xref: /openbmc/linux/fs/ext4/inode.c (revision d67d1218344009970ba0deb7eb15a3984518ddd0)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50 
51 #include <trace/events/ext4.h>
52 
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54 
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 					      loff_t new_size)
57 {
58 	trace_ext4_begin_ordered_truncate(inode, new_size);
59 	/*
60 	 * If jinode is zero, then we never opened the file for
61 	 * writing, so there's no need to call
62 	 * jbd2_journal_begin_ordered_truncate() since there's no
63 	 * outstanding writes we need to flush.
64 	 */
65 	if (!EXT4_I(inode)->jinode)
66 		return 0;
67 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 						   EXT4_I(inode)->jinode,
69 						   new_size);
70 }
71 
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 				   struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79 
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 		(inode->i_sb->s_blocksize >> 9) : 0;
87 
88 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90 
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 	ext4_lblk_t needed;
98 
99 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100 
101 	/* Give ourselves just enough room to cope with inodes in which
102 	 * i_blocks is corrupt: we've seen disk corruptions in the past
103 	 * which resulted in random data in an inode which looked enough
104 	 * like a regular file for ext4 to try to delete it.  Things
105 	 * will go a bit crazy if that happens, but at least we should
106 	 * try not to panic the whole kernel. */
107 	if (needed < 2)
108 		needed = 2;
109 
110 	/* But we need to bound the transaction so we don't overflow the
111 	 * journal. */
112 	if (needed > EXT4_MAX_TRANS_DATA)
113 		needed = EXT4_MAX_TRANS_DATA;
114 
115 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117 
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130 	handle_t *result;
131 
132 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 	if (!IS_ERR(result))
134 		return result;
135 
136 	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 	return result;
138 }
139 
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 	if (!ext4_handle_valid(handle))
149 		return 0;
150 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 		return 0;
152 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 		return 0;
154 	return 1;
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 	if (inode->i_nlink) {
193 		truncate_inode_pages(&inode->i_data, 0);
194 		goto no_delete;
195 	}
196 
197 	if (!is_bad_inode(inode))
198 		dquot_initialize(inode);
199 
200 	if (ext4_should_order_data(inode))
201 		ext4_begin_ordered_truncate(inode, 0);
202 	truncate_inode_pages(&inode->i_data, 0);
203 
204 	if (is_bad_inode(inode))
205 		goto no_delete;
206 
207 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 	if (IS_ERR(handle)) {
209 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 		/*
211 		 * If we're going to skip the normal cleanup, we still need to
212 		 * make sure that the in-core orphan linked list is properly
213 		 * cleaned up.
214 		 */
215 		ext4_orphan_del(NULL, inode);
216 		goto no_delete;
217 	}
218 
219 	if (IS_SYNC(inode))
220 		ext4_handle_sync(handle);
221 	inode->i_size = 0;
222 	err = ext4_mark_inode_dirty(handle, inode);
223 	if (err) {
224 		ext4_warning(inode->i_sb,
225 			     "couldn't mark inode dirty (err %d)", err);
226 		goto stop_handle;
227 	}
228 	if (inode->i_blocks)
229 		ext4_truncate(inode);
230 
231 	/*
232 	 * ext4_ext_truncate() doesn't reserve any slop when it
233 	 * restarts journal transactions; therefore there may not be
234 	 * enough credits left in the handle to remove the inode from
235 	 * the orphan list and set the dtime field.
236 	 */
237 	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 		err = ext4_journal_extend(handle, 3);
239 		if (err > 0)
240 			err = ext4_journal_restart(handle, 3);
241 		if (err != 0) {
242 			ext4_warning(inode->i_sb,
243 				     "couldn't extend journal (err %d)", err);
244 		stop_handle:
245 			ext4_journal_stop(handle);
246 			ext4_orphan_del(NULL, inode);
247 			goto no_delete;
248 		}
249 	}
250 
251 	/*
252 	 * Kill off the orphan record which ext4_truncate created.
253 	 * AKPM: I think this can be inside the above `if'.
254 	 * Note that ext4_orphan_del() has to be able to cope with the
255 	 * deletion of a non-existent orphan - this is because we don't
256 	 * know if ext4_truncate() actually created an orphan record.
257 	 * (Well, we could do this if we need to, but heck - it works)
258 	 */
259 	ext4_orphan_del(handle, inode);
260 	EXT4_I(inode)->i_dtime	= get_seconds();
261 
262 	/*
263 	 * One subtle ordering requirement: if anything has gone wrong
264 	 * (transaction abort, IO errors, whatever), then we can still
265 	 * do these next steps (the fs will already have been marked as
266 	 * having errors), but we can't free the inode if the mark_dirty
267 	 * fails.
268 	 */
269 	if (ext4_mark_inode_dirty(handle, inode))
270 		/* If that failed, just do the required in-core inode clear. */
271 		ext4_clear_inode(inode);
272 	else
273 		ext4_free_inode(handle, inode);
274 	ext4_journal_stop(handle);
275 	return;
276 no_delete:
277 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 }
279 
280 typedef struct {
281 	__le32	*p;
282 	__le32	key;
283 	struct buffer_head *bh;
284 } Indirect;
285 
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 	p->key = *(p->p = v);
289 	p->bh = bh;
290 }
291 
292 /**
293  *	ext4_block_to_path - parse the block number into array of offsets
294  *	@inode: inode in question (we are only interested in its superblock)
295  *	@i_block: block number to be parsed
296  *	@offsets: array to store the offsets in
297  *	@boundary: set this non-zero if the referred-to block is likely to be
298  *	       followed (on disk) by an indirect block.
299  *
300  *	To store the locations of file's data ext4 uses a data structure common
301  *	for UNIX filesystems - tree of pointers anchored in the inode, with
302  *	data blocks at leaves and indirect blocks in intermediate nodes.
303  *	This function translates the block number into path in that tree -
304  *	return value is the path length and @offsets[n] is the offset of
305  *	pointer to (n+1)th node in the nth one. If @block is out of range
306  *	(negative or too large) warning is printed and zero returned.
307  *
308  *	Note: function doesn't find node addresses, so no IO is needed. All
309  *	we need to know is the capacity of indirect blocks (taken from the
310  *	inode->i_sb).
311  */
312 
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322 
323 static int ext4_block_to_path(struct inode *inode,
324 			      ext4_lblk_t i_block,
325 			      ext4_lblk_t offsets[4], int *boundary)
326 {
327 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 		indirect_blocks = ptrs,
331 		double_blocks = (1 << (ptrs_bits * 2));
332 	int n = 0;
333 	int final = 0;
334 
335 	if (i_block < direct_blocks) {
336 		offsets[n++] = i_block;
337 		final = direct_blocks;
338 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339 		offsets[n++] = EXT4_IND_BLOCK;
340 		offsets[n++] = i_block;
341 		final = ptrs;
342 	} else if ((i_block -= indirect_blocks) < double_blocks) {
343 		offsets[n++] = EXT4_DIND_BLOCK;
344 		offsets[n++] = i_block >> ptrs_bits;
345 		offsets[n++] = i_block & (ptrs - 1);
346 		final = ptrs;
347 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 		offsets[n++] = EXT4_TIND_BLOCK;
349 		offsets[n++] = i_block >> (ptrs_bits * 2);
350 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 		offsets[n++] = i_block & (ptrs - 1);
352 		final = ptrs;
353 	} else {
354 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 			     i_block + direct_blocks +
356 			     indirect_blocks + double_blocks, inode->i_ino);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 				 struct inode *inode,
365 				 __le32 *p, unsigned int max)
366 {
367 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 	__le32 *bref = p;
369 	unsigned int blk;
370 
371 	while (bref < p+max) {
372 		blk = le32_to_cpu(*bref++);
373 		if (blk &&
374 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 						    blk, 1))) {
376 			es->s_last_error_block = cpu_to_le64(blk);
377 			ext4_error_inode(inode, function, line, blk,
378 					 "invalid block");
379 			return -EIO;
380 		}
381 	}
382 	return 0;
383 }
384 
385 
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387 	__ext4_check_blockref(__func__, __LINE__, inode,		\
388 			      (__le32 *)(bh)->b_data,			\
389 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390 
391 #define ext4_check_inode_blockref(inode)                                \
392 	__ext4_check_blockref(__func__, __LINE__, inode,		\
393 			      EXT4_I(inode)->i_data,			\
394 			      EXT4_NDIR_BLOCKS)
395 
396 /**
397  *	ext4_get_branch - read the chain of indirect blocks leading to data
398  *	@inode: inode in question
399  *	@depth: depth of the chain (1 - direct pointer, etc.)
400  *	@offsets: offsets of pointers in inode/indirect blocks
401  *	@chain: place to store the result
402  *	@err: here we store the error value
403  *
404  *	Function fills the array of triples <key, p, bh> and returns %NULL
405  *	if everything went OK or the pointer to the last filled triple
406  *	(incomplete one) otherwise. Upon the return chain[i].key contains
407  *	the number of (i+1)-th block in the chain (as it is stored in memory,
408  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *	number (it points into struct inode for i==0 and into the bh->b_data
410  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *	block for i>0 and NULL for i==0. In other words, it holds the block
412  *	numbers of the chain, addresses they were taken from (and where we can
413  *	verify that chain did not change) and buffer_heads hosting these
414  *	numbers.
415  *
416  *	Function stops when it stumbles upon zero pointer (absent block)
417  *		(pointer to last triple returned, *@err == 0)
418  *	or when it gets an IO error reading an indirect block
419  *		(ditto, *@err == -EIO)
420  *	or when it reads all @depth-1 indirect blocks successfully and finds
421  *	the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 				 ext4_lblk_t  *offsets,
428 				 Indirect chain[4], int *err)
429 {
430 	struct super_block *sb = inode->i_sb;
431 	Indirect *p = chain;
432 	struct buffer_head *bh;
433 
434 	*err = 0;
435 	/* i_data is not going away, no lock needed */
436 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 	if (!p->key)
438 		goto no_block;
439 	while (--depth) {
440 		bh = sb_getblk(sb, le32_to_cpu(p->key));
441 		if (unlikely(!bh))
442 			goto failure;
443 
444 		if (!bh_uptodate_or_lock(bh)) {
445 			if (bh_submit_read(bh) < 0) {
446 				put_bh(bh);
447 				goto failure;
448 			}
449 			/* validate block references */
450 			if (ext4_check_indirect_blockref(inode, bh)) {
451 				put_bh(bh);
452 				goto failure;
453 			}
454 		}
455 
456 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 		/* Reader: end */
458 		if (!p->key)
459 			goto no_block;
460 	}
461 	return NULL;
462 
463 failure:
464 	*err = -EIO;
465 no_block:
466 	return p;
467 }
468 
469 /**
470  *	ext4_find_near - find a place for allocation with sufficient locality
471  *	@inode: owner
472  *	@ind: descriptor of indirect block.
473  *
474  *	This function returns the preferred place for block allocation.
475  *	It is used when heuristic for sequential allocation fails.
476  *	Rules are:
477  *	  + if there is a block to the left of our position - allocate near it.
478  *	  + if pointer will live in indirect block - allocate near that block.
479  *	  + if pointer will live in inode - allocate in the same
480  *	    cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *	Caller must make sure that @ind is valid and will stay that way.
488  */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491 	struct ext4_inode_info *ei = EXT4_I(inode);
492 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 	__le32 *p;
494 	ext4_fsblk_t bg_start;
495 	ext4_fsblk_t last_block;
496 	ext4_grpblk_t colour;
497 	ext4_group_t block_group;
498 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 
500 	/* Try to find previous block */
501 	for (p = ind->p - 1; p >= start; p--) {
502 		if (*p)
503 			return le32_to_cpu(*p);
504 	}
505 
506 	/* No such thing, so let's try location of indirect block */
507 	if (ind->bh)
508 		return ind->bh->b_blocknr;
509 
510 	/*
511 	 * It is going to be referred to from the inode itself? OK, just put it
512 	 * into the same cylinder group then.
513 	 */
514 	block_group = ei->i_block_group;
515 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 		block_group &= ~(flex_size-1);
517 		if (S_ISREG(inode->i_mode))
518 			block_group++;
519 	}
520 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522 
523 	/*
524 	 * If we are doing delayed allocation, we don't need take
525 	 * colour into account.
526 	 */
527 	if (test_opt(inode->i_sb, DELALLOC))
528 		return bg_start;
529 
530 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 		colour = (current->pid % 16) *
532 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 	else
534 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 	return bg_start + colour;
536 }
537 
538 /**
539  *	ext4_find_goal - find a preferred place for allocation.
540  *	@inode: owner
541  *	@block:  block we want
542  *	@partial: pointer to the last triple within a chain
543  *
544  *	Normally this function find the preferred place for block allocation,
545  *	returns it.
546  *	Because this is only used for non-extent files, we limit the block nr
547  *	to 32 bits.
548  */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 				   Indirect *partial)
551 {
552 	ext4_fsblk_t goal;
553 
554 	/*
555 	 * XXX need to get goal block from mballoc's data structures
556 	 */
557 
558 	goal = ext4_find_near(inode, partial);
559 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 	return goal;
561 }
562 
563 /**
564  *	ext4_blks_to_allocate - Look up the block map and count the number
565  *	of direct blocks need to be allocated for the given branch.
566  *
567  *	@branch: chain of indirect blocks
568  *	@k: number of blocks need for indirect blocks
569  *	@blks: number of data blocks to be mapped.
570  *	@blocks_to_boundary:  the offset in the indirect block
571  *
572  *	return the total number of blocks to be allocate, including the
573  *	direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 				 int blocks_to_boundary)
577 {
578 	unsigned int count = 0;
579 
580 	/*
581 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 	 * then it's clear blocks on that path have not allocated
583 	 */
584 	if (k > 0) {
585 		/* right now we don't handle cross boundary allocation */
586 		if (blks < blocks_to_boundary + 1)
587 			count += blks;
588 		else
589 			count += blocks_to_boundary + 1;
590 		return count;
591 	}
592 
593 	count++;
594 	while (count < blks && count <= blocks_to_boundary &&
595 		le32_to_cpu(*(branch[0].p + count)) == 0) {
596 		count++;
597 	}
598 	return count;
599 }
600 
601 /**
602  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *	@handle: handle for this transaction
604  *	@inode: inode which needs allocated blocks
605  *	@iblock: the logical block to start allocated at
606  *	@goal: preferred physical block of allocation
607  *	@indirect_blks: the number of blocks need to allocate for indirect
608  *			blocks
609  *	@blks: number of desired blocks
610  *	@new_blocks: on return it will store the new block numbers for
611  *	the indirect blocks(if needed) and the first direct block,
612  *	@err: on return it will store the error code
613  *
614  *	This function will return the number of blocks allocated as
615  *	requested by the passed-in parameters.
616  */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
619 			     int indirect_blks, int blks,
620 			     ext4_fsblk_t new_blocks[4], int *err)
621 {
622 	struct ext4_allocation_request ar;
623 	int target, i;
624 	unsigned long count = 0, blk_allocated = 0;
625 	int index = 0;
626 	ext4_fsblk_t current_block = 0;
627 	int ret = 0;
628 
629 	/*
630 	 * Here we try to allocate the requested multiple blocks at once,
631 	 * on a best-effort basis.
632 	 * To build a branch, we should allocate blocks for
633 	 * the indirect blocks(if not allocated yet), and at least
634 	 * the first direct block of this branch.  That's the
635 	 * minimum number of blocks need to allocate(required)
636 	 */
637 	/* first we try to allocate the indirect blocks */
638 	target = indirect_blks;
639 	while (target > 0) {
640 		count = target;
641 		/* allocating blocks for indirect blocks and direct blocks */
642 		current_block = ext4_new_meta_blocks(handle, inode,
643 							goal, &count, err);
644 		if (*err)
645 			goto failed_out;
646 
647 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 			EXT4_ERROR_INODE(inode,
649 					 "current_block %llu + count %lu > %d!",
650 					 current_block, count,
651 					 EXT4_MAX_BLOCK_FILE_PHYS);
652 			*err = -EIO;
653 			goto failed_out;
654 		}
655 
656 		target -= count;
657 		/* allocate blocks for indirect blocks */
658 		while (index < indirect_blks && count) {
659 			new_blocks[index++] = current_block++;
660 			count--;
661 		}
662 		if (count > 0) {
663 			/*
664 			 * save the new block number
665 			 * for the first direct block
666 			 */
667 			new_blocks[index] = current_block;
668 			printk(KERN_INFO "%s returned more blocks than "
669 						"requested\n", __func__);
670 			WARN_ON(1);
671 			break;
672 		}
673 	}
674 
675 	target = blks - count ;
676 	blk_allocated = count;
677 	if (!target)
678 		goto allocated;
679 	/* Now allocate data blocks */
680 	memset(&ar, 0, sizeof(ar));
681 	ar.inode = inode;
682 	ar.goal = goal;
683 	ar.len = target;
684 	ar.logical = iblock;
685 	if (S_ISREG(inode->i_mode))
686 		/* enable in-core preallocation only for regular files */
687 		ar.flags = EXT4_MB_HINT_DATA;
688 
689 	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 		EXT4_ERROR_INODE(inode,
692 				 "current_block %llu + ar.len %d > %d!",
693 				 current_block, ar.len,
694 				 EXT4_MAX_BLOCK_FILE_PHYS);
695 		*err = -EIO;
696 		goto failed_out;
697 	}
698 
699 	if (*err && (target == blks)) {
700 		/*
701 		 * if the allocation failed and we didn't allocate
702 		 * any blocks before
703 		 */
704 		goto failed_out;
705 	}
706 	if (!*err) {
707 		if (target == blks) {
708 			/*
709 			 * save the new block number
710 			 * for the first direct block
711 			 */
712 			new_blocks[index] = current_block;
713 		}
714 		blk_allocated += ar.len;
715 	}
716 allocated:
717 	/* total number of blocks allocated for direct blocks */
718 	ret = blk_allocated;
719 	*err = 0;
720 	return ret;
721 failed_out:
722 	for (i = 0; i < index; i++)
723 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 	return ret;
725 }
726 
727 /**
728  *	ext4_alloc_branch - allocate and set up a chain of blocks.
729  *	@handle: handle for this transaction
730  *	@inode: owner
731  *	@indirect_blks: number of allocated indirect blocks
732  *	@blks: number of allocated direct blocks
733  *	@goal: preferred place for allocation
734  *	@offsets: offsets (in the blocks) to store the pointers to next.
735  *	@branch: place to store the chain in.
736  *
737  *	This function allocates blocks, zeroes out all but the last one,
738  *	links them into chain and (if we are synchronous) writes them to disk.
739  *	In other words, it prepares a branch that can be spliced onto the
740  *	inode. It stores the information about that chain in the branch[], in
741  *	the same format as ext4_get_branch() would do. We are calling it after
742  *	we had read the existing part of chain and partial points to the last
743  *	triple of that (one with zero ->key). Upon the exit we have the same
744  *	picture as after the successful ext4_get_block(), except that in one
745  *	place chain is disconnected - *branch->p is still zero (we did not
746  *	set the last link), but branch->key contains the number that should
747  *	be placed into *branch->p to fill that gap.
748  *
749  *	If allocation fails we free all blocks we've allocated (and forget
750  *	their buffer_heads) and return the error value the from failed
751  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *	as described above and return 0.
753  */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 			     ext4_lblk_t iblock, int indirect_blks,
756 			     int *blks, ext4_fsblk_t goal,
757 			     ext4_lblk_t *offsets, Indirect *branch)
758 {
759 	int blocksize = inode->i_sb->s_blocksize;
760 	int i, n = 0;
761 	int err = 0;
762 	struct buffer_head *bh;
763 	int num;
764 	ext4_fsblk_t new_blocks[4];
765 	ext4_fsblk_t current_block;
766 
767 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 				*blks, new_blocks, &err);
769 	if (err)
770 		return err;
771 
772 	branch[0].key = cpu_to_le32(new_blocks[0]);
773 	/*
774 	 * metadata blocks and data blocks are allocated.
775 	 */
776 	for (n = 1; n <= indirect_blks;  n++) {
777 		/*
778 		 * Get buffer_head for parent block, zero it out
779 		 * and set the pointer to new one, then send
780 		 * parent to disk.
781 		 */
782 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 		if (unlikely(!bh)) {
784 			err = -EIO;
785 			goto failed;
786 		}
787 
788 		branch[n].bh = bh;
789 		lock_buffer(bh);
790 		BUFFER_TRACE(bh, "call get_create_access");
791 		err = ext4_journal_get_create_access(handle, bh);
792 		if (err) {
793 			/* Don't brelse(bh) here; it's done in
794 			 * ext4_journal_forget() below */
795 			unlock_buffer(bh);
796 			goto failed;
797 		}
798 
799 		memset(bh->b_data, 0, blocksize);
800 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 		branch[n].key = cpu_to_le32(new_blocks[n]);
802 		*branch[n].p = branch[n].key;
803 		if (n == indirect_blks) {
804 			current_block = new_blocks[n];
805 			/*
806 			 * End of chain, update the last new metablock of
807 			 * the chain to point to the new allocated
808 			 * data blocks numbers
809 			 */
810 			for (i = 1; i < num; i++)
811 				*(branch[n].p + i) = cpu_to_le32(++current_block);
812 		}
813 		BUFFER_TRACE(bh, "marking uptodate");
814 		set_buffer_uptodate(bh);
815 		unlock_buffer(bh);
816 
817 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 		if (err)
820 			goto failed;
821 	}
822 	*blks = num;
823 	return err;
824 failed:
825 	/* Allocation failed, free what we already allocated */
826 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827 	for (i = 1; i <= n ; i++) {
828 		/*
829 		 * branch[i].bh is newly allocated, so there is no
830 		 * need to revoke the block, which is why we don't
831 		 * need to set EXT4_FREE_BLOCKS_METADATA.
832 		 */
833 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834 				 EXT4_FREE_BLOCKS_FORGET);
835 	}
836 	for (i = n+1; i < indirect_blks; i++)
837 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838 
839 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 
841 	return err;
842 }
843 
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *	ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 			      ext4_lblk_t block, Indirect *where, int num,
861 			      int blks)
862 {
863 	int i;
864 	int err = 0;
865 	ext4_fsblk_t current_block;
866 
867 	/*
868 	 * If we're splicing into a [td]indirect block (as opposed to the
869 	 * inode) then we need to get write access to the [td]indirect block
870 	 * before the splice.
871 	 */
872 	if (where->bh) {
873 		BUFFER_TRACE(where->bh, "get_write_access");
874 		err = ext4_journal_get_write_access(handle, where->bh);
875 		if (err)
876 			goto err_out;
877 	}
878 	/* That's it */
879 
880 	*where->p = where->key;
881 
882 	/*
883 	 * Update the host buffer_head or inode to point to more just allocated
884 	 * direct blocks blocks
885 	 */
886 	if (num == 0 && blks > 1) {
887 		current_block = le32_to_cpu(where->key) + 1;
888 		for (i = 1; i < blks; i++)
889 			*(where->p + i) = cpu_to_le32(current_block++);
890 	}
891 
892 	/* We are done with atomic stuff, now do the rest of housekeeping */
893 	/* had we spliced it onto indirect block? */
894 	if (where->bh) {
895 		/*
896 		 * If we spliced it onto an indirect block, we haven't
897 		 * altered the inode.  Note however that if it is being spliced
898 		 * onto an indirect block at the very end of the file (the
899 		 * file is growing) then we *will* alter the inode to reflect
900 		 * the new i_size.  But that is not done here - it is done in
901 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 		 */
903 		jbd_debug(5, "splicing indirect only\n");
904 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 		if (err)
907 			goto err_out;
908 	} else {
909 		/*
910 		 * OK, we spliced it into the inode itself on a direct block.
