1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 179 trace_ext4_evict_inode(inode); 180 181 if (inode->i_nlink) { 182 /* 183 * When journalling data dirty buffers are tracked only in the 184 * journal. So although mm thinks everything is clean and 185 * ready for reaping the inode might still have some pages to 186 * write in the running transaction or waiting to be 187 * checkpointed. Thus calling jbd2_journal_invalidatepage() 188 * (via truncate_inode_pages()) to discard these buffers can 189 * cause data loss. Also even if we did not discard these 190 * buffers, we would have no way to find them after the inode 191 * is reaped and thus user could see stale data if he tries to 192 * read them before the transaction is checkpointed. So be 193 * careful and force everything to disk here... We use 194 * ei->i_datasync_tid to store the newest transaction 195 * containing inode's data. 196 * 197 * Note that directories do not have this problem because they 198 * don't use page cache. 199 */ 200 if (inode->i_ino != EXT4_JOURNAL_INO && 201 ext4_should_journal_data(inode) && 202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 203 inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 239 if (!IS_NOQUOTA(inode)) 240 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 241 242 /* 243 * Block bitmap, group descriptor, and inode are accounted in both 244 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 245 */ 246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 247 ext4_blocks_for_truncate(inode) + extra_credits - 3); 248 if (IS_ERR(handle)) { 249 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 250 /* 251 * If we're going to skip the normal cleanup, we still need to 252 * make sure that the in-core orphan linked list is properly 253 * cleaned up. 254 */ 255 ext4_orphan_del(NULL, inode); 256 sb_end_intwrite(inode->i_sb); 257 goto no_delete; 258 } 259 260 if (IS_SYNC(inode)) 261 ext4_handle_sync(handle); 262 263 /* 264 * Set inode->i_size to 0 before calling ext4_truncate(). We need 265 * special handling of symlinks here because i_size is used to 266 * determine whether ext4_inode_info->i_data contains symlink data or 267 * block mappings. Setting i_size to 0 will remove its fast symlink 268 * status. Erase i_data so that it becomes a valid empty block map. 269 */ 270 if (ext4_inode_is_fast_symlink(inode)) 271 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 272 inode->i_size = 0; 273 err = ext4_mark_inode_dirty(handle, inode); 274 if (err) { 275 ext4_warning(inode->i_sb, 276 "couldn't mark inode dirty (err %d)", err); 277 goto stop_handle; 278 } 279 if (inode->i_blocks) { 280 err = ext4_truncate(inode); 281 if (err) { 282 ext4_error_err(inode->i_sb, -err, 283 "couldn't truncate inode %lu (err %d)", 284 inode->i_ino, err); 285 goto stop_handle; 286 } 287 } 288 289 /* Remove xattr references. */ 290 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 291 extra_credits); 292 if (err) { 293 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 294 stop_handle: 295 ext4_journal_stop(handle); 296 ext4_orphan_del(NULL, inode); 297 sb_end_intwrite(inode->i_sb); 298 ext4_xattr_inode_array_free(ea_inode_array); 299 goto no_delete; 300 } 301 302 /* 303 * Kill off the orphan record which ext4_truncate created. 304 * AKPM: I think this can be inside the above `if'. 305 * Note that ext4_orphan_del() has to be able to cope with the 306 * deletion of a non-existent orphan - this is because we don't 307 * know if ext4_truncate() actually created an orphan record. 308 * (Well, we could do this if we need to, but heck - it works) 309 */ 310 ext4_orphan_del(handle, inode); 311 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 312 313 /* 314 * One subtle ordering requirement: if anything has gone wrong 315 * (transaction abort, IO errors, whatever), then we can still 316 * do these next steps (the fs will already have been marked as 317 * having errors), but we can't free the inode if the mark_dirty 318 * fails. 319 */ 320 if (ext4_mark_inode_dirty(handle, inode)) 321 /* If that failed, just do the required in-core inode clear. */ 322 ext4_clear_inode(inode); 323 else 324 ext4_free_inode(handle, inode); 325 ext4_journal_stop(handle); 326 sb_end_intwrite(inode->i_sb); 327 ext4_xattr_inode_array_free(ea_inode_array); 328 return; 329 no_delete: 330 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 331 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 332 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 333 } 334 335 #ifdef CONFIG_QUOTA 336 qsize_t *ext4_get_reserved_space(struct inode *inode) 337 { 338 return &EXT4_I(inode)->i_reserved_quota; 339 } 340 #endif 341 342 /* 343 * Called with i_data_sem down, which is important since we can call 344 * ext4_discard_preallocations() from here. 345 */ 346 void ext4_da_update_reserve_space(struct inode *inode, 347 int used, int quota_claim) 348 { 349 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 350 struct ext4_inode_info *ei = EXT4_I(inode); 351 352 spin_lock(&ei->i_block_reservation_lock); 353 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 354 if (unlikely(used > ei->i_reserved_data_blocks)) { 355 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 356 "with only %d reserved data blocks", 357 __func__, inode->i_ino, used, 358 ei->i_reserved_data_blocks); 359 WARN_ON(1); 360 used = ei->i_reserved_data_blocks; 361 } 362 363 /* Update per-inode reservations */ 364 ei->i_reserved_data_blocks -= used; 365 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 366 367 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 368 369 /* Update quota subsystem for data blocks */ 370 if (quota_claim) 371 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 372 else { 373 /* 374 * We did fallocate with an offset that is already delayed 375 * allocated. So on delayed allocated writeback we should 376 * not re-claim the quota for fallocated blocks. 377 */ 378 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 379 } 380 381 /* 382 * If we have done all the pending block allocations and if 383 * there aren't any writers on the inode, we can discard the 384 * inode's preallocations. 385 */ 386 if ((ei->i_reserved_data_blocks == 0) && 387 !inode_is_open_for_write(inode)) 388 ext4_discard_preallocations(inode, 0); 389 } 390 391 static int __check_block_validity(struct inode *inode, const char *func, 392 unsigned int line, 393 struct ext4_map_blocks *map) 394 { 395 if (ext4_has_feature_journal(inode->i_sb) && 396 (inode->i_ino == 397 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 398 return 0; 399 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 400 ext4_error_inode(inode, func, line, map->m_pblk, 401 "lblock %lu mapped to illegal pblock %llu " 402 "(length %d)", (unsigned long) map->m_lblk, 403 map->m_pblk, map->m_len); 404 return -EFSCORRUPTED; 405 } 406 return 0; 407 } 408 409 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 410 ext4_lblk_t len) 411 { 412 int ret; 413 414 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 415 return fscrypt_zeroout_range(inode, lblk, pblk, len); 416 417 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 418 if (ret > 0) 419 ret = 0; 420 421 return ret; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 down_read(&EXT4_I(inode)->i_data_sem); 445 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 446 retval = ext4_ext_map_blocks(handle, inode, map, 0); 447 } else { 448 retval = ext4_ind_map_blocks(handle, inode, map, 0); 449 } 450 up_read((&EXT4_I(inode)->i_data_sem)); 451 452 /* 453 * We don't check m_len because extent will be collpased in status 454 * tree. So the m_len might not equal. 455 */ 456 if (es_map->m_lblk != map->m_lblk || 457 es_map->m_flags != map->m_flags || 458 es_map->m_pblk != map->m_pblk) { 459 printk("ES cache assertion failed for inode: %lu " 460 "es_cached ex [%d/%d/%llu/%x] != " 461 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 462 inode->i_ino, es_map->m_lblk, es_map->m_len, 463 es_map->m_pblk, es_map->m_flags, map->m_lblk, 464 map->m_len, map->m_pblk, map->m_flags, 465 retval, flags); 466 } 467 } 468 #endif /* ES_AGGRESSIVE_TEST */ 469 470 /* 471 * The ext4_map_blocks() function tries to look up the requested blocks, 472 * and returns if the blocks are already mapped. 473 * 474 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 475 * and store the allocated blocks in the result buffer head and mark it 476 * mapped. 477 * 478 * If file type is extents based, it will call ext4_ext_map_blocks(), 479 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 480 * based files 481 * 482 * On success, it returns the number of blocks being mapped or allocated. if 483 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 484 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 485 * 486 * It returns 0 if plain look up failed (blocks have not been allocated), in 487 * that case, @map is returned as unmapped but we still do fill map->m_len to 488 * indicate the length of a hole starting at map->m_lblk. 489 * 490 * It returns the error in case of allocation failure. 491 */ 492 int ext4_map_blocks(handle_t *handle, struct inode *inode, 493 struct ext4_map_blocks *map, int flags) 494 { 495 struct extent_status es; 496 int retval; 497 int ret = 0; 498 #ifdef ES_AGGRESSIVE_TEST 499 struct ext4_map_blocks orig_map; 500 501 memcpy(&orig_map, map, sizeof(*map)); 502 #endif 503 504 map->m_flags = 0; 505 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 506 flags, map->m_len, (unsigned long) map->m_lblk); 507 508 /* 509 * ext4_map_blocks returns an int, and m_len is an unsigned int 510 */ 511 if (unlikely(map->m_len > INT_MAX)) 512 map->m_len = INT_MAX; 513 514 /* We can handle the block number less than EXT_MAX_BLOCKS */ 515 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 516 return -EFSCORRUPTED; 517 518 /* Lookup extent status tree firstly */ 519 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 520 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 521 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 522 map->m_pblk = ext4_es_pblock(&es) + 523 map->m_lblk - es.es_lblk; 524 map->m_flags |= ext4_es_is_written(&es) ? 525 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 526 retval = es.es_len - (map->m_lblk - es.es_lblk); 527 if (retval > map->m_len) 528 retval = map->m_len; 529 map->m_len = retval; 530 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 531 map->m_pblk = 0; 532 retval = es.es_len - (map->m_lblk - es.es_lblk); 533 if (retval > map->m_len) 534 retval = map->m_len; 535 map->m_len = retval; 536 retval = 0; 537 } else { 538 BUG(); 539 } 540 #ifdef ES_AGGRESSIVE_TEST 541 ext4_map_blocks_es_recheck(handle, inode, map, 542 &orig_map, flags); 543 #endif 544 goto found; 545 } 546 547 /* 548 * Try to see if we can get the block without requesting a new 549 * file system block. 550 */ 551 down_read(&EXT4_I(inode)->i_data_sem); 552 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 553 retval = ext4_ext_map_blocks(handle, inode, map, 0); 554 } else { 555 retval = ext4_ind_map_blocks(handle, inode, map, 0); 556 } 557 if (retval > 0) { 558 unsigned int status; 559 560 if (unlikely(retval != map->m_len)) { 561 ext4_warning(inode->i_sb, 562 "ES len assertion failed for inode " 563 "%lu: retval %d != map->m_len %d", 564 inode->i_ino, retval, map->m_len); 565 WARN_ON(1); 566 } 567 568 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 569 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 570 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 571 !(status & EXTENT_STATUS_WRITTEN) && 572 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 573 map->m_lblk + map->m_len - 1)) 574 status |= EXTENT_STATUS_DELAYED; 575 ret = ext4_es_insert_extent(inode, map->m_lblk, 576 map->m_len, map->m_pblk, status); 577 if (ret < 0) 578 retval = ret; 579 } 580 up_read((&EXT4_I(inode)->i_data_sem)); 581 582 found: 583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 584 ret = check_block_validity(inode, map); 585 if (ret != 0) 586 return ret; 587 } 588 589 /* If it is only a block(s) look up */ 590 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 591 return retval; 592 593 /* 594 * Returns if the blocks have already allocated 595 * 596 * Note that if blocks have been preallocated 597 * ext4_ext_get_block() returns the create = 0 598 * with buffer head unmapped. 599 */ 600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 601 /* 602 * If we need to convert extent to unwritten 603 * we continue and do the actual work in 604 * ext4_ext_map_blocks() 605 */ 606 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 607 return retval; 608 609 /* 610 * Here we clear m_flags because after allocating an new extent, 611 * it will be set again. 612 */ 613 map->m_flags &= ~EXT4_MAP_FLAGS; 614 615 /* 616 * New blocks allocate and/or writing to unwritten extent 617 * will possibly result in updating i_data, so we take 618 * the write lock of i_data_sem, and call get_block() 619 * with create == 1 flag. 620 */ 621 down_write(&EXT4_I(inode)->i_data_sem); 622 623 /* 624 * We need to check for EXT4 here because migrate 625 * could have changed the inode type in between 626 */ 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 628 retval = ext4_ext_map_blocks(handle, inode, map, flags); 629 } else { 630 retval = ext4_ind_map_blocks(handle, inode, map, flags); 631 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 633 /* 634 * We allocated new blocks which will result in 635 * i_data's format changing. Force the migrate 636 * to fail by clearing migrate flags 637 */ 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 639 } 640 641 /* 642 * Update reserved blocks/metadata blocks after successful 643 * block allocation which had been deferred till now. We don't 644 * support fallocate for non extent files. So we can update 645 * reserve space here. 646 */ 647 if ((retval > 0) && 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 649 ext4_da_update_reserve_space(inode, retval, 1); 650 } 651 652 if (retval > 0) { 653 unsigned int status; 654 655 if (unlikely(retval != map->m_len)) { 656 ext4_warning(inode->i_sb, 657 "ES len assertion failed for inode " 658 "%lu: retval %d != map->m_len %d", 659 inode->i_ino, retval, map->m_len); 660 WARN_ON(1); 661 } 662 663 /* 664 * We have to zeroout blocks before inserting them into extent 665 * status tree. Otherwise someone could look them up there and 666 * use them before they are really zeroed. We also have to 667 * unmap metadata before zeroing as otherwise writeback can 668 * overwrite zeros with stale data from block device. 669 */ 670 if (flags & EXT4_GET_BLOCKS_ZERO && 671 map->m_flags & EXT4_MAP_MAPPED && 672 map->m_flags & EXT4_MAP_NEW) { 673 ret = ext4_issue_zeroout(inode, map->m_lblk, 674 map->m_pblk, map->m_len); 675 if (ret) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 /* 682 * If the extent has been zeroed out, we don't need to update 683 * extent status tree. 684 */ 685 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 686 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 687 if (ext4_es_is_written(&es)) 688 goto out_sem; 689 } 690 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 691 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 692 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 693 !(status & EXTENT_STATUS_WRITTEN) && 694 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 695 map->m_lblk + map->m_len - 1)) 696 status |= EXTENT_STATUS_DELAYED; 697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 698 map->m_pblk, status); 699 if (ret < 0) { 700 retval = ret; 701 goto out_sem; 702 } 703 } 704 705 out_sem: 706 up_write((&EXT4_I(inode)->i_data_sem)); 707 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 708 ret = check_block_validity(inode, map); 709 if (ret != 0) 710 return ret; 711 712 /* 713 * Inodes with freshly allocated blocks where contents will be 714 * visible after transaction commit must be on transaction's 715 * ordered data list. 716 */ 717 if (map->m_flags & EXT4_MAP_NEW && 718 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 719 !(flags & EXT4_GET_BLOCKS_ZERO) && 720 !ext4_is_quota_file(inode) && 721 ext4_should_order_data(inode)) { 722 loff_t start_byte = 723 (loff_t)map->m_lblk << inode->i_blkbits; 724 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 725 726 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 727 ret = ext4_jbd2_inode_add_wait(handle, inode, 728 start_byte, length); 729 else 730 ret = ext4_jbd2_inode_add_write(handle, inode, 731 start_byte, length); 732 if (ret) 733 return ret; 734 } 735 ext4_fc_track_range(handle, inode, map->m_lblk, 736 map->m_lblk + map->m_len - 1); 737 } 738 739 if (retval < 0) 740 ext_debug(inode, "failed with err %d\n", retval); 741 return retval; 742 } 743 744 /* 745 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 746 * we have to be careful as someone else may be manipulating b_state as well. 747 */ 748 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 749 { 750 unsigned long old_state; 751 unsigned long new_state; 752 753 flags &= EXT4_MAP_FLAGS; 754 755 /* Dummy buffer_head? Set non-atomically. */ 756 if (!bh->b_page) { 757 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 758 return; 759 } 760 /* 761 * Someone else may be modifying b_state. Be careful! This is ugly but 762 * once we get rid of using bh as a container for mapping information 763 * to pass to / from get_block functions, this can go away. 764 */ 765 do { 766 old_state = READ_ONCE(bh->b_state); 767 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 768 } while (unlikely( 769 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 770 } 771 772 static int _ext4_get_block(struct inode *inode, sector_t iblock, 773 struct buffer_head *bh, int flags) 774 { 775 struct ext4_map_blocks map; 776 int ret = 0; 777 778 if (ext4_has_inline_data(inode)) 779 return -ERANGE; 780 781 map.m_lblk = iblock; 782 map.m_len = bh->b_size >> inode->i_blkbits; 783 784 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 785 flags); 786 if (ret > 0) { 787 map_bh(bh, inode->i_sb, map.m_pblk); 788 ext4_update_bh_state(bh, map.m_flags); 789 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 790 ret = 0; 791 } else if (ret == 0) { 792 /* hole case, need to fill in bh->b_size */ 793 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 794 } 795 return ret; 796 } 797 798 int ext4_get_block(struct inode *inode, sector_t iblock, 799 struct buffer_head *bh, int create) 800 { 801 return _ext4_get_block(inode, iblock, bh, 802 create ? EXT4_GET_BLOCKS_CREATE : 0); 803 } 804 805 /* 806 * Get block function used when preparing for buffered write if we require 807 * creating an unwritten extent if blocks haven't been allocated. The extent 808 * will be converted to written after the IO is complete. 809 */ 810 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 811 struct buffer_head *bh_result, int create) 812 { 813 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 814 inode->i_ino, create); 815 return _ext4_get_block(inode, iblock, bh_result, 816 EXT4_GET_BLOCKS_IO_CREATE_EXT); 817 } 818 819 /* Maximum number of blocks we map for direct IO at once. */ 820 #define DIO_MAX_BLOCKS 4096 821 822 /* 823 * `handle' can be NULL if create is zero 824 */ 825 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 826 ext4_lblk_t block, int map_flags) 827 { 828 struct ext4_map_blocks map; 829 struct buffer_head *bh; 830 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 831 int err; 832 833 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 834 || handle != NULL || create == 0); 835 836 map.m_lblk = block; 837 map.m_len = 1; 838 err = ext4_map_blocks(handle, inode, &map, map_flags); 839 840 if (err == 0) 841 return create ? ERR_PTR(-ENOSPC) : NULL; 842 if (err < 0) 843 return ERR_PTR(err); 844 845 bh = sb_getblk(inode->i_sb, map.m_pblk); 846 if (unlikely(!bh)) 847 return ERR_PTR(-ENOMEM); 848 if (map.m_flags & EXT4_MAP_NEW) { 849 J_ASSERT(create != 0); 850 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 851 || (handle != NULL)); 852 853 /* 854 * Now that we do not always journal data, we should 855 * keep in mind whether this should always journal the 856 * new buffer as metadata. For now, regular file 857 * writes use ext4_get_block instead, so it's not a 858 * problem. 859 */ 860 lock_buffer(bh); 861 BUFFER_TRACE(bh, "call get_create_access"); 862 err = ext4_journal_get_create_access(handle, bh); 863 if (unlikely(err)) { 864 unlock_buffer(bh); 865 goto errout; 866 } 867 if (!buffer_uptodate(bh)) { 868 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 869 set_buffer_uptodate(bh); 870 } 871 unlock_buffer(bh); 872 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 873 err = ext4_handle_dirty_metadata(handle, inode, bh); 874 if (unlikely(err)) 875 goto errout; 876 } else 877 BUFFER_TRACE(bh, "not a new buffer"); 878 return bh; 879 errout: 880 brelse(bh); 881 return ERR_PTR(err); 882 } 883 884 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 885 ext4_lblk_t block, int map_flags) 886 { 887 struct buffer_head *bh; 888 int ret; 889 890 bh = ext4_getblk(handle, inode, block, map_flags); 891 if (IS_ERR(bh)) 892 return bh; 893 if (!bh || ext4_buffer_uptodate(bh)) 894 return bh; 895 896 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 897 if (ret) { 898 put_bh(bh); 899 return ERR_PTR(ret); 900 } 901 return bh; 902 } 903 904 /* Read a contiguous batch of blocks. */ 905 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 906 bool wait, struct buffer_head **bhs) 907 { 908 int i, err; 909 910 for (i = 0; i < bh_count; i++) { 911 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 912 if (IS_ERR(bhs[i])) { 913 err = PTR_ERR(bhs[i]); 914 bh_count = i; 915 goto out_brelse; 916 } 917 } 918 919 for (i = 0; i < bh_count; i++) 920 /* Note that NULL bhs[i] is valid because of holes. */ 921 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 922 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 923 924 if (!wait) 925 return 0; 926 927 for (i = 0; i < bh_count; i++) 928 if (bhs[i]) 929 wait_on_buffer(bhs[i]); 930 931 for (i = 0; i < bh_count; i++) { 932 if (bhs[i] && !buffer_uptodate(bhs[i])) { 933 err = -EIO; 934 goto out_brelse; 935 } 936 } 937 return 0; 938 939 out_brelse: 940 for (i = 0; i < bh_count; i++) { 941 brelse(bhs[i]); 942 bhs[i] = NULL; 943 } 944 return err; 945 } 946 947 int ext4_walk_page_buffers(handle_t *handle, 948 struct buffer_head *head, 949 unsigned from, 950 unsigned to, 951 int *partial, 952 int (*fn)(handle_t *handle, 953 struct buffer_head *bh)) 954 { 955 struct buffer_head *bh; 956 unsigned block_start, block_end; 957 unsigned blocksize = head->b_size; 958 int err, ret = 0; 959 struct buffer_head *next; 960 961 for (bh = head, block_start = 0; 962 ret == 0 && (bh != head || !block_start); 963 block_start = block_end, bh = next) { 964 next = bh->b_this_page; 965 block_end = block_start + blocksize; 966 if (block_end <= from || block_start >= to) { 967 if (partial && !buffer_uptodate(bh)) 968 *partial = 1; 969 continue; 970 } 971 err = (*fn)(handle, bh); 972 if (!ret) 973 ret = err; 974 } 975 return ret; 976 } 977 978 /* 979 * To preserve ordering, it is essential that the hole instantiation and 980 * the data write be encapsulated in a single transaction. We cannot 981 * close off a transaction and start a new one between the ext4_get_block() 982 * and the commit_write(). So doing the jbd2_journal_start at the start of 983 * prepare_write() is the right place. 984 * 985 * Also, this function can nest inside ext4_writepage(). In that case, we 986 * *know* that ext4_writepage() has generated enough buffer credits to do the 987 * whole page. So we won't block on the journal in that case, which is good, 988 * because the caller may be PF_MEMALLOC. 