xref: /openbmc/linux/fs/ext4/inode.c (revision a2dc52b5d1d8cc280b3e795abf1c80ac8c49f30c)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(
51 					EXT4_SB(inode->i_sb)->s_journal,
52 					&EXT4_I(inode)->jinode,
53 					new_size);
54 }
55 
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 		(inode->i_sb->s_blocksize >> 9) : 0;
65 
66 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68 
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 	int err;
84 
85 	if (!ext4_handle_valid(handle))
86 		return 0;
87 
88 	might_sleep();
89 
90 	BUFFER_TRACE(bh, "enter");
91 
92 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 		  "data mode %lx\n",
94 		  bh, is_metadata, inode->i_mode,
95 		  test_opt(inode->i_sb, DATA_FLAGS));
96 
97 	/* Never use the revoke function if we are doing full data
98 	 * journaling: there is no need to, and a V1 superblock won't
99 	 * support it.  Otherwise, only skip the revoke on un-journaled
100 	 * data blocks. */
101 
102 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 	    (!is_metadata && !ext4_should_journal_data(inode))) {
104 		if (bh) {
105 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 			return ext4_journal_forget(handle, bh);
107 		}
108 		return 0;
109 	}
110 
111 	/*
112 	 * data!=journal && (is_metadata || should_journal_data(inode))
113 	 */
114 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 	err = ext4_journal_revoke(handle, blocknr, bh);
116 	if (err)
117 		ext4_abort(inode->i_sb, __func__,
118 			   "error %d when attempting revoke", err);
119 	BUFFER_TRACE(bh, "exit");
120 	return err;
121 }
122 
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 	ext4_lblk_t needed;
130 
131 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132 
133 	/* Give ourselves just enough room to cope with inodes in which
134 	 * i_blocks is corrupt: we've seen disk corruptions in the past
135 	 * which resulted in random data in an inode which looked enough
136 	 * like a regular file for ext4 to try to delete it.  Things
137 	 * will go a bit crazy if that happens, but at least we should
138 	 * try not to panic the whole kernel. */
139 	if (needed < 2)
140 		needed = 2;
141 
142 	/* But we need to bound the transaction so we don't overflow the
143 	 * journal. */
144 	if (needed > EXT4_MAX_TRANS_DATA)
145 		needed = EXT4_MAX_TRANS_DATA;
146 
147 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149 
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 	handle_t *result;
163 
164 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 	if (!IS_ERR(result))
166 		return result;
167 
168 	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 	return result;
170 }
171 
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 	if (!ext4_handle_valid(handle))
181 		return 0;
182 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 		return 0;
184 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 		return 0;
186 	return 1;
187 }
188 
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 	jbd_debug(2, "restarting handle %p\n", handle);
198 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200 
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 	handle_t *handle;
207 	int err;
208 
209 	if (ext4_should_order_data(inode))
210 		ext4_begin_ordered_truncate(inode, 0);
211 	truncate_inode_pages(&inode->i_data, 0);
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 
216 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 	if (IS_ERR(handle)) {
218 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 		/*
220 		 * If we're going to skip the normal cleanup, we still need to
221 		 * make sure that the in-core orphan linked list is properly
222 		 * cleaned up.
223 		 */
224 		ext4_orphan_del(NULL, inode);
225 		goto no_delete;
226 	}
227 
228 	if (IS_SYNC(inode))
229 		ext4_handle_sync(handle);
230 	inode->i_size = 0;
231 	err = ext4_mark_inode_dirty(handle, inode);
232 	if (err) {
233 		ext4_warning(inode->i_sb, __func__,
234 			     "couldn't mark inode dirty (err %d)", err);
235 		goto stop_handle;
236 	}
237 	if (inode->i_blocks)
238 		ext4_truncate(inode);
239 
240 	/*
241 	 * ext4_ext_truncate() doesn't reserve any slop when it
242 	 * restarts journal transactions; therefore there may not be
243 	 * enough credits left in the handle to remove the inode from
244 	 * the orphan list and set the dtime field.
245 	 */
246 	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 		err = ext4_journal_extend(handle, 3);
248 		if (err > 0)
249 			err = ext4_journal_restart(handle, 3);
250 		if (err != 0) {
251 			ext4_warning(inode->i_sb, __func__,
252 				     "couldn't extend journal (err %d)", err);
253 		stop_handle:
254 			ext4_journal_stop(handle);
255 			goto no_delete;
256 		}
257 	}
258 
259 	/*
260 	 * Kill off the orphan record which ext4_truncate created.
261 	 * AKPM: I think this can be inside the above `if'.
262 	 * Note that ext4_orphan_del() has to be able to cope with the
263 	 * deletion of a non-existent orphan - this is because we don't
264 	 * know if ext4_truncate() actually created an orphan record.
265 	 * (Well, we could do this if we need to, but heck - it works)
266 	 */
267 	ext4_orphan_del(handle, inode);
268 	EXT4_I(inode)->i_dtime	= get_seconds();
269 
270 	/*
271 	 * One subtle ordering requirement: if anything has gone wrong
272 	 * (transaction abort, IO errors, whatever), then we can still
273 	 * do these next steps (the fs will already have been marked as
274 	 * having errors), but we can't free the inode if the mark_dirty
275 	 * fails.
276 	 */
277 	if (ext4_mark_inode_dirty(handle, inode))
278 		/* If that failed, just do the required in-core inode clear. */
279 		clear_inode(inode);
280 	else
281 		ext4_free_inode(handle, inode);
282 	ext4_journal_stop(handle);
283 	return;
284 no_delete:
285 	clear_inode(inode);	/* We must guarantee clearing of inode... */
286 }
287 
288 typedef struct {
289 	__le32	*p;
290 	__le32	key;
291 	struct buffer_head *bh;
292 } Indirect;
293 
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 	p->key = *(p->p = v);
297 	p->bh = bh;
298 }
299 
300 /**
301  *	ext4_block_to_path - parse the block number into array of offsets
302  *	@inode: inode in question (we are only interested in its superblock)
303  *	@i_block: block number to be parsed
304  *	@offsets: array to store the offsets in
305  *	@boundary: set this non-zero if the referred-to block is likely to be
306  *	       followed (on disk) by an indirect block.
307  *
308  *	To store the locations of file's data ext4 uses a data structure common
309  *	for UNIX filesystems - tree of pointers anchored in the inode, with
310  *	data blocks at leaves and indirect blocks in intermediate nodes.
311  *	This function translates the block number into path in that tree -
312  *	return value is the path length and @offsets[n] is the offset of
313  *	pointer to (n+1)th node in the nth one. If @block is out of range
314  *	(negative or too large) warning is printed and zero returned.
315  *
316  *	Note: function doesn't find node addresses, so no IO is needed. All
317  *	we need to know is the capacity of indirect blocks (taken from the
318  *	inode->i_sb).
319  */
320 
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330 
331 static int ext4_block_to_path(struct inode *inode,
332 			ext4_lblk_t i_block,
333 			ext4_lblk_t offsets[4], int *boundary)
334 {
335 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 		indirect_blocks = ptrs,
339 		double_blocks = (1 << (ptrs_bits * 2));
340 	int n = 0;
341 	int final = 0;
342 
343 	if (i_block < 0) {
344 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 	} else if (i_block < direct_blocks) {
346 		offsets[n++] = i_block;
347 		final = direct_blocks;
348 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349 		offsets[n++] = EXT4_IND_BLOCK;
350 		offsets[n++] = i_block;
351 		final = ptrs;
352 	} else if ((i_block -= indirect_blocks) < double_blocks) {
353 		offsets[n++] = EXT4_DIND_BLOCK;
354 		offsets[n++] = i_block >> ptrs_bits;
355 		offsets[n++] = i_block & (ptrs - 1);
356 		final = ptrs;
357 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 		offsets[n++] = EXT4_TIND_BLOCK;
359 		offsets[n++] = i_block >> (ptrs_bits * 2);
360 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 		offsets[n++] = i_block & (ptrs - 1);
362 		final = ptrs;
363 	} else {
364 		ext4_warning(inode->i_sb, "ext4_block_to_path",
365 				"block %lu > max in inode %lu",
366 				i_block + direct_blocks +
367 				indirect_blocks + double_blocks, inode->i_ino);
368 	}
369 	if (boundary)
370 		*boundary = final - 1 - (i_block & (ptrs - 1));
371 	return n;
372 }
373 
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 				 __le32 *p, unsigned int max) {
376 
377 	unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378 	__le32 *bref = p;
379 	while (bref < p+max) {
380 		if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 			ext4_error(inode->i_sb, function,
382 				   "block reference %u >= max (%u) "
383 				   "in inode #%lu, offset=%d",
384 				   le32_to_cpu(*bref), maxblocks,
385 				   inode->i_ino, (int)(bref-p));
386  			return -EIO;
387  		}
388 		bref++;
389  	}
390  	return 0;
391 }
392 
393 
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397 
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400 			      EXT4_NDIR_BLOCKS)
401 
402 /**
403  *	ext4_get_branch - read the chain of indirect blocks leading to data
404  *	@inode: inode in question
405  *	@depth: depth of the chain (1 - direct pointer, etc.)
406  *	@offsets: offsets of pointers in inode/indirect blocks
407  *	@chain: place to store the result
408  *	@err: here we store the error value
409  *
410  *	Function fills the array of triples <key, p, bh> and returns %NULL
411  *	if everything went OK or the pointer to the last filled triple
412  *	(incomplete one) otherwise. Upon the return chain[i].key contains
413  *	the number of (i+1)-th block in the chain (as it is stored in memory,
414  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *	number (it points into struct inode for i==0 and into the bh->b_data
416  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *	block for i>0 and NULL for i==0. In other words, it holds the block
418  *	numbers of the chain, addresses they were taken from (and where we can
419  *	verify that chain did not change) and buffer_heads hosting these
420  *	numbers.
421  *
422  *	Function stops when it stumbles upon zero pointer (absent block)
423  *		(pointer to last triple returned, *@err == 0)
424  *	or when it gets an IO error reading an indirect block
425  *		(ditto, *@err == -EIO)
426  *	or when it reads all @depth-1 indirect blocks successfully and finds
427  *	the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 				 ext4_lblk_t  *offsets,
434 				 Indirect chain[4], int *err)
435 {
436 	struct super_block *sb = inode->i_sb;
437 	Indirect *p = chain;
438 	struct buffer_head *bh;
439 
440 	*err = 0;
441 	/* i_data is not going away, no lock needed */
442 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 	if (!p->key)
444 		goto no_block;
445 	while (--depth) {
446 		bh = sb_getblk(sb, le32_to_cpu(p->key));
447 		if (unlikely(!bh))
448 			goto failure;
449 
450 		if (!bh_uptodate_or_lock(bh)) {
451 			if (bh_submit_read(bh) < 0) {
452 				put_bh(bh);
453 				goto failure;
454 			}
455 			/* validate block references */
456 			if (ext4_check_indirect_blockref(inode, bh)) {
457 				put_bh(bh);
458 				goto failure;
459 			}
460 		}
461 
462 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 		/* Reader: end */
464 		if (!p->key)
465 			goto no_block;
466 	}
467 	return NULL;
468 
469 failure:
470 	*err = -EIO;
471 no_block:
472 	return p;
473 }
474 
475 /**
476  *	ext4_find_near - find a place for allocation with sufficient locality
477  *	@inode: owner
478  *	@ind: descriptor of indirect block.
479  *
480  *	This function returns the preferred place for block allocation.
481  *	It is used when heuristic for sequential allocation fails.
482  *	Rules are:
483  *	  + if there is a block to the left of our position - allocate near it.
484  *	  + if pointer will live in indirect block - allocate near that block.
485  *	  + if pointer will live in inode - allocate in the same
486  *	    cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *	Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 	struct ext4_inode_info *ei = EXT4_I(inode);
498 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 	__le32 *p;
500 	ext4_fsblk_t bg_start;
501 	ext4_fsblk_t last_block;
502 	ext4_grpblk_t colour;
503 	ext4_group_t block_group;
504 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505 
506 	/* Try to find previous block */
507 	for (p = ind->p - 1; p >= start; p--) {
508 		if (*p)
509 			return le32_to_cpu(*p);
510 	}
511 
512 	/* No such thing, so let's try location of indirect block */
513 	if (ind->bh)
514 		return ind->bh->b_blocknr;
515 
516 	/*
517 	 * It is going to be referred to from the inode itself? OK, just put it
518 	 * into the same cylinder group then.
519 	 */
520 	block_group = ei->i_block_group;
521 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 		block_group &= ~(flex_size-1);
523 		if (S_ISREG(inode->i_mode))
524 			block_group++;
525 	}
526 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528 
529 	/*
530 	 * If we are doing delayed allocation, we don't need take
531 	 * colour into account.
532 	 */
533 	if (test_opt(inode->i_sb, DELALLOC))
534 		return bg_start;
535 
536 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 		colour = (current->pid % 16) *
538 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 	else
540 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 	return bg_start + colour;
542 }
543 
544 /**
545  *	ext4_find_goal - find a preferred place for allocation.
546  *	@inode: owner
547  *	@block:  block we want
548  *	@partial: pointer to the last triple within a chain
549  *
550  *	Normally this function find the preferred place for block allocation,
551  *	returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 		Indirect *partial)
555 {
556 	/*
557 	 * XXX need to get goal block from mballoc's data structures
558 	 */
559 
560 	return ext4_find_near(inode, partial);
561 }
562 
563 /**
564  *	ext4_blks_to_allocate: Look up the block map and count the number
565  *	of direct blocks need to be allocated for the given branch.
566  *
567  *	@branch: chain of indirect blocks
568  *	@k: number of blocks need for indirect blocks
569  *	@blks: number of data blocks to be mapped.
570  *	@blocks_to_boundary:  the offset in the indirect block
571  *
572  *	return the total number of blocks to be allocate, including the
573  *	direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 		int blocks_to_boundary)
577 {
578 	unsigned int count = 0;
579 
580 	/*
581 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 	 * then it's clear blocks on that path have not allocated
583 	 */
584 	if (k > 0) {
585 		/* right now we don't handle cross boundary allocation */
586 		if (blks < blocks_to_boundary + 1)
587 			count += blks;
588 		else
589 			count += blocks_to_boundary + 1;
590 		return count;
591 	}
592 
593 	count++;
594 	while (count < blks && count <= blocks_to_boundary &&
595 		le32_to_cpu(*(branch[0].p + count)) == 0) {
596 		count++;
597 	}
598 	return count;
599 }
600 
601 /**
602  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *	@indirect_blks: the number of blocks need to allocate for indirect
604  *			blocks
605  *
606  *	@new_blocks: on return it will store the new block numbers for
607  *	the indirect blocks(if needed) and the first direct block,
608  *	@blks:	on return it will store the total number of allocated
609  *		direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 				ext4_lblk_t iblock, ext4_fsblk_t goal,
613 				int indirect_blks, int blks,
614 				ext4_fsblk_t new_blocks[4], int *err)
615 {
616 	struct ext4_allocation_request ar;
617 	int target, i;
618 	unsigned long count = 0, blk_allocated = 0;
619 	int index = 0;
620 	ext4_fsblk_t current_block = 0;
621 	int ret = 0;
622 
623 	/*
624 	 * Here we try to allocate the requested multiple blocks at once,
625 	 * on a best-effort basis.
626 	 * To build a branch, we should allocate blocks for
627 	 * the indirect blocks(if not allocated yet), and at least
628 	 * the first direct block of this branch.  That's the
629 	 * minimum number of blocks need to allocate(required)
630 	 */
631 	/* first we try to allocate the indirect blocks */
632 	target = indirect_blks;
633 	while (target > 0) {
634 		count = target;
635 		/* allocating blocks for indirect blocks and direct blocks */
636 		current_block = ext4_new_meta_blocks(handle, inode,
637 							goal, &count, err);
638 		if (*err)
639 			goto failed_out;
640 
641 		target -= count;
642 		/* allocate blocks for indirect blocks */
643 		while (index < indirect_blks && count) {
644 			new_blocks[index++] = current_block++;
645 			count--;
646 		}
647 		if (count > 0) {
648 			/*
649 			 * save the new block number
650 			 * for the first direct block
651 			 */
652 			new_blocks[index] = current_block;
653 			printk(KERN_INFO "%s returned more blocks than "
654 						"requested\n", __func__);
655 			WARN_ON(1);
656 			break;
657 		}
658 	}
659 
660 	target = blks - count ;
661 	blk_allocated = count;
662 	if (!target)
663 		goto allocated;
664 	/* Now allocate data blocks */
665 	memset(&ar, 0, sizeof(ar));
666 	ar.inode = inode;
667 	ar.goal = goal;
668 	ar.len = target;
669 	ar.logical = iblock;
670 	if (S_ISREG(inode->i_mode))
671 		/* enable in-core preallocation only for regular files */
672 		ar.flags = EXT4_MB_HINT_DATA;
673 
674 	current_block = ext4_mb_new_blocks(handle, &ar, err);
675 
676 	if (*err && (target == blks)) {
677 		/*
678 		 * if the allocation failed and we didn't allocate
679 		 * any blocks before
680 		 */
681 		goto failed_out;
682 	}
683 	if (!*err) {
684 		if (target == blks) {
685 		/*
686 		 * save the new block number
687 		 * for the first direct block
688 		 */
689 			new_blocks[index] = current_block;
690 		}
691 		blk_allocated += ar.len;
692 	}
693 allocated:
694 	/* total number of blocks allocated for direct blocks */
695 	ret = blk_allocated;
696 	*err = 0;
697 	return ret;
698 failed_out:
699 	for (i = 0; i < index; i++)
700 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 	return ret;
702 }
703 
704 /**
705  *	ext4_alloc_branch - allocate and set up a chain of blocks.
706  *	@inode: owner
707  *	@indirect_blks: number of allocated indirect blocks
708  *	@blks: number of allocated direct blocks
709  *	@offsets: offsets (in the blocks) to store the pointers to next.
710  *	@branch: place to store the chain in.
711  *
712  *	This function allocates blocks, zeroes out all but the last one,
713  *	links them into chain and (if we are synchronous) writes them to disk.
714  *	In other words, it prepares a branch that can be spliced onto the
715  *	inode. It stores the information about that chain in the branch[], in
716  *	the same format as ext4_get_branch() would do. We are calling it after
717  *	we had read the existing part of chain and partial points to the last
718  *	triple of that (one with zero ->key). Upon the exit we have the same
719  *	picture as after the successful ext4_get_block(), except that in one
720  *	place chain is disconnected - *branch->p is still zero (we did not
721  *	set the last link), but branch->key contains the number that should
722  *	be placed into *branch->p to fill that gap.
723  *
724  *	If allocation fails we free all blocks we've allocated (and forget
725  *	their buffer_heads) and return the error value the from failed
726  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *	as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 				ext4_lblk_t iblock, int indirect_blks,
731 				int *blks, ext4_fsblk_t goal,
732 				ext4_lblk_t *offsets, Indirect *branch)
733 {
734 	int blocksize = inode->i_sb->s_blocksize;
735 	int i, n = 0;
736 	int err = 0;
737 	struct buffer_head *bh;
738 	int num;
739 	ext4_fsblk_t new_blocks[4];
740 	ext4_fsblk_t current_block;
741 
742 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 				*blks, new_blocks, &err);
744 	if (err)
745 		return err;
746 
747 	branch[0].key = cpu_to_le32(new_blocks[0]);
748 	/*
749 	 * metadata blocks and data blocks are allocated.
750 	 */
751 	for (n = 1; n <= indirect_blks;  n++) {
752 		/*
753 		 * Get buffer_head for parent block, zero it out
754 		 * and set the pointer to new one, then send
755 		 * parent to disk.
756 		 */
757 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 		branch[n].bh = bh;
759 		lock_buffer(bh);
760 		BUFFER_TRACE(bh, "call get_create_access");
761 		err = ext4_journal_get_create_access(handle, bh);
762 		if (err) {
763 			unlock_buffer(bh);
764 			brelse(bh);
765 			goto failed;
766 		}
767 
768 		memset(bh->b_data, 0, blocksize);
769 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 		branch[n].key = cpu_to_le32(new_blocks[n]);
771 		*branch[n].p = branch[n].key;
772 		if (n == indirect_blks) {
773 			current_block = new_blocks[n];
774 			/*
775 			 * End of chain, update the last new metablock of
776 			 * the chain to point to the new allocated
777 			 * data blocks numbers
778 			 */
779 			for (i=1; i < num; i++)
780 				*(branch[n].p + i) = cpu_to_le32(++current_block);
781 		}
782 		BUFFER_TRACE(bh, "marking uptodate");
783 		set_buffer_uptodate(bh);
784 		unlock_buffer(bh);
785 
786 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 		err = ext4_handle_dirty_metadata(handle, inode, bh);
788 		if (err)
789 			goto failed;
790 	}
791 	*blks = num;
792 	return err;
793 failed:
794 	/* Allocation failed, free what we already allocated */
795 	for (i = 1; i <= n ; i++) {
796 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797 		ext4_journal_forget(handle, branch[i].bh);
798 	}
799 	for (i = 0; i < indirect_blks; i++)
800 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801 
802 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803 
804 	return err;
805 }
806 
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *	ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822 			ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824 	int i;
825 	int err = 0;
826 	ext4_fsblk_t current_block;
827 
828 	/*
829 	 * If we're splicing into a [td]indirect block (as opposed to the
830 	 * inode) then we need to get write access to the [td]indirect block
831 	 * before the splice.
