1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/printk.h> 43 #include <linux/slab.h> 44 #include <linux/ratelimit.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "ext4_extents.h" 50 51 #include <trace/events/ext4.h> 52 53 #define MPAGE_DA_EXTENT_TAIL 0x01 54 55 static inline int ext4_begin_ordered_truncate(struct inode *inode, 56 loff_t new_size) 57 { 58 trace_ext4_begin_ordered_truncate(inode, new_size); 59 /* 60 * If jinode is zero, then we never opened the file for 61 * writing, so there's no need to call 62 * jbd2_journal_begin_ordered_truncate() since there's no 63 * outstanding writes we need to flush. 64 */ 65 if (!EXT4_I(inode)->jinode) 66 return 0; 67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 68 EXT4_I(inode)->jinode, 69 new_size); 70 } 71 72 static void ext4_invalidatepage(struct page *page, unsigned long offset); 73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 74 struct buffer_head *bh_result, int create); 75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 77 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 79 80 /* 81 * Test whether an inode is a fast symlink. 82 */ 83 static int ext4_inode_is_fast_symlink(struct inode *inode) 84 { 85 int ea_blocks = EXT4_I(inode)->i_file_acl ? 86 (inode->i_sb->s_blocksize >> 9) : 0; 87 88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 89 } 90 91 /* 92 * Work out how many blocks we need to proceed with the next chunk of a 93 * truncate transaction. 94 */ 95 static unsigned long blocks_for_truncate(struct inode *inode) 96 { 97 ext4_lblk_t needed; 98 99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 100 101 /* Give ourselves just enough room to cope with inodes in which 102 * i_blocks is corrupt: we've seen disk corruptions in the past 103 * which resulted in random data in an inode which looked enough 104 * like a regular file for ext4 to try to delete it. Things 105 * will go a bit crazy if that happens, but at least we should 106 * try not to panic the whole kernel. */ 107 if (needed < 2) 108 needed = 2; 109 110 /* But we need to bound the transaction so we don't overflow the 111 * journal. */ 112 if (needed > EXT4_MAX_TRANS_DATA) 113 needed = EXT4_MAX_TRANS_DATA; 114 115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 116 } 117 118 /* 119 * Truncate transactions can be complex and absolutely huge. So we need to 120 * be able to restart the transaction at a conventient checkpoint to make 121 * sure we don't overflow the journal. 122 * 123 * start_transaction gets us a new handle for a truncate transaction, 124 * and extend_transaction tries to extend the existing one a bit. If 125 * extend fails, we need to propagate the failure up and restart the 126 * transaction in the top-level truncate loop. --sct 127 */ 128 static handle_t *start_transaction(struct inode *inode) 129 { 130 handle_t *result; 131 132 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 133 if (!IS_ERR(result)) 134 return result; 135 136 ext4_std_error(inode->i_sb, PTR_ERR(result)); 137 return result; 138 } 139 140 /* 141 * Try to extend this transaction for the purposes of truncation. 142 * 143 * Returns 0 if we managed to create more room. If we can't create more 144 * room, and the transaction must be restarted we return 1. 145 */ 146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 147 { 148 if (!ext4_handle_valid(handle)) 149 return 0; 150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 151 return 0; 152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 153 return 0; 154 return 1; 155 } 156 157 /* 158 * Restart the transaction associated with *handle. This does a commit, 159 * so before we call here everything must be consistently dirtied against 160 * this transaction. 161 */ 162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 163 int nblocks) 164 { 165 int ret; 166 167 /* 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 169 * moment, get_block can be called only for blocks inside i_size since 170 * page cache has been already dropped and writes are blocked by 171 * i_mutex. So we can safely drop the i_data_sem here. 172 */ 173 BUG_ON(EXT4_JOURNAL(inode) == NULL); 174 jbd_debug(2, "restarting handle %p\n", handle); 175 up_write(&EXT4_I(inode)->i_data_sem); 176 ret = ext4_journal_restart(handle, nblocks); 177 down_write(&EXT4_I(inode)->i_data_sem); 178 ext4_discard_preallocations(inode); 179 180 return ret; 181 } 182 183 /* 184 * Called at the last iput() if i_nlink is zero. 185 */ 186 void ext4_evict_inode(struct inode *inode) 187 { 188 handle_t *handle; 189 int err; 190 191 trace_ext4_evict_inode(inode); 192 if (inode->i_nlink) { 193 truncate_inode_pages(&inode->i_data, 0); 194 goto no_delete; 195 } 196 197 if (!is_bad_inode(inode)) 198 dquot_initialize(inode); 199 200 if (ext4_should_order_data(inode)) 201 ext4_begin_ordered_truncate(inode, 0); 202 truncate_inode_pages(&inode->i_data, 0); 203 204 if (is_bad_inode(inode)) 205 goto no_delete; 206 207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 208 if (IS_ERR(handle)) { 209 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 210 /* 211 * If we're going to skip the normal cleanup, we still need to 212 * make sure that the in-core orphan linked list is properly 213 * cleaned up. 214 */ 215 ext4_orphan_del(NULL, inode); 216 goto no_delete; 217 } 218 219 if (IS_SYNC(inode)) 220 ext4_handle_sync(handle); 221 inode->i_size = 0; 222 err = ext4_mark_inode_dirty(handle, inode); 223 if (err) { 224 ext4_warning(inode->i_sb, 225 "couldn't mark inode dirty (err %d)", err); 226 goto stop_handle; 227 } 228 if (inode->i_blocks) 229 ext4_truncate(inode); 230 231 /* 232 * ext4_ext_truncate() doesn't reserve any slop when it 233 * restarts journal transactions; therefore there may not be 234 * enough credits left in the handle to remove the inode from 235 * the orphan list and set the dtime field. 236 */ 237 if (!ext4_handle_has_enough_credits(handle, 3)) { 238 err = ext4_journal_extend(handle, 3); 239 if (err > 0) 240 err = ext4_journal_restart(handle, 3); 241 if (err != 0) { 242 ext4_warning(inode->i_sb, 243 "couldn't extend journal (err %d)", err); 244 stop_handle: 245 ext4_journal_stop(handle); 246 ext4_orphan_del(NULL, inode); 247 goto no_delete; 248 } 249 } 250 251 /* 252 * Kill off the orphan record which ext4_truncate created. 253 * AKPM: I think this can be inside the above `if'. 254 * Note that ext4_orphan_del() has to be able to cope with the 255 * deletion of a non-existent orphan - this is because we don't 256 * know if ext4_truncate() actually created an orphan record. 257 * (Well, we could do this if we need to, but heck - it works) 258 */ 259 ext4_orphan_del(handle, inode); 260 EXT4_I(inode)->i_dtime = get_seconds(); 261 262 /* 263 * One subtle ordering requirement: if anything has gone wrong 264 * (transaction abort, IO errors, whatever), then we can still 265 * do these next steps (the fs will already have been marked as 266 * having errors), but we can't free the inode if the mark_dirty 267 * fails. 268 */ 269 if (ext4_mark_inode_dirty(handle, inode)) 270 /* If that failed, just do the required in-core inode clear. */ 271 ext4_clear_inode(inode); 272 else 273 ext4_free_inode(handle, inode); 274 ext4_journal_stop(handle); 275 return; 276 no_delete: 277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 278 } 279 280 typedef struct { 281 __le32 *p; 282 __le32 key; 283 struct buffer_head *bh; 284 } Indirect; 285 286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 287 { 288 p->key = *(p->p = v); 289 p->bh = bh; 290 } 291 292 /** 293 * ext4_block_to_path - parse the block number into array of offsets 294 * @inode: inode in question (we are only interested in its superblock) 295 * @i_block: block number to be parsed 296 * @offsets: array to store the offsets in 297 * @boundary: set this non-zero if the referred-to block is likely to be 298 * followed (on disk) by an indirect block. 299 * 300 * To store the locations of file's data ext4 uses a data structure common 301 * for UNIX filesystems - tree of pointers anchored in the inode, with 302 * data blocks at leaves and indirect blocks in intermediate nodes. 303 * This function translates the block number into path in that tree - 304 * return value is the path length and @offsets[n] is the offset of 305 * pointer to (n+1)th node in the nth one. If @block is out of range 306 * (negative or too large) warning is printed and zero returned. 307 * 308 * Note: function doesn't find node addresses, so no IO is needed. All 309 * we need to know is the capacity of indirect blocks (taken from the 310 * inode->i_sb). 311 */ 312 313 /* 314 * Portability note: the last comparison (check that we fit into triple 315 * indirect block) is spelled differently, because otherwise on an 316 * architecture with 32-bit longs and 8Kb pages we might get into trouble 317 * if our filesystem had 8Kb blocks. We might use long long, but that would 318 * kill us on x86. Oh, well, at least the sign propagation does not matter - 319 * i_block would have to be negative in the very beginning, so we would not 320 * get there at all. 321 */ 322 323 static int ext4_block_to_path(struct inode *inode, 324 ext4_lblk_t i_block, 325 ext4_lblk_t offsets[4], int *boundary) 326 { 327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 329 const long direct_blocks = EXT4_NDIR_BLOCKS, 330 indirect_blocks = ptrs, 331 double_blocks = (1 << (ptrs_bits * 2)); 332 int n = 0; 333 int final = 0; 334 335 if (i_block < direct_blocks) { 336 offsets[n++] = i_block; 337 final = direct_blocks; 338 } else if ((i_block -= direct_blocks) < indirect_blocks) { 339 offsets[n++] = EXT4_IND_BLOCK; 340 offsets[n++] = i_block; 341 final = ptrs; 342 } else if ((i_block -= indirect_blocks) < double_blocks) { 343 offsets[n++] = EXT4_DIND_BLOCK; 344 offsets[n++] = i_block >> ptrs_bits; 345 offsets[n++] = i_block & (ptrs - 1); 346 final = ptrs; 347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 348 offsets[n++] = EXT4_TIND_BLOCK; 349 offsets[n++] = i_block >> (ptrs_bits * 2); 350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 351 offsets[n++] = i_block & (ptrs - 1); 352 final = ptrs; 353 } else { 354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks, inode->i_ino); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 static int __ext4_check_blockref(const char *function, unsigned int line, 364 struct inode *inode, 365 __le32 *p, unsigned int max) 366 { 367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 368 __le32 *bref = p; 369 unsigned int blk; 370 371 while (bref < p+max) { 372 blk = le32_to_cpu(*bref++); 373 if (blk && 374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 375 blk, 1))) { 376 es->s_last_error_block = cpu_to_le64(blk); 377 ext4_error_inode(inode, function, line, blk, 378 "invalid block"); 379 return -EIO; 380 } 381 } 382 return 0; 383 } 384 385 386 #define ext4_check_indirect_blockref(inode, bh) \ 387 __ext4_check_blockref(__func__, __LINE__, inode, \ 388 (__le32 *)(bh)->b_data, \ 389 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 390 391 #define ext4_check_inode_blockref(inode) \ 392 __ext4_check_blockref(__func__, __LINE__, inode, \ 393 EXT4_I(inode)->i_data, \ 394 EXT4_NDIR_BLOCKS) 395 396 /** 397 * ext4_get_branch - read the chain of indirect blocks leading to data 398 * @inode: inode in question 399 * @depth: depth of the chain (1 - direct pointer, etc.) 400 * @offsets: offsets of pointers in inode/indirect blocks 401 * @chain: place to store the result 402 * @err: here we store the error value 403 * 404 * Function fills the array of triples <key, p, bh> and returns %NULL 405 * if everything went OK or the pointer to the last filled triple 406 * (incomplete one) otherwise. Upon the return chain[i].key contains 407 * the number of (i+1)-th block in the chain (as it is stored in memory, 408 * i.e. little-endian 32-bit), chain[i].p contains the address of that 409 * number (it points into struct inode for i==0 and into the bh->b_data 410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 411 * block for i>0 and NULL for i==0. In other words, it holds the block 412 * numbers of the chain, addresses they were taken from (and where we can 413 * verify that chain did not change) and buffer_heads hosting these 414 * numbers. 415 * 416 * Function stops when it stumbles upon zero pointer (absent block) 417 * (pointer to last triple returned, *@err == 0) 418 * or when it gets an IO error reading an indirect block 419 * (ditto, *@err == -EIO) 420 * or when it reads all @depth-1 indirect blocks successfully and finds 421 * the whole chain, all way to the data (returns %NULL, *err == 0). 422 * 423 * Need to be called with 424 * down_read(&EXT4_I(inode)->i_data_sem) 425 */ 426 static Indirect *ext4_get_branch(struct inode *inode, int depth, 427 ext4_lblk_t *offsets, 428 Indirect chain[4], int *err) 429 { 430 struct super_block *sb = inode->i_sb; 431 Indirect *p = chain; 432 struct buffer_head *bh; 433 434 *err = 0; 435 /* i_data is not going away, no lock needed */ 436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 437 if (!p->key) 438 goto no_block; 439 while (--depth) { 440 bh = sb_getblk(sb, le32_to_cpu(p->key)); 441 if (unlikely(!bh)) 442 goto failure; 443 444 if (!bh_uptodate_or_lock(bh)) { 445 if (bh_submit_read(bh) < 0) { 446 put_bh(bh); 447 goto failure; 448 } 449 /* validate block references */ 450 if (ext4_check_indirect_blockref(inode, bh)) { 451 put_bh(bh); 452 goto failure; 453 } 454 } 455 456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 457 /* Reader: end */ 458 if (!p->key) 459 goto no_block; 460 } 461 return NULL; 462 463 failure: 464 *err = -EIO; 465 no_block: 466 return p; 467 } 468 469 /** 470 * ext4_find_near - find a place for allocation with sufficient locality 471 * @inode: owner 472 * @ind: descriptor of indirect block. 473 * 474 * This function returns the preferred place for block allocation. 475 * It is used when heuristic for sequential allocation fails. 476 * Rules are: 477 * + if there is a block to the left of our position - allocate near it. 478 * + if pointer will live in indirect block - allocate near that block. 479 * + if pointer will live in inode - allocate in the same 480 * cylinder group. 481 * 482 * In the latter case we colour the starting block by the callers PID to 483 * prevent it from clashing with concurrent allocations for a different inode 484 * in the same block group. The PID is used here so that functionally related 485 * files will be close-by on-disk. 486 * 487 * Caller must make sure that @ind is valid and will stay that way. 488 */ 489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 490 { 491 struct ext4_inode_info *ei = EXT4_I(inode); 492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 493 __le32 *p; 494 ext4_fsblk_t bg_start; 495 ext4_fsblk_t last_block; 496 ext4_grpblk_t colour; 497 ext4_group_t block_group; 498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 499 500 /* Try to find previous block */ 501 for (p = ind->p - 1; p >= start; p--) { 502 if (*p) 503 return le32_to_cpu(*p); 504 } 505 506 /* No such thing, so let's try location of indirect block */ 507 if (ind->bh) 508 return ind->bh->b_blocknr; 509 510 /* 511 * It is going to be referred to from the inode itself? OK, just put it 512 * into the same cylinder group then. 513 */ 514 block_group = ei->i_block_group; 515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 516 block_group &= ~(flex_size-1); 517 if (S_ISREG(inode->i_mode)) 518 block_group++; 519 } 520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 522 523 /* 524 * If we are doing delayed allocation, we don't need take 525 * colour into account. 526 */ 527 if (test_opt(inode->i_sb, DELALLOC)) 528 return bg_start; 529 530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 531 colour = (current->pid % 16) * 532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 533 else 534 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 535 return bg_start + colour; 536 } 537 538 /** 539 * ext4_find_goal - find a preferred place for allocation. 540 * @inode: owner 541 * @block: block we want 542 * @partial: pointer to the last triple within a chain 543 * 544 * Normally this function find the preferred place for block allocation, 545 * returns it. 546 * Because this is only used for non-extent files, we limit the block nr 547 * to 32 bits. 548 */ 549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 550 Indirect *partial) 551 { 552 ext4_fsblk_t goal; 553 554 /* 555 * XXX need to get goal block from mballoc's data structures 556 */ 557 558 goal = ext4_find_near(inode, partial); 559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 560 return goal; 561 } 562 563 /** 564 * ext4_blks_to_allocate - Look up the block map and count the number 565 * of direct blocks need to be allocated for the given branch. 566 * 567 * @branch: chain of indirect blocks 568 * @k: number of blocks need for indirect blocks 569 * @blks: number of data blocks to be mapped. 570 * @blocks_to_boundary: the offset in the indirect block 571 * 572 * return the total number of blocks to be allocate, including the 573 * direct and indirect blocks. 574 */ 575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 576 int blocks_to_boundary) 577 { 578 unsigned int count = 0; 579 580 /* 581 * Simple case, [t,d]Indirect block(s) has not allocated yet 582 * then it's clear blocks on that path have not allocated 583 */ 584 if (k > 0) { 585 /* right now we don't handle cross boundary allocation */ 586 if (blks < blocks_to_boundary + 1) 587 count += blks; 588 else 589 count += blocks_to_boundary + 1; 590 return count; 591 } 592 593 count++; 594 while (count < blks && count <= blocks_to_boundary && 595 le32_to_cpu(*(branch[0].p + count)) == 0) { 596 count++; 597 } 598 return count; 599 } 600 601 /** 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 603 * @handle: handle for this transaction 604 * @inode: inode which needs allocated blocks 605 * @iblock: the logical block to start allocated at 606 * @goal: preferred physical block of allocation 607 * @indirect_blks: the number of blocks need to allocate for indirect 608 * blocks 609 * @blks: number of desired blocks 610 * @new_blocks: on return it will store the new block numbers for 611 * the indirect blocks(if needed) and the first direct block, 612 * @err: on return it will store the error code 613 * 614 * This function will return the number of blocks allocated as 615 * requested by the passed-in parameters. 616 */ 617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 618 ext4_lblk_t iblock, ext4_fsblk_t goal, 619 int indirect_blks, int blks, 620 ext4_fsblk_t new_blocks[4], int *err) 621 { 622 struct ext4_allocation_request ar; 623 int target, i; 624 unsigned long count = 0, blk_allocated = 0; 625 int index = 0; 626 ext4_fsblk_t current_block = 0; 627 int ret = 0; 628 629 /* 630 * Here we try to allocate the requested multiple blocks at once, 631 * on a best-effort basis. 632 * To build a branch, we should allocate blocks for 633 * the indirect blocks(if not allocated yet), and at least 634 * the first direct block of this branch. That's the 635 * minimum number of blocks need to allocate(required) 636 */ 637 /* first we try to allocate the indirect blocks */ 638 target = indirect_blks; 639 while (target > 0) { 640 count = target; 641 /* allocating blocks for indirect blocks and direct blocks */ 642 current_block = ext4_new_meta_blocks(handle, inode, 643 goal, &count, err); 644 if (*err) 645 goto failed_out; 646 647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 648 EXT4_ERROR_INODE(inode, 649 "current_block %llu + count %lu > %d!", 650 current_block, count, 651 EXT4_MAX_BLOCK_FILE_PHYS); 652 *err = -EIO; 653 goto failed_out; 654 } 655 656 target -= count; 657 /* allocate blocks for indirect blocks */ 658 while (index < indirect_blks && count) { 659 new_blocks[index++] = current_block++; 660 count--; 661 } 662 if (count > 0) { 663 /* 664 * save the new block number 665 * for the first direct block 666 */ 667 new_blocks[index] = current_block; 668 printk(KERN_INFO "%s returned more blocks than " 669 "requested\n", __func__); 670 WARN_ON(1); 671 break; 672 } 673 } 674 675 target = blks - count ; 676 blk_allocated = count; 677 if (!target) 678 goto allocated; 679 /* Now allocate data blocks */ 680 memset(&ar, 0, sizeof(ar)); 681 ar.inode = inode; 682 ar.goal = goal; 683 ar.len = target; 684 ar.logical = iblock; 685 if (S_ISREG(inode->i_mode)) 686 /* enable in-core preallocation only for regular files */ 687 ar.flags = EXT4_MB_HINT_DATA; 688 689 current_block = ext4_mb_new_blocks(handle, &ar, err); 690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 691 EXT4_ERROR_INODE(inode, 692 "current_block %llu + ar.len %d > %d!", 693 current_block, ar.len, 694 EXT4_MAX_BLOCK_FILE_PHYS); 695 *err = -EIO; 696 goto failed_out; 697 } 698 699 if (*err && (target == blks)) { 700 /* 701 * if the allocation failed and we didn't allocate 702 * any blocks before 703 */ 704 goto failed_out; 705 } 706 if (!*err) { 707 if (target == blks) { 708 /* 709 * save the new block number 710 * for the first direct block 711 */ 712 new_blocks[index] = current_block; 713 } 714 blk_allocated += ar.len; 715 } 716 allocated: 717 /* total number of blocks allocated for direct blocks */ 718 ret = blk_allocated; 719 *err = 0; 720 return ret; 721 failed_out: 722 for (i = 0; i < index; i++) 723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 724 return ret; 725 } 726 727 /** 728 * ext4_alloc_branch - allocate and set up a chain of blocks. 729 * @handle: handle for this transaction 730 * @inode: owner 731 * @indirect_blks: number of allocated indirect blocks 732 * @blks: number of allocated direct blocks 733 * @goal: preferred place for allocation 734 * @offsets: offsets (in the blocks) to store the pointers to next. 735 * @branch: place to store the chain in. 736 * 737 * This function allocates blocks, zeroes out all but the last one, 738 * links them into chain and (if we are synchronous) writes them to disk. 739 * In other words, it prepares a branch that can be spliced onto the 740 * inode. It stores the information about that chain in the branch[], in 741 * the same format as ext4_get_branch() would do. We are calling it after 742 * we had read the existing part of chain and partial points to the last 743 * triple of that (one with zero ->key). Upon the exit we have the same 744 * picture as after the successful ext4_get_block(), except that in one 745 * place chain is disconnected - *branch->p is still zero (we did not 746 * set the last link), but branch->key contains the number that should 747 * be placed into *branch->p to fill that gap. 748 * 749 * If allocation fails we free all blocks we've allocated (and forget 750 * their buffer_heads) and return the error value the from failed 751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 752 * as described above and return 0. 753 */ 754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 755 ext4_lblk_t iblock, int indirect_blks, 756 int *blks, ext4_fsblk_t goal, 757 ext4_lblk_t *offsets, Indirect *branch) 758 { 759 int blocksize = inode->i_sb->s_blocksize; 760 int i, n = 0; 761 int err = 0; 762 struct buffer_head *bh; 763 int num; 764 ext4_fsblk_t new_blocks[4]; 765 ext4_fsblk_t current_block; 766 767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 768 *blks, new_blocks, &err); 769 if (err) 770 return err; 771 772 branch[0].key = cpu_to_le32(new_blocks[0]); 773 /* 774 * metadata blocks and data blocks are allocated. 