xref: /openbmc/linux/fs/ext4/inode.c (revision a056bdaae7a181f7dcc876cfab2f94538e508709)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks) {
265 		err = ext4_truncate(inode);
266 		if (err) {
267 			ext4_error(inode->i_sb,
268 				   "couldn't truncate inode %lu (err %d)",
269 				   inode->i_ino, err);
270 			goto stop_handle;
271 		}
272 	}
273 
274 	/*
275 	 * ext4_ext_truncate() doesn't reserve any slop when it
276 	 * restarts journal transactions; therefore there may not be
277 	 * enough credits left in the handle to remove the inode from
278 	 * the orphan list and set the dtime field.
279 	 */
280 	if (!ext4_handle_has_enough_credits(handle, 3)) {
281 		err = ext4_journal_extend(handle, 3);
282 		if (err > 0)
283 			err = ext4_journal_restart(handle, 3);
284 		if (err != 0) {
285 			ext4_warning(inode->i_sb,
286 				     "couldn't extend journal (err %d)", err);
287 		stop_handle:
288 			ext4_journal_stop(handle);
289 			ext4_orphan_del(NULL, inode);
290 			sb_end_intwrite(inode->i_sb);
291 			goto no_delete;
292 		}
293 	}
294 
295 	/*
296 	 * Kill off the orphan record which ext4_truncate created.
297 	 * AKPM: I think this can be inside the above `if'.
298 	 * Note that ext4_orphan_del() has to be able to cope with the
299 	 * deletion of a non-existent orphan - this is because we don't
300 	 * know if ext4_truncate() actually created an orphan record.
301 	 * (Well, we could do this if we need to, but heck - it works)
302 	 */
303 	ext4_orphan_del(handle, inode);
304 	EXT4_I(inode)->i_dtime	= get_seconds();
305 
306 	/*
307 	 * One subtle ordering requirement: if anything has gone wrong
308 	 * (transaction abort, IO errors, whatever), then we can still
309 	 * do these next steps (the fs will already have been marked as
310 	 * having errors), but we can't free the inode if the mark_dirty
311 	 * fails.
312 	 */
313 	if (ext4_mark_inode_dirty(handle, inode))
314 		/* If that failed, just do the required in-core inode clear. */
315 		ext4_clear_inode(inode);
316 	else
317 		ext4_free_inode(handle, inode);
318 	ext4_journal_stop(handle);
319 	sb_end_intwrite(inode->i_sb);
320 	return;
321 no_delete:
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    (atomic_read(&inode->i_writecount) == 0))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 				   map->m_len)) {
387 		ext4_error_inode(inode, func, line, map->m_pblk,
388 				 "lblock %lu mapped to illegal pblock "
389 				 "(length %d)", (unsigned long) map->m_lblk,
390 				 map->m_len);
391 		return -EFSCORRUPTED;
392 	}
393 	return 0;
394 }
395 
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 		       ext4_lblk_t len)
398 {
399 	int ret;
400 
401 	if (ext4_encrypted_inode(inode))
402 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
403 
404 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 	if (ret > 0)
406 		ret = 0;
407 
408 	return ret;
409 }
410 
411 #define check_block_validity(inode, map)	\
412 	__check_block_validity((inode), __func__, __LINE__, (map))
413 
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 				       struct inode *inode,
417 				       struct ext4_map_blocks *es_map,
418 				       struct ext4_map_blocks *map,
419 				       int flags)
420 {
421 	int retval;
422 
423 	map->m_flags = 0;
424 	/*
425 	 * There is a race window that the result is not the same.
426 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
427 	 * is that we lookup a block mapping in extent status tree with
428 	 * out taking i_data_sem.  So at the time the unwritten extent
429 	 * could be converted.
430 	 */
431 	down_read(&EXT4_I(inode)->i_data_sem);
432 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 					     EXT4_GET_BLOCKS_KEEP_SIZE);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 					     EXT4_GET_BLOCKS_KEEP_SIZE);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	/*
442 	 * We don't check m_len because extent will be collpased in status
443 	 * tree.  So the m_len might not equal.
444 	 */
445 	if (es_map->m_lblk != map->m_lblk ||
446 	    es_map->m_flags != map->m_flags ||
447 	    es_map->m_pblk != map->m_pblk) {
448 		printk("ES cache assertion failed for inode: %lu "
449 		       "es_cached ex [%d/%d/%llu/%x] != "
450 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
452 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 		       map->m_len, map->m_pblk, map->m_flags,
454 		       retval, flags);
455 	}
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458 
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 		    struct ext4_map_blocks *map, int flags)
483 {
484 	struct extent_status es;
485 	int retval;
486 	int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 	struct ext4_map_blocks orig_map;
489 
490 	memcpy(&orig_map, map, sizeof(*map));
491 #endif
492 
493 	map->m_flags = 0;
494 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 		  (unsigned long) map->m_lblk);
497 
498 	/*
499 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 	 */
501 	if (unlikely(map->m_len > INT_MAX))
502 		map->m_len = INT_MAX;
503 
504 	/* We can handle the block number less than EXT_MAX_BLOCKS */
505 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 		return -EFSCORRUPTED;
507 
508 	/* Lookup extent status tree firstly */
509 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 			map->m_pblk = ext4_es_pblock(&es) +
512 					map->m_lblk - es.es_lblk;
513 			map->m_flags |= ext4_es_is_written(&es) ?
514 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 			retval = es.es_len - (map->m_lblk - es.es_lblk);
516 			if (retval > map->m_len)
517 				retval = map->m_len;
518 			map->m_len = retval;
519 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 			map->m_pblk = 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG_ON(1);
528 		}
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 
536 	/*
537 	 * Try to see if we can get the block without requesting a new
538 	 * file system block.
539 	 */
540 	down_read(&EXT4_I(inode)->i_data_sem);
541 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 					     EXT4_GET_BLOCKS_KEEP_SIZE);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 					     EXT4_GET_BLOCKS_KEEP_SIZE);
547 	}
548 	if (retval > 0) {
549 		unsigned int status;
550 
551 		if (unlikely(retval != map->m_len)) {
552 			ext4_warning(inode->i_sb,
553 				     "ES len assertion failed for inode "
554 				     "%lu: retval %d != map->m_len %d",
555 				     inode->i_ino, retval, map->m_len);
556 			WARN_ON(1);
557 		}
558 
559 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 		    !(status & EXTENT_STATUS_WRITTEN) &&
563 		    ext4_find_delalloc_range(inode, map->m_lblk,
564 					     map->m_lblk + map->m_len - 1))
565 			status |= EXTENT_STATUS_DELAYED;
566 		ret = ext4_es_insert_extent(inode, map->m_lblk,
567 					    map->m_len, map->m_pblk, status);
568 		if (ret < 0)
569 			retval = ret;
570 	}
571 	up_read((&EXT4_I(inode)->i_data_sem));
572 
573 found:
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 		ret = check_block_validity(inode, map);
576 		if (ret != 0)
577 			return ret;
578 	}
579 
580 	/* If it is only a block(s) look up */
581 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 		return retval;
583 
584 	/*
585 	 * Returns if the blocks have already allocated
586 	 *
587 	 * Note that if blocks have been preallocated
588 	 * ext4_ext_get_block() returns the create = 0
589 	 * with buffer head unmapped.
590 	 */
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 		/*
593 		 * If we need to convert extent to unwritten
594 		 * we continue and do the actual work in
595 		 * ext4_ext_map_blocks()
596 		 */
597 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 			return retval;
599 
600 	/*
601 	 * Here we clear m_flags because after allocating an new extent,
602 	 * it will be set again.
603 	 */
604 	map->m_flags &= ~EXT4_MAP_FLAGS;
605 
606 	/*
607 	 * New blocks allocate and/or writing to unwritten extent
608 	 * will possibly result in updating i_data, so we take
609 	 * the write lock of i_data_sem, and call get_block()
610 	 * with create == 1 flag.
611 	 */
612 	down_write(&EXT4_I(inode)->i_data_sem);
613 
614 	/*
615 	 * We need to check for EXT4 here because migrate
616 	 * could have changed the inode type in between
617 	 */
618 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 	} else {
621 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
622 
623 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 			/*
625 			 * We allocated new blocks which will result in
626 			 * i_data's format changing.  Force the migrate
627 			 * to fail by clearing migrate flags
628 			 */
629 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 		}
631 
632 		/*
633 		 * Update reserved blocks/metadata blocks after successful
634 		 * block allocation which had been deferred till now. We don't
635 		 * support fallocate for non extent files. So we can update
636 		 * reserve space here.
637 		 */
638 		if ((retval > 0) &&
639 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 			ext4_da_update_reserve_space(inode, retval, 1);
641 	}
642 
643 	if (retval > 0) {
644 		unsigned int status;
645 
646 		if (unlikely(retval != map->m_len)) {
647 			ext4_warning(inode->i_sb,
648 				     "ES len assertion failed for inode "
649 				     "%lu: retval %d != map->m_len %d",
650 				     inode->i_ino, retval, map->m_len);
651 			WARN_ON(1);
652 		}
653 
654 		/*
655 		 * We have to zeroout blocks before inserting them into extent
656 		 * status tree. Otherwise someone could look them up there and
657 		 * use them before they are really zeroed. We also have to
658 		 * unmap metadata before zeroing as otherwise writeback can
659 		 * overwrite zeros with stale data from block device.
660 		 */
661 		if (flags & EXT4_GET_BLOCKS_ZERO &&
662 		    map->m_flags & EXT4_MAP_MAPPED &&
663 		    map->m_flags & EXT4_MAP_NEW) {
664 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 					   map->m_len);
666 			ret = ext4_issue_zeroout(inode, map->m_lblk,
667 						 map->m_pblk, map->m_len);
668 			if (ret) {
669 				retval = ret;
670 				goto out_sem;
671 			}
672 		}
673 
674 		/*
675 		 * If the extent has been zeroed out, we don't need to update
676 		 * extent status tree.
677 		 */
678 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 			if (ext4_es_is_written(&es))
681 				goto out_sem;
682 		}
683 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 		    !(status & EXTENT_STATUS_WRITTEN) &&
687 		    ext4_find_delalloc_range(inode, map->m_lblk,
688 					     map->m_lblk + map->m_len - 1))
689 			status |= EXTENT_STATUS_DELAYED;
690 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 					    map->m_pblk, status);
692 		if (ret < 0) {
693 			retval = ret;
694 			goto out_sem;
695 		}
696 	}
697 
698 out_sem:
699 	up_write((&EXT4_I(inode)->i_data_sem));
700 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 		ret = check_block_validity(inode, map);
702 		if (ret != 0)
703 			return ret;
704 
705 		/*
706 		 * Inodes with freshly allocated blocks where contents will be
707 		 * visible after transaction commit must be on transaction's
708 		 * ordered data list.
709 		 */
710 		if (map->m_flags & EXT4_MAP_NEW &&
711 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 		    !IS_NOQUOTA(inode) &&
714 		    ext4_should_order_data(inode)) {
715 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 				ret = ext4_jbd2_inode_add_wait(handle, inode);
717 			else
718 				ret = ext4_jbd2_inode_add_write(handle, inode);
719 			if (ret)
720 				return ret;
721 		}
722 	}
723 	return retval;
724 }
725 
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 	unsigned long old_state;
733 	unsigned long new_state;
734 
735 	flags &= EXT4_MAP_FLAGS;
736 
737 	/* Dummy buffer_head? Set non-atomically. */
738 	if (!bh->b_page) {
739 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 		return;
741 	}
742 	/*
743 	 * Someone else may be modifying b_state. Be careful! This is ugly but
744 	 * once we get rid of using bh as a container for mapping information
745 	 * to pass to / from get_block functions, this can go away.
746 	 */
747 	do {
748 		old_state = READ_ONCE(bh->b_state);
749 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 	} while (unlikely(
751 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753 
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 			   struct buffer_head *bh, int flags)
756 {
757 	struct ext4_map_blocks map;
758 	int ret = 0;
759 
760 	if (ext4_has_inline_data(inode))
761 		return -ERANGE;
762 
763 	map.m_lblk = iblock;
764 	map.m_len = bh->b_size >> inode->i_blkbits;
765 
766 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 			      flags);
768 	if (ret > 0) {
769 		map_bh(bh, inode->i_sb, map.m_pblk);
770 		ext4_update_bh_state(bh, map.m_flags);
771 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 		ret = 0;
773 	} else if (ret == 0) {
774 		/* hole case, need to fill in bh->b_size */
775 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 	}
777 	return ret;
778 }
779 
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 		   struct buffer_head *bh, int create)
782 {
783 	return _ext4_get_block(inode, iblock, bh,
784 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786 
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 			     struct buffer_head *bh_result, int create)
794 {
795 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 		   inode->i_ino, create);
797 	return _ext4_get_block(inode, iblock, bh_result,
798 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800 
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803 
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 				struct buffer_head *bh_result, int flags)
811 {
812 	int dio_credits;
813 	handle_t *handle;
814 	int retries = 0;
815 	int ret;
816 
817 	/* Trim mapping request to maximum we can map at once for DIO */
818 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 	dio_credits = ext4_chunk_trans_blocks(inode,
821 				      bh_result->b_size >> inode->i_blkbits);
822 retry:
823 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 	if (IS_ERR(handle))
825 		return PTR_ERR(handle);
826 
827 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 	ext4_journal_stop(handle);
829 
830 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 		goto retry;
832 	return ret;
833 }
834 
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 		       struct buffer_head *bh, int create)
838 {
839 	/* We don't expect handle for direct IO */
840 	WARN_ON_ONCE(ext4_journal_current_handle());
841 
842 	if (!create)
843 		return _ext4_get_block(inode, iblock, bh, 0);
844 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846 
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 		sector_t iblock, struct buffer_head *bh_result,	int create)
854 {
855 	int ret;
856 
857 	/* We don't expect handle for direct IO */
858 	WARN_ON_ONCE(ext4_journal_current_handle());
859 
860 	ret = ext4_get_block_trans(inode, iblock, bh_result,
861 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
862 
863 	/*
864 	 * When doing DIO using unwritten extents, we need io_end to convert
865 	 * unwritten extents to written on IO completion. We allocate io_end
866 	 * once we spot unwritten extent and store it in b_private. Generic
867 	 * DIO code keeps b_private set and furthermore passes the value to
868 	 * our completion callback in 'private' argument.
869 	 */
870 	if (!ret && buffer_unwritten(bh_result)) {
871 		if (!bh_result->b_private) {
872 			ext4_io_end_t *io_end;
873 
874 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 			if (!io_end)
876 				return -ENOMEM;
877 			bh_result->b_private = io_end;
878 			ext4_set_io_unwritten_flag(inode, io_end);
879 		}
880 		set_buffer_defer_completion(bh_result);
881 	}
882 
883 	return ret;
884 }
885 
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 		sector_t iblock, struct buffer_head *bh_result,	int create)
893 {
894 	int ret;
895 
896 	/* We don't expect handle for direct IO */
897 	WARN_ON_ONCE(ext4_journal_current_handle());
898 
899 	ret = ext4_get_block_trans(inode, iblock, bh_result,
900 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
901 
902 	/*
903 	 * Mark inode as having pending DIO writes to unwritten extents.
904 	 * ext4_ext_direct_IO() checks this flag and converts extents to
905 	 * written.
906 	 */
907 	if (!ret && buffer_unwritten(bh_result))
908 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909 
910 	return ret;
911 }
912 
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 		   struct buffer_head *bh_result, int create)
915 {
916 	int ret;
917 
918 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 		   inode->i_ino, create);
920 	/* We don't expect handle for direct IO */
921 	WARN_ON_ONCE(ext4_journal_current_handle());
922 
923 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 	/*
925 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 	 * that.
927 	 */
928 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929 
930 	return ret;
931 }
932 
933 
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 				ext4_lblk_t block, int map_flags)
939 {
940 	struct ext4_map_blocks map;
941 	struct buffer_head *bh;
942 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 	int err;
944 
945 	J_ASSERT(handle != NULL || create == 0);
946 
947 	map.m_lblk = block;
948 	map.m_len = 1;
949 	err = ext4_map_blocks(handle, inode, &map, map_flags);
950 
951 	if (err == 0)
952 		return create ? ERR_PTR(-ENOSPC) : NULL;
953 	if (err < 0)
954 		return ERR_PTR(err);
955 
956 	bh = sb_getblk(inode->i_sb, map.m_pblk);
957 	if (unlikely(!bh))
958 		return ERR_PTR(-ENOMEM);
959 	if (map.m_flags & EXT4_MAP_NEW) {
960 		J_ASSERT(create != 0);
961 		J_ASSERT(handle != NULL);
962 
963 		/*
964 		 * Now that we do not always journal data, we should
965 		 * keep in mind whether this should always journal the
966 		 * new buffer as metadata.  For now, regular file
967 		 * writes use ext4_get_block instead, so it's not a
968 		 * problem.
969 		 */
970 		lock_buffer(bh);
971 		BUFFER_TRACE(bh, "call get_create_access");
972 		err = ext4_journal_get_create_access(handle, bh);
973 		if (unlikely(err)) {
974 			unlock_buffer(bh);
975 			goto errout;
976 		}
977 		if (!buffer_uptodate(bh)) {
978 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 			set_buffer_uptodate(bh);
980 		}
981 		unlock_buffer(bh);
982 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 		err = ext4_handle_dirty_metadata(handle, inode, bh);
984 		if (unlikely(err))
985 			goto errout;
986 	} else
987 		BUFFER_TRACE(bh, "not a new buffer");
988 	return bh;
989 errout:
990 	brelse(bh);
991 	return ERR_PTR(err);
992 }
993 
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 			       ext4_lblk_t block, int map_flags)
996 {
997 	struct buffer_head *bh;
998 
999 	bh = ext4_getblk(handle, inode, block, map_flags);
1000 	if (IS_ERR(bh))
1001 		return bh;
1002 	if (!bh || buffer_uptodate(bh))
1003 		return bh;
1004 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 	wait_on_buffer(bh);
1006 	if (buffer_uptodate(bh))
1007 		return bh;
1008 	put_bh(bh);
1009 	return ERR_PTR(-EIO);
1010 }
1011 
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 			   struct buffer_head *head,
1014 			   unsigned from,
1015 			   unsigned to,
1016 			   int *partial,
1017 			   int (*fn)(handle_t *handle,
1018 				     struct buffer_head *bh))
1019 {
1020 	struct buffer_head *bh;
1021 	unsigned block_start, block_end;
1022 	unsigned blocksize = head->b_size;
1023 	int err, ret = 0;
1024 	struct buffer_head *next;
1025 
1026 	for (bh = head, block_start = 0;
1027 	     ret == 0 && (bh != head || !block_start);
1028 	     block_start = block_end, bh = next) {
1029 		next = bh->b_this_page;
1030 		block_end = block_start + blocksize;
1031 		if (block_end <= from || block_start >= to) {
1032 			if (partial && !buffer_uptodate(bh))
1033 				*partial = 1;
1034 			continue;
1035 		}
1036 		err = (*fn)(handle, bh);
1037 		if (!ret)
1038 			ret = err;
1039 	}
1040 	return ret;
1041 }
1042 
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068 				struct buffer_head *bh)
1069 {
1070 	int dirty = buffer_dirty(bh);
1071 	int ret;
1072 
1073 	if (!buffer_mapped(bh) || buffer_freed(bh))
1074 		return 0;
1075 	/*
1076 	 * __block_write_begin() could have dirtied some buffers. Clean
1077 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 	 * otherwise about fs integrity issues. Setting of the dirty bit
1079 	 * by __block_write_begin() isn't a real problem here as we clear
1080 	 * the bit before releasing a page lock and thus writeback cannot
1081 	 * ever write the buffer.
1082 	 */
1083 	if (dirty)
1084 		clear_buffer_dirty(bh);
1085 	BUFFER_TRACE(bh, "get write access");
1086 	ret = ext4_journal_get_write_access(handle, bh);
1087 	if (!ret && dirty)
1088 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 	return ret;
1090 }
1091 
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 				  get_block_t *get_block)
1095 {
1096 	unsigned from = pos & (PAGE_SIZE - 1);
1097 	unsigned to = from + len;
1098 	struct inode *inode = page->mapping->host;
1099 	unsigned block_start, block_end;
1100 	sector_t block;
1101 	int err = 0;
1102 	unsigned blocksize = inode->i_sb->s_blocksize;
1103 	unsigned bbits;
1104 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 	bool decrypt = false;
1106 
1107 	BUG_ON(!PageLocked(page));
1108 	BUG_ON(from > PAGE_SIZE);
1109 	BUG_ON(to > PAGE_SIZE);
1110 	BUG_ON(from > to);
1111 
1112 	if (!page_has_buffers(page))
1113 		create_empty_buffers(page, blocksize, 0);
1114 	head = page_buffers(page);
1115 	bbits = ilog2(blocksize);
1116 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117 
1118 	for (bh = head, block_start = 0; bh != head || !block_start;
1119 	    block++, block_start = block_end, bh = bh->b_this_page) {
1120 		block_end = block_start + blocksize;
1121 		if (block_end <= from || block_start >= to) {
1122 			if (PageUptodate(page)) {
1123 				if (!buffer_uptodate(bh))
1124 					set_buffer_uptodate(bh);
1125 			}
1126 			continue;
1127 		}
1128 		if (buffer_new(bh))
1129 			clear_buffer_new(bh);
1130 		if (!buffer_mapped(bh)) {
1131 			WARN_ON(bh->b_size != blocksize);
1132 			err = get_block(inode, block, bh, 1);
1133 			if (err)
1134 				break;
1135 			if (buffer_new(bh)) {
1136 				clean_bdev_bh_alias(bh);
1137 				if (PageUptodate(page)) {
1138 					clear_buffer_new(bh);
1139 					set_buffer_uptodate(bh);
1140 					mark_buffer_dirty(bh);
1141 					continue;
1142 				}
1143 				if (block_end > to || block_start < from)
1144 					zero_user_segments(page, to, block_end,
1145 							   block_start, from);
1146 				continue;
1147 			}
1148 		}
1149 		if (PageUptodate(page)) {
1150 			if (!buffer_uptodate(bh))
1151 				set_buffer_uptodate(bh);
1152 			continue;
1153 		}
1154 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 		    !buffer_unwritten(bh) &&
1156 		    (block_start < from || block_end > to)) {
1157 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 			*wait_bh++ = bh;
1159 			decrypt = ext4_encrypted_inode(inode) &&
1160 				S_ISREG(inode->i_mode);
1161 		}
1162 	}
1163 	/*
1164 	 * If we issued read requests, let them complete.
