xref: /openbmc/linux/fs/ext4/inode.c (revision dec214d00e0d78a08b947d7dccdfdb84407a9f4d)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 	int extra_credits = 3;
193 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
194 
195 	trace_ext4_evict_inode(inode);
196 
197 	if (inode->i_nlink) {
198 		/*
199 		 * When journalling data dirty buffers are tracked only in the
200 		 * journal. So although mm thinks everything is clean and
201 		 * ready for reaping the inode might still have some pages to
202 		 * write in the running transaction or waiting to be
203 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
204 		 * (via truncate_inode_pages()) to discard these buffers can
205 		 * cause data loss. Also even if we did not discard these
206 		 * buffers, we would have no way to find them after the inode
207 		 * is reaped and thus user could see stale data if he tries to
208 		 * read them before the transaction is checkpointed. So be
209 		 * careful and force everything to disk here... We use
210 		 * ei->i_datasync_tid to store the newest transaction
211 		 * containing inode's data.
212 		 *
213 		 * Note that directories do not have this problem because they
214 		 * don't use page cache.
215 		 */
216 		if (inode->i_ino != EXT4_JOURNAL_INO &&
217 		    ext4_should_journal_data(inode) &&
218 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
219 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
220 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
221 
222 			jbd2_complete_transaction(journal, commit_tid);
223 			filemap_write_and_wait(&inode->i_data);
224 		}
225 		truncate_inode_pages_final(&inode->i_data);
226 
227 		goto no_delete;
228 	}
229 
230 	if (is_bad_inode(inode))
231 		goto no_delete;
232 	dquot_initialize(inode);
233 
234 	if (ext4_should_order_data(inode))
235 		ext4_begin_ordered_truncate(inode, 0);
236 	truncate_inode_pages_final(&inode->i_data);
237 
238 	/*
239 	 * Protect us against freezing - iput() caller didn't have to have any
240 	 * protection against it
241 	 */
242 	sb_start_intwrite(inode->i_sb);
243 
244 	if (!IS_NOQUOTA(inode))
245 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246 
247 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
248 				 ext4_blocks_for_truncate(inode)+extra_credits);
249 	if (IS_ERR(handle)) {
250 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
251 		/*
252 		 * If we're going to skip the normal cleanup, we still need to
253 		 * make sure that the in-core orphan linked list is properly
254 		 * cleaned up.
255 		 */
256 		ext4_orphan_del(NULL, inode);
257 		sb_end_intwrite(inode->i_sb);
258 		goto no_delete;
259 	}
260 
261 	if (IS_SYNC(inode))
262 		ext4_handle_sync(handle);
263 	inode->i_size = 0;
264 	err = ext4_mark_inode_dirty(handle, inode);
265 	if (err) {
266 		ext4_warning(inode->i_sb,
267 			     "couldn't mark inode dirty (err %d)", err);
268 		goto stop_handle;
269 	}
270 	if (inode->i_blocks) {
271 		err = ext4_truncate(inode);
272 		if (err) {
273 			ext4_error(inode->i_sb,
274 				   "couldn't truncate inode %lu (err %d)",
275 				   inode->i_ino, err);
276 			goto stop_handle;
277 		}
278 	}
279 
280 	/* Remove xattr references. */
281 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
282 				      extra_credits);
283 	if (err) {
284 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
285 stop_handle:
286 		ext4_journal_stop(handle);
287 		ext4_orphan_del(NULL, inode);
288 		sb_end_intwrite(inode->i_sb);
289 		ext4_xattr_inode_array_free(ea_inode_array);
290 		goto no_delete;
291 	}
292 
293 	/*
294 	 * Kill off the orphan record which ext4_truncate created.
295 	 * AKPM: I think this can be inside the above `if'.
296 	 * Note that ext4_orphan_del() has to be able to cope with the
297 	 * deletion of a non-existent orphan - this is because we don't
298 	 * know if ext4_truncate() actually created an orphan record.
299 	 * (Well, we could do this if we need to, but heck - it works)
300 	 */
301 	ext4_orphan_del(handle, inode);
302 	EXT4_I(inode)->i_dtime	= get_seconds();
303 
304 	/*
305 	 * One subtle ordering requirement: if anything has gone wrong
306 	 * (transaction abort, IO errors, whatever), then we can still
307 	 * do these next steps (the fs will already have been marked as
308 	 * having errors), but we can't free the inode if the mark_dirty
309 	 * fails.
310 	 */
311 	if (ext4_mark_inode_dirty(handle, inode))
312 		/* If that failed, just do the required in-core inode clear. */
313 		ext4_clear_inode(inode);
314 	else
315 		ext4_free_inode(handle, inode);
316 	ext4_journal_stop(handle);
317 	sb_end_intwrite(inode->i_sb);
318 	ext4_xattr_inode_array_free(ea_inode_array);
319 	return;
320 no_delete:
321 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
322 }
323 
324 #ifdef CONFIG_QUOTA
325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327 	return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330 
331 /*
332  * Called with i_data_sem down, which is important since we can call
333  * ext4_discard_preallocations() from here.
334  */
335 void ext4_da_update_reserve_space(struct inode *inode,
336 					int used, int quota_claim)
337 {
338 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339 	struct ext4_inode_info *ei = EXT4_I(inode);
340 
341 	spin_lock(&ei->i_block_reservation_lock);
342 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343 	if (unlikely(used > ei->i_reserved_data_blocks)) {
344 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345 			 "with only %d reserved data blocks",
346 			 __func__, inode->i_ino, used,
347 			 ei->i_reserved_data_blocks);
348 		WARN_ON(1);
349 		used = ei->i_reserved_data_blocks;
350 	}
351 
352 	/* Update per-inode reservations */
353 	ei->i_reserved_data_blocks -= used;
354 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355 
356 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
357 
358 	/* Update quota subsystem for data blocks */
359 	if (quota_claim)
360 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
361 	else {
362 		/*
363 		 * We did fallocate with an offset that is already delayed
364 		 * allocated. So on delayed allocated writeback we should
365 		 * not re-claim the quota for fallocated blocks.
366 		 */
367 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368 	}
369 
370 	/*
371 	 * If we have done all the pending block allocations and if
372 	 * there aren't any writers on the inode, we can discard the
373 	 * inode's preallocations.
374 	 */
375 	if ((ei->i_reserved_data_blocks == 0) &&
376 	    (atomic_read(&inode->i_writecount) == 0))
377 		ext4_discard_preallocations(inode);
378 }
379 
380 static int __check_block_validity(struct inode *inode, const char *func,
381 				unsigned int line,
382 				struct ext4_map_blocks *map)
383 {
384 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
385 				   map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (ext4_encrypted_inode(inode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
433 					     EXT4_GET_BLOCKS_KEEP_SIZE);
434 	} else {
435 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
436 					     EXT4_GET_BLOCKS_KEEP_SIZE);
437 	}
438 	up_read((&EXT4_I(inode)->i_data_sem));
439 
440 	/*
441 	 * We don't check m_len because extent will be collpased in status
442 	 * tree.  So the m_len might not equal.
443 	 */
444 	if (es_map->m_lblk != map->m_lblk ||
445 	    es_map->m_flags != map->m_flags ||
446 	    es_map->m_pblk != map->m_pblk) {
447 		printk("ES cache assertion failed for inode: %lu "
448 		       "es_cached ex [%d/%d/%llu/%x] != "
449 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
450 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
451 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
452 		       map->m_len, map->m_pblk, map->m_flags,
453 		       retval, flags);
454 	}
455 }
456 #endif /* ES_AGGRESSIVE_TEST */
457 
458 /*
459  * The ext4_map_blocks() function tries to look up the requested blocks,
460  * and returns if the blocks are already mapped.
461  *
462  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
463  * and store the allocated blocks in the result buffer head and mark it
464  * mapped.
465  *
466  * If file type is extents based, it will call ext4_ext_map_blocks(),
467  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
468  * based files
469  *
470  * On success, it returns the number of blocks being mapped or allocated.  if
471  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
472  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
473  *
474  * It returns 0 if plain look up failed (blocks have not been allocated), in
475  * that case, @map is returned as unmapped but we still do fill map->m_len to
476  * indicate the length of a hole starting at map->m_lblk.
477  *
478  * It returns the error in case of allocation failure.
479  */
480 int ext4_map_blocks(handle_t *handle, struct inode *inode,
481 		    struct ext4_map_blocks *map, int flags)
482 {
483 	struct extent_status es;
484 	int retval;
485 	int ret = 0;
486 #ifdef ES_AGGRESSIVE_TEST
487 	struct ext4_map_blocks orig_map;
488 
489 	memcpy(&orig_map, map, sizeof(*map));
490 #endif
491 
492 	map->m_flags = 0;
493 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
494 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
495 		  (unsigned long) map->m_lblk);
496 
497 	/*
498 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
499 	 */
500 	if (unlikely(map->m_len > INT_MAX))
501 		map->m_len = INT_MAX;
502 
503 	/* We can handle the block number less than EXT_MAX_BLOCKS */
504 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
505 		return -EFSCORRUPTED;
506 
507 	/* Lookup extent status tree firstly */
508 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
509 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
510 			map->m_pblk = ext4_es_pblock(&es) +
511 					map->m_lblk - es.es_lblk;
512 			map->m_flags |= ext4_es_is_written(&es) ?
513 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
514 			retval = es.es_len - (map->m_lblk - es.es_lblk);
515 			if (retval > map->m_len)
516 				retval = map->m_len;
517 			map->m_len = retval;
518 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
519 			map->m_pblk = 0;
520 			retval = es.es_len - (map->m_lblk - es.es_lblk);
521 			if (retval > map->m_len)
522 				retval = map->m_len;
523 			map->m_len = retval;
524 			retval = 0;
525 		} else {
526 			BUG_ON(1);
527 		}
528 #ifdef ES_AGGRESSIVE_TEST
529 		ext4_map_blocks_es_recheck(handle, inode, map,
530 					   &orig_map, flags);
531 #endif
532 		goto found;
533 	}
534 
535 	/*
536 	 * Try to see if we can get the block without requesting a new
537 	 * file system block.
538 	 */
539 	down_read(&EXT4_I(inode)->i_data_sem);
540 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
542 					     EXT4_GET_BLOCKS_KEEP_SIZE);
543 	} else {
544 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
545 					     EXT4_GET_BLOCKS_KEEP_SIZE);
546 	}
547 	if (retval > 0) {
548 		unsigned int status;
549 
550 		if (unlikely(retval != map->m_len)) {
551 			ext4_warning(inode->i_sb,
552 				     "ES len assertion failed for inode "
553 				     "%lu: retval %d != map->m_len %d",
554 				     inode->i_ino, retval, map->m_len);
555 			WARN_ON(1);
556 		}
557 
558 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
559 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
560 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
561 		    !(status & EXTENT_STATUS_WRITTEN) &&
562 		    ext4_find_delalloc_range(inode, map->m_lblk,
563 					     map->m_lblk + map->m_len - 1))
564 			status |= EXTENT_STATUS_DELAYED;
565 		ret = ext4_es_insert_extent(inode, map->m_lblk,
566 					    map->m_len, map->m_pblk, status);
567 		if (ret < 0)
568 			retval = ret;
569 	}
570 	up_read((&EXT4_I(inode)->i_data_sem));
571 
572 found:
573 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
574 		ret = check_block_validity(inode, map);
575 		if (ret != 0)
576 			return ret;
577 	}
578 
579 	/* If it is only a block(s) look up */
580 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
581 		return retval;
582 
583 	/*
584 	 * Returns if the blocks have already allocated
585 	 *
586 	 * Note that if blocks have been preallocated
587 	 * ext4_ext_get_block() returns the create = 0
588 	 * with buffer head unmapped.
589 	 */
590 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
591 		/*
592 		 * If we need to convert extent to unwritten
593 		 * we continue and do the actual work in
594 		 * ext4_ext_map_blocks()
595 		 */
596 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
597 			return retval;
598 
599 	/*
600 	 * Here we clear m_flags because after allocating an new extent,
601 	 * it will be set again.
602 	 */
603 	map->m_flags &= ~EXT4_MAP_FLAGS;
604 
605 	/*
606 	 * New blocks allocate and/or writing to unwritten extent
607 	 * will possibly result in updating i_data, so we take
608 	 * the write lock of i_data_sem, and call get_block()
609 	 * with create == 1 flag.
610 	 */
611 	down_write(&EXT4_I(inode)->i_data_sem);
612 
613 	/*
614 	 * We need to check for EXT4 here because migrate
615 	 * could have changed the inode type in between
616 	 */
617 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
618 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
619 	} else {
620 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
621 
622 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
623 			/*
624 			 * We allocated new blocks which will result in
625 			 * i_data's format changing.  Force the migrate
626 			 * to fail by clearing migrate flags
627 			 */
628 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
629 		}
630 
631 		/*
632 		 * Update reserved blocks/metadata blocks after successful
633 		 * block allocation which had been deferred till now. We don't
634 		 * support fallocate for non extent files. So we can update
635 		 * reserve space here.
636 		 */
637 		if ((retval > 0) &&
638 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
639 			ext4_da_update_reserve_space(inode, retval, 1);
640 	}
641 
642 	if (retval > 0) {
643 		unsigned int status;
644 
645 		if (unlikely(retval != map->m_len)) {
646 			ext4_warning(inode->i_sb,
647 				     "ES len assertion failed for inode "
648 				     "%lu: retval %d != map->m_len %d",
649 				     inode->i_ino, retval, map->m_len);
650 			WARN_ON(1);
651 		}
652 
653 		/*
654 		 * We have to zeroout blocks before inserting them into extent
655 		 * status tree. Otherwise someone could look them up there and
656 		 * use them before they are really zeroed. We also have to
657 		 * unmap metadata before zeroing as otherwise writeback can
658 		 * overwrite zeros with stale data from block device.
659 		 */
660 		if (flags & EXT4_GET_BLOCKS_ZERO &&
661 		    map->m_flags & EXT4_MAP_MAPPED &&
662 		    map->m_flags & EXT4_MAP_NEW) {
663 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
664 					   map->m_len);
665 			ret = ext4_issue_zeroout(inode, map->m_lblk,
666 						 map->m_pblk, map->m_len);
667 			if (ret) {
668 				retval = ret;
669 				goto out_sem;
670 			}
671 		}
672 
673 		/*
674 		 * If the extent has been zeroed out, we don't need to update
675 		 * extent status tree.
676 		 */
677 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
678 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
679 			if (ext4_es_is_written(&es))
680 				goto out_sem;
681 		}
682 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
683 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
684 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
685 		    !(status & EXTENT_STATUS_WRITTEN) &&
686 		    ext4_find_delalloc_range(inode, map->m_lblk,
687 					     map->m_lblk + map->m_len - 1))
688 			status |= EXTENT_STATUS_DELAYED;
689 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
690 					    map->m_pblk, status);
691 		if (ret < 0) {
692 			retval = ret;
693 			goto out_sem;
694 		}
695 	}
696 
697 out_sem:
698 	up_write((&EXT4_I(inode)->i_data_sem));
699 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
700 		ret = check_block_validity(inode, map);
701 		if (ret != 0)
702 			return ret;
703 
704 		/*
705 		 * Inodes with freshly allocated blocks where contents will be
706 		 * visible after transaction commit must be on transaction's
707 		 * ordered data list.
708 		 */
709 		if (map->m_flags & EXT4_MAP_NEW &&
710 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
711 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
712 		    !ext4_is_quota_file(inode) &&
713 		    ext4_should_order_data(inode)) {
714 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
715 				ret = ext4_jbd2_inode_add_wait(handle, inode);
716 			else
717 				ret = ext4_jbd2_inode_add_write(handle, inode);
718 			if (ret)
719 				return ret;
720 		}
721 	}
722 	return retval;
723 }
724 
725 /*
726  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
727  * we have to be careful as someone else may be manipulating b_state as well.
728  */
729 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
730 {
731 	unsigned long old_state;
732 	unsigned long new_state;
733 
734 	flags &= EXT4_MAP_FLAGS;
735 
736 	/* Dummy buffer_head? Set non-atomically. */
737 	if (!bh->b_page) {
738 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
739 		return;
740 	}
741 	/*
742 	 * Someone else may be modifying b_state. Be careful! This is ugly but
743 	 * once we get rid of using bh as a container for mapping information
744 	 * to pass to / from get_block functions, this can go away.
745 	 */
746 	do {
747 		old_state = READ_ONCE(bh->b_state);
748 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
749 	} while (unlikely(
750 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
751 }
752 
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754 			   struct buffer_head *bh, int flags)
755 {
756 	struct ext4_map_blocks map;
757 	int ret = 0;
758 
759 	if (ext4_has_inline_data(inode))
760 		return -ERANGE;
761 
762 	map.m_lblk = iblock;
763 	map.m_len = bh->b_size >> inode->i_blkbits;
764 
765 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766 			      flags);
767 	if (ret > 0) {
768 		map_bh(bh, inode->i_sb, map.m_pblk);
769 		ext4_update_bh_state(bh, map.m_flags);
770 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771 		ret = 0;
772 	} else if (ret == 0) {
773 		/* hole case, need to fill in bh->b_size */
774 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775 	}
776 	return ret;
777 }
778 
779 int ext4_get_block(struct inode *inode, sector_t iblock,
780 		   struct buffer_head *bh, int create)
781 {
782 	return _ext4_get_block(inode, iblock, bh,
783 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
784 }
785 
786 /*
787  * Get block function used when preparing for buffered write if we require
788  * creating an unwritten extent if blocks haven't been allocated.  The extent
789  * will be converted to written after the IO is complete.
790  */
791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792 			     struct buffer_head *bh_result, int create)
793 {
794 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795 		   inode->i_ino, create);
796 	return _ext4_get_block(inode, iblock, bh_result,
797 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
798 }
799 
800 /* Maximum number of blocks we map for direct IO at once. */
801 #define DIO_MAX_BLOCKS 4096
802 
803 /*
804  * Get blocks function for the cases that need to start a transaction -
805  * generally difference cases of direct IO and DAX IO. It also handles retries
806  * in case of ENOSPC.
807  */
808 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
809 				struct buffer_head *bh_result, int flags)
810 {
811 	int dio_credits;
812 	handle_t *handle;
813 	int retries = 0;
814 	int ret;
815 
816 	/* Trim mapping request to maximum we can map at once for DIO */
817 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
818 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
819 	dio_credits = ext4_chunk_trans_blocks(inode,
820 				      bh_result->b_size >> inode->i_blkbits);
821 retry:
822 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
823 	if (IS_ERR(handle))
824 		return PTR_ERR(handle);
825 
826 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
827 	ext4_journal_stop(handle);
828 
829 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
830 		goto retry;
831 	return ret;
832 }
833 
834 /* Get block function for DIO reads and writes to inodes without extents */
835 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
836 		       struct buffer_head *bh, int create)
837 {
838 	/* We don't expect handle for direct IO */
839 	WARN_ON_ONCE(ext4_journal_current_handle());
840 
841 	if (!create)
842 		return _ext4_get_block(inode, iblock, bh, 0);
843 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
844 }
845 
846 /*
847  * Get block function for AIO DIO writes when we create unwritten extent if
848  * blocks are not allocated yet. The extent will be converted to written
849  * after IO is complete.
850  */
851 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
852 		sector_t iblock, struct buffer_head *bh_result,	int create)
853 {
854 	int ret;
855 
856 	/* We don't expect handle for direct IO */
857 	WARN_ON_ONCE(ext4_journal_current_handle());
858 
859 	ret = ext4_get_block_trans(inode, iblock, bh_result,
860 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
861 
862 	/*
863 	 * When doing DIO using unwritten extents, we need io_end to convert
864 	 * unwritten extents to written on IO completion. We allocate io_end
865 	 * once we spot unwritten extent and store it in b_private. Generic
866 	 * DIO code keeps b_private set and furthermore passes the value to
867 	 * our completion callback in 'private' argument.
868 	 */
869 	if (!ret && buffer_unwritten(bh_result)) {
870 		if (!bh_result->b_private) {
871 			ext4_io_end_t *io_end;
872 
873 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
874 			if (!io_end)
875 				return -ENOMEM;
876 			bh_result->b_private = io_end;
877 			ext4_set_io_unwritten_flag(inode, io_end);
878 		}
879 		set_buffer_defer_completion(bh_result);
880 	}
881 
882 	return ret;
883 }
884 
885 /*
886  * Get block function for non-AIO DIO writes when we create unwritten extent if
887  * blocks are not allocated yet. The extent will be converted to written
888  * after IO is complete from ext4_ext_direct_IO() function.
889  */
890 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
891 		sector_t iblock, struct buffer_head *bh_result,	int create)
892 {
893 	int ret;
894 
895 	/* We don't expect handle for direct IO */
896 	WARN_ON_ONCE(ext4_journal_current_handle());
897 
898 	ret = ext4_get_block_trans(inode, iblock, bh_result,
899 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
900 
901 	/*
902 	 * Mark inode as having pending DIO writes to unwritten extents.
903 	 * ext4_ext_direct_IO() checks this flag and converts extents to
904 	 * written.
905 	 */
906 	if (!ret && buffer_unwritten(bh_result))
907 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
908 
909 	return ret;
910 }
911 
912 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
913 		   struct buffer_head *bh_result, int create)
914 {
915 	int ret;
916 
917 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
918 		   inode->i_ino, create);
919 	/* We don't expect handle for direct IO */
920 	WARN_ON_ONCE(ext4_journal_current_handle());
921 
922 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
923 	/*
924 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
925 	 * that.
926 	 */
927 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
928 
929 	return ret;
930 }
931 
932 
933 /*
934  * `handle' can be NULL if create is zero
935  */
936 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
937 				ext4_lblk_t block, int map_flags)
938 {
939 	struct ext4_map_blocks map;
940 	struct buffer_head *bh;
941 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
942 	int err;
943 
944 	J_ASSERT(handle != NULL || create == 0);
945 
946 	map.m_lblk = block;
947 	map.m_len = 1;
948 	err = ext4_map_blocks(handle, inode, &map, map_flags);
949 
950 	if (err == 0)
951 		return create ? ERR_PTR(-ENOSPC) : NULL;
952 	if (err < 0)
953 		return ERR_PTR(err);
954 
955 	bh = sb_getblk(inode->i_sb, map.m_pblk);
956 	if (unlikely(!bh))
957 		return ERR_PTR(-ENOMEM);
958 	if (map.m_flags & EXT4_MAP_NEW) {
959 		J_ASSERT(create != 0);
960 		J_ASSERT(handle != NULL);
961 
962 		/*
963 		 * Now that we do not always journal data, we should
964 		 * keep in mind whether this should always journal the
965 		 * new buffer as metadata.  For now, regular file
966 		 * writes use ext4_get_block instead, so it's not a
967 		 * problem.
968 		 */
969 		lock_buffer(bh);
970 		BUFFER_TRACE(bh, "call get_create_access");
971 		err = ext4_journal_get_create_access(handle, bh);
972 		if (unlikely(err)) {
973 			unlock_buffer(bh);
974 			goto errout;
975 		}
976 		if (!buffer_uptodate(bh)) {
977 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
978 			set_buffer_uptodate(bh);
979 		}
980 		unlock_buffer(bh);
981 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
982 		err = ext4_handle_dirty_metadata(handle, inode, bh);
983 		if (unlikely(err))
984 			goto errout;
985 	} else
986 		BUFFER_TRACE(bh, "not a new buffer");
987 	return bh;
988 errout:
989 	brelse(bh);
990 	return ERR_PTR(err);
991 }
992 
993 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
994 			       ext4_lblk_t block, int map_flags)
995 {
996 	struct buffer_head *bh;
997 
998 	bh = ext4_getblk(handle, inode, block, map_flags);
999 	if (IS_ERR(bh))
1000 		return bh;
1001 	if (!bh || buffer_uptodate(bh))
1002 		return bh;
1003 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1004 	wait_on_buffer(bh);
1005 	if (buffer_uptodate(bh))
1006 		return bh;
1007 	put_bh(bh);
1008 	return ERR_PTR(-EIO);
1009 }
1010 
1011 int ext4_walk_page_buffers(handle_t *handle,
1012 			   struct buffer_head *head,
1013 			   unsigned from,
1014 			   unsigned to,
1015 			   int *partial,
1016 			   int (*fn)(handle_t *handle,
1017 				     struct buffer_head *bh))
1018 {
1019 	struct buffer_head *bh;
1020 	unsigned block_start, block_end;
1021 	unsigned blocksize = head->b_size;
1022 	int err, ret = 0;
1023 	struct buffer_head *next;
1024 
1025 	for (bh = head, block_start = 0;
1026 	     ret == 0 && (bh != head || !block_start);
1027 	     block_start = block_end, bh = next) {
1028 		next = bh->b_this_page;
1029 		block_end = block_start + blocksize;
1030 		if (block_end <= from || block_start >= to) {
1031 			if (partial && !buffer_uptodate(bh))
1032 				*partial = 1;
1033 			continue;
1034 		}
1035 		err = (*fn)(handle, bh);
1036 		if (!ret)
1037 			ret = err;
1038 	}
1039 	return ret;
1040 }
1041 
1042 /*
1043  * To preserve ordering, it is essential that the hole instantiation and
1044  * the data write be encapsulated in a single transaction.  We cannot
1045  * close off a transaction and start a new one between the ext4_get_block()
1046  * and the commit_write().  So doing the jbd2_journal_start at the start of
1047  * prepare_write() is the right place.
