xref: /openbmc/linux/fs/ext4/inode.c (revision efc33ce197e4b6aaddf1eb2ba6293f51daf3c283)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 		struct inode *inode, struct page *page, loff_t from,
139 		loff_t length, int flags);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		(inode->i_sb->s_blocksize >> 9) : 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_log_start_commit(journal, commit_tid);
214 			jbd2_log_wait_commit(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 		ext4_ioend_shutdown(inode);
219 		goto no_delete;
220 	}
221 
222 	if (!is_bad_inode(inode))
223 		dquot_initialize(inode);
224 
225 	if (ext4_should_order_data(inode))
226 		ext4_begin_ordered_truncate(inode, 0);
227 	truncate_inode_pages(&inode->i_data, 0);
228 	ext4_ioend_shutdown(inode);
229 
230 	if (is_bad_inode(inode))
231 		goto no_delete;
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 		return ext4_ext_calc_metadata_amount(inode, lblock);
330 
331 	return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333 
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339 					int used, int quota_claim)
340 {
341 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 	struct ext4_inode_info *ei = EXT4_I(inode);
343 
344 	spin_lock(&ei->i_block_reservation_lock);
345 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 	if (unlikely(used > ei->i_reserved_data_blocks)) {
347 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 			 "with only %d reserved data blocks",
349 			 __func__, inode->i_ino, used,
350 			 ei->i_reserved_data_blocks);
351 		WARN_ON(1);
352 		used = ei->i_reserved_data_blocks;
353 	}
354 
355 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 			"with only %d reserved metadata blocks "
358 			"(releasing %d blocks with reserved %d data blocks)",
359 			inode->i_ino, ei->i_allocated_meta_blocks,
360 			     ei->i_reserved_meta_blocks, used,
361 			     ei->i_reserved_data_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488 				       struct inode *inode,
489 				       struct ext4_map_blocks *es_map,
490 				       struct ext4_map_blocks *map,
491 				       int flags)
492 {
493 	int retval;
494 
495 	map->m_flags = 0;
496 	/*
497 	 * There is a race window that the result is not the same.
498 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
499 	 * is that we lookup a block mapping in extent status tree with
500 	 * out taking i_data_sem.  So at the time the unwritten extent
501 	 * could be converted.
502 	 */
503 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 		down_read((&EXT4_I(inode)->i_data_sem));
505 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 					     EXT4_GET_BLOCKS_KEEP_SIZE);
508 	} else {
509 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 					     EXT4_GET_BLOCKS_KEEP_SIZE);
511 	}
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		up_read((&EXT4_I(inode)->i_data_sem));
514 	/*
515 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 	 * because it shouldn't be marked in es_map->m_flags.
517 	 */
518 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519 
520 	/*
521 	 * We don't check m_len because extent will be collpased in status
522 	 * tree.  So the m_len might not equal.
523 	 */
524 	if (es_map->m_lblk != map->m_lblk ||
525 	    es_map->m_flags != map->m_flags ||
526 	    es_map->m_pblk != map->m_pblk) {
527 		printk("ES cache assertation failed for inode: %lu "
528 		       "es_cached ex [%d/%d/%llu/%x] != "
529 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
531 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 		       map->m_len, map->m_pblk, map->m_flags,
533 		       retval, flags);
534 	}
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537 
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 		    struct ext4_map_blocks *map, int flags)
562 {
563 	struct extent_status es;
564 	int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566 	struct ext4_map_blocks orig_map;
567 
568 	memcpy(&orig_map, map, sizeof(*map));
569 #endif
570 
571 	map->m_flags = 0;
572 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 		  (unsigned long) map->m_lblk);
575 
576 	/* Lookup extent status tree firstly */
577 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 			map->m_pblk = ext4_es_pblock(&es) +
580 					map->m_lblk - es.es_lblk;
581 			map->m_flags |= ext4_es_is_written(&es) ?
582 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 			retval = es.es_len - (map->m_lblk - es.es_lblk);
584 			if (retval > map->m_len)
585 				retval = map->m_len;
586 			map->m_len = retval;
587 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 			retval = 0;
589 		} else {
590 			BUG_ON(1);
591 		}
592 #ifdef ES_AGGRESSIVE_TEST
593 		ext4_map_blocks_es_recheck(handle, inode, map,
594 					   &orig_map, flags);
595 #endif
596 		goto found;
597 	}
598 
599 	/*
600 	 * Try to see if we can get the block without requesting a new
601 	 * file system block.
602 	 */
603 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 		down_read((&EXT4_I(inode)->i_data_sem));
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 					     EXT4_GET_BLOCKS_KEEP_SIZE);
608 	} else {
609 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 					     EXT4_GET_BLOCKS_KEEP_SIZE);
611 	}
612 	if (retval > 0) {
613 		int ret;
614 		unsigned long long status;
615 
616 #ifdef ES_AGGRESSIVE_TEST
617 		if (retval != map->m_len) {
618 			printk("ES len assertation failed for inode: %lu "
619 			       "retval %d != map->m_len %d "
620 			       "in %s (lookup)\n", inode->i_ino, retval,
621 			       map->m_len, __func__);
622 		}
623 #endif
624 
625 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 		    ext4_find_delalloc_range(inode, map->m_lblk,
629 					     map->m_lblk + map->m_len - 1))
630 			status |= EXTENT_STATUS_DELAYED;
631 		ret = ext4_es_insert_extent(inode, map->m_lblk,
632 					    map->m_len, map->m_pblk, status);
633 		if (ret < 0)
634 			retval = ret;
635 	}
636 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 		up_read((&EXT4_I(inode)->i_data_sem));
638 
639 found:
640 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641 		int ret = check_block_validity(inode, map);
642 		if (ret != 0)
643 			return ret;
644 	}
645 
646 	/* If it is only a block(s) look up */
647 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 		return retval;
649 
650 	/*
651 	 * Returns if the blocks have already allocated
652 	 *
653 	 * Note that if blocks have been preallocated
654 	 * ext4_ext_get_block() returns the create = 0
655 	 * with buffer head unmapped.
656 	 */
657 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 		return retval;
659 
660 	/*
661 	 * Here we clear m_flags because after allocating an new extent,
662 	 * it will be set again.
663 	 */
664 	map->m_flags &= ~EXT4_MAP_FLAGS;
665 
666 	/*
667 	 * New blocks allocate and/or writing to uninitialized extent
668 	 * will possibly result in updating i_data, so we take
669 	 * the write lock of i_data_sem, and call get_blocks()
670 	 * with create == 1 flag.
671 	 */
672 	down_write((&EXT4_I(inode)->i_data_sem));
673 
674 	/*
675 	 * if the caller is from delayed allocation writeout path
676 	 * we have already reserved fs blocks for allocation
677 	 * let the underlying get_block() function know to
678 	 * avoid double accounting
679 	 */
680 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 	/*
683 	 * We need to check for EXT4 here because migrate
684 	 * could have changed the inode type in between
685 	 */
686 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
688 	} else {
689 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
690 
691 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 			/*
693 			 * We allocated new blocks which will result in
694 			 * i_data's format changing.  Force the migrate
695 			 * to fail by clearing migrate flags
696 			 */
697 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698 		}
699 
700 		/*
701 		 * Update reserved blocks/metadata blocks after successful
702 		 * block allocation which had been deferred till now. We don't
703 		 * support fallocate for non extent files. So we can update
704 		 * reserve space here.
705 		 */
706 		if ((retval > 0) &&
707 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 			ext4_da_update_reserve_space(inode, retval, 1);
709 	}
710 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712 
713 	if (retval > 0) {
714 		int ret;
715 		unsigned long long status;
716 
717 #ifdef ES_AGGRESSIVE_TEST
718 		if (retval != map->m_len) {
719 			printk("ES len assertation failed for inode: %lu "
720 			       "retval %d != map->m_len %d "
721 			       "in %s (allocation)\n", inode->i_ino, retval,
722 			       map->m_len, __func__);
723 		}
724 #endif
725 
726 		/*
727 		 * If the extent has been zeroed out, we don't need to update
728 		 * extent status tree.
729 		 */
730 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 			if (ext4_es_is_written(&es))
733 				goto has_zeroout;
734 		}
735 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 		    ext4_find_delalloc_range(inode, map->m_lblk,
739 					     map->m_lblk + map->m_len - 1))
740 			status |= EXTENT_STATUS_DELAYED;
741 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 					    map->m_pblk, status);
743 		if (ret < 0)
744 			retval = ret;
745 	}
746 
747 has_zeroout:
748 	up_write((&EXT4_I(inode)->i_data_sem));
749 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750 		int ret = check_block_validity(inode, map);
751 		if (ret != 0)
752 			return ret;
753 	}
754 	return retval;
755 }
756 
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	handle_t *handle = ext4_journal_current_handle();
764 	struct ext4_map_blocks map;
765 	int ret = 0, started = 0;
766 	int dio_credits;
767 
768 	if (ext4_has_inline_data(inode))
769 		return -ERANGE;
770 
771 	map.m_lblk = iblock;
772 	map.m_len = bh->b_size >> inode->i_blkbits;
773 
774 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775 		/* Direct IO write... */
776 		if (map.m_len > DIO_MAX_BLOCKS)
777 			map.m_len = DIO_MAX_BLOCKS;
778 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 					    dio_credits);
781 		if (IS_ERR(handle)) {
782 			ret = PTR_ERR(handle);
783 			return ret;
784 		}
785 		started = 1;
786 	}
787 
788 	ret = ext4_map_blocks(handle, inode, &map, flags);
789 	if (ret > 0) {
790 		map_bh(bh, inode->i_sb, map.m_pblk);
791 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 		ret = 0;
794 	}
795 	if (started)
796 		ext4_journal_stop(handle);
797 	return ret;
798 }
799 
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801 		   struct buffer_head *bh, int create)
802 {
803 	return _ext4_get_block(inode, iblock, bh,
804 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806 
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811 				ext4_lblk_t block, int create, int *errp)
812 {
813 	struct ext4_map_blocks map;
814 	struct buffer_head *bh;
815 	int fatal = 0, err;
816 
817 	J_ASSERT(handle != NULL || create == 0);
818 
819 	map.m_lblk = block;
820 	map.m_len = 1;
821 	err = ext4_map_blocks(handle, inode, &map,
822 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
823 
824 	/* ensure we send some value back into *errp */
825 	*errp = 0;
826 
827 	if (create && err == 0)
828 		err = -ENOSPC;	/* should never happen */
829 	if (err < 0)
830 		*errp = err;
831 	if (err <= 0)
832 		return NULL;
833 
834 	bh = sb_getblk(inode->i_sb, map.m_pblk);
835 	if (unlikely(!bh)) {
836 		*errp = -ENOMEM;
837 		return NULL;
838 	}
839 	if (map.m_flags & EXT4_MAP_NEW) {
840 		J_ASSERT(create != 0);
841 		J_ASSERT(handle != NULL);
842 
843 		/*
844 		 * Now that we do not always journal data, we should
845 		 * keep in mind whether this should always journal the
846 		 * new buffer as metadata.  For now, regular file
847 		 * writes use ext4_get_block instead, so it's not a
848 		 * problem.
849 		 */
850 		lock_buffer(bh);
851 		BUFFER_TRACE(bh, "call get_create_access");
852 		fatal = ext4_journal_get_create_access(handle, bh);
853 		if (!fatal && !buffer_uptodate(bh)) {
854 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 			set_buffer_uptodate(bh);
856 		}
857 		unlock_buffer(bh);
858 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 		err = ext4_handle_dirty_metadata(handle, inode, bh);
860 		if (!fatal)
861 			fatal = err;
862 	} else {
863 		BUFFER_TRACE(bh, "not a new buffer");
864 	}
865 	if (fatal) {
866 		*errp = fatal;
867 		brelse(bh);
868 		bh = NULL;
869 	}
870 	return bh;
871 }
872 
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 			       ext4_lblk_t block, int create, int *err)
875 {
876 	struct buffer_head *bh;
877 
878 	bh = ext4_getblk(handle, inode, block, create, err);
879 	if (!bh)
880 		return bh;
881 	if (buffer_uptodate(bh))
882 		return bh;
883 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 	wait_on_buffer(bh);
885 	if (buffer_uptodate(bh))
886 		return bh;
887 	put_bh(bh);
888 	*err = -EIO;
889 	return NULL;
890 }
891 
892 int ext4_walk_page_buffers(handle_t *handle,
893 			   struct buffer_head *head,
894 			   unsigned from,
895 			   unsigned to,
896 			   int *partial,
897 			   int (*fn)(handle_t *handle,
898 				     struct buffer_head *bh))
899 {
900 	struct buffer_head *bh;
901 	unsigned block_start, block_end;
902 	unsigned blocksize = head->b_size;
903 	int err, ret = 0;
904 	struct buffer_head *next;
905 
906 	for (bh = head, block_start = 0;
907 	     ret == 0 && (bh != head || !block_start);
908 	     block_start = block_end, bh = next) {
909 		next = bh->b_this_page;
910 		block_end = block_start + blocksize;
911 		if (block_end <= from || block_start >= to) {
912 			if (partial && !buffer_uptodate(bh))
913 				*partial = 1;
914 			continue;
915 		}
916 		err = (*fn)(handle, bh);
917 		if (!ret)
918 			ret = err;
919 	}
920 	return ret;
921 }
922 
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948 				struct buffer_head *bh)
949 {
950 	int dirty = buffer_dirty(bh);
951 	int ret;
952 
953 	if (!buffer_mapped(bh) || buffer_freed(bh))
954 		return 0;
955 	/*
956 	 * __block_write_begin() could have dirtied some buffers. Clean
957 	 * the dirty bit as jbd2_journal_get_write_access() could complain
958 	 * otherwise about fs integrity issues. Setting of the dirty bit
959 	 * by __block_write_begin() isn't a real problem here as we clear
960 	 * the bit before releasing a page lock and thus writeback cannot
961 	 * ever write the buffer.
962 	 */
963 	if (dirty)
964 		clear_buffer_dirty(bh);
965 	ret = ext4_journal_get_write_access(handle, bh);
966 	if (!ret && dirty)
967 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 	return ret;
969 }
970 
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 		   struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 			    loff_t pos, unsigned len, unsigned flags,
975 			    struct page **pagep, void **fsdata)
976 {
977 	struct inode *inode = mapping->host;
978 	int ret, needed_blocks;
979 	handle_t *handle;
980 	int retries = 0;
981 	struct page *page;
982 	pgoff_t index;
983 	unsigned from, to;
984 
985 	trace_ext4_write_begin(inode, pos, len, flags);
986 	/*
987 	 * Reserve one block more for addition to orphan list in case
988 	 * we allocate blocks but write fails for some reason
989 	 */
990 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 	index = pos >> PAGE_CACHE_SHIFT;
992 	from = pos & (PAGE_CACHE_SIZE - 1);
993 	to = from + len;
994 
995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 						    flags, pagep);
998 		if (ret < 0)
999 			return ret;
1000 		if (ret == 1)
1001 			return 0;
1002 	}
1003 
1004 	/*
1005 	 * grab_cache_page_write_begin() can take a long time if the
1006 	 * system is thrashing due to memory pressure, or if the page
1007 	 * is being written back.  So grab it first before we start
1008 	 * the transaction handle.  This also allows us to allocate
1009 	 * the page (if needed) without using GFP_NOFS.
1010 	 */
1011 retry_grab:
1012 	page = grab_cache_page_write_begin(mapping, index, flags);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	unlock_page(page);
1016 
1017 retry_journal:
1018 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 	if (IS_ERR(handle)) {
1020 		page_cache_release(page);
1021 		return PTR_ERR(handle);
1022 	}
1023 
1024 	lock_page(page);
1025 	if (page->mapping != mapping) {
1026 		/* The page got truncated from under us */
1027 		unlock_page(page);
1028 		page_cache_release(page);
1029 		ext4_journal_stop(handle);
1030 		goto retry_grab;
1031 	}
1032 	wait_on_page_writeback(page);
1033 
1034 	if (ext4_should_dioread_nolock(inode))
1035 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036 	else
1037 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1038 
1039 	if (!ret && ext4_should_journal_data(inode)) {
1040 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 					     from, to, NULL,
1042 					     do_journal_get_write_access);
1043 	}
1044 
1045 	if (ret) {
1046 		unlock_page(page);
1047 		/*
1048 		 * __block_write_begin may have instantiated a few blocks
1049 		 * outside i_size.  Trim these off again. Don't need
1050 		 * i_size_read because we hold i_mutex.
1051 		 *
1052 		 * Add inode to orphan list in case we crash before
1053 		 * truncate finishes
1054 		 */
1055 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 			ext4_orphan_add(handle, inode);
1057 
1058 		ext4_journal_stop(handle);
1059 		if (pos + len > inode->i_size) {
1060 			ext4_truncate_failed_write(inode);
1061 			/*
1062 			 * If truncate failed early the inode might
1063 			 * still be on the orphan list; we need to
1064 			 * make sure the inode is removed from the
1065 			 * orphan list in that case.
1066 			 */
1067 			if (inode->i_nlink)
1068 				ext4_orphan_del(NULL, inode);
1069 		}
1070 
1071 		if (ret == -ENOSPC &&
1072 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1073 			goto retry_journal;
1074 		page_cache_release(page);
1075 		return ret;
1076 	}
1077 	*pagep = page;
1078 	return ret;
1079 }
1080 
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084 	if (!buffer_mapped(bh) || buffer_freed(bh))
1085 		return 0;
1086 	set_buffer_uptodate(bh);
1087 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1088 }
1089 
1090 static int ext4_generic_write_end(struct file *file,
1091 				  struct address_space *mapping,
1092 				  loff_t pos, unsigned len, unsigned copied,
1093 				  struct page *page, void *fsdata)
1094 {
1095 	int i_size_changed = 0;
1096 	struct inode *inode = mapping->host;
1097 	handle_t *handle = ext4_journal_current_handle();
1098 
1099 	if (ext4_has_inline_data(inode))
1100 		copied = ext4_write_inline_data_end(inode, pos, len,
1101 						    copied, page);
1102 	else
1103 		copied = block_write_end(file, mapping, pos,
1104 					 len, copied, page, fsdata);
1105 
1106 	/*
1107 	 * No need to use i_size_read() here, the i_size
1108 	 * cannot change under us because we hold i_mutex.
1109 	 *
1110 	 * But it's important to update i_size while still holding page lock:
1111 	 * page writeout could otherwise come in and zero beyond i_size.
1112 	 */
1113 	if (pos + copied > inode->i_size) {
1114 		i_size_write(inode, pos + copied);
1115 		i_size_changed = 1;
1116 	}
1117 
1118 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1119 		/* We need to mark inode dirty even if
1120 		 * new_i_size is less that inode->i_size
1121 		 * bu greater than i_disksize.(hint delalloc)
1122 		 */
1123 		ext4_update_i_disksize(inode, (pos + copied));
1124 		i_size_changed = 1;
1125 	}
1126 	unlock_page(page);
1127 	page_cache_release(page);
1128 
1129 	/*
1130 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1131 	 * makes the holding time of page lock longer. Second, it forces lock
1132 	 * ordering of page lock and transaction start for journaling
1133 	 * filesystems.
