1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 571 map->m_pblk, status); 572 } 573 up_read((&EXT4_I(inode)->i_data_sem)); 574 575 found: 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 /* 595 * If we need to convert extent to unwritten 596 * we continue and do the actual work in 597 * ext4_ext_map_blocks() 598 */ 599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to unwritten extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_block() 612 * with create == 1 flag. 613 */ 614 down_write(&EXT4_I(inode)->i_data_sem); 615 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 } 634 635 if (retval > 0) { 636 unsigned int status; 637 638 if (unlikely(retval != map->m_len)) { 639 ext4_warning(inode->i_sb, 640 "ES len assertion failed for inode " 641 "%lu: retval %d != map->m_len %d", 642 inode->i_ino, retval, map->m_len); 643 WARN_ON(1); 644 } 645 646 /* 647 * We have to zeroout blocks before inserting them into extent 648 * status tree. Otherwise someone could look them up there and 649 * use them before they are really zeroed. We also have to 650 * unmap metadata before zeroing as otherwise writeback can 651 * overwrite zeros with stale data from block device. 652 */ 653 if (flags & EXT4_GET_BLOCKS_ZERO && 654 map->m_flags & EXT4_MAP_MAPPED && 655 map->m_flags & EXT4_MAP_NEW) { 656 ret = ext4_issue_zeroout(inode, map->m_lblk, 657 map->m_pblk, map->m_len); 658 if (ret) { 659 retval = ret; 660 goto out_sem; 661 } 662 } 663 664 /* 665 * If the extent has been zeroed out, we don't need to update 666 * extent status tree. 667 */ 668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 670 if (ext4_es_is_written(&es)) 671 goto out_sem; 672 } 673 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 676 !(status & EXTENT_STATUS_WRITTEN) && 677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 678 map->m_lblk + map->m_len - 1)) 679 status |= EXTENT_STATUS_DELAYED; 680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 681 map->m_pblk, status); 682 } 683 684 out_sem: 685 up_write((&EXT4_I(inode)->i_data_sem)); 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 687 ret = check_block_validity(inode, map); 688 if (ret != 0) 689 return ret; 690 691 /* 692 * Inodes with freshly allocated blocks where contents will be 693 * visible after transaction commit must be on transaction's 694 * ordered data list. 695 */ 696 if (map->m_flags & EXT4_MAP_NEW && 697 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 698 !(flags & EXT4_GET_BLOCKS_ZERO) && 699 !ext4_is_quota_file(inode) && 700 ext4_should_order_data(inode)) { 701 loff_t start_byte = 702 (loff_t)map->m_lblk << inode->i_blkbits; 703 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 704 705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 706 ret = ext4_jbd2_inode_add_wait(handle, inode, 707 start_byte, length); 708 else 709 ret = ext4_jbd2_inode_add_write(handle, inode, 710 start_byte, length); 711 if (ret) 712 return ret; 713 } 714 } 715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 716 map->m_flags & EXT4_MAP_MAPPED)) 717 ext4_fc_track_range(handle, inode, map->m_lblk, 718 map->m_lblk + map->m_len - 1); 719 if (retval < 0) 720 ext_debug(inode, "failed with err %d\n", retval); 721 return retval; 722 } 723 724 /* 725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 726 * we have to be careful as someone else may be manipulating b_state as well. 727 */ 728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 729 { 730 unsigned long old_state; 731 unsigned long new_state; 732 733 flags &= EXT4_MAP_FLAGS; 734 735 /* Dummy buffer_head? Set non-atomically. */ 736 if (!bh->b_page) { 737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 738 return; 739 } 740 /* 741 * Someone else may be modifying b_state. Be careful! This is ugly but 742 * once we get rid of using bh as a container for mapping information 743 * to pass to / from get_block functions, this can go away. 744 */ 745 old_state = READ_ONCE(bh->b_state); 746 do { 747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 749 } 750 751 static int _ext4_get_block(struct inode *inode, sector_t iblock, 752 struct buffer_head *bh, int flags) 753 { 754 struct ext4_map_blocks map; 755 int ret = 0; 756 757 if (ext4_has_inline_data(inode)) 758 return -ERANGE; 759 760 map.m_lblk = iblock; 761 map.m_len = bh->b_size >> inode->i_blkbits; 762 763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 764 flags); 765 if (ret > 0) { 766 map_bh(bh, inode->i_sb, map.m_pblk); 767 ext4_update_bh_state(bh, map.m_flags); 768 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 769 ret = 0; 770 } else if (ret == 0) { 771 /* hole case, need to fill in bh->b_size */ 772 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 773 } 774 return ret; 775 } 776 777 int ext4_get_block(struct inode *inode, sector_t iblock, 778 struct buffer_head *bh, int create) 779 { 780 return _ext4_get_block(inode, iblock, bh, 781 create ? EXT4_GET_BLOCKS_CREATE : 0); 782 } 783 784 /* 785 * Get block function used when preparing for buffered write if we require 786 * creating an unwritten extent if blocks haven't been allocated. The extent 787 * will be converted to written after the IO is complete. 788 */ 789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create) 791 { 792 int ret = 0; 793 794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 795 inode->i_ino, create); 796 ret = _ext4_get_block(inode, iblock, bh_result, 797 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 798 799 /* 800 * If the buffer is marked unwritten, mark it as new to make sure it is 801 * zeroed out correctly in case of partial writes. Otherwise, there is 802 * a chance of stale data getting exposed. 803 */ 804 if (ret == 0 && buffer_unwritten(bh_result)) 805 set_buffer_new(bh_result); 806 807 return ret; 808 } 809 810 /* Maximum number of blocks we map for direct IO at once. */ 811 #define DIO_MAX_BLOCKS 4096 812 813 /* 814 * `handle' can be NULL if create is zero 815 */ 816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 817 ext4_lblk_t block, int map_flags) 818 { 819 struct ext4_map_blocks map; 820 struct buffer_head *bh; 821 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 822 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 823 int err; 824 825 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 826 || handle != NULL || create == 0); 827 ASSERT(create == 0 || !nowait); 828 829 map.m_lblk = block; 830 map.m_len = 1; 831 err = ext4_map_blocks(handle, inode, &map, map_flags); 832 833 if (err == 0) 834 return create ? ERR_PTR(-ENOSPC) : NULL; 835 if (err < 0) 836 return ERR_PTR(err); 837 838 if (nowait) 839 return sb_find_get_block(inode->i_sb, map.m_pblk); 840 841 bh = sb_getblk(inode->i_sb, map.m_pblk); 842 if (unlikely(!bh)) 843 return ERR_PTR(-ENOMEM); 844 if (map.m_flags & EXT4_MAP_NEW) { 845 ASSERT(create != 0); 846 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 847 || (handle != NULL)); 848 849 /* 850 * Now that we do not always journal data, we should 851 * keep in mind whether this should always journal the 852 * new buffer as metadata. For now, regular file 853 * writes use ext4_get_block instead, so it's not a 854 * problem. 855 */ 856 lock_buffer(bh); 857 BUFFER_TRACE(bh, "call get_create_access"); 858 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 859 EXT4_JTR_NONE); 860 if (unlikely(err)) { 861 unlock_buffer(bh); 862 goto errout; 863 } 864 if (!buffer_uptodate(bh)) { 865 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 866 set_buffer_uptodate(bh); 867 } 868 unlock_buffer(bh); 869 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 870 err = ext4_handle_dirty_metadata(handle, inode, bh); 871 if (unlikely(err)) 872 goto errout; 873 } else 874 BUFFER_TRACE(bh, "not a new buffer"); 875 return bh; 876 errout: 877 brelse(bh); 878 return ERR_PTR(err); 879 } 880 881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 882 ext4_lblk_t block, int map_flags) 883 { 884 struct buffer_head *bh; 885 int ret; 886 887 bh = ext4_getblk(handle, inode, block, map_flags); 888 if (IS_ERR(bh)) 889 return bh; 890 if (!bh || ext4_buffer_uptodate(bh)) 891 return bh; 892 893 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 894 if (ret) { 895 put_bh(bh); 896 return ERR_PTR(ret); 897 } 898 return bh; 899 } 900 901 /* Read a contiguous batch of blocks. */ 902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 903 bool wait, struct buffer_head **bhs) 904 { 905 int i, err; 906 907 for (i = 0; i < bh_count; i++) { 908 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 909 if (IS_ERR(bhs[i])) { 910 err = PTR_ERR(bhs[i]); 911 bh_count = i; 912 goto out_brelse; 913 } 914 } 915 916 for (i = 0; i < bh_count; i++) 917 /* Note that NULL bhs[i] is valid because of holes. */ 918 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 919 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 920 921 if (!wait) 922 return 0; 923 924 for (i = 0; i < bh_count; i++) 925 if (bhs[i]) 926 wait_on_buffer(bhs[i]); 927 928 for (i = 0; i < bh_count; i++) { 929 if (bhs[i] && !buffer_uptodate(bhs[i])) { 930 err = -EIO; 931 goto out_brelse; 932 } 933 } 934 return 0; 935 936 out_brelse: 937 for (i = 0; i < bh_count; i++) { 938 brelse(bhs[i]); 939 bhs[i] = NULL; 940 } 941 return err; 942 } 943 944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 945 struct buffer_head *head, 946 unsigned from, 947 unsigned to, 948 int *partial, 949 int (*fn)(handle_t *handle, struct inode *inode, 950 struct buffer_head *bh)) 951 { 952 struct buffer_head *bh; 953 unsigned block_start, block_end; 954 unsigned blocksize = head->b_size; 955 int err, ret = 0; 956 struct buffer_head *next; 957 958 for (bh = head, block_start = 0; 959 ret == 0 && (bh != head || !block_start); 960 block_start = block_end, bh = next) { 961 next = bh->b_this_page; 962 block_end = block_start + blocksize; 963 if (block_end <= from || block_start >= to) { 964 if (partial && !buffer_uptodate(bh)) 965 *partial = 1; 966 continue; 967 } 968 err = (*fn)(handle, inode, bh); 969 if (!ret) 970 ret = err; 971 } 972 return ret; 973 } 974 975 /* 976 * Helper for handling dirtying of journalled data. We also mark the folio as 977 * dirty so that writeback code knows about this page (and inode) contains 978 * dirty data. ext4_writepages() then commits appropriate transaction to 979 * make data stable. 980 */ 981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 982 { 983 folio_mark_dirty(bh->b_folio); 984 return ext4_handle_dirty_metadata(handle, NULL, bh); 985 } 986 987 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 988 struct buffer_head *bh) 989 { 990 int dirty = buffer_dirty(bh); 991 int ret; 992 993 if (!buffer_mapped(bh) || buffer_freed(bh)) 994 return 0; 995 /* 996 * __block_write_begin() could have dirtied some buffers. Clean 997 * the dirty bit as jbd2_journal_get_write_access() could complain 998 * otherwise about fs integrity issues. Setting of the dirty bit 999 * by __block_write_begin() isn't a real problem here as we clear 1000 * the bit before releasing a page lock and thus writeback cannot 1001 * ever write the buffer. 1002 */ 1003 if (dirty) 1004 clear_buffer_dirty(bh); 1005 BUFFER_TRACE(bh, "get write access"); 1006 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1007 EXT4_JTR_NONE); 1008 if (!ret && dirty) 1009 ret = ext4_dirty_journalled_data(handle, bh); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_FS_ENCRYPTION 1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1015 get_block_t *get_block) 1016 { 1017 unsigned from = pos & (PAGE_SIZE - 1); 1018 unsigned to = from + len; 1019 struct inode *inode = folio->mapping->host; 1020 unsigned block_start, block_end; 1021 sector_t block; 1022 int err = 0; 1023 unsigned blocksize = inode->i_sb->s_blocksize; 1024 unsigned bbits; 1025 struct buffer_head *bh, *head, *wait[2]; 1026 int nr_wait = 0; 1027 int i; 1028 1029 BUG_ON(!folio_test_locked(folio)); 1030 BUG_ON(from > PAGE_SIZE); 1031 BUG_ON(to > PAGE_SIZE); 1032 BUG_ON(from > to); 1033 1034 head = folio_buffers(folio); 1035 if (!head) { 1036 create_empty_buffers(&folio->page, blocksize, 0); 1037 head = folio_buffers(folio); 1038 } 1039 bbits = ilog2(blocksize); 1040 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1041 1042 for (bh = head, block_start = 0; bh != head || !block_start; 1043 block++, block_start = block_end, bh = bh->b_this_page) { 1044 block_end = block_start + blocksize; 1045 if (block_end <= from || block_start >= to) { 1046 if (folio_test_uptodate(folio)) { 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (folio_test_uptodate(folio)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 folio_zero_segments(folio, to, 1067 block_end, 1068 block_start, from); 1069 continue; 1070 } 1071 } 1072 if (folio_test_uptodate(folio)) { 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ext4_read_bh_lock(bh, 0, false); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 folio_zero_new_buffers(folio, from, to); 1093 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1098 blocksize, bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 /* 1111 * To preserve ordering, it is essential that the hole instantiation and 1112 * the data write be encapsulated in a single transaction. We cannot 1113 * close off a transaction and start a new one between the ext4_get_block() 1114 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1115 * ext4_write_begin() is the right place. 1116 */ 1117 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1118 loff_t pos, unsigned len, 1119 struct page **pagep, void **fsdata) 1120 { 1121 struct inode *inode = mapping->host; 1122 int ret, needed_blocks; 1123 handle_t *handle; 1124 int retries = 0; 1125 struct folio *folio; 1126 pgoff_t index; 1127 unsigned from, to; 1128 1129 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1130 return -EIO; 1131 1132 trace_ext4_write_begin(inode, pos, len); 1133 /* 1134 * Reserve one block more for addition to orphan list in case 1135 * we allocate blocks but write fails for some reason 1136 */ 1137 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1138 index = pos >> PAGE_SHIFT; 1139 from = pos & (PAGE_SIZE - 1); 1140 to = from + len; 1141 1142 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1143 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1144 pagep); 1145 if (ret < 0) 1146 return ret; 1147 if (ret == 1) 1148 return 0; 1149 } 1150 1151 /* 1152 * __filemap_get_folio() can take a long time if the 1153 * system is thrashing due to memory pressure, or if the folio 1154 * is being written back. So grab it first before we start 1155 * the transaction handle. This also allows us to allocate 1156 * the folio (if needed) without using GFP_NOFS. 1157 */ 1158 retry_grab: 1159 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1160 mapping_gfp_mask(mapping)); 1161 if (IS_ERR(folio)) 1162 return PTR_ERR(folio); 1163 /* 1164 * The same as page allocation, we prealloc buffer heads before 1165 * starting the handle. 1166 */ 1167 if (!folio_buffers(folio)) 1168 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1169 1170 folio_unlock(folio); 1171 1172 retry_journal: 1173 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1174 if (IS_ERR(handle)) { 1175 folio_put(folio); 1176 return PTR_ERR(handle); 1177 } 1178 1179 folio_lock(folio); 1180 if (folio->mapping != mapping) { 1181 /* The folio got truncated from under us */ 1182 folio_unlock(folio); 1183 folio_put(folio); 1184 ext4_journal_stop(handle); 1185 goto retry_grab; 1186 } 1187 /* In case writeback began while the folio was unlocked */ 1188 folio_wait_stable(folio); 1189 1190 #ifdef CONFIG_FS_ENCRYPTION 1191 if (ext4_should_dioread_nolock(inode)) 1192 ret = ext4_block_write_begin(folio, pos, len, 1193 ext4_get_block_unwritten); 1194 else 1195 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1196 #else 1197 if (ext4_should_dioread_nolock(inode)) 1198 ret = __block_write_begin(&folio->page, pos, len, 1199 ext4_get_block_unwritten); 1200 else 1201 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1202 #endif 1203 if (!ret && ext4_should_journal_data(inode)) { 1204 ret = ext4_walk_page_buffers(handle, inode, 1205 folio_buffers(folio), from, to, 1206 NULL, do_journal_get_write_access); 1207 } 1208 1209 if (ret) { 1210 bool extended = (pos + len > inode->i_size) && 1211 !ext4_verity_in_progress(inode); 1212 1213 folio_unlock(folio); 1214 /* 1215 * __block_write_begin may have instantiated a few blocks 1216 * outside i_size. Trim these off again. Don't need 1217 * i_size_read because we hold i_rwsem. 1218 * 1219 * Add inode to orphan list in case we crash before 1220 * truncate finishes 1221 */ 1222 if (extended && ext4_can_truncate(inode)) 1223 ext4_orphan_add(handle, inode); 1224 1225 ext4_journal_stop(handle); 1226 if (extended) { 1227 ext4_truncate_failed_write(inode); 1228 /* 1229 * If truncate failed early the inode might 1230 * still be on the orphan list; we need to 1231 * make sure the inode is removed from the 1232 * orphan list in that case. 1233 */ 1234 if (inode->i_nlink) 1235 ext4_orphan_del(NULL, inode); 1236 } 1237 1238 if (ret == -ENOSPC && 1239 ext4_should_retry_alloc(inode->i_sb, &retries)) 1240 goto retry_journal; 1241 folio_put(folio); 1242 return ret; 1243 } 1244 *pagep = &folio->page; 1245 return ret; 1246 } 1247 1248 /* For write_end() in data=journal mode */ 1249 static int write_end_fn(handle_t *handle, struct inode *inode, 1250 struct buffer_head *bh) 1251 { 1252 int ret; 1253 if (!buffer_mapped(bh) || buffer_freed(bh)) 1254 return 0; 1255 set_buffer_uptodate(bh); 1256 ret = ext4_dirty_journalled_data(handle, bh); 1257 clear_buffer_meta(bh); 1258 clear_buffer_prio(bh); 1259 return ret; 1260 } 1261 1262 /* 1263 * We need to pick up the new inode size which generic_commit_write gave us 1264 * `file' can be NULL - eg, when called from page_symlink(). 1265 * 1266 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1267 * buffers are managed internally. 1268 */ 1269 static int ext4_write_end(struct file *file, 1270 struct address_space *mapping, 1271 loff_t pos, unsigned len, unsigned copied, 1272 struct page *page, void *fsdata) 1273 { 1274 struct folio *folio = page_folio(page); 1275 handle_t *handle = ext4_journal_current_handle(); 1276 struct inode *inode = mapping->host; 1277 loff_t old_size = inode->i_size; 1278 int ret = 0, ret2; 1279 int i_size_changed = 0; 1280 bool verity = ext4_verity_in_progress(inode); 1281 1282 trace_ext4_write_end(inode, pos, len, copied); 1283 1284 if (ext4_has_inline_data(inode) && 1285 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1286 return ext4_write_inline_data_end(inode, pos, len, copied, 1287 folio); 1288 1289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1290 /* 1291 * it's important to update i_size while still holding folio lock: 1292 * page writeout could otherwise come in and zero beyond i_size. 1293 * 1294 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1295 * blocks are being written past EOF, so skip the i_size update. 1296 */ 1297 if (!verity) 1298 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1299 folio_unlock(folio); 1300 folio_put(folio); 1301 1302 if (old_size < pos && !verity) 1303 pagecache_isize_extended(inode, old_size, pos); 1304 /* 1305 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1306 * makes the holding time of folio lock longer. Second, it forces lock 1307 * ordering of folio lock and transaction start for journaling 1308 * filesystems. 1309 */ 1310 if (i_size_changed) 1311 ret = ext4_mark_inode_dirty(handle, inode); 1312 1313 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1314 /* if we have allocated more blocks and copied 1315 * less. We will have blocks allocated outside 1316 * inode->i_size. So truncate them 1317 */ 1318 ext4_orphan_add(handle, inode); 1319 1320 ret2 = ext4_journal_stop(handle); 1321 if (!ret) 1322 ret = ret2; 1323 1324 if (pos + len > inode->i_size && !verity) { 1325 ext4_truncate_failed_write(inode); 1326 /* 1327 * If truncate failed early the inode might still be 1328 * on the orphan list; we need to make sure the inode 1329 * is removed from the orphan list in that case. 1330 */ 1331 if (inode->i_nlink) 1332 ext4_orphan_del(NULL, inode); 1333 } 1334 1335 return ret ? ret : copied; 1336 } 1337 1338 /* 1339 * This is a private version of folio_zero_new_buffers() which doesn't 1340 * set the buffer to be dirty, since in data=journalled mode we need 1341 * to call ext4_dirty_journalled_data() instead. 