xref: /openbmc/linux/fs/ext4/inode.c (revision c6f40468657d16e4010ef84bf32a761feb3469ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 			 struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 				  int pextents);
145 
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 
156 		if (ext4_has_inline_data(inode))
157 			return 0;
158 
159 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 	}
161 	return S_ISLNK(inode->i_mode) && inode->i_size &&
162 	       (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 	/*
173 	 * Credits for final inode cleanup and freeing:
174 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 	 */
177 	int extra_credits = 6;
178 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 	bool freeze_protected = false;
180 
181 	trace_ext4_evict_inode(inode);
182 
183 	if (inode->i_nlink) {
184 		/*
185 		 * When journalling data dirty buffers are tracked only in the
186 		 * journal. So although mm thinks everything is clean and
187 		 * ready for reaping the inode might still have some pages to
188 		 * write in the running transaction or waiting to be
189 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 		 * (via truncate_inode_pages()) to discard these buffers can
191 		 * cause data loss. Also even if we did not discard these
192 		 * buffers, we would have no way to find them after the inode
193 		 * is reaped and thus user could see stale data if he tries to
194 		 * read them before the transaction is checkpointed. So be
195 		 * careful and force everything to disk here... We use
196 		 * ei->i_datasync_tid to store the newest transaction
197 		 * containing inode's data.
198 		 *
199 		 * Note that directories do not have this problem because they
200 		 * don't use page cache.
201 		 */
202 		if (inode->i_ino != EXT4_JOURNAL_INO &&
203 		    ext4_should_journal_data(inode) &&
204 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 		    inode->i_data.nrpages) {
206 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 
209 			jbd2_complete_transaction(journal, commit_tid);
210 			filemap_write_and_wait(&inode->i_data);
211 		}
212 		truncate_inode_pages_final(&inode->i_data);
213 
214 		goto no_delete;
215 	}
216 
217 	if (is_bad_inode(inode))
218 		goto no_delete;
219 	dquot_initialize(inode);
220 
221 	if (ext4_should_order_data(inode))
222 		ext4_begin_ordered_truncate(inode, 0);
223 	truncate_inode_pages_final(&inode->i_data);
224 
225 	/*
226 	 * For inodes with journalled data, transaction commit could have
227 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 	 * flag but we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list)) {
231 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 		inode_io_list_del(inode);
233 	}
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it. When we are in a running transaction though,
238 	 * we are already protected against freezing and we cannot grab further
239 	 * protection due to lock ordering constraints.
240 	 */
241 	if (!ext4_journal_current_handle()) {
242 		sb_start_intwrite(inode->i_sb);
243 		freeze_protected = true;
244 	}
245 
246 	if (!IS_NOQUOTA(inode))
247 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248 
249 	/*
250 	 * Block bitmap, group descriptor, and inode are accounted in both
251 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 	 */
253 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 	if (IS_ERR(handle)) {
256 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 		/*
258 		 * If we're going to skip the normal cleanup, we still need to
259 		 * make sure that the in-core orphan linked list is properly
260 		 * cleaned up.
261 		 */
262 		ext4_orphan_del(NULL, inode);
263 		if (freeze_protected)
264 			sb_end_intwrite(inode->i_sb);
265 		goto no_delete;
266 	}
267 
268 	if (IS_SYNC(inode))
269 		ext4_handle_sync(handle);
270 
271 	/*
272 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 	 * special handling of symlinks here because i_size is used to
274 	 * determine whether ext4_inode_info->i_data contains symlink data or
275 	 * block mappings. Setting i_size to 0 will remove its fast symlink
276 	 * status. Erase i_data so that it becomes a valid empty block map.
277 	 */
278 	if (ext4_inode_is_fast_symlink(inode))
279 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 	inode->i_size = 0;
281 	err = ext4_mark_inode_dirty(handle, inode);
282 	if (err) {
283 		ext4_warning(inode->i_sb,
284 			     "couldn't mark inode dirty (err %d)", err);
285 		goto stop_handle;
286 	}
287 	if (inode->i_blocks) {
288 		err = ext4_truncate(inode);
289 		if (err) {
290 			ext4_error_err(inode->i_sb, -err,
291 				       "couldn't truncate inode %lu (err %d)",
292 				       inode->i_ino, err);
293 			goto stop_handle;
294 		}
295 	}
296 
297 	/* Remove xattr references. */
298 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 				      extra_credits);
300 	if (err) {
301 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 		ext4_journal_stop(handle);
304 		ext4_orphan_del(NULL, inode);
305 		if (freeze_protected)
306 			sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	if (freeze_protected)
336 		sb_end_intwrite(inode->i_sb);
337 	ext4_xattr_inode_array_free(ea_inode_array);
338 	return;
339 no_delete:
340 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
343 }
344 
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348 	return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351 
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357 					int used, int quota_claim)
358 {
359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 	struct ext4_inode_info *ei = EXT4_I(inode);
361 
362 	spin_lock(&ei->i_block_reservation_lock);
363 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 	if (unlikely(used > ei->i_reserved_data_blocks)) {
365 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 			 "with only %d reserved data blocks",
367 			 __func__, inode->i_ino, used,
368 			 ei->i_reserved_data_blocks);
369 		WARN_ON(1);
370 		used = ei->i_reserved_data_blocks;
371 	}
372 
373 	/* Update per-inode reservations */
374 	ei->i_reserved_data_blocks -= used;
375 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 
377 	spin_unlock(&ei->i_block_reservation_lock);
378 
379 	/* Update quota subsystem for data blocks */
380 	if (quota_claim)
381 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 	else {
383 		/*
384 		 * We did fallocate with an offset that is already delayed
385 		 * allocated. So on delayed allocated writeback we should
386 		 * not re-claim the quota for fallocated blocks.
387 		 */
388 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 	}
390 
391 	/*
392 	 * If we have done all the pending block allocations and if
393 	 * there aren't any writers on the inode, we can discard the
394 	 * inode's preallocations.
395 	 */
396 	if ((ei->i_reserved_data_blocks == 0) &&
397 	    !inode_is_open_for_write(inode))
398 		ext4_discard_preallocations(inode, 0);
399 }
400 
401 static int __check_block_validity(struct inode *inode, const char *func,
402 				unsigned int line,
403 				struct ext4_map_blocks *map)
404 {
405 	if (ext4_has_feature_journal(inode->i_sb) &&
406 	    (inode->i_ino ==
407 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 		return 0;
409 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 		ext4_error_inode(inode, func, line, map->m_pblk,
411 				 "lblock %lu mapped to illegal pblock %llu "
412 				 "(length %d)", (unsigned long) map->m_lblk,
413 				 map->m_pblk, map->m_len);
414 		return -EFSCORRUPTED;
415 	}
416 	return 0;
417 }
418 
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 		       ext4_lblk_t len)
421 {
422 	int ret;
423 
424 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 
427 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 	if (ret > 0)
429 		ret = 0;
430 
431 	return ret;
432 }
433 
434 #define check_block_validity(inode, map)	\
435 	__check_block_validity((inode), __func__, __LINE__, (map))
436 
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 				       struct inode *inode,
440 				       struct ext4_map_blocks *es_map,
441 				       struct ext4_map_blocks *map,
442 				       int flags)
443 {
444 	int retval;
445 
446 	map->m_flags = 0;
447 	/*
448 	 * There is a race window that the result is not the same.
449 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
450 	 * is that we lookup a block mapping in extent status tree with
451 	 * out taking i_data_sem.  So at the time the unwritten extent
452 	 * could be converted.
453 	 */
454 	down_read(&EXT4_I(inode)->i_data_sem);
455 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 	} else {
458 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 		  flags, map->m_len, (unsigned long) map->m_lblk);
517 
518 	/*
519 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 	 */
521 	if (unlikely(map->m_len > INT_MAX))
522 		map->m_len = INT_MAX;
523 
524 	/* We can handle the block number less than EXT_MAX_BLOCKS */
525 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 		return -EFSCORRUPTED;
527 
528 	/* Lookup extent status tree firstly */
529 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 	} else {
565 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 	}
567 	if (retval > 0) {
568 		unsigned int status;
569 
570 		if (unlikely(retval != map->m_len)) {
571 			ext4_warning(inode->i_sb,
572 				     "ES len assertion failed for inode "
573 				     "%lu: retval %d != map->m_len %d",
574 				     inode->i_ino, retval, map->m_len);
575 			WARN_ON(1);
576 		}
577 
578 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 		    !(status & EXTENT_STATUS_WRITTEN) &&
582 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 				       map->m_lblk + map->m_len - 1))
584 			status |= EXTENT_STATUS_DELAYED;
585 		ret = ext4_es_insert_extent(inode, map->m_lblk,
586 					    map->m_len, map->m_pblk, status);
587 		if (ret < 0)
588 			retval = ret;
589 	}
590 	up_read((&EXT4_I(inode)->i_data_sem));
591 
592 found:
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 		ret = check_block_validity(inode, map);
595 		if (ret != 0)
596 			return ret;
597 	}
598 
599 	/* If it is only a block(s) look up */
600 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 		return retval;
602 
603 	/*
604 	 * Returns if the blocks have already allocated
605 	 *
606 	 * Note that if blocks have been preallocated
607 	 * ext4_ext_get_block() returns the create = 0
608 	 * with buffer head unmapped.
609 	 */
610 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 		/*
612 		 * If we need to convert extent to unwritten
613 		 * we continue and do the actual work in
614 		 * ext4_ext_map_blocks()
615 		 */
616 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 			return retval;
618 
619 	/*
620 	 * Here we clear m_flags because after allocating an new extent,
621 	 * it will be set again.
622 	 */
623 	map->m_flags &= ~EXT4_MAP_FLAGS;
624 
625 	/*
626 	 * New blocks allocate and/or writing to unwritten extent
627 	 * will possibly result in updating i_data, so we take
628 	 * the write lock of i_data_sem, and call get_block()
629 	 * with create == 1 flag.
630 	 */
631 	down_write(&EXT4_I(inode)->i_data_sem);
632 
633 	/*
634 	 * We need to check for EXT4 here because migrate
635 	 * could have changed the inode type in between
636 	 */
637 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 	} else {
640 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 
642 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 			/*
644 			 * We allocated new blocks which will result in
645 			 * i_data's format changing.  Force the migrate
646 			 * to fail by clearing migrate flags
647 			 */
648 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 		}
650 
651 		/*
652 		 * Update reserved blocks/metadata blocks after successful
653 		 * block allocation which had been deferred till now. We don't
654 		 * support fallocate for non extent files. So we can update
655 		 * reserve space here.
656 		 */
657 		if ((retval > 0) &&
658 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 			ext4_da_update_reserve_space(inode, retval, 1);
660 	}
661 
662 	if (retval > 0) {
663 		unsigned int status;
664 
665 		if (unlikely(retval != map->m_len)) {
666 			ext4_warning(inode->i_sb,
667 				     "ES len assertion failed for inode "
668 				     "%lu: retval %d != map->m_len %d",
669 				     inode->i_ino, retval, map->m_len);
670 			WARN_ON(1);
671 		}
672 
673 		/*
674 		 * We have to zeroout blocks before inserting them into extent
675 		 * status tree. Otherwise someone could look them up there and
676 		 * use them before they are really zeroed. We also have to
677 		 * unmap metadata before zeroing as otherwise writeback can
678 		 * overwrite zeros with stale data from block device.
679 		 */
680 		if (flags & EXT4_GET_BLOCKS_ZERO &&
681 		    map->m_flags & EXT4_MAP_MAPPED &&
682 		    map->m_flags & EXT4_MAP_NEW) {
683 			ret = ext4_issue_zeroout(inode, map->m_lblk,
684 						 map->m_pblk, map->m_len);
685 			if (ret) {
686 				retval = ret;
687 				goto out_sem;
688 			}
689 		}
690 
691 		/*
692 		 * If the extent has been zeroed out, we don't need to update
693 		 * extent status tree.
694 		 */
695 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 			if (ext4_es_is_written(&es))
698 				goto out_sem;
699 		}
700 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 		    !(status & EXTENT_STATUS_WRITTEN) &&
704 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 				       map->m_lblk + map->m_len - 1))
706 			status |= EXTENT_STATUS_DELAYED;
707 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 					    map->m_pblk, status);
709 		if (ret < 0) {
710 			retval = ret;
711 			goto out_sem;
712 		}
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 		ext4_fc_track_range(handle, inode, map->m_lblk,
746 			    map->m_lblk + map->m_len - 1);
747 	}
748 
749 	if (retval < 0)
750 		ext_debug(inode, "failed with err %d\n", retval);
751 	return retval;
752 }
753 
754 /*
755  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756  * we have to be careful as someone else may be manipulating b_state as well.
757  */
758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 {
760 	unsigned long old_state;
761 	unsigned long new_state;
762 
763 	flags &= EXT4_MAP_FLAGS;
764 
765 	/* Dummy buffer_head? Set non-atomically. */
766 	if (!bh->b_page) {
767 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 		return;
769 	}
770 	/*
771 	 * Someone else may be modifying b_state. Be careful! This is ugly but
772 	 * once we get rid of using bh as a container for mapping information
773 	 * to pass to / from get_block functions, this can go away.
774 	 */
775 	do {
776 		old_state = READ_ONCE(bh->b_state);
777 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 	} while (unlikely(
779 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780 }
781 
782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 		   inode->i_ino, create);
825 	return _ext4_get_block(inode, iblock, bh_result,
826 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
827 }
828 
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831 
832 /*
833  * `handle' can be NULL if create is zero
834  */
835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 				ext4_lblk_t block, int map_flags)
837 {
838 	struct ext4_map_blocks map;
839 	struct buffer_head *bh;
840 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 	int err;
842 
843 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		    || handle != NULL || create == 0);
845 
846 	map.m_lblk = block;
847 	map.m_len = 1;
848 	err = ext4_map_blocks(handle, inode, &map, map_flags);
849 
850 	if (err == 0)
851 		return create ? ERR_PTR(-ENOSPC) : NULL;
852 	if (err < 0)
853 		return ERR_PTR(err);
854 
855 	bh = sb_getblk(inode->i_sb, map.m_pblk);
856 	if (unlikely(!bh))
857 		return ERR_PTR(-ENOMEM);
858 	if (map.m_flags & EXT4_MAP_NEW) {
859 		ASSERT(create != 0);
860 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 			    || (handle != NULL));
862 
863 		/*
864 		 * Now that we do not always journal data, we should
865 		 * keep in mind whether this should always journal the
866 		 * new buffer as metadata.  For now, regular file
867 		 * writes use ext4_get_block instead, so it's not a
868 		 * problem.
869 		 */
870 		lock_buffer(bh);
871 		BUFFER_TRACE(bh, "call get_create_access");
872 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
873 						     EXT4_JTR_NONE);
874 		if (unlikely(err)) {
875 			unlock_buffer(bh);
876 			goto errout;
877 		}
878 		if (!buffer_uptodate(bh)) {
879 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
880 			set_buffer_uptodate(bh);
881 		}
882 		unlock_buffer(bh);
883 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
884 		err = ext4_handle_dirty_metadata(handle, inode, bh);
885 		if (unlikely(err))
886 			goto errout;
887 	} else
888 		BUFFER_TRACE(bh, "not a new buffer");
889 	return bh;
890 errout:
891 	brelse(bh);
892 	return ERR_PTR(err);
893 }
894 
895 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
896 			       ext4_lblk_t block, int map_flags)
897 {
898 	struct buffer_head *bh;
899 	int ret;
900 
901 	bh = ext4_getblk(handle, inode, block, map_flags);
902 	if (IS_ERR(bh))
903 		return bh;
904 	if (!bh || ext4_buffer_uptodate(bh))
905 		return bh;
906 
907 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
908 	if (ret) {
909 		put_bh(bh);
910 		return ERR_PTR(ret);
911 	}
912 	return bh;
913 }
914 
915 /* Read a contiguous batch of blocks. */
916 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
917 		     bool wait, struct buffer_head **bhs)
918 {
919 	int i, err;
920 
921 	for (i = 0; i < bh_count; i++) {
922 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
923 		if (IS_ERR(bhs[i])) {
924 			err = PTR_ERR(bhs[i]);
925 			bh_count = i;
926 			goto out_brelse;
927 		}
928 	}
929 
930 	for (i = 0; i < bh_count; i++)
931 		/* Note that NULL bhs[i] is valid because of holes. */
932 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
933 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
934 
935 	if (!wait)
936 		return 0;
937 
938 	for (i = 0; i < bh_count; i++)
939 		if (bhs[i])
940 			wait_on_buffer(bhs[i]);
941 
942 	for (i = 0; i < bh_count; i++) {
943 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
944 			err = -EIO;
945 			goto out_brelse;
946 		}
947 	}
948 	return 0;
949 
950 out_brelse:
951 	for (i = 0; i < bh_count; i++) {
952 		brelse(bhs[i]);
953 		bhs[i] = NULL;
954 	}
955 	return err;
956 }
957 
958 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
959 			   struct buffer_head *head,
960 			   unsigned from,
961 			   unsigned to,
962 			   int *partial,
963 			   int (*fn)(handle_t *handle, struct inode *inode,
964 				     struct buffer_head *bh))
965 {
966 	struct buffer_head *bh;
967 	unsigned block_start, block_end;
968 	unsigned blocksize = head->b_size;
969 	int err, ret = 0;
970 	struct buffer_head *next;
971 
972 	for (bh = head, block_start = 0;
973 	     ret == 0 && (bh != head || !block_start);
974 	     block_start = block_end, bh = next) {
975 		next = bh->b_this_page;
976 		block_end = block_start + blocksize;
977 		if (block_end <= from || block_start >= to) {
978 			if (partial && !buffer_uptodate(bh))
979 				*partial = 1;
980 			continue;
981 		}
982 		err = (*fn)(handle, inode, bh);
983 		if (!ret)
984 			ret = err;
985 	}
986 	return ret;
987 }
988 
989 /*
990  * To preserve ordering, it is essential that the hole instantiation and
991  * the data write be encapsulated in a single transaction.  We cannot
992  * close off a transaction and start a new one between the ext4_get_block()
993  * and the commit_write().  So doing the jbd2_journal_start at the start of
994  * prepare_write() is the right place.
995  *
996  * Also, this function can nest inside ext4_writepage().  In that case, we
997  * *know* that ext4_writepage() has generated enough buffer credits to do the
998  * whole page.  So we won't block on the journal in that case, which is good,
999  * because the caller may be PF_MEMALLOC.
1000  *
1001  * By accident, ext4 can be reentered when a transaction is open via
1002  * quota file writes.  If we were to commit the transaction while thus
1003  * reentered, there can be a deadlock - we would be holding a quota
1004  * lock, and the commit would never complete if another thread had a
1005  * transaction open and was blocking on the quota lock - a ranking
1006  * violation.
1007  *
1008  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1009  * will _not_ run commit under these circumstances because handle->h_ref
1010  * is elevated.  We'll still have enough credits for the tiny quotafile
1011  * write.
1012  */
1013 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1014 				struct buffer_head *bh)
1015 {
1016 	int dirty = buffer_dirty(bh);
1017 	int ret;
1018 
1019 	if (!buffer_mapped(bh) || buffer_freed(bh))
1020 		return 0;
1021 	/*
1022 	 * __block_write_begin() could have dirtied some buffers. Clean
1023 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1024 	 * otherwise about fs integrity issues. Setting of the dirty bit
1025 	 * by __block_write_begin() isn't a real problem here as we clear
1026 	 * the bit before releasing a page lock and thus writeback cannot
1027 	 * ever write the buffer.
1028 	 */
1029 	if (dirty)
1030 		clear_buffer_dirty(bh);
1031 	BUFFER_TRACE(bh, "get write access");
1032 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1033 					    EXT4_JTR_NONE);
1034 	if (!ret && dirty)
1035 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1036 	return ret;
1037 }
1038 
1039 #ifdef CONFIG_FS_ENCRYPTION
1040 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1041 				  get_block_t *get_block)
1042 {
1043 	unsigned from = pos & (PAGE_SIZE - 1);
1044 	unsigned to = from + len;
1045 	struct inode *inode = page->mapping->host;
1046 	unsigned block_start, block_end;
1047 	sector_t block;
1048 	int err = 0;
1049 	unsigned blocksize = inode->i_sb->s_blocksize;
1050 	unsigned bbits;
1051 	struct buffer_head *bh, *head, *wait[2];
1052 	int nr_wait = 0;
1053 	int i;
1054 
1055 	BUG_ON(!PageLocked(page));
1056 	BUG_ON(from > PAGE_SIZE);
1057 	BUG_ON(to > PAGE_SIZE);
1058 	BUG_ON(from > to);
1059 
1060 	if (!page_has_buffers(page))
1061 		create_empty_buffers(page, blocksize, 0);
1062 	head = page_buffers(page);
1063 	bbits = ilog2(blocksize);
1064 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1065 
1066 	for (bh = head, block_start = 0; bh != head || !block_start;
1067 	    block++, block_start = block_end, bh = bh->b_this_page) {
1068 		block_end = block_start + blocksize;
1069 		if (block_end <= from || block_start >= to) {
1070 			if (PageUptodate(page)) {
1071 				set_buffer_uptodate(bh);
1072 			}
1073 			continue;
1074 		}
1075 		if (buffer_new(bh))
1076 			clear_buffer_new(bh);
1077 		if (!buffer_mapped(bh)) {
1078 			WARN_ON(bh->b_size != blocksize);
1079 			err = get_block(inode, block, bh, 1);
1080 			if (err)
1081 				break;
1082 			if (buffer_new(bh)) {
1083 				if (PageUptodate(page)) {
1084 					clear_buffer_new(bh);
1085 					set_buffer_uptodate(bh);
1086 					mark_buffer_dirty(bh);
1087 					continue;
1088 				}
1089 				if (block_end > to || block_start < from)
1090 					zero_user_segments(page, to, block_end,
1091 							   block_start, from);
1092 				continue;
1093 			}
1094 		}
1095 		if (PageUptodate(page)) {
1096 			set_buffer_uptodate(bh);
1097 			continue;
1098 		}
1099 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100 		    !buffer_unwritten(bh) &&
1101 		    (block_start < from || block_end > to)) {
1102 			ext4_read_bh_lock(bh, 0, false);
1103 			wait[nr_wait++] = bh;
1104 		}
1105 	}
1106 	/*
1107 	 * If we issued read requests, let them complete.
1108 	 */
1109 	for (i = 0; i < nr_wait; i++) {
1110 		wait_on_buffer(wait[i]);
1111 		if (!buffer_uptodate(wait[i]))
1112 			err = -EIO;
1113 	}
1114 	if (unlikely(err)) {
1115 		page_zero_new_buffers(page, from, to);
1116 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1117 		for (i = 0; i < nr_wait; i++) {
1118 			int err2;
1119 
1120 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121 								bh_offset(wait[i]));
1122 			if (err2) {
1123 				clear_buffer_uptodate(wait[i]);
1124 				err = err2;
1125 			}
1126 		}
1127 	}
1128 
1129 	return err;
1130 }
1131 #endif
1132 
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134 			    loff_t pos, unsigned len, unsigned flags,
1135 			    struct page **pagep, void **fsdata)
1136 {
1137 	struct inode *inode = mapping->host;
1138 	int ret, needed_blocks;
1139 	handle_t *handle;
1140 	int retries = 0;
1141 	struct page *page;
1142 	pgoff_t index;
1143 	unsigned from, to;
1144 
1145 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146 		return -EIO;
1147 
1148 	trace_ext4_write_begin(inode, pos, len, flags);
1149 	/*
1150 	 * Reserve one block more for addition to orphan list in case
1151 	 * we allocate blocks but write fails for some reason
1152 	 */
1153 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154 	index = pos >> PAGE_SHIFT;
1155 	from = pos & (PAGE_SIZE - 1);
1156 	to = from + len;
1157 
1158 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160 						    flags, pagep);
1161 		if (ret < 0)
1162 			return ret;
1163 		if (ret == 1)
1164 			return 0;
1165 	}
1166 
1167 	/*
1168 	 * grab_cache_page_write_begin() can take a long time if the
1169 	 * system is thrashing due to memory pressure, or if the page
1170 	 * is being written back.  So grab it first before we start
1171 	 * the transaction handle.  This also allows us to allocate
1172 	 * the page (if needed) without using GFP_NOFS.