832 	 */
833 	if (where->bh) {
834 		BUFFER_TRACE(where->bh, "get_write_access");
835 		err = ext4_journal_get_write_access(handle, where->bh);
836 		if (err)
837 			goto err_out;
838 	}
839 	/* That's it */
840 
841 	*where->p = where->key;
842 
843 	/*
844 	 * Update the host buffer_head or inode to point to more just allocated
845 	 * direct blocks blocks
846 	 */
847 	if (num == 0 && blks > 1) {
848 		current_block = le32_to_cpu(where->key) + 1;
849 		for (i = 1; i < blks; i++)
850 			*(where->p + i) = cpu_to_le32(current_block++);
851 	}
852 
853 	/* We are done with atomic stuff, now do the rest of housekeeping */
854 
855 	inode->i_ctime = ext4_current_time(inode);
856 	ext4_mark_inode_dirty(handle, inode);
857 
858 	/* had we spliced it onto indirect block? */
859 	if (where->bh) {
860 		/*
861 		 * If we spliced it onto an indirect block, we haven't
862 		 * altered the inode.  Note however that if it is being spliced
863 		 * onto an indirect block at the very end of the file (the
864 		 * file is growing) then we *will* alter the inode to reflect
865 		 * the new i_size.  But that is not done here - it is done in
866 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 		 */
868 		jbd_debug(5, "splicing indirect only\n");
869 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 		if (err)
872 			goto err_out;
873 	} else {
874 		/*
875 		 * OK, we spliced it into the inode itself on a direct block.
876 		 * Inode was dirtied above.
877 		 */
878 		jbd_debug(5, "splicing direct\n");
879 	}
880 	return err;
881 
882 err_out:
883 	for (i = 1; i <= num; i++) {
884 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 		ext4_journal_forget(handle, where[i].bh);
886 		ext4_free_blocks(handle, inode,
887 					le32_to_cpu(where[i-1].key), 1, 0);
888 	}
889 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890 
891 	return err;
892 }
893 
894 /*
895  * The ext4_ind_get_blocks() function handles non-extents inodes
896  * (i.e., using the traditional indirect/double-indirect i_blocks
897  * scheme) for ext4_get_blocks().
898  *
899  * Allocation strategy is simple: if we have to allocate something, we will
900  * have to go the whole way to leaf. So let's do it before attaching anything
901  * to tree, set linkage between the newborn blocks, write them if sync is
902  * required, recheck the path, free and repeat if check fails, otherwise
903  * set the last missing link (that will protect us from any truncate-generated
904  * removals - all blocks on the path are immune now) and possibly force the
905  * write on the parent block.
906  * That has a nice additional property: no special recovery from the failed
907  * allocations is needed - we simply release blocks and do not touch anything
908  * reachable from inode.
909  *
910  * `handle' can be NULL if create == 0.
911  *
912  * return > 0, # of blocks mapped or allocated.
913  * return = 0, if plain lookup failed.
914  * return < 0, error case.
915  *
916  * The ext4_ind_get_blocks() function should be called with
917  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920  * blocks.
921  */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923 				  ext4_lblk_t iblock, unsigned int maxblocks,
924 				  struct buffer_head *bh_result,
925 				  int flags)
926 {
927 	int err = -EIO;
928 	ext4_lblk_t offsets[4];
929 	Indirect chain[4];
930 	Indirect *partial;
931 	ext4_fsblk_t goal;
932 	int indirect_blks;
933 	int blocks_to_boundary = 0;
934 	int depth;
935 	struct ext4_inode_info *ei = EXT4_I(inode);
936 	int count = 0;
937 	ext4_fsblk_t first_block = 0;
938 	loff_t disksize;
939 
940 
941 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
942 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
943 	depth = ext4_block_to_path(inode, iblock, offsets,
944 					&blocks_to_boundary);
945 
946 	if (depth == 0)
947 		goto out;
948 
949 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
950 
951 	/* Simplest case - block found, no allocation needed */
952 	if (!partial) {
953 		first_block = le32_to_cpu(chain[depth - 1].key);
954 		clear_buffer_new(bh_result);
955 		count++;
956 		/*map more blocks*/
957 		while (count < maxblocks && count <= blocks_to_boundary) {
958 			ext4_fsblk_t blk;
959 
960 			blk = le32_to_cpu(*(chain[depth-1].p + count));
961 
962 			if (blk == first_block + count)
963 				count++;
964 			else
965 				break;
966 		}
967 		goto got_it;
968 	}
969 
970 	/* Next simple case - plain lookup or failed read of indirect block */
971 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
972 		goto cleanup;
973 
974 	/*
975 	 * Okay, we need to do block allocation.
976 	*/
977 	goal = ext4_find_goal(inode, iblock, partial);
978 
979 	/* the number of blocks need to allocate for [d,t]indirect blocks */
980 	indirect_blks = (chain + depth) - partial - 1;
981 
982 	/*
983 	 * Next look up the indirect map to count the totoal number of
984 	 * direct blocks to allocate for this branch.
985 	 */
986 	count = ext4_blks_to_allocate(partial, indirect_blks,
987 					maxblocks, blocks_to_boundary);
988 	/*
989 	 * Block out ext4_truncate while we alter the tree
990 	 */
991 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992 					&count, goal,
993 					offsets + (partial - chain), partial);
994 
995 	/*
996 	 * The ext4_splice_branch call will free and forget any buffers
997 	 * on the new chain if there is a failure, but that risks using
998 	 * up transaction credits, especially for bitmaps where the
999 	 * credits cannot be returned.  Can we handle this somehow?  We
1000 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1001 	 */
1002 	if (!err)
1003 		err = ext4_splice_branch(handle, inode, iblock,
1004 					partial, indirect_blks, count);
1005 	/*
1006 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
1007 	 * protect it if you're about to implement concurrent
1008 	 * ext4_get_block() -bzzz
1009 	*/
1010 	if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1011 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012 		if (disksize > i_size_read(inode))
1013 			disksize = i_size_read(inode);
1014 		if (disksize > ei->i_disksize)
1015 			ei->i_disksize = disksize;
1016 	}
1017 	if (err)
1018 		goto cleanup;
1019 
1020 	set_buffer_new(bh_result);
1021 got_it:
1022 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023 	if (count > blocks_to_boundary)
1024 		set_buffer_boundary(bh_result);
1025 	err = count;
1026 	/* Clean up and exit */
1027 	partial = chain + depth - 1;	/* the whole chain */
1028 cleanup:
1029 	while (partial > chain) {
1030 		BUFFER_TRACE(partial->bh, "call brelse");
1031 		brelse(partial->bh);
1032 		partial--;
1033 	}
1034 	BUFFER_TRACE(bh_result, "returned");
1035 out:
1036 	return err;
1037 }
1038 
1039 qsize_t ext4_get_reserved_space(struct inode *inode)
1040 {
1041 	unsigned long long total;
1042 
1043 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 	total = EXT4_I(inode)->i_reserved_data_blocks +
1045 		EXT4_I(inode)->i_reserved_meta_blocks;
1046 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047 
1048 	return total;
1049 }
1050 /*
1051  * Calculate the number of metadata blocks need to reserve
1052  * to allocate @blocks for non extent file based file
1053  */
1054 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055 {
1056 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057 	int ind_blks, dind_blks, tind_blks;
1058 
1059 	/* number of new indirect blocks needed */
1060 	ind_blks = (blocks + icap - 1) / icap;
1061 
1062 	dind_blks = (ind_blks + icap - 1) / icap;
1063 
1064 	tind_blks = 1;
1065 
1066 	return ind_blks + dind_blks + tind_blks;
1067 }
1068 
1069 /*
1070  * Calculate the number of metadata blocks need to reserve
1071  * to allocate given number of blocks
1072  */
1073 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074 {
1075 	if (!blocks)
1076 		return 0;
1077 
1078 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079 		return ext4_ext_calc_metadata_amount(inode, blocks);
1080 
1081 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1082 }
1083 
1084 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085 {
1086 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 	int total, mdb, mdb_free;
1088 
1089 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090 	/* recalculate the number of metablocks still need to be reserved */
1091 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092 	mdb = ext4_calc_metadata_amount(inode, total);
1093 
1094 	/* figure out how many metablocks to release */
1095 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097 
1098 	if (mdb_free) {
1099 		/* Account for allocated meta_blocks */
1100 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101 
1102 		/* update fs dirty blocks counter */
1103 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106 	}
1107 
1108 	/* update per-inode reservations */
1109 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1110 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1111 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112 
1113 	/*
1114 	 * free those over-booking quota for metadata blocks
1115 	 */
1116 	if (mdb_free)
1117 		vfs_dq_release_reservation_block(inode, mdb_free);
1118 
1119 	/*
1120 	 * If we have done all the pending block allocations and if
1121 	 * there aren't any writers on the inode, we can discard the
1122 	 * inode's preallocations.
1123 	 */
1124 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1125 		ext4_discard_preallocations(inode);
1126 }
1127 
1128 /*
1129  * The ext4_get_blocks() function tries to look up the requested blocks,
1130  * and returns if the blocks are already mapped.
1131  *
1132  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133  * and store the allocated blocks in the result buffer head and mark it
1134  * mapped.
1135  *
1136  * If file type is extents based, it will call ext4_ext_get_blocks(),
1137  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138  * based files
1139  *
1140  * On success, it returns the number of blocks being mapped or allocate.
1141  * if create==0 and the blocks are pre-allocated and uninitialized block,
1142  * the result buffer head is unmapped. If the create ==1, it will make sure
1143  * the buffer head is mapped.
1144  *
1145  * It returns 0 if plain look up failed (blocks have not been allocated), in
1146  * that casem, buffer head is unmapped
1147  *
1148  * It returns the error in case of allocation failure.
1149  */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151 		    unsigned int max_blocks, struct buffer_head *bh,
1152 		    int flags)
1153 {
1154 	int retval;
1155 
1156 	clear_buffer_mapped(bh);
1157 	clear_buffer_unwritten(bh);
1158 
1159 	/*
1160 	 * Try to see if we can get the block without requesting a new
1161 	 * file system block.
1162 	 */
1163 	down_read((&EXT4_I(inode)->i_data_sem));
1164 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166 				bh, 0);
1167 	} else {
1168 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169 					     bh, 0);
1170 	}
1171 	up_read((&EXT4_I(inode)->i_data_sem));
1172 
1173 	/* If it is only a block(s) look up */
1174 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1175 		return retval;
1176 
1177 	/*
1178 	 * Returns if the blocks have already allocated
1179 	 *
1180 	 * Note that if blocks have been preallocated
1181 	 * ext4_ext_get_block() returns th create = 0
1182 	 * with buffer head unmapped.
1183 	 */
1184 	if (retval > 0 && buffer_mapped(bh))
1185 		return retval;
1186 
1187 	/*
1188 	 * When we call get_blocks without the create flag, the
1189 	 * BH_Unwritten flag could have gotten set if the blocks
1190 	 * requested were part of a uninitialized extent.  We need to
1191 	 * clear this flag now that we are committed to convert all or
1192 	 * part of the uninitialized extent to be an initialized
1193 	 * extent.  This is because we need to avoid the combination
1194 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1195 	 * set on the buffer_head.
1196 	 */
1197 	clear_buffer_unwritten(bh);
1198 
1199 	/*
1200 	 * New blocks allocate and/or writing to uninitialized extent
1201 	 * will possibly result in updating i_data, so we take
1202 	 * the write lock of i_data_sem, and call get_blocks()
1203 	 * with create == 1 flag.
1204 	 */
1205 	down_write((&EXT4_I(inode)->i_data_sem));
1206 
1207 	/*
1208 	 * if the caller is from delayed allocation writeout path
1209 	 * we have already reserved fs blocks for allocation
1210 	 * let the underlying get_block() function know to
1211 	 * avoid double accounting
1212 	 */
1213 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1214 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1215 	/*
1216 	 * We need to check for EXT4 here because migrate
1217 	 * could have changed the inode type in between
1218 	 */
1219 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1221 					      bh, flags);
1222 	} else {
1223 		retval = ext4_ind_get_blocks(handle, inode, block,
1224 					     max_blocks, bh, flags);
1225 
1226 		if (retval > 0 && buffer_new(bh)) {
1227 			/*
1228 			 * We allocated new blocks which will result in
1229 			 * i_data's format changing.  Force the migrate
1230 			 * to fail by clearing migrate flags
1231 			 */
1232 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233 							~EXT4_EXT_MIGRATE;
1234 		}
1235 	}
1236 
1237 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
1238 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239 		/*
1240 		 * Update reserved blocks/metadata blocks
1241 		 * after successful block allocation
1242 		 * which were deferred till now
1243 		 */
1244 		if ((retval > 0) && buffer_delay(bh))
1245 			ext4_da_update_reserve_space(inode, retval);
1246 	}
1247 
1248 	up_write((&EXT4_I(inode)->i_data_sem));
1249 	return retval;
1250 }
1251 
1252 /* Maximum number of blocks we map for direct IO at once. */
1253 #define DIO_MAX_BLOCKS 4096
1254 
1255 int ext4_get_block(struct inode *inode, sector_t iblock,
1256 		   struct buffer_head *bh_result, int create)
1257 {
1258 	handle_t *handle = ext4_journal_current_handle();
1259 	int ret = 0, started = 0;
1260 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1261 	int dio_credits;
1262 
1263 	if (create && !handle) {
1264 		/* Direct IO write... */
1265 		if (max_blocks > DIO_MAX_BLOCKS)
1266 			max_blocks = DIO_MAX_BLOCKS;
1267 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1268 		handle = ext4_journal_start(inode, dio_credits);
1269 		if (IS_ERR(handle)) {
1270 			ret = PTR_ERR(handle);
1271 			goto out;
1272 		}
1273 		started = 1;
1274 	}
1275 
1276 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1277 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1278 	if (ret > 0) {
1279 		bh_result->b_size = (ret << inode->i_blkbits);
1280 		ret = 0;
1281 	}
1282 	if (started)
1283 		ext4_journal_stop(handle);
1284 out:
1285 	return ret;
1286 }
1287 
1288 /*
1289  * `handle' can be NULL if create is zero
1290  */
1291 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1292 				ext4_lblk_t block, int create, int *errp)
1293 {
1294 	struct buffer_head dummy;
1295 	int fatal = 0, err;
1296 	int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1297 
1298 	J_ASSERT(handle != NULL || create == 0);
1299 
1300 	dummy.b_state = 0;
1301 	dummy.b_blocknr = -1000;
1302 	buffer_trace_init(&dummy.b_history);
1303 	if (create)
1304 		flags |= EXT4_GET_BLOCKS_CREATE;
1305 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1306 	/*
1307 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1308 	 * case of a HOLE.
1309 	 */
1310 	if (err > 0) {
1311 		if (err > 1)
1312 			WARN_ON(1);
1313 		err = 0;
1314 	}
1315 	*errp = err;
1316 	if (!err && buffer_mapped(&dummy)) {
1317 		struct buffer_head *bh;
1318 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1319 		if (!bh) {
1320 			*errp = -EIO;
1321 			goto err;
1322 		}
1323 		if (buffer_new(&dummy)) {
1324 			J_ASSERT(create != 0);
1325 			J_ASSERT(handle != NULL);
1326 
1327 			/*
1328 			 * Now that we do not always journal data, we should
1329 			 * keep in mind whether this should always journal the
1330 			 * new buffer as metadata.  For now, regular file
1331 			 * writes use ext4_get_block instead, so it's not a
1332 			 * problem.
1333 			 */
1334 			lock_buffer(bh);
1335 			BUFFER_TRACE(bh, "call get_create_access");
1336 			fatal = ext4_journal_get_create_access(handle, bh);
1337 			if (!fatal && !buffer_uptodate(bh)) {
1338 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1339 				set_buffer_uptodate(bh);
1340 			}
1341 			unlock_buffer(bh);
1342 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1343 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1344 			if (!fatal)
1345 				fatal = err;
1346 		} else {
1347 			BUFFER_TRACE(bh, "not a new buffer");
1348 		}
1349 		if (fatal) {
1350 			*errp = fatal;
1351 			brelse(bh);
1352 			bh = NULL;
1353 		}
1354 		return bh;
1355 	}
1356 err:
1357 	return NULL;
1358 }
1359 
1360 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1361 			       ext4_lblk_t block, int create, int *err)
1362 {
1363 	struct buffer_head *bh;
1364 
1365 	bh = ext4_getblk(handle, inode, block, create, err);
1366 	if (!bh)
1367 		return bh;
1368 	if (buffer_uptodate(bh))
1369 		return bh;
1370 	ll_rw_block(READ_META, 1, &bh);
1371 	wait_on_buffer(bh);
1372 	if (buffer_uptodate(bh))
1373 		return bh;
1374 	put_bh(bh);
1375 	*err = -EIO;
1376 	return NULL;
1377 }
1378 
1379 static int walk_page_buffers(handle_t *handle,
1380 			     struct buffer_head *head,
1381 			     unsigned from,
1382 			     unsigned to,
1383 			     int *partial,
1384 			     int (*fn)(handle_t *handle,
1385 				       struct buffer_head *bh))
1386 {
1387 	struct buffer_head *bh;
1388 	unsigned block_start, block_end;
1389 	unsigned blocksize = head->b_size;
1390 	int err, ret = 0;
1391 	struct buffer_head *next;
1392 
1393 	for (bh = head, block_start = 0;
1394 	     ret == 0 && (bh != head || !block_start);
1395 	     block_start = block_end, bh = next)
1396 	{
1397 		next = bh->b_this_page;
1398 		block_end = block_start + blocksize;
1399 		if (block_end <= from || block_start >= to) {
1400 			if (partial && !buffer_uptodate(bh))
1401 				*partial = 1;
1402 			continue;
1403 		}
1404 		err = (*fn)(handle, bh);
1405 		if (!ret)
1406 			ret = err;
1407 	}
1408 	return ret;
1409 }
1410 
1411 /*
1412  * To preserve ordering, it is essential that the hole instantiation and
1413  * the data write be encapsulated in a single transaction.  We cannot
1414  * close off a transaction and start a new one between the ext4_get_block()
1415  * and the commit_write().  So doing the jbd2_journal_start at the start of
1416  * prepare_write() is the right place.
1417  *
1418  * Also, this function can nest inside ext4_writepage() ->
1419  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1420  * has generated enough buffer credits to do the whole page.  So we won't
1421  * block on the journal in that case, which is good, because the caller may
1422  * be PF_MEMALLOC.
1423  *
1424  * By accident, ext4 can be reentered when a transaction is open via
1425  * quota file writes.  If we were to commit the transaction while thus
1426  * reentered, there can be a deadlock - we would be holding a quota
1427  * lock, and the commit would never complete if another thread had a
1428  * transaction open and was blocking on the quota lock - a ranking
1429  * violation.
1430  *
1431  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1432  * will _not_ run commit under these circumstances because handle->h_ref
1433  * is elevated.  We'll still have enough credits for the tiny quotafile
1434  * write.
1435  */
1436 static int do_journal_get_write_access(handle_t *handle,
1437 					struct buffer_head *bh)
1438 {
1439 	if (!buffer_mapped(bh) || buffer_freed(bh))
1440 		return 0;
1441 	return ext4_journal_get_write_access(handle, bh);
1442 }
1443 
1444 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1445 				loff_t pos, unsigned len, unsigned flags,
1446 				struct page **pagep, void **fsdata)
1447 {
1448 	struct inode *inode = mapping->host;
1449 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1450 	handle_t *handle;
1451 	int retries = 0;
1452 	struct page *page;
1453  	pgoff_t index;
1454 	unsigned from, to;
1455 
1456 	trace_mark(ext4_write_begin,
1457 		   "dev %s ino %lu pos %llu len %u flags %u",
1458 		   inode->i_sb->s_id, inode->i_ino,
1459 		   (unsigned long long) pos, len, flags);
1460  	index = pos >> PAGE_CACHE_SHIFT;
1461 	from = pos & (PAGE_CACHE_SIZE - 1);
1462 	to = from + len;
1463 
1464 retry:
1465 	handle = ext4_journal_start(inode, needed_blocks);
1466 	if (IS_ERR(handle)) {
1467 		ret = PTR_ERR(handle);
1468 		goto out;
1469 	}
1470 
1471 	/* We cannot recurse into the filesystem as the transaction is already
1472 	 * started */
1473 	flags |= AOP_FLAG_NOFS;
1474 
1475 	page = grab_cache_page_write_begin(mapping, index, flags);
1476 	if (!page) {
1477 		ext4_journal_stop(handle);
1478 		ret = -ENOMEM;
1479 		goto out;
1480 	}
1481 	*pagep = page;
1482 
1483 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1484 				ext4_get_block);
1485 
1486 	if (!ret && ext4_should_journal_data(inode)) {
1487 		ret = walk_page_buffers(handle, page_buffers(page),
1488 				from, to, NULL, do_journal_get_write_access);
1489 	}
1490 
1491 	if (ret) {
1492 		unlock_page(page);
1493 		ext4_journal_stop(handle);
1494 		page_cache_release(page);
1495 		/*
1496 		 * block_write_begin may have instantiated a few blocks
1497 		 * outside i_size.  Trim these off again. Don't need
1498 		 * i_size_read because we hold i_mutex.
1499 		 */
1500 		if (pos + len > inode->i_size)
1501 			vmtruncate(inode, inode->i_size);
1502 	}
1503 
1504 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1505 		goto retry;
1506 out:
1507 	return ret;
1508 }
1509 
1510 /* For write_end() in data=journal mode */
1511 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1512 {
1513 	if (!buffer_mapped(bh) || buffer_freed(bh))
1514 		return 0;
1515 	set_buffer_uptodate(bh);
1516 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1517 }
1518 
1519 /*
1520  * We need to pick up the new inode size which generic_commit_write gave us
1521  * `file' can be NULL - eg, when called from page_symlink().
1522  *
1523  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1524  * buffers are managed internally.