911 		 */
912 		ext4_mark_inode_dirty(handle, inode);
913 		jbd_debug(5, "splicing direct\n");
914 	}
915 	return err;
916 
917 err_out:
918 	for (i = 1; i <= num; i++) {
919 		/*
920 		 * branch[i].bh is newly allocated, so there is no
921 		 * need to revoke the block, which is why we don't
922 		 * need to set EXT4_FREE_BLOCKS_METADATA.
923 		 */
924 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 				 EXT4_FREE_BLOCKS_FORGET);
926 	}
927 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928 			 blks, 0);
929 
930 	return err;
931 }
932 
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 			       struct ext4_map_blocks *map,
963 			       int flags)
964 {
965 	int err = -EIO;
966 	ext4_lblk_t offsets[4];
967 	Indirect chain[4];
968 	Indirect *partial;
969 	ext4_fsblk_t goal;
970 	int indirect_blks;
971 	int blocks_to_boundary = 0;
972 	int depth;
973 	int count = 0;
974 	ext4_fsblk_t first_block = 0;
975 
976 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979 				   &blocks_to_boundary);
980 
981 	if (depth == 0)
982 		goto out;
983 
984 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985 
986 	/* Simplest case - block found, no allocation needed */
987 	if (!partial) {
988 		first_block = le32_to_cpu(chain[depth - 1].key);
989 		count++;
990 		/*map more blocks*/
991 		while (count < map->m_len && count <= blocks_to_boundary) {
992 			ext4_fsblk_t blk;
993 
994 			blk = le32_to_cpu(*(chain[depth-1].p + count));
995 
996 			if (blk == first_block + count)
997 				count++;
998 			else
999 				break;
1000 		}
1001 		goto got_it;
1002 	}
1003 
1004 	/* Next simple case - plain lookup or failed read of indirect block */
1005 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006 		goto cleanup;
1007 
1008 	/*
1009 	 * Okay, we need to do block allocation.
1010 	*/
1011 	goal = ext4_find_goal(inode, map->m_lblk, partial);
1012 
1013 	/* the number of blocks need to allocate for [d,t]indirect blocks */
1014 	indirect_blks = (chain + depth) - partial - 1;
1015 
1016 	/*
1017 	 * Next look up the indirect map to count the totoal number of
1018 	 * direct blocks to allocate for this branch.
1019 	 */
1020 	count = ext4_blks_to_allocate(partial, indirect_blks,
1021 				      map->m_len, blocks_to_boundary);
1022 	/*
1023 	 * Block out ext4_truncate while we alter the tree
1024 	 */
1025 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026 				&count, goal,
1027 				offsets + (partial - chain), partial);
1028 
1029 	/*
1030 	 * The ext4_splice_branch call will free and forget any buffers
1031 	 * on the new chain if there is a failure, but that risks using
1032 	 * up transaction credits, especially for bitmaps where the
1033 	 * credits cannot be returned.  Can we handle this somehow?  We
1034 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1035 	 */
1036 	if (!err)
1037 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1038 					 partial, indirect_blks, count);
1039 	if (err)
1040 		goto cleanup;
1041 
1042 	map->m_flags |= EXT4_MAP_NEW;
1043 
1044 	ext4_update_inode_fsync_trans(handle, inode, 1);
1045 got_it:
1046 	map->m_flags |= EXT4_MAP_MAPPED;
1047 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048 	map->m_len = count;
1049 	if (count > blocks_to_boundary)
1050 		map->m_flags |= EXT4_MAP_BOUNDARY;
1051 	err = count;
1052 	/* Clean up and exit */
1053 	partial = chain + depth - 1;	/* the whole chain */
1054 cleanup:
1055 	while (partial > chain) {
1056 		BUFFER_TRACE(partial->bh, "call brelse");
1057 		brelse(partial->bh);
1058 		partial--;
1059 	}
1060 out:
1061 	return err;
1062 }
1063 
1064 #ifdef CONFIG_QUOTA
1065 qsize_t *ext4_get_reserved_space(struct inode *inode)
1066 {
1067 	return &EXT4_I(inode)->i_reserved_quota;
1068 }
1069 #endif
1070 
1071 /*
1072  * Calculate the number of metadata blocks need to reserve
1073  * to allocate a new block at @lblocks for non extent file based file
1074  */
1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076 					      sector_t lblock)
1077 {
1078 	struct ext4_inode_info *ei = EXT4_I(inode);
1079 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080 	int blk_bits;
1081 
1082 	if (lblock < EXT4_NDIR_BLOCKS)
1083 		return 0;
1084 
1085 	lblock -= EXT4_NDIR_BLOCKS;
1086 
1087 	if (ei->i_da_metadata_calc_len &&
1088 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089 		ei->i_da_metadata_calc_len++;
1090 		return 0;
1091 	}
1092 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093 	ei->i_da_metadata_calc_len = 1;
1094 	blk_bits = order_base_2(lblock);
1095 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 }
1097 
1098 /*
1099  * Calculate the number of metadata blocks need to reserve
1100  * to allocate a block located at @lblock
1101  */
1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103 {
1104 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105 		return ext4_ext_calc_metadata_amount(inode, lblock);
1106 
1107 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 }
1109 
1110 /*
1111  * Called with i_data_sem down, which is important since we can call
1112  * ext4_discard_preallocations() from here.
1113  */
1114 void ext4_da_update_reserve_space(struct inode *inode,
1115 					int used, int quota_claim)
1116 {
1117 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 	struct ext4_inode_info *ei = EXT4_I(inode);
1119 
1120 	spin_lock(&ei->i_block_reservation_lock);
1121 	trace_ext4_da_update_reserve_space(inode, used);
1122 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1123 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124 			 "with only %d reserved data blocks\n",
1125 			 __func__, inode->i_ino, used,
1126 			 ei->i_reserved_data_blocks);
1127 		WARN_ON(1);
1128 		used = ei->i_reserved_data_blocks;
1129 	}
1130 
1131 	/* Update per-inode reservations */
1132 	ei->i_reserved_data_blocks -= used;
1133 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135 			   used + ei->i_allocated_meta_blocks);
1136 	ei->i_allocated_meta_blocks = 0;
1137 
1138 	if (ei->i_reserved_data_blocks == 0) {
1139 		/*
1140 		 * We can release all of the reserved metadata blocks
1141 		 * only when we have written all of the delayed
1142 		 * allocation blocks.
1143 		 */
1144 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145 				   ei->i_reserved_meta_blocks);
1146 		ei->i_reserved_meta_blocks = 0;
1147 		ei->i_da_metadata_calc_len = 0;
1148 	}
1149 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150 
1151 	/* Update quota subsystem for data blocks */
1152 	if (quota_claim)
1153 		dquot_claim_block(inode, used);
1154 	else {
1155 		/*
1156 		 * We did fallocate with an offset that is already delayed
1157 		 * allocated. So on delayed allocated writeback we should
1158 		 * not re-claim the quota for fallocated blocks.
1159 		 */
1160 		dquot_release_reservation_block(inode, used);
1161 	}
1162 
1163 	/*
1164 	 * If we have done all the pending block allocations and if
1165 	 * there aren't any writers on the inode, we can discard the
1166 	 * inode's preallocations.
1167 	 */
1168 	if ((ei->i_reserved_data_blocks == 0) &&
1169 	    (atomic_read(&inode->i_writecount) == 0))
1170 		ext4_discard_preallocations(inode);
1171 }
1172 
1173 static int __check_block_validity(struct inode *inode, const char *func,
1174 				unsigned int line,
1175 				struct ext4_map_blocks *map)
1176 {
1177 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178 				   map->m_len)) {
1179 		ext4_error_inode(inode, func, line, map->m_pblk,
1180 				 "lblock %lu mapped to illegal pblock "
1181 				 "(length %d)", (unsigned long) map->m_lblk,
1182 				 map->m_len);
1183 		return -EIO;
1184 	}
1185 	return 0;
1186 }
1187 
1188 #define check_block_validity(inode, map)	\
1189 	__check_block_validity((inode), __func__, __LINE__, (map))
1190 
1191 /*
1192  * Return the number of contiguous dirty pages in a given inode
1193  * starting at page frame idx.
1194  */
1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196 				    unsigned int max_pages)
1197 {
1198 	struct address_space *mapping = inode->i_mapping;
1199 	pgoff_t	index;
1200 	struct pagevec pvec;
1201 	pgoff_t num = 0;
1202 	int i, nr_pages, done = 0;
1203 
1204 	if (max_pages == 0)
1205 		return 0;
1206 	pagevec_init(&pvec, 0);
1207 	while (!done) {
1208 		index = idx;
1209 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210 					      PAGECACHE_TAG_DIRTY,
1211 					      (pgoff_t)PAGEVEC_SIZE);
1212 		if (nr_pages == 0)
1213 			break;
1214 		for (i = 0; i < nr_pages; i++) {
1215 			struct page *page = pvec.pages[i];
1216 			struct buffer_head *bh, *head;
1217 
1218 			lock_page(page);
1219 			if (unlikely(page->mapping != mapping) ||
1220 			    !PageDirty(page) ||
1221 			    PageWriteback(page) ||
1222 			    page->index != idx) {
1223 				done = 1;
1224 				unlock_page(page);
1225 				break;
1226 			}
1227 			if (page_has_buffers(page)) {
1228 				bh = head = page_buffers(page);
1229 				do {
1230 					if (!buffer_delay(bh) &&
1231 					    !buffer_unwritten(bh))
1232 						done = 1;
1233 					bh = bh->b_this_page;
1234 				} while (!done && (bh != head));
1235 			}
1236 			unlock_page(page);
1237 			if (done)
1238 				break;
1239 			idx++;
1240 			num++;
1241 			if (num >= max_pages) {
1242 				done = 1;
1243 				break;
1244 			}
1245 		}
1246 		pagevec_release(&pvec);
1247 	}
1248 	return num;
1249 }
1250 
1251 /*
1252  * The ext4_map_blocks() function tries to look up the requested blocks,
1253  * and returns if the blocks are already mapped.
1254  *
1255  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256  * and store the allocated blocks in the result buffer head and mark it
1257  * mapped.
1258  *
1259  * If file type is extents based, it will call ext4_ext_map_blocks(),
1260  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261  * based files
1262  *
1263  * On success, it returns the number of blocks being mapped or allocate.
1264  * if create==0 and the blocks are pre-allocated and uninitialized block,
1265  * the result buffer head is unmapped. If the create ==1, it will make sure
1266  * the buffer head is mapped.
1267  *
1268  * It returns 0 if plain look up failed (blocks have not been allocated), in
1269  * that casem, buffer head is unmapped
1270  *
1271  * It returns the error in case of allocation failure.
1272  */
1273 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274 		    struct ext4_map_blocks *map, int flags)
1275 {
1276 	int retval;
1277 
1278 	map->m_flags = 0;
1279 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281 		  (unsigned long) map->m_lblk);
1282 	/*
1283 	 * Try to see if we can get the block without requesting a new
1284 	 * file system block.
1285 	 */
1286 	down_read((&EXT4_I(inode)->i_data_sem));
1287 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289 	} else {
1290 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291 	}
1292 	up_read((&EXT4_I(inode)->i_data_sem));
1293 
1294 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295 		int ret = check_block_validity(inode, map);
1296 		if (ret != 0)
1297 			return ret;
1298 	}
1299 
1300 	/* If it is only a block(s) look up */
1301 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302 		return retval;
1303 
1304 	/*
1305 	 * Returns if the blocks have already allocated
1306 	 *
1307 	 * Note that if blocks have been preallocated
1308 	 * ext4_ext_get_block() returns th create = 0
1309 	 * with buffer head unmapped.
1310 	 */
1311 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312 		return retval;
1313 
1314 	/*
1315 	 * When we call get_blocks without the create flag, the
1316 	 * BH_Unwritten flag could have gotten set if the blocks
1317 	 * requested were part of a uninitialized extent.  We need to
1318 	 * clear this flag now that we are committed to convert all or
1319 	 * part of the uninitialized extent to be an initialized
1320 	 * extent.  This is because we need to avoid the combination
1321 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1322 	 * set on the buffer_head.
1323 	 */
1324 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325 
1326 	/*
1327 	 * New blocks allocate and/or writing to uninitialized extent
1328 	 * will possibly result in updating i_data, so we take
1329 	 * the write lock of i_data_sem, and call get_blocks()
1330 	 * with create == 1 flag.
1331 	 */
1332 	down_write((&EXT4_I(inode)->i_data_sem));
1333 
1334 	/*
1335 	 * if the caller is from delayed allocation writeout path
1336 	 * we have already reserved fs blocks for allocation
1337 	 * let the underlying get_block() function know to
1338 	 * avoid double accounting
1339 	 */
1340 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342 	/*
1343 	 * We need to check for EXT4 here because migrate
1344 	 * could have changed the inode type in between
1345 	 */
1346 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348 	} else {
1349 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350 
1351 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352 			/*
1353 			 * We allocated new blocks which will result in
1354 			 * i_data's format changing.  Force the migrate
1355 			 * to fail by clearing migrate flags
1356 			 */
1357 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358 		}
1359 
1360 		/*
1361 		 * Update reserved blocks/metadata blocks after successful
1362 		 * block allocation which had been deferred till now. We don't
1363 		 * support fallocate for non extent files. So we can update
1364 		 * reserve space here.
1365 		 */
1366 		if ((retval > 0) &&
1367 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368 			ext4_da_update_reserve_space(inode, retval, 1);
1369 	}
1370 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372 
1373 	up_write((&EXT4_I(inode)->i_data_sem));
1374 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375 		int ret = check_block_validity(inode, map);
1376 		if (ret != 0)
1377 			return ret;
1378 	}
1379 	return retval;
1380 }
1381 
1382 /* Maximum number of blocks we map for direct IO at once. */
1383 #define DIO_MAX_BLOCKS 4096
1384 
1385 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386 			   struct buffer_head *bh, int flags)
1387 {
1388 	handle_t *handle = ext4_journal_current_handle();
1389 	struct ext4_map_blocks map;
1390 	int ret = 0, started = 0;
1391 	int dio_credits;
1392 
1393 	map.m_lblk = iblock;
1394 	map.m_len = bh->b_size >> inode->i_blkbits;
1395 
1396 	if (flags && !handle) {
1397 		/* Direct IO write... */
1398 		if (map.m_len > DIO_MAX_BLOCKS)
1399 			map.m_len = DIO_MAX_BLOCKS;
1400 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401 		handle = ext4_journal_start(inode, dio_credits);
1402 		if (IS_ERR(handle)) {
1403 			ret = PTR_ERR(handle);
1404 			return ret;
1405 		}
1406 		started = 1;
1407 	}
1408 
1409 	ret = ext4_map_blocks(handle, inode, &map, flags);
1410 	if (ret > 0) {
1411 		map_bh(bh, inode->i_sb, map.m_pblk);
1412 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1414 		ret = 0;
1415 	}
1416 	if (started)
1417 		ext4_journal_stop(handle);
1418 	return ret;
1419 }
1420 
1421 int ext4_get_block(struct inode *inode, sector_t iblock,
1422 		   struct buffer_head *bh, int create)
1423 {
1424 	return _ext4_get_block(inode, iblock, bh,
1425 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 }
1427 
1428 /*
1429  * `handle' can be NULL if create is zero
1430  */
1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1432 				ext4_lblk_t block, int create, int *errp)
1433 {
1434 	struct ext4_map_blocks map;
1435 	struct buffer_head *bh;
1436 	int fatal = 0, err;
1437 
1438 	J_ASSERT(handle != NULL || create == 0);
1439 
1440 	map.m_lblk = block;
1441 	map.m_len = 1;
1442 	err = ext4_map_blocks(handle, inode, &map,
1443 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1444 
1445 	if (err < 0)
1446 		*errp = err;
1447 	if (err <= 0)
1448 		return NULL;
1449 	*errp = 0;
1450 
1451 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1452 	if (!bh) {
1453 		*errp = -EIO;
1454 		return NULL;
1455 	}
1456 	if (map.m_flags & EXT4_MAP_NEW) {
1457 		J_ASSERT(create != 0);
1458 		J_ASSERT(handle != NULL);
1459 
1460 		/*
1461 		 * Now that we do not always journal data, we should
1462 		 * keep in mind whether this should always journal the
1463 		 * new buffer as metadata.  For now, regular file
1464 		 * writes use ext4_get_block instead, so it's not a
1465 		 * problem.
1466 		 */
1467 		lock_buffer(bh);
1468 		BUFFER_TRACE(bh, "call get_create_access");
1469 		fatal = ext4_journal_get_create_access(handle, bh);
1470 		if (!fatal && !buffer_uptodate(bh)) {
1471 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472 			set_buffer_uptodate(bh);
1473 		}
1474 		unlock_buffer(bh);
1475 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1477 		if (!fatal)
1478 			fatal = err;
1479 	} else {
1480 		BUFFER_TRACE(bh, "not a new buffer");
1481 	}
1482 	if (fatal) {
1483 		*errp = fatal;
1484 		brelse(bh);
1485 		bh = NULL;
1486 	}
1487 	return bh;
1488 }
1489 
1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1491 			       ext4_lblk_t block, int create, int *err)
1492 {
1493 	struct buffer_head *bh;
1494 
1495 	bh = ext4_getblk(handle, inode, block, create, err);
1496 	if (!bh)
1497 		return bh;
1498 	if (buffer_uptodate(bh))
1499 		return bh;
1500 	ll_rw_block(READ_META, 1, &bh);
1501 	wait_on_buffer(bh);
1502 	if (buffer_uptodate(bh))
1503 		return bh;
1504 	put_bh(bh);
1505 	*err = -EIO;
1506 	return NULL;
1507 }
1508 
1509 static int walk_page_buffers(handle_t *handle,
1510 			     struct buffer_head *head,
1511 			     unsigned from,
1512 			     unsigned to,
1513 			     int *partial,
1514 			     int (*fn)(handle_t *handle,
1515 				       struct buffer_head *bh))
1516 {
1517 	struct buffer_head *bh;
1518 	unsigned block_start, block_end;
1519 	unsigned blocksize = head->b_size;
1520 	int err, ret = 0;
1521 	struct buffer_head *next;
1522 
1523 	for (bh = head, block_start = 0;
1524 	     ret == 0 && (bh != head || !block_start);
1525 	     block_start = block_end, bh = next) {
1526 		next = bh->b_this_page;
1527 		block_end = block_start + blocksize;
1528 		if (block_end <= from || block_start >= to) {
1529 			if (partial && !buffer_uptodate(bh))
1530 				*partial = 1;
1531 			continue;
1532 		}
1533 		err = (*fn)(handle, bh);
1534 		if (!ret)
1535 			ret = err;
1536 	}
1537 	return ret;
1538 }
1539 
1540 /*
1541  * To preserve ordering, it is essential that the hole instantiation and
1542  * the data write be encapsulated in a single transaction.  We cannot
1543  * close off a transaction and start a new one between the ext4_get_block()
1544  * and the commit_write().  So doing the jbd2_journal_start at the start of
1545  * prepare_write() is the right place.
1546  *
1547  * Also, this function can nest inside ext4_writepage() ->
1548  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549  * has generated enough buffer credits to do the whole page.  So we won't
1550  * block on the journal in that case, which is good, because the caller may
1551  * be PF_MEMALLOC.
1552  *
1553  * By accident, ext4 can be reentered when a transaction is open via
1554  * quota file writes.  If we were to commit the transaction while thus
1555  * reentered, there can be a deadlock - we would be holding a quota
1556  * lock, and the commit would never complete if another thread had a
1557  * transaction open and was blocking on the quota lock - a ranking
1558  * violation.
1559  *
1560  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561  * will _not_ run commit under these circumstances because handle->h_ref
1562  * is elevated.  We'll still have enough credits for the tiny quotafile
1563  * write.
1564  */
1565 static int do_journal_get_write_access(handle_t *handle,
1566 				       struct buffer_head *bh)
1567 {
1568 	int dirty = buffer_dirty(bh);
1569 	int ret;
1570 
1571 	if (!buffer_mapped(bh) || buffer_freed(bh))
1572 		return 0;
1573 	/*
1574 	 * __block_write_begin() could have dirtied some buffers. Clean
1575 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1576 	 * otherwise about fs integrity issues. Setting of the dirty bit
1577 	 * by __block_write_begin() isn't a real problem here as we clear
1578 	 * the bit before releasing a page lock and thus writeback cannot
1579 	 * ever write the buffer.
1580 	 */
1581 	if (dirty)
1582 		clear_buffer_dirty(bh);
1583 	ret = ext4_journal_get_write_access(handle, bh);
1584 	if (!ret && dirty)
1585 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586 	return ret;
1587 }
1588 
1589 /*
1590  * Truncate blocks that were not used by write. We have to truncate the
1591  * pagecache as well so that corresponding buffers get properly unmapped.
1592  */
1593 static void ext4_truncate_failed_write(struct inode *inode)
1594 {
1595 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1596 	ext4_truncate(inode);
1597 }
1598 
1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600 		   struct buffer_head *bh_result, int create);
1601 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602 			    loff_t pos, unsigned len, unsigned flags,
1603 			    struct page **pagep, void **fsdata)
1604 {
1605 	struct inode *inode = mapping->host;
1606 	int ret, needed_blocks;
1607 	handle_t *handle;
1608 	int retries = 0;
1609 	struct page *page;
1610 	pgoff_t index;
1611 	unsigned from, to;
1612 
1613 	trace_ext4_write_begin(inode, pos, len, flags);
1614 	/*
1615 	 * Reserve one block more for addition to orphan list in case
1616 	 * we allocate blocks but write fails for some reason
1617 	 */
1618 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619 	index = pos >> PAGE_CACHE_SHIFT;
1620 	from = pos & (PAGE_CACHE_SIZE - 1);
1621 	to = from + len;
1622 
1623 retry:
1624 	handle = ext4_journal_start(inode, needed_blocks);
1625 	if (IS_ERR(handle)) {
1626 		ret = PTR_ERR(handle);
1627 		goto out;
1628 	}
1629 
1630 	/* We cannot recurse into the filesystem as the transaction is already
1631 	 * started */
1632 	flags |= AOP_FLAG_NOFS;
1633 
1634 	page = grab_cache_page_write_begin(mapping, index, flags);
1635 	if (!page) {
1636 		ext4_journal_stop(handle);
1637 		ret = -ENOMEM;
1638 		goto out;
1639 	}
1640 	*pagep = page;
1641 
1642 	if (ext4_should_dioread_nolock(inode))
1643 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644 	else
1645 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1646 
1647 	if (!ret && ext4_should_journal_data(inode)) {
1648 		ret = walk_page_buffers(handle, page_buffers(page),
1649 				from, to, NULL, do_journal_get_write_access);
1650 	}
1651 
1652 	if (ret) {
1653 		unlock_page(page);
1654 		page_cache_release(page);
1655 		/*
1656 		 * __block_write_begin may have instantiated a few blocks
1657 		 * outside i_size.  Trim these off again. Don't need
1658 		 * i_size_read because we hold i_mutex.