1173 	 */
1174 retry_grab:
1175 	page = grab_cache_page_write_begin(mapping, index, flags);
1176 	if (!page)
1177 		return -ENOMEM;
1178 	unlock_page(page);
1179 
1180 retry_journal:
1181 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1182 	if (IS_ERR(handle)) {
1183 		put_page(page);
1184 		return PTR_ERR(handle);
1185 	}
1186 
1187 	lock_page(page);
1188 	if (page->mapping != mapping) {
1189 		/* The page got truncated from under us */
1190 		unlock_page(page);
1191 		put_page(page);
1192 		ext4_journal_stop(handle);
1193 		goto retry_grab;
1194 	}
1195 	/* In case writeback began while the page was unlocked */
1196 	wait_for_stable_page(page);
1197 
1198 #ifdef CONFIG_FS_ENCRYPTION
1199 	if (ext4_should_dioread_nolock(inode))
1200 		ret = ext4_block_write_begin(page, pos, len,
1201 					     ext4_get_block_unwritten);
1202 	else
1203 		ret = ext4_block_write_begin(page, pos, len,
1204 					     ext4_get_block);
1205 #else
1206 	if (ext4_should_dioread_nolock(inode))
1207 		ret = __block_write_begin(page, pos, len,
1208 					  ext4_get_block_unwritten);
1209 	else
1210 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 #endif
1212 	if (!ret && ext4_should_journal_data(inode)) {
1213 		ret = ext4_walk_page_buffers(handle, inode,
1214 					     page_buffers(page), from, to, NULL,
1215 					     do_journal_get_write_access);
1216 	}
1217 
1218 	if (ret) {
1219 		bool extended = (pos + len > inode->i_size) &&
1220 				!ext4_verity_in_progress(inode);
1221 
1222 		unlock_page(page);
1223 		/*
1224 		 * __block_write_begin may have instantiated a few blocks
1225 		 * outside i_size.  Trim these off again. Don't need
1226 		 * i_size_read because we hold i_mutex.
1227 		 *
1228 		 * Add inode to orphan list in case we crash before
1229 		 * truncate finishes
1230 		 */
1231 		if (extended && ext4_can_truncate(inode))
1232 			ext4_orphan_add(handle, inode);
1233 
1234 		ext4_journal_stop(handle);
1235 		if (extended) {
1236 			ext4_truncate_failed_write(inode);
1237 			/*
1238 			 * If truncate failed early the inode might
1239 			 * still be on the orphan list; we need to
1240 			 * make sure the inode is removed from the
1241 			 * orphan list in that case.
1242 			 */
1243 			if (inode->i_nlink)
1244 				ext4_orphan_del(NULL, inode);
1245 		}
1246 
1247 		if (ret == -ENOSPC &&
1248 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1249 			goto retry_journal;
1250 		put_page(page);
1251 		return ret;
1252 	}
1253 	*pagep = page;
1254 	return ret;
1255 }
1256 
1257 /* For write_end() in data=journal mode */
1258 static int write_end_fn(handle_t *handle, struct inode *inode,
1259 			struct buffer_head *bh)
1260 {
1261 	int ret;
1262 	if (!buffer_mapped(bh) || buffer_freed(bh))
1263 		return 0;
1264 	set_buffer_uptodate(bh);
1265 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1266 	clear_buffer_meta(bh);
1267 	clear_buffer_prio(bh);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * We need to pick up the new inode size which generic_commit_write gave us
1273  * `file' can be NULL - eg, when called from page_symlink().
1274  *
1275  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1276  * buffers are managed internally.
1277  */
1278 static int ext4_write_end(struct file *file,
1279 			  struct address_space *mapping,
1280 			  loff_t pos, unsigned len, unsigned copied,
1281 			  struct page *page, void *fsdata)
1282 {
1283 	handle_t *handle = ext4_journal_current_handle();
1284 	struct inode *inode = mapping->host;
1285 	loff_t old_size = inode->i_size;
1286 	int ret = 0, ret2;
1287 	int i_size_changed = 0;
1288 	bool verity = ext4_verity_in_progress(inode);
1289 
1290 	trace_ext4_write_end(inode, pos, len, copied);
1291 
1292 	if (ext4_has_inline_data(inode))
1293 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1294 
1295 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1296 	/*
1297 	 * it's important to update i_size while still holding page lock:
1298 	 * page writeout could otherwise come in and zero beyond i_size.
1299 	 *
1300 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1301 	 * blocks are being written past EOF, so skip the i_size update.
1302 	 */
1303 	if (!verity)
1304 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1305 	unlock_page(page);
1306 	put_page(page);
1307 
1308 	if (old_size < pos && !verity)
1309 		pagecache_isize_extended(inode, old_size, pos);
1310 	/*
1311 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1312 	 * makes the holding time of page lock longer. Second, it forces lock
1313 	 * ordering of page lock and transaction start for journaling
1314 	 * filesystems.
1315 	 */
1316 	if (i_size_changed)
1317 		ret = ext4_mark_inode_dirty(handle, inode);
1318 
1319 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1320 		/* if we have allocated more blocks and copied
1321 		 * less. We will have blocks allocated outside
1322 		 * inode->i_size. So truncate them
1323 		 */
1324 		ext4_orphan_add(handle, inode);
1325 
1326 	ret2 = ext4_journal_stop(handle);
1327 	if (!ret)
1328 		ret = ret2;
1329 
1330 	if (pos + len > inode->i_size && !verity) {
1331 		ext4_truncate_failed_write(inode);
1332 		/*
1333 		 * If truncate failed early the inode might still be
1334 		 * on the orphan list; we need to make sure the inode
1335 		 * is removed from the orphan list in that case.
1336 		 */
1337 		if (inode->i_nlink)
1338 			ext4_orphan_del(NULL, inode);
1339 	}
1340 
1341 	return ret ? ret : copied;
1342 }
1343 
1344 /*
1345  * This is a private version of page_zero_new_buffers() which doesn't
1346  * set the buffer to be dirty, since in data=journalled mode we need
1347  * to call ext4_handle_dirty_metadata() instead.
1348  */
1349 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1350 					    struct inode *inode,
1351 					    struct page *page,
1352 					    unsigned from, unsigned to)
1353 {
1354 	unsigned int block_start = 0, block_end;
1355 	struct buffer_head *head, *bh;
1356 
1357 	bh = head = page_buffers(page);
1358 	do {
1359 		block_end = block_start + bh->b_size;
1360 		if (buffer_new(bh)) {
1361 			if (block_end > from && block_start < to) {
1362 				if (!PageUptodate(page)) {
1363 					unsigned start, size;
1364 
1365 					start = max(from, block_start);
1366 					size = min(to, block_end) - start;
1367 
1368 					zero_user(page, start, size);
1369 					write_end_fn(handle, inode, bh);
1370 				}
1371 				clear_buffer_new(bh);
1372 			}
1373 		}
1374 		block_start = block_end;
1375 		bh = bh->b_this_page;
1376 	} while (bh != head);
1377 }
1378 
1379 static int ext4_journalled_write_end(struct file *file,
1380 				     struct address_space *mapping,
1381 				     loff_t pos, unsigned len, unsigned copied,
1382 				     struct page *page, void *fsdata)
1383 {
1384 	handle_t *handle = ext4_journal_current_handle();
1385 	struct inode *inode = mapping->host;
1386 	loff_t old_size = inode->i_size;
1387 	int ret = 0, ret2;
1388 	int partial = 0;
1389 	unsigned from, to;
1390 	int size_changed = 0;
1391 	bool verity = ext4_verity_in_progress(inode);
1392 
1393 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1394 	from = pos & (PAGE_SIZE - 1);
1395 	to = from + len;
1396 
1397 	BUG_ON(!ext4_handle_valid(handle));
1398 
1399 	if (ext4_has_inline_data(inode))
1400 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1401 
1402 	if (unlikely(copied < len) && !PageUptodate(page)) {
1403 		copied = 0;
1404 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1405 	} else {
1406 		if (unlikely(copied < len))
1407 			ext4_journalled_zero_new_buffers(handle, inode, page,
1408 							 from + copied, to);
1409 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1410 					     from, from + copied, &partial,
1411 					     write_end_fn);
1412 		if (!partial)
1413 			SetPageUptodate(page);
1414 	}
1415 	if (!verity)
1416 		size_changed = ext4_update_inode_size(inode, pos + copied);
1417 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1418 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1419 	unlock_page(page);
1420 	put_page(page);
1421 
1422 	if (old_size < pos && !verity)
1423 		pagecache_isize_extended(inode, old_size, pos);
1424 
1425 	if (size_changed) {
1426 		ret2 = ext4_mark_inode_dirty(handle, inode);
1427 		if (!ret)
1428 			ret = ret2;
1429 	}
1430 
1431 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1432 		/* if we have allocated more blocks and copied
1433 		 * less. We will have blocks allocated outside
1434 		 * inode->i_size. So truncate them
1435 		 */
1436 		ext4_orphan_add(handle, inode);
1437 
1438 	ret2 = ext4_journal_stop(handle);
1439 	if (!ret)
1440 		ret = ret2;
1441 	if (pos + len > inode->i_size && !verity) {
1442 		ext4_truncate_failed_write(inode);
1443 		/*
1444 		 * If truncate failed early the inode might still be
1445 		 * on the orphan list; we need to make sure the inode
1446 		 * is removed from the orphan list in that case.
1447 		 */
1448 		if (inode->i_nlink)
1449 			ext4_orphan_del(NULL, inode);
1450 	}
1451 
1452 	return ret ? ret : copied;
1453 }
1454 
1455 /*
1456  * Reserve space for a single cluster
1457  */
1458 static int ext4_da_reserve_space(struct inode *inode)
1459 {
1460 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1461 	struct ext4_inode_info *ei = EXT4_I(inode);
1462 	int ret;
1463 
1464 	/*
1465 	 * We will charge metadata quota at writeout time; this saves
1466 	 * us from metadata over-estimation, though we may go over by
1467 	 * a small amount in the end.  Here we just reserve for data.
1468 	 */
1469 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1470 	if (ret)
1471 		return ret;
1472 
1473 	spin_lock(&ei->i_block_reservation_lock);
1474 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1475 		spin_unlock(&ei->i_block_reservation_lock);
1476 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1477 		return -ENOSPC;
1478 	}
1479 	ei->i_reserved_data_blocks++;
1480 	trace_ext4_da_reserve_space(inode);
1481 	spin_unlock(&ei->i_block_reservation_lock);
1482 
1483 	return 0;       /* success */
1484 }
1485 
1486 void ext4_da_release_space(struct inode *inode, int to_free)
1487 {
1488 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1489 	struct ext4_inode_info *ei = EXT4_I(inode);
1490 
1491 	if (!to_free)
1492 		return;		/* Nothing to release, exit */
1493 
1494 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1495 
1496 	trace_ext4_da_release_space(inode, to_free);
1497 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1498 		/*
1499 		 * if there aren't enough reserved blocks, then the
1500 		 * counter is messed up somewhere.  Since this
1501 		 * function is called from invalidate page, it's
1502 		 * harmless to return without any action.
1503 		 */
1504 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1505 			 "ino %lu, to_free %d with only %d reserved "
1506 			 "data blocks", inode->i_ino, to_free,
1507 			 ei->i_reserved_data_blocks);
1508 		WARN_ON(1);
1509 		to_free = ei->i_reserved_data_blocks;
1510 	}
1511 	ei->i_reserved_data_blocks -= to_free;
1512 
1513 	/* update fs dirty data blocks counter */
1514 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1515 
1516 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1517 
1518 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1519 }
1520 
1521 /*
1522  * Delayed allocation stuff
1523  */
1524 
1525 struct mpage_da_data {
1526 	struct inode *inode;
1527 	struct writeback_control *wbc;
1528 
1529 	pgoff_t first_page;	/* The first page to write */
1530 	pgoff_t next_page;	/* Current page to examine */
1531 	pgoff_t last_page;	/* Last page to examine */
1532 	/*
1533 	 * Extent to map - this can be after first_page because that can be
1534 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535 	 * is delalloc or unwritten.
1536 	 */
1537 	struct ext4_map_blocks map;
1538 	struct ext4_io_submit io_submit;	/* IO submission data */
1539 	unsigned int do_map:1;
1540 	unsigned int scanned_until_end:1;
1541 };
1542 
1543 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1544 				       bool invalidate)
1545 {
1546 	int nr_pages, i;
1547 	pgoff_t index, end;
1548 	struct pagevec pvec;
1549 	struct inode *inode = mpd->inode;
1550 	struct address_space *mapping = inode->i_mapping;
1551 
1552 	/* This is necessary when next_page == 0. */
1553 	if (mpd->first_page >= mpd->next_page)
1554 		return;
1555 
1556 	mpd->scanned_until_end = 0;
1557 	index = mpd->first_page;
1558 	end   = mpd->next_page - 1;
1559 	if (invalidate) {
1560 		ext4_lblk_t start, last;
1561 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1562 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1563 		ext4_es_remove_extent(inode, start, last - start + 1);
1564 	}
1565 
1566 	pagevec_init(&pvec);
1567 	while (index <= end) {
1568 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1569 		if (nr_pages == 0)
1570 			break;
1571 		for (i = 0; i < nr_pages; i++) {
1572 			struct page *page = pvec.pages[i];
1573 
1574 			BUG_ON(!PageLocked(page));
1575 			BUG_ON(PageWriteback(page));
1576 			if (invalidate) {
1577 				if (page_mapped(page))
1578 					clear_page_dirty_for_io(page);
1579 				block_invalidatepage(page, 0, PAGE_SIZE);
1580 				ClearPageUptodate(page);
1581 			}
1582 			unlock_page(page);
1583 		}
1584 		pagevec_release(&pvec);
1585 	}
1586 }
1587 
1588 static void ext4_print_free_blocks(struct inode *inode)
1589 {
1590 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1591 	struct super_block *sb = inode->i_sb;
1592 	struct ext4_inode_info *ei = EXT4_I(inode);
1593 
1594 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1595 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1596 			ext4_count_free_clusters(sb)));
1597 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1598 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1599 	       (long long) EXT4_C2B(EXT4_SB(sb),
1600 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1601 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1602 	       (long long) EXT4_C2B(EXT4_SB(sb),
1603 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1604 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1605 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1606 		 ei->i_reserved_data_blocks);
1607 	return;
1608 }
1609 
1610 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1611 				      struct buffer_head *bh)
1612 {
1613 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1614 }
1615 
1616 /*
1617  * ext4_insert_delayed_block - adds a delayed block to the extents status
1618  *                             tree, incrementing the reserved cluster/block
1619  *                             count or making a pending reservation
1620  *                             where needed
1621  *
1622  * @inode - file containing the newly added block
1623  * @lblk - logical block to be added
1624  *
1625  * Returns 0 on success, negative error code on failure.
1626  */
1627 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1628 {
1629 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630 	int ret;
1631 	bool allocated = false;
1632 	bool reserved = false;
1633 
1634 	/*
1635 	 * If the cluster containing lblk is shared with a delayed,
1636 	 * written, or unwritten extent in a bigalloc file system, it's
1637 	 * already been accounted for and does not need to be reserved.
1638 	 * A pending reservation must be made for the cluster if it's
1639 	 * shared with a written or unwritten extent and doesn't already
1640 	 * have one.  Written and unwritten extents can be purged from the
1641 	 * extents status tree if the system is under memory pressure, so
1642 	 * it's necessary to examine the extent tree if a search of the
1643 	 * extents status tree doesn't get a match.
1644 	 */
1645 	if (sbi->s_cluster_ratio == 1) {
1646 		ret = ext4_da_reserve_space(inode);
1647 		if (ret != 0)   /* ENOSPC */
1648 			goto errout;
1649 		reserved = true;
1650 	} else {   /* bigalloc */
1651 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1652 			if (!ext4_es_scan_clu(inode,
1653 					      &ext4_es_is_mapped, lblk)) {
1654 				ret = ext4_clu_mapped(inode,
1655 						      EXT4_B2C(sbi, lblk));
1656 				if (ret < 0)
1657 					goto errout;
1658 				if (ret == 0) {
1659 					ret = ext4_da_reserve_space(inode);
1660 					if (ret != 0)   /* ENOSPC */
1661 						goto errout;
1662 					reserved = true;
1663 				} else {
1664 					allocated = true;
1665 				}
1666 			} else {
1667 				allocated = true;
1668 			}
1669 		}
1670 	}
1671 
1672 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1673 	if (ret && reserved)
1674 		ext4_da_release_space(inode, 1);
1675 
1676 errout:
1677 	return ret;
1678 }
1679 
1680 /*
1681  * This function is grabs code from the very beginning of
1682  * ext4_map_blocks, but assumes that the caller is from delayed write
1683  * time. This function looks up the requested blocks and sets the
1684  * buffer delay bit under the protection of i_data_sem.
1685  */
1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687 			      struct ext4_map_blocks *map,
1688 			      struct buffer_head *bh)
1689 {
1690 	struct extent_status es;
1691 	int retval;
1692 	sector_t invalid_block = ~((sector_t) 0xffff);
1693 #ifdef ES_AGGRESSIVE_TEST
1694 	struct ext4_map_blocks orig_map;
1695 
1696 	memcpy(&orig_map, map, sizeof(*map));
1697 #endif
1698 
1699 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700 		invalid_block = ~0;
1701 
1702 	map->m_flags = 0;
1703 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704 		  (unsigned long) map->m_lblk);
1705 
1706 	/* Lookup extent status tree firstly */
1707 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708 		if (ext4_es_is_hole(&es)) {
1709 			retval = 0;
1710 			down_read(&EXT4_I(inode)->i_data_sem);
1711 			goto add_delayed;
1712 		}
1713 
1714 		/*
1715 		 * Delayed extent could be allocated by fallocate.
1716 		 * So we need to check it.
1717 		 */
1718 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1719 			map_bh(bh, inode->i_sb, invalid_block);
1720 			set_buffer_new(bh);
1721 			set_buffer_delay(bh);
1722 			return 0;
1723 		}
1724 
1725 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1726 		retval = es.es_len - (iblock - es.es_lblk);
1727 		if (retval > map->m_len)
1728 			retval = map->m_len;
1729 		map->m_len = retval;
1730 		if (ext4_es_is_written(&es))
1731 			map->m_flags |= EXT4_MAP_MAPPED;
1732 		else if (ext4_es_is_unwritten(&es))
1733 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1734 		else
1735 			BUG();
1736 
1737 #ifdef ES_AGGRESSIVE_TEST
1738 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1739 #endif
1740 		return retval;
1741 	}
1742 
1743 	/*
1744 	 * Try to see if we can get the block without requesting a new
1745 	 * file system block.
1746 	 */
1747 	down_read(&EXT4_I(inode)->i_data_sem);
1748 	if (ext4_has_inline_data(inode))
1749 		retval = 0;
1750 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1751 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1752 	else
1753 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1754 
1755 add_delayed:
1756 	if (retval == 0) {
1757 		int ret;
1758 
1759 		/*
1760 		 * XXX: __block_prepare_write() unmaps passed block,
1761 		 * is it OK?
1762 		 */
1763 
1764 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1765 		if (ret != 0) {
1766 			retval = ret;
1767 			goto out_unlock;
1768 		}
1769 
1770 		map_bh(bh, inode->i_sb, invalid_block);
1771 		set_buffer_new(bh);
1772 		set_buffer_delay(bh);
1773 	} else if (retval > 0) {
1774 		int ret;
1775 		unsigned int status;
1776 
1777 		if (unlikely(retval != map->m_len)) {
1778 			ext4_warning(inode->i_sb,
1779 				     "ES len assertion failed for inode "
1780 				     "%lu: retval %d != map->m_len %d",
1781 				     inode->i_ino, retval, map->m_len);
1782 			WARN_ON(1);
1783 		}
1784 
1785 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1786 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1787 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1788 					    map->m_pblk, status);
1789 		if (ret != 0)
1790 			retval = ret;
1791 	}
1792 
1793 out_unlock:
1794 	up_read((&EXT4_I(inode)->i_data_sem));
1795 
1796 	return retval;
1797 }
1798 
1799 /*
1800  * This is a special get_block_t callback which is used by
1801  * ext4_da_write_begin().  It will either return mapped block or
1802  * reserve space for a single block.
1803  *
1804  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1805  * We also have b_blocknr = -1 and b_bdev initialized properly
1806  *
1807  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1808  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1809  * initialized properly.
1810  */
1811 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1812 			   struct buffer_head *bh, int create)
1813 {
1814 	struct ext4_map_blocks map;
1815 	int ret = 0;
1816 
1817 	BUG_ON(create == 0);
1818 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1819 
1820 	map.m_lblk = iblock;
1821 	map.m_len = 1;
1822 
1823 	/*
1824 	 * first, we need to know whether the block is allocated already
1825 	 * preallocated blocks are unmapped but should treated
1826 	 * the same as allocated blocks.
1827 	 */
1828 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1829 	if (ret <= 0)
1830 		return ret;
1831 
1832 	map_bh(bh, inode->i_sb, map.m_pblk);
1833 	ext4_update_bh_state(bh, map.m_flags);
1834 
1835 	if (buffer_unwritten(bh)) {
1836 		/* A delayed write to unwritten bh should be marked
1837 		 * new and mapped.  Mapped ensures that we don't do
1838 		 * get_block multiple times when we write to the same
1839 		 * offset and new ensures that we do proper zero out
1840 		 * for partial write.
1841 		 */
1842 		set_buffer_new(bh);
1843 		set_buffer_mapped(bh);
1844 	}
1845 	return 0;
1846 }
1847 
1848 static int bget_one(handle_t *handle, struct inode *inode,
1849 		    struct buffer_head *bh)
1850 {
1851 	get_bh(bh);
1852 	return 0;
1853 }
1854 
1855 static int bput_one(handle_t *handle, struct inode *inode,
1856 		    struct buffer_head *bh)
1857 {
1858 	put_bh(bh);
1859 	return 0;
1860 }
1861 
1862 static int __ext4_journalled_writepage(struct page *page,
1863 				       unsigned int len)
1864 {
1865 	struct address_space *mapping = page->mapping;
1866 	struct inode *inode = mapping->host;
1867 	struct buffer_head *page_bufs = NULL;
1868 	handle_t *handle = NULL;
1869 	int ret = 0, err = 0;
1870 	int inline_data = ext4_has_inline_data(inode);
1871 	struct buffer_head *inode_bh = NULL;
1872 
1873 	ClearPageChecked(page);
1874 
1875 	if (inline_data) {
1876 		BUG_ON(page->index != 0);
1877 		BUG_ON(len > ext4_get_max_inline_size(inode));
1878 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1879 		if (inode_bh == NULL)
1880 			goto out;
1881 	} else {
1882 		page_bufs = page_buffers(page);
1883 		if (!page_bufs) {
1884 			BUG();
1885 			goto out;
1886 		}
1887 		ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1888 				       NULL, bget_one);
1889 	}
1890 	/*
1891 	 * We need to release the page lock before we start the
1892 	 * journal, so grab a reference so the page won't disappear
1893 	 * out from under us.