1525  */
1526 static int ext4_ordered_write_end(struct file *file,
1527 				struct address_space *mapping,
1528 				loff_t pos, unsigned len, unsigned copied,
1529 				struct page *page, void *fsdata)
1530 {
1531 	handle_t *handle = ext4_journal_current_handle();
1532 	struct inode *inode = mapping->host;
1533 	int ret = 0, ret2;
1534 
1535 	trace_mark(ext4_ordered_write_end,
1536 		   "dev %s ino %lu pos %llu len %u copied %u",
1537 		   inode->i_sb->s_id, inode->i_ino,
1538 		   (unsigned long long) pos, len, copied);
1539 	ret = ext4_jbd2_file_inode(handle, inode);
1540 
1541 	if (ret == 0) {
1542 		loff_t new_i_size;
1543 
1544 		new_i_size = pos + copied;
1545 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1546 			ext4_update_i_disksize(inode, new_i_size);
1547 			/* We need to mark inode dirty even if
1548 			 * new_i_size is less that inode->i_size
1549 			 * bu greater than i_disksize.(hint delalloc)
1550 			 */
1551 			ext4_mark_inode_dirty(handle, inode);
1552 		}
1553 
1554 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1555 							page, fsdata);
1556 		copied = ret2;
1557 		if (ret2 < 0)
1558 			ret = ret2;
1559 	}
1560 	ret2 = ext4_journal_stop(handle);
1561 	if (!ret)
1562 		ret = ret2;
1563 
1564 	return ret ? ret : copied;
1565 }
1566 
1567 static int ext4_writeback_write_end(struct file *file,
1568 				struct address_space *mapping,
1569 				loff_t pos, unsigned len, unsigned copied,
1570 				struct page *page, void *fsdata)
1571 {
1572 	handle_t *handle = ext4_journal_current_handle();
1573 	struct inode *inode = mapping->host;
1574 	int ret = 0, ret2;
1575 	loff_t new_i_size;
1576 
1577 	trace_mark(ext4_writeback_write_end,
1578 		   "dev %s ino %lu pos %llu len %u copied %u",
1579 		   inode->i_sb->s_id, inode->i_ino,
1580 		   (unsigned long long) pos, len, copied);
1581 	new_i_size = pos + copied;
1582 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1583 		ext4_update_i_disksize(inode, new_i_size);
1584 		/* We need to mark inode dirty even if
1585 		 * new_i_size is less that inode->i_size
1586 		 * bu greater than i_disksize.(hint delalloc)
1587 		 */
1588 		ext4_mark_inode_dirty(handle, inode);
1589 	}
1590 
1591 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1592 							page, fsdata);
1593 	copied = ret2;
1594 	if (ret2 < 0)
1595 		ret = ret2;
1596 
1597 	ret2 = ext4_journal_stop(handle);
1598 	if (!ret)
1599 		ret = ret2;
1600 
1601 	return ret ? ret : copied;
1602 }
1603 
1604 static int ext4_journalled_write_end(struct file *file,
1605 				struct address_space *mapping,
1606 				loff_t pos, unsigned len, unsigned copied,
1607 				struct page *page, void *fsdata)
1608 {
1609 	handle_t *handle = ext4_journal_current_handle();
1610 	struct inode *inode = mapping->host;
1611 	int ret = 0, ret2;
1612 	int partial = 0;
1613 	unsigned from, to;
1614 	loff_t new_i_size;
1615 
1616 	trace_mark(ext4_journalled_write_end,
1617 		   "dev %s ino %lu pos %llu len %u copied %u",
1618 		   inode->i_sb->s_id, inode->i_ino,
1619 		   (unsigned long long) pos, len, copied);
1620 	from = pos & (PAGE_CACHE_SIZE - 1);
1621 	to = from + len;
1622 
1623 	if (copied < len) {
1624 		if (!PageUptodate(page))
1625 			copied = 0;
1626 		page_zero_new_buffers(page, from+copied, to);
1627 	}
1628 
1629 	ret = walk_page_buffers(handle, page_buffers(page), from,
1630 				to, &partial, write_end_fn);
1631 	if (!partial)
1632 		SetPageUptodate(page);
1633 	new_i_size = pos + copied;
1634 	if (new_i_size > inode->i_size)
1635 		i_size_write(inode, pos+copied);
1636 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1637 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1638 		ext4_update_i_disksize(inode, new_i_size);
1639 		ret2 = ext4_mark_inode_dirty(handle, inode);
1640 		if (!ret)
1641 			ret = ret2;
1642 	}
1643 
1644 	unlock_page(page);
1645 	ret2 = ext4_journal_stop(handle);
1646 	if (!ret)
1647 		ret = ret2;
1648 	page_cache_release(page);
1649 
1650 	return ret ? ret : copied;
1651 }
1652 
1653 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1654 {
1655 	int retries = 0;
1656 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657 	unsigned long md_needed, mdblocks, total = 0;
1658 
1659 	/*
1660 	 * recalculate the amount of metadata blocks to reserve
1661 	 * in order to allocate nrblocks
1662 	 * worse case is one extent per block
1663 	 */
1664 repeat:
1665 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1666 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1667 	mdblocks = ext4_calc_metadata_amount(inode, total);
1668 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1669 
1670 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1671 	total = md_needed + nrblocks;
1672 
1673 	/*
1674 	 * Make quota reservation here to prevent quota overflow
1675 	 * later. Real quota accounting is done at pages writeout
1676 	 * time.
1677 	 */
1678 	if (vfs_dq_reserve_block(inode, total)) {
1679 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680 		return -EDQUOT;
1681 	}
1682 
1683 	if (ext4_claim_free_blocks(sbi, total)) {
1684 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1685 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1686 			yield();
1687 			goto repeat;
1688 		}
1689 		vfs_dq_release_reservation_block(inode, total);
1690 		return -ENOSPC;
1691 	}
1692 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1693 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1694 
1695 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1696 	return 0;       /* success */
1697 }
1698 
1699 static void ext4_da_release_space(struct inode *inode, int to_free)
1700 {
1701 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1702 	int total, mdb, mdb_free, release;
1703 
1704 	if (!to_free)
1705 		return;		/* Nothing to release, exit */
1706 
1707 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1708 
1709 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1710 		/*
1711 		 * if there is no reserved blocks, but we try to free some
1712 		 * then the counter is messed up somewhere.
1713 		 * but since this function is called from invalidate
1714 		 * page, it's harmless to return without any action
1715 		 */
1716 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1717 			    "blocks for inode %lu, but there is no reserved "
1718 			    "data blocks\n", to_free, inode->i_ino);
1719 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1720 		return;
1721 	}
1722 
1723 	/* recalculate the number of metablocks still need to be reserved */
1724 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1725 	mdb = ext4_calc_metadata_amount(inode, total);
1726 
1727 	/* figure out how many metablocks to release */
1728 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1729 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1730 
1731 	release = to_free + mdb_free;
1732 
1733 	/* update fs dirty blocks counter for truncate case */
1734 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1735 
1736 	/* update per-inode reservations */
1737 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1738 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1739 
1740 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1741 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1742 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1743 
1744 	vfs_dq_release_reservation_block(inode, release);
1745 }
1746 
1747 static void ext4_da_page_release_reservation(struct page *page,
1748 						unsigned long offset)
1749 {
1750 	int to_release = 0;
1751 	struct buffer_head *head, *bh;
1752 	unsigned int curr_off = 0;
1753 
1754 	head = page_buffers(page);
1755 	bh = head;
1756 	do {
1757 		unsigned int next_off = curr_off + bh->b_size;
1758 
1759 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1760 			to_release++;
1761 			clear_buffer_delay(bh);
1762 		}
1763 		curr_off = next_off;
1764 	} while ((bh = bh->b_this_page) != head);
1765 	ext4_da_release_space(page->mapping->host, to_release);
1766 }
1767 
1768 /*
1769  * Delayed allocation stuff
1770  */
1771 
1772 struct mpage_da_data {
1773 	struct inode *inode;
1774 	sector_t b_blocknr;		/* start block number of extent */
1775 	size_t b_size;			/* size of extent */
1776 	unsigned long b_state;		/* state of the extent */
1777 	unsigned long first_page, next_page;	/* extent of pages */
1778 	struct writeback_control *wbc;
1779 	int io_done;
1780 	int pages_written;
1781 	int retval;
1782 };
1783 
1784 /*
1785  * mpage_da_submit_io - walks through extent of pages and try to write
1786  * them with writepage() call back
1787  *
1788  * @mpd->inode: inode
1789  * @mpd->first_page: first page of the extent
1790  * @mpd->next_page: page after the last page of the extent
1791  *
1792  * By the time mpage_da_submit_io() is called we expect all blocks
1793  * to be allocated. this may be wrong if allocation failed.
1794  *
1795  * As pages are already locked by write_cache_pages(), we can't use it
1796  */
1797 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1798 {
1799 	long pages_skipped;
1800 	struct pagevec pvec;
1801 	unsigned long index, end;
1802 	int ret = 0, err, nr_pages, i;
1803 	struct inode *inode = mpd->inode;
1804 	struct address_space *mapping = inode->i_mapping;
1805 
1806 	BUG_ON(mpd->next_page <= mpd->first_page);
1807 	/*
1808 	 * We need to start from the first_page to the next_page - 1
1809 	 * to make sure we also write the mapped dirty buffer_heads.
1810 	 * If we look at mpd->b_blocknr we would only be looking
1811 	 * at the currently mapped buffer_heads.
1812 	 */
1813 	index = mpd->first_page;
1814 	end = mpd->next_page - 1;
1815 
1816 	pagevec_init(&pvec, 0);
1817 	while (index <= end) {
1818 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1819 		if (nr_pages == 0)
1820 			break;
1821 		for (i = 0; i < nr_pages; i++) {
1822 			struct page *page = pvec.pages[i];
1823 
1824 			index = page->index;
1825 			if (index > end)
1826 				break;
1827 			index++;
1828 
1829 			BUG_ON(!PageLocked(page));
1830 			BUG_ON(PageWriteback(page));
1831 
1832 			pages_skipped = mpd->wbc->pages_skipped;
1833 			err = mapping->a_ops->writepage(page, mpd->wbc);
1834 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1835 				/*
1836 				 * have successfully written the page
1837 				 * without skipping the same
1838 				 */
1839 				mpd->pages_written++;
1840 			/*
1841 			 * In error case, we have to continue because
1842 			 * remaining pages are still locked
1843 			 * XXX: unlock and re-dirty them?
1844 			 */
1845 			if (ret == 0)
1846 				ret = err;
1847 		}
1848 		pagevec_release(&pvec);
1849 	}
1850 	return ret;
1851 }
1852 
1853 /*
1854  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1855  *
1856  * @mpd->inode - inode to walk through
1857  * @exbh->b_blocknr - first block on a disk
1858  * @exbh->b_size - amount of space in bytes
1859  * @logical - first logical block to start assignment with
1860  *
1861  * the function goes through all passed space and put actual disk
1862  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1863  */
1864 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1865 				 struct buffer_head *exbh)
1866 {
1867 	struct inode *inode = mpd->inode;
1868 	struct address_space *mapping = inode->i_mapping;
1869 	int blocks = exbh->b_size >> inode->i_blkbits;
1870 	sector_t pblock = exbh->b_blocknr, cur_logical;
1871 	struct buffer_head *head, *bh;
1872 	pgoff_t index, end;
1873 	struct pagevec pvec;
1874 	int nr_pages, i;
1875 
1876 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1879 
1880 	pagevec_init(&pvec, 0);
1881 
1882 	while (index <= end) {
1883 		/* XXX: optimize tail */
1884 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1885 		if (nr_pages == 0)
1886 			break;
1887 		for (i = 0; i < nr_pages; i++) {
1888 			struct page *page = pvec.pages[i];
1889 
1890 			index = page->index;
1891 			if (index > end)
1892 				break;
1893 			index++;
1894 
1895 			BUG_ON(!PageLocked(page));
1896 			BUG_ON(PageWriteback(page));
1897 			BUG_ON(!page_has_buffers(page));
1898 
1899 			bh = page_buffers(page);
1900 			head = bh;
1901 
1902 			/* skip blocks out of the range */
1903 			do {
1904 				if (cur_logical >= logical)
1905 					break;
1906 				cur_logical++;
1907 			} while ((bh = bh->b_this_page) != head);
1908 
1909 			do {
1910 				if (cur_logical >= logical + blocks)
1911 					break;
1912 
1913 				if (buffer_delay(bh) ||
1914 						buffer_unwritten(bh)) {
1915 
1916 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1917 
1918 					if (buffer_delay(bh)) {
1919 						clear_buffer_delay(bh);
1920 						bh->b_blocknr = pblock;
1921 					} else {
1922 						/*
1923 						 * unwritten already should have
1924 						 * blocknr assigned. Verify that
1925 						 */
1926 						clear_buffer_unwritten(bh);
1927 						BUG_ON(bh->b_blocknr != pblock);
1928 					}
1929 
1930 				} else if (buffer_mapped(bh))
1931 					BUG_ON(bh->b_blocknr != pblock);
1932 
1933 				cur_logical++;
1934 				pblock++;
1935 			} while ((bh = bh->b_this_page) != head);
1936 		}
1937 		pagevec_release(&pvec);
1938 	}
1939 }
1940 
1941 
1942 /*
1943  * __unmap_underlying_blocks - just a helper function to unmap
1944  * set of blocks described by @bh
1945  */
1946 static inline void __unmap_underlying_blocks(struct inode *inode,
1947 					     struct buffer_head *bh)
1948 {
1949 	struct block_device *bdev = inode->i_sb->s_bdev;
1950 	int blocks, i;
1951 
1952 	blocks = bh->b_size >> inode->i_blkbits;
1953 	for (i = 0; i < blocks; i++)
1954 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1955 }
1956 
1957 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1958 					sector_t logical, long blk_cnt)
1959 {
1960 	int nr_pages, i;
1961 	pgoff_t index, end;
1962 	struct pagevec pvec;
1963 	struct inode *inode = mpd->inode;
1964 	struct address_space *mapping = inode->i_mapping;
1965 
1966 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1967 	end   = (logical + blk_cnt - 1) >>
1968 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1969 	while (index <= end) {
1970 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1971 		if (nr_pages == 0)
1972 			break;
1973 		for (i = 0; i < nr_pages; i++) {
1974 			struct page *page = pvec.pages[i];
1975 			index = page->index;
1976 			if (index > end)
1977 				break;
1978 			index++;
1979 
1980 			BUG_ON(!PageLocked(page));
1981 			BUG_ON(PageWriteback(page));
1982 			block_invalidatepage(page, 0);
1983 			ClearPageUptodate(page);
1984 			unlock_page(page);
1985 		}
1986 	}
1987 	return;
1988 }
1989 
1990 static void ext4_print_free_blocks(struct inode *inode)
1991 {
1992 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1993 	printk(KERN_EMERG "Total free blocks count %lld\n",
1994 			ext4_count_free_blocks(inode->i_sb));
1995 	printk(KERN_EMERG "Free/Dirty block details\n");
1996 	printk(KERN_EMERG "free_blocks=%lld\n",
1997 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1998 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1999 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2000 	printk(KERN_EMERG "Block reservation details\n");
2001 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2002 			EXT4_I(inode)->i_reserved_data_blocks);
2003 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2004 			EXT4_I(inode)->i_reserved_meta_blocks);
2005 	return;
2006 }
2007 
2008 /*
2009  * This function is used by mpage_da_map_blocks().  We separate it out
2010  * as a separate function just to make life easier, and because
2011  * mpage_da_map_blocks() used to be a generic function that took a
2012  * get_block_t.
2013  */
2014 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2015 				   struct buffer_head *bh_result)
2016 {
2017 	int ret;
2018 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2019 	loff_t disksize = EXT4_I(inode)->i_disksize;
2020 	handle_t *handle = NULL;
2021 
2022 	handle = ext4_journal_current_handle();
2023 	BUG_ON(!handle);
2024 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
2025 			      bh_result, EXT4_GET_BLOCKS_CREATE|
2026 			      EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2027 	if (ret <= 0)
2028 		return ret;
2029 
2030 	bh_result->b_size = (ret << inode->i_blkbits);
2031 
2032 	if (ext4_should_order_data(inode)) {
2033 		int retval;
2034 		retval = ext4_jbd2_file_inode(handle, inode);
2035 		if (retval)
2036 			/*
2037 			 * Failed to add inode for ordered mode. Don't
2038 			 * update file size
2039 			 */
2040 			return retval;
2041 	}
2042 
2043 	/*
2044 	 * Update on-disk size along with block allocation we don't
2045 	 * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2046 	 * within already allocated block -bzzz
2047 	 */
2048 	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2049 	if (disksize > i_size_read(inode))
2050 		disksize = i_size_read(inode);
2051 	if (disksize > EXT4_I(inode)->i_disksize) {
2052 		ext4_update_i_disksize(inode, disksize);
2053 		ret = ext4_mark_inode_dirty(handle, inode);
2054 		return ret;
2055 	}
2056 	return 0;
2057 }
2058 
2059 /*
2060  * mpage_da_map_blocks - go through given space
2061  *
2062  * @mpd - bh describing space
2063  *
2064  * The function skips space we know is already mapped to disk blocks.
2065  *
2066  */
2067 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2068 {
2069 	int err = 0;
2070 	struct buffer_head new;
2071 	sector_t next;
2072 
2073 	/*
2074 	 * We consider only non-mapped and non-allocated blocks
2075 	 */
2076 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2077 		!(mpd->b_state & (1 << BH_Delay)) &&
2078 		!(mpd->b_state & (1 << BH_Unwritten)))
2079 		return 0;
2080 	/*
2081 	 * We need to make sure the BH_Delay flag is passed down to
2082 	 * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2083 	 * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.  This flag
2084 	 * causes ext4_get_blocks() to call
2085 	 * ext4_da_update_reserve_space() if the passed buffer head
2086 	 * has the BH_Delay flag set.  In the future, once we clean up
2087 	 * the interfaces to ext4_get_blocks(), we should pass in a
2088 	 * separate flag which requests that the delayed allocation
2089 	 * statistics should be updated, instead of depending on the
2090 	 * state information getting passed down via the map_bh's
2091 	 * state bitmasks plus the magic
2092 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
2093 	 */
2094 	new.b_state = mpd->b_state & (1 << BH_Delay);
2095 	new.b_blocknr = 0;
2096 	new.b_size = mpd->b_size;
2097 	next = mpd->b_blocknr;
2098 	/*
2099 	 * If we didn't accumulate anything
2100 	 * to write simply return
2101 	 */
2102 	if (!new.b_size)
2103 		return 0;
2104 
2105 	err = ext4_da_get_block_write(mpd->inode, next, &new);
2106 	if (err) {
2107 		/*
2108 		 * If get block returns with error we simply
2109 		 * return. Later writepage will redirty the page and
2110 		 * writepages will find the dirty page again
2111 		 */
2112 		if (err == -EAGAIN)
2113 			return 0;
2114 
2115 		if (err == -ENOSPC &&
2116 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2117 			mpd->retval = err;
2118 			return 0;
2119 		}
2120 
2121 		/*
2122 		 * get block failure will cause us to loop in
2123 		 * writepages, because a_ops->writepage won't be able
2124 		 * to make progress. The page will be redirtied by
2125 		 * writepage and writepages will again try to write
2126 		 * the same.
2127 		 */
2128 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
2129 				  "at logical offset %llu with max blocks "
2130 				  "%zd with error %d\n",
2131 				  __func__, mpd->inode->i_ino,
2132 				  (unsigned long long)next,
2133 				  mpd->b_size >> mpd->inode->i_blkbits, err);
2134 		printk(KERN_EMERG "This should not happen.!! "
2135 					"Data will be lost\n");
2136 		if (err == -ENOSPC) {
2137 			ext4_print_free_blocks(mpd->inode);
2138 		}
2139 		/* invlaidate all the pages */
2140 		ext4_da_block_invalidatepages(mpd, next,
2141 				mpd->b_size >> mpd->inode->i_blkbits);
2142 		return err;
2143 	}
2144 	BUG_ON(new.b_size == 0);
2145 
2146 	if (buffer_new(&new))
2147 		__unmap_underlying_blocks(mpd->inode, &new);
2148 
2149 	/*
2150 	 * If blocks are delayed marked, we need to
2151 	 * put actual blocknr and drop delayed bit
2152 	 */
2153 	if ((mpd->b_state & (1 << BH_Delay)) ||
2154 	    (mpd->b_state & (1 << BH_Unwritten)))
2155 		mpage_put_bnr_to_bhs(mpd, next, &new);
2156 
2157 	return 0;
2158 }
2159 
2160 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2161 		(1 << BH_Delay) | (1 << BH_Unwritten))
2162 
2163 /*
2164  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2165  *
2166  * @mpd->lbh - extent of blocks
2167  * @logical - logical number of the block in the file
2168  * @bh - bh of the block (used to access block's state)
2169  *
2170  * the function is used to collect contig. blocks in same state
2171  */
2172 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2173 				   sector_t logical, size_t b_size,
2174 				   unsigned long b_state)
2175 {
2176 	sector_t next;
2177 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2178 
2179 	/* check if thereserved journal credits might overflow */
2180 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2181 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2182 			/*
2183 			 * With non-extent format we are limited by the journal
2184 			 * credit available.  Total credit needed to insert
2185 			 * nrblocks contiguous blocks is dependent on the
2186 			 * nrblocks.  So limit nrblocks.
2187 			 */
2188 			goto flush_it;
2189 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2190 				EXT4_MAX_TRANS_DATA) {
2191 			/*
2192 			 * Adding the new buffer_head would make it cross the
2193 			 * allowed limit for which we have journal credit
2194 			 * reserved. So limit the new bh->b_size
2195 			 */
2196 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2197 						mpd->inode->i_blkbits;
2198 			/* we will do mpage_da_submit_io in the next loop */
2199 		}
2200 	}
2201 	/*
2202 	 * First block in the extent
2203 	 */
2204 	if (mpd->b_size == 0) {
2205 		mpd->b_blocknr = logical;
2206 		mpd->b_size = b_size;
2207 		mpd->b_state = b_state & BH_FLAGS;
2208 		return;
2209 	}
2210 
2211 	next = mpd->b_blocknr + nrblocks;
2212 	/*
2213 	 * Can we merge the block to our big extent?