1659 		 *
1660 		 * Add inode to orphan list in case we crash before
1661 		 * truncate finishes
1662 		 */
1663 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664 			ext4_orphan_add(handle, inode);
1665 
1666 		ext4_journal_stop(handle);
1667 		if (pos + len > inode->i_size) {
1668 			ext4_truncate_failed_write(inode);
1669 			/*
1670 			 * If truncate failed early the inode might
1671 			 * still be on the orphan list; we need to
1672 			 * make sure the inode is removed from the
1673 			 * orphan list in that case.
1674 			 */
1675 			if (inode->i_nlink)
1676 				ext4_orphan_del(NULL, inode);
1677 		}
1678 	}
1679 
1680 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681 		goto retry;
1682 out:
1683 	return ret;
1684 }
1685 
1686 /* For write_end() in data=journal mode */
1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 {
1689 	if (!buffer_mapped(bh) || buffer_freed(bh))
1690 		return 0;
1691 	set_buffer_uptodate(bh);
1692 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 }
1694 
1695 static int ext4_generic_write_end(struct file *file,
1696 				  struct address_space *mapping,
1697 				  loff_t pos, unsigned len, unsigned copied,
1698 				  struct page *page, void *fsdata)
1699 {
1700 	int i_size_changed = 0;
1701 	struct inode *inode = mapping->host;
1702 	handle_t *handle = ext4_journal_current_handle();
1703 
1704 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705 
1706 	/*
1707 	 * No need to use i_size_read() here, the i_size
1708 	 * cannot change under us because we hold i_mutex.
1709 	 *
1710 	 * But it's important to update i_size while still holding page lock:
1711 	 * page writeout could otherwise come in and zero beyond i_size.
1712 	 */
1713 	if (pos + copied > inode->i_size) {
1714 		i_size_write(inode, pos + copied);
1715 		i_size_changed = 1;
1716 	}
1717 
1718 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1719 		/* We need to mark inode dirty even if
1720 		 * new_i_size is less that inode->i_size
1721 		 * bu greater than i_disksize.(hint delalloc)
1722 		 */
1723 		ext4_update_i_disksize(inode, (pos + copied));
1724 		i_size_changed = 1;
1725 	}
1726 	unlock_page(page);
1727 	page_cache_release(page);
1728 
1729 	/*
1730 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1731 	 * makes the holding time of page lock longer. Second, it forces lock
1732 	 * ordering of page lock and transaction start for journaling
1733 	 * filesystems.
1734 	 */
1735 	if (i_size_changed)
1736 		ext4_mark_inode_dirty(handle, inode);
1737 
1738 	return copied;
1739 }
1740 
1741 /*
1742  * We need to pick up the new inode size which generic_commit_write gave us
1743  * `file' can be NULL - eg, when called from page_symlink().
1744  *
1745  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1746  * buffers are managed internally.
1747  */
1748 static int ext4_ordered_write_end(struct file *file,
1749 				  struct address_space *mapping,
1750 				  loff_t pos, unsigned len, unsigned copied,
1751 				  struct page *page, void *fsdata)
1752 {
1753 	handle_t *handle = ext4_journal_current_handle();
1754 	struct inode *inode = mapping->host;
1755 	int ret = 0, ret2;
1756 
1757 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1758 	ret = ext4_jbd2_file_inode(handle, inode);
1759 
1760 	if (ret == 0) {
1761 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762 							page, fsdata);
1763 		copied = ret2;
1764 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 			/* if we have allocated more blocks and copied
1766 			 * less. We will have blocks allocated outside
1767 			 * inode->i_size. So truncate them
1768 			 */
1769 			ext4_orphan_add(handle, inode);
1770 		if (ret2 < 0)
1771 			ret = ret2;
1772 	}
1773 	ret2 = ext4_journal_stop(handle);
1774 	if (!ret)
1775 		ret = ret2;
1776 
1777 	if (pos + len > inode->i_size) {
1778 		ext4_truncate_failed_write(inode);
1779 		/*
1780 		 * If truncate failed early the inode might still be
1781 		 * on the orphan list; we need to make sure the inode
1782 		 * is removed from the orphan list in that case.
1783 		 */
1784 		if (inode->i_nlink)
1785 			ext4_orphan_del(NULL, inode);
1786 	}
1787 
1788 
1789 	return ret ? ret : copied;
1790 }
1791 
1792 static int ext4_writeback_write_end(struct file *file,
1793 				    struct address_space *mapping,
1794 				    loff_t pos, unsigned len, unsigned copied,
1795 				    struct page *page, void *fsdata)
1796 {
1797 	handle_t *handle = ext4_journal_current_handle();
1798 	struct inode *inode = mapping->host;
1799 	int ret = 0, ret2;
1800 
1801 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1802 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1803 							page, fsdata);
1804 	copied = ret2;
1805 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 		/* if we have allocated more blocks and copied
1807 		 * less. We will have blocks allocated outside
1808 		 * inode->i_size. So truncate them
1809 		 */
1810 		ext4_orphan_add(handle, inode);
1811 
1812 	if (ret2 < 0)
1813 		ret = ret2;
1814 
1815 	ret2 = ext4_journal_stop(handle);
1816 	if (!ret)
1817 		ret = ret2;
1818 
1819 	if (pos + len > inode->i_size) {
1820 		ext4_truncate_failed_write(inode);
1821 		/*
1822 		 * If truncate failed early the inode might still be
1823 		 * on the orphan list; we need to make sure the inode
1824 		 * is removed from the orphan list in that case.
1825 		 */
1826 		if (inode->i_nlink)
1827 			ext4_orphan_del(NULL, inode);
1828 	}
1829 
1830 	return ret ? ret : copied;
1831 }
1832 
1833 static int ext4_journalled_write_end(struct file *file,
1834 				     struct address_space *mapping,
1835 				     loff_t pos, unsigned len, unsigned copied,
1836 				     struct page *page, void *fsdata)
1837 {
1838 	handle_t *handle = ext4_journal_current_handle();
1839 	struct inode *inode = mapping->host;
1840 	int ret = 0, ret2;
1841 	int partial = 0;
1842 	unsigned from, to;
1843 	loff_t new_i_size;
1844 
1845 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1846 	from = pos & (PAGE_CACHE_SIZE - 1);
1847 	to = from + len;
1848 
1849 	if (copied < len) {
1850 		if (!PageUptodate(page))
1851 			copied = 0;
1852 		page_zero_new_buffers(page, from+copied, to);
1853 	}
1854 
1855 	ret = walk_page_buffers(handle, page_buffers(page), from,
1856 				to, &partial, write_end_fn);
1857 	if (!partial)
1858 		SetPageUptodate(page);
1859 	new_i_size = pos + copied;
1860 	if (new_i_size > inode->i_size)
1861 		i_size_write(inode, pos+copied);
1862 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1864 		ext4_update_i_disksize(inode, new_i_size);
1865 		ret2 = ext4_mark_inode_dirty(handle, inode);
1866 		if (!ret)
1867 			ret = ret2;
1868 	}
1869 
1870 	unlock_page(page);
1871 	page_cache_release(page);
1872 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873 		/* if we have allocated more blocks and copied
1874 		 * less. We will have blocks allocated outside
1875 		 * inode->i_size. So truncate them
1876 		 */
1877 		ext4_orphan_add(handle, inode);
1878 
1879 	ret2 = ext4_journal_stop(handle);
1880 	if (!ret)
1881 		ret = ret2;
1882 	if (pos + len > inode->i_size) {
1883 		ext4_truncate_failed_write(inode);
1884 		/*
1885 		 * If truncate failed early the inode might still be
1886 		 * on the orphan list; we need to make sure the inode
1887 		 * is removed from the orphan list in that case.
1888 		 */
1889 		if (inode->i_nlink)
1890 			ext4_orphan_del(NULL, inode);
1891 	}
1892 
1893 	return ret ? ret : copied;
1894 }
1895 
1896 /*
1897  * Reserve a single block located at lblock
1898  */
1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900 {
1901 	int retries = 0;
1902 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903 	struct ext4_inode_info *ei = EXT4_I(inode);
1904 	unsigned long md_needed;
1905 	int ret;
1906 
1907 	/*
1908 	 * recalculate the amount of metadata blocks to reserve
1909 	 * in order to allocate nrblocks
1910 	 * worse case is one extent per block
1911 	 */
1912 repeat:
1913 	spin_lock(&ei->i_block_reservation_lock);
1914 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1915 	trace_ext4_da_reserve_space(inode, md_needed);
1916 	spin_unlock(&ei->i_block_reservation_lock);
1917 
1918 	/*
1919 	 * We will charge metadata quota at writeout time; this saves
1920 	 * us from metadata over-estimation, though we may go over by
1921 	 * a small amount in the end.  Here we just reserve for data.
1922 	 */
1923 	ret = dquot_reserve_block(inode, 1);
1924 	if (ret)
1925 		return ret;
1926 	/*
1927 	 * We do still charge estimated metadata to the sb though;
1928 	 * we cannot afford to run out of free blocks.
1929 	 */
1930 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931 		dquot_release_reservation_block(inode, 1);
1932 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933 			yield();
1934 			goto repeat;
1935 		}
1936 		return -ENOSPC;
1937 	}
1938 	spin_lock(&ei->i_block_reservation_lock);
1939 	ei->i_reserved_data_blocks++;
1940 	ei->i_reserved_meta_blocks += md_needed;
1941 	spin_unlock(&ei->i_block_reservation_lock);
1942 
1943 	return 0;       /* success */
1944 }
1945 
1946 static void ext4_da_release_space(struct inode *inode, int to_free)
1947 {
1948 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949 	struct ext4_inode_info *ei = EXT4_I(inode);
1950 
1951 	if (!to_free)
1952 		return;		/* Nothing to release, exit */
1953 
1954 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955 
1956 	trace_ext4_da_release_space(inode, to_free);
1957 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958 		/*
1959 		 * if there aren't enough reserved blocks, then the
1960 		 * counter is messed up somewhere.  Since this
1961 		 * function is called from invalidate page, it's
1962 		 * harmless to return without any action.
1963 		 */
1964 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965 			 "ino %lu, to_free %d with only %d reserved "
1966 			 "data blocks\n", inode->i_ino, to_free,
1967 			 ei->i_reserved_data_blocks);
1968 		WARN_ON(1);
1969 		to_free = ei->i_reserved_data_blocks;
1970 	}
1971 	ei->i_reserved_data_blocks -= to_free;
1972 
1973 	if (ei->i_reserved_data_blocks == 0) {
1974 		/*
1975 		 * We can release all of the reserved metadata blocks
1976 		 * only when we have written all of the delayed
1977 		 * allocation blocks.
1978 		 */
1979 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980 				   ei->i_reserved_meta_blocks);
1981 		ei->i_reserved_meta_blocks = 0;
1982 		ei->i_da_metadata_calc_len = 0;
1983 	}
1984 
1985 	/* update fs dirty data blocks counter */
1986 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987 
1988 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989 
1990 	dquot_release_reservation_block(inode, to_free);
1991 }
1992 
1993 static void ext4_da_page_release_reservation(struct page *page,
1994 					     unsigned long offset)
1995 {
1996 	int to_release = 0;
1997 	struct buffer_head *head, *bh;
1998 	unsigned int curr_off = 0;
1999 
2000 	head = page_buffers(page);
2001 	bh = head;
2002 	do {
2003 		unsigned int next_off = curr_off + bh->b_size;
2004 
2005 		if ((offset <= curr_off) && (buffer_delay(bh))) {
2006 			to_release++;
2007 			clear_buffer_delay(bh);
2008 		}
2009 		curr_off = next_off;
2010 	} while ((bh = bh->b_this_page) != head);
2011 	ext4_da_release_space(page->mapping->host, to_release);
2012 }
2013 
2014 /*
2015  * Delayed allocation stuff
2016  */
2017 
2018 /*
2019  * mpage_da_submit_io - walks through extent of pages and try to write
2020  * them with writepage() call back
2021  *
2022  * @mpd->inode: inode
2023  * @mpd->first_page: first page of the extent
2024  * @mpd->next_page: page after the last page of the extent
2025  *
2026  * By the time mpage_da_submit_io() is called we expect all blocks
2027  * to be allocated. this may be wrong if allocation failed.
2028  *
2029  * As pages are already locked by write_cache_pages(), we can't use it
2030  */
2031 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032 			      struct ext4_map_blocks *map)
2033 {
2034 	struct pagevec pvec;
2035 	unsigned long index, end;
2036 	int ret = 0, err, nr_pages, i;
2037 	struct inode *inode = mpd->inode;
2038 	struct address_space *mapping = inode->i_mapping;
2039 	loff_t size = i_size_read(inode);
2040 	unsigned int len, block_start;
2041 	struct buffer_head *bh, *page_bufs = NULL;
2042 	int journal_data = ext4_should_journal_data(inode);
2043 	sector_t pblock = 0, cur_logical = 0;
2044 	struct ext4_io_submit io_submit;
2045 
2046 	BUG_ON(mpd->next_page <= mpd->first_page);
2047 	memset(&io_submit, 0, sizeof(io_submit));
2048 	/*
2049 	 * We need to start from the first_page to the next_page - 1
2050 	 * to make sure we also write the mapped dirty buffer_heads.
2051 	 * If we look at mpd->b_blocknr we would only be looking
2052 	 * at the currently mapped buffer_heads.
2053 	 */
2054 	index = mpd->first_page;
2055 	end = mpd->next_page - 1;
2056 
2057 	pagevec_init(&pvec, 0);
2058 	while (index <= end) {
2059 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060 		if (nr_pages == 0)
2061 			break;
2062 		for (i = 0; i < nr_pages; i++) {
2063 			int commit_write = 0, skip_page = 0;
2064 			struct page *page = pvec.pages[i];
2065 
2066 			index = page->index;
2067 			if (index > end)
2068 				break;
2069 
2070 			if (index == size >> PAGE_CACHE_SHIFT)
2071 				len = size & ~PAGE_CACHE_MASK;
2072 			else
2073 				len = PAGE_CACHE_SIZE;
2074 			if (map) {
2075 				cur_logical = index << (PAGE_CACHE_SHIFT -
2076 							inode->i_blkbits);
2077 				pblock = map->m_pblk + (cur_logical -
2078 							map->m_lblk);
2079 			}
2080 			index++;
2081 
2082 			BUG_ON(!PageLocked(page));
2083 			BUG_ON(PageWriteback(page));
2084 
2085 			/*
2086 			 * If the page does not have buffers (for
2087 			 * whatever reason), try to create them using
2088 			 * __block_write_begin.  If this fails,
2089 			 * skip the page and move on.
2090 			 */
2091 			if (!page_has_buffers(page)) {
2092 				if (__block_write_begin(page, 0, len,
2093 						noalloc_get_block_write)) {
2094 				skip_page:
2095 					unlock_page(page);
2096 					continue;
2097 				}
2098 				commit_write = 1;
2099 			}
2100 
2101 			bh = page_bufs = page_buffers(page);
2102 			block_start = 0;
2103 			do {
2104 				if (!bh)
2105 					goto skip_page;
2106 				if (map && (cur_logical >= map->m_lblk) &&
2107 				    (cur_logical <= (map->m_lblk +
2108 						     (map->m_len - 1)))) {
2109 					if (buffer_delay(bh)) {
2110 						clear_buffer_delay(bh);
2111 						bh->b_blocknr = pblock;
2112 					}
2113 					if (buffer_unwritten(bh) ||
2114 					    buffer_mapped(bh))
2115 						BUG_ON(bh->b_blocknr != pblock);
2116 					if (map->m_flags & EXT4_MAP_UNINIT)
2117 						set_buffer_uninit(bh);
2118 					clear_buffer_unwritten(bh);
2119 				}
2120 
2121 				/* skip page if block allocation undone */
2122 				if (buffer_delay(bh) || buffer_unwritten(bh))
2123 					skip_page = 1;
2124 				bh = bh->b_this_page;
2125 				block_start += bh->b_size;
2126 				cur_logical++;
2127 				pblock++;
2128 			} while (bh != page_bufs);
2129 
2130 			if (skip_page)
2131 				goto skip_page;
2132 
2133 			if (commit_write)
2134 				/* mark the buffer_heads as dirty & uptodate */
2135 				block_commit_write(page, 0, len);
2136 
2137 			clear_page_dirty_for_io(page);
2138 			/*
2139 			 * Delalloc doesn't support data journalling,
2140 			 * but eventually maybe we'll lift this
2141 			 * restriction.
2142 			 */
2143 			if (unlikely(journal_data && PageChecked(page)))
2144 				err = __ext4_journalled_writepage(page, len);
2145 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2146 				err = ext4_bio_write_page(&io_submit, page,
2147 							  len, mpd->wbc);
2148 			else
2149 				err = block_write_full_page(page,
2150 					noalloc_get_block_write, mpd->wbc);
2151 
2152 			if (!err)
2153 				mpd->pages_written++;
2154 			/*
2155 			 * In error case, we have to continue because
2156 			 * remaining pages are still locked
2157 			 */
2158 			if (ret == 0)
2159 				ret = err;
2160 		}
2161 		pagevec_release(&pvec);
2162 	}
2163 	ext4_io_submit(&io_submit);
2164 	return ret;
2165 }
2166 
2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2168 {
2169 	int nr_pages, i;
2170 	pgoff_t index, end;
2171 	struct pagevec pvec;
2172 	struct inode *inode = mpd->inode;
2173 	struct address_space *mapping = inode->i_mapping;
2174 
2175 	index = mpd->first_page;
2176 	end   = mpd->next_page - 1;
2177 	while (index <= end) {
2178 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2179 		if (nr_pages == 0)
2180 			break;
2181 		for (i = 0; i < nr_pages; i++) {
2182 			struct page *page = pvec.pages[i];
2183 			if (page->index > end)
2184 				break;
2185 			BUG_ON(!PageLocked(page));
2186 			BUG_ON(PageWriteback(page));
2187 			block_invalidatepage(page, 0);
2188 			ClearPageUptodate(page);
2189 			unlock_page(page);
2190 		}
2191 		index = pvec.pages[nr_pages - 1]->index + 1;
2192 		pagevec_release(&pvec);
2193 	}
2194 	return;
2195 }
2196 
2197 static void ext4_print_free_blocks(struct inode *inode)
2198 {
2199 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2200 	printk(KERN_CRIT "Total free blocks count %lld\n",
2201 	       ext4_count_free_blocks(inode->i_sb));
2202 	printk(KERN_CRIT "Free/Dirty block details\n");
2203 	printk(KERN_CRIT "free_blocks=%lld\n",
2204 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2205 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2206 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2207 	printk(KERN_CRIT "Block reservation details\n");
2208 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2209 	       EXT4_I(inode)->i_reserved_data_blocks);
2210 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2211 	       EXT4_I(inode)->i_reserved_meta_blocks);
2212 	return;
2213 }
2214 
2215 /*
2216  * mpage_da_map_and_submit - go through given space, map them
2217  *       if necessary, and then submit them for I/O
2218  *
2219  * @mpd - bh describing space
2220  *
2221  * The function skips space we know is already mapped to disk blocks.
2222  *
2223  */
2224 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2225 {
2226 	int err, blks, get_blocks_flags;
2227 	struct ext4_map_blocks map, *mapp = NULL;
2228 	sector_t next = mpd->b_blocknr;
2229 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2230 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2231 	handle_t *handle = NULL;
2232 
2233 	/*
2234 	 * If the blocks are mapped already, or we couldn't accumulate
2235 	 * any blocks, then proceed immediately to the submission stage.
2236 	 */
2237 	if ((mpd->b_size == 0) ||
2238 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
2239 	     !(mpd->b_state & (1 << BH_Delay)) &&
2240 	     !(mpd->b_state & (1 << BH_Unwritten))))
2241 		goto submit_io;
2242 
2243 	handle = ext4_journal_current_handle();
2244 	BUG_ON(!handle);
2245 
2246 	/*
2247 	 * Call ext4_map_blocks() to allocate any delayed allocation
2248 	 * blocks, or to convert an uninitialized extent to be
2249 	 * initialized (in the case where we have written into
2250 	 * one or more preallocated blocks).
2251 	 *
2252 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2253 	 * indicate that we are on the delayed allocation path.  This
2254 	 * affects functions in many different parts of the allocation
2255 	 * call path.  This flag exists primarily because we don't
2256 	 * want to change *many* call functions, so ext4_map_blocks()
2257 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2258 	 * inode's allocation semaphore is taken.
2259 	 *
2260 	 * If the blocks in questions were delalloc blocks, set
2261 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2262 	 * variables are updated after the blocks have been allocated.
2263 	 */
2264 	map.m_lblk = next;
2265 	map.m_len = max_blocks;
2266 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2267 	if (ext4_should_dioread_nolock(mpd->inode))
2268 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2269 	if (mpd->b_state & (1 << BH_Delay))
2270 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2271 
2272 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2273 	if (blks < 0) {
2274 		struct super_block *sb = mpd->inode->i_sb;
2275 
2276 		err = blks;
2277 		/*
2278 		 * If get block returns EAGAIN or ENOSPC and there
2279 		 * appears to be free blocks we will just let
2280 		 * mpage_da_submit_io() unlock all of the pages.
2281 		 */
2282 		if (err == -EAGAIN)
2283 			goto submit_io;
2284 
2285 		if (err == -ENOSPC &&
2286 		    ext4_count_free_blocks(sb)) {
2287 			mpd->retval = err;
2288 			goto submit_io;
2289 		}
2290 
2291 		/*
2292 		 * get block failure will cause us to loop in
2293 		 * writepages, because a_ops->writepage won't be able
2294 		 * to make progress. The page will be redirtied by
2295 		 * writepage and writepages will again try to write
2296 		 * the same.
2297 		 */
2298 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2299 			ext4_msg(sb, KERN_CRIT,
2300 				 "delayed block allocation failed for inode %lu "
2301 				 "at logical offset %llu with max blocks %zd "
2302 				 "with error %d", mpd->inode->i_ino,
2303 				 (unsigned long long) next,
2304 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2305 			ext4_msg(sb, KERN_CRIT,
2306 				"This should not happen!! Data will be lost\n");
2307 			if (err == -ENOSPC)
2308 				ext4_print_free_blocks(mpd->inode);
2309 		}
2310 		/* invalidate all the pages */
2311 		ext4_da_block_invalidatepages(mpd);
2312 
2313 		/* Mark this page range as having been completed */
2314 		mpd->io_done = 1;
2315 		return;
2316 	}
2317 	BUG_ON(blks == 0);
2318 
2319 	mapp = &map;
2320 	if (map.m_flags & EXT4_MAP_NEW) {
2321 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2322 		int i;
2323 
2324 		for (i = 0; i < map.m_len; i++)
2325 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2326 	}
2327 
2328 	if (ext4_should_order_data(mpd->inode)) {
2329 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2330 		if (err)
2331 			/* This only happens if the journal is aborted */
2332 			return;
2333 	}
2334 
2335 	/*
2336 	 * Update on-disk size along with block allocation.
