1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 #include <linux/iomap.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 159 /* 160 * Restart the transaction associated with *handle. This does a commit, 161 * so before we call here everything must be consistently dirtied against 162 * this transaction. 163 */ 164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 165 int nblocks) 166 { 167 int ret; 168 169 /* 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 171 * moment, get_block can be called only for blocks inside i_size since 172 * page cache has been already dropped and writes are blocked by 173 * i_mutex. So we can safely drop the i_data_sem here. 174 */ 175 BUG_ON(EXT4_JOURNAL(inode) == NULL); 176 jbd_debug(2, "restarting handle %p\n", handle); 177 up_write(&EXT4_I(inode)->i_data_sem); 178 ret = ext4_journal_restart(handle, nblocks); 179 down_write(&EXT4_I(inode)->i_data_sem); 180 ext4_discard_preallocations(inode); 181 182 return ret; 183 } 184 185 /* 186 * Called at the last iput() if i_nlink is zero. 187 */ 188 void ext4_evict_inode(struct inode *inode) 189 { 190 handle_t *handle; 191 int err; 192 193 trace_ext4_evict_inode(inode); 194 195 if (inode->i_nlink) { 196 /* 197 * When journalling data dirty buffers are tracked only in the 198 * journal. So although mm thinks everything is clean and 199 * ready for reaping the inode might still have some pages to 200 * write in the running transaction or waiting to be 201 * checkpointed. Thus calling jbd2_journal_invalidatepage() 202 * (via truncate_inode_pages()) to discard these buffers can 203 * cause data loss. Also even if we did not discard these 204 * buffers, we would have no way to find them after the inode 205 * is reaped and thus user could see stale data if he tries to 206 * read them before the transaction is checkpointed. So be 207 * careful and force everything to disk here... We use 208 * ei->i_datasync_tid to store the newest transaction 209 * containing inode's data. 210 * 211 * Note that directories do not have this problem because they 212 * don't use page cache. 213 */ 214 if (inode->i_ino != EXT4_JOURNAL_INO && 215 ext4_should_journal_data(inode) && 216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 242 ext4_blocks_for_truncate(inode)+3); 243 if (IS_ERR(handle)) { 244 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 245 /* 246 * If we're going to skip the normal cleanup, we still need to 247 * make sure that the in-core orphan linked list is properly 248 * cleaned up. 249 */ 250 ext4_orphan_del(NULL, inode); 251 sb_end_intwrite(inode->i_sb); 252 goto no_delete; 253 } 254 255 if (IS_SYNC(inode)) 256 ext4_handle_sync(handle); 257 inode->i_size = 0; 258 err = ext4_mark_inode_dirty(handle, inode); 259 if (err) { 260 ext4_warning(inode->i_sb, 261 "couldn't mark inode dirty (err %d)", err); 262 goto stop_handle; 263 } 264 if (inode->i_blocks) { 265 err = ext4_truncate(inode); 266 if (err) { 267 ext4_error(inode->i_sb, 268 "couldn't truncate inode %lu (err %d)", 269 inode->i_ino, err); 270 goto stop_handle; 271 } 272 } 273 274 /* 275 * ext4_ext_truncate() doesn't reserve any slop when it 276 * restarts journal transactions; therefore there may not be 277 * enough credits left in the handle to remove the inode from 278 * the orphan list and set the dtime field. 279 */ 280 if (!ext4_handle_has_enough_credits(handle, 3)) { 281 err = ext4_journal_extend(handle, 3); 282 if (err > 0) 283 err = ext4_journal_restart(handle, 3); 284 if (err != 0) { 285 ext4_warning(inode->i_sb, 286 "couldn't extend journal (err %d)", err); 287 stop_handle: 288 ext4_journal_stop(handle); 289 ext4_orphan_del(NULL, inode); 290 sb_end_intwrite(inode->i_sb); 291 goto no_delete; 292 } 293 } 294 295 /* 296 * Kill off the orphan record which ext4_truncate created. 297 * AKPM: I think this can be inside the above `if'. 298 * Note that ext4_orphan_del() has to be able to cope with the 299 * deletion of a non-existent orphan - this is because we don't 300 * know if ext4_truncate() actually created an orphan record. 301 * (Well, we could do this if we need to, but heck - it works) 302 */ 303 ext4_orphan_del(handle, inode); 304 EXT4_I(inode)->i_dtime = get_seconds(); 305 306 /* 307 * One subtle ordering requirement: if anything has gone wrong 308 * (transaction abort, IO errors, whatever), then we can still 309 * do these next steps (the fs will already have been marked as 310 * having errors), but we can't free the inode if the mark_dirty 311 * fails. 312 */ 313 if (ext4_mark_inode_dirty(handle, inode)) 314 /* If that failed, just do the required in-core inode clear. */ 315 ext4_clear_inode(inode); 316 else 317 ext4_free_inode(handle, inode); 318 ext4_journal_stop(handle); 319 sb_end_intwrite(inode->i_sb); 320 return; 321 no_delete: 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 323 } 324 325 #ifdef CONFIG_QUOTA 326 qsize_t *ext4_get_reserved_space(struct inode *inode) 327 { 328 return &EXT4_I(inode)->i_reserved_quota; 329 } 330 #endif 331 332 /* 333 * Called with i_data_sem down, which is important since we can call 334 * ext4_discard_preallocations() from here. 335 */ 336 void ext4_da_update_reserve_space(struct inode *inode, 337 int used, int quota_claim) 338 { 339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 340 struct ext4_inode_info *ei = EXT4_I(inode); 341 342 spin_lock(&ei->i_block_reservation_lock); 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 344 if (unlikely(used > ei->i_reserved_data_blocks)) { 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 346 "with only %d reserved data blocks", 347 __func__, inode->i_ino, used, 348 ei->i_reserved_data_blocks); 349 WARN_ON(1); 350 used = ei->i_reserved_data_blocks; 351 } 352 353 /* Update per-inode reservations */ 354 ei->i_reserved_data_blocks -= used; 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 356 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 358 359 /* Update quota subsystem for data blocks */ 360 if (quota_claim) 361 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 362 else { 363 /* 364 * We did fallocate with an offset that is already delayed 365 * allocated. So on delayed allocated writeback we should 366 * not re-claim the quota for fallocated blocks. 367 */ 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 369 } 370 371 /* 372 * If we have done all the pending block allocations and if 373 * there aren't any writers on the inode, we can discard the 374 * inode's preallocations. 375 */ 376 if ((ei->i_reserved_data_blocks == 0) && 377 (atomic_read(&inode->i_writecount) == 0)) 378 ext4_discard_preallocations(inode); 379 } 380 381 static int __check_block_validity(struct inode *inode, const char *func, 382 unsigned int line, 383 struct ext4_map_blocks *map) 384 { 385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 386 map->m_len)) { 387 ext4_error_inode(inode, func, line, map->m_pblk, 388 "lblock %lu mapped to illegal pblock " 389 "(length %d)", (unsigned long) map->m_lblk, 390 map->m_len); 391 return -EFSCORRUPTED; 392 } 393 return 0; 394 } 395 396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 397 ext4_lblk_t len) 398 { 399 int ret; 400 401 if (ext4_encrypted_inode(inode)) 402 return fscrypt_zeroout_range(inode, lblk, pblk, len); 403 404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 405 if (ret > 0) 406 ret = 0; 407 408 return ret; 409 } 410 411 #define check_block_validity(inode, map) \ 412 __check_block_validity((inode), __func__, __LINE__, (map)) 413 414 #ifdef ES_AGGRESSIVE_TEST 415 static void ext4_map_blocks_es_recheck(handle_t *handle, 416 struct inode *inode, 417 struct ext4_map_blocks *es_map, 418 struct ext4_map_blocks *map, 419 int flags) 420 { 421 int retval; 422 423 map->m_flags = 0; 424 /* 425 * There is a race window that the result is not the same. 426 * e.g. xfstests #223 when dioread_nolock enables. The reason 427 * is that we lookup a block mapping in extent status tree with 428 * out taking i_data_sem. So at the time the unwritten extent 429 * could be converted. 430 */ 431 down_read(&EXT4_I(inode)->i_data_sem); 432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 433 retval = ext4_ext_map_blocks(handle, inode, map, flags & 434 EXT4_GET_BLOCKS_KEEP_SIZE); 435 } else { 436 retval = ext4_ind_map_blocks(handle, inode, map, flags & 437 EXT4_GET_BLOCKS_KEEP_SIZE); 438 } 439 up_read((&EXT4_I(inode)->i_data_sem)); 440 441 /* 442 * We don't check m_len because extent will be collpased in status 443 * tree. So the m_len might not equal. 444 */ 445 if (es_map->m_lblk != map->m_lblk || 446 es_map->m_flags != map->m_flags || 447 es_map->m_pblk != map->m_pblk) { 448 printk("ES cache assertion failed for inode: %lu " 449 "es_cached ex [%d/%d/%llu/%x] != " 450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 451 inode->i_ino, es_map->m_lblk, es_map->m_len, 452 es_map->m_pblk, es_map->m_flags, map->m_lblk, 453 map->m_len, map->m_pblk, map->m_flags, 454 retval, flags); 455 } 456 } 457 #endif /* ES_AGGRESSIVE_TEST */ 458 459 /* 460 * The ext4_map_blocks() function tries to look up the requested blocks, 461 * and returns if the blocks are already mapped. 462 * 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 464 * and store the allocated blocks in the result buffer head and mark it 465 * mapped. 466 * 467 * If file type is extents based, it will call ext4_ext_map_blocks(), 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 469 * based files 470 * 471 * On success, it returns the number of blocks being mapped or allocated. if 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 474 * 475 * It returns 0 if plain look up failed (blocks have not been allocated), in 476 * that case, @map is returned as unmapped but we still do fill map->m_len to 477 * indicate the length of a hole starting at map->m_lblk. 478 * 479 * It returns the error in case of allocation failure. 480 */ 481 int ext4_map_blocks(handle_t *handle, struct inode *inode, 482 struct ext4_map_blocks *map, int flags) 483 { 484 struct extent_status es; 485 int retval; 486 int ret = 0; 487 #ifdef ES_AGGRESSIVE_TEST 488 struct ext4_map_blocks orig_map; 489 490 memcpy(&orig_map, map, sizeof(*map)); 491 #endif 492 493 map->m_flags = 0; 494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 495 "logical block %lu\n", inode->i_ino, flags, map->m_len, 496 (unsigned long) map->m_lblk); 497 498 /* 499 * ext4_map_blocks returns an int, and m_len is an unsigned int 500 */ 501 if (unlikely(map->m_len > INT_MAX)) 502 map->m_len = INT_MAX; 503 504 /* We can handle the block number less than EXT_MAX_BLOCKS */ 505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 506 return -EFSCORRUPTED; 507 508 /* Lookup extent status tree firstly */ 509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 511 map->m_pblk = ext4_es_pblock(&es) + 512 map->m_lblk - es.es_lblk; 513 map->m_flags |= ext4_es_is_written(&es) ? 514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 515 retval = es.es_len - (map->m_lblk - es.es_lblk); 516 if (retval > map->m_len) 517 retval = map->m_len; 518 map->m_len = retval; 519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 520 map->m_pblk = 0; 521 retval = es.es_len - (map->m_lblk - es.es_lblk); 522 if (retval > map->m_len) 523 retval = map->m_len; 524 map->m_len = retval; 525 retval = 0; 526 } else { 527 BUG_ON(1); 528 } 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 536 /* 537 * Try to see if we can get the block without requesting a new 538 * file system block. 539 */ 540 down_read(&EXT4_I(inode)->i_data_sem); 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 542 retval = ext4_ext_map_blocks(handle, inode, map, flags & 543 EXT4_GET_BLOCKS_KEEP_SIZE); 544 } else { 545 retval = ext4_ind_map_blocks(handle, inode, map, flags & 546 EXT4_GET_BLOCKS_KEEP_SIZE); 547 } 548 if (retval > 0) { 549 unsigned int status; 550 551 if (unlikely(retval != map->m_len)) { 552 ext4_warning(inode->i_sb, 553 "ES len assertion failed for inode " 554 "%lu: retval %d != map->m_len %d", 555 inode->i_ino, retval, map->m_len); 556 WARN_ON(1); 557 } 558 559 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 562 !(status & EXTENT_STATUS_WRITTEN) && 563 ext4_find_delalloc_range(inode, map->m_lblk, 564 map->m_lblk + map->m_len - 1)) 565 status |= EXTENT_STATUS_DELAYED; 566 ret = ext4_es_insert_extent(inode, map->m_lblk, 567 map->m_len, map->m_pblk, status); 568 if (ret < 0) 569 retval = ret; 570 } 571 up_read((&EXT4_I(inode)->i_data_sem)); 572 573 found: 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 575 ret = check_block_validity(inode, map); 576 if (ret != 0) 577 return ret; 578 } 579 580 /* If it is only a block(s) look up */ 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 582 return retval; 583 584 /* 585 * Returns if the blocks have already allocated 586 * 587 * Note that if blocks have been preallocated 588 * ext4_ext_get_block() returns the create = 0 589 * with buffer head unmapped. 590 */ 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 592 /* 593 * If we need to convert extent to unwritten 594 * we continue and do the actual work in 595 * ext4_ext_map_blocks() 596 */ 597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 598 return retval; 599 600 /* 601 * Here we clear m_flags because after allocating an new extent, 602 * it will be set again. 603 */ 604 map->m_flags &= ~EXT4_MAP_FLAGS; 605 606 /* 607 * New blocks allocate and/or writing to unwritten extent 608 * will possibly result in updating i_data, so we take 609 * the write lock of i_data_sem, and call get_block() 610 * with create == 1 flag. 611 */ 612 down_write(&EXT4_I(inode)->i_data_sem); 613 614 /* 615 * We need to check for EXT4 here because migrate 616 * could have changed the inode type in between 617 */ 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 619 retval = ext4_ext_map_blocks(handle, inode, map, flags); 620 } else { 621 retval = ext4_ind_map_blocks(handle, inode, map, flags); 622 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 624 /* 625 * We allocated new blocks which will result in 626 * i_data's format changing. Force the migrate 627 * to fail by clearing migrate flags 628 */ 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 630 } 631 632 /* 633 * Update reserved blocks/metadata blocks after successful 634 * block allocation which had been deferred till now. We don't 635 * support fallocate for non extent files. So we can update 636 * reserve space here. 637 */ 638 if ((retval > 0) && 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 640 ext4_da_update_reserve_space(inode, retval, 1); 641 } 642 643 if (retval > 0) { 644 unsigned int status; 645 646 if (unlikely(retval != map->m_len)) { 647 ext4_warning(inode->i_sb, 648 "ES len assertion failed for inode " 649 "%lu: retval %d != map->m_len %d", 650 inode->i_ino, retval, map->m_len); 651 WARN_ON(1); 652 } 653 654 /* 655 * We have to zeroout blocks before inserting them into extent 656 * status tree. Otherwise someone could look them up there and 657 * use them before they are really zeroed. We also have to 658 * unmap metadata before zeroing as otherwise writeback can 659 * overwrite zeros with stale data from block device. 660 */ 661 if (flags & EXT4_GET_BLOCKS_ZERO && 662 map->m_flags & EXT4_MAP_MAPPED && 663 map->m_flags & EXT4_MAP_NEW) { 664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 665 map->m_len); 666 ret = ext4_issue_zeroout(inode, map->m_lblk, 667 map->m_pblk, map->m_len); 668 if (ret) { 669 retval = ret; 670 goto out_sem; 671 } 672 } 673 674 /* 675 * If the extent has been zeroed out, we don't need to update 676 * extent status tree. 677 */ 678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 680 if (ext4_es_is_written(&es)) 681 goto out_sem; 682 } 683 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 686 !(status & EXTENT_STATUS_WRITTEN) && 687 ext4_find_delalloc_range(inode, map->m_lblk, 688 map->m_lblk + map->m_len - 1)) 689 status |= EXTENT_STATUS_DELAYED; 690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 691 map->m_pblk, status); 692 if (ret < 0) { 693 retval = ret; 694 goto out_sem; 695 } 696 } 697 698 out_sem: 699 up_write((&EXT4_I(inode)->i_data_sem)); 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 701 ret = check_block_validity(inode, map); 702 if (ret != 0) 703 return ret; 704 705 /* 706 * Inodes with freshly allocated blocks where contents will be 707 * visible after transaction commit must be on transaction's 708 * ordered data list. 709 */ 710 if (map->m_flags & EXT4_MAP_NEW && 711 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 712 !(flags & EXT4_GET_BLOCKS_ZERO) && 713 !IS_NOQUOTA(inode) && 714 ext4_should_order_data(inode)) { 715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 716 ret = ext4_jbd2_inode_add_wait(handle, inode); 717 else 718 ret = ext4_jbd2_inode_add_write(handle, inode); 719 if (ret) 720 return ret; 721 } 722 } 723 return retval; 724 } 725 726 /* 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 728 * we have to be careful as someone else may be manipulating b_state as well. 729 */ 730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 731 { 732 unsigned long old_state; 733 unsigned long new_state; 734 735 flags &= EXT4_MAP_FLAGS; 736 737 /* Dummy buffer_head? Set non-atomically. */ 738 if (!bh->b_page) { 739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 740 return; 741 } 742 /* 743 * Someone else may be modifying b_state. Be careful! This is ugly but 744 * once we get rid of using bh as a container for mapping information 745 * to pass to / from get_block functions, this can go away. 746 */ 747 do { 748 old_state = READ_ONCE(bh->b_state); 749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 750 } while (unlikely( 751 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 752 } 753 754 static int _ext4_get_block(struct inode *inode, sector_t iblock, 755 struct buffer_head *bh, int flags) 756 { 757 struct ext4_map_blocks map; 758 int ret = 0; 759 760 if (ext4_has_inline_data(inode)) 761 return -ERANGE; 762 763 map.m_lblk = iblock; 764 map.m_len = bh->b_size >> inode->i_blkbits; 765 766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 767 flags); 768 if (ret > 0) { 769 map_bh(bh, inode->i_sb, map.m_pblk); 770 ext4_update_bh_state(bh, map.m_flags); 771 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 772 ret = 0; 773 } else if (ret == 0) { 774 /* hole case, need to fill in bh->b_size */ 775 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 776 } 777 return ret; 778 } 779 780 int ext4_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int create) 782 { 783 return _ext4_get_block(inode, iblock, bh, 784 create ? EXT4_GET_BLOCKS_CREATE : 0); 785 } 786 787 /* 788 * Get block function used when preparing for buffered write if we require 789 * creating an unwritten extent if blocks haven't been allocated. The extent 790 * will be converted to written after the IO is complete. 791 */ 792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 793 struct buffer_head *bh_result, int create) 794 { 795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 796 inode->i_ino, create); 797 return _ext4_get_block(inode, iblock, bh_result, 798 EXT4_GET_BLOCKS_IO_CREATE_EXT); 799 } 800 801 /* Maximum number of blocks we map for direct IO at once. */ 802 #define DIO_MAX_BLOCKS 4096 803 804 /* 805 * Get blocks function for the cases that need to start a transaction - 806 * generally difference cases of direct IO and DAX IO. It also handles retries 807 * in case of ENOSPC. 808 */ 809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 810 struct buffer_head *bh_result, int flags) 811 { 812 int dio_credits; 813 handle_t *handle; 814 int retries = 0; 815 int ret; 816 817 /* Trim mapping request to maximum we can map at once for DIO */ 818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 820 dio_credits = ext4_chunk_trans_blocks(inode, 821 bh_result->b_size >> inode->i_blkbits); 822 retry: 823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 824 if (IS_ERR(handle)) 825 return PTR_ERR(handle); 826 827 ret = _ext4_get_block(inode, iblock, bh_result, flags); 828 ext4_journal_stop(handle); 829 830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 831 goto retry; 832 return ret; 833 } 834 835 /* Get block function for DIO reads and writes to inodes without extents */ 836 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 837 struct buffer_head *bh, int create) 838 { 839 /* We don't expect handle for direct IO */ 840 WARN_ON_ONCE(ext4_journal_current_handle()); 841 842 if (!create) 843 return _ext4_get_block(inode, iblock, bh, 0); 844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 845 } 846 847 /* 848 * Get block function for AIO DIO writes when we create unwritten extent if 849 * blocks are not allocated yet. The extent will be converted to written 850 * after IO is complete. 851 */ 852 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 853 sector_t iblock, struct buffer_head *bh_result, int create) 854 { 855 int ret; 856 857 /* We don't expect handle for direct IO */ 858 WARN_ON_ONCE(ext4_journal_current_handle()); 859 860 ret = ext4_get_block_trans(inode, iblock, bh_result, 861 EXT4_GET_BLOCKS_IO_CREATE_EXT); 862 863 /* 864 * When doing DIO using unwritten extents, we need io_end to convert 865 * unwritten extents to written on IO completion. We allocate io_end 866 * once we spot unwritten extent and store it in b_private. Generic 867 * DIO code keeps b_private set and furthermore passes the value to 868 * our completion callback in 'private' argument. 869 */ 870 if (!ret && buffer_unwritten(bh_result)) { 871 if (!bh_result->b_private) { 872 ext4_io_end_t *io_end; 873 874 io_end = ext4_init_io_end(inode, GFP_KERNEL); 875 if (!io_end) 876 return -ENOMEM; 877 bh_result->b_private = io_end; 878 ext4_set_io_unwritten_flag(inode, io_end); 879 } 880 set_buffer_defer_completion(bh_result); 881 } 882 883 return ret; 884 } 885 886 /* 887 * Get block function for non-AIO DIO writes when we create unwritten extent if 888 * blocks are not allocated yet. The extent will be converted to written 889 * after IO is complete from ext4_ext_direct_IO() function. 890 */ 891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 892 sector_t iblock, struct buffer_head *bh_result, int create) 893 { 894 int ret; 895 896 /* We don't expect handle for direct IO */ 897 WARN_ON_ONCE(ext4_journal_current_handle()); 898 899 ret = ext4_get_block_trans(inode, iblock, bh_result, 900 EXT4_GET_BLOCKS_IO_CREATE_EXT); 901 902 /* 903 * Mark inode as having pending DIO writes to unwritten extents. 904 * ext4_ext_direct_IO() checks this flag and converts extents to 905 * written. 