1165 	 */
1166 	while (wait_bh > wait) {
1167 		wait_on_buffer(*--wait_bh);
1168 		if (!buffer_uptodate(*wait_bh))
1169 			err = -EIO;
1170 	}
1171 	if (unlikely(err))
1172 		page_zero_new_buffers(page, from, to);
1173 	else if (decrypt)
1174 		err = fscrypt_decrypt_page(page->mapping->host, page,
1175 				PAGE_SIZE, 0, page->index);
1176 	return err;
1177 }
1178 #endif
1179 
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 			    loff_t pos, unsigned len, unsigned flags,
1182 			    struct page **pagep, void **fsdata)
1183 {
1184 	struct inode *inode = mapping->host;
1185 	int ret, needed_blocks;
1186 	handle_t *handle;
1187 	int retries = 0;
1188 	struct page *page;
1189 	pgoff_t index;
1190 	unsigned from, to;
1191 
1192 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 		return -EIO;
1194 
1195 	trace_ext4_write_begin(inode, pos, len, flags);
1196 	/*
1197 	 * Reserve one block more for addition to orphan list in case
1198 	 * we allocate blocks but write fails for some reason
1199 	 */
1200 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201 	index = pos >> PAGE_SHIFT;
1202 	from = pos & (PAGE_SIZE - 1);
1203 	to = from + len;
1204 
1205 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 						    flags, pagep);
1208 		if (ret < 0)
1209 			return ret;
1210 		if (ret == 1)
1211 			return 0;
1212 	}
1213 
1214 	/*
1215 	 * grab_cache_page_write_begin() can take a long time if the
1216 	 * system is thrashing due to memory pressure, or if the page
1217 	 * is being written back.  So grab it first before we start
1218 	 * the transaction handle.  This also allows us to allocate
1219 	 * the page (if needed) without using GFP_NOFS.
1220 	 */
1221 retry_grab:
1222 	page = grab_cache_page_write_begin(mapping, index, flags);
1223 	if (!page)
1224 		return -ENOMEM;
1225 	unlock_page(page);
1226 
1227 retry_journal:
1228 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229 	if (IS_ERR(handle)) {
1230 		put_page(page);
1231 		return PTR_ERR(handle);
1232 	}
1233 
1234 	lock_page(page);
1235 	if (page->mapping != mapping) {
1236 		/* The page got truncated from under us */
1237 		unlock_page(page);
1238 		put_page(page);
1239 		ext4_journal_stop(handle);
1240 		goto retry_grab;
1241 	}
1242 	/* In case writeback began while the page was unlocked */
1243 	wait_for_stable_page(page);
1244 
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 	if (ext4_should_dioread_nolock(inode))
1247 		ret = ext4_block_write_begin(page, pos, len,
1248 					     ext4_get_block_unwritten);
1249 	else
1250 		ret = ext4_block_write_begin(page, pos, len,
1251 					     ext4_get_block);
1252 #else
1253 	if (ext4_should_dioread_nolock(inode))
1254 		ret = __block_write_begin(page, pos, len,
1255 					  ext4_get_block_unwritten);
1256 	else
1257 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259 	if (!ret && ext4_should_journal_data(inode)) {
1260 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 					     from, to, NULL,
1262 					     do_journal_get_write_access);
1263 	}
1264 
1265 	if (ret) {
1266 		unlock_page(page);
1267 		/*
1268 		 * __block_write_begin may have instantiated a few blocks
1269 		 * outside i_size.  Trim these off again. Don't need
1270 		 * i_size_read because we hold i_mutex.
1271 		 *
1272 		 * Add inode to orphan list in case we crash before
1273 		 * truncate finishes
1274 		 */
1275 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276 			ext4_orphan_add(handle, inode);
1277 
1278 		ext4_journal_stop(handle);
1279 		if (pos + len > inode->i_size) {
1280 			ext4_truncate_failed_write(inode);
1281 			/*
1282 			 * If truncate failed early the inode might
1283 			 * still be on the orphan list; we need to
1284 			 * make sure the inode is removed from the
1285 			 * orphan list in that case.
1286 			 */
1287 			if (inode->i_nlink)
1288 				ext4_orphan_del(NULL, inode);
1289 		}
1290 
1291 		if (ret == -ENOSPC &&
1292 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1293 			goto retry_journal;
1294 		put_page(page);
1295 		return ret;
1296 	}
1297 	*pagep = page;
1298 	return ret;
1299 }
1300 
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304 	int ret;
1305 	if (!buffer_mapped(bh) || buffer_freed(bh))
1306 		return 0;
1307 	set_buffer_uptodate(bh);
1308 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 	clear_buffer_meta(bh);
1310 	clear_buffer_prio(bh);
1311 	return ret;
1312 }
1313 
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322 			  struct address_space *mapping,
1323 			  loff_t pos, unsigned len, unsigned copied,
1324 			  struct page *page, void *fsdata)
1325 {
1326 	handle_t *handle = ext4_journal_current_handle();
1327 	struct inode *inode = mapping->host;
1328 	loff_t old_size = inode->i_size;
1329 	int ret = 0, ret2;
1330 	int i_size_changed = 0;
1331 
1332 	trace_ext4_write_end(inode, pos, len, copied);
1333 	if (ext4_has_inline_data(inode)) {
1334 		ret = ext4_write_inline_data_end(inode, pos, len,
1335 						 copied, page);
1336 		if (ret < 0) {
1337 			unlock_page(page);
1338 			put_page(page);
1339 			goto errout;
1340 		}
1341 		copied = ret;
1342 	} else
1343 		copied = block_write_end(file, mapping, pos,
1344 					 len, copied, page, fsdata);
1345 	/*
1346 	 * it's important to update i_size while still holding page lock:
1347 	 * page writeout could otherwise come in and zero beyond i_size.
1348 	 */
1349 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 	unlock_page(page);
1351 	put_page(page);
1352 
1353 	if (old_size < pos)
1354 		pagecache_isize_extended(inode, old_size, pos);
1355 	/*
1356 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 	 * makes the holding time of page lock longer. Second, it forces lock
1358 	 * ordering of page lock and transaction start for journaling
1359 	 * filesystems.
1360 	 */
1361 	if (i_size_changed)
1362 		ext4_mark_inode_dirty(handle, inode);
1363 
1364 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 		/* if we have allocated more blocks and copied
1366 		 * less. We will have blocks allocated outside
1367 		 * inode->i_size. So truncate them
1368 		 */
1369 		ext4_orphan_add(handle, inode);
1370 errout:
1371 	ret2 = ext4_journal_stop(handle);
1372 	if (!ret)
1373 		ret = ret2;
1374 
1375 	if (pos + len > inode->i_size) {
1376 		ext4_truncate_failed_write(inode);
1377 		/*
1378 		 * If truncate failed early the inode might still be
1379 		 * on the orphan list; we need to make sure the inode
1380 		 * is removed from the orphan list in that case.
1381 		 */
1382 		if (inode->i_nlink)
1383 			ext4_orphan_del(NULL, inode);
1384 	}
1385 
1386 	return ret ? ret : copied;
1387 }
1388 
1389 /*
1390  * This is a private version of page_zero_new_buffers() which doesn't
1391  * set the buffer to be dirty, since in data=journalled mode we need
1392  * to call ext4_handle_dirty_metadata() instead.
1393  */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 					    struct page *page,
1396 					    unsigned from, unsigned to)
1397 {
1398 	unsigned int block_start = 0, block_end;
1399 	struct buffer_head *head, *bh;
1400 
1401 	bh = head = page_buffers(page);
1402 	do {
1403 		block_end = block_start + bh->b_size;
1404 		if (buffer_new(bh)) {
1405 			if (block_end > from && block_start < to) {
1406 				if (!PageUptodate(page)) {
1407 					unsigned start, size;
1408 
1409 					start = max(from, block_start);
1410 					size = min(to, block_end) - start;
1411 
1412 					zero_user(page, start, size);
1413 					write_end_fn(handle, bh);
1414 				}
1415 				clear_buffer_new(bh);
1416 			}
1417 		}
1418 		block_start = block_end;
1419 		bh = bh->b_this_page;
1420 	} while (bh != head);
1421 }
1422 
1423 static int ext4_journalled_write_end(struct file *file,
1424 				     struct address_space *mapping,
1425 				     loff_t pos, unsigned len, unsigned copied,
1426 				     struct page *page, void *fsdata)
1427 {
1428 	handle_t *handle = ext4_journal_current_handle();
1429 	struct inode *inode = mapping->host;
1430 	loff_t old_size = inode->i_size;
1431 	int ret = 0, ret2;
1432 	int partial = 0;
1433 	unsigned from, to;
1434 	int size_changed = 0;
1435 
1436 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1437 	from = pos & (PAGE_SIZE - 1);
1438 	to = from + len;
1439 
1440 	BUG_ON(!ext4_handle_valid(handle));
1441 
1442 	if (ext4_has_inline_data(inode)) {
1443 		ret = ext4_write_inline_data_end(inode, pos, len,
1444 						 copied, page);
1445 		if (ret < 0) {
1446 			unlock_page(page);
1447 			put_page(page);
1448 			goto errout;
1449 		}
1450 		copied = ret;
1451 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1452 		copied = 0;
1453 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 	} else {
1455 		if (unlikely(copied < len))
1456 			ext4_journalled_zero_new_buffers(handle, page,
1457 							 from + copied, to);
1458 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459 					     from + copied, &partial,
1460 					     write_end_fn);
1461 		if (!partial)
1462 			SetPageUptodate(page);
1463 	}
1464 	size_changed = ext4_update_inode_size(inode, pos + copied);
1465 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467 	unlock_page(page);
1468 	put_page(page);
1469 
1470 	if (old_size < pos)
1471 		pagecache_isize_extended(inode, old_size, pos);
1472 
1473 	if (size_changed) {
1474 		ret2 = ext4_mark_inode_dirty(handle, inode);
1475 		if (!ret)
1476 			ret = ret2;
1477 	}
1478 
1479 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480 		/* if we have allocated more blocks and copied
1481 		 * less. We will have blocks allocated outside
1482 		 * inode->i_size. So truncate them
1483 		 */
1484 		ext4_orphan_add(handle, inode);
1485 
1486 errout:
1487 	ret2 = ext4_journal_stop(handle);
1488 	if (!ret)
1489 		ret = ret2;
1490 	if (pos + len > inode->i_size) {
1491 		ext4_truncate_failed_write(inode);
1492 		/*
1493 		 * If truncate failed early the inode might still be
1494 		 * on the orphan list; we need to make sure the inode
1495 		 * is removed from the orphan list in that case.
1496 		 */
1497 		if (inode->i_nlink)
1498 			ext4_orphan_del(NULL, inode);
1499 	}
1500 
1501 	return ret ? ret : copied;
1502 }
1503 
1504 /*
1505  * Reserve space for a single cluster
1506  */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510 	struct ext4_inode_info *ei = EXT4_I(inode);
1511 	int ret;
1512 
1513 	/*
1514 	 * We will charge metadata quota at writeout time; this saves
1515 	 * us from metadata over-estimation, though we may go over by
1516 	 * a small amount in the end.  Here we just reserve for data.
1517 	 */
1518 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 	if (ret)
1520 		return ret;
1521 
1522 	spin_lock(&ei->i_block_reservation_lock);
1523 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524 		spin_unlock(&ei->i_block_reservation_lock);
1525 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526 		return -ENOSPC;
1527 	}
1528 	ei->i_reserved_data_blocks++;
1529 	trace_ext4_da_reserve_space(inode);
1530 	spin_unlock(&ei->i_block_reservation_lock);
1531 
1532 	return 0;       /* success */
1533 }
1534 
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538 	struct ext4_inode_info *ei = EXT4_I(inode);
1539 
1540 	if (!to_free)
1541 		return;		/* Nothing to release, exit */
1542 
1543 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544 
1545 	trace_ext4_da_release_space(inode, to_free);
1546 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547 		/*
1548 		 * if there aren't enough reserved blocks, then the
1549 		 * counter is messed up somewhere.  Since this
1550 		 * function is called from invalidate page, it's
1551 		 * harmless to return without any action.
1552 		 */
1553 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554 			 "ino %lu, to_free %d with only %d reserved "
1555 			 "data blocks", inode->i_ino, to_free,
1556 			 ei->i_reserved_data_blocks);
1557 		WARN_ON(1);
1558 		to_free = ei->i_reserved_data_blocks;
1559 	}
1560 	ei->i_reserved_data_blocks -= to_free;
1561 
1562 	/* update fs dirty data blocks counter */
1563 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564 
1565 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566 
1567 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569 
1570 static void ext4_da_page_release_reservation(struct page *page,
1571 					     unsigned int offset,
1572 					     unsigned int length)
1573 {
1574 	int to_release = 0, contiguous_blks = 0;
1575 	struct buffer_head *head, *bh;
1576 	unsigned int curr_off = 0;
1577 	struct inode *inode = page->mapping->host;
1578 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 	unsigned int stop = offset + length;
1580 	int num_clusters;
1581 	ext4_fsblk_t lblk;
1582 
1583 	BUG_ON(stop > PAGE_SIZE || stop < length);
1584 
1585 	head = page_buffers(page);
1586 	bh = head;
1587 	do {
1588 		unsigned int next_off = curr_off + bh->b_size;
1589 
1590 		if (next_off > stop)
1591 			break;
1592 
1593 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 			to_release++;
1595 			contiguous_blks++;
1596 			clear_buffer_delay(bh);
1597 		} else if (contiguous_blks) {
1598 			lblk = page->index <<
1599 			       (PAGE_SHIFT - inode->i_blkbits);
1600 			lblk += (curr_off >> inode->i_blkbits) -
1601 				contiguous_blks;
1602 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 			contiguous_blks = 0;
1604 		}
1605 		curr_off = next_off;
1606 	} while ((bh = bh->b_this_page) != head);
1607 
1608 	if (contiguous_blks) {
1609 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612 	}
1613 
1614 	/* If we have released all the blocks belonging to a cluster, then we
1615 	 * need to release the reserved space for that cluster. */
1616 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 	while (num_clusters > 0) {
1618 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619 			((num_clusters - 1) << sbi->s_cluster_bits);
1620 		if (sbi->s_cluster_ratio == 1 ||
1621 		    !ext4_find_delalloc_cluster(inode, lblk))
1622 			ext4_da_release_space(inode, 1);
1623 
1624 		num_clusters--;
1625 	}
1626 }
1627 
1628 /*
1629  * Delayed allocation stuff
1630  */
1631 
1632 struct mpage_da_data {
1633 	struct inode *inode;
1634 	struct writeback_control *wbc;
1635 
1636 	pgoff_t first_page;	/* The first page to write */
1637 	pgoff_t next_page;	/* Current page to examine */
1638 	pgoff_t last_page;	/* Last page to examine */
1639 	/*
1640 	 * Extent to map - this can be after first_page because that can be
1641 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 	 * is delalloc or unwritten.
1643 	 */
1644 	struct ext4_map_blocks map;
1645 	struct ext4_io_submit io_submit;	/* IO submission data */
1646 	unsigned int do_map:1;
1647 };
1648 
1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650 				       bool invalidate)
1651 {
1652 	int nr_pages, i;
1653 	pgoff_t index, end;
1654 	struct pagevec pvec;
1655 	struct inode *inode = mpd->inode;
1656 	struct address_space *mapping = inode->i_mapping;
1657 
1658 	/* This is necessary when next_page == 0. */
1659 	if (mpd->first_page >= mpd->next_page)
1660 		return;
1661 
1662 	index = mpd->first_page;
1663 	end   = mpd->next_page - 1;
1664 	if (invalidate) {
1665 		ext4_lblk_t start, last;
1666 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1667 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1668 		ext4_es_remove_extent(inode, start, last - start + 1);
1669 	}
1670 
1671 	pagevec_init(&pvec, 0);
1672 	while (index <= end) {
1673 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674 		if (nr_pages == 0)
1675 			break;
1676 		for (i = 0; i < nr_pages; i++) {
1677 			struct page *page = pvec.pages[i];
1678 			if (page->index > end)
1679 				break;
1680 			BUG_ON(!PageLocked(page));
1681 			BUG_ON(PageWriteback(page));
1682 			if (invalidate) {
1683 				if (page_mapped(page))
1684 					clear_page_dirty_for_io(page);
1685 				block_invalidatepage(page, 0, PAGE_SIZE);
1686 				ClearPageUptodate(page);
1687 			}
1688 			unlock_page(page);
1689 		}
1690 		index = pvec.pages[nr_pages - 1]->index + 1;
1691 		pagevec_release(&pvec);
1692 	}
1693 }
1694 
1695 static void ext4_print_free_blocks(struct inode *inode)
1696 {
1697 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1698 	struct super_block *sb = inode->i_sb;
1699 	struct ext4_inode_info *ei = EXT4_I(inode);
1700 
1701 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1702 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1703 			ext4_count_free_clusters(sb)));
1704 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1706 	       (long long) EXT4_C2B(EXT4_SB(sb),
1707 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1708 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1709 	       (long long) EXT4_C2B(EXT4_SB(sb),
1710 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1711 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1713 		 ei->i_reserved_data_blocks);
1714 	return;
1715 }
1716 
1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1718 {
1719 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1720 }
1721 
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 			      struct ext4_map_blocks *map,
1730 			      struct buffer_head *bh)
1731 {
1732 	struct extent_status es;
1733 	int retval;
1734 	sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 	struct ext4_map_blocks orig_map;
1737 
1738 	memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740 
1741 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 		invalid_block = ~0;
1743 
1744 	map->m_flags = 0;
1745 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746 		  "logical block %lu\n", inode->i_ino, map->m_len,
1747 		  (unsigned long) map->m_lblk);
1748 
1749 	/* Lookup extent status tree firstly */
1750 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1751 		if (ext4_es_is_hole(&es)) {
1752 			retval = 0;
1753 			down_read(&EXT4_I(inode)->i_data_sem);
1754 			goto add_delayed;
1755 		}
1756 
1757 		/*
1758 		 * Delayed extent could be allocated by fallocate.
1759 		 * So we need to check it.
1760 		 */
1761 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762 			map_bh(bh, inode->i_sb, invalid_block);
1763 			set_buffer_new(bh);
1764 			set_buffer_delay(bh);
1765 			return 0;
1766 		}
1767 
1768 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769 		retval = es.es_len - (iblock - es.es_lblk);
1770 		if (retval > map->m_len)
1771 			retval = map->m_len;
1772 		map->m_len = retval;
1773 		if (ext4_es_is_written(&es))
1774 			map->m_flags |= EXT4_MAP_MAPPED;
1775 		else if (ext4_es_is_unwritten(&es))
1776 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1777 		else
1778 			BUG_ON(1);
1779 
1780 #ifdef ES_AGGRESSIVE_TEST
1781 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783 		return retval;
1784 	}
1785 
1786 	/*
1787 	 * Try to see if we can get the block without requesting a new
1788 	 * file system block.
1789 	 */
1790 	down_read(&EXT4_I(inode)->i_data_sem);
1791 	if (ext4_has_inline_data(inode))
1792 		retval = 0;
1793 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 	else
1796 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797 
1798 add_delayed:
1799 	if (retval == 0) {
1800 		int ret;
1801 		/*
1802 		 * XXX: __block_prepare_write() unmaps passed block,
1803 		 * is it OK?
1804 		 */
1805 		/*
1806 		 * If the block was allocated from previously allocated cluster,
1807 		 * then we don't need to reserve it again. However we still need
1808 		 * to reserve metadata for every block we're going to write.
1809 		 */
1810 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1811 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1812 			ret = ext4_da_reserve_space(inode);
1813 			if (ret) {
1814 				/* not enough space to reserve */
1815 				retval = ret;
1816 				goto out_unlock;
1817 			}
1818 		}
1819 
1820 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821 					    ~0, EXTENT_STATUS_DELAYED);
1822 		if (ret) {
1823 			retval = ret;
1824 			goto out_unlock;
1825 		}
1826 
1827 		map_bh(bh, inode->i_sb, invalid_block);
1828 		set_buffer_new(bh);
1829 		set_buffer_delay(bh);
1830 	} else if (retval > 0) {
1831 		int ret;
1832 		unsigned int status;
1833 
1834 		if (unlikely(retval != map->m_len)) {
1835 			ext4_warning(inode->i_sb,
1836 				     "ES len assertion failed for inode "
1837 				     "%lu: retval %d != map->m_len %d",
1838 				     inode->i_ino, retval, map->m_len);
1839 			WARN_ON(1);
1840 		}
1841 
1842 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845 					    map->m_pblk, status);
1846 		if (ret != 0)
1847 			retval = ret;
1848 	}
1849 
1850 out_unlock:
1851 	up_read((&EXT4_I(inode)->i_data_sem));
1852 
1853 	return retval;
1854 }
1855 
1856 /*
1857  * This is a special get_block_t callback which is used by
1858  * ext4_da_write_begin().  It will either return mapped block or
1859  * reserve space for a single block.
1860  *
1861  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862  * We also have b_blocknr = -1 and b_bdev initialized properly
1863  *
1864  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866  * initialized properly.
1867  */
1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869 			   struct buffer_head *bh, int create)
1870 {
1871 	struct ext4_map_blocks map;
1872 	int ret = 0;
1873 
1874 	BUG_ON(create == 0);
1875 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876 
1877 	map.m_lblk = iblock;
1878 	map.m_len = 1;
1879 
1880 	/*
1881 	 * first, we need to know whether the block is allocated already
1882 	 * preallocated blocks are unmapped but should treated
1883 	 * the same as allocated blocks.
1884 	 */
1885 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886 	if (ret <= 0)
1887 		return ret;
1888 
1889 	map_bh(bh, inode->i_sb, map.m_pblk);
1890 	ext4_update_bh_state(bh, map.m_flags);
1891 
1892 	if (buffer_unwritten(bh)) {
1893 		/* A delayed write to unwritten bh should be marked
1894 		 * new and mapped.  Mapped ensures that we don't do
1895 		 * get_block multiple times when we write to the same
1896 		 * offset and new ensures that we do proper zero out
1897 		 * for partial write.
1898 		 */
1899 		set_buffer_new(bh);
1900 		set_buffer_mapped(bh);
1901 	}
1902 	return 0;
1903 }
1904 
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907 	get_bh(bh);
1908 	return 0;
1909 }
1910 
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913 	put_bh(bh);
1914 	return 0;
1915 }
1916 
1917 static int __ext4_journalled_writepage(struct page *page,
1918 				       unsigned int len)
1919 {
1920 	struct address_space *mapping = page->mapping;
1921 	struct inode *inode = mapping->host;
1922 	struct buffer_head *page_bufs = NULL;
1923 	handle_t *handle = NULL;
1924 	int ret = 0, err = 0;
1925 	int inline_data = ext4_has_inline_data(inode);
1926 	struct buffer_head *inode_bh = NULL;
1927 
1928 	ClearPageChecked(page);
1929 
1930 	if (inline_data) {
1931 		BUG_ON(page->index != 0);
1932 		BUG_ON(len > ext4_get_max_inline_size(inode));
1933 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934 		if (inode_bh == NULL)
1935 			goto out;
1936 	} else {
1937 		page_bufs = page_buffers(page);
1938 		if (!page_bufs) {
1939 			BUG();
1940 			goto out;
1941 		}
1942 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943 				       NULL, bget_one);
1944 	}
1945 	/*
1946 	 * We need to release the page lock before we start the
1947 	 * journal, so grab a reference so the page won't disappear
1948 	 * out from under us.