1048  *
1049  * Also, this function can nest inside ext4_writepage().  In that case, we
1050  * *know* that ext4_writepage() has generated enough buffer credits to do the
1051  * whole page.  So we won't block on the journal in that case, which is good,
1052  * because the caller may be PF_MEMALLOC.
1053  *
1054  * By accident, ext4 can be reentered when a transaction is open via
1055  * quota file writes.  If we were to commit the transaction while thus
1056  * reentered, there can be a deadlock - we would be holding a quota
1057  * lock, and the commit would never complete if another thread had a
1058  * transaction open and was blocking on the quota lock - a ranking
1059  * violation.
1060  *
1061  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1062  * will _not_ run commit under these circumstances because handle->h_ref
1063  * is elevated.  We'll still have enough credits for the tiny quotafile
1064  * write.
1065  */
1066 int do_journal_get_write_access(handle_t *handle,
1067 				struct buffer_head *bh)
1068 {
1069 	int dirty = buffer_dirty(bh);
1070 	int ret;
1071 
1072 	if (!buffer_mapped(bh) || buffer_freed(bh))
1073 		return 0;
1074 	/*
1075 	 * __block_write_begin() could have dirtied some buffers. Clean
1076 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1077 	 * otherwise about fs integrity issues. Setting of the dirty bit
1078 	 * by __block_write_begin() isn't a real problem here as we clear
1079 	 * the bit before releasing a page lock and thus writeback cannot
1080 	 * ever write the buffer.
1081 	 */
1082 	if (dirty)
1083 		clear_buffer_dirty(bh);
1084 	BUFFER_TRACE(bh, "get write access");
1085 	ret = ext4_journal_get_write_access(handle, bh);
1086 	if (!ret && dirty)
1087 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1088 	return ret;
1089 }
1090 
1091 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1092 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1093 				  get_block_t *get_block)
1094 {
1095 	unsigned from = pos & (PAGE_SIZE - 1);
1096 	unsigned to = from + len;
1097 	struct inode *inode = page->mapping->host;
1098 	unsigned block_start, block_end;
1099 	sector_t block;
1100 	int err = 0;
1101 	unsigned blocksize = inode->i_sb->s_blocksize;
1102 	unsigned bbits;
1103 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1104 	bool decrypt = false;
1105 
1106 	BUG_ON(!PageLocked(page));
1107 	BUG_ON(from > PAGE_SIZE);
1108 	BUG_ON(to > PAGE_SIZE);
1109 	BUG_ON(from > to);
1110 
1111 	if (!page_has_buffers(page))
1112 		create_empty_buffers(page, blocksize, 0);
1113 	head = page_buffers(page);
1114 	bbits = ilog2(blocksize);
1115 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1116 
1117 	for (bh = head, block_start = 0; bh != head || !block_start;
1118 	    block++, block_start = block_end, bh = bh->b_this_page) {
1119 		block_end = block_start + blocksize;
1120 		if (block_end <= from || block_start >= to) {
1121 			if (PageUptodate(page)) {
1122 				if (!buffer_uptodate(bh))
1123 					set_buffer_uptodate(bh);
1124 			}
1125 			continue;
1126 		}
1127 		if (buffer_new(bh))
1128 			clear_buffer_new(bh);
1129 		if (!buffer_mapped(bh)) {
1130 			WARN_ON(bh->b_size != blocksize);
1131 			err = get_block(inode, block, bh, 1);
1132 			if (err)
1133 				break;
1134 			if (buffer_new(bh)) {
1135 				clean_bdev_bh_alias(bh);
1136 				if (PageUptodate(page)) {
1137 					clear_buffer_new(bh);
1138 					set_buffer_uptodate(bh);
1139 					mark_buffer_dirty(bh);
1140 					continue;
1141 				}
1142 				if (block_end > to || block_start < from)
1143 					zero_user_segments(page, to, block_end,
1144 							   block_start, from);
1145 				continue;
1146 			}
1147 		}
1148 		if (PageUptodate(page)) {
1149 			if (!buffer_uptodate(bh))
1150 				set_buffer_uptodate(bh);
1151 			continue;
1152 		}
1153 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1154 		    !buffer_unwritten(bh) &&
1155 		    (block_start < from || block_end > to)) {
1156 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1157 			*wait_bh++ = bh;
1158 			decrypt = ext4_encrypted_inode(inode) &&
1159 				S_ISREG(inode->i_mode);
1160 		}
1161 	}
1162 	/*
1163 	 * If we issued read requests, let them complete.
1164 	 */
1165 	while (wait_bh > wait) {
1166 		wait_on_buffer(*--wait_bh);
1167 		if (!buffer_uptodate(*wait_bh))
1168 			err = -EIO;
1169 	}
1170 	if (unlikely(err))
1171 		page_zero_new_buffers(page, from, to);
1172 	else if (decrypt)
1173 		err = fscrypt_decrypt_page(page->mapping->host, page,
1174 				PAGE_SIZE, 0, page->index);
1175 	return err;
1176 }
1177 #endif
1178 
1179 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1180 			    loff_t pos, unsigned len, unsigned flags,
1181 			    struct page **pagep, void **fsdata)
1182 {
1183 	struct inode *inode = mapping->host;
1184 	int ret, needed_blocks;
1185 	handle_t *handle;
1186 	int retries = 0;
1187 	struct page *page;
1188 	pgoff_t index;
1189 	unsigned from, to;
1190 
1191 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1192 		return -EIO;
1193 
1194 	trace_ext4_write_begin(inode, pos, len, flags);
1195 	/*
1196 	 * Reserve one block more for addition to orphan list in case
1197 	 * we allocate blocks but write fails for some reason
1198 	 */
1199 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1200 	index = pos >> PAGE_SHIFT;
1201 	from = pos & (PAGE_SIZE - 1);
1202 	to = from + len;
1203 
1204 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1205 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1206 						    flags, pagep);
1207 		if (ret < 0)
1208 			return ret;
1209 		if (ret == 1)
1210 			return 0;
1211 	}
1212 
1213 	/*
1214 	 * grab_cache_page_write_begin() can take a long time if the
1215 	 * system is thrashing due to memory pressure, or if the page
1216 	 * is being written back.  So grab it first before we start
1217 	 * the transaction handle.  This also allows us to allocate
1218 	 * the page (if needed) without using GFP_NOFS.
1219 	 */
1220 retry_grab:
1221 	page = grab_cache_page_write_begin(mapping, index, flags);
1222 	if (!page)
1223 		return -ENOMEM;
1224 	unlock_page(page);
1225 
1226 retry_journal:
1227 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1228 	if (IS_ERR(handle)) {
1229 		put_page(page);
1230 		return PTR_ERR(handle);
1231 	}
1232 
1233 	lock_page(page);
1234 	if (page->mapping != mapping) {
1235 		/* The page got truncated from under us */
1236 		unlock_page(page);
1237 		put_page(page);
1238 		ext4_journal_stop(handle);
1239 		goto retry_grab;
1240 	}
1241 	/* In case writeback began while the page was unlocked */
1242 	wait_for_stable_page(page);
1243 
1244 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1245 	if (ext4_should_dioread_nolock(inode))
1246 		ret = ext4_block_write_begin(page, pos, len,
1247 					     ext4_get_block_unwritten);
1248 	else
1249 		ret = ext4_block_write_begin(page, pos, len,
1250 					     ext4_get_block);
1251 #else
1252 	if (ext4_should_dioread_nolock(inode))
1253 		ret = __block_write_begin(page, pos, len,
1254 					  ext4_get_block_unwritten);
1255 	else
1256 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1257 #endif
1258 	if (!ret && ext4_should_journal_data(inode)) {
1259 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1260 					     from, to, NULL,
1261 					     do_journal_get_write_access);
1262 	}
1263 
1264 	if (ret) {
1265 		unlock_page(page);
1266 		/*
1267 		 * __block_write_begin may have instantiated a few blocks
1268 		 * outside i_size.  Trim these off again. Don't need
1269 		 * i_size_read because we hold i_mutex.
1270 		 *
1271 		 * Add inode to orphan list in case we crash before
1272 		 * truncate finishes
1273 		 */
1274 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1275 			ext4_orphan_add(handle, inode);
1276 
1277 		ext4_journal_stop(handle);
1278 		if (pos + len > inode->i_size) {
1279 			ext4_truncate_failed_write(inode);
1280 			/*
1281 			 * If truncate failed early the inode might
1282 			 * still be on the orphan list; we need to
1283 			 * make sure the inode is removed from the
1284 			 * orphan list in that case.
1285 			 */
1286 			if (inode->i_nlink)
1287 				ext4_orphan_del(NULL, inode);
1288 		}
1289 
1290 		if (ret == -ENOSPC &&
1291 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1292 			goto retry_journal;
1293 		put_page(page);
1294 		return ret;
1295 	}
1296 	*pagep = page;
1297 	return ret;
1298 }
1299 
1300 /* For write_end() in data=journal mode */
1301 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1302 {
1303 	int ret;
1304 	if (!buffer_mapped(bh) || buffer_freed(bh))
1305 		return 0;
1306 	set_buffer_uptodate(bh);
1307 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1308 	clear_buffer_meta(bh);
1309 	clear_buffer_prio(bh);
1310 	return ret;
1311 }
1312 
1313 /*
1314  * We need to pick up the new inode size which generic_commit_write gave us
1315  * `file' can be NULL - eg, when called from page_symlink().
1316  *
1317  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1318  * buffers are managed internally.
1319  */
1320 static int ext4_write_end(struct file *file,
1321 			  struct address_space *mapping,
1322 			  loff_t pos, unsigned len, unsigned copied,
1323 			  struct page *page, void *fsdata)
1324 {
1325 	handle_t *handle = ext4_journal_current_handle();
1326 	struct inode *inode = mapping->host;
1327 	loff_t old_size = inode->i_size;
1328 	int ret = 0, ret2;
1329 	int i_size_changed = 0;
1330 
1331 	trace_ext4_write_end(inode, pos, len, copied);
1332 	if (ext4_has_inline_data(inode)) {
1333 		ret = ext4_write_inline_data_end(inode, pos, len,
1334 						 copied, page);
1335 		if (ret < 0) {
1336 			unlock_page(page);
1337 			put_page(page);
1338 			goto errout;
1339 		}
1340 		copied = ret;
1341 	} else
1342 		copied = block_write_end(file, mapping, pos,
1343 					 len, copied, page, fsdata);
1344 	/*
1345 	 * it's important to update i_size while still holding page lock:
1346 	 * page writeout could otherwise come in and zero beyond i_size.
1347 	 */
1348 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1349 	unlock_page(page);
1350 	put_page(page);
1351 
1352 	if (old_size < pos)
1353 		pagecache_isize_extended(inode, old_size, pos);
1354 	/*
1355 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1356 	 * makes the holding time of page lock longer. Second, it forces lock
1357 	 * ordering of page lock and transaction start for journaling
1358 	 * filesystems.
1359 	 */
1360 	if (i_size_changed)
1361 		ext4_mark_inode_dirty(handle, inode);
1362 
1363 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1364 		/* if we have allocated more blocks and copied
1365 		 * less. We will have blocks allocated outside
1366 		 * inode->i_size. So truncate them
1367 		 */
1368 		ext4_orphan_add(handle, inode);
1369 errout:
1370 	ret2 = ext4_journal_stop(handle);
1371 	if (!ret)
1372 		ret = ret2;
1373 
1374 	if (pos + len > inode->i_size) {
1375 		ext4_truncate_failed_write(inode);
1376 		/*
1377 		 * If truncate failed early the inode might still be
1378 		 * on the orphan list; we need to make sure the inode
1379 		 * is removed from the orphan list in that case.
1380 		 */
1381 		if (inode->i_nlink)
1382 			ext4_orphan_del(NULL, inode);
1383 	}
1384 
1385 	return ret ? ret : copied;
1386 }
1387 
1388 /*
1389  * This is a private version of page_zero_new_buffers() which doesn't
1390  * set the buffer to be dirty, since in data=journalled mode we need
1391  * to call ext4_handle_dirty_metadata() instead.
1392  */
1393 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1394 					    struct page *page,
1395 					    unsigned from, unsigned to)
1396 {
1397 	unsigned int block_start = 0, block_end;
1398 	struct buffer_head *head, *bh;
1399 
1400 	bh = head = page_buffers(page);
1401 	do {
1402 		block_end = block_start + bh->b_size;
1403 		if (buffer_new(bh)) {
1404 			if (block_end > from && block_start < to) {
1405 				if (!PageUptodate(page)) {
1406 					unsigned start, size;
1407 
1408 					start = max(from, block_start);
1409 					size = min(to, block_end) - start;
1410 
1411 					zero_user(page, start, size);
1412 					write_end_fn(handle, bh);
1413 				}
1414 				clear_buffer_new(bh);
1415 			}
1416 		}
1417 		block_start = block_end;
1418 		bh = bh->b_this_page;
1419 	} while (bh != head);
1420 }
1421 
1422 static int ext4_journalled_write_end(struct file *file,
1423 				     struct address_space *mapping,
1424 				     loff_t pos, unsigned len, unsigned copied,
1425 				     struct page *page, void *fsdata)
1426 {
1427 	handle_t *handle = ext4_journal_current_handle();
1428 	struct inode *inode = mapping->host;
1429 	loff_t old_size = inode->i_size;
1430 	int ret = 0, ret2;
1431 	int partial = 0;
1432 	unsigned from, to;
1433 	int size_changed = 0;
1434 
1435 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1436 	from = pos & (PAGE_SIZE - 1);
1437 	to = from + len;
1438 
1439 	BUG_ON(!ext4_handle_valid(handle));
1440 
1441 	if (ext4_has_inline_data(inode)) {
1442 		ret = ext4_write_inline_data_end(inode, pos, len,
1443 						 copied, page);
1444 		if (ret < 0) {
1445 			unlock_page(page);
1446 			put_page(page);
1447 			goto errout;
1448 		}
1449 		copied = ret;
1450 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1451 		copied = 0;
1452 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1453 	} else {
1454 		if (unlikely(copied < len))
1455 			ext4_journalled_zero_new_buffers(handle, page,
1456 							 from + copied, to);
1457 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1458 					     from + copied, &partial,
1459 					     write_end_fn);
1460 		if (!partial)
1461 			SetPageUptodate(page);
1462 	}
1463 	size_changed = ext4_update_inode_size(inode, pos + copied);
1464 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1465 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1466 	unlock_page(page);
1467 	put_page(page);
1468 
1469 	if (old_size < pos)
1470 		pagecache_isize_extended(inode, old_size, pos);
1471 
1472 	if (size_changed) {
1473 		ret2 = ext4_mark_inode_dirty(handle, inode);
1474 		if (!ret)
1475 			ret = ret2;
1476 	}
1477 
1478 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1479 		/* if we have allocated more blocks and copied
1480 		 * less. We will have blocks allocated outside
1481 		 * inode->i_size. So truncate them
1482 		 */
1483 		ext4_orphan_add(handle, inode);
1484 
1485 errout:
1486 	ret2 = ext4_journal_stop(handle);
1487 	if (!ret)
1488 		ret = ret2;
1489 	if (pos + len > inode->i_size) {
1490 		ext4_truncate_failed_write(inode);
1491 		/*
1492 		 * If truncate failed early the inode might still be
1493 		 * on the orphan list; we need to make sure the inode
1494 		 * is removed from the orphan list in that case.
1495 		 */
1496 		if (inode->i_nlink)
1497 			ext4_orphan_del(NULL, inode);
1498 	}
1499 
1500 	return ret ? ret : copied;
1501 }
1502 
1503 /*
1504  * Reserve space for a single cluster
1505  */
1506 static int ext4_da_reserve_space(struct inode *inode)
1507 {
1508 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509 	struct ext4_inode_info *ei = EXT4_I(inode);
1510 	int ret;
1511 
1512 	/*
1513 	 * We will charge metadata quota at writeout time; this saves
1514 	 * us from metadata over-estimation, though we may go over by
1515 	 * a small amount in the end.  Here we just reserve for data.
1516 	 */
1517 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1518 	if (ret)
1519 		return ret;
1520 
1521 	spin_lock(&ei->i_block_reservation_lock);
1522 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1523 		spin_unlock(&ei->i_block_reservation_lock);
1524 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1525 		return -ENOSPC;
1526 	}
1527 	ei->i_reserved_data_blocks++;
1528 	trace_ext4_da_reserve_space(inode);
1529 	spin_unlock(&ei->i_block_reservation_lock);
1530 
1531 	return 0;       /* success */
1532 }
1533 
1534 static void ext4_da_release_space(struct inode *inode, int to_free)
1535 {
1536 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1537 	struct ext4_inode_info *ei = EXT4_I(inode);
1538 
1539 	if (!to_free)
1540 		return;		/* Nothing to release, exit */
1541 
1542 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1543 
1544 	trace_ext4_da_release_space(inode, to_free);
1545 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1546 		/*
1547 		 * if there aren't enough reserved blocks, then the
1548 		 * counter is messed up somewhere.  Since this
1549 		 * function is called from invalidate page, it's
1550 		 * harmless to return without any action.
1551 		 */
1552 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1553 			 "ino %lu, to_free %d with only %d reserved "
1554 			 "data blocks", inode->i_ino, to_free,
1555 			 ei->i_reserved_data_blocks);
1556 		WARN_ON(1);
1557 		to_free = ei->i_reserved_data_blocks;
1558 	}
1559 	ei->i_reserved_data_blocks -= to_free;
1560 
1561 	/* update fs dirty data blocks counter */
1562 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1563 
1564 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1565 
1566 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1567 }
1568 
1569 static void ext4_da_page_release_reservation(struct page *page,
1570 					     unsigned int offset,
1571 					     unsigned int length)
1572 {
1573 	int to_release = 0, contiguous_blks = 0;
1574 	struct buffer_head *head, *bh;
1575 	unsigned int curr_off = 0;
1576 	struct inode *inode = page->mapping->host;
1577 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578 	unsigned int stop = offset + length;
1579 	int num_clusters;
1580 	ext4_fsblk_t lblk;
1581 
1582 	BUG_ON(stop > PAGE_SIZE || stop < length);
1583 
1584 	head = page_buffers(page);
1585 	bh = head;
1586 	do {
1587 		unsigned int next_off = curr_off + bh->b_size;
1588 
1589 		if (next_off > stop)
1590 			break;
1591 
1592 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1593 			to_release++;
1594 			contiguous_blks++;
1595 			clear_buffer_delay(bh);
1596 		} else if (contiguous_blks) {
1597 			lblk = page->index <<
1598 			       (PAGE_SHIFT - inode->i_blkbits);
1599 			lblk += (curr_off >> inode->i_blkbits) -
1600 				contiguous_blks;
1601 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1602 			contiguous_blks = 0;
1603 		}
1604 		curr_off = next_off;
1605 	} while ((bh = bh->b_this_page) != head);
1606 
1607 	if (contiguous_blks) {
1608 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1609 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1610 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1611 	}
1612 
1613 	/* If we have released all the blocks belonging to a cluster, then we
1614 	 * need to release the reserved space for that cluster. */
1615 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1616 	while (num_clusters > 0) {
1617 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1618 			((num_clusters - 1) << sbi->s_cluster_bits);
1619 		if (sbi->s_cluster_ratio == 1 ||
1620 		    !ext4_find_delalloc_cluster(inode, lblk))
1621 			ext4_da_release_space(inode, 1);
1622 
1623 		num_clusters--;
1624 	}
1625 }
1626 
1627 /*
1628  * Delayed allocation stuff
1629  */
1630 
1631 struct mpage_da_data {
1632 	struct inode *inode;
1633 	struct writeback_control *wbc;
1634 
1635 	pgoff_t first_page;	/* The first page to write */
1636 	pgoff_t next_page;	/* Current page to examine */
1637 	pgoff_t last_page;	/* Last page to examine */
1638 	/*
1639 	 * Extent to map - this can be after first_page because that can be
1640 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1641 	 * is delalloc or unwritten.
1642 	 */
1643 	struct ext4_map_blocks map;
1644 	struct ext4_io_submit io_submit;	/* IO submission data */
1645 	unsigned int do_map:1;
1646 };
1647 
1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1649 				       bool invalidate)
1650 {
1651 	int nr_pages, i;
1652 	pgoff_t index, end;
1653 	struct pagevec pvec;
1654 	struct inode *inode = mpd->inode;
1655 	struct address_space *mapping = inode->i_mapping;
1656 
1657 	/* This is necessary when next_page == 0. */
1658 	if (mpd->first_page >= mpd->next_page)
1659 		return;
1660 
1661 	index = mpd->first_page;
1662 	end   = mpd->next_page - 1;
1663 	if (invalidate) {
1664 		ext4_lblk_t start, last;
1665 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1666 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1667 		ext4_es_remove_extent(inode, start, last - start + 1);
1668 	}
1669 
1670 	pagevec_init(&pvec, 0);
1671 	while (index <= end) {
1672 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673 		if (nr_pages == 0)
1674 			break;
1675 		for (i = 0; i < nr_pages; i++) {
1676 			struct page *page = pvec.pages[i];
1677 			if (page->index > end)
1678 				break;
1679 			BUG_ON(!PageLocked(page));
1680 			BUG_ON(PageWriteback(page));
1681 			if (invalidate) {
1682 				if (page_mapped(page))
1683 					clear_page_dirty_for_io(page);
1684 				block_invalidatepage(page, 0, PAGE_SIZE);
1685 				ClearPageUptodate(page);
1686 			}
1687 			unlock_page(page);
1688 		}
1689 		index = pvec.pages[nr_pages - 1]->index + 1;
1690 		pagevec_release(&pvec);
1691 	}
1692 }
1693 
1694 static void ext4_print_free_blocks(struct inode *inode)
1695 {
1696 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697 	struct super_block *sb = inode->i_sb;
1698 	struct ext4_inode_info *ei = EXT4_I(inode);
1699 
1700 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1701 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1702 			ext4_count_free_clusters(sb)));
1703 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1704 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1705 	       (long long) EXT4_C2B(EXT4_SB(sb),
1706 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1707 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1708 	       (long long) EXT4_C2B(EXT4_SB(sb),
1709 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1710 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1711 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1712 		 ei->i_reserved_data_blocks);
1713 	return;
1714 }
1715 
1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1717 {
1718 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1719 }
1720 
1721 /*
1722  * This function is grabs code from the very beginning of
1723  * ext4_map_blocks, but assumes that the caller is from delayed write
1724  * time. This function looks up the requested blocks and sets the
1725  * buffer delay bit under the protection of i_data_sem.