2337 	 */
2338 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2339 	if (disksize > i_size_read(mpd->inode))
2340 		disksize = i_size_read(mpd->inode);
2341 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2342 		ext4_update_i_disksize(mpd->inode, disksize);
2343 		err = ext4_mark_inode_dirty(handle, mpd->inode);
2344 		if (err)
2345 			ext4_error(mpd->inode->i_sb,
2346 				   "Failed to mark inode %lu dirty",
2347 				   mpd->inode->i_ino);
2348 	}
2349 
2350 submit_io:
2351 	mpage_da_submit_io(mpd, mapp);
2352 	mpd->io_done = 1;
2353 }
2354 
2355 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2356 		(1 << BH_Delay) | (1 << BH_Unwritten))
2357 
2358 /*
2359  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2360  *
2361  * @mpd->lbh - extent of blocks
2362  * @logical - logical number of the block in the file
2363  * @bh - bh of the block (used to access block's state)
2364  *
2365  * the function is used to collect contig. blocks in same state
2366  */
2367 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2368 				   sector_t logical, size_t b_size,
2369 				   unsigned long b_state)
2370 {
2371 	sector_t next;
2372 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2373 
2374 	/*
2375 	 * XXX Don't go larger than mballoc is willing to allocate
2376 	 * This is a stopgap solution.  We eventually need to fold
2377 	 * mpage_da_submit_io() into this function and then call
2378 	 * ext4_map_blocks() multiple times in a loop
2379 	 */
2380 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2381 		goto flush_it;
2382 
2383 	/* check if thereserved journal credits might overflow */
2384 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2385 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2386 			/*
2387 			 * With non-extent format we are limited by the journal
2388 			 * credit available.  Total credit needed to insert
2389 			 * nrblocks contiguous blocks is dependent on the
2390 			 * nrblocks.  So limit nrblocks.
2391 			 */
2392 			goto flush_it;
2393 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2394 				EXT4_MAX_TRANS_DATA) {
2395 			/*
2396 			 * Adding the new buffer_head would make it cross the
2397 			 * allowed limit for which we have journal credit
2398 			 * reserved. So limit the new bh->b_size
2399 			 */
2400 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2401 						mpd->inode->i_blkbits;
2402 			/* we will do mpage_da_submit_io in the next loop */
2403 		}
2404 	}
2405 	/*
2406 	 * First block in the extent
2407 	 */
2408 	if (mpd->b_size == 0) {
2409 		mpd->b_blocknr = logical;
2410 		mpd->b_size = b_size;
2411 		mpd->b_state = b_state & BH_FLAGS;
2412 		return;
2413 	}
2414 
2415 	next = mpd->b_blocknr + nrblocks;
2416 	/*
2417 	 * Can we merge the block to our big extent?
2418 	 */
2419 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2420 		mpd->b_size += b_size;
2421 		return;
2422 	}
2423 
2424 flush_it:
2425 	/*
2426 	 * We couldn't merge the block to our extent, so we
2427 	 * need to flush current  extent and start new one
2428 	 */
2429 	mpage_da_map_and_submit(mpd);
2430 	return;
2431 }
2432 
2433 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2434 {
2435 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2436 }
2437 
2438 /*
2439  * This is a special get_blocks_t callback which is used by
2440  * ext4_da_write_begin().  It will either return mapped block or
2441  * reserve space for a single block.
2442  *
2443  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2444  * We also have b_blocknr = -1 and b_bdev initialized properly
2445  *
2446  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2447  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2448  * initialized properly.
2449  */
2450 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2451 				  struct buffer_head *bh, int create)
2452 {
2453 	struct ext4_map_blocks map;
2454 	int ret = 0;
2455 	sector_t invalid_block = ~((sector_t) 0xffff);
2456 
2457 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2458 		invalid_block = ~0;
2459 
2460 	BUG_ON(create == 0);
2461 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2462 
2463 	map.m_lblk = iblock;
2464 	map.m_len = 1;
2465 
2466 	/*
2467 	 * first, we need to know whether the block is allocated already
2468 	 * preallocated blocks are unmapped but should treated
2469 	 * the same as allocated blocks.
2470 	 */
2471 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2472 	if (ret < 0)
2473 		return ret;
2474 	if (ret == 0) {
2475 		if (buffer_delay(bh))
2476 			return 0; /* Not sure this could or should happen */
2477 		/*
2478 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2479 		 */
2480 		ret = ext4_da_reserve_space(inode, iblock);
2481 		if (ret)
2482 			/* not enough space to reserve */
2483 			return ret;
2484 
2485 		map_bh(bh, inode->i_sb, invalid_block);
2486 		set_buffer_new(bh);
2487 		set_buffer_delay(bh);
2488 		return 0;
2489 	}
2490 
2491 	map_bh(bh, inode->i_sb, map.m_pblk);
2492 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2493 
2494 	if (buffer_unwritten(bh)) {
2495 		/* A delayed write to unwritten bh should be marked
2496 		 * new and mapped.  Mapped ensures that we don't do
2497 		 * get_block multiple times when we write to the same
2498 		 * offset and new ensures that we do proper zero out
2499 		 * for partial write.
2500 		 */
2501 		set_buffer_new(bh);
2502 		set_buffer_mapped(bh);
2503 	}
2504 	return 0;
2505 }
2506 
2507 /*
2508  * This function is used as a standard get_block_t calback function
2509  * when there is no desire to allocate any blocks.  It is used as a
2510  * callback function for block_write_begin() and block_write_full_page().
2511  * These functions should only try to map a single block at a time.
2512  *
2513  * Since this function doesn't do block allocations even if the caller
2514  * requests it by passing in create=1, it is critically important that
2515  * any caller checks to make sure that any buffer heads are returned
2516  * by this function are either all already mapped or marked for
2517  * delayed allocation before calling  block_write_full_page().  Otherwise,
2518  * b_blocknr could be left unitialized, and the page write functions will
2519  * be taken by surprise.
2520  */
2521 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2522 				   struct buffer_head *bh_result, int create)
2523 {
2524 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2525 	return _ext4_get_block(inode, iblock, bh_result, 0);
2526 }
2527 
2528 static int bget_one(handle_t *handle, struct buffer_head *bh)
2529 {
2530 	get_bh(bh);
2531 	return 0;
2532 }
2533 
2534 static int bput_one(handle_t *handle, struct buffer_head *bh)
2535 {
2536 	put_bh(bh);
2537 	return 0;
2538 }
2539 
2540 static int __ext4_journalled_writepage(struct page *page,
2541 				       unsigned int len)
2542 {
2543 	struct address_space *mapping = page->mapping;
2544 	struct inode *inode = mapping->host;
2545 	struct buffer_head *page_bufs;
2546 	handle_t *handle = NULL;
2547 	int ret = 0;
2548 	int err;
2549 
2550 	ClearPageChecked(page);
2551 	page_bufs = page_buffers(page);
2552 	BUG_ON(!page_bufs);
2553 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2554 	/* As soon as we unlock the page, it can go away, but we have
2555 	 * references to buffers so we are safe */
2556 	unlock_page(page);
2557 
2558 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2559 	if (IS_ERR(handle)) {
2560 		ret = PTR_ERR(handle);
2561 		goto out;
2562 	}
2563 
2564 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2565 				do_journal_get_write_access);
2566 
2567 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568 				write_end_fn);
2569 	if (ret == 0)
2570 		ret = err;
2571 	err = ext4_journal_stop(handle);
2572 	if (!ret)
2573 		ret = err;
2574 
2575 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2576 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2577 out:
2578 	return ret;
2579 }
2580 
2581 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2582 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2583 
2584 /*
2585  * Note that we don't need to start a transaction unless we're journaling data
2586  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2587  * need to file the inode to the transaction's list in ordered mode because if
2588  * we are writing back data added by write(), the inode is already there and if
2589  * we are writing back data modified via mmap(), noone guarantees in which
2590  * transaction the data will hit the disk. In case we are journaling data, we
2591  * cannot start transaction directly because transaction start ranks above page
2592  * lock so we have to do some magic.
2593  *
2594  * This function can get called via...
2595  *   - ext4_da_writepages after taking page lock (have journal handle)
2596  *   - journal_submit_inode_data_buffers (no journal handle)
2597  *   - shrink_page_list via pdflush (no journal handle)
2598  *   - grab_page_cache when doing write_begin (have journal handle)
2599  *
2600  * We don't do any block allocation in this function. If we have page with
2601  * multiple blocks we need to write those buffer_heads that are mapped. This
2602  * is important for mmaped based write. So if we do with blocksize 1K
2603  * truncate(f, 1024);
2604  * a = mmap(f, 0, 4096);
2605  * a[0] = 'a';
2606  * truncate(f, 4096);
2607  * we have in the page first buffer_head mapped via page_mkwrite call back
2608  * but other bufer_heads would be unmapped but dirty(dirty done via the
2609  * do_wp_page). So writepage should write the first block. If we modify
2610  * the mmap area beyond 1024 we will again get a page_fault and the
2611  * page_mkwrite callback will do the block allocation and mark the
2612  * buffer_heads mapped.
2613  *
2614  * We redirty the page if we have any buffer_heads that is either delay or
2615  * unwritten in the page.
2616  *
2617  * We can get recursively called as show below.
2618  *
2619  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2620  *		ext4_writepage()
2621  *
2622  * But since we don't do any block allocation we should not deadlock.
2623  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2624  */
2625 static int ext4_writepage(struct page *page,
2626 			  struct writeback_control *wbc)
2627 {
2628 	int ret = 0, commit_write = 0;
2629 	loff_t size;
2630 	unsigned int len;
2631 	struct buffer_head *page_bufs = NULL;
2632 	struct inode *inode = page->mapping->host;
2633 
2634 	trace_ext4_writepage(inode, page);
2635 	size = i_size_read(inode);
2636 	if (page->index == size >> PAGE_CACHE_SHIFT)
2637 		len = size & ~PAGE_CACHE_MASK;
2638 	else
2639 		len = PAGE_CACHE_SIZE;
2640 
2641 	/*
2642 	 * If the page does not have buffers (for whatever reason),
2643 	 * try to create them using __block_write_begin.  If this
2644 	 * fails, redirty the page and move on.
2645 	 */
2646 	if (!page_has_buffers(page)) {
2647 		if (__block_write_begin(page, 0, len,
2648 					noalloc_get_block_write)) {
2649 		redirty_page:
2650 			redirty_page_for_writepage(wbc, page);
2651 			unlock_page(page);
2652 			return 0;
2653 		}
2654 		commit_write = 1;
2655 	}
2656 	page_bufs = page_buffers(page);
2657 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2658 			      ext4_bh_delay_or_unwritten)) {
2659 		/*
2660 		 * We don't want to do block allocation, so redirty
2661 		 * the page and return.  We may reach here when we do
2662 		 * a journal commit via journal_submit_inode_data_buffers.
2663 		 * We can also reach here via shrink_page_list
2664 		 */
2665 		goto redirty_page;
2666 	}
2667 	if (commit_write)
2668 		/* now mark the buffer_heads as dirty and uptodate */
2669 		block_commit_write(page, 0, len);
2670 
2671 	if (PageChecked(page) && ext4_should_journal_data(inode))
2672 		/*
2673 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2674 		 * doesn't seem much point in redirtying the page here.
2675 		 */
2676 		return __ext4_journalled_writepage(page, len);
2677 
2678 	if (buffer_uninit(page_bufs)) {
2679 		ext4_set_bh_endio(page_bufs, inode);
2680 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2681 					    wbc, ext4_end_io_buffer_write);
2682 	} else
2683 		ret = block_write_full_page(page, noalloc_get_block_write,
2684 					    wbc);
2685 
2686 	return ret;
2687 }
2688 
2689 /*
2690  * This is called via ext4_da_writepages() to
2691  * calulate the total number of credits to reserve to fit
2692  * a single extent allocation into a single transaction,
2693  * ext4_da_writpeages() will loop calling this before
2694  * the block allocation.
2695  */
2696 
2697 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2698 {
2699 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2700 
2701 	/*
2702 	 * With non-extent format the journal credit needed to
2703 	 * insert nrblocks contiguous block is dependent on
2704 	 * number of contiguous block. So we will limit
2705 	 * number of contiguous block to a sane value
2706 	 */
2707 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2708 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2709 		max_blocks = EXT4_MAX_TRANS_DATA;
2710 
2711 	return ext4_chunk_trans_blocks(inode, max_blocks);
2712 }
2713 
2714 /*
2715  * write_cache_pages_da - walk the list of dirty pages of the given
2716  * address space and accumulate pages that need writing, and call
2717  * mpage_da_map_and_submit to map a single contiguous memory region
2718  * and then write them.
2719  */
2720 static int write_cache_pages_da(struct address_space *mapping,
2721 				struct writeback_control *wbc,
2722 				struct mpage_da_data *mpd,
2723 				pgoff_t *done_index)
2724 {
2725 	struct buffer_head	*bh, *head;
2726 	struct inode		*inode = mapping->host;
2727 	struct pagevec		pvec;
2728 	unsigned int		nr_pages;
2729 	sector_t		logical;
2730 	pgoff_t			index, end;
2731 	long			nr_to_write = wbc->nr_to_write;
2732 	int			i, tag, ret = 0;
2733 
2734 	memset(mpd, 0, sizeof(struct mpage_da_data));
2735 	mpd->wbc = wbc;
2736 	mpd->inode = inode;
2737 	pagevec_init(&pvec, 0);
2738 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2739 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2740 
2741 	if (wbc->sync_mode == WB_SYNC_ALL)
2742 		tag = PAGECACHE_TAG_TOWRITE;
2743 	else
2744 		tag = PAGECACHE_TAG_DIRTY;
2745 
2746 	*done_index = index;
2747 	while (index <= end) {
2748 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2749 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2750 		if (nr_pages == 0)
2751 			return 0;
2752 
2753 		for (i = 0; i < nr_pages; i++) {
2754 			struct page *page = pvec.pages[i];
2755 
2756 			/*
2757 			 * At this point, the page may be truncated or
2758 			 * invalidated (changing page->mapping to NULL), or
2759 			 * even swizzled back from swapper_space to tmpfs file
2760 			 * mapping. However, page->index will not change
2761 			 * because we have a reference on the page.
2762 			 */
2763 			if (page->index > end)
2764 				goto out;
2765 
2766 			*done_index = page->index + 1;
2767 
2768 			/*
2769 			 * If we can't merge this page, and we have
2770 			 * accumulated an contiguous region, write it
2771 			 */
2772 			if ((mpd->next_page != page->index) &&
2773 			    (mpd->next_page != mpd->first_page)) {
2774 				mpage_da_map_and_submit(mpd);
2775 				goto ret_extent_tail;
2776 			}
2777 
2778 			lock_page(page);
2779 
2780 			/*
2781 			 * If the page is no longer dirty, or its
2782 			 * mapping no longer corresponds to inode we
2783 			 * are writing (which means it has been
2784 			 * truncated or invalidated), or the page is
2785 			 * already under writeback and we are not
2786 			 * doing a data integrity writeback, skip the page
2787 			 */
2788 			if (!PageDirty(page) ||
2789 			    (PageWriteback(page) &&
2790 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2791 			    unlikely(page->mapping != mapping)) {
2792 				unlock_page(page);
2793 				continue;
2794 			}
2795 
2796 			if (PageWriteback(page))
2797 				wait_on_page_writeback(page);
2798 
2799 			BUG_ON(PageWriteback(page));
2800 
2801 			if (mpd->next_page != page->index)
2802 				mpd->first_page = page->index;
2803 			mpd->next_page = page->index + 1;
2804 			logical = (sector_t) page->index <<
2805 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2806 
2807 			if (!page_has_buffers(page)) {
2808 				mpage_add_bh_to_extent(mpd, logical,
2809 						       PAGE_CACHE_SIZE,
2810 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2811 				if (mpd->io_done)
2812 					goto ret_extent_tail;
2813 			} else {
2814 				/*
2815 				 * Page with regular buffer heads,
2816 				 * just add all dirty ones
2817 				 */
2818 				head = page_buffers(page);
2819 				bh = head;
2820 				do {
2821 					BUG_ON(buffer_locked(bh));
2822 					/*
2823 					 * We need to try to allocate
2824 					 * unmapped blocks in the same page.
2825 					 * Otherwise we won't make progress
2826 					 * with the page in ext4_writepage
2827 					 */
2828 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2829 						mpage_add_bh_to_extent(mpd, logical,
2830 								       bh->b_size,
2831 								       bh->b_state);
2832 						if (mpd->io_done)
2833 							goto ret_extent_tail;
2834 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2835 						/*
2836 						 * mapped dirty buffer. We need
2837 						 * to update the b_state
2838 						 * because we look at b_state
2839 						 * in mpage_da_map_blocks.  We
2840 						 * don't update b_size because
2841 						 * if we find an unmapped
2842 						 * buffer_head later we need to
2843 						 * use the b_state flag of that
2844 						 * buffer_head.
2845 						 */
2846 						if (mpd->b_size == 0)
2847 							mpd->b_state = bh->b_state & BH_FLAGS;
2848 					}
2849 					logical++;
2850 				} while ((bh = bh->b_this_page) != head);
2851 			}
2852 
2853 			if (nr_to_write > 0) {
2854 				nr_to_write--;
2855 				if (nr_to_write == 0 &&
2856 				    wbc->sync_mode == WB_SYNC_NONE)
2857 					/*
2858 					 * We stop writing back only if we are
2859 					 * not doing integrity sync. In case of
2860 					 * integrity sync we have to keep going
2861 					 * because someone may be concurrently
2862 					 * dirtying pages, and we might have
2863 					 * synced a lot of newly appeared dirty
2864 					 * pages, but have not synced all of the
2865 					 * old dirty pages.
2866 					 */
2867 					goto out;
2868 			}
2869 		}
2870 		pagevec_release(&pvec);
2871 		cond_resched();
2872 	}
2873 	return 0;
2874 ret_extent_tail:
2875 	ret = MPAGE_DA_EXTENT_TAIL;
2876 out:
2877 	pagevec_release(&pvec);
2878 	cond_resched();
2879 	return ret;
2880 }
2881 
2882 
2883 static int ext4_da_writepages(struct address_space *mapping,
2884 			      struct writeback_control *wbc)
2885 {
2886 	pgoff_t	index;
2887 	int range_whole = 0;
2888 	handle_t *handle = NULL;
2889 	struct mpage_da_data mpd;
2890 	struct inode *inode = mapping->host;
2891 	int pages_written = 0;
2892 	unsigned int max_pages;
2893 	int range_cyclic, cycled = 1, io_done = 0;
2894 	int needed_blocks, ret = 0;
2895 	long desired_nr_to_write, nr_to_writebump = 0;
2896 	loff_t range_start = wbc->range_start;
2897 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2898 	pgoff_t done_index = 0;
2899 	pgoff_t end;
2900 
2901 	trace_ext4_da_writepages(inode, wbc);
2902 
2903 	/*
2904 	 * No pages to write? This is mainly a kludge to avoid starting
2905 	 * a transaction for special inodes like journal inode on last iput()
2906 	 * because that could violate lock ordering on umount
2907 	 */
2908 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2909 		return 0;
2910 
2911 	/*
2912 	 * If the filesystem has aborted, it is read-only, so return
2913 	 * right away instead of dumping stack traces later on that
2914 	 * will obscure the real source of the problem.  We test
2915 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2916 	 * the latter could be true if the filesystem is mounted
2917 	 * read-only, and in that case, ext4_da_writepages should
2918 	 * *never* be called, so if that ever happens, we would want
2919 	 * the stack trace.
2920 	 */
2921 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2922 		return -EROFS;
2923 
2924 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2925 		range_whole = 1;
2926 
2927 	range_cyclic = wbc->range_cyclic;
2928 	if (wbc->range_cyclic) {
2929 		index = mapping->writeback_index;
2930 		if (index)
2931 			cycled = 0;
2932 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2933 		wbc->range_end  = LLONG_MAX;
2934 		wbc->range_cyclic = 0;
2935 		end = -1;
2936 	} else {
2937 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2938 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2939 	}
2940 
2941 	/*
2942 	 * This works around two forms of stupidity.  The first is in
2943 	 * the writeback code, which caps the maximum number of pages
2944 	 * written to be 1024 pages.  This is wrong on multiple
2945 	 * levels; different architectues have a different page size,
2946 	 * which changes the maximum amount of data which gets
2947 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2948 	 * forces this value to be 16 megabytes by multiplying
2949 	 * nr_to_write parameter by four, and then relies on its
2950 	 * allocator to allocate larger extents to make them
2951 	 * contiguous.  Unfortunately this brings us to the second
2952 	 * stupidity, which is that ext4's mballoc code only allocates
2953 	 * at most 2048 blocks.  So we force contiguous writes up to
2954 	 * the number of dirty blocks in the inode, or
2955 	 * sbi->max_writeback_mb_bump whichever is smaller.
2956 	 */
2957 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2958 	if (!range_cyclic && range_whole) {
2959 		if (wbc->nr_to_write == LONG_MAX)
2960 			desired_nr_to_write = wbc->nr_to_write;
2961 		else
2962 			desired_nr_to_write = wbc->nr_to_write * 8;
2963 	} else
2964 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2965 							   max_pages);
2966 	if (desired_nr_to_write > max_pages)
2967 		desired_nr_to_write = max_pages;
2968 
2969 	if (wbc->nr_to_write < desired_nr_to_write) {
2970 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2971 		wbc->nr_to_write = desired_nr_to_write;
2972 	}
2973 
2974 retry:
2975 	if (wbc->sync_mode == WB_SYNC_ALL)
2976 		tag_pages_for_writeback(mapping, index, end);
2977 
2978 	while (!ret && wbc->nr_to_write > 0) {
2979 
2980 		/*
2981 		 * we  insert one extent at a time. So we need
2982 		 * credit needed for single extent allocation.
2983 		 * journalled mode is currently not supported
2984 		 * by delalloc
2985 		 */
2986 		BUG_ON(ext4_should_journal_data(inode));
2987 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2988 
2989 		/* start a new transaction*/
2990 		handle = ext4_journal_start(inode, needed_blocks);
2991 		if (IS_ERR(handle)) {
2992 			ret = PTR_ERR(handle);
2993 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2994 			       "%ld pages, ino %lu; err %d", __func__,
2995 				wbc->nr_to_write, inode->i_ino, ret);
2996 			goto out_writepages;
2997 		}
2998 
2999 		/*
3000 		 * Now call write_cache_pages_da() to find the next
3001 		 * contiguous region of logical blocks that need
3002 		 * blocks to be allocated by ext4 and submit them.
3003 		 */
3004 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3005 		/*
3006 		 * If we have a contiguous extent of pages and we
3007 		 * haven't done the I/O yet, map the blocks and submit
3008 		 * them for I/O.
3009 		 */
3010 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3011 			mpage_da_map_and_submit(&mpd);
3012 			ret = MPAGE_DA_EXTENT_TAIL;
3013 		}
3014 		trace_ext4_da_write_pages(inode, &mpd);
3015 		wbc->nr_to_write -= mpd.pages_written;
3016 
3017 		ext4_journal_stop(handle);
3018 
3019 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3020 			/* commit the transaction which would
3021 			 * free blocks released in the transaction
3022 			 * and try again
3023 			 */
3024 			jbd2_journal_force_commit_nested(sbi->s_journal);
3025 			ret = 0;
3026 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3027 			/*
3028 			 * got one extent now try with
3029 			 * rest of the pages
3030 			 */
3031 			pages_written += mpd.pages_written;
3032 			ret = 0;
3033 			io_done = 1;
3034 		} else if (wbc->nr_to_write)
3035 			/*
3036 			 * There is no more writeout needed
3037 			 * or we requested for a noblocking writeout
3038 			 * and we found the device congested
3039 			 */
3040 			break;
3041 	}
3042 	if (!io_done && !cycled) {
3043 		cycled = 1;
3044 		index = 0;
3045 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3046 		wbc->range_end  = mapping->writeback_index - 1;
3047 		goto retry;
3048 	}
3049 
3050 	/* Update index */
3051 	wbc->range_cyclic = range_cyclic;
3052 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3053 		/*
3054 		 * set the writeback_index so that range_cyclic
3055 		 * mode will write it back later
3056 		 */
3057 		mapping->writeback_index = done_index;
3058 
3059 out_writepages:
3060 	wbc->nr_to_write -= nr_to_writebump;
3061 	wbc->range_start = range_start;
3062 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3063 	return ret;
3064 }
3065 
3066 #define FALL_BACK_TO_NONDELALLOC 1
3067 static int ext4_nonda_switch(struct super_block *sb)
3068 {
3069 	s64 free_blocks, dirty_blocks;
3070 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 
3072 	/*
3073 	 * switch to non delalloc mode if we are running low
3074 	 * on free block. The free block accounting via percpu
3075 	 * counters can get slightly wrong with percpu_counter_batch getting
3076 	 * accumulated on each CPU without updating global counters
3077 	 * Delalloc need an accurate free block accounting. So switch
3078 	 * to non delalloc when we are near to error range.