1342 */ 1343 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1344 struct inode *inode, 1345 struct folio *folio, 1346 unsigned from, unsigned to) 1347 { 1348 unsigned int block_start = 0, block_end; 1349 struct buffer_head *head, *bh; 1350 1351 bh = head = folio_buffers(folio); 1352 do { 1353 block_end = block_start + bh->b_size; 1354 if (buffer_new(bh)) { 1355 if (block_end > from && block_start < to) { 1356 if (!folio_test_uptodate(folio)) { 1357 unsigned start, size; 1358 1359 start = max(from, block_start); 1360 size = min(to, block_end) - start; 1361 1362 folio_zero_range(folio, start, size); 1363 write_end_fn(handle, inode, bh); 1364 } 1365 clear_buffer_new(bh); 1366 } 1367 } 1368 block_start = block_end; 1369 bh = bh->b_this_page; 1370 } while (bh != head); 1371 } 1372 1373 static int ext4_journalled_write_end(struct file *file, 1374 struct address_space *mapping, 1375 loff_t pos, unsigned len, unsigned copied, 1376 struct page *page, void *fsdata) 1377 { 1378 struct folio *folio = page_folio(page); 1379 handle_t *handle = ext4_journal_current_handle(); 1380 struct inode *inode = mapping->host; 1381 loff_t old_size = inode->i_size; 1382 int ret = 0, ret2; 1383 int partial = 0; 1384 unsigned from, to; 1385 int size_changed = 0; 1386 bool verity = ext4_verity_in_progress(inode); 1387 1388 trace_ext4_journalled_write_end(inode, pos, len, copied); 1389 from = pos & (PAGE_SIZE - 1); 1390 to = from + len; 1391 1392 BUG_ON(!ext4_handle_valid(handle)); 1393 1394 if (ext4_has_inline_data(inode)) 1395 return ext4_write_inline_data_end(inode, pos, len, copied, 1396 folio); 1397 1398 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1399 copied = 0; 1400 ext4_journalled_zero_new_buffers(handle, inode, folio, 1401 from, to); 1402 } else { 1403 if (unlikely(copied < len)) 1404 ext4_journalled_zero_new_buffers(handle, inode, folio, 1405 from + copied, to); 1406 ret = ext4_walk_page_buffers(handle, inode, 1407 folio_buffers(folio), 1408 from, from + copied, &partial, 1409 write_end_fn); 1410 if (!partial) 1411 folio_mark_uptodate(folio); 1412 } 1413 if (!verity) 1414 size_changed = ext4_update_inode_size(inode, pos + copied); 1415 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1416 folio_unlock(folio); 1417 folio_put(folio); 1418 1419 if (old_size < pos && !verity) 1420 pagecache_isize_extended(inode, old_size, pos); 1421 1422 if (size_changed) { 1423 ret2 = ext4_mark_inode_dirty(handle, inode); 1424 if (!ret) 1425 ret = ret2; 1426 } 1427 1428 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1429 /* if we have allocated more blocks and copied 1430 * less. We will have blocks allocated outside 1431 * inode->i_size. So truncate them 1432 */ 1433 ext4_orphan_add(handle, inode); 1434 1435 ret2 = ext4_journal_stop(handle); 1436 if (!ret) 1437 ret = ret2; 1438 if (pos + len > inode->i_size && !verity) { 1439 ext4_truncate_failed_write(inode); 1440 /* 1441 * If truncate failed early the inode might still be 1442 * on the orphan list; we need to make sure the inode 1443 * is removed from the orphan list in that case. 1444 */ 1445 if (inode->i_nlink) 1446 ext4_orphan_del(NULL, inode); 1447 } 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 /* 1453 * Reserve space for a single cluster 1454 */ 1455 static int ext4_da_reserve_space(struct inode *inode) 1456 { 1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 int ret; 1460 1461 /* 1462 * We will charge metadata quota at writeout time; this saves 1463 * us from metadata over-estimation, though we may go over by 1464 * a small amount in the end. Here we just reserve for data. 1465 */ 1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1467 if (ret) 1468 return ret; 1469 1470 spin_lock(&ei->i_block_reservation_lock); 1471 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1474 return -ENOSPC; 1475 } 1476 ei->i_reserved_data_blocks++; 1477 trace_ext4_da_reserve_space(inode); 1478 spin_unlock(&ei->i_block_reservation_lock); 1479 1480 return 0; /* success */ 1481 } 1482 1483 void ext4_da_release_space(struct inode *inode, int to_free) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1486 struct ext4_inode_info *ei = EXT4_I(inode); 1487 1488 if (!to_free) 1489 return; /* Nothing to release, exit */ 1490 1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1492 1493 trace_ext4_da_release_space(inode, to_free); 1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1495 /* 1496 * if there aren't enough reserved blocks, then the 1497 * counter is messed up somewhere. Since this 1498 * function is called from invalidate page, it's 1499 * harmless to return without any action. 1500 */ 1501 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1502 "ino %lu, to_free %d with only %d reserved " 1503 "data blocks", inode->i_ino, to_free, 1504 ei->i_reserved_data_blocks); 1505 WARN_ON(1); 1506 to_free = ei->i_reserved_data_blocks; 1507 } 1508 ei->i_reserved_data_blocks -= to_free; 1509 1510 /* update fs dirty data blocks counter */ 1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1512 1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1516 } 1517 1518 /* 1519 * Delayed allocation stuff 1520 */ 1521 1522 struct mpage_da_data { 1523 /* These are input fields for ext4_do_writepages() */ 1524 struct inode *inode; 1525 struct writeback_control *wbc; 1526 unsigned int can_map:1; /* Can writepages call map blocks? */ 1527 1528 /* These are internal state of ext4_do_writepages() */ 1529 pgoff_t first_page; /* The first page to write */ 1530 pgoff_t next_page; /* Current page to examine */ 1531 pgoff_t last_page; /* Last page to examine */ 1532 /* 1533 * Extent to map - this can be after first_page because that can be 1534 * fully mapped. We somewhat abuse m_flags to store whether the extent 1535 * is delalloc or unwritten. 1536 */ 1537 struct ext4_map_blocks map; 1538 struct ext4_io_submit io_submit; /* IO submission data */ 1539 unsigned int do_map:1; 1540 unsigned int scanned_until_end:1; 1541 unsigned int journalled_more_data:1; 1542 }; 1543 1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1545 bool invalidate) 1546 { 1547 unsigned nr, i; 1548 pgoff_t index, end; 1549 struct folio_batch fbatch; 1550 struct inode *inode = mpd->inode; 1551 struct address_space *mapping = inode->i_mapping; 1552 1553 /* This is necessary when next_page == 0. */ 1554 if (mpd->first_page >= mpd->next_page) 1555 return; 1556 1557 mpd->scanned_until_end = 0; 1558 index = mpd->first_page; 1559 end = mpd->next_page - 1; 1560 if (invalidate) { 1561 ext4_lblk_t start, last; 1562 start = index << (PAGE_SHIFT - inode->i_blkbits); 1563 last = end << (PAGE_SHIFT - inode->i_blkbits); 1564 1565 /* 1566 * avoid racing with extent status tree scans made by 1567 * ext4_insert_delayed_block() 1568 */ 1569 down_write(&EXT4_I(inode)->i_data_sem); 1570 ext4_es_remove_extent(inode, start, last - start + 1); 1571 up_write(&EXT4_I(inode)->i_data_sem); 1572 } 1573 1574 folio_batch_init(&fbatch); 1575 while (index <= end) { 1576 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1577 if (nr == 0) 1578 break; 1579 for (i = 0; i < nr; i++) { 1580 struct folio *folio = fbatch.folios[i]; 1581 1582 if (folio->index < mpd->first_page) 1583 continue; 1584 if (folio_next_index(folio) - 1 > end) 1585 continue; 1586 BUG_ON(!folio_test_locked(folio)); 1587 BUG_ON(folio_test_writeback(folio)); 1588 if (invalidate) { 1589 if (folio_mapped(folio)) 1590 folio_clear_dirty_for_io(folio); 1591 block_invalidate_folio(folio, 0, 1592 folio_size(folio)); 1593 folio_clear_uptodate(folio); 1594 } 1595 folio_unlock(folio); 1596 } 1597 folio_batch_release(&fbatch); 1598 } 1599 } 1600 1601 static void ext4_print_free_blocks(struct inode *inode) 1602 { 1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1604 struct super_block *sb = inode->i_sb; 1605 struct ext4_inode_info *ei = EXT4_I(inode); 1606 1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1608 EXT4_C2B(EXT4_SB(inode->i_sb), 1609 ext4_count_free_clusters(sb))); 1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1612 (long long) EXT4_C2B(EXT4_SB(sb), 1613 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1615 (long long) EXT4_C2B(EXT4_SB(sb), 1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1617 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1619 ei->i_reserved_data_blocks); 1620 return; 1621 } 1622 1623 /* 1624 * ext4_insert_delayed_block - adds a delayed block to the extents status 1625 * tree, incrementing the reserved cluster/block 1626 * count or making a pending reservation 1627 * where needed 1628 * 1629 * @inode - file containing the newly added block 1630 * @lblk - logical block to be added 1631 * 1632 * Returns 0 on success, negative error code on failure. 1633 */ 1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1635 { 1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1637 int ret; 1638 bool allocated = false; 1639 1640 /* 1641 * If the cluster containing lblk is shared with a delayed, 1642 * written, or unwritten extent in a bigalloc file system, it's 1643 * already been accounted for and does not need to be reserved. 1644 * A pending reservation must be made for the cluster if it's 1645 * shared with a written or unwritten extent and doesn't already 1646 * have one. Written and unwritten extents can be purged from the 1647 * extents status tree if the system is under memory pressure, so 1648 * it's necessary to examine the extent tree if a search of the 1649 * extents status tree doesn't get a match. 1650 */ 1651 if (sbi->s_cluster_ratio == 1) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { /* bigalloc */ 1656 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1657 if (!ext4_es_scan_clu(inode, 1658 &ext4_es_is_mapped, lblk)) { 1659 ret = ext4_clu_mapped(inode, 1660 EXT4_B2C(sbi, lblk)); 1661 if (ret < 0) 1662 return ret; 1663 if (ret == 0) { 1664 ret = ext4_da_reserve_space(inode); 1665 if (ret != 0) /* ENOSPC */ 1666 return ret; 1667 } else { 1668 allocated = true; 1669 } 1670 } else { 1671 allocated = true; 1672 } 1673 } 1674 } 1675 1676 ext4_es_insert_delayed_block(inode, lblk, allocated); 1677 return 0; 1678 } 1679 1680 /* 1681 * This function is grabs code from the very beginning of 1682 * ext4_map_blocks, but assumes that the caller is from delayed write 1683 * time. This function looks up the requested blocks and sets the 1684 * buffer delay bit under the protection of i_data_sem. 1685 */ 1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1687 struct ext4_map_blocks *map, 1688 struct buffer_head *bh) 1689 { 1690 struct extent_status es; 1691 int retval; 1692 sector_t invalid_block = ~((sector_t) 0xffff); 1693 #ifdef ES_AGGRESSIVE_TEST 1694 struct ext4_map_blocks orig_map; 1695 1696 memcpy(&orig_map, map, sizeof(*map)); 1697 #endif 1698 1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1700 invalid_block = ~0; 1701 1702 map->m_flags = 0; 1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1704 (unsigned long) map->m_lblk); 1705 1706 /* Lookup extent status tree firstly */ 1707 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1708 if (ext4_es_is_hole(&es)) 1709 goto add_delayed; 1710 1711 /* 1712 * Delayed extent could be allocated by fallocate. 1713 * So we need to check it. 1714 */ 1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1716 map_bh(bh, inode->i_sb, invalid_block); 1717 set_buffer_new(bh); 1718 set_buffer_delay(bh); 1719 return 0; 1720 } 1721 1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1723 retval = es.es_len - (iblock - es.es_lblk); 1724 if (retval > map->m_len) 1725 retval = map->m_len; 1726 map->m_len = retval; 1727 if (ext4_es_is_written(&es)) 1728 map->m_flags |= EXT4_MAP_MAPPED; 1729 else if (ext4_es_is_unwritten(&es)) 1730 map->m_flags |= EXT4_MAP_UNWRITTEN; 1731 else 1732 BUG(); 1733 1734 #ifdef ES_AGGRESSIVE_TEST 1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1736 #endif 1737 return retval; 1738 } 1739 1740 /* 1741 * Try to see if we can get the block without requesting a new 1742 * file system block. 1743 */ 1744 down_read(&EXT4_I(inode)->i_data_sem); 1745 if (ext4_has_inline_data(inode)) 1746 retval = 0; 1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1749 else 1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1751 if (retval < 0) { 1752 up_read(&EXT4_I(inode)->i_data_sem); 1753 return retval; 1754 } 1755 if (retval > 0) { 1756 unsigned int status; 1757 1758 if (unlikely(retval != map->m_len)) { 1759 ext4_warning(inode->i_sb, 1760 "ES len assertion failed for inode " 1761 "%lu: retval %d != map->m_len %d", 1762 inode->i_ino, retval, map->m_len); 1763 WARN_ON(1); 1764 } 1765 1766 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1767 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1768 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1769 map->m_pblk, status); 1770 up_read(&EXT4_I(inode)->i_data_sem); 1771 return retval; 1772 } 1773 up_read(&EXT4_I(inode)->i_data_sem); 1774 1775 add_delayed: 1776 down_write(&EXT4_I(inode)->i_data_sem); 1777 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1778 up_write(&EXT4_I(inode)->i_data_sem); 1779 if (retval) 1780 return retval; 1781 1782 map_bh(bh, inode->i_sb, invalid_block); 1783 set_buffer_new(bh); 1784 set_buffer_delay(bh); 1785 return retval; 1786 } 1787 1788 /* 1789 * This is a special get_block_t callback which is used by 1790 * ext4_da_write_begin(). It will either return mapped block or 1791 * reserve space for a single block. 1792 * 1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1794 * We also have b_blocknr = -1 and b_bdev initialized properly 1795 * 1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1798 * initialized properly. 1799 */ 1800 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1801 struct buffer_head *bh, int create) 1802 { 1803 struct ext4_map_blocks map; 1804 int ret = 0; 1805 1806 BUG_ON(create == 0); 1807 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1808 1809 map.m_lblk = iblock; 1810 map.m_len = 1; 1811 1812 /* 1813 * first, we need to know whether the block is allocated already 1814 * preallocated blocks are unmapped but should treated 1815 * the same as allocated blocks. 1816 */ 1817 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1818 if (ret <= 0) 1819 return ret; 1820 1821 map_bh(bh, inode->i_sb, map.m_pblk); 1822 ext4_update_bh_state(bh, map.m_flags); 1823 1824 if (buffer_unwritten(bh)) { 1825 /* A delayed write to unwritten bh should be marked 1826 * new and mapped. Mapped ensures that we don't do 1827 * get_block multiple times when we write to the same 1828 * offset and new ensures that we do proper zero out 1829 * for partial write. 1830 */ 1831 set_buffer_new(bh); 1832 set_buffer_mapped(bh); 1833 } 1834 return 0; 1835 } 1836 1837 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1838 { 1839 mpd->first_page += folio_nr_pages(folio); 1840 folio_unlock(folio); 1841 } 1842 1843 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1844 { 1845 size_t len; 1846 loff_t size; 1847 int err; 1848 1849 BUG_ON(folio->index != mpd->first_page); 1850 folio_clear_dirty_for_io(folio); 1851 /* 1852 * We have to be very careful here! Nothing protects writeback path 1853 * against i_size changes and the page can be writeably mapped into 1854 * page tables. So an application can be growing i_size and writing 1855 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1856 * write-protects our page in page tables and the page cannot get 1857 * written to again until we release folio lock. So only after 1858 * folio_clear_dirty_for_io() we are safe to sample i_size for 1859 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1860 * on the barrier provided by folio_test_clear_dirty() in 1861 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1862 * after page tables are updated. 1863 */ 1864 size = i_size_read(mpd->inode); 1865 len = folio_size(folio); 1866 if (folio_pos(folio) + len > size && 1867 !ext4_verity_in_progress(mpd->inode)) 1868 len = size & ~PAGE_MASK; 1869 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1870 if (!err) 1871 mpd->wbc->nr_to_write--; 1872 1873 return err; 1874 } 1875 1876 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1877 1878 /* 1879 * mballoc gives us at most this number of blocks... 1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1881 * The rest of mballoc seems to handle chunks up to full group size. 1882 */ 1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1884 1885 /* 1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1887 * 1888 * @mpd - extent of blocks 1889 * @lblk - logical number of the block in the file 1890 * @bh - buffer head we want to add to the extent 1891 * 1892 * The function is used to collect contig. blocks in the same state. If the 1893 * buffer doesn't require mapping for writeback and we haven't started the 1894 * extent of buffers to map yet, the function returns 'true' immediately - the 1895 * caller can write the buffer right away. Otherwise the function returns true 1896 * if the block has been added to the extent, false if the block couldn't be 1897 * added. 1898 */ 1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1900 struct buffer_head *bh) 1901 { 1902 struct ext4_map_blocks *map = &mpd->map; 1903 1904 /* Buffer that doesn't need mapping for writeback? */ 1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1907 /* So far no extent to map => we write the buffer right away */ 1908 if (map->m_len == 0) 1909 return true; 1910 return false; 1911 } 1912 1913 /* First block in the extent? */ 1914 if (map->m_len == 0) { 1915 /* We cannot map unless handle is started... */ 1916 if (!mpd->do_map) 1917 return false; 1918 map->m_lblk = lblk; 1919 map->m_len = 1; 1920 map->m_flags = bh->b_state & BH_FLAGS; 1921 return true; 1922 } 1923 1924 /* Don't go larger than mballoc is willing to allocate */ 1925 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1926 return false; 1927 1928 /* Can we merge the block to our big extent? */ 1929 if (lblk == map->m_lblk + map->m_len && 1930 (bh->b_state & BH_FLAGS) == map->m_flags) { 1931 map->m_len++; 1932 return true; 1933 } 1934 return false; 1935 } 1936 1937 /* 1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1939 * 1940 * @mpd - extent of blocks for mapping 1941 * @head - the first buffer in the page 1942 * @bh - buffer we should start processing from 1943 * @lblk - logical number of the block in the file corresponding to @bh 1944 * 1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1946 * the page for IO if all buffers in this page were mapped and there's no 1947 * accumulated extent of buffers to map or add buffers in the page to the 1948 * extent of buffers to map. The function returns 1 if the caller can continue 1949 * by processing the next page, 0 if it should stop adding buffers to the 1950 * extent to map because we cannot extend it anymore. It can also return value 1951 * < 0 in case of error during IO submission. 1952 */ 1953 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1954 struct buffer_head *head, 1955 struct buffer_head *bh, 1956 ext4_lblk_t lblk) 1957 { 1958 struct inode *inode = mpd->inode; 1959 int err; 1960 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1961 >> inode->i_blkbits; 1962 1963 if (ext4_verity_in_progress(inode)) 1964 blocks = EXT_MAX_BLOCKS; 1965 1966 do { 1967 BUG_ON(buffer_locked(bh)); 1968 1969 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1970 /* Found extent to map? */ 1971 if (mpd->map.m_len) 1972 return 0; 1973 /* Buffer needs mapping and handle is not started? */ 1974 if (!mpd->do_map) 1975 return 0; 1976 /* Everything mapped so far and we hit EOF */ 1977 break; 1978 } 1979 } while (lblk++, (bh = bh->b_this_page) != head); 1980 /* So far everything mapped? Submit the page for IO. */ 1981 if (mpd->map.m_len == 0) { 1982 err = mpage_submit_folio(mpd, head->b_folio); 1983 if (err < 0) 1984 return err; 1985 mpage_folio_done(mpd, head->b_folio); 1986 } 1987 if (lblk >= blocks) { 1988 mpd->scanned_until_end = 1; 1989 return 0; 1990 } 1991 return 1; 1992 } 1993 1994 /* 1995 * mpage_process_folio - update folio buffers corresponding to changed extent 1996 * and may submit fully mapped page for IO 1997 * @mpd: description of extent to map, on return next extent to map 1998 * @folio: Contains these buffers. 1999 * @m_lblk: logical block mapping. 2000 * @m_pblk: corresponding physical mapping. 2001 * @map_bh: determines on return whether this page requires any further 2002 * mapping or not. 2003 * 2004 * Scan given folio buffers corresponding to changed extent and update buffer 2005 * state according to new extent state. 2006 * We map delalloc buffers to their physical location, clear unwritten bits. 2007 * If the given folio is not fully mapped, we update @mpd to the next extent in 2008 * the given folio that needs mapping & return @map_bh as true. 2009 */ 2010 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2011 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2012 bool *map_bh) 2013 { 2014 struct buffer_head *head, *bh; 2015 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2016 ext4_lblk_t lblk = *m_lblk; 2017 ext4_fsblk_t pblock = *m_pblk; 2018 int err = 0; 2019 int blkbits = mpd->inode->i_blkbits; 2020 ssize_t io_end_size = 0; 2021 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2022 2023 bh = head = folio_buffers(folio); 2024 do { 2025 if (lblk < mpd->map.m_lblk) 2026 continue; 2027 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2028 /* 2029 * Buffer after end of mapped extent. 2030 * Find next buffer in the folio to map. 2031 */ 2032 mpd->map.m_len = 0; 2033 mpd->map.m_flags = 0; 2034 io_end_vec->size += io_end_size; 2035 2036 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2037 if (err > 0) 2038 err = 0; 2039 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2040 io_end_vec = ext4_alloc_io_end_vec(io_end); 2041 if (IS_ERR(io_end_vec)) { 2042 err = PTR_ERR(io_end_vec); 2043 goto out; 2044 } 2045 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2046 } 2047 *map_bh = true; 2048 goto out; 2049 } 2050 if (buffer_delay(bh)) { 2051 clear_buffer_delay(bh); 2052 bh->b_blocknr = pblock++; 2053 } 2054 clear_buffer_unwritten(bh); 2055 io_end_size += (1 << blkbits); 2056 } while (lblk++, (bh = bh->b_this_page) != head); 2057 2058 io_end_vec->size += io_end_size; 2059 *map_bh = false; 2060 out: 2061 *m_lblk = lblk; 2062 *m_pblk = pblock; 2063 return err; 2064 } 2065 2066 /* 2067 * mpage_map_buffers - update buffers corresponding to changed extent and 2068 * submit fully mapped pages for IO 2069 * 2070 * @mpd - description of extent to map, on return next extent to map 2071 * 2072 * Scan buffers corresponding to changed extent (we expect corresponding pages 2073 * to be already locked) and update buffer state according to new extent state. 2074 * We map delalloc buffers to their physical location, clear unwritten bits, 2075 * and mark buffers as uninit when we perform writes to unwritten extents 2076 * and do extent conversion after IO is finished. If the last page is not fully 2077 * mapped, we update @map to the next extent in the last page that needs 2078 * mapping. Otherwise we submit the page for IO. 2079 */ 2080 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2081 { 2082 struct folio_batch fbatch; 2083 unsigned nr, i; 2084 struct inode *inode = mpd->inode; 2085 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2086 pgoff_t start, end; 2087 ext4_lblk_t lblk; 2088 ext4_fsblk_t pblock; 2089 int err; 2090 bool map_bh = false; 2091 2092 start = mpd->map.m_lblk >> bpp_bits; 2093 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2094 lblk = start << bpp_bits; 2095 pblock = mpd->map.m_pblk; 2096 2097 folio_batch_init(&fbatch); 2098 while (start <= end) { 2099 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2100 if (nr == 0) 2101 break; 2102 for (i = 0; i < nr; i++) { 2103 struct folio *folio = fbatch.folios[i]; 2104 2105 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2106 &map_bh); 2107 /* 2108 * If map_bh is true, means page may require further bh 2109 * mapping, or maybe the page was submitted for IO. 2110 * So we return to call further extent mapping. 