775 */ 776 for (n = 1; n <= indirect_blks; n++) { 777 /* 778 * Get buffer_head for parent block, zero it out 779 * and set the pointer to new one, then send 780 * parent to disk. 781 */ 782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 783 if (unlikely(!bh)) { 784 err = -EIO; 785 goto failed; 786 } 787 788 branch[n].bh = bh; 789 lock_buffer(bh); 790 BUFFER_TRACE(bh, "call get_create_access"); 791 err = ext4_journal_get_create_access(handle, bh); 792 if (err) { 793 /* Don't brelse(bh) here; it's done in 794 * ext4_journal_forget() below */ 795 unlock_buffer(bh); 796 goto failed; 797 } 798 799 memset(bh->b_data, 0, blocksize); 800 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 801 branch[n].key = cpu_to_le32(new_blocks[n]); 802 *branch[n].p = branch[n].key; 803 if (n == indirect_blks) { 804 current_block = new_blocks[n]; 805 /* 806 * End of chain, update the last new metablock of 807 * the chain to point to the new allocated 808 * data blocks numbers 809 */ 810 for (i = 1; i < num; i++) 811 *(branch[n].p + i) = cpu_to_le32(++current_block); 812 } 813 BUFFER_TRACE(bh, "marking uptodate"); 814 set_buffer_uptodate(bh); 815 unlock_buffer(bh); 816 817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 818 err = ext4_handle_dirty_metadata(handle, inode, bh); 819 if (err) 820 goto failed; 821 } 822 *blks = num; 823 return err; 824 failed: 825 /* Allocation failed, free what we already allocated */ 826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 827 for (i = 1; i <= n ; i++) { 828 /* 829 * branch[i].bh is newly allocated, so there is no 830 * need to revoke the block, which is why we don't 831 * need to set EXT4_FREE_BLOCKS_METADATA. 832 */ 833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 834 EXT4_FREE_BLOCKS_FORGET); 835 } 836 for (i = n+1; i < indirect_blks; i++) 837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 838 839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 840 841 return err; 842 } 843 844 /** 845 * ext4_splice_branch - splice the allocated branch onto inode. 846 * @handle: handle for this transaction 847 * @inode: owner 848 * @block: (logical) number of block we are adding 849 * @chain: chain of indirect blocks (with a missing link - see 850 * ext4_alloc_branch) 851 * @where: location of missing link 852 * @num: number of indirect blocks we are adding 853 * @blks: number of direct blocks we are adding 854 * 855 * This function fills the missing link and does all housekeeping needed in 856 * inode (->i_blocks, etc.). In case of success we end up with the full 857 * chain to new block and return 0. 858 */ 859 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 860 ext4_lblk_t block, Indirect *where, int num, 861 int blks) 862 { 863 int i; 864 int err = 0; 865 ext4_fsblk_t current_block; 866 867 /* 868 * If we're splicing into a [td]indirect block (as opposed to the 869 * inode) then we need to get write access to the [td]indirect block 870 * before the splice. 871 */ 872 if (where->bh) { 873 BUFFER_TRACE(where->bh, "get_write_access"); 874 err = ext4_journal_get_write_access(handle, where->bh); 875 if (err) 876 goto err_out; 877 } 878 /* That's it */ 879 880 *where->p = where->key; 881 882 /* 883 * Update the host buffer_head or inode to point to more just allocated 884 * direct blocks blocks 885 */ 886 if (num == 0 && blks > 1) { 887 current_block = le32_to_cpu(where->key) + 1; 888 for (i = 1; i < blks; i++) 889 *(where->p + i) = cpu_to_le32(current_block++); 890 } 891 892 /* We are done with atomic stuff, now do the rest of housekeeping */ 893 /* had we spliced it onto indirect block? */ 894 if (where->bh) { 895 /* 896 * If we spliced it onto an indirect block, we haven't 897 * altered the inode. Note however that if it is being spliced 898 * onto an indirect block at the very end of the file (the 899 * file is growing) then we *will* alter the inode to reflect 900 * the new i_size. But that is not done here - it is done in 901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 902 */ 903 jbd_debug(5, "splicing indirect only\n"); 904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 905 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 906 if (err) 907 goto err_out; 908 } else { 909 /* 910 * OK, we spliced it into the inode itself on a direct block. 911 */ 912 ext4_mark_inode_dirty(handle, inode); 913 jbd_debug(5, "splicing direct\n"); 914 } 915 return err; 916 917 err_out: 918 for (i = 1; i <= num; i++) { 919 /* 920 * branch[i].bh is newly allocated, so there is no 921 * need to revoke the block, which is why we don't 922 * need to set EXT4_FREE_BLOCKS_METADATA. 923 */ 924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 925 EXT4_FREE_BLOCKS_FORGET); 926 } 927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 928 blks, 0); 929 930 return err; 931 } 932 933 /* 934 * The ext4_ind_map_blocks() function handles non-extents inodes 935 * (i.e., using the traditional indirect/double-indirect i_blocks 936 * scheme) for ext4_map_blocks(). 937 * 938 * Allocation strategy is simple: if we have to allocate something, we will 939 * have to go the whole way to leaf. So let's do it before attaching anything 940 * to tree, set linkage between the newborn blocks, write them if sync is 941 * required, recheck the path, free and repeat if check fails, otherwise 942 * set the last missing link (that will protect us from any truncate-generated 943 * removals - all blocks on the path are immune now) and possibly force the 944 * write on the parent block. 945 * That has a nice additional property: no special recovery from the failed 946 * allocations is needed - we simply release blocks and do not touch anything 947 * reachable from inode. 948 * 949 * `handle' can be NULL if create == 0. 950 * 951 * return > 0, # of blocks mapped or allocated. 952 * return = 0, if plain lookup failed. 953 * return < 0, error case. 954 * 955 * The ext4_ind_get_blocks() function should be called with 956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 959 * blocks. 960 */ 961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 962 struct ext4_map_blocks *map, 963 int flags) 964 { 965 int err = -EIO; 966 ext4_lblk_t offsets[4]; 967 Indirect chain[4]; 968 Indirect *partial; 969 ext4_fsblk_t goal; 970 int indirect_blks; 971 int blocks_to_boundary = 0; 972 int depth; 973 int count = 0; 974 ext4_fsblk_t first_block = 0; 975 976 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 977 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 978 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 979 &blocks_to_boundary); 980 981 if (depth == 0) 982 goto out; 983 984 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 985 986 /* Simplest case - block found, no allocation needed */ 987 if (!partial) { 988 first_block = le32_to_cpu(chain[depth - 1].key); 989 count++; 990 /*map more blocks*/ 991 while (count < map->m_len && count <= blocks_to_boundary) { 992 ext4_fsblk_t blk; 993 994 blk = le32_to_cpu(*(chain[depth-1].p + count)); 995 996 if (blk == first_block + count) 997 count++; 998 else 999 break; 1000 } 1001 goto got_it; 1002 } 1003 1004 /* Next simple case - plain lookup or failed read of indirect block */ 1005 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 1006 goto cleanup; 1007 1008 /* 1009 * Okay, we need to do block allocation. 1010 */ 1011 goal = ext4_find_goal(inode, map->m_lblk, partial); 1012 1013 /* the number of blocks need to allocate for [d,t]indirect blocks */ 1014 indirect_blks = (chain + depth) - partial - 1; 1015 1016 /* 1017 * Next look up the indirect map to count the totoal number of 1018 * direct blocks to allocate for this branch. 1019 */ 1020 count = ext4_blks_to_allocate(partial, indirect_blks, 1021 map->m_len, blocks_to_boundary); 1022 /* 1023 * Block out ext4_truncate while we alter the tree 1024 */ 1025 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 1026 &count, goal, 1027 offsets + (partial - chain), partial); 1028 1029 /* 1030 * The ext4_splice_branch call will free and forget any buffers 1031 * on the new chain if there is a failure, but that risks using 1032 * up transaction credits, especially for bitmaps where the 1033 * credits cannot be returned. Can we handle this somehow? We 1034 * may need to return -EAGAIN upwards in the worst case. --sct 1035 */ 1036 if (!err) 1037 err = ext4_splice_branch(handle, inode, map->m_lblk, 1038 partial, indirect_blks, count); 1039 if (err) 1040 goto cleanup; 1041 1042 map->m_flags |= EXT4_MAP_NEW; 1043 1044 ext4_update_inode_fsync_trans(handle, inode, 1); 1045 got_it: 1046 map->m_flags |= EXT4_MAP_MAPPED; 1047 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1048 map->m_len = count; 1049 if (count > blocks_to_boundary) 1050 map->m_flags |= EXT4_MAP_BOUNDARY; 1051 err = count; 1052 /* Clean up and exit */ 1053 partial = chain + depth - 1; /* the whole chain */ 1054 cleanup: 1055 while (partial > chain) { 1056 BUFFER_TRACE(partial->bh, "call brelse"); 1057 brelse(partial->bh); 1058 partial--; 1059 } 1060 out: 1061 return err; 1062 } 1063 1064 #ifdef CONFIG_QUOTA 1065 qsize_t *ext4_get_reserved_space(struct inode *inode) 1066 { 1067 return &EXT4_I(inode)->i_reserved_quota; 1068 } 1069 #endif 1070 1071 /* 1072 * Calculate the number of metadata blocks need to reserve 1073 * to allocate a new block at @lblocks for non extent file based file 1074 */ 1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1076 sector_t lblock) 1077 { 1078 struct ext4_inode_info *ei = EXT4_I(inode); 1079 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1080 int blk_bits; 1081 1082 if (lblock < EXT4_NDIR_BLOCKS) 1083 return 0; 1084 1085 lblock -= EXT4_NDIR_BLOCKS; 1086 1087 if (ei->i_da_metadata_calc_len && 1088 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1089 ei->i_da_metadata_calc_len++; 1090 return 0; 1091 } 1092 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1093 ei->i_da_metadata_calc_len = 1; 1094 blk_bits = order_base_2(lblock); 1095 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1096 } 1097 1098 /* 1099 * Calculate the number of metadata blocks need to reserve 1100 * to allocate a block located at @lblock 1101 */ 1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 1103 { 1104 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1105 return ext4_ext_calc_metadata_amount(inode, lblock); 1106 1107 return ext4_indirect_calc_metadata_amount(inode, lblock); 1108 } 1109 1110 /* 1111 * Called with i_data_sem down, which is important since we can call 1112 * ext4_discard_preallocations() from here. 1113 */ 1114 void ext4_da_update_reserve_space(struct inode *inode, 1115 int used, int quota_claim) 1116 { 1117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1118 struct ext4_inode_info *ei = EXT4_I(inode); 1119 1120 spin_lock(&ei->i_block_reservation_lock); 1121 trace_ext4_da_update_reserve_space(inode, used); 1122 if (unlikely(used > ei->i_reserved_data_blocks)) { 1123 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1124 "with only %d reserved data blocks\n", 1125 __func__, inode->i_ino, used, 1126 ei->i_reserved_data_blocks); 1127 WARN_ON(1); 1128 used = ei->i_reserved_data_blocks; 1129 } 1130 1131 /* Update per-inode reservations */ 1132 ei->i_reserved_data_blocks -= used; 1133 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1134 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1135 used + ei->i_allocated_meta_blocks); 1136 ei->i_allocated_meta_blocks = 0; 1137 1138 if (ei->i_reserved_data_blocks == 0) { 1139 /* 1140 * We can release all of the reserved metadata blocks 1141 * only when we have written all of the delayed 1142 * allocation blocks. 1143 */ 1144 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1145 ei->i_reserved_meta_blocks); 1146 ei->i_reserved_meta_blocks = 0; 1147 ei->i_da_metadata_calc_len = 0; 1148 } 1149 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1150 1151 /* Update quota subsystem for data blocks */ 1152 if (quota_claim) 1153 dquot_claim_block(inode, used); 1154 else { 1155 /* 1156 * We did fallocate with an offset that is already delayed 1157 * allocated. So on delayed allocated writeback we should 1158 * not re-claim the quota for fallocated blocks. 1159 */ 1160 dquot_release_reservation_block(inode, used); 1161 } 1162 1163 /* 1164 * If we have done all the pending block allocations and if 1165 * there aren't any writers on the inode, we can discard the 1166 * inode's preallocations. 1167 */ 1168 if ((ei->i_reserved_data_blocks == 0) && 1169 (atomic_read(&inode->i_writecount) == 0)) 1170 ext4_discard_preallocations(inode); 1171 } 1172 1173 static int __check_block_validity(struct inode *inode, const char *func, 1174 unsigned int line, 1175 struct ext4_map_blocks *map) 1176 { 1177 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 1178 map->m_len)) { 1179 ext4_error_inode(inode, func, line, map->m_pblk, 1180 "lblock %lu mapped to illegal pblock " 1181 "(length %d)", (unsigned long) map->m_lblk, 1182 map->m_len); 1183 return -EIO; 1184 } 1185 return 0; 1186 } 1187 1188 #define check_block_validity(inode, map) \ 1189 __check_block_validity((inode), __func__, __LINE__, (map)) 1190 1191 /* 1192 * Return the number of contiguous dirty pages in a given inode 1193 * starting at page frame idx. 1194 */ 1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1196 unsigned int max_pages) 1197 { 1198 struct address_space *mapping = inode->i_mapping; 1199 pgoff_t index; 1200 struct pagevec pvec; 1201 pgoff_t num = 0; 1202 int i, nr_pages, done = 0; 1203 1204 if (max_pages == 0) 1205 return 0; 1206 pagevec_init(&pvec, 0); 1207 while (!done) { 1208 index = idx; 1209 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1210 PAGECACHE_TAG_DIRTY, 1211 (pgoff_t)PAGEVEC_SIZE); 1212 if (nr_pages == 0) 1213 break; 1214 for (i = 0; i < nr_pages; i++) { 1215 struct page *page = pvec.pages[i]; 1216 struct buffer_head *bh, *head; 1217 1218 lock_page(page); 1219 if (unlikely(page->mapping != mapping) || 1220 !PageDirty(page) || 1221 PageWriteback(page) || 1222 page->index != idx) { 1223 done = 1; 1224 unlock_page(page); 1225 break; 1226 } 1227 if (page_has_buffers(page)) { 1228 bh = head = page_buffers(page); 1229 do { 1230 if (!buffer_delay(bh) && 1231 !buffer_unwritten(bh)) 1232 done = 1; 1233 bh = bh->b_this_page; 1234 } while (!done && (bh != head)); 1235 } 1236 unlock_page(page); 1237 if (done) 1238 break; 1239 idx++; 1240 num++; 1241 if (num >= max_pages) { 1242 done = 1; 1243 break; 1244 } 1245 } 1246 pagevec_release(&pvec); 1247 } 1248 return num; 1249 } 1250 1251 /* 1252 * The ext4_map_blocks() function tries to look up the requested blocks, 1253 * and returns if the blocks are already mapped. 1254 * 1255 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1256 * and store the allocated blocks in the result buffer head and mark it 1257 * mapped. 1258 * 1259 * If file type is extents based, it will call ext4_ext_map_blocks(), 1260 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1261 * based files 1262 * 1263 * On success, it returns the number of blocks being mapped or allocate. 1264 * if create==0 and the blocks are pre-allocated and uninitialized block, 1265 * the result buffer head is unmapped. If the create ==1, it will make sure 1266 * the buffer head is mapped. 1267 * 1268 * It returns 0 if plain look up failed (blocks have not been allocated), in 1269 * that casem, buffer head is unmapped 1270 * 1271 * It returns the error in case of allocation failure. 1272 */ 1273 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1274 struct ext4_map_blocks *map, int flags) 1275 { 1276 int retval; 1277 1278 map->m_flags = 0; 1279 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1280 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1281 (unsigned long) map->m_lblk); 1282 /* 1283 * Try to see if we can get the block without requesting a new 1284 * file system block. 1285 */ 1286 down_read((&EXT4_I(inode)->i_data_sem)); 1287 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1288 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1289 } else { 1290 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1291 } 1292 up_read((&EXT4_I(inode)->i_data_sem)); 1293 1294 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1295 int ret = check_block_validity(inode, map); 1296 if (ret != 0) 1297 return ret; 1298 } 1299 1300 /* If it is only a block(s) look up */ 1301 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1302 return retval; 1303 1304 /* 1305 * Returns if the blocks have already allocated 1306 * 1307 * Note that if blocks have been preallocated 1308 * ext4_ext_get_block() returns th create = 0 1309 * with buffer head unmapped. 1310 */ 1311 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1312 return retval; 1313 1314 /* 1315 * When we call get_blocks without the create flag, the 1316 * BH_Unwritten flag could have gotten set if the blocks 1317 * requested were part of a uninitialized extent. We need to 1318 * clear this flag now that we are committed to convert all or 1319 * part of the uninitialized extent to be an initialized 1320 * extent. This is because we need to avoid the combination 1321 * of BH_Unwritten and BH_Mapped flags being simultaneously 1322 * set on the buffer_head. 1323 */ 1324 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1325 1326 /* 1327 * New blocks allocate and/or writing to uninitialized extent 1328 * will possibly result in updating i_data, so we take 1329 * the write lock of i_data_sem, and call get_blocks() 1330 * with create == 1 flag. 1331 */ 1332 down_write((&EXT4_I(inode)->i_data_sem)); 1333 1334 /* 1335 * if the caller is from delayed allocation writeout path 1336 * we have already reserved fs blocks for allocation 1337 * let the underlying get_block() function know to 1338 * avoid double accounting 1339 */ 1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1341 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1342 /* 1343 * We need to check for EXT4 here because migrate 1344 * could have changed the inode type in between 1345 */ 1346 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1347 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1348 } else { 1349 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1350 1351 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1352 /* 1353 * We allocated new blocks which will result in 1354 * i_data's format changing. Force the migrate 1355 * to fail by clearing migrate flags 1356 */ 1357 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1358 } 1359 1360 /* 1361 * Update reserved blocks/metadata blocks after successful 1362 * block allocation which had been deferred till now. We don't 1363 * support fallocate for non extent files. So we can update 1364 * reserve space here. 1365 */ 1366 if ((retval > 0) && 1367 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1368 ext4_da_update_reserve_space(inode, retval, 1); 1369 } 1370 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1371 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1372 1373 up_write((&EXT4_I(inode)->i_data_sem)); 1374 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1375 int ret = check_block_validity(inode, map); 1376 if (ret != 0) 1377 return ret; 1378 } 1379 return retval; 1380 } 1381 1382 /* Maximum number of blocks we map for direct IO at once. */ 1383 #define DIO_MAX_BLOCKS 4096 1384 1385 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1386 struct buffer_head *bh, int flags) 1387 { 1388 handle_t *handle = ext4_journal_current_handle(); 1389 struct ext4_map_blocks map; 1390 int ret = 0, started = 0; 1391 int dio_credits; 1392 1393 map.m_lblk = iblock; 1394 map.m_len = bh->b_size >> inode->i_blkbits; 1395 1396 if (flags && !handle) { 1397 /* Direct IO write... */ 1398 if (map.m_len > DIO_MAX_BLOCKS) 1399 map.m_len = DIO_MAX_BLOCKS; 1400 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1401 handle = ext4_journal_start(inode, dio_credits); 1402 if (IS_ERR(handle)) { 1403 ret = PTR_ERR(handle); 1404 return ret; 1405 } 1406 started = 1; 1407 } 1408 1409 ret = ext4_map_blocks(handle, inode, &map, flags); 1410 if (ret > 0) { 1411 map_bh(bh, inode->i_sb, map.m_pblk); 1412 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1413 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1414 ret = 0; 1415 } 1416 if (started) 1417 ext4_journal_stop(handle); 1418 return ret; 1419 } 1420 1421 int ext4_get_block(struct inode *inode, sector_t iblock, 1422 struct buffer_head *bh, int create) 1423 { 1424 return _ext4_get_block(inode, iblock, bh, 1425 create ? EXT4_GET_BLOCKS_CREATE : 0); 1426 } 1427 1428 /* 1429 * `handle' can be NULL if create is zero 1430 */ 1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1432 ext4_lblk_t block, int create, int *errp) 1433 { 1434 struct ext4_map_blocks map; 1435 struct buffer_head *bh; 1436 int fatal = 0, err; 1437 1438 J_ASSERT(handle != NULL || create == 0); 1439 1440 map.m_lblk = block; 1441 map.m_len = 1; 1442 err = ext4_map_blocks(handle, inode, &map, 1443 create ? EXT4_GET_BLOCKS_CREATE : 0); 1444 1445 if (err < 0) 1446 *errp = err; 1447 if (err <= 0) 1448 return NULL; 1449 *errp = 0; 1450 1451 bh = sb_getblk(inode->i_sb, map.m_pblk); 1452 if (!bh) { 1453 *errp = -EIO; 1454 return NULL; 1455 } 1456 if (map.m_flags & EXT4_MAP_NEW) { 1457 J_ASSERT(create != 0); 1458 J_ASSERT(handle != NULL); 1459 1460 /* 1461 * Now that we do not always journal data, we should 1462 * keep in mind whether this should always journal the 1463 * new buffer as metadata. For now, regular file 1464 * writes use ext4_get_block instead, so it's not a 1465 * problem. 1466 */ 1467 lock_buffer(bh); 1468 BUFFER_TRACE(bh, "call get_create_access"); 1469 fatal = ext4_journal_get_create_access(handle, bh); 1470 if (!fatal && !buffer_uptodate(bh)) { 1471 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1472 set_buffer_uptodate(bh); 1473 } 1474 unlock_buffer(bh); 1475 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1476 err = ext4_handle_dirty_metadata(handle, inode, bh); 1477 if (!fatal) 1478 fatal = err; 1479 } else { 1480 BUFFER_TRACE(bh, "not a new buffer"); 1481 } 1482 if (fatal) { 1483 *errp = fatal; 1484 brelse(bh); 1485 bh = NULL; 1486 } 1487 return bh; 1488 } 1489 1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1491 ext4_lblk_t block, int create, int *err) 1492 { 1493 struct buffer_head *bh; 1494 1495 bh = ext4_getblk(handle, inode, block, create, err); 1496 if (!bh) 1497 return bh; 1498 if (buffer_uptodate(bh)) 1499 return bh; 1500 ll_rw_block(READ_META, 1, &bh); 1501 wait_on_buffer(bh); 1502 if (buffer_uptodate(bh)) 1503 return bh; 1504 put_bh(bh); 1505 *err = -EIO; 1506 return NULL; 1507 } 1508 1509 static int walk_page_buffers(handle_t *handle, 1510 struct buffer_head *head, 1511 unsigned from, 1512 unsigned to, 1513 int *partial, 1514 int (*fn)(handle_t *handle, 1515 struct buffer_head *bh)) 1516 { 1517 struct buffer_head *bh; 1518 unsigned block_start, block_end; 1519 unsigned blocksize = head->b_size; 1520 int err, ret = 0; 1521 struct buffer_head *next; 1522 1523 for (bh = head, block_start = 0; 1524 ret == 0 && (bh != head || !block_start); 1525 block_start = block_end, bh = next) { 1526 next = bh->b_this_page; 1527 block_end = block_start + blocksize; 1528 if (block_end <= from || block_start >= to) { 1529 if (partial && !buffer_uptodate(bh)) 1530 *partial = 1; 1531 continue; 1532 } 1533 err = (*fn)(handle, bh); 1534 if (!ret) 1535 ret = err; 1536 } 1537 return ret; 1538 } 1539 1540 /* 1541 * To preserve ordering, it is essential that the hole instantiation and 1542 * the data write be encapsulated in a single transaction. We cannot 1543 * close off a transaction and start a new one between the ext4_get_block() 1544 * and the commit_write(). So doing the jbd2_journal_start at the start of 1545 * prepare_write() is the right place. 