 4241 ret = 3 * (bpp + indirects) + 2; 4242 else 4243 ret = 2 * (bpp + indirects) + 2; 4244 4245 #ifdef CONFIG_QUOTA 4246 /* We know that structure was already allocated during DQUOT_INIT so 4247 * we will be updating only the data blocks + inodes */ 4248 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 4249 #endif 4250 4251 return ret; 4252 } 4253 4254 /* 4255 * The caller must have previously called ext4_reserve_inode_write(). 4256 * Give this, we know that the caller already has write access to iloc->bh. 4257 */ 4258 int ext4_mark_iloc_dirty(handle_t *handle, 4259 struct inode *inode, struct ext4_iloc *iloc) 4260 { 4261 int err = 0; 4262 4263 if (test_opt(inode->i_sb, I_VERSION)) 4264 inode_inc_iversion(inode); 4265 4266 /* the do_update_inode consumes one bh->b_count */ 4267 get_bh(iloc->bh); 4268 4269 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4270 err = ext4_do_update_inode(handle, inode, iloc); 4271 put_bh(iloc->bh); 4272 return err; 4273 } 4274 4275 /* 4276 * On success, We end up with an outstanding reference count against 4277 * iloc->bh. This _must_ be cleaned up later. 4278 */ 4279 4280 int 4281 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4282 struct ext4_iloc *iloc) 4283 { 4284 int err = 0; 4285 if (handle) { 4286 err = ext4_get_inode_loc(inode, iloc); 4287 if (!err) { 4288 BUFFER_TRACE(iloc->bh, "get_write_access"); 4289 err = ext4_journal_get_write_access(handle, iloc->bh); 4290 if (err) { 4291 brelse(iloc->bh); 4292 iloc->bh = NULL; 4293 } 4294 } 4295 } 4296 ext4_std_error(inode->i_sb, err); 4297 return err; 4298 } 4299 4300 /* 4301 * Expand an inode by new_extra_isize bytes. 4302 * Returns 0 on success or negative error number on failure. 4303 */ 4304 static int ext4_expand_extra_isize(struct inode *inode, 4305 unsigned int new_extra_isize, 4306 struct ext4_iloc iloc, 4307 handle_t *handle) 4308 { 4309 struct ext4_inode *raw_inode; 4310 struct ext4_xattr_ibody_header *header; 4311 struct ext4_xattr_entry *entry; 4312 4313 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4314 return 0; 4315 4316 raw_inode = ext4_raw_inode(&iloc); 4317 4318 header = IHDR(inode, raw_inode); 4319 entry = IFIRST(header); 4320 4321 /* No extended attributes present */ 4322 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4323 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4324 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4325 new_extra_isize); 4326 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4327 return 0; 4328 } 4329 4330 /* try to expand with EAs present */ 4331 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4332 raw_inode, handle); 4333 } 4334 4335 /* 4336 * What we do here is to mark the in-core inode as clean with respect to inode 4337 * dirtiness (it may still be data-dirty). 4338 * This means that the in-core inode may be reaped by prune_icache 4339 * without having to perform any I/O. This is a very good thing, 4340 * because *any* task may call prune_icache - even ones which 4341 * have a transaction open against a different journal. 4342 * 4343 * Is this cheating? Not really. Sure, we haven't written the 4344 * inode out, but prune_icache isn't a user-visible syncing function. 4345 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4346 * we start and wait on commits. 4347 * 4348 * Is this efficient/effective? Well, we're being nice to the system 4349 * by cleaning up our inodes proactively so they can be reaped 4350 * without I/O. But we are potentially leaving up to five seconds' 4351 * worth of inodes floating about which prune_icache wants us to 4352 * write out. One way to fix that would be to get prune_icache() 4353 * to do a write_super() to free up some memory. It has the desired 4354 * effect. 4355 */ 4356 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4357 { 4358 struct ext4_iloc iloc; 4359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4360 static unsigned int mnt_count; 4361 int err, ret; 4362 4363 might_sleep(); 4364 err = ext4_reserve_inode_write(handle, inode, &iloc); 4365 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4366 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4367 /* 4368 * We need extra buffer credits since we may write into EA block 4369 * with this same handle. If journal_extend fails, then it will 4370 * only result in a minor loss of functionality for that inode. 4371 * If this is felt to be critical, then e2fsck should be run to 4372 * force a large enough s_min_extra_isize. 4373 */ 4374 if ((jbd2_journal_extend(handle, 4375 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4376 ret = ext4_expand_extra_isize(inode, 4377 sbi->s_want_extra_isize, 4378 iloc, handle); 4379 if (ret) { 4380 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4381 if (mnt_count != 4382 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4383 ext4_warning(inode->i_sb, __func__, 4384 "Unable to expand inode %lu. Delete" 4385 " some EAs or run e2fsck.", 4386 inode->i_ino); 4387 mnt_count = 4388 le16_to_cpu(sbi->s_es->s_mnt_count); 4389 } 4390 } 4391 } 4392 } 4393 if (!err) 4394 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4395 return err; 4396 } 4397 4398 /* 4399 * ext4_dirty_inode() is called from __mark_inode_dirty() 4400 * 4401 * We're really interested in the case where a file is being extended. 4402 * i_size has been changed by generic_commit_write() and we thus need 4403 * to include the updated inode in the current transaction. 