1894 	 */
1895 	get_page(page);
1896 	unlock_page(page);
1897 
1898 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1899 				    ext4_writepage_trans_blocks(inode));
1900 	if (IS_ERR(handle)) {
1901 		ret = PTR_ERR(handle);
1902 		put_page(page);
1903 		goto out_no_pagelock;
1904 	}
1905 	BUG_ON(!ext4_handle_valid(handle));
1906 
1907 	lock_page(page);
1908 	put_page(page);
1909 	if (page->mapping != mapping) {
1910 		/* The page got truncated from under us */
1911 		ext4_journal_stop(handle);
1912 		ret = 0;
1913 		goto out;
1914 	}
1915 
1916 	if (inline_data) {
1917 		ret = ext4_mark_inode_dirty(handle, inode);
1918 	} else {
1919 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1920 					     NULL, do_journal_get_write_access);
1921 
1922 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1923 					     NULL, write_end_fn);
1924 	}
1925 	if (ret == 0)
1926 		ret = err;
1927 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1928 	if (ret == 0)
1929 		ret = err;
1930 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1931 	err = ext4_journal_stop(handle);
1932 	if (!ret)
1933 		ret = err;
1934 
1935 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1936 out:
1937 	unlock_page(page);
1938 out_no_pagelock:
1939 	if (!inline_data && page_bufs)
1940 		ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1941 				       NULL, bput_one);
1942 	brelse(inode_bh);
1943 	return ret;
1944 }
1945 
1946 /*
1947  * Note that we don't need to start a transaction unless we're journaling data
1948  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1949  * need to file the inode to the transaction's list in ordered mode because if
1950  * we are writing back data added by write(), the inode is already there and if
1951  * we are writing back data modified via mmap(), no one guarantees in which
1952  * transaction the data will hit the disk. In case we are journaling data, we
1953  * cannot start transaction directly because transaction start ranks above page
1954  * lock so we have to do some magic.
1955  *
1956  * This function can get called via...
1957  *   - ext4_writepages after taking page lock (have journal handle)
1958  *   - journal_submit_inode_data_buffers (no journal handle)
1959  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1960  *   - grab_page_cache when doing write_begin (have journal handle)
1961  *
1962  * We don't do any block allocation in this function. If we have page with
1963  * multiple blocks we need to write those buffer_heads that are mapped. This
1964  * is important for mmaped based write. So if we do with blocksize 1K
1965  * truncate(f, 1024);
1966  * a = mmap(f, 0, 4096);
1967  * a[0] = 'a';
1968  * truncate(f, 4096);
1969  * we have in the page first buffer_head mapped via page_mkwrite call back
1970  * but other buffer_heads would be unmapped but dirty (dirty done via the
1971  * do_wp_page). So writepage should write the first block. If we modify
1972  * the mmap area beyond 1024 we will again get a page_fault and the
1973  * page_mkwrite callback will do the block allocation and mark the
1974  * buffer_heads mapped.
1975  *
1976  * We redirty the page if we have any buffer_heads that is either delay or
1977  * unwritten in the page.
1978  *
1979  * We can get recursively called as show below.
1980  *
1981  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1982  *		ext4_writepage()
1983  *
1984  * But since we don't do any block allocation we should not deadlock.
1985  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1986  */
1987 static int ext4_writepage(struct page *page,
1988 			  struct writeback_control *wbc)
1989 {
1990 	int ret = 0;
1991 	loff_t size;
1992 	unsigned int len;
1993 	struct buffer_head *page_bufs = NULL;
1994 	struct inode *inode = page->mapping->host;
1995 	struct ext4_io_submit io_submit;
1996 	bool keep_towrite = false;
1997 
1998 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1999 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2000 		unlock_page(page);
2001 		return -EIO;
2002 	}
2003 
2004 	trace_ext4_writepage(page);
2005 	size = i_size_read(inode);
2006 	if (page->index == size >> PAGE_SHIFT &&
2007 	    !ext4_verity_in_progress(inode))
2008 		len = size & ~PAGE_MASK;
2009 	else
2010 		len = PAGE_SIZE;
2011 
2012 	page_bufs = page_buffers(page);
2013 	/*
2014 	 * We cannot do block allocation or other extent handling in this
2015 	 * function. If there are buffers needing that, we have to redirty
2016 	 * the page. But we may reach here when we do a journal commit via
2017 	 * journal_submit_inode_data_buffers() and in that case we must write
2018 	 * allocated buffers to achieve data=ordered mode guarantees.
2019 	 *
2020 	 * Also, if there is only one buffer per page (the fs block
2021 	 * size == the page size), if one buffer needs block
2022 	 * allocation or needs to modify the extent tree to clear the
2023 	 * unwritten flag, we know that the page can't be written at
2024 	 * all, so we might as well refuse the write immediately.
2025 	 * Unfortunately if the block size != page size, we can't as
2026 	 * easily detect this case using ext4_walk_page_buffers(), but
2027 	 * for the extremely common case, this is an optimization that
2028 	 * skips a useless round trip through ext4_bio_write_page().
2029 	 */
2030 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2031 				   ext4_bh_delay_or_unwritten)) {
2032 		redirty_page_for_writepage(wbc, page);
2033 		if ((current->flags & PF_MEMALLOC) ||
2034 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2035 			/*
2036 			 * For memory cleaning there's no point in writing only
2037 			 * some buffers. So just bail out. Warn if we came here
2038 			 * from direct reclaim.
2039 			 */
2040 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2041 							== PF_MEMALLOC);
2042 			unlock_page(page);
2043 			return 0;
2044 		}
2045 		keep_towrite = true;
2046 	}
2047 
2048 	if (PageChecked(page) && ext4_should_journal_data(inode))
2049 		/*
2050 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2051 		 * doesn't seem much point in redirtying the page here.
2052 		 */
2053 		return __ext4_journalled_writepage(page, len);
2054 
2055 	ext4_io_submit_init(&io_submit, wbc);
2056 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2057 	if (!io_submit.io_end) {
2058 		redirty_page_for_writepage(wbc, page);
2059 		unlock_page(page);
2060 		return -ENOMEM;
2061 	}
2062 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2063 	ext4_io_submit(&io_submit);
2064 	/* Drop io_end reference we got from init */
2065 	ext4_put_io_end_defer(io_submit.io_end);
2066 	return ret;
2067 }
2068 
2069 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2070 {
2071 	int len;
2072 	loff_t size;
2073 	int err;
2074 
2075 	BUG_ON(page->index != mpd->first_page);
2076 	clear_page_dirty_for_io(page);
2077 	/*
2078 	 * We have to be very careful here!  Nothing protects writeback path
2079 	 * against i_size changes and the page can be writeably mapped into
2080 	 * page tables. So an application can be growing i_size and writing
2081 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2082 	 * write-protects our page in page tables and the page cannot get
2083 	 * written to again until we release page lock. So only after
2084 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2085 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2086 	 * on the barrier provided by TestClearPageDirty in
2087 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2088 	 * after page tables are updated.
2089 	 */
2090 	size = i_size_read(mpd->inode);
2091 	if (page->index == size >> PAGE_SHIFT &&
2092 	    !ext4_verity_in_progress(mpd->inode))
2093 		len = size & ~PAGE_MASK;
2094 	else
2095 		len = PAGE_SIZE;
2096 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2097 	if (!err)
2098 		mpd->wbc->nr_to_write--;
2099 	mpd->first_page++;
2100 
2101 	return err;
2102 }
2103 
2104 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2105 
2106 /*
2107  * mballoc gives us at most this number of blocks...
2108  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2109  * The rest of mballoc seems to handle chunks up to full group size.
2110  */
2111 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2112 
2113 /*
2114  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2115  *
2116  * @mpd - extent of blocks
2117  * @lblk - logical number of the block in the file
2118  * @bh - buffer head we want to add to the extent
2119  *
2120  * The function is used to collect contig. blocks in the same state. If the
2121  * buffer doesn't require mapping for writeback and we haven't started the
2122  * extent of buffers to map yet, the function returns 'true' immediately - the
2123  * caller can write the buffer right away. Otherwise the function returns true
2124  * if the block has been added to the extent, false if the block couldn't be
2125  * added.
2126  */
2127 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2128 				   struct buffer_head *bh)
2129 {
2130 	struct ext4_map_blocks *map = &mpd->map;
2131 
2132 	/* Buffer that doesn't need mapping for writeback? */
2133 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2134 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2135 		/* So far no extent to map => we write the buffer right away */
2136 		if (map->m_len == 0)
2137 			return true;
2138 		return false;
2139 	}
2140 
2141 	/* First block in the extent? */
2142 	if (map->m_len == 0) {
2143 		/* We cannot map unless handle is started... */
2144 		if (!mpd->do_map)
2145 			return false;
2146 		map->m_lblk = lblk;
2147 		map->m_len = 1;
2148 		map->m_flags = bh->b_state & BH_FLAGS;
2149 		return true;
2150 	}
2151 
2152 	/* Don't go larger than mballoc is willing to allocate */
2153 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2154 		return false;
2155 
2156 	/* Can we merge the block to our big extent? */
2157 	if (lblk == map->m_lblk + map->m_len &&
2158 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2159 		map->m_len++;
2160 		return true;
2161 	}
2162 	return false;
2163 }
2164 
2165 /*
2166  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2167  *
2168  * @mpd - extent of blocks for mapping
2169  * @head - the first buffer in the page
2170  * @bh - buffer we should start processing from
2171  * @lblk - logical number of the block in the file corresponding to @bh
2172  *
2173  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2174  * the page for IO if all buffers in this page were mapped and there's no
2175  * accumulated extent of buffers to map or add buffers in the page to the
2176  * extent of buffers to map. The function returns 1 if the caller can continue
2177  * by processing the next page, 0 if it should stop adding buffers to the
2178  * extent to map because we cannot extend it anymore. It can also return value
2179  * < 0 in case of error during IO submission.
2180  */
2181 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2182 				   struct buffer_head *head,
2183 				   struct buffer_head *bh,
2184 				   ext4_lblk_t lblk)
2185 {
2186 	struct inode *inode = mpd->inode;
2187 	int err;
2188 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2189 							>> inode->i_blkbits;
2190 
2191 	if (ext4_verity_in_progress(inode))
2192 		blocks = EXT_MAX_BLOCKS;
2193 
2194 	do {
2195 		BUG_ON(buffer_locked(bh));
2196 
2197 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2198 			/* Found extent to map? */
2199 			if (mpd->map.m_len)
2200 				return 0;
2201 			/* Buffer needs mapping and handle is not started? */
2202 			if (!mpd->do_map)
2203 				return 0;
2204 			/* Everything mapped so far and we hit EOF */
2205 			break;
2206 		}
2207 	} while (lblk++, (bh = bh->b_this_page) != head);
2208 	/* So far everything mapped? Submit the page for IO. */
2209 	if (mpd->map.m_len == 0) {
2210 		err = mpage_submit_page(mpd, head->b_page);
2211 		if (err < 0)
2212 			return err;
2213 	}
2214 	if (lblk >= blocks) {
2215 		mpd->scanned_until_end = 1;
2216 		return 0;
2217 	}
2218 	return 1;
2219 }
2220 
2221 /*
2222  * mpage_process_page - update page buffers corresponding to changed extent and
2223  *		       may submit fully mapped page for IO
2224  *
2225  * @mpd		- description of extent to map, on return next extent to map
2226  * @m_lblk	- logical block mapping.
2227  * @m_pblk	- corresponding physical mapping.
2228  * @map_bh	- determines on return whether this page requires any further
2229  *		  mapping or not.
2230  * Scan given page buffers corresponding to changed extent and update buffer
2231  * state according to new extent state.
2232  * We map delalloc buffers to their physical location, clear unwritten bits.
2233  * If the given page is not fully mapped, we update @map to the next extent in
2234  * the given page that needs mapping & return @map_bh as true.
2235  */
2236 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2237 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2238 			      bool *map_bh)
2239 {
2240 	struct buffer_head *head, *bh;
2241 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2242 	ext4_lblk_t lblk = *m_lblk;
2243 	ext4_fsblk_t pblock = *m_pblk;
2244 	int err = 0;
2245 	int blkbits = mpd->inode->i_blkbits;
2246 	ssize_t io_end_size = 0;
2247 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2248 
2249 	bh = head = page_buffers(page);
2250 	do {
2251 		if (lblk < mpd->map.m_lblk)
2252 			continue;
2253 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2254 			/*
2255 			 * Buffer after end of mapped extent.
2256 			 * Find next buffer in the page to map.
2257 			 */
2258 			mpd->map.m_len = 0;
2259 			mpd->map.m_flags = 0;
2260 			io_end_vec->size += io_end_size;
2261 			io_end_size = 0;
2262 
2263 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2264 			if (err > 0)
2265 				err = 0;
2266 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2267 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2268 				if (IS_ERR(io_end_vec)) {
2269 					err = PTR_ERR(io_end_vec);
2270 					goto out;
2271 				}
2272 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2273 			}
2274 			*map_bh = true;
2275 			goto out;
2276 		}
2277 		if (buffer_delay(bh)) {
2278 			clear_buffer_delay(bh);
2279 			bh->b_blocknr = pblock++;
2280 		}
2281 		clear_buffer_unwritten(bh);
2282 		io_end_size += (1 << blkbits);
2283 	} while (lblk++, (bh = bh->b_this_page) != head);
2284 
2285 	io_end_vec->size += io_end_size;
2286 	io_end_size = 0;
2287 	*map_bh = false;
2288 out:
2289 	*m_lblk = lblk;
2290 	*m_pblk = pblock;
2291 	return err;
2292 }
2293 
2294 /*
2295  * mpage_map_buffers - update buffers corresponding to changed extent and
2296  *		       submit fully mapped pages for IO
2297  *
2298  * @mpd - description of extent to map, on return next extent to map
2299  *
2300  * Scan buffers corresponding to changed extent (we expect corresponding pages
2301  * to be already locked) and update buffer state according to new extent state.
2302  * We map delalloc buffers to their physical location, clear unwritten bits,
2303  * and mark buffers as uninit when we perform writes to unwritten extents
2304  * and do extent conversion after IO is finished. If the last page is not fully
2305  * mapped, we update @map to the next extent in the last page that needs
2306  * mapping. Otherwise we submit the page for IO.
2307  */
2308 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2309 {
2310 	struct pagevec pvec;
2311 	int nr_pages, i;
2312 	struct inode *inode = mpd->inode;
2313 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2314 	pgoff_t start, end;
2315 	ext4_lblk_t lblk;
2316 	ext4_fsblk_t pblock;
2317 	int err;
2318 	bool map_bh = false;
2319 
2320 	start = mpd->map.m_lblk >> bpp_bits;
2321 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2322 	lblk = start << bpp_bits;
2323 	pblock = mpd->map.m_pblk;
2324 
2325 	pagevec_init(&pvec);
2326 	while (start <= end) {
2327 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2328 						&start, end);
2329 		if (nr_pages == 0)
2330 			break;
2331 		for (i = 0; i < nr_pages; i++) {
2332 			struct page *page = pvec.pages[i];
2333 
2334 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2335 						 &map_bh);
2336 			/*
2337 			 * If map_bh is true, means page may require further bh
2338 			 * mapping, or maybe the page was submitted for IO.
2339 			 * So we return to call further extent mapping.
2340 			 */
2341 			if (err < 0 || map_bh)
2342 				goto out;
2343 			/* Page fully mapped - let IO run! */
2344 			err = mpage_submit_page(mpd, page);
2345 			if (err < 0)
2346 				goto out;
2347 		}
2348 		pagevec_release(&pvec);
2349 	}
2350 	/* Extent fully mapped and matches with page boundary. We are done. */
2351 	mpd->map.m_len = 0;
2352 	mpd->map.m_flags = 0;
2353 	return 0;
2354 out:
2355 	pagevec_release(&pvec);
2356 	return err;
2357 }
2358 
2359 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2360 {
2361 	struct inode *inode = mpd->inode;
2362 	struct ext4_map_blocks *map = &mpd->map;
2363 	int get_blocks_flags;
2364 	int err, dioread_nolock;
2365 
2366 	trace_ext4_da_write_pages_extent(inode, map);
2367 	/*
2368 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2369 	 * to convert an unwritten extent to be initialized (in the case
2370 	 * where we have written into one or more preallocated blocks).  It is
2371 	 * possible that we're going to need more metadata blocks than
2372 	 * previously reserved. However we must not fail because we're in
2373 	 * writeback and there is nothing we can do about it so it might result
2374 	 * in data loss.  So use reserved blocks to allocate metadata if
2375 	 * possible.
2376 	 *
2377 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2378 	 * the blocks in question are delalloc blocks.  This indicates
2379 	 * that the blocks and quotas has already been checked when
2380 	 * the data was copied into the page cache.
2381 	 */
2382 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2383 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2384 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2385 	dioread_nolock = ext4_should_dioread_nolock(inode);
2386 	if (dioread_nolock)
2387 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2388 	if (map->m_flags & BIT(BH_Delay))
2389 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2390 
2391 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2392 	if (err < 0)
2393 		return err;
2394 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2395 		if (!mpd->io_submit.io_end->handle &&
2396 		    ext4_handle_valid(handle)) {
2397 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2398 			handle->h_rsv_handle = NULL;
2399 		}
2400 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2401 	}
2402 
2403 	BUG_ON(map->m_len == 0);
2404 	return 0;
2405 }
2406 
2407 /*
2408  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2409  *				 mpd->len and submit pages underlying it for IO
2410  *
2411  * @handle - handle for journal operations
2412  * @mpd - extent to map
2413  * @give_up_on_write - we set this to true iff there is a fatal error and there
2414  *                     is no hope of writing the data. The caller should discard
2415  *                     dirty pages to avoid infinite loops.
2416  *
2417  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2418  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2419  * them to initialized or split the described range from larger unwritten
2420  * extent. Note that we need not map all the described range since allocation
2421  * can return less blocks or the range is covered by more unwritten extents. We
2422  * cannot map more because we are limited by reserved transaction credits. On
2423  * the other hand we always make sure that the last touched page is fully
2424  * mapped so that it can be written out (and thus forward progress is
2425  * guaranteed). After mapping we submit all mapped pages for IO.
2426  */
2427 static int mpage_map_and_submit_extent(handle_t *handle,
2428 				       struct mpage_da_data *mpd,
2429 				       bool *give_up_on_write)
2430 {
2431 	struct inode *inode = mpd->inode;
2432 	struct ext4_map_blocks *map = &mpd->map;
2433 	int err;
2434 	loff_t disksize;
2435 	int progress = 0;
2436 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2437 	struct ext4_io_end_vec *io_end_vec;
2438 
2439 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2440 	if (IS_ERR(io_end_vec))
2441 		return PTR_ERR(io_end_vec);
2442 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2443 	do {
2444 		err = mpage_map_one_extent(handle, mpd);
2445 		if (err < 0) {
2446 			struct super_block *sb = inode->i_sb;
2447 
2448 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2449 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2450 				goto invalidate_dirty_pages;
2451 			/*
2452 			 * Let the uper layers retry transient errors.
2453 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2454 			 * is non-zero, a commit should free up blocks.
2455 			 */
2456 			if ((err == -ENOMEM) ||
2457 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2458 				if (progress)
2459 					goto update_disksize;
2460 				return err;
2461 			}
2462 			ext4_msg(sb, KERN_CRIT,
2463 				 "Delayed block allocation failed for "
2464 				 "inode %lu at logical offset %llu with"
2465 				 " max blocks %u with error %d",
2466 				 inode->i_ino,
2467 				 (unsigned long long)map->m_lblk,
2468 				 (unsigned)map->m_len, -err);
2469 			ext4_msg(sb, KERN_CRIT,
2470 				 "This should not happen!! Data will "
2471 				 "be lost\n");
2472 			if (err == -ENOSPC)
2473 				ext4_print_free_blocks(inode);
2474 		invalidate_dirty_pages:
2475 			*give_up_on_write = true;
2476 			return err;
2477 		}
2478 		progress = 1;
2479 		/*
2480 		 * Update buffer state, submit mapped pages, and get us new
2481 		 * extent to map
2482 		 */
2483 		err = mpage_map_and_submit_buffers(mpd);
2484 		if (err < 0)
2485 			goto update_disksize;
2486 	} while (map->m_len);
2487 
2488 update_disksize:
2489 	/*
2490 	 * Update on-disk size after IO is submitted.  Races with
2491 	 * truncate are avoided by checking i_size under i_data_sem.
2492 	 */
2493 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2494 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2495 		int err2;
2496 		loff_t i_size;
2497 
2498 		down_write(&EXT4_I(inode)->i_data_sem);
2499 		i_size = i_size_read(inode);
2500 		if (disksize > i_size)
2501 			disksize = i_size;
2502 		if (disksize > EXT4_I(inode)->i_disksize)
2503 			EXT4_I(inode)->i_disksize = disksize;
2504 		up_write(&EXT4_I(inode)->i_data_sem);
2505 		err2 = ext4_mark_inode_dirty(handle, inode);
2506 		if (err2) {
2507 			ext4_error_err(inode->i_sb, -err2,
2508 				       "Failed to mark inode %lu dirty",
2509 				       inode->i_ino);
2510 		}
2511 		if (!err)
2512 			err = err2;
2513 	}
2514 	return err;
2515 }
2516 
2517 /*
2518  * Calculate the total number of credits to reserve for one writepages
2519  * iteration. This is called from ext4_writepages(). We map an extent of
2520  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2521  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2522  * bpp - 1 blocks in bpp different extents.
2523  */
2524 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2525 {
2526 	int bpp = ext4_journal_blocks_per_page(inode);
2527 
2528 	return ext4_meta_trans_blocks(inode,
2529 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2530 }
2531 
2532 /*
2533  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2534  * 				 and underlying extent to map
2535  *
2536  * @mpd - where to look for pages
2537  *
2538  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2539  * IO immediately. When we find a page which isn't mapped we start accumulating
2540  * extent of buffers underlying these pages that needs mapping (formed by
2541  * either delayed or unwritten buffers). We also lock the pages containing
2542  * these buffers. The extent found is returned in @mpd structure (starting at
2543  * mpd->lblk with length mpd->len blocks).
2544  *
2545  * Note that this function can attach bios to one io_end structure which are
2546  * neither logically nor physically contiguous. Although it may seem as an
2547  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2548  * case as we need to track IO to all buffers underlying a page in one io_end.
2549  */
2550 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2551 {
2552 	struct address_space *mapping = mpd->inode->i_mapping;
2553 	struct pagevec pvec;
2554 	unsigned int nr_pages;
2555 	long left = mpd->wbc->nr_to_write;
2556 	pgoff_t index = mpd->first_page;
2557 	pgoff_t end = mpd->last_page;
2558 	xa_mark_t tag;
2559 	int i, err = 0;
2560 	int blkbits = mpd->inode->i_blkbits;
2561 	ext4_lblk_t lblk;
2562 	struct buffer_head *head;
2563 
2564 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2565 		tag = PAGECACHE_TAG_TOWRITE;
2566 	else
2567 		tag = PAGECACHE_TAG_DIRTY;
2568 
2569 	pagevec_init(&pvec);
2570 	mpd->map.m_len = 0;
2571 	mpd->next_page = index;
2572 	while (index <= end) {
2573 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2574 				tag);
2575 		if (nr_pages == 0)
2576 			break;
2577 
2578 		for (i = 0; i < nr_pages; i++) {
2579 			struct page *page = pvec.pages[i];
2580 
2581 			/*
2582 			 * Accumulated enough dirty pages? This doesn't apply
2583 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2584 			 * keep going because someone may be concurrently
2585 			 * dirtying pages, and we might have synced a lot of
2586 			 * newly appeared dirty pages, but have not synced all
2587 			 * of the old dirty pages.