906 */ 907 if (!ret && buffer_unwritten(bh_result)) 908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 909 910 return ret; 911 } 912 913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 914 struct buffer_head *bh_result, int create) 915 { 916 int ret; 917 918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 919 inode->i_ino, create); 920 /* We don't expect handle for direct IO */ 921 WARN_ON_ONCE(ext4_journal_current_handle()); 922 923 ret = _ext4_get_block(inode, iblock, bh_result, 0); 924 /* 925 * Blocks should have been preallocated! ext4_file_write_iter() checks 926 * that. 927 */ 928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 929 930 return ret; 931 } 932 933 934 /* 935 * `handle' can be NULL if create is zero 936 */ 937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 938 ext4_lblk_t block, int map_flags) 939 { 940 struct ext4_map_blocks map; 941 struct buffer_head *bh; 942 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 943 int err; 944 945 J_ASSERT(handle != NULL || create == 0); 946 947 map.m_lblk = block; 948 map.m_len = 1; 949 err = ext4_map_blocks(handle, inode, &map, map_flags); 950 951 if (err == 0) 952 return create ? ERR_PTR(-ENOSPC) : NULL; 953 if (err < 0) 954 return ERR_PTR(err); 955 956 bh = sb_getblk(inode->i_sb, map.m_pblk); 957 if (unlikely(!bh)) 958 return ERR_PTR(-ENOMEM); 959 if (map.m_flags & EXT4_MAP_NEW) { 960 J_ASSERT(create != 0); 961 J_ASSERT(handle != NULL); 962 963 /* 964 * Now that we do not always journal data, we should 965 * keep in mind whether this should always journal the 966 * new buffer as metadata. For now, regular file 967 * writes use ext4_get_block instead, so it's not a 968 * problem. 969 */ 970 lock_buffer(bh); 971 BUFFER_TRACE(bh, "call get_create_access"); 972 err = ext4_journal_get_create_access(handle, bh); 973 if (unlikely(err)) { 974 unlock_buffer(bh); 975 goto errout; 976 } 977 if (!buffer_uptodate(bh)) { 978 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 979 set_buffer_uptodate(bh); 980 } 981 unlock_buffer(bh); 982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 983 err = ext4_handle_dirty_metadata(handle, inode, bh); 984 if (unlikely(err)) 985 goto errout; 986 } else 987 BUFFER_TRACE(bh, "not a new buffer"); 988 return bh; 989 errout: 990 brelse(bh); 991 return ERR_PTR(err); 992 } 993 994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 995 ext4_lblk_t block, int map_flags) 996 { 997 struct buffer_head *bh; 998 999 bh = ext4_getblk(handle, inode, block, map_flags); 1000 if (IS_ERR(bh)) 1001 return bh; 1002 if (!bh || buffer_uptodate(bh)) 1003 return bh; 1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1005 wait_on_buffer(bh); 1006 if (buffer_uptodate(bh)) 1007 return bh; 1008 put_bh(bh); 1009 return ERR_PTR(-EIO); 1010 } 1011 1012 int ext4_walk_page_buffers(handle_t *handle, 1013 struct buffer_head *head, 1014 unsigned from, 1015 unsigned to, 1016 int *partial, 1017 int (*fn)(handle_t *handle, 1018 struct buffer_head *bh)) 1019 { 1020 struct buffer_head *bh; 1021 unsigned block_start, block_end; 1022 unsigned blocksize = head->b_size; 1023 int err, ret = 0; 1024 struct buffer_head *next; 1025 1026 for (bh = head, block_start = 0; 1027 ret == 0 && (bh != head || !block_start); 1028 block_start = block_end, bh = next) { 1029 next = bh->b_this_page; 1030 block_end = block_start + blocksize; 1031 if (block_end <= from || block_start >= to) { 1032 if (partial && !buffer_uptodate(bh)) 1033 *partial = 1; 1034 continue; 1035 } 1036 err = (*fn)(handle, bh); 1037 if (!ret) 1038 ret = err; 1039 } 1040 return ret; 1041 } 1042 1043 /* 1044 * To preserve ordering, it is essential that the hole instantiation and 1045 * the data write be encapsulated in a single transaction. We cannot 1046 * close off a transaction and start a new one between the ext4_get_block() 1047 * and the commit_write(). So doing the jbd2_journal_start at the start of 1048 * prepare_write() is the right place. 1049 * 1050 * Also, this function can nest inside ext4_writepage(). In that case, we 1051 * *know* that ext4_writepage() has generated enough buffer credits to do the 1052 * whole page. So we won't block on the journal in that case, which is good, 1053 * because the caller may be PF_MEMALLOC. 1054 * 1055 * By accident, ext4 can be reentered when a transaction is open via 1056 * quota file writes. If we were to commit the transaction while thus 1057 * reentered, there can be a deadlock - we would be holding a quota 1058 * lock, and the commit would never complete if another thread had a 1059 * transaction open and was blocking on the quota lock - a ranking 1060 * violation. 1061 * 1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1063 * will _not_ run commit under these circumstances because handle->h_ref 1064 * is elevated. We'll still have enough credits for the tiny quotafile 1065 * write. 1066 */ 1067 int do_journal_get_write_access(handle_t *handle, 1068 struct buffer_head *bh) 1069 { 1070 int dirty = buffer_dirty(bh); 1071 int ret; 1072 1073 if (!buffer_mapped(bh) || buffer_freed(bh)) 1074 return 0; 1075 /* 1076 * __block_write_begin() could have dirtied some buffers. Clean 1077 * the dirty bit as jbd2_journal_get_write_access() could complain 1078 * otherwise about fs integrity issues. Setting of the dirty bit 1079 * by __block_write_begin() isn't a real problem here as we clear 1080 * the bit before releasing a page lock and thus writeback cannot 1081 * ever write the buffer. 1082 */ 1083 if (dirty) 1084 clear_buffer_dirty(bh); 1085 BUFFER_TRACE(bh, "get write access"); 1086 ret = ext4_journal_get_write_access(handle, bh); 1087 if (!ret && dirty) 1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1089 return ret; 1090 } 1091 1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1094 get_block_t *get_block) 1095 { 1096 unsigned from = pos & (PAGE_SIZE - 1); 1097 unsigned to = from + len; 1098 struct inode *inode = page->mapping->host; 1099 unsigned block_start, block_end; 1100 sector_t block; 1101 int err = 0; 1102 unsigned blocksize = inode->i_sb->s_blocksize; 1103 unsigned bbits; 1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1105 bool decrypt = false; 1106 1107 BUG_ON(!PageLocked(page)); 1108 BUG_ON(from > PAGE_SIZE); 1109 BUG_ON(to > PAGE_SIZE); 1110 BUG_ON(from > to); 1111 1112 if (!page_has_buffers(page)) 1113 create_empty_buffers(page, blocksize, 0); 1114 head = page_buffers(page); 1115 bbits = ilog2(blocksize); 1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1117 1118 for (bh = head, block_start = 0; bh != head || !block_start; 1119 block++, block_start = block_end, bh = bh->b_this_page) { 1120 block_end = block_start + blocksize; 1121 if (block_end <= from || block_start >= to) { 1122 if (PageUptodate(page)) { 1123 if (!buffer_uptodate(bh)) 1124 set_buffer_uptodate(bh); 1125 } 1126 continue; 1127 } 1128 if (buffer_new(bh)) 1129 clear_buffer_new(bh); 1130 if (!buffer_mapped(bh)) { 1131 WARN_ON(bh->b_size != blocksize); 1132 err = get_block(inode, block, bh, 1); 1133 if (err) 1134 break; 1135 if (buffer_new(bh)) { 1136 clean_bdev_bh_alias(bh); 1137 if (PageUptodate(page)) { 1138 clear_buffer_new(bh); 1139 set_buffer_uptodate(bh); 1140 mark_buffer_dirty(bh); 1141 continue; 1142 } 1143 if (block_end > to || block_start < from) 1144 zero_user_segments(page, to, block_end, 1145 block_start, from); 1146 continue; 1147 } 1148 } 1149 if (PageUptodate(page)) { 1150 if (!buffer_uptodate(bh)) 1151 set_buffer_uptodate(bh); 1152 continue; 1153 } 1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1155 !buffer_unwritten(bh) && 1156 (block_start < from || block_end > to)) { 1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1158 *wait_bh++ = bh; 1159 decrypt = ext4_encrypted_inode(inode) && 1160 S_ISREG(inode->i_mode); 1161 } 1162 } 1163 /* 1164 * If we issued read requests, let them complete. 1165 */ 1166 while (wait_bh > wait) { 1167 wait_on_buffer(*--wait_bh); 1168 if (!buffer_uptodate(*wait_bh)) 1169 err = -EIO; 1170 } 1171 if (unlikely(err)) 1172 page_zero_new_buffers(page, from, to); 1173 else if (decrypt) 1174 err = fscrypt_decrypt_page(page->mapping->host, page, 1175 PAGE_SIZE, 0, page->index); 1176 return err; 1177 } 1178 #endif 1179 1180 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1181 loff_t pos, unsigned len, unsigned flags, 1182 struct page **pagep, void **fsdata) 1183 { 1184 struct inode *inode = mapping->host; 1185 int ret, needed_blocks; 1186 handle_t *handle; 1187 int retries = 0; 1188 struct page *page; 1189 pgoff_t index; 1190 unsigned from, to; 1191 1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1193 return -EIO; 1194 1195 trace_ext4_write_begin(inode, pos, len, flags); 1196 /* 1197 * Reserve one block more for addition to orphan list in case 1198 * we allocate blocks but write fails for some reason 1199 */ 1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1201 index = pos >> PAGE_SHIFT; 1202 from = pos & (PAGE_SIZE - 1); 1203 to = from + len; 1204 1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1207 flags, pagep); 1208 if (ret < 0) 1209 return ret; 1210 if (ret == 1) 1211 return 0; 1212 } 1213 1214 /* 1215 * grab_cache_page_write_begin() can take a long time if the 1216 * system is thrashing due to memory pressure, or if the page 1217 * is being written back. So grab it first before we start 1218 * the transaction handle. This also allows us to allocate 1219 * the page (if needed) without using GFP_NOFS. 1220 */ 1221 retry_grab: 1222 page = grab_cache_page_write_begin(mapping, index, flags); 1223 if (!page) 1224 return -ENOMEM; 1225 unlock_page(page); 1226 1227 retry_journal: 1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1229 if (IS_ERR(handle)) { 1230 put_page(page); 1231 return PTR_ERR(handle); 1232 } 1233 1234 lock_page(page); 1235 if (page->mapping != mapping) { 1236 /* The page got truncated from under us */ 1237 unlock_page(page); 1238 put_page(page); 1239 ext4_journal_stop(handle); 1240 goto retry_grab; 1241 } 1242 /* In case writeback began while the page was unlocked */ 1243 wait_for_stable_page(page); 1244 1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1246 if (ext4_should_dioread_nolock(inode)) 1247 ret = ext4_block_write_begin(page, pos, len, 1248 ext4_get_block_unwritten); 1249 else 1250 ret = ext4_block_write_begin(page, pos, len, 1251 ext4_get_block); 1252 #else 1253 if (ext4_should_dioread_nolock(inode)) 1254 ret = __block_write_begin(page, pos, len, 1255 ext4_get_block_unwritten); 1256 else 1257 ret = __block_write_begin(page, pos, len, ext4_get_block); 1258 #endif 1259 if (!ret && ext4_should_journal_data(inode)) { 1260 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1261 from, to, NULL, 1262 do_journal_get_write_access); 1263 } 1264 1265 if (ret) { 1266 unlock_page(page); 1267 /* 1268 * __block_write_begin may have instantiated a few blocks 1269 * outside i_size. Trim these off again. Don't need 1270 * i_size_read because we hold i_mutex. 1271 * 1272 * Add inode to orphan list in case we crash before 1273 * truncate finishes 1274 */ 1275 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1276 ext4_orphan_add(handle, inode); 1277 1278 ext4_journal_stop(handle); 1279 if (pos + len > inode->i_size) { 1280 ext4_truncate_failed_write(inode); 1281 /* 1282 * If truncate failed early the inode might 1283 * still be on the orphan list; we need to 1284 * make sure the inode is removed from the 1285 * orphan list in that case. 1286 */ 1287 if (inode->i_nlink) 1288 ext4_orphan_del(NULL, inode); 1289 } 1290 1291 if (ret == -ENOSPC && 1292 ext4_should_retry_alloc(inode->i_sb, &retries)) 1293 goto retry_journal; 1294 put_page(page); 1295 return ret; 1296 } 1297 *pagep = page; 1298 return ret; 1299 } 1300 1301 /* For write_end() in data=journal mode */ 1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1303 { 1304 int ret; 1305 if (!buffer_mapped(bh) || buffer_freed(bh)) 1306 return 0; 1307 set_buffer_uptodate(bh); 1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1309 clear_buffer_meta(bh); 1310 clear_buffer_prio(bh); 1311 return ret; 1312 } 1313 1314 /* 1315 * We need to pick up the new inode size which generic_commit_write gave us 1316 * `file' can be NULL - eg, when called from page_symlink(). 1317 * 1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1319 * buffers are managed internally. 1320 */ 1321 static int ext4_write_end(struct file *file, 1322 struct address_space *mapping, 1323 loff_t pos, unsigned len, unsigned copied, 1324 struct page *page, void *fsdata) 1325 { 1326 handle_t *handle = ext4_journal_current_handle(); 1327 struct inode *inode = mapping->host; 1328 loff_t old_size = inode->i_size; 1329 int ret = 0, ret2; 1330 int i_size_changed = 0; 1331 1332 trace_ext4_write_end(inode, pos, len, copied); 1333 if (ext4_has_inline_data(inode)) { 1334 ret = ext4_write_inline_data_end(inode, pos, len, 1335 copied, page); 1336 if (ret < 0) { 1337 unlock_page(page); 1338 put_page(page); 1339 goto errout; 1340 } 1341 copied = ret; 1342 } else 1343 copied = block_write_end(file, mapping, pos, 1344 len, copied, page, fsdata); 1345 /* 1346 * it's important to update i_size while still holding page lock: 1347 * page writeout could otherwise come in and zero beyond i_size. 1348 */ 1349 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1350 unlock_page(page); 1351 put_page(page); 1352 1353 if (old_size < pos) 1354 pagecache_isize_extended(inode, old_size, pos); 1355 /* 1356 * Don't mark the inode dirty under page lock. First, it unnecessarily 1357 * makes the holding time of page lock longer. Second, it forces lock 1358 * ordering of page lock and transaction start for journaling 1359 * filesystems. 1360 */ 1361 if (i_size_changed) 1362 ext4_mark_inode_dirty(handle, inode); 1363 1364 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1365 /* if we have allocated more blocks and copied 1366 * less. We will have blocks allocated outside 1367 * inode->i_size. So truncate them 1368 */ 1369 ext4_orphan_add(handle, inode); 1370 errout: 1371 ret2 = ext4_journal_stop(handle); 1372 if (!ret) 1373 ret = ret2; 1374 1375 if (pos + len > inode->i_size) { 1376 ext4_truncate_failed_write(inode); 1377 /* 1378 * If truncate failed early the inode might still be 1379 * on the orphan list; we need to make sure the inode 1380 * is removed from the orphan list in that case. 1381 */ 1382 if (inode->i_nlink) 1383 ext4_orphan_del(NULL, inode); 1384 } 1385 1386 return ret ? ret : copied; 1387 } 1388 1389 /* 1390 * This is a private version of page_zero_new_buffers() which doesn't 1391 * set the buffer to be dirty, since in data=journalled mode we need 1392 * to call ext4_handle_dirty_metadata() instead. 1393 */ 1394 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1395 struct page *page, 1396 unsigned from, unsigned to) 1397 { 1398 unsigned int block_start = 0, block_end; 1399 struct buffer_head *head, *bh; 1400 1401 bh = head = page_buffers(page); 1402 do { 1403 block_end = block_start + bh->b_size; 1404 if (buffer_new(bh)) { 1405 if (block_end > from && block_start < to) { 1406 if (!PageUptodate(page)) { 1407 unsigned start, size; 1408 1409 start = max(from, block_start); 1410 size = min(to, block_end) - start; 1411 1412 zero_user(page, start, size); 1413 write_end_fn(handle, bh); 1414 } 1415 clear_buffer_new(bh); 1416 } 1417 } 1418 block_start = block_end; 1419 bh = bh->b_this_page; 1420 } while (bh != head); 1421 } 1422 1423 static int ext4_journalled_write_end(struct file *file, 1424 struct address_space *mapping, 1425 loff_t pos, unsigned len, unsigned copied, 1426 struct page *page, void *fsdata) 1427 { 1428 handle_t *handle = ext4_journal_current_handle(); 1429 struct inode *inode = mapping->host; 1430 loff_t old_size = inode->i_size; 1431 int ret = 0, ret2; 1432 int partial = 0; 1433 unsigned from, to; 1434 int size_changed = 0; 1435 1436 trace_ext4_journalled_write_end(inode, pos, len, copied); 1437 from = pos & (PAGE_SIZE - 1); 1438 to = from + len; 1439 1440 BUG_ON(!ext4_handle_valid(handle)); 1441 1442 if (ext4_has_inline_data(inode)) { 1443 ret = ext4_write_inline_data_end(inode, pos, len, 1444 copied, page); 1445 if (ret < 0) { 1446 unlock_page(page); 1447 put_page(page); 1448 goto errout; 1449 } 1450 copied = ret; 1451 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1452 copied = 0; 1453 ext4_journalled_zero_new_buffers(handle, page, from, to); 1454 } else { 1455 if (unlikely(copied < len)) 1456 ext4_journalled_zero_new_buffers(handle, page, 1457 from + copied, to); 1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1459 from + copied, &partial, 1460 write_end_fn); 1461 if (!partial) 1462 SetPageUptodate(page); 1463 } 1464 size_changed = ext4_update_inode_size(inode, pos + copied); 1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1467 unlock_page(page); 1468 put_page(page); 1469 1470 if (old_size < pos) 1471 pagecache_isize_extended(inode, old_size, pos); 1472 1473 if (size_changed) { 1474 ret2 = ext4_mark_inode_dirty(handle, inode); 1475 if (!ret) 1476 ret = ret2; 1477 } 1478 1479 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1480 /* if we have allocated more blocks and copied 1481 * less. We will have blocks allocated outside 1482 * inode->i_size. So truncate them 1483 */ 1484 ext4_orphan_add(handle, inode); 1485 1486 errout: 1487 ret2 = ext4_journal_stop(handle); 1488 if (!ret) 1489 ret = ret2; 1490 if (pos + len > inode->i_size) { 1491 ext4_truncate_failed_write(inode); 1492 /* 1493 * If truncate failed early the inode might still be 1494 * on the orphan list; we need to make sure the inode 1495 * is removed from the orphan list in that case. 1496 */ 1497 if (inode->i_nlink) 1498 ext4_orphan_del(NULL, inode); 1499 } 1500 1501 return ret ? ret : copied; 1502 } 1503 1504 /* 1505 * Reserve space for a single cluster 1506 */ 1507 static int ext4_da_reserve_space(struct inode *inode) 1508 { 1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1510 struct ext4_inode_info *ei = EXT4_I(inode); 1511 int ret; 1512 1513 /* 1514 * We will charge metadata quota at writeout time; this saves 1515 * us from metadata over-estimation, though we may go over by 1516 * a small amount in the end. Here we just reserve for data. 1517 */ 1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1519 if (ret) 1520 return ret; 1521 1522 spin_lock(&ei->i_block_reservation_lock); 1523 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1524 spin_unlock(&ei->i_block_reservation_lock); 1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1526 return -ENOSPC; 1527 } 1528 ei->i_reserved_data_blocks++; 1529 trace_ext4_da_reserve_space(inode); 1530 spin_unlock(&ei->i_block_reservation_lock); 1531 1532 return 0; /* success */ 1533 } 1534 1535 static void ext4_da_release_space(struct inode *inode, int to_free) 1536 { 1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1538 struct ext4_inode_info *ei = EXT4_I(inode); 1539 1540 if (!to_free) 1541 return; /* Nothing to release, exit */ 1542 1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1544 1545 trace_ext4_da_release_space(inode, to_free); 1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1547 /* 1548 * if there aren't enough reserved blocks, then the 1549 * counter is messed up somewhere. Since this 1550 * function is called from invalidate page, it's 1551 * harmless to return without any action. 1552 */ 1553 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1554 "ino %lu, to_free %d with only %d reserved " 1555 "data blocks", inode->i_ino, to_free, 1556 ei->i_reserved_data_blocks); 1557 WARN_ON(1); 1558 to_free = ei->i_reserved_data_blocks; 1559 } 1560 ei->i_reserved_data_blocks -= to_free; 1561 1562 /* update fs dirty data blocks counter */ 1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1564 1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1566 1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1568 } 1569 1570 static void ext4_da_page_release_reservation(struct page *page, 1571 unsigned int offset, 1572 unsigned int length) 1573 { 1574 int to_release = 0, contiguous_blks = 0; 1575 struct buffer_head *head, *bh; 1576 unsigned int curr_off = 0; 1577 struct inode *inode = page->mapping->host; 1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1579 unsigned int stop = offset + length; 1580 int num_clusters; 1581 ext4_fsblk_t lblk; 1582 1583 BUG_ON(stop > PAGE_SIZE || stop < length); 1584 1585 head = page_buffers(page); 1586 bh = head; 1587 do { 1588 unsigned int next_off = curr_off + bh->b_size; 1589 1590 if (next_off > stop) 1591 break; 1592 1593 if ((offset <= curr_off) && (buffer_delay(bh))) { 1594 to_release++; 1595 contiguous_blks++; 1596 clear_buffer_delay(bh); 1597 } else if (contiguous_blks) { 1598 lblk = page->index << 1599 (PAGE_SHIFT - inode->i_blkbits); 1600 lblk += (curr_off >> inode->i_blkbits) - 1601 contiguous_blks; 1602 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1603 contiguous_blks = 0; 1604 } 1605 curr_off = next_off; 1606 } while ((bh = bh->b_this_page) != head); 1607 1608 if (contiguous_blks) { 1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1611 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1612 } 1613 1614 /* If we have released all the blocks belonging to a cluster, then we 1615 * need to release the reserved space for that cluster. */ 1616 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1617 while (num_clusters > 0) { 1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1619 ((num_clusters - 1) << sbi->s_cluster_bits); 1620 if (sbi->s_cluster_ratio == 1 || 1621 !ext4_find_delalloc_cluster(inode, lblk)) 1622 ext4_da_release_space(inode, 1); 1623 1624 num_clusters--; 1625 } 1626 } 1627 1628 /* 1629 * Delayed allocation stuff 1630 */ 1631 1632 struct mpage_da_data { 1633 struct inode *inode; 1634 struct writeback_control *wbc; 1635 1636 pgoff_t first_page; /* The first page to write */ 1637 pgoff_t next_page; /* Current page to examine */ 1638 pgoff_t last_page; /* Last page to examine */ 1639 /* 1640 * Extent to map - this can be after first_page because that can be 1641 * fully mapped. We somewhat abuse m_flags to store whether the extent 1642 * is delalloc or unwritten. 1643 */ 1644 struct ext4_map_blocks map; 1645 struct ext4_io_submit io_submit; /* IO submission data */ 1646 unsigned int do_map:1; 1647 }; 1648 1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1650 bool invalidate) 1651 { 1652 int nr_pages, i; 1653 pgoff_t index, end; 1654 struct pagevec pvec; 1655 struct inode *inode = mpd->inode; 1656 struct address_space *mapping = inode->i_mapping; 1657 1658 /* This is necessary when next_page == 0. */ 1659 if (mpd->first_page >= mpd->next_page) 1660 return; 1661 1662 index = mpd->first_page; 1663 end = mpd->next_page - 1; 1664 if (invalidate) { 1665 ext4_lblk_t start, last; 1666 start = index << (PAGE_SHIFT - inode->i_blkbits); 1667 last = end << (PAGE_SHIFT - inode->i_blkbits); 1668 ext4_es_remove_extent(inode, start, last - start + 1); 1669 } 1670 1671 pagevec_init(&pvec, 0); 1672 while (index <= end) { 1673 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1674 if (nr_pages == 0) 1675 break; 1676 for (i = 0; i < nr_pages; i++) { 1677 struct page *page = pvec.pages[i]; 1678 if (page->index > end) 1679 break; 1680 BUG_ON(!PageLocked(page)); 1681 BUG_ON(PageWriteback(page)); 1682 if (invalidate) { 1683 if (page_mapped(page)) 1684 clear_page_dirty_for_io(page); 1685 block_invalidatepage(page, 0, PAGE_SIZE); 1686 ClearPageUptodate(page); 1687 } 1688 unlock_page(page); 1689 } 1690 index = pvec.pages[nr_pages - 1]->index + 1; 1691 pagevec_release(&pvec); 1692 } 1693 } 1694 1695 static void ext4_print_free_blocks(struct inode *inode) 1696 { 1697 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1698 struct super_block *sb = inode->i_sb; 1699 struct ext4_inode_info *ei = EXT4_I(inode); 1700 1701 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1702 EXT4_C2B(EXT4_SB(inode->i_sb), 1703 ext4_count_free_clusters(sb))); 1704 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1705 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1706 (long long) EXT4_C2B(EXT4_SB(sb), 1707 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1708 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1709 (long long) EXT4_C2B(EXT4_SB(sb), 1710 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1711 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1712 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1713 ei->i_reserved_data_blocks); 1714 return; 1715 } 1716 1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1718 { 1719 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1720 } 1721 1722 /* 1723 * This function is grabs code from the very beginning of 1724 * ext4_map_blocks, but assumes that the caller is from delayed write 1725 * time. This function looks up the requested blocks and sets the 1726 * buffer delay bit under the protection of i_data_sem. 1727 */ 1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1729 struct ext4_map_blocks *map, 1730 struct buffer_head *bh) 1731 { 1732 struct extent_status es; 1733 int retval; 1734 sector_t invalid_block = ~((sector_t) 0xffff); 1735 #ifdef ES_AGGRESSIVE_TEST 1736 struct ext4_map_blocks orig_map; 1737 1738 memcpy(&orig_map, map, sizeof(*map)); 1739 #endif 1740 1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1742 invalid_block = ~0; 1743 1744 map->m_flags = 0; 1745 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1746 "logical block %lu\n", inode->i_ino, map->m_len, 1747 (unsigned long) map->m_lblk); 1748 1749 /* Lookup extent status tree firstly */ 1750 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1751 if (ext4_es_is_hole(&es)) { 1752 retval = 0; 1753 down_read(&EXT4_I(inode)->i_data_sem); 1754 goto add_delayed; 1755 } 1756 1757 /* 1758 * Delayed extent could be allocated by fallocate. 