989 * 990 * By accident, ext4 can be reentered when a transaction is open via 991 * quota file writes. If we were to commit the transaction while thus 992 * reentered, there can be a deadlock - we would be holding a quota 993 * lock, and the commit would never complete if another thread had a 994 * transaction open and was blocking on the quota lock - a ranking 995 * violation. 996 * 997 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 998 * will _not_ run commit under these circumstances because handle->h_ref 999 * is elevated. We'll still have enough credits for the tiny quotafile 1000 * write. 1001 */ 1002 int do_journal_get_write_access(handle_t *handle, 1003 struct buffer_head *bh) 1004 { 1005 int dirty = buffer_dirty(bh); 1006 int ret; 1007 1008 if (!buffer_mapped(bh) || buffer_freed(bh)) 1009 return 0; 1010 /* 1011 * __block_write_begin() could have dirtied some buffers. Clean 1012 * the dirty bit as jbd2_journal_get_write_access() could complain 1013 * otherwise about fs integrity issues. Setting of the dirty bit 1014 * by __block_write_begin() isn't a real problem here as we clear 1015 * the bit before releasing a page lock and thus writeback cannot 1016 * ever write the buffer. 1017 */ 1018 if (dirty) 1019 clear_buffer_dirty(bh); 1020 BUFFER_TRACE(bh, "get write access"); 1021 ret = ext4_journal_get_write_access(handle, bh); 1022 if (!ret && dirty) 1023 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1024 return ret; 1025 } 1026 1027 #ifdef CONFIG_FS_ENCRYPTION 1028 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1029 get_block_t *get_block) 1030 { 1031 unsigned from = pos & (PAGE_SIZE - 1); 1032 unsigned to = from + len; 1033 struct inode *inode = page->mapping->host; 1034 unsigned block_start, block_end; 1035 sector_t block; 1036 int err = 0; 1037 unsigned blocksize = inode->i_sb->s_blocksize; 1038 unsigned bbits; 1039 struct buffer_head *bh, *head, *wait[2]; 1040 int nr_wait = 0; 1041 int i; 1042 1043 BUG_ON(!PageLocked(page)); 1044 BUG_ON(from > PAGE_SIZE); 1045 BUG_ON(to > PAGE_SIZE); 1046 BUG_ON(from > to); 1047 1048 if (!page_has_buffers(page)) 1049 create_empty_buffers(page, blocksize, 0); 1050 head = page_buffers(page); 1051 bbits = ilog2(blocksize); 1052 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1053 1054 for (bh = head, block_start = 0; bh != head || !block_start; 1055 block++, block_start = block_end, bh = bh->b_this_page) { 1056 block_end = block_start + blocksize; 1057 if (block_end <= from || block_start >= to) { 1058 if (PageUptodate(page)) { 1059 if (!buffer_uptodate(bh)) 1060 set_buffer_uptodate(bh); 1061 } 1062 continue; 1063 } 1064 if (buffer_new(bh)) 1065 clear_buffer_new(bh); 1066 if (!buffer_mapped(bh)) { 1067 WARN_ON(bh->b_size != blocksize); 1068 err = get_block(inode, block, bh, 1); 1069 if (err) 1070 break; 1071 if (buffer_new(bh)) { 1072 if (PageUptodate(page)) { 1073 clear_buffer_new(bh); 1074 set_buffer_uptodate(bh); 1075 mark_buffer_dirty(bh); 1076 continue; 1077 } 1078 if (block_end > to || block_start < from) 1079 zero_user_segments(page, to, block_end, 1080 block_start, from); 1081 continue; 1082 } 1083 } 1084 if (PageUptodate(page)) { 1085 if (!buffer_uptodate(bh)) 1086 set_buffer_uptodate(bh); 1087 continue; 1088 } 1089 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1090 !buffer_unwritten(bh) && 1091 (block_start < from || block_end > to)) { 1092 ext4_read_bh_lock(bh, 0, false); 1093 wait[nr_wait++] = bh; 1094 } 1095 } 1096 /* 1097 * If we issued read requests, let them complete. 1098 */ 1099 for (i = 0; i < nr_wait; i++) { 1100 wait_on_buffer(wait[i]); 1101 if (!buffer_uptodate(wait[i])) 1102 err = -EIO; 1103 } 1104 if (unlikely(err)) { 1105 page_zero_new_buffers(page, from, to); 1106 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1107 for (i = 0; i < nr_wait; i++) { 1108 int err2; 1109 1110 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1111 bh_offset(wait[i])); 1112 if (err2) { 1113 clear_buffer_uptodate(wait[i]); 1114 err = err2; 1115 } 1116 } 1117 } 1118 1119 return err; 1120 } 1121 #endif 1122 1123 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1124 loff_t pos, unsigned len, unsigned flags, 1125 struct page **pagep, void **fsdata) 1126 { 1127 struct inode *inode = mapping->host; 1128 int ret, needed_blocks; 1129 handle_t *handle; 1130 int retries = 0; 1131 struct page *page; 1132 pgoff_t index; 1133 unsigned from, to; 1134 1135 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1136 return -EIO; 1137 1138 trace_ext4_write_begin(inode, pos, len, flags); 1139 /* 1140 * Reserve one block more for addition to orphan list in case 1141 * we allocate blocks but write fails for some reason 1142 */ 1143 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1144 index = pos >> PAGE_SHIFT; 1145 from = pos & (PAGE_SIZE - 1); 1146 to = from + len; 1147 1148 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1149 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1150 flags, pagep); 1151 if (ret < 0) 1152 return ret; 1153 if (ret == 1) 1154 return 0; 1155 } 1156 1157 /* 1158 * grab_cache_page_write_begin() can take a long time if the 1159 * system is thrashing due to memory pressure, or if the page 1160 * is being written back. So grab it first before we start 1161 * the transaction handle. This also allows us to allocate 1162 * the page (if needed) without using GFP_NOFS. 1163 */ 1164 retry_grab: 1165 page = grab_cache_page_write_begin(mapping, index, flags); 1166 if (!page) 1167 return -ENOMEM; 1168 unlock_page(page); 1169 1170 retry_journal: 1171 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1172 if (IS_ERR(handle)) { 1173 put_page(page); 1174 return PTR_ERR(handle); 1175 } 1176 1177 lock_page(page); 1178 if (page->mapping != mapping) { 1179 /* The page got truncated from under us */ 1180 unlock_page(page); 1181 put_page(page); 1182 ext4_journal_stop(handle); 1183 goto retry_grab; 1184 } 1185 /* In case writeback began while the page was unlocked */ 1186 wait_for_stable_page(page); 1187 1188 #ifdef CONFIG_FS_ENCRYPTION 1189 if (ext4_should_dioread_nolock(inode)) 1190 ret = ext4_block_write_begin(page, pos, len, 1191 ext4_get_block_unwritten); 1192 else 1193 ret = ext4_block_write_begin(page, pos, len, 1194 ext4_get_block); 1195 #else 1196 if (ext4_should_dioread_nolock(inode)) 1197 ret = __block_write_begin(page, pos, len, 1198 ext4_get_block_unwritten); 1199 else 1200 ret = __block_write_begin(page, pos, len, ext4_get_block); 1201 #endif 1202 if (!ret && ext4_should_journal_data(inode)) { 1203 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1204 from, to, NULL, 1205 do_journal_get_write_access); 1206 } 1207 1208 if (ret) { 1209 bool extended = (pos + len > inode->i_size) && 1210 !ext4_verity_in_progress(inode); 1211 1212 unlock_page(page); 1213 /* 1214 * __block_write_begin may have instantiated a few blocks 1215 * outside i_size. Trim these off again. Don't need 1216 * i_size_read because we hold i_mutex. 1217 * 1218 * Add inode to orphan list in case we crash before 1219 * truncate finishes 1220 */ 1221 if (extended && ext4_can_truncate(inode)) 1222 ext4_orphan_add(handle, inode); 1223 1224 ext4_journal_stop(handle); 1225 if (extended) { 1226 ext4_truncate_failed_write(inode); 1227 /* 1228 * If truncate failed early the inode might 1229 * still be on the orphan list; we need to 1230 * make sure the inode is removed from the 1231 * orphan list in that case. 1232 */ 1233 if (inode->i_nlink) 1234 ext4_orphan_del(NULL, inode); 1235 } 1236 1237 if (ret == -ENOSPC && 1238 ext4_should_retry_alloc(inode->i_sb, &retries)) 1239 goto retry_journal; 1240 put_page(page); 1241 return ret; 1242 } 1243 *pagep = page; 1244 return ret; 1245 } 1246 1247 /* For write_end() in data=journal mode */ 1248 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1249 { 1250 int ret; 1251 if (!buffer_mapped(bh) || buffer_freed(bh)) 1252 return 0; 1253 set_buffer_uptodate(bh); 1254 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1255 clear_buffer_meta(bh); 1256 clear_buffer_prio(bh); 1257 return ret; 1258 } 1259 1260 /* 1261 * We need to pick up the new inode size which generic_commit_write gave us 1262 * `file' can be NULL - eg, when called from page_symlink(). 1263 * 1264 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1265 * buffers are managed internally. 1266 */ 1267 static int ext4_write_end(struct file *file, 1268 struct address_space *mapping, 1269 loff_t pos, unsigned len, unsigned copied, 1270 struct page *page, void *fsdata) 1271 { 1272 handle_t *handle = ext4_journal_current_handle(); 1273 struct inode *inode = mapping->host; 1274 loff_t old_size = inode->i_size; 1275 int ret = 0, ret2; 1276 int i_size_changed = 0; 1277 int inline_data = ext4_has_inline_data(inode); 1278 bool verity = ext4_verity_in_progress(inode); 1279 1280 trace_ext4_write_end(inode, pos, len, copied); 1281 if (inline_data) { 1282 ret = ext4_write_inline_data_end(inode, pos, len, 1283 copied, page); 1284 if (ret < 0) { 1285 unlock_page(page); 1286 put_page(page); 1287 goto errout; 1288 } 1289 copied = ret; 1290 } else 1291 copied = block_write_end(file, mapping, pos, 1292 len, copied, page, fsdata); 1293 /* 1294 * it's important to update i_size while still holding page lock: 1295 * page writeout could otherwise come in and zero beyond i_size. 1296 * 1297 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1298 * blocks are being written past EOF, so skip the i_size update. 1299 */ 1300 if (!verity) 1301 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1302 unlock_page(page); 1303 put_page(page); 1304 1305 if (old_size < pos && !verity) 1306 pagecache_isize_extended(inode, old_size, pos); 1307 /* 1308 * Don't mark the inode dirty under page lock. First, it unnecessarily 1309 * makes the holding time of page lock longer. Second, it forces lock 1310 * ordering of page lock and transaction start for journaling 1311 * filesystems. 1312 */ 1313 if (i_size_changed || inline_data) 1314 ret = ext4_mark_inode_dirty(handle, inode); 1315 1316 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1317 /* if we have allocated more blocks and copied 1318 * less. We will have blocks allocated outside 1319 * inode->i_size. So truncate them 1320 */ 1321 ext4_orphan_add(handle, inode); 1322 errout: 1323 ret2 = ext4_journal_stop(handle); 1324 if (!ret) 1325 ret = ret2; 1326 1327 if (pos + len > inode->i_size && !verity) { 1328 ext4_truncate_failed_write(inode); 1329 /* 1330 * If truncate failed early the inode might still be 1331 * on the orphan list; we need to make sure the inode 1332 * is removed from the orphan list in that case. 1333 */ 1334 if (inode->i_nlink) 1335 ext4_orphan_del(NULL, inode); 1336 } 1337 1338 return ret ? ret : copied; 1339 } 1340 1341 /* 1342 * This is a private version of page_zero_new_buffers() which doesn't 1343 * set the buffer to be dirty, since in data=journalled mode we need 1344 * to call ext4_handle_dirty_metadata() instead. 1345 */ 1346 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1347 struct page *page, 1348 unsigned from, unsigned to) 1349 { 1350 unsigned int block_start = 0, block_end; 1351 struct buffer_head *head, *bh; 1352 1353 bh = head = page_buffers(page); 1354 do { 1355 block_end = block_start + bh->b_size; 1356 if (buffer_new(bh)) { 1357 if (block_end > from && block_start < to) { 1358 if (!PageUptodate(page)) { 1359 unsigned start, size; 1360 1361 start = max(from, block_start); 1362 size = min(to, block_end) - start; 1363 1364 zero_user(page, start, size); 1365 write_end_fn(handle, bh); 1366 } 1367 clear_buffer_new(bh); 1368 } 1369 } 1370 block_start = block_end; 1371 bh = bh->b_this_page; 1372 } while (bh != head); 1373 } 1374 1375 static int ext4_journalled_write_end(struct file *file, 1376 struct address_space *mapping, 1377 loff_t pos, unsigned len, unsigned copied, 1378 struct page *page, void *fsdata) 1379 { 1380 handle_t *handle = ext4_journal_current_handle(); 1381 struct inode *inode = mapping->host; 1382 loff_t old_size = inode->i_size; 1383 int ret = 0, ret2; 1384 int partial = 0; 1385 unsigned from, to; 1386 int size_changed = 0; 1387 int inline_data = ext4_has_inline_data(inode); 1388 bool verity = ext4_verity_in_progress(inode); 1389 1390 trace_ext4_journalled_write_end(inode, pos, len, copied); 1391 from = pos & (PAGE_SIZE - 1); 1392 to = from + len; 1393 1394 BUG_ON(!ext4_handle_valid(handle)); 1395 1396 if (inline_data) { 1397 ret = ext4_write_inline_data_end(inode, pos, len, 1398 copied, page); 1399 if (ret < 0) { 1400 unlock_page(page); 1401 put_page(page); 1402 goto errout; 1403 } 1404 copied = ret; 1405 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1406 copied = 0; 1407 ext4_journalled_zero_new_buffers(handle, page, from, to); 1408 } else { 1409 if (unlikely(copied < len)) 1410 ext4_journalled_zero_new_buffers(handle, page, 1411 from + copied, to); 1412 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1413 from + copied, &partial, 1414 write_end_fn); 1415 if (!partial) 1416 SetPageUptodate(page); 1417 } 1418 if (!verity) 1419 size_changed = ext4_update_inode_size(inode, pos + copied); 1420 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1421 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1422 unlock_page(page); 1423 put_page(page); 1424 1425 if (old_size < pos && !verity) 1426 pagecache_isize_extended(inode, old_size, pos); 1427 1428 if (size_changed || inline_data) { 1429 ret2 = ext4_mark_inode_dirty(handle, inode); 1430 if (!ret) 1431 ret = ret2; 1432 } 1433 1434 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1435 /* if we have allocated more blocks and copied 1436 * less. We will have blocks allocated outside 1437 * inode->i_size. So truncate them 1438 */ 1439 ext4_orphan_add(handle, inode); 1440 1441 errout: 1442 ret2 = ext4_journal_stop(handle); 1443 if (!ret) 1444 ret = ret2; 1445 if (pos + len > inode->i_size && !verity) { 1446 ext4_truncate_failed_write(inode); 1447 /* 1448 * If truncate failed early the inode might still be 1449 * on the orphan list; we need to make sure the inode 1450 * is removed from the orphan list in that case. 1451 */ 1452 if (inode->i_nlink) 1453 ext4_orphan_del(NULL, inode); 1454 } 1455 1456 return ret ? ret : copied; 1457 } 1458 1459 /* 1460 * Reserve space for a single cluster 1461 */ 1462 static int ext4_da_reserve_space(struct inode *inode) 1463 { 1464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1465 struct ext4_inode_info *ei = EXT4_I(inode); 1466 int ret; 1467 1468 /* 1469 * We will charge metadata quota at writeout time; this saves 1470 * us from metadata over-estimation, though we may go over by 1471 * a small amount in the end. Here we just reserve for data. 1472 */ 1473 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1474 if (ret) 1475 return ret; 1476 1477 spin_lock(&ei->i_block_reservation_lock); 1478 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1479 spin_unlock(&ei->i_block_reservation_lock); 1480 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1481 return -ENOSPC; 1482 } 1483 ei->i_reserved_data_blocks++; 1484 trace_ext4_da_reserve_space(inode); 1485 spin_unlock(&ei->i_block_reservation_lock); 1486 1487 return 0; /* success */ 1488 } 1489 1490 void ext4_da_release_space(struct inode *inode, int to_free) 1491 { 1492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1493 struct ext4_inode_info *ei = EXT4_I(inode); 1494 1495 if (!to_free) 1496 return; /* Nothing to release, exit */ 1497 1498 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1499 1500 trace_ext4_da_release_space(inode, to_free); 1501 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1502 /* 1503 * if there aren't enough reserved blocks, then the 1504 * counter is messed up somewhere. Since this 1505 * function is called from invalidate page, it's 1506 * harmless to return without any action. 1507 */ 1508 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1509 "ino %lu, to_free %d with only %d reserved " 1510 "data blocks", inode->i_ino, to_free, 1511 ei->i_reserved_data_blocks); 1512 WARN_ON(1); 1513 to_free = ei->i_reserved_data_blocks; 1514 } 1515 ei->i_reserved_data_blocks -= to_free; 1516 1517 /* update fs dirty data blocks counter */ 1518 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1519 1520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1521 1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1523 } 1524 1525 /* 1526 * Delayed allocation stuff 1527 */ 1528 1529 struct mpage_da_data { 1530 struct inode *inode; 1531 struct writeback_control *wbc; 1532 1533 pgoff_t first_page; /* The first page to write */ 1534 pgoff_t next_page; /* Current page to examine */ 1535 pgoff_t last_page; /* Last page to examine */ 1536 /* 1537 * Extent to map - this can be after first_page because that can be 1538 * fully mapped. We somewhat abuse m_flags to store whether the extent 1539 * is delalloc or unwritten. 1540 */ 1541 struct ext4_map_blocks map; 1542 struct ext4_io_submit io_submit; /* IO submission data */ 1543 unsigned int do_map:1; 1544 unsigned int scanned_until_end:1; 1545 }; 1546 1547 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1548 bool invalidate) 1549 { 1550 int nr_pages, i; 1551 pgoff_t index, end; 1552 struct pagevec pvec; 1553 struct inode *inode = mpd->inode; 1554 struct address_space *mapping = inode->i_mapping; 1555 1556 /* This is necessary when next_page == 0. */ 1557 if (mpd->first_page >= mpd->next_page) 1558 return; 1559 1560 mpd->scanned_until_end = 0; 1561 index = mpd->first_page; 1562 end = mpd->next_page - 1; 1563 if (invalidate) { 1564 ext4_lblk_t start, last; 1565 start = index << (PAGE_SHIFT - inode->i_blkbits); 1566 last = end << (PAGE_SHIFT - inode->i_blkbits); 1567 ext4_es_remove_extent(inode, start, last - start + 1); 1568 } 1569 1570 pagevec_init(&pvec); 1571 while (index <= end) { 1572 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1573 if (nr_pages == 0) 1574 break; 1575 for (i = 0; i < nr_pages; i++) { 1576 struct page *page = pvec.pages[i]; 1577 1578 BUG_ON(!PageLocked(page)); 1579 BUG_ON(PageWriteback(page)); 1580 if (invalidate) { 1581 if (page_mapped(page)) 1582 clear_page_dirty_for_io(page); 1583 block_invalidatepage(page, 0, PAGE_SIZE); 1584 ClearPageUptodate(page); 1585 } 1586 unlock_page(page); 1587 } 1588 pagevec_release(&pvec); 1589 } 1590 } 1591 1592 static void ext4_print_free_blocks(struct inode *inode) 1593 { 1594 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1595 struct super_block *sb = inode->i_sb; 1596 struct ext4_inode_info *ei = EXT4_I(inode); 1597 1598 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1599 EXT4_C2B(EXT4_SB(inode->i_sb), 1600 ext4_count_free_clusters(sb))); 1601 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1602 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1603 (long long) EXT4_C2B(EXT4_SB(sb), 1604 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1605 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1606 (long long) EXT4_C2B(EXT4_SB(sb), 1607 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1608 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1609 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1610 ei->i_reserved_data_blocks); 1611 return; 1612 } 1613 1614 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1615 { 1616 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1617 } 1618 1619 /* 1620 * ext4_insert_delayed_block - adds a delayed block to the extents status 1621 * tree, incrementing the reserved cluster/block 1622 * count or making a pending reservation 1623 * where needed 1624 * 1625 * @inode - file containing the newly added block 1626 * @lblk - logical block to be added 1627 * 1628 * Returns 0 on success, negative error code on failure. 1629 */ 1630 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1631 { 1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1633 int ret; 1634 bool allocated = false; 1635 1636 /* 1637 * If the cluster containing lblk is shared with a delayed, 1638 * written, or unwritten extent in a bigalloc file system, it's 1639 * already been accounted for and does not need to be reserved. 1640 * A pending reservation must be made for the cluster if it's 1641 * shared with a written or unwritten extent and doesn't already 1642 * have one. Written and unwritten extents can be purged from the 1643 * extents status tree if the system is under memory pressure, so 1644 * it's necessary to examine the extent tree if a search of the 1645 * extents status tree doesn't get a match. 1646 */ 1647 if (sbi->s_cluster_ratio == 1) { 1648 ret = ext4_da_reserve_space(inode); 1649 if (ret != 0) /* ENOSPC */ 1650 goto errout; 1651 } else { /* bigalloc */ 1652 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1653 if (!ext4_es_scan_clu(inode, 1654 &ext4_es_is_mapped, lblk)) { 1655 ret = ext4_clu_mapped(inode, 1656 EXT4_B2C(sbi, lblk)); 1657 if (ret < 0) 1658 goto errout; 1659 if (ret == 0) { 1660 ret = ext4_da_reserve_space(inode); 1661 if (ret != 0) /* ENOSPC */ 1662 goto errout; 1663 } else { 1664 allocated = true; 1665 } 1666 } else { 1667 allocated = true; 1668 } 1669 } 1670 } 1671 1672 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1673 1674 errout: 1675 return ret; 1676 } 1677 1678 /* 1679 * This function is grabs code from the very beginning of 1680 * ext4_map_blocks, but assumes that the caller is from delayed write 1681 * time. This function looks up the requested blocks and sets the 1682 * buffer delay bit under the protection of i_data_sem. 1683 */ 1684 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1685 struct ext4_map_blocks *map, 1686 struct buffer_head *bh) 1687 { 1688 struct extent_status es; 1689 int retval; 1690 sector_t invalid_block = ~((sector_t) 0xffff); 1691 #ifdef ES_AGGRESSIVE_TEST 1692 struct ext4_map_blocks orig_map; 1693 1694 memcpy(&orig_map, map, sizeof(*map)); 1695 #endif 1696 1697 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1698 invalid_block = ~0; 1699 1700 map->m_flags = 0; 1701 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1702 (unsigned long) map->m_lblk); 1703 1704 /* Lookup extent status tree firstly */ 1705 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1706 if (ext4_es_is_hole(&es)) { 1707 retval = 0; 1708 down_read(&EXT4_I(inode)->i_data_sem); 1709 goto add_delayed; 1710 } 1711 1712 /* 1713 * Delayed extent could be allocated by fallocate. 1714 * So we need to check it. 1715 */ 1716 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1717 map_bh(bh, inode->i_sb, invalid_block); 1718 set_buffer_new(bh); 1719 set_buffer_delay(bh); 1720 return 0; 1721 } 1722 1723 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1724 retval = es.es_len - (iblock - es.es_lblk); 1725 if (retval > map->m_len) 1726 retval = map->m_len; 1727 map->m_len = retval; 1728 if (ext4_es_is_written(&es)) 1729 map->m_flags |= EXT4_MAP_MAPPED; 1730 else if (ext4_es_is_unwritten(&es)) 1731 map->m_flags |= EXT4_MAP_UNWRITTEN; 1732 else 1733 BUG(); 1734 1735 #ifdef ES_AGGRESSIVE_TEST 1736 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1737 #endif 1738 return retval; 1739 } 1740 1741 /* 1742 * Try to see if we can get the block without requesting a new 1743 * file system block. 