1134 	 */
1135 	if (i_size_changed)
1136 		ext4_mark_inode_dirty(handle, inode);
1137 
1138 	return copied;
1139 }
1140 
1141 /*
1142  * We need to pick up the new inode size which generic_commit_write gave us
1143  * `file' can be NULL - eg, when called from page_symlink().
1144  *
1145  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1146  * buffers are managed internally.
1147  */
1148 static int ext4_ordered_write_end(struct file *file,
1149 				  struct address_space *mapping,
1150 				  loff_t pos, unsigned len, unsigned copied,
1151 				  struct page *page, void *fsdata)
1152 {
1153 	handle_t *handle = ext4_journal_current_handle();
1154 	struct inode *inode = mapping->host;
1155 	int ret = 0, ret2;
1156 
1157 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1158 	ret = ext4_jbd2_file_inode(handle, inode);
1159 
1160 	if (ret == 0) {
1161 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1162 							page, fsdata);
1163 		copied = ret2;
1164 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1165 			/* if we have allocated more blocks and copied
1166 			 * less. We will have blocks allocated outside
1167 			 * inode->i_size. So truncate them
1168 			 */
1169 			ext4_orphan_add(handle, inode);
1170 		if (ret2 < 0)
1171 			ret = ret2;
1172 	} else {
1173 		unlock_page(page);
1174 		page_cache_release(page);
1175 	}
1176 
1177 	ret2 = ext4_journal_stop(handle);
1178 	if (!ret)
1179 		ret = ret2;
1180 
1181 	if (pos + len > inode->i_size) {
1182 		ext4_truncate_failed_write(inode);
1183 		/*
1184 		 * If truncate failed early the inode might still be
1185 		 * on the orphan list; we need to make sure the inode
1186 		 * is removed from the orphan list in that case.
1187 		 */
1188 		if (inode->i_nlink)
1189 			ext4_orphan_del(NULL, inode);
1190 	}
1191 
1192 
1193 	return ret ? ret : copied;
1194 }
1195 
1196 static int ext4_writeback_write_end(struct file *file,
1197 				    struct address_space *mapping,
1198 				    loff_t pos, unsigned len, unsigned copied,
1199 				    struct page *page, void *fsdata)
1200 {
1201 	handle_t *handle = ext4_journal_current_handle();
1202 	struct inode *inode = mapping->host;
1203 	int ret = 0, ret2;
1204 
1205 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1206 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1207 							page, fsdata);
1208 	copied = ret2;
1209 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1210 		/* if we have allocated more blocks and copied
1211 		 * less. We will have blocks allocated outside
1212 		 * inode->i_size. So truncate them
1213 		 */
1214 		ext4_orphan_add(handle, inode);
1215 
1216 	if (ret2 < 0)
1217 		ret = ret2;
1218 
1219 	ret2 = ext4_journal_stop(handle);
1220 	if (!ret)
1221 		ret = ret2;
1222 
1223 	if (pos + len > inode->i_size) {
1224 		ext4_truncate_failed_write(inode);
1225 		/*
1226 		 * If truncate failed early the inode might still be
1227 		 * on the orphan list; we need to make sure the inode
1228 		 * is removed from the orphan list in that case.
1229 		 */
1230 		if (inode->i_nlink)
1231 			ext4_orphan_del(NULL, inode);
1232 	}
1233 
1234 	return ret ? ret : copied;
1235 }
1236 
1237 static int ext4_journalled_write_end(struct file *file,
1238 				     struct address_space *mapping,
1239 				     loff_t pos, unsigned len, unsigned copied,
1240 				     struct page *page, void *fsdata)
1241 {
1242 	handle_t *handle = ext4_journal_current_handle();
1243 	struct inode *inode = mapping->host;
1244 	int ret = 0, ret2;
1245 	int partial = 0;
1246 	unsigned from, to;
1247 	loff_t new_i_size;
1248 
1249 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1250 	from = pos & (PAGE_CACHE_SIZE - 1);
1251 	to = from + len;
1252 
1253 	BUG_ON(!ext4_handle_valid(handle));
1254 
1255 	if (ext4_has_inline_data(inode))
1256 		copied = ext4_write_inline_data_end(inode, pos, len,
1257 						    copied, page);
1258 	else {
1259 		if (copied < len) {
1260 			if (!PageUptodate(page))
1261 				copied = 0;
1262 			page_zero_new_buffers(page, from+copied, to);
1263 		}
1264 
1265 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1266 					     to, &partial, write_end_fn);
1267 		if (!partial)
1268 			SetPageUptodate(page);
1269 	}
1270 	new_i_size = pos + copied;
1271 	if (new_i_size > inode->i_size)
1272 		i_size_write(inode, pos+copied);
1273 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1274 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1275 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1276 		ext4_update_i_disksize(inode, new_i_size);
1277 		ret2 = ext4_mark_inode_dirty(handle, inode);
1278 		if (!ret)
1279 			ret = ret2;
1280 	}
1281 
1282 	unlock_page(page);
1283 	page_cache_release(page);
1284 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1285 		/* if we have allocated more blocks and copied
1286 		 * less. We will have blocks allocated outside
1287 		 * inode->i_size. So truncate them
1288 		 */
1289 		ext4_orphan_add(handle, inode);
1290 
1291 	ret2 = ext4_journal_stop(handle);
1292 	if (!ret)
1293 		ret = ret2;
1294 	if (pos + len > inode->i_size) {
1295 		ext4_truncate_failed_write(inode);
1296 		/*
1297 		 * If truncate failed early the inode might still be
1298 		 * on the orphan list; we need to make sure the inode
1299 		 * is removed from the orphan list in that case.
1300 		 */
1301 		if (inode->i_nlink)
1302 			ext4_orphan_del(NULL, inode);
1303 	}
1304 
1305 	return ret ? ret : copied;
1306 }
1307 
1308 /*
1309  * Reserve a metadata for a single block located at lblock
1310  */
1311 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313 	int retries = 0;
1314 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315 	struct ext4_inode_info *ei = EXT4_I(inode);
1316 	unsigned int md_needed;
1317 	ext4_lblk_t save_last_lblock;
1318 	int save_len;
1319 
1320 	/*
1321 	 * recalculate the amount of metadata blocks to reserve
1322 	 * in order to allocate nrblocks
1323 	 * worse case is one extent per block
1324 	 */
1325 repeat:
1326 	spin_lock(&ei->i_block_reservation_lock);
1327 	/*
1328 	 * ext4_calc_metadata_amount() has side effects, which we have
1329 	 * to be prepared undo if we fail to claim space.
1330 	 */
1331 	save_len = ei->i_da_metadata_calc_len;
1332 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1333 	md_needed = EXT4_NUM_B2C(sbi,
1334 				 ext4_calc_metadata_amount(inode, lblock));
1335 	trace_ext4_da_reserve_space(inode, md_needed);
1336 
1337 	/*
1338 	 * We do still charge estimated metadata to the sb though;
1339 	 * we cannot afford to run out of free blocks.
1340 	 */
1341 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1342 		ei->i_da_metadata_calc_len = save_len;
1343 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1344 		spin_unlock(&ei->i_block_reservation_lock);
1345 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1346 			cond_resched();
1347 			goto repeat;
1348 		}
1349 		return -ENOSPC;
1350 	}
1351 	ei->i_reserved_meta_blocks += md_needed;
1352 	spin_unlock(&ei->i_block_reservation_lock);
1353 
1354 	return 0;       /* success */
1355 }
1356 
1357 /*
1358  * Reserve a single cluster located at lblock
1359  */
1360 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1361 {
1362 	int retries = 0;
1363 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364 	struct ext4_inode_info *ei = EXT4_I(inode);
1365 	unsigned int md_needed;
1366 	int ret;
1367 	ext4_lblk_t save_last_lblock;
1368 	int save_len;
1369 
1370 	/*
1371 	 * We will charge metadata quota at writeout time; this saves
1372 	 * us from metadata over-estimation, though we may go over by
1373 	 * a small amount in the end.  Here we just reserve for data.
1374 	 */
1375 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1376 	if (ret)
1377 		return ret;
1378 
1379 	/*
1380 	 * recalculate the amount of metadata blocks to reserve
1381 	 * in order to allocate nrblocks
1382 	 * worse case is one extent per block
1383 	 */
1384 repeat:
1385 	spin_lock(&ei->i_block_reservation_lock);
1386 	/*
1387 	 * ext4_calc_metadata_amount() has side effects, which we have
1388 	 * to be prepared undo if we fail to claim space.
1389 	 */
1390 	save_len = ei->i_da_metadata_calc_len;
1391 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1392 	md_needed = EXT4_NUM_B2C(sbi,
1393 				 ext4_calc_metadata_amount(inode, lblock));
1394 	trace_ext4_da_reserve_space(inode, md_needed);
1395 
1396 	/*
1397 	 * We do still charge estimated metadata to the sb though;
1398 	 * we cannot afford to run out of free blocks.
1399 	 */
1400 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1401 		ei->i_da_metadata_calc_len = save_len;
1402 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1403 		spin_unlock(&ei->i_block_reservation_lock);
1404 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1405 			cond_resched();
1406 			goto repeat;
1407 		}
1408 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1409 		return -ENOSPC;
1410 	}
1411 	ei->i_reserved_data_blocks++;
1412 	ei->i_reserved_meta_blocks += md_needed;
1413 	spin_unlock(&ei->i_block_reservation_lock);
1414 
1415 	return 0;       /* success */
1416 }
1417 
1418 static void ext4_da_release_space(struct inode *inode, int to_free)
1419 {
1420 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1421 	struct ext4_inode_info *ei = EXT4_I(inode);
1422 
1423 	if (!to_free)
1424 		return;		/* Nothing to release, exit */
1425 
1426 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1427 
1428 	trace_ext4_da_release_space(inode, to_free);
1429 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1430 		/*
1431 		 * if there aren't enough reserved blocks, then the
1432 		 * counter is messed up somewhere.  Since this
1433 		 * function is called from invalidate page, it's
1434 		 * harmless to return without any action.
1435 		 */
1436 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1437 			 "ino %lu, to_free %d with only %d reserved "
1438 			 "data blocks", inode->i_ino, to_free,
1439 			 ei->i_reserved_data_blocks);
1440 		WARN_ON(1);
1441 		to_free = ei->i_reserved_data_blocks;
1442 	}
1443 	ei->i_reserved_data_blocks -= to_free;
1444 
1445 	if (ei->i_reserved_data_blocks == 0) {
1446 		/*
1447 		 * We can release all of the reserved metadata blocks
1448 		 * only when we have written all of the delayed
1449 		 * allocation blocks.
1450 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1451 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1452 		 */
1453 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1454 				   ei->i_reserved_meta_blocks);
1455 		ei->i_reserved_meta_blocks = 0;
1456 		ei->i_da_metadata_calc_len = 0;
1457 	}
1458 
1459 	/* update fs dirty data blocks counter */
1460 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1461 
1462 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1463 
1464 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1465 }
1466 
1467 static void ext4_da_page_release_reservation(struct page *page,
1468 					     unsigned long offset)
1469 {
1470 	int to_release = 0;
1471 	struct buffer_head *head, *bh;
1472 	unsigned int curr_off = 0;
1473 	struct inode *inode = page->mapping->host;
1474 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475 	int num_clusters;
1476 	ext4_fsblk_t lblk;
1477 
1478 	head = page_buffers(page);
1479 	bh = head;
1480 	do {
1481 		unsigned int next_off = curr_off + bh->b_size;
1482 
1483 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1484 			to_release++;
1485 			clear_buffer_delay(bh);
1486 		}
1487 		curr_off = next_off;
1488 	} while ((bh = bh->b_this_page) != head);
1489 
1490 	if (to_release) {
1491 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1492 		ext4_es_remove_extent(inode, lblk, to_release);
1493 	}
1494 
1495 	/* If we have released all the blocks belonging to a cluster, then we
1496 	 * need to release the reserved space for that cluster. */
1497 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1498 	while (num_clusters > 0) {
1499 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1500 			((num_clusters - 1) << sbi->s_cluster_bits);
1501 		if (sbi->s_cluster_ratio == 1 ||
1502 		    !ext4_find_delalloc_cluster(inode, lblk))
1503 			ext4_da_release_space(inode, 1);
1504 
1505 		num_clusters--;
1506 	}
1507 }
1508 
1509 /*
1510  * Delayed allocation stuff
1511  */
1512 
1513 /*
1514  * mpage_da_submit_io - walks through extent of pages and try to write
1515  * them with writepage() call back
1516  *
1517  * @mpd->inode: inode
1518  * @mpd->first_page: first page of the extent
1519  * @mpd->next_page: page after the last page of the extent
1520  *
1521  * By the time mpage_da_submit_io() is called we expect all blocks
1522  * to be allocated. this may be wrong if allocation failed.
1523  *
1524  * As pages are already locked by write_cache_pages(), we can't use it
1525  */
1526 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1527 			      struct ext4_map_blocks *map)
1528 {
1529 	struct pagevec pvec;
1530 	unsigned long index, end;
1531 	int ret = 0, err, nr_pages, i;
1532 	struct inode *inode = mpd->inode;
1533 	struct address_space *mapping = inode->i_mapping;
1534 	loff_t size = i_size_read(inode);
1535 	unsigned int len, block_start;
1536 	struct buffer_head *bh, *page_bufs = NULL;
1537 	sector_t pblock = 0, cur_logical = 0;
1538 	struct ext4_io_submit io_submit;
1539 
1540 	BUG_ON(mpd->next_page <= mpd->first_page);
1541 	memset(&io_submit, 0, sizeof(io_submit));
1542 	/*
1543 	 * We need to start from the first_page to the next_page - 1
1544 	 * to make sure we also write the mapped dirty buffer_heads.
1545 	 * If we look at mpd->b_blocknr we would only be looking
1546 	 * at the currently mapped buffer_heads.
1547 	 */
1548 	index = mpd->first_page;
1549 	end = mpd->next_page - 1;
1550 
1551 	pagevec_init(&pvec, 0);
1552 	while (index <= end) {
1553 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1554 		if (nr_pages == 0)
1555 			break;
1556 		for (i = 0; i < nr_pages; i++) {
1557 			int skip_page = 0;
1558 			struct page *page = pvec.pages[i];
1559 
1560 			index = page->index;
1561 			if (index > end)
1562 				break;
1563 
1564 			if (index == size >> PAGE_CACHE_SHIFT)
1565 				len = size & ~PAGE_CACHE_MASK;
1566 			else
1567 				len = PAGE_CACHE_SIZE;
1568 			if (map) {
1569 				cur_logical = index << (PAGE_CACHE_SHIFT -
1570 							inode->i_blkbits);
1571 				pblock = map->m_pblk + (cur_logical -
1572 							map->m_lblk);
1573 			}
1574 			index++;
1575 
1576 			BUG_ON(!PageLocked(page));
1577 			BUG_ON(PageWriteback(page));
1578 
1579 			bh = page_bufs = page_buffers(page);
1580 			block_start = 0;
1581 			do {
1582 				if (map && (cur_logical >= map->m_lblk) &&
1583 				    (cur_logical <= (map->m_lblk +
1584 						     (map->m_len - 1)))) {
1585 					if (buffer_delay(bh)) {
1586 						clear_buffer_delay(bh);
1587 						bh->b_blocknr = pblock;
1588 					}
1589 					if (buffer_unwritten(bh) ||
1590 					    buffer_mapped(bh))
1591 						BUG_ON(bh->b_blocknr != pblock);
1592 					if (map->m_flags & EXT4_MAP_UNINIT)
1593 						set_buffer_uninit(bh);
1594 					clear_buffer_unwritten(bh);
1595 				}
1596 
1597 				/*
1598 				 * skip page if block allocation undone and
1599 				 * block is dirty
1600 				 */
1601 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1602 					skip_page = 1;
1603 				bh = bh->b_this_page;
1604 				block_start += bh->b_size;
1605 				cur_logical++;
1606 				pblock++;
1607 			} while (bh != page_bufs);
1608 
1609 			if (skip_page) {
1610 				unlock_page(page);
1611 				continue;
1612 			}
1613 
1614 			clear_page_dirty_for_io(page);
1615 			err = ext4_bio_write_page(&io_submit, page, len,
1616 						  mpd->wbc);
1617 			if (!err)
1618 				mpd->pages_written++;
1619 			/*
1620 			 * In error case, we have to continue because
1621 			 * remaining pages are still locked
1622 			 */
1623 			if (ret == 0)
1624 				ret = err;
1625 		}
1626 		pagevec_release(&pvec);
1627 	}
1628 	ext4_io_submit(&io_submit);
1629 	return ret;
1630 }
1631 
1632 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1633 {
1634 	int nr_pages, i;
1635 	pgoff_t index, end;
1636 	struct pagevec pvec;
1637 	struct inode *inode = mpd->inode;
1638 	struct address_space *mapping = inode->i_mapping;
1639 	ext4_lblk_t start, last;
1640 
1641 	index = mpd->first_page;
1642 	end   = mpd->next_page - 1;
1643 
1644 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1645 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1646 	ext4_es_remove_extent(inode, start, last - start + 1);
1647 
1648 	pagevec_init(&pvec, 0);
1649 	while (index <= end) {
1650 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1651 		if (nr_pages == 0)
1652 			break;
1653 		for (i = 0; i < nr_pages; i++) {
1654 			struct page *page = pvec.pages[i];
1655 			if (page->index > end)
1656 				break;
1657 			BUG_ON(!PageLocked(page));
1658 			BUG_ON(PageWriteback(page));
1659 			block_invalidatepage(page, 0);
1660 			ClearPageUptodate(page);
1661 			unlock_page(page);
1662 		}
1663 		index = pvec.pages[nr_pages - 1]->index + 1;
1664 		pagevec_release(&pvec);
1665 	}
1666 	return;
1667 }
1668 
1669 static void ext4_print_free_blocks(struct inode *inode)
1670 {
1671 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 	struct super_block *sb = inode->i_sb;
1673 
1674 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1675 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1676 			ext4_count_free_clusters(inode->i_sb)));
1677 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1678 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1679 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1680 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1681 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1682 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1683 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1684 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1685 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1686 		 EXT4_I(inode)->i_reserved_data_blocks);
1687 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1688 	       EXT4_I(inode)->i_reserved_meta_blocks);
1689 	return;
1690 }
1691 
1692 /*
1693  * mpage_da_map_and_submit - go through given space, map them
1694  *       if necessary, and then submit them for I/O
1695  *
1696  * @mpd - bh describing space
1697  *
1698  * The function skips space we know is already mapped to disk blocks.