1726  */
1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728 			      struct ext4_map_blocks *map,
1729 			      struct buffer_head *bh)
1730 {
1731 	struct extent_status es;
1732 	int retval;
1733 	sector_t invalid_block = ~((sector_t) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735 	struct ext4_map_blocks orig_map;
1736 
1737 	memcpy(&orig_map, map, sizeof(*map));
1738 #endif
1739 
1740 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1741 		invalid_block = ~0;
1742 
1743 	map->m_flags = 0;
1744 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745 		  "logical block %lu\n", inode->i_ino, map->m_len,
1746 		  (unsigned long) map->m_lblk);
1747 
1748 	/* Lookup extent status tree firstly */
1749 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1750 		if (ext4_es_is_hole(&es)) {
1751 			retval = 0;
1752 			down_read(&EXT4_I(inode)->i_data_sem);
1753 			goto add_delayed;
1754 		}
1755 
1756 		/*
1757 		 * Delayed extent could be allocated by fallocate.
1758 		 * So we need to check it.
1759 		 */
1760 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 			map_bh(bh, inode->i_sb, invalid_block);
1762 			set_buffer_new(bh);
1763 			set_buffer_delay(bh);
1764 			return 0;
1765 		}
1766 
1767 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 		retval = es.es_len - (iblock - es.es_lblk);
1769 		if (retval > map->m_len)
1770 			retval = map->m_len;
1771 		map->m_len = retval;
1772 		if (ext4_es_is_written(&es))
1773 			map->m_flags |= EXT4_MAP_MAPPED;
1774 		else if (ext4_es_is_unwritten(&es))
1775 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 		else
1777 			BUG_ON(1);
1778 
1779 #ifdef ES_AGGRESSIVE_TEST
1780 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 		return retval;
1783 	}
1784 
1785 	/*
1786 	 * Try to see if we can get the block without requesting a new
1787 	 * file system block.
1788 	 */
1789 	down_read(&EXT4_I(inode)->i_data_sem);
1790 	if (ext4_has_inline_data(inode))
1791 		retval = 0;
1792 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 	else
1795 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796 
1797 add_delayed:
1798 	if (retval == 0) {
1799 		int ret;
1800 		/*
1801 		 * XXX: __block_prepare_write() unmaps passed block,
1802 		 * is it OK?
1803 		 */
1804 		/*
1805 		 * If the block was allocated from previously allocated cluster,
1806 		 * then we don't need to reserve it again. However we still need
1807 		 * to reserve metadata for every block we're going to write.
1808 		 */
1809 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1810 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1811 			ret = ext4_da_reserve_space(inode);
1812 			if (ret) {
1813 				/* not enough space to reserve */
1814 				retval = ret;
1815 				goto out_unlock;
1816 			}
1817 		}
1818 
1819 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820 					    ~0, EXTENT_STATUS_DELAYED);
1821 		if (ret) {
1822 			retval = ret;
1823 			goto out_unlock;
1824 		}
1825 
1826 		map_bh(bh, inode->i_sb, invalid_block);
1827 		set_buffer_new(bh);
1828 		set_buffer_delay(bh);
1829 	} else if (retval > 0) {
1830 		int ret;
1831 		unsigned int status;
1832 
1833 		if (unlikely(retval != map->m_len)) {
1834 			ext4_warning(inode->i_sb,
1835 				     "ES len assertion failed for inode "
1836 				     "%lu: retval %d != map->m_len %d",
1837 				     inode->i_ino, retval, map->m_len);
1838 			WARN_ON(1);
1839 		}
1840 
1841 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1842 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1843 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1844 					    map->m_pblk, status);
1845 		if (ret != 0)
1846 			retval = ret;
1847 	}
1848 
1849 out_unlock:
1850 	up_read((&EXT4_I(inode)->i_data_sem));
1851 
1852 	return retval;
1853 }
1854 
1855 /*
1856  * This is a special get_block_t callback which is used by
1857  * ext4_da_write_begin().  It will either return mapped block or
1858  * reserve space for a single block.
1859  *
1860  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861  * We also have b_blocknr = -1 and b_bdev initialized properly
1862  *
1863  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865  * initialized properly.
1866  */
1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1868 			   struct buffer_head *bh, int create)
1869 {
1870 	struct ext4_map_blocks map;
1871 	int ret = 0;
1872 
1873 	BUG_ON(create == 0);
1874 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1875 
1876 	map.m_lblk = iblock;
1877 	map.m_len = 1;
1878 
1879 	/*
1880 	 * first, we need to know whether the block is allocated already
1881 	 * preallocated blocks are unmapped but should treated
1882 	 * the same as allocated blocks.
1883 	 */
1884 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1885 	if (ret <= 0)
1886 		return ret;
1887 
1888 	map_bh(bh, inode->i_sb, map.m_pblk);
1889 	ext4_update_bh_state(bh, map.m_flags);
1890 
1891 	if (buffer_unwritten(bh)) {
1892 		/* A delayed write to unwritten bh should be marked
1893 		 * new and mapped.  Mapped ensures that we don't do
1894 		 * get_block multiple times when we write to the same
1895 		 * offset and new ensures that we do proper zero out
1896 		 * for partial write.
1897 		 */
1898 		set_buffer_new(bh);
1899 		set_buffer_mapped(bh);
1900 	}
1901 	return 0;
1902 }
1903 
1904 static int bget_one(handle_t *handle, struct buffer_head *bh)
1905 {
1906 	get_bh(bh);
1907 	return 0;
1908 }
1909 
1910 static int bput_one(handle_t *handle, struct buffer_head *bh)
1911 {
1912 	put_bh(bh);
1913 	return 0;
1914 }
1915 
1916 static int __ext4_journalled_writepage(struct page *page,
1917 				       unsigned int len)
1918 {
1919 	struct address_space *mapping = page->mapping;
1920 	struct inode *inode = mapping->host;
1921 	struct buffer_head *page_bufs = NULL;
1922 	handle_t *handle = NULL;
1923 	int ret = 0, err = 0;
1924 	int inline_data = ext4_has_inline_data(inode);
1925 	struct buffer_head *inode_bh = NULL;
1926 
1927 	ClearPageChecked(page);
1928 
1929 	if (inline_data) {
1930 		BUG_ON(page->index != 0);
1931 		BUG_ON(len > ext4_get_max_inline_size(inode));
1932 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1933 		if (inode_bh == NULL)
1934 			goto out;
1935 	} else {
1936 		page_bufs = page_buffers(page);
1937 		if (!page_bufs) {
1938 			BUG();
1939 			goto out;
1940 		}
1941 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1942 				       NULL, bget_one);
1943 	}
1944 	/*
1945 	 * We need to release the page lock before we start the
1946 	 * journal, so grab a reference so the page won't disappear
1947 	 * out from under us.
1948 	 */
1949 	get_page(page);
1950 	unlock_page(page);
1951 
1952 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1953 				    ext4_writepage_trans_blocks(inode));
1954 	if (IS_ERR(handle)) {
1955 		ret = PTR_ERR(handle);
1956 		put_page(page);
1957 		goto out_no_pagelock;
1958 	}
1959 	BUG_ON(!ext4_handle_valid(handle));
1960 
1961 	lock_page(page);
1962 	put_page(page);
1963 	if (page->mapping != mapping) {
1964 		/* The page got truncated from under us */
1965 		ext4_journal_stop(handle);
1966 		ret = 0;
1967 		goto out;
1968 	}
1969 
1970 	if (inline_data) {
1971 		BUFFER_TRACE(inode_bh, "get write access");
1972 		ret = ext4_journal_get_write_access(handle, inode_bh);
1973 
1974 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1975 
1976 	} else {
1977 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 					     do_journal_get_write_access);
1979 
1980 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1981 					     write_end_fn);
1982 	}
1983 	if (ret == 0)
1984 		ret = err;
1985 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1986 	err = ext4_journal_stop(handle);
1987 	if (!ret)
1988 		ret = err;
1989 
1990 	if (!ext4_has_inline_data(inode))
1991 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1992 				       NULL, bput_one);
1993 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1994 out:
1995 	unlock_page(page);
1996 out_no_pagelock:
1997 	brelse(inode_bh);
1998 	return ret;
1999 }
2000 
2001 /*
2002  * Note that we don't need to start a transaction unless we're journaling data
2003  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004  * need to file the inode to the transaction's list in ordered mode because if
2005  * we are writing back data added by write(), the inode is already there and if
2006  * we are writing back data modified via mmap(), no one guarantees in which
2007  * transaction the data will hit the disk. In case we are journaling data, we
2008  * cannot start transaction directly because transaction start ranks above page
2009  * lock so we have to do some magic.
2010  *
2011  * This function can get called via...
2012  *   - ext4_writepages after taking page lock (have journal handle)
2013  *   - journal_submit_inode_data_buffers (no journal handle)
2014  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2015  *   - grab_page_cache when doing write_begin (have journal handle)
2016  *
2017  * We don't do any block allocation in this function. If we have page with
2018  * multiple blocks we need to write those buffer_heads that are mapped. This
2019  * is important for mmaped based write. So if we do with blocksize 1K
2020  * truncate(f, 1024);
2021  * a = mmap(f, 0, 4096);
2022  * a[0] = 'a';
2023  * truncate(f, 4096);
2024  * we have in the page first buffer_head mapped via page_mkwrite call back
2025  * but other buffer_heads would be unmapped but dirty (dirty done via the
2026  * do_wp_page). So writepage should write the first block. If we modify
2027  * the mmap area beyond 1024 we will again get a page_fault and the
2028  * page_mkwrite callback will do the block allocation and mark the
2029  * buffer_heads mapped.
2030  *
2031  * We redirty the page if we have any buffer_heads that is either delay or
2032  * unwritten in the page.
2033  *
2034  * We can get recursively called as show below.
2035  *
2036  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2037  *		ext4_writepage()
2038  *
2039  * But since we don't do any block allocation we should not deadlock.
2040  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2041  */
2042 static int ext4_writepage(struct page *page,
2043 			  struct writeback_control *wbc)
2044 {
2045 	int ret = 0;
2046 	loff_t size;
2047 	unsigned int len;
2048 	struct buffer_head *page_bufs = NULL;
2049 	struct inode *inode = page->mapping->host;
2050 	struct ext4_io_submit io_submit;
2051 	bool keep_towrite = false;
2052 
2053 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2054 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2055 		unlock_page(page);
2056 		return -EIO;
2057 	}
2058 
2059 	trace_ext4_writepage(page);
2060 	size = i_size_read(inode);
2061 	if (page->index == size >> PAGE_SHIFT)
2062 		len = size & ~PAGE_MASK;
2063 	else
2064 		len = PAGE_SIZE;
2065 
2066 	page_bufs = page_buffers(page);
2067 	/*
2068 	 * We cannot do block allocation or other extent handling in this
2069 	 * function. If there are buffers needing that, we have to redirty
2070 	 * the page. But we may reach here when we do a journal commit via
2071 	 * journal_submit_inode_data_buffers() and in that case we must write
2072 	 * allocated buffers to achieve data=ordered mode guarantees.
2073 	 *
2074 	 * Also, if there is only one buffer per page (the fs block
2075 	 * size == the page size), if one buffer needs block
2076 	 * allocation or needs to modify the extent tree to clear the
2077 	 * unwritten flag, we know that the page can't be written at
2078 	 * all, so we might as well refuse the write immediately.
2079 	 * Unfortunately if the block size != page size, we can't as
2080 	 * easily detect this case using ext4_walk_page_buffers(), but
2081 	 * for the extremely common case, this is an optimization that
2082 	 * skips a useless round trip through ext4_bio_write_page().
2083 	 */
2084 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2085 				   ext4_bh_delay_or_unwritten)) {
2086 		redirty_page_for_writepage(wbc, page);
2087 		if ((current->flags & PF_MEMALLOC) ||
2088 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2089 			/*
2090 			 * For memory cleaning there's no point in writing only
2091 			 * some buffers. So just bail out. Warn if we came here
2092 			 * from direct reclaim.
2093 			 */
2094 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2095 							== PF_MEMALLOC);
2096 			unlock_page(page);
2097 			return 0;
2098 		}
2099 		keep_towrite = true;
2100 	}
2101 
2102 	if (PageChecked(page) && ext4_should_journal_data(inode))
2103 		/*
2104 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2105 		 * doesn't seem much point in redirtying the page here.
2106 		 */
2107 		return __ext4_journalled_writepage(page, len);
2108 
2109 	ext4_io_submit_init(&io_submit, wbc);
2110 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2111 	if (!io_submit.io_end) {
2112 		redirty_page_for_writepage(wbc, page);
2113 		unlock_page(page);
2114 		return -ENOMEM;
2115 	}
2116 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2117 	ext4_io_submit(&io_submit);
2118 	/* Drop io_end reference we got from init */
2119 	ext4_put_io_end_defer(io_submit.io_end);
2120 	return ret;
2121 }
2122 
2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2124 {
2125 	int len;
2126 	loff_t size;
2127 	int err;
2128 
2129 	BUG_ON(page->index != mpd->first_page);
2130 	clear_page_dirty_for_io(page);
2131 	/*
2132 	 * We have to be very careful here!  Nothing protects writeback path
2133 	 * against i_size changes and the page can be writeably mapped into
2134 	 * page tables. So an application can be growing i_size and writing
2135 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2136 	 * write-protects our page in page tables and the page cannot get
2137 	 * written to again until we release page lock. So only after
2138 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2139 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2140 	 * on the barrier provided by TestClearPageDirty in
2141 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2142 	 * after page tables are updated.
2143 	 */
2144 	size = i_size_read(mpd->inode);
2145 	if (page->index == size >> PAGE_SHIFT)
2146 		len = size & ~PAGE_MASK;
2147 	else
2148 		len = PAGE_SIZE;
2149 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2150 	if (!err)
2151 		mpd->wbc->nr_to_write--;
2152 	mpd->first_page++;
2153 
2154 	return err;
2155 }
2156 
2157 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2158 
2159 /*
2160  * mballoc gives us at most this number of blocks...
2161  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2162  * The rest of mballoc seems to handle chunks up to full group size.
2163  */
2164 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2165 
2166 /*
2167  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2168  *
2169  * @mpd - extent of blocks
2170  * @lblk - logical number of the block in the file
2171  * @bh - buffer head we want to add to the extent
2172  *
2173  * The function is used to collect contig. blocks in the same state. If the
2174  * buffer doesn't require mapping for writeback and we haven't started the
2175  * extent of buffers to map yet, the function returns 'true' immediately - the
2176  * caller can write the buffer right away. Otherwise the function returns true
2177  * if the block has been added to the extent, false if the block couldn't be
2178  * added.
2179  */
2180 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2181 				   struct buffer_head *bh)
2182 {
2183 	struct ext4_map_blocks *map = &mpd->map;
2184 
2185 	/* Buffer that doesn't need mapping for writeback? */
2186 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2187 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2188 		/* So far no extent to map => we write the buffer right away */
2189 		if (map->m_len == 0)
2190 			return true;
2191 		return false;
2192 	}
2193 
2194 	/* First block in the extent? */
2195 	if (map->m_len == 0) {
2196 		/* We cannot map unless handle is started... */
2197 		if (!mpd->do_map)
2198 			return false;
2199 		map->m_lblk = lblk;
2200 		map->m_len = 1;
2201 		map->m_flags = bh->b_state & BH_FLAGS;
2202 		return true;
2203 	}
2204 
2205 	/* Don't go larger than mballoc is willing to allocate */
2206 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2207 		return false;
2208 
2209 	/* Can we merge the block to our big extent? */
2210 	if (lblk == map->m_lblk + map->m_len &&
2211 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2212 		map->m_len++;
2213 		return true;
2214 	}
2215 	return false;
2216 }
2217 
2218 /*
2219  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2220  *
2221  * @mpd - extent of blocks for mapping
2222  * @head - the first buffer in the page
2223  * @bh - buffer we should start processing from
2224  * @lblk - logical number of the block in the file corresponding to @bh
2225  *
2226  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2227  * the page for IO if all buffers in this page were mapped and there's no
2228  * accumulated extent of buffers to map or add buffers in the page to the
2229  * extent of buffers to map. The function returns 1 if the caller can continue
2230  * by processing the next page, 0 if it should stop adding buffers to the
2231  * extent to map because we cannot extend it anymore. It can also return value
2232  * < 0 in case of error during IO submission.
2233  */
2234 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2235 				   struct buffer_head *head,
2236 				   struct buffer_head *bh,
2237 				   ext4_lblk_t lblk)
2238 {
2239 	struct inode *inode = mpd->inode;
2240 	int err;
2241 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2242 							>> inode->i_blkbits;
2243 
2244 	do {
2245 		BUG_ON(buffer_locked(bh));
2246 
2247 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2248 			/* Found extent to map? */
2249 			if (mpd->map.m_len)
2250 				return 0;
2251 			/* Buffer needs mapping and handle is not started? */
2252 			if (!mpd->do_map)
2253 				return 0;
2254 			/* Everything mapped so far and we hit EOF */
2255 			break;
2256 		}
2257 	} while (lblk++, (bh = bh->b_this_page) != head);
2258 	/* So far everything mapped? Submit the page for IO. */
2259 	if (mpd->map.m_len == 0) {
2260 		err = mpage_submit_page(mpd, head->b_page);
2261 		if (err < 0)
2262 			return err;
2263 	}
2264 	return lblk < blocks;
2265 }
2266 
2267 /*
2268  * mpage_map_buffers - update buffers corresponding to changed extent and
2269  *		       submit fully mapped pages for IO
2270  *
2271  * @mpd - description of extent to map, on return next extent to map
2272  *
2273  * Scan buffers corresponding to changed extent (we expect corresponding pages
2274  * to be already locked) and update buffer state according to new extent state.
2275  * We map delalloc buffers to their physical location, clear unwritten bits,
2276  * and mark buffers as uninit when we perform writes to unwritten extents
2277  * and do extent conversion after IO is finished. If the last page is not fully
2278  * mapped, we update @map to the next extent in the last page that needs
2279  * mapping. Otherwise we submit the page for IO.
2280  */
2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282 {
2283 	struct pagevec pvec;
2284 	int nr_pages, i;
2285 	struct inode *inode = mpd->inode;
2286 	struct buffer_head *head, *bh;
2287 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2288 	pgoff_t start, end;
2289 	ext4_lblk_t lblk;
2290 	sector_t pblock;
2291 	int err;
2292 
2293 	start = mpd->map.m_lblk >> bpp_bits;
2294 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295 	lblk = start << bpp_bits;
2296 	pblock = mpd->map.m_pblk;
2297 
2298 	pagevec_init(&pvec, 0);
2299 	while (start <= end) {
2300 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2301 					  PAGEVEC_SIZE);
2302 		if (nr_pages == 0)
2303 			break;
2304 		for (i = 0; i < nr_pages; i++) {
2305 			struct page *page = pvec.pages[i];
2306 
2307 			if (page->index > end)
2308 				break;
2309 			/* Up to 'end' pages must be contiguous */
2310 			BUG_ON(page->index != start);
2311 			bh = head = page_buffers(page);
2312 			do {
2313 				if (lblk < mpd->map.m_lblk)
2314 					continue;
2315 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2316 					/*
2317 					 * Buffer after end of mapped extent.
2318 					 * Find next buffer in the page to map.
2319 					 */
2320 					mpd->map.m_len = 0;
2321 					mpd->map.m_flags = 0;
2322 					/*
2323 					 * FIXME: If dioread_nolock supports
2324 					 * blocksize < pagesize, we need to make
2325 					 * sure we add size mapped so far to
2326 					 * io_end->size as the following call
2327 					 * can submit the page for IO.
2328 					 */
2329 					err = mpage_process_page_bufs(mpd, head,
2330 								      bh, lblk);
2331 					pagevec_release(&pvec);
2332 					if (err > 0)
2333 						err = 0;
2334 					return err;
2335 				}
2336 				if (buffer_delay(bh)) {
2337 					clear_buffer_delay(bh);
2338 					bh->b_blocknr = pblock++;
2339 				}
2340 				clear_buffer_unwritten(bh);
2341 			} while (lblk++, (bh = bh->b_this_page) != head);
2342 
2343 			/*
2344 			 * FIXME: This is going to break if dioread_nolock
2345 			 * supports blocksize < pagesize as we will try to
2346 			 * convert potentially unmapped parts of inode.
2347 			 */
2348 			mpd->io_submit.io_end->size += PAGE_SIZE;
2349 			/* Page fully mapped - let IO run! */
2350 			err = mpage_submit_page(mpd, page);
2351 			if (err < 0) {
2352 				pagevec_release(&pvec);
2353 				return err;
2354 			}
2355 			start++;
2356 		}
2357 		pagevec_release(&pvec);
2358 	}
2359 	/* Extent fully mapped and matches with page boundary. We are done. */
2360 	mpd->map.m_len = 0;
2361 	mpd->map.m_flags = 0;
2362 	return 0;
2363 }
2364 
2365 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366 {
2367 	struct inode *inode = mpd->inode;
2368 	struct ext4_map_blocks *map = &mpd->map;
2369 	int get_blocks_flags;
2370 	int err, dioread_nolock;
2371 
2372 	trace_ext4_da_write_pages_extent(inode, map);
2373 	/*
2374 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2375 	 * to convert an unwritten extent to be initialized (in the case
2376 	 * where we have written into one or more preallocated blocks).  It is
2377 	 * possible that we're going to need more metadata blocks than
2378 	 * previously reserved. However we must not fail because we're in
2379 	 * writeback and there is nothing we can do about it so it might result
2380 	 * in data loss.  So use reserved blocks to allocate metadata if
2381 	 * possible.
2382 	 *
2383 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2384 	 * the blocks in question are delalloc blocks.  This indicates
2385 	 * that the blocks and quotas has already been checked when
2386 	 * the data was copied into the page cache.
2387 	 */
2388 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2389 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2390 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2391 	dioread_nolock = ext4_should_dioread_nolock(inode);
2392 	if (dioread_nolock)
2393 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2394 	if (map->m_flags & (1 << BH_Delay))
2395 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396 
2397 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398 	if (err < 0)
2399 		return err;
2400 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2401 		if (!mpd->io_submit.io_end->handle &&
2402 		    ext4_handle_valid(handle)) {
2403 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2404 			handle->h_rsv_handle = NULL;
2405 		}
2406 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2407 	}
2408 
2409 	BUG_ON(map->m_len == 0);
2410 	if (map->m_flags & EXT4_MAP_NEW) {
2411 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2412 				   map->m_len);
2413 	}
2414 	return 0;
2415 }
2416 
2417 /*
2418  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419  *				 mpd->len and submit pages underlying it for IO
2420  *
2421  * @handle - handle for journal operations
2422  * @mpd - extent to map
2423  * @give_up_on_write - we set this to true iff there is a fatal error and there
2424  *                     is no hope of writing the data. The caller should discard
2425  *                     dirty pages to avoid infinite loops.
2426  *
2427  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429  * them to initialized or split the described range from larger unwritten
2430  * extent. Note that we need not map all the described range since allocation
2431  * can return less blocks or the range is covered by more unwritten extents. We
2432  * cannot map more because we are limited by reserved transaction credits. On
2433  * the other hand we always make sure that the last touched page is fully
2434  * mapped so that it can be written out (and thus forward progress is
2435  * guaranteed). After mapping we submit all mapped pages for IO.
2436  */
2437 static int mpage_map_and_submit_extent(handle_t *handle,
2438 				       struct mpage_da_data *mpd,
2439 				       bool *give_up_on_write)
2440 {
2441 	struct inode *inode = mpd->inode;
2442 	struct ext4_map_blocks *map = &mpd->map;
2443 	int err;
2444 	loff_t disksize;
2445 	int progress = 0;
2446 
2447 	mpd->io_submit.io_end->offset =
2448 				((loff_t)map->m_lblk) << inode->i_blkbits;
2449 	do {
2450 		err = mpage_map_one_extent(handle, mpd);
2451 		if (err < 0) {
2452 			struct super_block *sb = inode->i_sb;
2453 
2454 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2455 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2456 				goto invalidate_dirty_pages;
2457 			/*
2458 			 * Let the uper layers retry transient errors.
2459 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2460 			 * is non-zero, a commit should free up blocks.