2214 	 */
2215 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2216 		mpd->b_size += b_size;
2217 		return;
2218 	}
2219 
2220 flush_it:
2221 	/*
2222 	 * We couldn't merge the block to our extent, so we
2223 	 * need to flush current  extent and start new one
2224 	 */
2225 	if (mpage_da_map_blocks(mpd) == 0)
2226 		mpage_da_submit_io(mpd);
2227 	mpd->io_done = 1;
2228 	return;
2229 }
2230 
2231 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2232 {
2233 	/*
2234 	 * unmapped buffer is possible for holes.
2235 	 * delay buffer is possible with delayed allocation.
2236 	 * We also need to consider unwritten buffer as unmapped.
2237 	 */
2238 	return (!buffer_mapped(bh) || buffer_delay(bh) ||
2239 				buffer_unwritten(bh)) && buffer_dirty(bh);
2240 }
2241 
2242 /*
2243  * __mpage_da_writepage - finds extent of pages and blocks
2244  *
2245  * @page: page to consider
2246  * @wbc: not used, we just follow rules
2247  * @data: context
2248  *
2249  * The function finds extents of pages and scan them for all blocks.
2250  */
2251 static int __mpage_da_writepage(struct page *page,
2252 				struct writeback_control *wbc, void *data)
2253 {
2254 	struct mpage_da_data *mpd = data;
2255 	struct inode *inode = mpd->inode;
2256 	struct buffer_head *bh, *head;
2257 	sector_t logical;
2258 
2259 	if (mpd->io_done) {
2260 		/*
2261 		 * Rest of the page in the page_vec
2262 		 * redirty then and skip then. We will
2263 		 * try to to write them again after
2264 		 * starting a new transaction
2265 		 */
2266 		redirty_page_for_writepage(wbc, page);
2267 		unlock_page(page);
2268 		return MPAGE_DA_EXTENT_TAIL;
2269 	}
2270 	/*
2271 	 * Can we merge this page to current extent?
2272 	 */
2273 	if (mpd->next_page != page->index) {
2274 		/*
2275 		 * Nope, we can't. So, we map non-allocated blocks
2276 		 * and start IO on them using writepage()
2277 		 */
2278 		if (mpd->next_page != mpd->first_page) {
2279 			if (mpage_da_map_blocks(mpd) == 0)
2280 				mpage_da_submit_io(mpd);
2281 			/*
2282 			 * skip rest of the page in the page_vec
2283 			 */
2284 			mpd->io_done = 1;
2285 			redirty_page_for_writepage(wbc, page);
2286 			unlock_page(page);
2287 			return MPAGE_DA_EXTENT_TAIL;
2288 		}
2289 
2290 		/*
2291 		 * Start next extent of pages ...
2292 		 */
2293 		mpd->first_page = page->index;
2294 
2295 		/*
2296 		 * ... and blocks
2297 		 */
2298 		mpd->b_size = 0;
2299 		mpd->b_state = 0;
2300 		mpd->b_blocknr = 0;
2301 	}
2302 
2303 	mpd->next_page = page->index + 1;
2304 	logical = (sector_t) page->index <<
2305 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2306 
2307 	if (!page_has_buffers(page)) {
2308 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2309 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2310 		if (mpd->io_done)
2311 			return MPAGE_DA_EXTENT_TAIL;
2312 	} else {
2313 		/*
2314 		 * Page with regular buffer heads, just add all dirty ones
2315 		 */
2316 		head = page_buffers(page);
2317 		bh = head;
2318 		do {
2319 			BUG_ON(buffer_locked(bh));
2320 			/*
2321 			 * We need to try to allocate
2322 			 * unmapped blocks in the same page.
2323 			 * Otherwise we won't make progress
2324 			 * with the page in ext4_da_writepage
2325 			 */
2326 			if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2327 				mpage_add_bh_to_extent(mpd, logical,
2328 						       bh->b_size,
2329 						       bh->b_state);
2330 				if (mpd->io_done)
2331 					return MPAGE_DA_EXTENT_TAIL;
2332 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2333 				/*
2334 				 * mapped dirty buffer. We need to update
2335 				 * the b_state because we look at
2336 				 * b_state in mpage_da_map_blocks. We don't
2337 				 * update b_size because if we find an
2338 				 * unmapped buffer_head later we need to
2339 				 * use the b_state flag of that buffer_head.
2340 				 */
2341 				if (mpd->b_size == 0)
2342 					mpd->b_state = bh->b_state & BH_FLAGS;
2343 			}
2344 			logical++;
2345 		} while ((bh = bh->b_this_page) != head);
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 /*
2352  * This is a special get_blocks_t callback which is used by
2353  * ext4_da_write_begin().  It will either return mapped block or
2354  * reserve space for a single block.
2355  *
2356  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2357  * We also have b_blocknr = -1 and b_bdev initialized properly
2358  *
2359  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2360  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2361  * initialized properly.
2362  */
2363 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2364 				  struct buffer_head *bh_result, int create)
2365 {
2366 	int ret = 0;
2367 	sector_t invalid_block = ~((sector_t) 0xffff);
2368 
2369 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2370 		invalid_block = ~0;
2371 
2372 	BUG_ON(create == 0);
2373 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2374 
2375 	/*
2376 	 * first, we need to know whether the block is allocated already
2377 	 * preallocated blocks are unmapped but should treated
2378 	 * the same as allocated blocks.
2379 	 */
2380 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2381 	if ((ret == 0) && !buffer_delay(bh_result)) {
2382 		/* the block isn't (pre)allocated yet, let's reserve space */
2383 		/*
2384 		 * XXX: __block_prepare_write() unmaps passed block,
2385 		 * is it OK?
2386 		 */
2387 		ret = ext4_da_reserve_space(inode, 1);
2388 		if (ret)
2389 			/* not enough space to reserve */
2390 			return ret;
2391 
2392 		map_bh(bh_result, inode->i_sb, invalid_block);
2393 		set_buffer_new(bh_result);
2394 		set_buffer_delay(bh_result);
2395 	} else if (ret > 0) {
2396 		bh_result->b_size = (ret << inode->i_blkbits);
2397 		if (buffer_unwritten(bh_result)) {
2398 			/* A delayed write to unwritten bh should
2399 			 * be marked new and mapped.  Mapped ensures
2400 			 * that we don't do get_block multiple times
2401 			 * when we write to the same offset and new
2402 			 * ensures that we do proper zero out for
2403 			 * partial write.
2404 			 */
2405 			set_buffer_new(bh_result);
2406 			set_buffer_mapped(bh_result);
2407 		}
2408 		ret = 0;
2409 	}
2410 
2411 	return ret;
2412 }
2413 
2414 /*
2415  * This function is used as a standard get_block_t calback function
2416  * when there is no desire to allocate any blocks.  It is used as a
2417  * callback function for block_prepare_write(), nobh_writepage(), and
2418  * block_write_full_page().  These functions should only try to map a
2419  * single block at a time.
2420  *
2421  * Since this function doesn't do block allocations even if the caller
2422  * requests it by passing in create=1, it is critically important that
2423  * any caller checks to make sure that any buffer heads are returned
2424  * by this function are either all already mapped or marked for
2425  * delayed allocation before calling nobh_writepage() or
2426  * block_write_full_page().  Otherwise, b_blocknr could be left
2427  * unitialized, and the page write functions will be taken by
2428  * surprise.
2429  */
2430 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2431 				   struct buffer_head *bh_result, int create)
2432 {
2433 	int ret = 0;
2434 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2435 
2436 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2437 
2438 	/*
2439 	 * we don't want to do block allocation in writepage
2440 	 * so call get_block_wrap with create = 0
2441 	 */
2442 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2443 	BUG_ON(create && ret == 0);
2444 	if (ret > 0) {
2445 		bh_result->b_size = (ret << inode->i_blkbits);
2446 		ret = 0;
2447 	}
2448 	return ret;
2449 }
2450 
2451 /*
2452  * This function can get called via...
2453  *   - ext4_da_writepages after taking page lock (have journal handle)
2454  *   - journal_submit_inode_data_buffers (no journal handle)
2455  *   - shrink_page_list via pdflush (no journal handle)
2456  *   - grab_page_cache when doing write_begin (have journal handle)
2457  */
2458 static int ext4_da_writepage(struct page *page,
2459 				struct writeback_control *wbc)
2460 {
2461 	int ret = 0;
2462 	loff_t size;
2463 	unsigned int len;
2464 	struct buffer_head *page_bufs;
2465 	struct inode *inode = page->mapping->host;
2466 
2467 	trace_mark(ext4_da_writepage,
2468 		   "dev %s ino %lu page_index %lu",
2469 		   inode->i_sb->s_id, inode->i_ino, page->index);
2470 	size = i_size_read(inode);
2471 	if (page->index == size >> PAGE_CACHE_SHIFT)
2472 		len = size & ~PAGE_CACHE_MASK;
2473 	else
2474 		len = PAGE_CACHE_SIZE;
2475 
2476 	if (page_has_buffers(page)) {
2477 		page_bufs = page_buffers(page);
2478 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2479 					ext4_bh_unmapped_or_delay)) {
2480 			/*
2481 			 * We don't want to do  block allocation
2482 			 * So redirty the page and return
2483 			 * We may reach here when we do a journal commit
2484 			 * via journal_submit_inode_data_buffers.
2485 			 * If we don't have mapping block we just ignore
2486 			 * them. We can also reach here via shrink_page_list
2487 			 */
2488 			redirty_page_for_writepage(wbc, page);
2489 			unlock_page(page);
2490 			return 0;
2491 		}
2492 	} else {
2493 		/*
2494 		 * The test for page_has_buffers() is subtle:
2495 		 * We know the page is dirty but it lost buffers. That means
2496 		 * that at some moment in time after write_begin()/write_end()
2497 		 * has been called all buffers have been clean and thus they
2498 		 * must have been written at least once. So they are all
2499 		 * mapped and we can happily proceed with mapping them
2500 		 * and writing the page.
2501 		 *
2502 		 * Try to initialize the buffer_heads and check whether
2503 		 * all are mapped and non delay. We don't want to
2504 		 * do block allocation here.
2505 		 */
2506 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2507 					  noalloc_get_block_write);
2508 		if (!ret) {
2509 			page_bufs = page_buffers(page);
2510 			/* check whether all are mapped and non delay */
2511 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2512 						ext4_bh_unmapped_or_delay)) {
2513 				redirty_page_for_writepage(wbc, page);
2514 				unlock_page(page);
2515 				return 0;
2516 			}
2517 		} else {
2518 			/*
2519 			 * We can't do block allocation here
2520 			 * so just redity the page and unlock
2521 			 * and return
2522 			 */
2523 			redirty_page_for_writepage(wbc, page);
2524 			unlock_page(page);
2525 			return 0;
2526 		}
2527 		/* now mark the buffer_heads as dirty and uptodate */
2528 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2529 	}
2530 
2531 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2532 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2533 	else
2534 		ret = block_write_full_page(page, noalloc_get_block_write,
2535 					    wbc);
2536 
2537 	return ret;
2538 }
2539 
2540 /*
2541  * This is called via ext4_da_writepages() to
2542  * calulate the total number of credits to reserve to fit
2543  * a single extent allocation into a single transaction,
2544  * ext4_da_writpeages() will loop calling this before
2545  * the block allocation.
2546  */
2547 
2548 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2549 {
2550 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2551 
2552 	/*
2553 	 * With non-extent format the journal credit needed to
2554 	 * insert nrblocks contiguous block is dependent on
2555 	 * number of contiguous block. So we will limit
2556 	 * number of contiguous block to a sane value
2557 	 */
2558 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2559 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2560 		max_blocks = EXT4_MAX_TRANS_DATA;
2561 
2562 	return ext4_chunk_trans_blocks(inode, max_blocks);
2563 }
2564 
2565 static int ext4_da_writepages(struct address_space *mapping,
2566 			      struct writeback_control *wbc)
2567 {
2568 	pgoff_t	index;
2569 	int range_whole = 0;
2570 	handle_t *handle = NULL;
2571 	struct mpage_da_data mpd;
2572 	struct inode *inode = mapping->host;
2573 	int no_nrwrite_index_update;
2574 	int pages_written = 0;
2575 	long pages_skipped;
2576 	int range_cyclic, cycled = 1, io_done = 0;
2577 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2578 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579 
2580 	trace_mark(ext4_da_writepages,
2581 		   "dev %s ino %lu nr_t_write %ld "
2582 		   "pages_skipped %ld range_start %llu "
2583 		   "range_end %llu nonblocking %d "
2584 		   "for_kupdate %d for_reclaim %d "
2585 		   "for_writepages %d range_cyclic %d",
2586 		   inode->i_sb->s_id, inode->i_ino,
2587 		   wbc->nr_to_write, wbc->pages_skipped,
2588 		   (unsigned long long) wbc->range_start,
2589 		   (unsigned long long) wbc->range_end,
2590 		   wbc->nonblocking, wbc->for_kupdate,
2591 		   wbc->for_reclaim, wbc->for_writepages,
2592 		   wbc->range_cyclic);
2593 
2594 	/*
2595 	 * No pages to write? This is mainly a kludge to avoid starting
2596 	 * a transaction for special inodes like journal inode on last iput()
2597 	 * because that could violate lock ordering on umount
2598 	 */
2599 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2600 		return 0;
2601 
2602 	/*
2603 	 * If the filesystem has aborted, it is read-only, so return
2604 	 * right away instead of dumping stack traces later on that
2605 	 * will obscure the real source of the problem.  We test
2606 	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2607 	 * the latter could be true if the filesystem is mounted
2608 	 * read-only, and in that case, ext4_da_writepages should
2609 	 * *never* be called, so if that ever happens, we would want
2610 	 * the stack trace.
2611 	 */
2612 	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2613 		return -EROFS;
2614 
2615 	/*
2616 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2617 	 * This make sure small files blocks are allocated in
2618 	 * single attempt. This ensure that small files
2619 	 * get less fragmented.
2620 	 */
2621 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2622 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2623 		wbc->nr_to_write = sbi->s_mb_stream_request;
2624 	}
2625 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2626 		range_whole = 1;
2627 
2628 	range_cyclic = wbc->range_cyclic;
2629 	if (wbc->range_cyclic) {
2630 		index = mapping->writeback_index;
2631 		if (index)
2632 			cycled = 0;
2633 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2634 		wbc->range_end  = LLONG_MAX;
2635 		wbc->range_cyclic = 0;
2636 	} else
2637 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2638 
2639 	mpd.wbc = wbc;
2640 	mpd.inode = mapping->host;
2641 
2642 	/*
2643 	 * we don't want write_cache_pages to update
2644 	 * nr_to_write and writeback_index
2645 	 */
2646 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2647 	wbc->no_nrwrite_index_update = 1;
2648 	pages_skipped = wbc->pages_skipped;
2649 
2650 retry:
2651 	while (!ret && wbc->nr_to_write > 0) {
2652 
2653 		/*
2654 		 * we  insert one extent at a time. So we need
2655 		 * credit needed for single extent allocation.
2656 		 * journalled mode is currently not supported
2657 		 * by delalloc
2658 		 */
2659 		BUG_ON(ext4_should_journal_data(inode));
2660 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2661 
2662 		/* start a new transaction*/
2663 		handle = ext4_journal_start(inode, needed_blocks);
2664 		if (IS_ERR(handle)) {
2665 			ret = PTR_ERR(handle);
2666 			printk(KERN_CRIT "%s: jbd2_start: "
2667 			       "%ld pages, ino %lu; err %d\n", __func__,
2668 				wbc->nr_to_write, inode->i_ino, ret);
2669 			dump_stack();
2670 			goto out_writepages;
2671 		}
2672 
2673 		/*
2674 		 * Now call __mpage_da_writepage to find the next
2675 		 * contiguous region of logical blocks that need
2676 		 * blocks to be allocated by ext4.  We don't actually
2677 		 * submit the blocks for I/O here, even though
2678 		 * write_cache_pages thinks it will, and will set the
2679 		 * pages as clean for write before calling
2680 		 * __mpage_da_writepage().
2681 		 */
2682 		mpd.b_size = 0;
2683 		mpd.b_state = 0;
2684 		mpd.b_blocknr = 0;
2685 		mpd.first_page = 0;
2686 		mpd.next_page = 0;
2687 		mpd.io_done = 0;
2688 		mpd.pages_written = 0;
2689 		mpd.retval = 0;
2690 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2691 					&mpd);
2692 		/*
2693 		 * If we have a contigous extent of pages and we
2694 		 * haven't done the I/O yet, map the blocks and submit
2695 		 * them for I/O.
2696 		 */
2697 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2698 			if (mpage_da_map_blocks(&mpd) == 0)
2699 				mpage_da_submit_io(&mpd);
2700 			mpd.io_done = 1;
2701 			ret = MPAGE_DA_EXTENT_TAIL;
2702 		}
2703 		wbc->nr_to_write -= mpd.pages_written;
2704 
2705 		ext4_journal_stop(handle);
2706 
2707 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2708 			/* commit the transaction which would
2709 			 * free blocks released in the transaction
2710 			 * and try again
2711 			 */
2712 			jbd2_journal_force_commit_nested(sbi->s_journal);
2713 			wbc->pages_skipped = pages_skipped;
2714 			ret = 0;
2715 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2716 			/*
2717 			 * got one extent now try with
2718 			 * rest of the pages
2719 			 */
2720 			pages_written += mpd.pages_written;
2721 			wbc->pages_skipped = pages_skipped;
2722 			ret = 0;
2723 			io_done = 1;
2724 		} else if (wbc->nr_to_write)
2725 			/*
2726 			 * There is no more writeout needed
2727 			 * or we requested for a noblocking writeout
2728 			 * and we found the device congested
2729 			 */
2730 			break;
2731 	}
2732 	if (!io_done && !cycled) {
2733 		cycled = 1;
2734 		index = 0;
2735 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2736 		wbc->range_end  = mapping->writeback_index - 1;
2737 		goto retry;
2738 	}
2739 	if (pages_skipped != wbc->pages_skipped)
2740 		printk(KERN_EMERG "This should not happen leaving %s "
2741 				"with nr_to_write = %ld ret = %d\n",
2742 				__func__, wbc->nr_to_write, ret);
2743 
2744 	/* Update index */
2745 	index += pages_written;
2746 	wbc->range_cyclic = range_cyclic;
2747 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2748 		/*
2749 		 * set the writeback_index so that range_cyclic
2750 		 * mode will write it back later
2751 		 */
2752 		mapping->writeback_index = index;
2753 
2754 out_writepages:
2755 	if (!no_nrwrite_index_update)
2756 		wbc->no_nrwrite_index_update = 0;
2757 	wbc->nr_to_write -= nr_to_writebump;
2758 	trace_mark(ext4_da_writepage_result,
2759 		   "dev %s ino %lu ret %d pages_written %d "
2760 		   "pages_skipped %ld congestion %d "
2761 		   "more_io %d no_nrwrite_index_update %d",
2762 		   inode->i_sb->s_id, inode->i_ino, ret,
2763 		   pages_written, wbc->pages_skipped,
2764 		   wbc->encountered_congestion, wbc->more_io,
2765 		   wbc->no_nrwrite_index_update);
2766 	return ret;
2767 }
2768 
2769 #define FALL_BACK_TO_NONDELALLOC 1
2770 static int ext4_nonda_switch(struct super_block *sb)
2771 {
2772 	s64 free_blocks, dirty_blocks;
2773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2774 
2775 	/*
2776 	 * switch to non delalloc mode if we are running low
2777 	 * on free block. The free block accounting via percpu
2778 	 * counters can get slightly wrong with percpu_counter_batch getting
2779 	 * accumulated on each CPU without updating global counters
2780 	 * Delalloc need an accurate free block accounting. So switch
2781 	 * to non delalloc when we are near to error range.
2782 	 */
2783 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2784 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2785 	if (2 * free_blocks < 3 * dirty_blocks ||
2786 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2787 		/*
2788 		 * free block count is less that 150% of dirty blocks
2789 		 * or free blocks is less that watermark
2790 		 */
2791 		return 1;
2792 	}
2793 	return 0;
2794 }
2795 
2796 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2797 				loff_t pos, unsigned len, unsigned flags,
2798 				struct page **pagep, void **fsdata)
2799 {
2800 	int ret, retries = 0;
2801 	struct page *page;
2802 	pgoff_t index;
2803 	unsigned from, to;
2804 	struct inode *inode = mapping->host;
2805 	handle_t *handle;
2806 
2807 	index = pos >> PAGE_CACHE_SHIFT;
2808 	from = pos & (PAGE_CACHE_SIZE - 1);
2809 	to = from + len;
2810 
2811 	if (ext4_nonda_switch(inode->i_sb)) {
2812 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2813 		return ext4_write_begin(file, mapping, pos,
2814 					len, flags, pagep, fsdata);
2815 	}
2816 	*fsdata = (void *)0;
2817 
2818 	trace_mark(ext4_da_write_begin,
2819 		   "dev %s ino %lu pos %llu len %u flags %u",
2820 		   inode->i_sb->s_id, inode->i_ino,
2821 		   (unsigned long long) pos, len, flags);
2822 retry:
2823 	/*
2824 	 * With delayed allocation, we don't log the i_disksize update
2825 	 * if there is delayed block allocation. But we still need
2826 	 * to journalling the i_disksize update if writes to the end
2827 	 * of file which has an already mapped buffer.