1699  *
1700  */
1701 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1702 {
1703 	int err, blks, get_blocks_flags;
1704 	struct ext4_map_blocks map, *mapp = NULL;
1705 	sector_t next = mpd->b_blocknr;
1706 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1707 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1708 	handle_t *handle = NULL;
1709 
1710 	/*
1711 	 * If the blocks are mapped already, or we couldn't accumulate
1712 	 * any blocks, then proceed immediately to the submission stage.
1713 	 */
1714 	if ((mpd->b_size == 0) ||
1715 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1716 	     !(mpd->b_state & (1 << BH_Delay)) &&
1717 	     !(mpd->b_state & (1 << BH_Unwritten))))
1718 		goto submit_io;
1719 
1720 	handle = ext4_journal_current_handle();
1721 	BUG_ON(!handle);
1722 
1723 	/*
1724 	 * Call ext4_map_blocks() to allocate any delayed allocation
1725 	 * blocks, or to convert an uninitialized extent to be
1726 	 * initialized (in the case where we have written into
1727 	 * one or more preallocated blocks).
1728 	 *
1729 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1730 	 * indicate that we are on the delayed allocation path.  This
1731 	 * affects functions in many different parts of the allocation
1732 	 * call path.  This flag exists primarily because we don't
1733 	 * want to change *many* call functions, so ext4_map_blocks()
1734 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1735 	 * inode's allocation semaphore is taken.
1736 	 *
1737 	 * If the blocks in questions were delalloc blocks, set
1738 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1739 	 * variables are updated after the blocks have been allocated.
1740 	 */
1741 	map.m_lblk = next;
1742 	map.m_len = max_blocks;
1743 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1744 	if (ext4_should_dioread_nolock(mpd->inode))
1745 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1746 	if (mpd->b_state & (1 << BH_Delay))
1747 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1748 
1749 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1750 	if (blks < 0) {
1751 		struct super_block *sb = mpd->inode->i_sb;
1752 
1753 		err = blks;
1754 		/*
1755 		 * If get block returns EAGAIN or ENOSPC and there
1756 		 * appears to be free blocks we will just let
1757 		 * mpage_da_submit_io() unlock all of the pages.
1758 		 */
1759 		if (err == -EAGAIN)
1760 			goto submit_io;
1761 
1762 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1763 			mpd->retval = err;
1764 			goto submit_io;
1765 		}
1766 
1767 		/*
1768 		 * get block failure will cause us to loop in
1769 		 * writepages, because a_ops->writepage won't be able
1770 		 * to make progress. The page will be redirtied by
1771 		 * writepage and writepages will again try to write
1772 		 * the same.
1773 		 */
1774 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1775 			ext4_msg(sb, KERN_CRIT,
1776 				 "delayed block allocation failed for inode %lu "
1777 				 "at logical offset %llu with max blocks %zd "
1778 				 "with error %d", mpd->inode->i_ino,
1779 				 (unsigned long long) next,
1780 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1781 			ext4_msg(sb, KERN_CRIT,
1782 				"This should not happen!! Data will be lost");
1783 			if (err == -ENOSPC)
1784 				ext4_print_free_blocks(mpd->inode);
1785 		}
1786 		/* invalidate all the pages */
1787 		ext4_da_block_invalidatepages(mpd);
1788 
1789 		/* Mark this page range as having been completed */
1790 		mpd->io_done = 1;
1791 		return;
1792 	}
1793 	BUG_ON(blks == 0);
1794 
1795 	mapp = &map;
1796 	if (map.m_flags & EXT4_MAP_NEW) {
1797 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1798 		int i;
1799 
1800 		for (i = 0; i < map.m_len; i++)
1801 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1802 	}
1803 
1804 	/*
1805 	 * Update on-disk size along with block allocation.
1806 	 */
1807 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1808 	if (disksize > i_size_read(mpd->inode))
1809 		disksize = i_size_read(mpd->inode);
1810 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1811 		ext4_update_i_disksize(mpd->inode, disksize);
1812 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1813 		if (err)
1814 			ext4_error(mpd->inode->i_sb,
1815 				   "Failed to mark inode %lu dirty",
1816 				   mpd->inode->i_ino);
1817 	}
1818 
1819 submit_io:
1820 	mpage_da_submit_io(mpd, mapp);
1821 	mpd->io_done = 1;
1822 }
1823 
1824 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1825 		(1 << BH_Delay) | (1 << BH_Unwritten))
1826 
1827 /*
1828  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1829  *
1830  * @mpd->lbh - extent of blocks
1831  * @logical - logical number of the block in the file
1832  * @b_state - b_state of the buffer head added
1833  *
1834  * the function is used to collect contig. blocks in same state
1835  */
1836 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1837 				   unsigned long b_state)
1838 {
1839 	sector_t next;
1840 	int blkbits = mpd->inode->i_blkbits;
1841 	int nrblocks = mpd->b_size >> blkbits;
1842 
1843 	/*
1844 	 * XXX Don't go larger than mballoc is willing to allocate
1845 	 * This is a stopgap solution.  We eventually need to fold
1846 	 * mpage_da_submit_io() into this function and then call
1847 	 * ext4_map_blocks() multiple times in a loop
1848 	 */
1849 	if (nrblocks >= (8*1024*1024 >> blkbits))
1850 		goto flush_it;
1851 
1852 	/* check if the reserved journal credits might overflow */
1853 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1854 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1855 			/*
1856 			 * With non-extent format we are limited by the journal
1857 			 * credit available.  Total credit needed to insert
1858 			 * nrblocks contiguous blocks is dependent on the
1859 			 * nrblocks.  So limit nrblocks.
1860 			 */
1861 			goto flush_it;
1862 		}
1863 	}
1864 	/*
1865 	 * First block in the extent
1866 	 */
1867 	if (mpd->b_size == 0) {
1868 		mpd->b_blocknr = logical;
1869 		mpd->b_size = 1 << blkbits;
1870 		mpd->b_state = b_state & BH_FLAGS;
1871 		return;
1872 	}
1873 
1874 	next = mpd->b_blocknr + nrblocks;
1875 	/*
1876 	 * Can we merge the block to our big extent?
1877 	 */
1878 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1879 		mpd->b_size += 1 << blkbits;
1880 		return;
1881 	}
1882 
1883 flush_it:
1884 	/*
1885 	 * We couldn't merge the block to our extent, so we
1886 	 * need to flush current  extent and start new one
1887 	 */
1888 	mpage_da_map_and_submit(mpd);
1889 	return;
1890 }
1891 
1892 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1893 {
1894 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1895 }
1896 
1897 /*
1898  * This function is grabs code from the very beginning of
1899  * ext4_map_blocks, but assumes that the caller is from delayed write
1900  * time. This function looks up the requested blocks and sets the
1901  * buffer delay bit under the protection of i_data_sem.
1902  */
1903 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1904 			      struct ext4_map_blocks *map,
1905 			      struct buffer_head *bh)
1906 {
1907 	struct extent_status es;
1908 	int retval;
1909 	sector_t invalid_block = ~((sector_t) 0xffff);
1910 #ifdef ES_AGGRESSIVE_TEST
1911 	struct ext4_map_blocks orig_map;
1912 
1913 	memcpy(&orig_map, map, sizeof(*map));
1914 #endif
1915 
1916 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1917 		invalid_block = ~0;
1918 
1919 	map->m_flags = 0;
1920 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1921 		  "logical block %lu\n", inode->i_ino, map->m_len,
1922 		  (unsigned long) map->m_lblk);
1923 
1924 	/* Lookup extent status tree firstly */
1925 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1926 
1927 		if (ext4_es_is_hole(&es)) {
1928 			retval = 0;
1929 			down_read((&EXT4_I(inode)->i_data_sem));
1930 			goto add_delayed;
1931 		}
1932 
1933 		/*
1934 		 * Delayed extent could be allocated by fallocate.
1935 		 * So we need to check it.
1936 		 */
1937 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1938 			map_bh(bh, inode->i_sb, invalid_block);
1939 			set_buffer_new(bh);
1940 			set_buffer_delay(bh);
1941 			return 0;
1942 		}
1943 
1944 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1945 		retval = es.es_len - (iblock - es.es_lblk);
1946 		if (retval > map->m_len)
1947 			retval = map->m_len;
1948 		map->m_len = retval;
1949 		if (ext4_es_is_written(&es))
1950 			map->m_flags |= EXT4_MAP_MAPPED;
1951 		else if (ext4_es_is_unwritten(&es))
1952 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1953 		else
1954 			BUG_ON(1);
1955 
1956 #ifdef ES_AGGRESSIVE_TEST
1957 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1958 #endif
1959 		return retval;
1960 	}
1961 
1962 	/*
1963 	 * Try to see if we can get the block without requesting a new
1964 	 * file system block.
1965 	 */
1966 	down_read((&EXT4_I(inode)->i_data_sem));
1967 	if (ext4_has_inline_data(inode)) {
1968 		/*
1969 		 * We will soon create blocks for this page, and let
1970 		 * us pretend as if the blocks aren't allocated yet.
1971 		 * In case of clusters, we have to handle the work
1972 		 * of mapping from cluster so that the reserved space
1973 		 * is calculated properly.
1974 		 */
1975 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1976 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1977 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1978 		retval = 0;
1979 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1980 		retval = ext4_ext_map_blocks(NULL, inode, map,
1981 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1982 	else
1983 		retval = ext4_ind_map_blocks(NULL, inode, map,
1984 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1985 
1986 add_delayed:
1987 	if (retval == 0) {
1988 		int ret;
1989 		/*
1990 		 * XXX: __block_prepare_write() unmaps passed block,
1991 		 * is it OK?
1992 		 */
1993 		/*
1994 		 * If the block was allocated from previously allocated cluster,
1995 		 * then we don't need to reserve it again. However we still need
1996 		 * to reserve metadata for every block we're going to write.
1997 		 */
1998 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1999 			ret = ext4_da_reserve_space(inode, iblock);
2000 			if (ret) {
2001 				/* not enough space to reserve */
2002 				retval = ret;
2003 				goto out_unlock;
2004 			}
2005 		} else {
2006 			ret = ext4_da_reserve_metadata(inode, iblock);
2007 			if (ret) {
2008 				/* not enough space to reserve */
2009 				retval = ret;
2010 				goto out_unlock;
2011 			}
2012 		}
2013 
2014 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2015 					    ~0, EXTENT_STATUS_DELAYED);
2016 		if (ret) {
2017 			retval = ret;
2018 			goto out_unlock;
2019 		}
2020 
2021 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2022 		 * and it should not appear on the bh->b_state.
2023 		 */
2024 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2025 
2026 		map_bh(bh, inode->i_sb, invalid_block);
2027 		set_buffer_new(bh);
2028 		set_buffer_delay(bh);
2029 	} else if (retval > 0) {
2030 		int ret;
2031 		unsigned long long status;
2032 
2033 #ifdef ES_AGGRESSIVE_TEST
2034 		if (retval != map->m_len) {
2035 			printk("ES len assertation failed for inode: %lu "
2036 			       "retval %d != map->m_len %d "
2037 			       "in %s (lookup)\n", inode->i_ino, retval,
2038 			       map->m_len, __func__);
2039 		}
2040 #endif
2041 
2042 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2043 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2044 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2045 					    map->m_pblk, status);
2046 		if (ret != 0)
2047 			retval = ret;
2048 	}
2049 
2050 out_unlock:
2051 	up_read((&EXT4_I(inode)->i_data_sem));
2052 
2053 	return retval;
2054 }
2055 
2056 /*
2057  * This is a special get_blocks_t callback which is used by
2058  * ext4_da_write_begin().  It will either return mapped block or
2059  * reserve space for a single block.
2060  *
2061  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2062  * We also have b_blocknr = -1 and b_bdev initialized properly
2063  *
2064  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2065  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2066  * initialized properly.
2067  */
2068 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2069 			   struct buffer_head *bh, int create)
2070 {
2071 	struct ext4_map_blocks map;
2072 	int ret = 0;
2073 
2074 	BUG_ON(create == 0);
2075 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2076 
2077 	map.m_lblk = iblock;
2078 	map.m_len = 1;
2079 
2080 	/*
2081 	 * first, we need to know whether the block is allocated already
2082 	 * preallocated blocks are unmapped but should treated
2083 	 * the same as allocated blocks.
2084 	 */
2085 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2086 	if (ret <= 0)
2087 		return ret;
2088 
2089 	map_bh(bh, inode->i_sb, map.m_pblk);
2090 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2091 
2092 	if (buffer_unwritten(bh)) {
2093 		/* A delayed write to unwritten bh should be marked
2094 		 * new and mapped.  Mapped ensures that we don't do
2095 		 * get_block multiple times when we write to the same
2096 		 * offset and new ensures that we do proper zero out
2097 		 * for partial write.
2098 		 */
2099 		set_buffer_new(bh);
2100 		set_buffer_mapped(bh);
2101 	}
2102 	return 0;
2103 }
2104 
2105 static int bget_one(handle_t *handle, struct buffer_head *bh)
2106 {
2107 	get_bh(bh);
2108 	return 0;
2109 }
2110 
2111 static int bput_one(handle_t *handle, struct buffer_head *bh)
2112 {
2113 	put_bh(bh);
2114 	return 0;
2115 }
2116 
2117 static int __ext4_journalled_writepage(struct page *page,
2118 				       unsigned int len)
2119 {
2120 	struct address_space *mapping = page->mapping;
2121 	struct inode *inode = mapping->host;
2122 	struct buffer_head *page_bufs = NULL;
2123 	handle_t *handle = NULL;
2124 	int ret = 0, err = 0;
2125 	int inline_data = ext4_has_inline_data(inode);
2126 	struct buffer_head *inode_bh = NULL;
2127 
2128 	ClearPageChecked(page);
2129 
2130 	if (inline_data) {
2131 		BUG_ON(page->index != 0);
2132 		BUG_ON(len > ext4_get_max_inline_size(inode));
2133 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2134 		if (inode_bh == NULL)
2135 			goto out;
2136 	} else {
2137 		page_bufs = page_buffers(page);
2138 		if (!page_bufs) {
2139 			BUG();
2140 			goto out;
2141 		}
2142 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2143 				       NULL, bget_one);
2144 	}
2145 	/* As soon as we unlock the page, it can go away, but we have
2146 	 * references to buffers so we are safe */
2147 	unlock_page(page);
2148 
2149 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2150 				    ext4_writepage_trans_blocks(inode));
2151 	if (IS_ERR(handle)) {
2152 		ret = PTR_ERR(handle);
2153 		goto out;
2154 	}
2155 
2156 	BUG_ON(!ext4_handle_valid(handle));
2157 
2158 	if (inline_data) {
2159 		ret = ext4_journal_get_write_access(handle, inode_bh);
2160 
2161 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2162 
2163 	} else {
2164 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2165 					     do_journal_get_write_access);
2166 
2167 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2168 					     write_end_fn);
2169 	}
2170 	if (ret == 0)
2171 		ret = err;
2172 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2173 	err = ext4_journal_stop(handle);
2174 	if (!ret)
2175 		ret = err;
2176 
2177 	if (!ext4_has_inline_data(inode))
2178 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2179 				       NULL, bput_one);
2180 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2181 out:
2182 	brelse(inode_bh);
2183 	return ret;
2184 }
2185 
2186 /*
2187  * Note that we don't need to start a transaction unless we're journaling data
2188  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2189  * need to file the inode to the transaction's list in ordered mode because if
2190  * we are writing back data added by write(), the inode is already there and if
2191  * we are writing back data modified via mmap(), no one guarantees in which
2192  * transaction the data will hit the disk. In case we are journaling data, we
2193  * cannot start transaction directly because transaction start ranks above page
2194  * lock so we have to do some magic.
2195  *
2196  * This function can get called via...
2197  *   - ext4_da_writepages after taking page lock (have journal handle)
2198  *   - journal_submit_inode_data_buffers (no journal handle)
2199  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2200  *   - grab_page_cache when doing write_begin (have journal handle)
2201  *
2202  * We don't do any block allocation in this function. If we have page with
2203  * multiple blocks we need to write those buffer_heads that are mapped. This
2204  * is important for mmaped based write. So if we do with blocksize 1K
2205  * truncate(f, 1024);
2206  * a = mmap(f, 0, 4096);
2207  * a[0] = 'a';
2208  * truncate(f, 4096);
2209  * we have in the page first buffer_head mapped via page_mkwrite call back
2210  * but other buffer_heads would be unmapped but dirty (dirty done via the
2211  * do_wp_page). So writepage should write the first block. If we modify
2212  * the mmap area beyond 1024 we will again get a page_fault and the
2213  * page_mkwrite callback will do the block allocation and mark the
2214  * buffer_heads mapped.
2215  *
2216  * We redirty the page if we have any buffer_heads that is either delay or
2217  * unwritten in the page.
2218  *
2219  * We can get recursively called as show below.
2220  *
2221  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2222  *		ext4_writepage()
2223  *
2224  * But since we don't do any block allocation we should not deadlock.
2225  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2226  */
2227 static int ext4_writepage(struct page *page,
2228 			  struct writeback_control *wbc)
2229 {
2230 	int ret = 0;
2231 	loff_t size;
2232 	unsigned int len;
2233 	struct buffer_head *page_bufs = NULL;
2234 	struct inode *inode = page->mapping->host;
2235 	struct ext4_io_submit io_submit;
2236 
2237 	trace_ext4_writepage(page);
2238 	size = i_size_read(inode);
2239 	if (page->index == size >> PAGE_CACHE_SHIFT)
2240 		len = size & ~PAGE_CACHE_MASK;
2241 	else
2242 		len = PAGE_CACHE_SIZE;
2243 
2244 	page_bufs = page_buffers(page);
2245 	/*
2246 	 * We cannot do block allocation or other extent handling in this
2247 	 * function. If there are buffers needing that, we have to redirty
2248 	 * the page. But we may reach here when we do a journal commit via
2249 	 * journal_submit_inode_data_buffers() and in that case we must write
2250 	 * allocated buffers to achieve data=ordered mode guarantees.
2251 	 */
2252 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2253 				   ext4_bh_delay_or_unwritten)) {
2254 		redirty_page_for_writepage(wbc, page);
2255 		if (current->flags & PF_MEMALLOC) {
2256 			/*
2257 			 * For memory cleaning there's no point in writing only
2258 			 * some buffers. So just bail out. Warn if we came here
2259 			 * from direct reclaim.
2260 			 */
2261 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2262 							== PF_MEMALLOC);
2263 			unlock_page(page);
2264 			return 0;
2265 		}
2266 	}
2267 
2268 	if (PageChecked(page) && ext4_should_journal_data(inode))
2269 		/*
2270 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2271 		 * doesn't seem much point in redirtying the page here.
2272 		 */
2273 		return __ext4_journalled_writepage(page, len);
2274 
2275 	memset(&io_submit, 0, sizeof(io_submit));
2276 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2277 	ext4_io_submit(&io_submit);
2278 	return ret;
2279 }
2280 
2281 /*
2282  * This is called via ext4_da_writepages() to
2283  * calculate the total number of credits to reserve to fit
2284  * a single extent allocation into a single transaction,
2285  * ext4_da_writpeages() will loop calling this before
2286  * the block allocation.