2461 			 */
2462 			if ((err == -ENOMEM) ||
2463 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2464 				if (progress)
2465 					goto update_disksize;
2466 				return err;
2467 			}
2468 			ext4_msg(sb, KERN_CRIT,
2469 				 "Delayed block allocation failed for "
2470 				 "inode %lu at logical offset %llu with"
2471 				 " max blocks %u with error %d",
2472 				 inode->i_ino,
2473 				 (unsigned long long)map->m_lblk,
2474 				 (unsigned)map->m_len, -err);
2475 			ext4_msg(sb, KERN_CRIT,
2476 				 "This should not happen!! Data will "
2477 				 "be lost\n");
2478 			if (err == -ENOSPC)
2479 				ext4_print_free_blocks(inode);
2480 		invalidate_dirty_pages:
2481 			*give_up_on_write = true;
2482 			return err;
2483 		}
2484 		progress = 1;
2485 		/*
2486 		 * Update buffer state, submit mapped pages, and get us new
2487 		 * extent to map
2488 		 */
2489 		err = mpage_map_and_submit_buffers(mpd);
2490 		if (err < 0)
2491 			goto update_disksize;
2492 	} while (map->m_len);
2493 
2494 update_disksize:
2495 	/*
2496 	 * Update on-disk size after IO is submitted.  Races with
2497 	 * truncate are avoided by checking i_size under i_data_sem.
2498 	 */
2499 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2500 	if (disksize > EXT4_I(inode)->i_disksize) {
2501 		int err2;
2502 		loff_t i_size;
2503 
2504 		down_write(&EXT4_I(inode)->i_data_sem);
2505 		i_size = i_size_read(inode);
2506 		if (disksize > i_size)
2507 			disksize = i_size;
2508 		if (disksize > EXT4_I(inode)->i_disksize)
2509 			EXT4_I(inode)->i_disksize = disksize;
2510 		up_write(&EXT4_I(inode)->i_data_sem);
2511 		err2 = ext4_mark_inode_dirty(handle, inode);
2512 		if (err2)
2513 			ext4_error(inode->i_sb,
2514 				   "Failed to mark inode %lu dirty",
2515 				   inode->i_ino);
2516 		if (!err)
2517 			err = err2;
2518 	}
2519 	return err;
2520 }
2521 
2522 /*
2523  * Calculate the total number of credits to reserve for one writepages
2524  * iteration. This is called from ext4_writepages(). We map an extent of
2525  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527  * bpp - 1 blocks in bpp different extents.
2528  */
2529 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2530 {
2531 	int bpp = ext4_journal_blocks_per_page(inode);
2532 
2533 	return ext4_meta_trans_blocks(inode,
2534 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2535 }
2536 
2537 /*
2538  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539  * 				 and underlying extent to map
2540  *
2541  * @mpd - where to look for pages
2542  *
2543  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544  * IO immediately. When we find a page which isn't mapped we start accumulating
2545  * extent of buffers underlying these pages that needs mapping (formed by
2546  * either delayed or unwritten buffers). We also lock the pages containing
2547  * these buffers. The extent found is returned in @mpd structure (starting at
2548  * mpd->lblk with length mpd->len blocks).
2549  *
2550  * Note that this function can attach bios to one io_end structure which are
2551  * neither logically nor physically contiguous. Although it may seem as an
2552  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553  * case as we need to track IO to all buffers underlying a page in one io_end.
2554  */
2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2556 {
2557 	struct address_space *mapping = mpd->inode->i_mapping;
2558 	struct pagevec pvec;
2559 	unsigned int nr_pages;
2560 	long left = mpd->wbc->nr_to_write;
2561 	pgoff_t index = mpd->first_page;
2562 	pgoff_t end = mpd->last_page;
2563 	int tag;
2564 	int i, err = 0;
2565 	int blkbits = mpd->inode->i_blkbits;
2566 	ext4_lblk_t lblk;
2567 	struct buffer_head *head;
2568 
2569 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2570 		tag = PAGECACHE_TAG_TOWRITE;
2571 	else
2572 		tag = PAGECACHE_TAG_DIRTY;
2573 
2574 	pagevec_init(&pvec, 0);
2575 	mpd->map.m_len = 0;
2576 	mpd->next_page = index;
2577 	while (index <= end) {
2578 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2579 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2580 		if (nr_pages == 0)
2581 			goto out;
2582 
2583 		for (i = 0; i < nr_pages; i++) {
2584 			struct page *page = pvec.pages[i];
2585 
2586 			/*
2587 			 * At this point, the page may be truncated or
2588 			 * invalidated (changing page->mapping to NULL), or
2589 			 * even swizzled back from swapper_space to tmpfs file
2590 			 * mapping. However, page->index will not change
2591 			 * because we have a reference on the page.
2592 			 */
2593 			if (page->index > end)
2594 				goto out;
2595 
2596 			/*
2597 			 * Accumulated enough dirty pages? This doesn't apply
2598 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2599 			 * keep going because someone may be concurrently
2600 			 * dirtying pages, and we might have synced a lot of
2601 			 * newly appeared dirty pages, but have not synced all
2602 			 * of the old dirty pages.
2603 			 */
2604 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2605 				goto out;
2606 
2607 			/* If we can't merge this page, we are done. */
2608 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2609 				goto out;
2610 
2611 			lock_page(page);
2612 			/*
2613 			 * If the page is no longer dirty, or its mapping no
2614 			 * longer corresponds to inode we are writing (which
2615 			 * means it has been truncated or invalidated), or the
2616 			 * page is already under writeback and we are not doing
2617 			 * a data integrity writeback, skip the page
2618 			 */
2619 			if (!PageDirty(page) ||
2620 			    (PageWriteback(page) &&
2621 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2622 			    unlikely(page->mapping != mapping)) {
2623 				unlock_page(page);
2624 				continue;
2625 			}
2626 
2627 			wait_on_page_writeback(page);
2628 			BUG_ON(PageWriteback(page));
2629 
2630 			if (mpd->map.m_len == 0)
2631 				mpd->first_page = page->index;
2632 			mpd->next_page = page->index + 1;
2633 			/* Add all dirty buffers to mpd */
2634 			lblk = ((ext4_lblk_t)page->index) <<
2635 				(PAGE_SHIFT - blkbits);
2636 			head = page_buffers(page);
2637 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2638 			if (err <= 0)
2639 				goto out;
2640 			err = 0;
2641 			left--;
2642 		}
2643 		pagevec_release(&pvec);
2644 		cond_resched();
2645 	}
2646 	return 0;
2647 out:
2648 	pagevec_release(&pvec);
2649 	return err;
2650 }
2651 
2652 static int __writepage(struct page *page, struct writeback_control *wbc,
2653 		       void *data)
2654 {
2655 	struct address_space *mapping = data;
2656 	int ret = ext4_writepage(page, wbc);
2657 	mapping_set_error(mapping, ret);
2658 	return ret;
2659 }
2660 
2661 static int ext4_writepages(struct address_space *mapping,
2662 			   struct writeback_control *wbc)
2663 {
2664 	pgoff_t	writeback_index = 0;
2665 	long nr_to_write = wbc->nr_to_write;
2666 	int range_whole = 0;
2667 	int cycled = 1;
2668 	handle_t *handle = NULL;
2669 	struct mpage_da_data mpd;
2670 	struct inode *inode = mapping->host;
2671 	int needed_blocks, rsv_blocks = 0, ret = 0;
2672 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2673 	bool done;
2674 	struct blk_plug plug;
2675 	bool give_up_on_write = false;
2676 
2677 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2678 		return -EIO;
2679 
2680 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2681 	trace_ext4_writepages(inode, wbc);
2682 
2683 	if (dax_mapping(mapping)) {
2684 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2685 						  wbc);
2686 		goto out_writepages;
2687 	}
2688 
2689 	/*
2690 	 * No pages to write? This is mainly a kludge to avoid starting
2691 	 * a transaction for special inodes like journal inode on last iput()
2692 	 * because that could violate lock ordering on umount
2693 	 */
2694 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2695 		goto out_writepages;
2696 
2697 	if (ext4_should_journal_data(inode)) {
2698 		struct blk_plug plug;
2699 
2700 		blk_start_plug(&plug);
2701 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2702 		blk_finish_plug(&plug);
2703 		goto out_writepages;
2704 	}
2705 
2706 	/*
2707 	 * If the filesystem has aborted, it is read-only, so return
2708 	 * right away instead of dumping stack traces later on that
2709 	 * will obscure the real source of the problem.  We test
2710 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2711 	 * the latter could be true if the filesystem is mounted
2712 	 * read-only, and in that case, ext4_writepages should
2713 	 * *never* be called, so if that ever happens, we would want
2714 	 * the stack trace.
2715 	 */
2716 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2717 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2718 		ret = -EROFS;
2719 		goto out_writepages;
2720 	}
2721 
2722 	if (ext4_should_dioread_nolock(inode)) {
2723 		/*
2724 		 * We may need to convert up to one extent per block in
2725 		 * the page and we may dirty the inode.
2726 		 */
2727 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2728 	}
2729 
2730 	/*
2731 	 * If we have inline data and arrive here, it means that
2732 	 * we will soon create the block for the 1st page, so
2733 	 * we'd better clear the inline data here.
2734 	 */
2735 	if (ext4_has_inline_data(inode)) {
2736 		/* Just inode will be modified... */
2737 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2738 		if (IS_ERR(handle)) {
2739 			ret = PTR_ERR(handle);
2740 			goto out_writepages;
2741 		}
2742 		BUG_ON(ext4_test_inode_state(inode,
2743 				EXT4_STATE_MAY_INLINE_DATA));
2744 		ext4_destroy_inline_data(handle, inode);
2745 		ext4_journal_stop(handle);
2746 	}
2747 
2748 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2749 		range_whole = 1;
2750 
2751 	if (wbc->range_cyclic) {
2752 		writeback_index = mapping->writeback_index;
2753 		if (writeback_index)
2754 			cycled = 0;
2755 		mpd.first_page = writeback_index;
2756 		mpd.last_page = -1;
2757 	} else {
2758 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2759 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2760 	}
2761 
2762 	mpd.inode = inode;
2763 	mpd.wbc = wbc;
2764 	ext4_io_submit_init(&mpd.io_submit, wbc);
2765 retry:
2766 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2767 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2768 	done = false;
2769 	blk_start_plug(&plug);
2770 
2771 	/*
2772 	 * First writeback pages that don't need mapping - we can avoid
2773 	 * starting a transaction unnecessarily and also avoid being blocked
2774 	 * in the block layer on device congestion while having transaction
2775 	 * started.
2776 	 */
2777 	mpd.do_map = 0;
2778 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2779 	if (!mpd.io_submit.io_end) {
2780 		ret = -ENOMEM;
2781 		goto unplug;
2782 	}
2783 	ret = mpage_prepare_extent_to_map(&mpd);
2784 	/* Submit prepared bio */
2785 	ext4_io_submit(&mpd.io_submit);
2786 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2787 	mpd.io_submit.io_end = NULL;
2788 	/* Unlock pages we didn't use */
2789 	mpage_release_unused_pages(&mpd, false);
2790 	if (ret < 0)
2791 		goto unplug;
2792 
2793 	while (!done && mpd.first_page <= mpd.last_page) {
2794 		/* For each extent of pages we use new io_end */
2795 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2796 		if (!mpd.io_submit.io_end) {
2797 			ret = -ENOMEM;
2798 			break;
2799 		}
2800 
2801 		/*
2802 		 * We have two constraints: We find one extent to map and we
2803 		 * must always write out whole page (makes a difference when
2804 		 * blocksize < pagesize) so that we don't block on IO when we
2805 		 * try to write out the rest of the page. Journalled mode is
2806 		 * not supported by delalloc.
2807 		 */
2808 		BUG_ON(ext4_should_journal_data(inode));
2809 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2810 
2811 		/* start a new transaction */
2812 		handle = ext4_journal_start_with_reserve(inode,
2813 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2814 		if (IS_ERR(handle)) {
2815 			ret = PTR_ERR(handle);
2816 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2817 			       "%ld pages, ino %lu; err %d", __func__,
2818 				wbc->nr_to_write, inode->i_ino, ret);
2819 			/* Release allocated io_end */
2820 			ext4_put_io_end(mpd.io_submit.io_end);
2821 			mpd.io_submit.io_end = NULL;
2822 			break;
2823 		}
2824 		mpd.do_map = 1;
2825 
2826 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2827 		ret = mpage_prepare_extent_to_map(&mpd);
2828 		if (!ret) {
2829 			if (mpd.map.m_len)
2830 				ret = mpage_map_and_submit_extent(handle, &mpd,
2831 					&give_up_on_write);
2832 			else {
2833 				/*
2834 				 * We scanned the whole range (or exhausted
2835 				 * nr_to_write), submitted what was mapped and
2836 				 * didn't find anything needing mapping. We are
2837 				 * done.
2838 				 */
2839 				done = true;
2840 			}
2841 		}
2842 		/*
2843 		 * Caution: If the handle is synchronous,
2844 		 * ext4_journal_stop() can wait for transaction commit
2845 		 * to finish which may depend on writeback of pages to
2846 		 * complete or on page lock to be released.  In that
2847 		 * case, we have to wait until after after we have
2848 		 * submitted all the IO, released page locks we hold,
2849 		 * and dropped io_end reference (for extent conversion
2850 		 * to be able to complete) before stopping the handle.
2851 		 */
2852 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2853 			ext4_journal_stop(handle);
2854 			handle = NULL;
2855 			mpd.do_map = 0;
2856 		}
2857 		/* Submit prepared bio */
2858 		ext4_io_submit(&mpd.io_submit);
2859 		/* Unlock pages we didn't use */
2860 		mpage_release_unused_pages(&mpd, give_up_on_write);
2861 		/*
2862 		 * Drop our io_end reference we got from init. We have
2863 		 * to be careful and use deferred io_end finishing if
2864 		 * we are still holding the transaction as we can
2865 		 * release the last reference to io_end which may end
2866 		 * up doing unwritten extent conversion.
2867 		 */
2868 		if (handle) {
2869 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2870 			ext4_journal_stop(handle);
2871 		} else
2872 			ext4_put_io_end(mpd.io_submit.io_end);
2873 		mpd.io_submit.io_end = NULL;
2874 
2875 		if (ret == -ENOSPC && sbi->s_journal) {
2876 			/*
2877 			 * Commit the transaction which would
2878 			 * free blocks released in the transaction
2879 			 * and try again
2880 			 */
2881 			jbd2_journal_force_commit_nested(sbi->s_journal);
2882 			ret = 0;
2883 			continue;
2884 		}
2885 		/* Fatal error - ENOMEM, EIO... */
2886 		if (ret)
2887 			break;
2888 	}
2889 unplug:
2890 	blk_finish_plug(&plug);
2891 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2892 		cycled = 1;
2893 		mpd.last_page = writeback_index - 1;
2894 		mpd.first_page = 0;
2895 		goto retry;
2896 	}
2897 
2898 	/* Update index */
2899 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2900 		/*
2901 		 * Set the writeback_index so that range_cyclic
2902 		 * mode will write it back later
2903 		 */
2904 		mapping->writeback_index = mpd.first_page;
2905 
2906 out_writepages:
2907 	trace_ext4_writepages_result(inode, wbc, ret,
2908 				     nr_to_write - wbc->nr_to_write);
2909 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2910 	return ret;
2911 }
2912 
2913 static int ext4_nonda_switch(struct super_block *sb)
2914 {
2915 	s64 free_clusters, dirty_clusters;
2916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2917 
2918 	/*
2919 	 * switch to non delalloc mode if we are running low
2920 	 * on free block. The free block accounting via percpu
2921 	 * counters can get slightly wrong with percpu_counter_batch getting
2922 	 * accumulated on each CPU without updating global counters
2923 	 * Delalloc need an accurate free block accounting. So switch
2924 	 * to non delalloc when we are near to error range.
2925 	 */
2926 	free_clusters =
2927 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2928 	dirty_clusters =
2929 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2930 	/*
2931 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2932 	 */
2933 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2934 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2935 
2936 	if (2 * free_clusters < 3 * dirty_clusters ||
2937 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2938 		/*
2939 		 * free block count is less than 150% of dirty blocks
2940 		 * or free blocks is less than watermark
2941 		 */
2942 		return 1;
2943 	}
2944 	return 0;
2945 }
2946 
2947 /* We always reserve for an inode update; the superblock could be there too */
2948 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2949 {
2950 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2951 		return 1;
2952 
2953 	if (pos + len <= 0x7fffffffULL)
2954 		return 1;
2955 
2956 	/* We might need to update the superblock to set LARGE_FILE */
2957 	return 2;
2958 }
2959 
2960 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2961 			       loff_t pos, unsigned len, unsigned flags,
2962 			       struct page **pagep, void **fsdata)
2963 {
2964 	int ret, retries = 0;
2965 	struct page *page;
2966 	pgoff_t index;
2967 	struct inode *inode = mapping->host;
2968 	handle_t *handle;
2969 
2970 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2971 		return -EIO;
2972 
2973 	index = pos >> PAGE_SHIFT;
2974 
2975 	if (ext4_nonda_switch(inode->i_sb) ||
2976 	    S_ISLNK(inode->i_mode)) {
2977 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2978 		return ext4_write_begin(file, mapping, pos,
2979 					len, flags, pagep, fsdata);
2980 	}
2981 	*fsdata = (void *)0;
2982 	trace_ext4_da_write_begin(inode, pos, len, flags);
2983 
2984 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2985 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2986 						      pos, len, flags,
2987 						      pagep, fsdata);
2988 		if (ret < 0)
2989 			return ret;
2990 		if (ret == 1)
2991 			return 0;
2992 	}
2993 
2994 	/*
2995 	 * grab_cache_page_write_begin() can take a long time if the
2996 	 * system is thrashing due to memory pressure, or if the page
2997 	 * is being written back.  So grab it first before we start
2998 	 * the transaction handle.  This also allows us to allocate
2999 	 * the page (if needed) without using GFP_NOFS.
3000 	 */
3001 retry_grab:
3002 	page = grab_cache_page_write_begin(mapping, index, flags);
3003 	if (!page)
3004 		return -ENOMEM;
3005 	unlock_page(page);
3006 
3007 	/*
3008 	 * With delayed allocation, we don't log the i_disksize update
3009 	 * if there is delayed block allocation. But we still need
3010 	 * to journalling the i_disksize update if writes to the end
3011 	 * of file which has an already mapped buffer.
3012 	 */
3013 retry_journal:
3014 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3015 				ext4_da_write_credits(inode, pos, len));
3016 	if (IS_ERR(handle)) {
3017 		put_page(page);
3018 		return PTR_ERR(handle);
3019 	}
3020 
3021 	lock_page(page);
3022 	if (page->mapping != mapping) {
3023 		/* The page got truncated from under us */
3024 		unlock_page(page);
3025 		put_page(page);
3026 		ext4_journal_stop(handle);
3027 		goto retry_grab;
3028 	}
3029 	/* In case writeback began while the page was unlocked */
3030 	wait_for_stable_page(page);
3031 
3032 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3033 	ret = ext4_block_write_begin(page, pos, len,
3034 				     ext4_da_get_block_prep);
3035 #else
3036 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3037 #endif
3038 	if (ret < 0) {
3039 		unlock_page(page);
3040 		ext4_journal_stop(handle);
3041 		/*
3042 		 * block_write_begin may have instantiated a few blocks
3043 		 * outside i_size.  Trim these off again. Don't need
3044 		 * i_size_read because we hold i_mutex.
3045 		 */
3046 		if (pos + len > inode->i_size)
3047 			ext4_truncate_failed_write(inode);
3048 
3049 		if (ret == -ENOSPC &&
3050 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3051 			goto retry_journal;
3052 
3053 		put_page(page);
3054 		return ret;
3055 	}
3056 
3057 	*pagep = page;
3058 	return ret;
3059 }
3060 
3061 /*
3062  * Check if we should update i_disksize
3063  * when write to the end of file but not require block allocation
3064  */
3065 static int ext4_da_should_update_i_disksize(struct page *page,
3066 					    unsigned long offset)
3067 {
3068 	struct buffer_head *bh;
3069 	struct inode *inode = page->mapping->host;
3070 	unsigned int idx;
3071 	int i;
3072 
3073 	bh = page_buffers(page);
3074 	idx = offset >> inode->i_blkbits;
3075 
3076 	for (i = 0; i < idx; i++)
3077 		bh = bh->b_this_page;
3078 
3079 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3080 		return 0;
3081 	return 1;
3082 }
3083 
3084 static int ext4_da_write_end(struct file *file,
3085 			     struct address_space *mapping,
3086 			     loff_t pos, unsigned len, unsigned copied,
3087 			     struct page *page, void *fsdata)
3088 {
3089 	struct inode *inode = mapping->host;
3090 	int ret = 0, ret2;
3091 	handle_t *handle = ext4_journal_current_handle();
3092 	loff_t new_i_size;
3093 	unsigned long start, end;
3094 	int write_mode = (int)(unsigned long)fsdata;
3095 
3096 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3097 		return ext4_write_end(file, mapping, pos,
3098 				      len, copied, page, fsdata);
3099 
3100 	trace_ext4_da_write_end(inode, pos, len, copied);
3101 	start = pos & (PAGE_SIZE - 1);
3102 	end = start + copied - 1;
3103 
3104 	/*
3105 	 * generic_write_end() will run mark_inode_dirty() if i_size
3106 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3107 	 * into that.
3108 	 */
3109 	new_i_size = pos + copied;
3110 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3111 		if (ext4_has_inline_data(inode) ||
3112 		    ext4_da_should_update_i_disksize(page, end)) {
3113 			ext4_update_i_disksize(inode, new_i_size);
3114 			/* We need to mark inode dirty even if
3115 			 * new_i_size is less that inode->i_size
3116 			 * bu greater than i_disksize.(hint delalloc)
3117 			 */
3118 			ext4_mark_inode_dirty(handle, inode);
3119 		}
3120 	}
3121 
3122 	if (write_mode != CONVERT_INLINE_DATA &&
3123 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3124 	    ext4_has_inline_data(inode))
3125 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3126 						     page);
3127 	else
3128 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3129 							page, fsdata);
3130 
3131 	copied = ret2;
3132 	if (ret2 < 0)
3133 		ret = ret2;
3134 	ret2 = ext4_journal_stop(handle);
3135 	if (!ret)
3136 		ret = ret2;
3137 
3138 	return ret ? ret : copied;
3139 }
3140 
3141 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3142 				   unsigned int length)
3143 {
3144 	/*
3145 	 * Drop reserved blocks
3146 	 */
3147 	BUG_ON(!PageLocked(page));
3148 	if (!page_has_buffers(page))
3149 		goto out;
3150 
3151 	ext4_da_page_release_reservation(page, offset, length);
3152 
3153 out:
3154 	ext4_invalidatepage(page, offset, length);
3155 
3156 	return;
3157 }
3158 
3159 /*
3160  * Force all delayed allocation blocks to be allocated for a given inode.
3161  */
3162 int ext4_alloc_da_blocks(struct inode *inode)
3163 {
3164 	trace_ext4_alloc_da_blocks(inode);
3165 
3166 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3167 		return 0;
3168 
3169 	/*
3170 	 * We do something simple for now.  The filemap_flush() will
3171 	 * also start triggering a write of the data blocks, which is
3172 	 * not strictly speaking necessary (and for users of
3173 	 * laptop_mode, not even desirable).  However, to do otherwise
3174 	 * would require replicating code paths in:
3175 	 *
3176 	 * ext4_writepages() ->
3177 	 *    write_cache_pages() ---> (via passed in callback function)
3178 	 *        __mpage_da_writepage() -->
3179 	 *           mpage_add_bh_to_extent()
3180 	 *           mpage_da_map_blocks()
3181 	 *
3182 	 * The problem is that write_cache_pages(), located in
3183 	 * mm/page-writeback.c, marks pages clean in preparation for
3184 	 * doing I/O, which is not desirable if we're not planning on
3185 	 * doing I/O at all.
3186 	 *
3187 	 * We could call write_cache_pages(), and then redirty all of
3188 	 * the pages by calling redirty_page_for_writepage() but that
3189 	 * would be ugly in the extreme.  So instead we would need to
3190 	 * replicate parts of the code in the above functions,
3191 	 * simplifying them because we wouldn't actually intend to
3192 	 * write out the pages, but rather only collect contiguous
3193 	 * logical block extents, call the multi-block allocator, and
3194 	 * then update the buffer heads with the block allocations.