1546 * 1547 * Also, this function can nest inside ext4_writepage() -> 1548 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1549 * has generated enough buffer credits to do the whole page. So we won't 1550 * block on the journal in that case, which is good, because the caller may 1551 * be PF_MEMALLOC. 1552 * 1553 * By accident, ext4 can be reentered when a transaction is open via 1554 * quota file writes. If we were to commit the transaction while thus 1555 * reentered, there can be a deadlock - we would be holding a quota 1556 * lock, and the commit would never complete if another thread had a 1557 * transaction open and was blocking on the quota lock - a ranking 1558 * violation. 1559 * 1560 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1561 * will _not_ run commit under these circumstances because handle->h_ref 1562 * is elevated. We'll still have enough credits for the tiny quotafile 1563 * write. 1564 */ 1565 static int do_journal_get_write_access(handle_t *handle, 1566 struct buffer_head *bh) 1567 { 1568 int dirty = buffer_dirty(bh); 1569 int ret; 1570 1571 if (!buffer_mapped(bh) || buffer_freed(bh)) 1572 return 0; 1573 /* 1574 * __block_write_begin() could have dirtied some buffers. Clean 1575 * the dirty bit as jbd2_journal_get_write_access() could complain 1576 * otherwise about fs integrity issues. Setting of the dirty bit 1577 * by __block_write_begin() isn't a real problem here as we clear 1578 * the bit before releasing a page lock and thus writeback cannot 1579 * ever write the buffer. 1580 */ 1581 if (dirty) 1582 clear_buffer_dirty(bh); 1583 ret = ext4_journal_get_write_access(handle, bh); 1584 if (!ret && dirty) 1585 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1586 return ret; 1587 } 1588 1589 /* 1590 * Truncate blocks that were not used by write. We have to truncate the 1591 * pagecache as well so that corresponding buffers get properly unmapped. 1592 */ 1593 static void ext4_truncate_failed_write(struct inode *inode) 1594 { 1595 truncate_inode_pages(inode->i_mapping, inode->i_size); 1596 ext4_truncate(inode); 1597 } 1598 1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1600 struct buffer_head *bh_result, int create); 1601 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1602 loff_t pos, unsigned len, unsigned flags, 1603 struct page **pagep, void **fsdata) 1604 { 1605 struct inode *inode = mapping->host; 1606 int ret, needed_blocks; 1607 handle_t *handle; 1608 int retries = 0; 1609 struct page *page; 1610 pgoff_t index; 1611 unsigned from, to; 1612 1613 trace_ext4_write_begin(inode, pos, len, flags); 1614 /* 1615 * Reserve one block more for addition to orphan list in case 1616 * we allocate blocks but write fails for some reason 1617 */ 1618 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1619 index = pos >> PAGE_CACHE_SHIFT; 1620 from = pos & (PAGE_CACHE_SIZE - 1); 1621 to = from + len; 1622 1623 retry: 1624 handle = ext4_journal_start(inode, needed_blocks); 1625 if (IS_ERR(handle)) { 1626 ret = PTR_ERR(handle); 1627 goto out; 1628 } 1629 1630 /* We cannot recurse into the filesystem as the transaction is already 1631 * started */ 1632 flags |= AOP_FLAG_NOFS; 1633 1634 page = grab_cache_page_write_begin(mapping, index, flags); 1635 if (!page) { 1636 ext4_journal_stop(handle); 1637 ret = -ENOMEM; 1638 goto out; 1639 } 1640 *pagep = page; 1641 1642 if (ext4_should_dioread_nolock(inode)) 1643 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1644 else 1645 ret = __block_write_begin(page, pos, len, ext4_get_block); 1646 1647 if (!ret && ext4_should_journal_data(inode)) { 1648 ret = walk_page_buffers(handle, page_buffers(page), 1649 from, to, NULL, do_journal_get_write_access); 1650 } 1651 1652 if (ret) { 1653 unlock_page(page); 1654 page_cache_release(page); 1655 /* 1656 * __block_write_begin may have instantiated a few blocks 1657 * outside i_size. Trim these off again. Don't need 1658 * i_size_read because we hold i_mutex. 1659 * 1660 * Add inode to orphan list in case we crash before 1661 * truncate finishes 1662 */ 1663 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1664 ext4_orphan_add(handle, inode); 1665 1666 ext4_journal_stop(handle); 1667 if (pos + len > inode->i_size) { 1668 ext4_truncate_failed_write(inode); 1669 /* 1670 * If truncate failed early the inode might 1671 * still be on the orphan list; we need to 1672 * make sure the inode is removed from the 1673 * orphan list in that case. 1674 */ 1675 if (inode->i_nlink) 1676 ext4_orphan_del(NULL, inode); 1677 } 1678 } 1679 1680 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1681 goto retry; 1682 out: 1683 return ret; 1684 } 1685 1686 /* For write_end() in data=journal mode */ 1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1688 { 1689 if (!buffer_mapped(bh) || buffer_freed(bh)) 1690 return 0; 1691 set_buffer_uptodate(bh); 1692 return ext4_handle_dirty_metadata(handle, NULL, bh); 1693 } 1694 1695 static int ext4_generic_write_end(struct file *file, 1696 struct address_space *mapping, 1697 loff_t pos, unsigned len, unsigned copied, 1698 struct page *page, void *fsdata) 1699 { 1700 int i_size_changed = 0; 1701 struct inode *inode = mapping->host; 1702 handle_t *handle = ext4_journal_current_handle(); 1703 1704 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1705 1706 /* 1707 * No need to use i_size_read() here, the i_size 1708 * cannot change under us because we hold i_mutex. 1709 * 1710 * But it's important to update i_size while still holding page lock: 1711 * page writeout could otherwise come in and zero beyond i_size. 1712 */ 1713 if (pos + copied > inode->i_size) { 1714 i_size_write(inode, pos + copied); 1715 i_size_changed = 1; 1716 } 1717 1718 if (pos + copied > EXT4_I(inode)->i_disksize) { 1719 /* We need to mark inode dirty even if 1720 * new_i_size is less that inode->i_size 1721 * bu greater than i_disksize.(hint delalloc) 1722 */ 1723 ext4_update_i_disksize(inode, (pos + copied)); 1724 i_size_changed = 1; 1725 } 1726 unlock_page(page); 1727 page_cache_release(page); 1728 1729 /* 1730 * Don't mark the inode dirty under page lock. First, it unnecessarily 1731 * makes the holding time of page lock longer. Second, it forces lock 1732 * ordering of page lock and transaction start for journaling 1733 * filesystems. 1734 */ 1735 if (i_size_changed) 1736 ext4_mark_inode_dirty(handle, inode); 1737 1738 return copied; 1739 } 1740 1741 /* 1742 * We need to pick up the new inode size which generic_commit_write gave us 1743 * `file' can be NULL - eg, when called from page_symlink(). 1744 * 1745 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1746 * buffers are managed internally. 1747 */ 1748 static int ext4_ordered_write_end(struct file *file, 1749 struct address_space *mapping, 1750 loff_t pos, unsigned len, unsigned copied, 1751 struct page *page, void *fsdata) 1752 { 1753 handle_t *handle = ext4_journal_current_handle(); 1754 struct inode *inode = mapping->host; 1755 int ret = 0, ret2; 1756 1757 trace_ext4_ordered_write_end(inode, pos, len, copied); 1758 ret = ext4_jbd2_file_inode(handle, inode); 1759 1760 if (ret == 0) { 1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1762 page, fsdata); 1763 copied = ret2; 1764 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1765 /* if we have allocated more blocks and copied 1766 * less. We will have blocks allocated outside 1767 * inode->i_size. So truncate them 1768 */ 1769 ext4_orphan_add(handle, inode); 1770 if (ret2 < 0) 1771 ret = ret2; 1772 } 1773 ret2 = ext4_journal_stop(handle); 1774 if (!ret) 1775 ret = ret2; 1776 1777 if (pos + len > inode->i_size) { 1778 ext4_truncate_failed_write(inode); 1779 /* 1780 * If truncate failed early the inode might still be 1781 * on the orphan list; we need to make sure the inode 1782 * is removed from the orphan list in that case. 1783 */ 1784 if (inode->i_nlink) 1785 ext4_orphan_del(NULL, inode); 1786 } 1787 1788 1789 return ret ? ret : copied; 1790 } 1791 1792 static int ext4_writeback_write_end(struct file *file, 1793 struct address_space *mapping, 1794 loff_t pos, unsigned len, unsigned copied, 1795 struct page *page, void *fsdata) 1796 { 1797 handle_t *handle = ext4_journal_current_handle(); 1798 struct inode *inode = mapping->host; 1799 int ret = 0, ret2; 1800 1801 trace_ext4_writeback_write_end(inode, pos, len, copied); 1802 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1803 page, fsdata); 1804 copied = ret2; 1805 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1806 /* if we have allocated more blocks and copied 1807 * less. We will have blocks allocated outside 1808 * inode->i_size. So truncate them 1809 */ 1810 ext4_orphan_add(handle, inode); 1811 1812 if (ret2 < 0) 1813 ret = ret2; 1814 1815 ret2 = ext4_journal_stop(handle); 1816 if (!ret) 1817 ret = ret2; 1818 1819 if (pos + len > inode->i_size) { 1820 ext4_truncate_failed_write(inode); 1821 /* 1822 * If truncate failed early the inode might still be 1823 * on the orphan list; we need to make sure the inode 1824 * is removed from the orphan list in that case. 1825 */ 1826 if (inode->i_nlink) 1827 ext4_orphan_del(NULL, inode); 1828 } 1829 1830 return ret ? ret : copied; 1831 } 1832 1833 static int ext4_journalled_write_end(struct file *file, 1834 struct address_space *mapping, 1835 loff_t pos, unsigned len, unsigned copied, 1836 struct page *page, void *fsdata) 1837 { 1838 handle_t *handle = ext4_journal_current_handle(); 1839 struct inode *inode = mapping->host; 1840 int ret = 0, ret2; 1841 int partial = 0; 1842 unsigned from, to; 1843 loff_t new_i_size; 1844 1845 trace_ext4_journalled_write_end(inode, pos, len, copied); 1846 from = pos & (PAGE_CACHE_SIZE - 1); 1847 to = from + len; 1848 1849 if (copied < len) { 1850 if (!PageUptodate(page)) 1851 copied = 0; 1852 page_zero_new_buffers(page, from+copied, to); 1853 } 1854 1855 ret = walk_page_buffers(handle, page_buffers(page), from, 1856 to, &partial, write_end_fn); 1857 if (!partial) 1858 SetPageUptodate(page); 1859 new_i_size = pos + copied; 1860 if (new_i_size > inode->i_size) 1861 i_size_write(inode, pos+copied); 1862 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1863 if (new_i_size > EXT4_I(inode)->i_disksize) { 1864 ext4_update_i_disksize(inode, new_i_size); 1865 ret2 = ext4_mark_inode_dirty(handle, inode); 1866 if (!ret) 1867 ret = ret2; 1868 } 1869 1870 unlock_page(page); 1871 page_cache_release(page); 1872 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1873 /* if we have allocated more blocks and copied 1874 * less. We will have blocks allocated outside 1875 * inode->i_size. So truncate them 1876 */ 1877 ext4_orphan_add(handle, inode); 1878 1879 ret2 = ext4_journal_stop(handle); 1880 if (!ret) 1881 ret = ret2; 1882 if (pos + len > inode->i_size) { 1883 ext4_truncate_failed_write(inode); 1884 /* 1885 * If truncate failed early the inode might still be 1886 * on the orphan list; we need to make sure the inode 1887 * is removed from the orphan list in that case. 1888 */ 1889 if (inode->i_nlink) 1890 ext4_orphan_del(NULL, inode); 1891 } 1892 1893 return ret ? ret : copied; 1894 } 1895 1896 /* 1897 * Reserve a single block located at lblock 1898 */ 1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1900 { 1901 int retries = 0; 1902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1903 struct ext4_inode_info *ei = EXT4_I(inode); 1904 unsigned long md_needed; 1905 int ret; 1906 1907 /* 1908 * recalculate the amount of metadata blocks to reserve 1909 * in order to allocate nrblocks 1910 * worse case is one extent per block 1911 */ 1912 repeat: 1913 spin_lock(&ei->i_block_reservation_lock); 1914 md_needed = ext4_calc_metadata_amount(inode, lblock); 1915 trace_ext4_da_reserve_space(inode, md_needed); 1916 spin_unlock(&ei->i_block_reservation_lock); 1917 1918 /* 1919 * We will charge metadata quota at writeout time; this saves 1920 * us from metadata over-estimation, though we may go over by 1921 * a small amount in the end. Here we just reserve for data. 1922 */ 1923 ret = dquot_reserve_block(inode, 1); 1924 if (ret) 1925 return ret; 1926 /* 1927 * We do still charge estimated metadata to the sb though; 1928 * we cannot afford to run out of free blocks. 1929 */ 1930 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1931 dquot_release_reservation_block(inode, 1); 1932 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1933 yield(); 1934 goto repeat; 1935 } 1936 return -ENOSPC; 1937 } 1938 spin_lock(&ei->i_block_reservation_lock); 1939 ei->i_reserved_data_blocks++; 1940 ei->i_reserved_meta_blocks += md_needed; 1941 spin_unlock(&ei->i_block_reservation_lock); 1942 1943 return 0; /* success */ 1944 } 1945 1946 static void ext4_da_release_space(struct inode *inode, int to_free) 1947 { 1948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1949 struct ext4_inode_info *ei = EXT4_I(inode); 1950 1951 if (!to_free) 1952 return; /* Nothing to release, exit */ 1953 1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1955 1956 trace_ext4_da_release_space(inode, to_free); 1957 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1958 /* 1959 * if there aren't enough reserved blocks, then the 1960 * counter is messed up somewhere. Since this 1961 * function is called from invalidate page, it's 1962 * harmless to return without any action. 1963 */ 1964 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1965 "ino %lu, to_free %d with only %d reserved " 1966 "data blocks\n", inode->i_ino, to_free, 1967 ei->i_reserved_data_blocks); 1968 WARN_ON(1); 1969 to_free = ei->i_reserved_data_blocks; 1970 } 1971 ei->i_reserved_data_blocks -= to_free; 1972 1973 if (ei->i_reserved_data_blocks == 0) { 1974 /* 1975 * We can release all of the reserved metadata blocks 1976 * only when we have written all of the delayed 1977 * allocation blocks. 1978 */ 1979 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1980 ei->i_reserved_meta_blocks); 1981 ei->i_reserved_meta_blocks = 0; 1982 ei->i_da_metadata_calc_len = 0; 1983 } 1984 1985 /* update fs dirty data blocks counter */ 1986 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1987 1988 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1989 1990 dquot_release_reservation_block(inode, to_free); 1991 } 1992 1993 static void ext4_da_page_release_reservation(struct page *page, 1994 unsigned long offset) 1995 { 1996 int to_release = 0; 1997 struct buffer_head *head, *bh; 1998 unsigned int curr_off = 0; 1999 2000 head = page_buffers(page); 2001 bh = head; 2002 do { 2003 unsigned int next_off = curr_off + bh->b_size; 2004 2005 if ((offset <= curr_off) && (buffer_delay(bh))) { 2006 to_release++; 2007 clear_buffer_delay(bh); 2008 } 2009 curr_off = next_off; 2010 } while ((bh = bh->b_this_page) != head); 2011 ext4_da_release_space(page->mapping->host, to_release); 2012 } 2013 2014 /* 2015 * Delayed allocation stuff 2016 */ 2017 2018 /* 2019 * mpage_da_submit_io - walks through extent of pages and try to write 2020 * them with writepage() call back 2021 * 2022 * @mpd->inode: inode 2023 * @mpd->first_page: first page of the extent 2024 * @mpd->next_page: page after the last page of the extent 2025 * 2026 * By the time mpage_da_submit_io() is called we expect all blocks 2027 * to be allocated. this may be wrong if allocation failed. 2028 * 2029 * As pages are already locked by write_cache_pages(), we can't use it 2030 */ 2031 static int mpage_da_submit_io(struct mpage_da_data *mpd, 2032 struct ext4_map_blocks *map) 2033 { 2034 struct pagevec pvec; 2035 unsigned long index, end; 2036 int ret = 0, err, nr_pages, i; 2037 struct inode *inode = mpd->inode; 2038 struct address_space *mapping = inode->i_mapping; 2039 loff_t size = i_size_read(inode); 2040 unsigned int len, block_start; 2041 struct buffer_head *bh, *page_bufs = NULL; 2042 int journal_data = ext4_should_journal_data(inode); 2043 sector_t pblock = 0, cur_logical = 0; 2044 struct ext4_io_submit io_submit; 2045 2046 BUG_ON(mpd->next_page <= mpd->first_page); 2047 memset(&io_submit, 0, sizeof(io_submit)); 2048 /* 2049 * We need to start from the first_page to the next_page - 1 2050 * to make sure we also write the mapped dirty buffer_heads. 2051 * If we look at mpd->b_blocknr we would only be looking 2052 * at the currently mapped buffer_heads. 2053 */ 2054 index = mpd->first_page; 2055 end = mpd->next_page - 1; 2056 2057 pagevec_init(&pvec, 0); 2058 while (index <= end) { 2059 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2060 if (nr_pages == 0) 2061 break; 2062 for (i = 0; i < nr_pages; i++) { 2063 int commit_write = 0, skip_page = 0; 2064 struct page *page = pvec.pages[i]; 2065 2066 index = page->index; 2067 if (index > end) 2068 break; 2069 2070 if (index == size >> PAGE_CACHE_SHIFT) 2071 len = size & ~PAGE_CACHE_MASK; 2072 else 2073 len = PAGE_CACHE_SIZE; 2074 if (map) { 2075 cur_logical = index << (PAGE_CACHE_SHIFT - 2076 inode->i_blkbits); 2077 pblock = map->m_pblk + (cur_logical - 2078 map->m_lblk); 2079 } 2080 index++; 2081 2082 BUG_ON(!PageLocked(page)); 2083 BUG_ON(PageWriteback(page)); 2084 2085 /* 2086 * If the page does not have buffers (for 2087 * whatever reason), try to create them using 2088 * __block_write_begin. If this fails, 2089 * skip the page and move on. 2090 */ 2091 if (!page_has_buffers(page)) { 2092 if (__block_write_begin(page, 0, len, 2093 noalloc_get_block_write)) { 2094 skip_page: 2095 unlock_page(page); 2096 continue; 2097 } 2098 commit_write = 1; 2099 } 2100 2101 bh = page_bufs = page_buffers(page); 2102 block_start = 0; 2103 do { 2104 if (!bh) 2105 goto skip_page; 2106 if (map && (cur_logical >= map->m_lblk) && 2107 (cur_logical <= (map->m_lblk + 2108 (map->m_len - 1)))) { 2109 if (buffer_delay(bh)) { 2110 clear_buffer_delay(bh); 2111 bh->b_blocknr = pblock; 2112 } 2113 if (buffer_unwritten(bh) || 2114 buffer_mapped(bh)) 2115 BUG_ON(bh->b_blocknr != pblock); 2116 if (map->m_flags & EXT4_MAP_UNINIT) 2117 set_buffer_uninit(bh); 2118 clear_buffer_unwritten(bh); 2119 } 2120 2121 /* skip page if block allocation undone */ 2122 if (buffer_delay(bh) || buffer_unwritten(bh)) 2123 skip_page = 1; 2124 bh = bh->b_this_page; 2125 block_start += bh->b_size; 2126 cur_logical++; 2127 pblock++; 2128 } while (bh != page_bufs); 2129 2130 if (skip_page) 2131 goto skip_page; 2132 2133 if (commit_write) 2134 /* mark the buffer_heads as dirty & uptodate */ 2135 block_commit_write(page, 0, len); 2136 2137 clear_page_dirty_for_io(page); 2138 /* 2139 * Delalloc doesn't support data journalling, 2140 * but eventually maybe we'll lift this 2141 * restriction. 2142 */ 2143 if (unlikely(journal_data && PageChecked(page))) 2144 err = __ext4_journalled_writepage(page, len); 2145 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 2146 err = ext4_bio_write_page(&io_submit, page, 2147 len, mpd->wbc); 2148 else 2149 err = block_write_full_page(page, 2150 noalloc_get_block_write, mpd->wbc); 2151 2152 if (!err) 2153 mpd->pages_written++; 2154 /* 2155 * In error case, we have to continue because 2156 * remaining pages are still locked 2157 */ 2158 if (ret == 0) 2159 ret = err; 2160 } 2161 pagevec_release(&pvec); 2162 } 2163 ext4_io_submit(&io_submit); 2164 return ret; 2165 } 2166 2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 2168 { 2169 int nr_pages, i; 2170 pgoff_t index, end; 2171 struct pagevec pvec; 2172 struct inode *inode = mpd->inode; 2173 struct address_space *mapping = inode->i_mapping; 2174 2175 index = mpd->first_page; 2176 end = mpd->next_page - 1; 2177 while (index <= end) { 2178 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2179 if (nr_pages == 0) 2180 break; 2181 for (i = 0; i < nr_pages; i++) { 2182 struct page *page = pvec.pages[i]; 2183 if (page->index > end) 2184 break; 2185 BUG_ON(!PageLocked(page)); 2186 BUG_ON(PageWriteback(page)); 2187 block_invalidatepage(page, 0); 2188 ClearPageUptodate(page); 2189 unlock_page(page); 2190 } 2191 index = pvec.pages[nr_pages - 1]->index + 1; 2192 pagevec_release(&pvec); 2193 } 2194 return; 2195 } 2196 2197 static void ext4_print_free_blocks(struct inode *inode) 2198 { 2199 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2200 printk(KERN_CRIT "Total free blocks count %lld\n", 2201 ext4_count_free_blocks(inode->i_sb)); 2202 printk(KERN_CRIT "Free/Dirty block details\n"); 2203 printk(KERN_CRIT "free_blocks=%lld\n", 2204 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2205 printk(KERN_CRIT "dirty_blocks=%lld\n", 2206 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2207 printk(KERN_CRIT "Block reservation details\n"); 2208 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2209 EXT4_I(inode)->i_reserved_data_blocks); 2210 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2211 EXT4_I(inode)->i_reserved_meta_blocks); 2212 return; 2213 } 2214 2215 /* 2216 * mpage_da_map_and_submit - go through given space, map them 2217 * if necessary, and then submit them for I/O 2218 * 2219 * @mpd - bh describing space 2220 * 2221 * The function skips space we know is already mapped to disk blocks. 2222 * 2223 */ 2224 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 2225 { 2226 int err, blks, get_blocks_flags; 2227 struct ext4_map_blocks map, *mapp = NULL; 2228 sector_t next = mpd->b_blocknr; 2229 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2230 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2231 handle_t *handle = NULL; 2232 2233 /* 2234 * If the blocks are mapped already, or we couldn't accumulate 2235 * any blocks, then proceed immediately to the submission stage. 2236 */ 2237 if ((mpd->b_size == 0) || 2238 ((mpd->b_state & (1 << BH_Mapped)) && 2239 !(mpd->b_state & (1 << BH_Delay)) && 2240 !(mpd->b_state & (1 << BH_Unwritten)))) 2241 goto submit_io; 2242 2243 handle = ext4_journal_current_handle(); 2244 BUG_ON(!handle); 2245 2246 /* 2247 * Call ext4_map_blocks() to allocate any delayed allocation 2248 * blocks, or to convert an uninitialized extent to be 2249 * initialized (in the case where we have written into 2250 * one or more preallocated blocks). 2251 * 2252 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2253 * indicate that we are on the delayed allocation path. This 2254 * affects functions in many different parts of the allocation 2255 * call path. This flag exists primarily because we don't 2256 * want to change *many* call functions, so ext4_map_blocks() 2257 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 2258 * inode's allocation semaphore is taken. 