2588 			 */
2589 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2590 				goto out;
2591 
2592 			/* If we can't merge this page, we are done. */
2593 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2594 				goto out;
2595 
2596 			lock_page(page);
2597 			/*
2598 			 * If the page is no longer dirty, or its mapping no
2599 			 * longer corresponds to inode we are writing (which
2600 			 * means it has been truncated or invalidated), or the
2601 			 * page is already under writeback and we are not doing
2602 			 * a data integrity writeback, skip the page
2603 			 */
2604 			if (!PageDirty(page) ||
2605 			    (PageWriteback(page) &&
2606 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2607 			    unlikely(page->mapping != mapping)) {
2608 				unlock_page(page);
2609 				continue;
2610 			}
2611 
2612 			wait_on_page_writeback(page);
2613 			BUG_ON(PageWriteback(page));
2614 
2615 			if (mpd->map.m_len == 0)
2616 				mpd->first_page = page->index;
2617 			mpd->next_page = page->index + 1;
2618 			/* Add all dirty buffers to mpd */
2619 			lblk = ((ext4_lblk_t)page->index) <<
2620 				(PAGE_SHIFT - blkbits);
2621 			head = page_buffers(page);
2622 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2623 			if (err <= 0)
2624 				goto out;
2625 			err = 0;
2626 			left--;
2627 		}
2628 		pagevec_release(&pvec);
2629 		cond_resched();
2630 	}
2631 	mpd->scanned_until_end = 1;
2632 	return 0;
2633 out:
2634 	pagevec_release(&pvec);
2635 	return err;
2636 }
2637 
2638 static int ext4_writepages(struct address_space *mapping,
2639 			   struct writeback_control *wbc)
2640 {
2641 	pgoff_t	writeback_index = 0;
2642 	long nr_to_write = wbc->nr_to_write;
2643 	int range_whole = 0;
2644 	int cycled = 1;
2645 	handle_t *handle = NULL;
2646 	struct mpage_da_data mpd;
2647 	struct inode *inode = mapping->host;
2648 	int needed_blocks, rsv_blocks = 0, ret = 0;
2649 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2650 	struct blk_plug plug;
2651 	bool give_up_on_write = false;
2652 
2653 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2654 		return -EIO;
2655 
2656 	percpu_down_read(&sbi->s_writepages_rwsem);
2657 	trace_ext4_writepages(inode, wbc);
2658 
2659 	/*
2660 	 * No pages to write? This is mainly a kludge to avoid starting
2661 	 * a transaction for special inodes like journal inode on last iput()
2662 	 * because that could violate lock ordering on umount
2663 	 */
2664 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2665 		goto out_writepages;
2666 
2667 	if (ext4_should_journal_data(inode)) {
2668 		ret = generic_writepages(mapping, wbc);
2669 		goto out_writepages;
2670 	}
2671 
2672 	/*
2673 	 * If the filesystem has aborted, it is read-only, so return
2674 	 * right away instead of dumping stack traces later on that
2675 	 * will obscure the real source of the problem.  We test
2676 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2677 	 * the latter could be true if the filesystem is mounted
2678 	 * read-only, and in that case, ext4_writepages should
2679 	 * *never* be called, so if that ever happens, we would want
2680 	 * the stack trace.
2681 	 */
2682 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2683 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2684 		ret = -EROFS;
2685 		goto out_writepages;
2686 	}
2687 
2688 	/*
2689 	 * If we have inline data and arrive here, it means that
2690 	 * we will soon create the block for the 1st page, so
2691 	 * we'd better clear the inline data here.
2692 	 */
2693 	if (ext4_has_inline_data(inode)) {
2694 		/* Just inode will be modified... */
2695 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2696 		if (IS_ERR(handle)) {
2697 			ret = PTR_ERR(handle);
2698 			goto out_writepages;
2699 		}
2700 		BUG_ON(ext4_test_inode_state(inode,
2701 				EXT4_STATE_MAY_INLINE_DATA));
2702 		ext4_destroy_inline_data(handle, inode);
2703 		ext4_journal_stop(handle);
2704 	}
2705 
2706 	if (ext4_should_dioread_nolock(inode)) {
2707 		/*
2708 		 * We may need to convert up to one extent per block in
2709 		 * the page and we may dirty the inode.
2710 		 */
2711 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2712 						PAGE_SIZE >> inode->i_blkbits);
2713 	}
2714 
2715 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2716 		range_whole = 1;
2717 
2718 	if (wbc->range_cyclic) {
2719 		writeback_index = mapping->writeback_index;
2720 		if (writeback_index)
2721 			cycled = 0;
2722 		mpd.first_page = writeback_index;
2723 		mpd.last_page = -1;
2724 	} else {
2725 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2726 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2727 	}
2728 
2729 	mpd.inode = inode;
2730 	mpd.wbc = wbc;
2731 	ext4_io_submit_init(&mpd.io_submit, wbc);
2732 retry:
2733 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2734 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2735 	blk_start_plug(&plug);
2736 
2737 	/*
2738 	 * First writeback pages that don't need mapping - we can avoid
2739 	 * starting a transaction unnecessarily and also avoid being blocked
2740 	 * in the block layer on device congestion while having transaction
2741 	 * started.
2742 	 */
2743 	mpd.do_map = 0;
2744 	mpd.scanned_until_end = 0;
2745 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2746 	if (!mpd.io_submit.io_end) {
2747 		ret = -ENOMEM;
2748 		goto unplug;
2749 	}
2750 	ret = mpage_prepare_extent_to_map(&mpd);
2751 	/* Unlock pages we didn't use */
2752 	mpage_release_unused_pages(&mpd, false);
2753 	/* Submit prepared bio */
2754 	ext4_io_submit(&mpd.io_submit);
2755 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2756 	mpd.io_submit.io_end = NULL;
2757 	if (ret < 0)
2758 		goto unplug;
2759 
2760 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2761 		/* For each extent of pages we use new io_end */
2762 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2763 		if (!mpd.io_submit.io_end) {
2764 			ret = -ENOMEM;
2765 			break;
2766 		}
2767 
2768 		/*
2769 		 * We have two constraints: We find one extent to map and we
2770 		 * must always write out whole page (makes a difference when
2771 		 * blocksize < pagesize) so that we don't block on IO when we
2772 		 * try to write out the rest of the page. Journalled mode is
2773 		 * not supported by delalloc.
2774 		 */
2775 		BUG_ON(ext4_should_journal_data(inode));
2776 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2777 
2778 		/* start a new transaction */
2779 		handle = ext4_journal_start_with_reserve(inode,
2780 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2781 		if (IS_ERR(handle)) {
2782 			ret = PTR_ERR(handle);
2783 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2784 			       "%ld pages, ino %lu; err %d", __func__,
2785 				wbc->nr_to_write, inode->i_ino, ret);
2786 			/* Release allocated io_end */
2787 			ext4_put_io_end(mpd.io_submit.io_end);
2788 			mpd.io_submit.io_end = NULL;
2789 			break;
2790 		}
2791 		mpd.do_map = 1;
2792 
2793 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2794 		ret = mpage_prepare_extent_to_map(&mpd);
2795 		if (!ret && mpd.map.m_len)
2796 			ret = mpage_map_and_submit_extent(handle, &mpd,
2797 					&give_up_on_write);
2798 		/*
2799 		 * Caution: If the handle is synchronous,
2800 		 * ext4_journal_stop() can wait for transaction commit
2801 		 * to finish which may depend on writeback of pages to
2802 		 * complete or on page lock to be released.  In that
2803 		 * case, we have to wait until after we have
2804 		 * submitted all the IO, released page locks we hold,
2805 		 * and dropped io_end reference (for extent conversion
2806 		 * to be able to complete) before stopping the handle.
2807 		 */
2808 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2809 			ext4_journal_stop(handle);
2810 			handle = NULL;
2811 			mpd.do_map = 0;
2812 		}
2813 		/* Unlock pages we didn't use */
2814 		mpage_release_unused_pages(&mpd, give_up_on_write);
2815 		/* Submit prepared bio */
2816 		ext4_io_submit(&mpd.io_submit);
2817 
2818 		/*
2819 		 * Drop our io_end reference we got from init. We have
2820 		 * to be careful and use deferred io_end finishing if
2821 		 * we are still holding the transaction as we can
2822 		 * release the last reference to io_end which may end
2823 		 * up doing unwritten extent conversion.
2824 		 */
2825 		if (handle) {
2826 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2827 			ext4_journal_stop(handle);
2828 		} else
2829 			ext4_put_io_end(mpd.io_submit.io_end);
2830 		mpd.io_submit.io_end = NULL;
2831 
2832 		if (ret == -ENOSPC && sbi->s_journal) {
2833 			/*
2834 			 * Commit the transaction which would
2835 			 * free blocks released in the transaction
2836 			 * and try again
2837 			 */
2838 			jbd2_journal_force_commit_nested(sbi->s_journal);
2839 			ret = 0;
2840 			continue;
2841 		}
2842 		/* Fatal error - ENOMEM, EIO... */
2843 		if (ret)
2844 			break;
2845 	}
2846 unplug:
2847 	blk_finish_plug(&plug);
2848 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2849 		cycled = 1;
2850 		mpd.last_page = writeback_index - 1;
2851 		mpd.first_page = 0;
2852 		goto retry;
2853 	}
2854 
2855 	/* Update index */
2856 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2857 		/*
2858 		 * Set the writeback_index so that range_cyclic
2859 		 * mode will write it back later
2860 		 */
2861 		mapping->writeback_index = mpd.first_page;
2862 
2863 out_writepages:
2864 	trace_ext4_writepages_result(inode, wbc, ret,
2865 				     nr_to_write - wbc->nr_to_write);
2866 	percpu_up_read(&sbi->s_writepages_rwsem);
2867 	return ret;
2868 }
2869 
2870 static int ext4_dax_writepages(struct address_space *mapping,
2871 			       struct writeback_control *wbc)
2872 {
2873 	int ret;
2874 	long nr_to_write = wbc->nr_to_write;
2875 	struct inode *inode = mapping->host;
2876 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2877 
2878 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2879 		return -EIO;
2880 
2881 	percpu_down_read(&sbi->s_writepages_rwsem);
2882 	trace_ext4_writepages(inode, wbc);
2883 
2884 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2885 	trace_ext4_writepages_result(inode, wbc, ret,
2886 				     nr_to_write - wbc->nr_to_write);
2887 	percpu_up_read(&sbi->s_writepages_rwsem);
2888 	return ret;
2889 }
2890 
2891 static int ext4_nonda_switch(struct super_block *sb)
2892 {
2893 	s64 free_clusters, dirty_clusters;
2894 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2895 
2896 	/*
2897 	 * switch to non delalloc mode if we are running low
2898 	 * on free block. The free block accounting via percpu
2899 	 * counters can get slightly wrong with percpu_counter_batch getting
2900 	 * accumulated on each CPU without updating global counters
2901 	 * Delalloc need an accurate free block accounting. So switch
2902 	 * to non delalloc when we are near to error range.
2903 	 */
2904 	free_clusters =
2905 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2906 	dirty_clusters =
2907 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2908 	/*
2909 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2910 	 */
2911 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2912 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2913 
2914 	if (2 * free_clusters < 3 * dirty_clusters ||
2915 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2916 		/*
2917 		 * free block count is less than 150% of dirty blocks
2918 		 * or free blocks is less than watermark
2919 		 */
2920 		return 1;
2921 	}
2922 	return 0;
2923 }
2924 
2925 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2926 			       loff_t pos, unsigned len, unsigned flags,
2927 			       struct page **pagep, void **fsdata)
2928 {
2929 	int ret, retries = 0;
2930 	struct page *page;
2931 	pgoff_t index;
2932 	struct inode *inode = mapping->host;
2933 
2934 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2935 		return -EIO;
2936 
2937 	index = pos >> PAGE_SHIFT;
2938 
2939 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2940 	    ext4_verity_in_progress(inode)) {
2941 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2942 		return ext4_write_begin(file, mapping, pos,
2943 					len, flags, pagep, fsdata);
2944 	}
2945 	*fsdata = (void *)0;
2946 	trace_ext4_da_write_begin(inode, pos, len, flags);
2947 
2948 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2949 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2950 						      pos, len, flags,
2951 						      pagep, fsdata);
2952 		if (ret < 0)
2953 			return ret;
2954 		if (ret == 1)
2955 			return 0;
2956 	}
2957 
2958 retry:
2959 	page = grab_cache_page_write_begin(mapping, index, flags);
2960 	if (!page)
2961 		return -ENOMEM;
2962 
2963 	/* In case writeback began while the page was unlocked */
2964 	wait_for_stable_page(page);
2965 
2966 #ifdef CONFIG_FS_ENCRYPTION
2967 	ret = ext4_block_write_begin(page, pos, len,
2968 				     ext4_da_get_block_prep);
2969 #else
2970 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2971 #endif
2972 	if (ret < 0) {
2973 		unlock_page(page);
2974 		put_page(page);
2975 		/*
2976 		 * block_write_begin may have instantiated a few blocks
2977 		 * outside i_size.  Trim these off again. Don't need
2978 		 * i_size_read because we hold inode lock.
2979 		 */
2980 		if (pos + len > inode->i_size)
2981 			ext4_truncate_failed_write(inode);
2982 
2983 		if (ret == -ENOSPC &&
2984 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2985 			goto retry;
2986 		return ret;
2987 	}
2988 
2989 	*pagep = page;
2990 	return ret;
2991 }
2992 
2993 /*
2994  * Check if we should update i_disksize
2995  * when write to the end of file but not require block allocation
2996  */
2997 static int ext4_da_should_update_i_disksize(struct page *page,
2998 					    unsigned long offset)
2999 {
3000 	struct buffer_head *bh;
3001 	struct inode *inode = page->mapping->host;
3002 	unsigned int idx;
3003 	int i;
3004 
3005 	bh = page_buffers(page);
3006 	idx = offset >> inode->i_blkbits;
3007 
3008 	for (i = 0; i < idx; i++)
3009 		bh = bh->b_this_page;
3010 
3011 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3012 		return 0;
3013 	return 1;
3014 }
3015 
3016 static int ext4_da_write_end(struct file *file,
3017 			     struct address_space *mapping,
3018 			     loff_t pos, unsigned len, unsigned copied,
3019 			     struct page *page, void *fsdata)
3020 {
3021 	struct inode *inode = mapping->host;
3022 	loff_t new_i_size;
3023 	unsigned long start, end;
3024 	int write_mode = (int)(unsigned long)fsdata;
3025 
3026 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3027 		return ext4_write_end(file, mapping, pos,
3028 				      len, copied, page, fsdata);
3029 
3030 	trace_ext4_da_write_end(inode, pos, len, copied);
3031 
3032 	if (write_mode != CONVERT_INLINE_DATA &&
3033 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3034 	    ext4_has_inline_data(inode))
3035 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3036 
3037 	start = pos & (PAGE_SIZE - 1);
3038 	end = start + copied - 1;
3039 
3040 	/*
3041 	 * Since we are holding inode lock, we are sure i_disksize <=
3042 	 * i_size. We also know that if i_disksize < i_size, there are
3043 	 * delalloc writes pending in the range upto i_size. If the end of
3044 	 * the current write is <= i_size, there's no need to touch
3045 	 * i_disksize since writeback will push i_disksize upto i_size
3046 	 * eventually. If the end of the current write is > i_size and
3047 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3048 	 * check), we need to update i_disksize here as neither
3049 	 * ext4_writepage() nor certain ext4_writepages() paths not
3050 	 * allocating blocks update i_disksize.
3051 	 *
3052 	 * Note that we defer inode dirtying to generic_write_end() /
3053 	 * ext4_da_write_inline_data_end().
3054 	 */
3055 	new_i_size = pos + copied;
3056 	if (copied && new_i_size > inode->i_size &&
3057 	    ext4_da_should_update_i_disksize(page, end))
3058 		ext4_update_i_disksize(inode, new_i_size);
3059 
3060 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3061 }
3062 
3063 /*
3064  * Force all delayed allocation blocks to be allocated for a given inode.
3065  */
3066 int ext4_alloc_da_blocks(struct inode *inode)
3067 {
3068 	trace_ext4_alloc_da_blocks(inode);
3069 
3070 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3071 		return 0;
3072 
3073 	/*
3074 	 * We do something simple for now.  The filemap_flush() will
3075 	 * also start triggering a write of the data blocks, which is
3076 	 * not strictly speaking necessary (and for users of
3077 	 * laptop_mode, not even desirable).  However, to do otherwise
3078 	 * would require replicating code paths in:
3079 	 *
3080 	 * ext4_writepages() ->
3081 	 *    write_cache_pages() ---> (via passed in callback function)
3082 	 *        __mpage_da_writepage() -->
3083 	 *           mpage_add_bh_to_extent()
3084 	 *           mpage_da_map_blocks()
3085 	 *
3086 	 * The problem is that write_cache_pages(), located in
3087 	 * mm/page-writeback.c, marks pages clean in preparation for
3088 	 * doing I/O, which is not desirable if we're not planning on
3089 	 * doing I/O at all.
3090 	 *
3091 	 * We could call write_cache_pages(), and then redirty all of
3092 	 * the pages by calling redirty_page_for_writepage() but that
3093 	 * would be ugly in the extreme.  So instead we would need to
3094 	 * replicate parts of the code in the above functions,
3095 	 * simplifying them because we wouldn't actually intend to
3096 	 * write out the pages, but rather only collect contiguous
3097 	 * logical block extents, call the multi-block allocator, and
3098 	 * then update the buffer heads with the block allocations.
3099 	 *
3100 	 * For now, though, we'll cheat by calling filemap_flush(),
3101 	 * which will map the blocks, and start the I/O, but not
3102 	 * actually wait for the I/O to complete.
3103 	 */
3104 	return filemap_flush(inode->i_mapping);
3105 }
3106 
3107 /*
3108  * bmap() is special.  It gets used by applications such as lilo and by
3109  * the swapper to find the on-disk block of a specific piece of data.
3110  *
3111  * Naturally, this is dangerous if the block concerned is still in the
3112  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3113  * filesystem and enables swap, then they may get a nasty shock when the
3114  * data getting swapped to that swapfile suddenly gets overwritten by
3115  * the original zero's written out previously to the journal and
3116  * awaiting writeback in the kernel's buffer cache.
3117  *
3118  * So, if we see any bmap calls here on a modified, data-journaled file,
3119  * take extra steps to flush any blocks which might be in the cache.
3120  */
3121 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3122 {
3123 	struct inode *inode = mapping->host;
3124 	journal_t *journal;
3125 	int err;
3126 
3127 	/*
3128 	 * We can get here for an inline file via the FIBMAP ioctl
3129 	 */
3130 	if (ext4_has_inline_data(inode))
3131 		return 0;
3132 
3133 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3134 			test_opt(inode->i_sb, DELALLOC)) {
3135 		/*
3136 		 * With delalloc we want to sync the file
3137 		 * so that we can make sure we allocate
3138 		 * blocks for file
3139 		 */
3140 		filemap_write_and_wait(mapping);
3141 	}
3142 
3143 	if (EXT4_JOURNAL(inode) &&
3144 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3145 		/*
3146 		 * This is a REALLY heavyweight approach, but the use of
3147 		 * bmap on dirty files is expected to be extremely rare:
3148 		 * only if we run lilo or swapon on a freshly made file
3149 		 * do we expect this to happen.
3150 		 *
3151 		 * (bmap requires CAP_SYS_RAWIO so this does not
3152 		 * represent an unprivileged user DOS attack --- we'd be
3153 		 * in trouble if mortal users could trigger this path at
3154 		 * will.)
3155 		 *
3156 		 * NB. EXT4_STATE_JDATA is not set on files other than
3157 		 * regular files.  If somebody wants to bmap a directory
3158 		 * or symlink and gets confused because the buffer
3159 		 * hasn't yet been flushed to disk, they deserve
3160 		 * everything they get.
3161 		 */
3162 
3163 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3164 		journal = EXT4_JOURNAL(inode);
3165 		jbd2_journal_lock_updates(journal);
3166 		err = jbd2_journal_flush(journal, 0);
3167 		jbd2_journal_unlock_updates(journal);
3168 
3169 		if (err)
3170 			return 0;
3171 	}
3172 
3173 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3174 }
3175 
3176 static int ext4_readpage(struct file *file, struct page *page)
3177 {
3178 	int ret = -EAGAIN;
3179 	struct inode *inode = page->mapping->host;
3180 
3181 	trace_ext4_readpage(page);
3182 
3183 	if (ext4_has_inline_data(inode))
3184 		ret = ext4_readpage_inline(inode, page);
3185 
3186 	if (ret == -EAGAIN)
3187 		return ext4_mpage_readpages(inode, NULL, page);
3188 
3189 	return ret;
3190 }
3191 
3192 static void ext4_readahead(struct readahead_control *rac)
3193 {
3194 	struct inode *inode = rac->mapping->host;
3195 
3196 	/* If the file has inline data, no need to do readahead. */
3197 	if (ext4_has_inline_data(inode))
3198 		return;
3199 
3200 	ext4_mpage_readpages(inode, rac, NULL);
3201 }
3202 
3203 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3204 				unsigned int length)
3205 {
3206 	trace_ext4_invalidatepage(page, offset, length);
3207 
3208 	/* No journalling happens on data buffers when this function is used */
3209 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3210 
3211 	block_invalidatepage(page, offset, length);
3212 }
3213 
3214 static int __ext4_journalled_invalidatepage(struct page *page,
3215 					    unsigned int offset,
3216 					    unsigned int length)
3217 {
3218 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3219 
3220 	trace_ext4_journalled_invalidatepage(page, offset, length);
3221 
3222 	/*
3223 	 * If it's a full truncate we just forget about the pending dirtying
3224 	 */
3225 	if (offset == 0 && length == PAGE_SIZE)
3226 		ClearPageChecked(page);
3227 
3228 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3229 }
3230 
3231 /* Wrapper for aops... */
3232 static void ext4_journalled_invalidatepage(struct page *page,
3233 					   unsigned int offset,
3234 					   unsigned int length)
3235 {
3236 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3237 }
3238 
3239 static int ext4_releasepage(struct page *page, gfp_t wait)
3240 {
3241 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3242 
3243 	trace_ext4_releasepage(page);
3244 
3245 	/* Page has dirty journalled data -> cannot release */
3246 	if (PageChecked(page))
3247 		return 0;
3248 	if (journal)
3249 		return jbd2_journal_try_to_free_buffers(journal, page);
3250 	else
3251 		return try_to_free_buffers(page);
3252 }
3253 
3254 static bool ext4_inode_datasync_dirty(struct inode *inode)
3255 {
3256 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3257 
3258 	if (journal) {
3259 		if (jbd2_transaction_committed(journal,
3260 			EXT4_I(inode)->i_datasync_tid))
3261 			return false;
3262 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3263 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3264 		return true;
3265 	}
3266 
3267 	/* Any metadata buffers to write? */
3268 	if (!list_empty(&inode->i_mapping->private_list))
3269 		return true;
3270 	return inode->i_state & I_DIRTY_DATASYNC;
3271 }
3272 
3273 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3274 			   struct ext4_map_blocks *map, loff_t offset,
3275 			   loff_t length)
3276 {
3277 	u8 blkbits = inode->i_blkbits;
3278 
3279 	/*
3280 	 * Writes that span EOF might trigger an I/O size update on completion,
3281 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3282 	 * there is no other metadata changes being made or are pending.