1759 * So we need to check it. 1760 */ 1761 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1762 map_bh(bh, inode->i_sb, invalid_block); 1763 set_buffer_new(bh); 1764 set_buffer_delay(bh); 1765 return 0; 1766 } 1767 1768 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1769 retval = es.es_len - (iblock - es.es_lblk); 1770 if (retval > map->m_len) 1771 retval = map->m_len; 1772 map->m_len = retval; 1773 if (ext4_es_is_written(&es)) 1774 map->m_flags |= EXT4_MAP_MAPPED; 1775 else if (ext4_es_is_unwritten(&es)) 1776 map->m_flags |= EXT4_MAP_UNWRITTEN; 1777 else 1778 BUG_ON(1); 1779 1780 #ifdef ES_AGGRESSIVE_TEST 1781 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1782 #endif 1783 return retval; 1784 } 1785 1786 /* 1787 * Try to see if we can get the block without requesting a new 1788 * file system block. 1789 */ 1790 down_read(&EXT4_I(inode)->i_data_sem); 1791 if (ext4_has_inline_data(inode)) 1792 retval = 0; 1793 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1794 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1795 else 1796 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1797 1798 add_delayed: 1799 if (retval == 0) { 1800 int ret; 1801 /* 1802 * XXX: __block_prepare_write() unmaps passed block, 1803 * is it OK? 1804 */ 1805 /* 1806 * If the block was allocated from previously allocated cluster, 1807 * then we don't need to reserve it again. However we still need 1808 * to reserve metadata for every block we're going to write. 1809 */ 1810 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1811 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1812 ret = ext4_da_reserve_space(inode); 1813 if (ret) { 1814 /* not enough space to reserve */ 1815 retval = ret; 1816 goto out_unlock; 1817 } 1818 } 1819 1820 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1821 ~0, EXTENT_STATUS_DELAYED); 1822 if (ret) { 1823 retval = ret; 1824 goto out_unlock; 1825 } 1826 1827 map_bh(bh, inode->i_sb, invalid_block); 1828 set_buffer_new(bh); 1829 set_buffer_delay(bh); 1830 } else if (retval > 0) { 1831 int ret; 1832 unsigned int status; 1833 1834 if (unlikely(retval != map->m_len)) { 1835 ext4_warning(inode->i_sb, 1836 "ES len assertion failed for inode " 1837 "%lu: retval %d != map->m_len %d", 1838 inode->i_ino, retval, map->m_len); 1839 WARN_ON(1); 1840 } 1841 1842 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1843 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1844 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1845 map->m_pblk, status); 1846 if (ret != 0) 1847 retval = ret; 1848 } 1849 1850 out_unlock: 1851 up_read((&EXT4_I(inode)->i_data_sem)); 1852 1853 return retval; 1854 } 1855 1856 /* 1857 * This is a special get_block_t callback which is used by 1858 * ext4_da_write_begin(). It will either return mapped block or 1859 * reserve space for a single block. 1860 * 1861 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1862 * We also have b_blocknr = -1 and b_bdev initialized properly 1863 * 1864 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1865 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1866 * initialized properly. 1867 */ 1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1869 struct buffer_head *bh, int create) 1870 { 1871 struct ext4_map_blocks map; 1872 int ret = 0; 1873 1874 BUG_ON(create == 0); 1875 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1876 1877 map.m_lblk = iblock; 1878 map.m_len = 1; 1879 1880 /* 1881 * first, we need to know whether the block is allocated already 1882 * preallocated blocks are unmapped but should treated 1883 * the same as allocated blocks. 1884 */ 1885 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1886 if (ret <= 0) 1887 return ret; 1888 1889 map_bh(bh, inode->i_sb, map.m_pblk); 1890 ext4_update_bh_state(bh, map.m_flags); 1891 1892 if (buffer_unwritten(bh)) { 1893 /* A delayed write to unwritten bh should be marked 1894 * new and mapped. Mapped ensures that we don't do 1895 * get_block multiple times when we write to the same 1896 * offset and new ensures that we do proper zero out 1897 * for partial write. 1898 */ 1899 set_buffer_new(bh); 1900 set_buffer_mapped(bh); 1901 } 1902 return 0; 1903 } 1904 1905 static int bget_one(handle_t *handle, struct buffer_head *bh) 1906 { 1907 get_bh(bh); 1908 return 0; 1909 } 1910 1911 static int bput_one(handle_t *handle, struct buffer_head *bh) 1912 { 1913 put_bh(bh); 1914 return 0; 1915 } 1916 1917 static int __ext4_journalled_writepage(struct page *page, 1918 unsigned int len) 1919 { 1920 struct address_space *mapping = page->mapping; 1921 struct inode *inode = mapping->host; 1922 struct buffer_head *page_bufs = NULL; 1923 handle_t *handle = NULL; 1924 int ret = 0, err = 0; 1925 int inline_data = ext4_has_inline_data(inode); 1926 struct buffer_head *inode_bh = NULL; 1927 1928 ClearPageChecked(page); 1929 1930 if (inline_data) { 1931 BUG_ON(page->index != 0); 1932 BUG_ON(len > ext4_get_max_inline_size(inode)); 1933 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1934 if (inode_bh == NULL) 1935 goto out; 1936 } else { 1937 page_bufs = page_buffers(page); 1938 if (!page_bufs) { 1939 BUG(); 1940 goto out; 1941 } 1942 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1943 NULL, bget_one); 1944 } 1945 /* 1946 * We need to release the page lock before we start the 1947 * journal, so grab a reference so the page won't disappear 1948 * out from under us. 1949 */ 1950 get_page(page); 1951 unlock_page(page); 1952 1953 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1954 ext4_writepage_trans_blocks(inode)); 1955 if (IS_ERR(handle)) { 1956 ret = PTR_ERR(handle); 1957 put_page(page); 1958 goto out_no_pagelock; 1959 } 1960 BUG_ON(!ext4_handle_valid(handle)); 1961 1962 lock_page(page); 1963 put_page(page); 1964 if (page->mapping != mapping) { 1965 /* The page got truncated from under us */ 1966 ext4_journal_stop(handle); 1967 ret = 0; 1968 goto out; 1969 } 1970 1971 if (inline_data) { 1972 BUFFER_TRACE(inode_bh, "get write access"); 1973 ret = ext4_journal_get_write_access(handle, inode_bh); 1974 1975 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1976 1977 } else { 1978 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1979 do_journal_get_write_access); 1980 1981 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1982 write_end_fn); 1983 } 1984 if (ret == 0) 1985 ret = err; 1986 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1987 err = ext4_journal_stop(handle); 1988 if (!ret) 1989 ret = err; 1990 1991 if (!ext4_has_inline_data(inode)) 1992 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1993 NULL, bput_one); 1994 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1995 out: 1996 unlock_page(page); 1997 out_no_pagelock: 1998 brelse(inode_bh); 1999 return ret; 2000 } 2001 2002 /* 2003 * Note that we don't need to start a transaction unless we're journaling data 2004 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2005 * need to file the inode to the transaction's list in ordered mode because if 2006 * we are writing back data added by write(), the inode is already there and if 2007 * we are writing back data modified via mmap(), no one guarantees in which 2008 * transaction the data will hit the disk. In case we are journaling data, we 2009 * cannot start transaction directly because transaction start ranks above page 2010 * lock so we have to do some magic. 2011 * 2012 * This function can get called via... 2013 * - ext4_writepages after taking page lock (have journal handle) 2014 * - journal_submit_inode_data_buffers (no journal handle) 2015 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2016 * - grab_page_cache when doing write_begin (have journal handle) 2017 * 2018 * We don't do any block allocation in this function. If we have page with 2019 * multiple blocks we need to write those buffer_heads that are mapped. This 2020 * is important for mmaped based write. So if we do with blocksize 1K 2021 * truncate(f, 1024); 2022 * a = mmap(f, 0, 4096); 2023 * a[0] = 'a'; 2024 * truncate(f, 4096); 2025 * we have in the page first buffer_head mapped via page_mkwrite call back 2026 * but other buffer_heads would be unmapped but dirty (dirty done via the 2027 * do_wp_page). So writepage should write the first block. If we modify 2028 * the mmap area beyond 1024 we will again get a page_fault and the 2029 * page_mkwrite callback will do the block allocation and mark the 2030 * buffer_heads mapped. 2031 * 2032 * We redirty the page if we have any buffer_heads that is either delay or 2033 * unwritten in the page. 2034 * 2035 * We can get recursively called as show below. 2036 * 2037 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2038 * ext4_writepage() 2039 * 2040 * But since we don't do any block allocation we should not deadlock. 2041 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2042 */ 2043 static int ext4_writepage(struct page *page, 2044 struct writeback_control *wbc) 2045 { 2046 int ret = 0; 2047 loff_t size; 2048 unsigned int len; 2049 struct buffer_head *page_bufs = NULL; 2050 struct inode *inode = page->mapping->host; 2051 struct ext4_io_submit io_submit; 2052 bool keep_towrite = false; 2053 2054 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2055 ext4_invalidatepage(page, 0, PAGE_SIZE); 2056 unlock_page(page); 2057 return -EIO; 2058 } 2059 2060 trace_ext4_writepage(page); 2061 size = i_size_read(inode); 2062 if (page->index == size >> PAGE_SHIFT) 2063 len = size & ~PAGE_MASK; 2064 else 2065 len = PAGE_SIZE; 2066 2067 page_bufs = page_buffers(page); 2068 /* 2069 * We cannot do block allocation or other extent handling in this 2070 * function. If there are buffers needing that, we have to redirty 2071 * the page. But we may reach here when we do a journal commit via 2072 * journal_submit_inode_data_buffers() and in that case we must write 2073 * allocated buffers to achieve data=ordered mode guarantees. 2074 * 2075 * Also, if there is only one buffer per page (the fs block 2076 * size == the page size), if one buffer needs block 2077 * allocation or needs to modify the extent tree to clear the 2078 * unwritten flag, we know that the page can't be written at 2079 * all, so we might as well refuse the write immediately. 2080 * Unfortunately if the block size != page size, we can't as 2081 * easily detect this case using ext4_walk_page_buffers(), but 2082 * for the extremely common case, this is an optimization that 2083 * skips a useless round trip through ext4_bio_write_page(). 2084 */ 2085 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2086 ext4_bh_delay_or_unwritten)) { 2087 redirty_page_for_writepage(wbc, page); 2088 if ((current->flags & PF_MEMALLOC) || 2089 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2090 /* 2091 * For memory cleaning there's no point in writing only 2092 * some buffers. So just bail out. Warn if we came here 2093 * from direct reclaim. 2094 */ 2095 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2096 == PF_MEMALLOC); 2097 unlock_page(page); 2098 return 0; 2099 } 2100 keep_towrite = true; 2101 } 2102 2103 if (PageChecked(page) && ext4_should_journal_data(inode)) 2104 /* 2105 * It's mmapped pagecache. Add buffers and journal it. There 2106 * doesn't seem much point in redirtying the page here. 2107 */ 2108 return __ext4_journalled_writepage(page, len); 2109 2110 ext4_io_submit_init(&io_submit, wbc); 2111 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2112 if (!io_submit.io_end) { 2113 redirty_page_for_writepage(wbc, page); 2114 unlock_page(page); 2115 return -ENOMEM; 2116 } 2117 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2118 ext4_io_submit(&io_submit); 2119 /* Drop io_end reference we got from init */ 2120 ext4_put_io_end_defer(io_submit.io_end); 2121 return ret; 2122 } 2123 2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2125 { 2126 int len; 2127 loff_t size; 2128 int err; 2129 2130 BUG_ON(page->index != mpd->first_page); 2131 clear_page_dirty_for_io(page); 2132 /* 2133 * We have to be very careful here! Nothing protects writeback path 2134 * against i_size changes and the page can be writeably mapped into 2135 * page tables. So an application can be growing i_size and writing 2136 * data through mmap while writeback runs. clear_page_dirty_for_io() 2137 * write-protects our page in page tables and the page cannot get 2138 * written to again until we release page lock. So only after 2139 * clear_page_dirty_for_io() we are safe to sample i_size for 2140 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2141 * on the barrier provided by TestClearPageDirty in 2142 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2143 * after page tables are updated. 2144 */ 2145 size = i_size_read(mpd->inode); 2146 if (page->index == size >> PAGE_SHIFT) 2147 len = size & ~PAGE_MASK; 2148 else 2149 len = PAGE_SIZE; 2150 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2151 if (!err) 2152 mpd->wbc->nr_to_write--; 2153 mpd->first_page++; 2154 2155 return err; 2156 } 2157 2158 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2159 2160 /* 2161 * mballoc gives us at most this number of blocks... 2162 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2163 * The rest of mballoc seems to handle chunks up to full group size. 2164 */ 2165 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2166 2167 /* 2168 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2169 * 2170 * @mpd - extent of blocks 2171 * @lblk - logical number of the block in the file 2172 * @bh - buffer head we want to add to the extent 2173 * 2174 * The function is used to collect contig. blocks in the same state. If the 2175 * buffer doesn't require mapping for writeback and we haven't started the 2176 * extent of buffers to map yet, the function returns 'true' immediately - the 2177 * caller can write the buffer right away. Otherwise the function returns true 2178 * if the block has been added to the extent, false if the block couldn't be 2179 * added. 2180 */ 2181 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2182 struct buffer_head *bh) 2183 { 2184 struct ext4_map_blocks *map = &mpd->map; 2185 2186 /* Buffer that doesn't need mapping for writeback? */ 2187 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2188 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2189 /* So far no extent to map => we write the buffer right away */ 2190 if (map->m_len == 0) 2191 return true; 2192 return false; 2193 } 2194 2195 /* First block in the extent? */ 2196 if (map->m_len == 0) { 2197 /* We cannot map unless handle is started... */ 2198 if (!mpd->do_map) 2199 return false; 2200 map->m_lblk = lblk; 2201 map->m_len = 1; 2202 map->m_flags = bh->b_state & BH_FLAGS; 2203 return true; 2204 } 2205 2206 /* Don't go larger than mballoc is willing to allocate */ 2207 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2208 return false; 2209 2210 /* Can we merge the block to our big extent? */ 2211 if (lblk == map->m_lblk + map->m_len && 2212 (bh->b_state & BH_FLAGS) == map->m_flags) { 2213 map->m_len++; 2214 return true; 2215 } 2216 return false; 2217 } 2218 2219 /* 2220 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2221 * 2222 * @mpd - extent of blocks for mapping 2223 * @head - the first buffer in the page 2224 * @bh - buffer we should start processing from 2225 * @lblk - logical number of the block in the file corresponding to @bh 2226 * 2227 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2228 * the page for IO if all buffers in this page were mapped and there's no 2229 * accumulated extent of buffers to map or add buffers in the page to the 2230 * extent of buffers to map. The function returns 1 if the caller can continue 2231 * by processing the next page, 0 if it should stop adding buffers to the 2232 * extent to map because we cannot extend it anymore. It can also return value 2233 * < 0 in case of error during IO submission. 2234 */ 2235 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2236 struct buffer_head *head, 2237 struct buffer_head *bh, 2238 ext4_lblk_t lblk) 2239 { 2240 struct inode *inode = mpd->inode; 2241 int err; 2242 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2243 >> inode->i_blkbits; 2244 2245 do { 2246 BUG_ON(buffer_locked(bh)); 2247 2248 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2249 /* Found extent to map? */ 2250 if (mpd->map.m_len) 2251 return 0; 2252 /* Buffer needs mapping and handle is not started? */ 2253 if (!mpd->do_map) 2254 return 0; 2255 /* Everything mapped so far and we hit EOF */ 2256 break; 2257 } 2258 } while (lblk++, (bh = bh->b_this_page) != head); 2259 /* So far everything mapped? Submit the page for IO. */ 2260 if (mpd->map.m_len == 0) { 2261 err = mpage_submit_page(mpd, head->b_page); 2262 if (err < 0) 2263 return err; 2264 } 2265 return lblk < blocks; 2266 } 2267 2268 /* 2269 * mpage_map_buffers - update buffers corresponding to changed extent and 2270 * submit fully mapped pages for IO 2271 * 2272 * @mpd - description of extent to map, on return next extent to map 2273 * 2274 * Scan buffers corresponding to changed extent (we expect corresponding pages 2275 * to be already locked) and update buffer state according to new extent state. 2276 * We map delalloc buffers to their physical location, clear unwritten bits, 2277 * and mark buffers as uninit when we perform writes to unwritten extents 2278 * and do extent conversion after IO is finished. If the last page is not fully 2279 * mapped, we update @map to the next extent in the last page that needs 2280 * mapping. Otherwise we submit the page for IO. 2281 */ 2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2283 { 2284 struct pagevec pvec; 2285 int nr_pages, i; 2286 struct inode *inode = mpd->inode; 2287 struct buffer_head *head, *bh; 2288 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2289 pgoff_t start, end; 2290 ext4_lblk_t lblk; 2291 sector_t pblock; 2292 int err; 2293 2294 start = mpd->map.m_lblk >> bpp_bits; 2295 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2296 lblk = start << bpp_bits; 2297 pblock = mpd->map.m_pblk; 2298 2299 pagevec_init(&pvec, 0); 2300 while (start <= end) { 2301 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2302 PAGEVEC_SIZE); 2303 if (nr_pages == 0) 2304 break; 2305 for (i = 0; i < nr_pages; i++) { 2306 struct page *page = pvec.pages[i]; 2307 2308 if (page->index > end) 2309 break; 2310 /* Up to 'end' pages must be contiguous */ 2311 BUG_ON(page->index != start); 2312 bh = head = page_buffers(page); 2313 do { 2314 if (lblk < mpd->map.m_lblk) 2315 continue; 2316 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2317 /* 2318 * Buffer after end of mapped extent. 2319 * Find next buffer in the page to map. 2320 */ 2321 mpd->map.m_len = 0; 2322 mpd->map.m_flags = 0; 2323 /* 2324 * FIXME: If dioread_nolock supports 2325 * blocksize < pagesize, we need to make 2326 * sure we add size mapped so far to 2327 * io_end->size as the following call 2328 * can submit the page for IO. 2329 */ 2330 err = mpage_process_page_bufs(mpd, head, 2331 bh, lblk); 2332 pagevec_release(&pvec); 2333 if (err > 0) 2334 err = 0; 2335 return err; 2336 } 2337 if (buffer_delay(bh)) { 2338 clear_buffer_delay(bh); 2339 bh->b_blocknr = pblock++; 2340 } 2341 clear_buffer_unwritten(bh); 2342 } while (lblk++, (bh = bh->b_this_page) != head); 2343 2344 /* 2345 * FIXME: This is going to break if dioread_nolock 2346 * supports blocksize < pagesize as we will try to 2347 * convert potentially unmapped parts of inode. 2348 */ 2349 mpd->io_submit.io_end->size += PAGE_SIZE; 2350 /* Page fully mapped - let IO run! */ 2351 err = mpage_submit_page(mpd, page); 2352 if (err < 0) { 2353 pagevec_release(&pvec); 2354 return err; 2355 } 2356 start++; 2357 } 2358 pagevec_release(&pvec); 2359 } 2360 /* Extent fully mapped and matches with page boundary. We are done. */ 2361 mpd->map.m_len = 0; 2362 mpd->map.m_flags = 0; 2363 return 0; 2364 } 2365 2366 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2367 { 2368 struct inode *inode = mpd->inode; 2369 struct ext4_map_blocks *map = &mpd->map; 2370 int get_blocks_flags; 2371 int err, dioread_nolock; 2372 2373 trace_ext4_da_write_pages_extent(inode, map); 2374 /* 2375 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2376 * to convert an unwritten extent to be initialized (in the case 2377 * where we have written into one or more preallocated blocks). It is 2378 * possible that we're going to need more metadata blocks than 2379 * previously reserved. However we must not fail because we're in 2380 * writeback and there is nothing we can do about it so it might result 2381 * in data loss. So use reserved blocks to allocate metadata if 2382 * possible. 2383 * 2384 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2385 * the blocks in question are delalloc blocks. This indicates 2386 * that the blocks and quotas has already been checked when 2387 * the data was copied into the page cache. 2388 */ 2389 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2390 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2391 EXT4_GET_BLOCKS_IO_SUBMIT; 2392 dioread_nolock = ext4_should_dioread_nolock(inode); 2393 if (dioread_nolock) 2394 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2395 if (map->m_flags & (1 << BH_Delay)) 2396 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2397 2398 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2399 if (err < 0) 2400 return err; 2401 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2402 if (!mpd->io_submit.io_end->handle && 2403 ext4_handle_valid(handle)) { 2404 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2405 handle->h_rsv_handle = NULL; 2406 } 2407 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2408 } 2409 2410 BUG_ON(map->m_len == 0); 2411 if (map->m_flags & EXT4_MAP_NEW) { 2412 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2413 map->m_len); 2414 } 2415 return 0; 2416 } 2417 2418 /* 2419 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2420 * mpd->len and submit pages underlying it for IO 2421 * 2422 * @handle - handle for journal operations 2423 * @mpd - extent to map 2424 * @give_up_on_write - we set this to true iff there is a fatal error and there 2425 * is no hope of writing the data. The caller should discard 2426 * dirty pages to avoid infinite loops. 