2287  */
2288 
2289 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2290 {
2291 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2292 
2293 	/*
2294 	 * With non-extent format the journal credit needed to
2295 	 * insert nrblocks contiguous block is dependent on
2296 	 * number of contiguous block. So we will limit
2297 	 * number of contiguous block to a sane value
2298 	 */
2299 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2300 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2301 		max_blocks = EXT4_MAX_TRANS_DATA;
2302 
2303 	return ext4_chunk_trans_blocks(inode, max_blocks);
2304 }
2305 
2306 /*
2307  * write_cache_pages_da - walk the list of dirty pages of the given
2308  * address space and accumulate pages that need writing, and call
2309  * mpage_da_map_and_submit to map a single contiguous memory region
2310  * and then write them.
2311  */
2312 static int write_cache_pages_da(handle_t *handle,
2313 				struct address_space *mapping,
2314 				struct writeback_control *wbc,
2315 				struct mpage_da_data *mpd,
2316 				pgoff_t *done_index)
2317 {
2318 	struct buffer_head	*bh, *head;
2319 	struct inode		*inode = mapping->host;
2320 	struct pagevec		pvec;
2321 	unsigned int		nr_pages;
2322 	sector_t		logical;
2323 	pgoff_t			index, end;
2324 	long			nr_to_write = wbc->nr_to_write;
2325 	int			i, tag, ret = 0;
2326 
2327 	memset(mpd, 0, sizeof(struct mpage_da_data));
2328 	mpd->wbc = wbc;
2329 	mpd->inode = inode;
2330 	pagevec_init(&pvec, 0);
2331 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2332 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2333 
2334 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2335 		tag = PAGECACHE_TAG_TOWRITE;
2336 	else
2337 		tag = PAGECACHE_TAG_DIRTY;
2338 
2339 	*done_index = index;
2340 	while (index <= end) {
2341 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2342 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2343 		if (nr_pages == 0)
2344 			return 0;
2345 
2346 		for (i = 0; i < nr_pages; i++) {
2347 			struct page *page = pvec.pages[i];
2348 
2349 			/*
2350 			 * At this point, the page may be truncated or
2351 			 * invalidated (changing page->mapping to NULL), or
2352 			 * even swizzled back from swapper_space to tmpfs file
2353 			 * mapping. However, page->index will not change
2354 			 * because we have a reference on the page.
2355 			 */
2356 			if (page->index > end)
2357 				goto out;
2358 
2359 			*done_index = page->index + 1;
2360 
2361 			/*
2362 			 * If we can't merge this page, and we have
2363 			 * accumulated an contiguous region, write it
2364 			 */
2365 			if ((mpd->next_page != page->index) &&
2366 			    (mpd->next_page != mpd->first_page)) {
2367 				mpage_da_map_and_submit(mpd);
2368 				goto ret_extent_tail;
2369 			}
2370 
2371 			lock_page(page);
2372 
2373 			/*
2374 			 * If the page is no longer dirty, or its
2375 			 * mapping no longer corresponds to inode we
2376 			 * are writing (which means it has been
2377 			 * truncated or invalidated), or the page is
2378 			 * already under writeback and we are not
2379 			 * doing a data integrity writeback, skip the page
2380 			 */
2381 			if (!PageDirty(page) ||
2382 			    (PageWriteback(page) &&
2383 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2384 			    unlikely(page->mapping != mapping)) {
2385 				unlock_page(page);
2386 				continue;
2387 			}
2388 
2389 			wait_on_page_writeback(page);
2390 			BUG_ON(PageWriteback(page));
2391 
2392 			/*
2393 			 * If we have inline data and arrive here, it means that
2394 			 * we will soon create the block for the 1st page, so
2395 			 * we'd better clear the inline data here.
2396 			 */
2397 			if (ext4_has_inline_data(inode)) {
2398 				BUG_ON(ext4_test_inode_state(inode,
2399 						EXT4_STATE_MAY_INLINE_DATA));
2400 				ext4_destroy_inline_data(handle, inode);
2401 			}
2402 
2403 			if (mpd->next_page != page->index)
2404 				mpd->first_page = page->index;
2405 			mpd->next_page = page->index + 1;
2406 			logical = (sector_t) page->index <<
2407 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2408 
2409 			/* Add all dirty buffers to mpd */
2410 			head = page_buffers(page);
2411 			bh = head;
2412 			do {
2413 				BUG_ON(buffer_locked(bh));
2414 				/*
2415 				 * We need to try to allocate unmapped blocks
2416 				 * in the same page.  Otherwise we won't make
2417 				 * progress with the page in ext4_writepage
2418 				 */
2419 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2420 					mpage_add_bh_to_extent(mpd, logical,
2421 							       bh->b_state);
2422 					if (mpd->io_done)
2423 						goto ret_extent_tail;
2424 				} else if (buffer_dirty(bh) &&
2425 					   buffer_mapped(bh)) {
2426 					/*
2427 					 * mapped dirty buffer. We need to
2428 					 * update the b_state because we look
2429 					 * at b_state in mpage_da_map_blocks.
2430 					 * We don't update b_size because if we
2431 					 * find an unmapped buffer_head later
2432 					 * we need to use the b_state flag of
2433 					 * that buffer_head.
2434 					 */
2435 					if (mpd->b_size == 0)
2436 						mpd->b_state =
2437 							bh->b_state & BH_FLAGS;
2438 				}
2439 				logical++;
2440 			} while ((bh = bh->b_this_page) != head);
2441 
2442 			if (nr_to_write > 0) {
2443 				nr_to_write--;
2444 				if (nr_to_write == 0 &&
2445 				    wbc->sync_mode == WB_SYNC_NONE)
2446 					/*
2447 					 * We stop writing back only if we are
2448 					 * not doing integrity sync. In case of
2449 					 * integrity sync we have to keep going
2450 					 * because someone may be concurrently
2451 					 * dirtying pages, and we might have
2452 					 * synced a lot of newly appeared dirty
2453 					 * pages, but have not synced all of the
2454 					 * old dirty pages.
2455 					 */
2456 					goto out;
2457 			}
2458 		}
2459 		pagevec_release(&pvec);
2460 		cond_resched();
2461 	}
2462 	return 0;
2463 ret_extent_tail:
2464 	ret = MPAGE_DA_EXTENT_TAIL;
2465 out:
2466 	pagevec_release(&pvec);
2467 	cond_resched();
2468 	return ret;
2469 }
2470 
2471 
2472 static int ext4_da_writepages(struct address_space *mapping,
2473 			      struct writeback_control *wbc)
2474 {
2475 	pgoff_t	index;
2476 	int range_whole = 0;
2477 	handle_t *handle = NULL;
2478 	struct mpage_da_data mpd;
2479 	struct inode *inode = mapping->host;
2480 	int pages_written = 0;
2481 	unsigned int max_pages;
2482 	int range_cyclic, cycled = 1, io_done = 0;
2483 	int needed_blocks, ret = 0;
2484 	long desired_nr_to_write, nr_to_writebump = 0;
2485 	loff_t range_start = wbc->range_start;
2486 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2487 	pgoff_t done_index = 0;
2488 	pgoff_t end;
2489 	struct blk_plug plug;
2490 
2491 	trace_ext4_da_writepages(inode, wbc);
2492 
2493 	/*
2494 	 * No pages to write? This is mainly a kludge to avoid starting
2495 	 * a transaction for special inodes like journal inode on last iput()
2496 	 * because that could violate lock ordering on umount
2497 	 */
2498 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2499 		return 0;
2500 
2501 	/*
2502 	 * If the filesystem has aborted, it is read-only, so return
2503 	 * right away instead of dumping stack traces later on that
2504 	 * will obscure the real source of the problem.  We test
2505 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2506 	 * the latter could be true if the filesystem is mounted
2507 	 * read-only, and in that case, ext4_da_writepages should
2508 	 * *never* be called, so if that ever happens, we would want
2509 	 * the stack trace.
2510 	 */
2511 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2512 		return -EROFS;
2513 
2514 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2515 		range_whole = 1;
2516 
2517 	range_cyclic = wbc->range_cyclic;
2518 	if (wbc->range_cyclic) {
2519 		index = mapping->writeback_index;
2520 		if (index)
2521 			cycled = 0;
2522 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2523 		wbc->range_end  = LLONG_MAX;
2524 		wbc->range_cyclic = 0;
2525 		end = -1;
2526 	} else {
2527 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2528 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2529 	}
2530 
2531 	/*
2532 	 * This works around two forms of stupidity.  The first is in
2533 	 * the writeback code, which caps the maximum number of pages
2534 	 * written to be 1024 pages.  This is wrong on multiple
2535 	 * levels; different architectues have a different page size,
2536 	 * which changes the maximum amount of data which gets
2537 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2538 	 * forces this value to be 16 megabytes by multiplying
2539 	 * nr_to_write parameter by four, and then relies on its
2540 	 * allocator to allocate larger extents to make them
2541 	 * contiguous.  Unfortunately this brings us to the second
2542 	 * stupidity, which is that ext4's mballoc code only allocates
2543 	 * at most 2048 blocks.  So we force contiguous writes up to
2544 	 * the number of dirty blocks in the inode, or
2545 	 * sbi->max_writeback_mb_bump whichever is smaller.
2546 	 */
2547 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2548 	if (!range_cyclic && range_whole) {
2549 		if (wbc->nr_to_write == LONG_MAX)
2550 			desired_nr_to_write = wbc->nr_to_write;
2551 		else
2552 			desired_nr_to_write = wbc->nr_to_write * 8;
2553 	} else
2554 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2555 							   max_pages);
2556 	if (desired_nr_to_write > max_pages)
2557 		desired_nr_to_write = max_pages;
2558 
2559 	if (wbc->nr_to_write < desired_nr_to_write) {
2560 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2561 		wbc->nr_to_write = desired_nr_to_write;
2562 	}
2563 
2564 retry:
2565 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2566 		tag_pages_for_writeback(mapping, index, end);
2567 
2568 	blk_start_plug(&plug);
2569 	while (!ret && wbc->nr_to_write > 0) {
2570 
2571 		/*
2572 		 * we  insert one extent at a time. So we need
2573 		 * credit needed for single extent allocation.
2574 		 * journalled mode is currently not supported
2575 		 * by delalloc
2576 		 */
2577 		BUG_ON(ext4_should_journal_data(inode));
2578 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2579 
2580 		/* start a new transaction*/
2581 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2582 					    needed_blocks);
2583 		if (IS_ERR(handle)) {
2584 			ret = PTR_ERR(handle);
2585 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2586 			       "%ld pages, ino %lu; err %d", __func__,
2587 				wbc->nr_to_write, inode->i_ino, ret);
2588 			blk_finish_plug(&plug);
2589 			goto out_writepages;
2590 		}
2591 
2592 		/*
2593 		 * Now call write_cache_pages_da() to find the next
2594 		 * contiguous region of logical blocks that need
2595 		 * blocks to be allocated by ext4 and submit them.
2596 		 */
2597 		ret = write_cache_pages_da(handle, mapping,
2598 					   wbc, &mpd, &done_index);
2599 		/*
2600 		 * If we have a contiguous extent of pages and we
2601 		 * haven't done the I/O yet, map the blocks and submit
2602 		 * them for I/O.
2603 		 */
2604 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2605 			mpage_da_map_and_submit(&mpd);
2606 			ret = MPAGE_DA_EXTENT_TAIL;
2607 		}
2608 		trace_ext4_da_write_pages(inode, &mpd);
2609 		wbc->nr_to_write -= mpd.pages_written;
2610 
2611 		ext4_journal_stop(handle);
2612 
2613 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2614 			/* commit the transaction which would
2615 			 * free blocks released in the transaction
2616 			 * and try again
2617 			 */
2618 			jbd2_journal_force_commit_nested(sbi->s_journal);
2619 			ret = 0;
2620 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2621 			/*
2622 			 * Got one extent now try with rest of the pages.
2623 			 * If mpd.retval is set -EIO, journal is aborted.
2624 			 * So we don't need to write any more.
2625 			 */
2626 			pages_written += mpd.pages_written;
2627 			ret = mpd.retval;
2628 			io_done = 1;
2629 		} else if (wbc->nr_to_write)
2630 			/*
2631 			 * There is no more writeout needed
2632 			 * or we requested for a noblocking writeout
2633 			 * and we found the device congested
2634 			 */
2635 			break;
2636 	}
2637 	blk_finish_plug(&plug);
2638 	if (!io_done && !cycled) {
2639 		cycled = 1;
2640 		index = 0;
2641 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2642 		wbc->range_end  = mapping->writeback_index - 1;
2643 		goto retry;
2644 	}
2645 
2646 	/* Update index */
2647 	wbc->range_cyclic = range_cyclic;
2648 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2649 		/*
2650 		 * set the writeback_index so that range_cyclic
2651 		 * mode will write it back later
2652 		 */
2653 		mapping->writeback_index = done_index;
2654 
2655 out_writepages:
2656 	wbc->nr_to_write -= nr_to_writebump;
2657 	wbc->range_start = range_start;
2658 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2659 	return ret;
2660 }
2661 
2662 static int ext4_nonda_switch(struct super_block *sb)
2663 {
2664 	s64 free_blocks, dirty_blocks;
2665 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2666 
2667 	/*
2668 	 * switch to non delalloc mode if we are running low
2669 	 * on free block. The free block accounting via percpu
2670 	 * counters can get slightly wrong with percpu_counter_batch getting
2671 	 * accumulated on each CPU without updating global counters
2672 	 * Delalloc need an accurate free block accounting. So switch
2673 	 * to non delalloc when we are near to error range.
2674 	 */
2675 	free_blocks  = EXT4_C2B(sbi,
2676 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2677 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2678 	/*
2679 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2680 	 */
2681 	if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2682 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2683 
2684 	if (2 * free_blocks < 3 * dirty_blocks ||
2685 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2686 		/*
2687 		 * free block count is less than 150% of dirty blocks
2688 		 * or free blocks is less than watermark
2689 		 */
2690 		return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2696 			       loff_t pos, unsigned len, unsigned flags,
2697 			       struct page **pagep, void **fsdata)
2698 {
2699 	int ret, retries = 0;
2700 	struct page *page;
2701 	pgoff_t index;
2702 	struct inode *inode = mapping->host;
2703 	handle_t *handle;
2704 
2705 	index = pos >> PAGE_CACHE_SHIFT;
2706 
2707 	if (ext4_nonda_switch(inode->i_sb)) {
2708 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2709 		return ext4_write_begin(file, mapping, pos,
2710 					len, flags, pagep, fsdata);
2711 	}
2712 	*fsdata = (void *)0;
2713 	trace_ext4_da_write_begin(inode, pos, len, flags);
2714 
2715 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2716 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2717 						      pos, len, flags,
2718 						      pagep, fsdata);
2719 		if (ret < 0)
2720 			return ret;
2721 		if (ret == 1)
2722 			return 0;
2723 	}
2724 
2725 	/*
2726 	 * grab_cache_page_write_begin() can take a long time if the
2727 	 * system is thrashing due to memory pressure, or if the page
2728 	 * is being written back.  So grab it first before we start
2729 	 * the transaction handle.  This also allows us to allocate
2730 	 * the page (if needed) without using GFP_NOFS.
2731 	 */
2732 retry_grab:
2733 	page = grab_cache_page_write_begin(mapping, index, flags);
2734 	if (!page)
2735 		return -ENOMEM;
2736 	unlock_page(page);
2737 
2738 	/*
2739 	 * With delayed allocation, we don't log the i_disksize update
2740 	 * if there is delayed block allocation. But we still need
2741 	 * to journalling the i_disksize update if writes to the end
2742 	 * of file which has an already mapped buffer.
2743 	 */
2744 retry_journal:
2745 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2746 	if (IS_ERR(handle)) {
2747 		page_cache_release(page);
2748 		return PTR_ERR(handle);
2749 	}
2750 
2751 	lock_page(page);
2752 	if (page->mapping != mapping) {
2753 		/* The page got truncated from under us */
2754 		unlock_page(page);
2755 		page_cache_release(page);
2756 		ext4_journal_stop(handle);
2757 		goto retry_grab;
2758 	}
2759 	/* In case writeback began while the page was unlocked */
2760 	wait_on_page_writeback(page);
2761 
2762 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2763 	if (ret < 0) {
2764 		unlock_page(page);
2765 		ext4_journal_stop(handle);
2766 		/*
2767 		 * block_write_begin may have instantiated a few blocks
2768 		 * outside i_size.  Trim these off again. Don't need
2769 		 * i_size_read because we hold i_mutex.
2770 		 */
2771 		if (pos + len > inode->i_size)
2772 			ext4_truncate_failed_write(inode);
2773 
2774 		if (ret == -ENOSPC &&
2775 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2776 			goto retry_journal;
2777 
2778 		page_cache_release(page);
2779 		return ret;
2780 	}
2781 
2782 	*pagep = page;
2783 	return ret;
2784 }
2785 
2786 /*
2787  * Check if we should update i_disksize
2788  * when write to the end of file but not require block allocation
2789  */
2790 static int ext4_da_should_update_i_disksize(struct page *page,
2791 					    unsigned long offset)
2792 {
2793 	struct buffer_head *bh;
2794 	struct inode *inode = page->mapping->host;
2795 	unsigned int idx;
2796 	int i;
2797 
2798 	bh = page_buffers(page);
2799 	idx = offset >> inode->i_blkbits;
2800 
2801 	for (i = 0; i < idx; i++)
2802 		bh = bh->b_this_page;
2803 
2804 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2805 		return 0;
2806 	return 1;
2807 }
2808 
2809 static int ext4_da_write_end(struct file *file,
2810 			     struct address_space *mapping,
2811 			     loff_t pos, unsigned len, unsigned copied,
2812 			     struct page *page, void *fsdata)
2813 {
2814 	struct inode *inode = mapping->host;
2815 	int ret = 0, ret2;
2816 	handle_t *handle = ext4_journal_current_handle();
2817 	loff_t new_i_size;
2818 	unsigned long start, end;
2819 	int write_mode = (int)(unsigned long)fsdata;
2820 
2821 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2822 		switch (ext4_inode_journal_mode(inode)) {
2823 		case EXT4_INODE_ORDERED_DATA_MODE:
2824 			return ext4_ordered_write_end(file, mapping, pos,
2825 					len, copied, page, fsdata);
2826 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2827 			return ext4_writeback_write_end(file, mapping, pos,
2828 					len, copied, page, fsdata);
2829 		default:
2830 			BUG();
2831 		}
2832 	}
2833 
2834 	trace_ext4_da_write_end(inode, pos, len, copied);
2835 	start = pos & (PAGE_CACHE_SIZE - 1);
2836 	end = start + copied - 1;
2837 
2838 	/*
2839 	 * generic_write_end() will run mark_inode_dirty() if i_size
2840 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2841 	 * into that.