3195 	 *
3196 	 * For now, though, we'll cheat by calling filemap_flush(),
3197 	 * which will map the blocks, and start the I/O, but not
3198 	 * actually wait for the I/O to complete.
3199 	 */
3200 	return filemap_flush(inode->i_mapping);
3201 }
3202 
3203 /*
3204  * bmap() is special.  It gets used by applications such as lilo and by
3205  * the swapper to find the on-disk block of a specific piece of data.
3206  *
3207  * Naturally, this is dangerous if the block concerned is still in the
3208  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3209  * filesystem and enables swap, then they may get a nasty shock when the
3210  * data getting swapped to that swapfile suddenly gets overwritten by
3211  * the original zero's written out previously to the journal and
3212  * awaiting writeback in the kernel's buffer cache.
3213  *
3214  * So, if we see any bmap calls here on a modified, data-journaled file,
3215  * take extra steps to flush any blocks which might be in the cache.
3216  */
3217 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3218 {
3219 	struct inode *inode = mapping->host;
3220 	journal_t *journal;
3221 	int err;
3222 
3223 	/*
3224 	 * We can get here for an inline file via the FIBMAP ioctl
3225 	 */
3226 	if (ext4_has_inline_data(inode))
3227 		return 0;
3228 
3229 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3230 			test_opt(inode->i_sb, DELALLOC)) {
3231 		/*
3232 		 * With delalloc we want to sync the file
3233 		 * so that we can make sure we allocate
3234 		 * blocks for file
3235 		 */
3236 		filemap_write_and_wait(mapping);
3237 	}
3238 
3239 	if (EXT4_JOURNAL(inode) &&
3240 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3241 		/*
3242 		 * This is a REALLY heavyweight approach, but the use of
3243 		 * bmap on dirty files is expected to be extremely rare:
3244 		 * only if we run lilo or swapon on a freshly made file
3245 		 * do we expect this to happen.
3246 		 *
3247 		 * (bmap requires CAP_SYS_RAWIO so this does not
3248 		 * represent an unprivileged user DOS attack --- we'd be
3249 		 * in trouble if mortal users could trigger this path at
3250 		 * will.)
3251 		 *
3252 		 * NB. EXT4_STATE_JDATA is not set on files other than
3253 		 * regular files.  If somebody wants to bmap a directory
3254 		 * or symlink and gets confused because the buffer
3255 		 * hasn't yet been flushed to disk, they deserve
3256 		 * everything they get.
3257 		 */
3258 
3259 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3260 		journal = EXT4_JOURNAL(inode);
3261 		jbd2_journal_lock_updates(journal);
3262 		err = jbd2_journal_flush(journal);
3263 		jbd2_journal_unlock_updates(journal);
3264 
3265 		if (err)
3266 			return 0;
3267 	}
3268 
3269 	return generic_block_bmap(mapping, block, ext4_get_block);
3270 }
3271 
3272 static int ext4_readpage(struct file *file, struct page *page)
3273 {
3274 	int ret = -EAGAIN;
3275 	struct inode *inode = page->mapping->host;
3276 
3277 	trace_ext4_readpage(page);
3278 
3279 	if (ext4_has_inline_data(inode))
3280 		ret = ext4_readpage_inline(inode, page);
3281 
3282 	if (ret == -EAGAIN)
3283 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3284 
3285 	return ret;
3286 }
3287 
3288 static int
3289 ext4_readpages(struct file *file, struct address_space *mapping,
3290 		struct list_head *pages, unsigned nr_pages)
3291 {
3292 	struct inode *inode = mapping->host;
3293 
3294 	/* If the file has inline data, no need to do readpages. */
3295 	if (ext4_has_inline_data(inode))
3296 		return 0;
3297 
3298 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3299 }
3300 
3301 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3302 				unsigned int length)
3303 {
3304 	trace_ext4_invalidatepage(page, offset, length);
3305 
3306 	/* No journalling happens on data buffers when this function is used */
3307 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3308 
3309 	block_invalidatepage(page, offset, length);
3310 }
3311 
3312 static int __ext4_journalled_invalidatepage(struct page *page,
3313 					    unsigned int offset,
3314 					    unsigned int length)
3315 {
3316 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3317 
3318 	trace_ext4_journalled_invalidatepage(page, offset, length);
3319 
3320 	/*
3321 	 * If it's a full truncate we just forget about the pending dirtying
3322 	 */
3323 	if (offset == 0 && length == PAGE_SIZE)
3324 		ClearPageChecked(page);
3325 
3326 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3327 }
3328 
3329 /* Wrapper for aops... */
3330 static void ext4_journalled_invalidatepage(struct page *page,
3331 					   unsigned int offset,
3332 					   unsigned int length)
3333 {
3334 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3335 }
3336 
3337 static int ext4_releasepage(struct page *page, gfp_t wait)
3338 {
3339 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3340 
3341 	trace_ext4_releasepage(page);
3342 
3343 	/* Page has dirty journalled data -> cannot release */
3344 	if (PageChecked(page))
3345 		return 0;
3346 	if (journal)
3347 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3348 	else
3349 		return try_to_free_buffers(page);
3350 }
3351 
3352 #ifdef CONFIG_FS_DAX
3353 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3354 			    unsigned flags, struct iomap *iomap)
3355 {
3356 	struct block_device *bdev;
3357 	unsigned int blkbits = inode->i_blkbits;
3358 	unsigned long first_block = offset >> blkbits;
3359 	unsigned long last_block = (offset + length - 1) >> blkbits;
3360 	struct ext4_map_blocks map;
3361 	int ret;
3362 
3363 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3364 		return -ERANGE;
3365 
3366 	map.m_lblk = first_block;
3367 	map.m_len = last_block - first_block + 1;
3368 
3369 	if (!(flags & IOMAP_WRITE)) {
3370 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3371 	} else {
3372 		int dio_credits;
3373 		handle_t *handle;
3374 		int retries = 0;
3375 
3376 		/* Trim mapping request to maximum we can map at once for DIO */
3377 		if (map.m_len > DIO_MAX_BLOCKS)
3378 			map.m_len = DIO_MAX_BLOCKS;
3379 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3380 retry:
3381 		/*
3382 		 * Either we allocate blocks and then we don't get unwritten
3383 		 * extent so we have reserved enough credits, or the blocks
3384 		 * are already allocated and unwritten and in that case
3385 		 * extent conversion fits in the credits as well.
3386 		 */
3387 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3388 					    dio_credits);
3389 		if (IS_ERR(handle))
3390 			return PTR_ERR(handle);
3391 
3392 		ret = ext4_map_blocks(handle, inode, &map,
3393 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3394 		if (ret < 0) {
3395 			ext4_journal_stop(handle);
3396 			if (ret == -ENOSPC &&
3397 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3398 				goto retry;
3399 			return ret;
3400 		}
3401 
3402 		/*
3403 		 * If we added blocks beyond i_size, we need to make sure they
3404 		 * will get truncated if we crash before updating i_size in
3405 		 * ext4_iomap_end(). For faults we don't need to do that (and
3406 		 * even cannot because for orphan list operations inode_lock is
3407 		 * required) - if we happen to instantiate block beyond i_size,
3408 		 * it is because we race with truncate which has already added
3409 		 * the inode to the orphan list.
3410 		 */
3411 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3412 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3413 			int err;
3414 
3415 			err = ext4_orphan_add(handle, inode);
3416 			if (err < 0) {
3417 				ext4_journal_stop(handle);
3418 				return err;
3419 			}
3420 		}
3421 		ext4_journal_stop(handle);
3422 	}
3423 
3424 	iomap->flags = 0;
3425 	bdev = inode->i_sb->s_bdev;
3426 	iomap->bdev = bdev;
3427 	if (blk_queue_dax(bdev->bd_queue))
3428 		iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3429 	else
3430 		iomap->dax_dev = NULL;
3431 	iomap->offset = first_block << blkbits;
3432 
3433 	if (ret == 0) {
3434 		iomap->type = IOMAP_HOLE;
3435 		iomap->blkno = IOMAP_NULL_BLOCK;
3436 		iomap->length = (u64)map.m_len << blkbits;
3437 	} else {
3438 		if (map.m_flags & EXT4_MAP_MAPPED) {
3439 			iomap->type = IOMAP_MAPPED;
3440 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3441 			iomap->type = IOMAP_UNWRITTEN;
3442 		} else {
3443 			WARN_ON_ONCE(1);
3444 			return -EIO;
3445 		}
3446 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3447 		iomap->length = (u64)map.m_len << blkbits;
3448 	}
3449 
3450 	if (map.m_flags & EXT4_MAP_NEW)
3451 		iomap->flags |= IOMAP_F_NEW;
3452 	return 0;
3453 }
3454 
3455 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3456 			  ssize_t written, unsigned flags, struct iomap *iomap)
3457 {
3458 	int ret = 0;
3459 	handle_t *handle;
3460 	int blkbits = inode->i_blkbits;
3461 	bool truncate = false;
3462 
3463 	fs_put_dax(iomap->dax_dev);
3464 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3465 		return 0;
3466 
3467 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3468 	if (IS_ERR(handle)) {
3469 		ret = PTR_ERR(handle);
3470 		goto orphan_del;
3471 	}
3472 	if (ext4_update_inode_size(inode, offset + written))
3473 		ext4_mark_inode_dirty(handle, inode);
3474 	/*
3475 	 * We may need to truncate allocated but not written blocks beyond EOF.
3476 	 */
3477 	if (iomap->offset + iomap->length >
3478 	    ALIGN(inode->i_size, 1 << blkbits)) {
3479 		ext4_lblk_t written_blk, end_blk;
3480 
3481 		written_blk = (offset + written) >> blkbits;
3482 		end_blk = (offset + length) >> blkbits;
3483 		if (written_blk < end_blk && ext4_can_truncate(inode))
3484 			truncate = true;
3485 	}
3486 	/*
3487 	 * Remove inode from orphan list if we were extending a inode and
3488 	 * everything went fine.
3489 	 */
3490 	if (!truncate && inode->i_nlink &&
3491 	    !list_empty(&EXT4_I(inode)->i_orphan))
3492 		ext4_orphan_del(handle, inode);
3493 	ext4_journal_stop(handle);
3494 	if (truncate) {
3495 		ext4_truncate_failed_write(inode);
3496 orphan_del:
3497 		/*
3498 		 * If truncate failed early the inode might still be on the
3499 		 * orphan list; we need to make sure the inode is removed from
3500 		 * the orphan list in that case.
3501 		 */
3502 		if (inode->i_nlink)
3503 			ext4_orphan_del(NULL, inode);
3504 	}
3505 	return ret;
3506 }
3507 
3508 const struct iomap_ops ext4_iomap_ops = {
3509 	.iomap_begin		= ext4_iomap_begin,
3510 	.iomap_end		= ext4_iomap_end,
3511 };
3512 
3513 #endif
3514 
3515 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3516 			    ssize_t size, void *private)
3517 {
3518         ext4_io_end_t *io_end = private;
3519 
3520 	/* if not async direct IO just return */
3521 	if (!io_end)
3522 		return 0;
3523 
3524 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3525 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3526 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3527 
3528 	/*
3529 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3530 	 * data was not written. Just clear the unwritten flag and drop io_end.
3531 	 */
3532 	if (size <= 0) {
3533 		ext4_clear_io_unwritten_flag(io_end);
3534 		size = 0;
3535 	}
3536 	io_end->offset = offset;
3537 	io_end->size = size;
3538 	ext4_put_io_end(io_end);
3539 
3540 	return 0;
3541 }
3542 
3543 /*
3544  * Handling of direct IO writes.
3545  *
3546  * For ext4 extent files, ext4 will do direct-io write even to holes,
3547  * preallocated extents, and those write extend the file, no need to
3548  * fall back to buffered IO.
3549  *
3550  * For holes, we fallocate those blocks, mark them as unwritten
3551  * If those blocks were preallocated, we mark sure they are split, but
3552  * still keep the range to write as unwritten.
3553  *
3554  * The unwritten extents will be converted to written when DIO is completed.
3555  * For async direct IO, since the IO may still pending when return, we
3556  * set up an end_io call back function, which will do the conversion
3557  * when async direct IO completed.
3558  *
3559  * If the O_DIRECT write will extend the file then add this inode to the
3560  * orphan list.  So recovery will truncate it back to the original size
3561  * if the machine crashes during the write.
3562  *
3563  */
3564 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3565 {
3566 	struct file *file = iocb->ki_filp;
3567 	struct inode *inode = file->f_mapping->host;
3568 	struct ext4_inode_info *ei = EXT4_I(inode);
3569 	ssize_t ret;
3570 	loff_t offset = iocb->ki_pos;
3571 	size_t count = iov_iter_count(iter);
3572 	int overwrite = 0;
3573 	get_block_t *get_block_func = NULL;
3574 	int dio_flags = 0;
3575 	loff_t final_size = offset + count;
3576 	int orphan = 0;
3577 	handle_t *handle;
3578 
3579 	if (final_size > inode->i_size) {
3580 		/* Credits for sb + inode write */
3581 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3582 		if (IS_ERR(handle)) {
3583 			ret = PTR_ERR(handle);
3584 			goto out;
3585 		}
3586 		ret = ext4_orphan_add(handle, inode);
3587 		if (ret) {
3588 			ext4_journal_stop(handle);
3589 			goto out;
3590 		}
3591 		orphan = 1;
3592 		ei->i_disksize = inode->i_size;
3593 		ext4_journal_stop(handle);
3594 	}
3595 
3596 	BUG_ON(iocb->private == NULL);
3597 
3598 	/*
3599 	 * Make all waiters for direct IO properly wait also for extent
3600 	 * conversion. This also disallows race between truncate() and
3601 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3602 	 */
3603 	inode_dio_begin(inode);
3604 
3605 	/* If we do a overwrite dio, i_mutex locking can be released */
3606 	overwrite = *((int *)iocb->private);
3607 
3608 	if (overwrite)
3609 		inode_unlock(inode);
3610 
3611 	/*
3612 	 * For extent mapped files we could direct write to holes and fallocate.
3613 	 *
3614 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3615 	 * parallel buffered read to expose the stale data before DIO complete
3616 	 * the data IO.
3617 	 *
3618 	 * As to previously fallocated extents, ext4 get_block will just simply
3619 	 * mark the buffer mapped but still keep the extents unwritten.
3620 	 *
3621 	 * For non AIO case, we will convert those unwritten extents to written
3622 	 * after return back from blockdev_direct_IO. That way we save us from
3623 	 * allocating io_end structure and also the overhead of offloading
3624 	 * the extent convertion to a workqueue.
3625 	 *
3626 	 * For async DIO, the conversion needs to be deferred when the
3627 	 * IO is completed. The ext4 end_io callback function will be
3628 	 * called to take care of the conversion work.  Here for async
3629 	 * case, we allocate an io_end structure to hook to the iocb.
3630 	 */
3631 	iocb->private = NULL;
3632 	if (overwrite)
3633 		get_block_func = ext4_dio_get_block_overwrite;
3634 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3635 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3636 		get_block_func = ext4_dio_get_block;
3637 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3638 	} else if (is_sync_kiocb(iocb)) {
3639 		get_block_func = ext4_dio_get_block_unwritten_sync;
3640 		dio_flags = DIO_LOCKING;
3641 	} else {
3642 		get_block_func = ext4_dio_get_block_unwritten_async;
3643 		dio_flags = DIO_LOCKING;
3644 	}
3645 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3646 				   get_block_func, ext4_end_io_dio, NULL,
3647 				   dio_flags);
3648 
3649 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3650 						EXT4_STATE_DIO_UNWRITTEN)) {
3651 		int err;
3652 		/*
3653 		 * for non AIO case, since the IO is already
3654 		 * completed, we could do the conversion right here
3655 		 */
3656 		err = ext4_convert_unwritten_extents(NULL, inode,
3657 						     offset, ret);
3658 		if (err < 0)
3659 			ret = err;
3660 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3661 	}
3662 
3663 	inode_dio_end(inode);
3664 	/* take i_mutex locking again if we do a ovewrite dio */
3665 	if (overwrite)
3666 		inode_lock(inode);
3667 
3668 	if (ret < 0 && final_size > inode->i_size)
3669 		ext4_truncate_failed_write(inode);
3670 
3671 	/* Handle extending of i_size after direct IO write */
3672 	if (orphan) {
3673 		int err;
3674 
3675 		/* Credits for sb + inode write */
3676 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677 		if (IS_ERR(handle)) {
3678 			/* This is really bad luck. We've written the data
3679 			 * but cannot extend i_size. Bail out and pretend
3680 			 * the write failed... */
3681 			ret = PTR_ERR(handle);
3682 			if (inode->i_nlink)
3683 				ext4_orphan_del(NULL, inode);
3684 
3685 			goto out;
3686 		}
3687 		if (inode->i_nlink)
3688 			ext4_orphan_del(handle, inode);
3689 		if (ret > 0) {
3690 			loff_t end = offset + ret;
3691 			if (end > inode->i_size) {
3692 				ei->i_disksize = end;
3693 				i_size_write(inode, end);
3694 				/*
3695 				 * We're going to return a positive `ret'
3696 				 * here due to non-zero-length I/O, so there's
3697 				 * no way of reporting error returns from
3698 				 * ext4_mark_inode_dirty() to userspace.  So
3699 				 * ignore it.
3700 				 */
3701 				ext4_mark_inode_dirty(handle, inode);
3702 			}
3703 		}
3704 		err = ext4_journal_stop(handle);
3705 		if (ret == 0)
3706 			ret = err;
3707 	}
3708 out:
3709 	return ret;
3710 }
3711 
3712 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3713 {
3714 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3715 	struct inode *inode = mapping->host;
3716 	size_t count = iov_iter_count(iter);
3717 	ssize_t ret;
3718 
3719 	/*
3720 	 * Shared inode_lock is enough for us - it protects against concurrent
3721 	 * writes & truncates and since we take care of writing back page cache,
3722 	 * we are protected against page writeback as well.
3723 	 */
3724 	inode_lock_shared(inode);
3725 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3726 					   iocb->ki_pos + count - 1);
3727 	if (ret)
3728 		goto out_unlock;
3729 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3730 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3731 out_unlock:
3732 	inode_unlock_shared(inode);
3733 	return ret;
3734 }
3735 
3736 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3737 {
3738 	struct file *file = iocb->ki_filp;
3739 	struct inode *inode = file->f_mapping->host;
3740 	size_t count = iov_iter_count(iter);
3741 	loff_t offset = iocb->ki_pos;
3742 	ssize_t ret;
3743 
3744 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3745 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3746 		return 0;
3747 #endif
3748 
3749 	/*
3750 	 * If we are doing data journalling we don't support O_DIRECT
3751 	 */
3752 	if (ext4_should_journal_data(inode))
3753 		return 0;
3754 
3755 	/* Let buffer I/O handle the inline data case. */
3756 	if (ext4_has_inline_data(inode))
3757 		return 0;
3758 
3759 	/* DAX uses iomap path now */
3760 	if (WARN_ON_ONCE(IS_DAX(inode)))
3761 		return 0;
3762 
3763 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3764 	if (iov_iter_rw(iter) == READ)
3765 		ret = ext4_direct_IO_read(iocb, iter);
3766 	else
3767 		ret = ext4_direct_IO_write(iocb, iter);
3768 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3769 	return ret;
3770 }
3771 
3772 /*
3773  * Pages can be marked dirty completely asynchronously from ext4's journalling
3774  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3775  * much here because ->set_page_dirty is called under VFS locks.  The page is
3776  * not necessarily locked.
3777  *
3778  * We cannot just dirty the page and leave attached buffers clean, because the
3779  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3780  * or jbddirty because all the journalling code will explode.
3781  *
3782  * So what we do is to mark the page "pending dirty" and next time writepage
3783  * is called, propagate that into the buffers appropriately.
3784  */
3785 static int ext4_journalled_set_page_dirty(struct page *page)
3786 {
3787 	SetPageChecked(page);
3788 	return __set_page_dirty_nobuffers(page);
3789 }
3790 
3791 static int ext4_set_page_dirty(struct page *page)
3792 {
3793 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3794 	WARN_ON_ONCE(!page_has_buffers(page));
3795 	return __set_page_dirty_buffers(page);
3796 }
3797 
3798 static const struct address_space_operations ext4_aops = {
3799 	.readpage		= ext4_readpage,
3800 	.readpages		= ext4_readpages,
3801 	.writepage		= ext4_writepage,
3802 	.writepages		= ext4_writepages,
3803 	.write_begin		= ext4_write_begin,
3804 	.write_end		= ext4_write_end,
3805 	.set_page_dirty		= ext4_set_page_dirty,
3806 	.bmap			= ext4_bmap,
3807 	.invalidatepage		= ext4_invalidatepage,
3808 	.releasepage		= ext4_releasepage,
3809 	.direct_IO		= ext4_direct_IO,
3810 	.migratepage		= buffer_migrate_page,
3811 	.is_partially_uptodate  = block_is_partially_uptodate,
3812 	.error_remove_page	= generic_error_remove_page,
3813 };
3814 
3815 static const struct address_space_operations ext4_journalled_aops = {
3816 	.readpage		= ext4_readpage,
3817 	.readpages		= ext4_readpages,
3818 	.writepage		= ext4_writepage,
3819 	.writepages		= ext4_writepages,
3820 	.write_begin		= ext4_write_begin,
3821 	.write_end		= ext4_journalled_write_end,
3822 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3823 	.bmap			= ext4_bmap,
3824 	.invalidatepage		= ext4_journalled_invalidatepage,
3825 	.releasepage		= ext4_releasepage,
3826 	.direct_IO		= ext4_direct_IO,
3827 	.is_partially_uptodate  = block_is_partially_uptodate,
3828 	.error_remove_page	= generic_error_remove_page,
3829 };
3830 
3831 static const struct address_space_operations ext4_da_aops = {
3832 	.readpage		= ext4_readpage,
3833 	.readpages		= ext4_readpages,
3834 	.writepage		= ext4_writepage,
3835 	.writepages		= ext4_writepages,
3836 	.write_begin		= ext4_da_write_begin,
3837 	.write_end		= ext4_da_write_end,
3838 	.set_page_dirty		= ext4_set_page_dirty,
3839 	.bmap			= ext4_bmap,
3840 	.invalidatepage		= ext4_da_invalidatepage,
3841 	.releasepage		= ext4_releasepage,
3842 	.direct_IO		= ext4_direct_IO,
3843 	.migratepage		= buffer_migrate_page,
3844 	.is_partially_uptodate  = block_is_partially_uptodate,
3845 	.error_remove_page	= generic_error_remove_page,
3846 };
3847 
3848 void ext4_set_aops(struct inode *inode)
3849 {
3850 	switch (ext4_inode_journal_mode(inode)) {
3851 	case EXT4_INODE_ORDERED_DATA_MODE:
3852 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3853 		break;
3854 	case EXT4_INODE_JOURNAL_DATA_MODE:
3855 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3856 		return;
3857 	default:
3858 		BUG();
3859 	}
3860 	if (test_opt(inode->i_sb, DELALLOC))
3861 		inode->i_mapping->a_ops = &ext4_da_aops;
3862 	else
3863 		inode->i_mapping->a_ops = &ext4_aops;
3864 }
3865 
3866 static int __ext4_block_zero_page_range(handle_t *handle,
3867 		struct address_space *mapping, loff_t from, loff_t length)
3868 {
3869 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3870 	unsigned offset = from & (PAGE_SIZE-1);
3871 	unsigned blocksize, pos;
3872 	ext4_lblk_t iblock;
3873 	struct inode *inode = mapping->host;
3874 	struct buffer_head *bh;
3875 	struct page *page;
3876 	int err = 0;
3877 
3878 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3879 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3880 	if (!page)
3881 		return -ENOMEM;
3882 
3883 	blocksize = inode->i_sb->s_blocksize;
3884 
3885 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3886 
3887 	if (!page_has_buffers(page))
3888 		create_empty_buffers(page, blocksize, 0);
3889 
3890 	/* Find the buffer that contains "offset" */
3891 	bh = page_buffers(page);
3892 	pos = blocksize;
3893 	while (offset >= pos) {
3894 		bh = bh->b_this_page;
3895 		iblock++;
3896 		pos += blocksize;
3897 	}
3898 	if (buffer_freed(bh)) {
3899 		BUFFER_TRACE(bh, "freed: skip");
3900 		goto unlock;
3901 	}
3902 	if (!buffer_mapped(bh)) {
3903 		BUFFER_TRACE(bh, "unmapped");
3904 		ext4_get_block(inode, iblock, bh, 0);
3905 		/* unmapped? It's a hole - nothing to do */
3906 		if (!buffer_mapped(bh)) {
3907 			BUFFER_TRACE(bh, "still unmapped");
3908 			goto unlock;
3909 		}
3910 	}
3911 
3912 	/* Ok, it's mapped. Make sure it's up-to-date */
3913 	if (PageUptodate(page))
3914 		set_buffer_uptodate(bh);
3915 
3916 	if (!buffer_uptodate(bh)) {
3917 		err = -EIO;
3918 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3919 		wait_on_buffer(bh);
3920 		/* Uhhuh. Read error. Complain and punt. */
3921 		if (!buffer_uptodate(bh))
3922 			goto unlock;
3923 		if (S_ISREG(inode->i_mode) &&
3924 		    ext4_encrypted_inode(inode)) {
3925 			/* We expect the key to be set. */
3926 			BUG_ON(!fscrypt_has_encryption_key(inode));
3927 			BUG_ON(blocksize != PAGE_SIZE);
3928 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3929 						page, PAGE_SIZE, 0, page->index));
3930 		}
3931 	}
3932 	if (ext4_should_journal_data(inode)) {
3933 		BUFFER_TRACE(bh, "get write access");
3934 		err = ext4_journal_get_write_access(handle, bh);
3935 		if (err)
3936 			goto unlock;
3937 	}
3938 	zero_user(page, offset, length);
3939 	BUFFER_TRACE(bh, "zeroed end of block");
3940 
3941 	if (ext4_should_journal_data(inode)) {
3942 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3943 	} else {
3944 		err = 0;
3945 		mark_buffer_dirty(bh);
3946 		if (ext4_should_order_data(inode))
3947 			err = ext4_jbd2_inode_add_write(handle, inode);
3948 	}
3949 
3950 unlock:
3951 	unlock_page(page);
3952 	put_page(page);
3953 	return err;
3954 }
3955 
3956 /*
3957  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3958  * starting from file offset 'from'.  The range to be zero'd must
3959  * be contained with in one block.  If the specified range exceeds
3960  * the end of the block it will be shortened to end of the block
3961  * that cooresponds to 'from'
3962  */
3963 static int ext4_block_zero_page_range(handle_t *handle,
3964 		struct address_space *mapping, loff_t from, loff_t length)
3965 {
3966 	struct inode *inode = mapping->host;
3967 	unsigned offset = from & (PAGE_SIZE-1);
3968 	unsigned blocksize = inode->i_sb->s_blocksize;
3969 	unsigned max = blocksize - (offset & (blocksize - 1));
3970 
3971 	/*
3972 	 * correct length if it does not fall between
3973 	 * 'from' and the end of the block
3974 	 */
3975 	if (length > max || length < 0)
3976 		length = max;
3977 
3978 	if (IS_DAX(inode)) {
3979 		return iomap_zero_range(inode, from, length, NULL,
3980 					&ext4_iomap_ops);
3981 	}
3982 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3983 }
3984 
3985 /*
3986  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3987  * up to the end of the block which corresponds to `from'.