1949 	 */
1950 	get_page(page);
1951 	unlock_page(page);
1952 
1953 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954 				    ext4_writepage_trans_blocks(inode));
1955 	if (IS_ERR(handle)) {
1956 		ret = PTR_ERR(handle);
1957 		put_page(page);
1958 		goto out_no_pagelock;
1959 	}
1960 	BUG_ON(!ext4_handle_valid(handle));
1961 
1962 	lock_page(page);
1963 	put_page(page);
1964 	if (page->mapping != mapping) {
1965 		/* The page got truncated from under us */
1966 		ext4_journal_stop(handle);
1967 		ret = 0;
1968 		goto out;
1969 	}
1970 
1971 	if (inline_data) {
1972 		BUFFER_TRACE(inode_bh, "get write access");
1973 		ret = ext4_journal_get_write_access(handle, inode_bh);
1974 
1975 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976 
1977 	} else {
1978 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979 					     do_journal_get_write_access);
1980 
1981 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982 					     write_end_fn);
1983 	}
1984 	if (ret == 0)
1985 		ret = err;
1986 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1987 	err = ext4_journal_stop(handle);
1988 	if (!ret)
1989 		ret = err;
1990 
1991 	if (!ext4_has_inline_data(inode))
1992 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1993 				       NULL, bput_one);
1994 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1995 out:
1996 	unlock_page(page);
1997 out_no_pagelock:
1998 	brelse(inode_bh);
1999 	return ret;
2000 }
2001 
2002 /*
2003  * Note that we don't need to start a transaction unless we're journaling data
2004  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005  * need to file the inode to the transaction's list in ordered mode because if
2006  * we are writing back data added by write(), the inode is already there and if
2007  * we are writing back data modified via mmap(), no one guarantees in which
2008  * transaction the data will hit the disk. In case we are journaling data, we
2009  * cannot start transaction directly because transaction start ranks above page
2010  * lock so we have to do some magic.
2011  *
2012  * This function can get called via...
2013  *   - ext4_writepages after taking page lock (have journal handle)
2014  *   - journal_submit_inode_data_buffers (no journal handle)
2015  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2016  *   - grab_page_cache when doing write_begin (have journal handle)
2017  *
2018  * We don't do any block allocation in this function. If we have page with
2019  * multiple blocks we need to write those buffer_heads that are mapped. This
2020  * is important for mmaped based write. So if we do with blocksize 1K
2021  * truncate(f, 1024);
2022  * a = mmap(f, 0, 4096);
2023  * a[0] = 'a';
2024  * truncate(f, 4096);
2025  * we have in the page first buffer_head mapped via page_mkwrite call back
2026  * but other buffer_heads would be unmapped but dirty (dirty done via the
2027  * do_wp_page). So writepage should write the first block. If we modify
2028  * the mmap area beyond 1024 we will again get a page_fault and the
2029  * page_mkwrite callback will do the block allocation and mark the
2030  * buffer_heads mapped.
2031  *
2032  * We redirty the page if we have any buffer_heads that is either delay or
2033  * unwritten in the page.
2034  *
2035  * We can get recursively called as show below.
2036  *
2037  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038  *		ext4_writepage()
2039  *
2040  * But since we don't do any block allocation we should not deadlock.
2041  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042  */
2043 static int ext4_writepage(struct page *page,
2044 			  struct writeback_control *wbc)
2045 {
2046 	int ret = 0;
2047 	loff_t size;
2048 	unsigned int len;
2049 	struct buffer_head *page_bufs = NULL;
2050 	struct inode *inode = page->mapping->host;
2051 	struct ext4_io_submit io_submit;
2052 	bool keep_towrite = false;
2053 
2054 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2056 		unlock_page(page);
2057 		return -EIO;
2058 	}
2059 
2060 	trace_ext4_writepage(page);
2061 	size = i_size_read(inode);
2062 	if (page->index == size >> PAGE_SHIFT)
2063 		len = size & ~PAGE_MASK;
2064 	else
2065 		len = PAGE_SIZE;
2066 
2067 	page_bufs = page_buffers(page);
2068 	/*
2069 	 * We cannot do block allocation or other extent handling in this
2070 	 * function. If there are buffers needing that, we have to redirty
2071 	 * the page. But we may reach here when we do a journal commit via
2072 	 * journal_submit_inode_data_buffers() and in that case we must write
2073 	 * allocated buffers to achieve data=ordered mode guarantees.
2074 	 *
2075 	 * Also, if there is only one buffer per page (the fs block
2076 	 * size == the page size), if one buffer needs block
2077 	 * allocation or needs to modify the extent tree to clear the
2078 	 * unwritten flag, we know that the page can't be written at
2079 	 * all, so we might as well refuse the write immediately.
2080 	 * Unfortunately if the block size != page size, we can't as
2081 	 * easily detect this case using ext4_walk_page_buffers(), but
2082 	 * for the extremely common case, this is an optimization that
2083 	 * skips a useless round trip through ext4_bio_write_page().
2084 	 */
2085 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086 				   ext4_bh_delay_or_unwritten)) {
2087 		redirty_page_for_writepage(wbc, page);
2088 		if ((current->flags & PF_MEMALLOC) ||
2089 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2090 			/*
2091 			 * For memory cleaning there's no point in writing only
2092 			 * some buffers. So just bail out. Warn if we came here
2093 			 * from direct reclaim.
2094 			 */
2095 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 							== PF_MEMALLOC);
2097 			unlock_page(page);
2098 			return 0;
2099 		}
2100 		keep_towrite = true;
2101 	}
2102 
2103 	if (PageChecked(page) && ext4_should_journal_data(inode))
2104 		/*
2105 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2106 		 * doesn't seem much point in redirtying the page here.
2107 		 */
2108 		return __ext4_journalled_writepage(page, len);
2109 
2110 	ext4_io_submit_init(&io_submit, wbc);
2111 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112 	if (!io_submit.io_end) {
2113 		redirty_page_for_writepage(wbc, page);
2114 		unlock_page(page);
2115 		return -ENOMEM;
2116 	}
2117 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2118 	ext4_io_submit(&io_submit);
2119 	/* Drop io_end reference we got from init */
2120 	ext4_put_io_end_defer(io_submit.io_end);
2121 	return ret;
2122 }
2123 
2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125 {
2126 	int len;
2127 	loff_t size;
2128 	int err;
2129 
2130 	BUG_ON(page->index != mpd->first_page);
2131 	clear_page_dirty_for_io(page);
2132 	/*
2133 	 * We have to be very careful here!  Nothing protects writeback path
2134 	 * against i_size changes and the page can be writeably mapped into
2135 	 * page tables. So an application can be growing i_size and writing
2136 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2137 	 * write-protects our page in page tables and the page cannot get
2138 	 * written to again until we release page lock. So only after
2139 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2140 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2141 	 * on the barrier provided by TestClearPageDirty in
2142 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2143 	 * after page tables are updated.
2144 	 */
2145 	size = i_size_read(mpd->inode);
2146 	if (page->index == size >> PAGE_SHIFT)
2147 		len = size & ~PAGE_MASK;
2148 	else
2149 		len = PAGE_SIZE;
2150 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2151 	if (!err)
2152 		mpd->wbc->nr_to_write--;
2153 	mpd->first_page++;
2154 
2155 	return err;
2156 }
2157 
2158 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2159 
2160 /*
2161  * mballoc gives us at most this number of blocks...
2162  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2163  * The rest of mballoc seems to handle chunks up to full group size.
2164  */
2165 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2166 
2167 /*
2168  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2169  *
2170  * @mpd - extent of blocks
2171  * @lblk - logical number of the block in the file
2172  * @bh - buffer head we want to add to the extent
2173  *
2174  * The function is used to collect contig. blocks in the same state. If the
2175  * buffer doesn't require mapping for writeback and we haven't started the
2176  * extent of buffers to map yet, the function returns 'true' immediately - the
2177  * caller can write the buffer right away. Otherwise the function returns true
2178  * if the block has been added to the extent, false if the block couldn't be
2179  * added.
2180  */
2181 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2182 				   struct buffer_head *bh)
2183 {
2184 	struct ext4_map_blocks *map = &mpd->map;
2185 
2186 	/* Buffer that doesn't need mapping for writeback? */
2187 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2188 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2189 		/* So far no extent to map => we write the buffer right away */
2190 		if (map->m_len == 0)
2191 			return true;
2192 		return false;
2193 	}
2194 
2195 	/* First block in the extent? */
2196 	if (map->m_len == 0) {
2197 		/* We cannot map unless handle is started... */
2198 		if (!mpd->do_map)
2199 			return false;
2200 		map->m_lblk = lblk;
2201 		map->m_len = 1;
2202 		map->m_flags = bh->b_state & BH_FLAGS;
2203 		return true;
2204 	}
2205 
2206 	/* Don't go larger than mballoc is willing to allocate */
2207 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2208 		return false;
2209 
2210 	/* Can we merge the block to our big extent? */
2211 	if (lblk == map->m_lblk + map->m_len &&
2212 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2213 		map->m_len++;
2214 		return true;
2215 	}
2216 	return false;
2217 }
2218 
2219 /*
2220  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2221  *
2222  * @mpd - extent of blocks for mapping
2223  * @head - the first buffer in the page
2224  * @bh - buffer we should start processing from
2225  * @lblk - logical number of the block in the file corresponding to @bh
2226  *
2227  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2228  * the page for IO if all buffers in this page were mapped and there's no
2229  * accumulated extent of buffers to map or add buffers in the page to the
2230  * extent of buffers to map. The function returns 1 if the caller can continue
2231  * by processing the next page, 0 if it should stop adding buffers to the
2232  * extent to map because we cannot extend it anymore. It can also return value
2233  * < 0 in case of error during IO submission.
2234  */
2235 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2236 				   struct buffer_head *head,
2237 				   struct buffer_head *bh,
2238 				   ext4_lblk_t lblk)
2239 {
2240 	struct inode *inode = mpd->inode;
2241 	int err;
2242 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2243 							>> inode->i_blkbits;
2244 
2245 	do {
2246 		BUG_ON(buffer_locked(bh));
2247 
2248 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2249 			/* Found extent to map? */
2250 			if (mpd->map.m_len)
2251 				return 0;
2252 			/* Buffer needs mapping and handle is not started? */
2253 			if (!mpd->do_map)
2254 				return 0;
2255 			/* Everything mapped so far and we hit EOF */
2256 			break;
2257 		}
2258 	} while (lblk++, (bh = bh->b_this_page) != head);
2259 	/* So far everything mapped? Submit the page for IO. */
2260 	if (mpd->map.m_len == 0) {
2261 		err = mpage_submit_page(mpd, head->b_page);
2262 		if (err < 0)
2263 			return err;
2264 	}
2265 	return lblk < blocks;
2266 }
2267 
2268 /*
2269  * mpage_map_buffers - update buffers corresponding to changed extent and
2270  *		       submit fully mapped pages for IO
2271  *
2272  * @mpd - description of extent to map, on return next extent to map
2273  *
2274  * Scan buffers corresponding to changed extent (we expect corresponding pages
2275  * to be already locked) and update buffer state according to new extent state.
2276  * We map delalloc buffers to their physical location, clear unwritten bits,
2277  * and mark buffers as uninit when we perform writes to unwritten extents
2278  * and do extent conversion after IO is finished. If the last page is not fully
2279  * mapped, we update @map to the next extent in the last page that needs
2280  * mapping. Otherwise we submit the page for IO.
2281  */
2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2283 {
2284 	struct pagevec pvec;
2285 	int nr_pages, i;
2286 	struct inode *inode = mpd->inode;
2287 	struct buffer_head *head, *bh;
2288 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2289 	pgoff_t start, end;
2290 	ext4_lblk_t lblk;
2291 	sector_t pblock;
2292 	int err;
2293 
2294 	start = mpd->map.m_lblk >> bpp_bits;
2295 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2296 	lblk = start << bpp_bits;
2297 	pblock = mpd->map.m_pblk;
2298 
2299 	pagevec_init(&pvec, 0);
2300 	while (start <= end) {
2301 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2302 					  PAGEVEC_SIZE);
2303 		if (nr_pages == 0)
2304 			break;
2305 		for (i = 0; i < nr_pages; i++) {
2306 			struct page *page = pvec.pages[i];
2307 
2308 			if (page->index > end)
2309 				break;
2310 			/* Up to 'end' pages must be contiguous */
2311 			BUG_ON(page->index != start);
2312 			bh = head = page_buffers(page);
2313 			do {
2314 				if (lblk < mpd->map.m_lblk)
2315 					continue;
2316 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2317 					/*
2318 					 * Buffer after end of mapped extent.
2319 					 * Find next buffer in the page to map.
2320 					 */
2321 					mpd->map.m_len = 0;
2322 					mpd->map.m_flags = 0;
2323 					/*
2324 					 * FIXME: If dioread_nolock supports
2325 					 * blocksize < pagesize, we need to make
2326 					 * sure we add size mapped so far to
2327 					 * io_end->size as the following call
2328 					 * can submit the page for IO.
2329 					 */
2330 					err = mpage_process_page_bufs(mpd, head,
2331 								      bh, lblk);
2332 					pagevec_release(&pvec);
2333 					if (err > 0)
2334 						err = 0;
2335 					return err;
2336 				}
2337 				if (buffer_delay(bh)) {
2338 					clear_buffer_delay(bh);
2339 					bh->b_blocknr = pblock++;
2340 				}
2341 				clear_buffer_unwritten(bh);
2342 			} while (lblk++, (bh = bh->b_this_page) != head);
2343 
2344 			/*
2345 			 * FIXME: This is going to break if dioread_nolock
2346 			 * supports blocksize < pagesize as we will try to
2347 			 * convert potentially unmapped parts of inode.
2348 			 */
2349 			mpd->io_submit.io_end->size += PAGE_SIZE;
2350 			/* Page fully mapped - let IO run! */
2351 			err = mpage_submit_page(mpd, page);
2352 			if (err < 0) {
2353 				pagevec_release(&pvec);
2354 				return err;
2355 			}
2356 			start++;
2357 		}
2358 		pagevec_release(&pvec);
2359 	}
2360 	/* Extent fully mapped and matches with page boundary. We are done. */
2361 	mpd->map.m_len = 0;
2362 	mpd->map.m_flags = 0;
2363 	return 0;
2364 }
2365 
2366 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2367 {
2368 	struct inode *inode = mpd->inode;
2369 	struct ext4_map_blocks *map = &mpd->map;
2370 	int get_blocks_flags;
2371 	int err, dioread_nolock;
2372 
2373 	trace_ext4_da_write_pages_extent(inode, map);
2374 	/*
2375 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2376 	 * to convert an unwritten extent to be initialized (in the case
2377 	 * where we have written into one or more preallocated blocks).  It is
2378 	 * possible that we're going to need more metadata blocks than
2379 	 * previously reserved. However we must not fail because we're in
2380 	 * writeback and there is nothing we can do about it so it might result
2381 	 * in data loss.  So use reserved blocks to allocate metadata if
2382 	 * possible.
2383 	 *
2384 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2385 	 * the blocks in question are delalloc blocks.  This indicates
2386 	 * that the blocks and quotas has already been checked when
2387 	 * the data was copied into the page cache.
2388 	 */
2389 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2390 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2391 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2392 	dioread_nolock = ext4_should_dioread_nolock(inode);
2393 	if (dioread_nolock)
2394 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2395 	if (map->m_flags & (1 << BH_Delay))
2396 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2397 
2398 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2399 	if (err < 0)
2400 		return err;
2401 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2402 		if (!mpd->io_submit.io_end->handle &&
2403 		    ext4_handle_valid(handle)) {
2404 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2405 			handle->h_rsv_handle = NULL;
2406 		}
2407 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2408 	}
2409 
2410 	BUG_ON(map->m_len == 0);
2411 	if (map->m_flags & EXT4_MAP_NEW) {
2412 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2413 				   map->m_len);
2414 	}
2415 	return 0;
2416 }
2417 
2418 /*
2419  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2420  *				 mpd->len and submit pages underlying it for IO
2421  *
2422  * @handle - handle for journal operations
2423  * @mpd - extent to map
2424  * @give_up_on_write - we set this to true iff there is a fatal error and there
2425  *                     is no hope of writing the data. The caller should discard
2426  *                     dirty pages to avoid infinite loops.
2427  *
2428  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2429  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2430  * them to initialized or split the described range from larger unwritten
2431  * extent. Note that we need not map all the described range since allocation
2432  * can return less blocks or the range is covered by more unwritten extents. We
2433  * cannot map more because we are limited by reserved transaction credits. On
2434  * the other hand we always make sure that the last touched page is fully
2435  * mapped so that it can be written out (and thus forward progress is
2436  * guaranteed). After mapping we submit all mapped pages for IO.
2437  */
2438 static int mpage_map_and_submit_extent(handle_t *handle,
2439 				       struct mpage_da_data *mpd,
2440 				       bool *give_up_on_write)
2441 {
2442 	struct inode *inode = mpd->inode;
2443 	struct ext4_map_blocks *map = &mpd->map;
2444 	int err;
2445 	loff_t disksize;
2446 	int progress = 0;
2447 
2448 	mpd->io_submit.io_end->offset =
2449 				((loff_t)map->m_lblk) << inode->i_blkbits;
2450 	do {
2451 		err = mpage_map_one_extent(handle, mpd);
2452 		if (err < 0) {
2453 			struct super_block *sb = inode->i_sb;
2454 
2455 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2456 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2457 				goto invalidate_dirty_pages;
2458 			/*
2459 			 * Let the uper layers retry transient errors.
2460 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2461 			 * is non-zero, a commit should free up blocks.
2462 			 */
2463 			if ((err == -ENOMEM) ||
2464 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2465 				if (progress)
2466 					goto update_disksize;
2467 				return err;
2468 			}
2469 			ext4_msg(sb, KERN_CRIT,
2470 				 "Delayed block allocation failed for "
2471 				 "inode %lu at logical offset %llu with"
2472 				 " max blocks %u with error %d",
2473 				 inode->i_ino,
2474 				 (unsigned long long)map->m_lblk,
2475 				 (unsigned)map->m_len, -err);
2476 			ext4_msg(sb, KERN_CRIT,
2477 				 "This should not happen!! Data will "
2478 				 "be lost\n");
2479 			if (err == -ENOSPC)
2480 				ext4_print_free_blocks(inode);
2481 		invalidate_dirty_pages:
2482 			*give_up_on_write = true;
2483 			return err;
2484 		}
2485 		progress = 1;
2486 		/*
2487 		 * Update buffer state, submit mapped pages, and get us new
2488 		 * extent to map
2489 		 */
2490 		err = mpage_map_and_submit_buffers(mpd);
2491 		if (err < 0)
2492 			goto update_disksize;
2493 	} while (map->m_len);
2494 
2495 update_disksize:
2496 	/*
2497 	 * Update on-disk size after IO is submitted.  Races with
2498 	 * truncate are avoided by checking i_size under i_data_sem.
2499 	 */
2500 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2501 	if (disksize > EXT4_I(inode)->i_disksize) {
2502 		int err2;
2503 		loff_t i_size;
2504 
2505 		down_write(&EXT4_I(inode)->i_data_sem);
2506 		i_size = i_size_read(inode);
2507 		if (disksize > i_size)
2508 			disksize = i_size;
2509 		if (disksize > EXT4_I(inode)->i_disksize)
2510 			EXT4_I(inode)->i_disksize = disksize;
2511 		up_write(&EXT4_I(inode)->i_data_sem);
2512 		err2 = ext4_mark_inode_dirty(handle, inode);
2513 		if (err2)
2514 			ext4_error(inode->i_sb,
2515 				   "Failed to mark inode %lu dirty",
2516 				   inode->i_ino);
2517 		if (!err)
2518 			err = err2;
2519 	}
2520 	return err;
2521 }
2522 
2523 /*
2524  * Calculate the total number of credits to reserve for one writepages
2525  * iteration. This is called from ext4_writepages(). We map an extent of
2526  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528  * bpp - 1 blocks in bpp different extents.
2529  */
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532 	int bpp = ext4_journal_blocks_per_page(inode);
2533 
2534 	return ext4_meta_trans_blocks(inode,
2535 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536 }
2537 
2538 /*
2539  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540  * 				 and underlying extent to map
2541  *
2542  * @mpd - where to look for pages
2543  *
2544  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545  * IO immediately. When we find a page which isn't mapped we start accumulating
2546  * extent of buffers underlying these pages that needs mapping (formed by
2547  * either delayed or unwritten buffers). We also lock the pages containing
2548  * these buffers. The extent found is returned in @mpd structure (starting at
2549  * mpd->lblk with length mpd->len blocks).
2550  *
2551  * Note that this function can attach bios to one io_end structure which are
2552  * neither logically nor physically contiguous. Although it may seem as an
2553  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554  * case as we need to track IO to all buffers underlying a page in one io_end.
2555  */
2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 {
2558 	struct address_space *mapping = mpd->inode->i_mapping;
2559 	struct pagevec pvec;
2560 	unsigned int nr_pages;
2561 	long left = mpd->wbc->nr_to_write;
2562 	pgoff_t index = mpd->first_page;
2563 	pgoff_t end = mpd->last_page;
2564 	int tag;
2565 	int i, err = 0;
2566 	int blkbits = mpd->inode->i_blkbits;
2567 	ext4_lblk_t lblk;
2568 	struct buffer_head *head;
2569 
2570 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571 		tag = PAGECACHE_TAG_TOWRITE;
2572 	else
2573 		tag = PAGECACHE_TAG_DIRTY;
2574 
2575 	pagevec_init(&pvec, 0);
2576 	mpd->map.m_len = 0;
2577 	mpd->next_page = index;
2578 	while (index <= end) {
2579 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2580 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2581 		if (nr_pages == 0)
2582 			goto out;
2583 
2584 		for (i = 0; i < nr_pages; i++) {
2585 			struct page *page = pvec.pages[i];
2586 
2587 			/*
2588 			 * At this point, the page may be truncated or
2589 			 * invalidated (changing page->mapping to NULL), or
2590 			 * even swizzled back from swapper_space to tmpfs file
2591 			 * mapping. However, page->index will not change
2592 			 * because we have a reference on the page.