2259 * 2260 * If the blocks in questions were delalloc blocks, set 2261 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2262 * variables are updated after the blocks have been allocated. 2263 */ 2264 map.m_lblk = next; 2265 map.m_len = max_blocks; 2266 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2267 if (ext4_should_dioread_nolock(mpd->inode)) 2268 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2269 if (mpd->b_state & (1 << BH_Delay)) 2270 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2271 2272 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2273 if (blks < 0) { 2274 struct super_block *sb = mpd->inode->i_sb; 2275 2276 err = blks; 2277 /* 2278 * If get block returns EAGAIN or ENOSPC and there 2279 * appears to be free blocks we will just let 2280 * mpage_da_submit_io() unlock all of the pages. 2281 */ 2282 if (err == -EAGAIN) 2283 goto submit_io; 2284 2285 if (err == -ENOSPC && 2286 ext4_count_free_blocks(sb)) { 2287 mpd->retval = err; 2288 goto submit_io; 2289 } 2290 2291 /* 2292 * get block failure will cause us to loop in 2293 * writepages, because a_ops->writepage won't be able 2294 * to make progress. The page will be redirtied by 2295 * writepage and writepages will again try to write 2296 * the same. 2297 */ 2298 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2299 ext4_msg(sb, KERN_CRIT, 2300 "delayed block allocation failed for inode %lu " 2301 "at logical offset %llu with max blocks %zd " 2302 "with error %d", mpd->inode->i_ino, 2303 (unsigned long long) next, 2304 mpd->b_size >> mpd->inode->i_blkbits, err); 2305 ext4_msg(sb, KERN_CRIT, 2306 "This should not happen!! Data will be lost\n"); 2307 if (err == -ENOSPC) 2308 ext4_print_free_blocks(mpd->inode); 2309 } 2310 /* invalidate all the pages */ 2311 ext4_da_block_invalidatepages(mpd); 2312 2313 /* Mark this page range as having been completed */ 2314 mpd->io_done = 1; 2315 return; 2316 } 2317 BUG_ON(blks == 0); 2318 2319 mapp = ↦ 2320 if (map.m_flags & EXT4_MAP_NEW) { 2321 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2322 int i; 2323 2324 for (i = 0; i < map.m_len; i++) 2325 unmap_underlying_metadata(bdev, map.m_pblk + i); 2326 } 2327 2328 if (ext4_should_order_data(mpd->inode)) { 2329 err = ext4_jbd2_file_inode(handle, mpd->inode); 2330 if (err) 2331 /* This only happens if the journal is aborted */ 2332 return; 2333 } 2334 2335 /* 2336 * Update on-disk size along with block allocation. 2337 */ 2338 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2339 if (disksize > i_size_read(mpd->inode)) 2340 disksize = i_size_read(mpd->inode); 2341 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2342 ext4_update_i_disksize(mpd->inode, disksize); 2343 err = ext4_mark_inode_dirty(handle, mpd->inode); 2344 if (err) 2345 ext4_error(mpd->inode->i_sb, 2346 "Failed to mark inode %lu dirty", 2347 mpd->inode->i_ino); 2348 } 2349 2350 submit_io: 2351 mpage_da_submit_io(mpd, mapp); 2352 mpd->io_done = 1; 2353 } 2354 2355 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2356 (1 << BH_Delay) | (1 << BH_Unwritten)) 2357 2358 /* 2359 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2360 * 2361 * @mpd->lbh - extent of blocks 2362 * @logical - logical number of the block in the file 2363 * @bh - bh of the block (used to access block's state) 2364 * 2365 * the function is used to collect contig. blocks in same state 2366 */ 2367 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2368 sector_t logical, size_t b_size, 2369 unsigned long b_state) 2370 { 2371 sector_t next; 2372 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2373 2374 /* 2375 * XXX Don't go larger than mballoc is willing to allocate 2376 * This is a stopgap solution. We eventually need to fold 2377 * mpage_da_submit_io() into this function and then call 2378 * ext4_map_blocks() multiple times in a loop 2379 */ 2380 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2381 goto flush_it; 2382 2383 /* check if thereserved journal credits might overflow */ 2384 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 2385 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2386 /* 2387 * With non-extent format we are limited by the journal 2388 * credit available. Total credit needed to insert 2389 * nrblocks contiguous blocks is dependent on the 2390 * nrblocks. So limit nrblocks. 2391 */ 2392 goto flush_it; 2393 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2394 EXT4_MAX_TRANS_DATA) { 2395 /* 2396 * Adding the new buffer_head would make it cross the 2397 * allowed limit for which we have journal credit 2398 * reserved. So limit the new bh->b_size 2399 */ 2400 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2401 mpd->inode->i_blkbits; 2402 /* we will do mpage_da_submit_io in the next loop */ 2403 } 2404 } 2405 /* 2406 * First block in the extent 2407 */ 2408 if (mpd->b_size == 0) { 2409 mpd->b_blocknr = logical; 2410 mpd->b_size = b_size; 2411 mpd->b_state = b_state & BH_FLAGS; 2412 return; 2413 } 2414 2415 next = mpd->b_blocknr + nrblocks; 2416 /* 2417 * Can we merge the block to our big extent? 2418 */ 2419 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2420 mpd->b_size += b_size; 2421 return; 2422 } 2423 2424 flush_it: 2425 /* 2426 * We couldn't merge the block to our extent, so we 2427 * need to flush current extent and start new one 2428 */ 2429 mpage_da_map_and_submit(mpd); 2430 return; 2431 } 2432 2433 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2434 { 2435 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2436 } 2437 2438 /* 2439 * This is a special get_blocks_t callback which is used by 2440 * ext4_da_write_begin(). It will either return mapped block or 2441 * reserve space for a single block. 2442 * 2443 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2444 * We also have b_blocknr = -1 and b_bdev initialized properly 2445 * 2446 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2447 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2448 * initialized properly. 2449 */ 2450 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2451 struct buffer_head *bh, int create) 2452 { 2453 struct ext4_map_blocks map; 2454 int ret = 0; 2455 sector_t invalid_block = ~((sector_t) 0xffff); 2456 2457 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2458 invalid_block = ~0; 2459 2460 BUG_ON(create == 0); 2461 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2462 2463 map.m_lblk = iblock; 2464 map.m_len = 1; 2465 2466 /* 2467 * first, we need to know whether the block is allocated already 2468 * preallocated blocks are unmapped but should treated 2469 * the same as allocated blocks. 2470 */ 2471 ret = ext4_map_blocks(NULL, inode, &map, 0); 2472 if (ret < 0) 2473 return ret; 2474 if (ret == 0) { 2475 if (buffer_delay(bh)) 2476 return 0; /* Not sure this could or should happen */ 2477 /* 2478 * XXX: __block_write_begin() unmaps passed block, is it OK? 2479 */ 2480 ret = ext4_da_reserve_space(inode, iblock); 2481 if (ret) 2482 /* not enough space to reserve */ 2483 return ret; 2484 2485 map_bh(bh, inode->i_sb, invalid_block); 2486 set_buffer_new(bh); 2487 set_buffer_delay(bh); 2488 return 0; 2489 } 2490 2491 map_bh(bh, inode->i_sb, map.m_pblk); 2492 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2493 2494 if (buffer_unwritten(bh)) { 2495 /* A delayed write to unwritten bh should be marked 2496 * new and mapped. Mapped ensures that we don't do 2497 * get_block multiple times when we write to the same 2498 * offset and new ensures that we do proper zero out 2499 * for partial write. 2500 */ 2501 set_buffer_new(bh); 2502 set_buffer_mapped(bh); 2503 } 2504 return 0; 2505 } 2506 2507 /* 2508 * This function is used as a standard get_block_t calback function 2509 * when there is no desire to allocate any blocks. It is used as a 2510 * callback function for block_write_begin() and block_write_full_page(). 2511 * These functions should only try to map a single block at a time. 2512 * 2513 * Since this function doesn't do block allocations even if the caller 2514 * requests it by passing in create=1, it is critically important that 2515 * any caller checks to make sure that any buffer heads are returned 2516 * by this function are either all already mapped or marked for 2517 * delayed allocation before calling block_write_full_page(). Otherwise, 2518 * b_blocknr could be left unitialized, and the page write functions will 2519 * be taken by surprise. 2520 */ 2521 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2522 struct buffer_head *bh_result, int create) 2523 { 2524 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2525 return _ext4_get_block(inode, iblock, bh_result, 0); 2526 } 2527 2528 static int bget_one(handle_t *handle, struct buffer_head *bh) 2529 { 2530 get_bh(bh); 2531 return 0; 2532 } 2533 2534 static int bput_one(handle_t *handle, struct buffer_head *bh) 2535 { 2536 put_bh(bh); 2537 return 0; 2538 } 2539 2540 static int __ext4_journalled_writepage(struct page *page, 2541 unsigned int len) 2542 { 2543 struct address_space *mapping = page->mapping; 2544 struct inode *inode = mapping->host; 2545 struct buffer_head *page_bufs; 2546 handle_t *handle = NULL; 2547 int ret = 0; 2548 int err; 2549 2550 ClearPageChecked(page); 2551 page_bufs = page_buffers(page); 2552 BUG_ON(!page_bufs); 2553 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2554 /* As soon as we unlock the page, it can go away, but we have 2555 * references to buffers so we are safe */ 2556 unlock_page(page); 2557 2558 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2559 if (IS_ERR(handle)) { 2560 ret = PTR_ERR(handle); 2561 goto out; 2562 } 2563 2564 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2565 do_journal_get_write_access); 2566 2567 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2568 write_end_fn); 2569 if (ret == 0) 2570 ret = err; 2571 err = ext4_journal_stop(handle); 2572 if (!ret) 2573 ret = err; 2574 2575 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2576 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2577 out: 2578 return ret; 2579 } 2580 2581 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2582 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2583 2584 /* 2585 * Note that we don't need to start a transaction unless we're journaling data 2586 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2587 * need to file the inode to the transaction's list in ordered mode because if 2588 * we are writing back data added by write(), the inode is already there and if 2589 * we are writing back data modified via mmap(), noone guarantees in which 2590 * transaction the data will hit the disk. In case we are journaling data, we 2591 * cannot start transaction directly because transaction start ranks above page 2592 * lock so we have to do some magic. 2593 * 2594 * This function can get called via... 2595 * - ext4_da_writepages after taking page lock (have journal handle) 2596 * - journal_submit_inode_data_buffers (no journal handle) 2597 * - shrink_page_list via pdflush (no journal handle) 2598 * - grab_page_cache when doing write_begin (have journal handle) 2599 * 2600 * We don't do any block allocation in this function. If we have page with 2601 * multiple blocks we need to write those buffer_heads that are mapped. This 2602 * is important for mmaped based write. So if we do with blocksize 1K 2603 * truncate(f, 1024); 2604 * a = mmap(f, 0, 4096); 2605 * a[0] = 'a'; 2606 * truncate(f, 4096); 2607 * we have in the page first buffer_head mapped via page_mkwrite call back 2608 * but other bufer_heads would be unmapped but dirty(dirty done via the 2609 * do_wp_page). So writepage should write the first block. If we modify 2610 * the mmap area beyond 1024 we will again get a page_fault and the 2611 * page_mkwrite callback will do the block allocation and mark the 2612 * buffer_heads mapped. 2613 * 2614 * We redirty the page if we have any buffer_heads that is either delay or 2615 * unwritten in the page. 2616 * 2617 * We can get recursively called as show below. 2618 * 2619 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2620 * ext4_writepage() 2621 * 2622 * But since we don't do any block allocation we should not deadlock. 2623 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2624 */ 2625 static int ext4_writepage(struct page *page, 2626 struct writeback_control *wbc) 2627 { 2628 int ret = 0, commit_write = 0; 2629 loff_t size; 2630 unsigned int len; 2631 struct buffer_head *page_bufs = NULL; 2632 struct inode *inode = page->mapping->host; 2633 2634 trace_ext4_writepage(inode, page); 2635 size = i_size_read(inode); 2636 if (page->index == size >> PAGE_CACHE_SHIFT) 2637 len = size & ~PAGE_CACHE_MASK; 2638 else 2639 len = PAGE_CACHE_SIZE; 2640 2641 /* 2642 * If the page does not have buffers (for whatever reason), 2643 * try to create them using __block_write_begin. If this 2644 * fails, redirty the page and move on. 2645 */ 2646 if (!page_has_buffers(page)) { 2647 if (__block_write_begin(page, 0, len, 2648 noalloc_get_block_write)) { 2649 redirty_page: 2650 redirty_page_for_writepage(wbc, page); 2651 unlock_page(page); 2652 return 0; 2653 } 2654 commit_write = 1; 2655 } 2656 page_bufs = page_buffers(page); 2657 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2658 ext4_bh_delay_or_unwritten)) { 2659 /* 2660 * We don't want to do block allocation, so redirty 2661 * the page and return. We may reach here when we do 2662 * a journal commit via journal_submit_inode_data_buffers. 2663 * We can also reach here via shrink_page_list 2664 */ 2665 goto redirty_page; 2666 } 2667 if (commit_write) 2668 /* now mark the buffer_heads as dirty and uptodate */ 2669 block_commit_write(page, 0, len); 2670 2671 if (PageChecked(page) && ext4_should_journal_data(inode)) 2672 /* 2673 * It's mmapped pagecache. Add buffers and journal it. There 2674 * doesn't seem much point in redirtying the page here. 2675 */ 2676 return __ext4_journalled_writepage(page, len); 2677 2678 if (buffer_uninit(page_bufs)) { 2679 ext4_set_bh_endio(page_bufs, inode); 2680 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2681 wbc, ext4_end_io_buffer_write); 2682 } else 2683 ret = block_write_full_page(page, noalloc_get_block_write, 2684 wbc); 2685 2686 return ret; 2687 } 2688 2689 /* 2690 * This is called via ext4_da_writepages() to 2691 * calulate the total number of credits to reserve to fit 2692 * a single extent allocation into a single transaction, 2693 * ext4_da_writpeages() will loop calling this before 2694 * the block allocation. 2695 */ 2696 2697 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2698 { 2699 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2700 2701 /* 2702 * With non-extent format the journal credit needed to 2703 * insert nrblocks contiguous block is dependent on 2704 * number of contiguous block. So we will limit 2705 * number of contiguous block to a sane value 2706 */ 2707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2708 (max_blocks > EXT4_MAX_TRANS_DATA)) 2709 max_blocks = EXT4_MAX_TRANS_DATA; 2710 2711 return ext4_chunk_trans_blocks(inode, max_blocks); 2712 } 2713 2714 /* 2715 * write_cache_pages_da - walk the list of dirty pages of the given 2716 * address space and accumulate pages that need writing, and call 2717 * mpage_da_map_and_submit to map a single contiguous memory region 2718 * and then write them. 2719 */ 2720 static int write_cache_pages_da(struct address_space *mapping, 2721 struct writeback_control *wbc, 2722 struct mpage_da_data *mpd, 2723 pgoff_t *done_index) 2724 { 2725 struct buffer_head *bh, *head; 2726 struct inode *inode = mapping->host; 2727 struct pagevec pvec; 2728 unsigned int nr_pages; 2729 sector_t logical; 2730 pgoff_t index, end; 2731 long nr_to_write = wbc->nr_to_write; 2732 int i, tag, ret = 0; 2733 2734 memset(mpd, 0, sizeof(struct mpage_da_data)); 2735 mpd->wbc = wbc; 2736 mpd->inode = inode; 2737 pagevec_init(&pvec, 0); 2738 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2739 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2740 2741 if (wbc->sync_mode == WB_SYNC_ALL) 2742 tag = PAGECACHE_TAG_TOWRITE; 2743 else 2744 tag = PAGECACHE_TAG_DIRTY; 2745 2746 *done_index = index; 2747 while (index <= end) { 2748 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2749 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2750 if (nr_pages == 0) 2751 return 0; 2752 2753 for (i = 0; i < nr_pages; i++) { 2754 struct page *page = pvec.pages[i]; 2755 2756 /* 2757 * At this point, the page may be truncated or 2758 * invalidated (changing page->mapping to NULL), or 2759 * even swizzled back from swapper_space to tmpfs file 2760 * mapping. However, page->index will not change 2761 * because we have a reference on the page. 2762 */ 2763 if (page->index > end) 2764 goto out; 2765 2766 *done_index = page->index + 1; 2767 2768 /* 2769 * If we can't merge this page, and we have 2770 * accumulated an contiguous region, write it 2771 */ 2772 if ((mpd->next_page != page->index) && 2773 (mpd->next_page != mpd->first_page)) { 2774 mpage_da_map_and_submit(mpd); 2775 goto ret_extent_tail; 2776 } 2777 2778 lock_page(page); 2779 2780 /* 2781 * If the page is no longer dirty, or its 2782 * mapping no longer corresponds to inode we 2783 * are writing (which means it has been 2784 * truncated or invalidated), or the page is 2785 * already under writeback and we are not 2786 * doing a data integrity writeback, skip the page 2787 */ 2788 if (!PageDirty(page) || 2789 (PageWriteback(page) && 2790 (wbc->sync_mode == WB_SYNC_NONE)) || 2791 unlikely(page->mapping != mapping)) { 2792 unlock_page(page); 2793 continue; 2794 } 2795 2796 if (PageWriteback(page)) 2797 wait_on_page_writeback(page); 2798 2799 BUG_ON(PageWriteback(page)); 2800 2801 if (mpd->next_page != page->index) 2802 mpd->first_page = page->index; 2803 mpd->next_page = page->index + 1; 2804 logical = (sector_t) page->index << 2805 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2806 2807 if (!page_has_buffers(page)) { 2808 mpage_add_bh_to_extent(mpd, logical, 2809 PAGE_CACHE_SIZE, 2810 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2811 if (mpd->io_done) 2812 goto ret_extent_tail; 2813 } else { 2814 /* 2815 * Page with regular buffer heads, 2816 * just add all dirty ones 2817 */ 2818 head = page_buffers(page); 2819 bh = head; 2820 do { 2821 BUG_ON(buffer_locked(bh)); 2822 /* 2823 * We need to try to allocate 2824 * unmapped blocks in the same page. 2825 * Otherwise we won't make progress 2826 * with the page in ext4_writepage 2827 */ 2828 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2829 mpage_add_bh_to_extent(mpd, logical, 2830 bh->b_size, 2831 bh->b_state); 2832 if (mpd->io_done) 2833 goto ret_extent_tail; 2834 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2835 /* 2836 * mapped dirty buffer. We need 2837 * to update the b_state 2838 * because we look at b_state 2839 * in mpage_da_map_blocks. We 2840 * don't update b_size because 2841 * if we find an unmapped 2842 * buffer_head later we need to 2843 * use the b_state flag of that 2844 * buffer_head. 2845 */ 2846 if (mpd->b_size == 0) 2847 mpd->b_state = bh->b_state & BH_FLAGS; 2848 } 2849 logical++; 2850 } while ((bh = bh->b_this_page) != head); 2851 } 2852 2853 if (nr_to_write > 0) { 2854 nr_to_write--; 2855 if (nr_to_write == 0 && 2856 wbc->sync_mode == WB_SYNC_NONE) 2857 /* 2858 * We stop writing back only if we are 2859 * not doing integrity sync. In case of 2860 * integrity sync we have to keep going 2861 * because someone may be concurrently 2862 * dirtying pages, and we might have 2863 * synced a lot of newly appeared dirty 2864 * pages, but have not synced all of the 2865 * old dirty pages. 2866 */ 2867 goto out; 2868 } 2869 } 2870 pagevec_release(&pvec); 2871 cond_resched(); 2872 } 2873 return 0; 2874 ret_extent_tail: 2875 ret = MPAGE_DA_EXTENT_TAIL; 2876 out: 2877 pagevec_release(&pvec); 2878 cond_resched(); 2879 return ret; 2880 } 2881 2882 2883 static int ext4_da_writepages(struct address_space *mapping, 2884 struct writeback_control *wbc) 2885 { 2886 pgoff_t index; 2887 int range_whole = 0; 2888 handle_t *handle = NULL; 2889 struct mpage_da_data mpd; 2890 struct inode *inode = mapping->host; 2891 int pages_written = 0; 2892 unsigned int max_pages; 2893 int range_cyclic, cycled = 1, io_done = 0; 2894 int needed_blocks, ret = 0; 2895 long desired_nr_to_write, nr_to_writebump = 0; 2896 loff_t range_start = wbc->range_start; 2897 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2898 pgoff_t done_index = 0; 2899 pgoff_t end; 2900 2901 trace_ext4_da_writepages(inode, wbc); 2902 2903 /* 2904 * No pages to write? This is mainly a kludge to avoid starting 2905 * a transaction for special inodes like journal inode on last iput() 2906 * because that could violate lock ordering on umount 2907 */ 2908 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2909 return 0; 2910 2911 /* 2912 * If the filesystem has aborted, it is read-only, so return 2913 * right away instead of dumping stack traces later on that 2914 * will obscure the real source of the problem. We test 2915 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2916 * the latter could be true if the filesystem is mounted 2917 * read-only, and in that case, ext4_da_writepages should 2918 * *never* be called, so if that ever happens, we would want 2919 * the stack trace. 2920 */ 2921 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2922 return -EROFS; 2923 2924 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2925 range_whole = 1; 2926 2927 range_cyclic = wbc->range_cyclic; 2928 if (wbc->range_cyclic) { 2929 index = mapping->writeback_index; 2930 if (index) 2931 cycled = 0; 2932 wbc->range_start = index << PAGE_CACHE_SHIFT; 2933 wbc->range_end = LLONG_MAX; 2934 wbc->range_cyclic = 0; 2935 end = -1; 2936 } else { 2937 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2938 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2939 } 2940 2941 /* 2942 * This works around two forms of stupidity. The first is in 2943 * the writeback code, which caps the maximum number of pages 2944 * written to be 1024 pages. This is wrong on multiple 2945 * levels; different architectues have a different page size, 2946 * which changes the maximum amount of data which gets 2947 * written. Secondly, 4 megabytes is way too small. XFS 2948 * forces this value to be 16 megabytes by multiplying 2949 * nr_to_write parameter by four, and then relies on its 2950 * allocator to allocate larger extents to make them 2951 * contiguous. Unfortunately this brings us to the second 2952 * stupidity, which is that ext4's mballoc code only allocates 2953 * at most 2048 blocks. So we force contiguous writes up to 2954 * the number of dirty blocks in the inode, or 2955 * sbi->max_writeback_mb_bump whichever is smaller. 2956 */ 2957 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2958 if (!range_cyclic && range_whole) { 2959 if (wbc->nr_to_write == LONG_MAX) 2960 desired_nr_to_write = wbc->nr_to_write; 2961 else 2962 desired_nr_to_write = wbc->nr_to_write * 8; 2963 } else 2964 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2965 max_pages); 2966 if (desired_nr_to_write > max_pages) 2967 desired_nr_to_write = max_pages; 2968 2969 if (wbc->nr_to_write < desired_nr_to_write) { 2970 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2971 wbc->nr_to_write = desired_nr_to_write; 2972 } 2973 2974 retry: 2975 if (wbc->sync_mode == WB_SYNC_ALL) 2976 tag_pages_for_writeback(mapping, index, end); 2977 2978 while (!ret && wbc->nr_to_write > 0) { 2979 2980 /* 2981 * we insert one extent at a time. So we need 2982 * credit needed for single extent allocation. 