1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 138 struct inode *inode, struct page *page, loff_t from, 139 loff_t length, int flags); 140 141 /* 142 * Test whether an inode is a fast symlink. 143 */ 144 static int ext4_inode_is_fast_symlink(struct inode *inode) 145 { 146 int ea_blocks = EXT4_I(inode)->i_file_acl ? 147 (inode->i_sb->s_blocksize >> 9) : 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_log_start_commit(journal, commit_tid); 214 jbd2_log_wait_commit(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 ext4_ioend_shutdown(inode); 219 goto no_delete; 220 } 221 222 if (!is_bad_inode(inode)) 223 dquot_initialize(inode); 224 225 if (ext4_should_order_data(inode)) 226 ext4_begin_ordered_truncate(inode, 0); 227 truncate_inode_pages(&inode->i_data, 0); 228 ext4_ioend_shutdown(inode); 229 230 if (is_bad_inode(inode)) 231 goto no_delete; 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Calculate the number of metadata blocks need to reserve 324 * to allocate a block located at @lblock 325 */ 326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 327 { 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 329 return ext4_ext_calc_metadata_amount(inode, lblock); 330 331 return ext4_ind_calc_metadata_amount(inode, lblock); 332 } 333 334 /* 335 * Called with i_data_sem down, which is important since we can call 336 * ext4_discard_preallocations() from here. 337 */ 338 void ext4_da_update_reserve_space(struct inode *inode, 339 int used, int quota_claim) 340 { 341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 342 struct ext4_inode_info *ei = EXT4_I(inode); 343 344 spin_lock(&ei->i_block_reservation_lock); 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 346 if (unlikely(used > ei->i_reserved_data_blocks)) { 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 348 "with only %d reserved data blocks", 349 __func__, inode->i_ino, used, 350 ei->i_reserved_data_blocks); 351 WARN_ON(1); 352 used = ei->i_reserved_data_blocks; 353 } 354 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 356 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 357 "with only %d reserved metadata blocks " 358 "(releasing %d blocks with reserved %d data blocks)", 359 inode->i_ino, ei->i_allocated_meta_blocks, 360 ei->i_reserved_meta_blocks, used, 361 ei->i_reserved_data_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 #ifdef ES_AGGRESSIVE_TEST 487 static void ext4_map_blocks_es_recheck(handle_t *handle, 488 struct inode *inode, 489 struct ext4_map_blocks *es_map, 490 struct ext4_map_blocks *map, 491 int flags) 492 { 493 int retval; 494 495 map->m_flags = 0; 496 /* 497 * There is a race window that the result is not the same. 498 * e.g. xfstests #223 when dioread_nolock enables. The reason 499 * is that we lookup a block mapping in extent status tree with 500 * out taking i_data_sem. So at the time the unwritten extent 501 * could be converted. 502 */ 503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 504 down_read((&EXT4_I(inode)->i_data_sem)); 505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 506 retval = ext4_ext_map_blocks(handle, inode, map, flags & 507 EXT4_GET_BLOCKS_KEEP_SIZE); 508 } else { 509 retval = ext4_ind_map_blocks(handle, inode, map, flags & 510 EXT4_GET_BLOCKS_KEEP_SIZE); 511 } 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 513 up_read((&EXT4_I(inode)->i_data_sem)); 514 /* 515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 516 * because it shouldn't be marked in es_map->m_flags. 517 */ 518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 519 520 /* 521 * We don't check m_len because extent will be collpased in status 522 * tree. So the m_len might not equal. 523 */ 524 if (es_map->m_lblk != map->m_lblk || 525 es_map->m_flags != map->m_flags || 526 es_map->m_pblk != map->m_pblk) { 527 printk("ES cache assertation failed for inode: %lu " 528 "es_cached ex [%d/%d/%llu/%x] != " 529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 530 inode->i_ino, es_map->m_lblk, es_map->m_len, 531 es_map->m_pblk, es_map->m_flags, map->m_lblk, 532 map->m_len, map->m_pblk, map->m_flags, 533 retval, flags); 534 } 535 } 536 #endif /* ES_AGGRESSIVE_TEST */ 537 538 /* 539 * The ext4_map_blocks() function tries to look up the requested blocks, 540 * and returns if the blocks are already mapped. 541 * 542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 543 * and store the allocated blocks in the result buffer head and mark it 544 * mapped. 545 * 546 * If file type is extents based, it will call ext4_ext_map_blocks(), 547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 548 * based files 549 * 550 * On success, it returns the number of blocks being mapped or allocate. 551 * if create==0 and the blocks are pre-allocated and uninitialized block, 552 * the result buffer head is unmapped. If the create ==1, it will make sure 553 * the buffer head is mapped. 554 * 555 * It returns 0 if plain look up failed (blocks have not been allocated), in 556 * that case, buffer head is unmapped 557 * 558 * It returns the error in case of allocation failure. 559 */ 560 int ext4_map_blocks(handle_t *handle, struct inode *inode, 561 struct ext4_map_blocks *map, int flags) 562 { 563 struct extent_status es; 564 int retval; 565 #ifdef ES_AGGRESSIVE_TEST 566 struct ext4_map_blocks orig_map; 567 568 memcpy(&orig_map, map, sizeof(*map)); 569 #endif 570 571 map->m_flags = 0; 572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 573 "logical block %lu\n", inode->i_ino, flags, map->m_len, 574 (unsigned long) map->m_lblk); 575 576 /* Lookup extent status tree firstly */ 577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 579 map->m_pblk = ext4_es_pblock(&es) + 580 map->m_lblk - es.es_lblk; 581 map->m_flags |= ext4_es_is_written(&es) ? 582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 583 retval = es.es_len - (map->m_lblk - es.es_lblk); 584 if (retval > map->m_len) 585 retval = map->m_len; 586 map->m_len = retval; 587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 588 retval = 0; 589 } else { 590 BUG_ON(1); 591 } 592 #ifdef ES_AGGRESSIVE_TEST 593 ext4_map_blocks_es_recheck(handle, inode, map, 594 &orig_map, flags); 595 #endif 596 goto found; 597 } 598 599 /* 600 * Try to see if we can get the block without requesting a new 601 * file system block. 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 604 down_read((&EXT4_I(inode)->i_data_sem)); 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags & 607 EXT4_GET_BLOCKS_KEEP_SIZE); 608 } else { 609 retval = ext4_ind_map_blocks(handle, inode, map, flags & 610 EXT4_GET_BLOCKS_KEEP_SIZE); 611 } 612 if (retval > 0) { 613 int ret; 614 unsigned long long status; 615 616 #ifdef ES_AGGRESSIVE_TEST 617 if (retval != map->m_len) { 618 printk("ES len assertation failed for inode: %lu " 619 "retval %d != map->m_len %d " 620 "in %s (lookup)\n", inode->i_ino, retval, 621 map->m_len, __func__); 622 } 623 #endif 624 625 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 628 ext4_find_delalloc_range(inode, map->m_lblk, 629 map->m_lblk + map->m_len - 1)) 630 status |= EXTENT_STATUS_DELAYED; 631 ret = ext4_es_insert_extent(inode, map->m_lblk, 632 map->m_len, map->m_pblk, status); 633 if (ret < 0) 634 retval = ret; 635 } 636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 637 up_read((&EXT4_I(inode)->i_data_sem)); 638 639 found: 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 641 int ret = check_block_validity(inode, map); 642 if (ret != 0) 643 return ret; 644 } 645 646 /* If it is only a block(s) look up */ 647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 648 return retval; 649 650 /* 651 * Returns if the blocks have already allocated 652 * 653 * Note that if blocks have been preallocated 654 * ext4_ext_get_block() returns the create = 0 655 * with buffer head unmapped. 656 */ 657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 658 return retval; 659 660 /* 661 * Here we clear m_flags because after allocating an new extent, 662 * it will be set again. 663 */ 664 map->m_flags &= ~EXT4_MAP_FLAGS; 665 666 /* 667 * New blocks allocate and/or writing to uninitialized extent 668 * will possibly result in updating i_data, so we take 669 * the write lock of i_data_sem, and call get_blocks() 670 * with create == 1 flag. 671 */ 672 down_write((&EXT4_I(inode)->i_data_sem)); 673 674 /* 675 * if the caller is from delayed allocation writeout path 676 * we have already reserved fs blocks for allocation 677 * let the underlying get_block() function know to 678 * avoid double accounting 679 */ 680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 682 /* 683 * We need to check for EXT4 here because migrate 684 * could have changed the inode type in between 685 */ 686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 687 retval = ext4_ext_map_blocks(handle, inode, map, flags); 688 } else { 689 retval = ext4_ind_map_blocks(handle, inode, map, flags); 690 691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 692 /* 693 * We allocated new blocks which will result in 694 * i_data's format changing. Force the migrate 695 * to fail by clearing migrate flags 696 */ 697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 698 } 699 700 /* 701 * Update reserved blocks/metadata blocks after successful 702 * block allocation which had been deferred till now. We don't 703 * support fallocate for non extent files. So we can update 704 * reserve space here. 705 */ 706 if ((retval > 0) && 707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 708 ext4_da_update_reserve_space(inode, retval, 1); 709 } 710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 712 713 if (retval > 0) { 714 int ret; 715 unsigned long long status; 716 717 #ifdef ES_AGGRESSIVE_TEST 718 if (retval != map->m_len) { 719 printk("ES len assertation failed for inode: %lu " 720 "retval %d != map->m_len %d " 721 "in %s (allocation)\n", inode->i_ino, retval, 722 map->m_len, __func__); 723 } 724 #endif 725 726 /* 727 * If the extent has been zeroed out, we don't need to update 728 * extent status tree. 729 */ 730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 732 if (ext4_es_is_written(&es)) 733 goto has_zeroout; 734 } 735 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 738 ext4_find_delalloc_range(inode, map->m_lblk, 739 map->m_lblk + map->m_len - 1)) 740 status |= EXTENT_STATUS_DELAYED; 741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 742 map->m_pblk, status); 743 if (ret < 0) 744 retval = ret; 745 } 746 747 has_zeroout: 748 up_write((&EXT4_I(inode)->i_data_sem)); 749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 750 int ret = check_block_validity(inode, map); 751 if (ret != 0) 752 return ret; 753 } 754 return retval; 755 } 756 757 /* Maximum number of blocks we map for direct IO at once. */ 758 #define DIO_MAX_BLOCKS 4096 759 760 static int _ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int flags) 762 { 763 handle_t *handle = ext4_journal_current_handle(); 764 struct ext4_map_blocks map; 765 int ret = 0, started = 0; 766 int dio_credits; 767 768 if (ext4_has_inline_data(inode)) 769 return -ERANGE; 770 771 map.m_lblk = iblock; 772 map.m_len = bh->b_size >> inode->i_blkbits; 773 774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 775 /* Direct IO write... */ 776 if (map.m_len > DIO_MAX_BLOCKS) 777 map.m_len = DIO_MAX_BLOCKS; 778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 780 dio_credits); 781 if (IS_ERR(handle)) { 782 ret = PTR_ERR(handle); 783 return ret; 784 } 785 started = 1; 786 } 787 788 ret = ext4_map_blocks(handle, inode, &map, flags); 789 if (ret > 0) { 790 map_bh(bh, inode->i_sb, map.m_pblk); 791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 ret = 0; 794 } 795 if (started) 796 ext4_journal_stop(handle); 797 return ret; 798 } 799 800 int ext4_get_block(struct inode *inode, sector_t iblock, 801 struct buffer_head *bh, int create) 802 { 803 return _ext4_get_block(inode, iblock, bh, 804 create ? EXT4_GET_BLOCKS_CREATE : 0); 805 } 806 807 /* 808 * `handle' can be NULL if create is zero 809 */ 810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 811 ext4_lblk_t block, int create, int *errp) 812 { 813 struct ext4_map_blocks map; 814 struct buffer_head *bh; 815 int fatal = 0, err; 816 817 J_ASSERT(handle != NULL || create == 0); 818 819 map.m_lblk = block; 820 map.m_len = 1; 821 err = ext4_map_blocks(handle, inode, &map, 822 create ? EXT4_GET_BLOCKS_CREATE : 0); 823 824 /* ensure we send some value back into *errp */ 825 *errp = 0; 826 827 if (create && err == 0) 828 err = -ENOSPC; /* should never happen */ 829 if (err < 0) 830 *errp = err; 831 if (err <= 0) 832 return NULL; 833 834 bh = sb_getblk(inode->i_sb, map.m_pblk); 835 if (unlikely(!bh)) { 836 *errp = -ENOMEM; 837 return NULL; 838 } 839 if (map.m_flags & EXT4_MAP_NEW) { 840 J_ASSERT(create != 0); 841 J_ASSERT(handle != NULL); 842 843 /* 844 * Now that we do not always journal data, we should 845 * keep in mind whether this should always journal the 846 * new buffer as metadata. For now, regular file 847 * writes use ext4_get_block instead, so it's not a 848 * problem. 849 */ 850 lock_buffer(bh); 851 BUFFER_TRACE(bh, "call get_create_access"); 852 fatal = ext4_journal_get_create_access(handle, bh); 853 if (!fatal && !buffer_uptodate(bh)) { 854 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 855 set_buffer_uptodate(bh); 856 } 857 unlock_buffer(bh); 858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 859 err = ext4_handle_dirty_metadata(handle, inode, bh); 860 if (!fatal) 861 fatal = err; 862 } else { 863 BUFFER_TRACE(bh, "not a new buffer"); 864 } 865 if (fatal) { 866 *errp = fatal; 867 brelse(bh); 868 bh = NULL; 869 } 870 return bh; 871 } 872 873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 874 ext4_lblk_t block, int create, int *err) 875 { 876 struct buffer_head *bh; 877 878 bh = ext4_getblk(handle, inode, block, create, err); 879 if (!bh) 880 return bh; 881 if (buffer_uptodate(bh)) 882 return bh; 883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 884 wait_on_buffer(bh); 885 if (buffer_uptodate(bh)) 886 return bh; 887 put_bh(bh); 888 *err = -EIO; 889 return NULL; 890 } 891 892 int ext4_walk_page_buffers(handle_t *handle, 893 struct buffer_head *head, 894 unsigned from, 895 unsigned to, 896 int *partial, 897 int (*fn)(handle_t *handle, 898 struct buffer_head *bh)) 899 { 900 struct buffer_head *bh; 901 unsigned block_start, block_end; 902 unsigned blocksize = head->b_size; 903 int err, ret = 0; 904 struct buffer_head *next; 905 906 for (bh = head, block_start = 0; 907 ret == 0 && (bh != head || !block_start); 908 block_start = block_end, bh = next) { 909 next = bh->b_this_page; 910 block_end = block_start + blocksize; 911 if (block_end <= from || block_start >= to) { 912 if (partial && !buffer_uptodate(bh)) 913 *partial = 1; 914 continue; 915 } 916 err = (*fn)(handle, bh); 917 if (!ret) 918 ret = err; 919 } 920 return ret; 921 } 922 923 /* 924 * To preserve ordering, it is essential that the hole instantiation and 925 * the data write be encapsulated in a single transaction. We cannot 926 * close off a transaction and start a new one between the ext4_get_block() 927 * and the commit_write(). So doing the jbd2_journal_start at the start of 928 * prepare_write() is the right place. 929 * 930 * Also, this function can nest inside ext4_writepage(). In that case, we 931 * *know* that ext4_writepage() has generated enough buffer credits to do the 932 * whole page. So we won't block on the journal in that case, which is good, 933 * because the caller may be PF_MEMALLOC. 934 * 935 * By accident, ext4 can be reentered when a transaction is open via 936 * quota file writes. If we were to commit the transaction while thus 937 * reentered, there can be a deadlock - we would be holding a quota 938 * lock, and the commit would never complete if another thread had a 939 * transaction open and was blocking on the quota lock - a ranking 940 * violation. 941 * 942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 943 * will _not_ run commit under these circumstances because handle->h_ref 944 * is elevated. We'll still have enough credits for the tiny quotafile 945 * write. 946 */ 947 int do_journal_get_write_access(handle_t *handle, 948 struct buffer_head *bh) 949 { 950 int dirty = buffer_dirty(bh); 951 int ret; 952 953 if (!buffer_mapped(bh) || buffer_freed(bh)) 954 return 0; 955 /* 956 * __block_write_begin() could have dirtied some buffers. Clean 957 * the dirty bit as jbd2_journal_get_write_access() could complain 958 * otherwise about fs integrity issues. Setting of the dirty bit 959 * by __block_write_begin() isn't a real problem here as we clear 960 * the bit before releasing a page lock and thus writeback cannot 961 * ever write the buffer. 962 */ 963 if (dirty) 964 clear_buffer_dirty(bh); 965 ret = ext4_journal_get_write_access(handle, bh); 966 if (!ret && dirty) 967 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 968 return ret; 969 } 970 971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 972 struct buffer_head *bh_result, int create); 973 static int ext4_write_begin(struct file *file, struct address_space *mapping, 974 loff_t pos, unsigned len, unsigned flags, 975 struct page **pagep, void **fsdata) 976 { 977 struct inode *inode = mapping->host; 978 int ret, needed_blocks; 979 handle_t *handle; 980 int retries = 0; 981 struct page *page; 982 pgoff_t index; 983 unsigned from, to; 984 985 trace_ext4_write_begin(inode, pos, len, flags); 986 /* 987 * Reserve one block more for addition to orphan list in case 988 * we allocate blocks but write fails for some reason 989 */ 990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 991 index = pos >> PAGE_CACHE_SHIFT; 992 from = pos & (PAGE_CACHE_SIZE - 1); 993 to = from + len; 994 995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 997 flags, pagep); 998 if (ret < 0) 999 return ret; 1000 if (ret == 1) 1001 return 0; 1002 } 1003 1004 /* 1005 * grab_cache_page_write_begin() can take a long time if the 1006 * system is thrashing due to memory pressure, or if the page 1007 * is being written back. So grab it first before we start 1008 * the transaction handle. This also allows us to allocate 1009 * the page (if needed) without using GFP_NOFS. 1010 */ 1011 retry_grab: 1012 page = grab_cache_page_write_begin(mapping, index, flags); 1013 if (!page) 1014 return -ENOMEM; 1015 unlock_page(page); 1016 1017 retry_journal: 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1019 if (IS_ERR(handle)) { 1020 page_cache_release(page); 1021 return PTR_ERR(handle); 1022 } 1023 1024 lock_page(page); 1025 if (page->mapping != mapping) { 1026 /* The page got truncated from under us */ 1027 unlock_page(page); 1028 page_cache_release(page); 1029 ext4_journal_stop(handle); 1030 goto retry_grab; 1031 } 1032 wait_on_page_writeback(page); 1033 1034 if (ext4_should_dioread_nolock(inode)) 1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1036 else 1037 ret = __block_write_begin(page, pos, len, ext4_get_block); 1038 1039 if (!ret && ext4_should_journal_data(inode)) { 1040 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1041 from, to, NULL, 1042 do_journal_get_write_access); 1043 } 1044 1045 if (ret) { 1046 unlock_page(page); 1047 /* 1048 * __block_write_begin may have instantiated a few blocks 1049 * outside i_size. Trim these off again. Don't need 1050 * i_size_read because we hold i_mutex. 