4404 * 4405 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4406 * are allocated to the file. 4407 * 4408 * If the inode is marked synchronous, we don't honour that here - doing 4409 * so would cause a commit on atime updates, which we don't bother doing. 4410 * We handle synchronous inodes at the highest possible level. 4411 */ 4412 void ext4_dirty_inode(struct inode *inode) 4413 { 4414 handle_t *current_handle = ext4_journal_current_handle(); 4415 handle_t *handle; 4416 4417 handle = ext4_journal_start(inode, 2); 4418 if (IS_ERR(handle)) 4419 goto out; 4420 if (current_handle && 4421 current_handle->h_transaction != handle->h_transaction) { 4422 /* This task has a transaction open against a different fs */ 4423 printk(KERN_EMERG "%s: transactions do not match!\n", 4424 __func__); 4425 } else { 4426 jbd_debug(5, "marking dirty. outer handle=%p\n", 4427 current_handle); 4428 ext4_mark_inode_dirty(handle, inode); 4429 } 4430 ext4_journal_stop(handle); 4431 out: 4432 return; 4433 } 4434 4435 #if 0 4436 /* 4437 * Bind an inode's backing buffer_head into this transaction, to prevent 4438 * it from being flushed to disk early. Unlike 4439 * ext4_reserve_inode_write, this leaves behind no bh reference and 4440 * returns no iloc structure, so the caller needs to repeat the iloc 4441 * lookup to mark the inode dirty later. 4442 */ 4443 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4444 { 4445 struct ext4_iloc iloc; 4446 4447 int err = 0; 4448 if (handle) { 4449 err = ext4_get_inode_loc(inode, &iloc); 4450 if (!err) { 4451 BUFFER_TRACE(iloc.bh, "get_write_access"); 4452 err = jbd2_journal_get_write_access(handle, iloc.bh); 4453 if (!err) 4454 err = ext4_journal_dirty_metadata(handle, 4455 iloc.bh); 4456 brelse(iloc.bh); 4457 } 4458 } 4459 ext4_std_error(inode->i_sb, err); 4460 return err; 4461 } 4462 #endif 4463 4464 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4465 { 4466 journal_t *journal; 4467 handle_t *handle; 4468 int err; 4469 4470 /* 4471 * We have to be very careful here: changing a data block's 4472 * journaling status dynamically is dangerous. If we write a 4473 * data block to the journal, change the status and then delete 4474 * that block, we risk forgetting to revoke the old log record 4475 * from the journal and so a subsequent replay can corrupt data. 4476 * So, first we make sure that the journal is empty and that 4477 * nobody is changing anything. 4478 */ 4479 4480 journal = EXT4_JOURNAL(inode); 4481 if (is_journal_aborted(journal)) 4482 return -EROFS; 4483 4484 jbd2_journal_lock_updates(journal); 4485 jbd2_journal_flush(journal); 4486 4487 /* 4488 * OK, there are no updates running now, and all cached data is 4489 * synced to disk. We are now in a completely consistent state 4490 * which doesn't have anything in the journal, and we know that 4491 * no filesystem updates are running, so it is safe to modify 4492 * the inode's in-core data-journaling state flag now. 4493 */ 4494 4495 if (val) 4496 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4497 else 4498 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4499 ext4_set_aops(inode); 4500 4501 jbd2_journal_unlock_updates(journal); 4502 4503 /* Finally we can mark the inode as dirty. */ 4504 4505 handle = ext4_journal_start(inode, 1); 4506 if (IS_ERR(handle)) 4507 return PTR_ERR(handle); 4508 4509 err = ext4_mark_inode_dirty(handle, inode); 4510 handle->h_sync = 1; 4511 ext4_journal_stop(handle); 4512 ext4_std_error(inode->i_sb, err); 4513 4514 return err; 4515 } 4516 4517 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4518 { 4519 return !buffer_mapped(bh); 4520 } 4521 4522 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4523 { 4524 loff_t size; 4525 unsigned long len; 4526 int ret = -EINVAL; 4527 struct file *file = vma->vm_file; 4528 struct inode *inode = file->f_path.dentry->d_inode; 4529 struct address_space *mapping = inode->i_mapping; 4530 4531 /* 4532 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4533 * get i_mutex because we are already holding mmap_sem. 4534 */ 4535 down_read(&inode->i_alloc_sem); 4536 size = i_size_read(inode); 4537 if (page->mapping != mapping || size <= page_offset(page) 4538 || !PageUptodate(page)) { 4539 /* page got truncated from under us? */ 4540 goto out_unlock; 4541 } 4542 ret = 0; 4543 if (PageMappedToDisk(page)) 4544 goto out_unlock; 4545 4546 if (page->index == size >> PAGE_CACHE_SHIFT) 4547 len = size & ~PAGE_CACHE_MASK; 4548 else 4549 len = PAGE_CACHE_SIZE; 4550 4551 if (page_has_buffers(page)) { 4552 /* return if we have all the buffers mapped */ 4553 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4554 ext4_bh_unmapped)) 4555 goto out_unlock; 4556 } 4557 /* 4558 * OK, we need to fill the hole... Do write_begin write_end 4559 * to do block allocation/reservation.We are not holding 4560 * inode.i__mutex here. That allow * parallel write_begin, 4561 * write_end call. lock_page prevent this from happening 4562 * on the same page though 4563 */ 4564 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4565 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL); 4566 if (ret < 0) 4567 goto out_unlock; 4568 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4569 len, len, page, NULL); 4570 if (ret < 0) 4571 goto out_unlock; 4572 ret = 0; 4573 out_unlock: 4574 up_read(&inode->i_alloc_sem); 4575 return ret; 4576 } 4577