3283 	 */
3284 	iomap->flags = 0;
3285 	if (ext4_inode_datasync_dirty(inode) ||
3286 	    offset + length > i_size_read(inode))
3287 		iomap->flags |= IOMAP_F_DIRTY;
3288 
3289 	if (map->m_flags & EXT4_MAP_NEW)
3290 		iomap->flags |= IOMAP_F_NEW;
3291 
3292 	iomap->bdev = inode->i_sb->s_bdev;
3293 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3294 	iomap->offset = (u64) map->m_lblk << blkbits;
3295 	iomap->length = (u64) map->m_len << blkbits;
3296 
3297 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3298 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3299 		iomap->flags |= IOMAP_F_MERGED;
3300 
3301 	/*
3302 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3303 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3304 	 * set. In order for any allocated unwritten extents to be converted
3305 	 * into written extents correctly within the ->end_io() handler, we
3306 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3307 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3308 	 * been set first.
3309 	 */
3310 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3311 		iomap->type = IOMAP_UNWRITTEN;
3312 		iomap->addr = (u64) map->m_pblk << blkbits;
3313 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3314 		iomap->type = IOMAP_MAPPED;
3315 		iomap->addr = (u64) map->m_pblk << blkbits;
3316 	} else {
3317 		iomap->type = IOMAP_HOLE;
3318 		iomap->addr = IOMAP_NULL_ADDR;
3319 	}
3320 }
3321 
3322 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3323 			    unsigned int flags)
3324 {
3325 	handle_t *handle;
3326 	u8 blkbits = inode->i_blkbits;
3327 	int ret, dio_credits, m_flags = 0, retries = 0;
3328 
3329 	/*
3330 	 * Trim the mapping request to the maximum value that we can map at
3331 	 * once for direct I/O.
3332 	 */
3333 	if (map->m_len > DIO_MAX_BLOCKS)
3334 		map->m_len = DIO_MAX_BLOCKS;
3335 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3336 
3337 retry:
3338 	/*
3339 	 * Either we allocate blocks and then don't get an unwritten extent, so
3340 	 * in that case we have reserved enough credits. Or, the blocks are
3341 	 * already allocated and unwritten. In that case, the extent conversion
3342 	 * fits into the credits as well.
3343 	 */
3344 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3345 	if (IS_ERR(handle))
3346 		return PTR_ERR(handle);
3347 
3348 	/*
3349 	 * DAX and direct I/O are the only two operations that are currently
3350 	 * supported with IOMAP_WRITE.
3351 	 */
3352 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3353 	if (IS_DAX(inode))
3354 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3355 	/*
3356 	 * We use i_size instead of i_disksize here because delalloc writeback
3357 	 * can complete at any point during the I/O and subsequently push the
3358 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3359 	 * happening and thus expose allocated blocks to direct I/O reads.
3360 	 */
3361 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3362 		m_flags = EXT4_GET_BLOCKS_CREATE;
3363 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3364 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3365 
3366 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3367 
3368 	/*
3369 	 * We cannot fill holes in indirect tree based inodes as that could
3370 	 * expose stale data in the case of a crash. Use the magic error code
3371 	 * to fallback to buffered I/O.
3372 	 */
3373 	if (!m_flags && !ret)
3374 		ret = -ENOTBLK;
3375 
3376 	ext4_journal_stop(handle);
3377 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3378 		goto retry;
3379 
3380 	return ret;
3381 }
3382 
3383 
3384 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3385 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3386 {
3387 	int ret;
3388 	struct ext4_map_blocks map;
3389 	u8 blkbits = inode->i_blkbits;
3390 
3391 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3392 		return -EINVAL;
3393 
3394 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3395 		return -ERANGE;
3396 
3397 	/*
3398 	 * Calculate the first and last logical blocks respectively.
3399 	 */
3400 	map.m_lblk = offset >> blkbits;
3401 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3402 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3403 
3404 	if (flags & IOMAP_WRITE) {
3405 		/*
3406 		 * We check here if the blocks are already allocated, then we
3407 		 * don't need to start a journal txn and we can directly return
3408 		 * the mapping information. This could boost performance
3409 		 * especially in multi-threaded overwrite requests.
3410 		 */
3411 		if (offset + length <= i_size_read(inode)) {
3412 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3413 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3414 				goto out;
3415 		}
3416 		ret = ext4_iomap_alloc(inode, &map, flags);
3417 	} else {
3418 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3419 	}
3420 
3421 	if (ret < 0)
3422 		return ret;
3423 out:
3424 	ext4_set_iomap(inode, iomap, &map, offset, length);
3425 
3426 	return 0;
3427 }
3428 
3429 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3430 		loff_t length, unsigned flags, struct iomap *iomap,
3431 		struct iomap *srcmap)
3432 {
3433 	int ret;
3434 
3435 	/*
3436 	 * Even for writes we don't need to allocate blocks, so just pretend
3437 	 * we are reading to save overhead of starting a transaction.
3438 	 */
3439 	flags &= ~IOMAP_WRITE;
3440 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3441 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3442 	return ret;
3443 }
3444 
3445 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3446 			  ssize_t written, unsigned flags, struct iomap *iomap)
3447 {
3448 	/*
3449 	 * Check to see whether an error occurred while writing out the data to
3450 	 * the allocated blocks. If so, return the magic error code so that we
3451 	 * fallback to buffered I/O and attempt to complete the remainder of
3452 	 * the I/O. Any blocks that may have been allocated in preparation for
3453 	 * the direct I/O will be reused during buffered I/O.
3454 	 */
3455 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3456 		return -ENOTBLK;
3457 
3458 	return 0;
3459 }
3460 
3461 const struct iomap_ops ext4_iomap_ops = {
3462 	.iomap_begin		= ext4_iomap_begin,
3463 	.iomap_end		= ext4_iomap_end,
3464 };
3465 
3466 const struct iomap_ops ext4_iomap_overwrite_ops = {
3467 	.iomap_begin		= ext4_iomap_overwrite_begin,
3468 	.iomap_end		= ext4_iomap_end,
3469 };
3470 
3471 static bool ext4_iomap_is_delalloc(struct inode *inode,
3472 				   struct ext4_map_blocks *map)
3473 {
3474 	struct extent_status es;
3475 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3476 
3477 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3478 				  map->m_lblk, end, &es);
3479 
3480 	if (!es.es_len || es.es_lblk > end)
3481 		return false;
3482 
3483 	if (es.es_lblk > map->m_lblk) {
3484 		map->m_len = es.es_lblk - map->m_lblk;
3485 		return false;
3486 	}
3487 
3488 	offset = map->m_lblk - es.es_lblk;
3489 	map->m_len = es.es_len - offset;
3490 
3491 	return true;
3492 }
3493 
3494 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3495 				   loff_t length, unsigned int flags,
3496 				   struct iomap *iomap, struct iomap *srcmap)
3497 {
3498 	int ret;
3499 	bool delalloc = false;
3500 	struct ext4_map_blocks map;
3501 	u8 blkbits = inode->i_blkbits;
3502 
3503 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3504 		return -EINVAL;
3505 
3506 	if (ext4_has_inline_data(inode)) {
3507 		ret = ext4_inline_data_iomap(inode, iomap);
3508 		if (ret != -EAGAIN) {
3509 			if (ret == 0 && offset >= iomap->length)
3510 				ret = -ENOENT;
3511 			return ret;
3512 		}
3513 	}
3514 
3515 	/*
3516 	 * Calculate the first and last logical block respectively.
3517 	 */
3518 	map.m_lblk = offset >> blkbits;
3519 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3520 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3521 
3522 	/*
3523 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3524 	 * So handle it here itself instead of querying ext4_map_blocks().
3525 	 * Since ext4_map_blocks() will warn about it and will return
3526 	 * -EIO error.
3527 	 */
3528 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3529 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3530 
3531 		if (offset >= sbi->s_bitmap_maxbytes) {
3532 			map.m_flags = 0;
3533 			goto set_iomap;
3534 		}
3535 	}
3536 
3537 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3538 	if (ret < 0)
3539 		return ret;
3540 	if (ret == 0)
3541 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3542 
3543 set_iomap:
3544 	ext4_set_iomap(inode, iomap, &map, offset, length);
3545 	if (delalloc && iomap->type == IOMAP_HOLE)
3546 		iomap->type = IOMAP_DELALLOC;
3547 
3548 	return 0;
3549 }
3550 
3551 const struct iomap_ops ext4_iomap_report_ops = {
3552 	.iomap_begin = ext4_iomap_begin_report,
3553 };
3554 
3555 /*
3556  * Pages can be marked dirty completely asynchronously from ext4's journalling
3557  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3558  * much here because ->set_page_dirty is called under VFS locks.  The page is
3559  * not necessarily locked.
3560  *
3561  * We cannot just dirty the page and leave attached buffers clean, because the
3562  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3563  * or jbddirty because all the journalling code will explode.
3564  *
3565  * So what we do is to mark the page "pending dirty" and next time writepage
3566  * is called, propagate that into the buffers appropriately.
3567  */
3568 static int ext4_journalled_set_page_dirty(struct page *page)
3569 {
3570 	SetPageChecked(page);
3571 	return __set_page_dirty_nobuffers(page);
3572 }
3573 
3574 static int ext4_set_page_dirty(struct page *page)
3575 {
3576 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3577 	WARN_ON_ONCE(!page_has_buffers(page));
3578 	return __set_page_dirty_buffers(page);
3579 }
3580 
3581 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3582 				    struct file *file, sector_t *span)
3583 {
3584 	return iomap_swapfile_activate(sis, file, span,
3585 				       &ext4_iomap_report_ops);
3586 }
3587 
3588 static const struct address_space_operations ext4_aops = {
3589 	.readpage		= ext4_readpage,
3590 	.readahead		= ext4_readahead,
3591 	.writepage		= ext4_writepage,
3592 	.writepages		= ext4_writepages,
3593 	.write_begin		= ext4_write_begin,
3594 	.write_end		= ext4_write_end,
3595 	.set_page_dirty		= ext4_set_page_dirty,
3596 	.bmap			= ext4_bmap,
3597 	.invalidatepage		= ext4_invalidatepage,
3598 	.releasepage		= ext4_releasepage,
3599 	.direct_IO		= noop_direct_IO,
3600 	.migratepage		= buffer_migrate_page,
3601 	.is_partially_uptodate  = block_is_partially_uptodate,
3602 	.error_remove_page	= generic_error_remove_page,
3603 	.swap_activate		= ext4_iomap_swap_activate,
3604 };
3605 
3606 static const struct address_space_operations ext4_journalled_aops = {
3607 	.readpage		= ext4_readpage,
3608 	.readahead		= ext4_readahead,
3609 	.writepage		= ext4_writepage,
3610 	.writepages		= ext4_writepages,
3611 	.write_begin		= ext4_write_begin,
3612 	.write_end		= ext4_journalled_write_end,
3613 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3614 	.bmap			= ext4_bmap,
3615 	.invalidatepage		= ext4_journalled_invalidatepage,
3616 	.releasepage		= ext4_releasepage,
3617 	.direct_IO		= noop_direct_IO,
3618 	.is_partially_uptodate  = block_is_partially_uptodate,
3619 	.error_remove_page	= generic_error_remove_page,
3620 	.swap_activate		= ext4_iomap_swap_activate,
3621 };
3622 
3623 static const struct address_space_operations ext4_da_aops = {
3624 	.readpage		= ext4_readpage,
3625 	.readahead		= ext4_readahead,
3626 	.writepage		= ext4_writepage,
3627 	.writepages		= ext4_writepages,
3628 	.write_begin		= ext4_da_write_begin,
3629 	.write_end		= ext4_da_write_end,
3630 	.set_page_dirty		= ext4_set_page_dirty,
3631 	.bmap			= ext4_bmap,
3632 	.invalidatepage		= ext4_invalidatepage,
3633 	.releasepage		= ext4_releasepage,
3634 	.direct_IO		= noop_direct_IO,
3635 	.migratepage		= buffer_migrate_page,
3636 	.is_partially_uptodate  = block_is_partially_uptodate,
3637 	.error_remove_page	= generic_error_remove_page,
3638 	.swap_activate		= ext4_iomap_swap_activate,
3639 };
3640 
3641 static const struct address_space_operations ext4_dax_aops = {
3642 	.writepages		= ext4_dax_writepages,
3643 	.direct_IO		= noop_direct_IO,
3644 	.set_page_dirty		= __set_page_dirty_no_writeback,
3645 	.bmap			= ext4_bmap,
3646 	.invalidatepage		= noop_invalidatepage,
3647 	.swap_activate		= ext4_iomap_swap_activate,
3648 };
3649 
3650 void ext4_set_aops(struct inode *inode)
3651 {
3652 	switch (ext4_inode_journal_mode(inode)) {
3653 	case EXT4_INODE_ORDERED_DATA_MODE:
3654 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3655 		break;
3656 	case EXT4_INODE_JOURNAL_DATA_MODE:
3657 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3658 		return;
3659 	default:
3660 		BUG();
3661 	}
3662 	if (IS_DAX(inode))
3663 		inode->i_mapping->a_ops = &ext4_dax_aops;
3664 	else if (test_opt(inode->i_sb, DELALLOC))
3665 		inode->i_mapping->a_ops = &ext4_da_aops;
3666 	else
3667 		inode->i_mapping->a_ops = &ext4_aops;
3668 }
3669 
3670 static int __ext4_block_zero_page_range(handle_t *handle,
3671 		struct address_space *mapping, loff_t from, loff_t length)
3672 {
3673 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3674 	unsigned offset = from & (PAGE_SIZE-1);
3675 	unsigned blocksize, pos;
3676 	ext4_lblk_t iblock;
3677 	struct inode *inode = mapping->host;
3678 	struct buffer_head *bh;
3679 	struct page *page;
3680 	int err = 0;
3681 
3682 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3683 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3684 	if (!page)
3685 		return -ENOMEM;
3686 
3687 	blocksize = inode->i_sb->s_blocksize;
3688 
3689 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3690 
3691 	if (!page_has_buffers(page))
3692 		create_empty_buffers(page, blocksize, 0);
3693 
3694 	/* Find the buffer that contains "offset" */
3695 	bh = page_buffers(page);
3696 	pos = blocksize;
3697 	while (offset >= pos) {
3698 		bh = bh->b_this_page;
3699 		iblock++;
3700 		pos += blocksize;
3701 	}
3702 	if (buffer_freed(bh)) {
3703 		BUFFER_TRACE(bh, "freed: skip");
3704 		goto unlock;
3705 	}
3706 	if (!buffer_mapped(bh)) {
3707 		BUFFER_TRACE(bh, "unmapped");
3708 		ext4_get_block(inode, iblock, bh, 0);
3709 		/* unmapped? It's a hole - nothing to do */
3710 		if (!buffer_mapped(bh)) {
3711 			BUFFER_TRACE(bh, "still unmapped");
3712 			goto unlock;
3713 		}
3714 	}
3715 
3716 	/* Ok, it's mapped. Make sure it's up-to-date */
3717 	if (PageUptodate(page))
3718 		set_buffer_uptodate(bh);
3719 
3720 	if (!buffer_uptodate(bh)) {
3721 		err = ext4_read_bh_lock(bh, 0, true);
3722 		if (err)
3723 			goto unlock;
3724 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3725 			/* We expect the key to be set. */
3726 			BUG_ON(!fscrypt_has_encryption_key(inode));
3727 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3728 							       bh_offset(bh));
3729 			if (err) {
3730 				clear_buffer_uptodate(bh);
3731 				goto unlock;
3732 			}
3733 		}
3734 	}
3735 	if (ext4_should_journal_data(inode)) {
3736 		BUFFER_TRACE(bh, "get write access");
3737 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3738 						    EXT4_JTR_NONE);
3739 		if (err)
3740 			goto unlock;
3741 	}
3742 	zero_user(page, offset, length);
3743 	BUFFER_TRACE(bh, "zeroed end of block");
3744 
3745 	if (ext4_should_journal_data(inode)) {
3746 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3747 	} else {
3748 		err = 0;
3749 		mark_buffer_dirty(bh);
3750 		if (ext4_should_order_data(inode))
3751 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3752 					length);
3753 	}
3754 
3755 unlock:
3756 	unlock_page(page);
3757 	put_page(page);
3758 	return err;
3759 }
3760 
3761 /*
3762  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3763  * starting from file offset 'from'.  The range to be zero'd must
3764  * be contained with in one block.  If the specified range exceeds
3765  * the end of the block it will be shortened to end of the block
3766  * that corresponds to 'from'
3767  */
3768 static int ext4_block_zero_page_range(handle_t *handle,
3769 		struct address_space *mapping, loff_t from, loff_t length)
3770 {
3771 	struct inode *inode = mapping->host;
3772 	unsigned offset = from & (PAGE_SIZE-1);
3773 	unsigned blocksize = inode->i_sb->s_blocksize;
3774 	unsigned max = blocksize - (offset & (blocksize - 1));
3775 
3776 	/*
3777 	 * correct length if it does not fall between
3778 	 * 'from' and the end of the block
3779 	 */
3780 	if (length > max || length < 0)
3781 		length = max;
3782 
3783 	if (IS_DAX(inode)) {
3784 		return dax_zero_range(inode, from, length, NULL,
3785 				      &ext4_iomap_ops);
3786 	}
3787 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3788 }
3789 
3790 /*
3791  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3792  * up to the end of the block which corresponds to `from'.
3793  * This required during truncate. We need to physically zero the tail end
3794  * of that block so it doesn't yield old data if the file is later grown.
3795  */
3796 static int ext4_block_truncate_page(handle_t *handle,
3797 		struct address_space *mapping, loff_t from)
3798 {
3799 	unsigned offset = from & (PAGE_SIZE-1);
3800 	unsigned length;
3801 	unsigned blocksize;
3802 	struct inode *inode = mapping->host;
3803 
3804 	/* If we are processing an encrypted inode during orphan list handling */
3805 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3806 		return 0;
3807 
3808 	blocksize = inode->i_sb->s_blocksize;
3809 	length = blocksize - (offset & (blocksize - 1));
3810 
3811 	return ext4_block_zero_page_range(handle, mapping, from, length);
3812 }
3813 
3814 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3815 			     loff_t lstart, loff_t length)
3816 {
3817 	struct super_block *sb = inode->i_sb;
3818 	struct address_space *mapping = inode->i_mapping;
3819 	unsigned partial_start, partial_end;
3820 	ext4_fsblk_t start, end;
3821 	loff_t byte_end = (lstart + length - 1);
3822 	int err = 0;
3823 
3824 	partial_start = lstart & (sb->s_blocksize - 1);
3825 	partial_end = byte_end & (sb->s_blocksize - 1);
3826 
3827 	start = lstart >> sb->s_blocksize_bits;
3828 	end = byte_end >> sb->s_blocksize_bits;
3829 
3830 	/* Handle partial zero within the single block */
3831 	if (start == end &&
3832 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3833 		err = ext4_block_zero_page_range(handle, mapping,
3834 						 lstart, length);
3835 		return err;
3836 	}
3837 	/* Handle partial zero out on the start of the range */
3838 	if (partial_start) {
3839 		err = ext4_block_zero_page_range(handle, mapping,
3840 						 lstart, sb->s_blocksize);
3841 		if (err)
3842 			return err;
3843 	}
3844 	/* Handle partial zero out on the end of the range */
3845 	if (partial_end != sb->s_blocksize - 1)
3846 		err = ext4_block_zero_page_range(handle, mapping,
3847 						 byte_end - partial_end,
3848 						 partial_end + 1);
3849 	return err;
3850 }
3851 
3852 int ext4_can_truncate(struct inode *inode)
3853 {
3854 	if (S_ISREG(inode->i_mode))
3855 		return 1;
3856 	if (S_ISDIR(inode->i_mode))
3857 		return 1;
3858 	if (S_ISLNK(inode->i_mode))
3859 		return !ext4_inode_is_fast_symlink(inode);
3860 	return 0;
3861 }
3862 
3863 /*
3864  * We have to make sure i_disksize gets properly updated before we truncate
3865  * page cache due to hole punching or zero range. Otherwise i_disksize update
3866  * can get lost as it may have been postponed to submission of writeback but
3867  * that will never happen after we truncate page cache.
3868  */
3869 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3870 				      loff_t len)
3871 {
3872 	handle_t *handle;
3873 	int ret;
3874 
3875 	loff_t size = i_size_read(inode);
3876 
3877 	WARN_ON(!inode_is_locked(inode));
3878 	if (offset > size || offset + len < size)
3879 		return 0;
3880 
3881 	if (EXT4_I(inode)->i_disksize >= size)
3882 		return 0;
3883 
3884 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3885 	if (IS_ERR(handle))
3886 		return PTR_ERR(handle);
3887 	ext4_update_i_disksize(inode, size);
3888 	ret = ext4_mark_inode_dirty(handle, inode);
3889 	ext4_journal_stop(handle);
3890 
3891 	return ret;
3892 }
3893 
3894 static void ext4_wait_dax_page(struct inode *inode)
3895 {
3896 	filemap_invalidate_unlock(inode->i_mapping);
3897 	schedule();
3898 	filemap_invalidate_lock(inode->i_mapping);
3899 }
3900 
3901 int ext4_break_layouts(struct inode *inode)
3902 {
3903 	struct page *page;
3904 	int error;
3905 
3906 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3907 		return -EINVAL;
3908 
3909 	do {
3910 		page = dax_layout_busy_page(inode->i_mapping);
3911 		if (!page)
3912 			return 0;
3913 
3914 		error = ___wait_var_event(&page->_refcount,
3915 				atomic_read(&page->_refcount) == 1,
3916 				TASK_INTERRUPTIBLE, 0, 0,
3917 				ext4_wait_dax_page(inode));
3918 	} while (error == 0);
3919 
3920 	return error;
3921 }
3922 
3923 /*
3924  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3925  * associated with the given offset and length
3926  *
3927  * @inode:  File inode
3928  * @offset: The offset where the hole will begin
3929  * @len:    The length of the hole
3930  *
3931  * Returns: 0 on success or negative on failure
3932  */
3933 
3934 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3935 {
3936 	struct super_block *sb = inode->i_sb;
3937 	ext4_lblk_t first_block, stop_block;
3938 	struct address_space *mapping = inode->i_mapping;
3939 	loff_t first_block_offset, last_block_offset;
3940 	handle_t *handle;
3941 	unsigned int credits;
3942 	int ret = 0, ret2 = 0;
3943 
3944 	trace_ext4_punch_hole(inode, offset, length, 0);
3945 
3946 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3947 	if (ext4_has_inline_data(inode)) {
3948 		filemap_invalidate_lock(mapping);
3949 		ret = ext4_convert_inline_data(inode);
3950 		filemap_invalidate_unlock(mapping);
3951 		if (ret)
3952 			return ret;
3953 	}
3954 
3955 	/*
3956 	 * Write out all dirty pages to avoid race conditions
3957 	 * Then release them.