1051 * 1052 * Add inode to orphan list in case we crash before 1053 * truncate finishes 1054 */ 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1056 ext4_orphan_add(handle, inode); 1057 1058 ext4_journal_stop(handle); 1059 if (pos + len > inode->i_size) { 1060 ext4_truncate_failed_write(inode); 1061 /* 1062 * If truncate failed early the inode might 1063 * still be on the orphan list; we need to 1064 * make sure the inode is removed from the 1065 * orphan list in that case. 1066 */ 1067 if (inode->i_nlink) 1068 ext4_orphan_del(NULL, inode); 1069 } 1070 1071 if (ret == -ENOSPC && 1072 ext4_should_retry_alloc(inode->i_sb, &retries)) 1073 goto retry_journal; 1074 page_cache_release(page); 1075 return ret; 1076 } 1077 *pagep = page; 1078 return ret; 1079 } 1080 1081 /* For write_end() in data=journal mode */ 1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1083 { 1084 if (!buffer_mapped(bh) || buffer_freed(bh)) 1085 return 0; 1086 set_buffer_uptodate(bh); 1087 return ext4_handle_dirty_metadata(handle, NULL, bh); 1088 } 1089 1090 static int ext4_generic_write_end(struct file *file, 1091 struct address_space *mapping, 1092 loff_t pos, unsigned len, unsigned copied, 1093 struct page *page, void *fsdata) 1094 { 1095 int i_size_changed = 0; 1096 struct inode *inode = mapping->host; 1097 handle_t *handle = ext4_journal_current_handle(); 1098 1099 if (ext4_has_inline_data(inode)) 1100 copied = ext4_write_inline_data_end(inode, pos, len, 1101 copied, page); 1102 else 1103 copied = block_write_end(file, mapping, pos, 1104 len, copied, page, fsdata); 1105 1106 /* 1107 * No need to use i_size_read() here, the i_size 1108 * cannot change under us because we hold i_mutex. 1109 * 1110 * But it's important to update i_size while still holding page lock: 1111 * page writeout could otherwise come in and zero beyond i_size. 1112 */ 1113 if (pos + copied > inode->i_size) { 1114 i_size_write(inode, pos + copied); 1115 i_size_changed = 1; 1116 } 1117 1118 if (pos + copied > EXT4_I(inode)->i_disksize) { 1119 /* We need to mark inode dirty even if 1120 * new_i_size is less that inode->i_size 1121 * bu greater than i_disksize.(hint delalloc) 1122 */ 1123 ext4_update_i_disksize(inode, (pos + copied)); 1124 i_size_changed = 1; 1125 } 1126 unlock_page(page); 1127 page_cache_release(page); 1128 1129 /* 1130 * Don't mark the inode dirty under page lock. First, it unnecessarily 1131 * makes the holding time of page lock longer. Second, it forces lock 1132 * ordering of page lock and transaction start for journaling 1133 * filesystems. 1134 */ 1135 if (i_size_changed) 1136 ext4_mark_inode_dirty(handle, inode); 1137 1138 return copied; 1139 } 1140 1141 /* 1142 * We need to pick up the new inode size which generic_commit_write gave us 1143 * `file' can be NULL - eg, when called from page_symlink(). 1144 * 1145 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1146 * buffers are managed internally. 1147 */ 1148 static int ext4_ordered_write_end(struct file *file, 1149 struct address_space *mapping, 1150 loff_t pos, unsigned len, unsigned copied, 1151 struct page *page, void *fsdata) 1152 { 1153 handle_t *handle = ext4_journal_current_handle(); 1154 struct inode *inode = mapping->host; 1155 int ret = 0, ret2; 1156 1157 trace_ext4_ordered_write_end(inode, pos, len, copied); 1158 ret = ext4_jbd2_file_inode(handle, inode); 1159 1160 if (ret == 0) { 1161 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1162 page, fsdata); 1163 copied = ret2; 1164 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1165 /* if we have allocated more blocks and copied 1166 * less. We will have blocks allocated outside 1167 * inode->i_size. So truncate them 1168 */ 1169 ext4_orphan_add(handle, inode); 1170 if (ret2 < 0) 1171 ret = ret2; 1172 } else { 1173 unlock_page(page); 1174 page_cache_release(page); 1175 } 1176 1177 ret2 = ext4_journal_stop(handle); 1178 if (!ret) 1179 ret = ret2; 1180 1181 if (pos + len > inode->i_size) { 1182 ext4_truncate_failed_write(inode); 1183 /* 1184 * If truncate failed early the inode might still be 1185 * on the orphan list; we need to make sure the inode 1186 * is removed from the orphan list in that case. 1187 */ 1188 if (inode->i_nlink) 1189 ext4_orphan_del(NULL, inode); 1190 } 1191 1192 1193 return ret ? ret : copied; 1194 } 1195 1196 static int ext4_writeback_write_end(struct file *file, 1197 struct address_space *mapping, 1198 loff_t pos, unsigned len, unsigned copied, 1199 struct page *page, void *fsdata) 1200 { 1201 handle_t *handle = ext4_journal_current_handle(); 1202 struct inode *inode = mapping->host; 1203 int ret = 0, ret2; 1204 1205 trace_ext4_writeback_write_end(inode, pos, len, copied); 1206 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1207 page, fsdata); 1208 copied = ret2; 1209 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1210 /* if we have allocated more blocks and copied 1211 * less. We will have blocks allocated outside 1212 * inode->i_size. So truncate them 1213 */ 1214 ext4_orphan_add(handle, inode); 1215 1216 if (ret2 < 0) 1217 ret = ret2; 1218 1219 ret2 = ext4_journal_stop(handle); 1220 if (!ret) 1221 ret = ret2; 1222 1223 if (pos + len > inode->i_size) { 1224 ext4_truncate_failed_write(inode); 1225 /* 1226 * If truncate failed early the inode might still be 1227 * on the orphan list; we need to make sure the inode 1228 * is removed from the orphan list in that case. 1229 */ 1230 if (inode->i_nlink) 1231 ext4_orphan_del(NULL, inode); 1232 } 1233 1234 return ret ? ret : copied; 1235 } 1236 1237 static int ext4_journalled_write_end(struct file *file, 1238 struct address_space *mapping, 1239 loff_t pos, unsigned len, unsigned copied, 1240 struct page *page, void *fsdata) 1241 { 1242 handle_t *handle = ext4_journal_current_handle(); 1243 struct inode *inode = mapping->host; 1244 int ret = 0, ret2; 1245 int partial = 0; 1246 unsigned from, to; 1247 loff_t new_i_size; 1248 1249 trace_ext4_journalled_write_end(inode, pos, len, copied); 1250 from = pos & (PAGE_CACHE_SIZE - 1); 1251 to = from + len; 1252 1253 BUG_ON(!ext4_handle_valid(handle)); 1254 1255 if (ext4_has_inline_data(inode)) 1256 copied = ext4_write_inline_data_end(inode, pos, len, 1257 copied, page); 1258 else { 1259 if (copied < len) { 1260 if (!PageUptodate(page)) 1261 copied = 0; 1262 page_zero_new_buffers(page, from+copied, to); 1263 } 1264 1265 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1266 to, &partial, write_end_fn); 1267 if (!partial) 1268 SetPageUptodate(page); 1269 } 1270 new_i_size = pos + copied; 1271 if (new_i_size > inode->i_size) 1272 i_size_write(inode, pos+copied); 1273 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1274 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1275 if (new_i_size > EXT4_I(inode)->i_disksize) { 1276 ext4_update_i_disksize(inode, new_i_size); 1277 ret2 = ext4_mark_inode_dirty(handle, inode); 1278 if (!ret) 1279 ret = ret2; 1280 } 1281 1282 unlock_page(page); 1283 page_cache_release(page); 1284 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1285 /* if we have allocated more blocks and copied 1286 * less. We will have blocks allocated outside 1287 * inode->i_size. So truncate them 1288 */ 1289 ext4_orphan_add(handle, inode); 1290 1291 ret2 = ext4_journal_stop(handle); 1292 if (!ret) 1293 ret = ret2; 1294 if (pos + len > inode->i_size) { 1295 ext4_truncate_failed_write(inode); 1296 /* 1297 * If truncate failed early the inode might still be 1298 * on the orphan list; we need to make sure the inode 1299 * is removed from the orphan list in that case. 1300 */ 1301 if (inode->i_nlink) 1302 ext4_orphan_del(NULL, inode); 1303 } 1304 1305 return ret ? ret : copied; 1306 } 1307 1308 /* 1309 * Reserve a metadata for a single block located at lblock 1310 */ 1311 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1312 { 1313 int retries = 0; 1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1315 struct ext4_inode_info *ei = EXT4_I(inode); 1316 unsigned int md_needed; 1317 ext4_lblk_t save_last_lblock; 1318 int save_len; 1319 1320 /* 1321 * recalculate the amount of metadata blocks to reserve 1322 * in order to allocate nrblocks 1323 * worse case is one extent per block 1324 */ 1325 repeat: 1326 spin_lock(&ei->i_block_reservation_lock); 1327 /* 1328 * ext4_calc_metadata_amount() has side effects, which we have 1329 * to be prepared undo if we fail to claim space. 1330 */ 1331 save_len = ei->i_da_metadata_calc_len; 1332 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1333 md_needed = EXT4_NUM_B2C(sbi, 1334 ext4_calc_metadata_amount(inode, lblock)); 1335 trace_ext4_da_reserve_space(inode, md_needed); 1336 1337 /* 1338 * We do still charge estimated metadata to the sb though; 1339 * we cannot afford to run out of free blocks. 1340 */ 1341 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1342 ei->i_da_metadata_calc_len = save_len; 1343 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1344 spin_unlock(&ei->i_block_reservation_lock); 1345 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1346 cond_resched(); 1347 goto repeat; 1348 } 1349 return -ENOSPC; 1350 } 1351 ei->i_reserved_meta_blocks += md_needed; 1352 spin_unlock(&ei->i_block_reservation_lock); 1353 1354 return 0; /* success */ 1355 } 1356 1357 /* 1358 * Reserve a single cluster located at lblock 1359 */ 1360 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1361 { 1362 int retries = 0; 1363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1364 struct ext4_inode_info *ei = EXT4_I(inode); 1365 unsigned int md_needed; 1366 int ret; 1367 ext4_lblk_t save_last_lblock; 1368 int save_len; 1369 1370 /* 1371 * We will charge metadata quota at writeout time; this saves 1372 * us from metadata over-estimation, though we may go over by 1373 * a small amount in the end. Here we just reserve for data. 1374 */ 1375 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1376 if (ret) 1377 return ret; 1378 1379 /* 1380 * recalculate the amount of metadata blocks to reserve 1381 * in order to allocate nrblocks 1382 * worse case is one extent per block 1383 */ 1384 repeat: 1385 spin_lock(&ei->i_block_reservation_lock); 1386 /* 1387 * ext4_calc_metadata_amount() has side effects, which we have 1388 * to be prepared undo if we fail to claim space. 1389 */ 1390 save_len = ei->i_da_metadata_calc_len; 1391 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1392 md_needed = EXT4_NUM_B2C(sbi, 1393 ext4_calc_metadata_amount(inode, lblock)); 1394 trace_ext4_da_reserve_space(inode, md_needed); 1395 1396 /* 1397 * We do still charge estimated metadata to the sb though; 1398 * we cannot afford to run out of free blocks. 1399 */ 1400 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1401 ei->i_da_metadata_calc_len = save_len; 1402 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1403 spin_unlock(&ei->i_block_reservation_lock); 1404 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1405 cond_resched(); 1406 goto repeat; 1407 } 1408 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1409 return -ENOSPC; 1410 } 1411 ei->i_reserved_data_blocks++; 1412 ei->i_reserved_meta_blocks += md_needed; 1413 spin_unlock(&ei->i_block_reservation_lock); 1414 1415 return 0; /* success */ 1416 } 1417 1418 static void ext4_da_release_space(struct inode *inode, int to_free) 1419 { 1420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1421 struct ext4_inode_info *ei = EXT4_I(inode); 1422 1423 if (!to_free) 1424 return; /* Nothing to release, exit */ 1425 1426 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1427 1428 trace_ext4_da_release_space(inode, to_free); 1429 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1430 /* 1431 * if there aren't enough reserved blocks, then the 1432 * counter is messed up somewhere. Since this 1433 * function is called from invalidate page, it's 1434 * harmless to return without any action. 1435 */ 1436 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1437 "ino %lu, to_free %d with only %d reserved " 1438 "data blocks", inode->i_ino, to_free, 1439 ei->i_reserved_data_blocks); 1440 WARN_ON(1); 1441 to_free = ei->i_reserved_data_blocks; 1442 } 1443 ei->i_reserved_data_blocks -= to_free; 1444 1445 if (ei->i_reserved_data_blocks == 0) { 1446 /* 1447 * We can release all of the reserved metadata blocks 1448 * only when we have written all of the delayed 1449 * allocation blocks. 1450 * Note that in case of bigalloc, i_reserved_meta_blocks, 1451 * i_reserved_data_blocks, etc. refer to number of clusters. 1452 */ 1453 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1454 ei->i_reserved_meta_blocks); 1455 ei->i_reserved_meta_blocks = 0; 1456 ei->i_da_metadata_calc_len = 0; 1457 } 1458 1459 /* update fs dirty data blocks counter */ 1460 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1461 1462 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1463 1464 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1465 } 1466 1467 static void ext4_da_page_release_reservation(struct page *page, 1468 unsigned long offset) 1469 { 1470 int to_release = 0; 1471 struct buffer_head *head, *bh; 1472 unsigned int curr_off = 0; 1473 struct inode *inode = page->mapping->host; 1474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1475 int num_clusters; 1476 ext4_fsblk_t lblk; 1477 1478 head = page_buffers(page); 1479 bh = head; 1480 do { 1481 unsigned int next_off = curr_off + bh->b_size; 1482 1483 if ((offset <= curr_off) && (buffer_delay(bh))) { 1484 to_release++; 1485 clear_buffer_delay(bh); 1486 } 1487 curr_off = next_off; 1488 } while ((bh = bh->b_this_page) != head); 1489 1490 if (to_release) { 1491 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1492 ext4_es_remove_extent(inode, lblk, to_release); 1493 } 1494 1495 /* If we have released all the blocks belonging to a cluster, then we 1496 * need to release the reserved space for that cluster. */ 1497 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1498 while (num_clusters > 0) { 1499 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1500 ((num_clusters - 1) << sbi->s_cluster_bits); 1501 if (sbi->s_cluster_ratio == 1 || 1502 !ext4_find_delalloc_cluster(inode, lblk)) 1503 ext4_da_release_space(inode, 1); 1504 1505 num_clusters--; 1506 } 1507 } 1508 1509 /* 1510 * Delayed allocation stuff 1511 */ 1512 1513 /* 1514 * mpage_da_submit_io - walks through extent of pages and try to write 1515 * them with writepage() call back 1516 * 1517 * @mpd->inode: inode 1518 * @mpd->first_page: first page of the extent 1519 * @mpd->next_page: page after the last page of the extent 1520 * 1521 * By the time mpage_da_submit_io() is called we expect all blocks 1522 * to be allocated. this may be wrong if allocation failed. 1523 * 1524 * As pages are already locked by write_cache_pages(), we can't use it 1525 */ 1526 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1527 struct ext4_map_blocks *map) 1528 { 1529 struct pagevec pvec; 1530 unsigned long index, end; 1531 int ret = 0, err, nr_pages, i; 1532 struct inode *inode = mpd->inode; 1533 struct address_space *mapping = inode->i_mapping; 1534 loff_t size = i_size_read(inode); 1535 unsigned int len, block_start; 1536 struct buffer_head *bh, *page_bufs = NULL; 1537 sector_t pblock = 0, cur_logical = 0; 1538 struct ext4_io_submit io_submit; 1539 1540 BUG_ON(mpd->next_page <= mpd->first_page); 1541 memset(&io_submit, 0, sizeof(io_submit)); 1542 /* 1543 * We need to start from the first_page to the next_page - 1 1544 * to make sure we also write the mapped dirty buffer_heads. 1545 * If we look at mpd->b_blocknr we would only be looking 1546 * at the currently mapped buffer_heads. 1547 */ 1548 index = mpd->first_page; 1549 end = mpd->next_page - 1; 1550 1551 pagevec_init(&pvec, 0); 1552 while (index <= end) { 1553 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1554 if (nr_pages == 0) 1555 break; 1556 for (i = 0; i < nr_pages; i++) { 1557 int skip_page = 0; 1558 struct page *page = pvec.pages[i]; 1559 1560 index = page->index; 1561 if (index > end) 1562 break; 1563 1564 if (index == size >> PAGE_CACHE_SHIFT) 1565 len = size & ~PAGE_CACHE_MASK; 1566 else 1567 len = PAGE_CACHE_SIZE; 1568 if (map) { 1569 cur_logical = index << (PAGE_CACHE_SHIFT - 1570 inode->i_blkbits); 1571 pblock = map->m_pblk + (cur_logical - 1572 map->m_lblk); 1573 } 1574 index++; 1575 1576 BUG_ON(!PageLocked(page)); 1577 BUG_ON(PageWriteback(page)); 1578 1579 bh = page_bufs = page_buffers(page); 1580 block_start = 0; 1581 do { 1582 if (map && (cur_logical >= map->m_lblk) && 1583 (cur_logical <= (map->m_lblk + 1584 (map->m_len - 1)))) { 1585 if (buffer_delay(bh)) { 1586 clear_buffer_delay(bh); 1587 bh->b_blocknr = pblock; 1588 } 1589 if (buffer_unwritten(bh) || 1590 buffer_mapped(bh)) 1591 BUG_ON(bh->b_blocknr != pblock); 1592 if (map->m_flags & EXT4_MAP_UNINIT) 1593 set_buffer_uninit(bh); 1594 clear_buffer_unwritten(bh); 1595 } 1596 1597 /* 1598 * skip page if block allocation undone and 1599 * block is dirty 1600 */ 1601 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1602 skip_page = 1; 1603 bh = bh->b_this_page; 1604 block_start += bh->b_size; 1605 cur_logical++; 1606 pblock++; 1607 } while (bh != page_bufs); 1608 1609 if (skip_page) { 1610 unlock_page(page); 1611 continue; 1612 } 1613 1614 clear_page_dirty_for_io(page); 1615 err = ext4_bio_write_page(&io_submit, page, len, 1616 mpd->wbc); 1617 if (!err) 1618 mpd->pages_written++; 1619 /* 1620 * In error case, we have to continue because 1621 * remaining pages are still locked 1622 */ 1623 if (ret == 0) 1624 ret = err; 1625 } 1626 pagevec_release(&pvec); 1627 } 1628 ext4_io_submit(&io_submit); 1629 return ret; 1630 } 1631 1632 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1633 { 1634 int nr_pages, i; 1635 pgoff_t index, end; 1636 struct pagevec pvec; 1637 struct inode *inode = mpd->inode; 1638 struct address_space *mapping = inode->i_mapping; 1639 ext4_lblk_t start, last; 1640 1641 index = mpd->first_page; 1642 end = mpd->next_page - 1; 1643 1644 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1645 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1646 ext4_es_remove_extent(inode, start, last - start + 1); 1647 1648 pagevec_init(&pvec, 0); 1649 while (index <= end) { 1650 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1651 if (nr_pages == 0) 1652 break; 1653 for (i = 0; i < nr_pages; i++) { 1654 struct page *page = pvec.pages[i]; 1655 if (page->index > end) 1656 break; 1657 BUG_ON(!PageLocked(page)); 1658 BUG_ON(PageWriteback(page)); 1659 block_invalidatepage(page, 0); 1660 ClearPageUptodate(page); 1661 unlock_page(page); 1662 } 1663 index = pvec.pages[nr_pages - 1]->index + 1; 1664 pagevec_release(&pvec); 1665 } 1666 return; 1667 } 1668 1669 static void ext4_print_free_blocks(struct inode *inode) 1670 { 1671 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1672 struct super_block *sb = inode->i_sb; 1673 1674 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1675 EXT4_C2B(EXT4_SB(inode->i_sb), 1676 ext4_count_free_clusters(inode->i_sb))); 1677 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1678 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1679 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1680 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1681 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1682 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1683 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1684 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1685 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1686 EXT4_I(inode)->i_reserved_data_blocks); 1687 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1688 EXT4_I(inode)->i_reserved_meta_blocks); 1689 return; 1690 } 1691 1692 /* 1693 * mpage_da_map_and_submit - go through given space, map them 1694 * if necessary, and then submit them for I/O 1695 * 1696 * @mpd - bh describing space 1697 * 1698 * The function skips space we know is already mapped to disk blocks. 