2427 * 2428 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2429 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2430 * them to initialized or split the described range from larger unwritten 2431 * extent. Note that we need not map all the described range since allocation 2432 * can return less blocks or the range is covered by more unwritten extents. We 2433 * cannot map more because we are limited by reserved transaction credits. On 2434 * the other hand we always make sure that the last touched page is fully 2435 * mapped so that it can be written out (and thus forward progress is 2436 * guaranteed). After mapping we submit all mapped pages for IO. 2437 */ 2438 static int mpage_map_and_submit_extent(handle_t *handle, 2439 struct mpage_da_data *mpd, 2440 bool *give_up_on_write) 2441 { 2442 struct inode *inode = mpd->inode; 2443 struct ext4_map_blocks *map = &mpd->map; 2444 int err; 2445 loff_t disksize; 2446 int progress = 0; 2447 2448 mpd->io_submit.io_end->offset = 2449 ((loff_t)map->m_lblk) << inode->i_blkbits; 2450 do { 2451 err = mpage_map_one_extent(handle, mpd); 2452 if (err < 0) { 2453 struct super_block *sb = inode->i_sb; 2454 2455 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2456 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2457 goto invalidate_dirty_pages; 2458 /* 2459 * Let the uper layers retry transient errors. 2460 * In the case of ENOSPC, if ext4_count_free_blocks() 2461 * is non-zero, a commit should free up blocks. 2462 */ 2463 if ((err == -ENOMEM) || 2464 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2465 if (progress) 2466 goto update_disksize; 2467 return err; 2468 } 2469 ext4_msg(sb, KERN_CRIT, 2470 "Delayed block allocation failed for " 2471 "inode %lu at logical offset %llu with" 2472 " max blocks %u with error %d", 2473 inode->i_ino, 2474 (unsigned long long)map->m_lblk, 2475 (unsigned)map->m_len, -err); 2476 ext4_msg(sb, KERN_CRIT, 2477 "This should not happen!! Data will " 2478 "be lost\n"); 2479 if (err == -ENOSPC) 2480 ext4_print_free_blocks(inode); 2481 invalidate_dirty_pages: 2482 *give_up_on_write = true; 2483 return err; 2484 } 2485 progress = 1; 2486 /* 2487 * Update buffer state, submit mapped pages, and get us new 2488 * extent to map 2489 */ 2490 err = mpage_map_and_submit_buffers(mpd); 2491 if (err < 0) 2492 goto update_disksize; 2493 } while (map->m_len); 2494 2495 update_disksize: 2496 /* 2497 * Update on-disk size after IO is submitted. Races with 2498 * truncate are avoided by checking i_size under i_data_sem. 2499 */ 2500 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2501 if (disksize > EXT4_I(inode)->i_disksize) { 2502 int err2; 2503 loff_t i_size; 2504 2505 down_write(&EXT4_I(inode)->i_data_sem); 2506 i_size = i_size_read(inode); 2507 if (disksize > i_size) 2508 disksize = i_size; 2509 if (disksize > EXT4_I(inode)->i_disksize) 2510 EXT4_I(inode)->i_disksize = disksize; 2511 up_write(&EXT4_I(inode)->i_data_sem); 2512 err2 = ext4_mark_inode_dirty(handle, inode); 2513 if (err2) 2514 ext4_error(inode->i_sb, 2515 "Failed to mark inode %lu dirty", 2516 inode->i_ino); 2517 if (!err) 2518 err = err2; 2519 } 2520 return err; 2521 } 2522 2523 /* 2524 * Calculate the total number of credits to reserve for one writepages 2525 * iteration. This is called from ext4_writepages(). We map an extent of 2526 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2527 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2528 * bpp - 1 blocks in bpp different extents. 2529 */ 2530 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2531 { 2532 int bpp = ext4_journal_blocks_per_page(inode); 2533 2534 return ext4_meta_trans_blocks(inode, 2535 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2536 } 2537 2538 /* 2539 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2540 * and underlying extent to map 2541 * 2542 * @mpd - where to look for pages 2543 * 2544 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2545 * IO immediately. When we find a page which isn't mapped we start accumulating 2546 * extent of buffers underlying these pages that needs mapping (formed by 2547 * either delayed or unwritten buffers). We also lock the pages containing 2548 * these buffers. The extent found is returned in @mpd structure (starting at 2549 * mpd->lblk with length mpd->len blocks). 2550 * 2551 * Note that this function can attach bios to one io_end structure which are 2552 * neither logically nor physically contiguous. Although it may seem as an 2553 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2554 * case as we need to track IO to all buffers underlying a page in one io_end. 2555 */ 2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2557 { 2558 struct address_space *mapping = mpd->inode->i_mapping; 2559 struct pagevec pvec; 2560 unsigned int nr_pages; 2561 long left = mpd->wbc->nr_to_write; 2562 pgoff_t index = mpd->first_page; 2563 pgoff_t end = mpd->last_page; 2564 int tag; 2565 int i, err = 0; 2566 int blkbits = mpd->inode->i_blkbits; 2567 ext4_lblk_t lblk; 2568 struct buffer_head *head; 2569 2570 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2571 tag = PAGECACHE_TAG_TOWRITE; 2572 else 2573 tag = PAGECACHE_TAG_DIRTY; 2574 2575 pagevec_init(&pvec, 0); 2576 mpd->map.m_len = 0; 2577 mpd->next_page = index; 2578 while (index <= end) { 2579 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2580 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2581 if (nr_pages == 0) 2582 goto out; 2583 2584 for (i = 0; i < nr_pages; i++) { 2585 struct page *page = pvec.pages[i]; 2586 2587 /* 2588 * At this point, the page may be truncated or 2589 * invalidated (changing page->mapping to NULL), or 2590 * even swizzled back from swapper_space to tmpfs file 2591 * mapping. However, page->index will not change 2592 * because we have a reference on the page. 2593 */ 2594 if (page->index > end) 2595 goto out; 2596 2597 /* 2598 * Accumulated enough dirty pages? This doesn't apply 2599 * to WB_SYNC_ALL mode. For integrity sync we have to 2600 * keep going because someone may be concurrently 2601 * dirtying pages, and we might have synced a lot of 2602 * newly appeared dirty pages, but have not synced all 2603 * of the old dirty pages. 2604 */ 2605 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2606 goto out; 2607 2608 /* If we can't merge this page, we are done. */ 2609 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2610 goto out; 2611 2612 lock_page(page); 2613 /* 2614 * If the page is no longer dirty, or its mapping no 2615 * longer corresponds to inode we are writing (which 2616 * means it has been truncated or invalidated), or the 2617 * page is already under writeback and we are not doing 2618 * a data integrity writeback, skip the page 2619 */ 2620 if (!PageDirty(page) || 2621 (PageWriteback(page) && 2622 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2623 unlikely(page->mapping != mapping)) { 2624 unlock_page(page); 2625 continue; 2626 } 2627 2628 wait_on_page_writeback(page); 2629 BUG_ON(PageWriteback(page)); 2630 2631 if (mpd->map.m_len == 0) 2632 mpd->first_page = page->index; 2633 mpd->next_page = page->index + 1; 2634 /* Add all dirty buffers to mpd */ 2635 lblk = ((ext4_lblk_t)page->index) << 2636 (PAGE_SHIFT - blkbits); 2637 head = page_buffers(page); 2638 err = mpage_process_page_bufs(mpd, head, head, lblk); 2639 if (err <= 0) 2640 goto out; 2641 err = 0; 2642 left--; 2643 } 2644 pagevec_release(&pvec); 2645 cond_resched(); 2646 } 2647 return 0; 2648 out: 2649 pagevec_release(&pvec); 2650 return err; 2651 } 2652 2653 static int __writepage(struct page *page, struct writeback_control *wbc, 2654 void *data) 2655 { 2656 struct address_space *mapping = data; 2657 int ret = ext4_writepage(page, wbc); 2658 mapping_set_error(mapping, ret); 2659 return ret; 2660 } 2661 2662 static int ext4_writepages(struct address_space *mapping, 2663 struct writeback_control *wbc) 2664 { 2665 pgoff_t writeback_index = 0; 2666 long nr_to_write = wbc->nr_to_write; 2667 int range_whole = 0; 2668 int cycled = 1; 2669 handle_t *handle = NULL; 2670 struct mpage_da_data mpd; 2671 struct inode *inode = mapping->host; 2672 int needed_blocks, rsv_blocks = 0, ret = 0; 2673 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2674 bool done; 2675 struct blk_plug plug; 2676 bool give_up_on_write = false; 2677 2678 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2679 return -EIO; 2680 2681 percpu_down_read(&sbi->s_journal_flag_rwsem); 2682 trace_ext4_writepages(inode, wbc); 2683 2684 if (dax_mapping(mapping)) { 2685 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2686 wbc); 2687 goto out_writepages; 2688 } 2689 2690 /* 2691 * No pages to write? This is mainly a kludge to avoid starting 2692 * a transaction for special inodes like journal inode on last iput() 2693 * because that could violate lock ordering on umount 2694 */ 2695 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2696 goto out_writepages; 2697 2698 if (ext4_should_journal_data(inode)) { 2699 struct blk_plug plug; 2700 2701 blk_start_plug(&plug); 2702 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2703 blk_finish_plug(&plug); 2704 goto out_writepages; 2705 } 2706 2707 /* 2708 * If the filesystem has aborted, it is read-only, so return 2709 * right away instead of dumping stack traces later on that 2710 * will obscure the real source of the problem. We test 2711 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2712 * the latter could be true if the filesystem is mounted 2713 * read-only, and in that case, ext4_writepages should 2714 * *never* be called, so if that ever happens, we would want 2715 * the stack trace. 2716 */ 2717 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2718 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2719 ret = -EROFS; 2720 goto out_writepages; 2721 } 2722 2723 if (ext4_should_dioread_nolock(inode)) { 2724 /* 2725 * We may need to convert up to one extent per block in 2726 * the page and we may dirty the inode. 2727 */ 2728 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2729 } 2730 2731 /* 2732 * If we have inline data and arrive here, it means that 2733 * we will soon create the block for the 1st page, so 2734 * we'd better clear the inline data here. 2735 */ 2736 if (ext4_has_inline_data(inode)) { 2737 /* Just inode will be modified... */ 2738 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2739 if (IS_ERR(handle)) { 2740 ret = PTR_ERR(handle); 2741 goto out_writepages; 2742 } 2743 BUG_ON(ext4_test_inode_state(inode, 2744 EXT4_STATE_MAY_INLINE_DATA)); 2745 ext4_destroy_inline_data(handle, inode); 2746 ext4_journal_stop(handle); 2747 } 2748 2749 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2750 range_whole = 1; 2751 2752 if (wbc->range_cyclic) { 2753 writeback_index = mapping->writeback_index; 2754 if (writeback_index) 2755 cycled = 0; 2756 mpd.first_page = writeback_index; 2757 mpd.last_page = -1; 2758 } else { 2759 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2760 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2761 } 2762 2763 mpd.inode = inode; 2764 mpd.wbc = wbc; 2765 ext4_io_submit_init(&mpd.io_submit, wbc); 2766 retry: 2767 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2768 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2769 done = false; 2770 blk_start_plug(&plug); 2771 2772 /* 2773 * First writeback pages that don't need mapping - we can avoid 2774 * starting a transaction unnecessarily and also avoid being blocked 2775 * in the block layer on device congestion while having transaction 2776 * started. 2777 */ 2778 mpd.do_map = 0; 2779 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2780 if (!mpd.io_submit.io_end) { 2781 ret = -ENOMEM; 2782 goto unplug; 2783 } 2784 ret = mpage_prepare_extent_to_map(&mpd); 2785 /* Submit prepared bio */ 2786 ext4_io_submit(&mpd.io_submit); 2787 ext4_put_io_end_defer(mpd.io_submit.io_end); 2788 mpd.io_submit.io_end = NULL; 2789 /* Unlock pages we didn't use */ 2790 mpage_release_unused_pages(&mpd, false); 2791 if (ret < 0) 2792 goto unplug; 2793 2794 while (!done && mpd.first_page <= mpd.last_page) { 2795 /* For each extent of pages we use new io_end */ 2796 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2797 if (!mpd.io_submit.io_end) { 2798 ret = -ENOMEM; 2799 break; 2800 } 2801 2802 /* 2803 * We have two constraints: We find one extent to map and we 2804 * must always write out whole page (makes a difference when 2805 * blocksize < pagesize) so that we don't block on IO when we 2806 * try to write out the rest of the page. Journalled mode is 2807 * not supported by delalloc. 2808 */ 2809 BUG_ON(ext4_should_journal_data(inode)); 2810 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2811 2812 /* start a new transaction */ 2813 handle = ext4_journal_start_with_reserve(inode, 2814 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2815 if (IS_ERR(handle)) { 2816 ret = PTR_ERR(handle); 2817 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2818 "%ld pages, ino %lu; err %d", __func__, 2819 wbc->nr_to_write, inode->i_ino, ret); 2820 /* Release allocated io_end */ 2821 ext4_put_io_end(mpd.io_submit.io_end); 2822 mpd.io_submit.io_end = NULL; 2823 break; 2824 } 2825 mpd.do_map = 1; 2826 2827 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2828 ret = mpage_prepare_extent_to_map(&mpd); 2829 if (!ret) { 2830 if (mpd.map.m_len) 2831 ret = mpage_map_and_submit_extent(handle, &mpd, 2832 &give_up_on_write); 2833 else { 2834 /* 2835 * We scanned the whole range (or exhausted 2836 * nr_to_write), submitted what was mapped and 2837 * didn't find anything needing mapping. We are 2838 * done. 2839 */ 2840 done = true; 2841 } 2842 } 2843 /* 2844 * Caution: If the handle is synchronous, 2845 * ext4_journal_stop() can wait for transaction commit 2846 * to finish which may depend on writeback of pages to 2847 * complete or on page lock to be released. In that 2848 * case, we have to wait until after after we have 2849 * submitted all the IO, released page locks we hold, 2850 * and dropped io_end reference (for extent conversion 2851 * to be able to complete) before stopping the handle. 2852 */ 2853 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2854 ext4_journal_stop(handle); 2855 handle = NULL; 2856 mpd.do_map = 0; 2857 } 2858 /* Submit prepared bio */ 2859 ext4_io_submit(&mpd.io_submit); 2860 /* Unlock pages we didn't use */ 2861 mpage_release_unused_pages(&mpd, give_up_on_write); 2862 /* 2863 * Drop our io_end reference we got from init. We have 2864 * to be careful and use deferred io_end finishing if 2865 * we are still holding the transaction as we can 2866 * release the last reference to io_end which may end 2867 * up doing unwritten extent conversion. 2868 */ 2869 if (handle) { 2870 ext4_put_io_end_defer(mpd.io_submit.io_end); 2871 ext4_journal_stop(handle); 2872 } else 2873 ext4_put_io_end(mpd.io_submit.io_end); 2874 mpd.io_submit.io_end = NULL; 2875 2876 if (ret == -ENOSPC && sbi->s_journal) { 2877 /* 2878 * Commit the transaction which would 2879 * free blocks released in the transaction 2880 * and try again 2881 */ 2882 jbd2_journal_force_commit_nested(sbi->s_journal); 2883 ret = 0; 2884 continue; 2885 } 2886 /* Fatal error - ENOMEM, EIO... */ 2887 if (ret) 2888 break; 2889 } 2890 unplug: 2891 blk_finish_plug(&plug); 2892 if (!ret && !cycled && wbc->nr_to_write > 0) { 2893 cycled = 1; 2894 mpd.last_page = writeback_index - 1; 2895 mpd.first_page = 0; 2896 goto retry; 2897 } 2898 2899 /* Update index */ 2900 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2901 /* 2902 * Set the writeback_index so that range_cyclic 2903 * mode will write it back later 2904 */ 2905 mapping->writeback_index = mpd.first_page; 2906 2907 out_writepages: 2908 trace_ext4_writepages_result(inode, wbc, ret, 2909 nr_to_write - wbc->nr_to_write); 2910 percpu_up_read(&sbi->s_journal_flag_rwsem); 2911 return ret; 2912 } 2913 2914 static int ext4_nonda_switch(struct super_block *sb) 2915 { 2916 s64 free_clusters, dirty_clusters; 2917 struct ext4_sb_info *sbi = EXT4_SB(sb); 2918 2919 /* 2920 * switch to non delalloc mode if we are running low 2921 * on free block. The free block accounting via percpu 2922 * counters can get slightly wrong with percpu_counter_batch getting 2923 * accumulated on each CPU without updating global counters 2924 * Delalloc need an accurate free block accounting. So switch 2925 * to non delalloc when we are near to error range. 2926 */ 2927 free_clusters = 2928 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2929 dirty_clusters = 2930 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2931 /* 2932 * Start pushing delalloc when 1/2 of free blocks are dirty. 2933 */ 2934 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2935 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2936 2937 if (2 * free_clusters < 3 * dirty_clusters || 2938 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2939 /* 2940 * free block count is less than 150% of dirty blocks 2941 * or free blocks is less than watermark 2942 */ 2943 return 1; 2944 } 2945 return 0; 2946 } 2947 2948 /* We always reserve for an inode update; the superblock could be there too */ 2949 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2950 { 2951 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2952 return 1; 2953 2954 if (pos + len <= 0x7fffffffULL) 2955 return 1; 2956 2957 /* We might need to update the superblock to set LARGE_FILE */ 2958 return 2; 2959 } 2960 2961 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2962 loff_t pos, unsigned len, unsigned flags, 2963 struct page **pagep, void **fsdata) 2964 { 2965 int ret, retries = 0; 2966 struct page *page; 2967 pgoff_t index; 2968 struct inode *inode = mapping->host; 2969 handle_t *handle; 2970 2971 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2972 return -EIO; 2973 2974 index = pos >> PAGE_SHIFT; 2975 2976 if (ext4_nonda_switch(inode->i_sb) || 2977 S_ISLNK(inode->i_mode)) { 2978 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2979 return ext4_write_begin(file, mapping, pos, 2980 len, flags, pagep, fsdata); 2981 } 2982 *fsdata = (void *)0; 2983 trace_ext4_da_write_begin(inode, pos, len, flags); 2984 2985 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2986 ret = ext4_da_write_inline_data_begin(mapping, inode, 2987 pos, len, flags, 2988 pagep, fsdata); 2989 if (ret < 0) 2990 return ret; 2991 if (ret == 1) 2992 return 0; 2993 } 2994 2995 /* 2996 * grab_cache_page_write_begin() can take a long time if the 2997 * system is thrashing due to memory pressure, or if the page 2998 * is being written back. So grab it first before we start 2999 * the transaction handle. This also allows us to allocate 3000 * the page (if needed) without using GFP_NOFS. 3001 */ 3002 retry_grab: 3003 page = grab_cache_page_write_begin(mapping, index, flags); 3004 if (!page) 3005 return -ENOMEM; 3006 unlock_page(page); 3007 3008 /* 3009 * With delayed allocation, we don't log the i_disksize update 3010 * if there is delayed block allocation. But we still need 3011 * to journalling the i_disksize update if writes to the end 3012 * of file which has an already mapped buffer. 3013 */ 3014 retry_journal: 3015 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3016 ext4_da_write_credits(inode, pos, len)); 3017 if (IS_ERR(handle)) { 3018 put_page(page); 3019 return PTR_ERR(handle); 3020 } 3021 3022 lock_page(page); 3023 if (page->mapping != mapping) { 3024 /* The page got truncated from under us */ 3025 unlock_page(page); 3026 put_page(page); 3027 ext4_journal_stop(handle); 3028 goto retry_grab; 3029 } 3030 /* In case writeback began while the page was unlocked */ 3031 wait_for_stable_page(page); 3032 3033 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3034 ret = ext4_block_write_begin(page, pos, len, 3035 ext4_da_get_block_prep); 3036 #else 3037 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3038 #endif 3039 if (ret < 0) { 3040 unlock_page(page); 3041 ext4_journal_stop(handle); 3042 /* 3043 * block_write_begin may have instantiated a few blocks 3044 * outside i_size. Trim these off again. Don't need 3045 * i_size_read because we hold i_mutex. 3046 */ 3047 if (pos + len > inode->i_size) 3048 ext4_truncate_failed_write(inode); 3049 3050 if (ret == -ENOSPC && 3051 ext4_should_retry_alloc(inode->i_sb, &retries)) 3052 goto retry_journal; 3053 3054 put_page(page); 3055 return ret; 3056 } 3057 3058 *pagep = page; 3059 return ret; 3060 } 3061 3062 /* 3063 * Check if we should update i_disksize 3064 * when write to the end of file but not require block allocation 3065 */ 3066 static int ext4_da_should_update_i_disksize(struct page *page, 3067 unsigned long offset) 3068 { 3069 struct buffer_head *bh; 3070 struct inode *inode = page->mapping->host; 3071 unsigned int idx; 3072 int i; 3073 3074 bh = page_buffers(page); 3075 idx = offset >> inode->i_blkbits; 3076 3077 for (i = 0; i < idx; i++) 3078 bh = bh->b_this_page; 3079 3080 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3081 return 0; 3082 return 1; 3083 } 3084 3085 static int ext4_da_write_end(struct file *file, 3086 struct address_space *mapping, 3087 loff_t pos, unsigned len, unsigned copied, 3088 struct page *page, void *fsdata) 3089 { 3090 struct inode *inode = mapping->host; 3091 int ret = 0, ret2; 3092 handle_t *handle = ext4_journal_current_handle(); 3093 loff_t new_i_size; 3094 unsigned long start, end; 3095 int write_mode = (int)(unsigned long)fsdata; 3096 3097 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3098 return ext4_write_end(file, mapping, pos, 3099 len, copied, page, fsdata); 3100 3101 trace_ext4_da_write_end(inode, pos, len, copied); 3102 start = pos & (PAGE_SIZE - 1); 3103 end = start + copied - 1; 3104 3105 /* 3106 * generic_write_end() will run mark_inode_dirty() if i_size 3107 * changes. So let's piggyback the i_disksize mark_inode_dirty 3108 * into that. 3109 */ 3110 new_i_size = pos + copied; 3111 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3112 if (ext4_has_inline_data(inode) || 3113 ext4_da_should_update_i_disksize(page, end)) { 3114 ext4_update_i_disksize(inode, new_i_size); 3115 /* We need to mark inode dirty even if 3116 * new_i_size is less that inode->i_size 3117 * bu greater than i_disksize.(hint delalloc) 3118 */ 3119 ext4_mark_inode_dirty(handle, inode); 3120 } 3121 } 3122 3123 if (write_mode != CONVERT_INLINE_DATA && 3124 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3125 ext4_has_inline_data(inode)) 3126 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3127 page); 3128 else 3129 ret2 = generic_write_end(file, mapping, pos, len, copied, 3130 page, fsdata); 3131 3132 copied = ret2; 3133 if (ret2 < 0) 3134 ret = ret2; 3135 ret2 = ext4_journal_stop(handle); 3136 if (!ret) 3137 ret = ret2; 3138 3139 return ret ? ret : copied; 3140 } 3141 3142 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3143 unsigned int length) 3144 { 3145 /* 3146 * Drop reserved blocks 3147 */ 3148 BUG_ON(!PageLocked(page)); 3149 if (!page_has_buffers(page)) 3150 goto out; 3151 3152 ext4_da_page_release_reservation(page, offset, length); 3153 3154 out: 3155 ext4_invalidatepage(page, offset, length); 3156 3157 return; 3158 } 3159 3160 /* 3161 * Force all delayed allocation blocks to be allocated for a given inode. 