3958 	 */
3959 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3960 		ret = filemap_write_and_wait_range(mapping, offset,
3961 						   offset + length - 1);
3962 		if (ret)
3963 			return ret;
3964 	}
3965 
3966 	inode_lock(inode);
3967 
3968 	/* No need to punch hole beyond i_size */
3969 	if (offset >= inode->i_size)
3970 		goto out_mutex;
3971 
3972 	/*
3973 	 * If the hole extends beyond i_size, set the hole
3974 	 * to end after the page that contains i_size
3975 	 */
3976 	if (offset + length > inode->i_size) {
3977 		length = inode->i_size +
3978 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3979 		   offset;
3980 	}
3981 
3982 	if (offset & (sb->s_blocksize - 1) ||
3983 	    (offset + length) & (sb->s_blocksize - 1)) {
3984 		/*
3985 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3986 		 * partial block
3987 		 */
3988 		ret = ext4_inode_attach_jinode(inode);
3989 		if (ret < 0)
3990 			goto out_mutex;
3991 
3992 	}
3993 
3994 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3995 	inode_dio_wait(inode);
3996 
3997 	/*
3998 	 * Prevent page faults from reinstantiating pages we have released from
3999 	 * page cache.
4000 	 */
4001 	filemap_invalidate_lock(mapping);
4002 
4003 	ret = ext4_break_layouts(inode);
4004 	if (ret)
4005 		goto out_dio;
4006 
4007 	first_block_offset = round_up(offset, sb->s_blocksize);
4008 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4009 
4010 	/* Now release the pages and zero block aligned part of pages*/
4011 	if (last_block_offset > first_block_offset) {
4012 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4013 		if (ret)
4014 			goto out_dio;
4015 		truncate_pagecache_range(inode, first_block_offset,
4016 					 last_block_offset);
4017 	}
4018 
4019 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4020 		credits = ext4_writepage_trans_blocks(inode);
4021 	else
4022 		credits = ext4_blocks_for_truncate(inode);
4023 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4024 	if (IS_ERR(handle)) {
4025 		ret = PTR_ERR(handle);
4026 		ext4_std_error(sb, ret);
4027 		goto out_dio;
4028 	}
4029 
4030 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4031 				       length);
4032 	if (ret)
4033 		goto out_stop;
4034 
4035 	first_block = (offset + sb->s_blocksize - 1) >>
4036 		EXT4_BLOCK_SIZE_BITS(sb);
4037 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4038 
4039 	/* If there are blocks to remove, do it */
4040 	if (stop_block > first_block) {
4041 
4042 		down_write(&EXT4_I(inode)->i_data_sem);
4043 		ext4_discard_preallocations(inode, 0);
4044 
4045 		ret = ext4_es_remove_extent(inode, first_block,
4046 					    stop_block - first_block);
4047 		if (ret) {
4048 			up_write(&EXT4_I(inode)->i_data_sem);
4049 			goto out_stop;
4050 		}
4051 
4052 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4053 			ret = ext4_ext_remove_space(inode, first_block,
4054 						    stop_block - 1);
4055 		else
4056 			ret = ext4_ind_remove_space(handle, inode, first_block,
4057 						    stop_block);
4058 
4059 		up_write(&EXT4_I(inode)->i_data_sem);
4060 	}
4061 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4062 	if (IS_SYNC(inode))
4063 		ext4_handle_sync(handle);
4064 
4065 	inode->i_mtime = inode->i_ctime = current_time(inode);
4066 	ret2 = ext4_mark_inode_dirty(handle, inode);
4067 	if (unlikely(ret2))
4068 		ret = ret2;
4069 	if (ret >= 0)
4070 		ext4_update_inode_fsync_trans(handle, inode, 1);
4071 out_stop:
4072 	ext4_journal_stop(handle);
4073 out_dio:
4074 	filemap_invalidate_unlock(mapping);
4075 out_mutex:
4076 	inode_unlock(inode);
4077 	return ret;
4078 }
4079 
4080 int ext4_inode_attach_jinode(struct inode *inode)
4081 {
4082 	struct ext4_inode_info *ei = EXT4_I(inode);
4083 	struct jbd2_inode *jinode;
4084 
4085 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4086 		return 0;
4087 
4088 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4089 	spin_lock(&inode->i_lock);
4090 	if (!ei->jinode) {
4091 		if (!jinode) {
4092 			spin_unlock(&inode->i_lock);
4093 			return -ENOMEM;
4094 		}
4095 		ei->jinode = jinode;
4096 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4097 		jinode = NULL;
4098 	}
4099 	spin_unlock(&inode->i_lock);
4100 	if (unlikely(jinode != NULL))
4101 		jbd2_free_inode(jinode);
4102 	return 0;
4103 }
4104 
4105 /*
4106  * ext4_truncate()
4107  *
4108  * We block out ext4_get_block() block instantiations across the entire
4109  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4110  * simultaneously on behalf of the same inode.
4111  *
4112  * As we work through the truncate and commit bits of it to the journal there
4113  * is one core, guiding principle: the file's tree must always be consistent on
4114  * disk.  We must be able to restart the truncate after a crash.
4115  *
4116  * The file's tree may be transiently inconsistent in memory (although it
4117  * probably isn't), but whenever we close off and commit a journal transaction,
4118  * the contents of (the filesystem + the journal) must be consistent and
4119  * restartable.  It's pretty simple, really: bottom up, right to left (although
4120  * left-to-right works OK too).
4121  *
4122  * Note that at recovery time, journal replay occurs *before* the restart of
4123  * truncate against the orphan inode list.
4124  *
4125  * The committed inode has the new, desired i_size (which is the same as
4126  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4127  * that this inode's truncate did not complete and it will again call
4128  * ext4_truncate() to have another go.  So there will be instantiated blocks
4129  * to the right of the truncation point in a crashed ext4 filesystem.  But
4130  * that's fine - as long as they are linked from the inode, the post-crash
4131  * ext4_truncate() run will find them and release them.
4132  */
4133 int ext4_truncate(struct inode *inode)
4134 {
4135 	struct ext4_inode_info *ei = EXT4_I(inode);
4136 	unsigned int credits;
4137 	int err = 0, err2;
4138 	handle_t *handle;
4139 	struct address_space *mapping = inode->i_mapping;
4140 
4141 	/*
4142 	 * There is a possibility that we're either freeing the inode
4143 	 * or it's a completely new inode. In those cases we might not
4144 	 * have i_mutex locked because it's not necessary.
4145 	 */
4146 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4147 		WARN_ON(!inode_is_locked(inode));
4148 	trace_ext4_truncate_enter(inode);
4149 
4150 	if (!ext4_can_truncate(inode))
4151 		goto out_trace;
4152 
4153 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4154 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4155 
4156 	if (ext4_has_inline_data(inode)) {
4157 		int has_inline = 1;
4158 
4159 		err = ext4_inline_data_truncate(inode, &has_inline);
4160 		if (err || has_inline)
4161 			goto out_trace;
4162 	}
4163 
4164 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4165 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4166 		if (ext4_inode_attach_jinode(inode) < 0)
4167 			goto out_trace;
4168 	}
4169 
4170 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4171 		credits = ext4_writepage_trans_blocks(inode);
4172 	else
4173 		credits = ext4_blocks_for_truncate(inode);
4174 
4175 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4176 	if (IS_ERR(handle)) {
4177 		err = PTR_ERR(handle);
4178 		goto out_trace;
4179 	}
4180 
4181 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4182 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4183 
4184 	/*
4185 	 * We add the inode to the orphan list, so that if this
4186 	 * truncate spans multiple transactions, and we crash, we will
4187 	 * resume the truncate when the filesystem recovers.  It also
4188 	 * marks the inode dirty, to catch the new size.
4189 	 *
4190 	 * Implication: the file must always be in a sane, consistent
4191 	 * truncatable state while each transaction commits.
4192 	 */
4193 	err = ext4_orphan_add(handle, inode);
4194 	if (err)
4195 		goto out_stop;
4196 
4197 	down_write(&EXT4_I(inode)->i_data_sem);
4198 
4199 	ext4_discard_preallocations(inode, 0);
4200 
4201 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4202 		err = ext4_ext_truncate(handle, inode);
4203 	else
4204 		ext4_ind_truncate(handle, inode);
4205 
4206 	up_write(&ei->i_data_sem);
4207 	if (err)
4208 		goto out_stop;
4209 
4210 	if (IS_SYNC(inode))
4211 		ext4_handle_sync(handle);
4212 
4213 out_stop:
4214 	/*
4215 	 * If this was a simple ftruncate() and the file will remain alive,
4216 	 * then we need to clear up the orphan record which we created above.
4217 	 * However, if this was a real unlink then we were called by
4218 	 * ext4_evict_inode(), and we allow that function to clean up the
4219 	 * orphan info for us.
4220 	 */
4221 	if (inode->i_nlink)
4222 		ext4_orphan_del(handle, inode);
4223 
4224 	inode->i_mtime = inode->i_ctime = current_time(inode);
4225 	err2 = ext4_mark_inode_dirty(handle, inode);
4226 	if (unlikely(err2 && !err))
4227 		err = err2;
4228 	ext4_journal_stop(handle);
4229 
4230 out_trace:
4231 	trace_ext4_truncate_exit(inode);
4232 	return err;
4233 }
4234 
4235 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4236 {
4237 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4238 		return inode_peek_iversion_raw(inode);
4239 	else
4240 		return inode_peek_iversion(inode);
4241 }
4242 
4243 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4244 				 struct ext4_inode_info *ei)
4245 {
4246 	struct inode *inode = &(ei->vfs_inode);
4247 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4248 	struct super_block *sb = inode->i_sb;
4249 
4250 	if (i_blocks <= ~0U) {
4251 		/*
4252 		 * i_blocks can be represented in a 32 bit variable
4253 		 * as multiple of 512 bytes
4254 		 */
4255 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4256 		raw_inode->i_blocks_high = 0;
4257 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4258 		return 0;
4259 	}
4260 
4261 	/*
4262 	 * This should never happen since sb->s_maxbytes should not have
4263 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4264 	 * feature in ext4_fill_super().
4265 	 */
4266 	if (!ext4_has_feature_huge_file(sb))
4267 		return -EFSCORRUPTED;
4268 
4269 	if (i_blocks <= 0xffffffffffffULL) {
4270 		/*
4271 		 * i_blocks can be represented in a 48 bit variable
4272 		 * as multiple of 512 bytes
4273 		 */
4274 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4275 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4276 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4277 	} else {
4278 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4279 		/* i_block is stored in file system block size */
4280 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4281 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4282 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4283 	}
4284 	return 0;
4285 }
4286 
4287 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4288 {
4289 	struct ext4_inode_info *ei = EXT4_I(inode);
4290 	uid_t i_uid;
4291 	gid_t i_gid;
4292 	projid_t i_projid;
4293 	int block;
4294 	int err;
4295 
4296 	err = ext4_inode_blocks_set(raw_inode, ei);
4297 
4298 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4299 	i_uid = i_uid_read(inode);
4300 	i_gid = i_gid_read(inode);
4301 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4302 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4303 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4304 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4305 		/*
4306 		 * Fix up interoperability with old kernels. Otherwise,
4307 		 * old inodes get re-used with the upper 16 bits of the
4308 		 * uid/gid intact.
4309 		 */
4310 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4311 			raw_inode->i_uid_high = 0;
4312 			raw_inode->i_gid_high = 0;
4313 		} else {
4314 			raw_inode->i_uid_high =
4315 				cpu_to_le16(high_16_bits(i_uid));
4316 			raw_inode->i_gid_high =
4317 				cpu_to_le16(high_16_bits(i_gid));
4318 		}
4319 	} else {
4320 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4321 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4322 		raw_inode->i_uid_high = 0;
4323 		raw_inode->i_gid_high = 0;
4324 	}
4325 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4326 
4327 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4328 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4329 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4330 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4331 
4332 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4333 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4334 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4335 		raw_inode->i_file_acl_high =
4336 			cpu_to_le16(ei->i_file_acl >> 32);
4337 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4338 	ext4_isize_set(raw_inode, ei->i_disksize);
4339 
4340 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4341 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4342 		if (old_valid_dev(inode->i_rdev)) {
4343 			raw_inode->i_block[0] =
4344 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4345 			raw_inode->i_block[1] = 0;
4346 		} else {
4347 			raw_inode->i_block[0] = 0;
4348 			raw_inode->i_block[1] =
4349 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4350 			raw_inode->i_block[2] = 0;
4351 		}
4352 	} else if (!ext4_has_inline_data(inode)) {
4353 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4354 			raw_inode->i_block[block] = ei->i_data[block];
4355 	}
4356 
4357 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4358 		u64 ivers = ext4_inode_peek_iversion(inode);
4359 
4360 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4361 		if (ei->i_extra_isize) {
4362 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4363 				raw_inode->i_version_hi =
4364 					cpu_to_le32(ivers >> 32);
4365 			raw_inode->i_extra_isize =
4366 				cpu_to_le16(ei->i_extra_isize);
4367 		}
4368 	}
4369 
4370 	if (i_projid != EXT4_DEF_PROJID &&
4371 	    !ext4_has_feature_project(inode->i_sb))
4372 		err = err ?: -EFSCORRUPTED;
4373 
4374 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4375 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4376 		raw_inode->i_projid = cpu_to_le32(i_projid);
4377 
4378 	ext4_inode_csum_set(inode, raw_inode, ei);
4379 	return err;
4380 }
4381 
4382 /*
4383  * ext4_get_inode_loc returns with an extra refcount against the inode's
4384  * underlying buffer_head on success. If we pass 'inode' and it does not
4385  * have in-inode xattr, we have all inode data in memory that is needed
4386  * to recreate the on-disk version of this inode.
4387  */
4388 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4389 				struct inode *inode, struct ext4_iloc *iloc,
4390 				ext4_fsblk_t *ret_block)
4391 {
4392 	struct ext4_group_desc	*gdp;
4393 	struct buffer_head	*bh;
4394 	ext4_fsblk_t		block;
4395 	struct blk_plug		plug;
4396 	int			inodes_per_block, inode_offset;
4397 
4398 	iloc->bh = NULL;
4399 	if (ino < EXT4_ROOT_INO ||
4400 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4401 		return -EFSCORRUPTED;
4402 
4403 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4404 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4405 	if (!gdp)
4406 		return -EIO;
4407 
4408 	/*
4409 	 * Figure out the offset within the block group inode table
4410 	 */
4411 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4412 	inode_offset = ((ino - 1) %
4413 			EXT4_INODES_PER_GROUP(sb));
4414 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4415 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4416 
4417 	bh = sb_getblk(sb, block);
4418 	if (unlikely(!bh))
4419 		return -ENOMEM;
4420 	if (ext4_buffer_uptodate(bh))
4421 		goto has_buffer;
4422 
4423 	lock_buffer(bh);
4424 	if (ext4_buffer_uptodate(bh)) {
4425 		/* Someone brought it uptodate while we waited */
4426 		unlock_buffer(bh);
4427 		goto has_buffer;
4428 	}
4429 
4430 	/*
4431 	 * If we have all information of the inode in memory and this
4432 	 * is the only valid inode in the block, we need not read the
4433 	 * block.
4434 	 */
4435 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4436 		struct buffer_head *bitmap_bh;
4437 		int i, start;
4438 
4439 		start = inode_offset & ~(inodes_per_block - 1);
4440 
4441 		/* Is the inode bitmap in cache? */
4442 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4443 		if (unlikely(!bitmap_bh))
4444 			goto make_io;
4445 
4446 		/*
4447 		 * If the inode bitmap isn't in cache then the
4448 		 * optimisation may end up performing two reads instead
4449 		 * of one, so skip it.
4450 		 */
4451 		if (!buffer_uptodate(bitmap_bh)) {
4452 			brelse(bitmap_bh);
4453 			goto make_io;
4454 		}
4455 		for (i = start; i < start + inodes_per_block; i++) {
4456 			if (i == inode_offset)
4457 				continue;
4458 			if (ext4_test_bit(i, bitmap_bh->b_data))
4459 				break;
4460 		}
4461 		brelse(bitmap_bh);
4462 		if (i == start + inodes_per_block) {
4463 			struct ext4_inode *raw_inode =
4464 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4465 
4466 			/* all other inodes are free, so skip I/O */
4467 			memset(bh->b_data, 0, bh->b_size);
4468 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4469 				ext4_fill_raw_inode(inode, raw_inode);
4470 			set_buffer_uptodate(bh);
4471 			unlock_buffer(bh);
4472 			goto has_buffer;
4473 		}
4474 	}
4475 
4476 make_io:
4477 	/*
4478 	 * If we need to do any I/O, try to pre-readahead extra
4479 	 * blocks from the inode table.
4480 	 */
4481 	blk_start_plug(&plug);
4482 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4483 		ext4_fsblk_t b, end, table;
4484 		unsigned num;
4485 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4486 
4487 		table = ext4_inode_table(sb, gdp);
4488 		/* s_inode_readahead_blks is always a power of 2 */
4489 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4490 		if (table > b)
4491 			b = table;
4492 		end = b + ra_blks;
4493 		num = EXT4_INODES_PER_GROUP(sb);
4494 		if (ext4_has_group_desc_csum(sb))
4495 			num -= ext4_itable_unused_count(sb, gdp);
4496 		table += num / inodes_per_block;
4497 		if (end > table)
4498 			end = table;
4499 		while (b <= end)
4500 			ext4_sb_breadahead_unmovable(sb, b++);
4501 	}
4502 
4503 	/*
4504 	 * There are other valid inodes in the buffer, this inode
4505 	 * has in-inode xattrs, or we don't have this inode in memory.
4506 	 * Read the block from disk.
4507 	 */
4508 	trace_ext4_load_inode(sb, ino);
4509 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4510 	blk_finish_plug(&plug);
4511 	wait_on_buffer(bh);
4512 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4513 	if (!buffer_uptodate(bh)) {
4514 		if (ret_block)
4515 			*ret_block = block;
4516 		brelse(bh);
4517 		return -EIO;
4518 	}
4519 has_buffer:
4520 	iloc->bh = bh;
4521 	return 0;
4522 }
4523 
4524 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4525 					struct ext4_iloc *iloc)
4526 {
4527 	ext4_fsblk_t err_blk;
4528 	int ret;
4529 
4530 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4531 					&err_blk);
4532 
4533 	if (ret == -EIO)
4534 		ext4_error_inode_block(inode, err_blk, EIO,
4535 					"unable to read itable block");
4536 
4537 	return ret;
4538 }
4539 
4540 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4541 {
4542 	ext4_fsblk_t err_blk;
4543 	int ret;
4544 
4545 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4546 					&err_blk);
4547 
4548 	if (ret == -EIO)
4549 		ext4_error_inode_block(inode, err_blk, EIO,
4550 					"unable to read itable block");
4551 
4552 	return ret;
4553 }
4554 
4555 
4556 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4557 			  struct ext4_iloc *iloc)
4558 {
4559 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4560 }
4561 
4562 static bool ext4_should_enable_dax(struct inode *inode)
4563 {
4564 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4565 
4566 	if (test_opt2(inode->i_sb, DAX_NEVER))
4567 		return false;
4568 	if (!S_ISREG(inode->i_mode))
4569 		return false;
4570 	if (ext4_should_journal_data(inode))
4571 		return false;
4572 	if (ext4_has_inline_data(inode))
4573 		return false;
4574 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4575 		return false;
4576 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4577 		return false;
4578 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4579 		return false;
4580 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4581 		return true;
4582 
4583 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4584 }
4585 
4586 void ext4_set_inode_flags(struct inode *inode, bool init)
4587 {
4588 	unsigned int flags = EXT4_I(inode)->i_flags;
4589 	unsigned int new_fl = 0;
4590 
4591 	WARN_ON_ONCE(IS_DAX(inode) && init);
4592 
4593 	if (flags & EXT4_SYNC_FL)
4594 		new_fl |= S_SYNC;
4595 	if (flags & EXT4_APPEND_FL)
4596 		new_fl |= S_APPEND;
4597 	if (flags & EXT4_IMMUTABLE_FL)
4598 		new_fl |= S_IMMUTABLE;
4599 	if (flags & EXT4_NOATIME_FL)
4600 		new_fl |= S_NOATIME;
4601 	if (flags & EXT4_DIRSYNC_FL)
4602 		new_fl |= S_DIRSYNC;
4603 
4604 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4605 	 * here if already set. */
4606 	new_fl |= (inode->i_flags & S_DAX);
4607 	if (init && ext4_should_enable_dax(inode))
4608 		new_fl |= S_DAX;
4609 
4610 	if (flags & EXT4_ENCRYPT_FL)
4611 		new_fl |= S_ENCRYPTED;
4612 	if (flags & EXT4_CASEFOLD_FL)
4613 		new_fl |= S_CASEFOLD;
4614 	if (flags & EXT4_VERITY_FL)
4615 		new_fl |= S_VERITY;
4616 	inode_set_flags(inode, new_fl,
4617 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4618 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4619 }
4620 
4621 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4622 				  struct ext4_inode_info *ei)
4623 {
4624 	blkcnt_t i_blocks ;
4625 	struct inode *inode = &(ei->vfs_inode);
4626 	struct super_block *sb = inode->i_sb;
4627 
4628 	if (ext4_has_feature_huge_file(sb)) {
4629 		/* we are using combined 48 bit field */
4630 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4631 					le32_to_cpu(raw_inode->i_blocks_lo);
4632 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4633 			/* i_blocks represent file system block size */
4634 			return i_blocks  << (inode->i_blkbits - 9);
4635 		} else {
4636 			return i_blocks;
4637 		}
4638 	} else {
4639 		return le32_to_cpu(raw_inode->i_blocks_lo);
4640 	}
4641 }
4642 
4643 static inline int ext4_iget_extra_inode(struct inode *inode,
4644 					 struct ext4_inode *raw_inode,
4645 					 struct ext4_inode_info *ei)
4646 {
4647 	__le32 *magic = (void *)raw_inode +
4648 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4649 
4650 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4651 	    EXT4_INODE_SIZE(inode->i_sb) &&
4652 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4653 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4654 		return ext4_find_inline_data_nolock(inode);
4655 	} else
4656 		EXT4_I(inode)->i_inline_off = 0;
4657 	return 0;
4658 }
4659 
4660 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4661 {
4662 	if (!ext4_has_feature_project(inode->i_sb))
4663 		return -EOPNOTSUPP;
4664 	*projid = EXT4_I(inode)->i_projid;
4665 	return 0;
4666 }
4667 
4668 /*
4669  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4670  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4671  * set.