2983 * journalled mode is currently not supported 2984 * by delalloc 2985 */ 2986 BUG_ON(ext4_should_journal_data(inode)); 2987 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2988 2989 /* start a new transaction*/ 2990 handle = ext4_journal_start(inode, needed_blocks); 2991 if (IS_ERR(handle)) { 2992 ret = PTR_ERR(handle); 2993 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2994 "%ld pages, ino %lu; err %d", __func__, 2995 wbc->nr_to_write, inode->i_ino, ret); 2996 goto out_writepages; 2997 } 2998 2999 /* 3000 * Now call write_cache_pages_da() to find the next 3001 * contiguous region of logical blocks that need 3002 * blocks to be allocated by ext4 and submit them. 3003 */ 3004 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 3005 /* 3006 * If we have a contiguous extent of pages and we 3007 * haven't done the I/O yet, map the blocks and submit 3008 * them for I/O. 3009 */ 3010 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3011 mpage_da_map_and_submit(&mpd); 3012 ret = MPAGE_DA_EXTENT_TAIL; 3013 } 3014 trace_ext4_da_write_pages(inode, &mpd); 3015 wbc->nr_to_write -= mpd.pages_written; 3016 3017 ext4_journal_stop(handle); 3018 3019 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3020 /* commit the transaction which would 3021 * free blocks released in the transaction 3022 * and try again 3023 */ 3024 jbd2_journal_force_commit_nested(sbi->s_journal); 3025 ret = 0; 3026 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3027 /* 3028 * got one extent now try with 3029 * rest of the pages 3030 */ 3031 pages_written += mpd.pages_written; 3032 ret = 0; 3033 io_done = 1; 3034 } else if (wbc->nr_to_write) 3035 /* 3036 * There is no more writeout needed 3037 * or we requested for a noblocking writeout 3038 * and we found the device congested 3039 */ 3040 break; 3041 } 3042 if (!io_done && !cycled) { 3043 cycled = 1; 3044 index = 0; 3045 wbc->range_start = index << PAGE_CACHE_SHIFT; 3046 wbc->range_end = mapping->writeback_index - 1; 3047 goto retry; 3048 } 3049 3050 /* Update index */ 3051 wbc->range_cyclic = range_cyclic; 3052 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3053 /* 3054 * set the writeback_index so that range_cyclic 3055 * mode will write it back later 3056 */ 3057 mapping->writeback_index = done_index; 3058 3059 out_writepages: 3060 wbc->nr_to_write -= nr_to_writebump; 3061 wbc->range_start = range_start; 3062 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3063 return ret; 3064 } 3065 3066 #define FALL_BACK_TO_NONDELALLOC 1 3067 static int ext4_nonda_switch(struct super_block *sb) 3068 { 3069 s64 free_blocks, dirty_blocks; 3070 struct ext4_sb_info *sbi = EXT4_SB(sb); 3071 3072 /* 3073 * switch to non delalloc mode if we are running low 3074 * on free block. The free block accounting via percpu 3075 * counters can get slightly wrong with percpu_counter_batch getting 3076 * accumulated on each CPU without updating global counters 3077 * Delalloc need an accurate free block accounting. So switch 3078 * to non delalloc when we are near to error range. 3079 */ 3080 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3081 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3082 if (2 * free_blocks < 3 * dirty_blocks || 3083 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3084 /* 3085 * free block count is less than 150% of dirty blocks 3086 * or free blocks is less than watermark 3087 */ 3088 return 1; 3089 } 3090 /* 3091 * Even if we don't switch but are nearing capacity, 3092 * start pushing delalloc when 1/2 of free blocks are dirty. 3093 */ 3094 if (free_blocks < 2 * dirty_blocks) 3095 writeback_inodes_sb_if_idle(sb); 3096 3097 return 0; 3098 } 3099 3100 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3101 loff_t pos, unsigned len, unsigned flags, 3102 struct page **pagep, void **fsdata) 3103 { 3104 int ret, retries = 0; 3105 struct page *page; 3106 pgoff_t index; 3107 struct inode *inode = mapping->host; 3108 handle_t *handle; 3109 3110 index = pos >> PAGE_CACHE_SHIFT; 3111 3112 if (ext4_nonda_switch(inode->i_sb)) { 3113 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3114 return ext4_write_begin(file, mapping, pos, 3115 len, flags, pagep, fsdata); 3116 } 3117 *fsdata = (void *)0; 3118 trace_ext4_da_write_begin(inode, pos, len, flags); 3119 retry: 3120 /* 3121 * With delayed allocation, we don't log the i_disksize update 3122 * if there is delayed block allocation. But we still need 3123 * to journalling the i_disksize update if writes to the end 3124 * of file which has an already mapped buffer. 3125 */ 3126 handle = ext4_journal_start(inode, 1); 3127 if (IS_ERR(handle)) { 3128 ret = PTR_ERR(handle); 3129 goto out; 3130 } 3131 /* We cannot recurse into the filesystem as the transaction is already 3132 * started */ 3133 flags |= AOP_FLAG_NOFS; 3134 3135 page = grab_cache_page_write_begin(mapping, index, flags); 3136 if (!page) { 3137 ext4_journal_stop(handle); 3138 ret = -ENOMEM; 3139 goto out; 3140 } 3141 *pagep = page; 3142 3143 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3144 if (ret < 0) { 3145 unlock_page(page); 3146 ext4_journal_stop(handle); 3147 page_cache_release(page); 3148 /* 3149 * block_write_begin may have instantiated a few blocks 3150 * outside i_size. Trim these off again. Don't need 3151 * i_size_read because we hold i_mutex. 3152 */ 3153 if (pos + len > inode->i_size) 3154 ext4_truncate_failed_write(inode); 3155 } 3156 3157 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3158 goto retry; 3159 out: 3160 return ret; 3161 } 3162 3163 /* 3164 * Check if we should update i_disksize 3165 * when write to the end of file but not require block allocation 3166 */ 3167 static int ext4_da_should_update_i_disksize(struct page *page, 3168 unsigned long offset) 3169 { 3170 struct buffer_head *bh; 3171 struct inode *inode = page->mapping->host; 3172 unsigned int idx; 3173 int i; 3174 3175 bh = page_buffers(page); 3176 idx = offset >> inode->i_blkbits; 3177 3178 for (i = 0; i < idx; i++) 3179 bh = bh->b_this_page; 3180 3181 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3182 return 0; 3183 return 1; 3184 } 3185 3186 static int ext4_da_write_end(struct file *file, 3187 struct address_space *mapping, 3188 loff_t pos, unsigned len, unsigned copied, 3189 struct page *page, void *fsdata) 3190 { 3191 struct inode *inode = mapping->host; 3192 int ret = 0, ret2; 3193 handle_t *handle = ext4_journal_current_handle(); 3194 loff_t new_i_size; 3195 unsigned long start, end; 3196 int write_mode = (int)(unsigned long)fsdata; 3197 3198 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3199 if (ext4_should_order_data(inode)) { 3200 return ext4_ordered_write_end(file, mapping, pos, 3201 len, copied, page, fsdata); 3202 } else if (ext4_should_writeback_data(inode)) { 3203 return ext4_writeback_write_end(file, mapping, pos, 3204 len, copied, page, fsdata); 3205 } else { 3206 BUG(); 3207 } 3208 } 3209 3210 trace_ext4_da_write_end(inode, pos, len, copied); 3211 start = pos & (PAGE_CACHE_SIZE - 1); 3212 end = start + copied - 1; 3213 3214 /* 3215 * generic_write_end() will run mark_inode_dirty() if i_size 3216 * changes. So let's piggyback the i_disksize mark_inode_dirty 3217 * into that. 3218 */ 3219 3220 new_i_size = pos + copied; 3221 if (new_i_size > EXT4_I(inode)->i_disksize) { 3222 if (ext4_da_should_update_i_disksize(page, end)) { 3223 down_write(&EXT4_I(inode)->i_data_sem); 3224 if (new_i_size > EXT4_I(inode)->i_disksize) { 3225 /* 3226 * Updating i_disksize when extending file 3227 * without needing block allocation 3228 */ 3229 if (ext4_should_order_data(inode)) 3230 ret = ext4_jbd2_file_inode(handle, 3231 inode); 3232 3233 EXT4_I(inode)->i_disksize = new_i_size; 3234 } 3235 up_write(&EXT4_I(inode)->i_data_sem); 3236 /* We need to mark inode dirty even if 3237 * new_i_size is less that inode->i_size 3238 * bu greater than i_disksize.(hint delalloc) 3239 */ 3240 ext4_mark_inode_dirty(handle, inode); 3241 } 3242 } 3243 ret2 = generic_write_end(file, mapping, pos, len, copied, 3244 page, fsdata); 3245 copied = ret2; 3246 if (ret2 < 0) 3247 ret = ret2; 3248 ret2 = ext4_journal_stop(handle); 3249 if (!ret) 3250 ret = ret2; 3251 3252 return ret ? ret : copied; 3253 } 3254 3255 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3256 { 3257 /* 3258 * Drop reserved blocks 3259 */ 3260 BUG_ON(!PageLocked(page)); 3261 if (!page_has_buffers(page)) 3262 goto out; 3263 3264 ext4_da_page_release_reservation(page, offset); 3265 3266 out: 3267 ext4_invalidatepage(page, offset); 3268 3269 return; 3270 } 3271 3272 /* 3273 * Force all delayed allocation blocks to be allocated for a given inode. 3274 */ 3275 int ext4_alloc_da_blocks(struct inode *inode) 3276 { 3277 trace_ext4_alloc_da_blocks(inode); 3278 3279 if (!EXT4_I(inode)->i_reserved_data_blocks && 3280 !EXT4_I(inode)->i_reserved_meta_blocks) 3281 return 0; 3282 3283 /* 3284 * We do something simple for now. The filemap_flush() will 3285 * also start triggering a write of the data blocks, which is 3286 * not strictly speaking necessary (and for users of 3287 * laptop_mode, not even desirable). However, to do otherwise 3288 * would require replicating code paths in: 3289 * 3290 * ext4_da_writepages() -> 3291 * write_cache_pages() ---> (via passed in callback function) 3292 * __mpage_da_writepage() --> 3293 * mpage_add_bh_to_extent() 3294 * mpage_da_map_blocks() 3295 * 3296 * The problem is that write_cache_pages(), located in 3297 * mm/page-writeback.c, marks pages clean in preparation for 3298 * doing I/O, which is not desirable if we're not planning on 3299 * doing I/O at all. 3300 * 3301 * We could call write_cache_pages(), and then redirty all of 3302 * the pages by calling redirty_page_for_writepage() but that 3303 * would be ugly in the extreme. So instead we would need to 3304 * replicate parts of the code in the above functions, 3305 * simplifying them becuase we wouldn't actually intend to 3306 * write out the pages, but rather only collect contiguous 3307 * logical block extents, call the multi-block allocator, and 3308 * then update the buffer heads with the block allocations. 3309 * 3310 * For now, though, we'll cheat by calling filemap_flush(), 3311 * which will map the blocks, and start the I/O, but not 3312 * actually wait for the I/O to complete. 3313 */ 3314 return filemap_flush(inode->i_mapping); 3315 } 3316 3317 /* 3318 * bmap() is special. It gets used by applications such as lilo and by 3319 * the swapper to find the on-disk block of a specific piece of data. 3320 * 3321 * Naturally, this is dangerous if the block concerned is still in the 3322 * journal. If somebody makes a swapfile on an ext4 data-journaling 3323 * filesystem and enables swap, then they may get a nasty shock when the 3324 * data getting swapped to that swapfile suddenly gets overwritten by 3325 * the original zero's written out previously to the journal and 3326 * awaiting writeback in the kernel's buffer cache. 3327 * 3328 * So, if we see any bmap calls here on a modified, data-journaled file, 3329 * take extra steps to flush any blocks which might be in the cache. 3330 */ 3331 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3332 { 3333 struct inode *inode = mapping->host; 3334 journal_t *journal; 3335 int err; 3336 3337 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3338 test_opt(inode->i_sb, DELALLOC)) { 3339 /* 3340 * With delalloc we want to sync the file 3341 * so that we can make sure we allocate 3342 * blocks for file 3343 */ 3344 filemap_write_and_wait(mapping); 3345 } 3346 3347 if (EXT4_JOURNAL(inode) && 3348 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3349 /* 3350 * This is a REALLY heavyweight approach, but the use of 3351 * bmap on dirty files is expected to be extremely rare: 3352 * only if we run lilo or swapon on a freshly made file 3353 * do we expect this to happen. 3354 * 3355 * (bmap requires CAP_SYS_RAWIO so this does not 3356 * represent an unprivileged user DOS attack --- we'd be 3357 * in trouble if mortal users could trigger this path at 3358 * will.) 3359 * 3360 * NB. EXT4_STATE_JDATA is not set on files other than 3361 * regular files. If somebody wants to bmap a directory 3362 * or symlink and gets confused because the buffer 3363 * hasn't yet been flushed to disk, they deserve 3364 * everything they get. 3365 */ 3366 3367 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3368 journal = EXT4_JOURNAL(inode); 3369 jbd2_journal_lock_updates(journal); 3370 err = jbd2_journal_flush(journal); 3371 jbd2_journal_unlock_updates(journal); 3372 3373 if (err) 3374 return 0; 3375 } 3376 3377 return generic_block_bmap(mapping, block, ext4_get_block); 3378 } 3379 3380 static int ext4_readpage(struct file *file, struct page *page) 3381 { 3382 return mpage_readpage(page, ext4_get_block); 3383 } 3384 3385 static int 3386 ext4_readpages(struct file *file, struct address_space *mapping, 3387 struct list_head *pages, unsigned nr_pages) 3388 { 3389 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3390 } 3391 3392 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3393 { 3394 struct buffer_head *head, *bh; 3395 unsigned int curr_off = 0; 3396 3397 if (!page_has_buffers(page)) 3398 return; 3399 head = bh = page_buffers(page); 3400 do { 3401 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3402 && bh->b_private) { 3403 ext4_free_io_end(bh->b_private); 3404 bh->b_private = NULL; 3405 bh->b_end_io = NULL; 3406 } 3407 curr_off = curr_off + bh->b_size; 3408 bh = bh->b_this_page; 3409 } while (bh != head); 3410 } 3411 3412 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3413 { 3414 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3415 3416 /* 3417 * free any io_end structure allocated for buffers to be discarded 3418 */ 3419 if (ext4_should_dioread_nolock(page->mapping->host)) 3420 ext4_invalidatepage_free_endio(page, offset); 3421 /* 3422 * If it's a full truncate we just forget about the pending dirtying 3423 */ 3424 if (offset == 0) 3425 ClearPageChecked(page); 3426 3427 if (journal) 3428 jbd2_journal_invalidatepage(journal, page, offset); 3429 else 3430 block_invalidatepage(page, offset); 3431 } 3432 3433 static int ext4_releasepage(struct page *page, gfp_t wait) 3434 { 3435 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3436 3437 WARN_ON(PageChecked(page)); 3438 if (!page_has_buffers(page)) 3439 return 0; 3440 if (journal) 3441 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3442 else 3443 return try_to_free_buffers(page); 3444 } 3445 3446 /* 3447 * O_DIRECT for ext3 (or indirect map) based files 3448 * 3449 * If the O_DIRECT write will extend the file then add this inode to the 3450 * orphan list. So recovery will truncate it back to the original size 3451 * if the machine crashes during the write. 3452 * 3453 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3454 * crashes then stale disk data _may_ be exposed inside the file. But current 3455 * VFS code falls back into buffered path in that case so we are safe. 3456 */ 3457 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3458 const struct iovec *iov, loff_t offset, 3459 unsigned long nr_segs) 3460 { 3461 struct file *file = iocb->ki_filp; 3462 struct inode *inode = file->f_mapping->host; 3463 struct ext4_inode_info *ei = EXT4_I(inode); 3464 handle_t *handle; 3465 ssize_t ret; 3466 int orphan = 0; 3467 size_t count = iov_length(iov, nr_segs); 3468 int retries = 0; 3469 3470 if (rw == WRITE) { 3471 loff_t final_size = offset + count; 3472 3473 if (final_size > inode->i_size) { 3474 /* Credits for sb + inode write */ 3475 handle = ext4_journal_start(inode, 2); 3476 if (IS_ERR(handle)) { 3477 ret = PTR_ERR(handle); 3478 goto out; 3479 } 3480 ret = ext4_orphan_add(handle, inode); 3481 if (ret) { 3482 ext4_journal_stop(handle); 3483 goto out; 3484 } 3485 orphan = 1; 3486 ei->i_disksize = inode->i_size; 3487 ext4_journal_stop(handle); 3488 } 3489 } 3490 3491 retry: 3492 if (rw == READ && ext4_should_dioread_nolock(inode)) 3493 ret = __blockdev_direct_IO(rw, iocb, inode, 3494 inode->i_sb->s_bdev, iov, 3495 offset, nr_segs, 3496 ext4_get_block, NULL, NULL, 0); 3497 else { 3498 ret = blockdev_direct_IO(rw, iocb, inode, 3499 inode->i_sb->s_bdev, iov, 3500 offset, nr_segs, 3501 ext4_get_block, NULL); 3502 3503 if (unlikely((rw & WRITE) && ret < 0)) { 3504 loff_t isize = i_size_read(inode); 3505 loff_t end = offset + iov_length(iov, nr_segs); 3506 3507 if (end > isize) 3508 vmtruncate(inode, isize); 3509 } 3510 } 3511 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3512 goto retry; 3513 3514 if (orphan) { 3515 int err; 3516 3517 /* Credits for sb + inode write */ 3518 handle = ext4_journal_start(inode, 2); 3519 if (IS_ERR(handle)) { 3520 /* This is really bad luck. We've written the data 3521 * but cannot extend i_size. Bail out and pretend 3522 * the write failed... */ 3523 ret = PTR_ERR(handle); 3524 if (inode->i_nlink) 3525 ext4_orphan_del(NULL, inode); 3526 3527 goto out; 3528 } 3529 if (inode->i_nlink) 3530 ext4_orphan_del(handle, inode); 3531 if (ret > 0) { 3532 loff_t end = offset + ret; 3533 if (end > inode->i_size) { 3534 ei->i_disksize = end; 3535 i_size_write(inode, end); 3536 /* 3537 * We're going to return a positive `ret' 3538 * here due to non-zero-length I/O, so there's 3539 * no way of reporting error returns from 3540 * ext4_mark_inode_dirty() to userspace. So 3541 * ignore it. 3542 */ 3543 ext4_mark_inode_dirty(handle, inode); 3544 } 3545 } 3546 err = ext4_journal_stop(handle); 3547 if (ret == 0) 3548 ret = err; 3549 } 3550 out: 3551 return ret; 3552 } 3553 3554 /* 3555 * ext4_get_block used when preparing for a DIO write or buffer write. 3556 * We allocate an uinitialized extent if blocks haven't been allocated. 3557 * The extent will be converted to initialized after the IO is complete. 3558 */ 3559 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3560 struct buffer_head *bh_result, int create) 3561 { 3562 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3563 inode->i_ino, create); 3564 return _ext4_get_block(inode, iblock, bh_result, 3565 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3566 } 3567 3568 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3569 ssize_t size, void *private, int ret, 3570 bool is_async) 3571 { 3572 ext4_io_end_t *io_end = iocb->private; 3573 struct workqueue_struct *wq; 3574 unsigned long flags; 3575 struct ext4_inode_info *ei; 3576 3577 /* if not async direct IO or dio with 0 bytes write, just return */ 3578 if (!io_end || !size) 3579 goto out; 3580 3581 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3582 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3583 iocb->private, io_end->inode->i_ino, iocb, offset, 3584 size); 3585 3586 /* if not aio dio with unwritten extents, just free io and return */ 3587 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3588 ext4_free_io_end(io_end); 3589 iocb->private = NULL; 3590 out: 3591 if (is_async) 3592 aio_complete(iocb, ret, 0); 3593 return; 3594 } 3595 3596 io_end->offset = offset; 3597 io_end->size = size; 3598 if (is_async) { 3599 io_end->iocb = iocb; 3600 io_end->result = ret; 3601 } 3602 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3603 3604 /* Add the io_end to per-inode completed aio dio list*/ 3605 ei = EXT4_I(io_end->inode); 3606 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3607 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3608 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3609 3610 /* queue the work to convert unwritten extents to written */ 3611 queue_work(wq, &io_end->work); 3612 iocb->private = NULL; 3613 } 3614 3615 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3616 { 3617 ext4_io_end_t *io_end = bh->b_private; 3618 struct workqueue_struct *wq; 3619 struct inode *inode; 3620 unsigned long flags; 3621 3622 if (!test_clear_buffer_uninit(bh) || !io_end) 3623 goto out; 3624 3625 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3626 printk("sb umounted, discard end_io request for inode %lu\n", 3627 io_end->inode->i_ino); 3628 ext4_free_io_end(io_end); 3629 goto out; 3630 } 3631 3632 io_end->flag = EXT4_IO_END_UNWRITTEN; 3633 inode = io_end->inode; 3634 3635 /* Add the io_end to per-inode completed io list*/ 3636 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3637 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3638 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3639 3640 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3641 /* queue the work to convert unwritten extents to written */ 3642 queue_work(wq, &io_end->work); 3643 out: 3644 bh->b_private = NULL; 3645 bh->b_end_io = NULL; 3646 clear_buffer_uninit(bh); 3647 end_buffer_async_write(bh, uptodate); 3648 } 3649 3650 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3651 { 3652 ext4_io_end_t *io_end; 3653 struct page *page = bh->b_page; 3654 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3655 size_t size = bh->b_size; 3656 3657 retry: 3658 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3659 if (!io_end) { 3660 pr_warn_ratelimited("%s: allocation fail\n", __func__); 3661 schedule(); 3662 goto retry; 3663 } 3664 io_end->offset = offset; 3665 io_end->size = size; 3666 /* 3667 * We need to hold a reference to the page to make sure it 3668 * doesn't get evicted before ext4_end_io_work() has a chance 3669 * to convert the extent from written to unwritten. 3670 */ 3671 io_end->page = page; 3672 get_page(io_end->page); 3673 3674 bh->b_private = io_end; 3675 bh->b_end_io = ext4_end_io_buffer_write; 3676 return 0; 3677 } 3678 3679 /* 3680 * For ext4 extent files, ext4 will do direct-io write to holes, 3681 * preallocated extents, and those write extend the file, no need to 3682 * fall back to buffered IO. 3683 * 3684 * For holes, we fallocate those blocks, mark them as uninitialized 3685 * If those blocks were preallocated, we mark sure they are splited, but 3686 * still keep the range to write as uninitialized. 3687 * 3688 * The unwrritten extents will be converted to written when DIO is completed. 3689 * For async direct IO, since the IO may still pending when return, we 3690 * set up an end_io call back function, which will do the convertion 3691 * when async direct IO completed. 3692 * 3693 * If the O_DIRECT write will extend the file then add this inode to the 3694 * orphan list. So recovery will truncate it back to the original size 3695 * if the machine crashes during the write. 3696 * 3697 */ 3698 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3699 const struct iovec *iov, loff_t offset, 3700 unsigned long nr_segs) 3701 { 3702 struct file *file = iocb->ki_filp; 3703 struct inode *inode = file->f_mapping->host; 3704 ssize_t ret; 3705 size_t count = iov_length(iov, nr_segs); 3706 3707 loff_t final_size = offset + count; 3708 if (rw == WRITE && final_size <= inode->i_size) { 3709 /* 3710 * We could direct write to holes and fallocate. 