2111 */ 2112 if (err < 0 || map_bh) 2113 goto out; 2114 /* Page fully mapped - let IO run! */ 2115 err = mpage_submit_folio(mpd, folio); 2116 if (err < 0) 2117 goto out; 2118 mpage_folio_done(mpd, folio); 2119 } 2120 folio_batch_release(&fbatch); 2121 } 2122 /* Extent fully mapped and matches with page boundary. We are done. */ 2123 mpd->map.m_len = 0; 2124 mpd->map.m_flags = 0; 2125 return 0; 2126 out: 2127 folio_batch_release(&fbatch); 2128 return err; 2129 } 2130 2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2132 { 2133 struct inode *inode = mpd->inode; 2134 struct ext4_map_blocks *map = &mpd->map; 2135 int get_blocks_flags; 2136 int err, dioread_nolock; 2137 2138 trace_ext4_da_write_pages_extent(inode, map); 2139 /* 2140 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2141 * to convert an unwritten extent to be initialized (in the case 2142 * where we have written into one or more preallocated blocks). It is 2143 * possible that we're going to need more metadata blocks than 2144 * previously reserved. However we must not fail because we're in 2145 * writeback and there is nothing we can do about it so it might result 2146 * in data loss. So use reserved blocks to allocate metadata if 2147 * possible. 2148 * 2149 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2150 * the blocks in question are delalloc blocks. This indicates 2151 * that the blocks and quotas has already been checked when 2152 * the data was copied into the page cache. 2153 */ 2154 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2155 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2156 EXT4_GET_BLOCKS_IO_SUBMIT; 2157 dioread_nolock = ext4_should_dioread_nolock(inode); 2158 if (dioread_nolock) 2159 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2160 if (map->m_flags & BIT(BH_Delay)) 2161 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2162 2163 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2164 if (err < 0) 2165 return err; 2166 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2167 if (!mpd->io_submit.io_end->handle && 2168 ext4_handle_valid(handle)) { 2169 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2170 handle->h_rsv_handle = NULL; 2171 } 2172 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2173 } 2174 2175 BUG_ON(map->m_len == 0); 2176 return 0; 2177 } 2178 2179 /* 2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2181 * mpd->len and submit pages underlying it for IO 2182 * 2183 * @handle - handle for journal operations 2184 * @mpd - extent to map 2185 * @give_up_on_write - we set this to true iff there is a fatal error and there 2186 * is no hope of writing the data. The caller should discard 2187 * dirty pages to avoid infinite loops. 2188 * 2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2191 * them to initialized or split the described range from larger unwritten 2192 * extent. Note that we need not map all the described range since allocation 2193 * can return less blocks or the range is covered by more unwritten extents. We 2194 * cannot map more because we are limited by reserved transaction credits. On 2195 * the other hand we always make sure that the last touched page is fully 2196 * mapped so that it can be written out (and thus forward progress is 2197 * guaranteed). After mapping we submit all mapped pages for IO. 2198 */ 2199 static int mpage_map_and_submit_extent(handle_t *handle, 2200 struct mpage_da_data *mpd, 2201 bool *give_up_on_write) 2202 { 2203 struct inode *inode = mpd->inode; 2204 struct ext4_map_blocks *map = &mpd->map; 2205 int err; 2206 loff_t disksize; 2207 int progress = 0; 2208 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2209 struct ext4_io_end_vec *io_end_vec; 2210 2211 io_end_vec = ext4_alloc_io_end_vec(io_end); 2212 if (IS_ERR(io_end_vec)) 2213 return PTR_ERR(io_end_vec); 2214 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2215 do { 2216 err = mpage_map_one_extent(handle, mpd); 2217 if (err < 0) { 2218 struct super_block *sb = inode->i_sb; 2219 2220 if (ext4_forced_shutdown(sb)) 2221 goto invalidate_dirty_pages; 2222 /* 2223 * Let the uper layers retry transient errors. 2224 * In the case of ENOSPC, if ext4_count_free_blocks() 2225 * is non-zero, a commit should free up blocks. 2226 */ 2227 if ((err == -ENOMEM) || 2228 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2229 if (progress) 2230 goto update_disksize; 2231 return err; 2232 } 2233 ext4_msg(sb, KERN_CRIT, 2234 "Delayed block allocation failed for " 2235 "inode %lu at logical offset %llu with" 2236 " max blocks %u with error %d", 2237 inode->i_ino, 2238 (unsigned long long)map->m_lblk, 2239 (unsigned)map->m_len, -err); 2240 ext4_msg(sb, KERN_CRIT, 2241 "This should not happen!! Data will " 2242 "be lost\n"); 2243 if (err == -ENOSPC) 2244 ext4_print_free_blocks(inode); 2245 invalidate_dirty_pages: 2246 *give_up_on_write = true; 2247 return err; 2248 } 2249 progress = 1; 2250 /* 2251 * Update buffer state, submit mapped pages, and get us new 2252 * extent to map 2253 */ 2254 err = mpage_map_and_submit_buffers(mpd); 2255 if (err < 0) 2256 goto update_disksize; 2257 } while (map->m_len); 2258 2259 update_disksize: 2260 /* 2261 * Update on-disk size after IO is submitted. Races with 2262 * truncate are avoided by checking i_size under i_data_sem. 2263 */ 2264 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2265 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2266 int err2; 2267 loff_t i_size; 2268 2269 down_write(&EXT4_I(inode)->i_data_sem); 2270 i_size = i_size_read(inode); 2271 if (disksize > i_size) 2272 disksize = i_size; 2273 if (disksize > EXT4_I(inode)->i_disksize) 2274 EXT4_I(inode)->i_disksize = disksize; 2275 up_write(&EXT4_I(inode)->i_data_sem); 2276 err2 = ext4_mark_inode_dirty(handle, inode); 2277 if (err2) { 2278 ext4_error_err(inode->i_sb, -err2, 2279 "Failed to mark inode %lu dirty", 2280 inode->i_ino); 2281 } 2282 if (!err) 2283 err = err2; 2284 } 2285 return err; 2286 } 2287 2288 /* 2289 * Calculate the total number of credits to reserve for one writepages 2290 * iteration. This is called from ext4_writepages(). We map an extent of 2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2293 * bpp - 1 blocks in bpp different extents. 2294 */ 2295 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2296 { 2297 int bpp = ext4_journal_blocks_per_page(inode); 2298 2299 return ext4_meta_trans_blocks(inode, 2300 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2301 } 2302 2303 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2304 size_t len) 2305 { 2306 struct buffer_head *page_bufs = folio_buffers(folio); 2307 struct inode *inode = folio->mapping->host; 2308 int ret, err; 2309 2310 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2311 NULL, do_journal_get_write_access); 2312 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2313 NULL, write_end_fn); 2314 if (ret == 0) 2315 ret = err; 2316 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2317 if (ret == 0) 2318 ret = err; 2319 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2320 2321 return ret; 2322 } 2323 2324 static int mpage_journal_page_buffers(handle_t *handle, 2325 struct mpage_da_data *mpd, 2326 struct folio *folio) 2327 { 2328 struct inode *inode = mpd->inode; 2329 loff_t size = i_size_read(inode); 2330 size_t len = folio_size(folio); 2331 2332 folio_clear_checked(folio); 2333 mpd->wbc->nr_to_write--; 2334 2335 if (folio_pos(folio) + len > size && 2336 !ext4_verity_in_progress(inode)) 2337 len = size & (len - 1); 2338 2339 return ext4_journal_folio_buffers(handle, folio, len); 2340 } 2341 2342 /* 2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2344 * needing mapping, submit mapped pages 2345 * 2346 * @mpd - where to look for pages 2347 * 2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2349 * IO immediately. If we cannot map blocks, we submit just already mapped 2350 * buffers in the page for IO and keep page dirty. When we can map blocks and 2351 * we find a page which isn't mapped we start accumulating extent of buffers 2352 * underlying these pages that needs mapping (formed by either delayed or 2353 * unwritten buffers). We also lock the pages containing these buffers. The 2354 * extent found is returned in @mpd structure (starting at mpd->lblk with 2355 * length mpd->len blocks). 2356 * 2357 * Note that this function can attach bios to one io_end structure which are 2358 * neither logically nor physically contiguous. Although it may seem as an 2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2360 * case as we need to track IO to all buffers underlying a page in one io_end. 2361 */ 2362 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2363 { 2364 struct address_space *mapping = mpd->inode->i_mapping; 2365 struct folio_batch fbatch; 2366 unsigned int nr_folios; 2367 pgoff_t index = mpd->first_page; 2368 pgoff_t end = mpd->last_page; 2369 xa_mark_t tag; 2370 int i, err = 0; 2371 int blkbits = mpd->inode->i_blkbits; 2372 ext4_lblk_t lblk; 2373 struct buffer_head *head; 2374 handle_t *handle = NULL; 2375 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2376 2377 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2378 tag = PAGECACHE_TAG_TOWRITE; 2379 else 2380 tag = PAGECACHE_TAG_DIRTY; 2381 2382 mpd->map.m_len = 0; 2383 mpd->next_page = index; 2384 if (ext4_should_journal_data(mpd->inode)) { 2385 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2386 bpp); 2387 if (IS_ERR(handle)) 2388 return PTR_ERR(handle); 2389 } 2390 folio_batch_init(&fbatch); 2391 while (index <= end) { 2392 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2393 tag, &fbatch); 2394 if (nr_folios == 0) 2395 break; 2396 2397 for (i = 0; i < nr_folios; i++) { 2398 struct folio *folio = fbatch.folios[i]; 2399 2400 /* 2401 * Accumulated enough dirty pages? This doesn't apply 2402 * to WB_SYNC_ALL mode. For integrity sync we have to 2403 * keep going because someone may be concurrently 2404 * dirtying pages, and we might have synced a lot of 2405 * newly appeared dirty pages, but have not synced all 2406 * of the old dirty pages. 2407 */ 2408 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2409 mpd->wbc->nr_to_write <= 2410 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2411 goto out; 2412 2413 /* If we can't merge this page, we are done. */ 2414 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2415 goto out; 2416 2417 if (handle) { 2418 err = ext4_journal_ensure_credits(handle, bpp, 2419 0); 2420 if (err < 0) 2421 goto out; 2422 } 2423 2424 folio_lock(folio); 2425 /* 2426 * If the page is no longer dirty, or its mapping no 2427 * longer corresponds to inode we are writing (which 2428 * means it has been truncated or invalidated), or the 2429 * page is already under writeback and we are not doing 2430 * a data integrity writeback, skip the page 2431 */ 2432 if (!folio_test_dirty(folio) || 2433 (folio_test_writeback(folio) && 2434 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2435 unlikely(folio->mapping != mapping)) { 2436 folio_unlock(folio); 2437 continue; 2438 } 2439 2440 folio_wait_writeback(folio); 2441 BUG_ON(folio_test_writeback(folio)); 2442 2443 /* 2444 * Should never happen but for buggy code in 2445 * other subsystems that call 2446 * set_page_dirty() without properly warning 2447 * the file system first. See [1] for more 2448 * information. 2449 * 2450 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2451 */ 2452 if (!folio_buffers(folio)) { 2453 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2454 folio_clear_dirty(folio); 2455 folio_unlock(folio); 2456 continue; 2457 } 2458 2459 if (mpd->map.m_len == 0) 2460 mpd->first_page = folio->index; 2461 mpd->next_page = folio_next_index(folio); 2462 /* 2463 * Writeout when we cannot modify metadata is simple. 2464 * Just submit the page. For data=journal mode we 2465 * first handle writeout of the page for checkpoint and 2466 * only after that handle delayed page dirtying. This 2467 * makes sure current data is checkpointed to the final 2468 * location before possibly journalling it again which 2469 * is desirable when the page is frequently dirtied 2470 * through a pin. 2471 */ 2472 if (!mpd->can_map) { 2473 err = mpage_submit_folio(mpd, folio); 2474 if (err < 0) 2475 goto out; 2476 /* Pending dirtying of journalled data? */ 2477 if (folio_test_checked(folio)) { 2478 err = mpage_journal_page_buffers(handle, 2479 mpd, folio); 2480 if (err < 0) 2481 goto out; 2482 mpd->journalled_more_data = 1; 2483 } 2484 mpage_folio_done(mpd, folio); 2485 } else { 2486 /* Add all dirty buffers to mpd */ 2487 lblk = ((ext4_lblk_t)folio->index) << 2488 (PAGE_SHIFT - blkbits); 2489 head = folio_buffers(folio); 2490 err = mpage_process_page_bufs(mpd, head, head, 2491 lblk); 2492 if (err <= 0) 2493 goto out; 2494 err = 0; 2495 } 2496 } 2497 folio_batch_release(&fbatch); 2498 cond_resched(); 2499 } 2500 mpd->scanned_until_end = 1; 2501 if (handle) 2502 ext4_journal_stop(handle); 2503 return 0; 2504 out: 2505 folio_batch_release(&fbatch); 2506 if (handle) 2507 ext4_journal_stop(handle); 2508 return err; 2509 } 2510 2511 static int ext4_do_writepages(struct mpage_da_data *mpd) 2512 { 2513 struct writeback_control *wbc = mpd->wbc; 2514 pgoff_t writeback_index = 0; 2515 long nr_to_write = wbc->nr_to_write; 2516 int range_whole = 0; 2517 int cycled = 1; 2518 handle_t *handle = NULL; 2519 struct inode *inode = mpd->inode; 2520 struct address_space *mapping = inode->i_mapping; 2521 int needed_blocks, rsv_blocks = 0, ret = 0; 2522 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2523 struct blk_plug plug; 2524 bool give_up_on_write = false; 2525 2526 trace_ext4_writepages(inode, wbc); 2527 2528 /* 2529 * No pages to write? This is mainly a kludge to avoid starting 2530 * a transaction for special inodes like journal inode on last iput() 2531 * because that could violate lock ordering on umount 2532 */ 2533 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2534 goto out_writepages; 2535 2536 /* 2537 * If the filesystem has aborted, it is read-only, so return 2538 * right away instead of dumping stack traces later on that 2539 * will obscure the real source of the problem. We test 2540 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2541 * the latter could be true if the filesystem is mounted 2542 * read-only, and in that case, ext4_writepages should 2543 * *never* be called, so if that ever happens, we would want 2544 * the stack trace. 2545 */ 2546 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2547 ret = -EROFS; 2548 goto out_writepages; 2549 } 2550 2551 /* 2552 * If we have inline data and arrive here, it means that 2553 * we will soon create the block for the 1st page, so 2554 * we'd better clear the inline data here. 2555 */ 2556 if (ext4_has_inline_data(inode)) { 2557 /* Just inode will be modified... */ 2558 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2559 if (IS_ERR(handle)) { 2560 ret = PTR_ERR(handle); 2561 goto out_writepages; 2562 } 2563 BUG_ON(ext4_test_inode_state(inode, 2564 EXT4_STATE_MAY_INLINE_DATA)); 2565 ext4_destroy_inline_data(handle, inode); 2566 ext4_journal_stop(handle); 2567 } 2568 2569 /* 2570 * data=journal mode does not do delalloc so we just need to writeout / 2571 * journal already mapped buffers. On the other hand we need to commit 2572 * transaction to make data stable. We expect all the data to be 2573 * already in the journal (the only exception are DMA pinned pages 2574 * dirtied behind our back) so we commit transaction here and run the 2575 * writeback loop to checkpoint them. The checkpointing is not actually 2576 * necessary to make data persistent *but* quite a few places (extent 2577 * shifting operations, fsverity, ...) depend on being able to drop 2578 * pagecache pages after calling filemap_write_and_wait() and for that 2579 * checkpointing needs to happen. 2580 */ 2581 if (ext4_should_journal_data(inode)) { 2582 mpd->can_map = 0; 2583 if (wbc->sync_mode == WB_SYNC_ALL) 2584 ext4_fc_commit(sbi->s_journal, 2585 EXT4_I(inode)->i_datasync_tid); 2586 } 2587 mpd->journalled_more_data = 0; 2588 2589 if (ext4_should_dioread_nolock(inode)) { 2590 /* 2591 * We may need to convert up to one extent per block in 2592 * the page and we may dirty the inode. 2593 */ 2594 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2595 PAGE_SIZE >> inode->i_blkbits); 2596 } 2597 2598 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2599 range_whole = 1; 2600 2601 if (wbc->range_cyclic) { 2602 writeback_index = mapping->writeback_index; 2603 if (writeback_index) 2604 cycled = 0; 2605 mpd->first_page = writeback_index; 2606 mpd->last_page = -1; 2607 } else { 2608 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2609 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2610 } 2611 2612 ext4_io_submit_init(&mpd->io_submit, wbc); 2613 retry: 2614 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2615 tag_pages_for_writeback(mapping, mpd->first_page, 2616 mpd->last_page); 2617 blk_start_plug(&plug); 2618 2619 /* 2620 * First writeback pages that don't need mapping - we can avoid 2621 * starting a transaction unnecessarily and also avoid being blocked 2622 * in the block layer on device congestion while having transaction 2623 * started. 2624 */ 2625 mpd->do_map = 0; 2626 mpd->scanned_until_end = 0; 2627 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2628 if (!mpd->io_submit.io_end) { 2629 ret = -ENOMEM; 2630 goto unplug; 2631 } 2632 ret = mpage_prepare_extent_to_map(mpd); 2633 /* Unlock pages we didn't use */ 2634 mpage_release_unused_pages(mpd, false); 2635 /* Submit prepared bio */ 2636 ext4_io_submit(&mpd->io_submit); 2637 ext4_put_io_end_defer(mpd->io_submit.io_end); 2638 mpd->io_submit.io_end = NULL; 2639 if (ret < 0) 2640 goto unplug; 2641 2642 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2643 /* For each extent of pages we use new io_end */ 2644 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2645 if (!mpd->io_submit.io_end) { 2646 ret = -ENOMEM; 2647 break; 2648 } 2649 2650 WARN_ON_ONCE(!mpd->can_map); 2651 /* 2652 * We have two constraints: We find one extent to map and we 2653 * must always write out whole page (makes a difference when 2654 * blocksize < pagesize) so that we don't block on IO when we 2655 * try to write out the rest of the page. Journalled mode is 2656 * not supported by delalloc. 2657 */ 2658 BUG_ON(ext4_should_journal_data(inode)); 2659 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2660 2661 /* start a new transaction */ 2662 handle = ext4_journal_start_with_reserve(inode, 2663 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2664 if (IS_ERR(handle)) { 2665 ret = PTR_ERR(handle); 2666 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2667 "%ld pages, ino %lu; err %d", __func__, 2668 wbc->nr_to_write, inode->i_ino, ret); 2669 /* Release allocated io_end */ 2670 ext4_put_io_end(mpd->io_submit.io_end); 2671 mpd->io_submit.io_end = NULL; 2672 break; 2673 } 2674 mpd->do_map = 1; 2675 2676 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2677 ret = mpage_prepare_extent_to_map(mpd); 2678 if (!ret && mpd->map.m_len) 2679 ret = mpage_map_and_submit_extent(handle, mpd, 2680 &give_up_on_write); 2681 /* 2682 * Caution: If the handle is synchronous, 2683 * ext4_journal_stop() can wait for transaction commit 2684 * to finish which may depend on writeback of pages to 2685 * complete or on page lock to be released. In that 2686 * case, we have to wait until after we have 2687 * submitted all the IO, released page locks we hold, 2688 * and dropped io_end reference (for extent conversion 2689 * to be able to complete) before stopping the handle. 2690 */ 2691 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2692 ext4_journal_stop(handle); 2693 handle = NULL; 2694 mpd->do_map = 0; 2695 } 2696 /* Unlock pages we didn't use */ 2697 mpage_release_unused_pages(mpd, give_up_on_write); 2698 /* Submit prepared bio */ 2699 ext4_io_submit(&mpd->io_submit); 2700 2701 /* 2702 * Drop our io_end reference we got from init. We have 2703 * to be careful and use deferred io_end finishing if 2704 * we are still holding the transaction as we can 2705 * release the last reference to io_end which may end 2706 * up doing unwritten extent conversion. 2707 */ 2708 if (handle) { 2709 ext4_put_io_end_defer(mpd->io_submit.io_end); 2710 ext4_journal_stop(handle); 2711 } else 2712 ext4_put_io_end(mpd->io_submit.io_end); 2713 mpd->io_submit.io_end = NULL; 2714 2715 if (ret == -ENOSPC && sbi->s_journal) { 2716 /* 2717 * Commit the transaction which would 2718 * free blocks released in the transaction 2719 * and try again 2720 */ 2721 jbd2_journal_force_commit_nested(sbi->s_journal); 2722 ret = 0; 2723 continue; 2724 } 2725 /* Fatal error - ENOMEM, EIO... */ 2726 if (ret) 2727 break; 2728 } 2729 unplug: 2730 blk_finish_plug(&plug); 2731 if (!ret && !cycled && wbc->nr_to_write > 0) { 2732 cycled = 1; 2733 mpd->last_page = writeback_index - 1; 2734 mpd->first_page = 0; 2735 goto retry; 2736 } 2737 2738 /* Update index */ 2739 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2740 /* 2741 * Set the writeback_index so that range_cyclic 2742 * mode will write it back later 2743 */ 2744 mapping->writeback_index = mpd->first_page; 2745 2746 out_writepages: 2747 trace_ext4_writepages_result(inode, wbc, ret, 2748 nr_to_write - wbc->nr_to_write); 2749 return ret; 2750 } 2751 2752 static int ext4_writepages(struct address_space *mapping, 2753 struct writeback_control *wbc) 2754 { 2755 struct super_block *sb = mapping->host->i_sb; 2756 struct mpage_da_data mpd = { 2757 .inode = mapping->host, 2758 .wbc = wbc, 2759 .can_map = 1, 2760 }; 2761 int ret; 2762 int alloc_ctx; 2763 2764 if (unlikely(ext4_forced_shutdown(sb))) 2765 return -EIO; 2766 2767 alloc_ctx = ext4_writepages_down_read(sb); 2768 ret = ext4_do_writepages(&mpd); 2769 /* 2770 * For data=journal writeback we could have come across pages marked 2771 * for delayed dirtying (PageChecked) which were just added to the 2772 * running transaction. Try once more to get them to stable storage. 