3079 	 */
3080 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3081 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3082 	if (2 * free_blocks < 3 * dirty_blocks ||
3083 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3084 		/*
3085 		 * free block count is less than 150% of dirty blocks
3086 		 * or free blocks is less than watermark
3087 		 */
3088 		return 1;
3089 	}
3090 	/*
3091 	 * Even if we don't switch but are nearing capacity,
3092 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3093 	 */
3094 	if (free_blocks < 2 * dirty_blocks)
3095 		writeback_inodes_sb_if_idle(sb);
3096 
3097 	return 0;
3098 }
3099 
3100 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3101 			       loff_t pos, unsigned len, unsigned flags,
3102 			       struct page **pagep, void **fsdata)
3103 {
3104 	int ret, retries = 0;
3105 	struct page *page;
3106 	pgoff_t index;
3107 	struct inode *inode = mapping->host;
3108 	handle_t *handle;
3109 
3110 	index = pos >> PAGE_CACHE_SHIFT;
3111 
3112 	if (ext4_nonda_switch(inode->i_sb)) {
3113 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3114 		return ext4_write_begin(file, mapping, pos,
3115 					len, flags, pagep, fsdata);
3116 	}
3117 	*fsdata = (void *)0;
3118 	trace_ext4_da_write_begin(inode, pos, len, flags);
3119 retry:
3120 	/*
3121 	 * With delayed allocation, we don't log the i_disksize update
3122 	 * if there is delayed block allocation. But we still need
3123 	 * to journalling the i_disksize update if writes to the end
3124 	 * of file which has an already mapped buffer.
3125 	 */
3126 	handle = ext4_journal_start(inode, 1);
3127 	if (IS_ERR(handle)) {
3128 		ret = PTR_ERR(handle);
3129 		goto out;
3130 	}
3131 	/* We cannot recurse into the filesystem as the transaction is already
3132 	 * started */
3133 	flags |= AOP_FLAG_NOFS;
3134 
3135 	page = grab_cache_page_write_begin(mapping, index, flags);
3136 	if (!page) {
3137 		ext4_journal_stop(handle);
3138 		ret = -ENOMEM;
3139 		goto out;
3140 	}
3141 	*pagep = page;
3142 
3143 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3144 	if (ret < 0) {
3145 		unlock_page(page);
3146 		ext4_journal_stop(handle);
3147 		page_cache_release(page);
3148 		/*
3149 		 * block_write_begin may have instantiated a few blocks
3150 		 * outside i_size.  Trim these off again. Don't need
3151 		 * i_size_read because we hold i_mutex.
3152 		 */
3153 		if (pos + len > inode->i_size)
3154 			ext4_truncate_failed_write(inode);
3155 	}
3156 
3157 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3158 		goto retry;
3159 out:
3160 	return ret;
3161 }
3162 
3163 /*
3164  * Check if we should update i_disksize
3165  * when write to the end of file but not require block allocation
3166  */
3167 static int ext4_da_should_update_i_disksize(struct page *page,
3168 					    unsigned long offset)
3169 {
3170 	struct buffer_head *bh;
3171 	struct inode *inode = page->mapping->host;
3172 	unsigned int idx;
3173 	int i;
3174 
3175 	bh = page_buffers(page);
3176 	idx = offset >> inode->i_blkbits;
3177 
3178 	for (i = 0; i < idx; i++)
3179 		bh = bh->b_this_page;
3180 
3181 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3182 		return 0;
3183 	return 1;
3184 }
3185 
3186 static int ext4_da_write_end(struct file *file,
3187 			     struct address_space *mapping,
3188 			     loff_t pos, unsigned len, unsigned copied,
3189 			     struct page *page, void *fsdata)
3190 {
3191 	struct inode *inode = mapping->host;
3192 	int ret = 0, ret2;
3193 	handle_t *handle = ext4_journal_current_handle();
3194 	loff_t new_i_size;
3195 	unsigned long start, end;
3196 	int write_mode = (int)(unsigned long)fsdata;
3197 
3198 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3199 		if (ext4_should_order_data(inode)) {
3200 			return ext4_ordered_write_end(file, mapping, pos,
3201 					len, copied, page, fsdata);
3202 		} else if (ext4_should_writeback_data(inode)) {
3203 			return ext4_writeback_write_end(file, mapping, pos,
3204 					len, copied, page, fsdata);
3205 		} else {
3206 			BUG();
3207 		}
3208 	}
3209 
3210 	trace_ext4_da_write_end(inode, pos, len, copied);
3211 	start = pos & (PAGE_CACHE_SIZE - 1);
3212 	end = start + copied - 1;
3213 
3214 	/*
3215 	 * generic_write_end() will run mark_inode_dirty() if i_size
3216 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3217 	 * into that.
3218 	 */
3219 
3220 	new_i_size = pos + copied;
3221 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3222 		if (ext4_da_should_update_i_disksize(page, end)) {
3223 			down_write(&EXT4_I(inode)->i_data_sem);
3224 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3225 				/*
3226 				 * Updating i_disksize when extending file
3227 				 * without needing block allocation
3228 				 */
3229 				if (ext4_should_order_data(inode))
3230 					ret = ext4_jbd2_file_inode(handle,
3231 								   inode);
3232 
3233 				EXT4_I(inode)->i_disksize = new_i_size;
3234 			}
3235 			up_write(&EXT4_I(inode)->i_data_sem);
3236 			/* We need to mark inode dirty even if
3237 			 * new_i_size is less that inode->i_size
3238 			 * bu greater than i_disksize.(hint delalloc)
3239 			 */
3240 			ext4_mark_inode_dirty(handle, inode);
3241 		}
3242 	}
3243 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3244 							page, fsdata);
3245 	copied = ret2;
3246 	if (ret2 < 0)
3247 		ret = ret2;
3248 	ret2 = ext4_journal_stop(handle);
3249 	if (!ret)
3250 		ret = ret2;
3251 
3252 	return ret ? ret : copied;
3253 }
3254 
3255 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3256 {
3257 	/*
3258 	 * Drop reserved blocks
3259 	 */
3260 	BUG_ON(!PageLocked(page));
3261 	if (!page_has_buffers(page))
3262 		goto out;
3263 
3264 	ext4_da_page_release_reservation(page, offset);
3265 
3266 out:
3267 	ext4_invalidatepage(page, offset);
3268 
3269 	return;
3270 }
3271 
3272 /*
3273  * Force all delayed allocation blocks to be allocated for a given inode.
3274  */
3275 int ext4_alloc_da_blocks(struct inode *inode)
3276 {
3277 	trace_ext4_alloc_da_blocks(inode);
3278 
3279 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3280 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3281 		return 0;
3282 
3283 	/*
3284 	 * We do something simple for now.  The filemap_flush() will
3285 	 * also start triggering a write of the data blocks, which is
3286 	 * not strictly speaking necessary (and for users of
3287 	 * laptop_mode, not even desirable).  However, to do otherwise
3288 	 * would require replicating code paths in:
3289 	 *
3290 	 * ext4_da_writepages() ->
3291 	 *    write_cache_pages() ---> (via passed in callback function)
3292 	 *        __mpage_da_writepage() -->
3293 	 *           mpage_add_bh_to_extent()
3294 	 *           mpage_da_map_blocks()
3295 	 *
3296 	 * The problem is that write_cache_pages(), located in
3297 	 * mm/page-writeback.c, marks pages clean in preparation for
3298 	 * doing I/O, which is not desirable if we're not planning on
3299 	 * doing I/O at all.
3300 	 *
3301 	 * We could call write_cache_pages(), and then redirty all of
3302 	 * the pages by calling redirty_page_for_writepage() but that
3303 	 * would be ugly in the extreme.  So instead we would need to
3304 	 * replicate parts of the code in the above functions,
3305 	 * simplifying them becuase we wouldn't actually intend to
3306 	 * write out the pages, but rather only collect contiguous
3307 	 * logical block extents, call the multi-block allocator, and
3308 	 * then update the buffer heads with the block allocations.
3309 	 *
3310 	 * For now, though, we'll cheat by calling filemap_flush(),
3311 	 * which will map the blocks, and start the I/O, but not
3312 	 * actually wait for the I/O to complete.
3313 	 */
3314 	return filemap_flush(inode->i_mapping);
3315 }
3316 
3317 /*
3318  * bmap() is special.  It gets used by applications such as lilo and by
3319  * the swapper to find the on-disk block of a specific piece of data.
3320  *
3321  * Naturally, this is dangerous if the block concerned is still in the
3322  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3323  * filesystem and enables swap, then they may get a nasty shock when the
3324  * data getting swapped to that swapfile suddenly gets overwritten by
3325  * the original zero's written out previously to the journal and
3326  * awaiting writeback in the kernel's buffer cache.
3327  *
3328  * So, if we see any bmap calls here on a modified, data-journaled file,
3329  * take extra steps to flush any blocks which might be in the cache.
3330  */
3331 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3332 {
3333 	struct inode *inode = mapping->host;
3334 	journal_t *journal;
3335 	int err;
3336 
3337 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3338 			test_opt(inode->i_sb, DELALLOC)) {
3339 		/*
3340 		 * With delalloc we want to sync the file
3341 		 * so that we can make sure we allocate
3342 		 * blocks for file
3343 		 */
3344 		filemap_write_and_wait(mapping);
3345 	}
3346 
3347 	if (EXT4_JOURNAL(inode) &&
3348 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3349 		/*
3350 		 * This is a REALLY heavyweight approach, but the use of
3351 		 * bmap on dirty files is expected to be extremely rare:
3352 		 * only if we run lilo or swapon on a freshly made file
3353 		 * do we expect this to happen.
3354 		 *
3355 		 * (bmap requires CAP_SYS_RAWIO so this does not
3356 		 * represent an unprivileged user DOS attack --- we'd be
3357 		 * in trouble if mortal users could trigger this path at
3358 		 * will.)
3359 		 *
3360 		 * NB. EXT4_STATE_JDATA is not set on files other than
3361 		 * regular files.  If somebody wants to bmap a directory
3362 		 * or symlink and gets confused because the buffer
3363 		 * hasn't yet been flushed to disk, they deserve
3364 		 * everything they get.
3365 		 */
3366 
3367 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3368 		journal = EXT4_JOURNAL(inode);
3369 		jbd2_journal_lock_updates(journal);
3370 		err = jbd2_journal_flush(journal);
3371 		jbd2_journal_unlock_updates(journal);
3372 
3373 		if (err)
3374 			return 0;
3375 	}
3376 
3377 	return generic_block_bmap(mapping, block, ext4_get_block);
3378 }
3379 
3380 static int ext4_readpage(struct file *file, struct page *page)
3381 {
3382 	return mpage_readpage(page, ext4_get_block);
3383 }
3384 
3385 static int
3386 ext4_readpages(struct file *file, struct address_space *mapping,
3387 		struct list_head *pages, unsigned nr_pages)
3388 {
3389 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3390 }
3391 
3392 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3393 {
3394 	struct buffer_head *head, *bh;
3395 	unsigned int curr_off = 0;
3396 
3397 	if (!page_has_buffers(page))
3398 		return;
3399 	head = bh = page_buffers(page);
3400 	do {
3401 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3402 					&& bh->b_private) {
3403 			ext4_free_io_end(bh->b_private);
3404 			bh->b_private = NULL;
3405 			bh->b_end_io = NULL;
3406 		}
3407 		curr_off = curr_off + bh->b_size;
3408 		bh = bh->b_this_page;
3409 	} while (bh != head);
3410 }
3411 
3412 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3413 {
3414 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3415 
3416 	/*
3417 	 * free any io_end structure allocated for buffers to be discarded
3418 	 */
3419 	if (ext4_should_dioread_nolock(page->mapping->host))
3420 		ext4_invalidatepage_free_endio(page, offset);
3421 	/*
3422 	 * If it's a full truncate we just forget about the pending dirtying
3423 	 */
3424 	if (offset == 0)
3425 		ClearPageChecked(page);
3426 
3427 	if (journal)
3428 		jbd2_journal_invalidatepage(journal, page, offset);
3429 	else
3430 		block_invalidatepage(page, offset);
3431 }
3432 
3433 static int ext4_releasepage(struct page *page, gfp_t wait)
3434 {
3435 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3436 
3437 	WARN_ON(PageChecked(page));
3438 	if (!page_has_buffers(page))
3439 		return 0;
3440 	if (journal)
3441 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3442 	else
3443 		return try_to_free_buffers(page);
3444 }
3445 
3446 /*
3447  * O_DIRECT for ext3 (or indirect map) based files
3448  *
3449  * If the O_DIRECT write will extend the file then add this inode to the
3450  * orphan list.  So recovery will truncate it back to the original size
3451  * if the machine crashes during the write.
3452  *
3453  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3454  * crashes then stale disk data _may_ be exposed inside the file. But current
3455  * VFS code falls back into buffered path in that case so we are safe.
3456  */
3457 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3458 			      const struct iovec *iov, loff_t offset,
3459 			      unsigned long nr_segs)
3460 {
3461 	struct file *file = iocb->ki_filp;
3462 	struct inode *inode = file->f_mapping->host;
3463 	struct ext4_inode_info *ei = EXT4_I(inode);
3464 	handle_t *handle;
3465 	ssize_t ret;
3466 	int orphan = 0;
3467 	size_t count = iov_length(iov, nr_segs);
3468 	int retries = 0;
3469 
3470 	if (rw == WRITE) {
3471 		loff_t final_size = offset + count;
3472 
3473 		if (final_size > inode->i_size) {
3474 			/* Credits for sb + inode write */
3475 			handle = ext4_journal_start(inode, 2);
3476 			if (IS_ERR(handle)) {
3477 				ret = PTR_ERR(handle);
3478 				goto out;
3479 			}
3480 			ret = ext4_orphan_add(handle, inode);
3481 			if (ret) {
3482 				ext4_journal_stop(handle);
3483 				goto out;
3484 			}
3485 			orphan = 1;
3486 			ei->i_disksize = inode->i_size;
3487 			ext4_journal_stop(handle);
3488 		}
3489 	}
3490 
3491 retry:
3492 	if (rw == READ && ext4_should_dioread_nolock(inode))
3493 		ret = __blockdev_direct_IO(rw, iocb, inode,
3494 				 inode->i_sb->s_bdev, iov,
3495 				 offset, nr_segs,
3496 				 ext4_get_block, NULL, NULL, 0);
3497 	else {
3498 		ret = blockdev_direct_IO(rw, iocb, inode,
3499 				 inode->i_sb->s_bdev, iov,
3500 				 offset, nr_segs,
3501 				 ext4_get_block, NULL);
3502 
3503 		if (unlikely((rw & WRITE) && ret < 0)) {
3504 			loff_t isize = i_size_read(inode);
3505 			loff_t end = offset + iov_length(iov, nr_segs);
3506 
3507 			if (end > isize)
3508 				vmtruncate(inode, isize);
3509 		}
3510 	}
3511 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3512 		goto retry;
3513 
3514 	if (orphan) {
3515 		int err;
3516 
3517 		/* Credits for sb + inode write */
3518 		handle = ext4_journal_start(inode, 2);
3519 		if (IS_ERR(handle)) {
3520 			/* This is really bad luck. We've written the data
3521 			 * but cannot extend i_size. Bail out and pretend
3522 			 * the write failed... */
3523 			ret = PTR_ERR(handle);
3524 			if (inode->i_nlink)
3525 				ext4_orphan_del(NULL, inode);
3526 
3527 			goto out;
3528 		}
3529 		if (inode->i_nlink)
3530 			ext4_orphan_del(handle, inode);
3531 		if (ret > 0) {
3532 			loff_t end = offset + ret;
3533 			if (end > inode->i_size) {
3534 				ei->i_disksize = end;
3535 				i_size_write(inode, end);
3536 				/*
3537 				 * We're going to return a positive `ret'
3538 				 * here due to non-zero-length I/O, so there's
3539 				 * no way of reporting error returns from
3540 				 * ext4_mark_inode_dirty() to userspace.  So
3541 				 * ignore it.
3542 				 */
3543 				ext4_mark_inode_dirty(handle, inode);
3544 			}
3545 		}
3546 		err = ext4_journal_stop(handle);
3547 		if (ret == 0)
3548 			ret = err;
3549 	}
3550 out:
3551 	return ret;
3552 }
3553 
3554 /*
3555  * ext4_get_block used when preparing for a DIO write or buffer write.
3556  * We allocate an uinitialized extent if blocks haven't been allocated.
3557  * The extent will be converted to initialized after the IO is complete.
3558  */
3559 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3560 		   struct buffer_head *bh_result, int create)
3561 {
3562 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3563 		   inode->i_ino, create);
3564 	return _ext4_get_block(inode, iblock, bh_result,
3565 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3566 }
3567 
3568 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3569 			    ssize_t size, void *private, int ret,
3570 			    bool is_async)
3571 {
3572         ext4_io_end_t *io_end = iocb->private;
3573 	struct workqueue_struct *wq;
3574 	unsigned long flags;
3575 	struct ext4_inode_info *ei;
3576 
3577 	/* if not async direct IO or dio with 0 bytes write, just return */
3578 	if (!io_end || !size)
3579 		goto out;
3580 
3581 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3582 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3583  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3584 		  size);
3585 
3586 	/* if not aio dio with unwritten extents, just free io and return */
3587 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3588 		ext4_free_io_end(io_end);
3589 		iocb->private = NULL;
3590 out:
3591 		if (is_async)
3592 			aio_complete(iocb, ret, 0);
3593 		return;
3594 	}
3595 
3596 	io_end->offset = offset;
3597 	io_end->size = size;
3598 	if (is_async) {
3599 		io_end->iocb = iocb;
3600 		io_end->result = ret;
3601 	}
3602 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3603 
3604 	/* Add the io_end to per-inode completed aio dio list*/
3605 	ei = EXT4_I(io_end->inode);
3606 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3607 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3608 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3609 
3610 	/* queue the work to convert unwritten extents to written */
3611 	queue_work(wq, &io_end->work);
3612 	iocb->private = NULL;
3613 }
3614 
3615 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3616 {
3617 	ext4_io_end_t *io_end = bh->b_private;
3618 	struct workqueue_struct *wq;
3619 	struct inode *inode;
3620 	unsigned long flags;
3621 
3622 	if (!test_clear_buffer_uninit(bh) || !io_end)
3623 		goto out;
3624 
3625 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3626 		printk("sb umounted, discard end_io request for inode %lu\n",
3627 			io_end->inode->i_ino);
3628 		ext4_free_io_end(io_end);
3629 		goto out;
3630 	}
3631 
3632 	io_end->flag = EXT4_IO_END_UNWRITTEN;
3633 	inode = io_end->inode;
3634 
3635 	/* Add the io_end to per-inode completed io list*/
3636 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3637 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3638 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3639 
3640 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3641 	/* queue the work to convert unwritten extents to written */
3642 	queue_work(wq, &io_end->work);
3643 out:
3644 	bh->b_private = NULL;
3645 	bh->b_end_io = NULL;
3646 	clear_buffer_uninit(bh);
3647 	end_buffer_async_write(bh, uptodate);
3648 }
3649 
3650 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3651 {
3652 	ext4_io_end_t *io_end;
3653 	struct page *page = bh->b_page;
3654 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3655 	size_t size = bh->b_size;
3656 
3657 retry:
3658 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3659 	if (!io_end) {
3660 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3661 		schedule();
3662 		goto retry;
3663 	}
3664 	io_end->offset = offset;
3665 	io_end->size = size;
3666 	/*
3667 	 * We need to hold a reference to the page to make sure it
3668 	 * doesn't get evicted before ext4_end_io_work() has a chance
3669 	 * to convert the extent from written to unwritten.
3670 	 */
3671 	io_end->page = page;
3672 	get_page(io_end->page);
3673 
3674 	bh->b_private = io_end;
3675 	bh->b_end_io = ext4_end_io_buffer_write;
3676 	return 0;
3677 }
3678 
3679 /*
3680  * For ext4 extent files, ext4 will do direct-io write to holes,
3681  * preallocated extents, and those write extend the file, no need to
3682  * fall back to buffered IO.
3683  *
3684  * For holes, we fallocate those blocks, mark them as uninitialized
3685  * If those blocks were preallocated, we mark sure they are splited, but
3686  * still keep the range to write as uninitialized.
3687  *
3688  * The unwrritten extents will be converted to written when DIO is completed.
3689  * For async direct IO, since the IO may still pending when return, we
3690  * set up an end_io call back function, which will do the convertion
3691  * when async direct IO completed.
3692  *
3693  * If the O_DIRECT write will extend the file then add this inode to the
3694  * orphan list.  So recovery will truncate it back to the original size
3695  * if the machine crashes during the write.
3696  *
3697  */
3698 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3699 			      const struct iovec *iov, loff_t offset,
3700 			      unsigned long nr_segs)
3701 {
3702 	struct file *file = iocb->ki_filp;
3703 	struct inode *inode = file->f_mapping->host;
3704 	ssize_t ret;
3705 	size_t count = iov_length(iov, nr_segs);
3706 
3707 	loff_t final_size = offset + count;
3708 	if (rw == WRITE && final_size <= inode->i_size) {
3709 		/*
3710  		 * We could direct write to holes and fallocate.
3711 		 *
3712  		 * Allocated blocks to fill the hole are marked as uninitialized
3713  		 * to prevent paralel buffered read to expose the stale data
3714  		 * before DIO complete the data IO.
3715 		 *
3716  		 * As to previously fallocated extents, ext4 get_block
3717  		 * will just simply mark the buffer mapped but still
3718  		 * keep the extents uninitialized.
3719  		 *
3720 		 * for non AIO case, we will convert those unwritten extents
3721 		 * to written after return back from blockdev_direct_IO.
3722 		 *
3723 		 * for async DIO, the conversion needs to be defered when
3724 		 * the IO is completed. The ext4 end_io callback function
3725 		 * will be called to take care of the conversion work.
3726 		 * Here for async case, we allocate an io_end structure to
3727 		 * hook to the iocb.
3728  		 */
3729 		iocb->private = NULL;
3730 		EXT4_I(inode)->cur_aio_dio = NULL;
3731 		if (!is_sync_kiocb(iocb)) {
3732 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3733 			if (!iocb->private)
3734 				return -ENOMEM;
3735 			/*
3736 			 * we save the io structure for current async
3737 			 * direct IO, so that later ext4_map_blocks()
3738 			 * could flag the io structure whether there
3739 			 * is a unwritten extents needs to be converted
3740 			 * when IO is completed.