3711 * 3712 * Allocated blocks to fill the hole are marked as uninitialized 3713 * to prevent paralel buffered read to expose the stale data 3714 * before DIO complete the data IO. 3715 * 3716 * As to previously fallocated extents, ext4 get_block 3717 * will just simply mark the buffer mapped but still 3718 * keep the extents uninitialized. 3719 * 3720 * for non AIO case, we will convert those unwritten extents 3721 * to written after return back from blockdev_direct_IO. 3722 * 3723 * for async DIO, the conversion needs to be defered when 3724 * the IO is completed. The ext4 end_io callback function 3725 * will be called to take care of the conversion work. 3726 * Here for async case, we allocate an io_end structure to 3727 * hook to the iocb. 3728 */ 3729 iocb->private = NULL; 3730 EXT4_I(inode)->cur_aio_dio = NULL; 3731 if (!is_sync_kiocb(iocb)) { 3732 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3733 if (!iocb->private) 3734 return -ENOMEM; 3735 /* 3736 * we save the io structure for current async 3737 * direct IO, so that later ext4_map_blocks() 3738 * could flag the io structure whether there 3739 * is a unwritten extents needs to be converted 3740 * when IO is completed. 3741 */ 3742 EXT4_I(inode)->cur_aio_dio = iocb->private; 3743 } 3744 3745 ret = blockdev_direct_IO(rw, iocb, inode, 3746 inode->i_sb->s_bdev, iov, 3747 offset, nr_segs, 3748 ext4_get_block_write, 3749 ext4_end_io_dio); 3750 if (iocb->private) 3751 EXT4_I(inode)->cur_aio_dio = NULL; 3752 /* 3753 * The io_end structure takes a reference to the inode, 3754 * that structure needs to be destroyed and the 3755 * reference to the inode need to be dropped, when IO is 3756 * complete, even with 0 byte write, or failed. 3757 * 3758 * In the successful AIO DIO case, the io_end structure will be 3759 * desctroyed and the reference to the inode will be dropped 3760 * after the end_io call back function is called. 3761 * 3762 * In the case there is 0 byte write, or error case, since 3763 * VFS direct IO won't invoke the end_io call back function, 3764 * we need to free the end_io structure here. 3765 */ 3766 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3767 ext4_free_io_end(iocb->private); 3768 iocb->private = NULL; 3769 } else if (ret > 0 && ext4_test_inode_state(inode, 3770 EXT4_STATE_DIO_UNWRITTEN)) { 3771 int err; 3772 /* 3773 * for non AIO case, since the IO is already 3774 * completed, we could do the convertion right here 3775 */ 3776 err = ext4_convert_unwritten_extents(inode, 3777 offset, ret); 3778 if (err < 0) 3779 ret = err; 3780 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3781 } 3782 return ret; 3783 } 3784 3785 /* for write the the end of file case, we fall back to old way */ 3786 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3787 } 3788 3789 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3790 const struct iovec *iov, loff_t offset, 3791 unsigned long nr_segs) 3792 { 3793 struct file *file = iocb->ki_filp; 3794 struct inode *inode = file->f_mapping->host; 3795 3796 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3797 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3798 3799 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3800 } 3801 3802 /* 3803 * Pages can be marked dirty completely asynchronously from ext4's journalling 3804 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3805 * much here because ->set_page_dirty is called under VFS locks. The page is 3806 * not necessarily locked. 3807 * 3808 * We cannot just dirty the page and leave attached buffers clean, because the 3809 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3810 * or jbddirty because all the journalling code will explode. 3811 * 3812 * So what we do is to mark the page "pending dirty" and next time writepage 3813 * is called, propagate that into the buffers appropriately. 3814 */ 3815 static int ext4_journalled_set_page_dirty(struct page *page) 3816 { 3817 SetPageChecked(page); 3818 return __set_page_dirty_nobuffers(page); 3819 } 3820 3821 static const struct address_space_operations ext4_ordered_aops = { 3822 .readpage = ext4_readpage, 3823 .readpages = ext4_readpages, 3824 .writepage = ext4_writepage, 3825 .sync_page = block_sync_page, 3826 .write_begin = ext4_write_begin, 3827 .write_end = ext4_ordered_write_end, 3828 .bmap = ext4_bmap, 3829 .invalidatepage = ext4_invalidatepage, 3830 .releasepage = ext4_releasepage, 3831 .direct_IO = ext4_direct_IO, 3832 .migratepage = buffer_migrate_page, 3833 .is_partially_uptodate = block_is_partially_uptodate, 3834 .error_remove_page = generic_error_remove_page, 3835 }; 3836 3837 static const struct address_space_operations ext4_writeback_aops = { 3838 .readpage = ext4_readpage, 3839 .readpages = ext4_readpages, 3840 .writepage = ext4_writepage, 3841 .sync_page = block_sync_page, 3842 .write_begin = ext4_write_begin, 3843 .write_end = ext4_writeback_write_end, 3844 .bmap = ext4_bmap, 3845 .invalidatepage = ext4_invalidatepage, 3846 .releasepage = ext4_releasepage, 3847 .direct_IO = ext4_direct_IO, 3848 .migratepage = buffer_migrate_page, 3849 .is_partially_uptodate = block_is_partially_uptodate, 3850 .error_remove_page = generic_error_remove_page, 3851 }; 3852 3853 static const struct address_space_operations ext4_journalled_aops = { 3854 .readpage = ext4_readpage, 3855 .readpages = ext4_readpages, 3856 .writepage = ext4_writepage, 3857 .sync_page = block_sync_page, 3858 .write_begin = ext4_write_begin, 3859 .write_end = ext4_journalled_write_end, 3860 .set_page_dirty = ext4_journalled_set_page_dirty, 3861 .bmap = ext4_bmap, 3862 .invalidatepage = ext4_invalidatepage, 3863 .releasepage = ext4_releasepage, 3864 .is_partially_uptodate = block_is_partially_uptodate, 3865 .error_remove_page = generic_error_remove_page, 3866 }; 3867 3868 static const struct address_space_operations ext4_da_aops = { 3869 .readpage = ext4_readpage, 3870 .readpages = ext4_readpages, 3871 .writepage = ext4_writepage, 3872 .writepages = ext4_da_writepages, 3873 .sync_page = block_sync_page, 3874 .write_begin = ext4_da_write_begin, 3875 .write_end = ext4_da_write_end, 3876 .bmap = ext4_bmap, 3877 .invalidatepage = ext4_da_invalidatepage, 3878 .releasepage = ext4_releasepage, 3879 .direct_IO = ext4_direct_IO, 3880 .migratepage = buffer_migrate_page, 3881 .is_partially_uptodate = block_is_partially_uptodate, 3882 .error_remove_page = generic_error_remove_page, 3883 }; 3884 3885 void ext4_set_aops(struct inode *inode) 3886 { 3887 if (ext4_should_order_data(inode) && 3888 test_opt(inode->i_sb, DELALLOC)) 3889 inode->i_mapping->a_ops = &ext4_da_aops; 3890 else if (ext4_should_order_data(inode)) 3891 inode->i_mapping->a_ops = &ext4_ordered_aops; 3892 else if (ext4_should_writeback_data(inode) && 3893 test_opt(inode->i_sb, DELALLOC)) 3894 inode->i_mapping->a_ops = &ext4_da_aops; 3895 else if (ext4_should_writeback_data(inode)) 3896 inode->i_mapping->a_ops = &ext4_writeback_aops; 3897 else 3898 inode->i_mapping->a_ops = &ext4_journalled_aops; 3899 } 3900 3901 /* 3902 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3903 * up to the end of the block which corresponds to `from'. 3904 * This required during truncate. We need to physically zero the tail end 3905 * of that block so it doesn't yield old data if the file is later grown. 3906 */ 3907 int ext4_block_truncate_page(handle_t *handle, 3908 struct address_space *mapping, loff_t from) 3909 { 3910 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3911 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3912 unsigned blocksize, length, pos; 3913 ext4_lblk_t iblock; 3914 struct inode *inode = mapping->host; 3915 struct buffer_head *bh; 3916 struct page *page; 3917 int err = 0; 3918 3919 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3920 mapping_gfp_mask(mapping) & ~__GFP_FS); 3921 if (!page) 3922 return -EINVAL; 3923 3924 blocksize = inode->i_sb->s_blocksize; 3925 length = blocksize - (offset & (blocksize - 1)); 3926 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3927 3928 if (!page_has_buffers(page)) 3929 create_empty_buffers(page, blocksize, 0); 3930 3931 /* Find the buffer that contains "offset" */ 3932 bh = page_buffers(page); 3933 pos = blocksize; 3934 while (offset >= pos) { 3935 bh = bh->b_this_page; 3936 iblock++; 3937 pos += blocksize; 3938 } 3939 3940 err = 0; 3941 if (buffer_freed(bh)) { 3942 BUFFER_TRACE(bh, "freed: skip"); 3943 goto unlock; 3944 } 3945 3946 if (!buffer_mapped(bh)) { 3947 BUFFER_TRACE(bh, "unmapped"); 3948 ext4_get_block(inode, iblock, bh, 0); 3949 /* unmapped? It's a hole - nothing to do */ 3950 if (!buffer_mapped(bh)) { 3951 BUFFER_TRACE(bh, "still unmapped"); 3952 goto unlock; 3953 } 3954 } 3955 3956 /* Ok, it's mapped. Make sure it's up-to-date */ 3957 if (PageUptodate(page)) 3958 set_buffer_uptodate(bh); 3959 3960 if (!buffer_uptodate(bh)) { 3961 err = -EIO; 3962 ll_rw_block(READ, 1, &bh); 3963 wait_on_buffer(bh); 3964 /* Uhhuh. Read error. Complain and punt. */ 3965 if (!buffer_uptodate(bh)) 3966 goto unlock; 3967 } 3968 3969 if (ext4_should_journal_data(inode)) { 3970 BUFFER_TRACE(bh, "get write access"); 3971 err = ext4_journal_get_write_access(handle, bh); 3972 if (err) 3973 goto unlock; 3974 } 3975 3976 zero_user(page, offset, length); 3977 3978 BUFFER_TRACE(bh, "zeroed end of block"); 3979 3980 err = 0; 3981 if (ext4_should_journal_data(inode)) { 3982 err = ext4_handle_dirty_metadata(handle, inode, bh); 3983 } else { 3984 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 3985 err = ext4_jbd2_file_inode(handle, inode); 3986 mark_buffer_dirty(bh); 3987 } 3988 3989 unlock: 3990 unlock_page(page); 3991 page_cache_release(page); 3992 return err; 3993 } 3994 3995 /* 3996 * Probably it should be a library function... search for first non-zero word 3997 * or memcmp with zero_page, whatever is better for particular architecture. 3998 * Linus? 3999 */ 4000 static inline int all_zeroes(__le32 *p, __le32 *q) 4001 { 4002 while (p < q) 4003 if (*p++) 4004 return 0; 4005 return 1; 4006 } 4007 4008 /** 4009 * ext4_find_shared - find the indirect blocks for partial truncation. 4010 * @inode: inode in question 4011 * @depth: depth of the affected branch 4012 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4013 * @chain: place to store the pointers to partial indirect blocks 4014 * @top: place to the (detached) top of branch 4015 * 4016 * This is a helper function used by ext4_truncate(). 4017 * 4018 * When we do truncate() we may have to clean the ends of several 4019 * indirect blocks but leave the blocks themselves alive. Block is 4020 * partially truncated if some data below the new i_size is refered 4021 * from it (and it is on the path to the first completely truncated 4022 * data block, indeed). We have to free the top of that path along 4023 * with everything to the right of the path. Since no allocation 4024 * past the truncation point is possible until ext4_truncate() 4025 * finishes, we may safely do the latter, but top of branch may 4026 * require special attention - pageout below the truncation point 4027 * might try to populate it. 4028 * 4029 * We atomically detach the top of branch from the tree, store the 4030 * block number of its root in *@top, pointers to buffer_heads of 4031 * partially truncated blocks - in @chain[].bh and pointers to 4032 * their last elements that should not be removed - in 4033 * @chain[].p. Return value is the pointer to last filled element 4034 * of @chain. 4035 * 4036 * The work left to caller to do the actual freeing of subtrees: 4037 * a) free the subtree starting from *@top 4038 * b) free the subtrees whose roots are stored in 4039 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4040 * c) free the subtrees growing from the inode past the @chain[0]. 4041 * (no partially truncated stuff there). */ 4042 4043 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4044 ext4_lblk_t offsets[4], Indirect chain[4], 4045 __le32 *top) 4046 { 4047 Indirect *partial, *p; 4048 int k, err; 4049 4050 *top = 0; 4051 /* Make k index the deepest non-null offset + 1 */ 4052 for (k = depth; k > 1 && !offsets[k-1]; k--) 4053 ; 4054 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4055 /* Writer: pointers */ 4056 if (!partial) 4057 partial = chain + k-1; 4058 /* 4059 * If the branch acquired continuation since we've looked at it - 4060 * fine, it should all survive and (new) top doesn't belong to us. 4061 */ 4062 if (!partial->key && *partial->p) 4063 /* Writer: end */ 4064 goto no_top; 4065 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4066 ; 4067 /* 4068 * OK, we've found the last block that must survive. The rest of our 4069 * branch should be detached before unlocking. However, if that rest 4070 * of branch is all ours and does not grow immediately from the inode 4071 * it's easier to cheat and just decrement partial->p. 4072 */ 4073 if (p == chain + k - 1 && p > chain) { 4074 p->p--; 4075 } else { 4076 *top = *p->p; 4077 /* Nope, don't do this in ext4. Must leave the tree intact */ 4078 #if 0 4079 *p->p = 0; 4080 #endif 4081 } 4082 /* Writer: end */ 4083 4084 while (partial > p) { 4085 brelse(partial->bh); 4086 partial--; 4087 } 4088 no_top: 4089 return partial; 4090 } 4091 4092 /* 4093 * Zero a number of block pointers in either an inode or an indirect block. 4094 * If we restart the transaction we must again get write access to the 4095 * indirect block for further modification. 4096 * 4097 * We release `count' blocks on disk, but (last - first) may be greater 4098 * than `count' because there can be holes in there. 4099 * 4100 * Return 0 on success, 1 on invalid block range 4101 * and < 0 on fatal error. 4102 */ 4103 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4104 struct buffer_head *bh, 4105 ext4_fsblk_t block_to_free, 4106 unsigned long count, __le32 *first, 4107 __le32 *last) 4108 { 4109 __le32 *p; 4110 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4111 int err; 4112 4113 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4114 flags |= EXT4_FREE_BLOCKS_METADATA; 4115 4116 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4117 count)) { 4118 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4119 "blocks %llu len %lu", 4120 (unsigned long long) block_to_free, count); 4121 return 1; 4122 } 4123 4124 if (try_to_extend_transaction(handle, inode)) { 4125 if (bh) { 4126 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4127 err = ext4_handle_dirty_metadata(handle, inode, bh); 4128 if (unlikely(err)) 4129 goto out_err; 4130 } 4131 err = ext4_mark_inode_dirty(handle, inode); 4132 if (unlikely(err)) 4133 goto out_err; 4134 err = ext4_truncate_restart_trans(handle, inode, 4135 blocks_for_truncate(inode)); 4136 if (unlikely(err)) 4137 goto out_err; 4138 if (bh) { 4139 BUFFER_TRACE(bh, "retaking write access"); 4140 err = ext4_journal_get_write_access(handle, bh); 4141 if (unlikely(err)) 4142 goto out_err; 4143 } 4144 } 4145 4146 for (p = first; p < last; p++) 4147 *p = 0; 4148 4149 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 4150 return 0; 4151 out_err: 4152 ext4_std_error(inode->i_sb, err); 4153 return err; 4154 } 4155 4156 /** 4157 * ext4_free_data - free a list of data blocks 4158 * @handle: handle for this transaction 4159 * @inode: inode we are dealing with 4160 * @this_bh: indirect buffer_head which contains *@first and *@last 4161 * @first: array of block numbers 4162 * @last: points immediately past the end of array 4163 * 4164 * We are freeing all blocks refered from that array (numbers are stored as 4165 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4166 * 4167 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4168 * blocks are contiguous then releasing them at one time will only affect one 4169 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4170 * actually use a lot of journal space. 4171 * 4172 * @this_bh will be %NULL if @first and @last point into the inode's direct 4173 * block pointers. 4174 */ 4175 static void ext4_free_data(handle_t *handle, struct inode *inode, 4176 struct buffer_head *this_bh, 4177 __le32 *first, __le32 *last) 4178 { 4179 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4180 unsigned long count = 0; /* Number of blocks in the run */ 4181 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4182 corresponding to 4183 block_to_free */ 4184 ext4_fsblk_t nr; /* Current block # */ 4185 __le32 *p; /* Pointer into inode/ind 4186 for current block */ 4187 int err = 0; 4188 4189 if (this_bh) { /* For indirect block */ 4190 BUFFER_TRACE(this_bh, "get_write_access"); 4191 err = ext4_journal_get_write_access(handle, this_bh); 4192 /* Important: if we can't update the indirect pointers 4193 * to the blocks, we can't free them. */ 4194 if (err) 4195 return; 4196 } 4197 4198 for (p = first; p < last; p++) { 4199 nr = le32_to_cpu(*p); 4200 if (nr) { 4201 /* accumulate blocks to free if they're contiguous */ 4202 if (count == 0) { 4203 block_to_free = nr; 4204 block_to_free_p = p; 4205 count = 1; 4206 } else if (nr == block_to_free + count) { 4207 count++; 4208 } else { 4209 err = ext4_clear_blocks(handle, inode, this_bh, 4210 block_to_free, count, 4211 block_to_free_p, p); 4212 if (err) 4213 break; 4214 block_to_free = nr; 4215 block_to_free_p = p; 4216 count = 1; 4217 } 4218 } 4219 } 4220 4221 if (!err && count > 0) 4222 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4223 count, block_to_free_p, p); 4224 if (err < 0) 4225 /* fatal error */ 4226 return; 4227 4228 if (this_bh) { 4229 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4230 4231 /* 4232 * The buffer head should have an attached journal head at this 4233 * point. However, if the data is corrupted and an indirect 4234 * block pointed to itself, it would have been detached when 4235 * the block was cleared. Check for this instead of OOPSing. 4236 */ 4237 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4238 ext4_handle_dirty_metadata(handle, inode, this_bh); 4239 else 4240 EXT4_ERROR_INODE(inode, 4241 "circular indirect block detected at " 4242 "block %llu", 4243 (unsigned long long) this_bh->b_blocknr); 4244 } 4245 } 4246 4247 /** 4248 * ext4_free_branches - free an array of branches 4249 * @handle: JBD handle for this transaction 4250 * @inode: inode we are dealing with 4251 * @parent_bh: the buffer_head which contains *@first and *@last 4252 * @first: array of block numbers 4253 * @last: pointer immediately past the end of array 4254 * @depth: depth of the branches to free 4255 * 4256 * We are freeing all blocks refered from these branches (numbers are 4257 * stored as little-endian 32-bit) and updating @inode->i_blocks 4258 * appropriately. 4259 */ 4260 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4261 struct buffer_head *parent_bh, 4262 __le32 *first, __le32 *last, int depth) 4263 { 4264 ext4_fsblk_t nr; 4265 __le32 *p; 4266 4267 if (ext4_handle_is_aborted(handle)) 4268 return; 4269 4270 if (depth--) { 4271 struct buffer_head *bh; 4272 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4273 p = last; 4274 while (--p >= first) { 4275 nr = le32_to_cpu(*p); 4276 if (!nr) 4277 continue; /* A hole */ 4278 4279 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4280 nr, 1)) { 4281 EXT4_ERROR_INODE(inode, 4282 "invalid indirect mapped " 4283 "block %lu (level %d)", 4284 (unsigned long) nr, depth); 4285 break; 4286 } 4287 4288 /* Go read the buffer for the next level down */ 4289 bh = sb_bread(inode->i_sb, nr); 4290 4291 /* 4292 * A read failure? Report error and clear slot 4293 * (should be rare). 4294 */ 4295 if (!bh) { 4296 EXT4_ERROR_INODE_BLOCK(inode, nr, 4297 "Read failure"); 4298 continue; 4299 } 4300 4301 /* This zaps the entire block. Bottom up. */ 4302 BUFFER_TRACE(bh, "free child branches"); 4303 ext4_free_branches(handle, inode, bh, 4304 (__le32 *) bh->b_data, 4305 (__le32 *) bh->b_data + addr_per_block, 4306 depth); 4307 brelse(bh); 4308 4309 /* 4310 * Everything below this this pointer has been 4311 * released. Now let this top-of-subtree go. 4312 * 4313 * We want the freeing of this indirect block to be 4314 * atomic in the journal with the updating of the 4315 * bitmap block which owns it. So make some room in 4316 * the journal. 4317 * 4318 * We zero the parent pointer *after* freeing its 4319 * pointee in the bitmaps, so if extend_transaction() 4320 * for some reason fails to put the bitmap changes and 4321 * the release into the same transaction, recovery 4322 * will merely complain about releasing a free block, 4323 * rather than leaking blocks. 4324 */ 4325 if (ext4_handle_is_aborted(handle)) 4326 return; 4327 if (try_to_extend_transaction(handle, inode)) { 4328 ext4_mark_inode_dirty(handle, inode); 4329 ext4_truncate_restart_trans(handle, inode, 4330 blocks_for_truncate(inode)); 4331 } 4332 4333 /* 4334 * The forget flag here is critical because if 4335 * we are journaling (and not doing data 4336 * journaling), we have to make sure a revoke 4337 * record is written to prevent the journal 4338 * replay from overwriting the (former) 4339 * indirect block if it gets reallocated as a 4340 * data block. This must happen in the same 4341 * transaction where the data blocks are 4342 * actually freed. 4343 */ 4344 ext4_free_blocks(handle, inode, NULL, nr, 1, 4345 EXT4_FREE_BLOCKS_METADATA| 4346 EXT4_FREE_BLOCKS_FORGET); 4347 4348 if (parent_bh) { 4349 /* 4350 * The block which we have just freed is 4351 * pointed to by an indirect block: journal it 4352 */ 4353 BUFFER_TRACE(parent_bh, "get_write_access"); 4354 if (!ext4_journal_get_write_access(handle, 4355 parent_bh)){ 4356 *p = 0; 4357 BUFFER_TRACE(parent_bh, 4358 "call ext4_handle_dirty_metadata"); 4359 ext4_handle_dirty_metadata(handle, 4360 inode, 4361 parent_bh); 4362 } 4363 } 4364 } 4365 } else { 4366 /* We have reached the bottom of the tree. */ 4367 BUFFER_TRACE(parent_bh, "free data blocks"); 4368 ext4_free_data(handle, inode, parent_bh, first, last); 4369 } 4370 } 4371 4372 int ext4_can_truncate(struct inode *inode) 4373 { 4374 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4375 return 0; 4376 if (S_ISREG(inode->i_mode)) 4377 return 1; 4378 if (S_ISDIR(inode->i_mode)) 4379 return 1; 4380 if (S_ISLNK(inode->i_mode)) 4381 return !ext4_inode_is_fast_symlink(inode); 4382 return 0; 4383 } 4384 4385 /* 4386 * ext4_truncate() 4387 * 4388 * We block out ext4_get_block() block instantiations across the entire 4389 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4390 * simultaneously on behalf of the same inode. 4391 * 4392 * As we work through the truncate and commmit bits of it to the journal there 4393 * is one core, guiding principle: the file's tree must always be consistent on 4394 * disk. We must be able to restart the truncate after a crash. 4395 * 4396 * The file's tree may be transiently inconsistent in memory (although it 4397 * probably isn't), but whenever we close off and commit a journal transaction, 4398 * the contents of (the filesystem + the journal) must be consistent and 4399 * restartable. It's pretty simple, really: bottom up, right to left (although 4400 * left-to-right works OK too). 