2773 */ 2774 if (!ret && mpd.journalled_more_data) 2775 ret = ext4_do_writepages(&mpd); 2776 ext4_writepages_up_read(sb, alloc_ctx); 2777 2778 return ret; 2779 } 2780 2781 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2782 { 2783 struct writeback_control wbc = { 2784 .sync_mode = WB_SYNC_ALL, 2785 .nr_to_write = LONG_MAX, 2786 .range_start = jinode->i_dirty_start, 2787 .range_end = jinode->i_dirty_end, 2788 }; 2789 struct mpage_da_data mpd = { 2790 .inode = jinode->i_vfs_inode, 2791 .wbc = &wbc, 2792 .can_map = 0, 2793 }; 2794 return ext4_do_writepages(&mpd); 2795 } 2796 2797 static int ext4_dax_writepages(struct address_space *mapping, 2798 struct writeback_control *wbc) 2799 { 2800 int ret; 2801 long nr_to_write = wbc->nr_to_write; 2802 struct inode *inode = mapping->host; 2803 int alloc_ctx; 2804 2805 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2806 return -EIO; 2807 2808 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2809 trace_ext4_writepages(inode, wbc); 2810 2811 ret = dax_writeback_mapping_range(mapping, 2812 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2813 trace_ext4_writepages_result(inode, wbc, ret, 2814 nr_to_write - wbc->nr_to_write); 2815 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2816 return ret; 2817 } 2818 2819 static int ext4_nonda_switch(struct super_block *sb) 2820 { 2821 s64 free_clusters, dirty_clusters; 2822 struct ext4_sb_info *sbi = EXT4_SB(sb); 2823 2824 /* 2825 * switch to non delalloc mode if we are running low 2826 * on free block. The free block accounting via percpu 2827 * counters can get slightly wrong with percpu_counter_batch getting 2828 * accumulated on each CPU without updating global counters 2829 * Delalloc need an accurate free block accounting. So switch 2830 * to non delalloc when we are near to error range. 2831 */ 2832 free_clusters = 2833 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2834 dirty_clusters = 2835 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2836 /* 2837 * Start pushing delalloc when 1/2 of free blocks are dirty. 2838 */ 2839 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2840 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2841 2842 if (2 * free_clusters < 3 * dirty_clusters || 2843 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2844 /* 2845 * free block count is less than 150% of dirty blocks 2846 * or free blocks is less than watermark 2847 */ 2848 return 1; 2849 } 2850 return 0; 2851 } 2852 2853 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2854 loff_t pos, unsigned len, 2855 struct page **pagep, void **fsdata) 2856 { 2857 int ret, retries = 0; 2858 struct folio *folio; 2859 pgoff_t index; 2860 struct inode *inode = mapping->host; 2861 2862 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2863 return -EIO; 2864 2865 index = pos >> PAGE_SHIFT; 2866 2867 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2868 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2869 return ext4_write_begin(file, mapping, pos, 2870 len, pagep, fsdata); 2871 } 2872 *fsdata = (void *)0; 2873 trace_ext4_da_write_begin(inode, pos, len); 2874 2875 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2876 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2877 pagep, fsdata); 2878 if (ret < 0) 2879 return ret; 2880 if (ret == 1) 2881 return 0; 2882 } 2883 2884 retry: 2885 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2886 mapping_gfp_mask(mapping)); 2887 if (IS_ERR(folio)) 2888 return PTR_ERR(folio); 2889 2890 #ifdef CONFIG_FS_ENCRYPTION 2891 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2892 #else 2893 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2894 #endif 2895 if (ret < 0) { 2896 folio_unlock(folio); 2897 folio_put(folio); 2898 /* 2899 * block_write_begin may have instantiated a few blocks 2900 * outside i_size. Trim these off again. Don't need 2901 * i_size_read because we hold inode lock. 2902 */ 2903 if (pos + len > inode->i_size) 2904 ext4_truncate_failed_write(inode); 2905 2906 if (ret == -ENOSPC && 2907 ext4_should_retry_alloc(inode->i_sb, &retries)) 2908 goto retry; 2909 return ret; 2910 } 2911 2912 *pagep = &folio->page; 2913 return ret; 2914 } 2915 2916 /* 2917 * Check if we should update i_disksize 2918 * when write to the end of file but not require block allocation 2919 */ 2920 static int ext4_da_should_update_i_disksize(struct folio *folio, 2921 unsigned long offset) 2922 { 2923 struct buffer_head *bh; 2924 struct inode *inode = folio->mapping->host; 2925 unsigned int idx; 2926 int i; 2927 2928 bh = folio_buffers(folio); 2929 idx = offset >> inode->i_blkbits; 2930 2931 for (i = 0; i < idx; i++) 2932 bh = bh->b_this_page; 2933 2934 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2935 return 0; 2936 return 1; 2937 } 2938 2939 static int ext4_da_do_write_end(struct address_space *mapping, 2940 loff_t pos, unsigned len, unsigned copied, 2941 struct page *page) 2942 { 2943 struct inode *inode = mapping->host; 2944 loff_t old_size = inode->i_size; 2945 bool disksize_changed = false; 2946 loff_t new_i_size; 2947 2948 /* 2949 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2950 * flag, which all that's needed to trigger page writeback. 2951 */ 2952 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL); 2953 new_i_size = pos + copied; 2954 2955 /* 2956 * It's important to update i_size while still holding page lock, 2957 * because page writeout could otherwise come in and zero beyond 2958 * i_size. 2959 * 2960 * Since we are holding inode lock, we are sure i_disksize <= 2961 * i_size. We also know that if i_disksize < i_size, there are 2962 * delalloc writes pending in the range up to i_size. If the end of 2963 * the current write is <= i_size, there's no need to touch 2964 * i_disksize since writeback will push i_disksize up to i_size 2965 * eventually. If the end of the current write is > i_size and 2966 * inside an allocated block which ext4_da_should_update_i_disksize() 2967 * checked, we need to update i_disksize here as certain 2968 * ext4_writepages() paths not allocating blocks and update i_disksize. 2969 */ 2970 if (new_i_size > inode->i_size) { 2971 unsigned long end; 2972 2973 i_size_write(inode, new_i_size); 2974 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2975 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) { 2976 ext4_update_i_disksize(inode, new_i_size); 2977 disksize_changed = true; 2978 } 2979 } 2980 2981 unlock_page(page); 2982 put_page(page); 2983 2984 if (old_size < pos) 2985 pagecache_isize_extended(inode, old_size, pos); 2986 2987 if (disksize_changed) { 2988 handle_t *handle; 2989 2990 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 2991 if (IS_ERR(handle)) 2992 return PTR_ERR(handle); 2993 ext4_mark_inode_dirty(handle, inode); 2994 ext4_journal_stop(handle); 2995 } 2996 2997 return copied; 2998 } 2999 3000 static int ext4_da_write_end(struct file *file, 3001 struct address_space *mapping, 3002 loff_t pos, unsigned len, unsigned copied, 3003 struct page *page, void *fsdata) 3004 { 3005 struct inode *inode = mapping->host; 3006 int write_mode = (int)(unsigned long)fsdata; 3007 struct folio *folio = page_folio(page); 3008 3009 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3010 return ext4_write_end(file, mapping, pos, 3011 len, copied, &folio->page, fsdata); 3012 3013 trace_ext4_da_write_end(inode, pos, len, copied); 3014 3015 if (write_mode != CONVERT_INLINE_DATA && 3016 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3017 ext4_has_inline_data(inode)) 3018 return ext4_write_inline_data_end(inode, pos, len, copied, 3019 folio); 3020 3021 if (unlikely(copied < len) && !PageUptodate(page)) 3022 copied = 0; 3023 3024 return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page); 3025 } 3026 3027 /* 3028 * Force all delayed allocation blocks to be allocated for a given inode. 3029 */ 3030 int ext4_alloc_da_blocks(struct inode *inode) 3031 { 3032 trace_ext4_alloc_da_blocks(inode); 3033 3034 if (!EXT4_I(inode)->i_reserved_data_blocks) 3035 return 0; 3036 3037 /* 3038 * We do something simple for now. The filemap_flush() will 3039 * also start triggering a write of the data blocks, which is 3040 * not strictly speaking necessary (and for users of 3041 * laptop_mode, not even desirable). However, to do otherwise 3042 * would require replicating code paths in: 3043 * 3044 * ext4_writepages() -> 3045 * write_cache_pages() ---> (via passed in callback function) 3046 * __mpage_da_writepage() --> 3047 * mpage_add_bh_to_extent() 3048 * mpage_da_map_blocks() 3049 * 3050 * The problem is that write_cache_pages(), located in 3051 * mm/page-writeback.c, marks pages clean in preparation for 3052 * doing I/O, which is not desirable if we're not planning on 3053 * doing I/O at all. 3054 * 3055 * We could call write_cache_pages(), and then redirty all of 3056 * the pages by calling redirty_page_for_writepage() but that 3057 * would be ugly in the extreme. So instead we would need to 3058 * replicate parts of the code in the above functions, 3059 * simplifying them because we wouldn't actually intend to 3060 * write out the pages, but rather only collect contiguous 3061 * logical block extents, call the multi-block allocator, and 3062 * then update the buffer heads with the block allocations. 3063 * 3064 * For now, though, we'll cheat by calling filemap_flush(), 3065 * which will map the blocks, and start the I/O, but not 3066 * actually wait for the I/O to complete. 3067 */ 3068 return filemap_flush(inode->i_mapping); 3069 } 3070 3071 /* 3072 * bmap() is special. It gets used by applications such as lilo and by 3073 * the swapper to find the on-disk block of a specific piece of data. 3074 * 3075 * Naturally, this is dangerous if the block concerned is still in the 3076 * journal. If somebody makes a swapfile on an ext4 data-journaling 3077 * filesystem and enables swap, then they may get a nasty shock when the 3078 * data getting swapped to that swapfile suddenly gets overwritten by 3079 * the original zero's written out previously to the journal and 3080 * awaiting writeback in the kernel's buffer cache. 3081 * 3082 * So, if we see any bmap calls here on a modified, data-journaled file, 3083 * take extra steps to flush any blocks which might be in the cache. 3084 */ 3085 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3086 { 3087 struct inode *inode = mapping->host; 3088 sector_t ret = 0; 3089 3090 inode_lock_shared(inode); 3091 /* 3092 * We can get here for an inline file via the FIBMAP ioctl 3093 */ 3094 if (ext4_has_inline_data(inode)) 3095 goto out; 3096 3097 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3098 (test_opt(inode->i_sb, DELALLOC) || 3099 ext4_should_journal_data(inode))) { 3100 /* 3101 * With delalloc or journalled data we want to sync the file so 3102 * that we can make sure we allocate blocks for file and data 3103 * is in place for the user to see it 3104 */ 3105 filemap_write_and_wait(mapping); 3106 } 3107 3108 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3109 3110 out: 3111 inode_unlock_shared(inode); 3112 return ret; 3113 } 3114 3115 static int ext4_read_folio(struct file *file, struct folio *folio) 3116 { 3117 int ret = -EAGAIN; 3118 struct inode *inode = folio->mapping->host; 3119 3120 trace_ext4_read_folio(inode, folio); 3121 3122 if (ext4_has_inline_data(inode)) 3123 ret = ext4_readpage_inline(inode, folio); 3124 3125 if (ret == -EAGAIN) 3126 return ext4_mpage_readpages(inode, NULL, folio); 3127 3128 return ret; 3129 } 3130 3131 static void ext4_readahead(struct readahead_control *rac) 3132 { 3133 struct inode *inode = rac->mapping->host; 3134 3135 /* If the file has inline data, no need to do readahead. */ 3136 if (ext4_has_inline_data(inode)) 3137 return; 3138 3139 ext4_mpage_readpages(inode, rac, NULL); 3140 } 3141 3142 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3143 size_t length) 3144 { 3145 trace_ext4_invalidate_folio(folio, offset, length); 3146 3147 /* No journalling happens on data buffers when this function is used */ 3148 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3149 3150 block_invalidate_folio(folio, offset, length); 3151 } 3152 3153 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3154 size_t offset, size_t length) 3155 { 3156 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3157 3158 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3159 3160 /* 3161 * If it's a full truncate we just forget about the pending dirtying 3162 */ 3163 if (offset == 0 && length == folio_size(folio)) 3164 folio_clear_checked(folio); 3165 3166 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3167 } 3168 3169 /* Wrapper for aops... */ 3170 static void ext4_journalled_invalidate_folio(struct folio *folio, 3171 size_t offset, 3172 size_t length) 3173 { 3174 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3175 } 3176 3177 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3178 { 3179 struct inode *inode = folio->mapping->host; 3180 journal_t *journal = EXT4_JOURNAL(inode); 3181 3182 trace_ext4_release_folio(inode, folio); 3183 3184 /* Page has dirty journalled data -> cannot release */ 3185 if (folio_test_checked(folio)) 3186 return false; 3187 if (journal) 3188 return jbd2_journal_try_to_free_buffers(journal, folio); 3189 else 3190 return try_to_free_buffers(folio); 3191 } 3192 3193 static bool ext4_inode_datasync_dirty(struct inode *inode) 3194 { 3195 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3196 3197 if (journal) { 3198 if (jbd2_transaction_committed(journal, 3199 EXT4_I(inode)->i_datasync_tid)) 3200 return false; 3201 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3202 return !list_empty(&EXT4_I(inode)->i_fc_list); 3203 return true; 3204 } 3205 3206 /* Any metadata buffers to write? */ 3207 if (!list_empty(&inode->i_mapping->private_list)) 3208 return true; 3209 return inode->i_state & I_DIRTY_DATASYNC; 3210 } 3211 3212 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3213 struct ext4_map_blocks *map, loff_t offset, 3214 loff_t length, unsigned int flags) 3215 { 3216 u8 blkbits = inode->i_blkbits; 3217 3218 /* 3219 * Writes that span EOF might trigger an I/O size update on completion, 3220 * so consider them to be dirty for the purpose of O_DSYNC, even if 3221 * there is no other metadata changes being made or are pending. 3222 */ 3223 iomap->flags = 0; 3224 if (ext4_inode_datasync_dirty(inode) || 3225 offset + length > i_size_read(inode)) 3226 iomap->flags |= IOMAP_F_DIRTY; 3227 3228 if (map->m_flags & EXT4_MAP_NEW) 3229 iomap->flags |= IOMAP_F_NEW; 3230 3231 if (flags & IOMAP_DAX) 3232 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3233 else 3234 iomap->bdev = inode->i_sb->s_bdev; 3235 iomap->offset = (u64) map->m_lblk << blkbits; 3236 iomap->length = (u64) map->m_len << blkbits; 3237 3238 if ((map->m_flags & EXT4_MAP_MAPPED) && 3239 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3240 iomap->flags |= IOMAP_F_MERGED; 3241 3242 /* 3243 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3244 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3245 * set. In order for any allocated unwritten extents to be converted 3246 * into written extents correctly within the ->end_io() handler, we 3247 * need to ensure that the iomap->type is set appropriately. Hence, the 3248 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3249 * been set first. 3250 */ 3251 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3252 iomap->type = IOMAP_UNWRITTEN; 3253 iomap->addr = (u64) map->m_pblk << blkbits; 3254 if (flags & IOMAP_DAX) 3255 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3256 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3257 iomap->type = IOMAP_MAPPED; 3258 iomap->addr = (u64) map->m_pblk << blkbits; 3259 if (flags & IOMAP_DAX) 3260 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3261 } else { 3262 iomap->type = IOMAP_HOLE; 3263 iomap->addr = IOMAP_NULL_ADDR; 3264 } 3265 } 3266 3267 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3268 unsigned int flags) 3269 { 3270 handle_t *handle; 3271 u8 blkbits = inode->i_blkbits; 3272 int ret, dio_credits, m_flags = 0, retries = 0; 3273 3274 /* 3275 * Trim the mapping request to the maximum value that we can map at 3276 * once for direct I/O. 3277 */ 3278 if (map->m_len > DIO_MAX_BLOCKS) 3279 map->m_len = DIO_MAX_BLOCKS; 3280 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3281 3282 retry: 3283 /* 3284 * Either we allocate blocks and then don't get an unwritten extent, so 3285 * in that case we have reserved enough credits. Or, the blocks are 3286 * already allocated and unwritten. In that case, the extent conversion 3287 * fits into the credits as well. 3288 */ 3289 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3290 if (IS_ERR(handle)) 3291 return PTR_ERR(handle); 3292 3293 /* 3294 * DAX and direct I/O are the only two operations that are currently 3295 * supported with IOMAP_WRITE. 3296 */ 3297 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3298 if (flags & IOMAP_DAX) 3299 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3300 /* 3301 * We use i_size instead of i_disksize here because delalloc writeback 3302 * can complete at any point during the I/O and subsequently push the 3303 * i_disksize out to i_size. This could be beyond where direct I/O is 3304 * happening and thus expose allocated blocks to direct I/O reads. 3305 */ 3306 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3307 m_flags = EXT4_GET_BLOCKS_CREATE; 3308 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3309 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3310 3311 ret = ext4_map_blocks(handle, inode, map, m_flags); 3312 3313 /* 3314 * We cannot fill holes in indirect tree based inodes as that could 3315 * expose stale data in the case of a crash. Use the magic error code 3316 * to fallback to buffered I/O. 3317 */ 3318 if (!m_flags && !ret) 3319 ret = -ENOTBLK; 3320 3321 ext4_journal_stop(handle); 3322 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3323 goto retry; 3324 3325 return ret; 3326 } 3327 3328 3329 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3330 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3331 { 3332 int ret; 3333 struct ext4_map_blocks map; 3334 u8 blkbits = inode->i_blkbits; 3335 3336 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3337 return -EINVAL; 3338 3339 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3340 return -ERANGE; 3341 3342 /* 3343 * Calculate the first and last logical blocks respectively. 3344 */ 3345 map.m_lblk = offset >> blkbits; 3346 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3347 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3348 3349 if (flags & IOMAP_WRITE) { 3350 /* 3351 * We check here if the blocks are already allocated, then we 3352 * don't need to start a journal txn and we can directly return 3353 * the mapping information. This could boost performance 3354 * especially in multi-threaded overwrite requests. 3355 */ 3356 if (offset + length <= i_size_read(inode)) { 3357 ret = ext4_map_blocks(NULL, inode, &map, 0); 3358 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3359 goto out; 3360 } 3361 ret = ext4_iomap_alloc(inode, &map, flags); 3362 } else { 3363 ret = ext4_map_blocks(NULL, inode, &map, 0); 3364 } 3365 3366 if (ret < 0) 3367 return ret; 3368 out: 3369 /* 3370 * When inline encryption is enabled, sometimes I/O to an encrypted file 3371 * has to be broken up to guarantee DUN contiguity. Handle this by 3372 * limiting the length of the mapping returned. 3373 */ 3374 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3375 3376 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3377 3378 return 0; 3379 } 3380 3381 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3382 loff_t length, unsigned flags, struct iomap *iomap, 3383 struct iomap *srcmap) 3384 { 3385 int ret; 3386 3387 /* 3388 * Even for writes we don't need to allocate blocks, so just pretend 3389 * we are reading to save overhead of starting a transaction. 3390 */ 3391 flags &= ~IOMAP_WRITE; 3392 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3393 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3394 return ret; 3395 } 3396 3397 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3398 ssize_t written, unsigned flags, struct iomap *iomap) 3399 { 3400 /* 3401 * Check to see whether an error occurred while writing out the data to 3402 * the allocated blocks. If so, return the magic error code so that we 3403 * fallback to buffered I/O and attempt to complete the remainder of 3404 * the I/O. Any blocks that may have been allocated in preparation for 3405 * the direct I/O will be reused during buffered I/O. 3406 */ 3407 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3408 return -ENOTBLK; 3409 3410 return 0; 3411 } 3412 3413 const struct iomap_ops ext4_iomap_ops = { 3414 .iomap_begin = ext4_iomap_begin, 3415 .iomap_end = ext4_iomap_end, 3416 }; 3417 3418 const struct iomap_ops ext4_iomap_overwrite_ops = { 3419 .iomap_begin = ext4_iomap_overwrite_begin, 3420 .iomap_end = ext4_iomap_end, 3421 }; 3422 3423 static bool ext4_iomap_is_delalloc(struct inode *inode, 3424 struct ext4_map_blocks *map) 3425 { 3426 struct extent_status es; 3427 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3428 3429 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3430 map->m_lblk, end, &es); 3431 3432 if (!es.es_len || es.es_lblk > end) 3433 return false; 3434 3435 if (es.es_lblk > map->m_lblk) { 3436 map->m_len = es.es_lblk - map->m_lblk; 3437 return false; 3438 } 3439 3440 offset = map->m_lblk - es.es_lblk; 3441 map->m_len = es.es_len - offset; 3442 3443 return true; 3444 } 3445 3446 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3447 loff_t length, unsigned int flags, 3448 struct iomap *iomap, struct iomap *srcmap) 3449 { 3450 int ret; 3451 bool delalloc = false; 3452 struct ext4_map_blocks map; 3453 u8 blkbits = inode->i_blkbits; 3454 3455 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3456 return -EINVAL; 3457 3458 if (ext4_has_inline_data(inode)) { 3459 ret = ext4_inline_data_iomap(inode, iomap); 3460 if (ret != -EAGAIN) { 3461 if (ret == 0 && offset >= iomap->length) 3462 ret = -ENOENT; 3463 return ret; 3464 } 3465 } 3466 3467 /* 3468 * Calculate the first and last logical block respectively. 