3741 			 */
3742 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3743 		}
3744 
3745 		ret = blockdev_direct_IO(rw, iocb, inode,
3746 					 inode->i_sb->s_bdev, iov,
3747 					 offset, nr_segs,
3748 					 ext4_get_block_write,
3749 					 ext4_end_io_dio);
3750 		if (iocb->private)
3751 			EXT4_I(inode)->cur_aio_dio = NULL;
3752 		/*
3753 		 * The io_end structure takes a reference to the inode,
3754 		 * that structure needs to be destroyed and the
3755 		 * reference to the inode need to be dropped, when IO is
3756 		 * complete, even with 0 byte write, or failed.
3757 		 *
3758 		 * In the successful AIO DIO case, the io_end structure will be
3759 		 * desctroyed and the reference to the inode will be dropped
3760 		 * after the end_io call back function is called.
3761 		 *
3762 		 * In the case there is 0 byte write, or error case, since
3763 		 * VFS direct IO won't invoke the end_io call back function,
3764 		 * we need to free the end_io structure here.
3765 		 */
3766 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3767 			ext4_free_io_end(iocb->private);
3768 			iocb->private = NULL;
3769 		} else if (ret > 0 && ext4_test_inode_state(inode,
3770 						EXT4_STATE_DIO_UNWRITTEN)) {
3771 			int err;
3772 			/*
3773 			 * for non AIO case, since the IO is already
3774 			 * completed, we could do the convertion right here
3775 			 */
3776 			err = ext4_convert_unwritten_extents(inode,
3777 							     offset, ret);
3778 			if (err < 0)
3779 				ret = err;
3780 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3781 		}
3782 		return ret;
3783 	}
3784 
3785 	/* for write the the end of file case, we fall back to old way */
3786 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3787 }
3788 
3789 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3790 			      const struct iovec *iov, loff_t offset,
3791 			      unsigned long nr_segs)
3792 {
3793 	struct file *file = iocb->ki_filp;
3794 	struct inode *inode = file->f_mapping->host;
3795 
3796 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3797 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3798 
3799 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3800 }
3801 
3802 /*
3803  * Pages can be marked dirty completely asynchronously from ext4's journalling
3804  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3805  * much here because ->set_page_dirty is called under VFS locks.  The page is
3806  * not necessarily locked.
3807  *
3808  * We cannot just dirty the page and leave attached buffers clean, because the
3809  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3810  * or jbddirty because all the journalling code will explode.
3811  *
3812  * So what we do is to mark the page "pending dirty" and next time writepage
3813  * is called, propagate that into the buffers appropriately.
3814  */
3815 static int ext4_journalled_set_page_dirty(struct page *page)
3816 {
3817 	SetPageChecked(page);
3818 	return __set_page_dirty_nobuffers(page);
3819 }
3820 
3821 static const struct address_space_operations ext4_ordered_aops = {
3822 	.readpage		= ext4_readpage,
3823 	.readpages		= ext4_readpages,
3824 	.writepage		= ext4_writepage,
3825 	.sync_page		= block_sync_page,
3826 	.write_begin		= ext4_write_begin,
3827 	.write_end		= ext4_ordered_write_end,
3828 	.bmap			= ext4_bmap,
3829 	.invalidatepage		= ext4_invalidatepage,
3830 	.releasepage		= ext4_releasepage,
3831 	.direct_IO		= ext4_direct_IO,
3832 	.migratepage		= buffer_migrate_page,
3833 	.is_partially_uptodate  = block_is_partially_uptodate,
3834 	.error_remove_page	= generic_error_remove_page,
3835 };
3836 
3837 static const struct address_space_operations ext4_writeback_aops = {
3838 	.readpage		= ext4_readpage,
3839 	.readpages		= ext4_readpages,
3840 	.writepage		= ext4_writepage,
3841 	.sync_page		= block_sync_page,
3842 	.write_begin		= ext4_write_begin,
3843 	.write_end		= ext4_writeback_write_end,
3844 	.bmap			= ext4_bmap,
3845 	.invalidatepage		= ext4_invalidatepage,
3846 	.releasepage		= ext4_releasepage,
3847 	.direct_IO		= ext4_direct_IO,
3848 	.migratepage		= buffer_migrate_page,
3849 	.is_partially_uptodate  = block_is_partially_uptodate,
3850 	.error_remove_page	= generic_error_remove_page,
3851 };
3852 
3853 static const struct address_space_operations ext4_journalled_aops = {
3854 	.readpage		= ext4_readpage,
3855 	.readpages		= ext4_readpages,
3856 	.writepage		= ext4_writepage,
3857 	.sync_page		= block_sync_page,
3858 	.write_begin		= ext4_write_begin,
3859 	.write_end		= ext4_journalled_write_end,
3860 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3861 	.bmap			= ext4_bmap,
3862 	.invalidatepage		= ext4_invalidatepage,
3863 	.releasepage		= ext4_releasepage,
3864 	.is_partially_uptodate  = block_is_partially_uptodate,
3865 	.error_remove_page	= generic_error_remove_page,
3866 };
3867 
3868 static const struct address_space_operations ext4_da_aops = {
3869 	.readpage		= ext4_readpage,
3870 	.readpages		= ext4_readpages,
3871 	.writepage		= ext4_writepage,
3872 	.writepages		= ext4_da_writepages,
3873 	.sync_page		= block_sync_page,
3874 	.write_begin		= ext4_da_write_begin,
3875 	.write_end		= ext4_da_write_end,
3876 	.bmap			= ext4_bmap,
3877 	.invalidatepage		= ext4_da_invalidatepage,
3878 	.releasepage		= ext4_releasepage,
3879 	.direct_IO		= ext4_direct_IO,
3880 	.migratepage		= buffer_migrate_page,
3881 	.is_partially_uptodate  = block_is_partially_uptodate,
3882 	.error_remove_page	= generic_error_remove_page,
3883 };
3884 
3885 void ext4_set_aops(struct inode *inode)
3886 {
3887 	if (ext4_should_order_data(inode) &&
3888 		test_opt(inode->i_sb, DELALLOC))
3889 		inode->i_mapping->a_ops = &ext4_da_aops;
3890 	else if (ext4_should_order_data(inode))
3891 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3892 	else if (ext4_should_writeback_data(inode) &&
3893 		 test_opt(inode->i_sb, DELALLOC))
3894 		inode->i_mapping->a_ops = &ext4_da_aops;
3895 	else if (ext4_should_writeback_data(inode))
3896 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3897 	else
3898 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3899 }
3900 
3901 /*
3902  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3903  * up to the end of the block which corresponds to `from'.
3904  * This required during truncate. We need to physically zero the tail end
3905  * of that block so it doesn't yield old data if the file is later grown.
3906  */
3907 int ext4_block_truncate_page(handle_t *handle,
3908 		struct address_space *mapping, loff_t from)
3909 {
3910 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3911 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3912 	unsigned blocksize, length, pos;
3913 	ext4_lblk_t iblock;
3914 	struct inode *inode = mapping->host;
3915 	struct buffer_head *bh;
3916 	struct page *page;
3917 	int err = 0;
3918 
3919 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3920 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3921 	if (!page)
3922 		return -EINVAL;
3923 
3924 	blocksize = inode->i_sb->s_blocksize;
3925 	length = blocksize - (offset & (blocksize - 1));
3926 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3927 
3928 	if (!page_has_buffers(page))
3929 		create_empty_buffers(page, blocksize, 0);
3930 
3931 	/* Find the buffer that contains "offset" */
3932 	bh = page_buffers(page);
3933 	pos = blocksize;
3934 	while (offset >= pos) {
3935 		bh = bh->b_this_page;
3936 		iblock++;
3937 		pos += blocksize;
3938 	}
3939 
3940 	err = 0;
3941 	if (buffer_freed(bh)) {
3942 		BUFFER_TRACE(bh, "freed: skip");
3943 		goto unlock;
3944 	}
3945 
3946 	if (!buffer_mapped(bh)) {
3947 		BUFFER_TRACE(bh, "unmapped");
3948 		ext4_get_block(inode, iblock, bh, 0);
3949 		/* unmapped? It's a hole - nothing to do */
3950 		if (!buffer_mapped(bh)) {
3951 			BUFFER_TRACE(bh, "still unmapped");
3952 			goto unlock;
3953 		}
3954 	}
3955 
3956 	/* Ok, it's mapped. Make sure it's up-to-date */
3957 	if (PageUptodate(page))
3958 		set_buffer_uptodate(bh);
3959 
3960 	if (!buffer_uptodate(bh)) {
3961 		err = -EIO;
3962 		ll_rw_block(READ, 1, &bh);
3963 		wait_on_buffer(bh);
3964 		/* Uhhuh. Read error. Complain and punt. */
3965 		if (!buffer_uptodate(bh))
3966 			goto unlock;
3967 	}
3968 
3969 	if (ext4_should_journal_data(inode)) {
3970 		BUFFER_TRACE(bh, "get write access");
3971 		err = ext4_journal_get_write_access(handle, bh);
3972 		if (err)
3973 			goto unlock;
3974 	}
3975 
3976 	zero_user(page, offset, length);
3977 
3978 	BUFFER_TRACE(bh, "zeroed end of block");
3979 
3980 	err = 0;
3981 	if (ext4_should_journal_data(inode)) {
3982 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3983 	} else {
3984 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3985 			err = ext4_jbd2_file_inode(handle, inode);
3986 		mark_buffer_dirty(bh);
3987 	}
3988 
3989 unlock:
3990 	unlock_page(page);
3991 	page_cache_release(page);
3992 	return err;
3993 }
3994 
3995 /*
3996  * Probably it should be a library function... search for first non-zero word
3997  * or memcmp with zero_page, whatever is better for particular architecture.
3998  * Linus?
3999  */
4000 static inline int all_zeroes(__le32 *p, __le32 *q)
4001 {
4002 	while (p < q)
4003 		if (*p++)
4004 			return 0;
4005 	return 1;
4006 }
4007 
4008 /**
4009  *	ext4_find_shared - find the indirect blocks for partial truncation.
4010  *	@inode:	  inode in question
4011  *	@depth:	  depth of the affected branch
4012  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4013  *	@chain:	  place to store the pointers to partial indirect blocks
4014  *	@top:	  place to the (detached) top of branch
4015  *
4016  *	This is a helper function used by ext4_truncate().
4017  *
4018  *	When we do truncate() we may have to clean the ends of several
4019  *	indirect blocks but leave the blocks themselves alive. Block is
4020  *	partially truncated if some data below the new i_size is refered
4021  *	from it (and it is on the path to the first completely truncated
4022  *	data block, indeed).  We have to free the top of that path along
4023  *	with everything to the right of the path. Since no allocation
4024  *	past the truncation point is possible until ext4_truncate()
4025  *	finishes, we may safely do the latter, but top of branch may
4026  *	require special attention - pageout below the truncation point
4027  *	might try to populate it.
4028  *
4029  *	We atomically detach the top of branch from the tree, store the
4030  *	block number of its root in *@top, pointers to buffer_heads of
4031  *	partially truncated blocks - in @chain[].bh and pointers to
4032  *	their last elements that should not be removed - in
4033  *	@chain[].p. Return value is the pointer to last filled element
4034  *	of @chain.
4035  *
4036  *	The work left to caller to do the actual freeing of subtrees:
4037  *		a) free the subtree starting from *@top
4038  *		b) free the subtrees whose roots are stored in
4039  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4040  *		c) free the subtrees growing from the inode past the @chain[0].
4041  *			(no partially truncated stuff there).  */
4042 
4043 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4044 				  ext4_lblk_t offsets[4], Indirect chain[4],
4045 				  __le32 *top)
4046 {
4047 	Indirect *partial, *p;
4048 	int k, err;
4049 
4050 	*top = 0;
4051 	/* Make k index the deepest non-null offset + 1 */
4052 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4053 		;
4054 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4055 	/* Writer: pointers */
4056 	if (!partial)
4057 		partial = chain + k-1;
4058 	/*
4059 	 * If the branch acquired continuation since we've looked at it -
4060 	 * fine, it should all survive and (new) top doesn't belong to us.
4061 	 */
4062 	if (!partial->key && *partial->p)
4063 		/* Writer: end */
4064 		goto no_top;
4065 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4066 		;
4067 	/*
4068 	 * OK, we've found the last block that must survive. The rest of our
4069 	 * branch should be detached before unlocking. However, if that rest
4070 	 * of branch is all ours and does not grow immediately from the inode
4071 	 * it's easier to cheat and just decrement partial->p.
4072 	 */
4073 	if (p == chain + k - 1 && p > chain) {
4074 		p->p--;
4075 	} else {
4076 		*top = *p->p;
4077 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4078 #if 0
4079 		*p->p = 0;
4080 #endif
4081 	}
4082 	/* Writer: end */
4083 
4084 	while (partial > p) {
4085 		brelse(partial->bh);
4086 		partial--;
4087 	}
4088 no_top:
4089 	return partial;
4090 }
4091 
4092 /*
4093  * Zero a number of block pointers in either an inode or an indirect block.
4094  * If we restart the transaction we must again get write access to the
4095  * indirect block for further modification.
4096  *
4097  * We release `count' blocks on disk, but (last - first) may be greater
4098  * than `count' because there can be holes in there.
4099  *
4100  * Return 0 on success, 1 on invalid block range
4101  * and < 0 on fatal error.
4102  */
4103 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4104 			     struct buffer_head *bh,
4105 			     ext4_fsblk_t block_to_free,
4106 			     unsigned long count, __le32 *first,
4107 			     __le32 *last)
4108 {
4109 	__le32 *p;
4110 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4111 	int	err;
4112 
4113 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4114 		flags |= EXT4_FREE_BLOCKS_METADATA;
4115 
4116 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4117 				   count)) {
4118 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4119 				 "blocks %llu len %lu",
4120 				 (unsigned long long) block_to_free, count);
4121 		return 1;
4122 	}
4123 
4124 	if (try_to_extend_transaction(handle, inode)) {
4125 		if (bh) {
4126 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4127 			err = ext4_handle_dirty_metadata(handle, inode, bh);
4128 			if (unlikely(err))
4129 				goto out_err;
4130 		}
4131 		err = ext4_mark_inode_dirty(handle, inode);
4132 		if (unlikely(err))
4133 			goto out_err;
4134 		err = ext4_truncate_restart_trans(handle, inode,
4135 						  blocks_for_truncate(inode));
4136 		if (unlikely(err))
4137 			goto out_err;
4138 		if (bh) {
4139 			BUFFER_TRACE(bh, "retaking write access");
4140 			err = ext4_journal_get_write_access(handle, bh);
4141 			if (unlikely(err))
4142 				goto out_err;
4143 		}
4144 	}
4145 
4146 	for (p = first; p < last; p++)
4147 		*p = 0;
4148 
4149 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4150 	return 0;
4151 out_err:
4152 	ext4_std_error(inode->i_sb, err);
4153 	return err;
4154 }
4155 
4156 /**
4157  * ext4_free_data - free a list of data blocks
4158  * @handle:	handle for this transaction
4159  * @inode:	inode we are dealing with
4160  * @this_bh:	indirect buffer_head which contains *@first and *@last
4161  * @first:	array of block numbers
4162  * @last:	points immediately past the end of array
4163  *
4164  * We are freeing all blocks refered from that array (numbers are stored as
4165  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4166  *
4167  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4168  * blocks are contiguous then releasing them at one time will only affect one
4169  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4170  * actually use a lot of journal space.
4171  *
4172  * @this_bh will be %NULL if @first and @last point into the inode's direct
4173  * block pointers.
4174  */
4175 static void ext4_free_data(handle_t *handle, struct inode *inode,
4176 			   struct buffer_head *this_bh,
4177 			   __le32 *first, __le32 *last)
4178 {
4179 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4180 	unsigned long count = 0;	    /* Number of blocks in the run */
4181 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4182 					       corresponding to
4183 					       block_to_free */
4184 	ext4_fsblk_t nr;		    /* Current block # */
4185 	__le32 *p;			    /* Pointer into inode/ind
4186 					       for current block */
4187 	int err = 0;
4188 
4189 	if (this_bh) {				/* For indirect block */
4190 		BUFFER_TRACE(this_bh, "get_write_access");
4191 		err = ext4_journal_get_write_access(handle, this_bh);
4192 		/* Important: if we can't update the indirect pointers
4193 		 * to the blocks, we can't free them. */
4194 		if (err)
4195 			return;
4196 	}
4197 
4198 	for (p = first; p < last; p++) {
4199 		nr = le32_to_cpu(*p);
4200 		if (nr) {
4201 			/* accumulate blocks to free if they're contiguous */
4202 			if (count == 0) {
4203 				block_to_free = nr;
4204 				block_to_free_p = p;
4205 				count = 1;
4206 			} else if (nr == block_to_free + count) {
4207 				count++;
4208 			} else {
4209 				err = ext4_clear_blocks(handle, inode, this_bh,
4210 						        block_to_free, count,
4211 						        block_to_free_p, p);
4212 				if (err)
4213 					break;
4214 				block_to_free = nr;
4215 				block_to_free_p = p;
4216 				count = 1;
4217 			}
4218 		}
4219 	}
4220 
4221 	if (!err && count > 0)
4222 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4223 					count, block_to_free_p, p);
4224 	if (err < 0)
4225 		/* fatal error */
4226 		return;
4227 
4228 	if (this_bh) {
4229 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4230 
4231 		/*
4232 		 * The buffer head should have an attached journal head at this
4233 		 * point. However, if the data is corrupted and an indirect
4234 		 * block pointed to itself, it would have been detached when
4235 		 * the block was cleared. Check for this instead of OOPSing.
4236 		 */
4237 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4238 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4239 		else
4240 			EXT4_ERROR_INODE(inode,
4241 					 "circular indirect block detected at "
4242 					 "block %llu",
4243 				(unsigned long long) this_bh->b_blocknr);
4244 	}
4245 }
4246 
4247 /**
4248  *	ext4_free_branches - free an array of branches
4249  *	@handle: JBD handle for this transaction
4250  *	@inode:	inode we are dealing with
4251  *	@parent_bh: the buffer_head which contains *@first and *@last
4252  *	@first:	array of block numbers
4253  *	@last:	pointer immediately past the end of array
4254  *	@depth:	depth of the branches to free
4255  *
4256  *	We are freeing all blocks refered from these branches (numbers are
4257  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4258  *	appropriately.
4259  */
4260 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4261 			       struct buffer_head *parent_bh,
4262 			       __le32 *first, __le32 *last, int depth)
4263 {
4264 	ext4_fsblk_t nr;
4265 	__le32 *p;
4266 
4267 	if (ext4_handle_is_aborted(handle))
4268 		return;
4269 
4270 	if (depth--) {
4271 		struct buffer_head *bh;
4272 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4273 		p = last;
4274 		while (--p >= first) {
4275 			nr = le32_to_cpu(*p);
4276 			if (!nr)
4277 				continue;		/* A hole */
4278 
4279 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4280 						   nr, 1)) {
4281 				EXT4_ERROR_INODE(inode,
4282 						 "invalid indirect mapped "
4283 						 "block %lu (level %d)",
4284 						 (unsigned long) nr, depth);
4285 				break;
4286 			}
4287 
4288 			/* Go read the buffer for the next level down */
4289 			bh = sb_bread(inode->i_sb, nr);
4290 
4291 			/*
4292 			 * A read failure? Report error and clear slot
4293 			 * (should be rare).
4294 			 */
4295 			if (!bh) {
4296 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4297 						       "Read failure");
4298 				continue;
4299 			}
4300 
4301 			/* This zaps the entire block.  Bottom up. */
4302 			BUFFER_TRACE(bh, "free child branches");
4303 			ext4_free_branches(handle, inode, bh,
4304 					(__le32 *) bh->b_data,
4305 					(__le32 *) bh->b_data + addr_per_block,
4306 					depth);
4307 			brelse(bh);
4308 
4309 			/*
4310 			 * Everything below this this pointer has been
4311 			 * released.  Now let this top-of-subtree go.
4312 			 *
4313 			 * We want the freeing of this indirect block to be
4314 			 * atomic in the journal with the updating of the
4315 			 * bitmap block which owns it.  So make some room in
4316 			 * the journal.
4317 			 *
4318 			 * We zero the parent pointer *after* freeing its
4319 			 * pointee in the bitmaps, so if extend_transaction()
4320 			 * for some reason fails to put the bitmap changes and
4321 			 * the release into the same transaction, recovery
4322 			 * will merely complain about releasing a free block,
4323 			 * rather than leaking blocks.
4324 			 */
4325 			if (ext4_handle_is_aborted(handle))
4326 				return;
4327 			if (try_to_extend_transaction(handle, inode)) {
4328 				ext4_mark_inode_dirty(handle, inode);
4329 				ext4_truncate_restart_trans(handle, inode,
4330 					    blocks_for_truncate(inode));
4331 			}
4332 
4333 			/*
4334 			 * The forget flag here is critical because if
4335 			 * we are journaling (and not doing data
4336 			 * journaling), we have to make sure a revoke
4337 			 * record is written to prevent the journal
4338 			 * replay from overwriting the (former)
4339 			 * indirect block if it gets reallocated as a
4340 			 * data block.  This must happen in the same
4341 			 * transaction where the data blocks are
4342 			 * actually freed.
4343 			 */
4344 			ext4_free_blocks(handle, inode, NULL, nr, 1,
4345 					 EXT4_FREE_BLOCKS_METADATA|
4346 					 EXT4_FREE_BLOCKS_FORGET);
4347 
4348 			if (parent_bh) {
4349 				/*
4350 				 * The block which we have just freed is
4351 				 * pointed to by an indirect block: journal it
4352 				 */
4353 				BUFFER_TRACE(parent_bh, "get_write_access");
4354 				if (!ext4_journal_get_write_access(handle,
4355 								   parent_bh)){
4356 					*p = 0;
4357 					BUFFER_TRACE(parent_bh,
4358 					"call ext4_handle_dirty_metadata");
4359 					ext4_handle_dirty_metadata(handle,
4360 								   inode,
4361 								   parent_bh);
4362 				}
4363 			}
4364 		}
4365 	} else {
4366 		/* We have reached the bottom of the tree. */
4367 		BUFFER_TRACE(parent_bh, "free data blocks");
4368 		ext4_free_data(handle, inode, parent_bh, first, last);
4369 	}
4370 }
4371 
4372 int ext4_can_truncate(struct inode *inode)
4373 {
4374 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4375 		return 0;
4376 	if (S_ISREG(inode->i_mode))
4377 		return 1;
4378 	if (S_ISDIR(inode->i_mode))
4379 		return 1;
4380 	if (S_ISLNK(inode->i_mode))
4381 		return !ext4_inode_is_fast_symlink(inode);
4382 	return 0;
4383 }
4384 
4385 /*
4386  * ext4_truncate()
4387  *
4388  * We block out ext4_get_block() block instantiations across the entire
4389  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4390  * simultaneously on behalf of the same inode.
4391  *
4392  * As we work through the truncate and commmit bits of it to the journal there
4393  * is one core, guiding principle: the file's tree must always be consistent on
4394  * disk.  We must be able to restart the truncate after a crash.
4395  *
4396  * The file's tree may be transiently inconsistent in memory (although it
4397  * probably isn't), but whenever we close off and commit a journal transaction,
4398  * the contents of (the filesystem + the journal) must be consistent and
4399  * restartable.  It's pretty simple, really: bottom up, right to left (although
4400  * left-to-right works OK too).
4401  *
4402  * Note that at recovery time, journal replay occurs *before* the restart of
4403  * truncate against the orphan inode list.