4401 * 4402 * Note that at recovery time, journal replay occurs *before* the restart of 4403 * truncate against the orphan inode list. 4404 * 4405 * The committed inode has the new, desired i_size (which is the same as 4406 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4407 * that this inode's truncate did not complete and it will again call 4408 * ext4_truncate() to have another go. So there will be instantiated blocks 4409 * to the right of the truncation point in a crashed ext4 filesystem. But 4410 * that's fine - as long as they are linked from the inode, the post-crash 4411 * ext4_truncate() run will find them and release them. 4412 */ 4413 void ext4_truncate(struct inode *inode) 4414 { 4415 handle_t *handle; 4416 struct ext4_inode_info *ei = EXT4_I(inode); 4417 __le32 *i_data = ei->i_data; 4418 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4419 struct address_space *mapping = inode->i_mapping; 4420 ext4_lblk_t offsets[4]; 4421 Indirect chain[4]; 4422 Indirect *partial; 4423 __le32 nr = 0; 4424 int n; 4425 ext4_lblk_t last_block; 4426 unsigned blocksize = inode->i_sb->s_blocksize; 4427 4428 if (!ext4_can_truncate(inode)) 4429 return; 4430 4431 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4432 4433 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4434 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4435 4436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4437 ext4_ext_truncate(inode); 4438 return; 4439 } 4440 4441 handle = start_transaction(inode); 4442 if (IS_ERR(handle)) 4443 return; /* AKPM: return what? */ 4444 4445 last_block = (inode->i_size + blocksize-1) 4446 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4447 4448 if (inode->i_size & (blocksize - 1)) 4449 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4450 goto out_stop; 4451 4452 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4453 if (n == 0) 4454 goto out_stop; /* error */ 4455 4456 /* 4457 * OK. This truncate is going to happen. We add the inode to the 4458 * orphan list, so that if this truncate spans multiple transactions, 4459 * and we crash, we will resume the truncate when the filesystem 4460 * recovers. It also marks the inode dirty, to catch the new size. 4461 * 4462 * Implication: the file must always be in a sane, consistent 4463 * truncatable state while each transaction commits. 4464 */ 4465 if (ext4_orphan_add(handle, inode)) 4466 goto out_stop; 4467 4468 /* 4469 * From here we block out all ext4_get_block() callers who want to 4470 * modify the block allocation tree. 4471 */ 4472 down_write(&ei->i_data_sem); 4473 4474 ext4_discard_preallocations(inode); 4475 4476 /* 4477 * The orphan list entry will now protect us from any crash which 4478 * occurs before the truncate completes, so it is now safe to propagate 4479 * the new, shorter inode size (held for now in i_size) into the 4480 * on-disk inode. We do this via i_disksize, which is the value which 4481 * ext4 *really* writes onto the disk inode. 4482 */ 4483 ei->i_disksize = inode->i_size; 4484 4485 if (n == 1) { /* direct blocks */ 4486 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4487 i_data + EXT4_NDIR_BLOCKS); 4488 goto do_indirects; 4489 } 4490 4491 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4492 /* Kill the top of shared branch (not detached) */ 4493 if (nr) { 4494 if (partial == chain) { 4495 /* Shared branch grows from the inode */ 4496 ext4_free_branches(handle, inode, NULL, 4497 &nr, &nr+1, (chain+n-1) - partial); 4498 *partial->p = 0; 4499 /* 4500 * We mark the inode dirty prior to restart, 4501 * and prior to stop. No need for it here. 4502 */ 4503 } else { 4504 /* Shared branch grows from an indirect block */ 4505 BUFFER_TRACE(partial->bh, "get_write_access"); 4506 ext4_free_branches(handle, inode, partial->bh, 4507 partial->p, 4508 partial->p+1, (chain+n-1) - partial); 4509 } 4510 } 4511 /* Clear the ends of indirect blocks on the shared branch */ 4512 while (partial > chain) { 4513 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4514 (__le32*)partial->bh->b_data+addr_per_block, 4515 (chain+n-1) - partial); 4516 BUFFER_TRACE(partial->bh, "call brelse"); 4517 brelse(partial->bh); 4518 partial--; 4519 } 4520 do_indirects: 4521 /* Kill the remaining (whole) subtrees */ 4522 switch (offsets[0]) { 4523 default: 4524 nr = i_data[EXT4_IND_BLOCK]; 4525 if (nr) { 4526 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4527 i_data[EXT4_IND_BLOCK] = 0; 4528 } 4529 case EXT4_IND_BLOCK: 4530 nr = i_data[EXT4_DIND_BLOCK]; 4531 if (nr) { 4532 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4533 i_data[EXT4_DIND_BLOCK] = 0; 4534 } 4535 case EXT4_DIND_BLOCK: 4536 nr = i_data[EXT4_TIND_BLOCK]; 4537 if (nr) { 4538 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4539 i_data[EXT4_TIND_BLOCK] = 0; 4540 } 4541 case EXT4_TIND_BLOCK: 4542 ; 4543 } 4544 4545 up_write(&ei->i_data_sem); 4546 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4547 ext4_mark_inode_dirty(handle, inode); 4548 4549 /* 4550 * In a multi-transaction truncate, we only make the final transaction 4551 * synchronous 4552 */ 4553 if (IS_SYNC(inode)) 4554 ext4_handle_sync(handle); 4555 out_stop: 4556 /* 4557 * If this was a simple ftruncate(), and the file will remain alive 4558 * then we need to clear up the orphan record which we created above. 4559 * However, if this was a real unlink then we were called by 4560 * ext4_delete_inode(), and we allow that function to clean up the 4561 * orphan info for us. 4562 */ 4563 if (inode->i_nlink) 4564 ext4_orphan_del(handle, inode); 4565 4566 ext4_journal_stop(handle); 4567 } 4568 4569 /* 4570 * ext4_get_inode_loc returns with an extra refcount against the inode's 4571 * underlying buffer_head on success. If 'in_mem' is true, we have all 4572 * data in memory that is needed to recreate the on-disk version of this 4573 * inode. 4574 */ 4575 static int __ext4_get_inode_loc(struct inode *inode, 4576 struct ext4_iloc *iloc, int in_mem) 4577 { 4578 struct ext4_group_desc *gdp; 4579 struct buffer_head *bh; 4580 struct super_block *sb = inode->i_sb; 4581 ext4_fsblk_t block; 4582 int inodes_per_block, inode_offset; 4583 4584 iloc->bh = NULL; 4585 if (!ext4_valid_inum(sb, inode->i_ino)) 4586 return -EIO; 4587 4588 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4589 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4590 if (!gdp) 4591 return -EIO; 4592 4593 /* 4594 * Figure out the offset within the block group inode table 4595 */ 4596 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4597 inode_offset = ((inode->i_ino - 1) % 4598 EXT4_INODES_PER_GROUP(sb)); 4599 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4600 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4601 4602 bh = sb_getblk(sb, block); 4603 if (!bh) { 4604 EXT4_ERROR_INODE_BLOCK(inode, block, 4605 "unable to read itable block"); 4606 return -EIO; 4607 } 4608 if (!buffer_uptodate(bh)) { 4609 lock_buffer(bh); 4610 4611 /* 4612 * If the buffer has the write error flag, we have failed 4613 * to write out another inode in the same block. In this 4614 * case, we don't have to read the block because we may 4615 * read the old inode data successfully. 4616 */ 4617 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4618 set_buffer_uptodate(bh); 4619 4620 if (buffer_uptodate(bh)) { 4621 /* someone brought it uptodate while we waited */ 4622 unlock_buffer(bh); 4623 goto has_buffer; 4624 } 4625 4626 /* 4627 * If we have all information of the inode in memory and this 4628 * is the only valid inode in the block, we need not read the 4629 * block. 4630 */ 4631 if (in_mem) { 4632 struct buffer_head *bitmap_bh; 4633 int i, start; 4634 4635 start = inode_offset & ~(inodes_per_block - 1); 4636 4637 /* Is the inode bitmap in cache? */ 4638 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4639 if (!bitmap_bh) 4640 goto make_io; 4641 4642 /* 4643 * If the inode bitmap isn't in cache then the 4644 * optimisation may end up performing two reads instead 4645 * of one, so skip it. 4646 */ 4647 if (!buffer_uptodate(bitmap_bh)) { 4648 brelse(bitmap_bh); 4649 goto make_io; 4650 } 4651 for (i = start; i < start + inodes_per_block; i++) { 4652 if (i == inode_offset) 4653 continue; 4654 if (ext4_test_bit(i, bitmap_bh->b_data)) 4655 break; 4656 } 4657 brelse(bitmap_bh); 4658 if (i == start + inodes_per_block) { 4659 /* all other inodes are free, so skip I/O */ 4660 memset(bh->b_data, 0, bh->b_size); 4661 set_buffer_uptodate(bh); 4662 unlock_buffer(bh); 4663 goto has_buffer; 4664 } 4665 } 4666 4667 make_io: 4668 /* 4669 * If we need to do any I/O, try to pre-readahead extra 4670 * blocks from the inode table. 4671 */ 4672 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4673 ext4_fsblk_t b, end, table; 4674 unsigned num; 4675 4676 table = ext4_inode_table(sb, gdp); 4677 /* s_inode_readahead_blks is always a power of 2 */ 4678 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4679 if (table > b) 4680 b = table; 4681 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4682 num = EXT4_INODES_PER_GROUP(sb); 4683 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4684 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4685 num -= ext4_itable_unused_count(sb, gdp); 4686 table += num / inodes_per_block; 4687 if (end > table) 4688 end = table; 4689 while (b <= end) 4690 sb_breadahead(sb, b++); 4691 } 4692 4693 /* 4694 * There are other valid inodes in the buffer, this inode 4695 * has in-inode xattrs, or we don't have this inode in memory. 4696 * Read the block from disk. 4697 */ 4698 get_bh(bh); 4699 bh->b_end_io = end_buffer_read_sync; 4700 submit_bh(READ_META, bh); 4701 wait_on_buffer(bh); 4702 if (!buffer_uptodate(bh)) { 4703 EXT4_ERROR_INODE_BLOCK(inode, block, 4704 "unable to read itable block"); 4705 brelse(bh); 4706 return -EIO; 4707 } 4708 } 4709 has_buffer: 4710 iloc->bh = bh; 4711 return 0; 4712 } 4713 4714 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4715 { 4716 /* We have all inode data except xattrs in memory here. */ 4717 return __ext4_get_inode_loc(inode, iloc, 4718 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4719 } 4720 4721 void ext4_set_inode_flags(struct inode *inode) 4722 { 4723 unsigned int flags = EXT4_I(inode)->i_flags; 4724 4725 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4726 if (flags & EXT4_SYNC_FL) 4727 inode->i_flags |= S_SYNC; 4728 if (flags & EXT4_APPEND_FL) 4729 inode->i_flags |= S_APPEND; 4730 if (flags & EXT4_IMMUTABLE_FL) 4731 inode->i_flags |= S_IMMUTABLE; 4732 if (flags & EXT4_NOATIME_FL) 4733 inode->i_flags |= S_NOATIME; 4734 if (flags & EXT4_DIRSYNC_FL) 4735 inode->i_flags |= S_DIRSYNC; 4736 } 4737 4738 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4739 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4740 { 4741 unsigned int vfs_fl; 4742 unsigned long old_fl, new_fl; 4743 4744 do { 4745 vfs_fl = ei->vfs_inode.i_flags; 4746 old_fl = ei->i_flags; 4747 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4748 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4749 EXT4_DIRSYNC_FL); 4750 if (vfs_fl & S_SYNC) 4751 new_fl |= EXT4_SYNC_FL; 4752 if (vfs_fl & S_APPEND) 4753 new_fl |= EXT4_APPEND_FL; 4754 if (vfs_fl & S_IMMUTABLE) 4755 new_fl |= EXT4_IMMUTABLE_FL; 4756 if (vfs_fl & S_NOATIME) 4757 new_fl |= EXT4_NOATIME_FL; 4758 if (vfs_fl & S_DIRSYNC) 4759 new_fl |= EXT4_DIRSYNC_FL; 4760 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4761 } 4762 4763 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4764 struct ext4_inode_info *ei) 4765 { 4766 blkcnt_t i_blocks ; 4767 struct inode *inode = &(ei->vfs_inode); 4768 struct super_block *sb = inode->i_sb; 4769 4770 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4771 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4772 /* we are using combined 48 bit field */ 4773 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4774 le32_to_cpu(raw_inode->i_blocks_lo); 4775 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4776 /* i_blocks represent file system block size */ 4777 return i_blocks << (inode->i_blkbits - 9); 4778 } else { 4779 return i_blocks; 4780 } 4781 } else { 4782 return le32_to_cpu(raw_inode->i_blocks_lo); 4783 } 4784 } 4785 4786 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4787 { 4788 struct ext4_iloc iloc; 4789 struct ext4_inode *raw_inode; 4790 struct ext4_inode_info *ei; 4791 struct inode *inode; 4792 journal_t *journal = EXT4_SB(sb)->s_journal; 4793 long ret; 4794 int block; 4795 4796 inode = iget_locked(sb, ino); 4797 if (!inode) 4798 return ERR_PTR(-ENOMEM); 4799 if (!(inode->i_state & I_NEW)) 4800 return inode; 4801 4802 ei = EXT4_I(inode); 4803 iloc.bh = NULL; 4804 4805 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4806 if (ret < 0) 4807 goto bad_inode; 4808 raw_inode = ext4_raw_inode(&iloc); 4809 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4810 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4811 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4812 if (!(test_opt(inode->i_sb, NO_UID32))) { 4813 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4814 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4815 } 4816 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4817 4818 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4819 ei->i_dir_start_lookup = 0; 4820 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4821 /* We now have enough fields to check if the inode was active or not. 4822 * This is needed because nfsd might try to access dead inodes 4823 * the test is that same one that e2fsck uses 4824 * NeilBrown 1999oct15 4825 */ 4826 if (inode->i_nlink == 0) { 4827 if (inode->i_mode == 0 || 4828 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4829 /* this inode is deleted */ 4830 ret = -ESTALE; 4831 goto bad_inode; 4832 } 4833 /* The only unlinked inodes we let through here have 4834 * valid i_mode and are being read by the orphan 4835 * recovery code: that's fine, we're about to complete 4836 * the process of deleting those. */ 4837 } 4838 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4839 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4840 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4841 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4842 ei->i_file_acl |= 4843 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4844 inode->i_size = ext4_isize(raw_inode); 4845 ei->i_disksize = inode->i_size; 4846 #ifdef CONFIG_QUOTA 4847 ei->i_reserved_quota = 0; 4848 #endif 4849 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4850 ei->i_block_group = iloc.block_group; 4851 ei->i_last_alloc_group = ~0; 4852 /* 4853 * NOTE! The in-memory inode i_data array is in little-endian order 4854 * even on big-endian machines: we do NOT byteswap the block numbers! 4855 */ 4856 for (block = 0; block < EXT4_N_BLOCKS; block++) 4857 ei->i_data[block] = raw_inode->i_block[block]; 4858 INIT_LIST_HEAD(&ei->i_orphan); 4859 4860 /* 4861 * Set transaction id's of transactions that have to be committed 4862 * to finish f[data]sync. We set them to currently running transaction 4863 * as we cannot be sure that the inode or some of its metadata isn't 4864 * part of the transaction - the inode could have been reclaimed and 4865 * now it is reread from disk. 4866 */ 4867 if (journal) { 4868 transaction_t *transaction; 4869 tid_t tid; 4870 4871 read_lock(&journal->j_state_lock); 4872 if (journal->j_running_transaction) 4873 transaction = journal->j_running_transaction; 4874 else 4875 transaction = journal->j_committing_transaction; 4876 if (transaction) 4877 tid = transaction->t_tid; 4878 else 4879 tid = journal->j_commit_sequence; 4880 read_unlock(&journal->j_state_lock); 4881 ei->i_sync_tid = tid; 4882 ei->i_datasync_tid = tid; 4883 } 4884 4885 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4886 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4887 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4888 EXT4_INODE_SIZE(inode->i_sb)) { 4889 ret = -EIO; 4890 goto bad_inode; 4891 } 4892 if (ei->i_extra_isize == 0) { 4893 /* The extra space is currently unused. Use it. */ 4894 ei->i_extra_isize = sizeof(struct ext4_inode) - 4895 EXT4_GOOD_OLD_INODE_SIZE; 4896 } else { 4897 __le32 *magic = (void *)raw_inode + 4898 EXT4_GOOD_OLD_INODE_SIZE + 4899 ei->i_extra_isize; 4900 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4901 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4902 } 4903 } else 4904 ei->i_extra_isize = 0; 4905 4906 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4907 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4908 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4909 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4910 4911 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4912 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4913 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4914 inode->i_version |= 4915 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4916 } 4917 4918 ret = 0; 4919 if (ei->i_file_acl && 4920 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4921 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4922 ei->i_file_acl); 4923 ret = -EIO; 4924 goto bad_inode; 4925 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4926 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4927 (S_ISLNK(inode->i_mode) && 4928 !ext4_inode_is_fast_symlink(inode))) 4929 /* Validate extent which is part of inode */ 4930 ret = ext4_ext_check_inode(inode); 4931 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4932 (S_ISLNK(inode->i_mode) && 4933 !ext4_inode_is_fast_symlink(inode))) { 4934 /* Validate block references which are part of inode */ 4935 ret = ext4_check_inode_blockref(inode); 4936 } 4937 if (ret) 4938 goto bad_inode; 4939 4940 if (S_ISREG(inode->i_mode)) { 4941 inode->i_op = &ext4_file_inode_operations; 4942 inode->i_fop = &ext4_file_operations; 4943 ext4_set_aops(inode); 4944 } else if (S_ISDIR(inode->i_mode)) { 4945 inode->i_op = &ext4_dir_inode_operations; 4946 inode->i_fop = &ext4_dir_operations; 4947 } else if (S_ISLNK(inode->i_mode)) { 4948 if (ext4_inode_is_fast_symlink(inode)) { 4949 inode->i_op = &ext4_fast_symlink_inode_operations; 4950 nd_terminate_link(ei->i_data, inode->i_size, 4951 sizeof(ei->i_data) - 1); 4952 } else { 4953 inode->i_op = &ext4_symlink_inode_operations; 4954 ext4_set_aops(inode); 4955 } 4956 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4957 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4958 inode->i_op = &ext4_special_inode_operations; 4959 if (raw_inode->i_block[0]) 4960 init_special_inode(inode, inode->i_mode, 4961 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4962 else 4963 init_special_inode(inode, inode->i_mode, 4964 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4965 } else { 4966 ret = -EIO; 4967 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4968 goto bad_inode; 4969 } 4970 brelse(iloc.bh); 4971 ext4_set_inode_flags(inode); 4972 unlock_new_inode(inode); 4973 return inode; 4974 4975 bad_inode: 4976 brelse(iloc.bh); 4977 iget_failed(inode); 4978 return ERR_PTR(ret); 4979 } 4980 4981 static int ext4_inode_blocks_set(handle_t *handle, 4982 struct ext4_inode *raw_inode, 4983 struct ext4_inode_info *ei) 4984 { 4985 struct inode *inode = &(ei->vfs_inode); 4986 u64 i_blocks = inode->i_blocks; 4987 struct super_block *sb = inode->i_sb; 4988 4989 if (i_blocks <= ~0U) { 4990 /* 4991 * i_blocks can be represnted in a 32 bit variable 4992 * as multiple of 512 bytes 4993 */ 4994 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4995 raw_inode->i_blocks_high = 0; 4996 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4997 return 0; 4998 } 4999 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5000 return -EFBIG; 5001 5002 if (i_blocks <= 0xffffffffffffULL) { 5003 /* 5004 * i_blocks can be represented in a 48 bit variable 5005 * as multiple of 512 bytes 5006 */ 5007 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5008 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5009 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5010 } else { 5011 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5012 /* i_block is stored in file system block size */ 5013 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5014 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5015 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5016 } 5017 return 0; 5018 } 5019 5020 /* 5021 * Post the struct inode info into an on-disk inode location in the 5022 * buffer-cache. This gobbles the caller's reference to the 5023 * buffer_head in the inode location struct. 5024 * 5025 * The caller must have write access to iloc->bh. 5026 */ 5027 static int ext4_do_update_inode(handle_t *handle, 5028 struct inode *inode, 5029 struct ext4_iloc *iloc) 5030 { 5031 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5032 struct ext4_inode_info *ei = EXT4_I(inode); 5033 struct buffer_head *bh = iloc->bh; 5034 int err = 0, rc, block; 5035 5036 /* For fields not not tracking in the in-memory inode, 5037 * initialise them to zero for new inodes. */ 5038 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5039 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5040 5041 ext4_get_inode_flags(ei); 5042 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5043 if (!(test_opt(inode->i_sb, NO_UID32))) { 5044 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5045 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5046 /* 5047 * Fix up interoperability with old kernels. Otherwise, old inodes get 5048 * re-used with the upper 16 bits of the uid/gid intact 5049 */ 5050 if (!ei->i_dtime) { 5051 raw_inode->i_uid_high = 5052 cpu_to_le16(high_16_bits(inode->i_uid)); 5053 raw_inode->i_gid_high = 5054 cpu_to_le16(high_16_bits(inode->i_gid)); 5055 } else { 5056 raw_inode->i_uid_high = 0; 5057 raw_inode->i_gid_high = 0; 5058 } 5059 } else { 5060 raw_inode->i_uid_low = 5061 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5062 raw_inode->i_gid_low = 5063 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5064 raw_inode->i_uid_high = 0; 5065 raw_inode->i_gid_high = 0; 5066 } 5067 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5068 5069 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5070 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5071 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5072 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5073 5074 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5075 goto out_brelse; 5076 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5077 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5078 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5079 cpu_to_le32(EXT4_OS_HURD)) 5080 raw_inode->i_file_acl_high = 5081 cpu_to_le16(ei->i_file_acl >> 32); 5082 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5083 ext4_isize_set(raw_inode, ei->i_disksize); 5084 if (ei->i_disksize > 0x7fffffffULL) { 5085 struct super_block *sb = inode->i_sb; 5086 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5087 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5088 EXT4_SB(sb)->s_es->s_rev_level == 5089 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5090 /* If this is the first large file 5091 * created, add a flag to the superblock. 