3162 */ 3163 int ext4_alloc_da_blocks(struct inode *inode) 3164 { 3165 trace_ext4_alloc_da_blocks(inode); 3166 3167 if (!EXT4_I(inode)->i_reserved_data_blocks) 3168 return 0; 3169 3170 /* 3171 * We do something simple for now. The filemap_flush() will 3172 * also start triggering a write of the data blocks, which is 3173 * not strictly speaking necessary (and for users of 3174 * laptop_mode, not even desirable). However, to do otherwise 3175 * would require replicating code paths in: 3176 * 3177 * ext4_writepages() -> 3178 * write_cache_pages() ---> (via passed in callback function) 3179 * __mpage_da_writepage() --> 3180 * mpage_add_bh_to_extent() 3181 * mpage_da_map_blocks() 3182 * 3183 * The problem is that write_cache_pages(), located in 3184 * mm/page-writeback.c, marks pages clean in preparation for 3185 * doing I/O, which is not desirable if we're not planning on 3186 * doing I/O at all. 3187 * 3188 * We could call write_cache_pages(), and then redirty all of 3189 * the pages by calling redirty_page_for_writepage() but that 3190 * would be ugly in the extreme. So instead we would need to 3191 * replicate parts of the code in the above functions, 3192 * simplifying them because we wouldn't actually intend to 3193 * write out the pages, but rather only collect contiguous 3194 * logical block extents, call the multi-block allocator, and 3195 * then update the buffer heads with the block allocations. 3196 * 3197 * For now, though, we'll cheat by calling filemap_flush(), 3198 * which will map the blocks, and start the I/O, but not 3199 * actually wait for the I/O to complete. 3200 */ 3201 return filemap_flush(inode->i_mapping); 3202 } 3203 3204 /* 3205 * bmap() is special. It gets used by applications such as lilo and by 3206 * the swapper to find the on-disk block of a specific piece of data. 3207 * 3208 * Naturally, this is dangerous if the block concerned is still in the 3209 * journal. If somebody makes a swapfile on an ext4 data-journaling 3210 * filesystem and enables swap, then they may get a nasty shock when the 3211 * data getting swapped to that swapfile suddenly gets overwritten by 3212 * the original zero's written out previously to the journal and 3213 * awaiting writeback in the kernel's buffer cache. 3214 * 3215 * So, if we see any bmap calls here on a modified, data-journaled file, 3216 * take extra steps to flush any blocks which might be in the cache. 3217 */ 3218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3219 { 3220 struct inode *inode = mapping->host; 3221 journal_t *journal; 3222 int err; 3223 3224 /* 3225 * We can get here for an inline file via the FIBMAP ioctl 3226 */ 3227 if (ext4_has_inline_data(inode)) 3228 return 0; 3229 3230 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3231 test_opt(inode->i_sb, DELALLOC)) { 3232 /* 3233 * With delalloc we want to sync the file 3234 * so that we can make sure we allocate 3235 * blocks for file 3236 */ 3237 filemap_write_and_wait(mapping); 3238 } 3239 3240 if (EXT4_JOURNAL(inode) && 3241 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3242 /* 3243 * This is a REALLY heavyweight approach, but the use of 3244 * bmap on dirty files is expected to be extremely rare: 3245 * only if we run lilo or swapon on a freshly made file 3246 * do we expect this to happen. 3247 * 3248 * (bmap requires CAP_SYS_RAWIO so this does not 3249 * represent an unprivileged user DOS attack --- we'd be 3250 * in trouble if mortal users could trigger this path at 3251 * will.) 3252 * 3253 * NB. EXT4_STATE_JDATA is not set on files other than 3254 * regular files. If somebody wants to bmap a directory 3255 * or symlink and gets confused because the buffer 3256 * hasn't yet been flushed to disk, they deserve 3257 * everything they get. 3258 */ 3259 3260 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3261 journal = EXT4_JOURNAL(inode); 3262 jbd2_journal_lock_updates(journal); 3263 err = jbd2_journal_flush(journal); 3264 jbd2_journal_unlock_updates(journal); 3265 3266 if (err) 3267 return 0; 3268 } 3269 3270 return generic_block_bmap(mapping, block, ext4_get_block); 3271 } 3272 3273 static int ext4_readpage(struct file *file, struct page *page) 3274 { 3275 int ret = -EAGAIN; 3276 struct inode *inode = page->mapping->host; 3277 3278 trace_ext4_readpage(page); 3279 3280 if (ext4_has_inline_data(inode)) 3281 ret = ext4_readpage_inline(inode, page); 3282 3283 if (ret == -EAGAIN) 3284 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3285 3286 return ret; 3287 } 3288 3289 static int 3290 ext4_readpages(struct file *file, struct address_space *mapping, 3291 struct list_head *pages, unsigned nr_pages) 3292 { 3293 struct inode *inode = mapping->host; 3294 3295 /* If the file has inline data, no need to do readpages. */ 3296 if (ext4_has_inline_data(inode)) 3297 return 0; 3298 3299 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3300 } 3301 3302 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3303 unsigned int length) 3304 { 3305 trace_ext4_invalidatepage(page, offset, length); 3306 3307 /* No journalling happens on data buffers when this function is used */ 3308 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3309 3310 block_invalidatepage(page, offset, length); 3311 } 3312 3313 static int __ext4_journalled_invalidatepage(struct page *page, 3314 unsigned int offset, 3315 unsigned int length) 3316 { 3317 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3318 3319 trace_ext4_journalled_invalidatepage(page, offset, length); 3320 3321 /* 3322 * If it's a full truncate we just forget about the pending dirtying 3323 */ 3324 if (offset == 0 && length == PAGE_SIZE) 3325 ClearPageChecked(page); 3326 3327 return jbd2_journal_invalidatepage(journal, page, offset, length); 3328 } 3329 3330 /* Wrapper for aops... */ 3331 static void ext4_journalled_invalidatepage(struct page *page, 3332 unsigned int offset, 3333 unsigned int length) 3334 { 3335 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3336 } 3337 3338 static int ext4_releasepage(struct page *page, gfp_t wait) 3339 { 3340 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3341 3342 trace_ext4_releasepage(page); 3343 3344 /* Page has dirty journalled data -> cannot release */ 3345 if (PageChecked(page)) 3346 return 0; 3347 if (journal) 3348 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3349 else 3350 return try_to_free_buffers(page); 3351 } 3352 3353 #ifdef CONFIG_FS_DAX 3354 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3355 unsigned flags, struct iomap *iomap) 3356 { 3357 struct block_device *bdev; 3358 unsigned int blkbits = inode->i_blkbits; 3359 unsigned long first_block = offset >> blkbits; 3360 unsigned long last_block = (offset + length - 1) >> blkbits; 3361 struct ext4_map_blocks map; 3362 int ret; 3363 3364 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3365 return -ERANGE; 3366 3367 map.m_lblk = first_block; 3368 map.m_len = last_block - first_block + 1; 3369 3370 if (!(flags & IOMAP_WRITE)) { 3371 ret = ext4_map_blocks(NULL, inode, &map, 0); 3372 } else { 3373 int dio_credits; 3374 handle_t *handle; 3375 int retries = 0; 3376 3377 /* Trim mapping request to maximum we can map at once for DIO */ 3378 if (map.m_len > DIO_MAX_BLOCKS) 3379 map.m_len = DIO_MAX_BLOCKS; 3380 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3381 retry: 3382 /* 3383 * Either we allocate blocks and then we don't get unwritten 3384 * extent so we have reserved enough credits, or the blocks 3385 * are already allocated and unwritten and in that case 3386 * extent conversion fits in the credits as well. 3387 */ 3388 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3389 dio_credits); 3390 if (IS_ERR(handle)) 3391 return PTR_ERR(handle); 3392 3393 ret = ext4_map_blocks(handle, inode, &map, 3394 EXT4_GET_BLOCKS_CREATE_ZERO); 3395 if (ret < 0) { 3396 ext4_journal_stop(handle); 3397 if (ret == -ENOSPC && 3398 ext4_should_retry_alloc(inode->i_sb, &retries)) 3399 goto retry; 3400 return ret; 3401 } 3402 3403 /* 3404 * If we added blocks beyond i_size, we need to make sure they 3405 * will get truncated if we crash before updating i_size in 3406 * ext4_iomap_end(). For faults we don't need to do that (and 3407 * even cannot because for orphan list operations inode_lock is 3408 * required) - if we happen to instantiate block beyond i_size, 3409 * it is because we race with truncate which has already added 3410 * the inode to the orphan list. 3411 */ 3412 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3413 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3414 int err; 3415 3416 err = ext4_orphan_add(handle, inode); 3417 if (err < 0) { 3418 ext4_journal_stop(handle); 3419 return err; 3420 } 3421 } 3422 ext4_journal_stop(handle); 3423 } 3424 3425 iomap->flags = 0; 3426 bdev = inode->i_sb->s_bdev; 3427 iomap->bdev = bdev; 3428 if (blk_queue_dax(bdev->bd_queue)) 3429 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name); 3430 else 3431 iomap->dax_dev = NULL; 3432 iomap->offset = first_block << blkbits; 3433 3434 if (ret == 0) { 3435 iomap->type = IOMAP_HOLE; 3436 iomap->blkno = IOMAP_NULL_BLOCK; 3437 iomap->length = (u64)map.m_len << blkbits; 3438 } else { 3439 if (map.m_flags & EXT4_MAP_MAPPED) { 3440 iomap->type = IOMAP_MAPPED; 3441 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3442 iomap->type = IOMAP_UNWRITTEN; 3443 } else { 3444 WARN_ON_ONCE(1); 3445 return -EIO; 3446 } 3447 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3448 iomap->length = (u64)map.m_len << blkbits; 3449 } 3450 3451 if (map.m_flags & EXT4_MAP_NEW) 3452 iomap->flags |= IOMAP_F_NEW; 3453 return 0; 3454 } 3455 3456 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3457 ssize_t written, unsigned flags, struct iomap *iomap) 3458 { 3459 int ret = 0; 3460 handle_t *handle; 3461 int blkbits = inode->i_blkbits; 3462 bool truncate = false; 3463 3464 fs_put_dax(iomap->dax_dev); 3465 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3466 return 0; 3467 3468 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3469 if (IS_ERR(handle)) { 3470 ret = PTR_ERR(handle); 3471 goto orphan_del; 3472 } 3473 if (ext4_update_inode_size(inode, offset + written)) 3474 ext4_mark_inode_dirty(handle, inode); 3475 /* 3476 * We may need to truncate allocated but not written blocks beyond EOF. 3477 */ 3478 if (iomap->offset + iomap->length > 3479 ALIGN(inode->i_size, 1 << blkbits)) { 3480 ext4_lblk_t written_blk, end_blk; 3481 3482 written_blk = (offset + written) >> blkbits; 3483 end_blk = (offset + length) >> blkbits; 3484 if (written_blk < end_blk && ext4_can_truncate(inode)) 3485 truncate = true; 3486 } 3487 /* 3488 * Remove inode from orphan list if we were extending a inode and 3489 * everything went fine. 3490 */ 3491 if (!truncate && inode->i_nlink && 3492 !list_empty(&EXT4_I(inode)->i_orphan)) 3493 ext4_orphan_del(handle, inode); 3494 ext4_journal_stop(handle); 3495 if (truncate) { 3496 ext4_truncate_failed_write(inode); 3497 orphan_del: 3498 /* 3499 * If truncate failed early the inode might still be on the 3500 * orphan list; we need to make sure the inode is removed from 3501 * the orphan list in that case. 3502 */ 3503 if (inode->i_nlink) 3504 ext4_orphan_del(NULL, inode); 3505 } 3506 return ret; 3507 } 3508 3509 const struct iomap_ops ext4_iomap_ops = { 3510 .iomap_begin = ext4_iomap_begin, 3511 .iomap_end = ext4_iomap_end, 3512 }; 3513 3514 #endif 3515 3516 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3517 ssize_t size, void *private) 3518 { 3519 ext4_io_end_t *io_end = private; 3520 3521 /* if not async direct IO just return */ 3522 if (!io_end) 3523 return 0; 3524 3525 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3526 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3527 io_end, io_end->inode->i_ino, iocb, offset, size); 3528 3529 /* 3530 * Error during AIO DIO. We cannot convert unwritten extents as the 3531 * data was not written. Just clear the unwritten flag and drop io_end. 3532 */ 3533 if (size <= 0) { 3534 ext4_clear_io_unwritten_flag(io_end); 3535 size = 0; 3536 } 3537 io_end->offset = offset; 3538 io_end->size = size; 3539 ext4_put_io_end(io_end); 3540 3541 return 0; 3542 } 3543 3544 /* 3545 * Handling of direct IO writes. 3546 * 3547 * For ext4 extent files, ext4 will do direct-io write even to holes, 3548 * preallocated extents, and those write extend the file, no need to 3549 * fall back to buffered IO. 3550 * 3551 * For holes, we fallocate those blocks, mark them as unwritten 3552 * If those blocks were preallocated, we mark sure they are split, but 3553 * still keep the range to write as unwritten. 3554 * 3555 * The unwritten extents will be converted to written when DIO is completed. 3556 * For async direct IO, since the IO may still pending when return, we 3557 * set up an end_io call back function, which will do the conversion 3558 * when async direct IO completed. 3559 * 3560 * If the O_DIRECT write will extend the file then add this inode to the 3561 * orphan list. So recovery will truncate it back to the original size 3562 * if the machine crashes during the write. 3563 * 3564 */ 3565 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3566 { 3567 struct file *file = iocb->ki_filp; 3568 struct inode *inode = file->f_mapping->host; 3569 struct ext4_inode_info *ei = EXT4_I(inode); 3570 ssize_t ret; 3571 loff_t offset = iocb->ki_pos; 3572 size_t count = iov_iter_count(iter); 3573 int overwrite = 0; 3574 get_block_t *get_block_func = NULL; 3575 int dio_flags = 0; 3576 loff_t final_size = offset + count; 3577 int orphan = 0; 3578 handle_t *handle; 3579 3580 if (final_size > inode->i_size) { 3581 /* Credits for sb + inode write */ 3582 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3583 if (IS_ERR(handle)) { 3584 ret = PTR_ERR(handle); 3585 goto out; 3586 } 3587 ret = ext4_orphan_add(handle, inode); 3588 if (ret) { 3589 ext4_journal_stop(handle); 3590 goto out; 3591 } 3592 orphan = 1; 3593 ei->i_disksize = inode->i_size; 3594 ext4_journal_stop(handle); 3595 } 3596 3597 BUG_ON(iocb->private == NULL); 3598 3599 /* 3600 * Make all waiters for direct IO properly wait also for extent 3601 * conversion. This also disallows race between truncate() and 3602 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3603 */ 3604 inode_dio_begin(inode); 3605 3606 /* If we do a overwrite dio, i_mutex locking can be released */ 3607 overwrite = *((int *)iocb->private); 3608 3609 if (overwrite) 3610 inode_unlock(inode); 3611 3612 /* 3613 * For extent mapped files we could direct write to holes and fallocate. 3614 * 3615 * Allocated blocks to fill the hole are marked as unwritten to prevent 3616 * parallel buffered read to expose the stale data before DIO complete 3617 * the data IO. 3618 * 3619 * As to previously fallocated extents, ext4 get_block will just simply 3620 * mark the buffer mapped but still keep the extents unwritten. 3621 * 3622 * For non AIO case, we will convert those unwritten extents to written 3623 * after return back from blockdev_direct_IO. That way we save us from 3624 * allocating io_end structure and also the overhead of offloading 3625 * the extent convertion to a workqueue. 3626 * 3627 * For async DIO, the conversion needs to be deferred when the 3628 * IO is completed. The ext4 end_io callback function will be 3629 * called to take care of the conversion work. Here for async 3630 * case, we allocate an io_end structure to hook to the iocb. 3631 */ 3632 iocb->private = NULL; 3633 if (overwrite) 3634 get_block_func = ext4_dio_get_block_overwrite; 3635 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3636 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3637 get_block_func = ext4_dio_get_block; 3638 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3639 } else if (is_sync_kiocb(iocb)) { 3640 get_block_func = ext4_dio_get_block_unwritten_sync; 3641 dio_flags = DIO_LOCKING; 3642 } else { 3643 get_block_func = ext4_dio_get_block_unwritten_async; 3644 dio_flags = DIO_LOCKING; 3645 } 3646 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3647 get_block_func, ext4_end_io_dio, NULL, 3648 dio_flags); 3649 3650 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3651 EXT4_STATE_DIO_UNWRITTEN)) { 3652 int err; 3653 /* 3654 * for non AIO case, since the IO is already 3655 * completed, we could do the conversion right here 3656 */ 3657 err = ext4_convert_unwritten_extents(NULL, inode, 3658 offset, ret); 3659 if (err < 0) 3660 ret = err; 3661 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3662 } 3663 3664 inode_dio_end(inode); 3665 /* take i_mutex locking again if we do a ovewrite dio */ 3666 if (overwrite) 3667 inode_lock(inode); 3668 3669 if (ret < 0 && final_size > inode->i_size) 3670 ext4_truncate_failed_write(inode); 3671 3672 /* Handle extending of i_size after direct IO write */ 3673 if (orphan) { 3674 int err; 3675 3676 /* Credits for sb + inode write */ 3677 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3678 if (IS_ERR(handle)) { 3679 /* This is really bad luck. We've written the data 3680 * but cannot extend i_size. Bail out and pretend 3681 * the write failed... */ 3682 ret = PTR_ERR(handle); 3683 if (inode->i_nlink) 3684 ext4_orphan_del(NULL, inode); 3685 3686 goto out; 3687 } 3688 if (inode->i_nlink) 3689 ext4_orphan_del(handle, inode); 3690 if (ret > 0) { 3691 loff_t end = offset + ret; 3692 if (end > inode->i_size) { 3693 ei->i_disksize = end; 3694 i_size_write(inode, end); 3695 /* 3696 * We're going to return a positive `ret' 3697 * here due to non-zero-length I/O, so there's 3698 * no way of reporting error returns from 3699 * ext4_mark_inode_dirty() to userspace. So 3700 * ignore it. 3701 */ 3702 ext4_mark_inode_dirty(handle, inode); 3703 } 3704 } 3705 err = ext4_journal_stop(handle); 3706 if (ret == 0) 3707 ret = err; 3708 } 3709 out: 3710 return ret; 3711 } 3712 3713 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3714 { 3715 struct address_space *mapping = iocb->ki_filp->f_mapping; 3716 struct inode *inode = mapping->host; 3717 size_t count = iov_iter_count(iter); 3718 ssize_t ret; 3719 3720 /* 3721 * Shared inode_lock is enough for us - it protects against concurrent 3722 * writes & truncates and since we take care of writing back page cache, 3723 * we are protected against page writeback as well. 3724 */ 3725 inode_lock_shared(inode); 3726 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3727 iocb->ki_pos + count - 1); 3728 if (ret) 3729 goto out_unlock; 3730 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3731 iter, ext4_dio_get_block, NULL, NULL, 0); 3732 out_unlock: 3733 inode_unlock_shared(inode); 3734 return ret; 3735 } 3736 3737 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3738 { 3739 struct file *file = iocb->ki_filp; 3740 struct inode *inode = file->f_mapping->host; 3741 size_t count = iov_iter_count(iter); 3742 loff_t offset = iocb->ki_pos; 3743 ssize_t ret; 3744 3745 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3746 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3747 return 0; 3748 #endif 3749 3750 /* 3751 * If we are doing data journalling we don't support O_DIRECT 3752 */ 3753 if (ext4_should_journal_data(inode)) 3754 return 0; 3755 3756 /* Let buffer I/O handle the inline data case. */ 3757 if (ext4_has_inline_data(inode)) 3758 return 0; 3759 3760 /* DAX uses iomap path now */ 3761 if (WARN_ON_ONCE(IS_DAX(inode))) 3762 return 0; 3763 3764 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3765 if (iov_iter_rw(iter) == READ) 3766 ret = ext4_direct_IO_read(iocb, iter); 3767 else 3768 ret = ext4_direct_IO_write(iocb, iter); 3769 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3770 return ret; 3771 } 3772 3773 /* 3774 * Pages can be marked dirty completely asynchronously from ext4's journalling 3775 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3776 * much here because ->set_page_dirty is called under VFS locks. The page is 3777 * not necessarily locked. 3778 * 3779 * We cannot just dirty the page and leave attached buffers clean, because the 3780 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3781 * or jbddirty because all the journalling code will explode. 3782 * 3783 * So what we do is to mark the page "pending dirty" and next time writepage 3784 * is called, propagate that into the buffers appropriately. 