2828 	 */
2829 	handle = ext4_journal_start(inode, 1);
2830 	if (IS_ERR(handle)) {
2831 		ret = PTR_ERR(handle);
2832 		goto out;
2833 	}
2834 	/* We cannot recurse into the filesystem as the transaction is already
2835 	 * started */
2836 	flags |= AOP_FLAG_NOFS;
2837 
2838 	page = grab_cache_page_write_begin(mapping, index, flags);
2839 	if (!page) {
2840 		ext4_journal_stop(handle);
2841 		ret = -ENOMEM;
2842 		goto out;
2843 	}
2844 	*pagep = page;
2845 
2846 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2847 				ext4_da_get_block_prep);
2848 	if (ret < 0) {
2849 		unlock_page(page);
2850 		ext4_journal_stop(handle);
2851 		page_cache_release(page);
2852 		/*
2853 		 * block_write_begin may have instantiated a few blocks
2854 		 * outside i_size.  Trim these off again. Don't need
2855 		 * i_size_read because we hold i_mutex.
2856 		 */
2857 		if (pos + len > inode->i_size)
2858 			vmtruncate(inode, inode->i_size);
2859 	}
2860 
2861 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2862 		goto retry;
2863 out:
2864 	return ret;
2865 }
2866 
2867 /*
2868  * Check if we should update i_disksize
2869  * when write to the end of file but not require block allocation
2870  */
2871 static int ext4_da_should_update_i_disksize(struct page *page,
2872 					 unsigned long offset)
2873 {
2874 	struct buffer_head *bh;
2875 	struct inode *inode = page->mapping->host;
2876 	unsigned int idx;
2877 	int i;
2878 
2879 	bh = page_buffers(page);
2880 	idx = offset >> inode->i_blkbits;
2881 
2882 	for (i = 0; i < idx; i++)
2883 		bh = bh->b_this_page;
2884 
2885 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2886 		return 0;
2887 	return 1;
2888 }
2889 
2890 static int ext4_da_write_end(struct file *file,
2891 				struct address_space *mapping,
2892 				loff_t pos, unsigned len, unsigned copied,
2893 				struct page *page, void *fsdata)
2894 {
2895 	struct inode *inode = mapping->host;
2896 	int ret = 0, ret2;
2897 	handle_t *handle = ext4_journal_current_handle();
2898 	loff_t new_i_size;
2899 	unsigned long start, end;
2900 	int write_mode = (int)(unsigned long)fsdata;
2901 
2902 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2903 		if (ext4_should_order_data(inode)) {
2904 			return ext4_ordered_write_end(file, mapping, pos,
2905 					len, copied, page, fsdata);
2906 		} else if (ext4_should_writeback_data(inode)) {
2907 			return ext4_writeback_write_end(file, mapping, pos,
2908 					len, copied, page, fsdata);
2909 		} else {
2910 			BUG();
2911 		}
2912 	}
2913 
2914 	trace_mark(ext4_da_write_end,
2915 		   "dev %s ino %lu pos %llu len %u copied %u",
2916 		   inode->i_sb->s_id, inode->i_ino,
2917 		   (unsigned long long) pos, len, copied);
2918 	start = pos & (PAGE_CACHE_SIZE - 1);
2919 	end = start + copied - 1;
2920 
2921 	/*
2922 	 * generic_write_end() will run mark_inode_dirty() if i_size
2923 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2924 	 * into that.
2925 	 */
2926 
2927 	new_i_size = pos + copied;
2928 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2929 		if (ext4_da_should_update_i_disksize(page, end)) {
2930 			down_write(&EXT4_I(inode)->i_data_sem);
2931 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2932 				/*
2933 				 * Updating i_disksize when extending file
2934 				 * without needing block allocation
2935 				 */
2936 				if (ext4_should_order_data(inode))
2937 					ret = ext4_jbd2_file_inode(handle,
2938 								   inode);
2939 
2940 				EXT4_I(inode)->i_disksize = new_i_size;
2941 			}
2942 			up_write(&EXT4_I(inode)->i_data_sem);
2943 			/* We need to mark inode dirty even if
2944 			 * new_i_size is less that inode->i_size
2945 			 * bu greater than i_disksize.(hint delalloc)
2946 			 */
2947 			ext4_mark_inode_dirty(handle, inode);
2948 		}
2949 	}
2950 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2951 							page, fsdata);
2952 	copied = ret2;
2953 	if (ret2 < 0)
2954 		ret = ret2;
2955 	ret2 = ext4_journal_stop(handle);
2956 	if (!ret)
2957 		ret = ret2;
2958 
2959 	return ret ? ret : copied;
2960 }
2961 
2962 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2963 {
2964 	/*
2965 	 * Drop reserved blocks
2966 	 */
2967 	BUG_ON(!PageLocked(page));
2968 	if (!page_has_buffers(page))
2969 		goto out;
2970 
2971 	ext4_da_page_release_reservation(page, offset);
2972 
2973 out:
2974 	ext4_invalidatepage(page, offset);
2975 
2976 	return;
2977 }
2978 
2979 /*
2980  * Force all delayed allocation blocks to be allocated for a given inode.
2981  */
2982 int ext4_alloc_da_blocks(struct inode *inode)
2983 {
2984 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2985 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2986 		return 0;
2987 
2988 	/*
2989 	 * We do something simple for now.  The filemap_flush() will
2990 	 * also start triggering a write of the data blocks, which is
2991 	 * not strictly speaking necessary (and for users of
2992 	 * laptop_mode, not even desirable).  However, to do otherwise
2993 	 * would require replicating code paths in:
2994 	 *
2995 	 * ext4_da_writepages() ->
2996 	 *    write_cache_pages() ---> (via passed in callback function)
2997 	 *        __mpage_da_writepage() -->
2998 	 *           mpage_add_bh_to_extent()
2999 	 *           mpage_da_map_blocks()
3000 	 *
3001 	 * The problem is that write_cache_pages(), located in
3002 	 * mm/page-writeback.c, marks pages clean in preparation for
3003 	 * doing I/O, which is not desirable if we're not planning on
3004 	 * doing I/O at all.
3005 	 *
3006 	 * We could call write_cache_pages(), and then redirty all of
3007 	 * the pages by calling redirty_page_for_writeback() but that
3008 	 * would be ugly in the extreme.  So instead we would need to
3009 	 * replicate parts of the code in the above functions,
3010 	 * simplifying them becuase we wouldn't actually intend to
3011 	 * write out the pages, but rather only collect contiguous
3012 	 * logical block extents, call the multi-block allocator, and
3013 	 * then update the buffer heads with the block allocations.
3014 	 *
3015 	 * For now, though, we'll cheat by calling filemap_flush(),
3016 	 * which will map the blocks, and start the I/O, but not
3017 	 * actually wait for the I/O to complete.
3018 	 */
3019 	return filemap_flush(inode->i_mapping);
3020 }
3021 
3022 /*
3023  * bmap() is special.  It gets used by applications such as lilo and by
3024  * the swapper to find the on-disk block of a specific piece of data.
3025  *
3026  * Naturally, this is dangerous if the block concerned is still in the
3027  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3028  * filesystem and enables swap, then they may get a nasty shock when the
3029  * data getting swapped to that swapfile suddenly gets overwritten by
3030  * the original zero's written out previously to the journal and
3031  * awaiting writeback in the kernel's buffer cache.
3032  *
3033  * So, if we see any bmap calls here on a modified, data-journaled file,
3034  * take extra steps to flush any blocks which might be in the cache.
3035  */
3036 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3037 {
3038 	struct inode *inode = mapping->host;
3039 	journal_t *journal;
3040 	int err;
3041 
3042 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3043 			test_opt(inode->i_sb, DELALLOC)) {
3044 		/*
3045 		 * With delalloc we want to sync the file
3046 		 * so that we can make sure we allocate
3047 		 * blocks for file
3048 		 */
3049 		filemap_write_and_wait(mapping);
3050 	}
3051 
3052 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3053 		/*
3054 		 * This is a REALLY heavyweight approach, but the use of
3055 		 * bmap on dirty files is expected to be extremely rare:
3056 		 * only if we run lilo or swapon on a freshly made file
3057 		 * do we expect this to happen.
3058 		 *
3059 		 * (bmap requires CAP_SYS_RAWIO so this does not
3060 		 * represent an unprivileged user DOS attack --- we'd be
3061 		 * in trouble if mortal users could trigger this path at
3062 		 * will.)
3063 		 *
3064 		 * NB. EXT4_STATE_JDATA is not set on files other than
3065 		 * regular files.  If somebody wants to bmap a directory
3066 		 * or symlink and gets confused because the buffer
3067 		 * hasn't yet been flushed to disk, they deserve
3068 		 * everything they get.
3069 		 */
3070 
3071 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3072 		journal = EXT4_JOURNAL(inode);
3073 		jbd2_journal_lock_updates(journal);
3074 		err = jbd2_journal_flush(journal);
3075 		jbd2_journal_unlock_updates(journal);
3076 
3077 		if (err)
3078 			return 0;
3079 	}
3080 
3081 	return generic_block_bmap(mapping, block, ext4_get_block);
3082 }
3083 
3084 static int bget_one(handle_t *handle, struct buffer_head *bh)
3085 {
3086 	get_bh(bh);
3087 	return 0;
3088 }
3089 
3090 static int bput_one(handle_t *handle, struct buffer_head *bh)
3091 {
3092 	put_bh(bh);
3093 	return 0;
3094 }
3095 
3096 /*
3097  * Note that we don't need to start a transaction unless we're journaling data
3098  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3099  * need to file the inode to the transaction's list in ordered mode because if
3100  * we are writing back data added by write(), the inode is already there and if
3101  * we are writing back data modified via mmap(), noone guarantees in which
3102  * transaction the data will hit the disk. In case we are journaling data, we
3103  * cannot start transaction directly because transaction start ranks above page
3104  * lock so we have to do some magic.
3105  *
3106  * In all journaling modes block_write_full_page() will start the I/O.
3107  *
3108  * Problem:
3109  *
3110  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3111  *		ext4_writepage()
3112  *
3113  * Similar for:
3114  *
3115  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3116  *
3117  * Same applies to ext4_get_block().  We will deadlock on various things like
3118  * lock_journal and i_data_sem
3119  *
3120  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3121  * allocations fail.
3122  *
3123  * 16May01: If we're reentered then journal_current_handle() will be
3124  *	    non-zero. We simply *return*.
3125  *
3126  * 1 July 2001: @@@ FIXME:
3127  *   In journalled data mode, a data buffer may be metadata against the
3128  *   current transaction.  But the same file is part of a shared mapping
3129  *   and someone does a writepage() on it.
3130  *
3131  *   We will move the buffer onto the async_data list, but *after* it has
3132  *   been dirtied. So there's a small window where we have dirty data on
3133  *   BJ_Metadata.
3134  *
3135  *   Note that this only applies to the last partial page in the file.  The
3136  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3137  *   broken code anyway: it's wrong for msync()).
3138  *
3139  *   It's a rare case: affects the final partial page, for journalled data
3140  *   where the file is subject to bith write() and writepage() in the same
3141  *   transction.  To fix it we'll need a custom block_write_full_page().
3142  *   We'll probably need that anyway for journalling writepage() output.
3143  *
3144  * We don't honour synchronous mounts for writepage().  That would be
3145  * disastrous.  Any write() or metadata operation will sync the fs for
3146  * us.
3147  *
3148  */
3149 static int __ext4_normal_writepage(struct page *page,
3150 				struct writeback_control *wbc)
3151 {
3152 	struct inode *inode = page->mapping->host;
3153 
3154 	if (test_opt(inode->i_sb, NOBH))
3155 		return nobh_writepage(page, noalloc_get_block_write, wbc);
3156 	else
3157 		return block_write_full_page(page, noalloc_get_block_write,
3158 					     wbc);
3159 }
3160 
3161 static int ext4_normal_writepage(struct page *page,
3162 				struct writeback_control *wbc)
3163 {
3164 	struct inode *inode = page->mapping->host;
3165 	loff_t size = i_size_read(inode);
3166 	loff_t len;
3167 
3168 	trace_mark(ext4_normal_writepage,
3169 		   "dev %s ino %lu page_index %lu",
3170 		   inode->i_sb->s_id, inode->i_ino, page->index);
3171 	J_ASSERT(PageLocked(page));
3172 	if (page->index == size >> PAGE_CACHE_SHIFT)
3173 		len = size & ~PAGE_CACHE_MASK;
3174 	else
3175 		len = PAGE_CACHE_SIZE;
3176 
3177 	if (page_has_buffers(page)) {
3178 		/* if page has buffers it should all be mapped
3179 		 * and allocated. If there are not buffers attached
3180 		 * to the page we know the page is dirty but it lost
3181 		 * buffers. That means that at some moment in time
3182 		 * after write_begin() / write_end() has been called
3183 		 * all buffers have been clean and thus they must have been
3184 		 * written at least once. So they are all mapped and we can
3185 		 * happily proceed with mapping them and writing the page.
3186 		 */
3187 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3188 					ext4_bh_unmapped_or_delay));
3189 	}
3190 
3191 	if (!ext4_journal_current_handle())
3192 		return __ext4_normal_writepage(page, wbc);
3193 
3194 	redirty_page_for_writepage(wbc, page);
3195 	unlock_page(page);
3196 	return 0;
3197 }
3198 
3199 static int __ext4_journalled_writepage(struct page *page,
3200 				struct writeback_control *wbc)
3201 {
3202 	struct address_space *mapping = page->mapping;
3203 	struct inode *inode = mapping->host;
3204 	struct buffer_head *page_bufs;
3205 	handle_t *handle = NULL;
3206 	int ret = 0;
3207 	int err;
3208 
3209 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3210 				  noalloc_get_block_write);
3211 	if (ret != 0)
3212 		goto out_unlock;
3213 
3214 	page_bufs = page_buffers(page);
3215 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3216 								bget_one);
3217 	/* As soon as we unlock the page, it can go away, but we have
3218 	 * references to buffers so we are safe */
3219 	unlock_page(page);
3220 
3221 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3222 	if (IS_ERR(handle)) {
3223 		ret = PTR_ERR(handle);
3224 		goto out;
3225 	}
3226 
3227 	ret = walk_page_buffers(handle, page_bufs, 0,
3228 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3229 
3230 	err = walk_page_buffers(handle, page_bufs, 0,
3231 				PAGE_CACHE_SIZE, NULL, write_end_fn);
3232 	if (ret == 0)
3233 		ret = err;
3234 	err = ext4_journal_stop(handle);
3235 	if (!ret)
3236 		ret = err;
3237 
3238 	walk_page_buffers(handle, page_bufs, 0,
3239 				PAGE_CACHE_SIZE, NULL, bput_one);
3240 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3241 	goto out;
3242 
3243 out_unlock:
3244 	unlock_page(page);
3245 out:
3246 	return ret;
3247 }
3248 
3249 static int ext4_journalled_writepage(struct page *page,
3250 				struct writeback_control *wbc)
3251 {
3252 	struct inode *inode = page->mapping->host;
3253 	loff_t size = i_size_read(inode);
3254 	loff_t len;
3255 
3256 	trace_mark(ext4_journalled_writepage,
3257 		   "dev %s ino %lu page_index %lu",
3258 		   inode->i_sb->s_id, inode->i_ino, page->index);
3259 	J_ASSERT(PageLocked(page));
3260 	if (page->index == size >> PAGE_CACHE_SHIFT)
3261 		len = size & ~PAGE_CACHE_MASK;
3262 	else
3263 		len = PAGE_CACHE_SIZE;
3264 
3265 	if (page_has_buffers(page)) {
3266 		/* if page has buffers it should all be mapped
3267 		 * and allocated. If there are not buffers attached
3268 		 * to the page we know the page is dirty but it lost
3269 		 * buffers. That means that at some moment in time
3270 		 * after write_begin() / write_end() has been called
3271 		 * all buffers have been clean and thus they must have been
3272 		 * written at least once. So they are all mapped and we can
3273 		 * happily proceed with mapping them and writing the page.
3274 		 */
3275 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3276 					ext4_bh_unmapped_or_delay));
3277 	}
3278 
3279 	if (ext4_journal_current_handle())
3280 		goto no_write;
3281 
3282 	if (PageChecked(page)) {
3283 		/*
3284 		 * It's mmapped pagecache.  Add buffers and journal it.  There
3285 		 * doesn't seem much point in redirtying the page here.
3286 		 */
3287 		ClearPageChecked(page);
3288 		return __ext4_journalled_writepage(page, wbc);
3289 	} else {
3290 		/*
3291 		 * It may be a page full of checkpoint-mode buffers.  We don't
3292 		 * really know unless we go poke around in the buffer_heads.
3293 		 * But block_write_full_page will do the right thing.
3294 		 */
3295 		return block_write_full_page(page, noalloc_get_block_write,
3296 					     wbc);
3297 	}
3298 no_write:
3299 	redirty_page_for_writepage(wbc, page);
3300 	unlock_page(page);
3301 	return 0;
3302 }
3303 
3304 static int ext4_readpage(struct file *file, struct page *page)
3305 {
3306 	return mpage_readpage(page, ext4_get_block);
3307 }
3308 
3309 static int
3310 ext4_readpages(struct file *file, struct address_space *mapping,
3311 		struct list_head *pages, unsigned nr_pages)
3312 {
3313 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3314 }
3315 
3316 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3317 {
3318 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3319 
3320 	/*
3321 	 * If it's a full truncate we just forget about the pending dirtying
3322 	 */
3323 	if (offset == 0)
3324 		ClearPageChecked(page);
3325 
3326 	if (journal)
3327 		jbd2_journal_invalidatepage(journal, page, offset);
3328 	else
3329 		block_invalidatepage(page, offset);
3330 }
3331 
3332 static int ext4_releasepage(struct page *page, gfp_t wait)
3333 {
3334 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3335 
3336 	WARN_ON(PageChecked(page));
3337 	if (!page_has_buffers(page))
3338 		return 0;
3339 	if (journal)
3340 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3341 	else
3342 		return try_to_free_buffers(page);
3343 }
3344 
3345 /*
3346  * If the O_DIRECT write will extend the file then add this inode to the
3347  * orphan list.  So recovery will truncate it back to the original size
3348  * if the machine crashes during the write.
3349  *
3350  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3351  * crashes then stale disk data _may_ be exposed inside the file. But current
3352  * VFS code falls back into buffered path in that case so we are safe.
3353  */
3354 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3355 			const struct iovec *iov, loff_t offset,
3356 			unsigned long nr_segs)
3357 {
3358 	struct file *file = iocb->ki_filp;
3359 	struct inode *inode = file->f_mapping->host;
3360 	struct ext4_inode_info *ei = EXT4_I(inode);
3361 	handle_t *handle;
3362 	ssize_t ret;
3363 	int orphan = 0;
3364 	size_t count = iov_length(iov, nr_segs);
3365 
3366 	if (rw == WRITE) {
3367 		loff_t final_size = offset + count;
3368 
3369 		if (final_size > inode->i_size) {
3370 			/* Credits for sb + inode write */
3371 			handle = ext4_journal_start(inode, 2);
3372 			if (IS_ERR(handle)) {
3373 				ret = PTR_ERR(handle);
3374 				goto out;
3375 			}
3376 			ret = ext4_orphan_add(handle, inode);
3377 			if (ret) {
3378 				ext4_journal_stop(handle);
3379 				goto out;
3380 			}
3381 			orphan = 1;
3382 			ei->i_disksize = inode->i_size;
3383 			ext4_journal_stop(handle);
3384 		}
3385 	}
3386 
3387 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3388 				 offset, nr_segs,
3389 				 ext4_get_block, NULL);
3390 
3391 	if (orphan) {
3392 		int err;
3393 
3394 		/* Credits for sb + inode write */
3395 		handle = ext4_journal_start(inode, 2);
3396 		if (IS_ERR(handle)) {
3397 			/* This is really bad luck. We've written the data
3398 			 * but cannot extend i_size. Bail out and pretend
3399 			 * the write failed... */
3400 			ret = PTR_ERR(handle);
3401 			goto out;
3402 		}
3403 		if (inode->i_nlink)
3404 			ext4_orphan_del(handle, inode);
3405 		if (ret > 0) {
3406 			loff_t end = offset + ret;
3407 			if (end > inode->i_size) {
3408 				ei->i_disksize = end;
3409 				i_size_write(inode, end);
3410 				/*
3411 				 * We're going to return a positive `ret'
3412 				 * here due to non-zero-length I/O, so there's
3413 				 * no way of reporting error returns from
3414 				 * ext4_mark_inode_dirty() to userspace.  So
3415 				 * ignore it.
3416 				 */
3417 				ext4_mark_inode_dirty(handle, inode);
3418 			}
3419 		}
3420 		err = ext4_journal_stop(handle);
3421 		if (ret == 0)
3422 			ret = err;
3423 	}
3424 out:
3425 	return ret;
3426 }
3427 
3428 /*
3429  * Pages can be marked dirty completely asynchronously from ext4's journalling
3430  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3431  * much here because ->set_page_dirty is called under VFS locks.  The page is
3432  * not necessarily locked.
3433  *
3434  * We cannot just dirty the page and leave attached buffers clean, because the
3435  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3436  * or jbddirty because all the journalling code will explode.
3437  *
3438  * So what we do is to mark the page "pending dirty" and next time writepage
3439  * is called, propagate that into the buffers appropriately.