1699 * 1700 */ 1701 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1702 { 1703 int err, blks, get_blocks_flags; 1704 struct ext4_map_blocks map, *mapp = NULL; 1705 sector_t next = mpd->b_blocknr; 1706 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1707 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1708 handle_t *handle = NULL; 1709 1710 /* 1711 * If the blocks are mapped already, or we couldn't accumulate 1712 * any blocks, then proceed immediately to the submission stage. 1713 */ 1714 if ((mpd->b_size == 0) || 1715 ((mpd->b_state & (1 << BH_Mapped)) && 1716 !(mpd->b_state & (1 << BH_Delay)) && 1717 !(mpd->b_state & (1 << BH_Unwritten)))) 1718 goto submit_io; 1719 1720 handle = ext4_journal_current_handle(); 1721 BUG_ON(!handle); 1722 1723 /* 1724 * Call ext4_map_blocks() to allocate any delayed allocation 1725 * blocks, or to convert an uninitialized extent to be 1726 * initialized (in the case where we have written into 1727 * one or more preallocated blocks). 1728 * 1729 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1730 * indicate that we are on the delayed allocation path. This 1731 * affects functions in many different parts of the allocation 1732 * call path. This flag exists primarily because we don't 1733 * want to change *many* call functions, so ext4_map_blocks() 1734 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1735 * inode's allocation semaphore is taken. 1736 * 1737 * If the blocks in questions were delalloc blocks, set 1738 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1739 * variables are updated after the blocks have been allocated. 1740 */ 1741 map.m_lblk = next; 1742 map.m_len = max_blocks; 1743 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1744 if (ext4_should_dioread_nolock(mpd->inode)) 1745 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1746 if (mpd->b_state & (1 << BH_Delay)) 1747 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1748 1749 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1750 if (blks < 0) { 1751 struct super_block *sb = mpd->inode->i_sb; 1752 1753 err = blks; 1754 /* 1755 * If get block returns EAGAIN or ENOSPC and there 1756 * appears to be free blocks we will just let 1757 * mpage_da_submit_io() unlock all of the pages. 1758 */ 1759 if (err == -EAGAIN) 1760 goto submit_io; 1761 1762 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1763 mpd->retval = err; 1764 goto submit_io; 1765 } 1766 1767 /* 1768 * get block failure will cause us to loop in 1769 * writepages, because a_ops->writepage won't be able 1770 * to make progress. The page will be redirtied by 1771 * writepage and writepages will again try to write 1772 * the same. 1773 */ 1774 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1775 ext4_msg(sb, KERN_CRIT, 1776 "delayed block allocation failed for inode %lu " 1777 "at logical offset %llu with max blocks %zd " 1778 "with error %d", mpd->inode->i_ino, 1779 (unsigned long long) next, 1780 mpd->b_size >> mpd->inode->i_blkbits, err); 1781 ext4_msg(sb, KERN_CRIT, 1782 "This should not happen!! Data will be lost"); 1783 if (err == -ENOSPC) 1784 ext4_print_free_blocks(mpd->inode); 1785 } 1786 /* invalidate all the pages */ 1787 ext4_da_block_invalidatepages(mpd); 1788 1789 /* Mark this page range as having been completed */ 1790 mpd->io_done = 1; 1791 return; 1792 } 1793 BUG_ON(blks == 0); 1794 1795 mapp = ↦ 1796 if (map.m_flags & EXT4_MAP_NEW) { 1797 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1798 int i; 1799 1800 for (i = 0; i < map.m_len; i++) 1801 unmap_underlying_metadata(bdev, map.m_pblk + i); 1802 } 1803 1804 /* 1805 * Update on-disk size along with block allocation. 1806 */ 1807 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1808 if (disksize > i_size_read(mpd->inode)) 1809 disksize = i_size_read(mpd->inode); 1810 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1811 ext4_update_i_disksize(mpd->inode, disksize); 1812 err = ext4_mark_inode_dirty(handle, mpd->inode); 1813 if (err) 1814 ext4_error(mpd->inode->i_sb, 1815 "Failed to mark inode %lu dirty", 1816 mpd->inode->i_ino); 1817 } 1818 1819 submit_io: 1820 mpage_da_submit_io(mpd, mapp); 1821 mpd->io_done = 1; 1822 } 1823 1824 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1825 (1 << BH_Delay) | (1 << BH_Unwritten)) 1826 1827 /* 1828 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1829 * 1830 * @mpd->lbh - extent of blocks 1831 * @logical - logical number of the block in the file 1832 * @b_state - b_state of the buffer head added 1833 * 1834 * the function is used to collect contig. blocks in same state 1835 */ 1836 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical, 1837 unsigned long b_state) 1838 { 1839 sector_t next; 1840 int blkbits = mpd->inode->i_blkbits; 1841 int nrblocks = mpd->b_size >> blkbits; 1842 1843 /* 1844 * XXX Don't go larger than mballoc is willing to allocate 1845 * This is a stopgap solution. We eventually need to fold 1846 * mpage_da_submit_io() into this function and then call 1847 * ext4_map_blocks() multiple times in a loop 1848 */ 1849 if (nrblocks >= (8*1024*1024 >> blkbits)) 1850 goto flush_it; 1851 1852 /* check if the reserved journal credits might overflow */ 1853 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) { 1854 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1855 /* 1856 * With non-extent format we are limited by the journal 1857 * credit available. Total credit needed to insert 1858 * nrblocks contiguous blocks is dependent on the 1859 * nrblocks. So limit nrblocks. 1860 */ 1861 goto flush_it; 1862 } 1863 } 1864 /* 1865 * First block in the extent 1866 */ 1867 if (mpd->b_size == 0) { 1868 mpd->b_blocknr = logical; 1869 mpd->b_size = 1 << blkbits; 1870 mpd->b_state = b_state & BH_FLAGS; 1871 return; 1872 } 1873 1874 next = mpd->b_blocknr + nrblocks; 1875 /* 1876 * Can we merge the block to our big extent? 1877 */ 1878 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1879 mpd->b_size += 1 << blkbits; 1880 return; 1881 } 1882 1883 flush_it: 1884 /* 1885 * We couldn't merge the block to our extent, so we 1886 * need to flush current extent and start new one 1887 */ 1888 mpage_da_map_and_submit(mpd); 1889 return; 1890 } 1891 1892 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1893 { 1894 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1895 } 1896 1897 /* 1898 * This function is grabs code from the very beginning of 1899 * ext4_map_blocks, but assumes that the caller is from delayed write 1900 * time. This function looks up the requested blocks and sets the 1901 * buffer delay bit under the protection of i_data_sem. 1902 */ 1903 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1904 struct ext4_map_blocks *map, 1905 struct buffer_head *bh) 1906 { 1907 struct extent_status es; 1908 int retval; 1909 sector_t invalid_block = ~((sector_t) 0xffff); 1910 #ifdef ES_AGGRESSIVE_TEST 1911 struct ext4_map_blocks orig_map; 1912 1913 memcpy(&orig_map, map, sizeof(*map)); 1914 #endif 1915 1916 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1917 invalid_block = ~0; 1918 1919 map->m_flags = 0; 1920 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1921 "logical block %lu\n", inode->i_ino, map->m_len, 1922 (unsigned long) map->m_lblk); 1923 1924 /* Lookup extent status tree firstly */ 1925 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1926 1927 if (ext4_es_is_hole(&es)) { 1928 retval = 0; 1929 down_read((&EXT4_I(inode)->i_data_sem)); 1930 goto add_delayed; 1931 } 1932 1933 /* 1934 * Delayed extent could be allocated by fallocate. 1935 * So we need to check it. 1936 */ 1937 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1938 map_bh(bh, inode->i_sb, invalid_block); 1939 set_buffer_new(bh); 1940 set_buffer_delay(bh); 1941 return 0; 1942 } 1943 1944 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1945 retval = es.es_len - (iblock - es.es_lblk); 1946 if (retval > map->m_len) 1947 retval = map->m_len; 1948 map->m_len = retval; 1949 if (ext4_es_is_written(&es)) 1950 map->m_flags |= EXT4_MAP_MAPPED; 1951 else if (ext4_es_is_unwritten(&es)) 1952 map->m_flags |= EXT4_MAP_UNWRITTEN; 1953 else 1954 BUG_ON(1); 1955 1956 #ifdef ES_AGGRESSIVE_TEST 1957 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1958 #endif 1959 return retval; 1960 } 1961 1962 /* 1963 * Try to see if we can get the block without requesting a new 1964 * file system block. 1965 */ 1966 down_read((&EXT4_I(inode)->i_data_sem)); 1967 if (ext4_has_inline_data(inode)) { 1968 /* 1969 * We will soon create blocks for this page, and let 1970 * us pretend as if the blocks aren't allocated yet. 1971 * In case of clusters, we have to handle the work 1972 * of mapping from cluster so that the reserved space 1973 * is calculated properly. 1974 */ 1975 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1976 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1977 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1978 retval = 0; 1979 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1980 retval = ext4_ext_map_blocks(NULL, inode, map, 1981 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1982 else 1983 retval = ext4_ind_map_blocks(NULL, inode, map, 1984 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1985 1986 add_delayed: 1987 if (retval == 0) { 1988 int ret; 1989 /* 1990 * XXX: __block_prepare_write() unmaps passed block, 1991 * is it OK? 1992 */ 1993 /* 1994 * If the block was allocated from previously allocated cluster, 1995 * then we don't need to reserve it again. However we still need 1996 * to reserve metadata for every block we're going to write. 1997 */ 1998 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1999 ret = ext4_da_reserve_space(inode, iblock); 2000 if (ret) { 2001 /* not enough space to reserve */ 2002 retval = ret; 2003 goto out_unlock; 2004 } 2005 } else { 2006 ret = ext4_da_reserve_metadata(inode, iblock); 2007 if (ret) { 2008 /* not enough space to reserve */ 2009 retval = ret; 2010 goto out_unlock; 2011 } 2012 } 2013 2014 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2015 ~0, EXTENT_STATUS_DELAYED); 2016 if (ret) { 2017 retval = ret; 2018 goto out_unlock; 2019 } 2020 2021 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 2022 * and it should not appear on the bh->b_state. 2023 */ 2024 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 2025 2026 map_bh(bh, inode->i_sb, invalid_block); 2027 set_buffer_new(bh); 2028 set_buffer_delay(bh); 2029 } else if (retval > 0) { 2030 int ret; 2031 unsigned long long status; 2032 2033 #ifdef ES_AGGRESSIVE_TEST 2034 if (retval != map->m_len) { 2035 printk("ES len assertation failed for inode: %lu " 2036 "retval %d != map->m_len %d " 2037 "in %s (lookup)\n", inode->i_ino, retval, 2038 map->m_len, __func__); 2039 } 2040 #endif 2041 2042 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 2043 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 2044 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2045 map->m_pblk, status); 2046 if (ret != 0) 2047 retval = ret; 2048 } 2049 2050 out_unlock: 2051 up_read((&EXT4_I(inode)->i_data_sem)); 2052 2053 return retval; 2054 } 2055 2056 /* 2057 * This is a special get_blocks_t callback which is used by 2058 * ext4_da_write_begin(). It will either return mapped block or 2059 * reserve space for a single block. 2060 * 2061 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2062 * We also have b_blocknr = -1 and b_bdev initialized properly 2063 * 2064 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2065 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2066 * initialized properly. 2067 */ 2068 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2069 struct buffer_head *bh, int create) 2070 { 2071 struct ext4_map_blocks map; 2072 int ret = 0; 2073 2074 BUG_ON(create == 0); 2075 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2076 2077 map.m_lblk = iblock; 2078 map.m_len = 1; 2079 2080 /* 2081 * first, we need to know whether the block is allocated already 2082 * preallocated blocks are unmapped but should treated 2083 * the same as allocated blocks. 2084 */ 2085 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2086 if (ret <= 0) 2087 return ret; 2088 2089 map_bh(bh, inode->i_sb, map.m_pblk); 2090 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2091 2092 if (buffer_unwritten(bh)) { 2093 /* A delayed write to unwritten bh should be marked 2094 * new and mapped. Mapped ensures that we don't do 2095 * get_block multiple times when we write to the same 2096 * offset and new ensures that we do proper zero out 2097 * for partial write. 2098 */ 2099 set_buffer_new(bh); 2100 set_buffer_mapped(bh); 2101 } 2102 return 0; 2103 } 2104 2105 static int bget_one(handle_t *handle, struct buffer_head *bh) 2106 { 2107 get_bh(bh); 2108 return 0; 2109 } 2110 2111 static int bput_one(handle_t *handle, struct buffer_head *bh) 2112 { 2113 put_bh(bh); 2114 return 0; 2115 } 2116 2117 static int __ext4_journalled_writepage(struct page *page, 2118 unsigned int len) 2119 { 2120 struct address_space *mapping = page->mapping; 2121 struct inode *inode = mapping->host; 2122 struct buffer_head *page_bufs = NULL; 2123 handle_t *handle = NULL; 2124 int ret = 0, err = 0; 2125 int inline_data = ext4_has_inline_data(inode); 2126 struct buffer_head *inode_bh = NULL; 2127 2128 ClearPageChecked(page); 2129 2130 if (inline_data) { 2131 BUG_ON(page->index != 0); 2132 BUG_ON(len > ext4_get_max_inline_size(inode)); 2133 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2134 if (inode_bh == NULL) 2135 goto out; 2136 } else { 2137 page_bufs = page_buffers(page); 2138 if (!page_bufs) { 2139 BUG(); 2140 goto out; 2141 } 2142 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2143 NULL, bget_one); 2144 } 2145 /* As soon as we unlock the page, it can go away, but we have 2146 * references to buffers so we are safe */ 2147 unlock_page(page); 2148 2149 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2150 ext4_writepage_trans_blocks(inode)); 2151 if (IS_ERR(handle)) { 2152 ret = PTR_ERR(handle); 2153 goto out; 2154 } 2155 2156 BUG_ON(!ext4_handle_valid(handle)); 2157 2158 if (inline_data) { 2159 ret = ext4_journal_get_write_access(handle, inode_bh); 2160 2161 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2162 2163 } else { 2164 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2165 do_journal_get_write_access); 2166 2167 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2168 write_end_fn); 2169 } 2170 if (ret == 0) 2171 ret = err; 2172 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2173 err = ext4_journal_stop(handle); 2174 if (!ret) 2175 ret = err; 2176 2177 if (!ext4_has_inline_data(inode)) 2178 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2179 NULL, bput_one); 2180 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2181 out: 2182 brelse(inode_bh); 2183 return ret; 2184 } 2185 2186 /* 2187 * Note that we don't need to start a transaction unless we're journaling data 2188 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2189 * need to file the inode to the transaction's list in ordered mode because if 2190 * we are writing back data added by write(), the inode is already there and if 2191 * we are writing back data modified via mmap(), no one guarantees in which 2192 * transaction the data will hit the disk. In case we are journaling data, we 2193 * cannot start transaction directly because transaction start ranks above page 2194 * lock so we have to do some magic. 2195 * 2196 * This function can get called via... 2197 * - ext4_da_writepages after taking page lock (have journal handle) 2198 * - journal_submit_inode_data_buffers (no journal handle) 2199 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2200 * - grab_page_cache when doing write_begin (have journal handle) 2201 * 2202 * We don't do any block allocation in this function. If we have page with 2203 * multiple blocks we need to write those buffer_heads that are mapped. This 2204 * is important for mmaped based write. So if we do with blocksize 1K 2205 * truncate(f, 1024); 2206 * a = mmap(f, 0, 4096); 2207 * a[0] = 'a'; 2208 * truncate(f, 4096); 2209 * we have in the page first buffer_head mapped via page_mkwrite call back 2210 * but other buffer_heads would be unmapped but dirty (dirty done via the 2211 * do_wp_page). So writepage should write the first block. If we modify 2212 * the mmap area beyond 1024 we will again get a page_fault and the 2213 * page_mkwrite callback will do the block allocation and mark the 2214 * buffer_heads mapped. 2215 * 2216 * We redirty the page if we have any buffer_heads that is either delay or 2217 * unwritten in the page. 2218 * 2219 * We can get recursively called as show below. 