3785 */ 3786 static int ext4_journalled_set_page_dirty(struct page *page) 3787 { 3788 SetPageChecked(page); 3789 return __set_page_dirty_nobuffers(page); 3790 } 3791 3792 static int ext4_set_page_dirty(struct page *page) 3793 { 3794 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3795 WARN_ON_ONCE(!page_has_buffers(page)); 3796 return __set_page_dirty_buffers(page); 3797 } 3798 3799 static const struct address_space_operations ext4_aops = { 3800 .readpage = ext4_readpage, 3801 .readpages = ext4_readpages, 3802 .writepage = ext4_writepage, 3803 .writepages = ext4_writepages, 3804 .write_begin = ext4_write_begin, 3805 .write_end = ext4_write_end, 3806 .set_page_dirty = ext4_set_page_dirty, 3807 .bmap = ext4_bmap, 3808 .invalidatepage = ext4_invalidatepage, 3809 .releasepage = ext4_releasepage, 3810 .direct_IO = ext4_direct_IO, 3811 .migratepage = buffer_migrate_page, 3812 .is_partially_uptodate = block_is_partially_uptodate, 3813 .error_remove_page = generic_error_remove_page, 3814 }; 3815 3816 static const struct address_space_operations ext4_journalled_aops = { 3817 .readpage = ext4_readpage, 3818 .readpages = ext4_readpages, 3819 .writepage = ext4_writepage, 3820 .writepages = ext4_writepages, 3821 .write_begin = ext4_write_begin, 3822 .write_end = ext4_journalled_write_end, 3823 .set_page_dirty = ext4_journalled_set_page_dirty, 3824 .bmap = ext4_bmap, 3825 .invalidatepage = ext4_journalled_invalidatepage, 3826 .releasepage = ext4_releasepage, 3827 .direct_IO = ext4_direct_IO, 3828 .is_partially_uptodate = block_is_partially_uptodate, 3829 .error_remove_page = generic_error_remove_page, 3830 }; 3831 3832 static const struct address_space_operations ext4_da_aops = { 3833 .readpage = ext4_readpage, 3834 .readpages = ext4_readpages, 3835 .writepage = ext4_writepage, 3836 .writepages = ext4_writepages, 3837 .write_begin = ext4_da_write_begin, 3838 .write_end = ext4_da_write_end, 3839 .set_page_dirty = ext4_set_page_dirty, 3840 .bmap = ext4_bmap, 3841 .invalidatepage = ext4_da_invalidatepage, 3842 .releasepage = ext4_releasepage, 3843 .direct_IO = ext4_direct_IO, 3844 .migratepage = buffer_migrate_page, 3845 .is_partially_uptodate = block_is_partially_uptodate, 3846 .error_remove_page = generic_error_remove_page, 3847 }; 3848 3849 void ext4_set_aops(struct inode *inode) 3850 { 3851 switch (ext4_inode_journal_mode(inode)) { 3852 case EXT4_INODE_ORDERED_DATA_MODE: 3853 case EXT4_INODE_WRITEBACK_DATA_MODE: 3854 break; 3855 case EXT4_INODE_JOURNAL_DATA_MODE: 3856 inode->i_mapping->a_ops = &ext4_journalled_aops; 3857 return; 3858 default: 3859 BUG(); 3860 } 3861 if (test_opt(inode->i_sb, DELALLOC)) 3862 inode->i_mapping->a_ops = &ext4_da_aops; 3863 else 3864 inode->i_mapping->a_ops = &ext4_aops; 3865 } 3866 3867 static int __ext4_block_zero_page_range(handle_t *handle, 3868 struct address_space *mapping, loff_t from, loff_t length) 3869 { 3870 ext4_fsblk_t index = from >> PAGE_SHIFT; 3871 unsigned offset = from & (PAGE_SIZE-1); 3872 unsigned blocksize, pos; 3873 ext4_lblk_t iblock; 3874 struct inode *inode = mapping->host; 3875 struct buffer_head *bh; 3876 struct page *page; 3877 int err = 0; 3878 3879 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3880 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3881 if (!page) 3882 return -ENOMEM; 3883 3884 blocksize = inode->i_sb->s_blocksize; 3885 3886 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3887 3888 if (!page_has_buffers(page)) 3889 create_empty_buffers(page, blocksize, 0); 3890 3891 /* Find the buffer that contains "offset" */ 3892 bh = page_buffers(page); 3893 pos = blocksize; 3894 while (offset >= pos) { 3895 bh = bh->b_this_page; 3896 iblock++; 3897 pos += blocksize; 3898 } 3899 if (buffer_freed(bh)) { 3900 BUFFER_TRACE(bh, "freed: skip"); 3901 goto unlock; 3902 } 3903 if (!buffer_mapped(bh)) { 3904 BUFFER_TRACE(bh, "unmapped"); 3905 ext4_get_block(inode, iblock, bh, 0); 3906 /* unmapped? It's a hole - nothing to do */ 3907 if (!buffer_mapped(bh)) { 3908 BUFFER_TRACE(bh, "still unmapped"); 3909 goto unlock; 3910 } 3911 } 3912 3913 /* Ok, it's mapped. Make sure it's up-to-date */ 3914 if (PageUptodate(page)) 3915 set_buffer_uptodate(bh); 3916 3917 if (!buffer_uptodate(bh)) { 3918 err = -EIO; 3919 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3920 wait_on_buffer(bh); 3921 /* Uhhuh. Read error. Complain and punt. */ 3922 if (!buffer_uptodate(bh)) 3923 goto unlock; 3924 if (S_ISREG(inode->i_mode) && 3925 ext4_encrypted_inode(inode)) { 3926 /* We expect the key to be set. */ 3927 BUG_ON(!fscrypt_has_encryption_key(inode)); 3928 BUG_ON(blocksize != PAGE_SIZE); 3929 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3930 page, PAGE_SIZE, 0, page->index)); 3931 } 3932 } 3933 if (ext4_should_journal_data(inode)) { 3934 BUFFER_TRACE(bh, "get write access"); 3935 err = ext4_journal_get_write_access(handle, bh); 3936 if (err) 3937 goto unlock; 3938 } 3939 zero_user(page, offset, length); 3940 BUFFER_TRACE(bh, "zeroed end of block"); 3941 3942 if (ext4_should_journal_data(inode)) { 3943 err = ext4_handle_dirty_metadata(handle, inode, bh); 3944 } else { 3945 err = 0; 3946 mark_buffer_dirty(bh); 3947 if (ext4_should_order_data(inode)) 3948 err = ext4_jbd2_inode_add_write(handle, inode); 3949 } 3950 3951 unlock: 3952 unlock_page(page); 3953 put_page(page); 3954 return err; 3955 } 3956 3957 /* 3958 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3959 * starting from file offset 'from'. The range to be zero'd must 3960 * be contained with in one block. If the specified range exceeds 3961 * the end of the block it will be shortened to end of the block 3962 * that cooresponds to 'from' 3963 */ 3964 static int ext4_block_zero_page_range(handle_t *handle, 3965 struct address_space *mapping, loff_t from, loff_t length) 3966 { 3967 struct inode *inode = mapping->host; 3968 unsigned offset = from & (PAGE_SIZE-1); 3969 unsigned blocksize = inode->i_sb->s_blocksize; 3970 unsigned max = blocksize - (offset & (blocksize - 1)); 3971 3972 /* 3973 * correct length if it does not fall between 3974 * 'from' and the end of the block 3975 */ 3976 if (length > max || length < 0) 3977 length = max; 3978 3979 if (IS_DAX(inode)) { 3980 return iomap_zero_range(inode, from, length, NULL, 3981 &ext4_iomap_ops); 3982 } 3983 return __ext4_block_zero_page_range(handle, mapping, from, length); 3984 } 3985 3986 /* 3987 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3988 * up to the end of the block which corresponds to `from'. 3989 * This required during truncate. We need to physically zero the tail end 3990 * of that block so it doesn't yield old data if the file is later grown. 3991 */ 3992 static int ext4_block_truncate_page(handle_t *handle, 3993 struct address_space *mapping, loff_t from) 3994 { 3995 unsigned offset = from & (PAGE_SIZE-1); 3996 unsigned length; 3997 unsigned blocksize; 3998 struct inode *inode = mapping->host; 3999 4000 /* If we are processing an encrypted inode during orphan list handling */ 4001 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4002 return 0; 4003 4004 blocksize = inode->i_sb->s_blocksize; 4005 length = blocksize - (offset & (blocksize - 1)); 4006 4007 return ext4_block_zero_page_range(handle, mapping, from, length); 4008 } 4009 4010 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4011 loff_t lstart, loff_t length) 4012 { 4013 struct super_block *sb = inode->i_sb; 4014 struct address_space *mapping = inode->i_mapping; 4015 unsigned partial_start, partial_end; 4016 ext4_fsblk_t start, end; 4017 loff_t byte_end = (lstart + length - 1); 4018 int err = 0; 4019 4020 partial_start = lstart & (sb->s_blocksize - 1); 4021 partial_end = byte_end & (sb->s_blocksize - 1); 4022 4023 start = lstart >> sb->s_blocksize_bits; 4024 end = byte_end >> sb->s_blocksize_bits; 4025 4026 /* Handle partial zero within the single block */ 4027 if (start == end && 4028 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4029 err = ext4_block_zero_page_range(handle, mapping, 4030 lstart, length); 4031 return err; 4032 } 4033 /* Handle partial zero out on the start of the range */ 4034 if (partial_start) { 4035 err = ext4_block_zero_page_range(handle, mapping, 4036 lstart, sb->s_blocksize); 4037 if (err) 4038 return err; 4039 } 4040 /* Handle partial zero out on the end of the range */ 4041 if (partial_end != sb->s_blocksize - 1) 4042 err = ext4_block_zero_page_range(handle, mapping, 4043 byte_end - partial_end, 4044 partial_end + 1); 4045 return err; 4046 } 4047 4048 int ext4_can_truncate(struct inode *inode) 4049 { 4050 if (S_ISREG(inode->i_mode)) 4051 return 1; 4052 if (S_ISDIR(inode->i_mode)) 4053 return 1; 4054 if (S_ISLNK(inode->i_mode)) 4055 return !ext4_inode_is_fast_symlink(inode); 4056 return 0; 4057 } 4058 4059 /* 4060 * We have to make sure i_disksize gets properly updated before we truncate 4061 * page cache due to hole punching or zero range. Otherwise i_disksize update 4062 * can get lost as it may have been postponed to submission of writeback but 4063 * that will never happen after we truncate page cache. 4064 */ 4065 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4066 loff_t len) 4067 { 4068 handle_t *handle; 4069 loff_t size = i_size_read(inode); 4070 4071 WARN_ON(!inode_is_locked(inode)); 4072 if (offset > size || offset + len < size) 4073 return 0; 4074 4075 if (EXT4_I(inode)->i_disksize >= size) 4076 return 0; 4077 4078 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4079 if (IS_ERR(handle)) 4080 return PTR_ERR(handle); 4081 ext4_update_i_disksize(inode, size); 4082 ext4_mark_inode_dirty(handle, inode); 4083 ext4_journal_stop(handle); 4084 4085 return 0; 4086 } 4087 4088 /* 4089 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4090 * associated with the given offset and length 4091 * 4092 * @inode: File inode 4093 * @offset: The offset where the hole will begin 4094 * @len: The length of the hole 4095 * 4096 * Returns: 0 on success or negative on failure 4097 */ 4098 4099 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4100 { 4101 struct super_block *sb = inode->i_sb; 4102 ext4_lblk_t first_block, stop_block; 4103 struct address_space *mapping = inode->i_mapping; 4104 loff_t first_block_offset, last_block_offset; 4105 handle_t *handle; 4106 unsigned int credits; 4107 int ret = 0; 4108 4109 if (!S_ISREG(inode->i_mode)) 4110 return -EOPNOTSUPP; 4111 4112 trace_ext4_punch_hole(inode, offset, length, 0); 4113 4114 /* 4115 * Write out all dirty pages to avoid race conditions 4116 * Then release them. 4117 */ 4118 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4119 ret = filemap_write_and_wait_range(mapping, offset, 4120 offset + length - 1); 4121 if (ret) 4122 return ret; 4123 } 4124 4125 inode_lock(inode); 4126 4127 /* No need to punch hole beyond i_size */ 4128 if (offset >= inode->i_size) 4129 goto out_mutex; 4130 4131 /* 4132 * If the hole extends beyond i_size, set the hole 4133 * to end after the page that contains i_size 4134 */ 4135 if (offset + length > inode->i_size) { 4136 length = inode->i_size + 4137 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4138 offset; 4139 } 4140 4141 if (offset & (sb->s_blocksize - 1) || 4142 (offset + length) & (sb->s_blocksize - 1)) { 4143 /* 4144 * Attach jinode to inode for jbd2 if we do any zeroing of 4145 * partial block 4146 */ 4147 ret = ext4_inode_attach_jinode(inode); 4148 if (ret < 0) 4149 goto out_mutex; 4150 4151 } 4152 4153 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4154 ext4_inode_block_unlocked_dio(inode); 4155 inode_dio_wait(inode); 4156 4157 /* 4158 * Prevent page faults from reinstantiating pages we have released from 4159 * page cache. 4160 */ 4161 down_write(&EXT4_I(inode)->i_mmap_sem); 4162 first_block_offset = round_up(offset, sb->s_blocksize); 4163 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4164 4165 /* Now release the pages and zero block aligned part of pages*/ 4166 if (last_block_offset > first_block_offset) { 4167 ret = ext4_update_disksize_before_punch(inode, offset, length); 4168 if (ret) 4169 goto out_dio; 4170 truncate_pagecache_range(inode, first_block_offset, 4171 last_block_offset); 4172 } 4173 4174 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4175 credits = ext4_writepage_trans_blocks(inode); 4176 else 4177 credits = ext4_blocks_for_truncate(inode); 4178 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4179 if (IS_ERR(handle)) { 4180 ret = PTR_ERR(handle); 4181 ext4_std_error(sb, ret); 4182 goto out_dio; 4183 } 4184 4185 ret = ext4_zero_partial_blocks(handle, inode, offset, 4186 length); 4187 if (ret) 4188 goto out_stop; 4189 4190 first_block = (offset + sb->s_blocksize - 1) >> 4191 EXT4_BLOCK_SIZE_BITS(sb); 4192 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4193 4194 /* If there are no blocks to remove, return now */ 4195 if (first_block >= stop_block) 4196 goto out_stop; 4197 4198 down_write(&EXT4_I(inode)->i_data_sem); 4199 ext4_discard_preallocations(inode); 4200 4201 ret = ext4_es_remove_extent(inode, first_block, 4202 stop_block - first_block); 4203 if (ret) { 4204 up_write(&EXT4_I(inode)->i_data_sem); 4205 goto out_stop; 4206 } 4207 4208 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4209 ret = ext4_ext_remove_space(inode, first_block, 4210 stop_block - 1); 4211 else 4212 ret = ext4_ind_remove_space(handle, inode, first_block, 4213 stop_block); 4214 4215 up_write(&EXT4_I(inode)->i_data_sem); 4216 if (IS_SYNC(inode)) 4217 ext4_handle_sync(handle); 4218 4219 inode->i_mtime = inode->i_ctime = current_time(inode); 4220 ext4_mark_inode_dirty(handle, inode); 4221 out_stop: 4222 ext4_journal_stop(handle); 4223 out_dio: 4224 up_write(&EXT4_I(inode)->i_mmap_sem); 4225 ext4_inode_resume_unlocked_dio(inode); 4226 out_mutex: 4227 inode_unlock(inode); 4228 return ret; 4229 } 4230 4231 int ext4_inode_attach_jinode(struct inode *inode) 4232 { 4233 struct ext4_inode_info *ei = EXT4_I(inode); 4234 struct jbd2_inode *jinode; 4235 4236 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4237 return 0; 4238 4239 jinode = jbd2_alloc_inode(GFP_KERNEL); 4240 spin_lock(&inode->i_lock); 4241 if (!ei->jinode) { 4242 if (!jinode) { 4243 spin_unlock(&inode->i_lock); 4244 return -ENOMEM; 4245 } 4246 ei->jinode = jinode; 4247 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4248 jinode = NULL; 4249 } 4250 spin_unlock(&inode->i_lock); 4251 if (unlikely(jinode != NULL)) 4252 jbd2_free_inode(jinode); 4253 return 0; 4254 } 4255 4256 /* 4257 * ext4_truncate() 4258 * 4259 * We block out ext4_get_block() block instantiations across the entire 4260 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4261 * simultaneously on behalf of the same inode. 4262 * 4263 * As we work through the truncate and commit bits of it to the journal there 4264 * is one core, guiding principle: the file's tree must always be consistent on 4265 * disk. We must be able to restart the truncate after a crash. 4266 * 4267 * The file's tree may be transiently inconsistent in memory (although it 4268 * probably isn't), but whenever we close off and commit a journal transaction, 4269 * the contents of (the filesystem + the journal) must be consistent and 4270 * restartable. It's pretty simple, really: bottom up, right to left (although 4271 * left-to-right works OK too). 4272 * 4273 * Note that at recovery time, journal replay occurs *before* the restart of 4274 * truncate against the orphan inode list. 4275 * 4276 * The committed inode has the new, desired i_size (which is the same as 4277 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4278 * that this inode's truncate did not complete and it will again call 4279 * ext4_truncate() to have another go. So there will be instantiated blocks 4280 * to the right of the truncation point in a crashed ext4 filesystem. But 4281 * that's fine - as long as they are linked from the inode, the post-crash 4282 * ext4_truncate() run will find them and release them. 4283 */ 4284 int ext4_truncate(struct inode *inode) 4285 { 4286 struct ext4_inode_info *ei = EXT4_I(inode); 4287 unsigned int credits; 4288 int err = 0; 4289 handle_t *handle; 4290 struct address_space *mapping = inode->i_mapping; 4291 4292 /* 4293 * There is a possibility that we're either freeing the inode 4294 * or it's a completely new inode. In those cases we might not 4295 * have i_mutex locked because it's not necessary. 4296 */ 4297 if (!(inode->i_state & (I_NEW|I_FREEING))) 4298 WARN_ON(!inode_is_locked(inode)); 4299 trace_ext4_truncate_enter(inode); 4300 4301 if (!ext4_can_truncate(inode)) 4302 return 0; 4303 4304 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4305 4306 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4307 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4308 4309 if (ext4_has_inline_data(inode)) { 4310 int has_inline = 1; 4311 4312 err = ext4_inline_data_truncate(inode, &has_inline); 4313 if (err) 4314 return err; 4315 if (has_inline) 4316 return 0; 4317 } 4318 4319 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4320 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4321 if (ext4_inode_attach_jinode(inode) < 0) 4322 return 0; 4323 } 4324 4325 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4326 credits = ext4_writepage_trans_blocks(inode); 4327 else 4328 credits = ext4_blocks_for_truncate(inode); 4329 4330 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4331 if (IS_ERR(handle)) 4332 return PTR_ERR(handle); 4333 4334 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4335 ext4_block_truncate_page(handle, mapping, inode->i_size); 4336 4337 /* 4338 * We add the inode to the orphan list, so that if this 4339 * truncate spans multiple transactions, and we crash, we will 4340 * resume the truncate when the filesystem recovers. It also 4341 * marks the inode dirty, to catch the new size. 4342 * 4343 * Implication: the file must always be in a sane, consistent 4344 * truncatable state while each transaction commits. 4345 */ 4346 err = ext4_orphan_add(handle, inode); 4347 if (err) 4348 goto out_stop; 4349 4350 down_write(&EXT4_I(inode)->i_data_sem); 4351 4352 ext4_discard_preallocations(inode); 4353 4354 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4355 err = ext4_ext_truncate(handle, inode); 4356 else 4357 ext4_ind_truncate(handle, inode); 4358 4359 up_write(&ei->i_data_sem); 4360 if (err) 4361 goto out_stop; 4362 4363 if (IS_SYNC(inode)) 4364 ext4_handle_sync(handle); 4365 4366 out_stop: 4367 /* 4368 * If this was a simple ftruncate() and the file will remain alive, 4369 * then we need to clear up the orphan record which we created above. 4370 * However, if this was a real unlink then we were called by 4371 * ext4_evict_inode(), and we allow that function to clean up the 4372 * orphan info for us. 4373 */ 4374 if (inode->i_nlink) 4375 ext4_orphan_del(handle, inode); 4376 4377 inode->i_mtime = inode->i_ctime = current_time(inode); 4378 ext4_mark_inode_dirty(handle, inode); 4379 ext4_journal_stop(handle); 4380 4381 trace_ext4_truncate_exit(inode); 4382 return err; 4383 } 4384 4385 /* 4386 * ext4_get_inode_loc returns with an extra refcount against the inode's 4387 * underlying buffer_head on success. If 'in_mem' is true, we have all 4388 * data in memory that is needed to recreate the on-disk version of this 4389 * inode. 4390 */ 4391 static int __ext4_get_inode_loc(struct inode *inode, 4392 struct ext4_iloc *iloc, int in_mem) 4393 { 4394 struct ext4_group_desc *gdp; 4395 struct buffer_head *bh; 4396 struct super_block *sb = inode->i_sb; 4397 ext4_fsblk_t block; 4398 int inodes_per_block, inode_offset; 4399 4400 iloc->bh = NULL; 4401 if (!ext4_valid_inum(sb, inode->i_ino)) 4402 return -EFSCORRUPTED; 4403 4404 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4405 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4406 if (!gdp) 4407 return -EIO; 4408 4409 /* 4410 * Figure out the offset within the block group inode table 4411 */ 4412 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4413 inode_offset = ((inode->i_ino - 1) % 4414 EXT4_INODES_PER_GROUP(sb)); 4415 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4416 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4417 4418 bh = sb_getblk(sb, block); 4419 if (unlikely(!bh)) 4420 return -ENOMEM; 4421 if (!buffer_uptodate(bh)) { 4422 lock_buffer(bh); 4423 4424 /* 4425 * If the buffer has the write error flag, we have failed 4426 * to write out another inode in the same block. In this 4427 * case, we don't have to read the block because we may 4428 * read the old inode data successfully. 4429 */ 4430 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4431 set_buffer_uptodate(bh); 4432 4433 if (buffer_uptodate(bh)) { 4434 /* someone brought it uptodate while we waited */ 4435 unlock_buffer(bh); 4436 goto has_buffer; 4437 } 4438 4439 /* 4440 * If we have all information of the inode in memory and this 4441 * is the only valid inode in the block, we need not read the 4442 * block. 4443 */ 4444 if (in_mem) { 4445 struct buffer_head *bitmap_bh; 4446 int i, start; 4447 4448 start = inode_offset & ~(inodes_per_block - 1); 4449 4450 /* Is the inode bitmap in cache? */ 4451 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4452 if (unlikely(!bitmap_bh)) 4453 goto make_io; 4454 4455 /* 4456 * If the inode bitmap isn't in cache then the 4457 * optimisation may end up performing two reads instead 4458 * of one, so skip it. 4459 */ 4460 if (!buffer_uptodate(bitmap_bh)) { 4461 brelse(bitmap_bh); 4462 goto make_io; 4463 } 4464 for (i = start; i < start + inodes_per_block; i++) { 4465 if (i == inode_offset) 4466 continue; 4467 if (ext4_test_bit(i, bitmap_bh->b_data)) 4468 break; 4469 } 4470 brelse(bitmap_bh); 4471 if (i == start + inodes_per_block) { 4472 /* all other inodes are free, so skip I/O */ 4473 memset(bh->b_data, 0, bh->b_size); 4474 set_buffer_uptodate(bh); 4475 unlock_buffer(bh); 4476 goto has_buffer; 4477 } 4478 } 4479 4480 make_io: 4481 /* 4482 * If we need to do any I/O, try to pre-readahead extra 4483 * blocks from the inode table. 4484 */ 4485 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4486 ext4_fsblk_t b, end, table; 4487 unsigned num; 4488 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4489 4490 table = ext4_inode_table(sb, gdp); 4491 /* s_inode_readahead_blks is always a power of 2 */ 4492 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4493 if (table > b) 4494 b = table; 4495 end = b + ra_blks; 4496 num = EXT4_INODES_PER_GROUP(sb); 4497 if (ext4_has_group_desc_csum(sb)) 4498 num -= ext4_itable_unused_count(sb, gdp); 4499 table += num / inodes_per_block; 4500 if (end > table) 4501 end = table; 4502 while (b <= end) 4503 sb_breadahead(sb, b++); 4504 } 4505 4506 /* 4507 * There are other valid inodes in the buffer, this inode 4508 * has in-inode xattrs, or we don't have this inode in memory. 4509 * Read the block from disk. 4510 */ 4511 trace_ext4_load_inode(inode); 4512 get_bh(bh); 4513 bh->b_end_io = end_buffer_read_sync; 4514 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4515 wait_on_buffer(bh); 4516 if (!buffer_uptodate(bh)) { 4517 EXT4_ERROR_INODE_BLOCK(inode, block, 4518 "unable to read itable block"); 4519 brelse(bh); 4520 return -EIO; 4521 } 4522 } 4523 has_buffer: 4524 iloc->bh = bh; 4525 return 0; 4526 } 4527 4528 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4529 { 4530 /* We have all inode data except xattrs in memory here. */ 4531 return __ext4_get_inode_loc(inode, iloc, 4532 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4533 } 4534 4535 void ext4_set_inode_flags(struct inode *inode) 4536 { 4537 unsigned int flags = EXT4_I(inode)->i_flags; 4538 unsigned int new_fl = 0; 4539 4540 if (flags & EXT4_SYNC_FL) 4541 new_fl |= S_SYNC; 4542 if (flags & EXT4_APPEND_FL) 4543 new_fl |= S_APPEND; 4544 if (flags & EXT4_IMMUTABLE_FL) 4545 new_fl |= S_IMMUTABLE; 4546 if (flags & EXT4_NOATIME_FL) 4547 new_fl |= S_NOATIME; 4548 if (flags & EXT4_DIRSYNC_FL) 4549 new_fl |= S_DIRSYNC; 4550 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4551 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4552 !ext4_encrypted_inode(inode)) 4553 new_fl |= S_DAX; 4554 inode_set_flags(inode, new_fl, 4555 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4556 } 4557 4558 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4559 struct ext4_inode_info *ei) 4560 { 4561 blkcnt_t i_blocks ; 4562 struct inode *inode = &(ei->vfs_inode); 4563 struct super_block *sb = inode->i_sb; 4564 4565 if (ext4_has_feature_huge_file(sb)) { 4566 /* we are using combined 48 bit field */ 4567 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4568 le32_to_cpu(raw_inode->i_blocks_lo); 4569 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4570 /* i_blocks represent file system block size */ 4571 return i_blocks << (inode->i_blkbits - 9); 4572 } else { 4573 return i_blocks; 4574 } 4575 } else { 4576 return le32_to_cpu(raw_inode->i_blocks_lo); 4577 } 4578 } 4579 4580 static inline void ext4_iget_extra_inode(struct inode *inode, 4581 struct ext4_inode *raw_inode, 4582 struct ext4_inode_info *ei) 4583 { 4584 __le32 *magic = (void *)raw_inode + 4585 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4586 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4587 EXT4_INODE_SIZE(inode->i_sb) && 4588 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4589 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4590 ext4_find_inline_data_nolock(inode); 4591 } else 4592 EXT4_I(inode)->i_inline_off = 0; 4593 } 4594 4595 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4596 { 4597 if (!ext4_has_feature_project(inode->i_sb)) 4598 return -EOPNOTSUPP; 4599 *projid = EXT4_I(inode)->i_projid; 4600 return 0; 4601 } 4602 4603 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4604 { 4605 struct ext4_iloc iloc; 4606 struct ext4_inode *raw_inode; 4607 struct ext4_inode_info *ei; 4608 struct inode *inode; 4609 journal_t *journal = EXT4_SB(sb)->s_journal; 4610 long ret; 4611 loff_t size; 4612 int block; 4613 uid_t i_uid; 4614 gid_t i_gid; 4615 projid_t i_projid; 4616 4617 inode = iget_locked(sb, ino); 4618 if (!inode) 4619 return ERR_PTR(-ENOMEM); 4620 if (!