2593 			 */
2594 			if (page->index > end)
2595 				goto out;
2596 
2597 			/*
2598 			 * Accumulated enough dirty pages? This doesn't apply
2599 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2600 			 * keep going because someone may be concurrently
2601 			 * dirtying pages, and we might have synced a lot of
2602 			 * newly appeared dirty pages, but have not synced all
2603 			 * of the old dirty pages.
2604 			 */
2605 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2606 				goto out;
2607 
2608 			/* If we can't merge this page, we are done. */
2609 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2610 				goto out;
2611 
2612 			lock_page(page);
2613 			/*
2614 			 * If the page is no longer dirty, or its mapping no
2615 			 * longer corresponds to inode we are writing (which
2616 			 * means it has been truncated or invalidated), or the
2617 			 * page is already under writeback and we are not doing
2618 			 * a data integrity writeback, skip the page
2619 			 */
2620 			if (!PageDirty(page) ||
2621 			    (PageWriteback(page) &&
2622 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2623 			    unlikely(page->mapping != mapping)) {
2624 				unlock_page(page);
2625 				continue;
2626 			}
2627 
2628 			wait_on_page_writeback(page);
2629 			BUG_ON(PageWriteback(page));
2630 
2631 			if (mpd->map.m_len == 0)
2632 				mpd->first_page = page->index;
2633 			mpd->next_page = page->index + 1;
2634 			/* Add all dirty buffers to mpd */
2635 			lblk = ((ext4_lblk_t)page->index) <<
2636 				(PAGE_SHIFT - blkbits);
2637 			head = page_buffers(page);
2638 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2639 			if (err <= 0)
2640 				goto out;
2641 			err = 0;
2642 			left--;
2643 		}
2644 		pagevec_release(&pvec);
2645 		cond_resched();
2646 	}
2647 	return 0;
2648 out:
2649 	pagevec_release(&pvec);
2650 	return err;
2651 }
2652 
2653 static int __writepage(struct page *page, struct writeback_control *wbc,
2654 		       void *data)
2655 {
2656 	struct address_space *mapping = data;
2657 	int ret = ext4_writepage(page, wbc);
2658 	mapping_set_error(mapping, ret);
2659 	return ret;
2660 }
2661 
2662 static int ext4_writepages(struct address_space *mapping,
2663 			   struct writeback_control *wbc)
2664 {
2665 	pgoff_t	writeback_index = 0;
2666 	long nr_to_write = wbc->nr_to_write;
2667 	int range_whole = 0;
2668 	int cycled = 1;
2669 	handle_t *handle = NULL;
2670 	struct mpage_da_data mpd;
2671 	struct inode *inode = mapping->host;
2672 	int needed_blocks, rsv_blocks = 0, ret = 0;
2673 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2674 	bool done;
2675 	struct blk_plug plug;
2676 	bool give_up_on_write = false;
2677 
2678 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2679 		return -EIO;
2680 
2681 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2682 	trace_ext4_writepages(inode, wbc);
2683 
2684 	if (dax_mapping(mapping)) {
2685 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2686 						  wbc);
2687 		goto out_writepages;
2688 	}
2689 
2690 	/*
2691 	 * No pages to write? This is mainly a kludge to avoid starting
2692 	 * a transaction for special inodes like journal inode on last iput()
2693 	 * because that could violate lock ordering on umount
2694 	 */
2695 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2696 		goto out_writepages;
2697 
2698 	if (ext4_should_journal_data(inode)) {
2699 		struct blk_plug plug;
2700 
2701 		blk_start_plug(&plug);
2702 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2703 		blk_finish_plug(&plug);
2704 		goto out_writepages;
2705 	}
2706 
2707 	/*
2708 	 * If the filesystem has aborted, it is read-only, so return
2709 	 * right away instead of dumping stack traces later on that
2710 	 * will obscure the real source of the problem.  We test
2711 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2712 	 * the latter could be true if the filesystem is mounted
2713 	 * read-only, and in that case, ext4_writepages should
2714 	 * *never* be called, so if that ever happens, we would want
2715 	 * the stack trace.
2716 	 */
2717 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2718 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2719 		ret = -EROFS;
2720 		goto out_writepages;
2721 	}
2722 
2723 	if (ext4_should_dioread_nolock(inode)) {
2724 		/*
2725 		 * We may need to convert up to one extent per block in
2726 		 * the page and we may dirty the inode.
2727 		 */
2728 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2729 	}
2730 
2731 	/*
2732 	 * If we have inline data and arrive here, it means that
2733 	 * we will soon create the block for the 1st page, so
2734 	 * we'd better clear the inline data here.
2735 	 */
2736 	if (ext4_has_inline_data(inode)) {
2737 		/* Just inode will be modified... */
2738 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2739 		if (IS_ERR(handle)) {
2740 			ret = PTR_ERR(handle);
2741 			goto out_writepages;
2742 		}
2743 		BUG_ON(ext4_test_inode_state(inode,
2744 				EXT4_STATE_MAY_INLINE_DATA));
2745 		ext4_destroy_inline_data(handle, inode);
2746 		ext4_journal_stop(handle);
2747 	}
2748 
2749 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2750 		range_whole = 1;
2751 
2752 	if (wbc->range_cyclic) {
2753 		writeback_index = mapping->writeback_index;
2754 		if (writeback_index)
2755 			cycled = 0;
2756 		mpd.first_page = writeback_index;
2757 		mpd.last_page = -1;
2758 	} else {
2759 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2760 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2761 	}
2762 
2763 	mpd.inode = inode;
2764 	mpd.wbc = wbc;
2765 	ext4_io_submit_init(&mpd.io_submit, wbc);
2766 retry:
2767 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2768 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2769 	done = false;
2770 	blk_start_plug(&plug);
2771 
2772 	/*
2773 	 * First writeback pages that don't need mapping - we can avoid
2774 	 * starting a transaction unnecessarily and also avoid being blocked
2775 	 * in the block layer on device congestion while having transaction
2776 	 * started.
2777 	 */
2778 	mpd.do_map = 0;
2779 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2780 	if (!mpd.io_submit.io_end) {
2781 		ret = -ENOMEM;
2782 		goto unplug;
2783 	}
2784 	ret = mpage_prepare_extent_to_map(&mpd);
2785 	/* Submit prepared bio */
2786 	ext4_io_submit(&mpd.io_submit);
2787 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2788 	mpd.io_submit.io_end = NULL;
2789 	/* Unlock pages we didn't use */
2790 	mpage_release_unused_pages(&mpd, false);
2791 	if (ret < 0)
2792 		goto unplug;
2793 
2794 	while (!done && mpd.first_page <= mpd.last_page) {
2795 		/* For each extent of pages we use new io_end */
2796 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2797 		if (!mpd.io_submit.io_end) {
2798 			ret = -ENOMEM;
2799 			break;
2800 		}
2801 
2802 		/*
2803 		 * We have two constraints: We find one extent to map and we
2804 		 * must always write out whole page (makes a difference when
2805 		 * blocksize < pagesize) so that we don't block on IO when we
2806 		 * try to write out the rest of the page. Journalled mode is
2807 		 * not supported by delalloc.
2808 		 */
2809 		BUG_ON(ext4_should_journal_data(inode));
2810 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2811 
2812 		/* start a new transaction */
2813 		handle = ext4_journal_start_with_reserve(inode,
2814 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2815 		if (IS_ERR(handle)) {
2816 			ret = PTR_ERR(handle);
2817 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2818 			       "%ld pages, ino %lu; err %d", __func__,
2819 				wbc->nr_to_write, inode->i_ino, ret);
2820 			/* Release allocated io_end */
2821 			ext4_put_io_end(mpd.io_submit.io_end);
2822 			mpd.io_submit.io_end = NULL;
2823 			break;
2824 		}
2825 		mpd.do_map = 1;
2826 
2827 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2828 		ret = mpage_prepare_extent_to_map(&mpd);
2829 		if (!ret) {
2830 			if (mpd.map.m_len)
2831 				ret = mpage_map_and_submit_extent(handle, &mpd,
2832 					&give_up_on_write);
2833 			else {
2834 				/*
2835 				 * We scanned the whole range (or exhausted
2836 				 * nr_to_write), submitted what was mapped and
2837 				 * didn't find anything needing mapping. We are
2838 				 * done.
2839 				 */
2840 				done = true;
2841 			}
2842 		}
2843 		/*
2844 		 * Caution: If the handle is synchronous,
2845 		 * ext4_journal_stop() can wait for transaction commit
2846 		 * to finish which may depend on writeback of pages to
2847 		 * complete or on page lock to be released.  In that
2848 		 * case, we have to wait until after after we have
2849 		 * submitted all the IO, released page locks we hold,
2850 		 * and dropped io_end reference (for extent conversion
2851 		 * to be able to complete) before stopping the handle.
2852 		 */
2853 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2854 			ext4_journal_stop(handle);
2855 			handle = NULL;
2856 			mpd.do_map = 0;
2857 		}
2858 		/* Submit prepared bio */
2859 		ext4_io_submit(&mpd.io_submit);
2860 		/* Unlock pages we didn't use */
2861 		mpage_release_unused_pages(&mpd, give_up_on_write);
2862 		/*
2863 		 * Drop our io_end reference we got from init. We have
2864 		 * to be careful and use deferred io_end finishing if
2865 		 * we are still holding the transaction as we can
2866 		 * release the last reference to io_end which may end
2867 		 * up doing unwritten extent conversion.
2868 		 */
2869 		if (handle) {
2870 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2871 			ext4_journal_stop(handle);
2872 		} else
2873 			ext4_put_io_end(mpd.io_submit.io_end);
2874 		mpd.io_submit.io_end = NULL;
2875 
2876 		if (ret == -ENOSPC && sbi->s_journal) {
2877 			/*
2878 			 * Commit the transaction which would
2879 			 * free blocks released in the transaction
2880 			 * and try again
2881 			 */
2882 			jbd2_journal_force_commit_nested(sbi->s_journal);
2883 			ret = 0;
2884 			continue;
2885 		}
2886 		/* Fatal error - ENOMEM, EIO... */
2887 		if (ret)
2888 			break;
2889 	}
2890 unplug:
2891 	blk_finish_plug(&plug);
2892 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2893 		cycled = 1;
2894 		mpd.last_page = writeback_index - 1;
2895 		mpd.first_page = 0;
2896 		goto retry;
2897 	}
2898 
2899 	/* Update index */
2900 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2901 		/*
2902 		 * Set the writeback_index so that range_cyclic
2903 		 * mode will write it back later
2904 		 */
2905 		mapping->writeback_index = mpd.first_page;
2906 
2907 out_writepages:
2908 	trace_ext4_writepages_result(inode, wbc, ret,
2909 				     nr_to_write - wbc->nr_to_write);
2910 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2911 	return ret;
2912 }
2913 
2914 static int ext4_nonda_switch(struct super_block *sb)
2915 {
2916 	s64 free_clusters, dirty_clusters;
2917 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2918 
2919 	/*
2920 	 * switch to non delalloc mode if we are running low
2921 	 * on free block. The free block accounting via percpu
2922 	 * counters can get slightly wrong with percpu_counter_batch getting
2923 	 * accumulated on each CPU without updating global counters
2924 	 * Delalloc need an accurate free block accounting. So switch
2925 	 * to non delalloc when we are near to error range.
2926 	 */
2927 	free_clusters =
2928 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2929 	dirty_clusters =
2930 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2931 	/*
2932 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2933 	 */
2934 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2935 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2936 
2937 	if (2 * free_clusters < 3 * dirty_clusters ||
2938 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2939 		/*
2940 		 * free block count is less than 150% of dirty blocks
2941 		 * or free blocks is less than watermark
2942 		 */
2943 		return 1;
2944 	}
2945 	return 0;
2946 }
2947 
2948 /* We always reserve for an inode update; the superblock could be there too */
2949 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2950 {
2951 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2952 		return 1;
2953 
2954 	if (pos + len <= 0x7fffffffULL)
2955 		return 1;
2956 
2957 	/* We might need to update the superblock to set LARGE_FILE */
2958 	return 2;
2959 }
2960 
2961 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2962 			       loff_t pos, unsigned len, unsigned flags,
2963 			       struct page **pagep, void **fsdata)
2964 {
2965 	int ret, retries = 0;
2966 	struct page *page;
2967 	pgoff_t index;
2968 	struct inode *inode = mapping->host;
2969 	handle_t *handle;
2970 
2971 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2972 		return -EIO;
2973 
2974 	index = pos >> PAGE_SHIFT;
2975 
2976 	if (ext4_nonda_switch(inode->i_sb) ||
2977 	    S_ISLNK(inode->i_mode)) {
2978 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2979 		return ext4_write_begin(file, mapping, pos,
2980 					len, flags, pagep, fsdata);
2981 	}
2982 	*fsdata = (void *)0;
2983 	trace_ext4_da_write_begin(inode, pos, len, flags);
2984 
2985 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2986 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2987 						      pos, len, flags,
2988 						      pagep, fsdata);
2989 		if (ret < 0)
2990 			return ret;
2991 		if (ret == 1)
2992 			return 0;
2993 	}
2994 
2995 	/*
2996 	 * grab_cache_page_write_begin() can take a long time if the
2997 	 * system is thrashing due to memory pressure, or if the page
2998 	 * is being written back.  So grab it first before we start
2999 	 * the transaction handle.  This also allows us to allocate
3000 	 * the page (if needed) without using GFP_NOFS.
3001 	 */
3002 retry_grab:
3003 	page = grab_cache_page_write_begin(mapping, index, flags);
3004 	if (!page)
3005 		return -ENOMEM;
3006 	unlock_page(page);
3007 
3008 	/*
3009 	 * With delayed allocation, we don't log the i_disksize update
3010 	 * if there is delayed block allocation. But we still need
3011 	 * to journalling the i_disksize update if writes to the end
3012 	 * of file which has an already mapped buffer.
3013 	 */
3014 retry_journal:
3015 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3016 				ext4_da_write_credits(inode, pos, len));
3017 	if (IS_ERR(handle)) {
3018 		put_page(page);
3019 		return PTR_ERR(handle);
3020 	}
3021 
3022 	lock_page(page);
3023 	if (page->mapping != mapping) {
3024 		/* The page got truncated from under us */
3025 		unlock_page(page);
3026 		put_page(page);
3027 		ext4_journal_stop(handle);
3028 		goto retry_grab;
3029 	}
3030 	/* In case writeback began while the page was unlocked */
3031 	wait_for_stable_page(page);
3032 
3033 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3034 	ret = ext4_block_write_begin(page, pos, len,
3035 				     ext4_da_get_block_prep);
3036 #else
3037 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3038 #endif
3039 	if (ret < 0) {
3040 		unlock_page(page);
3041 		ext4_journal_stop(handle);
3042 		/*
3043 		 * block_write_begin may have instantiated a few blocks
3044 		 * outside i_size.  Trim these off again. Don't need
3045 		 * i_size_read because we hold i_mutex.
3046 		 */
3047 		if (pos + len > inode->i_size)
3048 			ext4_truncate_failed_write(inode);
3049 
3050 		if (ret == -ENOSPC &&
3051 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3052 			goto retry_journal;
3053 
3054 		put_page(page);
3055 		return ret;
3056 	}
3057 
3058 	*pagep = page;
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Check if we should update i_disksize
3064  * when write to the end of file but not require block allocation
3065  */
3066 static int ext4_da_should_update_i_disksize(struct page *page,
3067 					    unsigned long offset)
3068 {
3069 	struct buffer_head *bh;
3070 	struct inode *inode = page->mapping->host;
3071 	unsigned int idx;
3072 	int i;
3073 
3074 	bh = page_buffers(page);
3075 	idx = offset >> inode->i_blkbits;
3076 
3077 	for (i = 0; i < idx; i++)
3078 		bh = bh->b_this_page;
3079 
3080 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3081 		return 0;
3082 	return 1;
3083 }
3084 
3085 static int ext4_da_write_end(struct file *file,
3086 			     struct address_space *mapping,
3087 			     loff_t pos, unsigned len, unsigned copied,
3088 			     struct page *page, void *fsdata)
3089 {
3090 	struct inode *inode = mapping->host;
3091 	int ret = 0, ret2;
3092 	handle_t *handle = ext4_journal_current_handle();
3093 	loff_t new_i_size;
3094 	unsigned long start, end;
3095 	int write_mode = (int)(unsigned long)fsdata;
3096 
3097 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3098 		return ext4_write_end(file, mapping, pos,
3099 				      len, copied, page, fsdata);
3100 
3101 	trace_ext4_da_write_end(inode, pos, len, copied);
3102 	start = pos & (PAGE_SIZE - 1);
3103 	end = start + copied - 1;
3104 
3105 	/*
3106 	 * generic_write_end() will run mark_inode_dirty() if i_size
3107 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3108 	 * into that.
3109 	 */
3110 	new_i_size = pos + copied;
3111 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3112 		if (ext4_has_inline_data(inode) ||
3113 		    ext4_da_should_update_i_disksize(page, end)) {
3114 			ext4_update_i_disksize(inode, new_i_size);
3115 			/* We need to mark inode dirty even if
3116 			 * new_i_size is less that inode->i_size
3117 			 * bu greater than i_disksize.(hint delalloc)
3118 			 */
3119 			ext4_mark_inode_dirty(handle, inode);
3120 		}
3121 	}
3122 
3123 	if (write_mode != CONVERT_INLINE_DATA &&
3124 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3125 	    ext4_has_inline_data(inode))
3126 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3127 						     page);
3128 	else
3129 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3130 							page, fsdata);
3131 
3132 	copied = ret2;
3133 	if (ret2 < 0)
3134 		ret = ret2;
3135 	ret2 = ext4_journal_stop(handle);
3136 	if (!ret)
3137 		ret = ret2;
3138 
3139 	return ret ? ret : copied;
3140 }
3141 
3142 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3143 				   unsigned int length)
3144 {
3145 	/*
3146 	 * Drop reserved blocks
3147 	 */
3148 	BUG_ON(!PageLocked(page));
3149 	if (!page_has_buffers(page))
3150 		goto out;
3151 
3152 	ext4_da_page_release_reservation(page, offset, length);
3153 
3154 out:
3155 	ext4_invalidatepage(page, offset, length);
3156 
3157 	return;
3158 }
3159 
3160 /*
3161  * Force all delayed allocation blocks to be allocated for a given inode.
3162  */
3163 int ext4_alloc_da_blocks(struct inode *inode)
3164 {
3165 	trace_ext4_alloc_da_blocks(inode);
3166 
3167 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3168 		return 0;
3169 
3170 	/*
3171 	 * We do something simple for now.  The filemap_flush() will
3172 	 * also start triggering a write of the data blocks, which is
3173 	 * not strictly speaking necessary (and for users of
3174 	 * laptop_mode, not even desirable).  However, to do otherwise
3175 	 * would require replicating code paths in:
3176 	 *
3177 	 * ext4_writepages() ->
3178 	 *    write_cache_pages() ---> (via passed in callback function)
3179 	 *        __mpage_da_writepage() -->
3180 	 *           mpage_add_bh_to_extent()
3181 	 *           mpage_da_map_blocks()
3182 	 *
3183 	 * The problem is that write_cache_pages(), located in
3184 	 * mm/page-writeback.c, marks pages clean in preparation for
3185 	 * doing I/O, which is not desirable if we're not planning on
3186 	 * doing I/O at all.
3187 	 *
3188 	 * We could call write_cache_pages(), and then redirty all of
3189 	 * the pages by calling redirty_page_for_writepage() but that
3190 	 * would be ugly in the extreme.  So instead we would need to
3191 	 * replicate parts of the code in the above functions,
3192 	 * simplifying them because we wouldn't actually intend to
3193 	 * write out the pages, but rather only collect contiguous
3194 	 * logical block extents, call the multi-block allocator, and
3195 	 * then update the buffer heads with the block allocations.
3196 	 *
3197 	 * For now, though, we'll cheat by calling filemap_flush(),
3198 	 * which will map the blocks, and start the I/O, but not
3199 	 * actually wait for the I/O to complete.
3200 	 */
3201 	return filemap_flush(inode->i_mapping);
3202 }
3203 
3204 /*
3205  * bmap() is special.  It gets used by applications such as lilo and by
3206  * the swapper to find the on-disk block of a specific piece of data.
3207  *
3208  * Naturally, this is dangerous if the block concerned is still in the
3209  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3210  * filesystem and enables swap, then they may get a nasty shock when the
3211  * data getting swapped to that swapfile suddenly gets overwritten by
3212  * the original zero's written out previously to the journal and
3213  * awaiting writeback in the kernel's buffer cache.
3214  *
3215  * So, if we see any bmap calls here on a modified, data-journaled file,
3216  * take extra steps to flush any blocks which might be in the cache.
3217  */
3218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3219 {
3220 	struct inode *inode = mapping->host;
3221 	journal_t *journal;
3222 	int err;
3223 
3224 	/*
3225 	 * We can get here for an inline file via the FIBMAP ioctl
3226 	 */
3227 	if (ext4_has_inline_data(inode))
3228 		return 0;
3229 
3230 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3231 			test_opt(inode->i_sb, DELALLOC)) {
3232 		/*
3233 		 * With delalloc we want to sync the file
3234 		 * so that we can make sure we allocate
3235 		 * blocks for file
3236 		 */
3237 		filemap_write_and_wait(mapping);
3238 	}
3239 
3240 	if (EXT4_JOURNAL(inode) &&
3241 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3242 		/*
3243 		 * This is a REALLY heavyweight approach, but the use of
3244 		 * bmap on dirty files is expected to be extremely rare:
3245 		 * only if we run lilo or swapon on a freshly made file
3246 		 * do we expect this to happen.
3247 		 *
3248 		 * (bmap requires CAP_SYS_RAWIO so this does not
3249 		 * represent an unprivileged user DOS attack --- we'd be
3250 		 * in trouble if mortal users could trigger this path at
3251 		 * will.)
3252 		 *
3253 		 * NB. EXT4_STATE_JDATA is not set on files other than
3254 		 * regular files.  If somebody wants to bmap a directory
3255 		 * or symlink and gets confused because the buffer
3256 		 * hasn't yet been flushed to disk, they deserve
3257 		 * everything they get.