3440  */
3441 static int ext4_journalled_set_page_dirty(struct page *page)
3442 {
3443 	SetPageChecked(page);
3444 	return __set_page_dirty_nobuffers(page);
3445 }
3446 
3447 static const struct address_space_operations ext4_ordered_aops = {
3448 	.readpage		= ext4_readpage,
3449 	.readpages		= ext4_readpages,
3450 	.writepage		= ext4_normal_writepage,
3451 	.sync_page		= block_sync_page,
3452 	.write_begin		= ext4_write_begin,
3453 	.write_end		= ext4_ordered_write_end,
3454 	.bmap			= ext4_bmap,
3455 	.invalidatepage		= ext4_invalidatepage,
3456 	.releasepage		= ext4_releasepage,
3457 	.direct_IO		= ext4_direct_IO,
3458 	.migratepage		= buffer_migrate_page,
3459 	.is_partially_uptodate  = block_is_partially_uptodate,
3460 };
3461 
3462 static const struct address_space_operations ext4_writeback_aops = {
3463 	.readpage		= ext4_readpage,
3464 	.readpages		= ext4_readpages,
3465 	.writepage		= ext4_normal_writepage,
3466 	.sync_page		= block_sync_page,
3467 	.write_begin		= ext4_write_begin,
3468 	.write_end		= ext4_writeback_write_end,
3469 	.bmap			= ext4_bmap,
3470 	.invalidatepage		= ext4_invalidatepage,
3471 	.releasepage		= ext4_releasepage,
3472 	.direct_IO		= ext4_direct_IO,
3473 	.migratepage		= buffer_migrate_page,
3474 	.is_partially_uptodate  = block_is_partially_uptodate,
3475 };
3476 
3477 static const struct address_space_operations ext4_journalled_aops = {
3478 	.readpage		= ext4_readpage,
3479 	.readpages		= ext4_readpages,
3480 	.writepage		= ext4_journalled_writepage,
3481 	.sync_page		= block_sync_page,
3482 	.write_begin		= ext4_write_begin,
3483 	.write_end		= ext4_journalled_write_end,
3484 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3485 	.bmap			= ext4_bmap,
3486 	.invalidatepage		= ext4_invalidatepage,
3487 	.releasepage		= ext4_releasepage,
3488 	.is_partially_uptodate  = block_is_partially_uptodate,
3489 };
3490 
3491 static const struct address_space_operations ext4_da_aops = {
3492 	.readpage		= ext4_readpage,
3493 	.readpages		= ext4_readpages,
3494 	.writepage		= ext4_da_writepage,
3495 	.writepages		= ext4_da_writepages,
3496 	.sync_page		= block_sync_page,
3497 	.write_begin		= ext4_da_write_begin,
3498 	.write_end		= ext4_da_write_end,
3499 	.bmap			= ext4_bmap,
3500 	.invalidatepage		= ext4_da_invalidatepage,
3501 	.releasepage		= ext4_releasepage,
3502 	.direct_IO		= ext4_direct_IO,
3503 	.migratepage		= buffer_migrate_page,
3504 	.is_partially_uptodate  = block_is_partially_uptodate,
3505 };
3506 
3507 void ext4_set_aops(struct inode *inode)
3508 {
3509 	if (ext4_should_order_data(inode) &&
3510 		test_opt(inode->i_sb, DELALLOC))
3511 		inode->i_mapping->a_ops = &ext4_da_aops;
3512 	else if (ext4_should_order_data(inode))
3513 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3514 	else if (ext4_should_writeback_data(inode) &&
3515 		 test_opt(inode->i_sb, DELALLOC))
3516 		inode->i_mapping->a_ops = &ext4_da_aops;
3517 	else if (ext4_should_writeback_data(inode))
3518 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3519 	else
3520 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3521 }
3522 
3523 /*
3524  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3525  * up to the end of the block which corresponds to `from'.
3526  * This required during truncate. We need to physically zero the tail end
3527  * of that block so it doesn't yield old data if the file is later grown.
3528  */
3529 int ext4_block_truncate_page(handle_t *handle,
3530 		struct address_space *mapping, loff_t from)
3531 {
3532 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3533 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3534 	unsigned blocksize, length, pos;
3535 	ext4_lblk_t iblock;
3536 	struct inode *inode = mapping->host;
3537 	struct buffer_head *bh;
3538 	struct page *page;
3539 	int err = 0;
3540 
3541 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3542 	if (!page)
3543 		return -EINVAL;
3544 
3545 	blocksize = inode->i_sb->s_blocksize;
3546 	length = blocksize - (offset & (blocksize - 1));
3547 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3548 
3549 	/*
3550 	 * For "nobh" option,  we can only work if we don't need to
3551 	 * read-in the page - otherwise we create buffers to do the IO.
3552 	 */
3553 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3554 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3555 		zero_user(page, offset, length);
3556 		set_page_dirty(page);
3557 		goto unlock;
3558 	}
3559 
3560 	if (!page_has_buffers(page))
3561 		create_empty_buffers(page, blocksize, 0);
3562 
3563 	/* Find the buffer that contains "offset" */
3564 	bh = page_buffers(page);
3565 	pos = blocksize;
3566 	while (offset >= pos) {
3567 		bh = bh->b_this_page;
3568 		iblock++;
3569 		pos += blocksize;
3570 	}
3571 
3572 	err = 0;
3573 	if (buffer_freed(bh)) {
3574 		BUFFER_TRACE(bh, "freed: skip");
3575 		goto unlock;
3576 	}
3577 
3578 	if (!buffer_mapped(bh)) {
3579 		BUFFER_TRACE(bh, "unmapped");
3580 		ext4_get_block(inode, iblock, bh, 0);
3581 		/* unmapped? It's a hole - nothing to do */
3582 		if (!buffer_mapped(bh)) {
3583 			BUFFER_TRACE(bh, "still unmapped");
3584 			goto unlock;
3585 		}
3586 	}
3587 
3588 	/* Ok, it's mapped. Make sure it's up-to-date */
3589 	if (PageUptodate(page))
3590 		set_buffer_uptodate(bh);
3591 
3592 	if (!buffer_uptodate(bh)) {
3593 		err = -EIO;
3594 		ll_rw_block(READ, 1, &bh);
3595 		wait_on_buffer(bh);
3596 		/* Uhhuh. Read error. Complain and punt. */
3597 		if (!buffer_uptodate(bh))
3598 			goto unlock;
3599 	}
3600 
3601 	if (ext4_should_journal_data(inode)) {
3602 		BUFFER_TRACE(bh, "get write access");
3603 		err = ext4_journal_get_write_access(handle, bh);
3604 		if (err)
3605 			goto unlock;
3606 	}
3607 
3608 	zero_user(page, offset, length);
3609 
3610 	BUFFER_TRACE(bh, "zeroed end of block");
3611 
3612 	err = 0;
3613 	if (ext4_should_journal_data(inode)) {
3614 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3615 	} else {
3616 		if (ext4_should_order_data(inode))
3617 			err = ext4_jbd2_file_inode(handle, inode);
3618 		mark_buffer_dirty(bh);
3619 	}
3620 
3621 unlock:
3622 	unlock_page(page);
3623 	page_cache_release(page);
3624 	return err;
3625 }
3626 
3627 /*
3628  * Probably it should be a library function... search for first non-zero word
3629  * or memcmp with zero_page, whatever is better for particular architecture.
3630  * Linus?
3631  */
3632 static inline int all_zeroes(__le32 *p, __le32 *q)
3633 {
3634 	while (p < q)
3635 		if (*p++)
3636 			return 0;
3637 	return 1;
3638 }
3639 
3640 /**
3641  *	ext4_find_shared - find the indirect blocks for partial truncation.
3642  *	@inode:	  inode in question
3643  *	@depth:	  depth of the affected branch
3644  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3645  *	@chain:	  place to store the pointers to partial indirect blocks
3646  *	@top:	  place to the (detached) top of branch
3647  *
3648  *	This is a helper function used by ext4_truncate().
3649  *
3650  *	When we do truncate() we may have to clean the ends of several
3651  *	indirect blocks but leave the blocks themselves alive. Block is
3652  *	partially truncated if some data below the new i_size is refered
3653  *	from it (and it is on the path to the first completely truncated
3654  *	data block, indeed).  We have to free the top of that path along
3655  *	with everything to the right of the path. Since no allocation
3656  *	past the truncation point is possible until ext4_truncate()
3657  *	finishes, we may safely do the latter, but top of branch may
3658  *	require special attention - pageout below the truncation point
3659  *	might try to populate it.
3660  *
3661  *	We atomically detach the top of branch from the tree, store the
3662  *	block number of its root in *@top, pointers to buffer_heads of
3663  *	partially truncated blocks - in @chain[].bh and pointers to
3664  *	their last elements that should not be removed - in
3665  *	@chain[].p. Return value is the pointer to last filled element
3666  *	of @chain.
3667  *
3668  *	The work left to caller to do the actual freeing of subtrees:
3669  *		a) free the subtree starting from *@top
3670  *		b) free the subtrees whose roots are stored in
3671  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3672  *		c) free the subtrees growing from the inode past the @chain[0].
3673  *			(no partially truncated stuff there).  */
3674 
3675 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3676 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3677 {
3678 	Indirect *partial, *p;
3679 	int k, err;
3680 
3681 	*top = 0;
3682 	/* Make k index the deepest non-null offest + 1 */
3683 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3684 		;
3685 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3686 	/* Writer: pointers */
3687 	if (!partial)
3688 		partial = chain + k-1;
3689 	/*
3690 	 * If the branch acquired continuation since we've looked at it -
3691 	 * fine, it should all survive and (new) top doesn't belong to us.
3692 	 */
3693 	if (!partial->key && *partial->p)
3694 		/* Writer: end */
3695 		goto no_top;
3696 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3697 		;
3698 	/*
3699 	 * OK, we've found the last block that must survive. The rest of our
3700 	 * branch should be detached before unlocking. However, if that rest
3701 	 * of branch is all ours and does not grow immediately from the inode
3702 	 * it's easier to cheat and just decrement partial->p.
3703 	 */
3704 	if (p == chain + k - 1 && p > chain) {
3705 		p->p--;
3706 	} else {
3707 		*top = *p->p;
3708 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3709 #if 0
3710 		*p->p = 0;
3711 #endif
3712 	}
3713 	/* Writer: end */
3714 
3715 	while (partial > p) {
3716 		brelse(partial->bh);
3717 		partial--;
3718 	}
3719 no_top:
3720 	return partial;
3721 }
3722 
3723 /*
3724  * Zero a number of block pointers in either an inode or an indirect block.
3725  * If we restart the transaction we must again get write access to the
3726  * indirect block for further modification.
3727  *
3728  * We release `count' blocks on disk, but (last - first) may be greater
3729  * than `count' because there can be holes in there.
3730  */
3731 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3732 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3733 		unsigned long count, __le32 *first, __le32 *last)
3734 {
3735 	__le32 *p;
3736 	if (try_to_extend_transaction(handle, inode)) {
3737 		if (bh) {
3738 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3739 			ext4_handle_dirty_metadata(handle, inode, bh);
3740 		}
3741 		ext4_mark_inode_dirty(handle, inode);
3742 		ext4_journal_test_restart(handle, inode);
3743 		if (bh) {
3744 			BUFFER_TRACE(bh, "retaking write access");
3745 			ext4_journal_get_write_access(handle, bh);
3746 		}
3747 	}
3748 
3749 	/*
3750 	 * Any buffers which are on the journal will be in memory. We find
3751 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3752 	 * on them.  We've already detached each block from the file, so
3753 	 * bforget() in jbd2_journal_forget() should be safe.
3754 	 *
3755 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3756 	 */
3757 	for (p = first; p < last; p++) {
3758 		u32 nr = le32_to_cpu(*p);
3759 		if (nr) {
3760 			struct buffer_head *tbh;
3761 
3762 			*p = 0;
3763 			tbh = sb_find_get_block(inode->i_sb, nr);
3764 			ext4_forget(handle, 0, inode, tbh, nr);
3765 		}
3766 	}
3767 
3768 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3769 }
3770 
3771 /**
3772  * ext4_free_data - free a list of data blocks
3773  * @handle:	handle for this transaction
3774  * @inode:	inode we are dealing with
3775  * @this_bh:	indirect buffer_head which contains *@first and *@last
3776  * @first:	array of block numbers
3777  * @last:	points immediately past the end of array
3778  *
3779  * We are freeing all blocks refered from that array (numbers are stored as
3780  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3781  *
3782  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3783  * blocks are contiguous then releasing them at one time will only affect one
3784  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3785  * actually use a lot of journal space.
3786  *
3787  * @this_bh will be %NULL if @first and @last point into the inode's direct
3788  * block pointers.
3789  */
3790 static void ext4_free_data(handle_t *handle, struct inode *inode,
3791 			   struct buffer_head *this_bh,
3792 			   __le32 *first, __le32 *last)
3793 {
3794 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3795 	unsigned long count = 0;	    /* Number of blocks in the run */
3796 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3797 					       corresponding to
3798 					       block_to_free */
3799 	ext4_fsblk_t nr;		    /* Current block # */
3800 	__le32 *p;			    /* Pointer into inode/ind
3801 					       for current block */
3802 	int err;
3803 
3804 	if (this_bh) {				/* For indirect block */
3805 		BUFFER_TRACE(this_bh, "get_write_access");
3806 		err = ext4_journal_get_write_access(handle, this_bh);
3807 		/* Important: if we can't update the indirect pointers
3808 		 * to the blocks, we can't free them. */
3809 		if (err)
3810 			return;
3811 	}
3812 
3813 	for (p = first; p < last; p++) {
3814 		nr = le32_to_cpu(*p);
3815 		if (nr) {
3816 			/* accumulate blocks to free if they're contiguous */
3817 			if (count == 0) {
3818 				block_to_free = nr;
3819 				block_to_free_p = p;
3820 				count = 1;
3821 			} else if (nr == block_to_free + count) {
3822 				count++;
3823 			} else {
3824 				ext4_clear_blocks(handle, inode, this_bh,
3825 						  block_to_free,
3826 						  count, block_to_free_p, p);
3827 				block_to_free = nr;
3828 				block_to_free_p = p;
3829 				count = 1;
3830 			}
3831 		}
3832 	}
3833 
3834 	if (count > 0)
3835 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3836 				  count, block_to_free_p, p);
3837 
3838 	if (this_bh) {
3839 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3840 
3841 		/*
3842 		 * The buffer head should have an attached journal head at this
3843 		 * point. However, if the data is corrupted and an indirect
3844 		 * block pointed to itself, it would have been detached when
3845 		 * the block was cleared. Check for this instead of OOPSing.
3846 		 */
3847 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3848 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3849 		else
3850 			ext4_error(inode->i_sb, __func__,
3851 				   "circular indirect block detected, "
3852 				   "inode=%lu, block=%llu",
3853 				   inode->i_ino,
3854 				   (unsigned long long) this_bh->b_blocknr);
3855 	}
3856 }
3857 
3858 /**
3859  *	ext4_free_branches - free an array of branches
3860  *	@handle: JBD handle for this transaction
3861  *	@inode:	inode we are dealing with
3862  *	@parent_bh: the buffer_head which contains *@first and *@last
3863  *	@first:	array of block numbers
3864  *	@last:	pointer immediately past the end of array
3865  *	@depth:	depth of the branches to free
3866  *
3867  *	We are freeing all blocks refered from these branches (numbers are
3868  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3869  *	appropriately.
3870  */
3871 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3872 			       struct buffer_head *parent_bh,
3873 			       __le32 *first, __le32 *last, int depth)
3874 {
3875 	ext4_fsblk_t nr;
3876 	__le32 *p;
3877 
3878 	if (ext4_handle_is_aborted(handle))
3879 		return;
3880 
3881 	if (depth--) {
3882 		struct buffer_head *bh;
3883 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3884 		p = last;
3885 		while (--p >= first) {
3886 			nr = le32_to_cpu(*p);
3887 			if (!nr)
3888 				continue;		/* A hole */
3889 
3890 			/* Go read the buffer for the next level down */
3891 			bh = sb_bread(inode->i_sb, nr);
3892 
3893 			/*
3894 			 * A read failure? Report error and clear slot
3895 			 * (should be rare).
3896 			 */
3897 			if (!bh) {
3898 				ext4_error(inode->i_sb, "ext4_free_branches",
3899 					   "Read failure, inode=%lu, block=%llu",
3900 					   inode->i_ino, nr);
3901 				continue;
3902 			}
3903 
3904 			/* This zaps the entire block.  Bottom up. */
3905 			BUFFER_TRACE(bh, "free child branches");
3906 			ext4_free_branches(handle, inode, bh,
3907 					(__le32 *) bh->b_data,
3908 					(__le32 *) bh->b_data + addr_per_block,
3909 					depth);
3910 
3911 			/*
3912 			 * We've probably journalled the indirect block several
3913 			 * times during the truncate.  But it's no longer
3914 			 * needed and we now drop it from the transaction via
3915 			 * jbd2_journal_revoke().
3916 			 *
3917 			 * That's easy if it's exclusively part of this
3918 			 * transaction.  But if it's part of the committing
3919 			 * transaction then jbd2_journal_forget() will simply
3920 			 * brelse() it.  That means that if the underlying
3921 			 * block is reallocated in ext4_get_block(),
3922 			 * unmap_underlying_metadata() will find this block
3923 			 * and will try to get rid of it.  damn, damn.
3924 			 *
3925 			 * If this block has already been committed to the
3926 			 * journal, a revoke record will be written.  And
3927 			 * revoke records must be emitted *before* clearing
3928 			 * this block's bit in the bitmaps.
3929 			 */
3930 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3931 
3932 			/*
3933 			 * Everything below this this pointer has been
3934 			 * released.  Now let this top-of-subtree go.
3935 			 *
3936 			 * We want the freeing of this indirect block to be
3937 			 * atomic in the journal with the updating of the
3938 			 * bitmap block which owns it.  So make some room in
3939 			 * the journal.
3940 			 *
3941 			 * We zero the parent pointer *after* freeing its
3942 			 * pointee in the bitmaps, so if extend_transaction()
3943 			 * for some reason fails to put the bitmap changes and
3944 			 * the release into the same transaction, recovery
3945 			 * will merely complain about releasing a free block,
3946 			 * rather than leaking blocks.
3947 			 */
3948 			if (ext4_handle_is_aborted(handle))
3949 				return;
3950 			if (try_to_extend_transaction(handle, inode)) {
3951 				ext4_mark_inode_dirty(handle, inode);
3952 				ext4_journal_test_restart(handle, inode);
3953 			}
3954 
3955 			ext4_free_blocks(handle, inode, nr, 1, 1);
3956 
3957 			if (parent_bh) {
3958 				/*
3959 				 * The block which we have just freed is
3960 				 * pointed to by an indirect block: journal it
3961 				 */
3962 				BUFFER_TRACE(parent_bh, "get_write_access");
3963 				if (!ext4_journal_get_write_access(handle,
3964 								   parent_bh)){
3965 					*p = 0;
3966 					BUFFER_TRACE(parent_bh,
3967 					"call ext4_handle_dirty_metadata");
3968 					ext4_handle_dirty_metadata(handle,
3969 								   inode,
3970 								   parent_bh);
3971 				}
3972 			}
3973 		}
3974 	} else {
3975 		/* We have reached the bottom of the tree. */
3976 		BUFFER_TRACE(parent_bh, "free data blocks");
3977 		ext4_free_data(handle, inode, parent_bh, first, last);
3978 	}
3979 }
3980 
3981 int ext4_can_truncate(struct inode *inode)
3982 {
3983 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3984 		return 0;
3985 	if (S_ISREG(inode->i_mode))
3986 		return 1;
3987 	if (S_ISDIR(inode->i_mode))
3988 		return 1;
3989 	if (S_ISLNK(inode->i_mode))
3990 		return !ext4_inode_is_fast_symlink(inode);
3991 	return 0;
3992 }
3993 
3994 /*
3995  * ext4_truncate()
3996  *
3997  * We block out ext4_get_block() block instantiations across the entire
3998  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3999  * simultaneously on behalf of the same inode.
4000  *
4001  * As we work through the truncate and commmit bits of it to the journal there
4002  * is one core, guiding principle: the file's tree must always be consistent on
4003  * disk.  We must be able to restart the truncate after a crash.
4004  *
4005  * The file's tree may be transiently inconsistent in memory (although it
4006  * probably isn't), but whenever we close off and commit a journal transaction,
4007  * the contents of (the filesystem + the journal) must be consistent and
4008  * restartable.  It's pretty simple, really: bottom up, right to left (although
4009  * left-to-right works OK too).
4010  *
4011  * Note that at recovery time, journal replay occurs *before* the restart of
4012  * truncate against the orphan inode list.
4013  *
4014  * The committed inode has the new, desired i_size (which is the same as
4015  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4016  * that this inode's truncate did not complete and it will again call
4017  * ext4_truncate() to have another go.  So there will be instantiated blocks
4018  * to the right of the truncation point in a crashed ext4 filesystem.  But
4019  * that's fine - as long as they are linked from the inode, the post-crash
4020  * ext4_truncate() run will find them and release them.
4021  */
4022 void ext4_truncate(struct inode *inode)
4023 {
4024 	handle_t *handle;
4025 	struct ext4_inode_info *ei = EXT4_I(inode);
4026 	__le32 *i_data = ei->i_data;
4027 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4028 	struct address_space *mapping = inode->i_mapping;
4029 	ext4_lblk_t offsets[4];
4030 	Indirect chain[4];
4031 	Indirect *partial;
4032 	__le32 nr = 0;
4033 	int n;
4034 	ext4_lblk_t last_block;
4035 	unsigned blocksize = inode->i_sb->s_blocksize;
4036 
4037 	if (!ext4_can_truncate(inode))
4038 		return;
4039 
4040 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4041 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4042 
4043 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4044 		ext4_ext_truncate(inode);
4045 		return;
4046 	}
4047 
4048 	handle = start_transaction(inode);
4049 	if (IS_ERR(handle))
4050 		return;		/* AKPM: return what? */
4051 
4052 	last_block = (inode->i_size + blocksize-1)
4053 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4054 
4055 	if (inode->i_size & (blocksize - 1))
4056 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4057 			goto out_stop;
4058 
4059 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4060 	if (n == 0)
4061 		goto out_stop;	/* error */
4062 
4063 	/*
4064 	 * OK.  This truncate is going to happen.  We add the inode to the
4065 	 * orphan list, so that if this truncate spans multiple transactions,
4066 	 * and we crash, we will resume the truncate when the filesystem
4067 	 * recovers.  It also marks the inode dirty, to catch the new size.
4068 	 *
4069 	 * Implication: the file must always be in a sane, consistent
4070 	 * truncatable state while each transaction commits.