3988  * This required during truncate. We need to physically zero the tail end
3989  * of that block so it doesn't yield old data if the file is later grown.
3990  */
3991 static int ext4_block_truncate_page(handle_t *handle,
3992 		struct address_space *mapping, loff_t from)
3993 {
3994 	unsigned offset = from & (PAGE_SIZE-1);
3995 	unsigned length;
3996 	unsigned blocksize;
3997 	struct inode *inode = mapping->host;
3998 
3999 	/* If we are processing an encrypted inode during orphan list handling */
4000 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4001 		return 0;
4002 
4003 	blocksize = inode->i_sb->s_blocksize;
4004 	length = blocksize - (offset & (blocksize - 1));
4005 
4006 	return ext4_block_zero_page_range(handle, mapping, from, length);
4007 }
4008 
4009 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4010 			     loff_t lstart, loff_t length)
4011 {
4012 	struct super_block *sb = inode->i_sb;
4013 	struct address_space *mapping = inode->i_mapping;
4014 	unsigned partial_start, partial_end;
4015 	ext4_fsblk_t start, end;
4016 	loff_t byte_end = (lstart + length - 1);
4017 	int err = 0;
4018 
4019 	partial_start = lstart & (sb->s_blocksize - 1);
4020 	partial_end = byte_end & (sb->s_blocksize - 1);
4021 
4022 	start = lstart >> sb->s_blocksize_bits;
4023 	end = byte_end >> sb->s_blocksize_bits;
4024 
4025 	/* Handle partial zero within the single block */
4026 	if (start == end &&
4027 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4028 		err = ext4_block_zero_page_range(handle, mapping,
4029 						 lstart, length);
4030 		return err;
4031 	}
4032 	/* Handle partial zero out on the start of the range */
4033 	if (partial_start) {
4034 		err = ext4_block_zero_page_range(handle, mapping,
4035 						 lstart, sb->s_blocksize);
4036 		if (err)
4037 			return err;
4038 	}
4039 	/* Handle partial zero out on the end of the range */
4040 	if (partial_end != sb->s_blocksize - 1)
4041 		err = ext4_block_zero_page_range(handle, mapping,
4042 						 byte_end - partial_end,
4043 						 partial_end + 1);
4044 	return err;
4045 }
4046 
4047 int ext4_can_truncate(struct inode *inode)
4048 {
4049 	if (S_ISREG(inode->i_mode))
4050 		return 1;
4051 	if (S_ISDIR(inode->i_mode))
4052 		return 1;
4053 	if (S_ISLNK(inode->i_mode))
4054 		return !ext4_inode_is_fast_symlink(inode);
4055 	return 0;
4056 }
4057 
4058 /*
4059  * We have to make sure i_disksize gets properly updated before we truncate
4060  * page cache due to hole punching or zero range. Otherwise i_disksize update
4061  * can get lost as it may have been postponed to submission of writeback but
4062  * that will never happen after we truncate page cache.
4063  */
4064 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4065 				      loff_t len)
4066 {
4067 	handle_t *handle;
4068 	loff_t size = i_size_read(inode);
4069 
4070 	WARN_ON(!inode_is_locked(inode));
4071 	if (offset > size || offset + len < size)
4072 		return 0;
4073 
4074 	if (EXT4_I(inode)->i_disksize >= size)
4075 		return 0;
4076 
4077 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4078 	if (IS_ERR(handle))
4079 		return PTR_ERR(handle);
4080 	ext4_update_i_disksize(inode, size);
4081 	ext4_mark_inode_dirty(handle, inode);
4082 	ext4_journal_stop(handle);
4083 
4084 	return 0;
4085 }
4086 
4087 /*
4088  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4089  * associated with the given offset and length
4090  *
4091  * @inode:  File inode
4092  * @offset: The offset where the hole will begin
4093  * @len:    The length of the hole
4094  *
4095  * Returns: 0 on success or negative on failure
4096  */
4097 
4098 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4099 {
4100 	struct super_block *sb = inode->i_sb;
4101 	ext4_lblk_t first_block, stop_block;
4102 	struct address_space *mapping = inode->i_mapping;
4103 	loff_t first_block_offset, last_block_offset;
4104 	handle_t *handle;
4105 	unsigned int credits;
4106 	int ret = 0;
4107 
4108 	if (!S_ISREG(inode->i_mode))
4109 		return -EOPNOTSUPP;
4110 
4111 	trace_ext4_punch_hole(inode, offset, length, 0);
4112 
4113 	/*
4114 	 * Write out all dirty pages to avoid race conditions
4115 	 * Then release them.
4116 	 */
4117 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4118 		ret = filemap_write_and_wait_range(mapping, offset,
4119 						   offset + length - 1);
4120 		if (ret)
4121 			return ret;
4122 	}
4123 
4124 	inode_lock(inode);
4125 
4126 	/* No need to punch hole beyond i_size */
4127 	if (offset >= inode->i_size)
4128 		goto out_mutex;
4129 
4130 	/*
4131 	 * If the hole extends beyond i_size, set the hole
4132 	 * to end after the page that contains i_size
4133 	 */
4134 	if (offset + length > inode->i_size) {
4135 		length = inode->i_size +
4136 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4137 		   offset;
4138 	}
4139 
4140 	if (offset & (sb->s_blocksize - 1) ||
4141 	    (offset + length) & (sb->s_blocksize - 1)) {
4142 		/*
4143 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4144 		 * partial block
4145 		 */
4146 		ret = ext4_inode_attach_jinode(inode);
4147 		if (ret < 0)
4148 			goto out_mutex;
4149 
4150 	}
4151 
4152 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4153 	ext4_inode_block_unlocked_dio(inode);
4154 	inode_dio_wait(inode);
4155 
4156 	/*
4157 	 * Prevent page faults from reinstantiating pages we have released from
4158 	 * page cache.
4159 	 */
4160 	down_write(&EXT4_I(inode)->i_mmap_sem);
4161 	first_block_offset = round_up(offset, sb->s_blocksize);
4162 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4163 
4164 	/* Now release the pages and zero block aligned part of pages*/
4165 	if (last_block_offset > first_block_offset) {
4166 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4167 		if (ret)
4168 			goto out_dio;
4169 		truncate_pagecache_range(inode, first_block_offset,
4170 					 last_block_offset);
4171 	}
4172 
4173 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4174 		credits = ext4_writepage_trans_blocks(inode);
4175 	else
4176 		credits = ext4_blocks_for_truncate(inode);
4177 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4178 	if (IS_ERR(handle)) {
4179 		ret = PTR_ERR(handle);
4180 		ext4_std_error(sb, ret);
4181 		goto out_dio;
4182 	}
4183 
4184 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4185 				       length);
4186 	if (ret)
4187 		goto out_stop;
4188 
4189 	first_block = (offset + sb->s_blocksize - 1) >>
4190 		EXT4_BLOCK_SIZE_BITS(sb);
4191 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4192 
4193 	/* If there are no blocks to remove, return now */
4194 	if (first_block >= stop_block)
4195 		goto out_stop;
4196 
4197 	down_write(&EXT4_I(inode)->i_data_sem);
4198 	ext4_discard_preallocations(inode);
4199 
4200 	ret = ext4_es_remove_extent(inode, first_block,
4201 				    stop_block - first_block);
4202 	if (ret) {
4203 		up_write(&EXT4_I(inode)->i_data_sem);
4204 		goto out_stop;
4205 	}
4206 
4207 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4208 		ret = ext4_ext_remove_space(inode, first_block,
4209 					    stop_block - 1);
4210 	else
4211 		ret = ext4_ind_remove_space(handle, inode, first_block,
4212 					    stop_block);
4213 
4214 	up_write(&EXT4_I(inode)->i_data_sem);
4215 	if (IS_SYNC(inode))
4216 		ext4_handle_sync(handle);
4217 
4218 	inode->i_mtime = inode->i_ctime = current_time(inode);
4219 	ext4_mark_inode_dirty(handle, inode);
4220 	if (ret >= 0)
4221 		ext4_update_inode_fsync_trans(handle, inode, 1);
4222 out_stop:
4223 	ext4_journal_stop(handle);
4224 out_dio:
4225 	up_write(&EXT4_I(inode)->i_mmap_sem);
4226 	ext4_inode_resume_unlocked_dio(inode);
4227 out_mutex:
4228 	inode_unlock(inode);
4229 	return ret;
4230 }
4231 
4232 int ext4_inode_attach_jinode(struct inode *inode)
4233 {
4234 	struct ext4_inode_info *ei = EXT4_I(inode);
4235 	struct jbd2_inode *jinode;
4236 
4237 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4238 		return 0;
4239 
4240 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4241 	spin_lock(&inode->i_lock);
4242 	if (!ei->jinode) {
4243 		if (!jinode) {
4244 			spin_unlock(&inode->i_lock);
4245 			return -ENOMEM;
4246 		}
4247 		ei->jinode = jinode;
4248 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4249 		jinode = NULL;
4250 	}
4251 	spin_unlock(&inode->i_lock);
4252 	if (unlikely(jinode != NULL))
4253 		jbd2_free_inode(jinode);
4254 	return 0;
4255 }
4256 
4257 /*
4258  * ext4_truncate()
4259  *
4260  * We block out ext4_get_block() block instantiations across the entire
4261  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4262  * simultaneously on behalf of the same inode.
4263  *
4264  * As we work through the truncate and commit bits of it to the journal there
4265  * is one core, guiding principle: the file's tree must always be consistent on
4266  * disk.  We must be able to restart the truncate after a crash.
4267  *
4268  * The file's tree may be transiently inconsistent in memory (although it
4269  * probably isn't), but whenever we close off and commit a journal transaction,
4270  * the contents of (the filesystem + the journal) must be consistent and
4271  * restartable.  It's pretty simple, really: bottom up, right to left (although
4272  * left-to-right works OK too).
4273  *
4274  * Note that at recovery time, journal replay occurs *before* the restart of
4275  * truncate against the orphan inode list.
4276  *
4277  * The committed inode has the new, desired i_size (which is the same as
4278  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4279  * that this inode's truncate did not complete and it will again call
4280  * ext4_truncate() to have another go.  So there will be instantiated blocks
4281  * to the right of the truncation point in a crashed ext4 filesystem.  But
4282  * that's fine - as long as they are linked from the inode, the post-crash
4283  * ext4_truncate() run will find them and release them.
4284  */
4285 int ext4_truncate(struct inode *inode)
4286 {
4287 	struct ext4_inode_info *ei = EXT4_I(inode);
4288 	unsigned int credits;
4289 	int err = 0;
4290 	handle_t *handle;
4291 	struct address_space *mapping = inode->i_mapping;
4292 
4293 	/*
4294 	 * There is a possibility that we're either freeing the inode
4295 	 * or it's a completely new inode. In those cases we might not
4296 	 * have i_mutex locked because it's not necessary.
4297 	 */
4298 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4299 		WARN_ON(!inode_is_locked(inode));
4300 	trace_ext4_truncate_enter(inode);
4301 
4302 	if (!ext4_can_truncate(inode))
4303 		return 0;
4304 
4305 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4306 
4307 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4308 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4309 
4310 	if (ext4_has_inline_data(inode)) {
4311 		int has_inline = 1;
4312 
4313 		err = ext4_inline_data_truncate(inode, &has_inline);
4314 		if (err)
4315 			return err;
4316 		if (has_inline)
4317 			return 0;
4318 	}
4319 
4320 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4321 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4322 		if (ext4_inode_attach_jinode(inode) < 0)
4323 			return 0;
4324 	}
4325 
4326 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4327 		credits = ext4_writepage_trans_blocks(inode);
4328 	else
4329 		credits = ext4_blocks_for_truncate(inode);
4330 
4331 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4332 	if (IS_ERR(handle))
4333 		return PTR_ERR(handle);
4334 
4335 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4336 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4337 
4338 	/*
4339 	 * We add the inode to the orphan list, so that if this
4340 	 * truncate spans multiple transactions, and we crash, we will
4341 	 * resume the truncate when the filesystem recovers.  It also
4342 	 * marks the inode dirty, to catch the new size.
4343 	 *
4344 	 * Implication: the file must always be in a sane, consistent
4345 	 * truncatable state while each transaction commits.
4346 	 */
4347 	err = ext4_orphan_add(handle, inode);
4348 	if (err)
4349 		goto out_stop;
4350 
4351 	down_write(&EXT4_I(inode)->i_data_sem);
4352 
4353 	ext4_discard_preallocations(inode);
4354 
4355 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4356 		err = ext4_ext_truncate(handle, inode);
4357 	else
4358 		ext4_ind_truncate(handle, inode);
4359 
4360 	up_write(&ei->i_data_sem);
4361 	if (err)
4362 		goto out_stop;
4363 
4364 	if (IS_SYNC(inode))
4365 		ext4_handle_sync(handle);
4366 
4367 out_stop:
4368 	/*
4369 	 * If this was a simple ftruncate() and the file will remain alive,
4370 	 * then we need to clear up the orphan record which we created above.
4371 	 * However, if this was a real unlink then we were called by
4372 	 * ext4_evict_inode(), and we allow that function to clean up the
4373 	 * orphan info for us.
4374 	 */
4375 	if (inode->i_nlink)
4376 		ext4_orphan_del(handle, inode);
4377 
4378 	inode->i_mtime = inode->i_ctime = current_time(inode);
4379 	ext4_mark_inode_dirty(handle, inode);
4380 	ext4_journal_stop(handle);
4381 
4382 	trace_ext4_truncate_exit(inode);
4383 	return err;
4384 }
4385 
4386 /*
4387  * ext4_get_inode_loc returns with an extra refcount against the inode's
4388  * underlying buffer_head on success. If 'in_mem' is true, we have all
4389  * data in memory that is needed to recreate the on-disk version of this
4390  * inode.
4391  */
4392 static int __ext4_get_inode_loc(struct inode *inode,
4393 				struct ext4_iloc *iloc, int in_mem)
4394 {
4395 	struct ext4_group_desc	*gdp;
4396 	struct buffer_head	*bh;
4397 	struct super_block	*sb = inode->i_sb;
4398 	ext4_fsblk_t		block;
4399 	int			inodes_per_block, inode_offset;
4400 
4401 	iloc->bh = NULL;
4402 	if (!ext4_valid_inum(sb, inode->i_ino))
4403 		return -EFSCORRUPTED;
4404 
4405 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4406 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4407 	if (!gdp)
4408 		return -EIO;
4409 
4410 	/*
4411 	 * Figure out the offset within the block group inode table
4412 	 */
4413 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4414 	inode_offset = ((inode->i_ino - 1) %
4415 			EXT4_INODES_PER_GROUP(sb));
4416 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4417 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4418 
4419 	bh = sb_getblk(sb, block);
4420 	if (unlikely(!bh))
4421 		return -ENOMEM;
4422 	if (!buffer_uptodate(bh)) {
4423 		lock_buffer(bh);
4424 
4425 		/*
4426 		 * If the buffer has the write error flag, we have failed
4427 		 * to write out another inode in the same block.  In this
4428 		 * case, we don't have to read the block because we may
4429 		 * read the old inode data successfully.
4430 		 */
4431 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4432 			set_buffer_uptodate(bh);
4433 
4434 		if (buffer_uptodate(bh)) {
4435 			/* someone brought it uptodate while we waited */
4436 			unlock_buffer(bh);
4437 			goto has_buffer;
4438 		}
4439 
4440 		/*
4441 		 * If we have all information of the inode in memory and this
4442 		 * is the only valid inode in the block, we need not read the
4443 		 * block.
4444 		 */
4445 		if (in_mem) {
4446 			struct buffer_head *bitmap_bh;
4447 			int i, start;
4448 
4449 			start = inode_offset & ~(inodes_per_block - 1);
4450 
4451 			/* Is the inode bitmap in cache? */
4452 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4453 			if (unlikely(!bitmap_bh))
4454 				goto make_io;
4455 
4456 			/*
4457 			 * If the inode bitmap isn't in cache then the
4458 			 * optimisation may end up performing two reads instead
4459 			 * of one, so skip it.
4460 			 */
4461 			if (!buffer_uptodate(bitmap_bh)) {
4462 				brelse(bitmap_bh);
4463 				goto make_io;
4464 			}
4465 			for (i = start; i < start + inodes_per_block; i++) {
4466 				if (i == inode_offset)
4467 					continue;
4468 				if (ext4_test_bit(i, bitmap_bh->b_data))
4469 					break;
4470 			}
4471 			brelse(bitmap_bh);
4472 			if (i == start + inodes_per_block) {
4473 				/* all other inodes are free, so skip I/O */
4474 				memset(bh->b_data, 0, bh->b_size);
4475 				set_buffer_uptodate(bh);
4476 				unlock_buffer(bh);
4477 				goto has_buffer;
4478 			}
4479 		}
4480 
4481 make_io:
4482 		/*
4483 		 * If we need to do any I/O, try to pre-readahead extra
4484 		 * blocks from the inode table.
4485 		 */
4486 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4487 			ext4_fsblk_t b, end, table;
4488 			unsigned num;
4489 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4490 
4491 			table = ext4_inode_table(sb, gdp);
4492 			/* s_inode_readahead_blks is always a power of 2 */
4493 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4494 			if (table > b)
4495 				b = table;
4496 			end = b + ra_blks;
4497 			num = EXT4_INODES_PER_GROUP(sb);
4498 			if (ext4_has_group_desc_csum(sb))
4499 				num -= ext4_itable_unused_count(sb, gdp);
4500 			table += num / inodes_per_block;
4501 			if (end > table)
4502 				end = table;
4503 			while (b <= end)
4504 				sb_breadahead(sb, b++);
4505 		}
4506 
4507 		/*
4508 		 * There are other valid inodes in the buffer, this inode
4509 		 * has in-inode xattrs, or we don't have this inode in memory.
4510 		 * Read the block from disk.