3469 */ 3470 map.m_lblk = offset >> blkbits; 3471 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3472 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3473 3474 /* 3475 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3476 * So handle it here itself instead of querying ext4_map_blocks(). 3477 * Since ext4_map_blocks() will warn about it and will return 3478 * -EIO error. 3479 */ 3480 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3481 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3482 3483 if (offset >= sbi->s_bitmap_maxbytes) { 3484 map.m_flags = 0; 3485 goto set_iomap; 3486 } 3487 } 3488 3489 ret = ext4_map_blocks(NULL, inode, &map, 0); 3490 if (ret < 0) 3491 return ret; 3492 if (ret == 0) 3493 delalloc = ext4_iomap_is_delalloc(inode, &map); 3494 3495 set_iomap: 3496 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3497 if (delalloc && iomap->type == IOMAP_HOLE) 3498 iomap->type = IOMAP_DELALLOC; 3499 3500 return 0; 3501 } 3502 3503 const struct iomap_ops ext4_iomap_report_ops = { 3504 .iomap_begin = ext4_iomap_begin_report, 3505 }; 3506 3507 /* 3508 * For data=journal mode, folio should be marked dirty only when it was 3509 * writeably mapped. When that happens, it was already attached to the 3510 * transaction and marked as jbddirty (we take care of this in 3511 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3512 * so we should have nothing to do here, except for the case when someone 3513 * had the page pinned and dirtied the page through this pin (e.g. by doing 3514 * direct IO to it). In that case we'd need to attach buffers here to the 3515 * transaction but we cannot due to lock ordering. We cannot just dirty the 3516 * folio and leave attached buffers clean, because the buffers' dirty state is 3517 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3518 * the journalling code will explode. So what we do is to mark the folio 3519 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3520 * to the transaction appropriately. 3521 */ 3522 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3523 struct folio *folio) 3524 { 3525 WARN_ON_ONCE(!folio_buffers(folio)); 3526 if (folio_maybe_dma_pinned(folio)) 3527 folio_set_checked(folio); 3528 return filemap_dirty_folio(mapping, folio); 3529 } 3530 3531 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3532 { 3533 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3534 WARN_ON_ONCE(!folio_buffers(folio)); 3535 return block_dirty_folio(mapping, folio); 3536 } 3537 3538 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3539 struct file *file, sector_t *span) 3540 { 3541 return iomap_swapfile_activate(sis, file, span, 3542 &ext4_iomap_report_ops); 3543 } 3544 3545 static const struct address_space_operations ext4_aops = { 3546 .read_folio = ext4_read_folio, 3547 .readahead = ext4_readahead, 3548 .writepages = ext4_writepages, 3549 .write_begin = ext4_write_begin, 3550 .write_end = ext4_write_end, 3551 .dirty_folio = ext4_dirty_folio, 3552 .bmap = ext4_bmap, 3553 .invalidate_folio = ext4_invalidate_folio, 3554 .release_folio = ext4_release_folio, 3555 .direct_IO = noop_direct_IO, 3556 .migrate_folio = buffer_migrate_folio, 3557 .is_partially_uptodate = block_is_partially_uptodate, 3558 .error_remove_page = generic_error_remove_page, 3559 .swap_activate = ext4_iomap_swap_activate, 3560 }; 3561 3562 static const struct address_space_operations ext4_journalled_aops = { 3563 .read_folio = ext4_read_folio, 3564 .readahead = ext4_readahead, 3565 .writepages = ext4_writepages, 3566 .write_begin = ext4_write_begin, 3567 .write_end = ext4_journalled_write_end, 3568 .dirty_folio = ext4_journalled_dirty_folio, 3569 .bmap = ext4_bmap, 3570 .invalidate_folio = ext4_journalled_invalidate_folio, 3571 .release_folio = ext4_release_folio, 3572 .direct_IO = noop_direct_IO, 3573 .migrate_folio = buffer_migrate_folio_norefs, 3574 .is_partially_uptodate = block_is_partially_uptodate, 3575 .error_remove_page = generic_error_remove_page, 3576 .swap_activate = ext4_iomap_swap_activate, 3577 }; 3578 3579 static const struct address_space_operations ext4_da_aops = { 3580 .read_folio = ext4_read_folio, 3581 .readahead = ext4_readahead, 3582 .writepages = ext4_writepages, 3583 .write_begin = ext4_da_write_begin, 3584 .write_end = ext4_da_write_end, 3585 .dirty_folio = ext4_dirty_folio, 3586 .bmap = ext4_bmap, 3587 .invalidate_folio = ext4_invalidate_folio, 3588 .release_folio = ext4_release_folio, 3589 .direct_IO = noop_direct_IO, 3590 .migrate_folio = buffer_migrate_folio, 3591 .is_partially_uptodate = block_is_partially_uptodate, 3592 .error_remove_page = generic_error_remove_page, 3593 .swap_activate = ext4_iomap_swap_activate, 3594 }; 3595 3596 static const struct address_space_operations ext4_dax_aops = { 3597 .writepages = ext4_dax_writepages, 3598 .direct_IO = noop_direct_IO, 3599 .dirty_folio = noop_dirty_folio, 3600 .bmap = ext4_bmap, 3601 .swap_activate = ext4_iomap_swap_activate, 3602 }; 3603 3604 void ext4_set_aops(struct inode *inode) 3605 { 3606 switch (ext4_inode_journal_mode(inode)) { 3607 case EXT4_INODE_ORDERED_DATA_MODE: 3608 case EXT4_INODE_WRITEBACK_DATA_MODE: 3609 break; 3610 case EXT4_INODE_JOURNAL_DATA_MODE: 3611 inode->i_mapping->a_ops = &ext4_journalled_aops; 3612 return; 3613 default: 3614 BUG(); 3615 } 3616 if (IS_DAX(inode)) 3617 inode->i_mapping->a_ops = &ext4_dax_aops; 3618 else if (test_opt(inode->i_sb, DELALLOC)) 3619 inode->i_mapping->a_ops = &ext4_da_aops; 3620 else 3621 inode->i_mapping->a_ops = &ext4_aops; 3622 } 3623 3624 static int __ext4_block_zero_page_range(handle_t *handle, 3625 struct address_space *mapping, loff_t from, loff_t length) 3626 { 3627 ext4_fsblk_t index = from >> PAGE_SHIFT; 3628 unsigned offset = from & (PAGE_SIZE-1); 3629 unsigned blocksize, pos; 3630 ext4_lblk_t iblock; 3631 struct inode *inode = mapping->host; 3632 struct buffer_head *bh; 3633 struct folio *folio; 3634 int err = 0; 3635 3636 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3637 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3638 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3639 if (IS_ERR(folio)) 3640 return PTR_ERR(folio); 3641 3642 blocksize = inode->i_sb->s_blocksize; 3643 3644 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3645 3646 bh = folio_buffers(folio); 3647 if (!bh) { 3648 create_empty_buffers(&folio->page, blocksize, 0); 3649 bh = folio_buffers(folio); 3650 } 3651 3652 /* Find the buffer that contains "offset" */ 3653 pos = blocksize; 3654 while (offset >= pos) { 3655 bh = bh->b_this_page; 3656 iblock++; 3657 pos += blocksize; 3658 } 3659 if (buffer_freed(bh)) { 3660 BUFFER_TRACE(bh, "freed: skip"); 3661 goto unlock; 3662 } 3663 if (!buffer_mapped(bh)) { 3664 BUFFER_TRACE(bh, "unmapped"); 3665 ext4_get_block(inode, iblock, bh, 0); 3666 /* unmapped? It's a hole - nothing to do */ 3667 if (!buffer_mapped(bh)) { 3668 BUFFER_TRACE(bh, "still unmapped"); 3669 goto unlock; 3670 } 3671 } 3672 3673 /* Ok, it's mapped. Make sure it's up-to-date */ 3674 if (folio_test_uptodate(folio)) 3675 set_buffer_uptodate(bh); 3676 3677 if (!buffer_uptodate(bh)) { 3678 err = ext4_read_bh_lock(bh, 0, true); 3679 if (err) 3680 goto unlock; 3681 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3682 /* We expect the key to be set. */ 3683 BUG_ON(!fscrypt_has_encryption_key(inode)); 3684 err = fscrypt_decrypt_pagecache_blocks(folio, 3685 blocksize, 3686 bh_offset(bh)); 3687 if (err) { 3688 clear_buffer_uptodate(bh); 3689 goto unlock; 3690 } 3691 } 3692 } 3693 if (ext4_should_journal_data(inode)) { 3694 BUFFER_TRACE(bh, "get write access"); 3695 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3696 EXT4_JTR_NONE); 3697 if (err) 3698 goto unlock; 3699 } 3700 folio_zero_range(folio, offset, length); 3701 BUFFER_TRACE(bh, "zeroed end of block"); 3702 3703 if (ext4_should_journal_data(inode)) { 3704 err = ext4_dirty_journalled_data(handle, bh); 3705 } else { 3706 err = 0; 3707 mark_buffer_dirty(bh); 3708 if (ext4_should_order_data(inode)) 3709 err = ext4_jbd2_inode_add_write(handle, inode, from, 3710 length); 3711 } 3712 3713 unlock: 3714 folio_unlock(folio); 3715 folio_put(folio); 3716 return err; 3717 } 3718 3719 /* 3720 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3721 * starting from file offset 'from'. The range to be zero'd must 3722 * be contained with in one block. If the specified range exceeds 3723 * the end of the block it will be shortened to end of the block 3724 * that corresponds to 'from' 3725 */ 3726 static int ext4_block_zero_page_range(handle_t *handle, 3727 struct address_space *mapping, loff_t from, loff_t length) 3728 { 3729 struct inode *inode = mapping->host; 3730 unsigned offset = from & (PAGE_SIZE-1); 3731 unsigned blocksize = inode->i_sb->s_blocksize; 3732 unsigned max = blocksize - (offset & (blocksize - 1)); 3733 3734 /* 3735 * correct length if it does not fall between 3736 * 'from' and the end of the block 3737 */ 3738 if (length > max || length < 0) 3739 length = max; 3740 3741 if (IS_DAX(inode)) { 3742 return dax_zero_range(inode, from, length, NULL, 3743 &ext4_iomap_ops); 3744 } 3745 return __ext4_block_zero_page_range(handle, mapping, from, length); 3746 } 3747 3748 /* 3749 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3750 * up to the end of the block which corresponds to `from'. 3751 * This required during truncate. We need to physically zero the tail end 3752 * of that block so it doesn't yield old data if the file is later grown. 3753 */ 3754 static int ext4_block_truncate_page(handle_t *handle, 3755 struct address_space *mapping, loff_t from) 3756 { 3757 unsigned offset = from & (PAGE_SIZE-1); 3758 unsigned length; 3759 unsigned blocksize; 3760 struct inode *inode = mapping->host; 3761 3762 /* If we are processing an encrypted inode during orphan list handling */ 3763 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3764 return 0; 3765 3766 blocksize = inode->i_sb->s_blocksize; 3767 length = blocksize - (offset & (blocksize - 1)); 3768 3769 return ext4_block_zero_page_range(handle, mapping, from, length); 3770 } 3771 3772 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3773 loff_t lstart, loff_t length) 3774 { 3775 struct super_block *sb = inode->i_sb; 3776 struct address_space *mapping = inode->i_mapping; 3777 unsigned partial_start, partial_end; 3778 ext4_fsblk_t start, end; 3779 loff_t byte_end = (lstart + length - 1); 3780 int err = 0; 3781 3782 partial_start = lstart & (sb->s_blocksize - 1); 3783 partial_end = byte_end & (sb->s_blocksize - 1); 3784 3785 start = lstart >> sb->s_blocksize_bits; 3786 end = byte_end >> sb->s_blocksize_bits; 3787 3788 /* Handle partial zero within the single block */ 3789 if (start == end && 3790 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3791 err = ext4_block_zero_page_range(handle, mapping, 3792 lstart, length); 3793 return err; 3794 } 3795 /* Handle partial zero out on the start of the range */ 3796 if (partial_start) { 3797 err = ext4_block_zero_page_range(handle, mapping, 3798 lstart, sb->s_blocksize); 3799 if (err) 3800 return err; 3801 } 3802 /* Handle partial zero out on the end of the range */ 3803 if (partial_end != sb->s_blocksize - 1) 3804 err = ext4_block_zero_page_range(handle, mapping, 3805 byte_end - partial_end, 3806 partial_end + 1); 3807 return err; 3808 } 3809 3810 int ext4_can_truncate(struct inode *inode) 3811 { 3812 if (S_ISREG(inode->i_mode)) 3813 return 1; 3814 if (S_ISDIR(inode->i_mode)) 3815 return 1; 3816 if (S_ISLNK(inode->i_mode)) 3817 return !ext4_inode_is_fast_symlink(inode); 3818 return 0; 3819 } 3820 3821 /* 3822 * We have to make sure i_disksize gets properly updated before we truncate 3823 * page cache due to hole punching or zero range. Otherwise i_disksize update 3824 * can get lost as it may have been postponed to submission of writeback but 3825 * that will never happen after we truncate page cache. 3826 */ 3827 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3828 loff_t len) 3829 { 3830 handle_t *handle; 3831 int ret; 3832 3833 loff_t size = i_size_read(inode); 3834 3835 WARN_ON(!inode_is_locked(inode)); 3836 if (offset > size || offset + len < size) 3837 return 0; 3838 3839 if (EXT4_I(inode)->i_disksize >= size) 3840 return 0; 3841 3842 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3843 if (IS_ERR(handle)) 3844 return PTR_ERR(handle); 3845 ext4_update_i_disksize(inode, size); 3846 ret = ext4_mark_inode_dirty(handle, inode); 3847 ext4_journal_stop(handle); 3848 3849 return ret; 3850 } 3851 3852 static void ext4_wait_dax_page(struct inode *inode) 3853 { 3854 filemap_invalidate_unlock(inode->i_mapping); 3855 schedule(); 3856 filemap_invalidate_lock(inode->i_mapping); 3857 } 3858 3859 int ext4_break_layouts(struct inode *inode) 3860 { 3861 struct page *page; 3862 int error; 3863 3864 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3865 return -EINVAL; 3866 3867 do { 3868 page = dax_layout_busy_page(inode->i_mapping); 3869 if (!page) 3870 return 0; 3871 3872 error = ___wait_var_event(&page->_refcount, 3873 atomic_read(&page->_refcount) == 1, 3874 TASK_INTERRUPTIBLE, 0, 0, 3875 ext4_wait_dax_page(inode)); 3876 } while (error == 0); 3877 3878 return error; 3879 } 3880 3881 /* 3882 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3883 * associated with the given offset and length 3884 * 3885 * @inode: File inode 3886 * @offset: The offset where the hole will begin 3887 * @len: The length of the hole 3888 * 3889 * Returns: 0 on success or negative on failure 3890 */ 3891 3892 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3893 { 3894 struct inode *inode = file_inode(file); 3895 struct super_block *sb = inode->i_sb; 3896 ext4_lblk_t first_block, stop_block; 3897 struct address_space *mapping = inode->i_mapping; 3898 loff_t first_block_offset, last_block_offset, max_length; 3899 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3900 handle_t *handle; 3901 unsigned int credits; 3902 int ret = 0, ret2 = 0; 3903 3904 trace_ext4_punch_hole(inode, offset, length, 0); 3905 3906 /* 3907 * Write out all dirty pages to avoid race conditions 3908 * Then release them. 3909 */ 3910 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3911 ret = filemap_write_and_wait_range(mapping, offset, 3912 offset + length - 1); 3913 if (ret) 3914 return ret; 3915 } 3916 3917 inode_lock(inode); 3918 3919 /* No need to punch hole beyond i_size */ 3920 if (offset >= inode->i_size) 3921 goto out_mutex; 3922 3923 /* 3924 * If the hole extends beyond i_size, set the hole 3925 * to end after the page that contains i_size 3926 */ 3927 if (offset + length > inode->i_size) { 3928 length = inode->i_size + 3929 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3930 offset; 3931 } 3932 3933 /* 3934 * For punch hole the length + offset needs to be within one block 3935 * before last range. Adjust the length if it goes beyond that limit. 3936 */ 3937 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3938 if (offset + length > max_length) 3939 length = max_length - offset; 3940 3941 if (offset & (sb->s_blocksize - 1) || 3942 (offset + length) & (sb->s_blocksize - 1)) { 3943 /* 3944 * Attach jinode to inode for jbd2 if we do any zeroing of 3945 * partial block 3946 */ 3947 ret = ext4_inode_attach_jinode(inode); 3948 if (ret < 0) 3949 goto out_mutex; 3950 3951 } 3952 3953 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3954 inode_dio_wait(inode); 3955 3956 ret = file_modified(file); 3957 if (ret) 3958 goto out_mutex; 3959 3960 /* 3961 * Prevent page faults from reinstantiating pages we have released from 3962 * page cache. 3963 */ 3964 filemap_invalidate_lock(mapping); 3965 3966 ret = ext4_break_layouts(inode); 3967 if (ret) 3968 goto out_dio; 3969 3970 first_block_offset = round_up(offset, sb->s_blocksize); 3971 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3972 3973 /* Now release the pages and zero block aligned part of pages*/ 3974 if (last_block_offset > first_block_offset) { 3975 ret = ext4_update_disksize_before_punch(inode, offset, length); 3976 if (ret) 3977 goto out_dio; 3978 truncate_pagecache_range(inode, first_block_offset, 3979 last_block_offset); 3980 } 3981 3982 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3983 credits = ext4_writepage_trans_blocks(inode); 3984 else 3985 credits = ext4_blocks_for_truncate(inode); 3986 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3987 if (IS_ERR(handle)) { 3988 ret = PTR_ERR(handle); 3989 ext4_std_error(sb, ret); 3990 goto out_dio; 3991 } 3992 3993 ret = ext4_zero_partial_blocks(handle, inode, offset, 3994 length); 3995 if (ret) 3996 goto out_stop; 3997 3998 first_block = (offset + sb->s_blocksize - 1) >> 3999 EXT4_BLOCK_SIZE_BITS(sb); 4000 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4001 4002 /* If there are blocks to remove, do it */ 4003 if (stop_block > first_block) { 4004 4005 down_write(&EXT4_I(inode)->i_data_sem); 4006 ext4_discard_preallocations(inode, 0); 4007 4008 ext4_es_remove_extent(inode, first_block, 4009 stop_block - first_block); 4010 4011 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4012 ret = ext4_ext_remove_space(inode, first_block, 4013 stop_block - 1); 4014 else 4015 ret = ext4_ind_remove_space(handle, inode, first_block, 4016 stop_block); 4017 4018 up_write(&EXT4_I(inode)->i_data_sem); 4019 } 4020 ext4_fc_track_range(handle, inode, first_block, stop_block); 4021 if (IS_SYNC(inode)) 4022 ext4_handle_sync(handle); 4023 4024 inode->i_mtime = inode_set_ctime_current(inode); 4025 ret2 = ext4_mark_inode_dirty(handle, inode); 4026 if (unlikely(ret2)) 4027 ret = ret2; 4028 if (ret >= 0) 4029 ext4_update_inode_fsync_trans(handle, inode, 1); 4030 out_stop: 4031 ext4_journal_stop(handle); 4032 out_dio: 4033 filemap_invalidate_unlock(mapping); 4034 out_mutex: 4035 inode_unlock(inode); 4036 return ret; 4037 } 4038 4039 int ext4_inode_attach_jinode(struct inode *inode) 4040 { 4041 struct ext4_inode_info *ei = EXT4_I(inode); 4042 struct jbd2_inode *jinode; 4043 4044 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4045 return 0; 4046 4047 jinode = jbd2_alloc_inode(GFP_KERNEL); 4048 spin_lock(&inode->i_lock); 4049 if (!ei->jinode) { 4050 if (!jinode) { 4051 spin_unlock(&inode->i_lock); 4052 return -ENOMEM; 4053 } 4054 ei->jinode = jinode; 4055 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4056 jinode = NULL; 4057 } 4058 spin_unlock(&inode->i_lock); 4059 if (unlikely(jinode != NULL)) 4060 jbd2_free_inode(jinode); 4061 return 0; 4062 } 4063 4064 /* 4065 * ext4_truncate() 4066 * 4067 * We block out ext4_get_block() block instantiations across the entire 4068 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4069 * simultaneously on behalf of the same inode. 4070 * 4071 * As we work through the truncate and commit bits of it to the journal there 4072 * is one core, guiding principle: the file's tree must always be consistent on 4073 * disk. We must be able to restart the truncate after a crash. 4074 * 4075 * The file's tree may be transiently inconsistent in memory (although it 4076 * probably isn't), but whenever we close off and commit a journal transaction, 4077 * the contents of (the filesystem + the journal) must be consistent and 4078 * restartable. It's pretty simple, really: bottom up, right to left (although 4079 * left-to-right works OK too). 4080 * 4081 * Note that at recovery time, journal replay occurs *before* the restart of 4082 * truncate against the orphan inode list. 4083 * 4084 * The committed inode has the new, desired i_size (which is the same as 4085 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4086 * that this inode's truncate did not complete and it will again call 4087 * ext4_truncate() to have another go. So there will be instantiated blocks 4088 * to the right of the truncation point in a crashed ext4 filesystem. But 4089 * that's fine - as long as they are linked from the inode, the post-crash 4090 * ext4_truncate() run will find them and release them. 4091 */ 4092 int ext4_truncate(struct inode *inode) 4093 { 4094 struct ext4_inode_info *ei = EXT4_I(inode); 4095 unsigned int credits; 4096 int err = 0, err2; 4097 handle_t *handle; 4098 struct address_space *mapping = inode->i_mapping; 4099 4100 /* 4101 * There is a possibility that we're either freeing the inode 4102 * or it's a completely new inode. In those cases we might not 4103 * have i_rwsem locked because it's not necessary. 4104 */ 4105 if (!