4071 	 */
4072 	if (ext4_orphan_add(handle, inode))
4073 		goto out_stop;
4074 
4075 	/*
4076 	 * From here we block out all ext4_get_block() callers who want to
4077 	 * modify the block allocation tree.
4078 	 */
4079 	down_write(&ei->i_data_sem);
4080 
4081 	ext4_discard_preallocations(inode);
4082 
4083 	/*
4084 	 * The orphan list entry will now protect us from any crash which
4085 	 * occurs before the truncate completes, so it is now safe to propagate
4086 	 * the new, shorter inode size (held for now in i_size) into the
4087 	 * on-disk inode. We do this via i_disksize, which is the value which
4088 	 * ext4 *really* writes onto the disk inode.
4089 	 */
4090 	ei->i_disksize = inode->i_size;
4091 
4092 	if (n == 1) {		/* direct blocks */
4093 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4094 			       i_data + EXT4_NDIR_BLOCKS);
4095 		goto do_indirects;
4096 	}
4097 
4098 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4099 	/* Kill the top of shared branch (not detached) */
4100 	if (nr) {
4101 		if (partial == chain) {
4102 			/* Shared branch grows from the inode */
4103 			ext4_free_branches(handle, inode, NULL,
4104 					   &nr, &nr+1, (chain+n-1) - partial);
4105 			*partial->p = 0;
4106 			/*
4107 			 * We mark the inode dirty prior to restart,
4108 			 * and prior to stop.  No need for it here.
4109 			 */
4110 		} else {
4111 			/* Shared branch grows from an indirect block */
4112 			BUFFER_TRACE(partial->bh, "get_write_access");
4113 			ext4_free_branches(handle, inode, partial->bh,
4114 					partial->p,
4115 					partial->p+1, (chain+n-1) - partial);
4116 		}
4117 	}
4118 	/* Clear the ends of indirect blocks on the shared branch */
4119 	while (partial > chain) {
4120 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4121 				   (__le32*)partial->bh->b_data+addr_per_block,
4122 				   (chain+n-1) - partial);
4123 		BUFFER_TRACE(partial->bh, "call brelse");
4124 		brelse (partial->bh);
4125 		partial--;
4126 	}
4127 do_indirects:
4128 	/* Kill the remaining (whole) subtrees */
4129 	switch (offsets[0]) {
4130 	default:
4131 		nr = i_data[EXT4_IND_BLOCK];
4132 		if (nr) {
4133 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4134 			i_data[EXT4_IND_BLOCK] = 0;
4135 		}
4136 	case EXT4_IND_BLOCK:
4137 		nr = i_data[EXT4_DIND_BLOCK];
4138 		if (nr) {
4139 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4140 			i_data[EXT4_DIND_BLOCK] = 0;
4141 		}
4142 	case EXT4_DIND_BLOCK:
4143 		nr = i_data[EXT4_TIND_BLOCK];
4144 		if (nr) {
4145 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4146 			i_data[EXT4_TIND_BLOCK] = 0;
4147 		}
4148 	case EXT4_TIND_BLOCK:
4149 		;
4150 	}
4151 
4152 	up_write(&ei->i_data_sem);
4153 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4154 	ext4_mark_inode_dirty(handle, inode);
4155 
4156 	/*
4157 	 * In a multi-transaction truncate, we only make the final transaction
4158 	 * synchronous
4159 	 */
4160 	if (IS_SYNC(inode))
4161 		ext4_handle_sync(handle);
4162 out_stop:
4163 	/*
4164 	 * If this was a simple ftruncate(), and the file will remain alive
4165 	 * then we need to clear up the orphan record which we created above.
4166 	 * However, if this was a real unlink then we were called by
4167 	 * ext4_delete_inode(), and we allow that function to clean up the
4168 	 * orphan info for us.
4169 	 */
4170 	if (inode->i_nlink)
4171 		ext4_orphan_del(handle, inode);
4172 
4173 	ext4_journal_stop(handle);
4174 }
4175 
4176 /*
4177  * ext4_get_inode_loc returns with an extra refcount against the inode's
4178  * underlying buffer_head on success. If 'in_mem' is true, we have all
4179  * data in memory that is needed to recreate the on-disk version of this
4180  * inode.
4181  */
4182 static int __ext4_get_inode_loc(struct inode *inode,
4183 				struct ext4_iloc *iloc, int in_mem)
4184 {
4185 	struct ext4_group_desc	*gdp;
4186 	struct buffer_head	*bh;
4187 	struct super_block	*sb = inode->i_sb;
4188 	ext4_fsblk_t		block;
4189 	int			inodes_per_block, inode_offset;
4190 
4191 	iloc->bh = NULL;
4192 	if (!ext4_valid_inum(sb, inode->i_ino))
4193 		return -EIO;
4194 
4195 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4196 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4197 	if (!gdp)
4198 		return -EIO;
4199 
4200 	/*
4201 	 * Figure out the offset within the block group inode table
4202 	 */
4203 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4204 	inode_offset = ((inode->i_ino - 1) %
4205 			EXT4_INODES_PER_GROUP(sb));
4206 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4207 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4208 
4209 	bh = sb_getblk(sb, block);
4210 	if (!bh) {
4211 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4212 			   "inode block - inode=%lu, block=%llu",
4213 			   inode->i_ino, block);
4214 		return -EIO;
4215 	}
4216 	if (!buffer_uptodate(bh)) {
4217 		lock_buffer(bh);
4218 
4219 		/*
4220 		 * If the buffer has the write error flag, we have failed
4221 		 * to write out another inode in the same block.  In this
4222 		 * case, we don't have to read the block because we may
4223 		 * read the old inode data successfully.
4224 		 */
4225 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4226 			set_buffer_uptodate(bh);
4227 
4228 		if (buffer_uptodate(bh)) {
4229 			/* someone brought it uptodate while we waited */
4230 			unlock_buffer(bh);
4231 			goto has_buffer;
4232 		}
4233 
4234 		/*
4235 		 * If we have all information of the inode in memory and this
4236 		 * is the only valid inode in the block, we need not read the
4237 		 * block.
4238 		 */
4239 		if (in_mem) {
4240 			struct buffer_head *bitmap_bh;
4241 			int i, start;
4242 
4243 			start = inode_offset & ~(inodes_per_block - 1);
4244 
4245 			/* Is the inode bitmap in cache? */
4246 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4247 			if (!bitmap_bh)
4248 				goto make_io;
4249 
4250 			/*
4251 			 * If the inode bitmap isn't in cache then the
4252 			 * optimisation may end up performing two reads instead
4253 			 * of one, so skip it.
4254 			 */
4255 			if (!buffer_uptodate(bitmap_bh)) {
4256 				brelse(bitmap_bh);
4257 				goto make_io;
4258 			}
4259 			for (i = start; i < start + inodes_per_block; i++) {
4260 				if (i == inode_offset)
4261 					continue;
4262 				if (ext4_test_bit(i, bitmap_bh->b_data))
4263 					break;
4264 			}
4265 			brelse(bitmap_bh);
4266 			if (i == start + inodes_per_block) {
4267 				/* all other inodes are free, so skip I/O */
4268 				memset(bh->b_data, 0, bh->b_size);
4269 				set_buffer_uptodate(bh);
4270 				unlock_buffer(bh);
4271 				goto has_buffer;
4272 			}
4273 		}
4274 
4275 make_io:
4276 		/*
4277 		 * If we need to do any I/O, try to pre-readahead extra
4278 		 * blocks from the inode table.
4279 		 */
4280 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4281 			ext4_fsblk_t b, end, table;
4282 			unsigned num;
4283 
4284 			table = ext4_inode_table(sb, gdp);
4285 			/* s_inode_readahead_blks is always a power of 2 */
4286 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4287 			if (table > b)
4288 				b = table;
4289 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4290 			num = EXT4_INODES_PER_GROUP(sb);
4291 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4292 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4293 				num -= ext4_itable_unused_count(sb, gdp);
4294 			table += num / inodes_per_block;
4295 			if (end > table)
4296 				end = table;
4297 			while (b <= end)
4298 				sb_breadahead(sb, b++);
4299 		}
4300 
4301 		/*
4302 		 * There are other valid inodes in the buffer, this inode
4303 		 * has in-inode xattrs, or we don't have this inode in memory.
4304 		 * Read the block from disk.
4305 		 */
4306 		get_bh(bh);
4307 		bh->b_end_io = end_buffer_read_sync;
4308 		submit_bh(READ_META, bh);
4309 		wait_on_buffer(bh);
4310 		if (!buffer_uptodate(bh)) {
4311 			ext4_error(sb, __func__,
4312 				   "unable to read inode block - inode=%lu, "
4313 				   "block=%llu", inode->i_ino, block);
4314 			brelse(bh);
4315 			return -EIO;
4316 		}
4317 	}
4318 has_buffer:
4319 	iloc->bh = bh;
4320 	return 0;
4321 }
4322 
4323 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4324 {
4325 	/* We have all inode data except xattrs in memory here. */
4326 	return __ext4_get_inode_loc(inode, iloc,
4327 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4328 }
4329 
4330 void ext4_set_inode_flags(struct inode *inode)
4331 {
4332 	unsigned int flags = EXT4_I(inode)->i_flags;
4333 
4334 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4335 	if (flags & EXT4_SYNC_FL)
4336 		inode->i_flags |= S_SYNC;
4337 	if (flags & EXT4_APPEND_FL)
4338 		inode->i_flags |= S_APPEND;
4339 	if (flags & EXT4_IMMUTABLE_FL)
4340 		inode->i_flags |= S_IMMUTABLE;
4341 	if (flags & EXT4_NOATIME_FL)
4342 		inode->i_flags |= S_NOATIME;
4343 	if (flags & EXT4_DIRSYNC_FL)
4344 		inode->i_flags |= S_DIRSYNC;
4345 }
4346 
4347 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4348 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4349 {
4350 	unsigned int flags = ei->vfs_inode.i_flags;
4351 
4352 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4353 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4354 	if (flags & S_SYNC)
4355 		ei->i_flags |= EXT4_SYNC_FL;
4356 	if (flags & S_APPEND)
4357 		ei->i_flags |= EXT4_APPEND_FL;
4358 	if (flags & S_IMMUTABLE)
4359 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4360 	if (flags & S_NOATIME)
4361 		ei->i_flags |= EXT4_NOATIME_FL;
4362 	if (flags & S_DIRSYNC)
4363 		ei->i_flags |= EXT4_DIRSYNC_FL;
4364 }
4365 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4366 					struct ext4_inode_info *ei)
4367 {
4368 	blkcnt_t i_blocks ;
4369 	struct inode *inode = &(ei->vfs_inode);
4370 	struct super_block *sb = inode->i_sb;
4371 
4372 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4373 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4374 		/* we are using combined 48 bit field */
4375 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4376 					le32_to_cpu(raw_inode->i_blocks_lo);
4377 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4378 			/* i_blocks represent file system block size */
4379 			return i_blocks  << (inode->i_blkbits - 9);
4380 		} else {
4381 			return i_blocks;
4382 		}
4383 	} else {
4384 		return le32_to_cpu(raw_inode->i_blocks_lo);
4385 	}
4386 }
4387 
4388 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4389 {
4390 	struct ext4_iloc iloc;
4391 	struct ext4_inode *raw_inode;
4392 	struct ext4_inode_info *ei;
4393 	struct buffer_head *bh;
4394 	struct inode *inode;
4395 	long ret;
4396 	int block;
4397 
4398 	inode = iget_locked(sb, ino);
4399 	if (!inode)
4400 		return ERR_PTR(-ENOMEM);
4401 	if (!(inode->i_state & I_NEW))
4402 		return inode;
4403 
4404 	ei = EXT4_I(inode);
4405 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4406 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4407 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4408 #endif
4409 
4410 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4411 	if (ret < 0)
4412 		goto bad_inode;
4413 	bh = iloc.bh;
4414 	raw_inode = ext4_raw_inode(&iloc);
4415 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4416 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4417 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4418 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4419 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4420 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4421 	}
4422 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4423 
4424 	ei->i_state = 0;
4425 	ei->i_dir_start_lookup = 0;
4426 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4427 	/* We now have enough fields to check if the inode was active or not.
4428 	 * This is needed because nfsd might try to access dead inodes
4429 	 * the test is that same one that e2fsck uses
4430 	 * NeilBrown 1999oct15
4431 	 */
4432 	if (inode->i_nlink == 0) {
4433 		if (inode->i_mode == 0 ||
4434 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4435 			/* this inode is deleted */
4436 			brelse(bh);
4437 			ret = -ESTALE;
4438 			goto bad_inode;
4439 		}
4440 		/* The only unlinked inodes we let through here have
4441 		 * valid i_mode and are being read by the orphan
4442 		 * recovery code: that's fine, we're about to complete
4443 		 * the process of deleting those. */
4444 	}
4445 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4446 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4447 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4448 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4449 		ei->i_file_acl |=
4450 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4451 	inode->i_size = ext4_isize(raw_inode);
4452 	ei->i_disksize = inode->i_size;
4453 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4454 	ei->i_block_group = iloc.block_group;
4455 	ei->i_last_alloc_group = ~0;
4456 	/*
4457 	 * NOTE! The in-memory inode i_data array is in little-endian order
4458 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4459 	 */
4460 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4461 		ei->i_data[block] = raw_inode->i_block[block];
4462 	INIT_LIST_HEAD(&ei->i_orphan);
4463 
4464 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4466 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4467 		    EXT4_INODE_SIZE(inode->i_sb)) {
4468 			brelse(bh);
4469 			ret = -EIO;
4470 			goto bad_inode;
4471 		}
4472 		if (ei->i_extra_isize == 0) {
4473 			/* The extra space is currently unused. Use it. */
4474 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4475 					    EXT4_GOOD_OLD_INODE_SIZE;
4476 		} else {
4477 			__le32 *magic = (void *)raw_inode +
4478 					EXT4_GOOD_OLD_INODE_SIZE +
4479 					ei->i_extra_isize;
4480 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4481 				 ei->i_state |= EXT4_STATE_XATTR;
4482 		}
4483 	} else
4484 		ei->i_extra_isize = 0;
4485 
4486 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4487 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4488 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4489 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4490 
4491 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4492 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4493 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4494 			inode->i_version |=
4495 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4496 	}
4497 
4498 	ret = 0;
4499 	if (ei->i_file_acl &&
4500 	    ((ei->i_file_acl <
4501 	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4502 	       EXT4_SB(sb)->s_gdb_count)) ||
4503 	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4504 		ext4_error(sb, __func__,
4505 			   "bad extended attribute block %llu in inode #%lu",
4506 			   ei->i_file_acl, inode->i_ino);
4507 		ret = -EIO;
4508 		goto bad_inode;
4509 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4510 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4511 		    (S_ISLNK(inode->i_mode) &&
4512 		     !ext4_inode_is_fast_symlink(inode)))
4513 			/* Validate extent which is part of inode */
4514 			ret = ext4_ext_check_inode(inode);
4515  	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4516 		   (S_ISLNK(inode->i_mode) &&
4517 		    !ext4_inode_is_fast_symlink(inode))) {
4518 	 	/* Validate block references which are part of inode */
4519 		ret = ext4_check_inode_blockref(inode);
4520 	}
4521 	if (ret) {
4522  		brelse(bh);
4523  		goto bad_inode;
4524 	}
4525 
4526 	if (S_ISREG(inode->i_mode)) {
4527 		inode->i_op = &ext4_file_inode_operations;
4528 		inode->i_fop = &ext4_file_operations;
4529 		ext4_set_aops(inode);
4530 	} else if (S_ISDIR(inode->i_mode)) {
4531 		inode->i_op = &ext4_dir_inode_operations;
4532 		inode->i_fop = &ext4_dir_operations;
4533 	} else if (S_ISLNK(inode->i_mode)) {
4534 		if (ext4_inode_is_fast_symlink(inode)) {
4535 			inode->i_op = &ext4_fast_symlink_inode_operations;
4536 			nd_terminate_link(ei->i_data, inode->i_size,
4537 				sizeof(ei->i_data) - 1);
4538 		} else {
4539 			inode->i_op = &ext4_symlink_inode_operations;
4540 			ext4_set_aops(inode);
4541 		}
4542 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4543 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4544 		inode->i_op = &ext4_special_inode_operations;
4545 		if (raw_inode->i_block[0])
4546 			init_special_inode(inode, inode->i_mode,
4547 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4548 		else
4549 			init_special_inode(inode, inode->i_mode,
4550 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4551 	} else {
4552 		brelse(bh);
4553 		ret = -EIO;
4554 		ext4_error(inode->i_sb, __func__,
4555 			   "bogus i_mode (%o) for inode=%lu",
4556 			   inode->i_mode, inode->i_ino);
4557 		goto bad_inode;
4558 	}
4559 	brelse(iloc.bh);
4560 	ext4_set_inode_flags(inode);
4561 	unlock_new_inode(inode);
4562 	return inode;
4563 
4564 bad_inode:
4565 	iget_failed(inode);
4566 	return ERR_PTR(ret);
4567 }
4568 
4569 static int ext4_inode_blocks_set(handle_t *handle,
4570 				struct ext4_inode *raw_inode,
4571 				struct ext4_inode_info *ei)
4572 {
4573 	struct inode *inode = &(ei->vfs_inode);
4574 	u64 i_blocks = inode->i_blocks;
4575 	struct super_block *sb = inode->i_sb;
4576 
4577 	if (i_blocks <= ~0U) {
4578 		/*
4579 		 * i_blocks can be represnted in a 32 bit variable
4580 		 * as multiple of 512 bytes
4581 		 */
4582 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4583 		raw_inode->i_blocks_high = 0;
4584 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4585 		return 0;
4586 	}
4587 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4588 		return -EFBIG;
4589 
4590 	if (i_blocks <= 0xffffffffffffULL) {
4591 		/*
4592 		 * i_blocks can be represented in a 48 bit variable
4593 		 * as multiple of 512 bytes
4594 		 */
4595 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4596 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4597 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4598 	} else {
4599 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4600 		/* i_block is stored in file system block size */
4601 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4602 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4603 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4604 	}
4605 	return 0;
4606 }
4607 
4608 /*
4609  * Post the struct inode info into an on-disk inode location in the
4610  * buffer-cache.  This gobbles the caller's reference to the
4611  * buffer_head in the inode location struct.
4612  *
4613  * The caller must have write access to iloc->bh.
4614  */
4615 static int ext4_do_update_inode(handle_t *handle,
4616 				struct inode *inode,
4617 				struct ext4_iloc *iloc)
4618 {
4619 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4620 	struct ext4_inode_info *ei = EXT4_I(inode);
4621 	struct buffer_head *bh = iloc->bh;
4622 	int err = 0, rc, block;
4623 
4624 	/* For fields not not tracking in the in-memory inode,
4625 	 * initialise them to zero for new inodes. */
4626 	if (ei->i_state & EXT4_STATE_NEW)
4627 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4628 
4629 	ext4_get_inode_flags(ei);
4630 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4631 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4632 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4633 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4634 /*
4635  * Fix up interoperability with old kernels. Otherwise, old inodes get
4636  * re-used with the upper 16 bits of the uid/gid intact
4637  */
4638 		if (!ei->i_dtime) {
4639 			raw_inode->i_uid_high =
4640 				cpu_to_le16(high_16_bits(inode->i_uid));
4641 			raw_inode->i_gid_high =
4642 				cpu_to_le16(high_16_bits(inode->i_gid));
4643 		} else {
4644 			raw_inode->i_uid_high = 0;
4645 			raw_inode->i_gid_high = 0;
4646 		}
4647 	} else {
4648 		raw_inode->i_uid_low =
4649 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4650 		raw_inode->i_gid_low =
4651 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4652 		raw_inode->i_uid_high = 0;
4653 		raw_inode->i_gid_high = 0;
4654 	}
4655 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4656 
4657 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4658 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4659 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4660 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4661 
4662 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4663 		goto out_brelse;
4664 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4665 	/* clear the migrate flag in the raw_inode */
4666 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4667 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4668 	    cpu_to_le32(EXT4_OS_HURD))
4669 		raw_inode->i_file_acl_high =
4670 			cpu_to_le16(ei->i_file_acl >> 32);
4671 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4672 	ext4_isize_set(raw_inode, ei->i_disksize);
4673 	if (ei->i_disksize > 0x7fffffffULL) {
4674 		struct super_block *sb = inode->i_sb;
4675 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4676 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4677 				EXT4_SB(sb)->s_es->s_rev_level ==
4678 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4679 			/* If this is the first large file
4680 			 * created, add a flag to the superblock.
4681 			 */
4682 			err = ext4_journal_get_write_access(handle,
4683 					EXT4_SB(sb)->s_sbh);
4684 			if (err)
4685 				goto out_brelse;
4686 			ext4_update_dynamic_rev(sb);
4687 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4688 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4689 			sb->s_dirt = 1;
4690 			ext4_handle_sync(handle);
4691 			err = ext4_handle_dirty_metadata(handle, inode,
4692 					EXT4_SB(sb)->s_sbh);
4693 		}
4694 	}
4695 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4696 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4697 		if (old_valid_dev(inode->i_rdev)) {
4698 			raw_inode->i_block[0] =
4699 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4700 			raw_inode->i_block[1] = 0;
4701 		} else {
4702 			raw_inode->i_block[0] = 0;
4703 			raw_inode->i_block[1] =
4704 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4705 			raw_inode->i_block[2] = 0;
4706 		}
4707 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4708 		raw_inode->i_block[block] = ei->i_data[block];
4709 
4710 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4711 	if (ei->i_extra_isize) {
4712 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4713 			raw_inode->i_version_hi =
4714 			cpu_to_le32(inode->i_version >> 32);
4715 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4716 	}
4717 
4718 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4719 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4720 	if (!err)
4721 		err = rc;
4722 	ei->i_state &= ~EXT4_STATE_NEW;
4723 
4724 out_brelse:
4725 	brelse(bh);
4726 	ext4_std_error(inode->i_sb, err);
4727 	return err;
4728 }
4729 
4730 /*
4731  * ext4_write_inode()
4732  *
4733  * We are called from a few places:
4734  *
4735  * - Within generic_file_write() for O_SYNC files.