4404  *
4405  * The committed inode has the new, desired i_size (which is the same as
4406  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4407  * that this inode's truncate did not complete and it will again call
4408  * ext4_truncate() to have another go.  So there will be instantiated blocks
4409  * to the right of the truncation point in a crashed ext4 filesystem.  But
4410  * that's fine - as long as they are linked from the inode, the post-crash
4411  * ext4_truncate() run will find them and release them.
4412  */
4413 void ext4_truncate(struct inode *inode)
4414 {
4415 	handle_t *handle;
4416 	struct ext4_inode_info *ei = EXT4_I(inode);
4417 	__le32 *i_data = ei->i_data;
4418 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4419 	struct address_space *mapping = inode->i_mapping;
4420 	ext4_lblk_t offsets[4];
4421 	Indirect chain[4];
4422 	Indirect *partial;
4423 	__le32 nr = 0;
4424 	int n;
4425 	ext4_lblk_t last_block;
4426 	unsigned blocksize = inode->i_sb->s_blocksize;
4427 
4428 	if (!ext4_can_truncate(inode))
4429 		return;
4430 
4431 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4432 
4433 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4434 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4435 
4436 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4437 		ext4_ext_truncate(inode);
4438 		return;
4439 	}
4440 
4441 	handle = start_transaction(inode);
4442 	if (IS_ERR(handle))
4443 		return;		/* AKPM: return what? */
4444 
4445 	last_block = (inode->i_size + blocksize-1)
4446 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4447 
4448 	if (inode->i_size & (blocksize - 1))
4449 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4450 			goto out_stop;
4451 
4452 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4453 	if (n == 0)
4454 		goto out_stop;	/* error */
4455 
4456 	/*
4457 	 * OK.  This truncate is going to happen.  We add the inode to the
4458 	 * orphan list, so that if this truncate spans multiple transactions,
4459 	 * and we crash, we will resume the truncate when the filesystem
4460 	 * recovers.  It also marks the inode dirty, to catch the new size.
4461 	 *
4462 	 * Implication: the file must always be in a sane, consistent
4463 	 * truncatable state while each transaction commits.
4464 	 */
4465 	if (ext4_orphan_add(handle, inode))
4466 		goto out_stop;
4467 
4468 	/*
4469 	 * From here we block out all ext4_get_block() callers who want to
4470 	 * modify the block allocation tree.
4471 	 */
4472 	down_write(&ei->i_data_sem);
4473 
4474 	ext4_discard_preallocations(inode);
4475 
4476 	/*
4477 	 * The orphan list entry will now protect us from any crash which
4478 	 * occurs before the truncate completes, so it is now safe to propagate
4479 	 * the new, shorter inode size (held for now in i_size) into the
4480 	 * on-disk inode. We do this via i_disksize, which is the value which
4481 	 * ext4 *really* writes onto the disk inode.
4482 	 */
4483 	ei->i_disksize = inode->i_size;
4484 
4485 	if (n == 1) {		/* direct blocks */
4486 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4487 			       i_data + EXT4_NDIR_BLOCKS);
4488 		goto do_indirects;
4489 	}
4490 
4491 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4492 	/* Kill the top of shared branch (not detached) */
4493 	if (nr) {
4494 		if (partial == chain) {
4495 			/* Shared branch grows from the inode */
4496 			ext4_free_branches(handle, inode, NULL,
4497 					   &nr, &nr+1, (chain+n-1) - partial);
4498 			*partial->p = 0;
4499 			/*
4500 			 * We mark the inode dirty prior to restart,
4501 			 * and prior to stop.  No need for it here.
4502 			 */
4503 		} else {
4504 			/* Shared branch grows from an indirect block */
4505 			BUFFER_TRACE(partial->bh, "get_write_access");
4506 			ext4_free_branches(handle, inode, partial->bh,
4507 					partial->p,
4508 					partial->p+1, (chain+n-1) - partial);
4509 		}
4510 	}
4511 	/* Clear the ends of indirect blocks on the shared branch */
4512 	while (partial > chain) {
4513 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4514 				   (__le32*)partial->bh->b_data+addr_per_block,
4515 				   (chain+n-1) - partial);
4516 		BUFFER_TRACE(partial->bh, "call brelse");
4517 		brelse(partial->bh);
4518 		partial--;
4519 	}
4520 do_indirects:
4521 	/* Kill the remaining (whole) subtrees */
4522 	switch (offsets[0]) {
4523 	default:
4524 		nr = i_data[EXT4_IND_BLOCK];
4525 		if (nr) {
4526 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4527 			i_data[EXT4_IND_BLOCK] = 0;
4528 		}
4529 	case EXT4_IND_BLOCK:
4530 		nr = i_data[EXT4_DIND_BLOCK];
4531 		if (nr) {
4532 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4533 			i_data[EXT4_DIND_BLOCK] = 0;
4534 		}
4535 	case EXT4_DIND_BLOCK:
4536 		nr = i_data[EXT4_TIND_BLOCK];
4537 		if (nr) {
4538 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4539 			i_data[EXT4_TIND_BLOCK] = 0;
4540 		}
4541 	case EXT4_TIND_BLOCK:
4542 		;
4543 	}
4544 
4545 	up_write(&ei->i_data_sem);
4546 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4547 	ext4_mark_inode_dirty(handle, inode);
4548 
4549 	/*
4550 	 * In a multi-transaction truncate, we only make the final transaction
4551 	 * synchronous
4552 	 */
4553 	if (IS_SYNC(inode))
4554 		ext4_handle_sync(handle);
4555 out_stop:
4556 	/*
4557 	 * If this was a simple ftruncate(), and the file will remain alive
4558 	 * then we need to clear up the orphan record which we created above.
4559 	 * However, if this was a real unlink then we were called by
4560 	 * ext4_delete_inode(), and we allow that function to clean up the
4561 	 * orphan info for us.
4562 	 */
4563 	if (inode->i_nlink)
4564 		ext4_orphan_del(handle, inode);
4565 
4566 	ext4_journal_stop(handle);
4567 }
4568 
4569 /*
4570  * ext4_get_inode_loc returns with an extra refcount against the inode's
4571  * underlying buffer_head on success. If 'in_mem' is true, we have all
4572  * data in memory that is needed to recreate the on-disk version of this
4573  * inode.
4574  */
4575 static int __ext4_get_inode_loc(struct inode *inode,
4576 				struct ext4_iloc *iloc, int in_mem)
4577 {
4578 	struct ext4_group_desc	*gdp;
4579 	struct buffer_head	*bh;
4580 	struct super_block	*sb = inode->i_sb;
4581 	ext4_fsblk_t		block;
4582 	int			inodes_per_block, inode_offset;
4583 
4584 	iloc->bh = NULL;
4585 	if (!ext4_valid_inum(sb, inode->i_ino))
4586 		return -EIO;
4587 
4588 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4589 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4590 	if (!gdp)
4591 		return -EIO;
4592 
4593 	/*
4594 	 * Figure out the offset within the block group inode table
4595 	 */
4596 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4597 	inode_offset = ((inode->i_ino - 1) %
4598 			EXT4_INODES_PER_GROUP(sb));
4599 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4600 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4601 
4602 	bh = sb_getblk(sb, block);
4603 	if (!bh) {
4604 		EXT4_ERROR_INODE_BLOCK(inode, block,
4605 				       "unable to read itable block");
4606 		return -EIO;
4607 	}
4608 	if (!buffer_uptodate(bh)) {
4609 		lock_buffer(bh);
4610 
4611 		/*
4612 		 * If the buffer has the write error flag, we have failed
4613 		 * to write out another inode in the same block.  In this
4614 		 * case, we don't have to read the block because we may
4615 		 * read the old inode data successfully.
4616 		 */
4617 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4618 			set_buffer_uptodate(bh);
4619 
4620 		if (buffer_uptodate(bh)) {
4621 			/* someone brought it uptodate while we waited */
4622 			unlock_buffer(bh);
4623 			goto has_buffer;
4624 		}
4625 
4626 		/*
4627 		 * If we have all information of the inode in memory and this
4628 		 * is the only valid inode in the block, we need not read the
4629 		 * block.
4630 		 */
4631 		if (in_mem) {
4632 			struct buffer_head *bitmap_bh;
4633 			int i, start;
4634 
4635 			start = inode_offset & ~(inodes_per_block - 1);
4636 
4637 			/* Is the inode bitmap in cache? */
4638 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4639 			if (!bitmap_bh)
4640 				goto make_io;
4641 
4642 			/*
4643 			 * If the inode bitmap isn't in cache then the
4644 			 * optimisation may end up performing two reads instead
4645 			 * of one, so skip it.
4646 			 */
4647 			if (!buffer_uptodate(bitmap_bh)) {
4648 				brelse(bitmap_bh);
4649 				goto make_io;
4650 			}
4651 			for (i = start; i < start + inodes_per_block; i++) {
4652 				if (i == inode_offset)
4653 					continue;
4654 				if (ext4_test_bit(i, bitmap_bh->b_data))
4655 					break;
4656 			}
4657 			brelse(bitmap_bh);
4658 			if (i == start + inodes_per_block) {
4659 				/* all other inodes are free, so skip I/O */
4660 				memset(bh->b_data, 0, bh->b_size);
4661 				set_buffer_uptodate(bh);
4662 				unlock_buffer(bh);
4663 				goto has_buffer;
4664 			}
4665 		}
4666 
4667 make_io:
4668 		/*
4669 		 * If we need to do any I/O, try to pre-readahead extra
4670 		 * blocks from the inode table.
4671 		 */
4672 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4673 			ext4_fsblk_t b, end, table;
4674 			unsigned num;
4675 
4676 			table = ext4_inode_table(sb, gdp);
4677 			/* s_inode_readahead_blks is always a power of 2 */
4678 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4679 			if (table > b)
4680 				b = table;
4681 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4682 			num = EXT4_INODES_PER_GROUP(sb);
4683 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4684 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4685 				num -= ext4_itable_unused_count(sb, gdp);
4686 			table += num / inodes_per_block;
4687 			if (end > table)
4688 				end = table;
4689 			while (b <= end)
4690 				sb_breadahead(sb, b++);
4691 		}
4692 
4693 		/*
4694 		 * There are other valid inodes in the buffer, this inode
4695 		 * has in-inode xattrs, or we don't have this inode in memory.
4696 		 * Read the block from disk.
4697 		 */
4698 		get_bh(bh);
4699 		bh->b_end_io = end_buffer_read_sync;
4700 		submit_bh(READ_META, bh);
4701 		wait_on_buffer(bh);
4702 		if (!buffer_uptodate(bh)) {
4703 			EXT4_ERROR_INODE_BLOCK(inode, block,
4704 					       "unable to read itable block");
4705 			brelse(bh);
4706 			return -EIO;
4707 		}
4708 	}
4709 has_buffer:
4710 	iloc->bh = bh;
4711 	return 0;
4712 }
4713 
4714 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4715 {
4716 	/* We have all inode data except xattrs in memory here. */
4717 	return __ext4_get_inode_loc(inode, iloc,
4718 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4719 }
4720 
4721 void ext4_set_inode_flags(struct inode *inode)
4722 {
4723 	unsigned int flags = EXT4_I(inode)->i_flags;
4724 
4725 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4726 	if (flags & EXT4_SYNC_FL)
4727 		inode->i_flags |= S_SYNC;
4728 	if (flags & EXT4_APPEND_FL)
4729 		inode->i_flags |= S_APPEND;
4730 	if (flags & EXT4_IMMUTABLE_FL)
4731 		inode->i_flags |= S_IMMUTABLE;
4732 	if (flags & EXT4_NOATIME_FL)
4733 		inode->i_flags |= S_NOATIME;
4734 	if (flags & EXT4_DIRSYNC_FL)
4735 		inode->i_flags |= S_DIRSYNC;
4736 }
4737 
4738 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4739 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4740 {
4741 	unsigned int vfs_fl;
4742 	unsigned long old_fl, new_fl;
4743 
4744 	do {
4745 		vfs_fl = ei->vfs_inode.i_flags;
4746 		old_fl = ei->i_flags;
4747 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4748 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4749 				EXT4_DIRSYNC_FL);
4750 		if (vfs_fl & S_SYNC)
4751 			new_fl |= EXT4_SYNC_FL;
4752 		if (vfs_fl & S_APPEND)
4753 			new_fl |= EXT4_APPEND_FL;
4754 		if (vfs_fl & S_IMMUTABLE)
4755 			new_fl |= EXT4_IMMUTABLE_FL;
4756 		if (vfs_fl & S_NOATIME)
4757 			new_fl |= EXT4_NOATIME_FL;
4758 		if (vfs_fl & S_DIRSYNC)
4759 			new_fl |= EXT4_DIRSYNC_FL;
4760 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4761 }
4762 
4763 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4764 				  struct ext4_inode_info *ei)
4765 {
4766 	blkcnt_t i_blocks ;
4767 	struct inode *inode = &(ei->vfs_inode);
4768 	struct super_block *sb = inode->i_sb;
4769 
4770 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4771 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4772 		/* we are using combined 48 bit field */
4773 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4774 					le32_to_cpu(raw_inode->i_blocks_lo);
4775 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4776 			/* i_blocks represent file system block size */
4777 			return i_blocks  << (inode->i_blkbits - 9);
4778 		} else {
4779 			return i_blocks;
4780 		}
4781 	} else {
4782 		return le32_to_cpu(raw_inode->i_blocks_lo);
4783 	}
4784 }
4785 
4786 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4787 {
4788 	struct ext4_iloc iloc;
4789 	struct ext4_inode *raw_inode;
4790 	struct ext4_inode_info *ei;
4791 	struct inode *inode;
4792 	journal_t *journal = EXT4_SB(sb)->s_journal;
4793 	long ret;
4794 	int block;
4795 
4796 	inode = iget_locked(sb, ino);
4797 	if (!inode)
4798 		return ERR_PTR(-ENOMEM);
4799 	if (!(inode->i_state & I_NEW))
4800 		return inode;
4801 
4802 	ei = EXT4_I(inode);
4803 	iloc.bh = NULL;
4804 
4805 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4806 	if (ret < 0)
4807 		goto bad_inode;
4808 	raw_inode = ext4_raw_inode(&iloc);
4809 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4810 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4811 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4812 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4813 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4814 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4815 	}
4816 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4817 
4818 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4819 	ei->i_dir_start_lookup = 0;
4820 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4821 	/* We now have enough fields to check if the inode was active or not.
4822 	 * This is needed because nfsd might try to access dead inodes
4823 	 * the test is that same one that e2fsck uses
4824 	 * NeilBrown 1999oct15
4825 	 */
4826 	if (inode->i_nlink == 0) {
4827 		if (inode->i_mode == 0 ||
4828 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4829 			/* this inode is deleted */
4830 			ret = -ESTALE;
4831 			goto bad_inode;
4832 		}
4833 		/* The only unlinked inodes we let through here have
4834 		 * valid i_mode and are being read by the orphan
4835 		 * recovery code: that's fine, we're about to complete
4836 		 * the process of deleting those. */
4837 	}
4838 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4839 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4840 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4841 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4842 		ei->i_file_acl |=
4843 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4844 	inode->i_size = ext4_isize(raw_inode);
4845 	ei->i_disksize = inode->i_size;
4846 #ifdef CONFIG_QUOTA
4847 	ei->i_reserved_quota = 0;
4848 #endif
4849 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4850 	ei->i_block_group = iloc.block_group;
4851 	ei->i_last_alloc_group = ~0;
4852 	/*
4853 	 * NOTE! The in-memory inode i_data array is in little-endian order
4854 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4855 	 */
4856 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4857 		ei->i_data[block] = raw_inode->i_block[block];
4858 	INIT_LIST_HEAD(&ei->i_orphan);
4859 
4860 	/*
4861 	 * Set transaction id's of transactions that have to be committed
4862 	 * to finish f[data]sync. We set them to currently running transaction
4863 	 * as we cannot be sure that the inode or some of its metadata isn't
4864 	 * part of the transaction - the inode could have been reclaimed and
4865 	 * now it is reread from disk.
4866 	 */
4867 	if (journal) {
4868 		transaction_t *transaction;
4869 		tid_t tid;
4870 
4871 		read_lock(&journal->j_state_lock);
4872 		if (journal->j_running_transaction)
4873 			transaction = journal->j_running_transaction;
4874 		else
4875 			transaction = journal->j_committing_transaction;
4876 		if (transaction)
4877 			tid = transaction->t_tid;
4878 		else
4879 			tid = journal->j_commit_sequence;
4880 		read_unlock(&journal->j_state_lock);
4881 		ei->i_sync_tid = tid;
4882 		ei->i_datasync_tid = tid;
4883 	}
4884 
4885 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4886 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4887 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4888 		    EXT4_INODE_SIZE(inode->i_sb)) {
4889 			ret = -EIO;
4890 			goto bad_inode;
4891 		}
4892 		if (ei->i_extra_isize == 0) {
4893 			/* The extra space is currently unused. Use it. */
4894 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4895 					    EXT4_GOOD_OLD_INODE_SIZE;
4896 		} else {
4897 			__le32 *magic = (void *)raw_inode +
4898 					EXT4_GOOD_OLD_INODE_SIZE +
4899 					ei->i_extra_isize;
4900 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4901 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4902 		}
4903 	} else
4904 		ei->i_extra_isize = 0;
4905 
4906 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4907 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4908 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4909 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4910 
4911 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4912 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4913 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4914 			inode->i_version |=
4915 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4916 	}
4917 
4918 	ret = 0;
4919 	if (ei->i_file_acl &&
4920 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4921 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4922 				 ei->i_file_acl);
4923 		ret = -EIO;
4924 		goto bad_inode;
4925 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4926 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4927 		    (S_ISLNK(inode->i_mode) &&
4928 		     !ext4_inode_is_fast_symlink(inode)))
4929 			/* Validate extent which is part of inode */
4930 			ret = ext4_ext_check_inode(inode);
4931 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4932 		   (S_ISLNK(inode->i_mode) &&
4933 		    !ext4_inode_is_fast_symlink(inode))) {
4934 		/* Validate block references which are part of inode */
4935 		ret = ext4_check_inode_blockref(inode);
4936 	}
4937 	if (ret)
4938 		goto bad_inode;
4939 
4940 	if (S_ISREG(inode->i_mode)) {
4941 		inode->i_op = &ext4_file_inode_operations;
4942 		inode->i_fop = &ext4_file_operations;
4943 		ext4_set_aops(inode);
4944 	} else if (S_ISDIR(inode->i_mode)) {
4945 		inode->i_op = &ext4_dir_inode_operations;
4946 		inode->i_fop = &ext4_dir_operations;
4947 	} else if (S_ISLNK(inode->i_mode)) {
4948 		if (ext4_inode_is_fast_symlink(inode)) {
4949 			inode->i_op = &ext4_fast_symlink_inode_operations;
4950 			nd_terminate_link(ei->i_data, inode->i_size,
4951 				sizeof(ei->i_data) - 1);
4952 		} else {
4953 			inode->i_op = &ext4_symlink_inode_operations;
4954 			ext4_set_aops(inode);
4955 		}
4956 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4957 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4958 		inode->i_op = &ext4_special_inode_operations;
4959 		if (raw_inode->i_block[0])
4960 			init_special_inode(inode, inode->i_mode,
4961 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4962 		else
4963 			init_special_inode(inode, inode->i_mode,
4964 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4965 	} else {
4966 		ret = -EIO;
4967 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4968 		goto bad_inode;
4969 	}
4970 	brelse(iloc.bh);
4971 	ext4_set_inode_flags(inode);
4972 	unlock_new_inode(inode);
4973 	return inode;
4974 
4975 bad_inode:
4976 	brelse(iloc.bh);
4977 	iget_failed(inode);
4978 	return ERR_PTR(ret);
4979 }
4980 
4981 static int ext4_inode_blocks_set(handle_t *handle,
4982 				struct ext4_inode *raw_inode,
4983 				struct ext4_inode_info *ei)
4984 {
4985 	struct inode *inode = &(ei->vfs_inode);
4986 	u64 i_blocks = inode->i_blocks;
4987 	struct super_block *sb = inode->i_sb;
4988 
4989 	if (i_blocks <= ~0U) {
4990 		/*
4991 		 * i_blocks can be represnted in a 32 bit variable
4992 		 * as multiple of 512 bytes
4993 		 */
4994 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4995 		raw_inode->i_blocks_high = 0;
4996 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4997 		return 0;
4998 	}
4999 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5000 		return -EFBIG;
5001 
5002 	if (i_blocks <= 0xffffffffffffULL) {
5003 		/*
5004 		 * i_blocks can be represented in a 48 bit variable
5005 		 * as multiple of 512 bytes
5006 		 */
5007 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5008 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5009 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5010 	} else {
5011 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012 		/* i_block is stored in file system block size */
5013 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5014 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5015 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5016 	}
5017 	return 0;
5018 }
5019 
5020 /*
5021  * Post the struct inode info into an on-disk inode location in the
5022  * buffer-cache.  This gobbles the caller's reference to the
5023  * buffer_head in the inode location struct.
5024  *
5025  * The caller must have write access to iloc->bh.
5026  */
5027 static int ext4_do_update_inode(handle_t *handle,
5028 				struct inode *inode,
5029 				struct ext4_iloc *iloc)
5030 {
5031 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5032 	struct ext4_inode_info *ei = EXT4_I(inode);
5033 	struct buffer_head *bh = iloc->bh;
5034 	int err = 0, rc, block;
5035 
5036 	/* For fields not not tracking in the in-memory inode,
5037 	 * initialise them to zero for new inodes. */
5038 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5039 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5040 
5041 	ext4_get_inode_flags(ei);
5042 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5043 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5044 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5045 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5046 /*
5047  * Fix up interoperability with old kernels. Otherwise, old inodes get
5048  * re-used with the upper 16 bits of the uid/gid intact
5049  */
5050 		if (!ei->i_dtime) {
5051 			raw_inode->i_uid_high =
5052 				cpu_to_le16(high_16_bits(inode->i_uid));
5053 			raw_inode->i_gid_high =
5054 				cpu_to_le16(high_16_bits(inode->i_gid));
5055 		} else {
5056 			raw_inode->i_uid_high = 0;
5057 			raw_inode->i_gid_high = 0;
5058 		}
5059 	} else {
5060 		raw_inode->i_uid_low =
5061 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5062 		raw_inode->i_gid_low =
5063 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5064 		raw_inode->i_uid_high = 0;
5065 		raw_inode->i_gid_high = 0;
5066 	}
5067 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5068 
5069 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5070 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5071 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5072 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5073 
5074 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5075 		goto out_brelse;
5076 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5077 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5078 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5079 	    cpu_to_le32(EXT4_OS_HURD))
5080 		raw_inode->i_file_acl_high =
5081 			cpu_to_le16(ei->i_file_acl >> 32);
5082 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5083 	ext4_isize_set(raw_inode, ei->i_disksize);
5084 	if (ei->i_disksize > 0x7fffffffULL) {
5085 		struct super_block *sb = inode->i_sb;
5086 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5087 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5088 				EXT4_SB(sb)->s_es->s_rev_level ==
5089 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5090 			/* If this is the first large file
5091 			 * created, add a flag to the superblock.