(inode->i_state & I_NEW)) 4621 return inode; 4622 4623 ei = EXT4_I(inode); 4624 iloc.bh = NULL; 4625 4626 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4627 if (ret < 0) 4628 goto bad_inode; 4629 raw_inode = ext4_raw_inode(&iloc); 4630 4631 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4632 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4633 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4634 EXT4_INODE_SIZE(inode->i_sb) || 4635 (ei->i_extra_isize & 3)) { 4636 EXT4_ERROR_INODE(inode, 4637 "bad extra_isize %u (inode size %u)", 4638 ei->i_extra_isize, 4639 EXT4_INODE_SIZE(inode->i_sb)); 4640 ret = -EFSCORRUPTED; 4641 goto bad_inode; 4642 } 4643 } else 4644 ei->i_extra_isize = 0; 4645 4646 /* Precompute checksum seed for inode metadata */ 4647 if (ext4_has_metadata_csum(sb)) { 4648 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4649 __u32 csum; 4650 __le32 inum = cpu_to_le32(inode->i_ino); 4651 __le32 gen = raw_inode->i_generation; 4652 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4653 sizeof(inum)); 4654 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4655 sizeof(gen)); 4656 } 4657 4658 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4659 EXT4_ERROR_INODE(inode, "checksum invalid"); 4660 ret = -EFSBADCRC; 4661 goto bad_inode; 4662 } 4663 4664 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4665 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4666 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4667 if (ext4_has_feature_project(sb) && 4668 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4669 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4670 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4671 else 4672 i_projid = EXT4_DEF_PROJID; 4673 4674 if (!(test_opt(inode->i_sb, NO_UID32))) { 4675 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4676 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4677 } 4678 i_uid_write(inode, i_uid); 4679 i_gid_write(inode, i_gid); 4680 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4681 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4682 4683 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4684 ei->i_inline_off = 0; 4685 ei->i_dir_start_lookup = 0; 4686 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4687 /* We now have enough fields to check if the inode was active or not. 4688 * This is needed because nfsd might try to access dead inodes 4689 * the test is that same one that e2fsck uses 4690 * NeilBrown 1999oct15 4691 */ 4692 if (inode->i_nlink == 0) { 4693 if ((inode->i_mode == 0 || 4694 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4695 ino != EXT4_BOOT_LOADER_INO) { 4696 /* this inode is deleted */ 4697 ret = -ESTALE; 4698 goto bad_inode; 4699 } 4700 /* The only unlinked inodes we let through here have 4701 * valid i_mode and are being read by the orphan 4702 * recovery code: that's fine, we're about to complete 4703 * the process of deleting those. 4704 * OR it is the EXT4_BOOT_LOADER_INO which is 4705 * not initialized on a new filesystem. */ 4706 } 4707 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4708 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4709 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4710 if (ext4_has_feature_64bit(sb)) 4711 ei->i_file_acl |= 4712 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4713 inode->i_size = ext4_isize(raw_inode); 4714 if ((size = i_size_read(inode)) < 0) { 4715 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4716 ret = -EFSCORRUPTED; 4717 goto bad_inode; 4718 } 4719 ei->i_disksize = inode->i_size; 4720 #ifdef CONFIG_QUOTA 4721 ei->i_reserved_quota = 0; 4722 #endif 4723 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4724 ei->i_block_group = iloc.block_group; 4725 ei->i_last_alloc_group = ~0; 4726 /* 4727 * NOTE! The in-memory inode i_data array is in little-endian order 4728 * even on big-endian machines: we do NOT byteswap the block numbers! 4729 */ 4730 for (block = 0; block < EXT4_N_BLOCKS; block++) 4731 ei->i_data[block] = raw_inode->i_block[block]; 4732 INIT_LIST_HEAD(&ei->i_orphan); 4733 4734 /* 4735 * Set transaction id's of transactions that have to be committed 4736 * to finish f[data]sync. We set them to currently running transaction 4737 * as we cannot be sure that the inode or some of its metadata isn't 4738 * part of the transaction - the inode could have been reclaimed and 4739 * now it is reread from disk. 4740 */ 4741 if (journal) { 4742 transaction_t *transaction; 4743 tid_t tid; 4744 4745 read_lock(&journal->j_state_lock); 4746 if (journal->j_running_transaction) 4747 transaction = journal->j_running_transaction; 4748 else 4749 transaction = journal->j_committing_transaction; 4750 if (transaction) 4751 tid = transaction->t_tid; 4752 else 4753 tid = journal->j_commit_sequence; 4754 read_unlock(&journal->j_state_lock); 4755 ei->i_sync_tid = tid; 4756 ei->i_datasync_tid = tid; 4757 } 4758 4759 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4760 if (ei->i_extra_isize == 0) { 4761 /* The extra space is currently unused. Use it. */ 4762 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4763 ei->i_extra_isize = sizeof(struct ext4_inode) - 4764 EXT4_GOOD_OLD_INODE_SIZE; 4765 } else { 4766 ext4_iget_extra_inode(inode, raw_inode, ei); 4767 } 4768 } 4769 4770 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4771 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4772 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4773 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4774 4775 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4776 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4777 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4778 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4779 inode->i_version |= 4780 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4781 } 4782 } 4783 4784 ret = 0; 4785 if (ei->i_file_acl && 4786 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4787 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4788 ei->i_file_acl); 4789 ret = -EFSCORRUPTED; 4790 goto bad_inode; 4791 } else if (!ext4_has_inline_data(inode)) { 4792 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4793 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4794 (S_ISLNK(inode->i_mode) && 4795 !ext4_inode_is_fast_symlink(inode)))) 4796 /* Validate extent which is part of inode */ 4797 ret = ext4_ext_check_inode(inode); 4798 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4799 (S_ISLNK(inode->i_mode) && 4800 !ext4_inode_is_fast_symlink(inode))) { 4801 /* Validate block references which are part of inode */ 4802 ret = ext4_ind_check_inode(inode); 4803 } 4804 } 4805 if (ret) 4806 goto bad_inode; 4807 4808 if (S_ISREG(inode->i_mode)) { 4809 inode->i_op = &ext4_file_inode_operations; 4810 inode->i_fop = &ext4_file_operations; 4811 ext4_set_aops(inode); 4812 } else if (S_ISDIR(inode->i_mode)) { 4813 inode->i_op = &ext4_dir_inode_operations; 4814 inode->i_fop = &ext4_dir_operations; 4815 } else if (S_ISLNK(inode->i_mode)) { 4816 if (ext4_encrypted_inode(inode)) { 4817 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4818 ext4_set_aops(inode); 4819 } else if (ext4_inode_is_fast_symlink(inode)) { 4820 inode->i_link = (char *)ei->i_data; 4821 inode->i_op = &ext4_fast_symlink_inode_operations; 4822 nd_terminate_link(ei->i_data, inode->i_size, 4823 sizeof(ei->i_data) - 1); 4824 } else { 4825 inode->i_op = &ext4_symlink_inode_operations; 4826 ext4_set_aops(inode); 4827 } 4828 inode_nohighmem(inode); 4829 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4830 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4831 inode->i_op = &ext4_special_inode_operations; 4832 if (raw_inode->i_block[0]) 4833 init_special_inode(inode, inode->i_mode, 4834 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4835 else 4836 init_special_inode(inode, inode->i_mode, 4837 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4838 } else if (ino == EXT4_BOOT_LOADER_INO) { 4839 make_bad_inode(inode); 4840 } else { 4841 ret = -EFSCORRUPTED; 4842 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4843 goto bad_inode; 4844 } 4845 brelse(iloc.bh); 4846 ext4_set_inode_flags(inode); 4847 unlock_new_inode(inode); 4848 return inode; 4849 4850 bad_inode: 4851 brelse(iloc.bh); 4852 iget_failed(inode); 4853 return ERR_PTR(ret); 4854 } 4855 4856 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4857 { 4858 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4859 return ERR_PTR(-EFSCORRUPTED); 4860 return ext4_iget(sb, ino); 4861 } 4862 4863 static int ext4_inode_blocks_set(handle_t *handle, 4864 struct ext4_inode *raw_inode, 4865 struct ext4_inode_info *ei) 4866 { 4867 struct inode *inode = &(ei->vfs_inode); 4868 u64 i_blocks = inode->i_blocks; 4869 struct super_block *sb = inode->i_sb; 4870 4871 if (i_blocks <= ~0U) { 4872 /* 4873 * i_blocks can be represented in a 32 bit variable 4874 * as multiple of 512 bytes 4875 */ 4876 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4877 raw_inode->i_blocks_high = 0; 4878 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4879 return 0; 4880 } 4881 if (!ext4_has_feature_huge_file(sb)) 4882 return -EFBIG; 4883 4884 if (i_blocks <= 0xffffffffffffULL) { 4885 /* 4886 * i_blocks can be represented in a 48 bit variable 4887 * as multiple of 512 bytes 4888 */ 4889 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4890 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4891 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4892 } else { 4893 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4894 /* i_block is stored in file system block size */ 4895 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4896 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4897 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4898 } 4899 return 0; 4900 } 4901 4902 struct other_inode { 4903 unsigned long orig_ino; 4904 struct ext4_inode *raw_inode; 4905 }; 4906 4907 static int other_inode_match(struct inode * inode, unsigned long ino, 4908 void *data) 4909 { 4910 struct other_inode *oi = (struct other_inode *) data; 4911 4912 if ((inode->i_ino != ino) || 4913 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4914 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4915 ((inode->i_state & I_DIRTY_TIME) == 0)) 4916 return 0; 4917 spin_lock(&inode->i_lock); 4918 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4919 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4920 (inode->i_state & I_DIRTY_TIME)) { 4921 struct ext4_inode_info *ei = EXT4_I(inode); 4922 4923 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4924 spin_unlock(&inode->i_lock); 4925 4926 spin_lock(&ei->i_raw_lock); 4927 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4928 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4929 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4930 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4931 spin_unlock(&ei->i_raw_lock); 4932 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4933 return -1; 4934 } 4935 spin_unlock(&inode->i_lock); 4936 return -1; 4937 } 4938 4939 /* 4940 * Opportunistically update the other time fields for other inodes in 4941 * the same inode table block. 4942 */ 4943 static void ext4_update_other_inodes_time(struct super_block *sb, 4944 unsigned long orig_ino, char *buf) 4945 { 4946 struct other_inode oi; 4947 unsigned long ino; 4948 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4949 int inode_size = EXT4_INODE_SIZE(sb); 4950 4951 oi.orig_ino = orig_ino; 4952 /* 4953 * Calculate the first inode in the inode table block. Inode 4954 * numbers are one-based. That is, the first inode in a block 4955 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4956 */ 4957 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4958 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4959 if (ino == orig_ino) 4960 continue; 4961 oi.raw_inode = (struct ext4_inode *) buf; 4962 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4963 } 4964 } 4965 4966 /* 4967 * Post the struct inode info into an on-disk inode location in the 4968 * buffer-cache. This gobbles the caller's reference to the 4969 * buffer_head in the inode location struct. 4970 * 4971 * The caller must have write access to iloc->bh. 4972 */ 4973 static int ext4_do_update_inode(handle_t *handle, 4974 struct inode *inode, 4975 struct ext4_iloc *iloc) 4976 { 4977 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4978 struct ext4_inode_info *ei = EXT4_I(inode); 4979 struct buffer_head *bh = iloc->bh; 4980 struct super_block *sb = inode->i_sb; 4981 int err = 0, rc, block; 4982 int need_datasync = 0, set_large_file = 0; 4983 uid_t i_uid; 4984 gid_t i_gid; 4985 projid_t i_projid; 4986 4987 spin_lock(&ei->i_raw_lock); 4988 4989 /* For fields not tracked in the in-memory inode, 4990 * initialise them to zero for new inodes. */ 4991 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4992 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4993 4994 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4995 i_uid = i_uid_read(inode); 4996 i_gid = i_gid_read(inode); 4997 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4998 if (!(test_opt(inode->i_sb, NO_UID32))) { 4999 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5000 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5001 /* 5002 * Fix up interoperability with old kernels. Otherwise, old inodes get 5003 * re-used with the upper 16 bits of the uid/gid intact 5004 */ 5005 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5006 raw_inode->i_uid_high = 0; 5007 raw_inode->i_gid_high = 0; 5008 } else { 5009 raw_inode->i_uid_high = 5010 cpu_to_le16(high_16_bits(i_uid)); 5011 raw_inode->i_gid_high = 5012 cpu_to_le16(high_16_bits(i_gid)); 5013 } 5014 } else { 5015 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5016 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5017 raw_inode->i_uid_high = 0; 5018 raw_inode->i_gid_high = 0; 5019 } 5020 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5021 5022 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5023 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5024 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5025 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5026 5027 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5028 if (err) { 5029 spin_unlock(&ei->i_raw_lock); 5030 goto out_brelse; 5031 } 5032 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5033 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5034 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5035 raw_inode->i_file_acl_high = 5036 cpu_to_le16(ei->i_file_acl >> 32); 5037 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5038 if (ei->i_disksize != ext4_isize(raw_inode)) { 5039 ext4_isize_set(raw_inode, ei->i_disksize); 5040 need_datasync = 1; 5041 } 5042 if (ei->i_disksize > 0x7fffffffULL) { 5043 if (!ext4_has_feature_large_file(sb) || 5044 EXT4_SB(sb)->s_es->s_rev_level == 5045 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5046 set_large_file = 1; 5047 } 5048 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5049 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5050 if (old_valid_dev(inode->i_rdev)) { 5051 raw_inode->i_block[0] = 5052 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5053 raw_inode->i_block[1] = 0; 5054 } else { 5055 raw_inode->i_block[0] = 0; 5056 raw_inode->i_block[1] = 5057 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5058 raw_inode->i_block[2] = 0; 5059 } 5060 } else if (!ext4_has_inline_data(inode)) { 5061 for (block = 0; block < EXT4_N_BLOCKS; block++) 5062 raw_inode->i_block[block] = ei->i_data[block]; 5063 } 5064 5065 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5066 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5067 if (ei->i_extra_isize) { 5068 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5069 raw_inode->i_version_hi = 5070 cpu_to_le32(inode->i_version >> 32); 5071 raw_inode->i_extra_isize = 5072 cpu_to_le16(ei->i_extra_isize); 5073 } 5074 } 5075 5076 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5077 i_projid != EXT4_DEF_PROJID); 5078 5079 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5080 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5081 raw_inode->i_projid = cpu_to_le32(i_projid); 5082 5083 ext4_inode_csum_set(inode, raw_inode, ei); 5084 spin_unlock(&ei->i_raw_lock); 5085 if (inode->i_sb->s_flags & MS_LAZYTIME) 5086 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5087 bh->b_data); 5088 5089 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5090 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5091 if (!err) 5092 err = rc; 5093 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5094 if (set_large_file) { 5095 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5096 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5097 if (err) 5098 goto out_brelse; 5099 ext4_update_dynamic_rev(sb); 5100 ext4_set_feature_large_file(sb); 5101 ext4_handle_sync(handle); 5102 err = ext4_handle_dirty_super(handle, sb); 5103 } 5104 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5105 out_brelse: 5106 brelse(bh); 5107 ext4_std_error(inode->i_sb, err); 5108 return err; 5109 } 5110 5111 /* 5112 * ext4_write_inode() 5113 * 5114 * We are called from a few places: 5115 * 5116 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5117 * Here, there will be no transaction running. We wait for any running 5118 * transaction to commit. 5119 * 5120 * - Within flush work (sys_sync(), kupdate and such). 5121 * We wait on commit, if told to. 5122 * 5123 * - Within iput_final() -> write_inode_now() 5124 * We wait on commit, if told to. 5125 * 5126 * In all cases it is actually safe for us to return without doing anything, 5127 * because the inode has been copied into a raw inode buffer in 5128 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5129 * writeback. 5130 * 5131 * Note that we are absolutely dependent upon all inode dirtiers doing the 5132 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5133 * which we are interested. 5134 * 5135 * It would be a bug for them to not do this. The code: 5136 * 5137 * mark_inode_dirty(inode) 5138 * stuff(); 5139 * inode->i_size = expr; 5140 * 5141 * is in error because write_inode() could occur while `stuff()' is running, 5142 * and the new i_size will be lost. Plus the inode will no longer be on the 5143 * superblock's dirty inode list. 5144 */ 5145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5146 { 5147 int err; 5148 5149 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5150 return 0; 5151 5152 if (EXT4_SB(inode->i_sb)->s_journal) { 5153 if (ext4_journal_current_handle()) { 5154 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5155 dump_stack(); 5156 return -EIO; 5157 } 5158 5159 /* 5160 * No need to force transaction in WB_SYNC_NONE mode. Also 5161 * ext4_sync_fs() will force the commit after everything is 5162 * written. 5163 */ 5164 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5165 return 0; 5166 5167 err = ext4_force_commit(inode->i_sb); 5168 } else { 5169 struct ext4_iloc iloc; 5170 5171 err = __ext4_get_inode_loc(inode, &iloc, 0); 5172 if (err) 5173 return err; 5174 /* 5175 * sync(2) will flush the whole buffer cache. No need to do 5176 * it here separately for each inode. 5177 */ 5178 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5179 sync_dirty_buffer(iloc.bh); 5180 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5181 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5182 "IO error syncing inode"); 5183 err = -EIO; 5184 } 5185 brelse(iloc.bh); 5186 } 5187 return err; 5188 } 5189 5190 /* 5191 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5192 * buffers that are attached to a page stradding i_size and are undergoing 5193 * commit. In that case we have to wait for commit to finish and try again. 5194 */ 5195 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5196 { 5197 struct page *page; 5198 unsigned offset; 5199 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5200 tid_t commit_tid = 0; 5201 int ret; 5202 5203 offset = inode->i_size & (PAGE_SIZE - 1); 5204 /* 5205 * All buffers in the last page remain valid? Then there's nothing to 5206 * do. We do the check mainly to optimize the common PAGE_SIZE == 5207 * blocksize case 5208 */ 5209 if (offset > PAGE_SIZE - i_blocksize(inode)) 5210 return; 5211 while (1) { 5212 page = find_lock_page(inode->i_mapping, 5213 inode->i_size >> PAGE_SHIFT); 5214 if (!page) 5215 return; 5216 ret = __ext4_journalled_invalidatepage(page, offset, 5217 PAGE_SIZE - offset); 5218 unlock_page(page); 5219 put_page(page); 5220 if (ret != -EBUSY) 5221 return; 5222 commit_tid = 0; 5223 read_lock(&journal->j_state_lock); 5224 if (journal->j_committing_transaction) 5225 commit_tid = journal->j_committing_transaction->t_tid; 5226 read_unlock(&journal->j_state_lock); 5227 if (commit_tid) 5228 jbd2_log_wait_commit(journal, commit_tid); 5229 } 5230 } 5231 5232 /* 5233 * ext4_setattr() 5234 * 5235 * Called from notify_change. 5236 * 5237 * We want to trap VFS attempts to truncate the file as soon as 5238 * possible. In particular, we want to make sure that when the VFS 5239 * shrinks i_size, we put the inode on the orphan list and modify 5240 * i_disksize immediately, so that during the subsequent flushing of 5241 * dirty pages and freeing of disk blocks, we can guarantee that any 5242 * commit will leave the blocks being flushed in an unused state on 5243 * disk. (On recovery, the inode will get truncated and the blocks will 5244 * be freed, so we have a strong guarantee that no future commit will 5245 * leave these blocks visible to the user.) 5246 * 5247 * Another thing we have to assure is that if we are in ordered mode 5248 * and inode is still attached to the committing transaction, we must 5249 * we start writeout of all the dirty pages which are being truncated. 5250 * This way we are sure that all the data written in the previous 5251 * transaction are already on disk (truncate waits for pages under 5252 * writeback). 5253 * 5254 * Called with inode->i_mutex down. 5255 */ 5256 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5257 { 5258 struct inode *inode = d_inode(dentry); 5259 int error, rc = 0; 5260 int orphan = 0; 5261 const unsigned int ia_valid = attr->ia_valid; 5262 5263 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5264 return -EIO; 5265 5266 error = setattr_prepare(dentry, attr); 5267 if (error) 5268 return error; 5269 5270 if (is_quota_modification(inode, attr)) { 5271 error = dquot_initialize(inode); 5272 if (error) 5273 return error; 5274 } 5275 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5276 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5277 handle_t *handle; 5278 5279 /* (user+group)*(old+new) structure, inode write (sb, 5280 * inode block, ? - but truncate inode update has it) */ 5281 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5282 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5283 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5284 if (IS_ERR(handle)) { 5285 error = PTR_ERR(handle); 5286 goto err_out; 5287 } 5288 error = dquot_transfer(inode, attr); 5289 if (error) { 5290 ext4_journal_stop(handle); 5291 return error; 5292 } 5293 /* Update corresponding info in inode so that everything is in 5294 * one transaction */ 5295 if (attr->ia_valid & ATTR_UID) 5296 inode->i_uid = attr->ia_uid; 5297 if (attr->ia_valid & ATTR_GID) 5298 inode->i_gid = attr->ia_gid; 5299 error = ext4_mark_inode_dirty(handle, inode); 5300 ext4_journal_stop(handle); 5301 } 5302 5303 if (attr->ia_valid & ATTR_SIZE) { 5304 handle_t *handle; 5305 loff_t oldsize = inode->i_size; 5306 int shrink = (attr->ia_size <= inode->i_size); 5307 5308 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5309 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5310 5311 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5312 return -EFBIG; 5313 } 5314 if (!S_ISREG(inode->i_mode)) 5315 return -EINVAL; 5316 5317 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5318 inode_inc_iversion(inode); 5319 5320 if (ext4_should_order_data(inode) && 5321 (attr->ia_size < inode->i_size)) { 5322 error = ext4_begin_ordered_truncate(inode, 5323 attr->ia_size); 5324 if (error) 5325 goto err_out; 5326 } 5327 if (attr->ia_size != inode->i_size) { 5328 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5329 if (IS_ERR(handle)) { 5330 error = PTR_ERR(handle); 5331 goto err_out; 5332 } 5333 if (ext4_handle_valid(handle) && shrink) { 5334 error = ext4_orphan_add(handle, inode); 5335 orphan = 1; 5336 } 5337 /* 5338 * Update c/mtime on truncate up, ext4_truncate() will 5339 * update c/mtime in shrink case below 5340 */ 5341 if (!shrink) { 5342 inode->i_mtime = current_time(inode); 5343 inode->i_ctime = inode->i_mtime; 5344 } 5345 down_write(&EXT4_I(inode)->i_data_sem); 5346 EXT4_I(inode)->i_disksize = attr->ia_size; 5347 rc = ext4_mark_inode_dirty(handle, inode); 5348 if (!error) 5349 error = rc; 5350 /* 5351 * We have to update i_size under i_data_sem together 5352 * with i_disksize to avoid races with writeback code 5353 * running ext4_wb_update_i_disksize(). 