2842 	 */
2843 	new_i_size = pos + copied;
2844 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2845 		if (ext4_has_inline_data(inode) ||
2846 		    ext4_da_should_update_i_disksize(page, end)) {
2847 			down_write(&EXT4_I(inode)->i_data_sem);
2848 			if (new_i_size > EXT4_I(inode)->i_disksize)
2849 				EXT4_I(inode)->i_disksize = new_i_size;
2850 			up_write(&EXT4_I(inode)->i_data_sem);
2851 			/* We need to mark inode dirty even if
2852 			 * new_i_size is less that inode->i_size
2853 			 * bu greater than i_disksize.(hint delalloc)
2854 			 */
2855 			ext4_mark_inode_dirty(handle, inode);
2856 		}
2857 	}
2858 
2859 	if (write_mode != CONVERT_INLINE_DATA &&
2860 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2861 	    ext4_has_inline_data(inode))
2862 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2863 						     page);
2864 	else
2865 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2866 							page, fsdata);
2867 
2868 	copied = ret2;
2869 	if (ret2 < 0)
2870 		ret = ret2;
2871 	ret2 = ext4_journal_stop(handle);
2872 	if (!ret)
2873 		ret = ret2;
2874 
2875 	return ret ? ret : copied;
2876 }
2877 
2878 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2879 {
2880 	/*
2881 	 * Drop reserved blocks
2882 	 */
2883 	BUG_ON(!PageLocked(page));
2884 	if (!page_has_buffers(page))
2885 		goto out;
2886 
2887 	ext4_da_page_release_reservation(page, offset);
2888 
2889 out:
2890 	ext4_invalidatepage(page, offset);
2891 
2892 	return;
2893 }
2894 
2895 /*
2896  * Force all delayed allocation blocks to be allocated for a given inode.
2897  */
2898 int ext4_alloc_da_blocks(struct inode *inode)
2899 {
2900 	trace_ext4_alloc_da_blocks(inode);
2901 
2902 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2903 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2904 		return 0;
2905 
2906 	/*
2907 	 * We do something simple for now.  The filemap_flush() will
2908 	 * also start triggering a write of the data blocks, which is
2909 	 * not strictly speaking necessary (and for users of
2910 	 * laptop_mode, not even desirable).  However, to do otherwise
2911 	 * would require replicating code paths in:
2912 	 *
2913 	 * ext4_da_writepages() ->
2914 	 *    write_cache_pages() ---> (via passed in callback function)
2915 	 *        __mpage_da_writepage() -->
2916 	 *           mpage_add_bh_to_extent()
2917 	 *           mpage_da_map_blocks()
2918 	 *
2919 	 * The problem is that write_cache_pages(), located in
2920 	 * mm/page-writeback.c, marks pages clean in preparation for
2921 	 * doing I/O, which is not desirable if we're not planning on
2922 	 * doing I/O at all.
2923 	 *
2924 	 * We could call write_cache_pages(), and then redirty all of
2925 	 * the pages by calling redirty_page_for_writepage() but that
2926 	 * would be ugly in the extreme.  So instead we would need to
2927 	 * replicate parts of the code in the above functions,
2928 	 * simplifying them because we wouldn't actually intend to
2929 	 * write out the pages, but rather only collect contiguous
2930 	 * logical block extents, call the multi-block allocator, and
2931 	 * then update the buffer heads with the block allocations.
2932 	 *
2933 	 * For now, though, we'll cheat by calling filemap_flush(),
2934 	 * which will map the blocks, and start the I/O, but not
2935 	 * actually wait for the I/O to complete.
2936 	 */
2937 	return filemap_flush(inode->i_mapping);
2938 }
2939 
2940 /*
2941  * bmap() is special.  It gets used by applications such as lilo and by
2942  * the swapper to find the on-disk block of a specific piece of data.
2943  *
2944  * Naturally, this is dangerous if the block concerned is still in the
2945  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2946  * filesystem and enables swap, then they may get a nasty shock when the
2947  * data getting swapped to that swapfile suddenly gets overwritten by
2948  * the original zero's written out previously to the journal and
2949  * awaiting writeback in the kernel's buffer cache.
2950  *
2951  * So, if we see any bmap calls here on a modified, data-journaled file,
2952  * take extra steps to flush any blocks which might be in the cache.
2953  */
2954 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2955 {
2956 	struct inode *inode = mapping->host;
2957 	journal_t *journal;
2958 	int err;
2959 
2960 	/*
2961 	 * We can get here for an inline file via the FIBMAP ioctl
2962 	 */
2963 	if (ext4_has_inline_data(inode))
2964 		return 0;
2965 
2966 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2967 			test_opt(inode->i_sb, DELALLOC)) {
2968 		/*
2969 		 * With delalloc we want to sync the file
2970 		 * so that we can make sure we allocate
2971 		 * blocks for file
2972 		 */
2973 		filemap_write_and_wait(mapping);
2974 	}
2975 
2976 	if (EXT4_JOURNAL(inode) &&
2977 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2978 		/*
2979 		 * This is a REALLY heavyweight approach, but the use of
2980 		 * bmap on dirty files is expected to be extremely rare:
2981 		 * only if we run lilo or swapon on a freshly made file
2982 		 * do we expect this to happen.
2983 		 *
2984 		 * (bmap requires CAP_SYS_RAWIO so this does not
2985 		 * represent an unprivileged user DOS attack --- we'd be
2986 		 * in trouble if mortal users could trigger this path at
2987 		 * will.)
2988 		 *
2989 		 * NB. EXT4_STATE_JDATA is not set on files other than
2990 		 * regular files.  If somebody wants to bmap a directory
2991 		 * or symlink and gets confused because the buffer
2992 		 * hasn't yet been flushed to disk, they deserve
2993 		 * everything they get.
2994 		 */
2995 
2996 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2997 		journal = EXT4_JOURNAL(inode);
2998 		jbd2_journal_lock_updates(journal);
2999 		err = jbd2_journal_flush(journal);
3000 		jbd2_journal_unlock_updates(journal);
3001 
3002 		if (err)
3003 			return 0;
3004 	}
3005 
3006 	return generic_block_bmap(mapping, block, ext4_get_block);
3007 }
3008 
3009 static int ext4_readpage(struct file *file, struct page *page)
3010 {
3011 	int ret = -EAGAIN;
3012 	struct inode *inode = page->mapping->host;
3013 
3014 	trace_ext4_readpage(page);
3015 
3016 	if (ext4_has_inline_data(inode))
3017 		ret = ext4_readpage_inline(inode, page);
3018 
3019 	if (ret == -EAGAIN)
3020 		return mpage_readpage(page, ext4_get_block);
3021 
3022 	return ret;
3023 }
3024 
3025 static int
3026 ext4_readpages(struct file *file, struct address_space *mapping,
3027 		struct list_head *pages, unsigned nr_pages)
3028 {
3029 	struct inode *inode = mapping->host;
3030 
3031 	/* If the file has inline data, no need to do readpages. */
3032 	if (ext4_has_inline_data(inode))
3033 		return 0;
3034 
3035 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3036 }
3037 
3038 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3039 {
3040 	trace_ext4_invalidatepage(page, offset);
3041 
3042 	/* No journalling happens on data buffers when this function is used */
3043 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3044 
3045 	block_invalidatepage(page, offset);
3046 }
3047 
3048 static int __ext4_journalled_invalidatepage(struct page *page,
3049 					    unsigned long offset)
3050 {
3051 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3052 
3053 	trace_ext4_journalled_invalidatepage(page, offset);
3054 
3055 	/*
3056 	 * If it's a full truncate we just forget about the pending dirtying
3057 	 */
3058 	if (offset == 0)
3059 		ClearPageChecked(page);
3060 
3061 	return jbd2_journal_invalidatepage(journal, page, offset);
3062 }
3063 
3064 /* Wrapper for aops... */
3065 static void ext4_journalled_invalidatepage(struct page *page,
3066 					   unsigned long offset)
3067 {
3068 	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3069 }
3070 
3071 static int ext4_releasepage(struct page *page, gfp_t wait)
3072 {
3073 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3074 
3075 	trace_ext4_releasepage(page);
3076 
3077 	/* Page has dirty journalled data -> cannot release */
3078 	if (PageChecked(page))
3079 		return 0;
3080 	if (journal)
3081 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3082 	else
3083 		return try_to_free_buffers(page);
3084 }
3085 
3086 /*
3087  * ext4_get_block used when preparing for a DIO write or buffer write.
3088  * We allocate an uinitialized extent if blocks haven't been allocated.
3089  * The extent will be converted to initialized after the IO is complete.
3090  */
3091 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3092 		   struct buffer_head *bh_result, int create)
3093 {
3094 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3095 		   inode->i_ino, create);
3096 	return _ext4_get_block(inode, iblock, bh_result,
3097 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3098 }
3099 
3100 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3101 		   struct buffer_head *bh_result, int create)
3102 {
3103 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3104 		   inode->i_ino, create);
3105 	return _ext4_get_block(inode, iblock, bh_result,
3106 			       EXT4_GET_BLOCKS_NO_LOCK);
3107 }
3108 
3109 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3110 			    ssize_t size, void *private, int ret,
3111 			    bool is_async)
3112 {
3113 	struct inode *inode = file_inode(iocb->ki_filp);
3114         ext4_io_end_t *io_end = iocb->private;
3115 
3116 	/* if not async direct IO or dio with 0 bytes write, just return */
3117 	if (!io_end || !size)
3118 		goto out;
3119 
3120 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3121 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3122  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3123 		  size);
3124 
3125 	iocb->private = NULL;
3126 
3127 	/* if not aio dio with unwritten extents, just free io and return */
3128 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3129 		ext4_free_io_end(io_end);
3130 out:
3131 		inode_dio_done(inode);
3132 		if (is_async)
3133 			aio_complete(iocb, ret, 0);
3134 		return;
3135 	}
3136 
3137 	io_end->offset = offset;
3138 	io_end->size = size;
3139 	if (is_async) {
3140 		io_end->iocb = iocb;
3141 		io_end->result = ret;
3142 	}
3143 
3144 	ext4_add_complete_io(io_end);
3145 }
3146 
3147 /*
3148  * For ext4 extent files, ext4 will do direct-io write to holes,
3149  * preallocated extents, and those write extend the file, no need to
3150  * fall back to buffered IO.
3151  *
3152  * For holes, we fallocate those blocks, mark them as uninitialized
3153  * If those blocks were preallocated, we mark sure they are split, but
3154  * still keep the range to write as uninitialized.
3155  *
3156  * The unwritten extents will be converted to written when DIO is completed.
3157  * For async direct IO, since the IO may still pending when return, we
3158  * set up an end_io call back function, which will do the conversion
3159  * when async direct IO completed.
3160  *
3161  * If the O_DIRECT write will extend the file then add this inode to the
3162  * orphan list.  So recovery will truncate it back to the original size
3163  * if the machine crashes during the write.
3164  *
3165  */
3166 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3167 			      const struct iovec *iov, loff_t offset,
3168 			      unsigned long nr_segs)
3169 {
3170 	struct file *file = iocb->ki_filp;
3171 	struct inode *inode = file->f_mapping->host;
3172 	ssize_t ret;
3173 	size_t count = iov_length(iov, nr_segs);
3174 	int overwrite = 0;
3175 	get_block_t *get_block_func = NULL;
3176 	int dio_flags = 0;
3177 	loff_t final_size = offset + count;
3178 
3179 	/* Use the old path for reads and writes beyond i_size. */
3180 	if (rw != WRITE || final_size > inode->i_size)
3181 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3182 
3183 	BUG_ON(iocb->private == NULL);
3184 
3185 	/* If we do a overwrite dio, i_mutex locking can be released */
3186 	overwrite = *((int *)iocb->private);
3187 
3188 	if (overwrite) {
3189 		atomic_inc(&inode->i_dio_count);
3190 		down_read(&EXT4_I(inode)->i_data_sem);
3191 		mutex_unlock(&inode->i_mutex);
3192 	}
3193 
3194 	/*
3195 	 * We could direct write to holes and fallocate.
3196 	 *
3197 	 * Allocated blocks to fill the hole are marked as
3198 	 * uninitialized to prevent parallel buffered read to expose
3199 	 * the stale data before DIO complete the data IO.
3200 	 *
3201 	 * As to previously fallocated extents, ext4 get_block will
3202 	 * just simply mark the buffer mapped but still keep the
3203 	 * extents uninitialized.
3204 	 *
3205 	 * For non AIO case, we will convert those unwritten extents
3206 	 * to written after return back from blockdev_direct_IO.
3207 	 *
3208 	 * For async DIO, the conversion needs to be deferred when the
3209 	 * IO is completed. The ext4 end_io callback function will be
3210 	 * called to take care of the conversion work.  Here for async
3211 	 * case, we allocate an io_end structure to hook to the iocb.
3212 	 */
3213 	iocb->private = NULL;
3214 	ext4_inode_aio_set(inode, NULL);
3215 	if (!is_sync_kiocb(iocb)) {
3216 		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3217 		if (!io_end) {
3218 			ret = -ENOMEM;
3219 			goto retake_lock;
3220 		}
3221 		io_end->flag |= EXT4_IO_END_DIRECT;
3222 		iocb->private = io_end;
3223 		/*
3224 		 * we save the io structure for current async direct
3225 		 * IO, so that later ext4_map_blocks() could flag the
3226 		 * io structure whether there is a unwritten extents
3227 		 * needs to be converted when IO is completed.
3228 		 */
3229 		ext4_inode_aio_set(inode, io_end);
3230 	}
3231 
3232 	if (overwrite) {
3233 		get_block_func = ext4_get_block_write_nolock;
3234 	} else {
3235 		get_block_func = ext4_get_block_write;
3236 		dio_flags = DIO_LOCKING;
3237 	}
3238 	ret = __blockdev_direct_IO(rw, iocb, inode,
3239 				   inode->i_sb->s_bdev, iov,
3240 				   offset, nr_segs,
3241 				   get_block_func,
3242 				   ext4_end_io_dio,
3243 				   NULL,
3244 				   dio_flags);
3245 
3246 	if (iocb->private)
3247 		ext4_inode_aio_set(inode, NULL);
3248 	/*
3249 	 * The io_end structure takes a reference to the inode, that
3250 	 * structure needs to be destroyed and the reference to the
3251 	 * inode need to be dropped, when IO is complete, even with 0
3252 	 * byte write, or failed.
3253 	 *
3254 	 * In the successful AIO DIO case, the io_end structure will
3255 	 * be destroyed and the reference to the inode will be dropped
3256 	 * after the end_io call back function is called.
3257 	 *
3258 	 * In the case there is 0 byte write, or error case, since VFS
3259 	 * direct IO won't invoke the end_io call back function, we
3260 	 * need to free the end_io structure here.
3261 	 */
3262 	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3263 		ext4_free_io_end(iocb->private);
3264 		iocb->private = NULL;
3265 	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3266 						EXT4_STATE_DIO_UNWRITTEN)) {
3267 		int err;
3268 		/*
3269 		 * for non AIO case, since the IO is already
3270 		 * completed, we could do the conversion right here
3271 		 */
3272 		err = ext4_convert_unwritten_extents(inode,
3273 						     offset, ret);
3274 		if (err < 0)
3275 			ret = err;
3276 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3277 	}
3278 
3279 retake_lock:
3280 	/* take i_mutex locking again if we do a ovewrite dio */
3281 	if (overwrite) {
3282 		inode_dio_done(inode);
3283 		up_read(&EXT4_I(inode)->i_data_sem);
3284 		mutex_lock(&inode->i_mutex);
3285 	}
3286 
3287 	return ret;
3288 }
3289 
3290 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3291 			      const struct iovec *iov, loff_t offset,
3292 			      unsigned long nr_segs)
3293 {
3294 	struct file *file = iocb->ki_filp;
3295 	struct inode *inode = file->f_mapping->host;
3296 	ssize_t ret;
3297 
3298 	/*
3299 	 * If we are doing data journalling we don't support O_DIRECT
3300 	 */
3301 	if (ext4_should_journal_data(inode))
3302 		return 0;
3303 
3304 	/* Let buffer I/O handle the inline data case. */
3305 	if (ext4_has_inline_data(inode))
3306 		return 0;
3307 
3308 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3309 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3310 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3311 	else
3312 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3313 	trace_ext4_direct_IO_exit(inode, offset,
3314 				iov_length(iov, nr_segs), rw, ret);
3315 	return ret;
3316 }
3317 
3318 /*
3319  * Pages can be marked dirty completely asynchronously from ext4's journalling
3320  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3321  * much here because ->set_page_dirty is called under VFS locks.  The page is
3322  * not necessarily locked.
3323  *
3324  * We cannot just dirty the page and leave attached buffers clean, because the
3325  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3326  * or jbddirty because all the journalling code will explode.
3327  *
3328  * So what we do is to mark the page "pending dirty" and next time writepage
3329  * is called, propagate that into the buffers appropriately.