3258 		 */
3259 
3260 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3261 		journal = EXT4_JOURNAL(inode);
3262 		jbd2_journal_lock_updates(journal);
3263 		err = jbd2_journal_flush(journal);
3264 		jbd2_journal_unlock_updates(journal);
3265 
3266 		if (err)
3267 			return 0;
3268 	}
3269 
3270 	return generic_block_bmap(mapping, block, ext4_get_block);
3271 }
3272 
3273 static int ext4_readpage(struct file *file, struct page *page)
3274 {
3275 	int ret = -EAGAIN;
3276 	struct inode *inode = page->mapping->host;
3277 
3278 	trace_ext4_readpage(page);
3279 
3280 	if (ext4_has_inline_data(inode))
3281 		ret = ext4_readpage_inline(inode, page);
3282 
3283 	if (ret == -EAGAIN)
3284 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3285 
3286 	return ret;
3287 }
3288 
3289 static int
3290 ext4_readpages(struct file *file, struct address_space *mapping,
3291 		struct list_head *pages, unsigned nr_pages)
3292 {
3293 	struct inode *inode = mapping->host;
3294 
3295 	/* If the file has inline data, no need to do readpages. */
3296 	if (ext4_has_inline_data(inode))
3297 		return 0;
3298 
3299 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3300 }
3301 
3302 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3303 				unsigned int length)
3304 {
3305 	trace_ext4_invalidatepage(page, offset, length);
3306 
3307 	/* No journalling happens on data buffers when this function is used */
3308 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3309 
3310 	block_invalidatepage(page, offset, length);
3311 }
3312 
3313 static int __ext4_journalled_invalidatepage(struct page *page,
3314 					    unsigned int offset,
3315 					    unsigned int length)
3316 {
3317 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3318 
3319 	trace_ext4_journalled_invalidatepage(page, offset, length);
3320 
3321 	/*
3322 	 * If it's a full truncate we just forget about the pending dirtying
3323 	 */
3324 	if (offset == 0 && length == PAGE_SIZE)
3325 		ClearPageChecked(page);
3326 
3327 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3328 }
3329 
3330 /* Wrapper for aops... */
3331 static void ext4_journalled_invalidatepage(struct page *page,
3332 					   unsigned int offset,
3333 					   unsigned int length)
3334 {
3335 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3336 }
3337 
3338 static int ext4_releasepage(struct page *page, gfp_t wait)
3339 {
3340 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3341 
3342 	trace_ext4_releasepage(page);
3343 
3344 	/* Page has dirty journalled data -> cannot release */
3345 	if (PageChecked(page))
3346 		return 0;
3347 	if (journal)
3348 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3349 	else
3350 		return try_to_free_buffers(page);
3351 }
3352 
3353 #ifdef CONFIG_FS_DAX
3354 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3355 			    unsigned flags, struct iomap *iomap)
3356 {
3357 	struct block_device *bdev;
3358 	unsigned int blkbits = inode->i_blkbits;
3359 	unsigned long first_block = offset >> blkbits;
3360 	unsigned long last_block = (offset + length - 1) >> blkbits;
3361 	struct ext4_map_blocks map;
3362 	int ret;
3363 
3364 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3365 		return -ERANGE;
3366 
3367 	map.m_lblk = first_block;
3368 	map.m_len = last_block - first_block + 1;
3369 
3370 	if (!(flags & IOMAP_WRITE)) {
3371 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3372 	} else {
3373 		int dio_credits;
3374 		handle_t *handle;
3375 		int retries = 0;
3376 
3377 		/* Trim mapping request to maximum we can map at once for DIO */
3378 		if (map.m_len > DIO_MAX_BLOCKS)
3379 			map.m_len = DIO_MAX_BLOCKS;
3380 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3381 retry:
3382 		/*
3383 		 * Either we allocate blocks and then we don't get unwritten
3384 		 * extent so we have reserved enough credits, or the blocks
3385 		 * are already allocated and unwritten and in that case
3386 		 * extent conversion fits in the credits as well.
3387 		 */
3388 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3389 					    dio_credits);
3390 		if (IS_ERR(handle))
3391 			return PTR_ERR(handle);
3392 
3393 		ret = ext4_map_blocks(handle, inode, &map,
3394 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3395 		if (ret < 0) {
3396 			ext4_journal_stop(handle);
3397 			if (ret == -ENOSPC &&
3398 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3399 				goto retry;
3400 			return ret;
3401 		}
3402 
3403 		/*
3404 		 * If we added blocks beyond i_size, we need to make sure they
3405 		 * will get truncated if we crash before updating i_size in
3406 		 * ext4_iomap_end(). For faults we don't need to do that (and
3407 		 * even cannot because for orphan list operations inode_lock is
3408 		 * required) - if we happen to instantiate block beyond i_size,
3409 		 * it is because we race with truncate which has already added
3410 		 * the inode to the orphan list.
3411 		 */
3412 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3413 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3414 			int err;
3415 
3416 			err = ext4_orphan_add(handle, inode);
3417 			if (err < 0) {
3418 				ext4_journal_stop(handle);
3419 				return err;
3420 			}
3421 		}
3422 		ext4_journal_stop(handle);
3423 	}
3424 
3425 	iomap->flags = 0;
3426 	bdev = inode->i_sb->s_bdev;
3427 	iomap->bdev = bdev;
3428 	if (blk_queue_dax(bdev->bd_queue))
3429 		iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3430 	else
3431 		iomap->dax_dev = NULL;
3432 	iomap->offset = first_block << blkbits;
3433 
3434 	if (ret == 0) {
3435 		iomap->type = IOMAP_HOLE;
3436 		iomap->blkno = IOMAP_NULL_BLOCK;
3437 		iomap->length = (u64)map.m_len << blkbits;
3438 	} else {
3439 		if (map.m_flags & EXT4_MAP_MAPPED) {
3440 			iomap->type = IOMAP_MAPPED;
3441 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3442 			iomap->type = IOMAP_UNWRITTEN;
3443 		} else {
3444 			WARN_ON_ONCE(1);
3445 			return -EIO;
3446 		}
3447 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3448 		iomap->length = (u64)map.m_len << blkbits;
3449 	}
3450 
3451 	if (map.m_flags & EXT4_MAP_NEW)
3452 		iomap->flags |= IOMAP_F_NEW;
3453 	return 0;
3454 }
3455 
3456 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3457 			  ssize_t written, unsigned flags, struct iomap *iomap)
3458 {
3459 	int ret = 0;
3460 	handle_t *handle;
3461 	int blkbits = inode->i_blkbits;
3462 	bool truncate = false;
3463 
3464 	fs_put_dax(iomap->dax_dev);
3465 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3466 		return 0;
3467 
3468 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3469 	if (IS_ERR(handle)) {
3470 		ret = PTR_ERR(handle);
3471 		goto orphan_del;
3472 	}
3473 	if (ext4_update_inode_size(inode, offset + written))
3474 		ext4_mark_inode_dirty(handle, inode);
3475 	/*
3476 	 * We may need to truncate allocated but not written blocks beyond EOF.
3477 	 */
3478 	if (iomap->offset + iomap->length >
3479 	    ALIGN(inode->i_size, 1 << blkbits)) {
3480 		ext4_lblk_t written_blk, end_blk;
3481 
3482 		written_blk = (offset + written) >> blkbits;
3483 		end_blk = (offset + length) >> blkbits;
3484 		if (written_blk < end_blk && ext4_can_truncate(inode))
3485 			truncate = true;
3486 	}
3487 	/*
3488 	 * Remove inode from orphan list if we were extending a inode and
3489 	 * everything went fine.
3490 	 */
3491 	if (!truncate && inode->i_nlink &&
3492 	    !list_empty(&EXT4_I(inode)->i_orphan))
3493 		ext4_orphan_del(handle, inode);
3494 	ext4_journal_stop(handle);
3495 	if (truncate) {
3496 		ext4_truncate_failed_write(inode);
3497 orphan_del:
3498 		/*
3499 		 * If truncate failed early the inode might still be on the
3500 		 * orphan list; we need to make sure the inode is removed from
3501 		 * the orphan list in that case.
3502 		 */
3503 		if (inode->i_nlink)
3504 			ext4_orphan_del(NULL, inode);
3505 	}
3506 	return ret;
3507 }
3508 
3509 const struct iomap_ops ext4_iomap_ops = {
3510 	.iomap_begin		= ext4_iomap_begin,
3511 	.iomap_end		= ext4_iomap_end,
3512 };
3513 
3514 #endif
3515 
3516 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3517 			    ssize_t size, void *private)
3518 {
3519         ext4_io_end_t *io_end = private;
3520 
3521 	/* if not async direct IO just return */
3522 	if (!io_end)
3523 		return 0;
3524 
3525 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3526 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3527 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3528 
3529 	/*
3530 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3531 	 * data was not written. Just clear the unwritten flag and drop io_end.
3532 	 */
3533 	if (size <= 0) {
3534 		ext4_clear_io_unwritten_flag(io_end);
3535 		size = 0;
3536 	}
3537 	io_end->offset = offset;
3538 	io_end->size = size;
3539 	ext4_put_io_end(io_end);
3540 
3541 	return 0;
3542 }
3543 
3544 /*
3545  * Handling of direct IO writes.
3546  *
3547  * For ext4 extent files, ext4 will do direct-io write even to holes,
3548  * preallocated extents, and those write extend the file, no need to
3549  * fall back to buffered IO.
3550  *
3551  * For holes, we fallocate those blocks, mark them as unwritten
3552  * If those blocks were preallocated, we mark sure they are split, but
3553  * still keep the range to write as unwritten.
3554  *
3555  * The unwritten extents will be converted to written when DIO is completed.
3556  * For async direct IO, since the IO may still pending when return, we
3557  * set up an end_io call back function, which will do the conversion
3558  * when async direct IO completed.
3559  *
3560  * If the O_DIRECT write will extend the file then add this inode to the
3561  * orphan list.  So recovery will truncate it back to the original size
3562  * if the machine crashes during the write.
3563  *
3564  */
3565 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3566 {
3567 	struct file *file = iocb->ki_filp;
3568 	struct inode *inode = file->f_mapping->host;
3569 	struct ext4_inode_info *ei = EXT4_I(inode);
3570 	ssize_t ret;
3571 	loff_t offset = iocb->ki_pos;
3572 	size_t count = iov_iter_count(iter);
3573 	int overwrite = 0;
3574 	get_block_t *get_block_func = NULL;
3575 	int dio_flags = 0;
3576 	loff_t final_size = offset + count;
3577 	int orphan = 0;
3578 	handle_t *handle;
3579 
3580 	if (final_size > inode->i_size) {
3581 		/* Credits for sb + inode write */
3582 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3583 		if (IS_ERR(handle)) {
3584 			ret = PTR_ERR(handle);
3585 			goto out;
3586 		}
3587 		ret = ext4_orphan_add(handle, inode);
3588 		if (ret) {
3589 			ext4_journal_stop(handle);
3590 			goto out;
3591 		}
3592 		orphan = 1;
3593 		ei->i_disksize = inode->i_size;
3594 		ext4_journal_stop(handle);
3595 	}
3596 
3597 	BUG_ON(iocb->private == NULL);
3598 
3599 	/*
3600 	 * Make all waiters for direct IO properly wait also for extent
3601 	 * conversion. This also disallows race between truncate() and
3602 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3603 	 */
3604 	inode_dio_begin(inode);
3605 
3606 	/* If we do a overwrite dio, i_mutex locking can be released */
3607 	overwrite = *((int *)iocb->private);
3608 
3609 	if (overwrite)
3610 		inode_unlock(inode);
3611 
3612 	/*
3613 	 * For extent mapped files we could direct write to holes and fallocate.
3614 	 *
3615 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3616 	 * parallel buffered read to expose the stale data before DIO complete
3617 	 * the data IO.
3618 	 *
3619 	 * As to previously fallocated extents, ext4 get_block will just simply
3620 	 * mark the buffer mapped but still keep the extents unwritten.
3621 	 *
3622 	 * For non AIO case, we will convert those unwritten extents to written
3623 	 * after return back from blockdev_direct_IO. That way we save us from
3624 	 * allocating io_end structure and also the overhead of offloading
3625 	 * the extent convertion to a workqueue.
3626 	 *
3627 	 * For async DIO, the conversion needs to be deferred when the
3628 	 * IO is completed. The ext4 end_io callback function will be
3629 	 * called to take care of the conversion work.  Here for async
3630 	 * case, we allocate an io_end structure to hook to the iocb.
3631 	 */
3632 	iocb->private = NULL;
3633 	if (overwrite)
3634 		get_block_func = ext4_dio_get_block_overwrite;
3635 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3636 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3637 		get_block_func = ext4_dio_get_block;
3638 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3639 	} else if (is_sync_kiocb(iocb)) {
3640 		get_block_func = ext4_dio_get_block_unwritten_sync;
3641 		dio_flags = DIO_LOCKING;
3642 	} else {
3643 		get_block_func = ext4_dio_get_block_unwritten_async;
3644 		dio_flags = DIO_LOCKING;
3645 	}
3646 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3647 				   get_block_func, ext4_end_io_dio, NULL,
3648 				   dio_flags);
3649 
3650 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3651 						EXT4_STATE_DIO_UNWRITTEN)) {
3652 		int err;
3653 		/*
3654 		 * for non AIO case, since the IO is already
3655 		 * completed, we could do the conversion right here
3656 		 */
3657 		err = ext4_convert_unwritten_extents(NULL, inode,
3658 						     offset, ret);
3659 		if (err < 0)
3660 			ret = err;
3661 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3662 	}
3663 
3664 	inode_dio_end(inode);
3665 	/* take i_mutex locking again if we do a ovewrite dio */
3666 	if (overwrite)
3667 		inode_lock(inode);
3668 
3669 	if (ret < 0 && final_size > inode->i_size)
3670 		ext4_truncate_failed_write(inode);
3671 
3672 	/* Handle extending of i_size after direct IO write */
3673 	if (orphan) {
3674 		int err;
3675 
3676 		/* Credits for sb + inode write */
3677 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3678 		if (IS_ERR(handle)) {
3679 			/* This is really bad luck. We've written the data
3680 			 * but cannot extend i_size. Bail out and pretend
3681 			 * the write failed... */
3682 			ret = PTR_ERR(handle);
3683 			if (inode->i_nlink)
3684 				ext4_orphan_del(NULL, inode);
3685 
3686 			goto out;
3687 		}
3688 		if (inode->i_nlink)
3689 			ext4_orphan_del(handle, inode);
3690 		if (ret > 0) {
3691 			loff_t end = offset + ret;
3692 			if (end > inode->i_size) {
3693 				ei->i_disksize = end;
3694 				i_size_write(inode, end);
3695 				/*
3696 				 * We're going to return a positive `ret'
3697 				 * here due to non-zero-length I/O, so there's
3698 				 * no way of reporting error returns from
3699 				 * ext4_mark_inode_dirty() to userspace.  So
3700 				 * ignore it.
3701 				 */
3702 				ext4_mark_inode_dirty(handle, inode);
3703 			}
3704 		}
3705 		err = ext4_journal_stop(handle);
3706 		if (ret == 0)
3707 			ret = err;
3708 	}
3709 out:
3710 	return ret;
3711 }
3712 
3713 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3714 {
3715 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3716 	struct inode *inode = mapping->host;
3717 	size_t count = iov_iter_count(iter);
3718 	ssize_t ret;
3719 
3720 	/*
3721 	 * Shared inode_lock is enough for us - it protects against concurrent
3722 	 * writes & truncates and since we take care of writing back page cache,
3723 	 * we are protected against page writeback as well.
3724 	 */
3725 	inode_lock_shared(inode);
3726 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3727 					   iocb->ki_pos + count - 1);
3728 	if (ret)
3729 		goto out_unlock;
3730 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3731 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3732 out_unlock:
3733 	inode_unlock_shared(inode);
3734 	return ret;
3735 }
3736 
3737 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3738 {
3739 	struct file *file = iocb->ki_filp;
3740 	struct inode *inode = file->f_mapping->host;
3741 	size_t count = iov_iter_count(iter);
3742 	loff_t offset = iocb->ki_pos;
3743 	ssize_t ret;
3744 
3745 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3746 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3747 		return 0;
3748 #endif
3749 
3750 	/*
3751 	 * If we are doing data journalling we don't support O_DIRECT
3752 	 */
3753 	if (ext4_should_journal_data(inode))
3754 		return 0;
3755 
3756 	/* Let buffer I/O handle the inline data case. */
3757 	if (ext4_has_inline_data(inode))
3758 		return 0;
3759 
3760 	/* DAX uses iomap path now */
3761 	if (WARN_ON_ONCE(IS_DAX(inode)))
3762 		return 0;
3763 
3764 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3765 	if (iov_iter_rw(iter) == READ)
3766 		ret = ext4_direct_IO_read(iocb, iter);
3767 	else
3768 		ret = ext4_direct_IO_write(iocb, iter);
3769 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3770 	return ret;
3771 }
3772 
3773 /*
3774  * Pages can be marked dirty completely asynchronously from ext4's journalling
3775  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3776  * much here because ->set_page_dirty is called under VFS locks.  The page is
3777  * not necessarily locked.
3778  *
3779  * We cannot just dirty the page and leave attached buffers clean, because the
3780  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3781  * or jbddirty because all the journalling code will explode.
3782  *
3783  * So what we do is to mark the page "pending dirty" and next time writepage
3784  * is called, propagate that into the buffers appropriately.
3785  */
3786 static int ext4_journalled_set_page_dirty(struct page *page)
3787 {
3788 	SetPageChecked(page);
3789 	return __set_page_dirty_nobuffers(page);
3790 }
3791 
3792 static int ext4_set_page_dirty(struct page *page)
3793 {
3794 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3795 	WARN_ON_ONCE(!page_has_buffers(page));
3796 	return __set_page_dirty_buffers(page);
3797 }
3798 
3799 static const struct address_space_operations ext4_aops = {
3800 	.readpage		= ext4_readpage,
3801 	.readpages		= ext4_readpages,
3802 	.writepage		= ext4_writepage,
3803 	.writepages		= ext4_writepages,
3804 	.write_begin		= ext4_write_begin,
3805 	.write_end		= ext4_write_end,
3806 	.set_page_dirty		= ext4_set_page_dirty,
3807 	.bmap			= ext4_bmap,
3808 	.invalidatepage		= ext4_invalidatepage,
3809 	.releasepage		= ext4_releasepage,
3810 	.direct_IO		= ext4_direct_IO,
3811 	.migratepage		= buffer_migrate_page,
3812 	.is_partially_uptodate  = block_is_partially_uptodate,
3813 	.error_remove_page	= generic_error_remove_page,
3814 };
3815 
3816 static const struct address_space_operations ext4_journalled_aops = {
3817 	.readpage		= ext4_readpage,
3818 	.readpages		= ext4_readpages,
3819 	.writepage		= ext4_writepage,
3820 	.writepages		= ext4_writepages,
3821 	.write_begin		= ext4_write_begin,
3822 	.write_end		= ext4_journalled_write_end,
3823 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3824 	.bmap			= ext4_bmap,
3825 	.invalidatepage		= ext4_journalled_invalidatepage,
3826 	.releasepage		= ext4_releasepage,
3827 	.direct_IO		= ext4_direct_IO,
3828 	.is_partially_uptodate  = block_is_partially_uptodate,
3829 	.error_remove_page	= generic_error_remove_page,
3830 };
3831 
3832 static const struct address_space_operations ext4_da_aops = {
3833 	.readpage		= ext4_readpage,
3834 	.readpages		= ext4_readpages,
3835 	.writepage		= ext4_writepage,
3836 	.writepages		= ext4_writepages,
3837 	.write_begin		= ext4_da_write_begin,
3838 	.write_end		= ext4_da_write_end,
3839 	.set_page_dirty		= ext4_set_page_dirty,
3840 	.bmap			= ext4_bmap,
3841 	.invalidatepage		= ext4_da_invalidatepage,
3842 	.releasepage		= ext4_releasepage,
3843 	.direct_IO		= ext4_direct_IO,
3844 	.migratepage		= buffer_migrate_page,
3845 	.is_partially_uptodate  = block_is_partially_uptodate,
3846 	.error_remove_page	= generic_error_remove_page,
3847 };
3848 
3849 void ext4_set_aops(struct inode *inode)
3850 {
3851 	switch (ext4_inode_journal_mode(inode)) {
3852 	case EXT4_INODE_ORDERED_DATA_MODE:
3853 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3854 		break;
3855 	case EXT4_INODE_JOURNAL_DATA_MODE:
3856 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3857 		return;
3858 	default:
3859 		BUG();
3860 	}
3861 	if (test_opt(inode->i_sb, DELALLOC))
3862 		inode->i_mapping->a_ops = &ext4_da_aops;
3863 	else
3864 		inode->i_mapping->a_ops = &ext4_aops;
3865 }
3866 
3867 static int __ext4_block_zero_page_range(handle_t *handle,
3868 		struct address_space *mapping, loff_t from, loff_t length)
3869 {
3870 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3871 	unsigned offset = from & (PAGE_SIZE-1);
3872 	unsigned blocksize, pos;
3873 	ext4_lblk_t iblock;
3874 	struct inode *inode = mapping->host;
3875 	struct buffer_head *bh;
3876 	struct page *page;
3877 	int err = 0;
3878 
3879 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3880 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3881 	if (!page)
3882 		return -ENOMEM;
3883 
3884 	blocksize = inode->i_sb->s_blocksize;
3885 
3886 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3887 
3888 	if (!page_has_buffers(page))
3889 		create_empty_buffers(page, blocksize, 0);
3890 
3891 	/* Find the buffer that contains "offset" */
3892 	bh = page_buffers(page);
3893 	pos = blocksize;
3894 	while (offset >= pos) {
3895 		bh = bh->b_this_page;
3896 		iblock++;
3897 		pos += blocksize;
3898 	}
3899 	if (buffer_freed(bh)) {
3900 		BUFFER_TRACE(bh, "freed: skip");
3901 		goto unlock;
3902 	}
3903 	if (!buffer_mapped(bh)) {
3904 		BUFFER_TRACE(bh, "unmapped");
3905 		ext4_get_block(inode, iblock, bh, 0);
3906 		/* unmapped? It's a hole - nothing to do */
3907 		if (!buffer_mapped(bh)) {
3908 			BUFFER_TRACE(bh, "still unmapped");
3909 			goto unlock;
3910 		}
3911 	}
3912 
3913 	/* Ok, it's mapped. Make sure it's up-to-date */
3914 	if (PageUptodate(page))
3915 		set_buffer_uptodate(bh);
3916 
3917 	if (!buffer_uptodate(bh)) {
3918 		err = -EIO;
3919 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3920 		wait_on_buffer(bh);
3921 		/* Uhhuh. Read error. Complain and punt. */
3922 		if (!buffer_uptodate(bh))
3923 			goto unlock;
3924 		if (S_ISREG(inode->i_mode) &&
3925 		    ext4_encrypted_inode(inode)) {
3926 			/* We expect the key to be set. */
3927 			BUG_ON(!fscrypt_has_encryption_key(inode));
3928 			BUG_ON(blocksize != PAGE_SIZE);
3929 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3930 						page, PAGE_SIZE, 0, page->index));
3931 		}
3932 	}
3933 	if (ext4_should_journal_data(inode)) {
3934 		BUFFER_TRACE(bh, "get write access");
3935 		err = ext4_journal_get_write_access(handle, bh);
3936 		if (err)
3937 			goto unlock;
3938 	}
3939 	zero_user(page, offset, length);
3940 	BUFFER_TRACE(bh, "zeroed end of block");
3941 
3942 	if (ext4_should_journal_data(inode)) {
3943 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3944 	} else {
3945 		err = 0;
3946 		mark_buffer_dirty(bh);
3947 		if (ext4_should_order_data(inode))
3948 			err = ext4_jbd2_inode_add_write(handle, inode);
3949 	}
3950 
3951 unlock:
3952 	unlock_page(page);
3953 	put_page(page);
3954 	return err;
3955 }
3956 
3957 /*
3958  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3959  * starting from file offset 'from'.  The range to be zero'd must
3960  * be contained with in one block.  If the specified range exceeds
3961  * the end of the block it will be shortened to end of the block
3962  * that cooresponds to 'from'
3963  */
3964 static int ext4_block_zero_page_range(handle_t *handle,
3965 		struct address_space *mapping, loff_t from, loff_t length)
3966 {
3967 	struct inode *inode = mapping->host;
3968 	unsigned offset = from & (PAGE_SIZE-1);
3969 	unsigned blocksize = inode->i_sb->s_blocksize;
3970 	unsigned max = blocksize - (offset & (blocksize - 1));
3971 
3972 	/*
3973 	 * correct length if it does not fall between
3974 	 * 'from' and the end of the block
3975 	 */
3976 	if (length > max || length < 0)
3977 		length = max;
3978 
3979 	if (IS_DAX(inode)) {
3980 		return iomap_zero_range(inode, from, length, NULL,
3981 					&ext4_iomap_ops);
3982 	}
3983 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3984 }
3985 
3986 /*
3987  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3988  * up to the end of the block which corresponds to `from'.