4736  *   Here, there will be no transaction running. We wait for any running
4737  *   trasnaction to commit.
4738  *
4739  * - Within sys_sync(), kupdate and such.
4740  *   We wait on commit, if tol to.
4741  *
4742  * - Within prune_icache() (PF_MEMALLOC == true)
4743  *   Here we simply return.  We can't afford to block kswapd on the
4744  *   journal commit.
4745  *
4746  * In all cases it is actually safe for us to return without doing anything,
4747  * because the inode has been copied into a raw inode buffer in
4748  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4749  * knfsd.
4750  *
4751  * Note that we are absolutely dependent upon all inode dirtiers doing the
4752  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4753  * which we are interested.
4754  *
4755  * It would be a bug for them to not do this.  The code:
4756  *
4757  *	mark_inode_dirty(inode)
4758  *	stuff();
4759  *	inode->i_size = expr;
4760  *
4761  * is in error because a kswapd-driven write_inode() could occur while
4762  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4763  * will no longer be on the superblock's dirty inode list.
4764  */
4765 int ext4_write_inode(struct inode *inode, int wait)
4766 {
4767 	if (current->flags & PF_MEMALLOC)
4768 		return 0;
4769 
4770 	if (ext4_journal_current_handle()) {
4771 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4772 		dump_stack();
4773 		return -EIO;
4774 	}
4775 
4776 	if (!wait)
4777 		return 0;
4778 
4779 	return ext4_force_commit(inode->i_sb);
4780 }
4781 
4782 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4783 {
4784 	int err = 0;
4785 
4786 	mark_buffer_dirty(bh);
4787 	if (inode && inode_needs_sync(inode)) {
4788 		sync_dirty_buffer(bh);
4789 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
4790 			ext4_error(inode->i_sb, __func__,
4791 				   "IO error syncing inode, "
4792 				   "inode=%lu, block=%llu",
4793 				   inode->i_ino,
4794 				   (unsigned long long)bh->b_blocknr);
4795 			err = -EIO;
4796 		}
4797 	}
4798 	return err;
4799 }
4800 
4801 /*
4802  * ext4_setattr()
4803  *
4804  * Called from notify_change.
4805  *
4806  * We want to trap VFS attempts to truncate the file as soon as
4807  * possible.  In particular, we want to make sure that when the VFS
4808  * shrinks i_size, we put the inode on the orphan list and modify
4809  * i_disksize immediately, so that during the subsequent flushing of
4810  * dirty pages and freeing of disk blocks, we can guarantee that any
4811  * commit will leave the blocks being flushed in an unused state on
4812  * disk.  (On recovery, the inode will get truncated and the blocks will
4813  * be freed, so we have a strong guarantee that no future commit will
4814  * leave these blocks visible to the user.)
4815  *
4816  * Another thing we have to assure is that if we are in ordered mode
4817  * and inode is still attached to the committing transaction, we must
4818  * we start writeout of all the dirty pages which are being truncated.
4819  * This way we are sure that all the data written in the previous
4820  * transaction are already on disk (truncate waits for pages under
4821  * writeback).
4822  *
4823  * Called with inode->i_mutex down.
4824  */
4825 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4826 {
4827 	struct inode *inode = dentry->d_inode;
4828 	int error, rc = 0;
4829 	const unsigned int ia_valid = attr->ia_valid;
4830 
4831 	error = inode_change_ok(inode, attr);
4832 	if (error)
4833 		return error;
4834 
4835 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4836 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4837 		handle_t *handle;
4838 
4839 		/* (user+group)*(old+new) structure, inode write (sb,
4840 		 * inode block, ? - but truncate inode update has it) */
4841 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4842 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4843 		if (IS_ERR(handle)) {
4844 			error = PTR_ERR(handle);
4845 			goto err_out;
4846 		}
4847 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4848 		if (error) {
4849 			ext4_journal_stop(handle);
4850 			return error;
4851 		}
4852 		/* Update corresponding info in inode so that everything is in
4853 		 * one transaction */
4854 		if (attr->ia_valid & ATTR_UID)
4855 			inode->i_uid = attr->ia_uid;
4856 		if (attr->ia_valid & ATTR_GID)
4857 			inode->i_gid = attr->ia_gid;
4858 		error = ext4_mark_inode_dirty(handle, inode);
4859 		ext4_journal_stop(handle);
4860 	}
4861 
4862 	if (attr->ia_valid & ATTR_SIZE) {
4863 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4864 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4865 
4866 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4867 				error = -EFBIG;
4868 				goto err_out;
4869 			}
4870 		}
4871 	}
4872 
4873 	if (S_ISREG(inode->i_mode) &&
4874 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4875 		handle_t *handle;
4876 
4877 		handle = ext4_journal_start(inode, 3);
4878 		if (IS_ERR(handle)) {
4879 			error = PTR_ERR(handle);
4880 			goto err_out;
4881 		}
4882 
4883 		error = ext4_orphan_add(handle, inode);
4884 		EXT4_I(inode)->i_disksize = attr->ia_size;
4885 		rc = ext4_mark_inode_dirty(handle, inode);
4886 		if (!error)
4887 			error = rc;
4888 		ext4_journal_stop(handle);
4889 
4890 		if (ext4_should_order_data(inode)) {
4891 			error = ext4_begin_ordered_truncate(inode,
4892 							    attr->ia_size);
4893 			if (error) {
4894 				/* Do as much error cleanup as possible */
4895 				handle = ext4_journal_start(inode, 3);
4896 				if (IS_ERR(handle)) {
4897 					ext4_orphan_del(NULL, inode);
4898 					goto err_out;
4899 				}
4900 				ext4_orphan_del(handle, inode);
4901 				ext4_journal_stop(handle);
4902 				goto err_out;
4903 			}
4904 		}
4905 	}
4906 
4907 	rc = inode_setattr(inode, attr);
4908 
4909 	/* If inode_setattr's call to ext4_truncate failed to get a
4910 	 * transaction handle at all, we need to clean up the in-core
4911 	 * orphan list manually. */
4912 	if (inode->i_nlink)
4913 		ext4_orphan_del(NULL, inode);
4914 
4915 	if (!rc && (ia_valid & ATTR_MODE))
4916 		rc = ext4_acl_chmod(inode);
4917 
4918 err_out:
4919 	ext4_std_error(inode->i_sb, error);
4920 	if (!error)
4921 		error = rc;
4922 	return error;
4923 }
4924 
4925 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4926 		 struct kstat *stat)
4927 {
4928 	struct inode *inode;
4929 	unsigned long delalloc_blocks;
4930 
4931 	inode = dentry->d_inode;
4932 	generic_fillattr(inode, stat);
4933 
4934 	/*
4935 	 * We can't update i_blocks if the block allocation is delayed
4936 	 * otherwise in the case of system crash before the real block
4937 	 * allocation is done, we will have i_blocks inconsistent with
4938 	 * on-disk file blocks.
4939 	 * We always keep i_blocks updated together with real
4940 	 * allocation. But to not confuse with user, stat
4941 	 * will return the blocks that include the delayed allocation
4942 	 * blocks for this file.
4943 	 */
4944 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4945 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4946 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4947 
4948 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4949 	return 0;
4950 }
4951 
4952 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4953 				      int chunk)
4954 {
4955 	int indirects;
4956 
4957 	/* if nrblocks are contiguous */
4958 	if (chunk) {
4959 		/*
4960 		 * With N contiguous data blocks, it need at most
4961 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4962 		 * 2 dindirect blocks
4963 		 * 1 tindirect block
4964 		 */
4965 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4966 		return indirects + 3;
4967 	}
4968 	/*
4969 	 * if nrblocks are not contiguous, worse case, each block touch
4970 	 * a indirect block, and each indirect block touch a double indirect
4971 	 * block, plus a triple indirect block
4972 	 */
4973 	indirects = nrblocks * 2 + 1;
4974 	return indirects;
4975 }
4976 
4977 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4978 {
4979 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4980 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4981 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4982 }
4983 
4984 /*
4985  * Account for index blocks, block groups bitmaps and block group
4986  * descriptor blocks if modify datablocks and index blocks
4987  * worse case, the indexs blocks spread over different block groups
4988  *
4989  * If datablocks are discontiguous, they are possible to spread over
4990  * different block groups too. If they are contiugous, with flexbg,
4991  * they could still across block group boundary.
4992  *
4993  * Also account for superblock, inode, quota and xattr blocks
4994  */
4995 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4996 {
4997 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4998 	int gdpblocks;
4999 	int idxblocks;
5000 	int ret = 0;
5001 
5002 	/*
5003 	 * How many index blocks need to touch to modify nrblocks?
5004 	 * The "Chunk" flag indicating whether the nrblocks is
5005 	 * physically contiguous on disk
5006 	 *
5007 	 * For Direct IO and fallocate, they calls get_block to allocate
5008 	 * one single extent at a time, so they could set the "Chunk" flag
5009 	 */
5010 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5011 
5012 	ret = idxblocks;
5013 
5014 	/*
5015 	 * Now let's see how many group bitmaps and group descriptors need
5016 	 * to account
5017 	 */
5018 	groups = idxblocks;
5019 	if (chunk)
5020 		groups += 1;
5021 	else
5022 		groups += nrblocks;
5023 
5024 	gdpblocks = groups;
5025 	if (groups > ngroups)
5026 		groups = ngroups;
5027 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5028 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5029 
5030 	/* bitmaps and block group descriptor blocks */
5031 	ret += groups + gdpblocks;
5032 
5033 	/* Blocks for super block, inode, quota and xattr blocks */
5034 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5035 
5036 	return ret;
5037 }
5038 
5039 /*
5040  * Calulate the total number of credits to reserve to fit
5041  * the modification of a single pages into a single transaction,
5042  * which may include multiple chunks of block allocations.
5043  *
5044  * This could be called via ext4_write_begin()
5045  *
5046  * We need to consider the worse case, when
5047  * one new block per extent.
5048  */
5049 int ext4_writepage_trans_blocks(struct inode *inode)
5050 {
5051 	int bpp = ext4_journal_blocks_per_page(inode);
5052 	int ret;
5053 
5054 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5055 
5056 	/* Account for data blocks for journalled mode */
5057 	if (ext4_should_journal_data(inode))
5058 		ret += bpp;
5059 	return ret;
5060 }
5061 
5062 /*
5063  * Calculate the journal credits for a chunk of data modification.
5064  *
5065  * This is called from DIO, fallocate or whoever calling
5066  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5067  *
5068  * journal buffers for data blocks are not included here, as DIO
5069  * and fallocate do no need to journal data buffers.
5070  */
5071 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5072 {
5073 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5074 }
5075 
5076 /*
5077  * The caller must have previously called ext4_reserve_inode_write().
5078  * Give this, we know that the caller already has write access to iloc->bh.
5079  */
5080 int ext4_mark_iloc_dirty(handle_t *handle,
5081 		struct inode *inode, struct ext4_iloc *iloc)
5082 {
5083 	int err = 0;
5084 
5085 	if (test_opt(inode->i_sb, I_VERSION))
5086 		inode_inc_iversion(inode);
5087 
5088 	/* the do_update_inode consumes one bh->b_count */
5089 	get_bh(iloc->bh);
5090 
5091 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5092 	err = ext4_do_update_inode(handle, inode, iloc);
5093 	put_bh(iloc->bh);
5094 	return err;
5095 }
5096 
5097 /*
5098  * On success, We end up with an outstanding reference count against
5099  * iloc->bh.  This _must_ be cleaned up later.
5100  */
5101 
5102 int
5103 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5104 			 struct ext4_iloc *iloc)
5105 {
5106 	int err;
5107 
5108 	err = ext4_get_inode_loc(inode, iloc);
5109 	if (!err) {
5110 		BUFFER_TRACE(iloc->bh, "get_write_access");
5111 		err = ext4_journal_get_write_access(handle, iloc->bh);
5112 		if (err) {
5113 			brelse(iloc->bh);
5114 			iloc->bh = NULL;
5115 		}
5116 	}
5117 	ext4_std_error(inode->i_sb, err);
5118 	return err;
5119 }
5120 
5121 /*
5122  * Expand an inode by new_extra_isize bytes.
5123  * Returns 0 on success or negative error number on failure.
5124  */
5125 static int ext4_expand_extra_isize(struct inode *inode,
5126 				   unsigned int new_extra_isize,
5127 				   struct ext4_iloc iloc,
5128 				   handle_t *handle)
5129 {
5130 	struct ext4_inode *raw_inode;
5131 	struct ext4_xattr_ibody_header *header;
5132 	struct ext4_xattr_entry *entry;
5133 
5134 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5135 		return 0;
5136 
5137 	raw_inode = ext4_raw_inode(&iloc);
5138 
5139 	header = IHDR(inode, raw_inode);
5140 	entry = IFIRST(header);
5141 
5142 	/* No extended attributes present */
5143 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5144 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5145 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5146 			new_extra_isize);
5147 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5148 		return 0;
5149 	}
5150 
5151 	/* try to expand with EAs present */
5152 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5153 					  raw_inode, handle);
5154 }
5155 
5156 /*
5157  * What we do here is to mark the in-core inode as clean with respect to inode
5158  * dirtiness (it may still be data-dirty).
5159  * This means that the in-core inode may be reaped by prune_icache
5160  * without having to perform any I/O.  This is a very good thing,
5161  * because *any* task may call prune_icache - even ones which
5162  * have a transaction open against a different journal.
5163  *
5164  * Is this cheating?  Not really.  Sure, we haven't written the
5165  * inode out, but prune_icache isn't a user-visible syncing function.
5166  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5167  * we start and wait on commits.
5168  *
5169  * Is this efficient/effective?  Well, we're being nice to the system
5170  * by cleaning up our inodes proactively so they can be reaped
5171  * without I/O.  But we are potentially leaving up to five seconds'
5172  * worth of inodes floating about which prune_icache wants us to
5173  * write out.  One way to fix that would be to get prune_icache()
5174  * to do a write_super() to free up some memory.  It has the desired
5175  * effect.
5176  */
5177 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5178 {
5179 	struct ext4_iloc iloc;
5180 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5181 	static unsigned int mnt_count;
5182 	int err, ret;
5183 
5184 	might_sleep();
5185 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5186 	if (ext4_handle_valid(handle) &&
5187 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5188 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5189 		/*
5190 		 * We need extra buffer credits since we may write into EA block
5191 		 * with this same handle. If journal_extend fails, then it will
5192 		 * only result in a minor loss of functionality for that inode.
5193 		 * If this is felt to be critical, then e2fsck should be run to
5194 		 * force a large enough s_min_extra_isize.
5195 		 */
5196 		if ((jbd2_journal_extend(handle,
5197 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5198 			ret = ext4_expand_extra_isize(inode,
5199 						      sbi->s_want_extra_isize,
5200 						      iloc, handle);
5201 			if (ret) {
5202 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5203 				if (mnt_count !=
5204 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5205 					ext4_warning(inode->i_sb, __func__,
5206 					"Unable to expand inode %lu. Delete"
5207 					" some EAs or run e2fsck.",
5208 					inode->i_ino);
5209 					mnt_count =
5210 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5211 				}
5212 			}
5213 		}
5214 	}
5215 	if (!err)
5216 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5217 	return err;
5218 }
5219 
5220 /*
5221  * ext4_dirty_inode() is called from __mark_inode_dirty()
5222  *
5223  * We're really interested in the case where a file is being extended.
5224  * i_size has been changed by generic_commit_write() and we thus need
5225  * to include the updated inode in the current transaction.
5226  *
5227  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5228  * are allocated to the file.
5229  *
5230  * If the inode is marked synchronous, we don't honour that here - doing
5231  * so would cause a commit on atime updates, which we don't bother doing.
5232  * We handle synchronous inodes at the highest possible level.
5233  */
5234 void ext4_dirty_inode(struct inode *inode)
5235 {
5236 	handle_t *current_handle = ext4_journal_current_handle();
5237 	handle_t *handle;
5238 
5239 	if (!ext4_handle_valid(current_handle)) {
5240 		ext4_mark_inode_dirty(current_handle, inode);
5241 		return;
5242 	}
5243 
5244 	handle = ext4_journal_start(inode, 2);
5245 	if (IS_ERR(handle))
5246 		goto out;
5247 	if (current_handle &&
5248 		current_handle->h_transaction != handle->h_transaction) {
5249 		/* This task has a transaction open against a different fs */
5250 		printk(KERN_EMERG "%s: transactions do not match!\n",
5251 		       __func__);
5252 	} else {
5253 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
5254 				current_handle);
5255 		ext4_mark_inode_dirty(handle, inode);
5256 	}
5257 	ext4_journal_stop(handle);
5258 out:
5259 	return;
5260 }
5261 
5262 #if 0
5263 /*
5264  * Bind an inode's backing buffer_head into this transaction, to prevent
5265  * it from being flushed to disk early.  Unlike
5266  * ext4_reserve_inode_write, this leaves behind no bh reference and
5267  * returns no iloc structure, so the caller needs to repeat the iloc
5268  * lookup to mark the inode dirty later.
5269  */
5270 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5271 {
5272 	struct ext4_iloc iloc;
5273 
5274 	int err = 0;
5275 	if (handle) {
5276 		err = ext4_get_inode_loc(inode, &iloc);
5277 		if (!err) {
5278 			BUFFER_TRACE(iloc.bh, "get_write_access");
5279 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5280 			if (!err)
5281 				err = ext4_handle_dirty_metadata(handle,
5282 								 inode,
5283 								 iloc.bh);
5284 			brelse(iloc.bh);
5285 		}
5286 	}
5287 	ext4_std_error(inode->i_sb, err);
5288 	return err;
5289 }
5290 #endif
5291 
5292 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5293 {
5294 	journal_t *journal;
5295 	handle_t *handle;
5296 	int err;
5297 
5298 	/*
5299 	 * We have to be very careful here: changing a data block's
5300 	 * journaling status dynamically is dangerous.  If we write a
5301 	 * data block to the journal, change the status and then delete
5302 	 * that block, we risk forgetting to revoke the old log record
5303 	 * from the journal and so a subsequent replay can corrupt data.
5304 	 * So, first we make sure that the journal is empty and that
5305 	 * nobody is changing anything.
5306 	 */
5307 
5308 	journal = EXT4_JOURNAL(inode);
5309 	if (!journal)
5310 		return 0;
5311 	if (is_journal_aborted(journal))
5312 		return -EROFS;
5313 
5314 	jbd2_journal_lock_updates(journal);
5315 	jbd2_journal_flush(journal);
5316 
5317 	/*
5318 	 * OK, there are no updates running now, and all cached data is
5319 	 * synced to disk.  We are now in a completely consistent state
5320 	 * which doesn't have anything in the journal, and we know that
5321 	 * no filesystem updates are running, so it is safe to modify
5322 	 * the inode's in-core data-journaling state flag now.
5323 	 */
5324 
5325 	if (val)
5326 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5327 	else
5328 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5329 	ext4_set_aops(inode);
5330 
5331 	jbd2_journal_unlock_updates(journal);
5332 
5333 	/* Finally we can mark the inode as dirty. */
5334 
5335 	handle = ext4_journal_start(inode, 1);
5336 	if (IS_ERR(handle))
5337 		return PTR_ERR(handle);
5338 
5339 	err = ext4_mark_inode_dirty(handle, inode);
5340 	ext4_handle_sync(handle);
5341 	ext4_journal_stop(handle);
5342 	ext4_std_error(inode->i_sb, err);
5343 
5344 	return err;
5345 }
5346 
5347 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5348 {
5349 	return !buffer_mapped(bh);
5350 }
5351 
5352 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5353 {
5354 	struct page *page = vmf->page;
5355 	loff_t size;
5356 	unsigned long len;
5357 	int ret = -EINVAL;
5358 	void *fsdata;
5359 	struct file *file = vma->vm_file;
5360 	struct inode *inode = file->f_path.dentry->d_inode;
5361 	struct address_space *mapping = inode->i_mapping;
5362 
5363 	/*
5364 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5365 	 * get i_mutex because we are already holding mmap_sem.
5366 	 */
5367 	down_read(&inode->i_alloc_sem);
5368 	size = i_size_read(inode);
5369 	if (page->mapping != mapping || size <= page_offset(page)
5370 	    || !PageUptodate(page)) {
5371 		/* page got truncated from under us? */
5372 		goto out_unlock;
5373 	}
5374 	ret = 0;
5375 	if (PageMappedToDisk(page))
5376 		goto out_unlock;
5377 
5378 	if (page->index == size >> PAGE_CACHE_SHIFT)
5379 		len = size & ~PAGE_CACHE_MASK;
5380 	else
5381 		len = PAGE_CACHE_SIZE;
5382 
5383 	if (page_has_buffers(page)) {
5384 		/* return if we have all the buffers mapped */
5385 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5386 				       ext4_bh_unmapped))
5387 			goto out_unlock;
5388 	}
5389 	/*
5390 	 * OK, we need to fill the hole... Do write_begin write_end
5391 	 * to do block allocation/reservation.We are not holding
5392 	 * inode.i__mutex here. That allow * parallel write_begin,
5393 	 * write_end call. lock_page prevent this from happening
5394 	 * on the same page though
5395 	 */
5396 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5397 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5398 	if (ret < 0)
5399 		goto out_unlock;
5400 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5401 			len, len, page, fsdata);
5402 	if (ret < 0)
5403 		goto out_unlock;
5404 	ret = 0;
5405 out_unlock:
5406 	if (ret)
5407 		ret = VM_FAULT_SIGBUS;
5408 	up_read(&inode->i_alloc_sem);
5409 	return ret;
5410 }
5411