3330  */
3331 static int ext4_journalled_set_page_dirty(struct page *page)
3332 {
3333 	SetPageChecked(page);
3334 	return __set_page_dirty_nobuffers(page);
3335 }
3336 
3337 static const struct address_space_operations ext4_ordered_aops = {
3338 	.readpage		= ext4_readpage,
3339 	.readpages		= ext4_readpages,
3340 	.writepage		= ext4_writepage,
3341 	.write_begin		= ext4_write_begin,
3342 	.write_end		= ext4_ordered_write_end,
3343 	.bmap			= ext4_bmap,
3344 	.invalidatepage		= ext4_invalidatepage,
3345 	.releasepage		= ext4_releasepage,
3346 	.direct_IO		= ext4_direct_IO,
3347 	.migratepage		= buffer_migrate_page,
3348 	.is_partially_uptodate  = block_is_partially_uptodate,
3349 	.error_remove_page	= generic_error_remove_page,
3350 };
3351 
3352 static const struct address_space_operations ext4_writeback_aops = {
3353 	.readpage		= ext4_readpage,
3354 	.readpages		= ext4_readpages,
3355 	.writepage		= ext4_writepage,
3356 	.write_begin		= ext4_write_begin,
3357 	.write_end		= ext4_writeback_write_end,
3358 	.bmap			= ext4_bmap,
3359 	.invalidatepage		= ext4_invalidatepage,
3360 	.releasepage		= ext4_releasepage,
3361 	.direct_IO		= ext4_direct_IO,
3362 	.migratepage		= buffer_migrate_page,
3363 	.is_partially_uptodate  = block_is_partially_uptodate,
3364 	.error_remove_page	= generic_error_remove_page,
3365 };
3366 
3367 static const struct address_space_operations ext4_journalled_aops = {
3368 	.readpage		= ext4_readpage,
3369 	.readpages		= ext4_readpages,
3370 	.writepage		= ext4_writepage,
3371 	.write_begin		= ext4_write_begin,
3372 	.write_end		= ext4_journalled_write_end,
3373 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3374 	.bmap			= ext4_bmap,
3375 	.invalidatepage		= ext4_journalled_invalidatepage,
3376 	.releasepage		= ext4_releasepage,
3377 	.direct_IO		= ext4_direct_IO,
3378 	.is_partially_uptodate  = block_is_partially_uptodate,
3379 	.error_remove_page	= generic_error_remove_page,
3380 };
3381 
3382 static const struct address_space_operations ext4_da_aops = {
3383 	.readpage		= ext4_readpage,
3384 	.readpages		= ext4_readpages,
3385 	.writepage		= ext4_writepage,
3386 	.writepages		= ext4_da_writepages,
3387 	.write_begin		= ext4_da_write_begin,
3388 	.write_end		= ext4_da_write_end,
3389 	.bmap			= ext4_bmap,
3390 	.invalidatepage		= ext4_da_invalidatepage,
3391 	.releasepage		= ext4_releasepage,
3392 	.direct_IO		= ext4_direct_IO,
3393 	.migratepage		= buffer_migrate_page,
3394 	.is_partially_uptodate  = block_is_partially_uptodate,
3395 	.error_remove_page	= generic_error_remove_page,
3396 };
3397 
3398 void ext4_set_aops(struct inode *inode)
3399 {
3400 	switch (ext4_inode_journal_mode(inode)) {
3401 	case EXT4_INODE_ORDERED_DATA_MODE:
3402 		if (test_opt(inode->i_sb, DELALLOC))
3403 			inode->i_mapping->a_ops = &ext4_da_aops;
3404 		else
3405 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3406 		break;
3407 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3408 		if (test_opt(inode->i_sb, DELALLOC))
3409 			inode->i_mapping->a_ops = &ext4_da_aops;
3410 		else
3411 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3412 		break;
3413 	case EXT4_INODE_JOURNAL_DATA_MODE:
3414 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3415 		break;
3416 	default:
3417 		BUG();
3418 	}
3419 }
3420 
3421 
3422 /*
3423  * ext4_discard_partial_page_buffers()
3424  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3425  * This function finds and locks the page containing the offset
3426  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3427  * Calling functions that already have the page locked should call
3428  * ext4_discard_partial_page_buffers_no_lock directly.
3429  */
3430 int ext4_discard_partial_page_buffers(handle_t *handle,
3431 		struct address_space *mapping, loff_t from,
3432 		loff_t length, int flags)
3433 {
3434 	struct inode *inode = mapping->host;
3435 	struct page *page;
3436 	int err = 0;
3437 
3438 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3439 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3440 	if (!page)
3441 		return -ENOMEM;
3442 
3443 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3444 		from, length, flags);
3445 
3446 	unlock_page(page);
3447 	page_cache_release(page);
3448 	return err;
3449 }
3450 
3451 /*
3452  * ext4_discard_partial_page_buffers_no_lock()
3453  * Zeros a page range of length 'length' starting from offset 'from'.
3454  * Buffer heads that correspond to the block aligned regions of the
3455  * zeroed range will be unmapped.  Unblock aligned regions
3456  * will have the corresponding buffer head mapped if needed so that
3457  * that region of the page can be updated with the partial zero out.
3458  *
3459  * This function assumes that the page has already been  locked.  The
3460  * The range to be discarded must be contained with in the given page.
3461  * If the specified range exceeds the end of the page it will be shortened
3462  * to the end of the page that corresponds to 'from'.  This function is
3463  * appropriate for updating a page and it buffer heads to be unmapped and
3464  * zeroed for blocks that have been either released, or are going to be
3465  * released.
3466  *
3467  * handle: The journal handle
3468  * inode:  The files inode
3469  * page:   A locked page that contains the offset "from"
3470  * from:   The starting byte offset (from the beginning of the file)
3471  *         to begin discarding
3472  * len:    The length of bytes to discard
3473  * flags:  Optional flags that may be used:
3474  *
3475  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3476  *         Only zero the regions of the page whose buffer heads
3477  *         have already been unmapped.  This flag is appropriate
3478  *         for updating the contents of a page whose blocks may
3479  *         have already been released, and we only want to zero
3480  *         out the regions that correspond to those released blocks.
3481  *
3482  * Returns zero on success or negative on failure.
3483  */
3484 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3485 		struct inode *inode, struct page *page, loff_t from,
3486 		loff_t length, int flags)
3487 {
3488 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3489 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3490 	unsigned int blocksize, max, pos;
3491 	ext4_lblk_t iblock;
3492 	struct buffer_head *bh;
3493 	int err = 0;
3494 
3495 	blocksize = inode->i_sb->s_blocksize;
3496 	max = PAGE_CACHE_SIZE - offset;
3497 
3498 	if (index != page->index)
3499 		return -EINVAL;
3500 
3501 	/*
3502 	 * correct length if it does not fall between
3503 	 * 'from' and the end of the page
3504 	 */
3505 	if (length > max || length < 0)
3506 		length = max;
3507 
3508 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3509 
3510 	if (!page_has_buffers(page))
3511 		create_empty_buffers(page, blocksize, 0);
3512 
3513 	/* Find the buffer that contains "offset" */
3514 	bh = page_buffers(page);
3515 	pos = blocksize;
3516 	while (offset >= pos) {
3517 		bh = bh->b_this_page;
3518 		iblock++;
3519 		pos += blocksize;
3520 	}
3521 
3522 	pos = offset;
3523 	while (pos < offset + length) {
3524 		unsigned int end_of_block, range_to_discard;
3525 
3526 		err = 0;
3527 
3528 		/* The length of space left to zero and unmap */
3529 		range_to_discard = offset + length - pos;
3530 
3531 		/* The length of space until the end of the block */
3532 		end_of_block = blocksize - (pos & (blocksize-1));
3533 
3534 		/*
3535 		 * Do not unmap or zero past end of block
3536 		 * for this buffer head
3537 		 */
3538 		if (range_to_discard > end_of_block)
3539 			range_to_discard = end_of_block;
3540 
3541 
3542 		/*
3543 		 * Skip this buffer head if we are only zeroing unampped
3544 		 * regions of the page
3545 		 */
3546 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3547 			buffer_mapped(bh))
3548 				goto next;
3549 
3550 		/* If the range is block aligned, unmap */
3551 		if (range_to_discard == blocksize) {
3552 			clear_buffer_dirty(bh);
3553 			bh->b_bdev = NULL;
3554 			clear_buffer_mapped(bh);
3555 			clear_buffer_req(bh);
3556 			clear_buffer_new(bh);
3557 			clear_buffer_delay(bh);
3558 			clear_buffer_unwritten(bh);
3559 			clear_buffer_uptodate(bh);
3560 			zero_user(page, pos, range_to_discard);
3561 			BUFFER_TRACE(bh, "Buffer discarded");
3562 			goto next;
3563 		}
3564 
3565 		/*
3566 		 * If this block is not completely contained in the range
3567 		 * to be discarded, then it is not going to be released. Because
3568 		 * we need to keep this block, we need to make sure this part
3569 		 * of the page is uptodate before we modify it by writeing
3570 		 * partial zeros on it.
3571 		 */
3572 		if (!buffer_mapped(bh)) {
3573 			/*
3574 			 * Buffer head must be mapped before we can read
3575 			 * from the block
3576 			 */
3577 			BUFFER_TRACE(bh, "unmapped");
3578 			ext4_get_block(inode, iblock, bh, 0);
3579 			/* unmapped? It's a hole - nothing to do */
3580 			if (!buffer_mapped(bh)) {
3581 				BUFFER_TRACE(bh, "still unmapped");
3582 				goto next;
3583 			}
3584 		}
3585 
3586 		/* Ok, it's mapped. Make sure it's up-to-date */
3587 		if (PageUptodate(page))
3588 			set_buffer_uptodate(bh);
3589 
3590 		if (!buffer_uptodate(bh)) {
3591 			err = -EIO;
3592 			ll_rw_block(READ, 1, &bh);
3593 			wait_on_buffer(bh);
3594 			/* Uhhuh. Read error. Complain and punt.*/
3595 			if (!buffer_uptodate(bh))
3596 				goto next;
3597 		}
3598 
3599 		if (ext4_should_journal_data(inode)) {
3600 			BUFFER_TRACE(bh, "get write access");
3601 			err = ext4_journal_get_write_access(handle, bh);
3602 			if (err)
3603 				goto next;
3604 		}
3605 
3606 		zero_user(page, pos, range_to_discard);
3607 
3608 		err = 0;
3609 		if (ext4_should_journal_data(inode)) {
3610 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3611 		} else
3612 			mark_buffer_dirty(bh);
3613 
3614 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3615 next:
3616 		bh = bh->b_this_page;
3617 		iblock++;
3618 		pos += range_to_discard;
3619 	}
3620 
3621 	return err;
3622 }
3623 
3624 int ext4_can_truncate(struct inode *inode)
3625 {
3626 	if (S_ISREG(inode->i_mode))
3627 		return 1;
3628 	if (S_ISDIR(inode->i_mode))
3629 		return 1;
3630 	if (S_ISLNK(inode->i_mode))
3631 		return !ext4_inode_is_fast_symlink(inode);
3632 	return 0;
3633 }
3634 
3635 /*
3636  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3637  * associated with the given offset and length
3638  *
3639  * @inode:  File inode
3640  * @offset: The offset where the hole will begin
3641  * @len:    The length of the hole
3642  *
3643  * Returns: 0 on success or negative on failure
3644  */
3645 
3646 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3647 {
3648 	struct inode *inode = file_inode(file);
3649 	if (!S_ISREG(inode->i_mode))
3650 		return -EOPNOTSUPP;
3651 
3652 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3653 		return ext4_ind_punch_hole(file, offset, length);
3654 
3655 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3656 		/* TODO: Add support for bigalloc file systems */
3657 		return -EOPNOTSUPP;
3658 	}
3659 
3660 	trace_ext4_punch_hole(inode, offset, length);
3661 
3662 	return ext4_ext_punch_hole(file, offset, length);
3663 }
3664 
3665 /*
3666  * ext4_truncate()
3667  *
3668  * We block out ext4_get_block() block instantiations across the entire
3669  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3670  * simultaneously on behalf of the same inode.
3671  *
3672  * As we work through the truncate and commit bits of it to the journal there
3673  * is one core, guiding principle: the file's tree must always be consistent on
3674  * disk.  We must be able to restart the truncate after a crash.
3675  *
3676  * The file's tree may be transiently inconsistent in memory (although it
3677  * probably isn't), but whenever we close off and commit a journal transaction,
3678  * the contents of (the filesystem + the journal) must be consistent and
3679  * restartable.  It's pretty simple, really: bottom up, right to left (although
3680  * left-to-right works OK too).
3681  *
3682  * Note that at recovery time, journal replay occurs *before* the restart of
3683  * truncate against the orphan inode list.
3684  *
3685  * The committed inode has the new, desired i_size (which is the same as
3686  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3687  * that this inode's truncate did not complete and it will again call
3688  * ext4_truncate() to have another go.  So there will be instantiated blocks
3689  * to the right of the truncation point in a crashed ext4 filesystem.  But
3690  * that's fine - as long as they are linked from the inode, the post-crash
3691  * ext4_truncate() run will find them and release them.
3692  */
3693 void ext4_truncate(struct inode *inode)
3694 {
3695 	trace_ext4_truncate_enter(inode);
3696 
3697 	if (!ext4_can_truncate(inode))
3698 		return;
3699 
3700 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3701 
3702 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3703 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3704 
3705 	if (ext4_has_inline_data(inode)) {
3706 		int has_inline = 1;
3707 
3708 		ext4_inline_data_truncate(inode, &has_inline);
3709 		if (has_inline)
3710 			return;
3711 	}
3712 
3713 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3714 		ext4_ext_truncate(inode);
3715 	else
3716 		ext4_ind_truncate(inode);
3717 
3718 	trace_ext4_truncate_exit(inode);
3719 }
3720 
3721 /*
3722  * ext4_get_inode_loc returns with an extra refcount against the inode's
3723  * underlying buffer_head on success. If 'in_mem' is true, we have all
3724  * data in memory that is needed to recreate the on-disk version of this
3725  * inode.
3726  */
3727 static int __ext4_get_inode_loc(struct inode *inode,
3728 				struct ext4_iloc *iloc, int in_mem)
3729 {
3730 	struct ext4_group_desc	*gdp;
3731 	struct buffer_head	*bh;
3732 	struct super_block	*sb = inode->i_sb;
3733 	ext4_fsblk_t		block;
3734 	int			inodes_per_block, inode_offset;
3735 
3736 	iloc->bh = NULL;
3737 	if (!ext4_valid_inum(sb, inode->i_ino))
3738 		return -EIO;
3739 
3740 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3741 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3742 	if (!gdp)
3743 		return -EIO;
3744 
3745 	/*
3746 	 * Figure out the offset within the block group inode table
3747 	 */
3748 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3749 	inode_offset = ((inode->i_ino - 1) %
3750 			EXT4_INODES_PER_GROUP(sb));
3751 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3752 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3753 
3754 	bh = sb_getblk(sb, block);
3755 	if (unlikely(!bh))
3756 		return -ENOMEM;
3757 	if (!buffer_uptodate(bh)) {
3758 		lock_buffer(bh);
3759 
3760 		/*
3761 		 * If the buffer has the write error flag, we have failed
3762 		 * to write out another inode in the same block.  In this
3763 		 * case, we don't have to read the block because we may
3764 		 * read the old inode data successfully.
3765 		 */
3766 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3767 			set_buffer_uptodate(bh);
3768 
3769 		if (buffer_uptodate(bh)) {
3770 			/* someone brought it uptodate while we waited */
3771 			unlock_buffer(bh);
3772 			goto has_buffer;
3773 		}
3774 
3775 		/*
3776 		 * If we have all information of the inode in memory and this
3777 		 * is the only valid inode in the block, we need not read the
3778 		 * block.
3779 		 */
3780 		if (in_mem) {
3781 			struct buffer_head *bitmap_bh;
3782 			int i, start;
3783 
3784 			start = inode_offset & ~(inodes_per_block - 1);
3785 
3786 			/* Is the inode bitmap in cache? */
3787 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3788 			if (unlikely(!bitmap_bh))
3789 				goto make_io;
3790 
3791 			/*
3792 			 * If the inode bitmap isn't in cache then the
3793 			 * optimisation may end up performing two reads instead
3794 			 * of one, so skip it.
3795 			 */
3796 			if (!buffer_uptodate(bitmap_bh)) {
3797 				brelse(bitmap_bh);
3798 				goto make_io;
3799 			}
3800 			for (i = start; i < start + inodes_per_block; i++) {
3801 				if (i == inode_offset)
3802 					continue;
3803 				if (ext4_test_bit(i, bitmap_bh->b_data))
3804 					break;
3805 			}
3806 			brelse(bitmap_bh);
3807 			if (i == start + inodes_per_block) {
3808 				/* all other inodes are free, so skip I/O */
3809 				memset(bh->b_data, 0, bh->b_size);
3810 				set_buffer_uptodate(bh);
3811 				unlock_buffer(bh);
3812 				goto has_buffer;
3813 			}
3814 		}
3815 
3816 make_io:
3817 		/*
3818 		 * If we need to do any I/O, try to pre-readahead extra
3819 		 * blocks from the inode table.
3820 		 */
3821 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3822 			ext4_fsblk_t b, end, table;
3823 			unsigned num;
3824 
3825 			table = ext4_inode_table(sb, gdp);
3826 			/* s_inode_readahead_blks is always a power of 2 */
3827 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3828 			if (table > b)
3829 				b = table;
3830 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3831 			num = EXT4_INODES_PER_GROUP(sb);
3832 			if (ext4_has_group_desc_csum(sb))
3833 				num -= ext4_itable_unused_count(sb, gdp);
3834 			table += num / inodes_per_block;
3835 			if (end > table)
3836 				end = table;
3837 			while (b <= end)
3838 				sb_breadahead(sb, b++);
3839 		}
3840 
3841 		/*
3842 		 * There are other valid inodes in the buffer, this inode
3843 		 * has in-inode xattrs, or we don't have this inode in memory.
3844 		 * Read the block from disk.