5354 */ 5355 if (!error) 5356 i_size_write(inode, attr->ia_size); 5357 up_write(&EXT4_I(inode)->i_data_sem); 5358 ext4_journal_stop(handle); 5359 if (error) { 5360 if (orphan) 5361 ext4_orphan_del(NULL, inode); 5362 goto err_out; 5363 } 5364 } 5365 if (!shrink) 5366 pagecache_isize_extended(inode, oldsize, inode->i_size); 5367 5368 /* 5369 * Blocks are going to be removed from the inode. Wait 5370 * for dio in flight. Temporarily disable 5371 * dioread_nolock to prevent livelock. 5372 */ 5373 if (orphan) { 5374 if (!ext4_should_journal_data(inode)) { 5375 ext4_inode_block_unlocked_dio(inode); 5376 inode_dio_wait(inode); 5377 ext4_inode_resume_unlocked_dio(inode); 5378 } else 5379 ext4_wait_for_tail_page_commit(inode); 5380 } 5381 down_write(&EXT4_I(inode)->i_mmap_sem); 5382 /* 5383 * Truncate pagecache after we've waited for commit 5384 * in data=journal mode to make pages freeable. 5385 */ 5386 truncate_pagecache(inode, inode->i_size); 5387 if (shrink) { 5388 rc = ext4_truncate(inode); 5389 if (rc) 5390 error = rc; 5391 } 5392 up_write(&EXT4_I(inode)->i_mmap_sem); 5393 } 5394 5395 if (!error) { 5396 setattr_copy(inode, attr); 5397 mark_inode_dirty(inode); 5398 } 5399 5400 /* 5401 * If the call to ext4_truncate failed to get a transaction handle at 5402 * all, we need to clean up the in-core orphan list manually. 5403 */ 5404 if (orphan && inode->i_nlink) 5405 ext4_orphan_del(NULL, inode); 5406 5407 if (!error && (ia_valid & ATTR_MODE)) 5408 rc = posix_acl_chmod(inode, inode->i_mode); 5409 5410 err_out: 5411 ext4_std_error(inode->i_sb, error); 5412 if (!error) 5413 error = rc; 5414 return error; 5415 } 5416 5417 int ext4_getattr(const struct path *path, struct kstat *stat, 5418 u32 request_mask, unsigned int query_flags) 5419 { 5420 struct inode *inode = d_inode(path->dentry); 5421 struct ext4_inode *raw_inode; 5422 struct ext4_inode_info *ei = EXT4_I(inode); 5423 unsigned int flags; 5424 5425 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5426 stat->result_mask |= STATX_BTIME; 5427 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5428 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5429 } 5430 5431 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5432 if (flags & EXT4_APPEND_FL) 5433 stat->attributes |= STATX_ATTR_APPEND; 5434 if (flags & EXT4_COMPR_FL) 5435 stat->attributes |= STATX_ATTR_COMPRESSED; 5436 if (flags & EXT4_ENCRYPT_FL) 5437 stat->attributes |= STATX_ATTR_ENCRYPTED; 5438 if (flags & EXT4_IMMUTABLE_FL) 5439 stat->attributes |= STATX_ATTR_IMMUTABLE; 5440 if (flags & EXT4_NODUMP_FL) 5441 stat->attributes |= STATX_ATTR_NODUMP; 5442 5443 stat->attributes_mask |= (STATX_ATTR_APPEND | 5444 STATX_ATTR_COMPRESSED | 5445 STATX_ATTR_ENCRYPTED | 5446 STATX_ATTR_IMMUTABLE | 5447 STATX_ATTR_NODUMP); 5448 5449 generic_fillattr(inode, stat); 5450 return 0; 5451 } 5452 5453 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5454 u32 request_mask, unsigned int query_flags) 5455 { 5456 struct inode *inode = d_inode(path->dentry); 5457 u64 delalloc_blocks; 5458 5459 ext4_getattr(path, stat, request_mask, query_flags); 5460 5461 /* 5462 * If there is inline data in the inode, the inode will normally not 5463 * have data blocks allocated (it may have an external xattr block). 5464 * Report at least one sector for such files, so tools like tar, rsync, 5465 * others don't incorrectly think the file is completely sparse. 5466 */ 5467 if (unlikely(ext4_has_inline_data(inode))) 5468 stat->blocks += (stat->size + 511) >> 9; 5469 5470 /* 5471 * We can't update i_blocks if the block allocation is delayed 5472 * otherwise in the case of system crash before the real block 5473 * allocation is done, we will have i_blocks inconsistent with 5474 * on-disk file blocks. 5475 * We always keep i_blocks updated together with real 5476 * allocation. But to not confuse with user, stat 5477 * will return the blocks that include the delayed allocation 5478 * blocks for this file. 5479 */ 5480 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5481 EXT4_I(inode)->i_reserved_data_blocks); 5482 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5483 return 0; 5484 } 5485 5486 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5487 int pextents) 5488 { 5489 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5490 return ext4_ind_trans_blocks(inode, lblocks); 5491 return ext4_ext_index_trans_blocks(inode, pextents); 5492 } 5493 5494 /* 5495 * Account for index blocks, block groups bitmaps and block group 5496 * descriptor blocks if modify datablocks and index blocks 5497 * worse case, the indexs blocks spread over different block groups 5498 * 5499 * If datablocks are discontiguous, they are possible to spread over 5500 * different block groups too. If they are contiguous, with flexbg, 5501 * they could still across block group boundary. 5502 * 5503 * Also account for superblock, inode, quota and xattr blocks 5504 */ 5505 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5506 int pextents) 5507 { 5508 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5509 int gdpblocks; 5510 int idxblocks; 5511 int ret = 0; 5512 5513 /* 5514 * How many index blocks need to touch to map @lblocks logical blocks 5515 * to @pextents physical extents? 5516 */ 5517 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5518 5519 ret = idxblocks; 5520 5521 /* 5522 * Now let's see how many group bitmaps and group descriptors need 5523 * to account 5524 */ 5525 groups = idxblocks + pextents; 5526 gdpblocks = groups; 5527 if (groups > ngroups) 5528 groups = ngroups; 5529 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5530 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5531 5532 /* bitmaps and block group descriptor blocks */ 5533 ret += groups + gdpblocks; 5534 5535 /* Blocks for super block, inode, quota and xattr blocks */ 5536 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5537 5538 return ret; 5539 } 5540 5541 /* 5542 * Calculate the total number of credits to reserve to fit 5543 * the modification of a single pages into a single transaction, 5544 * which may include multiple chunks of block allocations. 5545 * 5546 * This could be called via ext4_write_begin() 5547 * 5548 * We need to consider the worse case, when 5549 * one new block per extent. 5550 */ 5551 int ext4_writepage_trans_blocks(struct inode *inode) 5552 { 5553 int bpp = ext4_journal_blocks_per_page(inode); 5554 int ret; 5555 5556 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5557 5558 /* Account for data blocks for journalled mode */ 5559 if (ext4_should_journal_data(inode)) 5560 ret += bpp; 5561 return ret; 5562 } 5563 5564 /* 5565 * Calculate the journal credits for a chunk of data modification. 5566 * 5567 * This is called from DIO, fallocate or whoever calling 5568 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5569 * 5570 * journal buffers for data blocks are not included here, as DIO 5571 * and fallocate do no need to journal data buffers. 5572 */ 5573 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5574 { 5575 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5576 } 5577 5578 /* 5579 * The caller must have previously called ext4_reserve_inode_write(). 5580 * Give this, we know that the caller already has write access to iloc->bh. 5581 */ 5582 int ext4_mark_iloc_dirty(handle_t *handle, 5583 struct inode *inode, struct ext4_iloc *iloc) 5584 { 5585 int err = 0; 5586 5587 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5588 return -EIO; 5589 5590 if (IS_I_VERSION(inode)) 5591 inode_inc_iversion(inode); 5592 5593 /* the do_update_inode consumes one bh->b_count */ 5594 get_bh(iloc->bh); 5595 5596 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5597 err = ext4_do_update_inode(handle, inode, iloc); 5598 put_bh(iloc->bh); 5599 return err; 5600 } 5601 5602 /* 5603 * On success, We end up with an outstanding reference count against 5604 * iloc->bh. This _must_ be cleaned up later. 5605 */ 5606 5607 int 5608 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5609 struct ext4_iloc *iloc) 5610 { 5611 int err; 5612 5613 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5614 return -EIO; 5615 5616 err = ext4_get_inode_loc(inode, iloc); 5617 if (!err) { 5618 BUFFER_TRACE(iloc->bh, "get_write_access"); 5619 err = ext4_journal_get_write_access(handle, iloc->bh); 5620 if (err) { 5621 brelse(iloc->bh); 5622 iloc->bh = NULL; 5623 } 5624 } 5625 ext4_std_error(inode->i_sb, err); 5626 return err; 5627 } 5628 5629 /* 5630 * Expand an inode by new_extra_isize bytes. 5631 * Returns 0 on success or negative error number on failure. 5632 */ 5633 static int ext4_expand_extra_isize(struct inode *inode, 5634 unsigned int new_extra_isize, 5635 struct ext4_iloc iloc, 5636 handle_t *handle) 5637 { 5638 struct ext4_inode *raw_inode; 5639 struct ext4_xattr_ibody_header *header; 5640 5641 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5642 return 0; 5643 5644 raw_inode = ext4_raw_inode(&iloc); 5645 5646 header = IHDR(inode, raw_inode); 5647 5648 /* No extended attributes present */ 5649 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5650 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5651 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5652 EXT4_I(inode)->i_extra_isize, 0, 5653 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5654 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5655 return 0; 5656 } 5657 5658 /* try to expand with EAs present */ 5659 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5660 raw_inode, handle); 5661 } 5662 5663 /* 5664 * What we do here is to mark the in-core inode as clean with respect to inode 5665 * dirtiness (it may still be data-dirty). 5666 * This means that the in-core inode may be reaped by prune_icache 5667 * without having to perform any I/O. This is a very good thing, 5668 * because *any* task may call prune_icache - even ones which 5669 * have a transaction open against a different journal. 5670 * 5671 * Is this cheating? Not really. Sure, we haven't written the 5672 * inode out, but prune_icache isn't a user-visible syncing function. 5673 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5674 * we start and wait on commits. 5675 */ 5676 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5677 { 5678 struct ext4_iloc iloc; 5679 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5680 static unsigned int mnt_count; 5681 int err, ret; 5682 5683 might_sleep(); 5684 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5685 err = ext4_reserve_inode_write(handle, inode, &iloc); 5686 if (err) 5687 return err; 5688 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5689 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5690 /* 5691 * In nojournal mode, we can immediately attempt to expand 5692 * the inode. When journaled, we first need to obtain extra 5693 * buffer credits since we may write into the EA block 5694 * with this same handle. If journal_extend fails, then it will 5695 * only result in a minor loss of functionality for that inode. 5696 * If this is felt to be critical, then e2fsck should be run to 5697 * force a large enough s_min_extra_isize. 5698 */ 5699 if (!ext4_handle_valid(handle) || 5700 jbd2_journal_extend(handle, 5701 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) { 5702 ret = ext4_expand_extra_isize(inode, 5703 sbi->s_want_extra_isize, 5704 iloc, handle); 5705 if (ret) { 5706 if (mnt_count != 5707 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5708 ext4_warning(inode->i_sb, 5709 "Unable to expand inode %lu. Delete" 5710 " some EAs or run e2fsck.", 5711 inode->i_ino); 5712 mnt_count = 5713 le16_to_cpu(sbi->s_es->s_mnt_count); 5714 } 5715 } 5716 } 5717 } 5718 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5719 } 5720 5721 /* 5722 * ext4_dirty_inode() is called from __mark_inode_dirty() 5723 * 5724 * We're really interested in the case where a file is being extended. 5725 * i_size has been changed by generic_commit_write() and we thus need 5726 * to include the updated inode in the current transaction. 5727 * 5728 * Also, dquot_alloc_block() will always dirty the inode when blocks 5729 * are allocated to the file. 5730 * 5731 * If the inode is marked synchronous, we don't honour that here - doing 5732 * so would cause a commit on atime updates, which we don't bother doing. 5733 * We handle synchronous inodes at the highest possible level. 5734 * 5735 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5736 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5737 * to copy into the on-disk inode structure are the timestamp files. 5738 */ 5739 void ext4_dirty_inode(struct inode *inode, int flags) 5740 { 5741 handle_t *handle; 5742 5743 if (flags == I_DIRTY_TIME) 5744 return; 5745 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5746 if (IS_ERR(handle)) 5747 goto out; 5748 5749 ext4_mark_inode_dirty(handle, inode); 5750 5751 ext4_journal_stop(handle); 5752 out: 5753 return; 5754 } 5755 5756 #if 0 5757 /* 5758 * Bind an inode's backing buffer_head into this transaction, to prevent 5759 * it from being flushed to disk early. Unlike 5760 * ext4_reserve_inode_write, this leaves behind no bh reference and 5761 * returns no iloc structure, so the caller needs to repeat the iloc 5762 * lookup to mark the inode dirty later. 5763 */ 5764 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5765 { 5766 struct ext4_iloc iloc; 5767 5768 int err = 0; 5769 if (handle) { 5770 err = ext4_get_inode_loc(inode, &iloc); 5771 if (!err) { 5772 BUFFER_TRACE(iloc.bh, "get_write_access"); 5773 err = jbd2_journal_get_write_access(handle, iloc.bh); 5774 if (!err) 5775 err = ext4_handle_dirty_metadata(handle, 5776 NULL, 5777 iloc.bh); 5778 brelse(iloc.bh); 5779 } 5780 } 5781 ext4_std_error(inode->i_sb, err); 5782 return err; 5783 } 5784 #endif 5785 5786 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5787 { 5788 journal_t *journal; 5789 handle_t *handle; 5790 int err; 5791 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5792 5793 /* 5794 * We have to be very careful here: changing a data block's 5795 * journaling status dynamically is dangerous. If we write a 5796 * data block to the journal, change the status and then delete 5797 * that block, we risk forgetting to revoke the old log record 5798 * from the journal and so a subsequent replay can corrupt data. 5799 * So, first we make sure that the journal is empty and that 5800 * nobody is changing anything. 5801 */ 5802 5803 journal = EXT4_JOURNAL(inode); 5804 if (!journal) 5805 return 0; 5806 if (is_journal_aborted(journal)) 5807 return -EROFS; 5808 5809 /* Wait for all existing dio workers */ 5810 ext4_inode_block_unlocked_dio(inode); 5811 inode_dio_wait(inode); 5812 5813 /* 5814 * Before flushing the journal and switching inode's aops, we have 5815 * to flush all dirty data the inode has. There can be outstanding 5816 * delayed allocations, there can be unwritten extents created by 5817 * fallocate or buffered writes in dioread_nolock mode covered by 5818 * dirty data which can be converted only after flushing the dirty 5819 * data (and journalled aops don't know how to handle these cases). 5820 */ 5821 if (val) { 5822 down_write(&EXT4_I(inode)->i_mmap_sem); 5823 err = filemap_write_and_wait(inode->i_mapping); 5824 if (err < 0) { 5825 up_write(&EXT4_I(inode)->i_mmap_sem); 5826 ext4_inode_resume_unlocked_dio(inode); 5827 return err; 5828 } 5829 } 5830 5831 percpu_down_write(&sbi->s_journal_flag_rwsem); 5832 jbd2_journal_lock_updates(journal); 5833 5834 /* 5835 * OK, there are no updates running now, and all cached data is 5836 * synced to disk. We are now in a completely consistent state 5837 * which doesn't have anything in the journal, and we know that 5838 * no filesystem updates are running, so it is safe to modify 5839 * the inode's in-core data-journaling state flag now. 5840 */ 5841 5842 if (val) 5843 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5844 else { 5845 err = jbd2_journal_flush(journal); 5846 if (err < 0) { 5847 jbd2_journal_unlock_updates(journal); 5848 percpu_up_write(&sbi->s_journal_flag_rwsem); 5849 ext4_inode_resume_unlocked_dio(inode); 5850 return err; 5851 } 5852 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5853 } 5854 ext4_set_aops(inode); 5855 /* 5856 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5857 * E.g. S_DAX may get cleared / set. 5858 */ 5859 ext4_set_inode_flags(inode); 5860 5861 jbd2_journal_unlock_updates(journal); 5862 percpu_up_write(&sbi->s_journal_flag_rwsem); 5863 5864 if (val) 5865 up_write(&EXT4_I(inode)->i_mmap_sem); 5866 ext4_inode_resume_unlocked_dio(inode); 5867 5868 /* Finally we can mark the inode as dirty. */ 5869 5870 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5871 if (IS_ERR(handle)) 5872 return PTR_ERR(handle); 5873 5874 err = ext4_mark_inode_dirty(handle, inode); 5875 ext4_handle_sync(handle); 5876 ext4_journal_stop(handle); 5877 ext4_std_error(inode->i_sb, err); 5878 5879 return err; 5880 } 5881 5882 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5883 { 5884 return !buffer_mapped(bh); 5885 } 5886 5887 int ext4_page_mkwrite(struct vm_fault *vmf) 5888 { 5889 struct vm_area_struct *vma = vmf->vma; 5890 struct page *page = vmf->page; 5891 loff_t size; 5892 unsigned long len; 5893 int ret; 5894 struct file *file = vma->vm_file; 5895 struct inode *inode = file_inode(file); 5896 struct address_space *mapping = inode->i_mapping; 5897 handle_t *handle; 5898 get_block_t *get_block; 5899 int retries = 0; 5900 5901 sb_start_pagefault(inode->i_sb); 5902 file_update_time(vma->vm_file); 5903 5904 down_read(&EXT4_I(inode)->i_mmap_sem); 5905 5906 ret = ext4_convert_inline_data(inode); 5907 if (ret) 5908 goto out_ret; 5909 5910 /* Delalloc case is easy... */ 5911 if (test_opt(inode->i_sb, DELALLOC) && 5912 !ext4_should_journal_data(inode) && 5913 !ext4_nonda_switch(inode->i_sb)) { 5914 do { 5915 ret = block_page_mkwrite(vma, vmf, 5916 ext4_da_get_block_prep); 5917 } while (ret == -ENOSPC && 5918 ext4_should_retry_alloc(inode->i_sb, &retries)); 5919 goto out_ret; 5920 } 5921 5922 lock_page(page); 5923 size = i_size_read(inode); 5924 /* Page got truncated from under us? */ 5925 if (page->mapping != mapping || page_offset(page) > size) { 5926 unlock_page(page); 5927 ret = VM_FAULT_NOPAGE; 5928 goto out; 5929 } 5930 5931 if (page->index == size >> PAGE_SHIFT) 5932 len = size & ~PAGE_MASK; 5933 else 5934 len = PAGE_SIZE; 5935 /* 5936 * Return if we have all the buffers mapped. This avoids the need to do 5937 * journal_start/journal_stop which can block and take a long time 5938 */ 5939 if (page_has_buffers(page)) { 5940 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5941 0, len, NULL, 5942 ext4_bh_unmapped)) { 5943 /* Wait so that we don't change page under IO */ 5944 wait_for_stable_page(page); 5945 ret = VM_FAULT_LOCKED; 5946 goto out; 5947 } 5948 } 5949 unlock_page(page); 5950 /* OK, we need to fill the hole... */ 5951 if (ext4_should_dioread_nolock(inode)) 5952 get_block = ext4_get_block_unwritten; 5953 else 5954 get_block = ext4_get_block; 5955 retry_alloc: 5956 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5957 ext4_writepage_trans_blocks(inode)); 5958 if (IS_ERR(handle)) { 5959 ret = VM_FAULT_SIGBUS; 5960 goto out; 5961 } 5962 ret = block_page_mkwrite(vma, vmf, get_block); 5963 if (!ret && ext4_should_journal_data(inode)) { 5964 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5965 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5966 unlock_page(page); 5967 ret = VM_FAULT_SIGBUS; 5968 ext4_journal_stop(handle); 5969 goto out; 5970 } 5971 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5972 } 5973 ext4_journal_stop(handle); 5974 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5975 goto retry_alloc; 5976 out_ret: 5977 ret = block_page_mkwrite_return(ret); 5978 out: 5979 up_read(&EXT4_I(inode)->i_mmap_sem); 5980 sb_end_pagefault(inode->i_sb); 5981 return ret; 5982 } 5983 5984 int ext4_filemap_fault(struct vm_fault *vmf) 5985 { 5986 struct inode *inode = file_inode(vmf->vma->vm_file); 5987 int err; 5988 5989 down_read(&EXT4_I(inode)->i_mmap_sem); 5990 err = filemap_fault(vmf); 5991 up_read(&EXT4_I(inode)->i_mmap_sem); 5992 5993 return err; 5994 } 5995 5996 /* 5997 * Find the first extent at or after @lblk in an inode that is not a hole. 5998 * Search for @map_len blocks at most. The extent is returned in @result. 5999 * 6000 * The function returns 1 if we found an extent. The function returns 0 in 6001 * case there is no extent at or after @lblk and in that case also sets 6002 * @result->es_len to 0. In case of error, the error code is returned. 6003 */ 6004 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 6005 unsigned int map_len, struct extent_status *result) 6006 { 6007 struct ext4_map_blocks map; 6008 struct extent_status es = {}; 6009 int ret; 6010 6011 map.m_lblk = lblk; 6012 map.m_len = map_len; 6013 6014 /* 6015 * For non-extent based files this loop may iterate several times since 6016 * we do not determine full hole size. 6017 */ 6018 while (map.m_len > 0) { 6019 ret = ext4_map_blocks(NULL, inode, &map, 0); 6020 if (ret < 0) 6021 return ret; 6022 /* There's extent covering m_lblk? Just return it. */ 6023 if (ret > 0) { 6024 int status; 6025 6026 ext4_es_store_pblock(result, map.m_pblk); 6027 result->es_lblk = map.m_lblk; 6028 result->es_len = map.m_len; 6029 if (map.m_flags & EXT4_MAP_UNWRITTEN) 6030 status = EXTENT_STATUS_UNWRITTEN; 6031 else 6032 status = EXTENT_STATUS_WRITTEN; 6033 ext4_es_store_status(result, status); 6034 return 1; 6035 } 6036 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 6037 map.m_lblk + map.m_len - 1, 6038 &es); 6039 /* Is delalloc data before next block in extent tree? */ 6040 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 6041 ext4_lblk_t offset = 0; 6042 6043 if (es.es_lblk < lblk) 6044 offset = lblk - es.es_lblk; 6045 result->es_lblk = es.es_lblk + offset; 6046 ext4_es_store_pblock(result, 6047 ext4_es_pblock(&es) + offset); 6048 result->es_len = es.es_len - offset; 6049 ext4_es_store_status(result, ext4_es_status(&es)); 6050 6051 return 1; 6052 } 6053 /* There's a hole at m_lblk, advance us after it */ 6054 map.m_lblk += map.m_len; 6055 map_len -= map.m_len; 6056 map.m_len = map_len; 6057 cond_resched(); 6058 } 6059 result->es_len = 0; 6060 return 0; 6061 } 6062