4511 		 */
4512 		trace_ext4_load_inode(inode);
4513 		get_bh(bh);
4514 		bh->b_end_io = end_buffer_read_sync;
4515 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4516 		wait_on_buffer(bh);
4517 		if (!buffer_uptodate(bh)) {
4518 			EXT4_ERROR_INODE_BLOCK(inode, block,
4519 					       "unable to read itable block");
4520 			brelse(bh);
4521 			return -EIO;
4522 		}
4523 	}
4524 has_buffer:
4525 	iloc->bh = bh;
4526 	return 0;
4527 }
4528 
4529 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4530 {
4531 	/* We have all inode data except xattrs in memory here. */
4532 	return __ext4_get_inode_loc(inode, iloc,
4533 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4534 }
4535 
4536 void ext4_set_inode_flags(struct inode *inode)
4537 {
4538 	unsigned int flags = EXT4_I(inode)->i_flags;
4539 	unsigned int new_fl = 0;
4540 
4541 	if (flags & EXT4_SYNC_FL)
4542 		new_fl |= S_SYNC;
4543 	if (flags & EXT4_APPEND_FL)
4544 		new_fl |= S_APPEND;
4545 	if (flags & EXT4_IMMUTABLE_FL)
4546 		new_fl |= S_IMMUTABLE;
4547 	if (flags & EXT4_NOATIME_FL)
4548 		new_fl |= S_NOATIME;
4549 	if (flags & EXT4_DIRSYNC_FL)
4550 		new_fl |= S_DIRSYNC;
4551 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4552 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4553 	    !ext4_encrypted_inode(inode))
4554 		new_fl |= S_DAX;
4555 	inode_set_flags(inode, new_fl,
4556 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4557 }
4558 
4559 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4560 				  struct ext4_inode_info *ei)
4561 {
4562 	blkcnt_t i_blocks ;
4563 	struct inode *inode = &(ei->vfs_inode);
4564 	struct super_block *sb = inode->i_sb;
4565 
4566 	if (ext4_has_feature_huge_file(sb)) {
4567 		/* we are using combined 48 bit field */
4568 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4569 					le32_to_cpu(raw_inode->i_blocks_lo);
4570 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4571 			/* i_blocks represent file system block size */
4572 			return i_blocks  << (inode->i_blkbits - 9);
4573 		} else {
4574 			return i_blocks;
4575 		}
4576 	} else {
4577 		return le32_to_cpu(raw_inode->i_blocks_lo);
4578 	}
4579 }
4580 
4581 static inline void ext4_iget_extra_inode(struct inode *inode,
4582 					 struct ext4_inode *raw_inode,
4583 					 struct ext4_inode_info *ei)
4584 {
4585 	__le32 *magic = (void *)raw_inode +
4586 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4587 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4588 	    EXT4_INODE_SIZE(inode->i_sb) &&
4589 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4590 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4591 		ext4_find_inline_data_nolock(inode);
4592 	} else
4593 		EXT4_I(inode)->i_inline_off = 0;
4594 }
4595 
4596 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4597 {
4598 	if (!ext4_has_feature_project(inode->i_sb))
4599 		return -EOPNOTSUPP;
4600 	*projid = EXT4_I(inode)->i_projid;
4601 	return 0;
4602 }
4603 
4604 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4605 {
4606 	struct ext4_iloc iloc;
4607 	struct ext4_inode *raw_inode;
4608 	struct ext4_inode_info *ei;
4609 	struct inode *inode;
4610 	journal_t *journal = EXT4_SB(sb)->s_journal;
4611 	long ret;
4612 	loff_t size;
4613 	int block;
4614 	uid_t i_uid;
4615 	gid_t i_gid;
4616 	projid_t i_projid;
4617 
4618 	inode = iget_locked(sb, ino);
4619 	if (!inode)
4620 		return ERR_PTR(-ENOMEM);
4621 	if (!(inode->i_state & I_NEW))
4622 		return inode;
4623 
4624 	ei = EXT4_I(inode);
4625 	iloc.bh = NULL;
4626 
4627 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4628 	if (ret < 0)
4629 		goto bad_inode;
4630 	raw_inode = ext4_raw_inode(&iloc);
4631 
4632 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4633 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4634 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4635 			EXT4_INODE_SIZE(inode->i_sb) ||
4636 		    (ei->i_extra_isize & 3)) {
4637 			EXT4_ERROR_INODE(inode,
4638 					 "bad extra_isize %u (inode size %u)",
4639 					 ei->i_extra_isize,
4640 					 EXT4_INODE_SIZE(inode->i_sb));
4641 			ret = -EFSCORRUPTED;
4642 			goto bad_inode;
4643 		}
4644 	} else
4645 		ei->i_extra_isize = 0;
4646 
4647 	/* Precompute checksum seed for inode metadata */
4648 	if (ext4_has_metadata_csum(sb)) {
4649 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4650 		__u32 csum;
4651 		__le32 inum = cpu_to_le32(inode->i_ino);
4652 		__le32 gen = raw_inode->i_generation;
4653 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4654 				   sizeof(inum));
4655 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4656 					      sizeof(gen));
4657 	}
4658 
4659 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4660 		EXT4_ERROR_INODE(inode, "checksum invalid");
4661 		ret = -EFSBADCRC;
4662 		goto bad_inode;
4663 	}
4664 
4665 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4666 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4667 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4668 	if (ext4_has_feature_project(sb) &&
4669 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4670 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4671 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4672 	else
4673 		i_projid = EXT4_DEF_PROJID;
4674 
4675 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4676 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4677 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4678 	}
4679 	i_uid_write(inode, i_uid);
4680 	i_gid_write(inode, i_gid);
4681 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4682 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4683 
4684 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4685 	ei->i_inline_off = 0;
4686 	ei->i_dir_start_lookup = 0;
4687 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4688 	/* We now have enough fields to check if the inode was active or not.
4689 	 * This is needed because nfsd might try to access dead inodes
4690 	 * the test is that same one that e2fsck uses
4691 	 * NeilBrown 1999oct15
4692 	 */
4693 	if (inode->i_nlink == 0) {
4694 		if ((inode->i_mode == 0 ||
4695 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4696 		    ino != EXT4_BOOT_LOADER_INO) {
4697 			/* this inode is deleted */
4698 			ret = -ESTALE;
4699 			goto bad_inode;
4700 		}
4701 		/* The only unlinked inodes we let through here have
4702 		 * valid i_mode and are being read by the orphan
4703 		 * recovery code: that's fine, we're about to complete
4704 		 * the process of deleting those.
4705 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4706 		 * not initialized on a new filesystem. */
4707 	}
4708 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4709 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4710 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4711 	if (ext4_has_feature_64bit(sb))
4712 		ei->i_file_acl |=
4713 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4714 	inode->i_size = ext4_isize(sb, raw_inode);
4715 	if ((size = i_size_read(inode)) < 0) {
4716 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4717 		ret = -EFSCORRUPTED;
4718 		goto bad_inode;
4719 	}
4720 	ei->i_disksize = inode->i_size;
4721 #ifdef CONFIG_QUOTA
4722 	ei->i_reserved_quota = 0;
4723 #endif
4724 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4725 	ei->i_block_group = iloc.block_group;
4726 	ei->i_last_alloc_group = ~0;
4727 	/*
4728 	 * NOTE! The in-memory inode i_data array is in little-endian order
4729 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4730 	 */
4731 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4732 		ei->i_data[block] = raw_inode->i_block[block];
4733 	INIT_LIST_HEAD(&ei->i_orphan);
4734 
4735 	/*
4736 	 * Set transaction id's of transactions that have to be committed
4737 	 * to finish f[data]sync. We set them to currently running transaction
4738 	 * as we cannot be sure that the inode or some of its metadata isn't
4739 	 * part of the transaction - the inode could have been reclaimed and
4740 	 * now it is reread from disk.
4741 	 */
4742 	if (journal) {
4743 		transaction_t *transaction;
4744 		tid_t tid;
4745 
4746 		read_lock(&journal->j_state_lock);
4747 		if (journal->j_running_transaction)
4748 			transaction = journal->j_running_transaction;
4749 		else
4750 			transaction = journal->j_committing_transaction;
4751 		if (transaction)
4752 			tid = transaction->t_tid;
4753 		else
4754 			tid = journal->j_commit_sequence;
4755 		read_unlock(&journal->j_state_lock);
4756 		ei->i_sync_tid = tid;
4757 		ei->i_datasync_tid = tid;
4758 	}
4759 
4760 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4761 		if (ei->i_extra_isize == 0) {
4762 			/* The extra space is currently unused. Use it. */
4763 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4764 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4765 					    EXT4_GOOD_OLD_INODE_SIZE;
4766 		} else {
4767 			ext4_iget_extra_inode(inode, raw_inode, ei);
4768 		}
4769 	}
4770 
4771 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4772 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4773 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4774 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4775 
4776 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4777 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4778 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4779 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4780 				inode->i_version |=
4781 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4782 		}
4783 	}
4784 
4785 	ret = 0;
4786 	if (ei->i_file_acl &&
4787 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4788 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4789 				 ei->i_file_acl);
4790 		ret = -EFSCORRUPTED;
4791 		goto bad_inode;
4792 	} else if (!ext4_has_inline_data(inode)) {
4793 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4794 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4795 			    (S_ISLNK(inode->i_mode) &&
4796 			     !ext4_inode_is_fast_symlink(inode))))
4797 				/* Validate extent which is part of inode */
4798 				ret = ext4_ext_check_inode(inode);
4799 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4800 			   (S_ISLNK(inode->i_mode) &&
4801 			    !ext4_inode_is_fast_symlink(inode))) {
4802 			/* Validate block references which are part of inode */
4803 			ret = ext4_ind_check_inode(inode);
4804 		}
4805 	}
4806 	if (ret)
4807 		goto bad_inode;
4808 
4809 	if (S_ISREG(inode->i_mode)) {
4810 		inode->i_op = &ext4_file_inode_operations;
4811 		inode->i_fop = &ext4_file_operations;
4812 		ext4_set_aops(inode);
4813 	} else if (S_ISDIR(inode->i_mode)) {
4814 		inode->i_op = &ext4_dir_inode_operations;
4815 		inode->i_fop = &ext4_dir_operations;
4816 	} else if (S_ISLNK(inode->i_mode)) {
4817 		if (ext4_encrypted_inode(inode)) {
4818 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4819 			ext4_set_aops(inode);
4820 		} else if (ext4_inode_is_fast_symlink(inode)) {
4821 			inode->i_link = (char *)ei->i_data;
4822 			inode->i_op = &ext4_fast_symlink_inode_operations;
4823 			nd_terminate_link(ei->i_data, inode->i_size,
4824 				sizeof(ei->i_data) - 1);
4825 		} else {
4826 			inode->i_op = &ext4_symlink_inode_operations;
4827 			ext4_set_aops(inode);
4828 		}
4829 		inode_nohighmem(inode);
4830 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4831 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4832 		inode->i_op = &ext4_special_inode_operations;
4833 		if (raw_inode->i_block[0])
4834 			init_special_inode(inode, inode->i_mode,
4835 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4836 		else
4837 			init_special_inode(inode, inode->i_mode,
4838 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4839 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4840 		make_bad_inode(inode);
4841 	} else {
4842 		ret = -EFSCORRUPTED;
4843 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4844 		goto bad_inode;
4845 	}
4846 	brelse(iloc.bh);
4847 	ext4_set_inode_flags(inode);
4848 
4849 	if (ei->i_flags & EXT4_EA_INODE_FL) {
4850 		ext4_xattr_inode_set_class(inode);
4851 
4852 		inode_lock(inode);
4853 		inode->i_flags |= S_NOQUOTA;
4854 		inode_unlock(inode);
4855 	}
4856 
4857 	unlock_new_inode(inode);
4858 	return inode;
4859 
4860 bad_inode:
4861 	brelse(iloc.bh);
4862 	iget_failed(inode);
4863 	return ERR_PTR(ret);
4864 }
4865 
4866 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4867 {
4868 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4869 		return ERR_PTR(-EFSCORRUPTED);
4870 	return ext4_iget(sb, ino);
4871 }
4872 
4873 static int ext4_inode_blocks_set(handle_t *handle,
4874 				struct ext4_inode *raw_inode,
4875 				struct ext4_inode_info *ei)
4876 {
4877 	struct inode *inode = &(ei->vfs_inode);
4878 	u64 i_blocks = inode->i_blocks;
4879 	struct super_block *sb = inode->i_sb;
4880 
4881 	if (i_blocks <= ~0U) {
4882 		/*
4883 		 * i_blocks can be represented in a 32 bit variable
4884 		 * as multiple of 512 bytes
4885 		 */
4886 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4887 		raw_inode->i_blocks_high = 0;
4888 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4889 		return 0;
4890 	}
4891 	if (!ext4_has_feature_huge_file(sb))
4892 		return -EFBIG;
4893 
4894 	if (i_blocks <= 0xffffffffffffULL) {
4895 		/*
4896 		 * i_blocks can be represented in a 48 bit variable
4897 		 * as multiple of 512 bytes
4898 		 */
4899 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4900 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4901 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4902 	} else {
4903 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4904 		/* i_block is stored in file system block size */
4905 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4906 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4907 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4908 	}
4909 	return 0;
4910 }
4911 
4912 struct other_inode {
4913 	unsigned long		orig_ino;
4914 	struct ext4_inode	*raw_inode;
4915 };
4916 
4917 static int other_inode_match(struct inode * inode, unsigned long ino,
4918 			     void *data)
4919 {
4920 	struct other_inode *oi = (struct other_inode *) data;
4921 
4922 	if ((inode->i_ino != ino) ||
4923 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4924 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4925 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4926 		return 0;
4927 	spin_lock(&inode->i_lock);
4928 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4929 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4930 	    (inode->i_state & I_DIRTY_TIME)) {
4931 		struct ext4_inode_info	*ei = EXT4_I(inode);
4932 
4933 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4934 		spin_unlock(&inode->i_lock);
4935 
4936 		spin_lock(&ei->i_raw_lock);
4937 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4938 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4939 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4940 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4941 		spin_unlock(&ei->i_raw_lock);
4942 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4943 		return -1;
4944 	}
4945 	spin_unlock(&inode->i_lock);
4946 	return -1;
4947 }
4948 
4949 /*
4950  * Opportunistically update the other time fields for other inodes in
4951  * the same inode table block.
4952  */
4953 static void ext4_update_other_inodes_time(struct super_block *sb,
4954 					  unsigned long orig_ino, char *buf)
4955 {
4956 	struct other_inode oi;
4957 	unsigned long ino;
4958 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4959 	int inode_size = EXT4_INODE_SIZE(sb);
4960 
4961 	oi.orig_ino = orig_ino;
4962 	/*
4963 	 * Calculate the first inode in the inode table block.  Inode
4964 	 * numbers are one-based.  That is, the first inode in a block
4965 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4966 	 */
4967 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4968 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4969 		if (ino == orig_ino)
4970 			continue;
4971 		oi.raw_inode = (struct ext4_inode *) buf;
4972 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4973 	}
4974 }
4975 
4976 /*
4977  * Post the struct inode info into an on-disk inode location in the
4978  * buffer-cache.  This gobbles the caller's reference to the
4979  * buffer_head in the inode location struct.
4980  *
4981  * The caller must have write access to iloc->bh.
4982  */
4983 static int ext4_do_update_inode(handle_t *handle,
4984 				struct inode *inode,
4985 				struct ext4_iloc *iloc)
4986 {
4987 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4988 	struct ext4_inode_info *ei = EXT4_I(inode);
4989 	struct buffer_head *bh = iloc->bh;
4990 	struct super_block *sb = inode->i_sb;
4991 	int err = 0, rc, block;
4992 	int need_datasync = 0, set_large_file = 0;
4993 	uid_t i_uid;
4994 	gid_t i_gid;
4995 	projid_t i_projid;
4996 
4997 	spin_lock(&ei->i_raw_lock);
4998 
4999 	/* For fields not tracked in the in-memory inode,
5000 	 * initialise them to zero for new inodes. */
5001 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5002 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5003 
5004 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5005 	i_uid = i_uid_read(inode);
5006 	i_gid = i_gid_read(inode);
5007 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5008 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5009 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5010 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5011 /*
5012  * Fix up interoperability with old kernels. Otherwise, old inodes get
5013  * re-used with the upper 16 bits of the uid/gid intact
5014  */
5015 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5016 			raw_inode->i_uid_high = 0;
5017 			raw_inode->i_gid_high = 0;
5018 		} else {
5019 			raw_inode->i_uid_high =
5020 				cpu_to_le16(high_16_bits(i_uid));
5021 			raw_inode->i_gid_high =
5022 				cpu_to_le16(high_16_bits(i_gid));
5023 		}
5024 	} else {
5025 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5026 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5027 		raw_inode->i_uid_high = 0;
5028 		raw_inode->i_gid_high = 0;
5029 	}
5030 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5031 
5032 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5033 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5034 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5035 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5036 
5037 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5038 	if (err) {
5039 		spin_unlock(&ei->i_raw_lock);
5040 		goto out_brelse;
5041 	}
5042 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5043 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5044 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5045 		raw_inode->i_file_acl_high =
5046 			cpu_to_le16(ei->i_file_acl >> 32);
5047 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5048 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5049 		ext4_isize_set(raw_inode, ei->i_disksize);
5050 		need_datasync = 1;
5051 	}
5052 	if (ei->i_disksize > 0x7fffffffULL) {
5053 		if (!ext4_has_feature_large_file(sb) ||
5054 				EXT4_SB(sb)->s_es->s_rev_level ==
5055 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5056 			set_large_file = 1;
5057 	}
5058 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5059 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5060 		if (old_valid_dev(inode->i_rdev)) {
5061 			raw_inode->i_block[0] =
5062 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5063 			raw_inode->i_block[1] = 0;
5064 		} else {
5065 			raw_inode->i_block[0] = 0;
5066 			raw_inode->i_block[1] =
5067 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5068 			raw_inode->i_block[2] = 0;
5069 		}
5070 	} else if (!ext4_has_inline_data(inode)) {
5071 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5072 			raw_inode->i_block[block] = ei->i_data[block];
5073 	}
5074 
5075 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5076 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5077 		if (ei->i_extra_isize) {
5078 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5079 				raw_inode->i_version_hi =
5080 					cpu_to_le32(inode->i_version >> 32);
5081 			raw_inode->i_extra_isize =
5082 				cpu_to_le16(ei->i_extra_isize);
5083 		}
5084 	}
5085 
5086 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5087 	       i_projid != EXT4_DEF_PROJID);
5088 
5089 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5090 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5091 		raw_inode->i_projid = cpu_to_le32(i_projid);
5092 
5093 	ext4_inode_csum_set(inode, raw_inode, ei);
5094 	spin_unlock(&ei->i_raw_lock);
5095 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5096 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5097 					      bh->b_data);
5098 
5099 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5100 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5101 	if (!err)
5102 		err = rc;
5103 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5104 	if (set_large_file) {
5105 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5106 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5107 		if (err)
5108 			goto out_brelse;
5109 		ext4_update_dynamic_rev(sb);
5110 		ext4_set_feature_large_file(sb);
5111 		ext4_handle_sync(handle);
5112 		err = ext4_handle_dirty_super(handle, sb);
5113 	}
5114 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5115 out_brelse:
5116 	brelse(bh);
5117 	ext4_std_error(inode->i_sb, err);
5118 	return err;
5119 }
5120 
5121 /*
5122  * ext4_write_inode()
5123  *
5124  * We are called from a few places:
5125  *
5126  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5127  *   Here, there will be no transaction running. We wait for any running
5128  *   transaction to commit.
5129  *
5130  * - Within flush work (sys_sync(), kupdate and such).
5131  *   We wait on commit, if told to.
5132  *
5133  * - Within iput_final() -> write_inode_now()
5134  *   We wait on commit, if told to.
5135  *
5136  * In all cases it is actually safe for us to return without doing anything,
5137  * because the inode has been copied into a raw inode buffer in
5138  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5139  * writeback.
5140  *
5141  * Note that we are absolutely dependent upon all inode dirtiers doing the
5142  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5143  * which we are interested.
5144  *
5145  * It would be a bug for them to not do this.  The code:
5146  *
5147  *	mark_inode_dirty(inode)
5148  *	stuff();
5149  *	inode->i_size = expr;
5150  *
5151  * is in error because write_inode() could occur while `stuff()' is running,
5152  * and the new i_size will be lost.  Plus the inode will no longer be on the
5153  * superblock's dirty inode list.
5154  */
5155 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5156 {
5157 	int err;
5158 
5159 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5160 		return 0;
5161 
5162 	if (EXT4_SB(inode->i_sb)->s_journal) {
5163 		if (ext4_journal_current_handle()) {
5164 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5165 			dump_stack();
5166 			return -EIO;
5167 		}
5168 
5169 		/*
5170 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5171 		 * ext4_sync_fs() will force the commit after everything is
5172 		 * written.
5173 		 */
5174 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5175 			return 0;
5176 
5177 		err = ext4_force_commit(inode->i_sb);
5178 	} else {
5179 		struct ext4_iloc iloc;
5180 
5181 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5182 		if (err)
5183 			return err;
5184 		/*
5185 		 * sync(2) will flush the whole buffer cache. No need to do
5186 		 * it here separately for each inode.
5187 		 */
5188 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5189 			sync_dirty_buffer(iloc.bh);
5190 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5191 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5192 					 "IO error syncing inode");
5193 			err = -EIO;
5194 		}
5195 		brelse(iloc.bh);
5196 	}
5197 	return err;
5198 }
5199 
5200 /*
5201  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5202  * buffers that are attached to a page stradding i_size and are undergoing
5203  * commit. In that case we have to wait for commit to finish and try again.
5204  */
5205 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5206 {
5207 	struct page *page;
5208 	unsigned offset;
5209 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5210 	tid_t commit_tid = 0;
5211 	int ret;
5212 
5213 	offset = inode->i_size & (PAGE_SIZE - 1);
5214 	/*
5215 	 * All buffers in the last page remain valid? Then there's nothing to
5216 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5217 	 * blocksize case
5218 	 */
5219 	if (offset > PAGE_SIZE - i_blocksize(inode))
5220 		return;
5221 	while (1) {
5222 		page = find_lock_page(inode->i_mapping,
5223 				      inode->i_size >> PAGE_SHIFT);
5224 		if (!page)
5225 			return;
5226 		ret = __ext4_journalled_invalidatepage(page, offset,
5227 						PAGE_SIZE - offset);
5228 		unlock_page(page);
5229 		put_page(page);
5230 		if (ret != -EBUSY)
5231 			return;
5232 		commit_tid = 0;
5233 		read_lock(&journal->j_state_lock);
5234 		if (journal->j_committing_transaction)
5235 			commit_tid = journal->j_committing_transaction->t_tid;
5236 		read_unlock(&journal->j_state_lock);
5237 		if (commit_tid)
5238 			jbd2_log_wait_commit(journal, commit_tid);
5239 	}
5240 }
5241 
5242 /*
5243  * ext4_setattr()
5244  *
5245  * Called from notify_change.
5246  *
5247  * We want to trap VFS attempts to truncate the file as soon as
5248  * possible.  In particular, we want to make sure that when the VFS
5249  * shrinks i_size, we put the inode on the orphan list and modify
5250  * i_disksize immediately, so that during the subsequent flushing of
5251  * dirty pages and freeing of disk blocks, we can guarantee that any
5252  * commit will leave the blocks being flushed in an unused state on
5253  * disk.  (On recovery, the inode will get truncated and the blocks will
5254  * be freed, so we have a strong guarantee that no future commit will
5255  * leave these blocks visible to the user.)
5256  *
5257  * Another thing we have to assure is that if we are in ordered mode
5258  * and inode is still attached to the committing transaction, we must
5259  * we start writeout of all the dirty pages which are being truncated.
5260  * This way we are sure that all the data written in the previous
5261  * transaction are already on disk (truncate waits for pages under
5262  * writeback).
5263  *
5264  * Called with inode->i_mutex down.
5265  */
5266 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5267 {
5268 	struct inode *inode = d_inode(dentry);
5269 	int error, rc = 0;
5270 	int orphan = 0;
5271 	const unsigned int ia_valid = attr->ia_valid;
5272 
5273 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5274 		return -EIO;
5275 
5276 	error = setattr_prepare(dentry, attr);
5277 	if (error)
5278 		return error;
5279 
5280 	if (is_quota_modification(inode, attr)) {
5281 		error = dquot_initialize(inode);
5282 		if (error)
5283 			return error;
5284 	}
5285 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5286 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5287 		handle_t *handle;
5288 
5289 		/* (user+group)*(old+new) structure, inode write (sb,
5290 		 * inode block, ? - but truncate inode update has it) */
5291 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5292 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5293 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5294 		if (IS_ERR(handle)) {
5295 			error = PTR_ERR(handle);
5296 			goto err_out;
5297 		}
5298 		error = dquot_transfer(inode, attr);
5299 		if (error) {
5300 			ext4_journal_stop(handle);
5301 			return error;
5302 		}
5303 		/* Update corresponding info in inode so that everything is in
5304 		 * one transaction */
5305 		if (attr->ia_valid & ATTR_UID)
5306 			inode->i_uid = attr->ia_uid;
5307 		if (attr->ia_valid & ATTR_GID)
5308 			inode->i_gid = attr->ia_gid;
5309 		error = ext4_mark_inode_dirty(handle, inode);
5310 		ext4_journal_stop(handle);
5311 	}
5312 
5313 	if (attr->ia_valid & ATTR_SIZE) {
5314 		handle_t *handle;
5315 		loff_t oldsize = inode->i_size;
5316 		int shrink = (attr->ia_size <= inode->i_size);
5317 
5318 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5319 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5320 
5321 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5322 				return -EFBIG;
5323 		}
5324 		if (!S_ISREG(inode->i_mode))
5325 			return -EINVAL;
5326 
5327 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5328 			inode_inc_iversion(inode);
5329 
5330 		if (ext4_should_order_data(inode) &&
5331 		    (attr->ia_size < inode->i_size)) {
5332 			error = ext4_begin_ordered_truncate(inode,
5333 							    attr->ia_size);
5334 			if (error)
5335 				goto err_out;
5336 		}
5337 		if (attr->ia_size != inode->i_size) {
5338 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5339 			if (IS_ERR(handle)) {
5340 				error = PTR_ERR(handle);
5341 				goto err_out;
5342 			}
5343 			if (ext4_handle_valid(handle) && shrink) {
5344 				error = ext4_orphan_add(handle, inode);
5345 				orphan = 1;
5346 			}
5347 			/*
5348 			 * Update c/mtime on truncate up, ext4_truncate() will
5349 			 * update c/mtime in shrink case below
5350 			 */
5351 			if (!shrink) {
5352 				inode->i_mtime = current_time(inode);
5353 				inode->i_ctime = inode->i_mtime;
5354 			}
5355 			down_write(&EXT4_I(inode)->i_data_sem);
5356 			EXT4_I(inode)->i_disksize = attr->ia_size;
5357 			rc = ext4_mark_inode_dirty(handle, inode);
5358 			if (!error)
5359 				error = rc;
5360 			/*
5361 			 * We have to update i_size under i_data_sem together
5362 			 * with i_disksize to avoid races with writeback code
5363 			 * running ext4_wb_update_i_disksize().