2220 * 2221 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2222 * ext4_writepage() 2223 * 2224 * But since we don't do any block allocation we should not deadlock. 2225 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2226 */ 2227 static int ext4_writepage(struct page *page, 2228 struct writeback_control *wbc) 2229 { 2230 int ret = 0; 2231 loff_t size; 2232 unsigned int len; 2233 struct buffer_head *page_bufs = NULL; 2234 struct inode *inode = page->mapping->host; 2235 struct ext4_io_submit io_submit; 2236 2237 trace_ext4_writepage(page); 2238 size = i_size_read(inode); 2239 if (page->index == size >> PAGE_CACHE_SHIFT) 2240 len = size & ~PAGE_CACHE_MASK; 2241 else 2242 len = PAGE_CACHE_SIZE; 2243 2244 page_bufs = page_buffers(page); 2245 /* 2246 * We cannot do block allocation or other extent handling in this 2247 * function. If there are buffers needing that, we have to redirty 2248 * the page. But we may reach here when we do a journal commit via 2249 * journal_submit_inode_data_buffers() and in that case we must write 2250 * allocated buffers to achieve data=ordered mode guarantees. 2251 */ 2252 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2253 ext4_bh_delay_or_unwritten)) { 2254 redirty_page_for_writepage(wbc, page); 2255 if (current->flags & PF_MEMALLOC) { 2256 /* 2257 * For memory cleaning there's no point in writing only 2258 * some buffers. So just bail out. Warn if we came here 2259 * from direct reclaim. 2260 */ 2261 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2262 == PF_MEMALLOC); 2263 unlock_page(page); 2264 return 0; 2265 } 2266 } 2267 2268 if (PageChecked(page) && ext4_should_journal_data(inode)) 2269 /* 2270 * It's mmapped pagecache. Add buffers and journal it. There 2271 * doesn't seem much point in redirtying the page here. 2272 */ 2273 return __ext4_journalled_writepage(page, len); 2274 2275 memset(&io_submit, 0, sizeof(io_submit)); 2276 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 2277 ext4_io_submit(&io_submit); 2278 return ret; 2279 } 2280 2281 /* 2282 * This is called via ext4_da_writepages() to 2283 * calculate the total number of credits to reserve to fit 2284 * a single extent allocation into a single transaction, 2285 * ext4_da_writpeages() will loop calling this before 2286 * the block allocation. 2287 */ 2288 2289 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2290 { 2291 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2292 2293 /* 2294 * With non-extent format the journal credit needed to 2295 * insert nrblocks contiguous block is dependent on 2296 * number of contiguous block. So we will limit 2297 * number of contiguous block to a sane value 2298 */ 2299 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2300 (max_blocks > EXT4_MAX_TRANS_DATA)) 2301 max_blocks = EXT4_MAX_TRANS_DATA; 2302 2303 return ext4_chunk_trans_blocks(inode, max_blocks); 2304 } 2305 2306 /* 2307 * write_cache_pages_da - walk the list of dirty pages of the given 2308 * address space and accumulate pages that need writing, and call 2309 * mpage_da_map_and_submit to map a single contiguous memory region 2310 * and then write them. 2311 */ 2312 static int write_cache_pages_da(handle_t *handle, 2313 struct address_space *mapping, 2314 struct writeback_control *wbc, 2315 struct mpage_da_data *mpd, 2316 pgoff_t *done_index) 2317 { 2318 struct buffer_head *bh, *head; 2319 struct inode *inode = mapping->host; 2320 struct pagevec pvec; 2321 unsigned int nr_pages; 2322 sector_t logical; 2323 pgoff_t index, end; 2324 long nr_to_write = wbc->nr_to_write; 2325 int i, tag, ret = 0; 2326 2327 memset(mpd, 0, sizeof(struct mpage_da_data)); 2328 mpd->wbc = wbc; 2329 mpd->inode = inode; 2330 pagevec_init(&pvec, 0); 2331 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2332 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2333 2334 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2335 tag = PAGECACHE_TAG_TOWRITE; 2336 else 2337 tag = PAGECACHE_TAG_DIRTY; 2338 2339 *done_index = index; 2340 while (index <= end) { 2341 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2342 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2343 if (nr_pages == 0) 2344 return 0; 2345 2346 for (i = 0; i < nr_pages; i++) { 2347 struct page *page = pvec.pages[i]; 2348 2349 /* 2350 * At this point, the page may be truncated or 2351 * invalidated (changing page->mapping to NULL), or 2352 * even swizzled back from swapper_space to tmpfs file 2353 * mapping. However, page->index will not change 2354 * because we have a reference on the page. 2355 */ 2356 if (page->index > end) 2357 goto out; 2358 2359 *done_index = page->index + 1; 2360 2361 /* 2362 * If we can't merge this page, and we have 2363 * accumulated an contiguous region, write it 2364 */ 2365 if ((mpd->next_page != page->index) && 2366 (mpd->next_page != mpd->first_page)) { 2367 mpage_da_map_and_submit(mpd); 2368 goto ret_extent_tail; 2369 } 2370 2371 lock_page(page); 2372 2373 /* 2374 * If the page is no longer dirty, or its 2375 * mapping no longer corresponds to inode we 2376 * are writing (which means it has been 2377 * truncated or invalidated), or the page is 2378 * already under writeback and we are not 2379 * doing a data integrity writeback, skip the page 2380 */ 2381 if (!PageDirty(page) || 2382 (PageWriteback(page) && 2383 (wbc->sync_mode == WB_SYNC_NONE)) || 2384 unlikely(page->mapping != mapping)) { 2385 unlock_page(page); 2386 continue; 2387 } 2388 2389 wait_on_page_writeback(page); 2390 BUG_ON(PageWriteback(page)); 2391 2392 /* 2393 * If we have inline data and arrive here, it means that 2394 * we will soon create the block for the 1st page, so 2395 * we'd better clear the inline data here. 2396 */ 2397 if (ext4_has_inline_data(inode)) { 2398 BUG_ON(ext4_test_inode_state(inode, 2399 EXT4_STATE_MAY_INLINE_DATA)); 2400 ext4_destroy_inline_data(handle, inode); 2401 } 2402 2403 if (mpd->next_page != page->index) 2404 mpd->first_page = page->index; 2405 mpd->next_page = page->index + 1; 2406 logical = (sector_t) page->index << 2407 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2408 2409 /* Add all dirty buffers to mpd */ 2410 head = page_buffers(page); 2411 bh = head; 2412 do { 2413 BUG_ON(buffer_locked(bh)); 2414 /* 2415 * We need to try to allocate unmapped blocks 2416 * in the same page. Otherwise we won't make 2417 * progress with the page in ext4_writepage 2418 */ 2419 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2420 mpage_add_bh_to_extent(mpd, logical, 2421 bh->b_state); 2422 if (mpd->io_done) 2423 goto ret_extent_tail; 2424 } else if (buffer_dirty(bh) && 2425 buffer_mapped(bh)) { 2426 /* 2427 * mapped dirty buffer. We need to 2428 * update the b_state because we look 2429 * at b_state in mpage_da_map_blocks. 2430 * We don't update b_size because if we 2431 * find an unmapped buffer_head later 2432 * we need to use the b_state flag of 2433 * that buffer_head. 2434 */ 2435 if (mpd->b_size == 0) 2436 mpd->b_state = 2437 bh->b_state & BH_FLAGS; 2438 } 2439 logical++; 2440 } while ((bh = bh->b_this_page) != head); 2441 2442 if (nr_to_write > 0) { 2443 nr_to_write--; 2444 if (nr_to_write == 0 && 2445 wbc->sync_mode == WB_SYNC_NONE) 2446 /* 2447 * We stop writing back only if we are 2448 * not doing integrity sync. In case of 2449 * integrity sync we have to keep going 2450 * because someone may be concurrently 2451 * dirtying pages, and we might have 2452 * synced a lot of newly appeared dirty 2453 * pages, but have not synced all of the 2454 * old dirty pages. 2455 */ 2456 goto out; 2457 } 2458 } 2459 pagevec_release(&pvec); 2460 cond_resched(); 2461 } 2462 return 0; 2463 ret_extent_tail: 2464 ret = MPAGE_DA_EXTENT_TAIL; 2465 out: 2466 pagevec_release(&pvec); 2467 cond_resched(); 2468 return ret; 2469 } 2470 2471 2472 static int ext4_da_writepages(struct address_space *mapping, 2473 struct writeback_control *wbc) 2474 { 2475 pgoff_t index; 2476 int range_whole = 0; 2477 handle_t *handle = NULL; 2478 struct mpage_da_data mpd; 2479 struct inode *inode = mapping->host; 2480 int pages_written = 0; 2481 unsigned int max_pages; 2482 int range_cyclic, cycled = 1, io_done = 0; 2483 int needed_blocks, ret = 0; 2484 long desired_nr_to_write, nr_to_writebump = 0; 2485 loff_t range_start = wbc->range_start; 2486 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2487 pgoff_t done_index = 0; 2488 pgoff_t end; 2489 struct blk_plug plug; 2490 2491 trace_ext4_da_writepages(inode, wbc); 2492 2493 /* 2494 * No pages to write? This is mainly a kludge to avoid starting 2495 * a transaction for special inodes like journal inode on last iput() 2496 * because that could violate lock ordering on umount 2497 */ 2498 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2499 return 0; 2500 2501 /* 2502 * If the filesystem has aborted, it is read-only, so return 2503 * right away instead of dumping stack traces later on that 2504 * will obscure the real source of the problem. We test 2505 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2506 * the latter could be true if the filesystem is mounted 2507 * read-only, and in that case, ext4_da_writepages should 2508 * *never* be called, so if that ever happens, we would want 2509 * the stack trace. 2510 */ 2511 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2512 return -EROFS; 2513 2514 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2515 range_whole = 1; 2516 2517 range_cyclic = wbc->range_cyclic; 2518 if (wbc->range_cyclic) { 2519 index = mapping->writeback_index; 2520 if (index) 2521 cycled = 0; 2522 wbc->range_start = index << PAGE_CACHE_SHIFT; 2523 wbc->range_end = LLONG_MAX; 2524 wbc->range_cyclic = 0; 2525 end = -1; 2526 } else { 2527 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2528 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2529 } 2530 2531 /* 2532 * This works around two forms of stupidity. The first is in 2533 * the writeback code, which caps the maximum number of pages 2534 * written to be 1024 pages. This is wrong on multiple 2535 * levels; different architectues have a different page size, 2536 * which changes the maximum amount of data which gets 2537 * written. Secondly, 4 megabytes is way too small. XFS 2538 * forces this value to be 16 megabytes by multiplying 2539 * nr_to_write parameter by four, and then relies on its 2540 * allocator to allocate larger extents to make them 2541 * contiguous. Unfortunately this brings us to the second 2542 * stupidity, which is that ext4's mballoc code only allocates 2543 * at most 2048 blocks. So we force contiguous writes up to 2544 * the number of dirty blocks in the inode, or 2545 * sbi->max_writeback_mb_bump whichever is smaller. 2546 */ 2547 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2548 if (!range_cyclic && range_whole) { 2549 if (wbc->nr_to_write == LONG_MAX) 2550 desired_nr_to_write = wbc->nr_to_write; 2551 else 2552 desired_nr_to_write = wbc->nr_to_write * 8; 2553 } else 2554 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2555 max_pages); 2556 if (desired_nr_to_write > max_pages) 2557 desired_nr_to_write = max_pages; 2558 2559 if (wbc->nr_to_write < desired_nr_to_write) { 2560 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2561 wbc->nr_to_write = desired_nr_to_write; 2562 } 2563 2564 retry: 2565 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2566 tag_pages_for_writeback(mapping, index, end); 2567 2568 blk_start_plug(&plug); 2569 while (!ret && wbc->nr_to_write > 0) { 2570 2571 /* 2572 * we insert one extent at a time. So we need 2573 * credit needed for single extent allocation. 2574 * journalled mode is currently not supported 2575 * by delalloc 2576 */ 2577 BUG_ON(ext4_should_journal_data(inode)); 2578 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2579 2580 /* start a new transaction*/ 2581 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2582 needed_blocks); 2583 if (IS_ERR(handle)) { 2584 ret = PTR_ERR(handle); 2585 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2586 "%ld pages, ino %lu; err %d", __func__, 2587 wbc->nr_to_write, inode->i_ino, ret); 2588 blk_finish_plug(&plug); 2589 goto out_writepages; 2590 } 2591 2592 /* 2593 * Now call write_cache_pages_da() to find the next 2594 * contiguous region of logical blocks that need 2595 * blocks to be allocated by ext4 and submit them. 2596 */ 2597 ret = write_cache_pages_da(handle, mapping, 2598 wbc, &mpd, &done_index); 2599 /* 2600 * If we have a contiguous extent of pages and we 2601 * haven't done the I/O yet, map the blocks and submit 2602 * them for I/O. 2603 */ 2604 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2605 mpage_da_map_and_submit(&mpd); 2606 ret = MPAGE_DA_EXTENT_TAIL; 2607 } 2608 trace_ext4_da_write_pages(inode, &mpd); 2609 wbc->nr_to_write -= mpd.pages_written; 2610 2611 ext4_journal_stop(handle); 2612 2613 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2614 /* commit the transaction which would 2615 * free blocks released in the transaction 2616 * and try again 2617 */ 2618 jbd2_journal_force_commit_nested(sbi->s_journal); 2619 ret = 0; 2620 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2621 /* 2622 * Got one extent now try with rest of the pages. 2623 * If mpd.retval is set -EIO, journal is aborted. 2624 * So we don't need to write any more. 2625 */ 2626 pages_written += mpd.pages_written; 2627 ret = mpd.retval; 2628 io_done = 1; 2629 } else if (wbc->nr_to_write) 2630 /* 2631 * There is no more writeout needed 2632 * or we requested for a noblocking writeout 2633 * and we found the device congested 2634 */ 2635 break; 2636 } 2637 blk_finish_plug(&plug); 2638 if (!io_done && !cycled) { 2639 cycled = 1; 2640 index = 0; 2641 wbc->range_start = index << PAGE_CACHE_SHIFT; 2642 wbc->range_end = mapping->writeback_index - 1; 2643 goto retry; 2644 } 2645 2646 /* Update index */ 2647 wbc->range_cyclic = range_cyclic; 2648 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2649 /* 2650 * set the writeback_index so that range_cyclic 2651 * mode will write it back later 2652 */ 2653 mapping->writeback_index = done_index; 2654 2655 out_writepages: 2656 wbc->nr_to_write -= nr_to_writebump; 2657 wbc->range_start = range_start; 2658 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2659 return ret; 2660 } 2661 2662 static int ext4_nonda_switch(struct super_block *sb) 2663 { 2664 s64 free_blocks, dirty_blocks; 2665 struct ext4_sb_info *sbi = EXT4_SB(sb); 2666 2667 /* 2668 * switch to non delalloc mode if we are running low 2669 * on free block. The free block accounting via percpu 2670 * counters can get slightly wrong with percpu_counter_batch getting 2671 * accumulated on each CPU without updating global counters 2672 * Delalloc need an accurate free block accounting. So switch 2673 * to non delalloc when we are near to error range. 2674 */ 2675 free_blocks = EXT4_C2B(sbi, 2676 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2677 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2678 /* 2679 * Start pushing delalloc when 1/2 of free blocks are dirty. 2680 */ 2681 if (dirty_blocks && (free_blocks < 2 * dirty_blocks)) 2682 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2683 2684 if (2 * free_blocks < 3 * dirty_blocks || 2685 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2686 /* 2687 * free block count is less than 150% of dirty blocks 2688 * or free blocks is less than watermark 2689 */ 2690 return 1; 2691 } 2692 return 0; 2693 } 2694 2695 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2696 loff_t pos, unsigned len, unsigned flags, 2697 struct page **pagep, void **fsdata) 2698 { 2699 int ret, retries = 0; 2700 struct page *page; 2701 pgoff_t index; 2702 struct inode *inode = mapping->host; 2703 handle_t *handle; 2704 2705 index = pos >> PAGE_CACHE_SHIFT; 2706 2707 if (ext4_nonda_switch(inode->i_sb)) { 2708 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2709 return ext4_write_begin(file, mapping, pos, 2710 len, flags, pagep, fsdata); 2711 } 2712 *fsdata = (void *)0; 2713 trace_ext4_da_write_begin(inode, pos, len, flags); 2714 2715 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2716 ret = ext4_da_write_inline_data_begin(mapping, inode, 2717 pos, len, flags, 2718 pagep, fsdata); 2719 if (ret < 0) 2720 return ret; 2721 if (ret == 1) 2722 return 0; 2723 } 2724 2725 /* 2726 * grab_cache_page_write_begin() can take a long time if the 2727 * system is thrashing due to memory pressure, or if the page 2728 * is being written back. So grab it first before we start 2729 * the transaction handle. This also allows us to allocate 2730 * the page (if needed) without using GFP_NOFS. 2731 */ 2732 retry_grab: 2733 page = grab_cache_page_write_begin(mapping, index, flags); 2734 if (!page) 2735 return -ENOMEM; 2736 unlock_page(page); 2737 2738 /* 2739 * With delayed allocation, we don't log the i_disksize update 2740 * if there is delayed block allocation. But we still need 2741 * to journalling the i_disksize update if writes to the end 2742 * of file which has an already mapped buffer. 2743 */ 2744 retry_journal: 2745 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2746 if (IS_ERR(handle)) { 2747 page_cache_release(page); 2748 return PTR_ERR(handle); 2749 } 2750 2751 lock_page(page); 2752 if (page->mapping != mapping) { 2753 /* The page got truncated from under us */ 2754 unlock_page(page); 2755 page_cache_release(page); 2756 ext4_journal_stop(handle); 2757 goto retry_grab; 2758 } 2759 /* In case writeback began while the page was unlocked */ 2760 wait_on_page_writeback(page); 2761 2762 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2763 if (ret < 0) { 2764 unlock_page(page); 2765 ext4_journal_stop(handle); 2766 /* 2767 * block_write_begin may have instantiated a few blocks 2768 * outside i_size. Trim these off again. Don't need 2769 * i_size_read because we hold i_mutex. 