4672  */
4673 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4674 {
4675 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4676 		inode_set_iversion_raw(inode, val);
4677 	else
4678 		inode_set_iversion_queried(inode, val);
4679 }
4680 
4681 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4682 			  ext4_iget_flags flags, const char *function,
4683 			  unsigned int line)
4684 {
4685 	struct ext4_iloc iloc;
4686 	struct ext4_inode *raw_inode;
4687 	struct ext4_inode_info *ei;
4688 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4689 	struct inode *inode;
4690 	journal_t *journal = EXT4_SB(sb)->s_journal;
4691 	long ret;
4692 	loff_t size;
4693 	int block;
4694 	uid_t i_uid;
4695 	gid_t i_gid;
4696 	projid_t i_projid;
4697 
4698 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4699 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4700 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4701 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4702 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4703 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4704 	    (ino < EXT4_ROOT_INO) ||
4705 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4706 		if (flags & EXT4_IGET_HANDLE)
4707 			return ERR_PTR(-ESTALE);
4708 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4709 			     "inode #%lu: comm %s: iget: illegal inode #",
4710 			     ino, current->comm);
4711 		return ERR_PTR(-EFSCORRUPTED);
4712 	}
4713 
4714 	inode = iget_locked(sb, ino);
4715 	if (!inode)
4716 		return ERR_PTR(-ENOMEM);
4717 	if (!(inode->i_state & I_NEW))
4718 		return inode;
4719 
4720 	ei = EXT4_I(inode);
4721 	iloc.bh = NULL;
4722 
4723 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4724 	if (ret < 0)
4725 		goto bad_inode;
4726 	raw_inode = ext4_raw_inode(&iloc);
4727 
4728 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4729 		ext4_error_inode(inode, function, line, 0,
4730 				 "iget: root inode unallocated");
4731 		ret = -EFSCORRUPTED;
4732 		goto bad_inode;
4733 	}
4734 
4735 	if ((flags & EXT4_IGET_HANDLE) &&
4736 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4737 		ret = -ESTALE;
4738 		goto bad_inode;
4739 	}
4740 
4741 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4742 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4743 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4744 			EXT4_INODE_SIZE(inode->i_sb) ||
4745 		    (ei->i_extra_isize & 3)) {
4746 			ext4_error_inode(inode, function, line, 0,
4747 					 "iget: bad extra_isize %u "
4748 					 "(inode size %u)",
4749 					 ei->i_extra_isize,
4750 					 EXT4_INODE_SIZE(inode->i_sb));
4751 			ret = -EFSCORRUPTED;
4752 			goto bad_inode;
4753 		}
4754 	} else
4755 		ei->i_extra_isize = 0;
4756 
4757 	/* Precompute checksum seed for inode metadata */
4758 	if (ext4_has_metadata_csum(sb)) {
4759 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4760 		__u32 csum;
4761 		__le32 inum = cpu_to_le32(inode->i_ino);
4762 		__le32 gen = raw_inode->i_generation;
4763 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4764 				   sizeof(inum));
4765 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4766 					      sizeof(gen));
4767 	}
4768 
4769 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4770 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4771 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4772 		ext4_error_inode_err(inode, function, line, 0,
4773 				EFSBADCRC, "iget: checksum invalid");
4774 		ret = -EFSBADCRC;
4775 		goto bad_inode;
4776 	}
4777 
4778 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4779 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4780 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4781 	if (ext4_has_feature_project(sb) &&
4782 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4783 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4784 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4785 	else
4786 		i_projid = EXT4_DEF_PROJID;
4787 
4788 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4789 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4790 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4791 	}
4792 	i_uid_write(inode, i_uid);
4793 	i_gid_write(inode, i_gid);
4794 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4795 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4796 
4797 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4798 	ei->i_inline_off = 0;
4799 	ei->i_dir_start_lookup = 0;
4800 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4801 	/* We now have enough fields to check if the inode was active or not.
4802 	 * This is needed because nfsd might try to access dead inodes
4803 	 * the test is that same one that e2fsck uses
4804 	 * NeilBrown 1999oct15
4805 	 */
4806 	if (inode->i_nlink == 0) {
4807 		if ((inode->i_mode == 0 ||
4808 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4809 		    ino != EXT4_BOOT_LOADER_INO) {
4810 			/* this inode is deleted */
4811 			ret = -ESTALE;
4812 			goto bad_inode;
4813 		}
4814 		/* The only unlinked inodes we let through here have
4815 		 * valid i_mode and are being read by the orphan
4816 		 * recovery code: that's fine, we're about to complete
4817 		 * the process of deleting those.
4818 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4819 		 * not initialized on a new filesystem. */
4820 	}
4821 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4822 	ext4_set_inode_flags(inode, true);
4823 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4824 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4825 	if (ext4_has_feature_64bit(sb))
4826 		ei->i_file_acl |=
4827 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4828 	inode->i_size = ext4_isize(sb, raw_inode);
4829 	if ((size = i_size_read(inode)) < 0) {
4830 		ext4_error_inode(inode, function, line, 0,
4831 				 "iget: bad i_size value: %lld", size);
4832 		ret = -EFSCORRUPTED;
4833 		goto bad_inode;
4834 	}
4835 	/*
4836 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4837 	 * we'd normally treat htree data as empty space. But with metadata
4838 	 * checksumming that corrupts checksums so forbid that.
4839 	 */
4840 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4841 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4842 		ext4_error_inode(inode, function, line, 0,
4843 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4844 		ret = -EFSCORRUPTED;
4845 		goto bad_inode;
4846 	}
4847 	ei->i_disksize = inode->i_size;
4848 #ifdef CONFIG_QUOTA
4849 	ei->i_reserved_quota = 0;
4850 #endif
4851 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4852 	ei->i_block_group = iloc.block_group;
4853 	ei->i_last_alloc_group = ~0;
4854 	/*
4855 	 * NOTE! The in-memory inode i_data array is in little-endian order
4856 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4857 	 */
4858 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4859 		ei->i_data[block] = raw_inode->i_block[block];
4860 	INIT_LIST_HEAD(&ei->i_orphan);
4861 	ext4_fc_init_inode(&ei->vfs_inode);
4862 
4863 	/*
4864 	 * Set transaction id's of transactions that have to be committed
4865 	 * to finish f[data]sync. We set them to currently running transaction
4866 	 * as we cannot be sure that the inode or some of its metadata isn't
4867 	 * part of the transaction - the inode could have been reclaimed and
4868 	 * now it is reread from disk.
4869 	 */
4870 	if (journal) {
4871 		transaction_t *transaction;
4872 		tid_t tid;
4873 
4874 		read_lock(&journal->j_state_lock);
4875 		if (journal->j_running_transaction)
4876 			transaction = journal->j_running_transaction;
4877 		else
4878 			transaction = journal->j_committing_transaction;
4879 		if (transaction)
4880 			tid = transaction->t_tid;
4881 		else
4882 			tid = journal->j_commit_sequence;
4883 		read_unlock(&journal->j_state_lock);
4884 		ei->i_sync_tid = tid;
4885 		ei->i_datasync_tid = tid;
4886 	}
4887 
4888 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889 		if (ei->i_extra_isize == 0) {
4890 			/* The extra space is currently unused. Use it. */
4891 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4892 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4893 					    EXT4_GOOD_OLD_INODE_SIZE;
4894 		} else {
4895 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4896 			if (ret)
4897 				goto bad_inode;
4898 		}
4899 	}
4900 
4901 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4902 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4903 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4904 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4905 
4906 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4907 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4908 
4909 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4910 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4911 				ivers |=
4912 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4913 		}
4914 		ext4_inode_set_iversion_queried(inode, ivers);
4915 	}
4916 
4917 	ret = 0;
4918 	if (ei->i_file_acl &&
4919 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4920 		ext4_error_inode(inode, function, line, 0,
4921 				 "iget: bad extended attribute block %llu",
4922 				 ei->i_file_acl);
4923 		ret = -EFSCORRUPTED;
4924 		goto bad_inode;
4925 	} else if (!ext4_has_inline_data(inode)) {
4926 		/* validate the block references in the inode */
4927 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4928 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4929 			(S_ISLNK(inode->i_mode) &&
4930 			!ext4_inode_is_fast_symlink(inode)))) {
4931 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4932 				ret = ext4_ext_check_inode(inode);
4933 			else
4934 				ret = ext4_ind_check_inode(inode);
4935 		}
4936 	}
4937 	if (ret)
4938 		goto bad_inode;
4939 
4940 	if (S_ISREG(inode->i_mode)) {
4941 		inode->i_op = &ext4_file_inode_operations;
4942 		inode->i_fop = &ext4_file_operations;
4943 		ext4_set_aops(inode);
4944 	} else if (S_ISDIR(inode->i_mode)) {
4945 		inode->i_op = &ext4_dir_inode_operations;
4946 		inode->i_fop = &ext4_dir_operations;
4947 	} else if (S_ISLNK(inode->i_mode)) {
4948 		/* VFS does not allow setting these so must be corruption */
4949 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4950 			ext4_error_inode(inode, function, line, 0,
4951 					 "iget: immutable or append flags "
4952 					 "not allowed on symlinks");
4953 			ret = -EFSCORRUPTED;
4954 			goto bad_inode;
4955 		}
4956 		if (IS_ENCRYPTED(inode)) {
4957 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4958 			ext4_set_aops(inode);
4959 		} else if (ext4_inode_is_fast_symlink(inode)) {
4960 			inode->i_link = (char *)ei->i_data;
4961 			inode->i_op = &ext4_fast_symlink_inode_operations;
4962 			nd_terminate_link(ei->i_data, inode->i_size,
4963 				sizeof(ei->i_data) - 1);
4964 		} else {
4965 			inode->i_op = &ext4_symlink_inode_operations;
4966 			ext4_set_aops(inode);
4967 		}
4968 		inode_nohighmem(inode);
4969 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4970 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4971 		inode->i_op = &ext4_special_inode_operations;
4972 		if (raw_inode->i_block[0])
4973 			init_special_inode(inode, inode->i_mode,
4974 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4975 		else
4976 			init_special_inode(inode, inode->i_mode,
4977 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4978 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4979 		make_bad_inode(inode);
4980 	} else {
4981 		ret = -EFSCORRUPTED;
4982 		ext4_error_inode(inode, function, line, 0,
4983 				 "iget: bogus i_mode (%o)", inode->i_mode);
4984 		goto bad_inode;
4985 	}
4986 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4987 		ext4_error_inode(inode, function, line, 0,
4988 				 "casefold flag without casefold feature");
4989 	brelse(iloc.bh);
4990 
4991 	unlock_new_inode(inode);
4992 	return inode;
4993 
4994 bad_inode:
4995 	brelse(iloc.bh);
4996 	iget_failed(inode);
4997 	return ERR_PTR(ret);
4998 }
4999 
5000 static void __ext4_update_other_inode_time(struct super_block *sb,
5001 					   unsigned long orig_ino,
5002 					   unsigned long ino,
5003 					   struct ext4_inode *raw_inode)
5004 {
5005 	struct inode *inode;
5006 
5007 	inode = find_inode_by_ino_rcu(sb, ino);
5008 	if (!inode)
5009 		return;
5010 
5011 	if (!inode_is_dirtytime_only(inode))
5012 		return;
5013 
5014 	spin_lock(&inode->i_lock);
5015 	if (inode_is_dirtytime_only(inode)) {
5016 		struct ext4_inode_info	*ei = EXT4_I(inode);
5017 
5018 		inode->i_state &= ~I_DIRTY_TIME;
5019 		spin_unlock(&inode->i_lock);
5020 
5021 		spin_lock(&ei->i_raw_lock);
5022 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5023 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5024 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5025 		ext4_inode_csum_set(inode, raw_inode, ei);
5026 		spin_unlock(&ei->i_raw_lock);
5027 		trace_ext4_other_inode_update_time(inode, orig_ino);
5028 		return;
5029 	}
5030 	spin_unlock(&inode->i_lock);
5031 }
5032 
5033 /*
5034  * Opportunistically update the other time fields for other inodes in
5035  * the same inode table block.
5036  */
5037 static void ext4_update_other_inodes_time(struct super_block *sb,
5038 					  unsigned long orig_ino, char *buf)
5039 {
5040 	unsigned long ino;
5041 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5042 	int inode_size = EXT4_INODE_SIZE(sb);
5043 
5044 	/*
5045 	 * Calculate the first inode in the inode table block.  Inode
5046 	 * numbers are one-based.  That is, the first inode in a block
5047 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5048 	 */
5049 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5050 	rcu_read_lock();
5051 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5052 		if (ino == orig_ino)
5053 			continue;
5054 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5055 					       (struct ext4_inode *)buf);
5056 	}
5057 	rcu_read_unlock();
5058 }
5059 
5060 /*
5061  * Post the struct inode info into an on-disk inode location in the
5062  * buffer-cache.  This gobbles the caller's reference to the
5063  * buffer_head in the inode location struct.
5064  *
5065  * The caller must have write access to iloc->bh.
5066  */
5067 static int ext4_do_update_inode(handle_t *handle,
5068 				struct inode *inode,
5069 				struct ext4_iloc *iloc)
5070 {
5071 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5072 	struct ext4_inode_info *ei = EXT4_I(inode);
5073 	struct buffer_head *bh = iloc->bh;
5074 	struct super_block *sb = inode->i_sb;
5075 	int err;
5076 	int need_datasync = 0, set_large_file = 0;
5077 
5078 	spin_lock(&ei->i_raw_lock);
5079 
5080 	/*
5081 	 * For fields not tracked in the in-memory inode, initialise them
5082 	 * to zero for new inodes.
5083 	 */
5084 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5085 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5086 
5087 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5088 		need_datasync = 1;
5089 	if (ei->i_disksize > 0x7fffffffULL) {
5090 		if (!ext4_has_feature_large_file(sb) ||
5091 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5092 			set_large_file = 1;
5093 	}
5094 
5095 	err = ext4_fill_raw_inode(inode, raw_inode);
5096 	spin_unlock(&ei->i_raw_lock);
5097 	if (err) {
5098 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5099 		goto out_brelse;
5100 	}
5101 
5102 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5103 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5104 					      bh->b_data);
5105 
5106 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5107 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5108 	if (err)
5109 		goto out_error;
5110 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5111 	if (set_large_file) {
5112 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5113 		err = ext4_journal_get_write_access(handle, sb,
5114 						    EXT4_SB(sb)->s_sbh,
5115 						    EXT4_JTR_NONE);
5116 		if (err)
5117 			goto out_error;
5118 		lock_buffer(EXT4_SB(sb)->s_sbh);
5119 		ext4_set_feature_large_file(sb);
5120 		ext4_superblock_csum_set(sb);
5121 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5122 		ext4_handle_sync(handle);
5123 		err = ext4_handle_dirty_metadata(handle, NULL,
5124 						 EXT4_SB(sb)->s_sbh);
5125 	}
5126 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5127 out_error:
5128 	ext4_std_error(inode->i_sb, err);
5129 out_brelse:
5130 	brelse(bh);
5131 	return err;
5132 }
5133 
5134 /*
5135  * ext4_write_inode()
5136  *
5137  * We are called from a few places:
5138  *
5139  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5140  *   Here, there will be no transaction running. We wait for any running
5141  *   transaction to commit.
5142  *
5143  * - Within flush work (sys_sync(), kupdate and such).
5144  *   We wait on commit, if told to.
5145  *
5146  * - Within iput_final() -> write_inode_now()
5147  *   We wait on commit, if told to.
5148  *
5149  * In all cases it is actually safe for us to return without doing anything,
5150  * because the inode has been copied into a raw inode buffer in
5151  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5152  * writeback.
5153  *
5154  * Note that we are absolutely dependent upon all inode dirtiers doing the
5155  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5156  * which we are interested.
5157  *
5158  * It would be a bug for them to not do this.  The code:
5159  *
5160  *	mark_inode_dirty(inode)
5161  *	stuff();
5162  *	inode->i_size = expr;
5163  *
5164  * is in error because write_inode() could occur while `stuff()' is running,
5165  * and the new i_size will be lost.  Plus the inode will no longer be on the
5166  * superblock's dirty inode list.
5167  */
5168 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5169 {
5170 	int err;
5171 
5172 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5173 	    sb_rdonly(inode->i_sb))
5174 		return 0;
5175 
5176 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5177 		return -EIO;
5178 
5179 	if (EXT4_SB(inode->i_sb)->s_journal) {
5180 		if (ext4_journal_current_handle()) {
5181 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5182 			dump_stack();
5183 			return -EIO;
5184 		}
5185 
5186 		/*
5187 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5188 		 * ext4_sync_fs() will force the commit after everything is
5189 		 * written.
5190 		 */
5191 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5192 			return 0;
5193 
5194 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5195 						EXT4_I(inode)->i_sync_tid);
5196 	} else {
5197 		struct ext4_iloc iloc;
5198 
5199 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5200 		if (err)
5201 			return err;
5202 		/*
5203 		 * sync(2) will flush the whole buffer cache. No need to do
5204 		 * it here separately for each inode.
5205 		 */
5206 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5207 			sync_dirty_buffer(iloc.bh);
5208 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5209 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5210 					       "IO error syncing inode");
5211 			err = -EIO;
5212 		}
5213 		brelse(iloc.bh);
5214 	}
5215 	return err;
5216 }
5217 
5218 /*
5219  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5220  * buffers that are attached to a page stradding i_size and are undergoing
5221  * commit. In that case we have to wait for commit to finish and try again.
5222  */
5223 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5224 {
5225 	struct page *page;
5226 	unsigned offset;
5227 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5228 	tid_t commit_tid = 0;
5229 	int ret;
5230 
5231 	offset = inode->i_size & (PAGE_SIZE - 1);
5232 	/*
5233 	 * If the page is fully truncated, we don't need to wait for any commit
5234 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5235 	 * strip all buffers from the page but keep the page dirty which can then
5236 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5237 	 * buffers). Also we don't need to wait for any commit if all buffers in
5238 	 * the page remain valid. This is most beneficial for the common case of
5239 	 * blocksize == PAGESIZE.
5240 	 */
5241 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5242 		return;
5243 	while (1) {
5244 		page = find_lock_page(inode->i_mapping,
5245 				      inode->i_size >> PAGE_SHIFT);
5246 		if (!page)
5247 			return;
5248 		ret = __ext4_journalled_invalidatepage(page, offset,
5249 						PAGE_SIZE - offset);
5250 		unlock_page(page);
5251 		put_page(page);
5252 		if (ret != -EBUSY)
5253 			return;
5254 		commit_tid = 0;
5255 		read_lock(&journal->j_state_lock);
5256 		if (journal->j_committing_transaction)
5257 			commit_tid = journal->j_committing_transaction->t_tid;
5258 		read_unlock(&journal->j_state_lock);
5259 		if (commit_tid)
5260 			jbd2_log_wait_commit(journal, commit_tid);
5261 	}
5262 }
5263 
5264 /*
5265  * ext4_setattr()
5266  *
5267  * Called from notify_change.
5268  *
5269  * We want to trap VFS attempts to truncate the file as soon as
5270  * possible.  In particular, we want to make sure that when the VFS
5271  * shrinks i_size, we put the inode on the orphan list and modify
5272  * i_disksize immediately, so that during the subsequent flushing of
5273  * dirty pages and freeing of disk blocks, we can guarantee that any
5274  * commit will leave the blocks being flushed in an unused state on
5275  * disk.  (On recovery, the inode will get truncated and the blocks will
5276  * be freed, so we have a strong guarantee that no future commit will
5277  * leave these blocks visible to the user.)
5278  *
5279  * Another thing we have to assure is that if we are in ordered mode
5280  * and inode is still attached to the committing transaction, we must
5281  * we start writeout of all the dirty pages which are being truncated.
5282  * This way we are sure that all the data written in the previous
5283  * transaction are already on disk (truncate waits for pages under
5284  * writeback).
5285  *
5286  * Called with inode->i_mutex down.
5287  */
5288 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5289 		 struct iattr *attr)
5290 {
5291 	struct inode *inode = d_inode(dentry);
5292 	int error, rc = 0;
5293 	int orphan = 0;
5294 	const unsigned int ia_valid = attr->ia_valid;
5295 
5296 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5297 		return -EIO;
5298 
5299 	if (unlikely(IS_IMMUTABLE(inode)))
5300 		return -EPERM;
5301 
5302 	if (unlikely(IS_APPEND(inode) &&
5303 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5304 				  ATTR_GID | ATTR_TIMES_SET))))
5305 		return -EPERM;
5306 
5307 	error = setattr_prepare(mnt_userns, dentry, attr);
5308 	if (error)
5309 		return error;
5310 
5311 	error = fscrypt_prepare_setattr(dentry, attr);
5312 	if (error)
5313 		return error;
5314 
5315 	error = fsverity_prepare_setattr(dentry, attr);
5316 	if (error)
5317 		return error;
5318 
5319 	if (is_quota_modification(inode, attr)) {
5320 		error = dquot_initialize(inode);
5321 		if (error)
5322 			return error;
5323 	}
5324 	ext4_fc_start_update(inode);
5325 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5326 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5327 		handle_t *handle;
5328 
5329 		/* (user+group)*(old+new) structure, inode write (sb,
5330 		 * inode block, ? - but truncate inode update has it) */
5331 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5332 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5333 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5334 		if (IS_ERR(handle)) {
5335 			error = PTR_ERR(handle);
5336 			goto err_out;
5337 		}
5338 
5339 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5340 		 * counts xattr inode references.
5341 		 */
5342 		down_read(&EXT4_I(inode)->xattr_sem);
5343 		error = dquot_transfer(inode, attr);
5344 		up_read(&EXT4_I(inode)->xattr_sem);
5345 
5346 		if (error) {
5347 			ext4_journal_stop(handle);
5348 			ext4_fc_stop_update(inode);
5349 			return error;
5350 		}
5351 		/* Update corresponding info in inode so that everything is in
5352 		 * one transaction */
5353 		if (attr->ia_valid & ATTR_UID)
5354 			inode->i_uid = attr->ia_uid;
5355 		if (attr->ia_valid & ATTR_GID)
5356 			inode->i_gid = attr->ia_gid;
5357 		error = ext4_mark_inode_dirty(handle, inode);
5358 		ext4_journal_stop(handle);
5359 		if (unlikely(error)) {
5360 			ext4_fc_stop_update(inode);
5361 			return error;
5362 		}
5363 	}
5364 
5365 	if (attr->ia_valid & ATTR_SIZE) {
5366 		handle_t *handle;
5367 		loff_t oldsize = inode->i_size;
5368 		int shrink = (attr->ia_size < inode->i_size);
5369 
5370 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5371 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5372 
5373 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5374 				ext4_fc_stop_update(inode);
5375 				return -EFBIG;
5376 			}
5377 		}
5378 		if (!S_ISREG(inode->i_mode)) {
5379 			ext4_fc_stop_update(inode);
5380 			return -EINVAL;
5381 		}
5382 
5383 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5384 			inode_inc_iversion(inode);
5385 
5386 		if (shrink) {
5387 			if (ext4_should_order_data(inode)) {
5388 				error = ext4_begin_ordered_truncate(inode,
5389 							    attr->ia_size);
5390 				if (error)
5391 					goto err_out;
5392 			}
5393 			/*
5394 			 * Blocks are going to be removed from the inode. Wait
5395 			 * for dio in flight.
5396 			 */
5397 			inode_dio_wait(inode);
5398 		}
5399 
5400 		filemap_invalidate_lock(inode->i_mapping);
5401 
5402 		rc = ext4_break_layouts(inode);
5403 		if (rc) {
5404 			filemap_invalidate_unlock(inode->i_mapping);
5405 			goto err_out;
5406 		}
5407 
5408 		if (attr->ia_size != inode->i_size) {
5409 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5410 			if (IS_ERR(handle)) {
5411 				error = PTR_ERR(handle);
5412 				goto out_mmap_sem;
5413 			}
5414 			if (ext4_handle_valid(handle) && shrink) {
5415 				error = ext4_orphan_add(handle, inode);
5416 				orphan = 1;
5417 			}
5418 			/*
5419 			 * Update c/mtime on truncate up, ext4_truncate() will
5420 			 * update c/mtime in shrink case below
5421 			 */
5422 			if (!shrink) {
5423 				inode->i_mtime = current_time(inode);
5424 				inode->i_ctime = inode->i_mtime;
5425 			}
5426 
5427 			if (shrink)
5428 				ext4_fc_track_range(handle, inode,
5429 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5430 					inode->i_sb->s_blocksize_bits,
5431 					(oldsize > 0 ? oldsize - 1 : 0) >>
5432 					inode->i_sb->s_blocksize_bits);
5433 			else
5434 				ext4_fc_track_range(
5435 					handle, inode,
5436 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5437 					inode->i_sb->s_blocksize_bits,
5438 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5439 					inode->i_sb->s_blocksize_bits);
5440 
5441 			down_write(&EXT4_I(inode)->i_data_sem);
5442 			EXT4_I(inode)->i_disksize = attr->ia_size;
5443 			rc = ext4_mark_inode_dirty(handle, inode);
5444 			if (!error)
5445 				error = rc;
5446 			/*
5447 			 * We have to update i_size under i_data_sem together
5448 			 * with i_disksize to avoid races with writeback code
5449 			 * running ext4_wb_update_i_disksize().