(inode->i_state & (I_NEW|I_FREEING))) 4106 WARN_ON(!inode_is_locked(inode)); 4107 trace_ext4_truncate_enter(inode); 4108 4109 if (!ext4_can_truncate(inode)) 4110 goto out_trace; 4111 4112 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4113 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4114 4115 if (ext4_has_inline_data(inode)) { 4116 int has_inline = 1; 4117 4118 err = ext4_inline_data_truncate(inode, &has_inline); 4119 if (err || has_inline) 4120 goto out_trace; 4121 } 4122 4123 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4124 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4125 err = ext4_inode_attach_jinode(inode); 4126 if (err) 4127 goto out_trace; 4128 } 4129 4130 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4131 credits = ext4_writepage_trans_blocks(inode); 4132 else 4133 credits = ext4_blocks_for_truncate(inode); 4134 4135 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4136 if (IS_ERR(handle)) { 4137 err = PTR_ERR(handle); 4138 goto out_trace; 4139 } 4140 4141 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4142 ext4_block_truncate_page(handle, mapping, inode->i_size); 4143 4144 /* 4145 * We add the inode to the orphan list, so that if this 4146 * truncate spans multiple transactions, and we crash, we will 4147 * resume the truncate when the filesystem recovers. It also 4148 * marks the inode dirty, to catch the new size. 4149 * 4150 * Implication: the file must always be in a sane, consistent 4151 * truncatable state while each transaction commits. 4152 */ 4153 err = ext4_orphan_add(handle, inode); 4154 if (err) 4155 goto out_stop; 4156 4157 down_write(&EXT4_I(inode)->i_data_sem); 4158 4159 ext4_discard_preallocations(inode, 0); 4160 4161 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4162 err = ext4_ext_truncate(handle, inode); 4163 else 4164 ext4_ind_truncate(handle, inode); 4165 4166 up_write(&ei->i_data_sem); 4167 if (err) 4168 goto out_stop; 4169 4170 if (IS_SYNC(inode)) 4171 ext4_handle_sync(handle); 4172 4173 out_stop: 4174 /* 4175 * If this was a simple ftruncate() and the file will remain alive, 4176 * then we need to clear up the orphan record which we created above. 4177 * However, if this was a real unlink then we were called by 4178 * ext4_evict_inode(), and we allow that function to clean up the 4179 * orphan info for us. 4180 */ 4181 if (inode->i_nlink) 4182 ext4_orphan_del(handle, inode); 4183 4184 inode->i_mtime = inode_set_ctime_current(inode); 4185 err2 = ext4_mark_inode_dirty(handle, inode); 4186 if (unlikely(err2 && !err)) 4187 err = err2; 4188 ext4_journal_stop(handle); 4189 4190 out_trace: 4191 trace_ext4_truncate_exit(inode); 4192 return err; 4193 } 4194 4195 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4196 { 4197 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4198 return inode_peek_iversion_raw(inode); 4199 else 4200 return inode_peek_iversion(inode); 4201 } 4202 4203 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4204 struct ext4_inode_info *ei) 4205 { 4206 struct inode *inode = &(ei->vfs_inode); 4207 u64 i_blocks = READ_ONCE(inode->i_blocks); 4208 struct super_block *sb = inode->i_sb; 4209 4210 if (i_blocks <= ~0U) { 4211 /* 4212 * i_blocks can be represented in a 32 bit variable 4213 * as multiple of 512 bytes 4214 */ 4215 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4216 raw_inode->i_blocks_high = 0; 4217 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4218 return 0; 4219 } 4220 4221 /* 4222 * This should never happen since sb->s_maxbytes should not have 4223 * allowed this, sb->s_maxbytes was set according to the huge_file 4224 * feature in ext4_fill_super(). 4225 */ 4226 if (!ext4_has_feature_huge_file(sb)) 4227 return -EFSCORRUPTED; 4228 4229 if (i_blocks <= 0xffffffffffffULL) { 4230 /* 4231 * i_blocks can be represented in a 48 bit variable 4232 * as multiple of 512 bytes 4233 */ 4234 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4235 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4236 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4237 } else { 4238 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4239 /* i_block is stored in file system block size */ 4240 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4242 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4243 } 4244 return 0; 4245 } 4246 4247 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4248 { 4249 struct ext4_inode_info *ei = EXT4_I(inode); 4250 uid_t i_uid; 4251 gid_t i_gid; 4252 projid_t i_projid; 4253 int block; 4254 int err; 4255 4256 err = ext4_inode_blocks_set(raw_inode, ei); 4257 4258 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4259 i_uid = i_uid_read(inode); 4260 i_gid = i_gid_read(inode); 4261 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4262 if (!(test_opt(inode->i_sb, NO_UID32))) { 4263 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4264 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4265 /* 4266 * Fix up interoperability with old kernels. Otherwise, 4267 * old inodes get re-used with the upper 16 bits of the 4268 * uid/gid intact. 4269 */ 4270 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4271 raw_inode->i_uid_high = 0; 4272 raw_inode->i_gid_high = 0; 4273 } else { 4274 raw_inode->i_uid_high = 4275 cpu_to_le16(high_16_bits(i_uid)); 4276 raw_inode->i_gid_high = 4277 cpu_to_le16(high_16_bits(i_gid)); 4278 } 4279 } else { 4280 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4281 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4282 raw_inode->i_uid_high = 0; 4283 raw_inode->i_gid_high = 0; 4284 } 4285 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4286 4287 EXT4_INODE_SET_CTIME(inode, raw_inode); 4288 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4289 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4290 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4291 4292 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4293 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4294 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4295 raw_inode->i_file_acl_high = 4296 cpu_to_le16(ei->i_file_acl >> 32); 4297 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4298 ext4_isize_set(raw_inode, ei->i_disksize); 4299 4300 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4301 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4302 if (old_valid_dev(inode->i_rdev)) { 4303 raw_inode->i_block[0] = 4304 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4305 raw_inode->i_block[1] = 0; 4306 } else { 4307 raw_inode->i_block[0] = 0; 4308 raw_inode->i_block[1] = 4309 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4310 raw_inode->i_block[2] = 0; 4311 } 4312 } else if (!ext4_has_inline_data(inode)) { 4313 for (block = 0; block < EXT4_N_BLOCKS; block++) 4314 raw_inode->i_block[block] = ei->i_data[block]; 4315 } 4316 4317 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4318 u64 ivers = ext4_inode_peek_iversion(inode); 4319 4320 raw_inode->i_disk_version = cpu_to_le32(ivers); 4321 if (ei->i_extra_isize) { 4322 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4323 raw_inode->i_version_hi = 4324 cpu_to_le32(ivers >> 32); 4325 raw_inode->i_extra_isize = 4326 cpu_to_le16(ei->i_extra_isize); 4327 } 4328 } 4329 4330 if (i_projid != EXT4_DEF_PROJID && 4331 !ext4_has_feature_project(inode->i_sb)) 4332 err = err ?: -EFSCORRUPTED; 4333 4334 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4335 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4336 raw_inode->i_projid = cpu_to_le32(i_projid); 4337 4338 ext4_inode_csum_set(inode, raw_inode, ei); 4339 return err; 4340 } 4341 4342 /* 4343 * ext4_get_inode_loc returns with an extra refcount against the inode's 4344 * underlying buffer_head on success. If we pass 'inode' and it does not 4345 * have in-inode xattr, we have all inode data in memory that is needed 4346 * to recreate the on-disk version of this inode. 4347 */ 4348 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4349 struct inode *inode, struct ext4_iloc *iloc, 4350 ext4_fsblk_t *ret_block) 4351 { 4352 struct ext4_group_desc *gdp; 4353 struct buffer_head *bh; 4354 ext4_fsblk_t block; 4355 struct blk_plug plug; 4356 int inodes_per_block, inode_offset; 4357 4358 iloc->bh = NULL; 4359 if (ino < EXT4_ROOT_INO || 4360 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4361 return -EFSCORRUPTED; 4362 4363 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4364 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4365 if (!gdp) 4366 return -EIO; 4367 4368 /* 4369 * Figure out the offset within the block group inode table 4370 */ 4371 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4372 inode_offset = ((ino - 1) % 4373 EXT4_INODES_PER_GROUP(sb)); 4374 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4375 4376 block = ext4_inode_table(sb, gdp); 4377 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4378 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4379 ext4_error(sb, "Invalid inode table block %llu in " 4380 "block_group %u", block, iloc->block_group); 4381 return -EFSCORRUPTED; 4382 } 4383 block += (inode_offset / inodes_per_block); 4384 4385 bh = sb_getblk(sb, block); 4386 if (unlikely(!bh)) 4387 return -ENOMEM; 4388 if (ext4_buffer_uptodate(bh)) 4389 goto has_buffer; 4390 4391 lock_buffer(bh); 4392 if (ext4_buffer_uptodate(bh)) { 4393 /* Someone brought it uptodate while we waited */ 4394 unlock_buffer(bh); 4395 goto has_buffer; 4396 } 4397 4398 /* 4399 * If we have all information of the inode in memory and this 4400 * is the only valid inode in the block, we need not read the 4401 * block. 4402 */ 4403 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4404 struct buffer_head *bitmap_bh; 4405 int i, start; 4406 4407 start = inode_offset & ~(inodes_per_block - 1); 4408 4409 /* Is the inode bitmap in cache? */ 4410 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4411 if (unlikely(!bitmap_bh)) 4412 goto make_io; 4413 4414 /* 4415 * If the inode bitmap isn't in cache then the 4416 * optimisation may end up performing two reads instead 4417 * of one, so skip it. 4418 */ 4419 if (!buffer_uptodate(bitmap_bh)) { 4420 brelse(bitmap_bh); 4421 goto make_io; 4422 } 4423 for (i = start; i < start + inodes_per_block; i++) { 4424 if (i == inode_offset) 4425 continue; 4426 if (ext4_test_bit(i, bitmap_bh->b_data)) 4427 break; 4428 } 4429 brelse(bitmap_bh); 4430 if (i == start + inodes_per_block) { 4431 struct ext4_inode *raw_inode = 4432 (struct ext4_inode *) (bh->b_data + iloc->offset); 4433 4434 /* all other inodes are free, so skip I/O */ 4435 memset(bh->b_data, 0, bh->b_size); 4436 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4437 ext4_fill_raw_inode(inode, raw_inode); 4438 set_buffer_uptodate(bh); 4439 unlock_buffer(bh); 4440 goto has_buffer; 4441 } 4442 } 4443 4444 make_io: 4445 /* 4446 * If we need to do any I/O, try to pre-readahead extra 4447 * blocks from the inode table. 4448 */ 4449 blk_start_plug(&plug); 4450 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4451 ext4_fsblk_t b, end, table; 4452 unsigned num; 4453 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4454 4455 table = ext4_inode_table(sb, gdp); 4456 /* s_inode_readahead_blks is always a power of 2 */ 4457 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4458 if (table > b) 4459 b = table; 4460 end = b + ra_blks; 4461 num = EXT4_INODES_PER_GROUP(sb); 4462 if (ext4_has_group_desc_csum(sb)) 4463 num -= ext4_itable_unused_count(sb, gdp); 4464 table += num / inodes_per_block; 4465 if (end > table) 4466 end = table; 4467 while (b <= end) 4468 ext4_sb_breadahead_unmovable(sb, b++); 4469 } 4470 4471 /* 4472 * There are other valid inodes in the buffer, this inode 4473 * has in-inode xattrs, or we don't have this inode in memory. 4474 * Read the block from disk. 4475 */ 4476 trace_ext4_load_inode(sb, ino); 4477 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4478 blk_finish_plug(&plug); 4479 wait_on_buffer(bh); 4480 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4481 if (!buffer_uptodate(bh)) { 4482 if (ret_block) 4483 *ret_block = block; 4484 brelse(bh); 4485 return -EIO; 4486 } 4487 has_buffer: 4488 iloc->bh = bh; 4489 return 0; 4490 } 4491 4492 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4493 struct ext4_iloc *iloc) 4494 { 4495 ext4_fsblk_t err_blk = 0; 4496 int ret; 4497 4498 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4499 &err_blk); 4500 4501 if (ret == -EIO) 4502 ext4_error_inode_block(inode, err_blk, EIO, 4503 "unable to read itable block"); 4504 4505 return ret; 4506 } 4507 4508 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4509 { 4510 ext4_fsblk_t err_blk = 0; 4511 int ret; 4512 4513 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4514 &err_blk); 4515 4516 if (ret == -EIO) 4517 ext4_error_inode_block(inode, err_blk, EIO, 4518 "unable to read itable block"); 4519 4520 return ret; 4521 } 4522 4523 4524 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4525 struct ext4_iloc *iloc) 4526 { 4527 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4528 } 4529 4530 static bool ext4_should_enable_dax(struct inode *inode) 4531 { 4532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4533 4534 if (test_opt2(inode->i_sb, DAX_NEVER)) 4535 return false; 4536 if (!S_ISREG(inode->i_mode)) 4537 return false; 4538 if (ext4_should_journal_data(inode)) 4539 return false; 4540 if (ext4_has_inline_data(inode)) 4541 return false; 4542 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4543 return false; 4544 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4545 return false; 4546 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4547 return false; 4548 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4549 return true; 4550 4551 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4552 } 4553 4554 void ext4_set_inode_flags(struct inode *inode, bool init) 4555 { 4556 unsigned int flags = EXT4_I(inode)->i_flags; 4557 unsigned int new_fl = 0; 4558 4559 WARN_ON_ONCE(IS_DAX(inode) && init); 4560 4561 if (flags & EXT4_SYNC_FL) 4562 new_fl |= S_SYNC; 4563 if (flags & EXT4_APPEND_FL) 4564 new_fl |= S_APPEND; 4565 if (flags & EXT4_IMMUTABLE_FL) 4566 new_fl |= S_IMMUTABLE; 4567 if (flags & EXT4_NOATIME_FL) 4568 new_fl |= S_NOATIME; 4569 if (flags & EXT4_DIRSYNC_FL) 4570 new_fl |= S_DIRSYNC; 4571 4572 /* Because of the way inode_set_flags() works we must preserve S_DAX 4573 * here if already set. */ 4574 new_fl |= (inode->i_flags & S_DAX); 4575 if (init && ext4_should_enable_dax(inode)) 4576 new_fl |= S_DAX; 4577 4578 if (flags & EXT4_ENCRYPT_FL) 4579 new_fl |= S_ENCRYPTED; 4580 if (flags & EXT4_CASEFOLD_FL) 4581 new_fl |= S_CASEFOLD; 4582 if (flags & EXT4_VERITY_FL) 4583 new_fl |= S_VERITY; 4584 inode_set_flags(inode, new_fl, 4585 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4586 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4587 } 4588 4589 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4590 struct ext4_inode_info *ei) 4591 { 4592 blkcnt_t i_blocks ; 4593 struct inode *inode = &(ei->vfs_inode); 4594 struct super_block *sb = inode->i_sb; 4595 4596 if (ext4_has_feature_huge_file(sb)) { 4597 /* we are using combined 48 bit field */ 4598 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4599 le32_to_cpu(raw_inode->i_blocks_lo); 4600 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4601 /* i_blocks represent file system block size */ 4602 return i_blocks << (inode->i_blkbits - 9); 4603 } else { 4604 return i_blocks; 4605 } 4606 } else { 4607 return le32_to_cpu(raw_inode->i_blocks_lo); 4608 } 4609 } 4610 4611 static inline int ext4_iget_extra_inode(struct inode *inode, 4612 struct ext4_inode *raw_inode, 4613 struct ext4_inode_info *ei) 4614 { 4615 __le32 *magic = (void *)raw_inode + 4616 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4617 4618 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4619 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4620 int err; 4621 4622 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4623 err = ext4_find_inline_data_nolock(inode); 4624 if (!err && ext4_has_inline_data(inode)) 4625 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4626 return err; 4627 } else 4628 EXT4_I(inode)->i_inline_off = 0; 4629 return 0; 4630 } 4631 4632 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4633 { 4634 if (!ext4_has_feature_project(inode->i_sb)) 4635 return -EOPNOTSUPP; 4636 *projid = EXT4_I(inode)->i_projid; 4637 return 0; 4638 } 4639 4640 /* 4641 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4642 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4643 * set. 4644 */ 4645 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4646 { 4647 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4648 inode_set_iversion_raw(inode, val); 4649 else 4650 inode_set_iversion_queried(inode, val); 4651 } 4652 4653 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4654 4655 { 4656 if (flags & EXT4_IGET_EA_INODE) { 4657 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4658 return "missing EA_INODE flag"; 4659 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4660 EXT4_I(inode)->i_file_acl) 4661 return "ea_inode with extended attributes"; 4662 } else { 4663 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4664 return "unexpected EA_INODE flag"; 4665 } 4666 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4667 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4668 return NULL; 4669 } 4670 4671 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4672 ext4_iget_flags flags, const char *function, 4673 unsigned int line) 4674 { 4675 struct ext4_iloc iloc; 4676 struct ext4_inode *raw_inode; 4677 struct ext4_inode_info *ei; 4678 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4679 struct inode *inode; 4680 const char *err_str; 4681 journal_t *journal = EXT4_SB(sb)->s_journal; 4682 long ret; 4683 loff_t size; 4684 int block; 4685 uid_t i_uid; 4686 gid_t i_gid; 4687 projid_t i_projid; 4688 4689 if ((!(flags & EXT4_IGET_SPECIAL) && 4690 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4691 ino == le32_to_cpu(es->s_usr_quota_inum) || 4692 ino == le32_to_cpu(es->s_grp_quota_inum) || 4693 ino == le32_to_cpu(es->s_prj_quota_inum) || 4694 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4695 (ino < EXT4_ROOT_INO) || 4696 (ino > le32_to_cpu(es->s_inodes_count))) { 4697 if (flags & EXT4_IGET_HANDLE) 4698 return ERR_PTR(-ESTALE); 4699 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4700 "inode #%lu: comm %s: iget: illegal inode #", 4701 ino, current->comm); 4702 return ERR_PTR(-EFSCORRUPTED); 4703 } 4704 4705 inode = iget_locked(sb, ino); 4706 if (!inode) 4707 return ERR_PTR(-ENOMEM); 4708 if (!(inode->i_state & I_NEW)) { 4709 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4710 ext4_error_inode(inode, function, line, 0, err_str); 4711 iput(inode); 4712 return ERR_PTR(-EFSCORRUPTED); 4713 } 4714 return inode; 4715 } 4716 4717 ei = EXT4_I(inode); 4718 iloc.bh = NULL; 4719 4720 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4721 if (ret < 0) 4722 goto bad_inode; 4723 raw_inode = ext4_raw_inode(&iloc); 4724 4725 if ((flags & EXT4_IGET_HANDLE) && 4726 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4727 ret = -ESTALE; 4728 goto bad_inode; 4729 } 4730 4731 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4732 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4733 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4734 EXT4_INODE_SIZE(inode->i_sb) || 4735 (ei->i_extra_isize & 3)) { 4736 ext4_error_inode(inode, function, line, 0, 4737 "iget: bad extra_isize %u " 4738 "(inode size %u)", 4739 ei->i_extra_isize, 4740 EXT4_INODE_SIZE(inode->i_sb)); 4741 ret = -EFSCORRUPTED; 4742 goto bad_inode; 4743 } 4744 } else 4745 ei->i_extra_isize = 0; 4746 4747 /* Precompute checksum seed for inode metadata */ 4748 if (ext4_has_metadata_csum(sb)) { 4749 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4750 __u32 csum; 4751 __le32 inum = cpu_to_le32(inode->i_ino); 4752 __le32 gen = raw_inode->i_generation; 4753 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4754 sizeof(inum)); 4755 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4756 sizeof(gen)); 4757 } 4758 4759 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4760 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4761 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4762 ext4_error_inode_err(inode, function, line, 0, 4763 EFSBADCRC, "iget: checksum invalid"); 4764 ret = -EFSBADCRC; 4765 goto bad_inode; 4766 } 4767 4768 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4769 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4770 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4771 if (ext4_has_feature_project(sb) && 4772 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4773 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4774 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4775 else 4776 i_projid = EXT4_DEF_PROJID; 4777 4778 if (!(test_opt(inode->i_sb, NO_UID32))) { 4779 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4780 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4781 } 4782 i_uid_write(inode, i_uid); 4783 i_gid_write(inode, i_gid); 4784 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4785 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4786 4787 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4788 ei->i_inline_off = 0; 4789 ei->i_dir_start_lookup = 0; 4790 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4791 /* We now have enough fields to check if the inode was active or not. 4792 * This is needed because nfsd might try to access dead inodes 4793 * the test is that same one that e2fsck uses 4794 * NeilBrown 1999oct15 4795 */ 4796 if (inode->i_nlink == 0) { 4797 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4798 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4799 ino != EXT4_BOOT_LOADER_INO) { 4800 /* this inode is deleted or unallocated */ 4801 if (flags & EXT4_IGET_SPECIAL) { 4802 ext4_error_inode(inode, function, line, 0, 4803 "iget: special inode unallocated"); 4804 ret = -EFSCORRUPTED; 4805 } else 4806 ret = -ESTALE; 4807 goto bad_inode; 4808 } 4809 /* The only unlinked inodes we let through here have 4810 * valid i_mode and are being read by the orphan 4811 * recovery code: that's fine, we're about to complete 4812 * the process of deleting those. 