1744 */ 1745 down_read(&EXT4_I(inode)->i_data_sem); 1746 if (ext4_has_inline_data(inode)) 1747 retval = 0; 1748 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1749 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1750 else 1751 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1752 1753 add_delayed: 1754 if (retval == 0) { 1755 int ret; 1756 1757 /* 1758 * XXX: __block_prepare_write() unmaps passed block, 1759 * is it OK? 1760 */ 1761 1762 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1763 if (ret != 0) { 1764 retval = ret; 1765 goto out_unlock; 1766 } 1767 1768 map_bh(bh, inode->i_sb, invalid_block); 1769 set_buffer_new(bh); 1770 set_buffer_delay(bh); 1771 } else if (retval > 0) { 1772 int ret; 1773 unsigned int status; 1774 1775 if (unlikely(retval != map->m_len)) { 1776 ext4_warning(inode->i_sb, 1777 "ES len assertion failed for inode " 1778 "%lu: retval %d != map->m_len %d", 1779 inode->i_ino, retval, map->m_len); 1780 WARN_ON(1); 1781 } 1782 1783 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1784 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1785 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1786 map->m_pblk, status); 1787 if (ret != 0) 1788 retval = ret; 1789 } 1790 1791 out_unlock: 1792 up_read((&EXT4_I(inode)->i_data_sem)); 1793 1794 return retval; 1795 } 1796 1797 /* 1798 * This is a special get_block_t callback which is used by 1799 * ext4_da_write_begin(). It will either return mapped block or 1800 * reserve space for a single block. 1801 * 1802 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1803 * We also have b_blocknr = -1 and b_bdev initialized properly 1804 * 1805 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1806 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1807 * initialized properly. 1808 */ 1809 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1810 struct buffer_head *bh, int create) 1811 { 1812 struct ext4_map_blocks map; 1813 int ret = 0; 1814 1815 BUG_ON(create == 0); 1816 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1817 1818 map.m_lblk = iblock; 1819 map.m_len = 1; 1820 1821 /* 1822 * first, we need to know whether the block is allocated already 1823 * preallocated blocks are unmapped but should treated 1824 * the same as allocated blocks. 1825 */ 1826 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1827 if (ret <= 0) 1828 return ret; 1829 1830 map_bh(bh, inode->i_sb, map.m_pblk); 1831 ext4_update_bh_state(bh, map.m_flags); 1832 1833 if (buffer_unwritten(bh)) { 1834 /* A delayed write to unwritten bh should be marked 1835 * new and mapped. Mapped ensures that we don't do 1836 * get_block multiple times when we write to the same 1837 * offset and new ensures that we do proper zero out 1838 * for partial write. 1839 */ 1840 set_buffer_new(bh); 1841 set_buffer_mapped(bh); 1842 } 1843 return 0; 1844 } 1845 1846 static int bget_one(handle_t *handle, struct buffer_head *bh) 1847 { 1848 get_bh(bh); 1849 return 0; 1850 } 1851 1852 static int bput_one(handle_t *handle, struct buffer_head *bh) 1853 { 1854 put_bh(bh); 1855 return 0; 1856 } 1857 1858 static int __ext4_journalled_writepage(struct page *page, 1859 unsigned int len) 1860 { 1861 struct address_space *mapping = page->mapping; 1862 struct inode *inode = mapping->host; 1863 struct buffer_head *page_bufs = NULL; 1864 handle_t *handle = NULL; 1865 int ret = 0, err = 0; 1866 int inline_data = ext4_has_inline_data(inode); 1867 struct buffer_head *inode_bh = NULL; 1868 1869 ClearPageChecked(page); 1870 1871 if (inline_data) { 1872 BUG_ON(page->index != 0); 1873 BUG_ON(len > ext4_get_max_inline_size(inode)); 1874 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1875 if (inode_bh == NULL) 1876 goto out; 1877 } else { 1878 page_bufs = page_buffers(page); 1879 if (!page_bufs) { 1880 BUG(); 1881 goto out; 1882 } 1883 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1884 NULL, bget_one); 1885 } 1886 /* 1887 * We need to release the page lock before we start the 1888 * journal, so grab a reference so the page won't disappear 1889 * out from under us. 1890 */ 1891 get_page(page); 1892 unlock_page(page); 1893 1894 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1895 ext4_writepage_trans_blocks(inode)); 1896 if (IS_ERR(handle)) { 1897 ret = PTR_ERR(handle); 1898 put_page(page); 1899 goto out_no_pagelock; 1900 } 1901 BUG_ON(!ext4_handle_valid(handle)); 1902 1903 lock_page(page); 1904 put_page(page); 1905 if (page->mapping != mapping) { 1906 /* The page got truncated from under us */ 1907 ext4_journal_stop(handle); 1908 ret = 0; 1909 goto out; 1910 } 1911 1912 if (inline_data) { 1913 ret = ext4_mark_inode_dirty(handle, inode); 1914 } else { 1915 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1916 do_journal_get_write_access); 1917 1918 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1919 write_end_fn); 1920 } 1921 if (ret == 0) 1922 ret = err; 1923 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1924 if (ret == 0) 1925 ret = err; 1926 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1927 err = ext4_journal_stop(handle); 1928 if (!ret) 1929 ret = err; 1930 1931 if (!ext4_has_inline_data(inode)) 1932 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1933 NULL, bput_one); 1934 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1935 out: 1936 unlock_page(page); 1937 out_no_pagelock: 1938 brelse(inode_bh); 1939 return ret; 1940 } 1941 1942 /* 1943 * Note that we don't need to start a transaction unless we're journaling data 1944 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1945 * need to file the inode to the transaction's list in ordered mode because if 1946 * we are writing back data added by write(), the inode is already there and if 1947 * we are writing back data modified via mmap(), no one guarantees in which 1948 * transaction the data will hit the disk. In case we are journaling data, we 1949 * cannot start transaction directly because transaction start ranks above page 1950 * lock so we have to do some magic. 1951 * 1952 * This function can get called via... 1953 * - ext4_writepages after taking page lock (have journal handle) 1954 * - journal_submit_inode_data_buffers (no journal handle) 1955 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1956 * - grab_page_cache when doing write_begin (have journal handle) 1957 * 1958 * We don't do any block allocation in this function. If we have page with 1959 * multiple blocks we need to write those buffer_heads that are mapped. This 1960 * is important for mmaped based write. So if we do with blocksize 1K 1961 * truncate(f, 1024); 1962 * a = mmap(f, 0, 4096); 1963 * a[0] = 'a'; 1964 * truncate(f, 4096); 1965 * we have in the page first buffer_head mapped via page_mkwrite call back 1966 * but other buffer_heads would be unmapped but dirty (dirty done via the 1967 * do_wp_page). So writepage should write the first block. If we modify 1968 * the mmap area beyond 1024 we will again get a page_fault and the 1969 * page_mkwrite callback will do the block allocation and mark the 1970 * buffer_heads mapped. 1971 * 1972 * We redirty the page if we have any buffer_heads that is either delay or 1973 * unwritten in the page. 1974 * 1975 * We can get recursively called as show below. 1976 * 1977 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1978 * ext4_writepage() 1979 * 1980 * But since we don't do any block allocation we should not deadlock. 1981 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1982 */ 1983 static int ext4_writepage(struct page *page, 1984 struct writeback_control *wbc) 1985 { 1986 int ret = 0; 1987 loff_t size; 1988 unsigned int len; 1989 struct buffer_head *page_bufs = NULL; 1990 struct inode *inode = page->mapping->host; 1991 struct ext4_io_submit io_submit; 1992 bool keep_towrite = false; 1993 1994 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1995 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 1996 unlock_page(page); 1997 return -EIO; 1998 } 1999 2000 trace_ext4_writepage(page); 2001 size = i_size_read(inode); 2002 if (page->index == size >> PAGE_SHIFT && 2003 !ext4_verity_in_progress(inode)) 2004 len = size & ~PAGE_MASK; 2005 else 2006 len = PAGE_SIZE; 2007 2008 page_bufs = page_buffers(page); 2009 /* 2010 * We cannot do block allocation or other extent handling in this 2011 * function. If there are buffers needing that, we have to redirty 2012 * the page. But we may reach here when we do a journal commit via 2013 * journal_submit_inode_data_buffers() and in that case we must write 2014 * allocated buffers to achieve data=ordered mode guarantees. 2015 * 2016 * Also, if there is only one buffer per page (the fs block 2017 * size == the page size), if one buffer needs block 2018 * allocation or needs to modify the extent tree to clear the 2019 * unwritten flag, we know that the page can't be written at 2020 * all, so we might as well refuse the write immediately. 2021 * Unfortunately if the block size != page size, we can't as 2022 * easily detect this case using ext4_walk_page_buffers(), but 2023 * for the extremely common case, this is an optimization that 2024 * skips a useless round trip through ext4_bio_write_page(). 2025 */ 2026 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2027 ext4_bh_delay_or_unwritten)) { 2028 redirty_page_for_writepage(wbc, page); 2029 if ((current->flags & PF_MEMALLOC) || 2030 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2031 /* 2032 * For memory cleaning there's no point in writing only 2033 * some buffers. So just bail out. Warn if we came here 2034 * from direct reclaim. 2035 */ 2036 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2037 == PF_MEMALLOC); 2038 unlock_page(page); 2039 return 0; 2040 } 2041 keep_towrite = true; 2042 } 2043 2044 if (PageChecked(page) && ext4_should_journal_data(inode)) 2045 /* 2046 * It's mmapped pagecache. Add buffers and journal it. There 2047 * doesn't seem much point in redirtying the page here. 2048 */ 2049 return __ext4_journalled_writepage(page, len); 2050 2051 ext4_io_submit_init(&io_submit, wbc); 2052 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2053 if (!io_submit.io_end) { 2054 redirty_page_for_writepage(wbc, page); 2055 unlock_page(page); 2056 return -ENOMEM; 2057 } 2058 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2059 ext4_io_submit(&io_submit); 2060 /* Drop io_end reference we got from init */ 2061 ext4_put_io_end_defer(io_submit.io_end); 2062 return ret; 2063 } 2064 2065 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2066 { 2067 int len; 2068 loff_t size; 2069 int err; 2070 2071 BUG_ON(page->index != mpd->first_page); 2072 clear_page_dirty_for_io(page); 2073 /* 2074 * We have to be very careful here! Nothing protects writeback path 2075 * against i_size changes and the page can be writeably mapped into 2076 * page tables. So an application can be growing i_size and writing 2077 * data through mmap while writeback runs. clear_page_dirty_for_io() 2078 * write-protects our page in page tables and the page cannot get 2079 * written to again until we release page lock. So only after 2080 * clear_page_dirty_for_io() we are safe to sample i_size for 2081 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2082 * on the barrier provided by TestClearPageDirty in 2083 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2084 * after page tables are updated. 2085 */ 2086 size = i_size_read(mpd->inode); 2087 if (page->index == size >> PAGE_SHIFT && 2088 !ext4_verity_in_progress(mpd->inode)) 2089 len = size & ~PAGE_MASK; 2090 else 2091 len = PAGE_SIZE; 2092 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2093 if (!err) 2094 mpd->wbc->nr_to_write--; 2095 mpd->first_page++; 2096 2097 return err; 2098 } 2099 2100 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2101 2102 /* 2103 * mballoc gives us at most this number of blocks... 2104 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2105 * The rest of mballoc seems to handle chunks up to full group size. 2106 */ 2107 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2108 2109 /* 2110 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2111 * 2112 * @mpd - extent of blocks 2113 * @lblk - logical number of the block in the file 2114 * @bh - buffer head we want to add to the extent 2115 * 2116 * The function is used to collect contig. blocks in the same state. If the 2117 * buffer doesn't require mapping for writeback and we haven't started the 2118 * extent of buffers to map yet, the function returns 'true' immediately - the 2119 * caller can write the buffer right away. Otherwise the function returns true 2120 * if the block has been added to the extent, false if the block couldn't be 2121 * added. 2122 */ 2123 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2124 struct buffer_head *bh) 2125 { 2126 struct ext4_map_blocks *map = &mpd->map; 2127 2128 /* Buffer that doesn't need mapping for writeback? */ 2129 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2130 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2131 /* So far no extent to map => we write the buffer right away */ 2132 if (map->m_len == 0) 2133 return true; 2134 return false; 2135 } 2136 2137 /* First block in the extent? */ 2138 if (map->m_len == 0) { 2139 /* We cannot map unless handle is started... */ 2140 if (!mpd->do_map) 2141 return false; 2142 map->m_lblk = lblk; 2143 map->m_len = 1; 2144 map->m_flags = bh->b_state & BH_FLAGS; 2145 return true; 2146 } 2147 2148 /* Don't go larger than mballoc is willing to allocate */ 2149 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2150 return false; 2151 2152 /* Can we merge the block to our big extent? */ 2153 if (lblk == map->m_lblk + map->m_len && 2154 (bh->b_state & BH_FLAGS) == map->m_flags) { 2155 map->m_len++; 2156 return true; 2157 } 2158 return false; 2159 } 2160 2161 /* 2162 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2163 * 2164 * @mpd - extent of blocks for mapping 2165 * @head - the first buffer in the page 2166 * @bh - buffer we should start processing from 2167 * @lblk - logical number of the block in the file corresponding to @bh 2168 * 2169 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2170 * the page for IO if all buffers in this page were mapped and there's no 2171 * accumulated extent of buffers to map or add buffers in the page to the 2172 * extent of buffers to map. The function returns 1 if the caller can continue 2173 * by processing the next page, 0 if it should stop adding buffers to the 2174 * extent to map because we cannot extend it anymore. It can also return value 2175 * < 0 in case of error during IO submission. 2176 */ 2177 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2178 struct buffer_head *head, 2179 struct buffer_head *bh, 2180 ext4_lblk_t lblk) 2181 { 2182 struct inode *inode = mpd->inode; 2183 int err; 2184 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2185 >> inode->i_blkbits; 2186 2187 if (ext4_verity_in_progress(inode)) 2188 blocks = EXT_MAX_BLOCKS; 2189 2190 do { 2191 BUG_ON(buffer_locked(bh)); 2192 2193 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2194 /* Found extent to map? */ 2195 if (mpd->map.m_len) 2196 return 0; 2197 /* Buffer needs mapping and handle is not started? */ 2198 if (!mpd->do_map) 2199 return 0; 2200 /* Everything mapped so far and we hit EOF */ 2201 break; 2202 } 2203 } while (lblk++, (bh = bh->b_this_page) != head); 2204 /* So far everything mapped? Submit the page for IO. */ 2205 if (mpd->map.m_len == 0) { 2206 err = mpage_submit_page(mpd, head->b_page); 2207 if (err < 0) 2208 return err; 2209 } 2210 if (lblk >= blocks) { 2211 mpd->scanned_until_end = 1; 2212 return 0; 2213 } 2214 return 1; 2215 } 2216 2217 /* 2218 * mpage_process_page - update page buffers corresponding to changed extent and 2219 * may submit fully mapped page for IO 2220 * 2221 * @mpd - description of extent to map, on return next extent to map 2222 * @m_lblk - logical block mapping. 2223 * @m_pblk - corresponding physical mapping. 2224 * @map_bh - determines on return whether this page requires any further 2225 * mapping or not. 2226 * Scan given page buffers corresponding to changed extent and update buffer 2227 * state according to new extent state. 2228 * We map delalloc buffers to their physical location, clear unwritten bits. 2229 * If the given page is not fully mapped, we update @map to the next extent in 2230 * the given page that needs mapping & return @map_bh as true. 2231 */ 2232 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2233 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2234 bool *map_bh) 2235 { 2236 struct buffer_head *head, *bh; 2237 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2238 ext4_lblk_t lblk = *m_lblk; 2239 ext4_fsblk_t pblock = *m_pblk; 2240 int err = 0; 2241 int blkbits = mpd->inode->i_blkbits; 2242 ssize_t io_end_size = 0; 2243 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2244 2245 bh = head = page_buffers(page); 2246 do { 2247 if (lblk < mpd->map.m_lblk) 2248 continue; 2249 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2250 /* 2251 * Buffer after end of mapped extent. 2252 * Find next buffer in the page to map. 2253 */ 2254 mpd->map.m_len = 0; 2255 mpd->map.m_flags = 0; 2256 io_end_vec->size += io_end_size; 2257 io_end_size = 0; 2258 2259 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2260 if (err > 0) 2261 err = 0; 2262 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2263 io_end_vec = ext4_alloc_io_end_vec(io_end); 2264 if (IS_ERR(io_end_vec)) { 2265 err = PTR_ERR(io_end_vec); 2266 goto out; 2267 } 2268 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2269 } 2270 *map_bh = true; 2271 goto out; 2272 } 2273 if (buffer_delay(bh)) { 2274 clear_buffer_delay(bh); 2275 bh->b_blocknr = pblock++; 2276 } 2277 clear_buffer_unwritten(bh); 2278 io_end_size += (1 << blkbits); 2279 } while (lblk++, (bh = bh->b_this_page) != head); 2280 2281 io_end_vec->size += io_end_size; 2282 io_end_size = 0; 2283 *map_bh = false; 2284 out: 2285 *m_lblk = lblk; 2286 *m_pblk = pblock; 2287 return err; 2288 } 2289 2290 /* 2291 * mpage_map_buffers - update buffers corresponding to changed extent and 2292 * submit fully mapped pages for IO 2293 * 2294 * @mpd - description of extent to map, on return next extent to map 2295 * 2296 * Scan buffers corresponding to changed extent (we expect corresponding pages 2297 * to be already locked) and update buffer state according to new extent state. 2298 * We map delalloc buffers to their physical location, clear unwritten bits, 2299 * and mark buffers as uninit when we perform writes to unwritten extents 2300 * and do extent conversion after IO is finished. If the last page is not fully 2301 * mapped, we update @map to the next extent in the last page that needs 2302 * mapping. Otherwise we submit the page for IO. 2303 */ 2304 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2305 { 2306 struct pagevec pvec; 2307 int nr_pages, i; 2308 struct inode *inode = mpd->inode; 2309 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2310 pgoff_t start, end; 2311 ext4_lblk_t lblk; 2312 ext4_fsblk_t pblock; 2313 int err; 2314 bool map_bh = false; 2315 2316 start = mpd->map.m_lblk >> bpp_bits; 2317 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2318 lblk = start << bpp_bits; 2319 pblock = mpd->map.m_pblk; 2320 2321 pagevec_init(&pvec); 2322 while (start <= end) { 2323 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2324 &start, end); 2325 if (nr_pages == 0) 2326 break; 2327 for (i = 0; i < nr_pages; i++) { 2328 struct page *page = pvec.pages[i]; 2329 2330 err = mpage_process_page(mpd, page, &lblk, &pblock, 2331 &map_bh); 2332 /* 2333 * If map_bh is true, means page may require further bh 2334 * mapping, or maybe the page was submitted for IO. 2335 * So we return to call further extent mapping. 2336 */ 2337 if (err < 0 || map_bh) 2338 goto out; 2339 /* Page fully mapped - let IO run! */ 2340 err = mpage_submit_page(mpd, page); 2341 if (err < 0) 2342 goto out; 2343 } 2344 pagevec_release(&pvec); 2345 } 2346 /* Extent fully mapped and matches with page boundary. We are done. */ 2347 mpd->map.m_len = 0; 2348 mpd->map.m_flags = 0; 2349 return 0; 2350 out: 2351 pagevec_release(&pvec); 2352 return err; 2353 } 2354 2355 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2356 { 2357 struct inode *inode = mpd->inode; 2358 struct ext4_map_blocks *map = &mpd->map; 2359 int get_blocks_flags; 2360 int err, dioread_nolock; 2361 2362 trace_ext4_da_write_pages_extent(inode, map); 2363 /* 2364 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2365 * to convert an unwritten extent to be initialized (in the case 2366 * where we have written into one or more preallocated blocks). It is 2367 * possible that we're going to need more metadata blocks than 2368 * previously reserved. However we must not fail because we're in 2369 * writeback and there is nothing we can do about it so it might result 2370 * in data loss. So use reserved blocks to allocate metadata if 2371 * possible. 2372 * 2373 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2374 * the blocks in question are delalloc blocks. This indicates 2375 * that the blocks and quotas has already been checked when 2376 * the data was copied into the page cache. 2377 */ 2378 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2379 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2380 EXT4_GET_BLOCKS_IO_SUBMIT; 2381 dioread_nolock = ext4_should_dioread_nolock(inode); 2382 if (dioread_nolock) 2383 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2384 if (map->m_flags & BIT(BH_Delay)) 2385 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2386 2387 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2388 if (err < 0) 2389 return err; 2390 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2391 if (!mpd->io_submit.io_end->handle && 2392 ext4_handle_valid(handle)) { 2393 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2394 handle->h_rsv_handle = NULL; 2395 } 2396 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2397 } 2398 2399 BUG_ON(map->m_len == 0); 2400 return 0; 2401 } 2402 2403 /* 2404 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2405 * mpd->len and submit pages underlying it for IO 2406 * 2407 * @handle - handle for journal operations 2408 * @mpd - extent to map 2409 * @give_up_on_write - we set this to true iff there is a fatal error and there 2410 * is no hope of writing the data. The caller should discard 2411 * dirty pages to avoid infinite loops. 2412 * 2413 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2414 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2415 * them to initialized or split the described range from larger unwritten 2416 * extent. Note that we need not map all the described range since allocation 2417 * can return less blocks or the range is covered by more unwritten extents. We 2418 * cannot map more because we are limited by reserved transaction credits. On 2419 * the other hand we always make sure that the last touched page is fully 2420 * mapped so that it can be written out (and thus forward progress is 2421 * guaranteed). After mapping we submit all mapped pages for IO. 2422 */ 2423 static int mpage_map_and_submit_extent(handle_t *handle, 2424 struct mpage_da_data *mpd, 2425 bool *give_up_on_write) 2426 { 2427 struct inode *inode = mpd->inode; 2428 struct ext4_map_blocks *map = &mpd->map; 2429 int err; 2430 loff_t disksize; 2431 int progress = 0; 2432 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2433 struct ext4_io_end_vec *io_end_vec; 2434 2435 io_end_vec = ext4_alloc_io_end_vec(io_end); 2436 if (IS_ERR(io_end_vec)) 2437 return PTR_ERR(io_end_vec); 2438 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2439 do { 2440 err = mpage_map_one_extent(handle, mpd); 2441 if (err < 0) { 2442 struct super_block *sb = inode->i_sb; 2443 2444 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2445 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2446 goto invalidate_dirty_pages; 2447 /* 2448 * Let the uper layers retry transient errors. 2449 * In the case of ENOSPC, if ext4_count_free_blocks() 2450 * is non-zero, a commit should free up blocks. 