5450 			 */
5451 			if (!error)
5452 				i_size_write(inode, attr->ia_size);
5453 			up_write(&EXT4_I(inode)->i_data_sem);
5454 			ext4_journal_stop(handle);
5455 			if (error)
5456 				goto out_mmap_sem;
5457 			if (!shrink) {
5458 				pagecache_isize_extended(inode, oldsize,
5459 							 inode->i_size);
5460 			} else if (ext4_should_journal_data(inode)) {
5461 				ext4_wait_for_tail_page_commit(inode);
5462 			}
5463 		}
5464 
5465 		/*
5466 		 * Truncate pagecache after we've waited for commit
5467 		 * in data=journal mode to make pages freeable.
5468 		 */
5469 		truncate_pagecache(inode, inode->i_size);
5470 		/*
5471 		 * Call ext4_truncate() even if i_size didn't change to
5472 		 * truncate possible preallocated blocks.
5473 		 */
5474 		if (attr->ia_size <= oldsize) {
5475 			rc = ext4_truncate(inode);
5476 			if (rc)
5477 				error = rc;
5478 		}
5479 out_mmap_sem:
5480 		filemap_invalidate_unlock(inode->i_mapping);
5481 	}
5482 
5483 	if (!error) {
5484 		setattr_copy(mnt_userns, inode, attr);
5485 		mark_inode_dirty(inode);
5486 	}
5487 
5488 	/*
5489 	 * If the call to ext4_truncate failed to get a transaction handle at
5490 	 * all, we need to clean up the in-core orphan list manually.
5491 	 */
5492 	if (orphan && inode->i_nlink)
5493 		ext4_orphan_del(NULL, inode);
5494 
5495 	if (!error && (ia_valid & ATTR_MODE))
5496 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5497 
5498 err_out:
5499 	if  (error)
5500 		ext4_std_error(inode->i_sb, error);
5501 	if (!error)
5502 		error = rc;
5503 	ext4_fc_stop_update(inode);
5504 	return error;
5505 }
5506 
5507 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5508 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5509 {
5510 	struct inode *inode = d_inode(path->dentry);
5511 	struct ext4_inode *raw_inode;
5512 	struct ext4_inode_info *ei = EXT4_I(inode);
5513 	unsigned int flags;
5514 
5515 	if ((request_mask & STATX_BTIME) &&
5516 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5517 		stat->result_mask |= STATX_BTIME;
5518 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5519 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5520 	}
5521 
5522 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5523 	if (flags & EXT4_APPEND_FL)
5524 		stat->attributes |= STATX_ATTR_APPEND;
5525 	if (flags & EXT4_COMPR_FL)
5526 		stat->attributes |= STATX_ATTR_COMPRESSED;
5527 	if (flags & EXT4_ENCRYPT_FL)
5528 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5529 	if (flags & EXT4_IMMUTABLE_FL)
5530 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5531 	if (flags & EXT4_NODUMP_FL)
5532 		stat->attributes |= STATX_ATTR_NODUMP;
5533 	if (flags & EXT4_VERITY_FL)
5534 		stat->attributes |= STATX_ATTR_VERITY;
5535 
5536 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5537 				  STATX_ATTR_COMPRESSED |
5538 				  STATX_ATTR_ENCRYPTED |
5539 				  STATX_ATTR_IMMUTABLE |
5540 				  STATX_ATTR_NODUMP |
5541 				  STATX_ATTR_VERITY);
5542 
5543 	generic_fillattr(mnt_userns, inode, stat);
5544 	return 0;
5545 }
5546 
5547 int ext4_file_getattr(struct user_namespace *mnt_userns,
5548 		      const struct path *path, struct kstat *stat,
5549 		      u32 request_mask, unsigned int query_flags)
5550 {
5551 	struct inode *inode = d_inode(path->dentry);
5552 	u64 delalloc_blocks;
5553 
5554 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5555 
5556 	/*
5557 	 * If there is inline data in the inode, the inode will normally not
5558 	 * have data blocks allocated (it may have an external xattr block).
5559 	 * Report at least one sector for such files, so tools like tar, rsync,
5560 	 * others don't incorrectly think the file is completely sparse.
5561 	 */
5562 	if (unlikely(ext4_has_inline_data(inode)))
5563 		stat->blocks += (stat->size + 511) >> 9;
5564 
5565 	/*
5566 	 * We can't update i_blocks if the block allocation is delayed
5567 	 * otherwise in the case of system crash before the real block
5568 	 * allocation is done, we will have i_blocks inconsistent with
5569 	 * on-disk file blocks.
5570 	 * We always keep i_blocks updated together with real
5571 	 * allocation. But to not confuse with user, stat
5572 	 * will return the blocks that include the delayed allocation
5573 	 * blocks for this file.
5574 	 */
5575 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5576 				   EXT4_I(inode)->i_reserved_data_blocks);
5577 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5578 	return 0;
5579 }
5580 
5581 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5582 				   int pextents)
5583 {
5584 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5585 		return ext4_ind_trans_blocks(inode, lblocks);
5586 	return ext4_ext_index_trans_blocks(inode, pextents);
5587 }
5588 
5589 /*
5590  * Account for index blocks, block groups bitmaps and block group
5591  * descriptor blocks if modify datablocks and index blocks
5592  * worse case, the indexs blocks spread over different block groups
5593  *
5594  * If datablocks are discontiguous, they are possible to spread over
5595  * different block groups too. If they are contiguous, with flexbg,
5596  * they could still across block group boundary.
5597  *
5598  * Also account for superblock, inode, quota and xattr blocks
5599  */
5600 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5601 				  int pextents)
5602 {
5603 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5604 	int gdpblocks;
5605 	int idxblocks;
5606 	int ret = 0;
5607 
5608 	/*
5609 	 * How many index blocks need to touch to map @lblocks logical blocks
5610 	 * to @pextents physical extents?
5611 	 */
5612 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5613 
5614 	ret = idxblocks;
5615 
5616 	/*
5617 	 * Now let's see how many group bitmaps and group descriptors need
5618 	 * to account
5619 	 */
5620 	groups = idxblocks + pextents;
5621 	gdpblocks = groups;
5622 	if (groups > ngroups)
5623 		groups = ngroups;
5624 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5625 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5626 
5627 	/* bitmaps and block group descriptor blocks */
5628 	ret += groups + gdpblocks;
5629 
5630 	/* Blocks for super block, inode, quota and xattr blocks */
5631 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5632 
5633 	return ret;
5634 }
5635 
5636 /*
5637  * Calculate the total number of credits to reserve to fit
5638  * the modification of a single pages into a single transaction,
5639  * which may include multiple chunks of block allocations.
5640  *
5641  * This could be called via ext4_write_begin()
5642  *
5643  * We need to consider the worse case, when
5644  * one new block per extent.
5645  */
5646 int ext4_writepage_trans_blocks(struct inode *inode)
5647 {
5648 	int bpp = ext4_journal_blocks_per_page(inode);
5649 	int ret;
5650 
5651 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5652 
5653 	/* Account for data blocks for journalled mode */
5654 	if (ext4_should_journal_data(inode))
5655 		ret += bpp;
5656 	return ret;
5657 }
5658 
5659 /*
5660  * Calculate the journal credits for a chunk of data modification.
5661  *
5662  * This is called from DIO, fallocate or whoever calling
5663  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5664  *
5665  * journal buffers for data blocks are not included here, as DIO
5666  * and fallocate do no need to journal data buffers.
5667  */
5668 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5669 {
5670 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5671 }
5672 
5673 /*
5674  * The caller must have previously called ext4_reserve_inode_write().
5675  * Give this, we know that the caller already has write access to iloc->bh.
5676  */
5677 int ext4_mark_iloc_dirty(handle_t *handle,
5678 			 struct inode *inode, struct ext4_iloc *iloc)
5679 {
5680 	int err = 0;
5681 
5682 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5683 		put_bh(iloc->bh);
5684 		return -EIO;
5685 	}
5686 	ext4_fc_track_inode(handle, inode);
5687 
5688 	if (IS_I_VERSION(inode))
5689 		inode_inc_iversion(inode);
5690 
5691 	/* the do_update_inode consumes one bh->b_count */
5692 	get_bh(iloc->bh);
5693 
5694 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5695 	err = ext4_do_update_inode(handle, inode, iloc);
5696 	put_bh(iloc->bh);
5697 	return err;
5698 }
5699 
5700 /*
5701  * On success, We end up with an outstanding reference count against
5702  * iloc->bh.  This _must_ be cleaned up later.
5703  */
5704 
5705 int
5706 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5707 			 struct ext4_iloc *iloc)
5708 {
5709 	int err;
5710 
5711 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5712 		return -EIO;
5713 
5714 	err = ext4_get_inode_loc(inode, iloc);
5715 	if (!err) {
5716 		BUFFER_TRACE(iloc->bh, "get_write_access");
5717 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5718 						    iloc->bh, EXT4_JTR_NONE);
5719 		if (err) {
5720 			brelse(iloc->bh);
5721 			iloc->bh = NULL;
5722 		}
5723 	}
5724 	ext4_std_error(inode->i_sb, err);
5725 	return err;
5726 }
5727 
5728 static int __ext4_expand_extra_isize(struct inode *inode,
5729 				     unsigned int new_extra_isize,
5730 				     struct ext4_iloc *iloc,
5731 				     handle_t *handle, int *no_expand)
5732 {
5733 	struct ext4_inode *raw_inode;
5734 	struct ext4_xattr_ibody_header *header;
5735 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5736 	struct ext4_inode_info *ei = EXT4_I(inode);
5737 	int error;
5738 
5739 	/* this was checked at iget time, but double check for good measure */
5740 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5741 	    (ei->i_extra_isize & 3)) {
5742 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5743 				 ei->i_extra_isize,
5744 				 EXT4_INODE_SIZE(inode->i_sb));
5745 		return -EFSCORRUPTED;
5746 	}
5747 	if ((new_extra_isize < ei->i_extra_isize) ||
5748 	    (new_extra_isize < 4) ||
5749 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5750 		return -EINVAL;	/* Should never happen */
5751 
5752 	raw_inode = ext4_raw_inode(iloc);
5753 
5754 	header = IHDR(inode, raw_inode);
5755 
5756 	/* No extended attributes present */
5757 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5758 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5759 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5760 		       EXT4_I(inode)->i_extra_isize, 0,
5761 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5762 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5763 		return 0;
5764 	}
5765 
5766 	/* try to expand with EAs present */
5767 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5768 					   raw_inode, handle);
5769 	if (error) {
5770 		/*
5771 		 * Inode size expansion failed; don't try again
5772 		 */
5773 		*no_expand = 1;
5774 	}
5775 
5776 	return error;
5777 }
5778 
5779 /*
5780  * Expand an inode by new_extra_isize bytes.
5781  * Returns 0 on success or negative error number on failure.
5782  */
5783 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5784 					  unsigned int new_extra_isize,
5785 					  struct ext4_iloc iloc,
5786 					  handle_t *handle)
5787 {
5788 	int no_expand;
5789 	int error;
5790 
5791 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5792 		return -EOVERFLOW;
5793 
5794 	/*
5795 	 * In nojournal mode, we can immediately attempt to expand
5796 	 * the inode.  When journaled, we first need to obtain extra
5797 	 * buffer credits since we may write into the EA block
5798 	 * with this same handle. If journal_extend fails, then it will
5799 	 * only result in a minor loss of functionality for that inode.
5800 	 * If this is felt to be critical, then e2fsck should be run to
5801 	 * force a large enough s_min_extra_isize.
5802 	 */
5803 	if (ext4_journal_extend(handle,
5804 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5805 		return -ENOSPC;
5806 
5807 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5808 		return -EBUSY;
5809 
5810 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5811 					  handle, &no_expand);
5812 	ext4_write_unlock_xattr(inode, &no_expand);
5813 
5814 	return error;
5815 }
5816 
5817 int ext4_expand_extra_isize(struct inode *inode,
5818 			    unsigned int new_extra_isize,
5819 			    struct ext4_iloc *iloc)
5820 {
5821 	handle_t *handle;
5822 	int no_expand;
5823 	int error, rc;
5824 
5825 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5826 		brelse(iloc->bh);
5827 		return -EOVERFLOW;
5828 	}
5829 
5830 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5831 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5832 	if (IS_ERR(handle)) {
5833 		error = PTR_ERR(handle);
5834 		brelse(iloc->bh);
5835 		return error;
5836 	}
5837 
5838 	ext4_write_lock_xattr(inode, &no_expand);
5839 
5840 	BUFFER_TRACE(iloc->bh, "get_write_access");
5841 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5842 					      EXT4_JTR_NONE);
5843 	if (error) {
5844 		brelse(iloc->bh);
5845 		goto out_unlock;
5846 	}
5847 
5848 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5849 					  handle, &no_expand);
5850 
5851 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5852 	if (!error)
5853 		error = rc;
5854 
5855 out_unlock:
5856 	ext4_write_unlock_xattr(inode, &no_expand);
5857 	ext4_journal_stop(handle);
5858 	return error;
5859 }
5860 
5861 /*
5862  * What we do here is to mark the in-core inode as clean with respect to inode
5863  * dirtiness (it may still be data-dirty).
5864  * This means that the in-core inode may be reaped by prune_icache
5865  * without having to perform any I/O.  This is a very good thing,
5866  * because *any* task may call prune_icache - even ones which
5867  * have a transaction open against a different journal.
5868  *
5869  * Is this cheating?  Not really.  Sure, we haven't written the
5870  * inode out, but prune_icache isn't a user-visible syncing function.
5871  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5872  * we start and wait on commits.
5873  */
5874 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5875 				const char *func, unsigned int line)
5876 {
5877 	struct ext4_iloc iloc;
5878 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5879 	int err;
5880 
5881 	might_sleep();
5882 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5883 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5884 	if (err)
5885 		goto out;
5886 
5887 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5888 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5889 					       iloc, handle);
5890 
5891 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5892 out:
5893 	if (unlikely(err))
5894 		ext4_error_inode_err(inode, func, line, 0, err,
5895 					"mark_inode_dirty error");
5896 	return err;
5897 }
5898 
5899 /*
5900  * ext4_dirty_inode() is called from __mark_inode_dirty()
5901  *
5902  * We're really interested in the case where a file is being extended.
5903  * i_size has been changed by generic_commit_write() and we thus need
5904  * to include the updated inode in the current transaction.
5905  *
5906  * Also, dquot_alloc_block() will always dirty the inode when blocks
5907  * are allocated to the file.
5908  *
5909  * If the inode is marked synchronous, we don't honour that here - doing
5910  * so would cause a commit on atime updates, which we don't bother doing.
5911  * We handle synchronous inodes at the highest possible level.
5912  */
5913 void ext4_dirty_inode(struct inode *inode, int flags)
5914 {
5915 	handle_t *handle;
5916 
5917 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5918 	if (IS_ERR(handle))
5919 		return;
5920 	ext4_mark_inode_dirty(handle, inode);
5921 	ext4_journal_stop(handle);
5922 }
5923 
5924 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5925 {
5926 	journal_t *journal;
5927 	handle_t *handle;
5928 	int err;
5929 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5930 
5931 	/*
5932 	 * We have to be very careful here: changing a data block's
5933 	 * journaling status dynamically is dangerous.  If we write a
5934 	 * data block to the journal, change the status and then delete
5935 	 * that block, we risk forgetting to revoke the old log record
5936 	 * from the journal and so a subsequent replay can corrupt data.
5937 	 * So, first we make sure that the journal is empty and that
5938 	 * nobody is changing anything.
5939 	 */
5940 
5941 	journal = EXT4_JOURNAL(inode);
5942 	if (!journal)
5943 		return 0;
5944 	if (is_journal_aborted(journal))
5945 		return -EROFS;
5946 
5947 	/* Wait for all existing dio workers */
5948 	inode_dio_wait(inode);
5949 
5950 	/*
5951 	 * Before flushing the journal and switching inode's aops, we have
5952 	 * to flush all dirty data the inode has. There can be outstanding
5953 	 * delayed allocations, there can be unwritten extents created by
5954 	 * fallocate or buffered writes in dioread_nolock mode covered by
5955 	 * dirty data which can be converted only after flushing the dirty
5956 	 * data (and journalled aops don't know how to handle these cases).
5957 	 */
5958 	if (val) {
5959 		filemap_invalidate_lock(inode->i_mapping);
5960 		err = filemap_write_and_wait(inode->i_mapping);
5961 		if (err < 0) {
5962 			filemap_invalidate_unlock(inode->i_mapping);
5963 			return err;
5964 		}
5965 	}
5966 
5967 	percpu_down_write(&sbi->s_writepages_rwsem);
5968 	jbd2_journal_lock_updates(journal);
5969 
5970 	/*
5971 	 * OK, there are no updates running now, and all cached data is
5972 	 * synced to disk.  We are now in a completely consistent state
5973 	 * which doesn't have anything in the journal, and we know that
5974 	 * no filesystem updates are running, so it is safe to modify
5975 	 * the inode's in-core data-journaling state flag now.
5976 	 */
5977 
5978 	if (val)
5979 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5980 	else {
5981 		err = jbd2_journal_flush(journal, 0);
5982 		if (err < 0) {
5983 			jbd2_journal_unlock_updates(journal);
5984 			percpu_up_write(&sbi->s_writepages_rwsem);
5985 			return err;
5986 		}
5987 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5988 	}
5989 	ext4_set_aops(inode);
5990 
5991 	jbd2_journal_unlock_updates(journal);
5992 	percpu_up_write(&sbi->s_writepages_rwsem);
5993 
5994 	if (val)
5995 		filemap_invalidate_unlock(inode->i_mapping);
5996 
5997 	/* Finally we can mark the inode as dirty. */
5998 
5999 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6000 	if (IS_ERR(handle))
6001 		return PTR_ERR(handle);
6002 
6003 	ext4_fc_mark_ineligible(inode->i_sb,
6004 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6005 	err = ext4_mark_inode_dirty(handle, inode);
6006 	ext4_handle_sync(handle);
6007 	ext4_journal_stop(handle);
6008 	ext4_std_error(inode->i_sb, err);
6009 
6010 	return err;
6011 }
6012 
6013 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6014 			    struct buffer_head *bh)
6015 {
6016 	return !buffer_mapped(bh);
6017 }
6018 
6019 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6020 {
6021 	struct vm_area_struct *vma = vmf->vma;
6022 	struct page *page = vmf->page;
6023 	loff_t size;
6024 	unsigned long len;
6025 	int err;
6026 	vm_fault_t ret;
6027 	struct file *file = vma->vm_file;
6028 	struct inode *inode = file_inode(file);
6029 	struct address_space *mapping = inode->i_mapping;
6030 	handle_t *handle;
6031 	get_block_t *get_block;
6032 	int retries = 0;
6033 
6034 	if (unlikely(IS_IMMUTABLE(inode)))
6035 		return VM_FAULT_SIGBUS;
6036 
6037 	sb_start_pagefault(inode->i_sb);
6038 	file_update_time(vma->vm_file);
6039 
6040 	filemap_invalidate_lock_shared(mapping);
6041 
6042 	err = ext4_convert_inline_data(inode);
6043 	if (err)
6044 		goto out_ret;
6045 
6046 	/*
6047 	 * On data journalling we skip straight to the transaction handle:
6048 	 * there's no delalloc; page truncated will be checked later; the
6049 	 * early return w/ all buffers mapped (calculates size/len) can't
6050 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6051 	 */
6052 	if (ext4_should_journal_data(inode))
6053 		goto retry_alloc;
6054 
6055 	/* Delalloc case is easy... */
6056 	if (test_opt(inode->i_sb, DELALLOC) &&
6057 	    !ext4_nonda_switch(inode->i_sb)) {
6058 		do {
6059 			err = block_page_mkwrite(vma, vmf,
6060 						   ext4_da_get_block_prep);
6061 		} while (err == -ENOSPC &&
6062 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6063 		goto out_ret;
6064 	}
6065 
6066 	lock_page(page);
6067 	size = i_size_read(inode);
6068 	/* Page got truncated from under us? */
6069 	if (page->mapping != mapping || page_offset(page) > size) {
6070 		unlock_page(page);
6071 		ret = VM_FAULT_NOPAGE;
6072 		goto out;
6073 	}
6074 
6075 	if (page->index == size >> PAGE_SHIFT)
6076 		len = size & ~PAGE_MASK;
6077 	else
6078 		len = PAGE_SIZE;
6079 	/*
6080 	 * Return if we have all the buffers mapped. This avoids the need to do
6081 	 * journal_start/journal_stop which can block and take a long time
6082 	 *
6083 	 * This cannot be done for data journalling, as we have to add the
6084 	 * inode to the transaction's list to writeprotect pages on commit.
6085 	 */
6086 	if (page_has_buffers(page)) {
6087 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6088 					    0, len, NULL,
6089 					    ext4_bh_unmapped)) {
6090 			/* Wait so that we don't change page under IO */
6091 			wait_for_stable_page(page);
6092 			ret = VM_FAULT_LOCKED;
6093 			goto out;
6094 		}
6095 	}
6096 	unlock_page(page);
6097 	/* OK, we need to fill the hole... */
6098 	if (ext4_should_dioread_nolock(inode))
6099 		get_block = ext4_get_block_unwritten;
6100 	else
6101 		get_block = ext4_get_block;
6102 retry_alloc:
6103 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6104 				    ext4_writepage_trans_blocks(inode));
6105 	if (IS_ERR(handle)) {
6106 		ret = VM_FAULT_SIGBUS;
6107 		goto out;
6108 	}
6109 	/*
6110 	 * Data journalling can't use block_page_mkwrite() because it
6111 	 * will set_buffer_dirty() before do_journal_get_write_access()
6112 	 * thus might hit warning messages for dirty metadata buffers.
6113 	 */
6114 	if (!ext4_should_journal_data(inode)) {
6115 		err = block_page_mkwrite(vma, vmf, get_block);
6116 	} else {
6117 		lock_page(page);
6118 		size = i_size_read(inode);
6119 		/* Page got truncated from under us? */
6120 		if (page->mapping != mapping || page_offset(page) > size) {
6121 			ret = VM_FAULT_NOPAGE;
6122 			goto out_error;
6123 		}
6124 
6125 		if (page->index == size >> PAGE_SHIFT)
6126 			len = size & ~PAGE_MASK;
6127 		else
6128 			len = PAGE_SIZE;
6129 
6130 		err = __block_write_begin(page, 0, len, ext4_get_block);
6131 		if (!err) {
6132 			ret = VM_FAULT_SIGBUS;
6133 			if (ext4_walk_page_buffers(handle, inode,
6134 					page_buffers(page), 0, len, NULL,
6135 					do_journal_get_write_access))
6136 				goto out_error;
6137 			if (ext4_walk_page_buffers(handle, inode,
6138 					page_buffers(page), 0, len, NULL,
6139 					write_end_fn))
6140 				goto out_error;
6141 			if (ext4_jbd2_inode_add_write(handle, inode,
6142 						      page_offset(page), len))
6143 				goto out_error;
6144 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6145 		} else {
6146 			unlock_page(page);
6147 		}
6148 	}
6149 	ext4_journal_stop(handle);
6150 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6151 		goto retry_alloc;
6152 out_ret:
6153 	ret = block_page_mkwrite_return(err);
6154 out:
6155 	filemap_invalidate_unlock_shared(mapping);
6156 	sb_end_pagefault(inode->i_sb);
6157 	return ret;
6158 out_error:
6159 	unlock_page(page);
6160 	ext4_journal_stop(handle);
6161 	goto out;
6162 }
6163