5092 			 */
5093 			err = ext4_journal_get_write_access(handle,
5094 					EXT4_SB(sb)->s_sbh);
5095 			if (err)
5096 				goto out_brelse;
5097 			ext4_update_dynamic_rev(sb);
5098 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5099 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5100 			sb->s_dirt = 1;
5101 			ext4_handle_sync(handle);
5102 			err = ext4_handle_dirty_metadata(handle, NULL,
5103 					EXT4_SB(sb)->s_sbh);
5104 		}
5105 	}
5106 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5107 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5108 		if (old_valid_dev(inode->i_rdev)) {
5109 			raw_inode->i_block[0] =
5110 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5111 			raw_inode->i_block[1] = 0;
5112 		} else {
5113 			raw_inode->i_block[0] = 0;
5114 			raw_inode->i_block[1] =
5115 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5116 			raw_inode->i_block[2] = 0;
5117 		}
5118 	} else
5119 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5120 			raw_inode->i_block[block] = ei->i_data[block];
5121 
5122 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5123 	if (ei->i_extra_isize) {
5124 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5125 			raw_inode->i_version_hi =
5126 			cpu_to_le32(inode->i_version >> 32);
5127 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5128 	}
5129 
5130 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5131 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5132 	if (!err)
5133 		err = rc;
5134 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5135 
5136 	ext4_update_inode_fsync_trans(handle, inode, 0);
5137 out_brelse:
5138 	brelse(bh);
5139 	ext4_std_error(inode->i_sb, err);
5140 	return err;
5141 }
5142 
5143 /*
5144  * ext4_write_inode()
5145  *
5146  * We are called from a few places:
5147  *
5148  * - Within generic_file_write() for O_SYNC files.
5149  *   Here, there will be no transaction running. We wait for any running
5150  *   trasnaction to commit.
5151  *
5152  * - Within sys_sync(), kupdate and such.
5153  *   We wait on commit, if tol to.
5154  *
5155  * - Within prune_icache() (PF_MEMALLOC == true)
5156  *   Here we simply return.  We can't afford to block kswapd on the
5157  *   journal commit.
5158  *
5159  * In all cases it is actually safe for us to return without doing anything,
5160  * because the inode has been copied into a raw inode buffer in
5161  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5162  * knfsd.
5163  *
5164  * Note that we are absolutely dependent upon all inode dirtiers doing the
5165  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5166  * which we are interested.
5167  *
5168  * It would be a bug for them to not do this.  The code:
5169  *
5170  *	mark_inode_dirty(inode)
5171  *	stuff();
5172  *	inode->i_size = expr;
5173  *
5174  * is in error because a kswapd-driven write_inode() could occur while
5175  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5176  * will no longer be on the superblock's dirty inode list.
5177  */
5178 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5179 {
5180 	int err;
5181 
5182 	if (current->flags & PF_MEMALLOC)
5183 		return 0;
5184 
5185 	if (EXT4_SB(inode->i_sb)->s_journal) {
5186 		if (ext4_journal_current_handle()) {
5187 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5188 			dump_stack();
5189 			return -EIO;
5190 		}
5191 
5192 		if (wbc->sync_mode != WB_SYNC_ALL)
5193 			return 0;
5194 
5195 		err = ext4_force_commit(inode->i_sb);
5196 	} else {
5197 		struct ext4_iloc iloc;
5198 
5199 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5200 		if (err)
5201 			return err;
5202 		if (wbc->sync_mode == WB_SYNC_ALL)
5203 			sync_dirty_buffer(iloc.bh);
5204 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5205 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5206 					 "IO error syncing inode");
5207 			err = -EIO;
5208 		}
5209 		brelse(iloc.bh);
5210 	}
5211 	return err;
5212 }
5213 
5214 /*
5215  * ext4_setattr()
5216  *
5217  * Called from notify_change.
5218  *
5219  * We want to trap VFS attempts to truncate the file as soon as
5220  * possible.  In particular, we want to make sure that when the VFS
5221  * shrinks i_size, we put the inode on the orphan list and modify
5222  * i_disksize immediately, so that during the subsequent flushing of
5223  * dirty pages and freeing of disk blocks, we can guarantee that any
5224  * commit will leave the blocks being flushed in an unused state on
5225  * disk.  (On recovery, the inode will get truncated and the blocks will
5226  * be freed, so we have a strong guarantee that no future commit will
5227  * leave these blocks visible to the user.)
5228  *
5229  * Another thing we have to assure is that if we are in ordered mode
5230  * and inode is still attached to the committing transaction, we must
5231  * we start writeout of all the dirty pages which are being truncated.
5232  * This way we are sure that all the data written in the previous
5233  * transaction are already on disk (truncate waits for pages under
5234  * writeback).
5235  *
5236  * Called with inode->i_mutex down.
5237  */
5238 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5239 {
5240 	struct inode *inode = dentry->d_inode;
5241 	int error, rc = 0;
5242 	int orphan = 0;
5243 	const unsigned int ia_valid = attr->ia_valid;
5244 
5245 	error = inode_change_ok(inode, attr);
5246 	if (error)
5247 		return error;
5248 
5249 	if (is_quota_modification(inode, attr))
5250 		dquot_initialize(inode);
5251 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5252 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5253 		handle_t *handle;
5254 
5255 		/* (user+group)*(old+new) structure, inode write (sb,
5256 		 * inode block, ? - but truncate inode update has it) */
5257 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5258 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5259 		if (IS_ERR(handle)) {
5260 			error = PTR_ERR(handle);
5261 			goto err_out;
5262 		}
5263 		error = dquot_transfer(inode, attr);
5264 		if (error) {
5265 			ext4_journal_stop(handle);
5266 			return error;
5267 		}
5268 		/* Update corresponding info in inode so that everything is in
5269 		 * one transaction */
5270 		if (attr->ia_valid & ATTR_UID)
5271 			inode->i_uid = attr->ia_uid;
5272 		if (attr->ia_valid & ATTR_GID)
5273 			inode->i_gid = attr->ia_gid;
5274 		error = ext4_mark_inode_dirty(handle, inode);
5275 		ext4_journal_stop(handle);
5276 	}
5277 
5278 	if (attr->ia_valid & ATTR_SIZE) {
5279 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5280 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5281 
5282 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5283 				return -EFBIG;
5284 		}
5285 	}
5286 
5287 	if (S_ISREG(inode->i_mode) &&
5288 	    attr->ia_valid & ATTR_SIZE &&
5289 	    (attr->ia_size < inode->i_size ||
5290 	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5291 		handle_t *handle;
5292 
5293 		handle = ext4_journal_start(inode, 3);
5294 		if (IS_ERR(handle)) {
5295 			error = PTR_ERR(handle);
5296 			goto err_out;
5297 		}
5298 		if (ext4_handle_valid(handle)) {
5299 			error = ext4_orphan_add(handle, inode);
5300 			orphan = 1;
5301 		}
5302 		EXT4_I(inode)->i_disksize = attr->ia_size;
5303 		rc = ext4_mark_inode_dirty(handle, inode);
5304 		if (!error)
5305 			error = rc;
5306 		ext4_journal_stop(handle);
5307 
5308 		if (ext4_should_order_data(inode)) {
5309 			error = ext4_begin_ordered_truncate(inode,
5310 							    attr->ia_size);
5311 			if (error) {
5312 				/* Do as much error cleanup as possible */
5313 				handle = ext4_journal_start(inode, 3);
5314 				if (IS_ERR(handle)) {
5315 					ext4_orphan_del(NULL, inode);
5316 					goto err_out;
5317 				}
5318 				ext4_orphan_del(handle, inode);
5319 				orphan = 0;
5320 				ext4_journal_stop(handle);
5321 				goto err_out;
5322 			}
5323 		}
5324 		/* ext4_truncate will clear the flag */
5325 		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5326 			ext4_truncate(inode);
5327 	}
5328 
5329 	if ((attr->ia_valid & ATTR_SIZE) &&
5330 	    attr->ia_size != i_size_read(inode))
5331 		rc = vmtruncate(inode, attr->ia_size);
5332 
5333 	if (!rc) {
5334 		setattr_copy(inode, attr);
5335 		mark_inode_dirty(inode);
5336 	}
5337 
5338 	/*
5339 	 * If the call to ext4_truncate failed to get a transaction handle at
5340 	 * all, we need to clean up the in-core orphan list manually.
5341 	 */
5342 	if (orphan && inode->i_nlink)
5343 		ext4_orphan_del(NULL, inode);
5344 
5345 	if (!rc && (ia_valid & ATTR_MODE))
5346 		rc = ext4_acl_chmod(inode);
5347 
5348 err_out:
5349 	ext4_std_error(inode->i_sb, error);
5350 	if (!error)
5351 		error = rc;
5352 	return error;
5353 }
5354 
5355 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5356 		 struct kstat *stat)
5357 {
5358 	struct inode *inode;
5359 	unsigned long delalloc_blocks;
5360 
5361 	inode = dentry->d_inode;
5362 	generic_fillattr(inode, stat);
5363 
5364 	/*
5365 	 * We can't update i_blocks if the block allocation is delayed
5366 	 * otherwise in the case of system crash before the real block
5367 	 * allocation is done, we will have i_blocks inconsistent with
5368 	 * on-disk file blocks.
5369 	 * We always keep i_blocks updated together with real
5370 	 * allocation. But to not confuse with user, stat
5371 	 * will return the blocks that include the delayed allocation
5372 	 * blocks for this file.
5373 	 */
5374 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5375 
5376 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5377 	return 0;
5378 }
5379 
5380 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5381 				      int chunk)
5382 {
5383 	int indirects;
5384 
5385 	/* if nrblocks are contiguous */
5386 	if (chunk) {
5387 		/*
5388 		 * With N contiguous data blocks, it need at most
5389 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5390 		 * 2 dindirect blocks
5391 		 * 1 tindirect block
5392 		 */
5393 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5394 		return indirects + 3;
5395 	}
5396 	/*
5397 	 * if nrblocks are not contiguous, worse case, each block touch
5398 	 * a indirect block, and each indirect block touch a double indirect
5399 	 * block, plus a triple indirect block
5400 	 */
5401 	indirects = nrblocks * 2 + 1;
5402 	return indirects;
5403 }
5404 
5405 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5406 {
5407 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5408 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5409 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5410 }
5411 
5412 /*
5413  * Account for index blocks, block groups bitmaps and block group
5414  * descriptor blocks if modify datablocks and index blocks
5415  * worse case, the indexs blocks spread over different block groups
5416  *
5417  * If datablocks are discontiguous, they are possible to spread over
5418  * different block groups too. If they are contiuguous, with flexbg,
5419  * they could still across block group boundary.
5420  *
5421  * Also account for superblock, inode, quota and xattr blocks
5422  */
5423 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5424 {
5425 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5426 	int gdpblocks;
5427 	int idxblocks;
5428 	int ret = 0;
5429 
5430 	/*
5431 	 * How many index blocks need to touch to modify nrblocks?
5432 	 * The "Chunk" flag indicating whether the nrblocks is
5433 	 * physically contiguous on disk
5434 	 *
5435 	 * For Direct IO and fallocate, they calls get_block to allocate
5436 	 * one single extent at a time, so they could set the "Chunk" flag
5437 	 */
5438 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5439 
5440 	ret = idxblocks;
5441 
5442 	/*
5443 	 * Now let's see how many group bitmaps and group descriptors need
5444 	 * to account
5445 	 */
5446 	groups = idxblocks;
5447 	if (chunk)
5448 		groups += 1;
5449 	else
5450 		groups += nrblocks;
5451 
5452 	gdpblocks = groups;
5453 	if (groups > ngroups)
5454 		groups = ngroups;
5455 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5456 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5457 
5458 	/* bitmaps and block group descriptor blocks */
5459 	ret += groups + gdpblocks;
5460 
5461 	/* Blocks for super block, inode, quota and xattr blocks */
5462 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5463 
5464 	return ret;
5465 }
5466 
5467 /*
5468  * Calulate the total number of credits to reserve to fit
5469  * the modification of a single pages into a single transaction,
5470  * which may include multiple chunks of block allocations.
5471  *
5472  * This could be called via ext4_write_begin()
5473  *
5474  * We need to consider the worse case, when
5475  * one new block per extent.
5476  */
5477 int ext4_writepage_trans_blocks(struct inode *inode)
5478 {
5479 	int bpp = ext4_journal_blocks_per_page(inode);
5480 	int ret;
5481 
5482 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5483 
5484 	/* Account for data blocks for journalled mode */
5485 	if (ext4_should_journal_data(inode))
5486 		ret += bpp;
5487 	return ret;
5488 }
5489 
5490 /*
5491  * Calculate the journal credits for a chunk of data modification.
5492  *
5493  * This is called from DIO, fallocate or whoever calling
5494  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5495  *
5496  * journal buffers for data blocks are not included here, as DIO
5497  * and fallocate do no need to journal data buffers.
5498  */
5499 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5500 {
5501 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5502 }
5503 
5504 /*
5505  * The caller must have previously called ext4_reserve_inode_write().
5506  * Give this, we know that the caller already has write access to iloc->bh.
5507  */
5508 int ext4_mark_iloc_dirty(handle_t *handle,
5509 			 struct inode *inode, struct ext4_iloc *iloc)
5510 {
5511 	int err = 0;
5512 
5513 	if (test_opt(inode->i_sb, I_VERSION))
5514 		inode_inc_iversion(inode);
5515 
5516 	/* the do_update_inode consumes one bh->b_count */
5517 	get_bh(iloc->bh);
5518 
5519 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5520 	err = ext4_do_update_inode(handle, inode, iloc);
5521 	put_bh(iloc->bh);
5522 	return err;
5523 }
5524 
5525 /*
5526  * On success, We end up with an outstanding reference count against
5527  * iloc->bh.  This _must_ be cleaned up later.
5528  */
5529 
5530 int
5531 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5532 			 struct ext4_iloc *iloc)
5533 {
5534 	int err;
5535 
5536 	err = ext4_get_inode_loc(inode, iloc);
5537 	if (!err) {
5538 		BUFFER_TRACE(iloc->bh, "get_write_access");
5539 		err = ext4_journal_get_write_access(handle, iloc->bh);
5540 		if (err) {
5541 			brelse(iloc->bh);
5542 			iloc->bh = NULL;
5543 		}
5544 	}
5545 	ext4_std_error(inode->i_sb, err);
5546 	return err;
5547 }
5548 
5549 /*
5550  * Expand an inode by new_extra_isize bytes.
5551  * Returns 0 on success or negative error number on failure.
5552  */
5553 static int ext4_expand_extra_isize(struct inode *inode,
5554 				   unsigned int new_extra_isize,
5555 				   struct ext4_iloc iloc,
5556 				   handle_t *handle)
5557 {
5558 	struct ext4_inode *raw_inode;
5559 	struct ext4_xattr_ibody_header *header;
5560 
5561 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5562 		return 0;
5563 
5564 	raw_inode = ext4_raw_inode(&iloc);
5565 
5566 	header = IHDR(inode, raw_inode);
5567 
5568 	/* No extended attributes present */
5569 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5570 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5571 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5572 			new_extra_isize);
5573 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5574 		return 0;
5575 	}
5576 
5577 	/* try to expand with EAs present */
5578 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5579 					  raw_inode, handle);
5580 }
5581 
5582 /*
5583  * What we do here is to mark the in-core inode as clean with respect to inode
5584  * dirtiness (it may still be data-dirty).
5585  * This means that the in-core inode may be reaped by prune_icache
5586  * without having to perform any I/O.  This is a very good thing,
5587  * because *any* task may call prune_icache - even ones which
5588  * have a transaction open against a different journal.
5589  *
5590  * Is this cheating?  Not really.  Sure, we haven't written the
5591  * inode out, but prune_icache isn't a user-visible syncing function.
5592  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5593  * we start and wait on commits.
5594  *
5595  * Is this efficient/effective?  Well, we're being nice to the system
5596  * by cleaning up our inodes proactively so they can be reaped
5597  * without I/O.  But we are potentially leaving up to five seconds'
5598  * worth of inodes floating about which prune_icache wants us to
5599  * write out.  One way to fix that would be to get prune_icache()
5600  * to do a write_super() to free up some memory.  It has the desired
5601  * effect.
5602  */
5603 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5604 {
5605 	struct ext4_iloc iloc;
5606 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5607 	static unsigned int mnt_count;
5608 	int err, ret;
5609 
5610 	might_sleep();
5611 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5612 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5613 	if (ext4_handle_valid(handle) &&
5614 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5615 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5616 		/*
5617 		 * We need extra buffer credits since we may write into EA block
5618 		 * with this same handle. If journal_extend fails, then it will
5619 		 * only result in a minor loss of functionality for that inode.
5620 		 * If this is felt to be critical, then e2fsck should be run to
5621 		 * force a large enough s_min_extra_isize.
5622 		 */
5623 		if ((jbd2_journal_extend(handle,
5624 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5625 			ret = ext4_expand_extra_isize(inode,
5626 						      sbi->s_want_extra_isize,
5627 						      iloc, handle);
5628 			if (ret) {
5629 				ext4_set_inode_state(inode,
5630 						     EXT4_STATE_NO_EXPAND);
5631 				if (mnt_count !=
5632 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5633 					ext4_warning(inode->i_sb,
5634 					"Unable to expand inode %lu. Delete"
5635 					" some EAs or run e2fsck.",
5636 					inode->i_ino);
5637 					mnt_count =
5638 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5639 				}
5640 			}
5641 		}
5642 	}
5643 	if (!err)
5644 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5645 	return err;
5646 }
5647 
5648 /*
5649  * ext4_dirty_inode() is called from __mark_inode_dirty()
5650  *
5651  * We're really interested in the case where a file is being extended.
5652  * i_size has been changed by generic_commit_write() and we thus need
5653  * to include the updated inode in the current transaction.
5654  *
5655  * Also, dquot_alloc_block() will always dirty the inode when blocks
5656  * are allocated to the file.
5657  *
5658  * If the inode is marked synchronous, we don't honour that here - doing
5659  * so would cause a commit on atime updates, which we don't bother doing.
5660  * We handle synchronous inodes at the highest possible level.
5661  */
5662 void ext4_dirty_inode(struct inode *inode)
5663 {
5664 	handle_t *handle;
5665 
5666 	handle = ext4_journal_start(inode, 2);
5667 	if (IS_ERR(handle))
5668 		goto out;
5669 
5670 	ext4_mark_inode_dirty(handle, inode);
5671 
5672 	ext4_journal_stop(handle);
5673 out:
5674 	return;
5675 }
5676 
5677 #if 0
5678 /*
5679  * Bind an inode's backing buffer_head into this transaction, to prevent
5680  * it from being flushed to disk early.  Unlike
5681  * ext4_reserve_inode_write, this leaves behind no bh reference and
5682  * returns no iloc structure, so the caller needs to repeat the iloc
5683  * lookup to mark the inode dirty later.
5684  */
5685 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5686 {
5687 	struct ext4_iloc iloc;
5688 
5689 	int err = 0;
5690 	if (handle) {
5691 		err = ext4_get_inode_loc(inode, &iloc);
5692 		if (!err) {
5693 			BUFFER_TRACE(iloc.bh, "get_write_access");
5694 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5695 			if (!err)
5696 				err = ext4_handle_dirty_metadata(handle,
5697 								 NULL,
5698 								 iloc.bh);
5699 			brelse(iloc.bh);
5700 		}
5701 	}
5702 	ext4_std_error(inode->i_sb, err);
5703 	return err;
5704 }
5705 #endif
5706 
5707 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5708 {
5709 	journal_t *journal;
5710 	handle_t *handle;
5711 	int err;
5712 
5713 	/*
5714 	 * We have to be very careful here: changing a data block's
5715 	 * journaling status dynamically is dangerous.  If we write a
5716 	 * data block to the journal, change the status and then delete
5717 	 * that block, we risk forgetting to revoke the old log record
5718 	 * from the journal and so a subsequent replay can corrupt data.
5719 	 * So, first we make sure that the journal is empty and that
5720 	 * nobody is changing anything.
5721 	 */
5722 
5723 	journal = EXT4_JOURNAL(inode);
5724 	if (!journal)
5725 		return 0;
5726 	if (is_journal_aborted(journal))
5727 		return -EROFS;
5728 
5729 	jbd2_journal_lock_updates(journal);
5730 	jbd2_journal_flush(journal);
5731 
5732 	/*
5733 	 * OK, there are no updates running now, and all cached data is
5734 	 * synced to disk.  We are now in a completely consistent state
5735 	 * which doesn't have anything in the journal, and we know that
5736 	 * no filesystem updates are running, so it is safe to modify
5737 	 * the inode's in-core data-journaling state flag now.
5738 	 */
5739 
5740 	if (val)
5741 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5742 	else
5743 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5744 	ext4_set_aops(inode);
5745 
5746 	jbd2_journal_unlock_updates(journal);
5747 
5748 	/* Finally we can mark the inode as dirty. */
5749 
5750 	handle = ext4_journal_start(inode, 1);
5751 	if (IS_ERR(handle))
5752 		return PTR_ERR(handle);
5753 
5754 	err = ext4_mark_inode_dirty(handle, inode);
5755 	ext4_handle_sync(handle);
5756 	ext4_journal_stop(handle);
5757 	ext4_std_error(inode->i_sb, err);
5758 
5759 	return err;
5760 }
5761 
5762 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5763 {
5764 	return !buffer_mapped(bh);
5765 }
5766 
5767 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5768 {
5769 	struct page *page = vmf->page;
5770 	loff_t size;
5771 	unsigned long len;
5772 	int ret = -EINVAL;
5773 	void *fsdata;
5774 	struct file *file = vma->vm_file;
5775 	struct inode *inode = file->f_path.dentry->d_inode;
5776 	struct address_space *mapping = inode->i_mapping;
5777 
5778 	/*
5779 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5780 	 * get i_mutex because we are already holding mmap_sem.
5781 	 */
5782 	down_read(&inode->i_alloc_sem);
5783 	size = i_size_read(inode);
5784 	if (page->mapping != mapping || size <= page_offset(page)
5785 	    || !PageUptodate(page)) {
5786 		/* page got truncated from under us? */
5787 		goto out_unlock;
5788 	}
5789 	ret = 0;
5790 	if (PageMappedToDisk(page))
5791 		goto out_unlock;
5792 
5793 	if (page->index == size >> PAGE_CACHE_SHIFT)
5794 		len = size & ~PAGE_CACHE_MASK;
5795 	else
5796 		len = PAGE_CACHE_SIZE;
5797 
5798 	lock_page(page);
5799 	/*
5800 	 * return if we have all the buffers mapped. This avoid
5801 	 * the need to call write_begin/write_end which does a
5802 	 * journal_start/journal_stop which can block and take
5803 	 * long time
5804 	 */
5805 	if (page_has_buffers(page)) {
5806 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5807 					ext4_bh_unmapped)) {
5808 			unlock_page(page);
5809 			goto out_unlock;
5810 		}
5811 	}
5812 	unlock_page(page);
5813 	/*
5814 	 * OK, we need to fill the hole... Do write_begin write_end
5815 	 * to do block allocation/reservation.We are not holding
5816 	 * inode.i__mutex here. That allow * parallel write_begin,
5817 	 * write_end call. lock_page prevent this from happening
5818 	 * on the same page though
5819 	 */
5820 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5821 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5822 	if (ret < 0)
5823 		goto out_unlock;
5824 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5825 			len, len, page, fsdata);
5826 	if (ret < 0)
5827 		goto out_unlock;
5828 	ret = 0;
5829 out_unlock:
5830 	if (ret)
5831 		ret = VM_FAULT_SIGBUS;
5832 	up_read(&inode->i_alloc_sem);
5833 	return ret;
5834 }
5835