3989  * This required during truncate. We need to physically zero the tail end
3990  * of that block so it doesn't yield old data if the file is later grown.
3991  */
3992 static int ext4_block_truncate_page(handle_t *handle,
3993 		struct address_space *mapping, loff_t from)
3994 {
3995 	unsigned offset = from & (PAGE_SIZE-1);
3996 	unsigned length;
3997 	unsigned blocksize;
3998 	struct inode *inode = mapping->host;
3999 
4000 	/* If we are processing an encrypted inode during orphan list handling */
4001 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4002 		return 0;
4003 
4004 	blocksize = inode->i_sb->s_blocksize;
4005 	length = blocksize - (offset & (blocksize - 1));
4006 
4007 	return ext4_block_zero_page_range(handle, mapping, from, length);
4008 }
4009 
4010 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4011 			     loff_t lstart, loff_t length)
4012 {
4013 	struct super_block *sb = inode->i_sb;
4014 	struct address_space *mapping = inode->i_mapping;
4015 	unsigned partial_start, partial_end;
4016 	ext4_fsblk_t start, end;
4017 	loff_t byte_end = (lstart + length - 1);
4018 	int err = 0;
4019 
4020 	partial_start = lstart & (sb->s_blocksize - 1);
4021 	partial_end = byte_end & (sb->s_blocksize - 1);
4022 
4023 	start = lstart >> sb->s_blocksize_bits;
4024 	end = byte_end >> sb->s_blocksize_bits;
4025 
4026 	/* Handle partial zero within the single block */
4027 	if (start == end &&
4028 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4029 		err = ext4_block_zero_page_range(handle, mapping,
4030 						 lstart, length);
4031 		return err;
4032 	}
4033 	/* Handle partial zero out on the start of the range */
4034 	if (partial_start) {
4035 		err = ext4_block_zero_page_range(handle, mapping,
4036 						 lstart, sb->s_blocksize);
4037 		if (err)
4038 			return err;
4039 	}
4040 	/* Handle partial zero out on the end of the range */
4041 	if (partial_end != sb->s_blocksize - 1)
4042 		err = ext4_block_zero_page_range(handle, mapping,
4043 						 byte_end - partial_end,
4044 						 partial_end + 1);
4045 	return err;
4046 }
4047 
4048 int ext4_can_truncate(struct inode *inode)
4049 {
4050 	if (S_ISREG(inode->i_mode))
4051 		return 1;
4052 	if (S_ISDIR(inode->i_mode))
4053 		return 1;
4054 	if (S_ISLNK(inode->i_mode))
4055 		return !ext4_inode_is_fast_symlink(inode);
4056 	return 0;
4057 }
4058 
4059 /*
4060  * We have to make sure i_disksize gets properly updated before we truncate
4061  * page cache due to hole punching or zero range. Otherwise i_disksize update
4062  * can get lost as it may have been postponed to submission of writeback but
4063  * that will never happen after we truncate page cache.
4064  */
4065 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4066 				      loff_t len)
4067 {
4068 	handle_t *handle;
4069 	loff_t size = i_size_read(inode);
4070 
4071 	WARN_ON(!inode_is_locked(inode));
4072 	if (offset > size || offset + len < size)
4073 		return 0;
4074 
4075 	if (EXT4_I(inode)->i_disksize >= size)
4076 		return 0;
4077 
4078 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4079 	if (IS_ERR(handle))
4080 		return PTR_ERR(handle);
4081 	ext4_update_i_disksize(inode, size);
4082 	ext4_mark_inode_dirty(handle, inode);
4083 	ext4_journal_stop(handle);
4084 
4085 	return 0;
4086 }
4087 
4088 /*
4089  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4090  * associated with the given offset and length
4091  *
4092  * @inode:  File inode
4093  * @offset: The offset where the hole will begin
4094  * @len:    The length of the hole
4095  *
4096  * Returns: 0 on success or negative on failure
4097  */
4098 
4099 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4100 {
4101 	struct super_block *sb = inode->i_sb;
4102 	ext4_lblk_t first_block, stop_block;
4103 	struct address_space *mapping = inode->i_mapping;
4104 	loff_t first_block_offset, last_block_offset;
4105 	handle_t *handle;
4106 	unsigned int credits;
4107 	int ret = 0;
4108 
4109 	if (!S_ISREG(inode->i_mode))
4110 		return -EOPNOTSUPP;
4111 
4112 	trace_ext4_punch_hole(inode, offset, length, 0);
4113 
4114 	/*
4115 	 * Write out all dirty pages to avoid race conditions
4116 	 * Then release them.
4117 	 */
4118 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4119 		ret = filemap_write_and_wait_range(mapping, offset,
4120 						   offset + length - 1);
4121 		if (ret)
4122 			return ret;
4123 	}
4124 
4125 	inode_lock(inode);
4126 
4127 	/* No need to punch hole beyond i_size */
4128 	if (offset >= inode->i_size)
4129 		goto out_mutex;
4130 
4131 	/*
4132 	 * If the hole extends beyond i_size, set the hole
4133 	 * to end after the page that contains i_size
4134 	 */
4135 	if (offset + length > inode->i_size) {
4136 		length = inode->i_size +
4137 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4138 		   offset;
4139 	}
4140 
4141 	if (offset & (sb->s_blocksize - 1) ||
4142 	    (offset + length) & (sb->s_blocksize - 1)) {
4143 		/*
4144 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4145 		 * partial block
4146 		 */
4147 		ret = ext4_inode_attach_jinode(inode);
4148 		if (ret < 0)
4149 			goto out_mutex;
4150 
4151 	}
4152 
4153 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4154 	ext4_inode_block_unlocked_dio(inode);
4155 	inode_dio_wait(inode);
4156 
4157 	/*
4158 	 * Prevent page faults from reinstantiating pages we have released from
4159 	 * page cache.
4160 	 */
4161 	down_write(&EXT4_I(inode)->i_mmap_sem);
4162 	first_block_offset = round_up(offset, sb->s_blocksize);
4163 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4164 
4165 	/* Now release the pages and zero block aligned part of pages*/
4166 	if (last_block_offset > first_block_offset) {
4167 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4168 		if (ret)
4169 			goto out_dio;
4170 		truncate_pagecache_range(inode, first_block_offset,
4171 					 last_block_offset);
4172 	}
4173 
4174 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4175 		credits = ext4_writepage_trans_blocks(inode);
4176 	else
4177 		credits = ext4_blocks_for_truncate(inode);
4178 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4179 	if (IS_ERR(handle)) {
4180 		ret = PTR_ERR(handle);
4181 		ext4_std_error(sb, ret);
4182 		goto out_dio;
4183 	}
4184 
4185 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4186 				       length);
4187 	if (ret)
4188 		goto out_stop;
4189 
4190 	first_block = (offset + sb->s_blocksize - 1) >>
4191 		EXT4_BLOCK_SIZE_BITS(sb);
4192 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4193 
4194 	/* If there are no blocks to remove, return now */
4195 	if (first_block >= stop_block)
4196 		goto out_stop;
4197 
4198 	down_write(&EXT4_I(inode)->i_data_sem);
4199 	ext4_discard_preallocations(inode);
4200 
4201 	ret = ext4_es_remove_extent(inode, first_block,
4202 				    stop_block - first_block);
4203 	if (ret) {
4204 		up_write(&EXT4_I(inode)->i_data_sem);
4205 		goto out_stop;
4206 	}
4207 
4208 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4209 		ret = ext4_ext_remove_space(inode, first_block,
4210 					    stop_block - 1);
4211 	else
4212 		ret = ext4_ind_remove_space(handle, inode, first_block,
4213 					    stop_block);
4214 
4215 	up_write(&EXT4_I(inode)->i_data_sem);
4216 	if (IS_SYNC(inode))
4217 		ext4_handle_sync(handle);
4218 
4219 	inode->i_mtime = inode->i_ctime = current_time(inode);
4220 	ext4_mark_inode_dirty(handle, inode);
4221 out_stop:
4222 	ext4_journal_stop(handle);
4223 out_dio:
4224 	up_write(&EXT4_I(inode)->i_mmap_sem);
4225 	ext4_inode_resume_unlocked_dio(inode);
4226 out_mutex:
4227 	inode_unlock(inode);
4228 	return ret;
4229 }
4230 
4231 int ext4_inode_attach_jinode(struct inode *inode)
4232 {
4233 	struct ext4_inode_info *ei = EXT4_I(inode);
4234 	struct jbd2_inode *jinode;
4235 
4236 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4237 		return 0;
4238 
4239 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4240 	spin_lock(&inode->i_lock);
4241 	if (!ei->jinode) {
4242 		if (!jinode) {
4243 			spin_unlock(&inode->i_lock);
4244 			return -ENOMEM;
4245 		}
4246 		ei->jinode = jinode;
4247 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4248 		jinode = NULL;
4249 	}
4250 	spin_unlock(&inode->i_lock);
4251 	if (unlikely(jinode != NULL))
4252 		jbd2_free_inode(jinode);
4253 	return 0;
4254 }
4255 
4256 /*
4257  * ext4_truncate()
4258  *
4259  * We block out ext4_get_block() block instantiations across the entire
4260  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4261  * simultaneously on behalf of the same inode.
4262  *
4263  * As we work through the truncate and commit bits of it to the journal there
4264  * is one core, guiding principle: the file's tree must always be consistent on
4265  * disk.  We must be able to restart the truncate after a crash.
4266  *
4267  * The file's tree may be transiently inconsistent in memory (although it
4268  * probably isn't), but whenever we close off and commit a journal transaction,
4269  * the contents of (the filesystem + the journal) must be consistent and
4270  * restartable.  It's pretty simple, really: bottom up, right to left (although
4271  * left-to-right works OK too).
4272  *
4273  * Note that at recovery time, journal replay occurs *before* the restart of
4274  * truncate against the orphan inode list.
4275  *
4276  * The committed inode has the new, desired i_size (which is the same as
4277  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4278  * that this inode's truncate did not complete and it will again call
4279  * ext4_truncate() to have another go.  So there will be instantiated blocks
4280  * to the right of the truncation point in a crashed ext4 filesystem.  But
4281  * that's fine - as long as they are linked from the inode, the post-crash
4282  * ext4_truncate() run will find them and release them.
4283  */
4284 int ext4_truncate(struct inode *inode)
4285 {
4286 	struct ext4_inode_info *ei = EXT4_I(inode);
4287 	unsigned int credits;
4288 	int err = 0;
4289 	handle_t *handle;
4290 	struct address_space *mapping = inode->i_mapping;
4291 
4292 	/*
4293 	 * There is a possibility that we're either freeing the inode
4294 	 * or it's a completely new inode. In those cases we might not
4295 	 * have i_mutex locked because it's not necessary.
4296 	 */
4297 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4298 		WARN_ON(!inode_is_locked(inode));
4299 	trace_ext4_truncate_enter(inode);
4300 
4301 	if (!ext4_can_truncate(inode))
4302 		return 0;
4303 
4304 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4305 
4306 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4307 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4308 
4309 	if (ext4_has_inline_data(inode)) {
4310 		int has_inline = 1;
4311 
4312 		err = ext4_inline_data_truncate(inode, &has_inline);
4313 		if (err)
4314 			return err;
4315 		if (has_inline)
4316 			return 0;
4317 	}
4318 
4319 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4320 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4321 		if (ext4_inode_attach_jinode(inode) < 0)
4322 			return 0;
4323 	}
4324 
4325 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4326 		credits = ext4_writepage_trans_blocks(inode);
4327 	else
4328 		credits = ext4_blocks_for_truncate(inode);
4329 
4330 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4331 	if (IS_ERR(handle))
4332 		return PTR_ERR(handle);
4333 
4334 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4335 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4336 
4337 	/*
4338 	 * We add the inode to the orphan list, so that if this
4339 	 * truncate spans multiple transactions, and we crash, we will
4340 	 * resume the truncate when the filesystem recovers.  It also
4341 	 * marks the inode dirty, to catch the new size.
4342 	 *
4343 	 * Implication: the file must always be in a sane, consistent
4344 	 * truncatable state while each transaction commits.
4345 	 */
4346 	err = ext4_orphan_add(handle, inode);
4347 	if (err)
4348 		goto out_stop;
4349 
4350 	down_write(&EXT4_I(inode)->i_data_sem);
4351 
4352 	ext4_discard_preallocations(inode);
4353 
4354 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4355 		err = ext4_ext_truncate(handle, inode);
4356 	else
4357 		ext4_ind_truncate(handle, inode);
4358 
4359 	up_write(&ei->i_data_sem);
4360 	if (err)
4361 		goto out_stop;
4362 
4363 	if (IS_SYNC(inode))
4364 		ext4_handle_sync(handle);
4365 
4366 out_stop:
4367 	/*
4368 	 * If this was a simple ftruncate() and the file will remain alive,
4369 	 * then we need to clear up the orphan record which we created above.
4370 	 * However, if this was a real unlink then we were called by
4371 	 * ext4_evict_inode(), and we allow that function to clean up the
4372 	 * orphan info for us.
4373 	 */
4374 	if (inode->i_nlink)
4375 		ext4_orphan_del(handle, inode);
4376 
4377 	inode->i_mtime = inode->i_ctime = current_time(inode);
4378 	ext4_mark_inode_dirty(handle, inode);
4379 	ext4_journal_stop(handle);
4380 
4381 	trace_ext4_truncate_exit(inode);
4382 	return err;
4383 }
4384 
4385 /*
4386  * ext4_get_inode_loc returns with an extra refcount against the inode's
4387  * underlying buffer_head on success. If 'in_mem' is true, we have all
4388  * data in memory that is needed to recreate the on-disk version of this
4389  * inode.
4390  */
4391 static int __ext4_get_inode_loc(struct inode *inode,
4392 				struct ext4_iloc *iloc, int in_mem)
4393 {
4394 	struct ext4_group_desc	*gdp;
4395 	struct buffer_head	*bh;
4396 	struct super_block	*sb = inode->i_sb;
4397 	ext4_fsblk_t		block;
4398 	int			inodes_per_block, inode_offset;
4399 
4400 	iloc->bh = NULL;
4401 	if (!ext4_valid_inum(sb, inode->i_ino))
4402 		return -EFSCORRUPTED;
4403 
4404 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4405 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4406 	if (!gdp)
4407 		return -EIO;
4408 
4409 	/*
4410 	 * Figure out the offset within the block group inode table
4411 	 */
4412 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4413 	inode_offset = ((inode->i_ino - 1) %
4414 			EXT4_INODES_PER_GROUP(sb));
4415 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4416 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4417 
4418 	bh = sb_getblk(sb, block);
4419 	if (unlikely(!bh))
4420 		return -ENOMEM;
4421 	if (!buffer_uptodate(bh)) {
4422 		lock_buffer(bh);
4423 
4424 		/*
4425 		 * If the buffer has the write error flag, we have failed
4426 		 * to write out another inode in the same block.  In this
4427 		 * case, we don't have to read the block because we may
4428 		 * read the old inode data successfully.
4429 		 */
4430 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4431 			set_buffer_uptodate(bh);
4432 
4433 		if (buffer_uptodate(bh)) {
4434 			/* someone brought it uptodate while we waited */
4435 			unlock_buffer(bh);
4436 			goto has_buffer;
4437 		}
4438 
4439 		/*
4440 		 * If we have all information of the inode in memory and this
4441 		 * is the only valid inode in the block, we need not read the
4442 		 * block.
4443 		 */
4444 		if (in_mem) {
4445 			struct buffer_head *bitmap_bh;
4446 			int i, start;
4447 
4448 			start = inode_offset & ~(inodes_per_block - 1);
4449 
4450 			/* Is the inode bitmap in cache? */
4451 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4452 			if (unlikely(!bitmap_bh))
4453 				goto make_io;
4454 
4455 			/*
4456 			 * If the inode bitmap isn't in cache then the
4457 			 * optimisation may end up performing two reads instead
4458 			 * of one, so skip it.
4459 			 */
4460 			if (!buffer_uptodate(bitmap_bh)) {
4461 				brelse(bitmap_bh);
4462 				goto make_io;
4463 			}
4464 			for (i = start; i < start + inodes_per_block; i++) {
4465 				if (i == inode_offset)
4466 					continue;
4467 				if (ext4_test_bit(i, bitmap_bh->b_data))
4468 					break;
4469 			}
4470 			brelse(bitmap_bh);
4471 			if (i == start + inodes_per_block) {
4472 				/* all other inodes are free, so skip I/O */
4473 				memset(bh->b_data, 0, bh->b_size);
4474 				set_buffer_uptodate(bh);
4475 				unlock_buffer(bh);
4476 				goto has_buffer;
4477 			}
4478 		}
4479 
4480 make_io:
4481 		/*
4482 		 * If we need to do any I/O, try to pre-readahead extra
4483 		 * blocks from the inode table.
4484 		 */
4485 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4486 			ext4_fsblk_t b, end, table;
4487 			unsigned num;
4488 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4489 
4490 			table = ext4_inode_table(sb, gdp);
4491 			/* s_inode_readahead_blks is always a power of 2 */
4492 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4493 			if (table > b)
4494 				b = table;
4495 			end = b + ra_blks;
4496 			num = EXT4_INODES_PER_GROUP(sb);
4497 			if (ext4_has_group_desc_csum(sb))
4498 				num -= ext4_itable_unused_count(sb, gdp);
4499 			table += num / inodes_per_block;
4500 			if (end > table)
4501 				end = table;
4502 			while (b <= end)
4503 				sb_breadahead(sb, b++);
4504 		}
4505 
4506 		/*
4507 		 * There are other valid inodes in the buffer, this inode
4508 		 * has in-inode xattrs, or we don't have this inode in memory.
4509 		 * Read the block from disk.