2770 */ 2771 if (pos + len > inode->i_size) 2772 ext4_truncate_failed_write(inode); 2773 2774 if (ret == -ENOSPC && 2775 ext4_should_retry_alloc(inode->i_sb, &retries)) 2776 goto retry_journal; 2777 2778 page_cache_release(page); 2779 return ret; 2780 } 2781 2782 *pagep = page; 2783 return ret; 2784 } 2785 2786 /* 2787 * Check if we should update i_disksize 2788 * when write to the end of file but not require block allocation 2789 */ 2790 static int ext4_da_should_update_i_disksize(struct page *page, 2791 unsigned long offset) 2792 { 2793 struct buffer_head *bh; 2794 struct inode *inode = page->mapping->host; 2795 unsigned int idx; 2796 int i; 2797 2798 bh = page_buffers(page); 2799 idx = offset >> inode->i_blkbits; 2800 2801 for (i = 0; i < idx; i++) 2802 bh = bh->b_this_page; 2803 2804 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2805 return 0; 2806 return 1; 2807 } 2808 2809 static int ext4_da_write_end(struct file *file, 2810 struct address_space *mapping, 2811 loff_t pos, unsigned len, unsigned copied, 2812 struct page *page, void *fsdata) 2813 { 2814 struct inode *inode = mapping->host; 2815 int ret = 0, ret2; 2816 handle_t *handle = ext4_journal_current_handle(); 2817 loff_t new_i_size; 2818 unsigned long start, end; 2819 int write_mode = (int)(unsigned long)fsdata; 2820 2821 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2822 switch (ext4_inode_journal_mode(inode)) { 2823 case EXT4_INODE_ORDERED_DATA_MODE: 2824 return ext4_ordered_write_end(file, mapping, pos, 2825 len, copied, page, fsdata); 2826 case EXT4_INODE_WRITEBACK_DATA_MODE: 2827 return ext4_writeback_write_end(file, mapping, pos, 2828 len, copied, page, fsdata); 2829 default: 2830 BUG(); 2831 } 2832 } 2833 2834 trace_ext4_da_write_end(inode, pos, len, copied); 2835 start = pos & (PAGE_CACHE_SIZE - 1); 2836 end = start + copied - 1; 2837 2838 /* 2839 * generic_write_end() will run mark_inode_dirty() if i_size 2840 * changes. So let's piggyback the i_disksize mark_inode_dirty 2841 * into that. 2842 */ 2843 new_i_size = pos + copied; 2844 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2845 if (ext4_has_inline_data(inode) || 2846 ext4_da_should_update_i_disksize(page, end)) { 2847 down_write(&EXT4_I(inode)->i_data_sem); 2848 if (new_i_size > EXT4_I(inode)->i_disksize) 2849 EXT4_I(inode)->i_disksize = new_i_size; 2850 up_write(&EXT4_I(inode)->i_data_sem); 2851 /* We need to mark inode dirty even if 2852 * new_i_size is less that inode->i_size 2853 * bu greater than i_disksize.(hint delalloc) 2854 */ 2855 ext4_mark_inode_dirty(handle, inode); 2856 } 2857 } 2858 2859 if (write_mode != CONVERT_INLINE_DATA && 2860 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2861 ext4_has_inline_data(inode)) 2862 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2863 page); 2864 else 2865 ret2 = generic_write_end(file, mapping, pos, len, copied, 2866 page, fsdata); 2867 2868 copied = ret2; 2869 if (ret2 < 0) 2870 ret = ret2; 2871 ret2 = ext4_journal_stop(handle); 2872 if (!ret) 2873 ret = ret2; 2874 2875 return ret ? ret : copied; 2876 } 2877 2878 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2879 { 2880 /* 2881 * Drop reserved blocks 2882 */ 2883 BUG_ON(!PageLocked(page)); 2884 if (!page_has_buffers(page)) 2885 goto out; 2886 2887 ext4_da_page_release_reservation(page, offset); 2888 2889 out: 2890 ext4_invalidatepage(page, offset); 2891 2892 return; 2893 } 2894 2895 /* 2896 * Force all delayed allocation blocks to be allocated for a given inode. 2897 */ 2898 int ext4_alloc_da_blocks(struct inode *inode) 2899 { 2900 trace_ext4_alloc_da_blocks(inode); 2901 2902 if (!EXT4_I(inode)->i_reserved_data_blocks && 2903 !EXT4_I(inode)->i_reserved_meta_blocks) 2904 return 0; 2905 2906 /* 2907 * We do something simple for now. The filemap_flush() will 2908 * also start triggering a write of the data blocks, which is 2909 * not strictly speaking necessary (and for users of 2910 * laptop_mode, not even desirable). However, to do otherwise 2911 * would require replicating code paths in: 2912 * 2913 * ext4_da_writepages() -> 2914 * write_cache_pages() ---> (via passed in callback function) 2915 * __mpage_da_writepage() --> 2916 * mpage_add_bh_to_extent() 2917 * mpage_da_map_blocks() 2918 * 2919 * The problem is that write_cache_pages(), located in 2920 * mm/page-writeback.c, marks pages clean in preparation for 2921 * doing I/O, which is not desirable if we're not planning on 2922 * doing I/O at all. 2923 * 2924 * We could call write_cache_pages(), and then redirty all of 2925 * the pages by calling redirty_page_for_writepage() but that 2926 * would be ugly in the extreme. So instead we would need to 2927 * replicate parts of the code in the above functions, 2928 * simplifying them because we wouldn't actually intend to 2929 * write out the pages, but rather only collect contiguous 2930 * logical block extents, call the multi-block allocator, and 2931 * then update the buffer heads with the block allocations. 2932 * 2933 * For now, though, we'll cheat by calling filemap_flush(), 2934 * which will map the blocks, and start the I/O, but not 2935 * actually wait for the I/O to complete. 2936 */ 2937 return filemap_flush(inode->i_mapping); 2938 } 2939 2940 /* 2941 * bmap() is special. It gets used by applications such as lilo and by 2942 * the swapper to find the on-disk block of a specific piece of data. 2943 * 2944 * Naturally, this is dangerous if the block concerned is still in the 2945 * journal. If somebody makes a swapfile on an ext4 data-journaling 2946 * filesystem and enables swap, then they may get a nasty shock when the 2947 * data getting swapped to that swapfile suddenly gets overwritten by 2948 * the original zero's written out previously to the journal and 2949 * awaiting writeback in the kernel's buffer cache. 2950 * 2951 * So, if we see any bmap calls here on a modified, data-journaled file, 2952 * take extra steps to flush any blocks which might be in the cache. 2953 */ 2954 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2955 { 2956 struct inode *inode = mapping->host; 2957 journal_t *journal; 2958 int err; 2959 2960 /* 2961 * We can get here for an inline file via the FIBMAP ioctl 2962 */ 2963 if (ext4_has_inline_data(inode)) 2964 return 0; 2965 2966 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2967 test_opt(inode->i_sb, DELALLOC)) { 2968 /* 2969 * With delalloc we want to sync the file 2970 * so that we can make sure we allocate 2971 * blocks for file 2972 */ 2973 filemap_write_and_wait(mapping); 2974 } 2975 2976 if (EXT4_JOURNAL(inode) && 2977 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2978 /* 2979 * This is a REALLY heavyweight approach, but the use of 2980 * bmap on dirty files is expected to be extremely rare: 2981 * only if we run lilo or swapon on a freshly made file 2982 * do we expect this to happen. 2983 * 2984 * (bmap requires CAP_SYS_RAWIO so this does not 2985 * represent an unprivileged user DOS attack --- we'd be 2986 * in trouble if mortal users could trigger this path at 2987 * will.) 2988 * 2989 * NB. EXT4_STATE_JDATA is not set on files other than 2990 * regular files. If somebody wants to bmap a directory 2991 * or symlink and gets confused because the buffer 2992 * hasn't yet been flushed to disk, they deserve 2993 * everything they get. 2994 */ 2995 2996 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2997 journal = EXT4_JOURNAL(inode); 2998 jbd2_journal_lock_updates(journal); 2999 err = jbd2_journal_flush(journal); 3000 jbd2_journal_unlock_updates(journal); 3001 3002 if (err) 3003 return 0; 3004 } 3005 3006 return generic_block_bmap(mapping, block, ext4_get_block); 3007 } 3008 3009 static int ext4_readpage(struct file *file, struct page *page) 3010 { 3011 int ret = -EAGAIN; 3012 struct inode *inode = page->mapping->host; 3013 3014 trace_ext4_readpage(page); 3015 3016 if (ext4_has_inline_data(inode)) 3017 ret = ext4_readpage_inline(inode, page); 3018 3019 if (ret == -EAGAIN) 3020 return mpage_readpage(page, ext4_get_block); 3021 3022 return ret; 3023 } 3024 3025 static int 3026 ext4_readpages(struct file *file, struct address_space *mapping, 3027 struct list_head *pages, unsigned nr_pages) 3028 { 3029 struct inode *inode = mapping->host; 3030 3031 /* If the file has inline data, no need to do readpages. */ 3032 if (ext4_has_inline_data(inode)) 3033 return 0; 3034 3035 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3036 } 3037 3038 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3039 { 3040 trace_ext4_invalidatepage(page, offset); 3041 3042 /* No journalling happens on data buffers when this function is used */ 3043 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3044 3045 block_invalidatepage(page, offset); 3046 } 3047 3048 static int __ext4_journalled_invalidatepage(struct page *page, 3049 unsigned long offset) 3050 { 3051 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3052 3053 trace_ext4_journalled_invalidatepage(page, offset); 3054 3055 /* 3056 * If it's a full truncate we just forget about the pending dirtying 3057 */ 3058 if (offset == 0) 3059 ClearPageChecked(page); 3060 3061 return jbd2_journal_invalidatepage(journal, page, offset); 3062 } 3063 3064 /* Wrapper for aops... */ 3065 static void ext4_journalled_invalidatepage(struct page *page, 3066 unsigned long offset) 3067 { 3068 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0); 3069 } 3070 3071 static int ext4_releasepage(struct page *page, gfp_t wait) 3072 { 3073 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3074 3075 trace_ext4_releasepage(page); 3076 3077 /* Page has dirty journalled data -> cannot release */ 3078 if (PageChecked(page)) 3079 return 0; 3080 if (journal) 3081 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3082 else 3083 return try_to_free_buffers(page); 3084 } 3085 3086 /* 3087 * ext4_get_block used when preparing for a DIO write or buffer write. 3088 * We allocate an uinitialized extent if blocks haven't been allocated. 3089 * The extent will be converted to initialized after the IO is complete. 3090 */ 3091 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3092 struct buffer_head *bh_result, int create) 3093 { 3094 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3095 inode->i_ino, create); 3096 return _ext4_get_block(inode, iblock, bh_result, 3097 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3098 } 3099 3100 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3101 struct buffer_head *bh_result, int create) 3102 { 3103 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3104 inode->i_ino, create); 3105 return _ext4_get_block(inode, iblock, bh_result, 3106 EXT4_GET_BLOCKS_NO_LOCK); 3107 } 3108 3109 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3110 ssize_t size, void *private, int ret, 3111 bool is_async) 3112 { 3113 struct inode *inode = file_inode(iocb->ki_filp); 3114 ext4_io_end_t *io_end = iocb->private; 3115 3116 /* if not async direct IO or dio with 0 bytes write, just return */ 3117 if (!io_end || !size) 3118 goto out; 3119 3120 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3121 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3122 iocb->private, io_end->inode->i_ino, iocb, offset, 3123 size); 3124 3125 iocb->private = NULL; 3126 3127 /* if not aio dio with unwritten extents, just free io and return */ 3128 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3129 ext4_free_io_end(io_end); 3130 out: 3131 inode_dio_done(inode); 3132 if (is_async) 3133 aio_complete(iocb, ret, 0); 3134 return; 3135 } 3136 3137 io_end->offset = offset; 3138 io_end->size = size; 3139 if (is_async) { 3140 io_end->iocb = iocb; 3141 io_end->result = ret; 3142 } 3143 3144 ext4_add_complete_io(io_end); 3145 } 3146 3147 /* 3148 * For ext4 extent files, ext4 will do direct-io write to holes, 3149 * preallocated extents, and those write extend the file, no need to 3150 * fall back to buffered IO. 3151 * 3152 * For holes, we fallocate those blocks, mark them as uninitialized 3153 * If those blocks were preallocated, we mark sure they are split, but 3154 * still keep the range to write as uninitialized. 3155 * 3156 * The unwritten extents will be converted to written when DIO is completed. 3157 * For async direct IO, since the IO may still pending when return, we 3158 * set up an end_io call back function, which will do the conversion 3159 * when async direct IO completed. 3160 * 3161 * If the O_DIRECT write will extend the file then add this inode to the 3162 * orphan list. So recovery will truncate it back to the original size 3163 * if the machine crashes during the write. 3164 * 3165 */ 3166 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3167 const struct iovec *iov, loff_t offset, 3168 unsigned long nr_segs) 3169 { 3170 struct file *file = iocb->ki_filp; 3171 struct inode *inode = file->f_mapping->host; 3172 ssize_t ret; 3173 size_t count = iov_length(iov, nr_segs); 3174 int overwrite = 0; 3175 get_block_t *get_block_func = NULL; 3176 int dio_flags = 0; 3177 loff_t final_size = offset + count; 3178 3179 /* Use the old path for reads and writes beyond i_size. */ 3180 if (rw != WRITE || final_size > inode->i_size) 3181 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3182 3183 BUG_ON(iocb->private == NULL); 3184 3185 /* If we do a overwrite dio, i_mutex locking can be released */ 3186 overwrite = *((int *)iocb->private); 3187 3188 if (overwrite) { 3189 atomic_inc(&inode->i_dio_count); 3190 down_read(&EXT4_I(inode)->i_data_sem); 3191 mutex_unlock(&inode->i_mutex); 3192 } 3193 3194 /* 3195 * We could direct write to holes and fallocate. 3196 * 3197 * Allocated blocks to fill the hole are marked as 3198 * uninitialized to prevent parallel buffered read to expose 3199 * the stale data before DIO complete the data IO. 3200 * 3201 * As to previously fallocated extents, ext4 get_block will 3202 * just simply mark the buffer mapped but still keep the 3203 * extents uninitialized. 3204 * 3205 * For non AIO case, we will convert those unwritten extents 3206 * to written after return back from blockdev_direct_IO. 3207 * 3208 * For async DIO, the conversion needs to be deferred when the 3209 * IO is completed. The ext4 end_io callback function will be 3210 * called to take care of the conversion work. Here for async 3211 * case, we allocate an io_end structure to hook to the iocb. 3212 */ 3213 iocb->private = NULL; 3214 ext4_inode_aio_set(inode, NULL); 3215 if (!is_sync_kiocb(iocb)) { 3216 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS); 3217 if (!io_end) { 3218 ret = -ENOMEM; 3219 goto retake_lock; 3220 } 3221 io_end->flag |= EXT4_IO_END_DIRECT; 3222 iocb->private = io_end; 3223 /* 3224 * we save the io structure for current async direct 3225 * IO, so that later ext4_map_blocks() could flag the 3226 * io structure whether there is a unwritten extents 3227 * needs to be converted when IO is completed. 3228 */ 3229 ext4_inode_aio_set(inode, io_end); 3230 } 3231 3232 if (overwrite) { 3233 get_block_func = ext4_get_block_write_nolock; 3234 } else { 3235 get_block_func = ext4_get_block_write; 3236 dio_flags = DIO_LOCKING; 3237 } 3238 ret = __blockdev_direct_IO(rw, iocb, inode, 3239 inode->i_sb->s_bdev, iov, 3240 offset, nr_segs, 3241 get_block_func, 3242 ext4_end_io_dio, 3243 NULL, 3244 dio_flags); 3245 3246 if (iocb->private) 3247 ext4_inode_aio_set(inode, NULL); 3248 /* 3249 * The io_end structure takes a reference to the inode, that 3250 * structure needs to be destroyed and the reference to the 3251 * inode need to be dropped, when IO is complete, even with 0 3252 * byte write, or failed. 3253 * 3254 * In the successful AIO DIO case, the io_end structure will 3255 * be destroyed and the reference to the inode will be dropped 3256 * after the end_io call back function is called. 3257 * 3258 * In the case there is 0 byte write, or error case, since VFS 3259 * direct IO won't invoke the end_io call back function, we 3260 * need to free the end_io structure here. 3261 */ 3262 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3263 ext4_free_io_end(iocb->private); 3264 iocb->private = NULL; 3265 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3266 EXT4_STATE_DIO_UNWRITTEN)) { 3267 int err; 3268 /* 3269 * for non AIO case, since the IO is already 3270 * completed, we could do the conversion right here 3271 */ 3272 err = ext4_convert_unwritten_extents(inode, 3273 offset, ret); 3274 if (err < 0) 3275 ret = err; 3276 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3277 } 3278 3279 retake_lock: 3280 /* take i_mutex locking again if we do a ovewrite dio */ 3281 if (overwrite) { 3282 inode_dio_done(inode); 3283 up_read(&EXT4_I(inode)->i_data_sem); 3284 mutex_lock(&inode->i_mutex); 3285 } 3286 3287 return ret; 3288 } 3289 3290 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3291 const struct iovec *iov, loff_t offset, 3292 unsigned long nr_segs) 3293 { 3294 struct file *file = iocb->ki_filp; 3295 struct inode *inode = file->f_mapping->host; 3296 ssize_t ret; 3297 3298 /* 3299 * If we are doing data journalling we don't support O_DIRECT 3300 */ 3301 if (ext4_should_journal_data(inode)) 3302 return 0; 3303 3304 /* Let buffer I/O handle the inline data case. */ 3305 if (ext4_has_inline_data(inode)) 3306 return 0; 3307 3308 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3309 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3310 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3311 else 3312 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3313 trace_ext4_direct_IO_exit(inode, offset, 3314 iov_length(iov, nr_segs), rw, ret); 3315 return ret; 3316 } 3317 3318 /* 3319 * Pages can be marked dirty completely asynchronously from ext4's journalling 3320 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3321 * much here because ->set_page_dirty is called under VFS locks. The page is 3322 * not necessarily locked. 3323 * 3324 * We cannot just dirty the page and leave attached buffers clean, because the 3325 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3326 * or jbddirty because all the journalling code will explode. 3327 * 3328 * So what we do is to mark the page "pending dirty" and next time writepage 3329 * is called, propagate that into the buffers appropriately. 