5364 			 */
5365 			if (!error)
5366 				i_size_write(inode, attr->ia_size);
5367 			up_write(&EXT4_I(inode)->i_data_sem);
5368 			ext4_journal_stop(handle);
5369 			if (error) {
5370 				if (orphan)
5371 					ext4_orphan_del(NULL, inode);
5372 				goto err_out;
5373 			}
5374 		}
5375 		if (!shrink)
5376 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5377 
5378 		/*
5379 		 * Blocks are going to be removed from the inode. Wait
5380 		 * for dio in flight.  Temporarily disable
5381 		 * dioread_nolock to prevent livelock.
5382 		 */
5383 		if (orphan) {
5384 			if (!ext4_should_journal_data(inode)) {
5385 				ext4_inode_block_unlocked_dio(inode);
5386 				inode_dio_wait(inode);
5387 				ext4_inode_resume_unlocked_dio(inode);
5388 			} else
5389 				ext4_wait_for_tail_page_commit(inode);
5390 		}
5391 		down_write(&EXT4_I(inode)->i_mmap_sem);
5392 		/*
5393 		 * Truncate pagecache after we've waited for commit
5394 		 * in data=journal mode to make pages freeable.
5395 		 */
5396 		truncate_pagecache(inode, inode->i_size);
5397 		if (shrink) {
5398 			rc = ext4_truncate(inode);
5399 			if (rc)
5400 				error = rc;
5401 		}
5402 		up_write(&EXT4_I(inode)->i_mmap_sem);
5403 	}
5404 
5405 	if (!error) {
5406 		setattr_copy(inode, attr);
5407 		mark_inode_dirty(inode);
5408 	}
5409 
5410 	/*
5411 	 * If the call to ext4_truncate failed to get a transaction handle at
5412 	 * all, we need to clean up the in-core orphan list manually.
5413 	 */
5414 	if (orphan && inode->i_nlink)
5415 		ext4_orphan_del(NULL, inode);
5416 
5417 	if (!error && (ia_valid & ATTR_MODE))
5418 		rc = posix_acl_chmod(inode, inode->i_mode);
5419 
5420 err_out:
5421 	ext4_std_error(inode->i_sb, error);
5422 	if (!error)
5423 		error = rc;
5424 	return error;
5425 }
5426 
5427 int ext4_getattr(const struct path *path, struct kstat *stat,
5428 		 u32 request_mask, unsigned int query_flags)
5429 {
5430 	struct inode *inode = d_inode(path->dentry);
5431 	struct ext4_inode *raw_inode;
5432 	struct ext4_inode_info *ei = EXT4_I(inode);
5433 	unsigned int flags;
5434 
5435 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5436 		stat->result_mask |= STATX_BTIME;
5437 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5438 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5439 	}
5440 
5441 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5442 	if (flags & EXT4_APPEND_FL)
5443 		stat->attributes |= STATX_ATTR_APPEND;
5444 	if (flags & EXT4_COMPR_FL)
5445 		stat->attributes |= STATX_ATTR_COMPRESSED;
5446 	if (flags & EXT4_ENCRYPT_FL)
5447 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5448 	if (flags & EXT4_IMMUTABLE_FL)
5449 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5450 	if (flags & EXT4_NODUMP_FL)
5451 		stat->attributes |= STATX_ATTR_NODUMP;
5452 
5453 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5454 				  STATX_ATTR_COMPRESSED |
5455 				  STATX_ATTR_ENCRYPTED |
5456 				  STATX_ATTR_IMMUTABLE |
5457 				  STATX_ATTR_NODUMP);
5458 
5459 	generic_fillattr(inode, stat);
5460 	return 0;
5461 }
5462 
5463 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5464 		      u32 request_mask, unsigned int query_flags)
5465 {
5466 	struct inode *inode = d_inode(path->dentry);
5467 	u64 delalloc_blocks;
5468 
5469 	ext4_getattr(path, stat, request_mask, query_flags);
5470 
5471 	/*
5472 	 * If there is inline data in the inode, the inode will normally not
5473 	 * have data blocks allocated (it may have an external xattr block).
5474 	 * Report at least one sector for such files, so tools like tar, rsync,
5475 	 * others don't incorrectly think the file is completely sparse.
5476 	 */
5477 	if (unlikely(ext4_has_inline_data(inode)))
5478 		stat->blocks += (stat->size + 511) >> 9;
5479 
5480 	/*
5481 	 * We can't update i_blocks if the block allocation is delayed
5482 	 * otherwise in the case of system crash before the real block
5483 	 * allocation is done, we will have i_blocks inconsistent with
5484 	 * on-disk file blocks.
5485 	 * We always keep i_blocks updated together with real
5486 	 * allocation. But to not confuse with user, stat
5487 	 * will return the blocks that include the delayed allocation
5488 	 * blocks for this file.
5489 	 */
5490 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5491 				   EXT4_I(inode)->i_reserved_data_blocks);
5492 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5493 	return 0;
5494 }
5495 
5496 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5497 				   int pextents)
5498 {
5499 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5500 		return ext4_ind_trans_blocks(inode, lblocks);
5501 	return ext4_ext_index_trans_blocks(inode, pextents);
5502 }
5503 
5504 /*
5505  * Account for index blocks, block groups bitmaps and block group
5506  * descriptor blocks if modify datablocks and index blocks
5507  * worse case, the indexs blocks spread over different block groups
5508  *
5509  * If datablocks are discontiguous, they are possible to spread over
5510  * different block groups too. If they are contiguous, with flexbg,
5511  * they could still across block group boundary.
5512  *
5513  * Also account for superblock, inode, quota and xattr blocks
5514  */
5515 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5516 				  int pextents)
5517 {
5518 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5519 	int gdpblocks;
5520 	int idxblocks;
5521 	int ret = 0;
5522 
5523 	/*
5524 	 * How many index blocks need to touch to map @lblocks logical blocks
5525 	 * to @pextents physical extents?
5526 	 */
5527 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5528 
5529 	ret = idxblocks;
5530 
5531 	/*
5532 	 * Now let's see how many group bitmaps and group descriptors need
5533 	 * to account
5534 	 */
5535 	groups = idxblocks + pextents;
5536 	gdpblocks = groups;
5537 	if (groups > ngroups)
5538 		groups = ngroups;
5539 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5540 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5541 
5542 	/* bitmaps and block group descriptor blocks */
5543 	ret += groups + gdpblocks;
5544 
5545 	/* Blocks for super block, inode, quota and xattr blocks */
5546 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5547 
5548 	return ret;
5549 }
5550 
5551 /*
5552  * Calculate the total number of credits to reserve to fit
5553  * the modification of a single pages into a single transaction,
5554  * which may include multiple chunks of block allocations.
5555  *
5556  * This could be called via ext4_write_begin()
5557  *
5558  * We need to consider the worse case, when
5559  * one new block per extent.
5560  */
5561 int ext4_writepage_trans_blocks(struct inode *inode)
5562 {
5563 	int bpp = ext4_journal_blocks_per_page(inode);
5564 	int ret;
5565 
5566 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5567 
5568 	/* Account for data blocks for journalled mode */
5569 	if (ext4_should_journal_data(inode))
5570 		ret += bpp;
5571 	return ret;
5572 }
5573 
5574 /*
5575  * Calculate the journal credits for a chunk of data modification.
5576  *
5577  * This is called from DIO, fallocate or whoever calling
5578  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5579  *
5580  * journal buffers for data blocks are not included here, as DIO
5581  * and fallocate do no need to journal data buffers.
5582  */
5583 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5584 {
5585 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5586 }
5587 
5588 /*
5589  * The caller must have previously called ext4_reserve_inode_write().
5590  * Give this, we know that the caller already has write access to iloc->bh.
5591  */
5592 int ext4_mark_iloc_dirty(handle_t *handle,
5593 			 struct inode *inode, struct ext4_iloc *iloc)
5594 {
5595 	int err = 0;
5596 
5597 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5598 		return -EIO;
5599 
5600 	if (IS_I_VERSION(inode))
5601 		inode_inc_iversion(inode);
5602 
5603 	/* the do_update_inode consumes one bh->b_count */
5604 	get_bh(iloc->bh);
5605 
5606 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5607 	err = ext4_do_update_inode(handle, inode, iloc);
5608 	put_bh(iloc->bh);
5609 	return err;
5610 }
5611 
5612 /*
5613  * On success, We end up with an outstanding reference count against
5614  * iloc->bh.  This _must_ be cleaned up later.
5615  */
5616 
5617 int
5618 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5619 			 struct ext4_iloc *iloc)
5620 {
5621 	int err;
5622 
5623 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5624 		return -EIO;
5625 
5626 	err = ext4_get_inode_loc(inode, iloc);
5627 	if (!err) {
5628 		BUFFER_TRACE(iloc->bh, "get_write_access");
5629 		err = ext4_journal_get_write_access(handle, iloc->bh);
5630 		if (err) {
5631 			brelse(iloc->bh);
5632 			iloc->bh = NULL;
5633 		}
5634 	}
5635 	ext4_std_error(inode->i_sb, err);
5636 	return err;
5637 }
5638 
5639 /*
5640  * Expand an inode by new_extra_isize bytes.
5641  * Returns 0 on success or negative error number on failure.
5642  */
5643 static int ext4_expand_extra_isize(struct inode *inode,
5644 				   unsigned int new_extra_isize,
5645 				   struct ext4_iloc iloc,
5646 				   handle_t *handle)
5647 {
5648 	struct ext4_inode *raw_inode;
5649 	struct ext4_xattr_ibody_header *header;
5650 
5651 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5652 		return 0;
5653 
5654 	raw_inode = ext4_raw_inode(&iloc);
5655 
5656 	header = IHDR(inode, raw_inode);
5657 
5658 	/* No extended attributes present */
5659 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5660 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5661 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5662 		       EXT4_I(inode)->i_extra_isize, 0,
5663 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5664 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5665 		return 0;
5666 	}
5667 
5668 	/* try to expand with EAs present */
5669 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5670 					  raw_inode, handle);
5671 }
5672 
5673 /*
5674  * What we do here is to mark the in-core inode as clean with respect to inode
5675  * dirtiness (it may still be data-dirty).
5676  * This means that the in-core inode may be reaped by prune_icache
5677  * without having to perform any I/O.  This is a very good thing,
5678  * because *any* task may call prune_icache - even ones which
5679  * have a transaction open against a different journal.
5680  *
5681  * Is this cheating?  Not really.  Sure, we haven't written the
5682  * inode out, but prune_icache isn't a user-visible syncing function.
5683  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5684  * we start and wait on commits.
5685  */
5686 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5687 {
5688 	struct ext4_iloc iloc;
5689 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5690 	static unsigned int mnt_count;
5691 	int err, ret;
5692 
5693 	might_sleep();
5694 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5695 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5696 	if (err)
5697 		return err;
5698 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5699 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5700 		/*
5701 		 * In nojournal mode, we can immediately attempt to expand
5702 		 * the inode.  When journaled, we first need to obtain extra
5703 		 * buffer credits since we may write into the EA block
5704 		 * with this same handle. If journal_extend fails, then it will
5705 		 * only result in a minor loss of functionality for that inode.
5706 		 * If this is felt to be critical, then e2fsck should be run to
5707 		 * force a large enough s_min_extra_isize.
5708 		 */
5709 		if (!ext4_handle_valid(handle) ||
5710 		    jbd2_journal_extend(handle,
5711 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5712 			ret = ext4_expand_extra_isize(inode,
5713 						      sbi->s_want_extra_isize,
5714 						      iloc, handle);
5715 			if (ret) {
5716 				if (mnt_count !=
5717 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5718 					ext4_warning(inode->i_sb,
5719 					"Unable to expand inode %lu. Delete"
5720 					" some EAs or run e2fsck.",
5721 					inode->i_ino);
5722 					mnt_count =
5723 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5724 				}
5725 			}
5726 		}
5727 	}
5728 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5729 }
5730 
5731 /*
5732  * ext4_dirty_inode() is called from __mark_inode_dirty()
5733  *
5734  * We're really interested in the case where a file is being extended.
5735  * i_size has been changed by generic_commit_write() and we thus need
5736  * to include the updated inode in the current transaction.
5737  *
5738  * Also, dquot_alloc_block() will always dirty the inode when blocks
5739  * are allocated to the file.
5740  *
5741  * If the inode is marked synchronous, we don't honour that here - doing
5742  * so would cause a commit on atime updates, which we don't bother doing.
5743  * We handle synchronous inodes at the highest possible level.
5744  *
5745  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5746  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5747  * to copy into the on-disk inode structure are the timestamp files.
5748  */
5749 void ext4_dirty_inode(struct inode *inode, int flags)
5750 {
5751 	handle_t *handle;
5752 
5753 	if (flags == I_DIRTY_TIME)
5754 		return;
5755 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5756 	if (IS_ERR(handle))
5757 		goto out;
5758 
5759 	ext4_mark_inode_dirty(handle, inode);
5760 
5761 	ext4_journal_stop(handle);
5762 out:
5763 	return;
5764 }
5765 
5766 #if 0
5767 /*
5768  * Bind an inode's backing buffer_head into this transaction, to prevent
5769  * it from being flushed to disk early.  Unlike
5770  * ext4_reserve_inode_write, this leaves behind no bh reference and
5771  * returns no iloc structure, so the caller needs to repeat the iloc
5772  * lookup to mark the inode dirty later.
5773  */
5774 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5775 {
5776 	struct ext4_iloc iloc;
5777 
5778 	int err = 0;
5779 	if (handle) {
5780 		err = ext4_get_inode_loc(inode, &iloc);
5781 		if (!err) {
5782 			BUFFER_TRACE(iloc.bh, "get_write_access");
5783 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5784 			if (!err)
5785 				err = ext4_handle_dirty_metadata(handle,
5786 								 NULL,
5787 								 iloc.bh);
5788 			brelse(iloc.bh);
5789 		}
5790 	}
5791 	ext4_std_error(inode->i_sb, err);
5792 	return err;
5793 }
5794 #endif
5795 
5796 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5797 {
5798 	journal_t *journal;
5799 	handle_t *handle;
5800 	int err;
5801 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5802 
5803 	/*
5804 	 * We have to be very careful here: changing a data block's
5805 	 * journaling status dynamically is dangerous.  If we write a
5806 	 * data block to the journal, change the status and then delete
5807 	 * that block, we risk forgetting to revoke the old log record
5808 	 * from the journal and so a subsequent replay can corrupt data.
5809 	 * So, first we make sure that the journal is empty and that
5810 	 * nobody is changing anything.
5811 	 */
5812 
5813 	journal = EXT4_JOURNAL(inode);
5814 	if (!journal)
5815 		return 0;
5816 	if (is_journal_aborted(journal))
5817 		return -EROFS;
5818 
5819 	/* Wait for all existing dio workers */
5820 	ext4_inode_block_unlocked_dio(inode);
5821 	inode_dio_wait(inode);
5822 
5823 	/*
5824 	 * Before flushing the journal and switching inode's aops, we have
5825 	 * to flush all dirty data the inode has. There can be outstanding
5826 	 * delayed allocations, there can be unwritten extents created by
5827 	 * fallocate or buffered writes in dioread_nolock mode covered by
5828 	 * dirty data which can be converted only after flushing the dirty
5829 	 * data (and journalled aops don't know how to handle these cases).
5830 	 */
5831 	if (val) {
5832 		down_write(&EXT4_I(inode)->i_mmap_sem);
5833 		err = filemap_write_and_wait(inode->i_mapping);
5834 		if (err < 0) {
5835 			up_write(&EXT4_I(inode)->i_mmap_sem);
5836 			ext4_inode_resume_unlocked_dio(inode);
5837 			return err;
5838 		}
5839 	}
5840 
5841 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5842 	jbd2_journal_lock_updates(journal);
5843 
5844 	/*
5845 	 * OK, there are no updates running now, and all cached data is
5846 	 * synced to disk.  We are now in a completely consistent state
5847 	 * which doesn't have anything in the journal, and we know that
5848 	 * no filesystem updates are running, so it is safe to modify
5849 	 * the inode's in-core data-journaling state flag now.
5850 	 */
5851 
5852 	if (val)
5853 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5854 	else {
5855 		err = jbd2_journal_flush(journal);
5856 		if (err < 0) {
5857 			jbd2_journal_unlock_updates(journal);
5858 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5859 			ext4_inode_resume_unlocked_dio(inode);
5860 			return err;
5861 		}
5862 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5863 	}
5864 	ext4_set_aops(inode);
5865 	/*
5866 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5867 	 * E.g. S_DAX may get cleared / set.
5868 	 */
5869 	ext4_set_inode_flags(inode);
5870 
5871 	jbd2_journal_unlock_updates(journal);
5872 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5873 
5874 	if (val)
5875 		up_write(&EXT4_I(inode)->i_mmap_sem);
5876 	ext4_inode_resume_unlocked_dio(inode);
5877 
5878 	/* Finally we can mark the inode as dirty. */
5879 
5880 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5881 	if (IS_ERR(handle))
5882 		return PTR_ERR(handle);
5883 
5884 	err = ext4_mark_inode_dirty(handle, inode);
5885 	ext4_handle_sync(handle);
5886 	ext4_journal_stop(handle);
5887 	ext4_std_error(inode->i_sb, err);
5888 
5889 	return err;
5890 }
5891 
5892 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5893 {
5894 	return !buffer_mapped(bh);
5895 }
5896 
5897 int ext4_page_mkwrite(struct vm_fault *vmf)
5898 {
5899 	struct vm_area_struct *vma = vmf->vma;
5900 	struct page *page = vmf->page;
5901 	loff_t size;
5902 	unsigned long len;
5903 	int ret;
5904 	struct file *file = vma->vm_file;
5905 	struct inode *inode = file_inode(file);
5906 	struct address_space *mapping = inode->i_mapping;
5907 	handle_t *handle;
5908 	get_block_t *get_block;
5909 	int retries = 0;
5910 
5911 	sb_start_pagefault(inode->i_sb);
5912 	file_update_time(vma->vm_file);
5913 
5914 	down_read(&EXT4_I(inode)->i_mmap_sem);
5915 
5916 	ret = ext4_convert_inline_data(inode);
5917 	if (ret)
5918 		goto out_ret;
5919 
5920 	/* Delalloc case is easy... */
5921 	if (test_opt(inode->i_sb, DELALLOC) &&
5922 	    !ext4_should_journal_data(inode) &&
5923 	    !ext4_nonda_switch(inode->i_sb)) {
5924 		do {
5925 			ret = block_page_mkwrite(vma, vmf,
5926 						   ext4_da_get_block_prep);
5927 		} while (ret == -ENOSPC &&
5928 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5929 		goto out_ret;
5930 	}
5931 
5932 	lock_page(page);
5933 	size = i_size_read(inode);
5934 	/* Page got truncated from under us? */
5935 	if (page->mapping != mapping || page_offset(page) > size) {
5936 		unlock_page(page);
5937 		ret = VM_FAULT_NOPAGE;
5938 		goto out;
5939 	}
5940 
5941 	if (page->index == size >> PAGE_SHIFT)
5942 		len = size & ~PAGE_MASK;
5943 	else
5944 		len = PAGE_SIZE;
5945 	/*
5946 	 * Return if we have all the buffers mapped. This avoids the need to do
5947 	 * journal_start/journal_stop which can block and take a long time
5948 	 */
5949 	if (page_has_buffers(page)) {
5950 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5951 					    0, len, NULL,
5952 					    ext4_bh_unmapped)) {
5953 			/* Wait so that we don't change page under IO */
5954 			wait_for_stable_page(page);
5955 			ret = VM_FAULT_LOCKED;
5956 			goto out;
5957 		}
5958 	}
5959 	unlock_page(page);
5960 	/* OK, we need to fill the hole... */
5961 	if (ext4_should_dioread_nolock(inode))
5962 		get_block = ext4_get_block_unwritten;
5963 	else
5964 		get_block = ext4_get_block;
5965 retry_alloc:
5966 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5967 				    ext4_writepage_trans_blocks(inode));
5968 	if (IS_ERR(handle)) {
5969 		ret = VM_FAULT_SIGBUS;
5970 		goto out;
5971 	}
5972 	ret = block_page_mkwrite(vma, vmf, get_block);
5973 	if (!ret && ext4_should_journal_data(inode)) {
5974 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5975 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5976 			unlock_page(page);
5977 			ret = VM_FAULT_SIGBUS;
5978 			ext4_journal_stop(handle);
5979 			goto out;
5980 		}
5981 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5982 	}
5983 	ext4_journal_stop(handle);
5984 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5985 		goto retry_alloc;
5986 out_ret:
5987 	ret = block_page_mkwrite_return(ret);
5988 out:
5989 	up_read(&EXT4_I(inode)->i_mmap_sem);
5990 	sb_end_pagefault(inode->i_sb);
5991 	return ret;
5992 }
5993 
5994 int ext4_filemap_fault(struct vm_fault *vmf)
5995 {
5996 	struct inode *inode = file_inode(vmf->vma->vm_file);
5997 	int err;
5998 
5999 	down_read(&EXT4_I(inode)->i_mmap_sem);
6000 	err = filemap_fault(vmf);
6001 	up_read(&EXT4_I(inode)->i_mmap_sem);
6002 
6003 	return err;
6004 }
6005 
6006 /*
6007  * Find the first extent at or after @lblk in an inode that is not a hole.
6008  * Search for @map_len blocks at most. The extent is returned in @result.
6009  *
6010  * The function returns 1 if we found an extent. The function returns 0 in
6011  * case there is no extent at or after @lblk and in that case also sets
6012  * @result->es_len to 0. In case of error, the error code is returned.
6013  */
6014 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6015 			 unsigned int map_len, struct extent_status *result)
6016 {
6017 	struct ext4_map_blocks map;
6018 	struct extent_status es = {};
6019 	int ret;
6020 
6021 	map.m_lblk = lblk;
6022 	map.m_len = map_len;
6023 
6024 	/*
6025 	 * For non-extent based files this loop may iterate several times since
6026 	 * we do not determine full hole size.
6027 	 */
6028 	while (map.m_len > 0) {
6029 		ret = ext4_map_blocks(NULL, inode, &map, 0);
6030 		if (ret < 0)
6031 			return ret;
6032 		/* There's extent covering m_lblk? Just return it. */
6033 		if (ret > 0) {
6034 			int status;
6035 
6036 			ext4_es_store_pblock(result, map.m_pblk);
6037 			result->es_lblk = map.m_lblk;
6038 			result->es_len = map.m_len;
6039 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
6040 				status = EXTENT_STATUS_UNWRITTEN;
6041 			else
6042 				status = EXTENT_STATUS_WRITTEN;
6043 			ext4_es_store_status(result, status);
6044 			return 1;
6045 		}
6046 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6047 						  map.m_lblk + map.m_len - 1,
6048 						  &es);
6049 		/* Is delalloc data before next block in extent tree? */
6050 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6051 			ext4_lblk_t offset = 0;
6052 
6053 			if (es.es_lblk < lblk)
6054 				offset = lblk - es.es_lblk;
6055 			result->es_lblk = es.es_lblk + offset;
6056 			ext4_es_store_pblock(result,
6057 					     ext4_es_pblock(&es) + offset);
6058 			result->es_len = es.es_len - offset;
6059 			ext4_es_store_status(result, ext4_es_status(&es));
6060 
6061 			return 1;
6062 		}
6063 		/* There's a hole at m_lblk, advance us after it */
6064 		map.m_lblk += map.m_len;
6065 		map_len -= map.m_len;
6066 		map.m_len = map_len;
6067 		cond_resched();
6068 	}
6069 	result->es_len = 0;
6070 	return 0;
6071 }
6072