3845 		 */
3846 		trace_ext4_load_inode(inode);
3847 		get_bh(bh);
3848 		bh->b_end_io = end_buffer_read_sync;
3849 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3850 		wait_on_buffer(bh);
3851 		if (!buffer_uptodate(bh)) {
3852 			EXT4_ERROR_INODE_BLOCK(inode, block,
3853 					       "unable to read itable block");
3854 			brelse(bh);
3855 			return -EIO;
3856 		}
3857 	}
3858 has_buffer:
3859 	iloc->bh = bh;
3860 	return 0;
3861 }
3862 
3863 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3864 {
3865 	/* We have all inode data except xattrs in memory here. */
3866 	return __ext4_get_inode_loc(inode, iloc,
3867 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3868 }
3869 
3870 void ext4_set_inode_flags(struct inode *inode)
3871 {
3872 	unsigned int flags = EXT4_I(inode)->i_flags;
3873 
3874 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3875 	if (flags & EXT4_SYNC_FL)
3876 		inode->i_flags |= S_SYNC;
3877 	if (flags & EXT4_APPEND_FL)
3878 		inode->i_flags |= S_APPEND;
3879 	if (flags & EXT4_IMMUTABLE_FL)
3880 		inode->i_flags |= S_IMMUTABLE;
3881 	if (flags & EXT4_NOATIME_FL)
3882 		inode->i_flags |= S_NOATIME;
3883 	if (flags & EXT4_DIRSYNC_FL)
3884 		inode->i_flags |= S_DIRSYNC;
3885 }
3886 
3887 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3888 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3889 {
3890 	unsigned int vfs_fl;
3891 	unsigned long old_fl, new_fl;
3892 
3893 	do {
3894 		vfs_fl = ei->vfs_inode.i_flags;
3895 		old_fl = ei->i_flags;
3896 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3897 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3898 				EXT4_DIRSYNC_FL);
3899 		if (vfs_fl & S_SYNC)
3900 			new_fl |= EXT4_SYNC_FL;
3901 		if (vfs_fl & S_APPEND)
3902 			new_fl |= EXT4_APPEND_FL;
3903 		if (vfs_fl & S_IMMUTABLE)
3904 			new_fl |= EXT4_IMMUTABLE_FL;
3905 		if (vfs_fl & S_NOATIME)
3906 			new_fl |= EXT4_NOATIME_FL;
3907 		if (vfs_fl & S_DIRSYNC)
3908 			new_fl |= EXT4_DIRSYNC_FL;
3909 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3910 }
3911 
3912 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3913 				  struct ext4_inode_info *ei)
3914 {
3915 	blkcnt_t i_blocks ;
3916 	struct inode *inode = &(ei->vfs_inode);
3917 	struct super_block *sb = inode->i_sb;
3918 
3919 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3920 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3921 		/* we are using combined 48 bit field */
3922 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3923 					le32_to_cpu(raw_inode->i_blocks_lo);
3924 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3925 			/* i_blocks represent file system block size */
3926 			return i_blocks  << (inode->i_blkbits - 9);
3927 		} else {
3928 			return i_blocks;
3929 		}
3930 	} else {
3931 		return le32_to_cpu(raw_inode->i_blocks_lo);
3932 	}
3933 }
3934 
3935 static inline void ext4_iget_extra_inode(struct inode *inode,
3936 					 struct ext4_inode *raw_inode,
3937 					 struct ext4_inode_info *ei)
3938 {
3939 	__le32 *magic = (void *)raw_inode +
3940 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3941 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3942 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3943 		ext4_find_inline_data_nolock(inode);
3944 	} else
3945 		EXT4_I(inode)->i_inline_off = 0;
3946 }
3947 
3948 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3949 {
3950 	struct ext4_iloc iloc;
3951 	struct ext4_inode *raw_inode;
3952 	struct ext4_inode_info *ei;
3953 	struct inode *inode;
3954 	journal_t *journal = EXT4_SB(sb)->s_journal;
3955 	long ret;
3956 	int block;
3957 	uid_t i_uid;
3958 	gid_t i_gid;
3959 
3960 	inode = iget_locked(sb, ino);
3961 	if (!inode)
3962 		return ERR_PTR(-ENOMEM);
3963 	if (!(inode->i_state & I_NEW))
3964 		return inode;
3965 
3966 	ei = EXT4_I(inode);
3967 	iloc.bh = NULL;
3968 
3969 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3970 	if (ret < 0)
3971 		goto bad_inode;
3972 	raw_inode = ext4_raw_inode(&iloc);
3973 
3974 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3975 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3976 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3977 		    EXT4_INODE_SIZE(inode->i_sb)) {
3978 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3979 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3980 				EXT4_INODE_SIZE(inode->i_sb));
3981 			ret = -EIO;
3982 			goto bad_inode;
3983 		}
3984 	} else
3985 		ei->i_extra_isize = 0;
3986 
3987 	/* Precompute checksum seed for inode metadata */
3988 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3989 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3990 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3991 		__u32 csum;
3992 		__le32 inum = cpu_to_le32(inode->i_ino);
3993 		__le32 gen = raw_inode->i_generation;
3994 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3995 				   sizeof(inum));
3996 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3997 					      sizeof(gen));
3998 	}
3999 
4000 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4001 		EXT4_ERROR_INODE(inode, "checksum invalid");
4002 		ret = -EIO;
4003 		goto bad_inode;
4004 	}
4005 
4006 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4007 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4008 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4009 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4010 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4011 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4012 	}
4013 	i_uid_write(inode, i_uid);
4014 	i_gid_write(inode, i_gid);
4015 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4016 
4017 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4018 	ei->i_inline_off = 0;
4019 	ei->i_dir_start_lookup = 0;
4020 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4021 	/* We now have enough fields to check if the inode was active or not.
4022 	 * This is needed because nfsd might try to access dead inodes
4023 	 * the test is that same one that e2fsck uses
4024 	 * NeilBrown 1999oct15
4025 	 */
4026 	if (inode->i_nlink == 0) {
4027 		if (inode->i_mode == 0 ||
4028 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4029 			/* this inode is deleted */
4030 			ret = -ESTALE;
4031 			goto bad_inode;
4032 		}
4033 		/* The only unlinked inodes we let through here have
4034 		 * valid i_mode and are being read by the orphan
4035 		 * recovery code: that's fine, we're about to complete
4036 		 * the process of deleting those. */
4037 	}
4038 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4039 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4040 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4041 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4042 		ei->i_file_acl |=
4043 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4044 	inode->i_size = ext4_isize(raw_inode);
4045 	ei->i_disksize = inode->i_size;
4046 #ifdef CONFIG_QUOTA
4047 	ei->i_reserved_quota = 0;
4048 #endif
4049 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4050 	ei->i_block_group = iloc.block_group;
4051 	ei->i_last_alloc_group = ~0;
4052 	/*
4053 	 * NOTE! The in-memory inode i_data array is in little-endian order
4054 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4055 	 */
4056 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4057 		ei->i_data[block] = raw_inode->i_block[block];
4058 	INIT_LIST_HEAD(&ei->i_orphan);
4059 
4060 	/*
4061 	 * Set transaction id's of transactions that have to be committed
4062 	 * to finish f[data]sync. We set them to currently running transaction
4063 	 * as we cannot be sure that the inode or some of its metadata isn't
4064 	 * part of the transaction - the inode could have been reclaimed and
4065 	 * now it is reread from disk.
4066 	 */
4067 	if (journal) {
4068 		transaction_t *transaction;
4069 		tid_t tid;
4070 
4071 		read_lock(&journal->j_state_lock);
4072 		if (journal->j_running_transaction)
4073 			transaction = journal->j_running_transaction;
4074 		else
4075 			transaction = journal->j_committing_transaction;
4076 		if (transaction)
4077 			tid = transaction->t_tid;
4078 		else
4079 			tid = journal->j_commit_sequence;
4080 		read_unlock(&journal->j_state_lock);
4081 		ei->i_sync_tid = tid;
4082 		ei->i_datasync_tid = tid;
4083 	}
4084 
4085 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4086 		if (ei->i_extra_isize == 0) {
4087 			/* The extra space is currently unused. Use it. */
4088 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4089 					    EXT4_GOOD_OLD_INODE_SIZE;
4090 		} else {
4091 			ext4_iget_extra_inode(inode, raw_inode, ei);
4092 		}
4093 	}
4094 
4095 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4096 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4097 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4098 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4099 
4100 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4101 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4102 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4103 			inode->i_version |=
4104 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4105 	}
4106 
4107 	ret = 0;
4108 	if (ei->i_file_acl &&
4109 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4110 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4111 				 ei->i_file_acl);
4112 		ret = -EIO;
4113 		goto bad_inode;
4114 	} else if (!ext4_has_inline_data(inode)) {
4115 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4116 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4117 			    (S_ISLNK(inode->i_mode) &&
4118 			     !ext4_inode_is_fast_symlink(inode))))
4119 				/* Validate extent which is part of inode */
4120 				ret = ext4_ext_check_inode(inode);
4121 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4122 			   (S_ISLNK(inode->i_mode) &&
4123 			    !ext4_inode_is_fast_symlink(inode))) {
4124 			/* Validate block references which are part of inode */
4125 			ret = ext4_ind_check_inode(inode);
4126 		}
4127 	}
4128 	if (ret)
4129 		goto bad_inode;
4130 
4131 	if (S_ISREG(inode->i_mode)) {
4132 		inode->i_op = &ext4_file_inode_operations;
4133 		inode->i_fop = &ext4_file_operations;
4134 		ext4_set_aops(inode);
4135 	} else if (S_ISDIR(inode->i_mode)) {
4136 		inode->i_op = &ext4_dir_inode_operations;
4137 		inode->i_fop = &ext4_dir_operations;
4138 	} else if (S_ISLNK(inode->i_mode)) {
4139 		if (ext4_inode_is_fast_symlink(inode)) {
4140 			inode->i_op = &ext4_fast_symlink_inode_operations;
4141 			nd_terminate_link(ei->i_data, inode->i_size,
4142 				sizeof(ei->i_data) - 1);
4143 		} else {
4144 			inode->i_op = &ext4_symlink_inode_operations;
4145 			ext4_set_aops(inode);
4146 		}
4147 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4148 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4149 		inode->i_op = &ext4_special_inode_operations;
4150 		if (raw_inode->i_block[0])
4151 			init_special_inode(inode, inode->i_mode,
4152 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4153 		else
4154 			init_special_inode(inode, inode->i_mode,
4155 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4156 	} else {
4157 		ret = -EIO;
4158 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4159 		goto bad_inode;
4160 	}
4161 	brelse(iloc.bh);
4162 	ext4_set_inode_flags(inode);
4163 	unlock_new_inode(inode);
4164 	return inode;
4165 
4166 bad_inode:
4167 	brelse(iloc.bh);
4168 	iget_failed(inode);
4169 	return ERR_PTR(ret);
4170 }
4171 
4172 static int ext4_inode_blocks_set(handle_t *handle,
4173 				struct ext4_inode *raw_inode,
4174 				struct ext4_inode_info *ei)
4175 {
4176 	struct inode *inode = &(ei->vfs_inode);
4177 	u64 i_blocks = inode->i_blocks;
4178 	struct super_block *sb = inode->i_sb;
4179 
4180 	if (i_blocks <= ~0U) {
4181 		/*
4182 		 * i_blocks can be represented in a 32 bit variable
4183 		 * as multiple of 512 bytes
4184 		 */
4185 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4186 		raw_inode->i_blocks_high = 0;
4187 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4188 		return 0;
4189 	}
4190 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4191 		return -EFBIG;
4192 
4193 	if (i_blocks <= 0xffffffffffffULL) {
4194 		/*
4195 		 * i_blocks can be represented in a 48 bit variable
4196 		 * as multiple of 512 bytes
4197 		 */
4198 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4199 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4200 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4201 	} else {
4202 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4203 		/* i_block is stored in file system block size */
4204 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4205 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4206 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4207 	}
4208 	return 0;
4209 }
4210 
4211 /*
4212  * Post the struct inode info into an on-disk inode location in the
4213  * buffer-cache.  This gobbles the caller's reference to the
4214  * buffer_head in the inode location struct.
4215  *
4216  * The caller must have write access to iloc->bh.
4217  */
4218 static int ext4_do_update_inode(handle_t *handle,
4219 				struct inode *inode,
4220 				struct ext4_iloc *iloc)
4221 {
4222 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4223 	struct ext4_inode_info *ei = EXT4_I(inode);
4224 	struct buffer_head *bh = iloc->bh;
4225 	int err = 0, rc, block;
4226 	int need_datasync = 0;
4227 	uid_t i_uid;
4228 	gid_t i_gid;
4229 
4230 	/* For fields not not tracking in the in-memory inode,
4231 	 * initialise them to zero for new inodes. */
4232 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4233 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4234 
4235 	ext4_get_inode_flags(ei);
4236 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4237 	i_uid = i_uid_read(inode);
4238 	i_gid = i_gid_read(inode);
4239 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4240 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4241 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4242 /*
4243  * Fix up interoperability with old kernels. Otherwise, old inodes get
4244  * re-used with the upper 16 bits of the uid/gid intact
4245  */
4246 		if (!ei->i_dtime) {
4247 			raw_inode->i_uid_high =
4248 				cpu_to_le16(high_16_bits(i_uid));
4249 			raw_inode->i_gid_high =
4250 				cpu_to_le16(high_16_bits(i_gid));
4251 		} else {
4252 			raw_inode->i_uid_high = 0;
4253 			raw_inode->i_gid_high = 0;
4254 		}
4255 	} else {
4256 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4257 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4258 		raw_inode->i_uid_high = 0;
4259 		raw_inode->i_gid_high = 0;
4260 	}
4261 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4262 
4263 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4264 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4265 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4266 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4267 
4268 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4269 		goto out_brelse;
4270 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4271 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4272 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4273 	    cpu_to_le32(EXT4_OS_HURD))
4274 		raw_inode->i_file_acl_high =
4275 			cpu_to_le16(ei->i_file_acl >> 32);
4276 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4277 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4278 		ext4_isize_set(raw_inode, ei->i_disksize);
4279 		need_datasync = 1;
4280 	}
4281 	if (ei->i_disksize > 0x7fffffffULL) {
4282 		struct super_block *sb = inode->i_sb;
4283 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4284 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4285 				EXT4_SB(sb)->s_es->s_rev_level ==
4286 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4287 			/* If this is the first large file
4288 			 * created, add a flag to the superblock.
4289 			 */
4290 			err = ext4_journal_get_write_access(handle,
4291 					EXT4_SB(sb)->s_sbh);
4292 			if (err)
4293 				goto out_brelse;
4294 			ext4_update_dynamic_rev(sb);
4295 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4296 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4297 			ext4_handle_sync(handle);
4298 			err = ext4_handle_dirty_super(handle, sb);
4299 		}
4300 	}
4301 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4302 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4303 		if (old_valid_dev(inode->i_rdev)) {
4304 			raw_inode->i_block[0] =
4305 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4306 			raw_inode->i_block[1] = 0;
4307 		} else {
4308 			raw_inode->i_block[0] = 0;
4309 			raw_inode->i_block[1] =
4310 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4311 			raw_inode->i_block[2] = 0;
4312 		}
4313 	} else if (!ext4_has_inline_data(inode)) {
4314 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4315 			raw_inode->i_block[block] = ei->i_data[block];
4316 	}
4317 
4318 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4319 	if (ei->i_extra_isize) {
4320 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4321 			raw_inode->i_version_hi =
4322 			cpu_to_le32(inode->i_version >> 32);
4323 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4324 	}
4325 
4326 	ext4_inode_csum_set(inode, raw_inode, ei);
4327 
4328 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4329 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4330 	if (!err)
4331 		err = rc;
4332 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4333 
4334 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4335 out_brelse:
4336 	brelse(bh);
4337 	ext4_std_error(inode->i_sb, err);
4338 	return err;
4339 }
4340 
4341 /*
4342  * ext4_write_inode()
4343  *
4344  * We are called from a few places:
4345  *
4346  * - Within generic_file_write() for O_SYNC files.
4347  *   Here, there will be no transaction running. We wait for any running
4348  *   transaction to commit.
4349  *
4350  * - Within sys_sync(), kupdate and such.
4351  *   We wait on commit, if tol to.
4352  *
4353  * - Within prune_icache() (PF_MEMALLOC == true)
4354  *   Here we simply return.  We can't afford to block kswapd on the
4355  *   journal commit.
4356  *
4357  * In all cases it is actually safe for us to return without doing anything,
4358  * because the inode has been copied into a raw inode buffer in
4359  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4360  * knfsd.
4361  *
4362  * Note that we are absolutely dependent upon all inode dirtiers doing the
4363  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4364  * which we are interested.
4365  *
4366  * It would be a bug for them to not do this.  The code:
4367  *
4368  *	mark_inode_dirty(inode)
4369  *	stuff();
4370  *	inode->i_size = expr;
4371  *
4372  * is in error because a kswapd-driven write_inode() could occur while
4373  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4374  * will no longer be on the superblock's dirty inode list.
4375  */
4376 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4377 {
4378 	int err;
4379 
4380 	if (current->flags & PF_MEMALLOC)
4381 		return 0;
4382 
4383 	if (EXT4_SB(inode->i_sb)->s_journal) {
4384 		if (ext4_journal_current_handle()) {
4385 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4386 			dump_stack();
4387 			return -EIO;
4388 		}
4389 
4390 		if (wbc->sync_mode != WB_SYNC_ALL)
4391 			return 0;
4392 
4393 		err = ext4_force_commit(inode->i_sb);
4394 	} else {
4395 		struct ext4_iloc iloc;
4396 
4397 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4398 		if (err)
4399 			return err;
4400 		if (wbc->sync_mode == WB_SYNC_ALL)
4401 			sync_dirty_buffer(iloc.bh);
4402 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4403 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4404 					 "IO error syncing inode");
4405 			err = -EIO;
4406 		}
4407 		brelse(iloc.bh);
4408 	}
4409 	return err;
4410 }
4411 
4412 /*
4413  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4414  * buffers that are attached to a page stradding i_size and are undergoing
4415  * commit. In that case we have to wait for commit to finish and try again.
4416  */
4417 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4418 {
4419 	struct page *page;
4420 	unsigned offset;
4421 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4422 	tid_t commit_tid = 0;
4423 	int ret;
4424 
4425 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4426 	/*
4427 	 * All buffers in the last page remain valid? Then there's nothing to
4428 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4429 	 * blocksize case
4430 	 */
4431 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4432 		return;
4433 	while (1) {
4434 		page = find_lock_page(inode->i_mapping,
4435 				      inode->i_size >> PAGE_CACHE_SHIFT);
4436 		if (!page)
4437 			return;
4438 		ret = __ext4_journalled_invalidatepage(page, offset);
4439 		unlock_page(page);
4440 		page_cache_release(page);
4441 		if (ret != -EBUSY)
4442 			return;
4443 		commit_tid = 0;
4444 		read_lock(&journal->j_state_lock);
4445 		if (journal->j_committing_transaction)
4446 			commit_tid = journal->j_committing_transaction->t_tid;
4447 		read_unlock(&journal->j_state_lock);
4448 		if (commit_tid)
4449 			jbd2_log_wait_commit(journal, commit_tid);
4450 	}
4451 }
4452 
4453 /*
4454  * ext4_setattr()
4455  *
4456  * Called from notify_change.
4457  *
4458  * We want to trap VFS attempts to truncate the file as soon as
4459  * possible.  In particular, we want to make sure that when the VFS
4460  * shrinks i_size, we put the inode on the orphan list and modify
4461  * i_disksize immediately, so that during the subsequent flushing of
4462  * dirty pages and freeing of disk blocks, we can guarantee that any
4463  * commit will leave the blocks being flushed in an unused state on
4464  * disk.  (On recovery, the inode will get truncated and the blocks will
4465  * be freed, so we have a strong guarantee that no future commit will
4466  * leave these blocks visible to the user.)
4467  *
4468  * Another thing we have to assure is that if we are in ordered mode
4469  * and inode is still attached to the committing transaction, we must
4470  * we start writeout of all the dirty pages which are being truncated.
4471  * This way we are sure that all the data written in the previous
4472  * transaction are already on disk (truncate waits for pages under
4473  * writeback).
4474  *
4475  * Called with inode->i_mutex down.