3330 */ 3331 static int ext4_journalled_set_page_dirty(struct page *page) 3332 { 3333 SetPageChecked(page); 3334 return __set_page_dirty_nobuffers(page); 3335 } 3336 3337 static const struct address_space_operations ext4_ordered_aops = { 3338 .readpage = ext4_readpage, 3339 .readpages = ext4_readpages, 3340 .writepage = ext4_writepage, 3341 .write_begin = ext4_write_begin, 3342 .write_end = ext4_ordered_write_end, 3343 .bmap = ext4_bmap, 3344 .invalidatepage = ext4_invalidatepage, 3345 .releasepage = ext4_releasepage, 3346 .direct_IO = ext4_direct_IO, 3347 .migratepage = buffer_migrate_page, 3348 .is_partially_uptodate = block_is_partially_uptodate, 3349 .error_remove_page = generic_error_remove_page, 3350 }; 3351 3352 static const struct address_space_operations ext4_writeback_aops = { 3353 .readpage = ext4_readpage, 3354 .readpages = ext4_readpages, 3355 .writepage = ext4_writepage, 3356 .write_begin = ext4_write_begin, 3357 .write_end = ext4_writeback_write_end, 3358 .bmap = ext4_bmap, 3359 .invalidatepage = ext4_invalidatepage, 3360 .releasepage = ext4_releasepage, 3361 .direct_IO = ext4_direct_IO, 3362 .migratepage = buffer_migrate_page, 3363 .is_partially_uptodate = block_is_partially_uptodate, 3364 .error_remove_page = generic_error_remove_page, 3365 }; 3366 3367 static const struct address_space_operations ext4_journalled_aops = { 3368 .readpage = ext4_readpage, 3369 .readpages = ext4_readpages, 3370 .writepage = ext4_writepage, 3371 .write_begin = ext4_write_begin, 3372 .write_end = ext4_journalled_write_end, 3373 .set_page_dirty = ext4_journalled_set_page_dirty, 3374 .bmap = ext4_bmap, 3375 .invalidatepage = ext4_journalled_invalidatepage, 3376 .releasepage = ext4_releasepage, 3377 .direct_IO = ext4_direct_IO, 3378 .is_partially_uptodate = block_is_partially_uptodate, 3379 .error_remove_page = generic_error_remove_page, 3380 }; 3381 3382 static const struct address_space_operations ext4_da_aops = { 3383 .readpage = ext4_readpage, 3384 .readpages = ext4_readpages, 3385 .writepage = ext4_writepage, 3386 .writepages = ext4_da_writepages, 3387 .write_begin = ext4_da_write_begin, 3388 .write_end = ext4_da_write_end, 3389 .bmap = ext4_bmap, 3390 .invalidatepage = ext4_da_invalidatepage, 3391 .releasepage = ext4_releasepage, 3392 .direct_IO = ext4_direct_IO, 3393 .migratepage = buffer_migrate_page, 3394 .is_partially_uptodate = block_is_partially_uptodate, 3395 .error_remove_page = generic_error_remove_page, 3396 }; 3397 3398 void ext4_set_aops(struct inode *inode) 3399 { 3400 switch (ext4_inode_journal_mode(inode)) { 3401 case EXT4_INODE_ORDERED_DATA_MODE: 3402 if (test_opt(inode->i_sb, DELALLOC)) 3403 inode->i_mapping->a_ops = &ext4_da_aops; 3404 else 3405 inode->i_mapping->a_ops = &ext4_ordered_aops; 3406 break; 3407 case EXT4_INODE_WRITEBACK_DATA_MODE: 3408 if (test_opt(inode->i_sb, DELALLOC)) 3409 inode->i_mapping->a_ops = &ext4_da_aops; 3410 else 3411 inode->i_mapping->a_ops = &ext4_writeback_aops; 3412 break; 3413 case EXT4_INODE_JOURNAL_DATA_MODE: 3414 inode->i_mapping->a_ops = &ext4_journalled_aops; 3415 break; 3416 default: 3417 BUG(); 3418 } 3419 } 3420 3421 3422 /* 3423 * ext4_discard_partial_page_buffers() 3424 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3425 * This function finds and locks the page containing the offset 3426 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3427 * Calling functions that already have the page locked should call 3428 * ext4_discard_partial_page_buffers_no_lock directly. 3429 */ 3430 int ext4_discard_partial_page_buffers(handle_t *handle, 3431 struct address_space *mapping, loff_t from, 3432 loff_t length, int flags) 3433 { 3434 struct inode *inode = mapping->host; 3435 struct page *page; 3436 int err = 0; 3437 3438 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3439 mapping_gfp_mask(mapping) & ~__GFP_FS); 3440 if (!page) 3441 return -ENOMEM; 3442 3443 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3444 from, length, flags); 3445 3446 unlock_page(page); 3447 page_cache_release(page); 3448 return err; 3449 } 3450 3451 /* 3452 * ext4_discard_partial_page_buffers_no_lock() 3453 * Zeros a page range of length 'length' starting from offset 'from'. 3454 * Buffer heads that correspond to the block aligned regions of the 3455 * zeroed range will be unmapped. Unblock aligned regions 3456 * will have the corresponding buffer head mapped if needed so that 3457 * that region of the page can be updated with the partial zero out. 3458 * 3459 * This function assumes that the page has already been locked. The 3460 * The range to be discarded must be contained with in the given page. 3461 * If the specified range exceeds the end of the page it will be shortened 3462 * to the end of the page that corresponds to 'from'. This function is 3463 * appropriate for updating a page and it buffer heads to be unmapped and 3464 * zeroed for blocks that have been either released, or are going to be 3465 * released. 3466 * 3467 * handle: The journal handle 3468 * inode: The files inode 3469 * page: A locked page that contains the offset "from" 3470 * from: The starting byte offset (from the beginning of the file) 3471 * to begin discarding 3472 * len: The length of bytes to discard 3473 * flags: Optional flags that may be used: 3474 * 3475 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3476 * Only zero the regions of the page whose buffer heads 3477 * have already been unmapped. This flag is appropriate 3478 * for updating the contents of a page whose blocks may 3479 * have already been released, and we only want to zero 3480 * out the regions that correspond to those released blocks. 3481 * 3482 * Returns zero on success or negative on failure. 3483 */ 3484 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3485 struct inode *inode, struct page *page, loff_t from, 3486 loff_t length, int flags) 3487 { 3488 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3489 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3490 unsigned int blocksize, max, pos; 3491 ext4_lblk_t iblock; 3492 struct buffer_head *bh; 3493 int err = 0; 3494 3495 blocksize = inode->i_sb->s_blocksize; 3496 max = PAGE_CACHE_SIZE - offset; 3497 3498 if (index != page->index) 3499 return -EINVAL; 3500 3501 /* 3502 * correct length if it does not fall between 3503 * 'from' and the end of the page 3504 */ 3505 if (length > max || length < 0) 3506 length = max; 3507 3508 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3509 3510 if (!page_has_buffers(page)) 3511 create_empty_buffers(page, blocksize, 0); 3512 3513 /* Find the buffer that contains "offset" */ 3514 bh = page_buffers(page); 3515 pos = blocksize; 3516 while (offset >= pos) { 3517 bh = bh->b_this_page; 3518 iblock++; 3519 pos += blocksize; 3520 } 3521 3522 pos = offset; 3523 while (pos < offset + length) { 3524 unsigned int end_of_block, range_to_discard; 3525 3526 err = 0; 3527 3528 /* The length of space left to zero and unmap */ 3529 range_to_discard = offset + length - pos; 3530 3531 /* The length of space until the end of the block */ 3532 end_of_block = blocksize - (pos & (blocksize-1)); 3533 3534 /* 3535 * Do not unmap or zero past end of block 3536 * for this buffer head 3537 */ 3538 if (range_to_discard > end_of_block) 3539 range_to_discard = end_of_block; 3540 3541 3542 /* 3543 * Skip this buffer head if we are only zeroing unampped 3544 * regions of the page 3545 */ 3546 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3547 buffer_mapped(bh)) 3548 goto next; 3549 3550 /* If the range is block aligned, unmap */ 3551 if (range_to_discard == blocksize) { 3552 clear_buffer_dirty(bh); 3553 bh->b_bdev = NULL; 3554 clear_buffer_mapped(bh); 3555 clear_buffer_req(bh); 3556 clear_buffer_new(bh); 3557 clear_buffer_delay(bh); 3558 clear_buffer_unwritten(bh); 3559 clear_buffer_uptodate(bh); 3560 zero_user(page, pos, range_to_discard); 3561 BUFFER_TRACE(bh, "Buffer discarded"); 3562 goto next; 3563 } 3564 3565 /* 3566 * If this block is not completely contained in the range 3567 * to be discarded, then it is not going to be released. Because 3568 * we need to keep this block, we need to make sure this part 3569 * of the page is uptodate before we modify it by writeing 3570 * partial zeros on it. 3571 */ 3572 if (!buffer_mapped(bh)) { 3573 /* 3574 * Buffer head must be mapped before we can read 3575 * from the block 3576 */ 3577 BUFFER_TRACE(bh, "unmapped"); 3578 ext4_get_block(inode, iblock, bh, 0); 3579 /* unmapped? It's a hole - nothing to do */ 3580 if (!buffer_mapped(bh)) { 3581 BUFFER_TRACE(bh, "still unmapped"); 3582 goto next; 3583 } 3584 } 3585 3586 /* Ok, it's mapped. Make sure it's up-to-date */ 3587 if (PageUptodate(page)) 3588 set_buffer_uptodate(bh); 3589 3590 if (!buffer_uptodate(bh)) { 3591 err = -EIO; 3592 ll_rw_block(READ, 1, &bh); 3593 wait_on_buffer(bh); 3594 /* Uhhuh. Read error. Complain and punt.*/ 3595 if (!buffer_uptodate(bh)) 3596 goto next; 3597 } 3598 3599 if (ext4_should_journal_data(inode)) { 3600 BUFFER_TRACE(bh, "get write access"); 3601 err = ext4_journal_get_write_access(handle, bh); 3602 if (err) 3603 goto next; 3604 } 3605 3606 zero_user(page, pos, range_to_discard); 3607 3608 err = 0; 3609 if (ext4_should_journal_data(inode)) { 3610 err = ext4_handle_dirty_metadata(handle, inode, bh); 3611 } else 3612 mark_buffer_dirty(bh); 3613 3614 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3615 next: 3616 bh = bh->b_this_page; 3617 iblock++; 3618 pos += range_to_discard; 3619 } 3620 3621 return err; 3622 } 3623 3624 int ext4_can_truncate(struct inode *inode) 3625 { 3626 if (S_ISREG(inode->i_mode)) 3627 return 1; 3628 if (S_ISDIR(inode->i_mode)) 3629 return 1; 3630 if (S_ISLNK(inode->i_mode)) 3631 return !ext4_inode_is_fast_symlink(inode); 3632 return 0; 3633 } 3634 3635 /* 3636 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3637 * associated with the given offset and length 3638 * 3639 * @inode: File inode 3640 * @offset: The offset where the hole will begin 3641 * @len: The length of the hole 3642 * 3643 * Returns: 0 on success or negative on failure 3644 */ 3645 3646 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3647 { 3648 struct inode *inode = file_inode(file); 3649 if (!S_ISREG(inode->i_mode)) 3650 return -EOPNOTSUPP; 3651 3652 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3653 return ext4_ind_punch_hole(file, offset, length); 3654 3655 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3656 /* TODO: Add support for bigalloc file systems */ 3657 return -EOPNOTSUPP; 3658 } 3659 3660 trace_ext4_punch_hole(inode, offset, length); 3661 3662 return ext4_ext_punch_hole(file, offset, length); 3663 } 3664 3665 /* 3666 * ext4_truncate() 3667 * 3668 * We block out ext4_get_block() block instantiations across the entire 3669 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3670 * simultaneously on behalf of the same inode. 3671 * 3672 * As we work through the truncate and commit bits of it to the journal there 3673 * is one core, guiding principle: the file's tree must always be consistent on 3674 * disk. We must be able to restart the truncate after a crash. 3675 * 3676 * The file's tree may be transiently inconsistent in memory (although it 3677 * probably isn't), but whenever we close off and commit a journal transaction, 3678 * the contents of (the filesystem + the journal) must be consistent and 3679 * restartable. It's pretty simple, really: bottom up, right to left (although 3680 * left-to-right works OK too). 3681 * 3682 * Note that at recovery time, journal replay occurs *before* the restart of 3683 * truncate against the orphan inode list. 3684 * 3685 * The committed inode has the new, desired i_size (which is the same as 3686 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3687 * that this inode's truncate did not complete and it will again call 3688 * ext4_truncate() to have another go. So there will be instantiated blocks 3689 * to the right of the truncation point in a crashed ext4 filesystem. But 3690 * that's fine - as long as they are linked from the inode, the post-crash 3691 * ext4_truncate() run will find them and release them. 3692 */ 3693 void ext4_truncate(struct inode *inode) 3694 { 3695 trace_ext4_truncate_enter(inode); 3696 3697 if (!ext4_can_truncate(inode)) 3698 return; 3699 3700 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3701 3702 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3703 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3704 3705 if (ext4_has_inline_data(inode)) { 3706 int has_inline = 1; 3707 3708 ext4_inline_data_truncate(inode, &has_inline); 3709 if (has_inline) 3710 return; 3711 } 3712 3713 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3714 ext4_ext_truncate(inode); 3715 else 3716 ext4_ind_truncate(inode); 3717 3718 trace_ext4_truncate_exit(inode); 3719 } 3720 3721 /* 3722 * ext4_get_inode_loc returns with an extra refcount against the inode's 3723 * underlying buffer_head on success. If 'in_mem' is true, we have all 3724 * data in memory that is needed to recreate the on-disk version of this 3725 * inode. 3726 */ 3727 static int __ext4_get_inode_loc(struct inode *inode, 3728 struct ext4_iloc *iloc, int in_mem) 3729 { 3730 struct ext4_group_desc *gdp; 3731 struct buffer_head *bh; 3732 struct super_block *sb = inode->i_sb; 3733 ext4_fsblk_t block; 3734 int inodes_per_block, inode_offset; 3735 3736 iloc->bh = NULL; 3737 if (!ext4_valid_inum(sb, inode->i_ino)) 3738 return -EIO; 3739 3740 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3741 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3742 if (!gdp) 3743 return -EIO; 3744 3745 /* 3746 * Figure out the offset within the block group inode table 3747 */ 3748 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3749 inode_offset = ((inode->i_ino - 1) % 3750 EXT4_INODES_PER_GROUP(sb)); 3751 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3752 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3753 3754 bh = sb_getblk(sb, block); 3755 if (unlikely(!bh)) 3756 return -ENOMEM; 3757 if (!buffer_uptodate(bh)) { 3758 lock_buffer(bh); 3759 3760 /* 3761 * If the buffer has the write error flag, we have failed 3762 * to write out another inode in the same block. In this 3763 * case, we don't have to read the block because we may 3764 * read the old inode data successfully. 3765 */ 3766 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3767 set_buffer_uptodate(bh); 3768 3769 if (buffer_uptodate(bh)) { 3770 /* someone brought it uptodate while we waited */ 3771 unlock_buffer(bh); 3772 goto has_buffer; 3773 } 3774 3775 /* 3776 * If we have all information of the inode in memory and this 3777 * is the only valid inode in the block, we need not read the 3778 * block. 3779 */ 3780 if (in_mem) { 3781 struct buffer_head *bitmap_bh; 3782 int i, start; 3783 3784 start = inode_offset & ~(inodes_per_block - 1); 3785 3786 /* Is the inode bitmap in cache? */ 3787 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3788 if (unlikely(!bitmap_bh)) 3789 goto make_io; 3790 3791 /* 3792 * If the inode bitmap isn't in cache then the 3793 * optimisation may end up performing two reads instead 3794 * of one, so skip it. 3795 */ 3796 if (!buffer_uptodate(bitmap_bh)) { 3797 brelse(bitmap_bh); 3798 goto make_io; 3799 } 3800 for (i = start; i < start + inodes_per_block; i++) { 3801 if (i == inode_offset) 3802 continue; 3803 if (ext4_test_bit(i, bitmap_bh->b_data)) 3804 break; 3805 } 3806 brelse(bitmap_bh); 3807 if (i == start + inodes_per_block) { 3808 /* all other inodes are free, so skip I/O */ 3809 memset(bh->b_data, 0, bh->b_size); 3810 set_buffer_uptodate(bh); 3811 unlock_buffer(bh); 3812 goto has_buffer; 3813 } 3814 } 3815 3816 make_io: 3817 /* 3818 * If we need to do any I/O, try to pre-readahead extra 3819 * blocks from the inode table. 3820 */ 3821 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3822 ext4_fsblk_t b, end, table; 3823 unsigned num; 3824 3825 table = ext4_inode_table(sb, gdp); 3826 /* s_inode_readahead_blks is always a power of 2 */ 3827 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3828 if (table > b) 3829 b = table; 3830 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3831 num = EXT4_INODES_PER_GROUP(sb); 3832 if (ext4_has_group_desc_csum(sb)) 3833 num -= ext4_itable_unused_count(sb, gdp); 3834 table += num / inodes_per_block; 3835 if (end > table) 3836 end = table; 3837 while (b <= end) 3838 sb_breadahead(sb, b++); 3839 } 3840 3841 /* 3842 * There are other valid inodes in the buffer, this inode 3843 * has in-inode xattrs, or we don't have this inode in memory. 3844 * Read the block from disk. 3845 */ 3846 trace_ext4_load_inode(inode); 3847 get_bh(bh); 3848 bh->b_end_io = end_buffer_read_sync; 3849 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3850 wait_on_buffer(bh); 3851 if (!buffer_uptodate(bh)) { 3852 EXT4_ERROR_INODE_BLOCK(inode, block, 3853 "unable to read itable block"); 3854 brelse(bh); 3855 return -EIO; 3856 } 3857 } 3858 has_buffer: 3859 iloc->bh = bh; 3860 return 0; 3861 } 3862 3863 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3864 { 3865 /* We have all inode data except xattrs in memory here. */ 3866 return __ext4_get_inode_loc(inode, iloc, 3867 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3868 } 3869 3870 void ext4_set_inode_flags(struct inode *inode) 3871 { 3872 unsigned int flags = EXT4_I(inode)->i_flags; 3873 3874 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3875 if (flags & EXT4_SYNC_FL) 3876 inode->i_flags |= S_SYNC; 3877 if (flags & EXT4_APPEND_FL) 3878 inode->i_flags |= S_APPEND; 3879 if (flags & EXT4_IMMUTABLE_FL) 3880 inode->i_flags |= S_IMMUTABLE; 3881 if (flags & EXT4_NOATIME_FL) 3882 inode->i_flags |= S_NOATIME; 3883 if (flags & EXT4_DIRSYNC_FL) 3884 inode->i_flags |= S_DIRSYNC; 3885 } 3886 3887 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3888 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3889 { 3890 unsigned int vfs_fl; 3891 unsigned long old_fl, new_fl; 3892 3893 do { 3894 vfs_fl = ei->vfs_inode.i_flags; 3895 old_fl = ei->i_flags; 3896 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3897 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3898 EXT4_DIRSYNC_FL); 3899 if (vfs_fl & S_SYNC) 3900 new_fl |= EXT4_SYNC_FL; 3901 if (vfs_fl & S_APPEND) 3902 new_fl |= EXT4_APPEND_FL; 3903 if (vfs_fl & S_IMMUTABLE) 3904 new_fl |= EXT4_IMMUTABLE_FL; 3905 if (vfs_fl & S_NOATIME) 3906 new_fl |= EXT4_NOATIME_FL; 3907 if (vfs_fl & S_DIRSYNC) 3908 new_fl |= EXT4_DIRSYNC_FL; 3909 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3910 } 3911 3912 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3913 struct ext4_inode_info *ei) 3914 { 3915 blkcnt_t i_blocks ; 3916 struct inode *inode = &(ei->vfs_inode); 3917 struct super_block *sb = inode->i_sb; 3918 3919 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3920 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3921 /* we are using combined 48 bit field */ 3922 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3923 le32_to_cpu(raw_inode->i_blocks_lo); 3924 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3925 /* i_blocks represent file system block size */ 3926 return i_blocks << (inode->i_blkbits - 9); 3927 } else { 3928 return i_blocks; 3929 } 3930 } else { 3931 return le32_to_cpu(raw_inode->i_blocks_lo); 3932 } 3933 } 3934 3935 static inline void ext4_iget_extra_inode(struct inode *inode, 3936 struct ext4_inode *raw_inode, 3937 struct ext4_inode_info *ei) 3938 { 3939 __le32 *magic = (void *)raw_inode + 3940 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3941 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3942 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3943 ext4_find_inline_data_nolock(inode); 3944 } else 3945 EXT4_I(inode)->i_inline_off = 0; 3946 } 3947 3948 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3949 { 3950 struct ext4_iloc iloc; 3951 struct ext4_inode *raw_inode; 3952 struct ext4_inode_info *ei; 3953 struct inode *inode; 3954 journal_t *journal = EXT4_SB(sb)->s_journal; 3955 long ret; 3956 int block; 3957 uid_t i_uid; 3958 gid_t i_gid; 3959 3960 inode = iget_locked(sb, ino); 3961 if (!inode) 3962 return ERR_PTR(-ENOMEM); 3963 if (!