2451 */ 2452 if ((err == -ENOMEM) || 2453 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2454 if (progress) 2455 goto update_disksize; 2456 return err; 2457 } 2458 ext4_msg(sb, KERN_CRIT, 2459 "Delayed block allocation failed for " 2460 "inode %lu at logical offset %llu with" 2461 " max blocks %u with error %d", 2462 inode->i_ino, 2463 (unsigned long long)map->m_lblk, 2464 (unsigned)map->m_len, -err); 2465 ext4_msg(sb, KERN_CRIT, 2466 "This should not happen!! Data will " 2467 "be lost\n"); 2468 if (err == -ENOSPC) 2469 ext4_print_free_blocks(inode); 2470 invalidate_dirty_pages: 2471 *give_up_on_write = true; 2472 return err; 2473 } 2474 progress = 1; 2475 /* 2476 * Update buffer state, submit mapped pages, and get us new 2477 * extent to map 2478 */ 2479 err = mpage_map_and_submit_buffers(mpd); 2480 if (err < 0) 2481 goto update_disksize; 2482 } while (map->m_len); 2483 2484 update_disksize: 2485 /* 2486 * Update on-disk size after IO is submitted. Races with 2487 * truncate are avoided by checking i_size under i_data_sem. 2488 */ 2489 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2490 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2491 int err2; 2492 loff_t i_size; 2493 2494 down_write(&EXT4_I(inode)->i_data_sem); 2495 i_size = i_size_read(inode); 2496 if (disksize > i_size) 2497 disksize = i_size; 2498 if (disksize > EXT4_I(inode)->i_disksize) 2499 EXT4_I(inode)->i_disksize = disksize; 2500 up_write(&EXT4_I(inode)->i_data_sem); 2501 err2 = ext4_mark_inode_dirty(handle, inode); 2502 if (err2) { 2503 ext4_error_err(inode->i_sb, -err2, 2504 "Failed to mark inode %lu dirty", 2505 inode->i_ino); 2506 } 2507 if (!err) 2508 err = err2; 2509 } 2510 return err; 2511 } 2512 2513 /* 2514 * Calculate the total number of credits to reserve for one writepages 2515 * iteration. This is called from ext4_writepages(). We map an extent of 2516 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2517 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2518 * bpp - 1 blocks in bpp different extents. 2519 */ 2520 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2521 { 2522 int bpp = ext4_journal_blocks_per_page(inode); 2523 2524 return ext4_meta_trans_blocks(inode, 2525 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2526 } 2527 2528 /* 2529 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2530 * and underlying extent to map 2531 * 2532 * @mpd - where to look for pages 2533 * 2534 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2535 * IO immediately. When we find a page which isn't mapped we start accumulating 2536 * extent of buffers underlying these pages that needs mapping (formed by 2537 * either delayed or unwritten buffers). We also lock the pages containing 2538 * these buffers. The extent found is returned in @mpd structure (starting at 2539 * mpd->lblk with length mpd->len blocks). 2540 * 2541 * Note that this function can attach bios to one io_end structure which are 2542 * neither logically nor physically contiguous. Although it may seem as an 2543 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2544 * case as we need to track IO to all buffers underlying a page in one io_end. 2545 */ 2546 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2547 { 2548 struct address_space *mapping = mpd->inode->i_mapping; 2549 struct pagevec pvec; 2550 unsigned int nr_pages; 2551 long left = mpd->wbc->nr_to_write; 2552 pgoff_t index = mpd->first_page; 2553 pgoff_t end = mpd->last_page; 2554 xa_mark_t tag; 2555 int i, err = 0; 2556 int blkbits = mpd->inode->i_blkbits; 2557 ext4_lblk_t lblk; 2558 struct buffer_head *head; 2559 2560 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2561 tag = PAGECACHE_TAG_TOWRITE; 2562 else 2563 tag = PAGECACHE_TAG_DIRTY; 2564 2565 pagevec_init(&pvec); 2566 mpd->map.m_len = 0; 2567 mpd->next_page = index; 2568 while (index <= end) { 2569 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2570 tag); 2571 if (nr_pages == 0) 2572 break; 2573 2574 for (i = 0; i < nr_pages; i++) { 2575 struct page *page = pvec.pages[i]; 2576 2577 /* 2578 * Accumulated enough dirty pages? This doesn't apply 2579 * to WB_SYNC_ALL mode. For integrity sync we have to 2580 * keep going because someone may be concurrently 2581 * dirtying pages, and we might have synced a lot of 2582 * newly appeared dirty pages, but have not synced all 2583 * of the old dirty pages. 2584 */ 2585 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2586 goto out; 2587 2588 /* If we can't merge this page, we are done. */ 2589 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2590 goto out; 2591 2592 lock_page(page); 2593 /* 2594 * If the page is no longer dirty, or its mapping no 2595 * longer corresponds to inode we are writing (which 2596 * means it has been truncated or invalidated), or the 2597 * page is already under writeback and we are not doing 2598 * a data integrity writeback, skip the page 2599 */ 2600 if (!PageDirty(page) || 2601 (PageWriteback(page) && 2602 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2603 unlikely(page->mapping != mapping)) { 2604 unlock_page(page); 2605 continue; 2606 } 2607 2608 wait_on_page_writeback(page); 2609 BUG_ON(PageWriteback(page)); 2610 2611 if (mpd->map.m_len == 0) 2612 mpd->first_page = page->index; 2613 mpd->next_page = page->index + 1; 2614 /* Add all dirty buffers to mpd */ 2615 lblk = ((ext4_lblk_t)page->index) << 2616 (PAGE_SHIFT - blkbits); 2617 head = page_buffers(page); 2618 err = mpage_process_page_bufs(mpd, head, head, lblk); 2619 if (err <= 0) 2620 goto out; 2621 err = 0; 2622 left--; 2623 } 2624 pagevec_release(&pvec); 2625 cond_resched(); 2626 } 2627 mpd->scanned_until_end = 1; 2628 return 0; 2629 out: 2630 pagevec_release(&pvec); 2631 return err; 2632 } 2633 2634 static int ext4_writepages(struct address_space *mapping, 2635 struct writeback_control *wbc) 2636 { 2637 pgoff_t writeback_index = 0; 2638 long nr_to_write = wbc->nr_to_write; 2639 int range_whole = 0; 2640 int cycled = 1; 2641 handle_t *handle = NULL; 2642 struct mpage_da_data mpd; 2643 struct inode *inode = mapping->host; 2644 int needed_blocks, rsv_blocks = 0, ret = 0; 2645 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2646 struct blk_plug plug; 2647 bool give_up_on_write = false; 2648 2649 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2650 return -EIO; 2651 2652 percpu_down_read(&sbi->s_writepages_rwsem); 2653 trace_ext4_writepages(inode, wbc); 2654 2655 /* 2656 * No pages to write? This is mainly a kludge to avoid starting 2657 * a transaction for special inodes like journal inode on last iput() 2658 * because that could violate lock ordering on umount 2659 */ 2660 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2661 goto out_writepages; 2662 2663 if (ext4_should_journal_data(inode)) { 2664 ret = generic_writepages(mapping, wbc); 2665 goto out_writepages; 2666 } 2667 2668 /* 2669 * If the filesystem has aborted, it is read-only, so return 2670 * right away instead of dumping stack traces later on that 2671 * will obscure the real source of the problem. We test 2672 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2673 * the latter could be true if the filesystem is mounted 2674 * read-only, and in that case, ext4_writepages should 2675 * *never* be called, so if that ever happens, we would want 2676 * the stack trace. 2677 */ 2678 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2679 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2680 ret = -EROFS; 2681 goto out_writepages; 2682 } 2683 2684 /* 2685 * If we have inline data and arrive here, it means that 2686 * we will soon create the block for the 1st page, so 2687 * we'd better clear the inline data here. 2688 */ 2689 if (ext4_has_inline_data(inode)) { 2690 /* Just inode will be modified... */ 2691 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2692 if (IS_ERR(handle)) { 2693 ret = PTR_ERR(handle); 2694 goto out_writepages; 2695 } 2696 BUG_ON(ext4_test_inode_state(inode, 2697 EXT4_STATE_MAY_INLINE_DATA)); 2698 ext4_destroy_inline_data(handle, inode); 2699 ext4_journal_stop(handle); 2700 } 2701 2702 if (ext4_should_dioread_nolock(inode)) { 2703 /* 2704 * We may need to convert up to one extent per block in 2705 * the page and we may dirty the inode. 2706 */ 2707 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2708 PAGE_SIZE >> inode->i_blkbits); 2709 } 2710 2711 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2712 range_whole = 1; 2713 2714 if (wbc->range_cyclic) { 2715 writeback_index = mapping->writeback_index; 2716 if (writeback_index) 2717 cycled = 0; 2718 mpd.first_page = writeback_index; 2719 mpd.last_page = -1; 2720 } else { 2721 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2722 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2723 } 2724 2725 mpd.inode = inode; 2726 mpd.wbc = wbc; 2727 ext4_io_submit_init(&mpd.io_submit, wbc); 2728 retry: 2729 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2730 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2731 blk_start_plug(&plug); 2732 2733 /* 2734 * First writeback pages that don't need mapping - we can avoid 2735 * starting a transaction unnecessarily and also avoid being blocked 2736 * in the block layer on device congestion while having transaction 2737 * started. 2738 */ 2739 mpd.do_map = 0; 2740 mpd.scanned_until_end = 0; 2741 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2742 if (!mpd.io_submit.io_end) { 2743 ret = -ENOMEM; 2744 goto unplug; 2745 } 2746 ret = mpage_prepare_extent_to_map(&mpd); 2747 /* Unlock pages we didn't use */ 2748 mpage_release_unused_pages(&mpd, false); 2749 /* Submit prepared bio */ 2750 ext4_io_submit(&mpd.io_submit); 2751 ext4_put_io_end_defer(mpd.io_submit.io_end); 2752 mpd.io_submit.io_end = NULL; 2753 if (ret < 0) 2754 goto unplug; 2755 2756 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2757 /* For each extent of pages we use new io_end */ 2758 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2759 if (!mpd.io_submit.io_end) { 2760 ret = -ENOMEM; 2761 break; 2762 } 2763 2764 /* 2765 * We have two constraints: We find one extent to map and we 2766 * must always write out whole page (makes a difference when 2767 * blocksize < pagesize) so that we don't block on IO when we 2768 * try to write out the rest of the page. Journalled mode is 2769 * not supported by delalloc. 2770 */ 2771 BUG_ON(ext4_should_journal_data(inode)); 2772 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2773 2774 /* start a new transaction */ 2775 handle = ext4_journal_start_with_reserve(inode, 2776 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2777 if (IS_ERR(handle)) { 2778 ret = PTR_ERR(handle); 2779 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2780 "%ld pages, ino %lu; err %d", __func__, 2781 wbc->nr_to_write, inode->i_ino, ret); 2782 /* Release allocated io_end */ 2783 ext4_put_io_end(mpd.io_submit.io_end); 2784 mpd.io_submit.io_end = NULL; 2785 break; 2786 } 2787 mpd.do_map = 1; 2788 2789 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2790 ret = mpage_prepare_extent_to_map(&mpd); 2791 if (!ret && mpd.map.m_len) 2792 ret = mpage_map_and_submit_extent(handle, &mpd, 2793 &give_up_on_write); 2794 /* 2795 * Caution: If the handle is synchronous, 2796 * ext4_journal_stop() can wait for transaction commit 2797 * to finish which may depend on writeback of pages to 2798 * complete or on page lock to be released. In that 2799 * case, we have to wait until after we have 2800 * submitted all the IO, released page locks we hold, 2801 * and dropped io_end reference (for extent conversion 2802 * to be able to complete) before stopping the handle. 2803 */ 2804 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2805 ext4_journal_stop(handle); 2806 handle = NULL; 2807 mpd.do_map = 0; 2808 } 2809 /* Unlock pages we didn't use */ 2810 mpage_release_unused_pages(&mpd, give_up_on_write); 2811 /* Submit prepared bio */ 2812 ext4_io_submit(&mpd.io_submit); 2813 2814 /* 2815 * Drop our io_end reference we got from init. We have 2816 * to be careful and use deferred io_end finishing if 2817 * we are still holding the transaction as we can 2818 * release the last reference to io_end which may end 2819 * up doing unwritten extent conversion. 2820 */ 2821 if (handle) { 2822 ext4_put_io_end_defer(mpd.io_submit.io_end); 2823 ext4_journal_stop(handle); 2824 } else 2825 ext4_put_io_end(mpd.io_submit.io_end); 2826 mpd.io_submit.io_end = NULL; 2827 2828 if (ret == -ENOSPC && sbi->s_journal) { 2829 /* 2830 * Commit the transaction which would 2831 * free blocks released in the transaction 2832 * and try again 2833 */ 2834 jbd2_journal_force_commit_nested(sbi->s_journal); 2835 ret = 0; 2836 continue; 2837 } 2838 /* Fatal error - ENOMEM, EIO... */ 2839 if (ret) 2840 break; 2841 } 2842 unplug: 2843 blk_finish_plug(&plug); 2844 if (!ret && !cycled && wbc->nr_to_write > 0) { 2845 cycled = 1; 2846 mpd.last_page = writeback_index - 1; 2847 mpd.first_page = 0; 2848 goto retry; 2849 } 2850 2851 /* Update index */ 2852 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2853 /* 2854 * Set the writeback_index so that range_cyclic 2855 * mode will write it back later 2856 */ 2857 mapping->writeback_index = mpd.first_page; 2858 2859 out_writepages: 2860 trace_ext4_writepages_result(inode, wbc, ret, 2861 nr_to_write - wbc->nr_to_write); 2862 percpu_up_read(&sbi->s_writepages_rwsem); 2863 return ret; 2864 } 2865 2866 static int ext4_dax_writepages(struct address_space *mapping, 2867 struct writeback_control *wbc) 2868 { 2869 int ret; 2870 long nr_to_write = wbc->nr_to_write; 2871 struct inode *inode = mapping->host; 2872 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2873 2874 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2875 return -EIO; 2876 2877 percpu_down_read(&sbi->s_writepages_rwsem); 2878 trace_ext4_writepages(inode, wbc); 2879 2880 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2881 trace_ext4_writepages_result(inode, wbc, ret, 2882 nr_to_write - wbc->nr_to_write); 2883 percpu_up_read(&sbi->s_writepages_rwsem); 2884 return ret; 2885 } 2886 2887 static int ext4_nonda_switch(struct super_block *sb) 2888 { 2889 s64 free_clusters, dirty_clusters; 2890 struct ext4_sb_info *sbi = EXT4_SB(sb); 2891 2892 /* 2893 * switch to non delalloc mode if we are running low 2894 * on free block. The free block accounting via percpu 2895 * counters can get slightly wrong with percpu_counter_batch getting 2896 * accumulated on each CPU without updating global counters 2897 * Delalloc need an accurate free block accounting. So switch 2898 * to non delalloc when we are near to error range. 2899 */ 2900 free_clusters = 2901 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2902 dirty_clusters = 2903 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2904 /* 2905 * Start pushing delalloc when 1/2 of free blocks are dirty. 2906 */ 2907 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2908 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2909 2910 if (2 * free_clusters < 3 * dirty_clusters || 2911 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2912 /* 2913 * free block count is less than 150% of dirty blocks 2914 * or free blocks is less than watermark 2915 */ 2916 return 1; 2917 } 2918 return 0; 2919 } 2920 2921 /* We always reserve for an inode update; the superblock could be there too */ 2922 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2923 { 2924 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2925 return 1; 2926 2927 if (pos + len <= 0x7fffffffULL) 2928 return 1; 2929 2930 /* We might need to update the superblock to set LARGE_FILE */ 2931 return 2; 2932 } 2933 2934 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2935 loff_t pos, unsigned len, unsigned flags, 2936 struct page **pagep, void **fsdata) 2937 { 2938 int ret, retries = 0; 2939 struct page *page; 2940 pgoff_t index; 2941 struct inode *inode = mapping->host; 2942 handle_t *handle; 2943 2944 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2945 return -EIO; 2946 2947 index = pos >> PAGE_SHIFT; 2948 2949 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2950 ext4_verity_in_progress(inode)) { 2951 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2952 return ext4_write_begin(file, mapping, pos, 2953 len, flags, pagep, fsdata); 2954 } 2955 *fsdata = (void *)0; 2956 trace_ext4_da_write_begin(inode, pos, len, flags); 2957 2958 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2959 ret = ext4_da_write_inline_data_begin(mapping, inode, 2960 pos, len, flags, 2961 pagep, fsdata); 2962 if (ret < 0) 2963 return ret; 2964 if (ret == 1) 2965 return 0; 2966 } 2967 2968 /* 2969 * grab_cache_page_write_begin() can take a long time if the 2970 * system is thrashing due to memory pressure, or if the page 2971 * is being written back. So grab it first before we start 2972 * the transaction handle. This also allows us to allocate 2973 * the page (if needed) without using GFP_NOFS. 2974 */ 2975 retry_grab: 2976 page = grab_cache_page_write_begin(mapping, index, flags); 2977 if (!page) 2978 return -ENOMEM; 2979 unlock_page(page); 2980 2981 /* 2982 * With delayed allocation, we don't log the i_disksize update 2983 * if there is delayed block allocation. But we still need 2984 * to journalling the i_disksize update if writes to the end 2985 * of file which has an already mapped buffer. 2986 */ 2987 retry_journal: 2988 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2989 ext4_da_write_credits(inode, pos, len)); 2990 if (IS_ERR(handle)) { 2991 put_page(page); 2992 return PTR_ERR(handle); 2993 } 2994 2995 lock_page(page); 2996 if (page->mapping != mapping) { 2997 /* The page got truncated from under us */ 2998 unlock_page(page); 2999 put_page(page); 3000 ext4_journal_stop(handle); 3001 goto retry_grab; 3002 } 3003 /* In case writeback began while the page was unlocked */ 3004 wait_for_stable_page(page); 3005 3006 #ifdef CONFIG_FS_ENCRYPTION 3007 ret = ext4_block_write_begin(page, pos, len, 3008 ext4_da_get_block_prep); 3009 #else 3010 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3011 #endif 3012 if (ret < 0) { 3013 unlock_page(page); 3014 ext4_journal_stop(handle); 3015 /* 3016 * block_write_begin may have instantiated a few blocks 3017 * outside i_size. Trim these off again. Don't need 3018 * i_size_read because we hold i_mutex. 3019 */ 3020 if (pos + len > inode->i_size) 3021 ext4_truncate_failed_write(inode); 3022 3023 if (ret == -ENOSPC && 3024 ext4_should_retry_alloc(inode->i_sb, &retries)) 3025 goto retry_journal; 3026 3027 put_page(page); 3028 return ret; 3029 } 3030 3031 *pagep = page; 3032 return ret; 3033 } 3034 3035 /* 3036 * Check if we should update i_disksize 3037 * when write to the end of file but not require block allocation 3038 */ 3039 static int ext4_da_should_update_i_disksize(struct page *page, 3040 unsigned long offset) 3041 { 3042 struct buffer_head *bh; 3043 struct inode *inode = page->mapping->host; 3044 unsigned int idx; 3045 int i; 3046 3047 bh = page_buffers(page); 3048 idx = offset >> inode->i_blkbits; 3049 3050 for (i = 0; i < idx; i++) 3051 bh = bh->b_this_page; 3052 3053 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3054 return 0; 3055 return 1; 3056 } 3057 3058 static int ext4_da_write_end(struct file *file, 3059 struct address_space *mapping, 3060 loff_t pos, unsigned len, unsigned copied, 3061 struct page *page, void *fsdata) 3062 { 3063 struct inode *inode = mapping->host; 3064 int ret = 0, ret2; 3065 handle_t *handle = ext4_journal_current_handle(); 3066 loff_t new_i_size; 3067 unsigned long start, end; 3068 int write_mode = (int)(unsigned long)fsdata; 3069 3070 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3071 return ext4_write_end(file, mapping, pos, 3072 len, copied, page, fsdata); 3073 3074 trace_ext4_da_write_end(inode, pos, len, copied); 3075 start = pos & (PAGE_SIZE - 1); 3076 end = start + copied - 1; 3077 3078 /* 3079 * generic_write_end() will run mark_inode_dirty() if i_size 3080 * changes. So let's piggyback the i_disksize mark_inode_dirty 3081 * into that. 3082 */ 3083 new_i_size = pos + copied; 3084 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3085 if (ext4_has_inline_data(inode) || 3086 ext4_da_should_update_i_disksize(page, end)) { 3087 ext4_update_i_disksize(inode, new_i_size); 3088 /* We need to mark inode dirty even if 3089 * new_i_size is less that inode->i_size 3090 * bu greater than i_disksize.(hint delalloc) 3091 */ 3092 ret = ext4_mark_inode_dirty(handle, inode); 3093 } 3094 } 3095 3096 if (write_mode != CONVERT_INLINE_DATA && 3097 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3098 ext4_has_inline_data(inode)) 3099 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3100 page); 3101 else 3102 ret2 = generic_write_end(file, mapping, pos, len, copied, 3103 page, fsdata); 3104 3105 copied = ret2; 3106 if (ret2 < 0) 3107 ret = ret2; 3108 ret2 = ext4_journal_stop(handle); 3109 if (unlikely(ret2 && !ret)) 3110 ret = ret2; 3111 3112 return ret ? ret : copied; 3113 } 3114 3115 /* 3116 * Force all delayed allocation blocks to be allocated for a given inode. 3117 */ 3118 int ext4_alloc_da_blocks(struct inode *inode) 3119 { 3120 trace_ext4_alloc_da_blocks(inode); 3121 3122 if (!EXT4_I(inode)->i_reserved_data_blocks) 3123 return 0; 3124 3125 /* 3126 * We do something simple for now. The filemap_flush() will 3127 * also start triggering a write of the data blocks, which is 3128 * not strictly speaking necessary (and for users of 3129 * laptop_mode, not even desirable). However, to do otherwise 3130 * would require replicating code paths in: 3131 * 3132 * ext4_writepages() -> 3133 * write_cache_pages() ---> (via passed in callback function) 3134 * __mpage_da_writepage() --> 3135 * mpage_add_bh_to_extent() 3136 * mpage_da_map_blocks() 3137 * 3138 * The problem is that write_cache_pages(), located in 3139 * mm/page-writeback.c, marks pages clean in preparation for 3140 * doing I/O, which is not desirable if we're not planning on 3141 * doing I/O at all. 3142 * 3143 * We could call write_cache_pages(), and then redirty all of 3144 * the pages by calling redirty_page_for_writepage() but that 3145 * would be ugly in the extreme. So instead we would need to 3146 * replicate parts of the code in the above functions, 3147 * simplifying them because we wouldn't actually intend to 3148 * write out the pages, but rather only collect contiguous 3149 * logical block extents, call the multi-block allocator, and 3150 * then update the buffer heads with the block allocations. 3151 * 3152 * For now, though, we'll cheat by calling filemap_flush(), 3153 * which will map the blocks, and start the I/O, but not 3154 * actually wait for the I/O to complete. 3155 */ 3156 return filemap_flush(inode->i_mapping); 3157 } 3158 3159 /* 3160 * bmap() is special. It gets used by applications such as lilo and by 3161 * the swapper to find the on-disk block of a specific piece of data. 3162 * 3163 * Naturally, this is dangerous if the block concerned is still in the 3164 * journal. If somebody makes a swapfile on an ext4 data-journaling 3165 * filesystem and enables swap, then they may get a nasty shock when the 3166 * data getting swapped to that swapfile suddenly gets overwritten by 3167 * the original zero's written out previously to the journal and 3168 * awaiting writeback in the kernel's buffer cache. 3169 * 3170 * So, if we see any bmap calls here on a modified, data-journaled file, 3171 * take extra steps to flush any blocks which might be in the cache. 3172 */ 3173 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3174 { 3175 struct inode *inode = mapping->host; 3176 journal_t *journal; 3177 int err; 3178 3179 /* 3180 * We can get here for an inline file via the FIBMAP ioctl 3181 */ 3182 if (ext4_has_inline_data(inode)) 3183 return 0; 3184 3185 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3186 test_opt(inode->i_sb, DELALLOC)) { 3187 /* 3188 * With delalloc we want to sync the file 3189 * so that we can make sure we allocate 3190 * blocks for file 3191 */ 3192 filemap_write_and_wait(mapping); 3193 } 3194 3195 if (EXT4_JOURNAL(inode) && 3196 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3197 /* 3198 * This is a REALLY heavyweight approach, but the use of 3199 * bmap on dirty files is expected to be extremely rare: 3200 * only if we run lilo or swapon on a freshly made file 3201 * do we expect this to happen. 