4510 		 */
4511 		trace_ext4_load_inode(inode);
4512 		get_bh(bh);
4513 		bh->b_end_io = end_buffer_read_sync;
4514 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4515 		wait_on_buffer(bh);
4516 		if (!buffer_uptodate(bh)) {
4517 			EXT4_ERROR_INODE_BLOCK(inode, block,
4518 					       "unable to read itable block");
4519 			brelse(bh);
4520 			return -EIO;
4521 		}
4522 	}
4523 has_buffer:
4524 	iloc->bh = bh;
4525 	return 0;
4526 }
4527 
4528 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4529 {
4530 	/* We have all inode data except xattrs in memory here. */
4531 	return __ext4_get_inode_loc(inode, iloc,
4532 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4533 }
4534 
4535 void ext4_set_inode_flags(struct inode *inode)
4536 {
4537 	unsigned int flags = EXT4_I(inode)->i_flags;
4538 	unsigned int new_fl = 0;
4539 
4540 	if (flags & EXT4_SYNC_FL)
4541 		new_fl |= S_SYNC;
4542 	if (flags & EXT4_APPEND_FL)
4543 		new_fl |= S_APPEND;
4544 	if (flags & EXT4_IMMUTABLE_FL)
4545 		new_fl |= S_IMMUTABLE;
4546 	if (flags & EXT4_NOATIME_FL)
4547 		new_fl |= S_NOATIME;
4548 	if (flags & EXT4_DIRSYNC_FL)
4549 		new_fl |= S_DIRSYNC;
4550 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4551 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4552 	    !ext4_encrypted_inode(inode))
4553 		new_fl |= S_DAX;
4554 	inode_set_flags(inode, new_fl,
4555 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4556 }
4557 
4558 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4559 				  struct ext4_inode_info *ei)
4560 {
4561 	blkcnt_t i_blocks ;
4562 	struct inode *inode = &(ei->vfs_inode);
4563 	struct super_block *sb = inode->i_sb;
4564 
4565 	if (ext4_has_feature_huge_file(sb)) {
4566 		/* we are using combined 48 bit field */
4567 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4568 					le32_to_cpu(raw_inode->i_blocks_lo);
4569 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4570 			/* i_blocks represent file system block size */
4571 			return i_blocks  << (inode->i_blkbits - 9);
4572 		} else {
4573 			return i_blocks;
4574 		}
4575 	} else {
4576 		return le32_to_cpu(raw_inode->i_blocks_lo);
4577 	}
4578 }
4579 
4580 static inline void ext4_iget_extra_inode(struct inode *inode,
4581 					 struct ext4_inode *raw_inode,
4582 					 struct ext4_inode_info *ei)
4583 {
4584 	__le32 *magic = (void *)raw_inode +
4585 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4586 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4587 	    EXT4_INODE_SIZE(inode->i_sb) &&
4588 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4589 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4590 		ext4_find_inline_data_nolock(inode);
4591 	} else
4592 		EXT4_I(inode)->i_inline_off = 0;
4593 }
4594 
4595 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4596 {
4597 	if (!ext4_has_feature_project(inode->i_sb))
4598 		return -EOPNOTSUPP;
4599 	*projid = EXT4_I(inode)->i_projid;
4600 	return 0;
4601 }
4602 
4603 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4604 {
4605 	struct ext4_iloc iloc;
4606 	struct ext4_inode *raw_inode;
4607 	struct ext4_inode_info *ei;
4608 	struct inode *inode;
4609 	journal_t *journal = EXT4_SB(sb)->s_journal;
4610 	long ret;
4611 	loff_t size;
4612 	int block;
4613 	uid_t i_uid;
4614 	gid_t i_gid;
4615 	projid_t i_projid;
4616 
4617 	inode = iget_locked(sb, ino);
4618 	if (!inode)
4619 		return ERR_PTR(-ENOMEM);
4620 	if (!(inode->i_state & I_NEW))
4621 		return inode;
4622 
4623 	ei = EXT4_I(inode);
4624 	iloc.bh = NULL;
4625 
4626 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4627 	if (ret < 0)
4628 		goto bad_inode;
4629 	raw_inode = ext4_raw_inode(&iloc);
4630 
4631 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4632 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4633 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4634 			EXT4_INODE_SIZE(inode->i_sb) ||
4635 		    (ei->i_extra_isize & 3)) {
4636 			EXT4_ERROR_INODE(inode,
4637 					 "bad extra_isize %u (inode size %u)",
4638 					 ei->i_extra_isize,
4639 					 EXT4_INODE_SIZE(inode->i_sb));
4640 			ret = -EFSCORRUPTED;
4641 			goto bad_inode;
4642 		}
4643 	} else
4644 		ei->i_extra_isize = 0;
4645 
4646 	/* Precompute checksum seed for inode metadata */
4647 	if (ext4_has_metadata_csum(sb)) {
4648 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4649 		__u32 csum;
4650 		__le32 inum = cpu_to_le32(inode->i_ino);
4651 		__le32 gen = raw_inode->i_generation;
4652 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4653 				   sizeof(inum));
4654 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4655 					      sizeof(gen));
4656 	}
4657 
4658 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4659 		EXT4_ERROR_INODE(inode, "checksum invalid");
4660 		ret = -EFSBADCRC;
4661 		goto bad_inode;
4662 	}
4663 
4664 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4665 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4666 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4667 	if (ext4_has_feature_project(sb) &&
4668 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4669 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4670 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4671 	else
4672 		i_projid = EXT4_DEF_PROJID;
4673 
4674 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4675 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4676 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4677 	}
4678 	i_uid_write(inode, i_uid);
4679 	i_gid_write(inode, i_gid);
4680 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4681 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4682 
4683 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4684 	ei->i_inline_off = 0;
4685 	ei->i_dir_start_lookup = 0;
4686 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4687 	/* We now have enough fields to check if the inode was active or not.
4688 	 * This is needed because nfsd might try to access dead inodes
4689 	 * the test is that same one that e2fsck uses
4690 	 * NeilBrown 1999oct15
4691 	 */
4692 	if (inode->i_nlink == 0) {
4693 		if ((inode->i_mode == 0 ||
4694 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4695 		    ino != EXT4_BOOT_LOADER_INO) {
4696 			/* this inode is deleted */
4697 			ret = -ESTALE;
4698 			goto bad_inode;
4699 		}
4700 		/* The only unlinked inodes we let through here have
4701 		 * valid i_mode and are being read by the orphan
4702 		 * recovery code: that's fine, we're about to complete
4703 		 * the process of deleting those.
4704 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4705 		 * not initialized on a new filesystem. */
4706 	}
4707 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4708 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4709 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4710 	if (ext4_has_feature_64bit(sb))
4711 		ei->i_file_acl |=
4712 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4713 	inode->i_size = ext4_isize(raw_inode);
4714 	if ((size = i_size_read(inode)) < 0) {
4715 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4716 		ret = -EFSCORRUPTED;
4717 		goto bad_inode;
4718 	}
4719 	ei->i_disksize = inode->i_size;
4720 #ifdef CONFIG_QUOTA
4721 	ei->i_reserved_quota = 0;
4722 #endif
4723 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4724 	ei->i_block_group = iloc.block_group;
4725 	ei->i_last_alloc_group = ~0;
4726 	/*
4727 	 * NOTE! The in-memory inode i_data array is in little-endian order
4728 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4729 	 */
4730 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4731 		ei->i_data[block] = raw_inode->i_block[block];
4732 	INIT_LIST_HEAD(&ei->i_orphan);
4733 
4734 	/*
4735 	 * Set transaction id's of transactions that have to be committed
4736 	 * to finish f[data]sync. We set them to currently running transaction
4737 	 * as we cannot be sure that the inode or some of its metadata isn't
4738 	 * part of the transaction - the inode could have been reclaimed and
4739 	 * now it is reread from disk.
4740 	 */
4741 	if (journal) {
4742 		transaction_t *transaction;
4743 		tid_t tid;
4744 
4745 		read_lock(&journal->j_state_lock);
4746 		if (journal->j_running_transaction)
4747 			transaction = journal->j_running_transaction;
4748 		else
4749 			transaction = journal->j_committing_transaction;
4750 		if (transaction)
4751 			tid = transaction->t_tid;
4752 		else
4753 			tid = journal->j_commit_sequence;
4754 		read_unlock(&journal->j_state_lock);
4755 		ei->i_sync_tid = tid;
4756 		ei->i_datasync_tid = tid;
4757 	}
4758 
4759 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4760 		if (ei->i_extra_isize == 0) {
4761 			/* The extra space is currently unused. Use it. */
4762 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4763 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4764 					    EXT4_GOOD_OLD_INODE_SIZE;
4765 		} else {
4766 			ext4_iget_extra_inode(inode, raw_inode, ei);
4767 		}
4768 	}
4769 
4770 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4771 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4772 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4773 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4774 
4775 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4776 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4777 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4778 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4779 				inode->i_version |=
4780 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4781 		}
4782 	}
4783 
4784 	ret = 0;
4785 	if (ei->i_file_acl &&
4786 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4787 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4788 				 ei->i_file_acl);
4789 		ret = -EFSCORRUPTED;
4790 		goto bad_inode;
4791 	} else if (!ext4_has_inline_data(inode)) {
4792 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4793 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4794 			    (S_ISLNK(inode->i_mode) &&
4795 			     !ext4_inode_is_fast_symlink(inode))))
4796 				/* Validate extent which is part of inode */
4797 				ret = ext4_ext_check_inode(inode);
4798 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4799 			   (S_ISLNK(inode->i_mode) &&
4800 			    !ext4_inode_is_fast_symlink(inode))) {
4801 			/* Validate block references which are part of inode */
4802 			ret = ext4_ind_check_inode(inode);
4803 		}
4804 	}
4805 	if (ret)
4806 		goto bad_inode;
4807 
4808 	if (S_ISREG(inode->i_mode)) {
4809 		inode->i_op = &ext4_file_inode_operations;
4810 		inode->i_fop = &ext4_file_operations;
4811 		ext4_set_aops(inode);
4812 	} else if (S_ISDIR(inode->i_mode)) {
4813 		inode->i_op = &ext4_dir_inode_operations;
4814 		inode->i_fop = &ext4_dir_operations;
4815 	} else if (S_ISLNK(inode->i_mode)) {
4816 		if (ext4_encrypted_inode(inode)) {
4817 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4818 			ext4_set_aops(inode);
4819 		} else if (ext4_inode_is_fast_symlink(inode)) {
4820 			inode->i_link = (char *)ei->i_data;
4821 			inode->i_op = &ext4_fast_symlink_inode_operations;
4822 			nd_terminate_link(ei->i_data, inode->i_size,
4823 				sizeof(ei->i_data) - 1);
4824 		} else {
4825 			inode->i_op = &ext4_symlink_inode_operations;
4826 			ext4_set_aops(inode);
4827 		}
4828 		inode_nohighmem(inode);
4829 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4830 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4831 		inode->i_op = &ext4_special_inode_operations;
4832 		if (raw_inode->i_block[0])
4833 			init_special_inode(inode, inode->i_mode,
4834 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4835 		else
4836 			init_special_inode(inode, inode->i_mode,
4837 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4838 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4839 		make_bad_inode(inode);
4840 	} else {
4841 		ret = -EFSCORRUPTED;
4842 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4843 		goto bad_inode;
4844 	}
4845 	brelse(iloc.bh);
4846 	ext4_set_inode_flags(inode);
4847 	unlock_new_inode(inode);
4848 	return inode;
4849 
4850 bad_inode:
4851 	brelse(iloc.bh);
4852 	iget_failed(inode);
4853 	return ERR_PTR(ret);
4854 }
4855 
4856 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4857 {
4858 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4859 		return ERR_PTR(-EFSCORRUPTED);
4860 	return ext4_iget(sb, ino);
4861 }
4862 
4863 static int ext4_inode_blocks_set(handle_t *handle,
4864 				struct ext4_inode *raw_inode,
4865 				struct ext4_inode_info *ei)
4866 {
4867 	struct inode *inode = &(ei->vfs_inode);
4868 	u64 i_blocks = inode->i_blocks;
4869 	struct super_block *sb = inode->i_sb;
4870 
4871 	if (i_blocks <= ~0U) {
4872 		/*
4873 		 * i_blocks can be represented in a 32 bit variable
4874 		 * as multiple of 512 bytes
4875 		 */
4876 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877 		raw_inode->i_blocks_high = 0;
4878 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4879 		return 0;
4880 	}
4881 	if (!ext4_has_feature_huge_file(sb))
4882 		return -EFBIG;
4883 
4884 	if (i_blocks <= 0xffffffffffffULL) {
4885 		/*
4886 		 * i_blocks can be represented in a 48 bit variable
4887 		 * as multiple of 512 bytes
4888 		 */
4889 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4890 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4891 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4892 	} else {
4893 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4894 		/* i_block is stored in file system block size */
4895 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4896 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4897 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4898 	}
4899 	return 0;
4900 }
4901 
4902 struct other_inode {
4903 	unsigned long		orig_ino;
4904 	struct ext4_inode	*raw_inode;
4905 };
4906 
4907 static int other_inode_match(struct inode * inode, unsigned long ino,
4908 			     void *data)
4909 {
4910 	struct other_inode *oi = (struct other_inode *) data;
4911 
4912 	if ((inode->i_ino != ino) ||
4913 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4914 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4915 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4916 		return 0;
4917 	spin_lock(&inode->i_lock);
4918 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4919 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4920 	    (inode->i_state & I_DIRTY_TIME)) {
4921 		struct ext4_inode_info	*ei = EXT4_I(inode);
4922 
4923 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4924 		spin_unlock(&inode->i_lock);
4925 
4926 		spin_lock(&ei->i_raw_lock);
4927 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4928 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4929 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4930 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4931 		spin_unlock(&ei->i_raw_lock);
4932 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4933 		return -1;
4934 	}
4935 	spin_unlock(&inode->i_lock);
4936 	return -1;
4937 }
4938 
4939 /*
4940  * Opportunistically update the other time fields for other inodes in
4941  * the same inode table block.
4942  */
4943 static void ext4_update_other_inodes_time(struct super_block *sb,
4944 					  unsigned long orig_ino, char *buf)
4945 {
4946 	struct other_inode oi;
4947 	unsigned long ino;
4948 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4949 	int inode_size = EXT4_INODE_SIZE(sb);
4950 
4951 	oi.orig_ino = orig_ino;
4952 	/*
4953 	 * Calculate the first inode in the inode table block.  Inode
4954 	 * numbers are one-based.  That is, the first inode in a block
4955 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4956 	 */
4957 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4958 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4959 		if (ino == orig_ino)
4960 			continue;
4961 		oi.raw_inode = (struct ext4_inode *) buf;
4962 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4963 	}
4964 }
4965 
4966 /*
4967  * Post the struct inode info into an on-disk inode location in the
4968  * buffer-cache.  This gobbles the caller's reference to the
4969  * buffer_head in the inode location struct.
4970  *
4971  * The caller must have write access to iloc->bh.
4972  */
4973 static int ext4_do_update_inode(handle_t *handle,
4974 				struct inode *inode,
4975 				struct ext4_iloc *iloc)
4976 {
4977 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4978 	struct ext4_inode_info *ei = EXT4_I(inode);
4979 	struct buffer_head *bh = iloc->bh;
4980 	struct super_block *sb = inode->i_sb;
4981 	int err = 0, rc, block;
4982 	int need_datasync = 0, set_large_file = 0;
4983 	uid_t i_uid;
4984 	gid_t i_gid;
4985 	projid_t i_projid;
4986 
4987 	spin_lock(&ei->i_raw_lock);
4988 
4989 	/* For fields not tracked in the in-memory inode,
4990 	 * initialise them to zero for new inodes. */
4991 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4992 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4993 
4994 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4995 	i_uid = i_uid_read(inode);
4996 	i_gid = i_gid_read(inode);
4997 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4998 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4999 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5000 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5001 /*
5002  * Fix up interoperability with old kernels. Otherwise, old inodes get
5003  * re-used with the upper 16 bits of the uid/gid intact
5004  */
5005 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5006 			raw_inode->i_uid_high = 0;
5007 			raw_inode->i_gid_high = 0;
5008 		} else {
5009 			raw_inode->i_uid_high =
5010 				cpu_to_le16(high_16_bits(i_uid));
5011 			raw_inode->i_gid_high =
5012 				cpu_to_le16(high_16_bits(i_gid));
5013 		}
5014 	} else {
5015 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5016 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5017 		raw_inode->i_uid_high = 0;
5018 		raw_inode->i_gid_high = 0;
5019 	}
5020 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5021 
5022 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5023 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5024 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5025 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5026 
5027 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5028 	if (err) {
5029 		spin_unlock(&ei->i_raw_lock);
5030 		goto out_brelse;
5031 	}
5032 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5033 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5034 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5035 		raw_inode->i_file_acl_high =
5036 			cpu_to_le16(ei->i_file_acl >> 32);
5037 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5038 	if (ei->i_disksize != ext4_isize(raw_inode)) {
5039 		ext4_isize_set(raw_inode, ei->i_disksize);
5040 		need_datasync = 1;
5041 	}
5042 	if (ei->i_disksize > 0x7fffffffULL) {
5043 		if (!ext4_has_feature_large_file(sb) ||
5044 				EXT4_SB(sb)->s_es->s_rev_level ==
5045 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5046 			set_large_file = 1;
5047 	}
5048 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5049 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5050 		if (old_valid_dev(inode->i_rdev)) {
5051 			raw_inode->i_block[0] =
5052 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5053 			raw_inode->i_block[1] = 0;
5054 		} else {
5055 			raw_inode->i_block[0] = 0;
5056 			raw_inode->i_block[1] =
5057 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5058 			raw_inode->i_block[2] = 0;
5059 		}
5060 	} else if (!ext4_has_inline_data(inode)) {
5061 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5062 			raw_inode->i_block[block] = ei->i_data[block];
5063 	}
5064 
5065 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5066 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5067 		if (ei->i_extra_isize) {
5068 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5069 				raw_inode->i_version_hi =
5070 					cpu_to_le32(inode->i_version >> 32);
5071 			raw_inode->i_extra_isize =
5072 				cpu_to_le16(ei->i_extra_isize);
5073 		}
5074 	}
5075 
5076 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5077 	       i_projid != EXT4_DEF_PROJID);
5078 
5079 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5080 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5081 		raw_inode->i_projid = cpu_to_le32(i_projid);
5082 
5083 	ext4_inode_csum_set(inode, raw_inode, ei);
5084 	spin_unlock(&ei->i_raw_lock);
5085 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5086 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5087 					      bh->b_data);
5088 
5089 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5090 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5091 	if (!err)
5092 		err = rc;
5093 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5094 	if (set_large_file) {
5095 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5096 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5097 		if (err)
5098 			goto out_brelse;
5099 		ext4_update_dynamic_rev(sb);
5100 		ext4_set_feature_large_file(sb);
5101 		ext4_handle_sync(handle);
5102 		err = ext4_handle_dirty_super(handle, sb);
5103 	}
5104 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5105 out_brelse:
5106 	brelse(bh);
5107 	ext4_std_error(inode->i_sb, err);
5108 	return err;
5109 }
5110 
5111 /*
5112  * ext4_write_inode()
5113  *
5114  * We are called from a few places:
5115  *
5116  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5117  *   Here, there will be no transaction running. We wait for any running
5118  *   transaction to commit.
5119  *
5120  * - Within flush work (sys_sync(), kupdate and such).
5121  *   We wait on commit, if told to.
5122  *
5123  * - Within iput_final() -> write_inode_now()
5124  *   We wait on commit, if told to.
5125  *
5126  * In all cases it is actually safe for us to return without doing anything,
5127  * because the inode has been copied into a raw inode buffer in
5128  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5129  * writeback.
5130  *
5131  * Note that we are absolutely dependent upon all inode dirtiers doing the
5132  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5133  * which we are interested.
5134  *
5135  * It would be a bug for them to not do this.  The code:
5136  *
5137  *	mark_inode_dirty(inode)
5138  *	stuff();
5139  *	inode->i_size = expr;
5140  *
5141  * is in error because write_inode() could occur while `stuff()' is running,
5142  * and the new i_size will be lost.  Plus the inode will no longer be on the
5143  * superblock's dirty inode list.
5144  */
5145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5146 {
5147 	int err;
5148 
5149 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5150 		return 0;
5151 
5152 	if (EXT4_SB(inode->i_sb)->s_journal) {
5153 		if (ext4_journal_current_handle()) {
5154 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5155 			dump_stack();
5156 			return -EIO;
5157 		}
5158 
5159 		/*
5160 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5161 		 * ext4_sync_fs() will force the commit after everything is
5162 		 * written.
5163 		 */
5164 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5165 			return 0;
5166 
5167 		err = ext4_force_commit(inode->i_sb);
5168 	} else {
5169 		struct ext4_iloc iloc;
5170 
5171 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5172 		if (err)
5173 			return err;
5174 		/*
5175 		 * sync(2) will flush the whole buffer cache. No need to do
5176 		 * it here separately for each inode.
5177 		 */
5178 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5179 			sync_dirty_buffer(iloc.bh);
5180 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5181 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5182 					 "IO error syncing inode");
5183 			err = -EIO;
5184 		}
5185 		brelse(iloc.bh);
5186 	}
5187 	return err;
5188 }
5189 
5190 /*
5191  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5192  * buffers that are attached to a page stradding i_size and are undergoing
5193  * commit. In that case we have to wait for commit to finish and try again.
5194  */
5195 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5196 {
5197 	struct page *page;
5198 	unsigned offset;
5199 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5200 	tid_t commit_tid = 0;
5201 	int ret;
5202 
5203 	offset = inode->i_size & (PAGE_SIZE - 1);
5204 	/*
5205 	 * All buffers in the last page remain valid? Then there's nothing to
5206 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5207 	 * blocksize case
5208 	 */
5209 	if (offset > PAGE_SIZE - i_blocksize(inode))
5210 		return;
5211 	while (1) {
5212 		page = find_lock_page(inode->i_mapping,
5213 				      inode->i_size >> PAGE_SHIFT);
5214 		if (!page)
5215 			return;
5216 		ret = __ext4_journalled_invalidatepage(page, offset,
5217 						PAGE_SIZE - offset);
5218 		unlock_page(page);
5219 		put_page(page);
5220 		if (ret != -EBUSY)
5221 			return;
5222 		commit_tid = 0;
5223 		read_lock(&journal->j_state_lock);
5224 		if (journal->j_committing_transaction)
5225 			commit_tid = journal->j_committing_transaction->t_tid;
5226 		read_unlock(&journal->j_state_lock);
5227 		if (commit_tid)
5228 			jbd2_log_wait_commit(journal, commit_tid);
5229 	}
5230 }
5231 
5232 /*
5233  * ext4_setattr()
5234  *
5235  * Called from notify_change.
5236  *
5237  * We want to trap VFS attempts to truncate the file as soon as
5238  * possible.  In particular, we want to make sure that when the VFS
5239  * shrinks i_size, we put the inode on the orphan list and modify
5240  * i_disksize immediately, so that during the subsequent flushing of
5241  * dirty pages and freeing of disk blocks, we can guarantee that any
5242  * commit will leave the blocks being flushed in an unused state on
5243  * disk.  (On recovery, the inode will get truncated and the blocks will
5244  * be freed, so we have a strong guarantee that no future commit will
5245  * leave these blocks visible to the user.)
5246  *
5247  * Another thing we have to assure is that if we are in ordered mode
5248  * and inode is still attached to the committing transaction, we must
5249  * we start writeout of all the dirty pages which are being truncated.
5250  * This way we are sure that all the data written in the previous
5251  * transaction are already on disk (truncate waits for pages under
5252  * writeback).
5253  *
5254  * Called with inode->i_mutex down.
5255  */
5256 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5257 {
5258 	struct inode *inode = d_inode(dentry);
5259 	int error, rc = 0;
5260 	int orphan = 0;
5261 	const unsigned int ia_valid = attr->ia_valid;
5262 
5263 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5264 		return -EIO;
5265 
5266 	error = setattr_prepare(dentry, attr);
5267 	if (error)
5268 		return error;
5269 
5270 	if (is_quota_modification(inode, attr)) {
5271 		error = dquot_initialize(inode);
5272 		if (error)
5273 			return error;
5274 	}
5275 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5276 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5277 		handle_t *handle;
5278 
5279 		/* (user+group)*(old+new) structure, inode write (sb,
5280 		 * inode block, ? - but truncate inode update has it) */
5281 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5282 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5283 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5284 		if (IS_ERR(handle)) {
5285 			error = PTR_ERR(handle);
5286 			goto err_out;
5287 		}
5288 		error = dquot_transfer(inode, attr);
5289 		if (error) {
5290 			ext4_journal_stop(handle);
5291 			return error;
5292 		}
5293 		/* Update corresponding info in inode so that everything is in
5294 		 * one transaction */
5295 		if (attr->ia_valid & ATTR_UID)
5296 			inode->i_uid = attr->ia_uid;
5297 		if (attr->ia_valid & ATTR_GID)
5298 			inode->i_gid = attr->ia_gid;
5299 		error = ext4_mark_inode_dirty(handle, inode);
5300 		ext4_journal_stop(handle);
5301 	}
5302 
5303 	if (attr->ia_valid & ATTR_SIZE) {
5304 		handle_t *handle;
5305 		loff_t oldsize = inode->i_size;
5306 		int shrink = (attr->ia_size <= inode->i_size);
5307 
5308 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5309 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5310 
5311 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5312 				return -EFBIG;
5313 		}
5314 		if (!S_ISREG(inode->i_mode))
5315 			return -EINVAL;
5316 
5317 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5318 			inode_inc_iversion(inode);
5319 
5320 		if (ext4_should_order_data(inode) &&
5321 		    (attr->ia_size < inode->i_size)) {
5322 			error = ext4_begin_ordered_truncate(inode,
5323 							    attr->ia_size);
5324 			if (error)
5325 				goto err_out;
5326 		}
5327 		if (attr->ia_size != inode->i_size) {
5328 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5329 			if (IS_ERR(handle)) {
5330 				error = PTR_ERR(handle);
5331 				goto err_out;
5332 			}
5333 			if (ext4_handle_valid(handle) && shrink) {
5334 				error = ext4_orphan_add(handle, inode);
5335 				orphan = 1;
5336 			}
5337 			/*
5338 			 * Update c/mtime on truncate up, ext4_truncate() will
5339 			 * update c/mtime in shrink case below
5340 			 */
5341 			if (!shrink) {
5342 				inode->i_mtime = current_time(inode);
5343 				inode->i_ctime = inode->i_mtime;
5344 			}
5345 			down_write(&EXT4_I(inode)->i_data_sem);
5346 			EXT4_I(inode)->i_disksize = attr->ia_size;
5347 			rc = ext4_mark_inode_dirty(handle, inode);
5348 			if (!error)
5349 				error = rc;
5350 			/*
5351 			 * We have to update i_size under i_data_sem together
5352 			 * with i_disksize to avoid races with writeback code
5353 			 * running ext4_wb_update_i_disksize().