(inode->i_state & I_NEW)) 3964 return inode; 3965 3966 ei = EXT4_I(inode); 3967 iloc.bh = NULL; 3968 3969 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3970 if (ret < 0) 3971 goto bad_inode; 3972 raw_inode = ext4_raw_inode(&iloc); 3973 3974 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3975 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3976 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3977 EXT4_INODE_SIZE(inode->i_sb)) { 3978 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3979 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3980 EXT4_INODE_SIZE(inode->i_sb)); 3981 ret = -EIO; 3982 goto bad_inode; 3983 } 3984 } else 3985 ei->i_extra_isize = 0; 3986 3987 /* Precompute checksum seed for inode metadata */ 3988 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3989 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3990 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3991 __u32 csum; 3992 __le32 inum = cpu_to_le32(inode->i_ino); 3993 __le32 gen = raw_inode->i_generation; 3994 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3995 sizeof(inum)); 3996 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3997 sizeof(gen)); 3998 } 3999 4000 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4001 EXT4_ERROR_INODE(inode, "checksum invalid"); 4002 ret = -EIO; 4003 goto bad_inode; 4004 } 4005 4006 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4007 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4008 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4009 if (!(test_opt(inode->i_sb, NO_UID32))) { 4010 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4011 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4012 } 4013 i_uid_write(inode, i_uid); 4014 i_gid_write(inode, i_gid); 4015 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4016 4017 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4018 ei->i_inline_off = 0; 4019 ei->i_dir_start_lookup = 0; 4020 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4021 /* We now have enough fields to check if the inode was active or not. 4022 * This is needed because nfsd might try to access dead inodes 4023 * the test is that same one that e2fsck uses 4024 * NeilBrown 1999oct15 4025 */ 4026 if (inode->i_nlink == 0) { 4027 if (inode->i_mode == 0 || 4028 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4029 /* this inode is deleted */ 4030 ret = -ESTALE; 4031 goto bad_inode; 4032 } 4033 /* The only unlinked inodes we let through here have 4034 * valid i_mode and are being read by the orphan 4035 * recovery code: that's fine, we're about to complete 4036 * the process of deleting those. */ 4037 } 4038 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4039 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4040 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4041 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4042 ei->i_file_acl |= 4043 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4044 inode->i_size = ext4_isize(raw_inode); 4045 ei->i_disksize = inode->i_size; 4046 #ifdef CONFIG_QUOTA 4047 ei->i_reserved_quota = 0; 4048 #endif 4049 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4050 ei->i_block_group = iloc.block_group; 4051 ei->i_last_alloc_group = ~0; 4052 /* 4053 * NOTE! The in-memory inode i_data array is in little-endian order 4054 * even on big-endian machines: we do NOT byteswap the block numbers! 4055 */ 4056 for (block = 0; block < EXT4_N_BLOCKS; block++) 4057 ei->i_data[block] = raw_inode->i_block[block]; 4058 INIT_LIST_HEAD(&ei->i_orphan); 4059 4060 /* 4061 * Set transaction id's of transactions that have to be committed 4062 * to finish f[data]sync. We set them to currently running transaction 4063 * as we cannot be sure that the inode or some of its metadata isn't 4064 * part of the transaction - the inode could have been reclaimed and 4065 * now it is reread from disk. 4066 */ 4067 if (journal) { 4068 transaction_t *transaction; 4069 tid_t tid; 4070 4071 read_lock(&journal->j_state_lock); 4072 if (journal->j_running_transaction) 4073 transaction = journal->j_running_transaction; 4074 else 4075 transaction = journal->j_committing_transaction; 4076 if (transaction) 4077 tid = transaction->t_tid; 4078 else 4079 tid = journal->j_commit_sequence; 4080 read_unlock(&journal->j_state_lock); 4081 ei->i_sync_tid = tid; 4082 ei->i_datasync_tid = tid; 4083 } 4084 4085 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4086 if (ei->i_extra_isize == 0) { 4087 /* The extra space is currently unused. Use it. */ 4088 ei->i_extra_isize = sizeof(struct ext4_inode) - 4089 EXT4_GOOD_OLD_INODE_SIZE; 4090 } else { 4091 ext4_iget_extra_inode(inode, raw_inode, ei); 4092 } 4093 } 4094 4095 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4096 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4097 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4098 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4099 4100 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4102 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4103 inode->i_version |= 4104 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4105 } 4106 4107 ret = 0; 4108 if (ei->i_file_acl && 4109 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4110 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4111 ei->i_file_acl); 4112 ret = -EIO; 4113 goto bad_inode; 4114 } else if (!ext4_has_inline_data(inode)) { 4115 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4116 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4117 (S_ISLNK(inode->i_mode) && 4118 !ext4_inode_is_fast_symlink(inode)))) 4119 /* Validate extent which is part of inode */ 4120 ret = ext4_ext_check_inode(inode); 4121 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4122 (S_ISLNK(inode->i_mode) && 4123 !ext4_inode_is_fast_symlink(inode))) { 4124 /* Validate block references which are part of inode */ 4125 ret = ext4_ind_check_inode(inode); 4126 } 4127 } 4128 if (ret) 4129 goto bad_inode; 4130 4131 if (S_ISREG(inode->i_mode)) { 4132 inode->i_op = &ext4_file_inode_operations; 4133 inode->i_fop = &ext4_file_operations; 4134 ext4_set_aops(inode); 4135 } else if (S_ISDIR(inode->i_mode)) { 4136 inode->i_op = &ext4_dir_inode_operations; 4137 inode->i_fop = &ext4_dir_operations; 4138 } else if (S_ISLNK(inode->i_mode)) { 4139 if (ext4_inode_is_fast_symlink(inode)) { 4140 inode->i_op = &ext4_fast_symlink_inode_operations; 4141 nd_terminate_link(ei->i_data, inode->i_size, 4142 sizeof(ei->i_data) - 1); 4143 } else { 4144 inode->i_op = &ext4_symlink_inode_operations; 4145 ext4_set_aops(inode); 4146 } 4147 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4148 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4149 inode->i_op = &ext4_special_inode_operations; 4150 if (raw_inode->i_block[0]) 4151 init_special_inode(inode, inode->i_mode, 4152 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4153 else 4154 init_special_inode(inode, inode->i_mode, 4155 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4156 } else { 4157 ret = -EIO; 4158 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4159 goto bad_inode; 4160 } 4161 brelse(iloc.bh); 4162 ext4_set_inode_flags(inode); 4163 unlock_new_inode(inode); 4164 return inode; 4165 4166 bad_inode: 4167 brelse(iloc.bh); 4168 iget_failed(inode); 4169 return ERR_PTR(ret); 4170 } 4171 4172 static int ext4_inode_blocks_set(handle_t *handle, 4173 struct ext4_inode *raw_inode, 4174 struct ext4_inode_info *ei) 4175 { 4176 struct inode *inode = &(ei->vfs_inode); 4177 u64 i_blocks = inode->i_blocks; 4178 struct super_block *sb = inode->i_sb; 4179 4180 if (i_blocks <= ~0U) { 4181 /* 4182 * i_blocks can be represented in a 32 bit variable 4183 * as multiple of 512 bytes 4184 */ 4185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4186 raw_inode->i_blocks_high = 0; 4187 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4188 return 0; 4189 } 4190 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4191 return -EFBIG; 4192 4193 if (i_blocks <= 0xffffffffffffULL) { 4194 /* 4195 * i_blocks can be represented in a 48 bit variable 4196 * as multiple of 512 bytes 4197 */ 4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4199 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4200 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4201 } else { 4202 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4203 /* i_block is stored in file system block size */ 4204 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4205 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4206 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4207 } 4208 return 0; 4209 } 4210 4211 /* 4212 * Post the struct inode info into an on-disk inode location in the 4213 * buffer-cache. This gobbles the caller's reference to the 4214 * buffer_head in the inode location struct. 4215 * 4216 * The caller must have write access to iloc->bh. 4217 */ 4218 static int ext4_do_update_inode(handle_t *handle, 4219 struct inode *inode, 4220 struct ext4_iloc *iloc) 4221 { 4222 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4223 struct ext4_inode_info *ei = EXT4_I(inode); 4224 struct buffer_head *bh = iloc->bh; 4225 int err = 0, rc, block; 4226 int need_datasync = 0; 4227 uid_t i_uid; 4228 gid_t i_gid; 4229 4230 /* For fields not not tracking in the in-memory inode, 4231 * initialise them to zero for new inodes. */ 4232 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4233 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4234 4235 ext4_get_inode_flags(ei); 4236 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4237 i_uid = i_uid_read(inode); 4238 i_gid = i_gid_read(inode); 4239 if (!(test_opt(inode->i_sb, NO_UID32))) { 4240 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4241 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4242 /* 4243 * Fix up interoperability with old kernels. Otherwise, old inodes get 4244 * re-used with the upper 16 bits of the uid/gid intact 4245 */ 4246 if (!ei->i_dtime) { 4247 raw_inode->i_uid_high = 4248 cpu_to_le16(high_16_bits(i_uid)); 4249 raw_inode->i_gid_high = 4250 cpu_to_le16(high_16_bits(i_gid)); 4251 } else { 4252 raw_inode->i_uid_high = 0; 4253 raw_inode->i_gid_high = 0; 4254 } 4255 } else { 4256 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4257 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4258 raw_inode->i_uid_high = 0; 4259 raw_inode->i_gid_high = 0; 4260 } 4261 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4262 4263 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4264 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4265 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4266 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4267 4268 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4269 goto out_brelse; 4270 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4271 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4272 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4273 cpu_to_le32(EXT4_OS_HURD)) 4274 raw_inode->i_file_acl_high = 4275 cpu_to_le16(ei->i_file_acl >> 32); 4276 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4277 if (ei->i_disksize != ext4_isize(raw_inode)) { 4278 ext4_isize_set(raw_inode, ei->i_disksize); 4279 need_datasync = 1; 4280 } 4281 if (ei->i_disksize > 0x7fffffffULL) { 4282 struct super_block *sb = inode->i_sb; 4283 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4284 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4285 EXT4_SB(sb)->s_es->s_rev_level == 4286 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4287 /* If this is the first large file 4288 * created, add a flag to the superblock. 4289 */ 4290 err = ext4_journal_get_write_access(handle, 4291 EXT4_SB(sb)->s_sbh); 4292 if (err) 4293 goto out_brelse; 4294 ext4_update_dynamic_rev(sb); 4295 EXT4_SET_RO_COMPAT_FEATURE(sb, 4296 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4297 ext4_handle_sync(handle); 4298 err = ext4_handle_dirty_super(handle, sb); 4299 } 4300 } 4301 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4302 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4303 if (old_valid_dev(inode->i_rdev)) { 4304 raw_inode->i_block[0] = 4305 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4306 raw_inode->i_block[1] = 0; 4307 } else { 4308 raw_inode->i_block[0] = 0; 4309 raw_inode->i_block[1] = 4310 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4311 raw_inode->i_block[2] = 0; 4312 } 4313 } else if (!ext4_has_inline_data(inode)) { 4314 for (block = 0; block < EXT4_N_BLOCKS; block++) 4315 raw_inode->i_block[block] = ei->i_data[block]; 4316 } 4317 4318 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4319 if (ei->i_extra_isize) { 4320 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4321 raw_inode->i_version_hi = 4322 cpu_to_le32(inode->i_version >> 32); 4323 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4324 } 4325 4326 ext4_inode_csum_set(inode, raw_inode, ei); 4327 4328 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4329 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4330 if (!err) 4331 err = rc; 4332 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4333 4334 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4335 out_brelse: 4336 brelse(bh); 4337 ext4_std_error(inode->i_sb, err); 4338 return err; 4339 } 4340 4341 /* 4342 * ext4_write_inode() 4343 * 4344 * We are called from a few places: 4345 * 4346 * - Within generic_file_write() for O_SYNC files. 4347 * Here, there will be no transaction running. We wait for any running 4348 * transaction to commit. 4349 * 4350 * - Within sys_sync(), kupdate and such. 4351 * We wait on commit, if tol to. 4352 * 4353 * - Within prune_icache() (PF_MEMALLOC == true) 4354 * Here we simply return. We can't afford to block kswapd on the 4355 * journal commit. 4356 * 4357 * In all cases it is actually safe for us to return without doing anything, 4358 * because the inode has been copied into a raw inode buffer in 4359 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4360 * knfsd. 4361 * 4362 * Note that we are absolutely dependent upon all inode dirtiers doing the 4363 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4364 * which we are interested. 4365 * 4366 * It would be a bug for them to not do this. The code: 4367 * 4368 * mark_inode_dirty(inode) 4369 * stuff(); 4370 * inode->i_size = expr; 4371 * 4372 * is in error because a kswapd-driven write_inode() could occur while 4373 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4374 * will no longer be on the superblock's dirty inode list. 4375 */ 4376 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4377 { 4378 int err; 4379 4380 if (current->flags & PF_MEMALLOC) 4381 return 0; 4382 4383 if (EXT4_SB(inode->i_sb)->s_journal) { 4384 if (ext4_journal_current_handle()) { 4385 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4386 dump_stack(); 4387 return -EIO; 4388 } 4389 4390 if (wbc->sync_mode != WB_SYNC_ALL) 4391 return 0; 4392 4393 err = ext4_force_commit(inode->i_sb); 4394 } else { 4395 struct ext4_iloc iloc; 4396 4397 err = __ext4_get_inode_loc(inode, &iloc, 0); 4398 if (err) 4399 return err; 4400 if (wbc->sync_mode == WB_SYNC_ALL) 4401 sync_dirty_buffer(iloc.bh); 4402 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4403 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4404 "IO error syncing inode"); 4405 err = -EIO; 4406 } 4407 brelse(iloc.bh); 4408 } 4409 return err; 4410 } 4411 4412 /* 4413 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4414 * buffers that are attached to a page stradding i_size and are undergoing 4415 * commit. In that case we have to wait for commit to finish and try again. 4416 */ 4417 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4418 { 4419 struct page *page; 4420 unsigned offset; 4421 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4422 tid_t commit_tid = 0; 4423 int ret; 4424 4425 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4426 /* 4427 * All buffers in the last page remain valid? Then there's nothing to 4428 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4429 * blocksize case 4430 */ 4431 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4432 return; 4433 while (1) { 4434 page = find_lock_page(inode->i_mapping, 4435 inode->i_size >> PAGE_CACHE_SHIFT); 4436 if (!page) 4437 return; 4438 ret = __ext4_journalled_invalidatepage(page, offset); 4439 unlock_page(page); 4440 page_cache_release(page); 4441 if (ret != -EBUSY) 4442 return; 4443 commit_tid = 0; 4444 read_lock(&journal->j_state_lock); 4445 if (journal->j_committing_transaction) 4446 commit_tid = journal->j_committing_transaction->t_tid; 4447 read_unlock(&journal->j_state_lock); 4448 if (commit_tid) 4449 jbd2_log_wait_commit(journal, commit_tid); 4450 } 4451 } 4452 4453 /* 4454 * ext4_setattr() 4455 * 4456 * Called from notify_change. 4457 * 4458 * We want to trap VFS attempts to truncate the file as soon as 4459 * possible. In particular, we want to make sure that when the VFS 4460 * shrinks i_size, we put the inode on the orphan list and modify 4461 * i_disksize immediately, so that during the subsequent flushing of 4462 * dirty pages and freeing of disk blocks, we can guarantee that any 4463 * commit will leave the blocks being flushed in an unused state on 4464 * disk. (On recovery, the inode will get truncated and the blocks will 4465 * be freed, so we have a strong guarantee that no future commit will 4466 * leave these blocks visible to the user.) 4467 * 4468 * Another thing we have to assure is that if we are in ordered mode 4469 * and inode is still attached to the committing transaction, we must 4470 * we start writeout of all the dirty pages which are being truncated. 4471 * This way we are sure that all the data written in the previous 4472 * transaction are already on disk (truncate waits for pages under 4473 * writeback). 