3202 * 3203 * (bmap requires CAP_SYS_RAWIO so this does not 3204 * represent an unprivileged user DOS attack --- we'd be 3205 * in trouble if mortal users could trigger this path at 3206 * will.) 3207 * 3208 * NB. EXT4_STATE_JDATA is not set on files other than 3209 * regular files. If somebody wants to bmap a directory 3210 * or symlink and gets confused because the buffer 3211 * hasn't yet been flushed to disk, they deserve 3212 * everything they get. 3213 */ 3214 3215 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3216 journal = EXT4_JOURNAL(inode); 3217 jbd2_journal_lock_updates(journal); 3218 err = jbd2_journal_flush(journal); 3219 jbd2_journal_unlock_updates(journal); 3220 3221 if (err) 3222 return 0; 3223 } 3224 3225 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3226 } 3227 3228 static int ext4_readpage(struct file *file, struct page *page) 3229 { 3230 int ret = -EAGAIN; 3231 struct inode *inode = page->mapping->host; 3232 3233 trace_ext4_readpage(page); 3234 3235 if (ext4_has_inline_data(inode)) 3236 ret = ext4_readpage_inline(inode, page); 3237 3238 if (ret == -EAGAIN) 3239 return ext4_mpage_readpages(inode, NULL, page); 3240 3241 return ret; 3242 } 3243 3244 static void ext4_readahead(struct readahead_control *rac) 3245 { 3246 struct inode *inode = rac->mapping->host; 3247 3248 /* If the file has inline data, no need to do readahead. */ 3249 if (ext4_has_inline_data(inode)) 3250 return; 3251 3252 ext4_mpage_readpages(inode, rac, NULL); 3253 } 3254 3255 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3256 unsigned int length) 3257 { 3258 trace_ext4_invalidatepage(page, offset, length); 3259 3260 /* No journalling happens on data buffers when this function is used */ 3261 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3262 3263 block_invalidatepage(page, offset, length); 3264 } 3265 3266 static int __ext4_journalled_invalidatepage(struct page *page, 3267 unsigned int offset, 3268 unsigned int length) 3269 { 3270 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3271 3272 trace_ext4_journalled_invalidatepage(page, offset, length); 3273 3274 /* 3275 * If it's a full truncate we just forget about the pending dirtying 3276 */ 3277 if (offset == 0 && length == PAGE_SIZE) 3278 ClearPageChecked(page); 3279 3280 return jbd2_journal_invalidatepage(journal, page, offset, length); 3281 } 3282 3283 /* Wrapper for aops... */ 3284 static void ext4_journalled_invalidatepage(struct page *page, 3285 unsigned int offset, 3286 unsigned int length) 3287 { 3288 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3289 } 3290 3291 static int ext4_releasepage(struct page *page, gfp_t wait) 3292 { 3293 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3294 3295 trace_ext4_releasepage(page); 3296 3297 /* Page has dirty journalled data -> cannot release */ 3298 if (PageChecked(page)) 3299 return 0; 3300 if (journal) 3301 return jbd2_journal_try_to_free_buffers(journal, page); 3302 else 3303 return try_to_free_buffers(page); 3304 } 3305 3306 static bool ext4_inode_datasync_dirty(struct inode *inode) 3307 { 3308 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3309 3310 if (journal) { 3311 if (jbd2_transaction_committed(journal, 3312 EXT4_I(inode)->i_datasync_tid)) 3313 return false; 3314 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3315 return atomic_read(&EXT4_SB(inode->i_sb)->s_fc_subtid) < 3316 EXT4_I(inode)->i_fc_committed_subtid; 3317 return true; 3318 } 3319 3320 /* Any metadata buffers to write? */ 3321 if (!list_empty(&inode->i_mapping->private_list)) 3322 return true; 3323 return inode->i_state & I_DIRTY_DATASYNC; 3324 } 3325 3326 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3327 struct ext4_map_blocks *map, loff_t offset, 3328 loff_t length) 3329 { 3330 u8 blkbits = inode->i_blkbits; 3331 3332 /* 3333 * Writes that span EOF might trigger an I/O size update on completion, 3334 * so consider them to be dirty for the purpose of O_DSYNC, even if 3335 * there is no other metadata changes being made or are pending. 3336 */ 3337 iomap->flags = 0; 3338 if (ext4_inode_datasync_dirty(inode) || 3339 offset + length > i_size_read(inode)) 3340 iomap->flags |= IOMAP_F_DIRTY; 3341 3342 if (map->m_flags & EXT4_MAP_NEW) 3343 iomap->flags |= IOMAP_F_NEW; 3344 3345 iomap->bdev = inode->i_sb->s_bdev; 3346 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3347 iomap->offset = (u64) map->m_lblk << blkbits; 3348 iomap->length = (u64) map->m_len << blkbits; 3349 3350 if ((map->m_flags & EXT4_MAP_MAPPED) && 3351 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3352 iomap->flags |= IOMAP_F_MERGED; 3353 3354 /* 3355 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3356 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3357 * set. In order for any allocated unwritten extents to be converted 3358 * into written extents correctly within the ->end_io() handler, we 3359 * need to ensure that the iomap->type is set appropriately. Hence, the 3360 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3361 * been set first. 3362 */ 3363 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3364 iomap->type = IOMAP_UNWRITTEN; 3365 iomap->addr = (u64) map->m_pblk << blkbits; 3366 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3367 iomap->type = IOMAP_MAPPED; 3368 iomap->addr = (u64) map->m_pblk << blkbits; 3369 } else { 3370 iomap->type = IOMAP_HOLE; 3371 iomap->addr = IOMAP_NULL_ADDR; 3372 } 3373 } 3374 3375 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3376 unsigned int flags) 3377 { 3378 handle_t *handle; 3379 u8 blkbits = inode->i_blkbits; 3380 int ret, dio_credits, m_flags = 0, retries = 0; 3381 3382 /* 3383 * Trim the mapping request to the maximum value that we can map at 3384 * once for direct I/O. 3385 */ 3386 if (map->m_len > DIO_MAX_BLOCKS) 3387 map->m_len = DIO_MAX_BLOCKS; 3388 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3389 3390 retry: 3391 /* 3392 * Either we allocate blocks and then don't get an unwritten extent, so 3393 * in that case we have reserved enough credits. Or, the blocks are 3394 * already allocated and unwritten. In that case, the extent conversion 3395 * fits into the credits as well. 3396 */ 3397 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3398 if (IS_ERR(handle)) 3399 return PTR_ERR(handle); 3400 3401 /* 3402 * DAX and direct I/O are the only two operations that are currently 3403 * supported with IOMAP_WRITE. 3404 */ 3405 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3406 if (IS_DAX(inode)) 3407 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3408 /* 3409 * We use i_size instead of i_disksize here because delalloc writeback 3410 * can complete at any point during the I/O and subsequently push the 3411 * i_disksize out to i_size. This could be beyond where direct I/O is 3412 * happening and thus expose allocated blocks to direct I/O reads. 3413 */ 3414 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3415 m_flags = EXT4_GET_BLOCKS_CREATE; 3416 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3417 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3418 3419 ret = ext4_map_blocks(handle, inode, map, m_flags); 3420 3421 /* 3422 * We cannot fill holes in indirect tree based inodes as that could 3423 * expose stale data in the case of a crash. Use the magic error code 3424 * to fallback to buffered I/O. 3425 */ 3426 if (!m_flags && !ret) 3427 ret = -ENOTBLK; 3428 3429 ext4_journal_stop(handle); 3430 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3431 goto retry; 3432 3433 return ret; 3434 } 3435 3436 3437 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3438 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3439 { 3440 int ret; 3441 struct ext4_map_blocks map; 3442 u8 blkbits = inode->i_blkbits; 3443 3444 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3445 return -EINVAL; 3446 3447 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3448 return -ERANGE; 3449 3450 /* 3451 * Calculate the first and last logical blocks respectively. 3452 */ 3453 map.m_lblk = offset >> blkbits; 3454 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3455 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3456 3457 if (flags & IOMAP_WRITE) { 3458 /* 3459 * We check here if the blocks are already allocated, then we 3460 * don't need to start a journal txn and we can directly return 3461 * the mapping information. This could boost performance 3462 * especially in multi-threaded overwrite requests. 3463 */ 3464 if (offset + length <= i_size_read(inode)) { 3465 ret = ext4_map_blocks(NULL, inode, &map, 0); 3466 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3467 goto out; 3468 } 3469 ret = ext4_iomap_alloc(inode, &map, flags); 3470 } else { 3471 ret = ext4_map_blocks(NULL, inode, &map, 0); 3472 } 3473 3474 if (ret < 0) 3475 return ret; 3476 out: 3477 ext4_set_iomap(inode, iomap, &map, offset, length); 3478 3479 return 0; 3480 } 3481 3482 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3483 loff_t length, unsigned flags, struct iomap *iomap, 3484 struct iomap *srcmap) 3485 { 3486 int ret; 3487 3488 /* 3489 * Even for writes we don't need to allocate blocks, so just pretend 3490 * we are reading to save overhead of starting a transaction. 3491 */ 3492 flags &= ~IOMAP_WRITE; 3493 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3494 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3495 return ret; 3496 } 3497 3498 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3499 ssize_t written, unsigned flags, struct iomap *iomap) 3500 { 3501 /* 3502 * Check to see whether an error occurred while writing out the data to 3503 * the allocated blocks. If so, return the magic error code so that we 3504 * fallback to buffered I/O and attempt to complete the remainder of 3505 * the I/O. Any blocks that may have been allocated in preparation for 3506 * the direct I/O will be reused during buffered I/O. 3507 */ 3508 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3509 return -ENOTBLK; 3510 3511 return 0; 3512 } 3513 3514 const struct iomap_ops ext4_iomap_ops = { 3515 .iomap_begin = ext4_iomap_begin, 3516 .iomap_end = ext4_iomap_end, 3517 }; 3518 3519 const struct iomap_ops ext4_iomap_overwrite_ops = { 3520 .iomap_begin = ext4_iomap_overwrite_begin, 3521 .iomap_end = ext4_iomap_end, 3522 }; 3523 3524 static bool ext4_iomap_is_delalloc(struct inode *inode, 3525 struct ext4_map_blocks *map) 3526 { 3527 struct extent_status es; 3528 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3529 3530 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3531 map->m_lblk, end, &es); 3532 3533 if (!es.es_len || es.es_lblk > end) 3534 return false; 3535 3536 if (es.es_lblk > map->m_lblk) { 3537 map->m_len = es.es_lblk - map->m_lblk; 3538 return false; 3539 } 3540 3541 offset = map->m_lblk - es.es_lblk; 3542 map->m_len = es.es_len - offset; 3543 3544 return true; 3545 } 3546 3547 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3548 loff_t length, unsigned int flags, 3549 struct iomap *iomap, struct iomap *srcmap) 3550 { 3551 int ret; 3552 bool delalloc = false; 3553 struct ext4_map_blocks map; 3554 u8 blkbits = inode->i_blkbits; 3555 3556 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3557 return -EINVAL; 3558 3559 if (ext4_has_inline_data(inode)) { 3560 ret = ext4_inline_data_iomap(inode, iomap); 3561 if (ret != -EAGAIN) { 3562 if (ret == 0 && offset >= iomap->length) 3563 ret = -ENOENT; 3564 return ret; 3565 } 3566 } 3567 3568 /* 3569 * Calculate the first and last logical block respectively. 3570 */ 3571 map.m_lblk = offset >> blkbits; 3572 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3573 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3574 3575 /* 3576 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3577 * So handle it here itself instead of querying ext4_map_blocks(). 3578 * Since ext4_map_blocks() will warn about it and will return 3579 * -EIO error. 3580 */ 3581 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3582 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3583 3584 if (offset >= sbi->s_bitmap_maxbytes) { 3585 map.m_flags = 0; 3586 goto set_iomap; 3587 } 3588 } 3589 3590 ret = ext4_map_blocks(NULL, inode, &map, 0); 3591 if (ret < 0) 3592 return ret; 3593 if (ret == 0) 3594 delalloc = ext4_iomap_is_delalloc(inode, &map); 3595 3596 set_iomap: 3597 ext4_set_iomap(inode, iomap, &map, offset, length); 3598 if (delalloc && iomap->type == IOMAP_HOLE) 3599 iomap->type = IOMAP_DELALLOC; 3600 3601 return 0; 3602 } 3603 3604 const struct iomap_ops ext4_iomap_report_ops = { 3605 .iomap_begin = ext4_iomap_begin_report, 3606 }; 3607 3608 /* 3609 * Pages can be marked dirty completely asynchronously from ext4's journalling 3610 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3611 * much here because ->set_page_dirty is called under VFS locks. The page is 3612 * not necessarily locked. 3613 * 3614 * We cannot just dirty the page and leave attached buffers clean, because the 3615 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3616 * or jbddirty because all the journalling code will explode. 3617 * 3618 * So what we do is to mark the page "pending dirty" and next time writepage 3619 * is called, propagate that into the buffers appropriately. 3620 */ 3621 static int ext4_journalled_set_page_dirty(struct page *page) 3622 { 3623 SetPageChecked(page); 3624 return __set_page_dirty_nobuffers(page); 3625 } 3626 3627 static int ext4_set_page_dirty(struct page *page) 3628 { 3629 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3630 WARN_ON_ONCE(!page_has_buffers(page)); 3631 return __set_page_dirty_buffers(page); 3632 } 3633 3634 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3635 struct file *file, sector_t *span) 3636 { 3637 return iomap_swapfile_activate(sis, file, span, 3638 &ext4_iomap_report_ops); 3639 } 3640 3641 static const struct address_space_operations ext4_aops = { 3642 .readpage = ext4_readpage, 3643 .readahead = ext4_readahead, 3644 .writepage = ext4_writepage, 3645 .writepages = ext4_writepages, 3646 .write_begin = ext4_write_begin, 3647 .write_end = ext4_write_end, 3648 .set_page_dirty = ext4_set_page_dirty, 3649 .bmap = ext4_bmap, 3650 .invalidatepage = ext4_invalidatepage, 3651 .releasepage = ext4_releasepage, 3652 .direct_IO = noop_direct_IO, 3653 .migratepage = buffer_migrate_page, 3654 .is_partially_uptodate = block_is_partially_uptodate, 3655 .error_remove_page = generic_error_remove_page, 3656 .swap_activate = ext4_iomap_swap_activate, 3657 }; 3658 3659 static const struct address_space_operations ext4_journalled_aops = { 3660 .readpage = ext4_readpage, 3661 .readahead = ext4_readahead, 3662 .writepage = ext4_writepage, 3663 .writepages = ext4_writepages, 3664 .write_begin = ext4_write_begin, 3665 .write_end = ext4_journalled_write_end, 3666 .set_page_dirty = ext4_journalled_set_page_dirty, 3667 .bmap = ext4_bmap, 3668 .invalidatepage = ext4_journalled_invalidatepage, 3669 .releasepage = ext4_releasepage, 3670 .direct_IO = noop_direct_IO, 3671 .is_partially_uptodate = block_is_partially_uptodate, 3672 .error_remove_page = generic_error_remove_page, 3673 .swap_activate = ext4_iomap_swap_activate, 3674 }; 3675 3676 static const struct address_space_operations ext4_da_aops = { 3677 .readpage = ext4_readpage, 3678 .readahead = ext4_readahead, 3679 .writepage = ext4_writepage, 3680 .writepages = ext4_writepages, 3681 .write_begin = ext4_da_write_begin, 3682 .write_end = ext4_da_write_end, 3683 .set_page_dirty = ext4_set_page_dirty, 3684 .bmap = ext4_bmap, 3685 .invalidatepage = ext4_invalidatepage, 3686 .releasepage = ext4_releasepage, 3687 .direct_IO = noop_direct_IO, 3688 .migratepage = buffer_migrate_page, 3689 .is_partially_uptodate = block_is_partially_uptodate, 3690 .error_remove_page = generic_error_remove_page, 3691 .swap_activate = ext4_iomap_swap_activate, 3692 }; 3693 3694 static const struct address_space_operations ext4_dax_aops = { 3695 .writepages = ext4_dax_writepages, 3696 .direct_IO = noop_direct_IO, 3697 .set_page_dirty = noop_set_page_dirty, 3698 .bmap = ext4_bmap, 3699 .invalidatepage = noop_invalidatepage, 3700 .swap_activate = ext4_iomap_swap_activate, 3701 }; 3702 3703 void ext4_set_aops(struct inode *inode) 3704 { 3705 switch (ext4_inode_journal_mode(inode)) { 3706 case EXT4_INODE_ORDERED_DATA_MODE: 3707 case EXT4_INODE_WRITEBACK_DATA_MODE: 3708 break; 3709 case EXT4_INODE_JOURNAL_DATA_MODE: 3710 inode->i_mapping->a_ops = &ext4_journalled_aops; 3711 return; 3712 default: 3713 BUG(); 3714 } 3715 if (IS_DAX(inode)) 3716 inode->i_mapping->a_ops = &ext4_dax_aops; 3717 else if (test_opt(inode->i_sb, DELALLOC)) 3718 inode->i_mapping->a_ops = &ext4_da_aops; 3719 else 3720 inode->i_mapping->a_ops = &ext4_aops; 3721 } 3722 3723 static int __ext4_block_zero_page_range(handle_t *handle, 3724 struct address_space *mapping, loff_t from, loff_t length) 3725 { 3726 ext4_fsblk_t index = from >> PAGE_SHIFT; 3727 unsigned offset = from & (PAGE_SIZE-1); 3728 unsigned blocksize, pos; 3729 ext4_lblk_t iblock; 3730 struct inode *inode = mapping->host; 3731 struct buffer_head *bh; 3732 struct page *page; 3733 int err = 0; 3734 3735 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3736 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3737 if (!page) 3738 return -ENOMEM; 3739 3740 blocksize = inode->i_sb->s_blocksize; 3741 3742 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3743 3744 if (!page_has_buffers(page)) 3745 create_empty_buffers(page, blocksize, 0); 3746 3747 /* Find the buffer that contains "offset" */ 3748 bh = page_buffers(page); 3749 pos = blocksize; 3750 while (offset >= pos) { 3751 bh = bh->b_this_page; 3752 iblock++; 3753 pos += blocksize; 3754 } 3755 if (buffer_freed(bh)) { 3756 BUFFER_TRACE(bh, "freed: skip"); 3757 goto unlock; 3758 } 3759 if (!buffer_mapped(bh)) { 3760 BUFFER_TRACE(bh, "unmapped"); 3761 ext4_get_block(inode, iblock, bh, 0); 3762 /* unmapped? It's a hole - nothing to do */ 3763 if (!buffer_mapped(bh)) { 3764 BUFFER_TRACE(bh, "still unmapped"); 3765 goto unlock; 3766 } 3767 } 3768 3769 /* Ok, it's mapped. Make sure it's up-to-date */ 3770 if (PageUptodate(page)) 3771 set_buffer_uptodate(bh); 3772 3773 if (!buffer_uptodate(bh)) { 3774 err = ext4_read_bh_lock(bh, 0, true); 3775 if (err) 3776 goto unlock; 3777 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3778 /* We expect the key to be set. */ 3779 BUG_ON(!fscrypt_has_encryption_key(inode)); 3780 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3781 bh_offset(bh)); 3782 if (err) { 3783 clear_buffer_uptodate(bh); 3784 goto unlock; 3785 } 3786 } 3787 } 3788 if (ext4_should_journal_data(inode)) { 3789 BUFFER_TRACE(bh, "get write access"); 3790 err = ext4_journal_get_write_access(handle, bh); 3791 if (err) 3792 goto unlock; 3793 } 3794 zero_user(page, offset, length); 3795 BUFFER_TRACE(bh, "zeroed end of block"); 3796 3797 if (ext4_should_journal_data(inode)) { 3798 err = ext4_handle_dirty_metadata(handle, inode, bh); 3799 } else { 3800 err = 0; 3801 mark_buffer_dirty(bh); 3802 if (ext4_should_order_data(inode)) 3803 err = ext4_jbd2_inode_add_write(handle, inode, from, 3804 length); 3805 } 3806 3807 unlock: 3808 unlock_page(page); 3809 put_page(page); 3810 return err; 3811 } 3812 3813 /* 3814 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3815 * starting from file offset 'from'. The range to be zero'd must 3816 * be contained with in one block. If the specified range exceeds 3817 * the end of the block it will be shortened to end of the block 3818 * that cooresponds to 'from' 3819 */ 3820 static int ext4_block_zero_page_range(handle_t *handle, 3821 struct address_space *mapping, loff_t from, loff_t length) 3822 { 3823 struct inode *inode = mapping->host; 3824 unsigned offset = from & (PAGE_SIZE-1); 3825 unsigned blocksize = inode->i_sb->s_blocksize; 3826 unsigned max = blocksize - (offset & (blocksize - 1)); 3827 3828 /* 3829 * correct length if it does not fall between 3830 * 'from' and the end of the block 3831 */ 3832 if (length > max || length < 0) 3833 length = max; 3834 3835 if (IS_DAX(inode)) { 3836 return iomap_zero_range(inode, from, length, NULL, 3837 &ext4_iomap_ops); 3838 } 3839 return __ext4_block_zero_page_range(handle, mapping, from, length); 3840 } 3841 3842 /* 3843 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3844 * up to the end of the block which corresponds to `from'. 3845 * This required during truncate. We need to physically zero the tail end 3846 * of that block so it doesn't yield old data if the file is later grown. 3847 */ 3848 static int ext4_block_truncate_page(handle_t *handle, 3849 struct address_space *mapping, loff_t from) 3850 { 3851 unsigned offset = from & (PAGE_SIZE-1); 3852 unsigned length; 3853 unsigned blocksize; 3854 struct inode *inode = mapping->host; 3855 3856 /* If we are processing an encrypted inode during orphan list handling */ 3857 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3858 return 0; 3859 3860 blocksize = inode->i_sb->s_blocksize; 3861 length = blocksize - (offset & (blocksize - 1)); 3862 3863 return ext4_block_zero_page_range(handle, mapping, from, length); 3864 } 3865 3866 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3867 loff_t lstart, loff_t length) 3868 { 3869 struct super_block *sb = inode->i_sb; 3870 struct address_space *mapping = inode->i_mapping; 3871 unsigned partial_start, partial_end; 3872 ext4_fsblk_t start, end; 3873 loff_t byte_end = (lstart + length - 1); 3874 int err = 0; 3875 3876 partial_start = lstart & (sb->s_blocksize - 1); 3877 partial_end = byte_end & (sb->s_blocksize - 1); 3878 3879 start = lstart >> sb->s_blocksize_bits; 3880 end = byte_end >> sb->s_blocksize_bits; 3881 3882 /* Handle partial zero within the single block */ 3883 if (start == end && 3884 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3885 err = ext4_block_zero_page_range(handle, mapping, 3886 lstart, length); 3887 return err; 3888 } 3889 /* Handle partial zero out on the start of the range */ 3890 if (partial_start) { 3891 err = ext4_block_zero_page_range(handle, mapping, 3892 lstart, sb->s_blocksize); 3893 if (err) 3894 return err; 3895 } 3896 /* Handle partial zero out on the end of the range */ 3897 if (partial_end != sb->s_blocksize - 1) 3898 err = ext4_block_zero_page_range(handle, mapping, 3899 byte_end - partial_end, 3900 partial_end + 1); 3901 return err; 3902 } 3903 3904 int ext4_can_truncate(struct inode *inode) 3905 { 3906 if (S_ISREG(inode->i_mode)) 3907 return 1; 3908 if (S_ISDIR(inode->i_mode)) 3909 return 1; 3910 if (S_ISLNK(inode->i_mode)) 3911 return !ext4_inode_is_fast_symlink(inode); 3912 return 0; 3913 } 3914 3915 /* 3916 * We have to make sure i_disksize gets properly updated before we truncate 3917 * page cache due to hole punching or zero range. Otherwise i_disksize update 3918 * can get lost as it may have been postponed to submission of writeback but 3919 * that will never happen after we truncate page cache. 