5092 */ 5093 err = ext4_journal_get_write_access(handle, 5094 EXT4_SB(sb)->s_sbh); 5095 if (err) 5096 goto out_brelse; 5097 ext4_update_dynamic_rev(sb); 5098 EXT4_SET_RO_COMPAT_FEATURE(sb, 5099 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5100 sb->s_dirt = 1; 5101 ext4_handle_sync(handle); 5102 err = ext4_handle_dirty_metadata(handle, NULL, 5103 EXT4_SB(sb)->s_sbh); 5104 } 5105 } 5106 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5107 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5108 if (old_valid_dev(inode->i_rdev)) { 5109 raw_inode->i_block[0] = 5110 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5111 raw_inode->i_block[1] = 0; 5112 } else { 5113 raw_inode->i_block[0] = 0; 5114 raw_inode->i_block[1] = 5115 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5116 raw_inode->i_block[2] = 0; 5117 } 5118 } else 5119 for (block = 0; block < EXT4_N_BLOCKS; block++) 5120 raw_inode->i_block[block] = ei->i_data[block]; 5121 5122 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5123 if (ei->i_extra_isize) { 5124 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5125 raw_inode->i_version_hi = 5126 cpu_to_le32(inode->i_version >> 32); 5127 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5128 } 5129 5130 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5131 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5132 if (!err) 5133 err = rc; 5134 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5135 5136 ext4_update_inode_fsync_trans(handle, inode, 0); 5137 out_brelse: 5138 brelse(bh); 5139 ext4_std_error(inode->i_sb, err); 5140 return err; 5141 } 5142 5143 /* 5144 * ext4_write_inode() 5145 * 5146 * We are called from a few places: 5147 * 5148 * - Within generic_file_write() for O_SYNC files. 5149 * Here, there will be no transaction running. We wait for any running 5150 * trasnaction to commit. 5151 * 5152 * - Within sys_sync(), kupdate and such. 5153 * We wait on commit, if tol to. 5154 * 5155 * - Within prune_icache() (PF_MEMALLOC == true) 5156 * Here we simply return. We can't afford to block kswapd on the 5157 * journal commit. 5158 * 5159 * In all cases it is actually safe for us to return without doing anything, 5160 * because the inode has been copied into a raw inode buffer in 5161 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5162 * knfsd. 5163 * 5164 * Note that we are absolutely dependent upon all inode dirtiers doing the 5165 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5166 * which we are interested. 5167 * 5168 * It would be a bug for them to not do this. The code: 5169 * 5170 * mark_inode_dirty(inode) 5171 * stuff(); 5172 * inode->i_size = expr; 5173 * 5174 * is in error because a kswapd-driven write_inode() could occur while 5175 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5176 * will no longer be on the superblock's dirty inode list. 5177 */ 5178 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5179 { 5180 int err; 5181 5182 if (current->flags & PF_MEMALLOC) 5183 return 0; 5184 5185 if (EXT4_SB(inode->i_sb)->s_journal) { 5186 if (ext4_journal_current_handle()) { 5187 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5188 dump_stack(); 5189 return -EIO; 5190 } 5191 5192 if (wbc->sync_mode != WB_SYNC_ALL) 5193 return 0; 5194 5195 err = ext4_force_commit(inode->i_sb); 5196 } else { 5197 struct ext4_iloc iloc; 5198 5199 err = __ext4_get_inode_loc(inode, &iloc, 0); 5200 if (err) 5201 return err; 5202 if (wbc->sync_mode == WB_SYNC_ALL) 5203 sync_dirty_buffer(iloc.bh); 5204 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5205 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5206 "IO error syncing inode"); 5207 err = -EIO; 5208 } 5209 brelse(iloc.bh); 5210 } 5211 return err; 5212 } 5213 5214 /* 5215 * ext4_setattr() 5216 * 5217 * Called from notify_change. 5218 * 5219 * We want to trap VFS attempts to truncate the file as soon as 5220 * possible. In particular, we want to make sure that when the VFS 5221 * shrinks i_size, we put the inode on the orphan list and modify 5222 * i_disksize immediately, so that during the subsequent flushing of 5223 * dirty pages and freeing of disk blocks, we can guarantee that any 5224 * commit will leave the blocks being flushed in an unused state on 5225 * disk. (On recovery, the inode will get truncated and the blocks will 5226 * be freed, so we have a strong guarantee that no future commit will 5227 * leave these blocks visible to the user.) 5228 * 5229 * Another thing we have to assure is that if we are in ordered mode 5230 * and inode is still attached to the committing transaction, we must 5231 * we start writeout of all the dirty pages which are being truncated. 5232 * This way we are sure that all the data written in the previous 5233 * transaction are already on disk (truncate waits for pages under 5234 * writeback). 5235 * 5236 * Called with inode->i_mutex down. 5237 */ 5238 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5239 { 5240 struct inode *inode = dentry->d_inode; 5241 int error, rc = 0; 5242 int orphan = 0; 5243 const unsigned int ia_valid = attr->ia_valid; 5244 5245 error = inode_change_ok(inode, attr); 5246 if (error) 5247 return error; 5248 5249 if (is_quota_modification(inode, attr)) 5250 dquot_initialize(inode); 5251 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5252 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5253 handle_t *handle; 5254 5255 /* (user+group)*(old+new) structure, inode write (sb, 5256 * inode block, ? - but truncate inode update has it) */ 5257 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5258 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5259 if (IS_ERR(handle)) { 5260 error = PTR_ERR(handle); 5261 goto err_out; 5262 } 5263 error = dquot_transfer(inode, attr); 5264 if (error) { 5265 ext4_journal_stop(handle); 5266 return error; 5267 } 5268 /* Update corresponding info in inode so that everything is in 5269 * one transaction */ 5270 if (attr->ia_valid & ATTR_UID) 5271 inode->i_uid = attr->ia_uid; 5272 if (attr->ia_valid & ATTR_GID) 5273 inode->i_gid = attr->ia_gid; 5274 error = ext4_mark_inode_dirty(handle, inode); 5275 ext4_journal_stop(handle); 5276 } 5277 5278 if (attr->ia_valid & ATTR_SIZE) { 5279 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5280 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5281 5282 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5283 return -EFBIG; 5284 } 5285 } 5286 5287 if (S_ISREG(inode->i_mode) && 5288 attr->ia_valid & ATTR_SIZE && 5289 (attr->ia_size < inode->i_size || 5290 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) { 5291 handle_t *handle; 5292 5293 handle = ext4_journal_start(inode, 3); 5294 if (IS_ERR(handle)) { 5295 error = PTR_ERR(handle); 5296 goto err_out; 5297 } 5298 if (ext4_handle_valid(handle)) { 5299 error = ext4_orphan_add(handle, inode); 5300 orphan = 1; 5301 } 5302 EXT4_I(inode)->i_disksize = attr->ia_size; 5303 rc = ext4_mark_inode_dirty(handle, inode); 5304 if (!error) 5305 error = rc; 5306 ext4_journal_stop(handle); 5307 5308 if (ext4_should_order_data(inode)) { 5309 error = ext4_begin_ordered_truncate(inode, 5310 attr->ia_size); 5311 if (error) { 5312 /* Do as much error cleanup as possible */ 5313 handle = ext4_journal_start(inode, 3); 5314 if (IS_ERR(handle)) { 5315 ext4_orphan_del(NULL, inode); 5316 goto err_out; 5317 } 5318 ext4_orphan_del(handle, inode); 5319 orphan = 0; 5320 ext4_journal_stop(handle); 5321 goto err_out; 5322 } 5323 } 5324 /* ext4_truncate will clear the flag */ 5325 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) 5326 ext4_truncate(inode); 5327 } 5328 5329 if ((attr->ia_valid & ATTR_SIZE) && 5330 attr->ia_size != i_size_read(inode)) 5331 rc = vmtruncate(inode, attr->ia_size); 5332 5333 if (!rc) { 5334 setattr_copy(inode, attr); 5335 mark_inode_dirty(inode); 5336 } 5337 5338 /* 5339 * If the call to ext4_truncate failed to get a transaction handle at 5340 * all, we need to clean up the in-core orphan list manually. 5341 */ 5342 if (orphan && inode->i_nlink) 5343 ext4_orphan_del(NULL, inode); 5344 5345 if (!rc && (ia_valid & ATTR_MODE)) 5346 rc = ext4_acl_chmod(inode); 5347 5348 err_out: 5349 ext4_std_error(inode->i_sb, error); 5350 if (!error) 5351 error = rc; 5352 return error; 5353 } 5354 5355 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5356 struct kstat *stat) 5357 { 5358 struct inode *inode; 5359 unsigned long delalloc_blocks; 5360 5361 inode = dentry->d_inode; 5362 generic_fillattr(inode, stat); 5363 5364 /* 5365 * We can't update i_blocks if the block allocation is delayed 5366 * otherwise in the case of system crash before the real block 5367 * allocation is done, we will have i_blocks inconsistent with 5368 * on-disk file blocks. 5369 * We always keep i_blocks updated together with real 5370 * allocation. But to not confuse with user, stat 5371 * will return the blocks that include the delayed allocation 5372 * blocks for this file. 5373 */ 5374 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5375 5376 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5377 return 0; 5378 } 5379 5380 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5381 int chunk) 5382 { 5383 int indirects; 5384 5385 /* if nrblocks are contiguous */ 5386 if (chunk) { 5387 /* 5388 * With N contiguous data blocks, it need at most 5389 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5390 * 2 dindirect blocks 5391 * 1 tindirect block 5392 */ 5393 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5394 return indirects + 3; 5395 } 5396 /* 5397 * if nrblocks are not contiguous, worse case, each block touch 5398 * a indirect block, and each indirect block touch a double indirect 5399 * block, plus a triple indirect block 5400 */ 5401 indirects = nrblocks * 2 + 1; 5402 return indirects; 5403 } 5404 5405 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5406 { 5407 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5408 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5409 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5410 } 5411 5412 /* 5413 * Account for index blocks, block groups bitmaps and block group 5414 * descriptor blocks if modify datablocks and index blocks 5415 * worse case, the indexs blocks spread over different block groups 5416 * 5417 * If datablocks are discontiguous, they are possible to spread over 5418 * different block groups too. If they are contiuguous, with flexbg, 5419 * they could still across block group boundary. 5420 * 5421 * Also account for superblock, inode, quota and xattr blocks 5422 */ 5423 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5424 { 5425 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5426 int gdpblocks; 5427 int idxblocks; 5428 int ret = 0; 5429 5430 /* 5431 * How many index blocks need to touch to modify nrblocks? 5432 * The "Chunk" flag indicating whether the nrblocks is 5433 * physically contiguous on disk 5434 * 5435 * For Direct IO and fallocate, they calls get_block to allocate 5436 * one single extent at a time, so they could set the "Chunk" flag 5437 */ 5438 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5439 5440 ret = idxblocks; 5441 5442 /* 5443 * Now let's see how many group bitmaps and group descriptors need 5444 * to account 5445 */ 5446 groups = idxblocks; 5447 if (chunk) 5448 groups += 1; 5449 else 5450 groups += nrblocks; 5451 5452 gdpblocks = groups; 5453 if (groups > ngroups) 5454 groups = ngroups; 5455 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5456 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5457 5458 /* bitmaps and block group descriptor blocks */ 5459 ret += groups + gdpblocks; 5460 5461 /* Blocks for super block, inode, quota and xattr blocks */ 5462 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5463 5464 return ret; 5465 } 5466 5467 /* 5468 * Calulate the total number of credits to reserve to fit 5469 * the modification of a single pages into a single transaction, 5470 * which may include multiple chunks of block allocations. 5471 * 5472 * This could be called via ext4_write_begin() 5473 * 5474 * We need to consider the worse case, when 5475 * one new block per extent. 5476 */ 5477 int ext4_writepage_trans_blocks(struct inode *inode) 5478 { 5479 int bpp = ext4_journal_blocks_per_page(inode); 5480 int ret; 5481 5482 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5483 5484 /* Account for data blocks for journalled mode */ 5485 if (ext4_should_journal_data(inode)) 5486 ret += bpp; 5487 return ret; 5488 } 5489 5490 /* 5491 * Calculate the journal credits for a chunk of data modification. 5492 * 5493 * This is called from DIO, fallocate or whoever calling 5494 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5495 * 5496 * journal buffers for data blocks are not included here, as DIO 5497 * and fallocate do no need to journal data buffers. 5498 */ 5499 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5500 { 5501 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5502 } 5503 5504 /* 5505 * The caller must have previously called ext4_reserve_inode_write(). 5506 * Give this, we know that the caller already has write access to iloc->bh. 5507 */ 5508 int ext4_mark_iloc_dirty(handle_t *handle, 5509 struct inode *inode, struct ext4_iloc *iloc) 5510 { 5511 int err = 0; 5512 5513 if (test_opt(inode->i_sb, I_VERSION)) 5514 inode_inc_iversion(inode); 5515 5516 /* the do_update_inode consumes one bh->b_count */ 5517 get_bh(iloc->bh); 5518 5519 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5520 err = ext4_do_update_inode(handle, inode, iloc); 5521 put_bh(iloc->bh); 5522 return err; 5523 } 5524 5525 /* 5526 * On success, We end up with an outstanding reference count against 5527 * iloc->bh. This _must_ be cleaned up later. 5528 */ 5529 5530 int 5531 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5532 struct ext4_iloc *iloc) 5533 { 5534 int err; 5535 5536 err = ext4_get_inode_loc(inode, iloc); 5537 if (!err) { 5538 BUFFER_TRACE(iloc->bh, "get_write_access"); 5539 err = ext4_journal_get_write_access(handle, iloc->bh); 5540 if (err) { 5541 brelse(iloc->bh); 5542 iloc->bh = NULL; 5543 } 5544 } 5545 ext4_std_error(inode->i_sb, err); 5546 return err; 5547 } 5548 5549 /* 5550 * Expand an inode by new_extra_isize bytes. 5551 * Returns 0 on success or negative error number on failure. 5552 */ 5553 static int ext4_expand_extra_isize(struct inode *inode, 5554 unsigned int new_extra_isize, 5555 struct ext4_iloc iloc, 5556 handle_t *handle) 5557 { 5558 struct ext4_inode *raw_inode; 5559 struct ext4_xattr_ibody_header *header; 5560 5561 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5562 return 0; 5563 5564 raw_inode = ext4_raw_inode(&iloc); 5565 5566 header = IHDR(inode, raw_inode); 5567 5568 /* No extended attributes present */ 5569 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5570 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5571 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5572 new_extra_isize); 5573 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5574 return 0; 5575 } 5576 5577 /* try to expand with EAs present */ 5578 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5579 raw_inode, handle); 5580 } 5581 5582 /* 5583 * What we do here is to mark the in-core inode as clean with respect to inode 5584 * dirtiness (it may still be data-dirty). 5585 * This means that the in-core inode may be reaped by prune_icache 5586 * without having to perform any I/O. This is a very good thing, 5587 * because *any* task may call prune_icache - even ones which 5588 * have a transaction open against a different journal. 5589 * 5590 * Is this cheating? Not really. Sure, we haven't written the 5591 * inode out, but prune_icache isn't a user-visible syncing function. 5592 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5593 * we start and wait on commits. 5594 * 5595 * Is this efficient/effective? Well, we're being nice to the system 5596 * by cleaning up our inodes proactively so they can be reaped 5597 * without I/O. But we are potentially leaving up to five seconds' 5598 * worth of inodes floating about which prune_icache wants us to 5599 * write out. One way to fix that would be to get prune_icache() 5600 * to do a write_super() to free up some memory. It has the desired 5601 * effect. 5602 */ 5603 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5604 { 5605 struct ext4_iloc iloc; 5606 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5607 static unsigned int mnt_count; 5608 int err, ret; 5609 5610 might_sleep(); 5611 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5612 err = ext4_reserve_inode_write(handle, inode, &iloc); 5613 if (ext4_handle_valid(handle) && 5614 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5615 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5616 /* 5617 * We need extra buffer credits since we may write into EA block 5618 * with this same handle. If journal_extend fails, then it will 5619 * only result in a minor loss of functionality for that inode. 5620 * If this is felt to be critical, then e2fsck should be run to 5621 * force a large enough s_min_extra_isize. 5622 */ 5623 if ((jbd2_journal_extend(handle, 5624 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5625 ret = ext4_expand_extra_isize(inode, 5626 sbi->s_want_extra_isize, 5627 iloc, handle); 5628 if (ret) { 5629 ext4_set_inode_state(inode, 5630 EXT4_STATE_NO_EXPAND); 5631 if (mnt_count != 5632 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5633 ext4_warning(inode->i_sb, 5634 "Unable to expand inode %lu. Delete" 5635 " some EAs or run e2fsck.", 5636 inode->i_ino); 5637 mnt_count = 5638 le16_to_cpu(sbi->s_es->s_mnt_count); 5639 } 5640 } 5641 } 5642 } 5643 if (!err) 5644 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5645 return err; 5646 } 5647 5648 /* 5649 * ext4_dirty_inode() is called from __mark_inode_dirty() 5650 * 5651 * We're really interested in the case where a file is being extended. 5652 * i_size has been changed by generic_commit_write() and we thus need 5653 * to include the updated inode in the current transaction. 5654 * 5655 * Also, dquot_alloc_block() will always dirty the inode when blocks 5656 * are allocated to the file. 5657 * 5658 * If the inode is marked synchronous, we don't honour that here - doing 5659 * so would cause a commit on atime updates, which we don't bother doing. 5660 * We handle synchronous inodes at the highest possible level. 5661 */ 5662 void ext4_dirty_inode(struct inode *inode) 5663 { 5664 handle_t *handle; 5665 5666 handle = ext4_journal_start(inode, 2); 5667 if (IS_ERR(handle)) 5668 goto out; 5669 5670 ext4_mark_inode_dirty(handle, inode); 5671 5672 ext4_journal_stop(handle); 5673 out: 5674 return; 5675 } 5676 5677 #if 0 5678 /* 5679 * Bind an inode's backing buffer_head into this transaction, to prevent 5680 * it from being flushed to disk early. Unlike 5681 * ext4_reserve_inode_write, this leaves behind no bh reference and 5682 * returns no iloc structure, so the caller needs to repeat the iloc 5683 * lookup to mark the inode dirty later. 5684 */ 5685 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5686 { 5687 struct ext4_iloc iloc; 5688 5689 int err = 0; 5690 if (handle) { 5691 err = ext4_get_inode_loc(inode, &iloc); 5692 if (!err) { 5693 BUFFER_TRACE(iloc.bh, "get_write_access"); 5694 err = jbd2_journal_get_write_access(handle, iloc.bh); 5695 if (!err) 5696 err = ext4_handle_dirty_metadata(handle, 5697 NULL, 5698 iloc.bh); 5699 brelse(iloc.bh); 5700 } 5701 } 5702 ext4_std_error(inode->i_sb, err); 5703 return err; 5704 } 5705 #endif 5706 5707 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5708 { 5709 journal_t *journal; 5710 handle_t *handle; 5711 int err; 5712 5713 /* 5714 * We have to be very careful here: changing a data block's 5715 * journaling status dynamically is dangerous. If we write a 5716 * data block to the journal, change the status and then delete 5717 * that block, we risk forgetting to revoke the old log record 5718 * from the journal and so a subsequent replay can corrupt data. 5719 * So, first we make sure that the journal is empty and that 5720 * nobody is changing anything. 5721 */ 5722 5723 journal = EXT4_JOURNAL(inode); 5724 if (!journal) 5725 return 0; 5726 if (is_journal_aborted(journal)) 5727 return -EROFS; 5728 5729 jbd2_journal_lock_updates(journal); 5730 jbd2_journal_flush(journal); 5731 5732 /* 5733 * OK, there are no updates running now, and all cached data is 5734 * synced to disk. We are now in a completely consistent state 5735 * which doesn't have anything in the journal, and we know that 5736 * no filesystem updates are running, so it is safe to modify 5737 * the inode's in-core data-journaling state flag now. 5738 */ 5739 5740 if (val) 5741 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5742 else 5743 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5744 ext4_set_aops(inode); 5745 5746 jbd2_journal_unlock_updates(journal); 5747 5748 /* Finally we can mark the inode as dirty. */ 5749 5750 handle = ext4_journal_start(inode, 1); 5751 if (IS_ERR(handle)) 5752 return PTR_ERR(handle); 5753 5754 err = ext4_mark_inode_dirty(handle, inode); 5755 ext4_handle_sync(handle); 5756 ext4_journal_stop(handle); 5757 ext4_std_error(inode->i_sb, err); 5758 5759 return err; 5760 } 5761 5762 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5763 { 5764 return !buffer_mapped(bh); 5765 } 5766 5767 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5768 { 5769 struct page *page = vmf->page; 5770 loff_t size; 5771 unsigned long len; 5772 int ret = -EINVAL; 5773 void *fsdata; 5774 struct file *file = vma->vm_file; 5775 struct inode *inode = file->f_path.dentry->d_inode; 5776 struct address_space *mapping = inode->i_mapping; 5777 5778 /* 5779 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5780 * get i_mutex because we are already holding mmap_sem. 5781 */ 5782 down_read(&inode->i_alloc_sem); 5783 size = i_size_read(inode); 5784 if (page->mapping != mapping || size <= page_offset(page) 5785 || !PageUptodate(page)) { 5786 /* page got truncated from under us? */ 5787 goto out_unlock; 5788 } 5789 ret = 0; 5790 if (PageMappedToDisk(page)) 5791 goto out_unlock; 5792 5793 if (page->index == size >> PAGE_CACHE_SHIFT) 5794 len = size & ~PAGE_CACHE_MASK; 5795 else 5796 len = PAGE_CACHE_SIZE; 5797 5798 lock_page(page); 5799 /* 5800 * return if we have all the buffers mapped. This avoid 5801 * the need to call write_begin/write_end which does a 5802 * journal_start/journal_stop which can block and take 5803 * long time 5804 */ 5805 if (page_has_buffers(page)) { 5806 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5807 ext4_bh_unmapped)) { 5808 unlock_page(page); 5809 goto out_unlock; 5810 } 5811 } 5812 unlock_page(page); 5813 /* 5814 * OK, we need to fill the hole... Do write_begin write_end 5815 * to do block allocation/reservation.We are not holding 5816 * inode.i__mutex here. That allow * parallel write_begin, 5817 * write_end call. lock_page prevent this from happening 5818 * on the same page though 5819 */ 5820 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5821 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5822 if (ret < 0) 5823 goto out_unlock; 5824 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5825 len, len, page, fsdata); 5826 if (ret < 0) 5827 goto out_unlock; 5828 ret = 0; 5829 out_unlock: 5830 if (ret) 5831 ret = VM_FAULT_SIGBUS; 5832 up_read(&inode->i_alloc_sem); 5833 return ret; 5834 } 5835