4476  */
4477 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4478 {
4479 	struct inode *inode = dentry->d_inode;
4480 	int error, rc = 0;
4481 	int orphan = 0;
4482 	const unsigned int ia_valid = attr->ia_valid;
4483 
4484 	error = inode_change_ok(inode, attr);
4485 	if (error)
4486 		return error;
4487 
4488 	if (is_quota_modification(inode, attr))
4489 		dquot_initialize(inode);
4490 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4491 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4492 		handle_t *handle;
4493 
4494 		/* (user+group)*(old+new) structure, inode write (sb,
4495 		 * inode block, ? - but truncate inode update has it) */
4496 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4497 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4498 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4499 		if (IS_ERR(handle)) {
4500 			error = PTR_ERR(handle);
4501 			goto err_out;
4502 		}
4503 		error = dquot_transfer(inode, attr);
4504 		if (error) {
4505 			ext4_journal_stop(handle);
4506 			return error;
4507 		}
4508 		/* Update corresponding info in inode so that everything is in
4509 		 * one transaction */
4510 		if (attr->ia_valid & ATTR_UID)
4511 			inode->i_uid = attr->ia_uid;
4512 		if (attr->ia_valid & ATTR_GID)
4513 			inode->i_gid = attr->ia_gid;
4514 		error = ext4_mark_inode_dirty(handle, inode);
4515 		ext4_journal_stop(handle);
4516 	}
4517 
4518 	if (attr->ia_valid & ATTR_SIZE) {
4519 
4520 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4521 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4522 
4523 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4524 				return -EFBIG;
4525 		}
4526 	}
4527 
4528 	if (S_ISREG(inode->i_mode) &&
4529 	    attr->ia_valid & ATTR_SIZE &&
4530 	    (attr->ia_size < inode->i_size)) {
4531 		handle_t *handle;
4532 
4533 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4534 		if (IS_ERR(handle)) {
4535 			error = PTR_ERR(handle);
4536 			goto err_out;
4537 		}
4538 		if (ext4_handle_valid(handle)) {
4539 			error = ext4_orphan_add(handle, inode);
4540 			orphan = 1;
4541 		}
4542 		EXT4_I(inode)->i_disksize = attr->ia_size;
4543 		rc = ext4_mark_inode_dirty(handle, inode);
4544 		if (!error)
4545 			error = rc;
4546 		ext4_journal_stop(handle);
4547 
4548 		if (ext4_should_order_data(inode)) {
4549 			error = ext4_begin_ordered_truncate(inode,
4550 							    attr->ia_size);
4551 			if (error) {
4552 				/* Do as much error cleanup as possible */
4553 				handle = ext4_journal_start(inode,
4554 							    EXT4_HT_INODE, 3);
4555 				if (IS_ERR(handle)) {
4556 					ext4_orphan_del(NULL, inode);
4557 					goto err_out;
4558 				}
4559 				ext4_orphan_del(handle, inode);
4560 				orphan = 0;
4561 				ext4_journal_stop(handle);
4562 				goto err_out;
4563 			}
4564 		}
4565 	}
4566 
4567 	if (attr->ia_valid & ATTR_SIZE) {
4568 		if (attr->ia_size != inode->i_size) {
4569 			loff_t oldsize = inode->i_size;
4570 
4571 			i_size_write(inode, attr->ia_size);
4572 			/*
4573 			 * Blocks are going to be removed from the inode. Wait
4574 			 * for dio in flight.  Temporarily disable
4575 			 * dioread_nolock to prevent livelock.
4576 			 */
4577 			if (orphan) {
4578 				if (!ext4_should_journal_data(inode)) {
4579 					ext4_inode_block_unlocked_dio(inode);
4580 					inode_dio_wait(inode);
4581 					ext4_inode_resume_unlocked_dio(inode);
4582 				} else
4583 					ext4_wait_for_tail_page_commit(inode);
4584 			}
4585 			/*
4586 			 * Truncate pagecache after we've waited for commit
4587 			 * in data=journal mode to make pages freeable.
4588 			 */
4589 			truncate_pagecache(inode, oldsize, inode->i_size);
4590 		}
4591 		ext4_truncate(inode);
4592 	}
4593 
4594 	if (!rc) {
4595 		setattr_copy(inode, attr);
4596 		mark_inode_dirty(inode);
4597 	}
4598 
4599 	/*
4600 	 * If the call to ext4_truncate failed to get a transaction handle at
4601 	 * all, we need to clean up the in-core orphan list manually.
4602 	 */
4603 	if (orphan && inode->i_nlink)
4604 		ext4_orphan_del(NULL, inode);
4605 
4606 	if (!rc && (ia_valid & ATTR_MODE))
4607 		rc = ext4_acl_chmod(inode);
4608 
4609 err_out:
4610 	ext4_std_error(inode->i_sb, error);
4611 	if (!error)
4612 		error = rc;
4613 	return error;
4614 }
4615 
4616 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4617 		 struct kstat *stat)
4618 {
4619 	struct inode *inode;
4620 	unsigned long delalloc_blocks;
4621 
4622 	inode = dentry->d_inode;
4623 	generic_fillattr(inode, stat);
4624 
4625 	/*
4626 	 * We can't update i_blocks if the block allocation is delayed
4627 	 * otherwise in the case of system crash before the real block
4628 	 * allocation is done, we will have i_blocks inconsistent with
4629 	 * on-disk file blocks.
4630 	 * We always keep i_blocks updated together with real
4631 	 * allocation. But to not confuse with user, stat
4632 	 * will return the blocks that include the delayed allocation
4633 	 * blocks for this file.
4634 	 */
4635 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4636 				EXT4_I(inode)->i_reserved_data_blocks);
4637 
4638 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4639 	return 0;
4640 }
4641 
4642 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4643 {
4644 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4645 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4646 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4647 }
4648 
4649 /*
4650  * Account for index blocks, block groups bitmaps and block group
4651  * descriptor blocks if modify datablocks and index blocks
4652  * worse case, the indexs blocks spread over different block groups
4653  *
4654  * If datablocks are discontiguous, they are possible to spread over
4655  * different block groups too. If they are contiguous, with flexbg,
4656  * they could still across block group boundary.
4657  *
4658  * Also account for superblock, inode, quota and xattr blocks
4659  */
4660 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4661 {
4662 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4663 	int gdpblocks;
4664 	int idxblocks;
4665 	int ret = 0;
4666 
4667 	/*
4668 	 * How many index blocks need to touch to modify nrblocks?
4669 	 * The "Chunk" flag indicating whether the nrblocks is
4670 	 * physically contiguous on disk
4671 	 *
4672 	 * For Direct IO and fallocate, they calls get_block to allocate
4673 	 * one single extent at a time, so they could set the "Chunk" flag
4674 	 */
4675 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4676 
4677 	ret = idxblocks;
4678 
4679 	/*
4680 	 * Now let's see how many group bitmaps and group descriptors need
4681 	 * to account
4682 	 */
4683 	groups = idxblocks;
4684 	if (chunk)
4685 		groups += 1;
4686 	else
4687 		groups += nrblocks;
4688 
4689 	gdpblocks = groups;
4690 	if (groups > ngroups)
4691 		groups = ngroups;
4692 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4693 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4694 
4695 	/* bitmaps and block group descriptor blocks */
4696 	ret += groups + gdpblocks;
4697 
4698 	/* Blocks for super block, inode, quota and xattr blocks */
4699 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4700 
4701 	return ret;
4702 }
4703 
4704 /*
4705  * Calculate the total number of credits to reserve to fit
4706  * the modification of a single pages into a single transaction,
4707  * which may include multiple chunks of block allocations.
4708  *
4709  * This could be called via ext4_write_begin()
4710  *
4711  * We need to consider the worse case, when
4712  * one new block per extent.
4713  */
4714 int ext4_writepage_trans_blocks(struct inode *inode)
4715 {
4716 	int bpp = ext4_journal_blocks_per_page(inode);
4717 	int ret;
4718 
4719 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4720 
4721 	/* Account for data blocks for journalled mode */
4722 	if (ext4_should_journal_data(inode))
4723 		ret += bpp;
4724 	return ret;
4725 }
4726 
4727 /*
4728  * Calculate the journal credits for a chunk of data modification.
4729  *
4730  * This is called from DIO, fallocate or whoever calling
4731  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4732  *
4733  * journal buffers for data blocks are not included here, as DIO
4734  * and fallocate do no need to journal data buffers.
4735  */
4736 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4737 {
4738 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4739 }
4740 
4741 /*
4742  * The caller must have previously called ext4_reserve_inode_write().
4743  * Give this, we know that the caller already has write access to iloc->bh.
4744  */
4745 int ext4_mark_iloc_dirty(handle_t *handle,
4746 			 struct inode *inode, struct ext4_iloc *iloc)
4747 {
4748 	int err = 0;
4749 
4750 	if (IS_I_VERSION(inode))
4751 		inode_inc_iversion(inode);
4752 
4753 	/* the do_update_inode consumes one bh->b_count */
4754 	get_bh(iloc->bh);
4755 
4756 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4757 	err = ext4_do_update_inode(handle, inode, iloc);
4758 	put_bh(iloc->bh);
4759 	return err;
4760 }
4761 
4762 /*
4763  * On success, We end up with an outstanding reference count against
4764  * iloc->bh.  This _must_ be cleaned up later.
4765  */
4766 
4767 int
4768 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4769 			 struct ext4_iloc *iloc)
4770 {
4771 	int err;
4772 
4773 	err = ext4_get_inode_loc(inode, iloc);
4774 	if (!err) {
4775 		BUFFER_TRACE(iloc->bh, "get_write_access");
4776 		err = ext4_journal_get_write_access(handle, iloc->bh);
4777 		if (err) {
4778 			brelse(iloc->bh);
4779 			iloc->bh = NULL;
4780 		}
4781 	}
4782 	ext4_std_error(inode->i_sb, err);
4783 	return err;
4784 }
4785 
4786 /*
4787  * Expand an inode by new_extra_isize bytes.
4788  * Returns 0 on success or negative error number on failure.
4789  */
4790 static int ext4_expand_extra_isize(struct inode *inode,
4791 				   unsigned int new_extra_isize,
4792 				   struct ext4_iloc iloc,
4793 				   handle_t *handle)
4794 {
4795 	struct ext4_inode *raw_inode;
4796 	struct ext4_xattr_ibody_header *header;
4797 
4798 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4799 		return 0;
4800 
4801 	raw_inode = ext4_raw_inode(&iloc);
4802 
4803 	header = IHDR(inode, raw_inode);
4804 
4805 	/* No extended attributes present */
4806 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4807 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4808 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4809 			new_extra_isize);
4810 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4811 		return 0;
4812 	}
4813 
4814 	/* try to expand with EAs present */
4815 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4816 					  raw_inode, handle);
4817 }
4818 
4819 /*
4820  * What we do here is to mark the in-core inode as clean with respect to inode
4821  * dirtiness (it may still be data-dirty).
4822  * This means that the in-core inode may be reaped by prune_icache
4823  * without having to perform any I/O.  This is a very good thing,
4824  * because *any* task may call prune_icache - even ones which
4825  * have a transaction open against a different journal.
4826  *
4827  * Is this cheating?  Not really.  Sure, we haven't written the
4828  * inode out, but prune_icache isn't a user-visible syncing function.
4829  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4830  * we start and wait on commits.
4831  */
4832 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4833 {
4834 	struct ext4_iloc iloc;
4835 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4836 	static unsigned int mnt_count;
4837 	int err, ret;
4838 
4839 	might_sleep();
4840 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4841 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4842 	if (ext4_handle_valid(handle) &&
4843 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4844 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4845 		/*
4846 		 * We need extra buffer credits since we may write into EA block
4847 		 * with this same handle. If journal_extend fails, then it will
4848 		 * only result in a minor loss of functionality for that inode.
4849 		 * If this is felt to be critical, then e2fsck should be run to
4850 		 * force a large enough s_min_extra_isize.
4851 		 */
4852 		if ((jbd2_journal_extend(handle,
4853 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4854 			ret = ext4_expand_extra_isize(inode,
4855 						      sbi->s_want_extra_isize,
4856 						      iloc, handle);
4857 			if (ret) {
4858 				ext4_set_inode_state(inode,
4859 						     EXT4_STATE_NO_EXPAND);
4860 				if (mnt_count !=
4861 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4862 					ext4_warning(inode->i_sb,
4863 					"Unable to expand inode %lu. Delete"
4864 					" some EAs or run e2fsck.",
4865 					inode->i_ino);
4866 					mnt_count =
4867 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4868 				}
4869 			}
4870 		}
4871 	}
4872 	if (!err)
4873 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4874 	return err;
4875 }
4876 
4877 /*
4878  * ext4_dirty_inode() is called from __mark_inode_dirty()
4879  *
4880  * We're really interested in the case where a file is being extended.
4881  * i_size has been changed by generic_commit_write() and we thus need
4882  * to include the updated inode in the current transaction.
4883  *
4884  * Also, dquot_alloc_block() will always dirty the inode when blocks
4885  * are allocated to the file.
4886  *
4887  * If the inode is marked synchronous, we don't honour that here - doing
4888  * so would cause a commit on atime updates, which we don't bother doing.
4889  * We handle synchronous inodes at the highest possible level.
4890  */
4891 void ext4_dirty_inode(struct inode *inode, int flags)
4892 {
4893 	handle_t *handle;
4894 
4895 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4896 	if (IS_ERR(handle))
4897 		goto out;
4898 
4899 	ext4_mark_inode_dirty(handle, inode);
4900 
4901 	ext4_journal_stop(handle);
4902 out:
4903 	return;
4904 }
4905 
4906 #if 0
4907 /*
4908  * Bind an inode's backing buffer_head into this transaction, to prevent
4909  * it from being flushed to disk early.  Unlike
4910  * ext4_reserve_inode_write, this leaves behind no bh reference and
4911  * returns no iloc structure, so the caller needs to repeat the iloc
4912  * lookup to mark the inode dirty later.
4913  */
4914 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4915 {
4916 	struct ext4_iloc iloc;
4917 
4918 	int err = 0;
4919 	if (handle) {
4920 		err = ext4_get_inode_loc(inode, &iloc);
4921 		if (!err) {
4922 			BUFFER_TRACE(iloc.bh, "get_write_access");
4923 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4924 			if (!err)
4925 				err = ext4_handle_dirty_metadata(handle,
4926 								 NULL,
4927 								 iloc.bh);
4928 			brelse(iloc.bh);
4929 		}
4930 	}
4931 	ext4_std_error(inode->i_sb, err);
4932 	return err;
4933 }
4934 #endif
4935 
4936 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4937 {
4938 	journal_t *journal;
4939 	handle_t *handle;
4940 	int err;
4941 
4942 	/*
4943 	 * We have to be very careful here: changing a data block's
4944 	 * journaling status dynamically is dangerous.  If we write a
4945 	 * data block to the journal, change the status and then delete
4946 	 * that block, we risk forgetting to revoke the old log record
4947 	 * from the journal and so a subsequent replay can corrupt data.
4948 	 * So, first we make sure that the journal is empty and that
4949 	 * nobody is changing anything.
4950 	 */
4951 
4952 	journal = EXT4_JOURNAL(inode);
4953 	if (!journal)
4954 		return 0;
4955 	if (is_journal_aborted(journal))
4956 		return -EROFS;
4957 	/* We have to allocate physical blocks for delalloc blocks
4958 	 * before flushing journal. otherwise delalloc blocks can not
4959 	 * be allocated any more. even more truncate on delalloc blocks
4960 	 * could trigger BUG by flushing delalloc blocks in journal.
4961 	 * There is no delalloc block in non-journal data mode.
4962 	 */
4963 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4964 		err = ext4_alloc_da_blocks(inode);
4965 		if (err < 0)
4966 			return err;
4967 	}
4968 
4969 	/* Wait for all existing dio workers */
4970 	ext4_inode_block_unlocked_dio(inode);
4971 	inode_dio_wait(inode);
4972 
4973 	jbd2_journal_lock_updates(journal);
4974 
4975 	/*
4976 	 * OK, there are no updates running now, and all cached data is
4977 	 * synced to disk.  We are now in a completely consistent state
4978 	 * which doesn't have anything in the journal, and we know that
4979 	 * no filesystem updates are running, so it is safe to modify
4980 	 * the inode's in-core data-journaling state flag now.
4981 	 */
4982 
4983 	if (val)
4984 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4985 	else {
4986 		jbd2_journal_flush(journal);
4987 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4988 	}
4989 	ext4_set_aops(inode);
4990 
4991 	jbd2_journal_unlock_updates(journal);
4992 	ext4_inode_resume_unlocked_dio(inode);
4993 
4994 	/* Finally we can mark the inode as dirty. */
4995 
4996 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4997 	if (IS_ERR(handle))
4998 		return PTR_ERR(handle);
4999 
5000 	err = ext4_mark_inode_dirty(handle, inode);
5001 	ext4_handle_sync(handle);
5002 	ext4_journal_stop(handle);
5003 	ext4_std_error(inode->i_sb, err);
5004 
5005 	return err;
5006 }
5007 
5008 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5009 {
5010 	return !buffer_mapped(bh);
5011 }
5012 
5013 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5014 {
5015 	struct page *page = vmf->page;
5016 	loff_t size;
5017 	unsigned long len;
5018 	int ret;
5019 	struct file *file = vma->vm_file;
5020 	struct inode *inode = file_inode(file);
5021 	struct address_space *mapping = inode->i_mapping;
5022 	handle_t *handle;
5023 	get_block_t *get_block;
5024 	int retries = 0;
5025 
5026 	sb_start_pagefault(inode->i_sb);
5027 	file_update_time(vma->vm_file);
5028 	/* Delalloc case is easy... */
5029 	if (test_opt(inode->i_sb, DELALLOC) &&
5030 	    !ext4_should_journal_data(inode) &&
5031 	    !ext4_nonda_switch(inode->i_sb)) {
5032 		do {
5033 			ret = __block_page_mkwrite(vma, vmf,
5034 						   ext4_da_get_block_prep);
5035 		} while (ret == -ENOSPC &&
5036 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5037 		goto out_ret;
5038 	}
5039 
5040 	lock_page(page);
5041 	size = i_size_read(inode);
5042 	/* Page got truncated from under us? */
5043 	if (page->mapping != mapping || page_offset(page) > size) {
5044 		unlock_page(page);
5045 		ret = VM_FAULT_NOPAGE;
5046 		goto out;
5047 	}
5048 
5049 	if (page->index == size >> PAGE_CACHE_SHIFT)
5050 		len = size & ~PAGE_CACHE_MASK;
5051 	else
5052 		len = PAGE_CACHE_SIZE;
5053 	/*
5054 	 * Return if we have all the buffers mapped. This avoids the need to do
5055 	 * journal_start/journal_stop which can block and take a long time
5056 	 */
5057 	if (page_has_buffers(page)) {
5058 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5059 					    0, len, NULL,
5060 					    ext4_bh_unmapped)) {
5061 			/* Wait so that we don't change page under IO */
5062 			wait_for_stable_page(page);
5063 			ret = VM_FAULT_LOCKED;
5064 			goto out;
5065 		}
5066 	}
5067 	unlock_page(page);
5068 	/* OK, we need to fill the hole... */
5069 	if (ext4_should_dioread_nolock(inode))
5070 		get_block = ext4_get_block_write;
5071 	else
5072 		get_block = ext4_get_block;
5073 retry_alloc:
5074 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5075 				    ext4_writepage_trans_blocks(inode));
5076 	if (IS_ERR(handle)) {
5077 		ret = VM_FAULT_SIGBUS;
5078 		goto out;
5079 	}
5080 	ret = __block_page_mkwrite(vma, vmf, get_block);
5081 	if (!ret && ext4_should_journal_data(inode)) {
5082 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5083 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5084 			unlock_page(page);
5085 			ret = VM_FAULT_SIGBUS;
5086 			ext4_journal_stop(handle);
5087 			goto out;
5088 		}
5089 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5090 	}
5091 	ext4_journal_stop(handle);
5092 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5093 		goto retry_alloc;
5094 out_ret:
5095 	ret = block_page_mkwrite_return(ret);
5096 out:
5097 	sb_end_pagefault(inode->i_sb);
5098 	return ret;
5099 }
5100