3920 */ 3921 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3922 loff_t len) 3923 { 3924 handle_t *handle; 3925 int ret; 3926 3927 loff_t size = i_size_read(inode); 3928 3929 WARN_ON(!inode_is_locked(inode)); 3930 if (offset > size || offset + len < size) 3931 return 0; 3932 3933 if (EXT4_I(inode)->i_disksize >= size) 3934 return 0; 3935 3936 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3937 if (IS_ERR(handle)) 3938 return PTR_ERR(handle); 3939 ext4_update_i_disksize(inode, size); 3940 ret = ext4_mark_inode_dirty(handle, inode); 3941 ext4_journal_stop(handle); 3942 3943 return ret; 3944 } 3945 3946 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3947 { 3948 up_write(&ei->i_mmap_sem); 3949 schedule(); 3950 down_write(&ei->i_mmap_sem); 3951 } 3952 3953 int ext4_break_layouts(struct inode *inode) 3954 { 3955 struct ext4_inode_info *ei = EXT4_I(inode); 3956 struct page *page; 3957 int error; 3958 3959 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3960 return -EINVAL; 3961 3962 do { 3963 page = dax_layout_busy_page(inode->i_mapping); 3964 if (!page) 3965 return 0; 3966 3967 error = ___wait_var_event(&page->_refcount, 3968 atomic_read(&page->_refcount) == 1, 3969 TASK_INTERRUPTIBLE, 0, 0, 3970 ext4_wait_dax_page(ei)); 3971 } while (error == 0); 3972 3973 return error; 3974 } 3975 3976 /* 3977 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3978 * associated with the given offset and length 3979 * 3980 * @inode: File inode 3981 * @offset: The offset where the hole will begin 3982 * @len: The length of the hole 3983 * 3984 * Returns: 0 on success or negative on failure 3985 */ 3986 3987 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3988 { 3989 struct super_block *sb = inode->i_sb; 3990 ext4_lblk_t first_block, stop_block; 3991 struct address_space *mapping = inode->i_mapping; 3992 loff_t first_block_offset, last_block_offset; 3993 handle_t *handle; 3994 unsigned int credits; 3995 int ret = 0, ret2 = 0; 3996 3997 trace_ext4_punch_hole(inode, offset, length, 0); 3998 3999 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4000 if (ext4_has_inline_data(inode)) { 4001 down_write(&EXT4_I(inode)->i_mmap_sem); 4002 ret = ext4_convert_inline_data(inode); 4003 up_write(&EXT4_I(inode)->i_mmap_sem); 4004 if (ret) 4005 return ret; 4006 } 4007 4008 /* 4009 * Write out all dirty pages to avoid race conditions 4010 * Then release them. 4011 */ 4012 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4013 ret = filemap_write_and_wait_range(mapping, offset, 4014 offset + length - 1); 4015 if (ret) 4016 return ret; 4017 } 4018 4019 inode_lock(inode); 4020 4021 /* No need to punch hole beyond i_size */ 4022 if (offset >= inode->i_size) 4023 goto out_mutex; 4024 4025 /* 4026 * If the hole extends beyond i_size, set the hole 4027 * to end after the page that contains i_size 4028 */ 4029 if (offset + length > inode->i_size) { 4030 length = inode->i_size + 4031 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4032 offset; 4033 } 4034 4035 if (offset & (sb->s_blocksize - 1) || 4036 (offset + length) & (sb->s_blocksize - 1)) { 4037 /* 4038 * Attach jinode to inode for jbd2 if we do any zeroing of 4039 * partial block 4040 */ 4041 ret = ext4_inode_attach_jinode(inode); 4042 if (ret < 0) 4043 goto out_mutex; 4044 4045 } 4046 4047 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4048 inode_dio_wait(inode); 4049 4050 /* 4051 * Prevent page faults from reinstantiating pages we have released from 4052 * page cache. 4053 */ 4054 down_write(&EXT4_I(inode)->i_mmap_sem); 4055 4056 ret = ext4_break_layouts(inode); 4057 if (ret) 4058 goto out_dio; 4059 4060 first_block_offset = round_up(offset, sb->s_blocksize); 4061 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4062 4063 /* Now release the pages and zero block aligned part of pages*/ 4064 if (last_block_offset > first_block_offset) { 4065 ret = ext4_update_disksize_before_punch(inode, offset, length); 4066 if (ret) 4067 goto out_dio; 4068 truncate_pagecache_range(inode, first_block_offset, 4069 last_block_offset); 4070 } 4071 4072 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4073 credits = ext4_writepage_trans_blocks(inode); 4074 else 4075 credits = ext4_blocks_for_truncate(inode); 4076 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4077 if (IS_ERR(handle)) { 4078 ret = PTR_ERR(handle); 4079 ext4_std_error(sb, ret); 4080 goto out_dio; 4081 } 4082 4083 ret = ext4_zero_partial_blocks(handle, inode, offset, 4084 length); 4085 if (ret) 4086 goto out_stop; 4087 4088 first_block = (offset + sb->s_blocksize - 1) >> 4089 EXT4_BLOCK_SIZE_BITS(sb); 4090 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4091 4092 /* If there are blocks to remove, do it */ 4093 if (stop_block > first_block) { 4094 4095 down_write(&EXT4_I(inode)->i_data_sem); 4096 ext4_discard_preallocations(inode, 0); 4097 4098 ret = ext4_es_remove_extent(inode, first_block, 4099 stop_block - first_block); 4100 if (ret) { 4101 up_write(&EXT4_I(inode)->i_data_sem); 4102 goto out_stop; 4103 } 4104 4105 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4106 ret = ext4_ext_remove_space(inode, first_block, 4107 stop_block - 1); 4108 else 4109 ret = ext4_ind_remove_space(handle, inode, first_block, 4110 stop_block); 4111 4112 up_write(&EXT4_I(inode)->i_data_sem); 4113 } 4114 ext4_fc_track_range(handle, inode, first_block, stop_block); 4115 if (IS_SYNC(inode)) 4116 ext4_handle_sync(handle); 4117 4118 inode->i_mtime = inode->i_ctime = current_time(inode); 4119 ret2 = ext4_mark_inode_dirty(handle, inode); 4120 if (unlikely(ret2)) 4121 ret = ret2; 4122 if (ret >= 0) 4123 ext4_update_inode_fsync_trans(handle, inode, 1); 4124 out_stop: 4125 ext4_journal_stop(handle); 4126 out_dio: 4127 up_write(&EXT4_I(inode)->i_mmap_sem); 4128 out_mutex: 4129 inode_unlock(inode); 4130 return ret; 4131 } 4132 4133 int ext4_inode_attach_jinode(struct inode *inode) 4134 { 4135 struct ext4_inode_info *ei = EXT4_I(inode); 4136 struct jbd2_inode *jinode; 4137 4138 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4139 return 0; 4140 4141 jinode = jbd2_alloc_inode(GFP_KERNEL); 4142 spin_lock(&inode->i_lock); 4143 if (!ei->jinode) { 4144 if (!jinode) { 4145 spin_unlock(&inode->i_lock); 4146 return -ENOMEM; 4147 } 4148 ei->jinode = jinode; 4149 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4150 jinode = NULL; 4151 } 4152 spin_unlock(&inode->i_lock); 4153 if (unlikely(jinode != NULL)) 4154 jbd2_free_inode(jinode); 4155 return 0; 4156 } 4157 4158 /* 4159 * ext4_truncate() 4160 * 4161 * We block out ext4_get_block() block instantiations across the entire 4162 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4163 * simultaneously on behalf of the same inode. 4164 * 4165 * As we work through the truncate and commit bits of it to the journal there 4166 * is one core, guiding principle: the file's tree must always be consistent on 4167 * disk. We must be able to restart the truncate after a crash. 4168 * 4169 * The file's tree may be transiently inconsistent in memory (although it 4170 * probably isn't), but whenever we close off and commit a journal transaction, 4171 * the contents of (the filesystem + the journal) must be consistent and 4172 * restartable. It's pretty simple, really: bottom up, right to left (although 4173 * left-to-right works OK too). 4174 * 4175 * Note that at recovery time, journal replay occurs *before* the restart of 4176 * truncate against the orphan inode list. 4177 * 4178 * The committed inode has the new, desired i_size (which is the same as 4179 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4180 * that this inode's truncate did not complete and it will again call 4181 * ext4_truncate() to have another go. So there will be instantiated blocks 4182 * to the right of the truncation point in a crashed ext4 filesystem. But 4183 * that's fine - as long as they are linked from the inode, the post-crash 4184 * ext4_truncate() run will find them and release them. 4185 */ 4186 int ext4_truncate(struct inode *inode) 4187 { 4188 struct ext4_inode_info *ei = EXT4_I(inode); 4189 unsigned int credits; 4190 int err = 0, err2; 4191 handle_t *handle; 4192 struct address_space *mapping = inode->i_mapping; 4193 4194 /* 4195 * There is a possibility that we're either freeing the inode 4196 * or it's a completely new inode. In those cases we might not 4197 * have i_mutex locked because it's not necessary. 4198 */ 4199 if (!(inode->i_state & (I_NEW|I_FREEING))) 4200 WARN_ON(!inode_is_locked(inode)); 4201 trace_ext4_truncate_enter(inode); 4202 4203 if (!ext4_can_truncate(inode)) 4204 goto out_trace; 4205 4206 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4207 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4208 4209 if (ext4_has_inline_data(inode)) { 4210 int has_inline = 1; 4211 4212 err = ext4_inline_data_truncate(inode, &has_inline); 4213 if (err || has_inline) 4214 goto out_trace; 4215 } 4216 4217 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4218 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4219 if (ext4_inode_attach_jinode(inode) < 0) 4220 goto out_trace; 4221 } 4222 4223 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4224 credits = ext4_writepage_trans_blocks(inode); 4225 else 4226 credits = ext4_blocks_for_truncate(inode); 4227 4228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4229 if (IS_ERR(handle)) { 4230 err = PTR_ERR(handle); 4231 goto out_trace; 4232 } 4233 4234 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4235 ext4_block_truncate_page(handle, mapping, inode->i_size); 4236 4237 /* 4238 * We add the inode to the orphan list, so that if this 4239 * truncate spans multiple transactions, and we crash, we will 4240 * resume the truncate when the filesystem recovers. It also 4241 * marks the inode dirty, to catch the new size. 4242 * 4243 * Implication: the file must always be in a sane, consistent 4244 * truncatable state while each transaction commits. 4245 */ 4246 err = ext4_orphan_add(handle, inode); 4247 if (err) 4248 goto out_stop; 4249 4250 down_write(&EXT4_I(inode)->i_data_sem); 4251 4252 ext4_discard_preallocations(inode, 0); 4253 4254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4255 err = ext4_ext_truncate(handle, inode); 4256 else 4257 ext4_ind_truncate(handle, inode); 4258 4259 up_write(&ei->i_data_sem); 4260 if (err) 4261 goto out_stop; 4262 4263 if (IS_SYNC(inode)) 4264 ext4_handle_sync(handle); 4265 4266 out_stop: 4267 /* 4268 * If this was a simple ftruncate() and the file will remain alive, 4269 * then we need to clear up the orphan record which we created above. 4270 * However, if this was a real unlink then we were called by 4271 * ext4_evict_inode(), and we allow that function to clean up the 4272 * orphan info for us. 4273 */ 4274 if (inode->i_nlink) 4275 ext4_orphan_del(handle, inode); 4276 4277 inode->i_mtime = inode->i_ctime = current_time(inode); 4278 err2 = ext4_mark_inode_dirty(handle, inode); 4279 if (unlikely(err2 && !err)) 4280 err = err2; 4281 ext4_journal_stop(handle); 4282 4283 out_trace: 4284 trace_ext4_truncate_exit(inode); 4285 return err; 4286 } 4287 4288 /* 4289 * ext4_get_inode_loc returns with an extra refcount against the inode's 4290 * underlying buffer_head on success. If 'in_mem' is true, we have all 4291 * data in memory that is needed to recreate the on-disk version of this 4292 * inode. 4293 */ 4294 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4295 struct ext4_iloc *iloc, int in_mem, 4296 ext4_fsblk_t *ret_block) 4297 { 4298 struct ext4_group_desc *gdp; 4299 struct buffer_head *bh; 4300 ext4_fsblk_t block; 4301 struct blk_plug plug; 4302 int inodes_per_block, inode_offset; 4303 4304 iloc->bh = NULL; 4305 if (ino < EXT4_ROOT_INO || 4306 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4307 return -EFSCORRUPTED; 4308 4309 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4310 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4311 if (!gdp) 4312 return -EIO; 4313 4314 /* 4315 * Figure out the offset within the block group inode table 4316 */ 4317 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4318 inode_offset = ((ino - 1) % 4319 EXT4_INODES_PER_GROUP(sb)); 4320 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4321 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4322 4323 bh = sb_getblk(sb, block); 4324 if (unlikely(!bh)) 4325 return -ENOMEM; 4326 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4327 goto simulate_eio; 4328 if (!buffer_uptodate(bh)) { 4329 lock_buffer(bh); 4330 4331 if (ext4_buffer_uptodate(bh)) { 4332 /* someone brought it uptodate while we waited */ 4333 unlock_buffer(bh); 4334 goto has_buffer; 4335 } 4336 4337 /* 4338 * If we have all information of the inode in memory and this 4339 * is the only valid inode in the block, we need not read the 4340 * block. 4341 */ 4342 if (in_mem) { 4343 struct buffer_head *bitmap_bh; 4344 int i, start; 4345 4346 start = inode_offset & ~(inodes_per_block - 1); 4347 4348 /* Is the inode bitmap in cache? */ 4349 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4350 if (unlikely(!bitmap_bh)) 4351 goto make_io; 4352 4353 /* 4354 * If the inode bitmap isn't in cache then the 4355 * optimisation may end up performing two reads instead 4356 * of one, so skip it. 4357 */ 4358 if (!buffer_uptodate(bitmap_bh)) { 4359 brelse(bitmap_bh); 4360 goto make_io; 4361 } 4362 for (i = start; i < start + inodes_per_block; i++) { 4363 if (i == inode_offset) 4364 continue; 4365 if (ext4_test_bit(i, bitmap_bh->b_data)) 4366 break; 4367 } 4368 brelse(bitmap_bh); 4369 if (i == start + inodes_per_block) { 4370 /* all other inodes are free, so skip I/O */ 4371 memset(bh->b_data, 0, bh->b_size); 4372 set_buffer_uptodate(bh); 4373 unlock_buffer(bh); 4374 goto has_buffer; 4375 } 4376 } 4377 4378 make_io: 4379 /* 4380 * If we need to do any I/O, try to pre-readahead extra 4381 * blocks from the inode table. 4382 */ 4383 blk_start_plug(&plug); 4384 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4385 ext4_fsblk_t b, end, table; 4386 unsigned num; 4387 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4388 4389 table = ext4_inode_table(sb, gdp); 4390 /* s_inode_readahead_blks is always a power of 2 */ 4391 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4392 if (table > b) 4393 b = table; 4394 end = b + ra_blks; 4395 num = EXT4_INODES_PER_GROUP(sb); 4396 if (ext4_has_group_desc_csum(sb)) 4397 num -= ext4_itable_unused_count(sb, gdp); 4398 table += num / inodes_per_block; 4399 if (end > table) 4400 end = table; 4401 while (b <= end) 4402 ext4_sb_breadahead_unmovable(sb, b++); 4403 } 4404 4405 /* 4406 * There are other valid inodes in the buffer, this inode 4407 * has in-inode xattrs, or we don't have this inode in memory. 4408 * Read the block from disk. 4409 */ 4410 trace_ext4_load_inode(sb, ino); 4411 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4412 blk_finish_plug(&plug); 4413 wait_on_buffer(bh); 4414 if (!buffer_uptodate(bh)) { 4415 simulate_eio: 4416 if (ret_block) 4417 *ret_block = block; 4418 brelse(bh); 4419 return -EIO; 4420 } 4421 } 4422 has_buffer: 4423 iloc->bh = bh; 4424 return 0; 4425 } 4426 4427 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4428 struct ext4_iloc *iloc) 4429 { 4430 ext4_fsblk_t err_blk; 4431 int ret; 4432 4433 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4434 &err_blk); 4435 4436 if (ret == -EIO) 4437 ext4_error_inode_block(inode, err_blk, EIO, 4438 "unable to read itable block"); 4439 4440 return ret; 4441 } 4442 4443 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4444 { 4445 ext4_fsblk_t err_blk; 4446 int ret; 4447 4448 /* We have all inode data except xattrs in memory here. */ 4449 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4450 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4451 4452 if (ret == -EIO) 4453 ext4_error_inode_block(inode, err_blk, EIO, 4454 "unable to read itable block"); 4455 4456 return ret; 4457 } 4458 4459 4460 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4461 struct ext4_iloc *iloc) 4462 { 4463 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4464 } 4465 4466 static bool ext4_should_enable_dax(struct inode *inode) 4467 { 4468 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4469 4470 if (test_opt2(inode->i_sb, DAX_NEVER)) 4471 return false; 4472 if (!S_ISREG(inode->i_mode)) 4473 return false; 4474 if (ext4_should_journal_data(inode)) 4475 return false; 4476 if (ext4_has_inline_data(inode)) 4477 return false; 4478 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4479 return false; 4480 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4481 return false; 4482 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4483 return false; 4484 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4485 return true; 4486 4487 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4488 } 4489 4490 void ext4_set_inode_flags(struct inode *inode, bool init) 4491 { 4492 unsigned int flags = EXT4_I(inode)->i_flags; 4493 unsigned int new_fl = 0; 4494 4495 WARN_ON_ONCE(IS_DAX(inode) && init); 4496 4497 if (flags & EXT4_SYNC_FL) 4498 new_fl |= S_SYNC; 4499 if (flags & EXT4_APPEND_FL) 4500 new_fl |= S_APPEND; 4501 if (flags & EXT4_IMMUTABLE_FL) 4502 new_fl |= S_IMMUTABLE; 4503 if (flags & EXT4_NOATIME_FL) 4504 new_fl |= S_NOATIME; 4505 if (flags & EXT4_DIRSYNC_FL) 4506 new_fl |= S_DIRSYNC; 4507 4508 /* Because of the way inode_set_flags() works we must preserve S_DAX 4509 * here if already set. */ 4510 new_fl |= (inode->i_flags & S_DAX); 4511 if (init && ext4_should_enable_dax(inode)) 4512 new_fl |= S_DAX; 4513 4514 if (flags & EXT4_ENCRYPT_FL) 4515 new_fl |= S_ENCRYPTED; 4516 if (flags & EXT4_CASEFOLD_FL) 4517 new_fl |= S_CASEFOLD; 4518 if (flags & EXT4_VERITY_FL) 4519 new_fl |= S_VERITY; 4520 inode_set_flags(inode, new_fl, 4521 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4522 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4523 } 4524 4525 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4526 struct ext4_inode_info *ei) 4527 { 4528 blkcnt_t i_blocks ; 4529 struct inode *inode = &(ei->vfs_inode); 4530 struct super_block *sb = inode->i_sb; 4531 4532 if (ext4_has_feature_huge_file(sb)) { 4533 /* we are using combined 48 bit field */ 4534 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4535 le32_to_cpu(raw_inode->i_blocks_lo); 4536 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4537 /* i_blocks represent file system block size */ 4538 return i_blocks << (inode->i_blkbits - 9); 4539 } else { 4540 return i_blocks; 4541 } 4542 } else { 4543 return le32_to_cpu(raw_inode->i_blocks_lo); 4544 } 4545 } 4546 4547 static inline int ext4_iget_extra_inode(struct inode *inode, 4548 struct ext4_inode *raw_inode, 4549 struct ext4_inode_info *ei) 4550 { 4551 __le32 *magic = (void *)raw_inode + 4552 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4553 4554 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4555 EXT4_INODE_SIZE(inode->i_sb) && 4556 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4557 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4558 return ext4_find_inline_data_nolock(inode); 4559 } else 4560 EXT4_I(inode)->i_inline_off = 0; 4561 return 0; 4562 } 4563 4564 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4565 { 4566 if (!ext4_has_feature_project(inode->i_sb)) 4567 return -EOPNOTSUPP; 4568 *projid = EXT4_I(inode)->i_projid; 4569 return 0; 4570 } 4571 4572 /* 4573 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4574 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4575 * set. 4576 */ 4577 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4578 { 4579 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4580 inode_set_iversion_raw(inode, val); 4581 else 4582 inode_set_iversion_queried(inode, val); 4583 } 4584 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4585 { 4586 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4587 return inode_peek_iversion_raw(inode); 4588 else 4589 return inode_peek_iversion(inode); 4590 } 4591 4592 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4593 ext4_iget_flags flags, const char *function, 4594 unsigned int line) 4595 { 4596 struct ext4_iloc iloc; 4597 struct ext4_inode *raw_inode; 4598 struct ext4_inode_info *ei; 4599 struct inode *inode; 4600 journal_t *journal = EXT4_SB(sb)->s_journal; 4601 long ret; 4602 loff_t size; 4603 int block; 4604 uid_t i_uid; 4605 gid_t i_gid; 4606 projid_t i_projid; 4607 4608 if ((!(flags & EXT4_IGET_SPECIAL) && 4609 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4610 (ino < EXT4_ROOT_INO) || 4611 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4612 if (flags & EXT4_IGET_HANDLE) 4613 return ERR_PTR(-ESTALE); 4614 __ext4_error(sb, function, line, EFSCORRUPTED, 0, 4615 "inode #%lu: comm %s: iget: illegal inode #", 4616 ino, current->comm); 4617 return ERR_PTR(-EFSCORRUPTED); 4618 } 4619 4620 inode = iget_locked(sb, ino); 4621 if (!inode) 4622 return ERR_PTR(-ENOMEM); 4623 if (!(inode->i_state & I_NEW)) 4624 return inode; 4625 4626 ei = EXT4_I(inode); 4627 iloc.bh = NULL; 4628 4629 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4630 if (ret < 0) 4631 goto bad_inode; 4632 raw_inode = ext4_raw_inode(&iloc); 4633 4634 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4635 ext4_error_inode(inode, function, line, 0, 4636 "iget: root inode unallocated"); 4637 ret = -EFSCORRUPTED; 4638 goto bad_inode; 4639 } 4640 4641 if ((flags & EXT4_IGET_HANDLE) && 4642 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4643 ret = -ESTALE; 4644 goto bad_inode; 4645 } 4646 4647 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4648 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4649 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4650 EXT4_INODE_SIZE(inode->i_sb) || 4651 (ei->i_extra_isize & 3)) { 4652 ext4_error_inode(inode, function, line, 0, 4653 "iget: bad extra_isize %u " 4654 "(inode size %u)", 4655 ei->i_extra_isize, 4656 EXT4_INODE_SIZE(inode->i_sb)); 4657 ret = -EFSCORRUPTED; 4658 goto bad_inode; 4659 } 4660 } else 4661 ei->i_extra_isize = 0; 4662 4663 /* Precompute checksum seed for inode metadata */ 4664 if (ext4_has_metadata_csum(sb)) { 4665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4666 __u32 csum; 4667 __le32 inum = cpu_to_le32(inode->i_ino); 4668 __le32 gen = raw_inode->i_generation; 4669 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4670 sizeof(inum)); 4671 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4672 sizeof(gen)); 4673 } 4674 4675 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4676 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4677 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4678 ext4_error_inode_err(inode, function, line, 0, 4679 EFSBADCRC, "iget: checksum invalid"); 4680 ret = -EFSBADCRC; 4681 goto bad_inode; 4682 } 4683 4684 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4685 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4686 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4687 if (ext4_has_feature_project(sb) && 4688 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4689 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4690 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4691 else 4692 i_projid = EXT4_DEF_PROJID; 4693 4694 if (!(test_opt(inode->i_sb, NO_UID32))) { 4695 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4696 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4697 } 4698 i_uid_write(inode, i_uid); 4699 i_gid_write(inode, i_gid); 4700 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4701 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4702 4703 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4704 ei->i_inline_off = 0; 4705 ei->i_dir_start_lookup = 0; 4706 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4707 /* We now have enough fields to check if the inode was active or not. 4708 * This is needed because nfsd might try to access dead inodes 4709 * the test is that same one that e2fsck uses 4710 * NeilBrown 1999oct15 4711 */ 4712 if (inode->i_nlink == 0) { 4713 if ((inode->i_mode == 0 || 4714 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4715 ino != EXT4_BOOT_LOADER_INO) { 4716 /* this inode is deleted */ 4717 ret = -ESTALE; 4718 goto bad_inode; 4719 } 4720 /* The only unlinked inodes we let through here have 4721 * valid i_mode and are being read by the orphan 4722 * recovery code: that's fine, we're about to complete 4723 * the process of deleting those. 