4474 * 4475 * Called with inode->i_mutex down. 4476 */ 4477 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4478 { 4479 struct inode *inode = dentry->d_inode; 4480 int error, rc = 0; 4481 int orphan = 0; 4482 const unsigned int ia_valid = attr->ia_valid; 4483 4484 error = inode_change_ok(inode, attr); 4485 if (error) 4486 return error; 4487 4488 if (is_quota_modification(inode, attr)) 4489 dquot_initialize(inode); 4490 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4491 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4492 handle_t *handle; 4493 4494 /* (user+group)*(old+new) structure, inode write (sb, 4495 * inode block, ? - but truncate inode update has it) */ 4496 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4497 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4498 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4499 if (IS_ERR(handle)) { 4500 error = PTR_ERR(handle); 4501 goto err_out; 4502 } 4503 error = dquot_transfer(inode, attr); 4504 if (error) { 4505 ext4_journal_stop(handle); 4506 return error; 4507 } 4508 /* Update corresponding info in inode so that everything is in 4509 * one transaction */ 4510 if (attr->ia_valid & ATTR_UID) 4511 inode->i_uid = attr->ia_uid; 4512 if (attr->ia_valid & ATTR_GID) 4513 inode->i_gid = attr->ia_gid; 4514 error = ext4_mark_inode_dirty(handle, inode); 4515 ext4_journal_stop(handle); 4516 } 4517 4518 if (attr->ia_valid & ATTR_SIZE) { 4519 4520 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4521 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4522 4523 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4524 return -EFBIG; 4525 } 4526 } 4527 4528 if (S_ISREG(inode->i_mode) && 4529 attr->ia_valid & ATTR_SIZE && 4530 (attr->ia_size < inode->i_size)) { 4531 handle_t *handle; 4532 4533 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4534 if (IS_ERR(handle)) { 4535 error = PTR_ERR(handle); 4536 goto err_out; 4537 } 4538 if (ext4_handle_valid(handle)) { 4539 error = ext4_orphan_add(handle, inode); 4540 orphan = 1; 4541 } 4542 EXT4_I(inode)->i_disksize = attr->ia_size; 4543 rc = ext4_mark_inode_dirty(handle, inode); 4544 if (!error) 4545 error = rc; 4546 ext4_journal_stop(handle); 4547 4548 if (ext4_should_order_data(inode)) { 4549 error = ext4_begin_ordered_truncate(inode, 4550 attr->ia_size); 4551 if (error) { 4552 /* Do as much error cleanup as possible */ 4553 handle = ext4_journal_start(inode, 4554 EXT4_HT_INODE, 3); 4555 if (IS_ERR(handle)) { 4556 ext4_orphan_del(NULL, inode); 4557 goto err_out; 4558 } 4559 ext4_orphan_del(handle, inode); 4560 orphan = 0; 4561 ext4_journal_stop(handle); 4562 goto err_out; 4563 } 4564 } 4565 } 4566 4567 if (attr->ia_valid & ATTR_SIZE) { 4568 if (attr->ia_size != inode->i_size) { 4569 loff_t oldsize = inode->i_size; 4570 4571 i_size_write(inode, attr->ia_size); 4572 /* 4573 * Blocks are going to be removed from the inode. Wait 4574 * for dio in flight. Temporarily disable 4575 * dioread_nolock to prevent livelock. 4576 */ 4577 if (orphan) { 4578 if (!ext4_should_journal_data(inode)) { 4579 ext4_inode_block_unlocked_dio(inode); 4580 inode_dio_wait(inode); 4581 ext4_inode_resume_unlocked_dio(inode); 4582 } else 4583 ext4_wait_for_tail_page_commit(inode); 4584 } 4585 /* 4586 * Truncate pagecache after we've waited for commit 4587 * in data=journal mode to make pages freeable. 4588 */ 4589 truncate_pagecache(inode, oldsize, inode->i_size); 4590 } 4591 ext4_truncate(inode); 4592 } 4593 4594 if (!rc) { 4595 setattr_copy(inode, attr); 4596 mark_inode_dirty(inode); 4597 } 4598 4599 /* 4600 * If the call to ext4_truncate failed to get a transaction handle at 4601 * all, we need to clean up the in-core orphan list manually. 4602 */ 4603 if (orphan && inode->i_nlink) 4604 ext4_orphan_del(NULL, inode); 4605 4606 if (!rc && (ia_valid & ATTR_MODE)) 4607 rc = ext4_acl_chmod(inode); 4608 4609 err_out: 4610 ext4_std_error(inode->i_sb, error); 4611 if (!error) 4612 error = rc; 4613 return error; 4614 } 4615 4616 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4617 struct kstat *stat) 4618 { 4619 struct inode *inode; 4620 unsigned long delalloc_blocks; 4621 4622 inode = dentry->d_inode; 4623 generic_fillattr(inode, stat); 4624 4625 /* 4626 * We can't update i_blocks if the block allocation is delayed 4627 * otherwise in the case of system crash before the real block 4628 * allocation is done, we will have i_blocks inconsistent with 4629 * on-disk file blocks. 4630 * We always keep i_blocks updated together with real 4631 * allocation. But to not confuse with user, stat 4632 * will return the blocks that include the delayed allocation 4633 * blocks for this file. 4634 */ 4635 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4636 EXT4_I(inode)->i_reserved_data_blocks); 4637 4638 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4639 return 0; 4640 } 4641 4642 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4643 { 4644 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4645 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4646 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4647 } 4648 4649 /* 4650 * Account for index blocks, block groups bitmaps and block group 4651 * descriptor blocks if modify datablocks and index blocks 4652 * worse case, the indexs blocks spread over different block groups 4653 * 4654 * If datablocks are discontiguous, they are possible to spread over 4655 * different block groups too. If they are contiguous, with flexbg, 4656 * they could still across block group boundary. 4657 * 4658 * Also account for superblock, inode, quota and xattr blocks 4659 */ 4660 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4661 { 4662 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4663 int gdpblocks; 4664 int idxblocks; 4665 int ret = 0; 4666 4667 /* 4668 * How many index blocks need to touch to modify nrblocks? 4669 * The "Chunk" flag indicating whether the nrblocks is 4670 * physically contiguous on disk 4671 * 4672 * For Direct IO and fallocate, they calls get_block to allocate 4673 * one single extent at a time, so they could set the "Chunk" flag 4674 */ 4675 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4676 4677 ret = idxblocks; 4678 4679 /* 4680 * Now let's see how many group bitmaps and group descriptors need 4681 * to account 4682 */ 4683 groups = idxblocks; 4684 if (chunk) 4685 groups += 1; 4686 else 4687 groups += nrblocks; 4688 4689 gdpblocks = groups; 4690 if (groups > ngroups) 4691 groups = ngroups; 4692 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4693 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4694 4695 /* bitmaps and block group descriptor blocks */ 4696 ret += groups + gdpblocks; 4697 4698 /* Blocks for super block, inode, quota and xattr blocks */ 4699 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4700 4701 return ret; 4702 } 4703 4704 /* 4705 * Calculate the total number of credits to reserve to fit 4706 * the modification of a single pages into a single transaction, 4707 * which may include multiple chunks of block allocations. 4708 * 4709 * This could be called via ext4_write_begin() 4710 * 4711 * We need to consider the worse case, when 4712 * one new block per extent. 4713 */ 4714 int ext4_writepage_trans_blocks(struct inode *inode) 4715 { 4716 int bpp = ext4_journal_blocks_per_page(inode); 4717 int ret; 4718 4719 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4720 4721 /* Account for data blocks for journalled mode */ 4722 if (ext4_should_journal_data(inode)) 4723 ret += bpp; 4724 return ret; 4725 } 4726 4727 /* 4728 * Calculate the journal credits for a chunk of data modification. 4729 * 4730 * This is called from DIO, fallocate or whoever calling 4731 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4732 * 4733 * journal buffers for data blocks are not included here, as DIO 4734 * and fallocate do no need to journal data buffers. 4735 */ 4736 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4737 { 4738 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4739 } 4740 4741 /* 4742 * The caller must have previously called ext4_reserve_inode_write(). 4743 * Give this, we know that the caller already has write access to iloc->bh. 4744 */ 4745 int ext4_mark_iloc_dirty(handle_t *handle, 4746 struct inode *inode, struct ext4_iloc *iloc) 4747 { 4748 int err = 0; 4749 4750 if (IS_I_VERSION(inode)) 4751 inode_inc_iversion(inode); 4752 4753 /* the do_update_inode consumes one bh->b_count */ 4754 get_bh(iloc->bh); 4755 4756 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4757 err = ext4_do_update_inode(handle, inode, iloc); 4758 put_bh(iloc->bh); 4759 return err; 4760 } 4761 4762 /* 4763 * On success, We end up with an outstanding reference count against 4764 * iloc->bh. This _must_ be cleaned up later. 4765 */ 4766 4767 int 4768 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4769 struct ext4_iloc *iloc) 4770 { 4771 int err; 4772 4773 err = ext4_get_inode_loc(inode, iloc); 4774 if (!err) { 4775 BUFFER_TRACE(iloc->bh, "get_write_access"); 4776 err = ext4_journal_get_write_access(handle, iloc->bh); 4777 if (err) { 4778 brelse(iloc->bh); 4779 iloc->bh = NULL; 4780 } 4781 } 4782 ext4_std_error(inode->i_sb, err); 4783 return err; 4784 } 4785 4786 /* 4787 * Expand an inode by new_extra_isize bytes. 4788 * Returns 0 on success or negative error number on failure. 4789 */ 4790 static int ext4_expand_extra_isize(struct inode *inode, 4791 unsigned int new_extra_isize, 4792 struct ext4_iloc iloc, 4793 handle_t *handle) 4794 { 4795 struct ext4_inode *raw_inode; 4796 struct ext4_xattr_ibody_header *header; 4797 4798 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4799 return 0; 4800 4801 raw_inode = ext4_raw_inode(&iloc); 4802 4803 header = IHDR(inode, raw_inode); 4804 4805 /* No extended attributes present */ 4806 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4807 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4808 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4809 new_extra_isize); 4810 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4811 return 0; 4812 } 4813 4814 /* try to expand with EAs present */ 4815 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4816 raw_inode, handle); 4817 } 4818 4819 /* 4820 * What we do here is to mark the in-core inode as clean with respect to inode 4821 * dirtiness (it may still be data-dirty). 4822 * This means that the in-core inode may be reaped by prune_icache 4823 * without having to perform any I/O. This is a very good thing, 4824 * because *any* task may call prune_icache - even ones which 4825 * have a transaction open against a different journal. 4826 * 4827 * Is this cheating? Not really. Sure, we haven't written the 4828 * inode out, but prune_icache isn't a user-visible syncing function. 4829 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4830 * we start and wait on commits. 4831 */ 4832 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4833 { 4834 struct ext4_iloc iloc; 4835 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4836 static unsigned int mnt_count; 4837 int err, ret; 4838 4839 might_sleep(); 4840 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4841 err = ext4_reserve_inode_write(handle, inode, &iloc); 4842 if (ext4_handle_valid(handle) && 4843 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4844 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4845 /* 4846 * We need extra buffer credits since we may write into EA block 4847 * with this same handle. If journal_extend fails, then it will 4848 * only result in a minor loss of functionality for that inode. 4849 * If this is felt to be critical, then e2fsck should be run to 4850 * force a large enough s_min_extra_isize. 4851 */ 4852 if ((jbd2_journal_extend(handle, 4853 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4854 ret = ext4_expand_extra_isize(inode, 4855 sbi->s_want_extra_isize, 4856 iloc, handle); 4857 if (ret) { 4858 ext4_set_inode_state(inode, 4859 EXT4_STATE_NO_EXPAND); 4860 if (mnt_count != 4861 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4862 ext4_warning(inode->i_sb, 4863 "Unable to expand inode %lu. Delete" 4864 " some EAs or run e2fsck.", 4865 inode->i_ino); 4866 mnt_count = 4867 le16_to_cpu(sbi->s_es->s_mnt_count); 4868 } 4869 } 4870 } 4871 } 4872 if (!err) 4873 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4874 return err; 4875 } 4876 4877 /* 4878 * ext4_dirty_inode() is called from __mark_inode_dirty() 4879 * 4880 * We're really interested in the case where a file is being extended. 4881 * i_size has been changed by generic_commit_write() and we thus need 4882 * to include the updated inode in the current transaction. 4883 * 4884 * Also, dquot_alloc_block() will always dirty the inode when blocks 4885 * are allocated to the file. 4886 * 4887 * If the inode is marked synchronous, we don't honour that here - doing 4888 * so would cause a commit on atime updates, which we don't bother doing. 4889 * We handle synchronous inodes at the highest possible level. 4890 */ 4891 void ext4_dirty_inode(struct inode *inode, int flags) 4892 { 4893 handle_t *handle; 4894 4895 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4896 if (IS_ERR(handle)) 4897 goto out; 4898 4899 ext4_mark_inode_dirty(handle, inode); 4900 4901 ext4_journal_stop(handle); 4902 out: 4903 return; 4904 } 4905 4906 #if 0 4907 /* 4908 * Bind an inode's backing buffer_head into this transaction, to prevent 4909 * it from being flushed to disk early. Unlike 4910 * ext4_reserve_inode_write, this leaves behind no bh reference and 4911 * returns no iloc structure, so the caller needs to repeat the iloc 4912 * lookup to mark the inode dirty later. 4913 */ 4914 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4915 { 4916 struct ext4_iloc iloc; 4917 4918 int err = 0; 4919 if (handle) { 4920 err = ext4_get_inode_loc(inode, &iloc); 4921 if (!err) { 4922 BUFFER_TRACE(iloc.bh, "get_write_access"); 4923 err = jbd2_journal_get_write_access(handle, iloc.bh); 4924 if (!err) 4925 err = ext4_handle_dirty_metadata(handle, 4926 NULL, 4927 iloc.bh); 4928 brelse(iloc.bh); 4929 } 4930 } 4931 ext4_std_error(inode->i_sb, err); 4932 return err; 4933 } 4934 #endif 4935 4936 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4937 { 4938 journal_t *journal; 4939 handle_t *handle; 4940 int err; 4941 4942 /* 4943 * We have to be very careful here: changing a data block's 4944 * journaling status dynamically is dangerous. If we write a 4945 * data block to the journal, change the status and then delete 4946 * that block, we risk forgetting to revoke the old log record 4947 * from the journal and so a subsequent replay can corrupt data. 4948 * So, first we make sure that the journal is empty and that 4949 * nobody is changing anything. 4950 */ 4951 4952 journal = EXT4_JOURNAL(inode); 4953 if (!journal) 4954 return 0; 4955 if (is_journal_aborted(journal)) 4956 return -EROFS; 4957 /* We have to allocate physical blocks for delalloc blocks 4958 * before flushing journal. otherwise delalloc blocks can not 4959 * be allocated any more. even more truncate on delalloc blocks 4960 * could trigger BUG by flushing delalloc blocks in journal. 4961 * There is no delalloc block in non-journal data mode. 4962 */ 4963 if (val && test_opt(inode->i_sb, DELALLOC)) { 4964 err = ext4_alloc_da_blocks(inode); 4965 if (err < 0) 4966 return err; 4967 } 4968 4969 /* Wait for all existing dio workers */ 4970 ext4_inode_block_unlocked_dio(inode); 4971 inode_dio_wait(inode); 4972 4973 jbd2_journal_lock_updates(journal); 4974 4975 /* 4976 * OK, there are no updates running now, and all cached data is 4977 * synced to disk. We are now in a completely consistent state 4978 * which doesn't have anything in the journal, and we know that 4979 * no filesystem updates are running, so it is safe to modify 4980 * the inode's in-core data-journaling state flag now. 4981 */ 4982 4983 if (val) 4984 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4985 else { 4986 jbd2_journal_flush(journal); 4987 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4988 } 4989 ext4_set_aops(inode); 4990 4991 jbd2_journal_unlock_updates(journal); 4992 ext4_inode_resume_unlocked_dio(inode); 4993 4994 /* Finally we can mark the inode as dirty. */ 4995 4996 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4997 if (IS_ERR(handle)) 4998 return PTR_ERR(handle); 4999 5000 err = ext4_mark_inode_dirty(handle, inode); 5001 ext4_handle_sync(handle); 5002 ext4_journal_stop(handle); 5003 ext4_std_error(inode->i_sb, err); 5004 5005 return err; 5006 } 5007 5008 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5009 { 5010 return !buffer_mapped(bh); 5011 } 5012 5013 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5014 { 5015 struct page *page = vmf->page; 5016 loff_t size; 5017 unsigned long len; 5018 int ret; 5019 struct file *file = vma->vm_file; 5020 struct inode *inode = file_inode(file); 5021 struct address_space *mapping = inode->i_mapping; 5022 handle_t *handle; 5023 get_block_t *get_block; 5024 int retries = 0; 5025 5026 sb_start_pagefault(inode->i_sb); 5027 file_update_time(vma->vm_file); 5028 /* Delalloc case is easy... */ 5029 if (test_opt(inode->i_sb, DELALLOC) && 5030 !ext4_should_journal_data(inode) && 5031 !ext4_nonda_switch(inode->i_sb)) { 5032 do { 5033 ret = __block_page_mkwrite(vma, vmf, 5034 ext4_da_get_block_prep); 5035 } while (ret == -ENOSPC && 5036 ext4_should_retry_alloc(inode->i_sb, &retries)); 5037 goto out_ret; 5038 } 5039 5040 lock_page(page); 5041 size = i_size_read(inode); 5042 /* Page got truncated from under us? */ 5043 if (page->mapping != mapping || page_offset(page) > size) { 5044 unlock_page(page); 5045 ret = VM_FAULT_NOPAGE; 5046 goto out; 5047 } 5048 5049 if (page->index == size >> PAGE_CACHE_SHIFT) 5050 len = size & ~PAGE_CACHE_MASK; 5051 else 5052 len = PAGE_CACHE_SIZE; 5053 /* 5054 * Return if we have all the buffers mapped. This avoids the need to do 5055 * journal_start/journal_stop which can block and take a long time 5056 */ 5057 if (page_has_buffers(page)) { 5058 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5059 0, len, NULL, 5060 ext4_bh_unmapped)) { 5061 /* Wait so that we don't change page under IO */ 5062 wait_for_stable_page(page); 5063 ret = VM_FAULT_LOCKED; 5064 goto out; 5065 } 5066 } 5067 unlock_page(page); 5068 /* OK, we need to fill the hole... */ 5069 if (ext4_should_dioread_nolock(inode)) 5070 get_block = ext4_get_block_write; 5071 else 5072 get_block = ext4_get_block; 5073 retry_alloc: 5074 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5075 ext4_writepage_trans_blocks(inode)); 5076 if (IS_ERR(handle)) { 5077 ret = VM_FAULT_SIGBUS; 5078 goto out; 5079 } 5080 ret = __block_page_mkwrite(vma, vmf, get_block); 5081 if (!ret && ext4_should_journal_data(inode)) { 5082 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5083 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5084 unlock_page(page); 5085 ret = VM_FAULT_SIGBUS; 5086 ext4_journal_stop(handle); 5087 goto out; 5088 } 5089 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5090 } 5091 ext4_journal_stop(handle); 5092 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5093 goto retry_alloc; 5094 out_ret: 5095 ret = block_page_mkwrite_return(ret); 5096 out: 5097 sb_end_pagefault(inode->i_sb); 5098 return ret; 5099 } 5100