4813 * OR it is the EXT4_BOOT_LOADER_INO which is 4814 * not initialized on a new filesystem. */ 4815 } 4816 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4817 ext4_set_inode_flags(inode, true); 4818 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4819 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4820 if (ext4_has_feature_64bit(sb)) 4821 ei->i_file_acl |= 4822 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4823 inode->i_size = ext4_isize(sb, raw_inode); 4824 if ((size = i_size_read(inode)) < 0) { 4825 ext4_error_inode(inode, function, line, 0, 4826 "iget: bad i_size value: %lld", size); 4827 ret = -EFSCORRUPTED; 4828 goto bad_inode; 4829 } 4830 /* 4831 * If dir_index is not enabled but there's dir with INDEX flag set, 4832 * we'd normally treat htree data as empty space. But with metadata 4833 * checksumming that corrupts checksums so forbid that. 4834 */ 4835 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4836 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4837 ext4_error_inode(inode, function, line, 0, 4838 "iget: Dir with htree data on filesystem without dir_index feature."); 4839 ret = -EFSCORRUPTED; 4840 goto bad_inode; 4841 } 4842 ei->i_disksize = inode->i_size; 4843 #ifdef CONFIG_QUOTA 4844 ei->i_reserved_quota = 0; 4845 #endif 4846 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4847 ei->i_block_group = iloc.block_group; 4848 ei->i_last_alloc_group = ~0; 4849 /* 4850 * NOTE! The in-memory inode i_data array is in little-endian order 4851 * even on big-endian machines: we do NOT byteswap the block numbers! 4852 */ 4853 for (block = 0; block < EXT4_N_BLOCKS; block++) 4854 ei->i_data[block] = raw_inode->i_block[block]; 4855 INIT_LIST_HEAD(&ei->i_orphan); 4856 ext4_fc_init_inode(&ei->vfs_inode); 4857 4858 /* 4859 * Set transaction id's of transactions that have to be committed 4860 * to finish f[data]sync. We set them to currently running transaction 4861 * as we cannot be sure that the inode or some of its metadata isn't 4862 * part of the transaction - the inode could have been reclaimed and 4863 * now it is reread from disk. 4864 */ 4865 if (journal) { 4866 transaction_t *transaction; 4867 tid_t tid; 4868 4869 read_lock(&journal->j_state_lock); 4870 if (journal->j_running_transaction) 4871 transaction = journal->j_running_transaction; 4872 else 4873 transaction = journal->j_committing_transaction; 4874 if (transaction) 4875 tid = transaction->t_tid; 4876 else 4877 tid = journal->j_commit_sequence; 4878 read_unlock(&journal->j_state_lock); 4879 ei->i_sync_tid = tid; 4880 ei->i_datasync_tid = tid; 4881 } 4882 4883 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4884 if (ei->i_extra_isize == 0) { 4885 /* The extra space is currently unused. Use it. */ 4886 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4887 ei->i_extra_isize = sizeof(struct ext4_inode) - 4888 EXT4_GOOD_OLD_INODE_SIZE; 4889 } else { 4890 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4891 if (ret) 4892 goto bad_inode; 4893 } 4894 } 4895 4896 EXT4_INODE_GET_CTIME(inode, raw_inode); 4897 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4898 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4899 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4900 4901 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4902 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4903 4904 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4905 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4906 ivers |= 4907 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4908 } 4909 ext4_inode_set_iversion_queried(inode, ivers); 4910 } 4911 4912 ret = 0; 4913 if (ei->i_file_acl && 4914 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4915 ext4_error_inode(inode, function, line, 0, 4916 "iget: bad extended attribute block %llu", 4917 ei->i_file_acl); 4918 ret = -EFSCORRUPTED; 4919 goto bad_inode; 4920 } else if (!ext4_has_inline_data(inode)) { 4921 /* validate the block references in the inode */ 4922 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4923 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4924 (S_ISLNK(inode->i_mode) && 4925 !ext4_inode_is_fast_symlink(inode)))) { 4926 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4927 ret = ext4_ext_check_inode(inode); 4928 else 4929 ret = ext4_ind_check_inode(inode); 4930 } 4931 } 4932 if (ret) 4933 goto bad_inode; 4934 4935 if (S_ISREG(inode->i_mode)) { 4936 inode->i_op = &ext4_file_inode_operations; 4937 inode->i_fop = &ext4_file_operations; 4938 ext4_set_aops(inode); 4939 } else if (S_ISDIR(inode->i_mode)) { 4940 inode->i_op = &ext4_dir_inode_operations; 4941 inode->i_fop = &ext4_dir_operations; 4942 } else if (S_ISLNK(inode->i_mode)) { 4943 /* VFS does not allow setting these so must be corruption */ 4944 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4945 ext4_error_inode(inode, function, line, 0, 4946 "iget: immutable or append flags " 4947 "not allowed on symlinks"); 4948 ret = -EFSCORRUPTED; 4949 goto bad_inode; 4950 } 4951 if (IS_ENCRYPTED(inode)) { 4952 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4953 } else if (ext4_inode_is_fast_symlink(inode)) { 4954 inode->i_link = (char *)ei->i_data; 4955 inode->i_op = &ext4_fast_symlink_inode_operations; 4956 nd_terminate_link(ei->i_data, inode->i_size, 4957 sizeof(ei->i_data) - 1); 4958 } else { 4959 inode->i_op = &ext4_symlink_inode_operations; 4960 } 4961 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4962 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4963 inode->i_op = &ext4_special_inode_operations; 4964 if (raw_inode->i_block[0]) 4965 init_special_inode(inode, inode->i_mode, 4966 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4967 else 4968 init_special_inode(inode, inode->i_mode, 4969 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4970 } else if (ino == EXT4_BOOT_LOADER_INO) { 4971 make_bad_inode(inode); 4972 } else { 4973 ret = -EFSCORRUPTED; 4974 ext4_error_inode(inode, function, line, 0, 4975 "iget: bogus i_mode (%o)", inode->i_mode); 4976 goto bad_inode; 4977 } 4978 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4979 ext4_error_inode(inode, function, line, 0, 4980 "casefold flag without casefold feature"); 4981 ret = -EFSCORRUPTED; 4982 goto bad_inode; 4983 } 4984 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4985 ext4_error_inode(inode, function, line, 0, err_str); 4986 ret = -EFSCORRUPTED; 4987 goto bad_inode; 4988 } 4989 4990 brelse(iloc.bh); 4991 unlock_new_inode(inode); 4992 return inode; 4993 4994 bad_inode: 4995 brelse(iloc.bh); 4996 iget_failed(inode); 4997 return ERR_PTR(ret); 4998 } 4999 5000 static void __ext4_update_other_inode_time(struct super_block *sb, 5001 unsigned long orig_ino, 5002 unsigned long ino, 5003 struct ext4_inode *raw_inode) 5004 { 5005 struct inode *inode; 5006 5007 inode = find_inode_by_ino_rcu(sb, ino); 5008 if (!inode) 5009 return; 5010 5011 if (!inode_is_dirtytime_only(inode)) 5012 return; 5013 5014 spin_lock(&inode->i_lock); 5015 if (inode_is_dirtytime_only(inode)) { 5016 struct ext4_inode_info *ei = EXT4_I(inode); 5017 5018 inode->i_state &= ~I_DIRTY_TIME; 5019 spin_unlock(&inode->i_lock); 5020 5021 spin_lock(&ei->i_raw_lock); 5022 EXT4_INODE_SET_CTIME(inode, raw_inode); 5023 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5024 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5025 ext4_inode_csum_set(inode, raw_inode, ei); 5026 spin_unlock(&ei->i_raw_lock); 5027 trace_ext4_other_inode_update_time(inode, orig_ino); 5028 return; 5029 } 5030 spin_unlock(&inode->i_lock); 5031 } 5032 5033 /* 5034 * Opportunistically update the other time fields for other inodes in 5035 * the same inode table block. 5036 */ 5037 static void ext4_update_other_inodes_time(struct super_block *sb, 5038 unsigned long orig_ino, char *buf) 5039 { 5040 unsigned long ino; 5041 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5042 int inode_size = EXT4_INODE_SIZE(sb); 5043 5044 /* 5045 * Calculate the first inode in the inode table block. Inode 5046 * numbers are one-based. That is, the first inode in a block 5047 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5048 */ 5049 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5050 rcu_read_lock(); 5051 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5052 if (ino == orig_ino) 5053 continue; 5054 __ext4_update_other_inode_time(sb, orig_ino, ino, 5055 (struct ext4_inode *)buf); 5056 } 5057 rcu_read_unlock(); 5058 } 5059 5060 /* 5061 * Post the struct inode info into an on-disk inode location in the 5062 * buffer-cache. This gobbles the caller's reference to the 5063 * buffer_head in the inode location struct. 5064 * 5065 * The caller must have write access to iloc->bh. 5066 */ 5067 static int ext4_do_update_inode(handle_t *handle, 5068 struct inode *inode, 5069 struct ext4_iloc *iloc) 5070 { 5071 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5072 struct ext4_inode_info *ei = EXT4_I(inode); 5073 struct buffer_head *bh = iloc->bh; 5074 struct super_block *sb = inode->i_sb; 5075 int err; 5076 int need_datasync = 0, set_large_file = 0; 5077 5078 spin_lock(&ei->i_raw_lock); 5079 5080 /* 5081 * For fields not tracked in the in-memory inode, initialise them 5082 * to zero for new inodes. 5083 */ 5084 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5085 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5086 5087 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5088 need_datasync = 1; 5089 if (ei->i_disksize > 0x7fffffffULL) { 5090 if (!ext4_has_feature_large_file(sb) || 5091 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5092 set_large_file = 1; 5093 } 5094 5095 err = ext4_fill_raw_inode(inode, raw_inode); 5096 spin_unlock(&ei->i_raw_lock); 5097 if (err) { 5098 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5099 goto out_brelse; 5100 } 5101 5102 if (inode->i_sb->s_flags & SB_LAZYTIME) 5103 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5104 bh->b_data); 5105 5106 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5107 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5108 if (err) 5109 goto out_error; 5110 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5111 if (set_large_file) { 5112 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5113 err = ext4_journal_get_write_access(handle, sb, 5114 EXT4_SB(sb)->s_sbh, 5115 EXT4_JTR_NONE); 5116 if (err) 5117 goto out_error; 5118 lock_buffer(EXT4_SB(sb)->s_sbh); 5119 ext4_set_feature_large_file(sb); 5120 ext4_superblock_csum_set(sb); 5121 unlock_buffer(EXT4_SB(sb)->s_sbh); 5122 ext4_handle_sync(handle); 5123 err = ext4_handle_dirty_metadata(handle, NULL, 5124 EXT4_SB(sb)->s_sbh); 5125 } 5126 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5127 out_error: 5128 ext4_std_error(inode->i_sb, err); 5129 out_brelse: 5130 brelse(bh); 5131 return err; 5132 } 5133 5134 /* 5135 * ext4_write_inode() 5136 * 5137 * We are called from a few places: 5138 * 5139 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5140 * Here, there will be no transaction running. We wait for any running 5141 * transaction to commit. 5142 * 5143 * - Within flush work (sys_sync(), kupdate and such). 5144 * We wait on commit, if told to. 5145 * 5146 * - Within iput_final() -> write_inode_now() 5147 * We wait on commit, if told to. 5148 * 5149 * In all cases it is actually safe for us to return without doing anything, 5150 * because the inode has been copied into a raw inode buffer in 5151 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5152 * writeback. 5153 * 5154 * Note that we are absolutely dependent upon all inode dirtiers doing the 5155 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5156 * which we are interested. 5157 * 5158 * It would be a bug for them to not do this. The code: 5159 * 5160 * mark_inode_dirty(inode) 5161 * stuff(); 5162 * inode->i_size = expr; 5163 * 5164 * is in error because write_inode() could occur while `stuff()' is running, 5165 * and the new i_size will be lost. Plus the inode will no longer be on the 5166 * superblock's dirty inode list. 5167 */ 5168 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5169 { 5170 int err; 5171 5172 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5173 return 0; 5174 5175 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5176 return -EIO; 5177 5178 if (EXT4_SB(inode->i_sb)->s_journal) { 5179 if (ext4_journal_current_handle()) { 5180 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5181 dump_stack(); 5182 return -EIO; 5183 } 5184 5185 /* 5186 * No need to force transaction in WB_SYNC_NONE mode. Also 5187 * ext4_sync_fs() will force the commit after everything is 5188 * written. 5189 */ 5190 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5191 return 0; 5192 5193 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5194 EXT4_I(inode)->i_sync_tid); 5195 } else { 5196 struct ext4_iloc iloc; 5197 5198 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5199 if (err) 5200 return err; 5201 /* 5202 * sync(2) will flush the whole buffer cache. No need to do 5203 * it here separately for each inode. 5204 */ 5205 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5206 sync_dirty_buffer(iloc.bh); 5207 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5208 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5209 "IO error syncing inode"); 5210 err = -EIO; 5211 } 5212 brelse(iloc.bh); 5213 } 5214 return err; 5215 } 5216 5217 /* 5218 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5219 * buffers that are attached to a folio straddling i_size and are undergoing 5220 * commit. In that case we have to wait for commit to finish and try again. 5221 */ 5222 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5223 { 5224 unsigned offset; 5225 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5226 tid_t commit_tid = 0; 5227 int ret; 5228 5229 offset = inode->i_size & (PAGE_SIZE - 1); 5230 /* 5231 * If the folio is fully truncated, we don't need to wait for any commit 5232 * (and we even should not as __ext4_journalled_invalidate_folio() may 5233 * strip all buffers from the folio but keep the folio dirty which can then 5234 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5235 * buffers). Also we don't need to wait for any commit if all buffers in 5236 * the folio remain valid. This is most beneficial for the common case of 5237 * blocksize == PAGESIZE. 5238 */ 5239 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5240 return; 5241 while (1) { 5242 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5243 inode->i_size >> PAGE_SHIFT); 5244 if (IS_ERR(folio)) 5245 return; 5246 ret = __ext4_journalled_invalidate_folio(folio, offset, 5247 folio_size(folio) - offset); 5248 folio_unlock(folio); 5249 folio_put(folio); 5250 if (ret != -EBUSY) 5251 return; 5252 commit_tid = 0; 5253 read_lock(&journal->j_state_lock); 5254 if (journal->j_committing_transaction) 5255 commit_tid = journal->j_committing_transaction->t_tid; 5256 read_unlock(&journal->j_state_lock); 5257 if (commit_tid) 5258 jbd2_log_wait_commit(journal, commit_tid); 5259 } 5260 } 5261 5262 /* 5263 * ext4_setattr() 5264 * 5265 * Called from notify_change. 5266 * 5267 * We want to trap VFS attempts to truncate the file as soon as 5268 * possible. In particular, we want to make sure that when the VFS 5269 * shrinks i_size, we put the inode on the orphan list and modify 5270 * i_disksize immediately, so that during the subsequent flushing of 5271 * dirty pages and freeing of disk blocks, we can guarantee that any 5272 * commit will leave the blocks being flushed in an unused state on 5273 * disk. (On recovery, the inode will get truncated and the blocks will 5274 * be freed, so we have a strong guarantee that no future commit will 5275 * leave these blocks visible to the user.) 5276 * 5277 * Another thing we have to assure is that if we are in ordered mode 5278 * and inode is still attached to the committing transaction, we must 5279 * we start writeout of all the dirty pages which are being truncated. 5280 * This way we are sure that all the data written in the previous 5281 * transaction are already on disk (truncate waits for pages under 5282 * writeback). 5283 * 5284 * Called with inode->i_rwsem down. 5285 */ 5286 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5287 struct iattr *attr) 5288 { 5289 struct inode *inode = d_inode(dentry); 5290 int error, rc = 0; 5291 int orphan = 0; 5292 const unsigned int ia_valid = attr->ia_valid; 5293 bool inc_ivers = true; 5294 5295 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5296 return -EIO; 5297 5298 if (unlikely(IS_IMMUTABLE(inode))) 5299 return -EPERM; 5300 5301 if (unlikely(IS_APPEND(inode) && 5302 (ia_valid & (ATTR_MODE | ATTR_UID | 5303 ATTR_GID | ATTR_TIMES_SET)))) 5304 return -EPERM; 5305 5306 error = setattr_prepare(idmap, dentry, attr); 5307 if (error) 5308 return error; 5309 5310 error = fscrypt_prepare_setattr(dentry, attr); 5311 if (error) 5312 return error; 5313 5314 error = fsverity_prepare_setattr(dentry, attr); 5315 if (error) 5316 return error; 5317 5318 if (is_quota_modification(idmap, inode, attr)) { 5319 error = dquot_initialize(inode); 5320 if (error) 5321 return error; 5322 } 5323 5324 if (i_uid_needs_update(idmap, attr, inode) || 5325 i_gid_needs_update(idmap, attr, inode)) { 5326 handle_t *handle; 5327 5328 /* (user+group)*(old+new) structure, inode write (sb, 5329 * inode block, ? - but truncate inode update has it) */ 5330 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5331 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5332 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5333 if (IS_ERR(handle)) { 5334 error = PTR_ERR(handle); 5335 goto err_out; 5336 } 5337 5338 /* dquot_transfer() calls back ext4_get_inode_usage() which 5339 * counts xattr inode references. 5340 */ 5341 down_read(&EXT4_I(inode)->xattr_sem); 5342 error = dquot_transfer(idmap, inode, attr); 5343 up_read(&EXT4_I(inode)->xattr_sem); 5344 5345 if (error) { 5346 ext4_journal_stop(handle); 5347 return error; 5348 } 5349 /* Update corresponding info in inode so that everything is in 5350 * one transaction */ 5351 i_uid_update(idmap, attr, inode); 5352 i_gid_update(idmap, attr, inode); 5353 error = ext4_mark_inode_dirty(handle, inode); 5354 ext4_journal_stop(handle); 5355 if (unlikely(error)) { 5356 return error; 5357 } 5358 } 5359 5360 if (attr->ia_valid & ATTR_SIZE) { 5361 handle_t *handle; 5362 loff_t oldsize = inode->i_size; 5363 loff_t old_disksize; 5364 int shrink = (attr->ia_size < inode->i_size); 5365 5366 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5367 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5368 5369 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5370 return -EFBIG; 5371 } 5372 } 5373 if (!S_ISREG(inode->i_mode)) { 5374 return -EINVAL; 5375 } 5376 5377 if (attr->ia_size == inode->i_size) 5378 inc_ivers = false; 5379 5380 if (shrink) { 5381 if (ext4_should_order_data(inode)) { 5382 error = ext4_begin_ordered_truncate(inode, 5383 attr->ia_size); 5384 if (error) 5385 goto err_out; 5386 } 5387 /* 5388 * Blocks are going to be removed from the inode. Wait 5389 * for dio in flight. 5390 */ 5391 inode_dio_wait(inode); 5392 } 5393 5394 filemap_invalidate_lock(inode->i_mapping); 5395 5396 rc = ext4_break_layouts(inode); 5397 if (rc) { 5398 filemap_invalidate_unlock(inode->i_mapping); 5399 goto err_out; 5400 } 5401 5402 if (attr->ia_size != inode->i_size) { 5403 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5404 if (IS_ERR(handle)) { 5405 error = PTR_ERR(handle); 5406 goto out_mmap_sem; 5407 } 5408 if (ext4_handle_valid(handle) && shrink) { 5409 error = ext4_orphan_add(handle, inode); 5410 orphan = 1; 5411 } 5412 /* 5413 * Update c/mtime on truncate up, ext4_truncate() will 5414 * update c/mtime in shrink case below 5415 */ 5416 if (!shrink) 5417 inode->i_mtime = inode_set_ctime_current(inode); 5418 5419 if (shrink) 5420 ext4_fc_track_range(handle, inode, 5421 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5422 inode->i_sb->s_blocksize_bits, 5423 EXT_MAX_BLOCKS - 1); 5424 else 5425 ext4_fc_track_range( 5426 handle, inode, 5427 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5428 inode->i_sb->s_blocksize_bits, 5429 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5430 inode->i_sb->s_blocksize_bits); 5431 5432 down_write(&EXT4_I(inode)->i_data_sem); 5433 old_disksize = EXT4_I(inode)->i_disksize; 5434 EXT4_I(inode)->i_disksize = attr->ia_size; 5435 rc = ext4_mark_inode_dirty(handle, inode); 5436 if (!error) 5437 error = rc; 5438 /* 5439 * We have to update i_size under i_data_sem together 5440 * with i_disksize to avoid races with writeback code 5441 * running ext4_wb_update_i_disksize(). 5442 */ 5443 if (!error) 5444 i_size_write(inode, attr->ia_size); 5445 else 5446 EXT4_I(inode)->i_disksize = old_disksize; 5447 up_write(&EXT4_I(inode)->i_data_sem); 5448 ext4_journal_stop(handle); 5449 if (error) 5450 goto out_mmap_sem; 5451 if (!shrink) { 5452 pagecache_isize_extended(inode, oldsize, 5453 inode->i_size); 5454 } else if (ext4_should_journal_data(inode)) { 5455 ext4_wait_for_tail_page_commit(inode); 5456 } 5457 } 5458 5459 /* 5460 * Truncate pagecache after we've waited for commit 5461 * in data=journal mode to make pages freeable. 5462 */ 5463 truncate_pagecache(inode, inode->i_size); 5464 /* 5465 * Call ext4_truncate() even if i_size didn't change to 5466 * truncate possible preallocated blocks. 5467 */ 5468 if (attr->ia_size <= oldsize) { 5469 rc = ext4_truncate(inode); 5470 if (rc) 5471 error = rc; 5472 } 5473 out_mmap_sem: 5474 filemap_invalidate_unlock(inode->i_mapping); 5475 } 5476 5477 if (!error) { 5478 if (inc_ivers) 5479 inode_inc_iversion(inode); 5480 setattr_copy(idmap, inode, attr); 5481 mark_inode_dirty(inode); 5482 } 5483 5484 /* 5485 * If the call to ext4_truncate failed to get a transaction handle at 5486 * all, we need to clean up the in-core orphan list manually. 