4724 * OR it is the EXT4_BOOT_LOADER_INO which is 4725 * not initialized on a new filesystem. */ 4726 } 4727 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4728 ext4_set_inode_flags(inode, true); 4729 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4730 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4731 if (ext4_has_feature_64bit(sb)) 4732 ei->i_file_acl |= 4733 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4734 inode->i_size = ext4_isize(sb, raw_inode); 4735 if ((size = i_size_read(inode)) < 0) { 4736 ext4_error_inode(inode, function, line, 0, 4737 "iget: bad i_size value: %lld", size); 4738 ret = -EFSCORRUPTED; 4739 goto bad_inode; 4740 } 4741 /* 4742 * If dir_index is not enabled but there's dir with INDEX flag set, 4743 * we'd normally treat htree data as empty space. But with metadata 4744 * checksumming that corrupts checksums so forbid that. 4745 */ 4746 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4747 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4748 ext4_error_inode(inode, function, line, 0, 4749 "iget: Dir with htree data on filesystem without dir_index feature."); 4750 ret = -EFSCORRUPTED; 4751 goto bad_inode; 4752 } 4753 ei->i_disksize = inode->i_size; 4754 #ifdef CONFIG_QUOTA 4755 ei->i_reserved_quota = 0; 4756 #endif 4757 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4758 ei->i_block_group = iloc.block_group; 4759 ei->i_last_alloc_group = ~0; 4760 /* 4761 * NOTE! The in-memory inode i_data array is in little-endian order 4762 * even on big-endian machines: we do NOT byteswap the block numbers! 4763 */ 4764 for (block = 0; block < EXT4_N_BLOCKS; block++) 4765 ei->i_data[block] = raw_inode->i_block[block]; 4766 INIT_LIST_HEAD(&ei->i_orphan); 4767 ext4_fc_init_inode(&ei->vfs_inode); 4768 4769 /* 4770 * Set transaction id's of transactions that have to be committed 4771 * to finish f[data]sync. We set them to currently running transaction 4772 * as we cannot be sure that the inode or some of its metadata isn't 4773 * part of the transaction - the inode could have been reclaimed and 4774 * now it is reread from disk. 4775 */ 4776 if (journal) { 4777 transaction_t *transaction; 4778 tid_t tid; 4779 4780 read_lock(&journal->j_state_lock); 4781 if (journal->j_running_transaction) 4782 transaction = journal->j_running_transaction; 4783 else 4784 transaction = journal->j_committing_transaction; 4785 if (transaction) 4786 tid = transaction->t_tid; 4787 else 4788 tid = journal->j_commit_sequence; 4789 read_unlock(&journal->j_state_lock); 4790 ei->i_sync_tid = tid; 4791 ei->i_datasync_tid = tid; 4792 } 4793 4794 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4795 if (ei->i_extra_isize == 0) { 4796 /* The extra space is currently unused. Use it. */ 4797 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4798 ei->i_extra_isize = sizeof(struct ext4_inode) - 4799 EXT4_GOOD_OLD_INODE_SIZE; 4800 } else { 4801 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4802 if (ret) 4803 goto bad_inode; 4804 } 4805 } 4806 4807 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4808 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4809 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4810 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4811 4812 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4813 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4814 4815 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4816 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4817 ivers |= 4818 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4819 } 4820 ext4_inode_set_iversion_queried(inode, ivers); 4821 } 4822 4823 ret = 0; 4824 if (ei->i_file_acl && 4825 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4826 ext4_error_inode(inode, function, line, 0, 4827 "iget: bad extended attribute block %llu", 4828 ei->i_file_acl); 4829 ret = -EFSCORRUPTED; 4830 goto bad_inode; 4831 } else if (!ext4_has_inline_data(inode)) { 4832 /* validate the block references in the inode */ 4833 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4834 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4835 (S_ISLNK(inode->i_mode) && 4836 !ext4_inode_is_fast_symlink(inode)))) { 4837 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4838 ret = ext4_ext_check_inode(inode); 4839 else 4840 ret = ext4_ind_check_inode(inode); 4841 } 4842 } 4843 if (ret) 4844 goto bad_inode; 4845 4846 if (S_ISREG(inode->i_mode)) { 4847 inode->i_op = &ext4_file_inode_operations; 4848 inode->i_fop = &ext4_file_operations; 4849 ext4_set_aops(inode); 4850 } else if (S_ISDIR(inode->i_mode)) { 4851 inode->i_op = &ext4_dir_inode_operations; 4852 inode->i_fop = &ext4_dir_operations; 4853 } else if (S_ISLNK(inode->i_mode)) { 4854 /* VFS does not allow setting these so must be corruption */ 4855 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4856 ext4_error_inode(inode, function, line, 0, 4857 "iget: immutable or append flags " 4858 "not allowed on symlinks"); 4859 ret = -EFSCORRUPTED; 4860 goto bad_inode; 4861 } 4862 if (IS_ENCRYPTED(inode)) { 4863 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4864 ext4_set_aops(inode); 4865 } else if (ext4_inode_is_fast_symlink(inode)) { 4866 inode->i_link = (char *)ei->i_data; 4867 inode->i_op = &ext4_fast_symlink_inode_operations; 4868 nd_terminate_link(ei->i_data, inode->i_size, 4869 sizeof(ei->i_data) - 1); 4870 } else { 4871 inode->i_op = &ext4_symlink_inode_operations; 4872 ext4_set_aops(inode); 4873 } 4874 inode_nohighmem(inode); 4875 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4876 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4877 inode->i_op = &ext4_special_inode_operations; 4878 if (raw_inode->i_block[0]) 4879 init_special_inode(inode, inode->i_mode, 4880 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4881 else 4882 init_special_inode(inode, inode->i_mode, 4883 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4884 } else if (ino == EXT4_BOOT_LOADER_INO) { 4885 make_bad_inode(inode); 4886 } else { 4887 ret = -EFSCORRUPTED; 4888 ext4_error_inode(inode, function, line, 0, 4889 "iget: bogus i_mode (%o)", inode->i_mode); 4890 goto bad_inode; 4891 } 4892 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4893 ext4_error_inode(inode, function, line, 0, 4894 "casefold flag without casefold feature"); 4895 brelse(iloc.bh); 4896 4897 unlock_new_inode(inode); 4898 return inode; 4899 4900 bad_inode: 4901 brelse(iloc.bh); 4902 iget_failed(inode); 4903 return ERR_PTR(ret); 4904 } 4905 4906 static int ext4_inode_blocks_set(handle_t *handle, 4907 struct ext4_inode *raw_inode, 4908 struct ext4_inode_info *ei) 4909 { 4910 struct inode *inode = &(ei->vfs_inode); 4911 u64 i_blocks = READ_ONCE(inode->i_blocks); 4912 struct super_block *sb = inode->i_sb; 4913 4914 if (i_blocks <= ~0U) { 4915 /* 4916 * i_blocks can be represented in a 32 bit variable 4917 * as multiple of 512 bytes 4918 */ 4919 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4920 raw_inode->i_blocks_high = 0; 4921 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4922 return 0; 4923 } 4924 if (!ext4_has_feature_huge_file(sb)) 4925 return -EFBIG; 4926 4927 if (i_blocks <= 0xffffffffffffULL) { 4928 /* 4929 * i_blocks can be represented in a 48 bit variable 4930 * as multiple of 512 bytes 4931 */ 4932 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4933 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4934 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4935 } else { 4936 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4937 /* i_block is stored in file system block size */ 4938 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4939 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4940 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4941 } 4942 return 0; 4943 } 4944 4945 static void __ext4_update_other_inode_time(struct super_block *sb, 4946 unsigned long orig_ino, 4947 unsigned long ino, 4948 struct ext4_inode *raw_inode) 4949 { 4950 struct inode *inode; 4951 4952 inode = find_inode_by_ino_rcu(sb, ino); 4953 if (!inode) 4954 return; 4955 4956 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4957 I_DIRTY_INODE)) || 4958 ((inode->i_state & I_DIRTY_TIME) == 0)) 4959 return; 4960 4961 spin_lock(&inode->i_lock); 4962 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4963 I_DIRTY_INODE)) == 0) && 4964 (inode->i_state & I_DIRTY_TIME)) { 4965 struct ext4_inode_info *ei = EXT4_I(inode); 4966 4967 inode->i_state &= ~I_DIRTY_TIME; 4968 spin_unlock(&inode->i_lock); 4969 4970 spin_lock(&ei->i_raw_lock); 4971 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4972 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4973 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4974 ext4_inode_csum_set(inode, raw_inode, ei); 4975 spin_unlock(&ei->i_raw_lock); 4976 trace_ext4_other_inode_update_time(inode, orig_ino); 4977 return; 4978 } 4979 spin_unlock(&inode->i_lock); 4980 } 4981 4982 /* 4983 * Opportunistically update the other time fields for other inodes in 4984 * the same inode table block. 4985 */ 4986 static void ext4_update_other_inodes_time(struct super_block *sb, 4987 unsigned long orig_ino, char *buf) 4988 { 4989 unsigned long ino; 4990 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4991 int inode_size = EXT4_INODE_SIZE(sb); 4992 4993 /* 4994 * Calculate the first inode in the inode table block. Inode 4995 * numbers are one-based. That is, the first inode in a block 4996 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4997 */ 4998 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4999 rcu_read_lock(); 5000 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5001 if (ino == orig_ino) 5002 continue; 5003 __ext4_update_other_inode_time(sb, orig_ino, ino, 5004 (struct ext4_inode *)buf); 5005 } 5006 rcu_read_unlock(); 5007 } 5008 5009 /* 5010 * Post the struct inode info into an on-disk inode location in the 5011 * buffer-cache. This gobbles the caller's reference to the 5012 * buffer_head in the inode location struct. 5013 * 5014 * The caller must have write access to iloc->bh. 5015 */ 5016 static int ext4_do_update_inode(handle_t *handle, 5017 struct inode *inode, 5018 struct ext4_iloc *iloc) 5019 { 5020 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5021 struct ext4_inode_info *ei = EXT4_I(inode); 5022 struct buffer_head *bh = iloc->bh; 5023 struct super_block *sb = inode->i_sb; 5024 int err = 0, rc, block; 5025 int need_datasync = 0, set_large_file = 0; 5026 uid_t i_uid; 5027 gid_t i_gid; 5028 projid_t i_projid; 5029 5030 spin_lock(&ei->i_raw_lock); 5031 5032 /* For fields not tracked in the in-memory inode, 5033 * initialise them to zero for new inodes. */ 5034 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5035 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5036 5037 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5038 if (err) { 5039 spin_unlock(&ei->i_raw_lock); 5040 goto out_brelse; 5041 } 5042 5043 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5044 i_uid = i_uid_read(inode); 5045 i_gid = i_gid_read(inode); 5046 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5047 if (!(test_opt(inode->i_sb, NO_UID32))) { 5048 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5049 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5050 /* 5051 * Fix up interoperability with old kernels. Otherwise, old inodes get 5052 * re-used with the upper 16 bits of the uid/gid intact 5053 */ 5054 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5055 raw_inode->i_uid_high = 0; 5056 raw_inode->i_gid_high = 0; 5057 } else { 5058 raw_inode->i_uid_high = 5059 cpu_to_le16(high_16_bits(i_uid)); 5060 raw_inode->i_gid_high = 5061 cpu_to_le16(high_16_bits(i_gid)); 5062 } 5063 } else { 5064 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5065 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5066 raw_inode->i_uid_high = 0; 5067 raw_inode->i_gid_high = 0; 5068 } 5069 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5070 5071 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5072 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5073 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5074 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5075 5076 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5077 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5078 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5079 raw_inode->i_file_acl_high = 5080 cpu_to_le16(ei->i_file_acl >> 32); 5081 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5082 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5083 ext4_isize_set(raw_inode, ei->i_disksize); 5084 need_datasync = 1; 5085 } 5086 if (ei->i_disksize > 0x7fffffffULL) { 5087 if (!ext4_has_feature_large_file(sb) || 5088 EXT4_SB(sb)->s_es->s_rev_level == 5089 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5090 set_large_file = 1; 5091 } 5092 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5093 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5094 if (old_valid_dev(inode->i_rdev)) { 5095 raw_inode->i_block[0] = 5096 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5097 raw_inode->i_block[1] = 0; 5098 } else { 5099 raw_inode->i_block[0] = 0; 5100 raw_inode->i_block[1] = 5101 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5102 raw_inode->i_block[2] = 0; 5103 } 5104 } else if (!ext4_has_inline_data(inode)) { 5105 for (block = 0; block < EXT4_N_BLOCKS; block++) 5106 raw_inode->i_block[block] = ei->i_data[block]; 5107 } 5108 5109 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5110 u64 ivers = ext4_inode_peek_iversion(inode); 5111 5112 raw_inode->i_disk_version = cpu_to_le32(ivers); 5113 if (ei->i_extra_isize) { 5114 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5115 raw_inode->i_version_hi = 5116 cpu_to_le32(ivers >> 32); 5117 raw_inode->i_extra_isize = 5118 cpu_to_le16(ei->i_extra_isize); 5119 } 5120 } 5121 5122 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5123 i_projid != EXT4_DEF_PROJID); 5124 5125 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5126 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5127 raw_inode->i_projid = cpu_to_le32(i_projid); 5128 5129 ext4_inode_csum_set(inode, raw_inode, ei); 5130 spin_unlock(&ei->i_raw_lock); 5131 if (inode->i_sb->s_flags & SB_LAZYTIME) 5132 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5133 bh->b_data); 5134 5135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5136 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5137 if (!err) 5138 err = rc; 5139 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5140 if (set_large_file) { 5141 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5142 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5143 if (err) 5144 goto out_brelse; 5145 ext4_set_feature_large_file(sb); 5146 ext4_handle_sync(handle); 5147 err = ext4_handle_dirty_super(handle, sb); 5148 } 5149 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5150 out_brelse: 5151 brelse(bh); 5152 ext4_std_error(inode->i_sb, err); 5153 return err; 5154 } 5155 5156 /* 5157 * ext4_write_inode() 5158 * 5159 * We are called from a few places: 5160 * 5161 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5162 * Here, there will be no transaction running. We wait for any running 5163 * transaction to commit. 5164 * 5165 * - Within flush work (sys_sync(), kupdate and such). 5166 * We wait on commit, if told to. 5167 * 5168 * - Within iput_final() -> write_inode_now() 5169 * We wait on commit, if told to. 5170 * 5171 * In all cases it is actually safe for us to return without doing anything, 5172 * because the inode has been copied into a raw inode buffer in 5173 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5174 * writeback. 5175 * 5176 * Note that we are absolutely dependent upon all inode dirtiers doing the 5177 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5178 * which we are interested. 5179 * 5180 * It would be a bug for them to not do this. The code: 5181 * 5182 * mark_inode_dirty(inode) 5183 * stuff(); 5184 * inode->i_size = expr; 5185 * 5186 * is in error because write_inode() could occur while `stuff()' is running, 5187 * and the new i_size will be lost. Plus the inode will no longer be on the 5188 * superblock's dirty inode list. 5189 */ 5190 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5191 { 5192 int err; 5193 5194 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5195 sb_rdonly(inode->i_sb)) 5196 return 0; 5197 5198 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5199 return -EIO; 5200 5201 if (EXT4_SB(inode->i_sb)->s_journal) { 5202 if (ext4_journal_current_handle()) { 5203 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5204 dump_stack(); 5205 return -EIO; 5206 } 5207 5208 /* 5209 * No need to force transaction in WB_SYNC_NONE mode. Also 5210 * ext4_sync_fs() will force the commit after everything is 5211 * written. 5212 */ 5213 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5214 return 0; 5215 5216 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5217 EXT4_I(inode)->i_sync_tid); 5218 } else { 5219 struct ext4_iloc iloc; 5220 5221 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5222 if (err) 5223 return err; 5224 /* 5225 * sync(2) will flush the whole buffer cache. No need to do 5226 * it here separately for each inode. 5227 */ 5228 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5229 sync_dirty_buffer(iloc.bh); 5230 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5231 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5232 "IO error syncing inode"); 5233 err = -EIO; 5234 } 5235 brelse(iloc.bh); 5236 } 5237 return err; 5238 } 5239 5240 /* 5241 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5242 * buffers that are attached to a page stradding i_size and are undergoing 5243 * commit. In that case we have to wait for commit to finish and try again. 5244 */ 5245 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5246 { 5247 struct page *page; 5248 unsigned offset; 5249 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5250 tid_t commit_tid = 0; 5251 int ret; 5252 5253 offset = inode->i_size & (PAGE_SIZE - 1); 5254 /* 5255 * If the page is fully truncated, we don't need to wait for any commit 5256 * (and we even should not as __ext4_journalled_invalidatepage() may 5257 * strip all buffers from the page but keep the page dirty which can then 5258 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5259 * buffers). Also we don't need to wait for any commit if all buffers in 5260 * the page remain valid. This is most beneficial for the common case of 5261 * blocksize == PAGESIZE. 5262 */ 5263 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5264 return; 5265 while (1) { 5266 page = find_lock_page(inode->i_mapping, 5267 inode->i_size >> PAGE_SHIFT); 5268 if (!page) 5269 return; 5270 ret = __ext4_journalled_invalidatepage(page, offset, 5271 PAGE_SIZE - offset); 5272 unlock_page(page); 5273 put_page(page); 5274 if (ret != -EBUSY) 5275 return; 5276 commit_tid = 0; 5277 read_lock(&journal->j_state_lock); 5278 if (journal->j_committing_transaction) 5279 commit_tid = journal->j_committing_transaction->t_tid; 5280 read_unlock(&journal->j_state_lock); 5281 if (commit_tid) 5282 jbd2_log_wait_commit(journal, commit_tid); 5283 } 5284 } 5285 5286 /* 5287 * ext4_setattr() 5288 * 5289 * Called from notify_change. 5290 * 5291 * We want to trap VFS attempts to truncate the file as soon as 5292 * possible. In particular, we want to make sure that when the VFS 5293 * shrinks i_size, we put the inode on the orphan list and modify 5294 * i_disksize immediately, so that during the subsequent flushing of 5295 * dirty pages and freeing of disk blocks, we can guarantee that any 5296 * commit will leave the blocks being flushed in an unused state on 5297 * disk. (On recovery, the inode will get truncated and the blocks will 5298 * be freed, so we have a strong guarantee that no future commit will 5299 * leave these blocks visible to the user.) 5300 * 5301 * Another thing we have to assure is that if we are in ordered mode 5302 * and inode is still attached to the committing transaction, we must 5303 * we start writeout of all the dirty pages which are being truncated. 5304 * This way we are sure that all the data written in the previous 5305 * transaction are already on disk (truncate waits for pages under 5306 * writeback). 5307 * 5308 * Called with inode->i_mutex down. 5309 */ 5310 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5311 { 5312 struct inode *inode = d_inode(dentry); 5313 int error, rc = 0; 5314 int orphan = 0; 5315 const unsigned int ia_valid = attr->ia_valid; 5316 5317 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5318 return -EIO; 5319 5320 if (unlikely(IS_IMMUTABLE(inode))) 5321 return -EPERM; 5322 5323 if (unlikely(IS_APPEND(inode) && 5324 (ia_valid & (ATTR_MODE | ATTR_UID | 5325 ATTR_GID | ATTR_TIMES_SET)))) 5326 return -EPERM; 5327 5328 error = setattr_prepare(dentry, attr); 5329 if (error) 5330 return error; 5331 5332 error = fscrypt_prepare_setattr(dentry, attr); 5333 if (error) 5334 return error; 5335 5336 error = fsverity_prepare_setattr(dentry, attr); 5337 if (error) 5338 return error; 5339 5340 if (is_quota_modification(inode, attr)) { 5341 error = dquot_initialize(inode); 5342 if (error) 5343 return error; 5344 } 5345 ext4_fc_start_update(inode); 5346 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5347 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5348 handle_t *handle; 5349 5350 /* (user+group)*(old+new) structure, inode write (sb, 5351 * inode block, ? - but truncate inode update has it) */ 5352 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5353 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5354 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5355 if (IS_ERR(handle)) { 5356 error = PTR_ERR(handle); 5357 goto err_out; 5358 } 5359 5360 /* dquot_transfer() calls back ext4_get_inode_usage() which 5361 * counts xattr inode references. 5362 */ 5363 down_read(&EXT4_I(inode)->xattr_sem); 5364 error = dquot_transfer(inode, attr); 5365 up_read(&EXT4_I(inode)->xattr_sem); 5366 5367 if (error) { 5368 ext4_journal_stop(handle); 5369 ext4_fc_stop_update(inode); 5370 return error; 5371 } 5372 /* Update corresponding info in inode so that everything is in 5373 * one transaction */ 5374 if (attr->ia_valid & ATTR_UID) 5375 inode->i_uid = attr->ia_uid; 5376 if (attr->ia_valid & ATTR_GID) 5377 inode->i_gid = attr->ia_gid; 5378 error = ext4_mark_inode_dirty(handle, inode); 5379 ext4_journal_stop(handle); 5380 if (unlikely(error)) 5381 return error; 5382 } 5383 5384 if (attr->ia_valid & ATTR_SIZE) { 5385 handle_t *handle; 5386 loff_t oldsize = inode->i_size; 5387 int shrink = (attr->ia_size < inode->i_size); 5388 5389 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5390 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5391 5392 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5393 ext4_fc_stop_update(inode); 5394 return -EFBIG; 5395 } 5396 } 5397 if (!S_ISREG(inode->i_mode)) { 5398 ext4_fc_stop_update(inode); 5399 return -EINVAL; 5400 } 5401 5402 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5403 inode_inc_iversion(inode); 5404 5405 if (shrink) { 5406 if (ext4_should_order_data(inode)) { 5407 error = ext4_begin_ordered_truncate(inode, 5408 attr->ia_size); 5409 if (error) 5410 goto err_out; 5411 } 5412 /* 5413 * Blocks are going to be removed from the inode. Wait 5414 * for dio in flight. 