5487 */ 5488 if (orphan && inode->i_nlink) 5489 ext4_orphan_del(NULL, inode); 5490 5491 if (!error && (ia_valid & ATTR_MODE)) 5492 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5493 5494 err_out: 5495 if (error) 5496 ext4_std_error(inode->i_sb, error); 5497 if (!error) 5498 error = rc; 5499 return error; 5500 } 5501 5502 u32 ext4_dio_alignment(struct inode *inode) 5503 { 5504 if (fsverity_active(inode)) 5505 return 0; 5506 if (ext4_should_journal_data(inode)) 5507 return 0; 5508 if (ext4_has_inline_data(inode)) 5509 return 0; 5510 if (IS_ENCRYPTED(inode)) { 5511 if (!fscrypt_dio_supported(inode)) 5512 return 0; 5513 return i_blocksize(inode); 5514 } 5515 return 1; /* use the iomap defaults */ 5516 } 5517 5518 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5519 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5520 { 5521 struct inode *inode = d_inode(path->dentry); 5522 struct ext4_inode *raw_inode; 5523 struct ext4_inode_info *ei = EXT4_I(inode); 5524 unsigned int flags; 5525 5526 if ((request_mask & STATX_BTIME) && 5527 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5528 stat->result_mask |= STATX_BTIME; 5529 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5530 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5531 } 5532 5533 /* 5534 * Return the DIO alignment restrictions if requested. We only return 5535 * this information when requested, since on encrypted files it might 5536 * take a fair bit of work to get if the file wasn't opened recently. 5537 */ 5538 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5539 u32 dio_align = ext4_dio_alignment(inode); 5540 5541 stat->result_mask |= STATX_DIOALIGN; 5542 if (dio_align == 1) { 5543 struct block_device *bdev = inode->i_sb->s_bdev; 5544 5545 /* iomap defaults */ 5546 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5547 stat->dio_offset_align = bdev_logical_block_size(bdev); 5548 } else { 5549 stat->dio_mem_align = dio_align; 5550 stat->dio_offset_align = dio_align; 5551 } 5552 } 5553 5554 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5555 if (flags & EXT4_APPEND_FL) 5556 stat->attributes |= STATX_ATTR_APPEND; 5557 if (flags & EXT4_COMPR_FL) 5558 stat->attributes |= STATX_ATTR_COMPRESSED; 5559 if (flags & EXT4_ENCRYPT_FL) 5560 stat->attributes |= STATX_ATTR_ENCRYPTED; 5561 if (flags & EXT4_IMMUTABLE_FL) 5562 stat->attributes |= STATX_ATTR_IMMUTABLE; 5563 if (flags & EXT4_NODUMP_FL) 5564 stat->attributes |= STATX_ATTR_NODUMP; 5565 if (flags & EXT4_VERITY_FL) 5566 stat->attributes |= STATX_ATTR_VERITY; 5567 5568 stat->attributes_mask |= (STATX_ATTR_APPEND | 5569 STATX_ATTR_COMPRESSED | 5570 STATX_ATTR_ENCRYPTED | 5571 STATX_ATTR_IMMUTABLE | 5572 STATX_ATTR_NODUMP | 5573 STATX_ATTR_VERITY); 5574 5575 generic_fillattr(idmap, request_mask, inode, stat); 5576 return 0; 5577 } 5578 5579 int ext4_file_getattr(struct mnt_idmap *idmap, 5580 const struct path *path, struct kstat *stat, 5581 u32 request_mask, unsigned int query_flags) 5582 { 5583 struct inode *inode = d_inode(path->dentry); 5584 u64 delalloc_blocks; 5585 5586 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5587 5588 /* 5589 * If there is inline data in the inode, the inode will normally not 5590 * have data blocks allocated (it may have an external xattr block). 5591 * Report at least one sector for such files, so tools like tar, rsync, 5592 * others don't incorrectly think the file is completely sparse. 5593 */ 5594 if (unlikely(ext4_has_inline_data(inode))) 5595 stat->blocks += (stat->size + 511) >> 9; 5596 5597 /* 5598 * We can't update i_blocks if the block allocation is delayed 5599 * otherwise in the case of system crash before the real block 5600 * allocation is done, we will have i_blocks inconsistent with 5601 * on-disk file blocks. 5602 * We always keep i_blocks updated together with real 5603 * allocation. But to not confuse with user, stat 5604 * will return the blocks that include the delayed allocation 5605 * blocks for this file. 5606 */ 5607 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5608 EXT4_I(inode)->i_reserved_data_blocks); 5609 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5610 return 0; 5611 } 5612 5613 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5614 int pextents) 5615 { 5616 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5617 return ext4_ind_trans_blocks(inode, lblocks); 5618 return ext4_ext_index_trans_blocks(inode, pextents); 5619 } 5620 5621 /* 5622 * Account for index blocks, block groups bitmaps and block group 5623 * descriptor blocks if modify datablocks and index blocks 5624 * worse case, the indexs blocks spread over different block groups 5625 * 5626 * If datablocks are discontiguous, they are possible to spread over 5627 * different block groups too. If they are contiguous, with flexbg, 5628 * they could still across block group boundary. 5629 * 5630 * Also account for superblock, inode, quota and xattr blocks 5631 */ 5632 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5633 int pextents) 5634 { 5635 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5636 int gdpblocks; 5637 int idxblocks; 5638 int ret; 5639 5640 /* 5641 * How many index blocks need to touch to map @lblocks logical blocks 5642 * to @pextents physical extents? 5643 */ 5644 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5645 5646 ret = idxblocks; 5647 5648 /* 5649 * Now let's see how many group bitmaps and group descriptors need 5650 * to account 5651 */ 5652 groups = idxblocks + pextents; 5653 gdpblocks = groups; 5654 if (groups > ngroups) 5655 groups = ngroups; 5656 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5657 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5658 5659 /* bitmaps and block group descriptor blocks */ 5660 ret += groups + gdpblocks; 5661 5662 /* Blocks for super block, inode, quota and xattr blocks */ 5663 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5664 5665 return ret; 5666 } 5667 5668 /* 5669 * Calculate the total number of credits to reserve to fit 5670 * the modification of a single pages into a single transaction, 5671 * which may include multiple chunks of block allocations. 5672 * 5673 * This could be called via ext4_write_begin() 5674 * 5675 * We need to consider the worse case, when 5676 * one new block per extent. 5677 */ 5678 int ext4_writepage_trans_blocks(struct inode *inode) 5679 { 5680 int bpp = ext4_journal_blocks_per_page(inode); 5681 int ret; 5682 5683 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5684 5685 /* Account for data blocks for journalled mode */ 5686 if (ext4_should_journal_data(inode)) 5687 ret += bpp; 5688 return ret; 5689 } 5690 5691 /* 5692 * Calculate the journal credits for a chunk of data modification. 5693 * 5694 * This is called from DIO, fallocate or whoever calling 5695 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5696 * 5697 * journal buffers for data blocks are not included here, as DIO 5698 * and fallocate do no need to journal data buffers. 5699 */ 5700 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5701 { 5702 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5703 } 5704 5705 /* 5706 * The caller must have previously called ext4_reserve_inode_write(). 5707 * Give this, we know that the caller already has write access to iloc->bh. 5708 */ 5709 int ext4_mark_iloc_dirty(handle_t *handle, 5710 struct inode *inode, struct ext4_iloc *iloc) 5711 { 5712 int err = 0; 5713 5714 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5715 put_bh(iloc->bh); 5716 return -EIO; 5717 } 5718 ext4_fc_track_inode(handle, inode); 5719 5720 /* the do_update_inode consumes one bh->b_count */ 5721 get_bh(iloc->bh); 5722 5723 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5724 err = ext4_do_update_inode(handle, inode, iloc); 5725 put_bh(iloc->bh); 5726 return err; 5727 } 5728 5729 /* 5730 * On success, We end up with an outstanding reference count against 5731 * iloc->bh. This _must_ be cleaned up later. 5732 */ 5733 5734 int 5735 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5736 struct ext4_iloc *iloc) 5737 { 5738 int err; 5739 5740 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5741 return -EIO; 5742 5743 err = ext4_get_inode_loc(inode, iloc); 5744 if (!err) { 5745 BUFFER_TRACE(iloc->bh, "get_write_access"); 5746 err = ext4_journal_get_write_access(handle, inode->i_sb, 5747 iloc->bh, EXT4_JTR_NONE); 5748 if (err) { 5749 brelse(iloc->bh); 5750 iloc->bh = NULL; 5751 } 5752 } 5753 ext4_std_error(inode->i_sb, err); 5754 return err; 5755 } 5756 5757 static int __ext4_expand_extra_isize(struct inode *inode, 5758 unsigned int new_extra_isize, 5759 struct ext4_iloc *iloc, 5760 handle_t *handle, int *no_expand) 5761 { 5762 struct ext4_inode *raw_inode; 5763 struct ext4_xattr_ibody_header *header; 5764 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5765 struct ext4_inode_info *ei = EXT4_I(inode); 5766 int error; 5767 5768 /* this was checked at iget time, but double check for good measure */ 5769 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5770 (ei->i_extra_isize & 3)) { 5771 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5772 ei->i_extra_isize, 5773 EXT4_INODE_SIZE(inode->i_sb)); 5774 return -EFSCORRUPTED; 5775 } 5776 if ((new_extra_isize < ei->i_extra_isize) || 5777 (new_extra_isize < 4) || 5778 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5779 return -EINVAL; /* Should never happen */ 5780 5781 raw_inode = ext4_raw_inode(iloc); 5782 5783 header = IHDR(inode, raw_inode); 5784 5785 /* No extended attributes present */ 5786 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5787 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5788 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5789 EXT4_I(inode)->i_extra_isize, 0, 5790 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5791 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5792 return 0; 5793 } 5794 5795 /* 5796 * We may need to allocate external xattr block so we need quotas 5797 * initialized. Here we can be called with various locks held so we 5798 * cannot affort to initialize quotas ourselves. So just bail. 5799 */ 5800 if (dquot_initialize_needed(inode)) 5801 return -EAGAIN; 5802 5803 /* try to expand with EAs present */ 5804 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5805 raw_inode, handle); 5806 if (error) { 5807 /* 5808 * Inode size expansion failed; don't try again 5809 */ 5810 *no_expand = 1; 5811 } 5812 5813 return error; 5814 } 5815 5816 /* 5817 * Expand an inode by new_extra_isize bytes. 5818 * Returns 0 on success or negative error number on failure. 5819 */ 5820 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5821 unsigned int new_extra_isize, 5822 struct ext4_iloc iloc, 5823 handle_t *handle) 5824 { 5825 int no_expand; 5826 int error; 5827 5828 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5829 return -EOVERFLOW; 5830 5831 /* 5832 * In nojournal mode, we can immediately attempt to expand 5833 * the inode. When journaled, we first need to obtain extra 5834 * buffer credits since we may write into the EA block 5835 * with this same handle. If journal_extend fails, then it will 5836 * only result in a minor loss of functionality for that inode. 5837 * If this is felt to be critical, then e2fsck should be run to 5838 * force a large enough s_min_extra_isize. 5839 */ 5840 if (ext4_journal_extend(handle, 5841 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5842 return -ENOSPC; 5843 5844 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5845 return -EBUSY; 5846 5847 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5848 handle, &no_expand); 5849 ext4_write_unlock_xattr(inode, &no_expand); 5850 5851 return error; 5852 } 5853 5854 int ext4_expand_extra_isize(struct inode *inode, 5855 unsigned int new_extra_isize, 5856 struct ext4_iloc *iloc) 5857 { 5858 handle_t *handle; 5859 int no_expand; 5860 int error, rc; 5861 5862 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5863 brelse(iloc->bh); 5864 return -EOVERFLOW; 5865 } 5866 5867 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5868 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5869 if (IS_ERR(handle)) { 5870 error = PTR_ERR(handle); 5871 brelse(iloc->bh); 5872 return error; 5873 } 5874 5875 ext4_write_lock_xattr(inode, &no_expand); 5876 5877 BUFFER_TRACE(iloc->bh, "get_write_access"); 5878 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5879 EXT4_JTR_NONE); 5880 if (error) { 5881 brelse(iloc->bh); 5882 goto out_unlock; 5883 } 5884 5885 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5886 handle, &no_expand); 5887 5888 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5889 if (!error) 5890 error = rc; 5891 5892 out_unlock: 5893 ext4_write_unlock_xattr(inode, &no_expand); 5894 ext4_journal_stop(handle); 5895 return error; 5896 } 5897 5898 /* 5899 * What we do here is to mark the in-core inode as clean with respect to inode 5900 * dirtiness (it may still be data-dirty). 5901 * This means that the in-core inode may be reaped by prune_icache 5902 * without having to perform any I/O. This is a very good thing, 5903 * because *any* task may call prune_icache - even ones which 5904 * have a transaction open against a different journal. 5905 * 5906 * Is this cheating? Not really. Sure, we haven't written the 5907 * inode out, but prune_icache isn't a user-visible syncing function. 5908 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5909 * we start and wait on commits. 5910 */ 5911 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5912 const char *func, unsigned int line) 5913 { 5914 struct ext4_iloc iloc; 5915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5916 int err; 5917 5918 might_sleep(); 5919 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5920 err = ext4_reserve_inode_write(handle, inode, &iloc); 5921 if (err) 5922 goto out; 5923 5924 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5925 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5926 iloc, handle); 5927 5928 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5929 out: 5930 if (unlikely(err)) 5931 ext4_error_inode_err(inode, func, line, 0, err, 5932 "mark_inode_dirty error"); 5933 return err; 5934 } 5935 5936 /* 5937 * ext4_dirty_inode() is called from __mark_inode_dirty() 5938 * 5939 * We're really interested in the case where a file is being extended. 5940 * i_size has been changed by generic_commit_write() and we thus need 5941 * to include the updated inode in the current transaction. 5942 * 5943 * Also, dquot_alloc_block() will always dirty the inode when blocks 5944 * are allocated to the file. 5945 * 5946 * If the inode is marked synchronous, we don't honour that here - doing 5947 * so would cause a commit on atime updates, which we don't bother doing. 5948 * We handle synchronous inodes at the highest possible level. 5949 */ 5950 void ext4_dirty_inode(struct inode *inode, int flags) 5951 { 5952 handle_t *handle; 5953 5954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5955 if (IS_ERR(handle)) 5956 return; 5957 ext4_mark_inode_dirty(handle, inode); 5958 ext4_journal_stop(handle); 5959 } 5960 5961 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5962 { 5963 journal_t *journal; 5964 handle_t *handle; 5965 int err; 5966 int alloc_ctx; 5967 5968 /* 5969 * We have to be very careful here: changing a data block's 5970 * journaling status dynamically is dangerous. If we write a 5971 * data block to the journal, change the status and then delete 5972 * that block, we risk forgetting to revoke the old log record 5973 * from the journal and so a subsequent replay can corrupt data. 5974 * So, first we make sure that the journal is empty and that 5975 * nobody is changing anything. 5976 */ 5977 5978 journal = EXT4_JOURNAL(inode); 5979 if (!journal) 5980 return 0; 5981 if (is_journal_aborted(journal)) 5982 return -EROFS; 5983 5984 /* Wait for all existing dio workers */ 5985 inode_dio_wait(inode); 5986 5987 /* 5988 * Before flushing the journal and switching inode's aops, we have 5989 * to flush all dirty data the inode has. There can be outstanding 5990 * delayed allocations, there can be unwritten extents created by 5991 * fallocate or buffered writes in dioread_nolock mode covered by 5992 * dirty data which can be converted only after flushing the dirty 5993 * data (and journalled aops don't know how to handle these cases). 5994 */ 5995 if (val) { 5996 filemap_invalidate_lock(inode->i_mapping); 5997 err = filemap_write_and_wait(inode->i_mapping); 5998 if (err < 0) { 5999 filemap_invalidate_unlock(inode->i_mapping); 6000 return err; 6001 } 6002 } 6003 6004 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6005 jbd2_journal_lock_updates(journal); 6006 6007 /* 6008 * OK, there are no updates running now, and all cached data is 6009 * synced to disk. We are now in a completely consistent state 6010 * which doesn't have anything in the journal, and we know that 6011 * no filesystem updates are running, so it is safe to modify 6012 * the inode's in-core data-journaling state flag now. 6013 */ 6014 6015 if (val) 6016 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6017 else { 6018 err = jbd2_journal_flush(journal, 0); 6019 if (err < 0) { 6020 jbd2_journal_unlock_updates(journal); 6021 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6022 return err; 6023 } 6024 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6025 } 6026 ext4_set_aops(inode); 6027 6028 jbd2_journal_unlock_updates(journal); 6029 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6030 6031 if (val) 6032 filemap_invalidate_unlock(inode->i_mapping); 6033 6034 /* Finally we can mark the inode as dirty. */ 6035 6036 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6037 if (IS_ERR(handle)) 6038 return PTR_ERR(handle); 6039 6040 ext4_fc_mark_ineligible(inode->i_sb, 6041 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6042 err = ext4_mark_inode_dirty(handle, inode); 6043 ext4_handle_sync(handle); 6044 ext4_journal_stop(handle); 6045 ext4_std_error(inode->i_sb, err); 6046 6047 return err; 6048 } 6049 6050 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6051 struct buffer_head *bh) 6052 { 6053 return !buffer_mapped(bh); 6054 } 6055 6056 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6057 { 6058 struct vm_area_struct *vma = vmf->vma; 6059 struct folio *folio = page_folio(vmf->page); 6060 loff_t size; 6061 unsigned long len; 6062 int err; 6063 vm_fault_t ret; 6064 struct file *file = vma->vm_file; 6065 struct inode *inode = file_inode(file); 6066 struct address_space *mapping = inode->i_mapping; 6067 handle_t *handle; 6068 get_block_t *get_block; 6069 int retries = 0; 6070 6071 if (unlikely(IS_IMMUTABLE(inode))) 6072 return VM_FAULT_SIGBUS; 6073 6074 sb_start_pagefault(inode->i_sb); 6075 file_update_time(vma->vm_file); 6076 6077 filemap_invalidate_lock_shared(mapping); 6078 6079 err = ext4_convert_inline_data(inode); 6080 if (err) 6081 goto out_ret; 6082 6083 /* 6084 * On data journalling we skip straight to the transaction handle: 6085 * there's no delalloc; page truncated will be checked later; the 6086 * early return w/ all buffers mapped (calculates size/len) can't 6087 * be used; and there's no dioread_nolock, so only ext4_get_block. 6088 */ 6089 if (ext4_should_journal_data(inode)) 6090 goto retry_alloc; 6091 6092 /* Delalloc case is easy... */ 6093 if (test_opt(inode->i_sb, DELALLOC) && 6094 !ext4_nonda_switch(inode->i_sb)) { 6095 do { 6096 err = block_page_mkwrite(vma, vmf, 6097 ext4_da_get_block_prep); 6098 } while (err == -ENOSPC && 6099 ext4_should_retry_alloc(inode->i_sb, &retries)); 6100 goto out_ret; 6101 } 6102 6103 folio_lock(folio); 6104 size = i_size_read(inode); 6105 /* Page got truncated from under us? */ 6106 if (folio->mapping != mapping || folio_pos(folio) > size) { 6107 folio_unlock(folio); 6108 ret = VM_FAULT_NOPAGE; 6109 goto out; 6110 } 6111 6112 len = folio_size(folio); 6113 if (folio_pos(folio) + len > size) 6114 len = size - folio_pos(folio); 6115 /* 6116 * Return if we have all the buffers mapped. This avoids the need to do 6117 * journal_start/journal_stop which can block and take a long time 6118 * 6119 * This cannot be done for data journalling, as we have to add the 6120 * inode to the transaction's list to writeprotect pages on commit. 6121 */ 6122 if (folio_buffers(folio)) { 6123 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6124 0, len, NULL, 6125 ext4_bh_unmapped)) { 6126 /* Wait so that we don't change page under IO */ 6127 folio_wait_stable(folio); 6128 ret = VM_FAULT_LOCKED; 6129 goto out; 6130 } 6131 } 6132 folio_unlock(folio); 6133 /* OK, we need to fill the hole... */ 6134 if (ext4_should_dioread_nolock(inode)) 6135 get_block = ext4_get_block_unwritten; 6136 else 6137 get_block = ext4_get_block; 6138 retry_alloc: 6139 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6140 ext4_writepage_trans_blocks(inode)); 6141 if (IS_ERR(handle)) { 6142 ret = VM_FAULT_SIGBUS; 6143 goto out; 6144 } 6145 /* 6146 * Data journalling can't use block_page_mkwrite() because it 6147 * will set_buffer_dirty() before do_journal_get_write_access() 6148 * thus might hit warning messages for dirty metadata buffers. 6149 */ 6150 if (!ext4_should_journal_data(inode)) { 6151 err = block_page_mkwrite(vma, vmf, get_block); 6152 } else { 6153 folio_lock(folio); 6154 size = i_size_read(inode); 6155 /* Page got truncated from under us? */ 6156 if (folio->mapping != mapping || folio_pos(folio) > size) { 6157 ret = VM_FAULT_NOPAGE; 6158 goto out_error; 6159 } 6160 6161 len = folio_size(folio); 6162 if (folio_pos(folio) + len > size) 6163 len = size - folio_pos(folio); 6164 6165 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6166 if (!err) { 6167 ret = VM_FAULT_SIGBUS; 6168 if (ext4_journal_folio_buffers(handle, folio, len)) 6169 goto out_error; 6170 } else { 6171 folio_unlock(folio); 6172 } 6173 } 6174 ext4_journal_stop(handle); 6175 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6176 goto retry_alloc; 6177 out_ret: 6178 ret = vmf_fs_error(err); 6179 out: 6180 filemap_invalidate_unlock_shared(mapping); 6181 sb_end_pagefault(inode->i_sb); 6182 return ret; 6183 out_error: 6184 folio_unlock(folio); 6185 ext4_journal_stop(handle); 6186 goto out; 6187 } 6188