5415 */ 5416 inode_dio_wait(inode); 5417 } 5418 5419 down_write(&EXT4_I(inode)->i_mmap_sem); 5420 5421 rc = ext4_break_layouts(inode); 5422 if (rc) { 5423 up_write(&EXT4_I(inode)->i_mmap_sem); 5424 goto err_out; 5425 } 5426 5427 if (attr->ia_size != inode->i_size) { 5428 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5429 if (IS_ERR(handle)) { 5430 error = PTR_ERR(handle); 5431 goto out_mmap_sem; 5432 } 5433 if (ext4_handle_valid(handle) && shrink) { 5434 error = ext4_orphan_add(handle, inode); 5435 orphan = 1; 5436 } 5437 /* 5438 * Update c/mtime on truncate up, ext4_truncate() will 5439 * update c/mtime in shrink case below 5440 */ 5441 if (!shrink) { 5442 inode->i_mtime = current_time(inode); 5443 inode->i_ctime = inode->i_mtime; 5444 } 5445 5446 if (shrink) 5447 ext4_fc_track_range(handle, inode, 5448 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5449 inode->i_sb->s_blocksize_bits, 5450 (oldsize > 0 ? oldsize - 1 : 0) >> 5451 inode->i_sb->s_blocksize_bits); 5452 else 5453 ext4_fc_track_range( 5454 handle, inode, 5455 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5456 inode->i_sb->s_blocksize_bits, 5457 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5458 inode->i_sb->s_blocksize_bits); 5459 5460 down_write(&EXT4_I(inode)->i_data_sem); 5461 EXT4_I(inode)->i_disksize = attr->ia_size; 5462 rc = ext4_mark_inode_dirty(handle, inode); 5463 if (!error) 5464 error = rc; 5465 /* 5466 * We have to update i_size under i_data_sem together 5467 * with i_disksize to avoid races with writeback code 5468 * running ext4_wb_update_i_disksize(). 5469 */ 5470 if (!error) 5471 i_size_write(inode, attr->ia_size); 5472 up_write(&EXT4_I(inode)->i_data_sem); 5473 ext4_journal_stop(handle); 5474 if (error) 5475 goto out_mmap_sem; 5476 if (!shrink) { 5477 pagecache_isize_extended(inode, oldsize, 5478 inode->i_size); 5479 } else if (ext4_should_journal_data(inode)) { 5480 ext4_wait_for_tail_page_commit(inode); 5481 } 5482 } 5483 5484 /* 5485 * Truncate pagecache after we've waited for commit 5486 * in data=journal mode to make pages freeable. 5487 */ 5488 truncate_pagecache(inode, inode->i_size); 5489 /* 5490 * Call ext4_truncate() even if i_size didn't change to 5491 * truncate possible preallocated blocks. 5492 */ 5493 if (attr->ia_size <= oldsize) { 5494 rc = ext4_truncate(inode); 5495 if (rc) 5496 error = rc; 5497 } 5498 out_mmap_sem: 5499 up_write(&EXT4_I(inode)->i_mmap_sem); 5500 } 5501 5502 if (!error) { 5503 setattr_copy(inode, attr); 5504 mark_inode_dirty(inode); 5505 } 5506 5507 /* 5508 * If the call to ext4_truncate failed to get a transaction handle at 5509 * all, we need to clean up the in-core orphan list manually. 5510 */ 5511 if (orphan && inode->i_nlink) 5512 ext4_orphan_del(NULL, inode); 5513 5514 if (!error && (ia_valid & ATTR_MODE)) 5515 rc = posix_acl_chmod(inode, inode->i_mode); 5516 5517 err_out: 5518 if (error) 5519 ext4_std_error(inode->i_sb, error); 5520 if (!error) 5521 error = rc; 5522 ext4_fc_stop_update(inode); 5523 return error; 5524 } 5525 5526 int ext4_getattr(const struct path *path, struct kstat *stat, 5527 u32 request_mask, unsigned int query_flags) 5528 { 5529 struct inode *inode = d_inode(path->dentry); 5530 struct ext4_inode *raw_inode; 5531 struct ext4_inode_info *ei = EXT4_I(inode); 5532 unsigned int flags; 5533 5534 if ((request_mask & STATX_BTIME) && 5535 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5536 stat->result_mask |= STATX_BTIME; 5537 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5538 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5539 } 5540 5541 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5542 if (flags & EXT4_APPEND_FL) 5543 stat->attributes |= STATX_ATTR_APPEND; 5544 if (flags & EXT4_COMPR_FL) 5545 stat->attributes |= STATX_ATTR_COMPRESSED; 5546 if (flags & EXT4_ENCRYPT_FL) 5547 stat->attributes |= STATX_ATTR_ENCRYPTED; 5548 if (flags & EXT4_IMMUTABLE_FL) 5549 stat->attributes |= STATX_ATTR_IMMUTABLE; 5550 if (flags & EXT4_NODUMP_FL) 5551 stat->attributes |= STATX_ATTR_NODUMP; 5552 if (flags & EXT4_VERITY_FL) 5553 stat->attributes |= STATX_ATTR_VERITY; 5554 5555 stat->attributes_mask |= (STATX_ATTR_APPEND | 5556 STATX_ATTR_COMPRESSED | 5557 STATX_ATTR_ENCRYPTED | 5558 STATX_ATTR_IMMUTABLE | 5559 STATX_ATTR_NODUMP | 5560 STATX_ATTR_VERITY); 5561 5562 generic_fillattr(inode, stat); 5563 return 0; 5564 } 5565 5566 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5567 u32 request_mask, unsigned int query_flags) 5568 { 5569 struct inode *inode = d_inode(path->dentry); 5570 u64 delalloc_blocks; 5571 5572 ext4_getattr(path, stat, request_mask, query_flags); 5573 5574 /* 5575 * If there is inline data in the inode, the inode will normally not 5576 * have data blocks allocated (it may have an external xattr block). 5577 * Report at least one sector for such files, so tools like tar, rsync, 5578 * others don't incorrectly think the file is completely sparse. 5579 */ 5580 if (unlikely(ext4_has_inline_data(inode))) 5581 stat->blocks += (stat->size + 511) >> 9; 5582 5583 /* 5584 * We can't update i_blocks if the block allocation is delayed 5585 * otherwise in the case of system crash before the real block 5586 * allocation is done, we will have i_blocks inconsistent with 5587 * on-disk file blocks. 5588 * We always keep i_blocks updated together with real 5589 * allocation. But to not confuse with user, stat 5590 * will return the blocks that include the delayed allocation 5591 * blocks for this file. 5592 */ 5593 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5594 EXT4_I(inode)->i_reserved_data_blocks); 5595 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5596 return 0; 5597 } 5598 5599 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5600 int pextents) 5601 { 5602 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5603 return ext4_ind_trans_blocks(inode, lblocks); 5604 return ext4_ext_index_trans_blocks(inode, pextents); 5605 } 5606 5607 /* 5608 * Account for index blocks, block groups bitmaps and block group 5609 * descriptor blocks if modify datablocks and index blocks 5610 * worse case, the indexs blocks spread over different block groups 5611 * 5612 * If datablocks are discontiguous, they are possible to spread over 5613 * different block groups too. If they are contiguous, with flexbg, 5614 * they could still across block group boundary. 5615 * 5616 * Also account for superblock, inode, quota and xattr blocks 5617 */ 5618 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5619 int pextents) 5620 { 5621 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5622 int gdpblocks; 5623 int idxblocks; 5624 int ret = 0; 5625 5626 /* 5627 * How many index blocks need to touch to map @lblocks logical blocks 5628 * to @pextents physical extents? 5629 */ 5630 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5631 5632 ret = idxblocks; 5633 5634 /* 5635 * Now let's see how many group bitmaps and group descriptors need 5636 * to account 5637 */ 5638 groups = idxblocks + pextents; 5639 gdpblocks = groups; 5640 if (groups > ngroups) 5641 groups = ngroups; 5642 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5643 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5644 5645 /* bitmaps and block group descriptor blocks */ 5646 ret += groups + gdpblocks; 5647 5648 /* Blocks for super block, inode, quota and xattr blocks */ 5649 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5650 5651 return ret; 5652 } 5653 5654 /* 5655 * Calculate the total number of credits to reserve to fit 5656 * the modification of a single pages into a single transaction, 5657 * which may include multiple chunks of block allocations. 5658 * 5659 * This could be called via ext4_write_begin() 5660 * 5661 * We need to consider the worse case, when 5662 * one new block per extent. 5663 */ 5664 int ext4_writepage_trans_blocks(struct inode *inode) 5665 { 5666 int bpp = ext4_journal_blocks_per_page(inode); 5667 int ret; 5668 5669 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5670 5671 /* Account for data blocks for journalled mode */ 5672 if (ext4_should_journal_data(inode)) 5673 ret += bpp; 5674 return ret; 5675 } 5676 5677 /* 5678 * Calculate the journal credits for a chunk of data modification. 5679 * 5680 * This is called from DIO, fallocate or whoever calling 5681 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5682 * 5683 * journal buffers for data blocks are not included here, as DIO 5684 * and fallocate do no need to journal data buffers. 5685 */ 5686 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5687 { 5688 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5689 } 5690 5691 /* 5692 * The caller must have previously called ext4_reserve_inode_write(). 5693 * Give this, we know that the caller already has write access to iloc->bh. 5694 */ 5695 int ext4_mark_iloc_dirty(handle_t *handle, 5696 struct inode *inode, struct ext4_iloc *iloc) 5697 { 5698 int err = 0; 5699 5700 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5701 put_bh(iloc->bh); 5702 return -EIO; 5703 } 5704 ext4_fc_track_inode(handle, inode); 5705 5706 if (IS_I_VERSION(inode)) 5707 inode_inc_iversion(inode); 5708 5709 /* the do_update_inode consumes one bh->b_count */ 5710 get_bh(iloc->bh); 5711 5712 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5713 err = ext4_do_update_inode(handle, inode, iloc); 5714 put_bh(iloc->bh); 5715 return err; 5716 } 5717 5718 /* 5719 * On success, We end up with an outstanding reference count against 5720 * iloc->bh. This _must_ be cleaned up later. 5721 */ 5722 5723 int 5724 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5725 struct ext4_iloc *iloc) 5726 { 5727 int err; 5728 5729 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5730 return -EIO; 5731 5732 err = ext4_get_inode_loc(inode, iloc); 5733 if (!err) { 5734 BUFFER_TRACE(iloc->bh, "get_write_access"); 5735 err = ext4_journal_get_write_access(handle, iloc->bh); 5736 if (err) { 5737 brelse(iloc->bh); 5738 iloc->bh = NULL; 5739 } 5740 } 5741 ext4_std_error(inode->i_sb, err); 5742 return err; 5743 } 5744 5745 static int __ext4_expand_extra_isize(struct inode *inode, 5746 unsigned int new_extra_isize, 5747 struct ext4_iloc *iloc, 5748 handle_t *handle, int *no_expand) 5749 { 5750 struct ext4_inode *raw_inode; 5751 struct ext4_xattr_ibody_header *header; 5752 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5753 struct ext4_inode_info *ei = EXT4_I(inode); 5754 int error; 5755 5756 /* this was checked at iget time, but double check for good measure */ 5757 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5758 (ei->i_extra_isize & 3)) { 5759 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5760 ei->i_extra_isize, 5761 EXT4_INODE_SIZE(inode->i_sb)); 5762 return -EFSCORRUPTED; 5763 } 5764 if ((new_extra_isize < ei->i_extra_isize) || 5765 (new_extra_isize < 4) || 5766 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5767 return -EINVAL; /* Should never happen */ 5768 5769 raw_inode = ext4_raw_inode(iloc); 5770 5771 header = IHDR(inode, raw_inode); 5772 5773 /* No extended attributes present */ 5774 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5775 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5776 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5777 EXT4_I(inode)->i_extra_isize, 0, 5778 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5779 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5780 return 0; 5781 } 5782 5783 /* try to expand with EAs present */ 5784 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5785 raw_inode, handle); 5786 if (error) { 5787 /* 5788 * Inode size expansion failed; don't try again 5789 */ 5790 *no_expand = 1; 5791 } 5792 5793 return error; 5794 } 5795 5796 /* 5797 * Expand an inode by new_extra_isize bytes. 5798 * Returns 0 on success or negative error number on failure. 5799 */ 5800 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5801 unsigned int new_extra_isize, 5802 struct ext4_iloc iloc, 5803 handle_t *handle) 5804 { 5805 int no_expand; 5806 int error; 5807 5808 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5809 return -EOVERFLOW; 5810 5811 /* 5812 * In nojournal mode, we can immediately attempt to expand 5813 * the inode. When journaled, we first need to obtain extra 5814 * buffer credits since we may write into the EA block 5815 * with this same handle. If journal_extend fails, then it will 5816 * only result in a minor loss of functionality for that inode. 5817 * If this is felt to be critical, then e2fsck should be run to 5818 * force a large enough s_min_extra_isize. 5819 */ 5820 if (ext4_journal_extend(handle, 5821 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5822 return -ENOSPC; 5823 5824 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5825 return -EBUSY; 5826 5827 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5828 handle, &no_expand); 5829 ext4_write_unlock_xattr(inode, &no_expand); 5830 5831 return error; 5832 } 5833 5834 int ext4_expand_extra_isize(struct inode *inode, 5835 unsigned int new_extra_isize, 5836 struct ext4_iloc *iloc) 5837 { 5838 handle_t *handle; 5839 int no_expand; 5840 int error, rc; 5841 5842 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5843 brelse(iloc->bh); 5844 return -EOVERFLOW; 5845 } 5846 5847 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5848 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5849 if (IS_ERR(handle)) { 5850 error = PTR_ERR(handle); 5851 brelse(iloc->bh); 5852 return error; 5853 } 5854 5855 ext4_write_lock_xattr(inode, &no_expand); 5856 5857 BUFFER_TRACE(iloc->bh, "get_write_access"); 5858 error = ext4_journal_get_write_access(handle, iloc->bh); 5859 if (error) { 5860 brelse(iloc->bh); 5861 goto out_unlock; 5862 } 5863 5864 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5865 handle, &no_expand); 5866 5867 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5868 if (!error) 5869 error = rc; 5870 5871 out_unlock: 5872 ext4_write_unlock_xattr(inode, &no_expand); 5873 ext4_journal_stop(handle); 5874 return error; 5875 } 5876 5877 /* 5878 * What we do here is to mark the in-core inode as clean with respect to inode 5879 * dirtiness (it may still be data-dirty). 5880 * This means that the in-core inode may be reaped by prune_icache 5881 * without having to perform any I/O. This is a very good thing, 5882 * because *any* task may call prune_icache - even ones which 5883 * have a transaction open against a different journal. 5884 * 5885 * Is this cheating? Not really. Sure, we haven't written the 5886 * inode out, but prune_icache isn't a user-visible syncing function. 5887 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5888 * we start and wait on commits. 5889 */ 5890 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5891 const char *func, unsigned int line) 5892 { 5893 struct ext4_iloc iloc; 5894 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5895 int err; 5896 5897 might_sleep(); 5898 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5899 err = ext4_reserve_inode_write(handle, inode, &iloc); 5900 if (err) 5901 goto out; 5902 5903 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5904 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5905 iloc, handle); 5906 5907 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5908 out: 5909 if (unlikely(err)) 5910 ext4_error_inode_err(inode, func, line, 0, err, 5911 "mark_inode_dirty error"); 5912 return err; 5913 } 5914 5915 /* 5916 * ext4_dirty_inode() is called from __mark_inode_dirty() 5917 * 5918 * We're really interested in the case where a file is being extended. 5919 * i_size has been changed by generic_commit_write() and we thus need 5920 * to include the updated inode in the current transaction. 5921 * 5922 * Also, dquot_alloc_block() will always dirty the inode when blocks 5923 * are allocated to the file. 5924 * 5925 * If the inode is marked synchronous, we don't honour that here - doing 5926 * so would cause a commit on atime updates, which we don't bother doing. 5927 * We handle synchronous inodes at the highest possible level. 5928 * 5929 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5930 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5931 * to copy into the on-disk inode structure are the timestamp files. 5932 */ 5933 void ext4_dirty_inode(struct inode *inode, int flags) 5934 { 5935 handle_t *handle; 5936 5937 if (flags == I_DIRTY_TIME) 5938 return; 5939 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5940 if (IS_ERR(handle)) 5941 goto out; 5942 5943 ext4_mark_inode_dirty(handle, inode); 5944 5945 ext4_journal_stop(handle); 5946 out: 5947 return; 5948 } 5949 5950 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5951 { 5952 journal_t *journal; 5953 handle_t *handle; 5954 int err; 5955 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5956 5957 /* 5958 * We have to be very careful here: changing a data block's 5959 * journaling status dynamically is dangerous. If we write a 5960 * data block to the journal, change the status and then delete 5961 * that block, we risk forgetting to revoke the old log record 5962 * from the journal and so a subsequent replay can corrupt data. 5963 * So, first we make sure that the journal is empty and that 5964 * nobody is changing anything. 5965 */ 5966 5967 journal = EXT4_JOURNAL(inode); 5968 if (!journal) 5969 return 0; 5970 if (is_journal_aborted(journal)) 5971 return -EROFS; 5972 5973 /* Wait for all existing dio workers */ 5974 inode_dio_wait(inode); 5975 5976 /* 5977 * Before flushing the journal and switching inode's aops, we have 5978 * to flush all dirty data the inode has. There can be outstanding 5979 * delayed allocations, there can be unwritten extents created by 5980 * fallocate or buffered writes in dioread_nolock mode covered by 5981 * dirty data which can be converted only after flushing the dirty 5982 * data (and journalled aops don't know how to handle these cases). 5983 */ 5984 if (val) { 5985 down_write(&EXT4_I(inode)->i_mmap_sem); 5986 err = filemap_write_and_wait(inode->i_mapping); 5987 if (err < 0) { 5988 up_write(&EXT4_I(inode)->i_mmap_sem); 5989 return err; 5990 } 5991 } 5992 5993 percpu_down_write(&sbi->s_writepages_rwsem); 5994 jbd2_journal_lock_updates(journal); 5995 5996 /* 5997 * OK, there are no updates running now, and all cached data is 5998 * synced to disk. We are now in a completely consistent state 5999 * which doesn't have anything in the journal, and we know that 6000 * no filesystem updates are running, so it is safe to modify 6001 * the inode's in-core data-journaling state flag now. 6002 */ 6003 6004 if (val) 6005 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6006 else { 6007 err = jbd2_journal_flush(journal); 6008 if (err < 0) { 6009 jbd2_journal_unlock_updates(journal); 6010 percpu_up_write(&sbi->s_writepages_rwsem); 6011 return err; 6012 } 6013 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6014 } 6015 ext4_set_aops(inode); 6016 6017 jbd2_journal_unlock_updates(journal); 6018 percpu_up_write(&sbi->s_writepages_rwsem); 6019 6020 if (val) 6021 up_write(&EXT4_I(inode)->i_mmap_sem); 6022 6023 /* Finally we can mark the inode as dirty. */ 6024 6025 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6026 if (IS_ERR(handle)) 6027 return PTR_ERR(handle); 6028 6029 ext4_fc_mark_ineligible(inode->i_sb, 6030 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6031 err = ext4_mark_inode_dirty(handle, inode); 6032 ext4_handle_sync(handle); 6033 ext4_journal_stop(handle); 6034 ext4_std_error(inode->i_sb, err); 6035 6036 return err; 6037 } 6038 6039 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6040 { 6041 return !buffer_mapped(bh); 6042 } 6043 6044 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6045 { 6046 struct vm_area_struct *vma = vmf->vma; 6047 struct page *page = vmf->page; 6048 loff_t size; 6049 unsigned long len; 6050 int err; 6051 vm_fault_t ret; 6052 struct file *file = vma->vm_file; 6053 struct inode *inode = file_inode(file); 6054 struct address_space *mapping = inode->i_mapping; 6055 handle_t *handle; 6056 get_block_t *get_block; 6057 int retries = 0; 6058 6059 if (unlikely(IS_IMMUTABLE(inode))) 6060 return VM_FAULT_SIGBUS; 6061 6062 sb_start_pagefault(inode->i_sb); 6063 file_update_time(vma->vm_file); 6064 6065 down_read(&EXT4_I(inode)->i_mmap_sem); 6066 6067 err = ext4_convert_inline_data(inode); 6068 if (err) 6069 goto out_ret; 6070 6071 /* 6072 * On data journalling we skip straight to the transaction handle: 6073 * there's no delalloc; page truncated will be checked later; the 6074 * early return w/ all buffers mapped (calculates size/len) can't 6075 * be used; and there's no dioread_nolock, so only ext4_get_block. 6076 */ 6077 if (ext4_should_journal_data(inode)) 6078 goto retry_alloc; 6079 6080 /* Delalloc case is easy... */ 6081 if (test_opt(inode->i_sb, DELALLOC) && 6082 !ext4_nonda_switch(inode->i_sb)) { 6083 do { 6084 err = block_page_mkwrite(vma, vmf, 6085 ext4_da_get_block_prep); 6086 } while (err == -ENOSPC && 6087 ext4_should_retry_alloc(inode->i_sb, &retries)); 6088 goto out_ret; 6089 } 6090 6091 lock_page(page); 6092 size = i_size_read(inode); 6093 /* Page got truncated from under us? */ 6094 if (page->mapping != mapping || page_offset(page) > size) { 6095 unlock_page(page); 6096 ret = VM_FAULT_NOPAGE; 6097 goto out; 6098 } 6099 6100 if (page->index == size >> PAGE_SHIFT) 6101 len = size & ~PAGE_MASK; 6102 else 6103 len = PAGE_SIZE; 6104 /* 6105 * Return if we have all the buffers mapped. This avoids the need to do 6106 * journal_start/journal_stop which can block and take a long time 6107 * 6108 * This cannot be done for data journalling, as we have to add the 6109 * inode to the transaction's list to writeprotect pages on commit. 6110 */ 6111 if (page_has_buffers(page)) { 6112 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6113 0, len, NULL, 6114 ext4_bh_unmapped)) { 6115 /* Wait so that we don't change page under IO */ 6116 wait_for_stable_page(page); 6117 ret = VM_FAULT_LOCKED; 6118 goto out; 6119 } 6120 } 6121 unlock_page(page); 6122 /* OK, we need to fill the hole... */ 6123 if (ext4_should_dioread_nolock(inode)) 6124 get_block = ext4_get_block_unwritten; 6125 else 6126 get_block = ext4_get_block; 6127 retry_alloc: 6128 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6129 ext4_writepage_trans_blocks(inode)); 6130 if (IS_ERR(handle)) { 6131 ret = VM_FAULT_SIGBUS; 6132 goto out; 6133 } 6134 /* 6135 * Data journalling can't use block_page_mkwrite() because it 6136 * will set_buffer_dirty() before do_journal_get_write_access() 6137 * thus might hit warning messages for dirty metadata buffers. 6138 */ 6139 if (!ext4_should_journal_data(inode)) { 6140 err = block_page_mkwrite(vma, vmf, get_block); 6141 } else { 6142 lock_page(page); 6143 size = i_size_read(inode); 6144 /* Page got truncated from under us? */ 6145 if (page->mapping != mapping || page_offset(page) > size) { 6146 ret = VM_FAULT_NOPAGE; 6147 goto out_error; 6148 } 6149 6150 if (page->index == size >> PAGE_SHIFT) 6151 len = size & ~PAGE_MASK; 6152 else 6153 len = PAGE_SIZE; 6154 6155 err = __block_write_begin(page, 0, len, ext4_get_block); 6156 if (!err) { 6157 ret = VM_FAULT_SIGBUS; 6158 if (ext4_walk_page_buffers(handle, page_buffers(page), 6159 0, len, NULL, do_journal_get_write_access)) 6160 goto out_error; 6161 if (ext4_walk_page_buffers(handle, page_buffers(page), 6162 0, len, NULL, write_end_fn)) 6163 goto out_error; 6164 if (ext4_jbd2_inode_add_write(handle, inode, 6165 page_offset(page), len)) 6166 goto out_error; 6167 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6168 } else { 6169 unlock_page(page); 6170 } 6171 } 6172 ext4_journal_stop(handle); 6173 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6174 goto retry_alloc; 6175 out_ret: 6176 ret = block_page_mkwrite_return(err); 6177 out: 6178 up_read(&EXT4_I(inode)->i_mmap_sem); 6179 sb_end_pagefault(inode->i_sb); 6180 return ret; 6181 out_error: 6182 unlock_page(page); 6183 ext4_journal_stop(handle); 6184 goto out; 6185 } 6186 6187 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6188 { 6189 struct inode *inode = file_inode(vmf->vma->vm_file); 6190 vm_fault_t ret; 6191 6192 down_read(&EXT4_I(inode)->i_mmap_sem); 6193 ret = filemap_fault(vmf); 6194 up_read(&EXT4_I(inode)->i_mmap_sem); 6195 6196 return ret; 6197 } 6198