5354 			 */
5355 			if (!error)
5356 				i_size_write(inode, attr->ia_size);
5357 			up_write(&EXT4_I(inode)->i_data_sem);
5358 			ext4_journal_stop(handle);
5359 			if (error) {
5360 				if (orphan)
5361 					ext4_orphan_del(NULL, inode);
5362 				goto err_out;
5363 			}
5364 		}
5365 		if (!shrink)
5366 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5367 
5368 		/*
5369 		 * Blocks are going to be removed from the inode. Wait
5370 		 * for dio in flight.  Temporarily disable
5371 		 * dioread_nolock to prevent livelock.
5372 		 */
5373 		if (orphan) {
5374 			if (!ext4_should_journal_data(inode)) {
5375 				ext4_inode_block_unlocked_dio(inode);
5376 				inode_dio_wait(inode);
5377 				ext4_inode_resume_unlocked_dio(inode);
5378 			} else
5379 				ext4_wait_for_tail_page_commit(inode);
5380 		}
5381 		down_write(&EXT4_I(inode)->i_mmap_sem);
5382 		/*
5383 		 * Truncate pagecache after we've waited for commit
5384 		 * in data=journal mode to make pages freeable.
5385 		 */
5386 		truncate_pagecache(inode, inode->i_size);
5387 		if (shrink) {
5388 			rc = ext4_truncate(inode);
5389 			if (rc)
5390 				error = rc;
5391 		}
5392 		up_write(&EXT4_I(inode)->i_mmap_sem);
5393 	}
5394 
5395 	if (!error) {
5396 		setattr_copy(inode, attr);
5397 		mark_inode_dirty(inode);
5398 	}
5399 
5400 	/*
5401 	 * If the call to ext4_truncate failed to get a transaction handle at
5402 	 * all, we need to clean up the in-core orphan list manually.
5403 	 */
5404 	if (orphan && inode->i_nlink)
5405 		ext4_orphan_del(NULL, inode);
5406 
5407 	if (!error && (ia_valid & ATTR_MODE))
5408 		rc = posix_acl_chmod(inode, inode->i_mode);
5409 
5410 err_out:
5411 	ext4_std_error(inode->i_sb, error);
5412 	if (!error)
5413 		error = rc;
5414 	return error;
5415 }
5416 
5417 int ext4_getattr(const struct path *path, struct kstat *stat,
5418 		 u32 request_mask, unsigned int query_flags)
5419 {
5420 	struct inode *inode = d_inode(path->dentry);
5421 	struct ext4_inode *raw_inode;
5422 	struct ext4_inode_info *ei = EXT4_I(inode);
5423 	unsigned int flags;
5424 
5425 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5426 		stat->result_mask |= STATX_BTIME;
5427 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5428 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5429 	}
5430 
5431 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5432 	if (flags & EXT4_APPEND_FL)
5433 		stat->attributes |= STATX_ATTR_APPEND;
5434 	if (flags & EXT4_COMPR_FL)
5435 		stat->attributes |= STATX_ATTR_COMPRESSED;
5436 	if (flags & EXT4_ENCRYPT_FL)
5437 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5438 	if (flags & EXT4_IMMUTABLE_FL)
5439 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5440 	if (flags & EXT4_NODUMP_FL)
5441 		stat->attributes |= STATX_ATTR_NODUMP;
5442 
5443 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5444 				  STATX_ATTR_COMPRESSED |
5445 				  STATX_ATTR_ENCRYPTED |
5446 				  STATX_ATTR_IMMUTABLE |
5447 				  STATX_ATTR_NODUMP);
5448 
5449 	generic_fillattr(inode, stat);
5450 	return 0;
5451 }
5452 
5453 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5454 		      u32 request_mask, unsigned int query_flags)
5455 {
5456 	struct inode *inode = d_inode(path->dentry);
5457 	u64 delalloc_blocks;
5458 
5459 	ext4_getattr(path, stat, request_mask, query_flags);
5460 
5461 	/*
5462 	 * If there is inline data in the inode, the inode will normally not
5463 	 * have data blocks allocated (it may have an external xattr block).
5464 	 * Report at least one sector for such files, so tools like tar, rsync,
5465 	 * others don't incorrectly think the file is completely sparse.
5466 	 */
5467 	if (unlikely(ext4_has_inline_data(inode)))
5468 		stat->blocks += (stat->size + 511) >> 9;
5469 
5470 	/*
5471 	 * We can't update i_blocks if the block allocation is delayed
5472 	 * otherwise in the case of system crash before the real block
5473 	 * allocation is done, we will have i_blocks inconsistent with
5474 	 * on-disk file blocks.
5475 	 * We always keep i_blocks updated together with real
5476 	 * allocation. But to not confuse with user, stat
5477 	 * will return the blocks that include the delayed allocation
5478 	 * blocks for this file.
5479 	 */
5480 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5481 				   EXT4_I(inode)->i_reserved_data_blocks);
5482 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5483 	return 0;
5484 }
5485 
5486 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5487 				   int pextents)
5488 {
5489 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5490 		return ext4_ind_trans_blocks(inode, lblocks);
5491 	return ext4_ext_index_trans_blocks(inode, pextents);
5492 }
5493 
5494 /*
5495  * Account for index blocks, block groups bitmaps and block group
5496  * descriptor blocks if modify datablocks and index blocks
5497  * worse case, the indexs blocks spread over different block groups
5498  *
5499  * If datablocks are discontiguous, they are possible to spread over
5500  * different block groups too. If they are contiguous, with flexbg,
5501  * they could still across block group boundary.
5502  *
5503  * Also account for superblock, inode, quota and xattr blocks
5504  */
5505 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5506 				  int pextents)
5507 {
5508 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5509 	int gdpblocks;
5510 	int idxblocks;
5511 	int ret = 0;
5512 
5513 	/*
5514 	 * How many index blocks need to touch to map @lblocks logical blocks
5515 	 * to @pextents physical extents?
5516 	 */
5517 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5518 
5519 	ret = idxblocks;
5520 
5521 	/*
5522 	 * Now let's see how many group bitmaps and group descriptors need
5523 	 * to account
5524 	 */
5525 	groups = idxblocks + pextents;
5526 	gdpblocks = groups;
5527 	if (groups > ngroups)
5528 		groups = ngroups;
5529 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5530 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5531 
5532 	/* bitmaps and block group descriptor blocks */
5533 	ret += groups + gdpblocks;
5534 
5535 	/* Blocks for super block, inode, quota and xattr blocks */
5536 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5537 
5538 	return ret;
5539 }
5540 
5541 /*
5542  * Calculate the total number of credits to reserve to fit
5543  * the modification of a single pages into a single transaction,
5544  * which may include multiple chunks of block allocations.
5545  *
5546  * This could be called via ext4_write_begin()
5547  *
5548  * We need to consider the worse case, when
5549  * one new block per extent.
5550  */
5551 int ext4_writepage_trans_blocks(struct inode *inode)
5552 {
5553 	int bpp = ext4_journal_blocks_per_page(inode);
5554 	int ret;
5555 
5556 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5557 
5558 	/* Account for data blocks for journalled mode */
5559 	if (ext4_should_journal_data(inode))
5560 		ret += bpp;
5561 	return ret;
5562 }
5563 
5564 /*
5565  * Calculate the journal credits for a chunk of data modification.
5566  *
5567  * This is called from DIO, fallocate or whoever calling
5568  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5569  *
5570  * journal buffers for data blocks are not included here, as DIO
5571  * and fallocate do no need to journal data buffers.
5572  */
5573 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5574 {
5575 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5576 }
5577 
5578 /*
5579  * The caller must have previously called ext4_reserve_inode_write().
5580  * Give this, we know that the caller already has write access to iloc->bh.
5581  */
5582 int ext4_mark_iloc_dirty(handle_t *handle,
5583 			 struct inode *inode, struct ext4_iloc *iloc)
5584 {
5585 	int err = 0;
5586 
5587 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5588 		return -EIO;
5589 
5590 	if (IS_I_VERSION(inode))
5591 		inode_inc_iversion(inode);
5592 
5593 	/* the do_update_inode consumes one bh->b_count */
5594 	get_bh(iloc->bh);
5595 
5596 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5597 	err = ext4_do_update_inode(handle, inode, iloc);
5598 	put_bh(iloc->bh);
5599 	return err;
5600 }
5601 
5602 /*
5603  * On success, We end up with an outstanding reference count against
5604  * iloc->bh.  This _must_ be cleaned up later.
5605  */
5606 
5607 int
5608 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5609 			 struct ext4_iloc *iloc)
5610 {
5611 	int err;
5612 
5613 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5614 		return -EIO;
5615 
5616 	err = ext4_get_inode_loc(inode, iloc);
5617 	if (!err) {
5618 		BUFFER_TRACE(iloc->bh, "get_write_access");
5619 		err = ext4_journal_get_write_access(handle, iloc->bh);
5620 		if (err) {
5621 			brelse(iloc->bh);
5622 			iloc->bh = NULL;
5623 		}
5624 	}
5625 	ext4_std_error(inode->i_sb, err);
5626 	return err;
5627 }
5628 
5629 /*
5630  * Expand an inode by new_extra_isize bytes.
5631  * Returns 0 on success or negative error number on failure.
5632  */
5633 static int ext4_expand_extra_isize(struct inode *inode,
5634 				   unsigned int new_extra_isize,
5635 				   struct ext4_iloc iloc,
5636 				   handle_t *handle)
5637 {
5638 	struct ext4_inode *raw_inode;
5639 	struct ext4_xattr_ibody_header *header;
5640 
5641 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5642 		return 0;
5643 
5644 	raw_inode = ext4_raw_inode(&iloc);
5645 
5646 	header = IHDR(inode, raw_inode);
5647 
5648 	/* No extended attributes present */
5649 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5650 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5651 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5652 		       EXT4_I(inode)->i_extra_isize, 0,
5653 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5654 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5655 		return 0;
5656 	}
5657 
5658 	/* try to expand with EAs present */
5659 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5660 					  raw_inode, handle);
5661 }
5662 
5663 /*
5664  * What we do here is to mark the in-core inode as clean with respect to inode
5665  * dirtiness (it may still be data-dirty).
5666  * This means that the in-core inode may be reaped by prune_icache
5667  * without having to perform any I/O.  This is a very good thing,
5668  * because *any* task may call prune_icache - even ones which
5669  * have a transaction open against a different journal.
5670  *
5671  * Is this cheating?  Not really.  Sure, we haven't written the
5672  * inode out, but prune_icache isn't a user-visible syncing function.
5673  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5674  * we start and wait on commits.
5675  */
5676 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5677 {
5678 	struct ext4_iloc iloc;
5679 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5680 	static unsigned int mnt_count;
5681 	int err, ret;
5682 
5683 	might_sleep();
5684 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5685 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5686 	if (err)
5687 		return err;
5688 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5689 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5690 		/*
5691 		 * In nojournal mode, we can immediately attempt to expand
5692 		 * the inode.  When journaled, we first need to obtain extra
5693 		 * buffer credits since we may write into the EA block
5694 		 * with this same handle. If journal_extend fails, then it will
5695 		 * only result in a minor loss of functionality for that inode.
5696 		 * If this is felt to be critical, then e2fsck should be run to
5697 		 * force a large enough s_min_extra_isize.
5698 		 */
5699 		if (!ext4_handle_valid(handle) ||
5700 		    jbd2_journal_extend(handle,
5701 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5702 			ret = ext4_expand_extra_isize(inode,
5703 						      sbi->s_want_extra_isize,
5704 						      iloc, handle);
5705 			if (ret) {
5706 				if (mnt_count !=
5707 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5708 					ext4_warning(inode->i_sb,
5709 					"Unable to expand inode %lu. Delete"
5710 					" some EAs or run e2fsck.",
5711 					inode->i_ino);
5712 					mnt_count =
5713 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5714 				}
5715 			}
5716 		}
5717 	}
5718 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5719 }
5720 
5721 /*
5722  * ext4_dirty_inode() is called from __mark_inode_dirty()
5723  *
5724  * We're really interested in the case where a file is being extended.
5725  * i_size has been changed by generic_commit_write() and we thus need
5726  * to include the updated inode in the current transaction.
5727  *
5728  * Also, dquot_alloc_block() will always dirty the inode when blocks
5729  * are allocated to the file.
5730  *
5731  * If the inode is marked synchronous, we don't honour that here - doing
5732  * so would cause a commit on atime updates, which we don't bother doing.
5733  * We handle synchronous inodes at the highest possible level.
5734  *
5735  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5736  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5737  * to copy into the on-disk inode structure are the timestamp files.
5738  */
5739 void ext4_dirty_inode(struct inode *inode, int flags)
5740 {
5741 	handle_t *handle;
5742 
5743 	if (flags == I_DIRTY_TIME)
5744 		return;
5745 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5746 	if (IS_ERR(handle))
5747 		goto out;
5748 
5749 	ext4_mark_inode_dirty(handle, inode);
5750 
5751 	ext4_journal_stop(handle);
5752 out:
5753 	return;
5754 }
5755 
5756 #if 0
5757 /*
5758  * Bind an inode's backing buffer_head into this transaction, to prevent
5759  * it from being flushed to disk early.  Unlike
5760  * ext4_reserve_inode_write, this leaves behind no bh reference and
5761  * returns no iloc structure, so the caller needs to repeat the iloc
5762  * lookup to mark the inode dirty later.
5763  */
5764 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5765 {
5766 	struct ext4_iloc iloc;
5767 
5768 	int err = 0;
5769 	if (handle) {
5770 		err = ext4_get_inode_loc(inode, &iloc);
5771 		if (!err) {
5772 			BUFFER_TRACE(iloc.bh, "get_write_access");
5773 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5774 			if (!err)
5775 				err = ext4_handle_dirty_metadata(handle,
5776 								 NULL,
5777 								 iloc.bh);
5778 			brelse(iloc.bh);
5779 		}
5780 	}
5781 	ext4_std_error(inode->i_sb, err);
5782 	return err;
5783 }
5784 #endif
5785 
5786 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5787 {
5788 	journal_t *journal;
5789 	handle_t *handle;
5790 	int err;
5791 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5792 
5793 	/*
5794 	 * We have to be very careful here: changing a data block's
5795 	 * journaling status dynamically is dangerous.  If we write a
5796 	 * data block to the journal, change the status and then delete
5797 	 * that block, we risk forgetting to revoke the old log record
5798 	 * from the journal and so a subsequent replay can corrupt data.
5799 	 * So, first we make sure that the journal is empty and that
5800 	 * nobody is changing anything.
5801 	 */
5802 
5803 	journal = EXT4_JOURNAL(inode);
5804 	if (!journal)
5805 		return 0;
5806 	if (is_journal_aborted(journal))
5807 		return -EROFS;
5808 
5809 	/* Wait for all existing dio workers */
5810 	ext4_inode_block_unlocked_dio(inode);
5811 	inode_dio_wait(inode);
5812 
5813 	/*
5814 	 * Before flushing the journal and switching inode's aops, we have
5815 	 * to flush all dirty data the inode has. There can be outstanding
5816 	 * delayed allocations, there can be unwritten extents created by
5817 	 * fallocate or buffered writes in dioread_nolock mode covered by
5818 	 * dirty data which can be converted only after flushing the dirty
5819 	 * data (and journalled aops don't know how to handle these cases).
5820 	 */
5821 	if (val) {
5822 		down_write(&EXT4_I(inode)->i_mmap_sem);
5823 		err = filemap_write_and_wait(inode->i_mapping);
5824 		if (err < 0) {
5825 			up_write(&EXT4_I(inode)->i_mmap_sem);
5826 			ext4_inode_resume_unlocked_dio(inode);
5827 			return err;
5828 		}
5829 	}
5830 
5831 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5832 	jbd2_journal_lock_updates(journal);
5833 
5834 	/*
5835 	 * OK, there are no updates running now, and all cached data is
5836 	 * synced to disk.  We are now in a completely consistent state
5837 	 * which doesn't have anything in the journal, and we know that
5838 	 * no filesystem updates are running, so it is safe to modify
5839 	 * the inode's in-core data-journaling state flag now.
5840 	 */
5841 
5842 	if (val)
5843 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5844 	else {
5845 		err = jbd2_journal_flush(journal);
5846 		if (err < 0) {
5847 			jbd2_journal_unlock_updates(journal);
5848 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5849 			ext4_inode_resume_unlocked_dio(inode);
5850 			return err;
5851 		}
5852 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5853 	}
5854 	ext4_set_aops(inode);
5855 	/*
5856 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5857 	 * E.g. S_DAX may get cleared / set.
5858 	 */
5859 	ext4_set_inode_flags(inode);
5860 
5861 	jbd2_journal_unlock_updates(journal);
5862 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5863 
5864 	if (val)
5865 		up_write(&EXT4_I(inode)->i_mmap_sem);
5866 	ext4_inode_resume_unlocked_dio(inode);
5867 
5868 	/* Finally we can mark the inode as dirty. */
5869 
5870 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5871 	if (IS_ERR(handle))
5872 		return PTR_ERR(handle);
5873 
5874 	err = ext4_mark_inode_dirty(handle, inode);
5875 	ext4_handle_sync(handle);
5876 	ext4_journal_stop(handle);
5877 	ext4_std_error(inode->i_sb, err);
5878 
5879 	return err;
5880 }
5881 
5882 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5883 {
5884 	return !buffer_mapped(bh);
5885 }
5886 
5887 int ext4_page_mkwrite(struct vm_fault *vmf)
5888 {
5889 	struct vm_area_struct *vma = vmf->vma;
5890 	struct page *page = vmf->page;
5891 	loff_t size;
5892 	unsigned long len;
5893 	int ret;
5894 	struct file *file = vma->vm_file;
5895 	struct inode *inode = file_inode(file);
5896 	struct address_space *mapping = inode->i_mapping;
5897 	handle_t *handle;
5898 	get_block_t *get_block;
5899 	int retries = 0;
5900 
5901 	sb_start_pagefault(inode->i_sb);
5902 	file_update_time(vma->vm_file);
5903 
5904 	down_read(&EXT4_I(inode)->i_mmap_sem);
5905 
5906 	ret = ext4_convert_inline_data(inode);
5907 	if (ret)
5908 		goto out_ret;
5909 
5910 	/* Delalloc case is easy... */
5911 	if (test_opt(inode->i_sb, DELALLOC) &&
5912 	    !ext4_should_journal_data(inode) &&
5913 	    !ext4_nonda_switch(inode->i_sb)) {
5914 		do {
5915 			ret = block_page_mkwrite(vma, vmf,
5916 						   ext4_da_get_block_prep);
5917 		} while (ret == -ENOSPC &&
5918 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5919 		goto out_ret;
5920 	}
5921 
5922 	lock_page(page);
5923 	size = i_size_read(inode);
5924 	/* Page got truncated from under us? */
5925 	if (page->mapping != mapping || page_offset(page) > size) {
5926 		unlock_page(page);
5927 		ret = VM_FAULT_NOPAGE;
5928 		goto out;
5929 	}
5930 
5931 	if (page->index == size >> PAGE_SHIFT)
5932 		len = size & ~PAGE_MASK;
5933 	else
5934 		len = PAGE_SIZE;
5935 	/*
5936 	 * Return if we have all the buffers mapped. This avoids the need to do
5937 	 * journal_start/journal_stop which can block and take a long time
5938 	 */
5939 	if (page_has_buffers(page)) {
5940 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5941 					    0, len, NULL,
5942 					    ext4_bh_unmapped)) {
5943 			/* Wait so that we don't change page under IO */
5944 			wait_for_stable_page(page);
5945 			ret = VM_FAULT_LOCKED;
5946 			goto out;
5947 		}
5948 	}
5949 	unlock_page(page);
5950 	/* OK, we need to fill the hole... */
5951 	if (ext4_should_dioread_nolock(inode))
5952 		get_block = ext4_get_block_unwritten;
5953 	else
5954 		get_block = ext4_get_block;
5955 retry_alloc:
5956 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5957 				    ext4_writepage_trans_blocks(inode));
5958 	if (IS_ERR(handle)) {
5959 		ret = VM_FAULT_SIGBUS;
5960 		goto out;
5961 	}
5962 	ret = block_page_mkwrite(vma, vmf, get_block);
5963 	if (!ret && ext4_should_journal_data(inode)) {
5964 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5965 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5966 			unlock_page(page);
5967 			ret = VM_FAULT_SIGBUS;
5968 			ext4_journal_stop(handle);
5969 			goto out;
5970 		}
5971 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5972 	}
5973 	ext4_journal_stop(handle);
5974 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5975 		goto retry_alloc;
5976 out_ret:
5977 	ret = block_page_mkwrite_return(ret);
5978 out:
5979 	up_read(&EXT4_I(inode)->i_mmap_sem);
5980 	sb_end_pagefault(inode->i_sb);
5981 	return ret;
5982 }
5983 
5984 int ext4_filemap_fault(struct vm_fault *vmf)
5985 {
5986 	struct inode *inode = file_inode(vmf->vma->vm_file);
5987 	int err;
5988 
5989 	down_read(&EXT4_I(inode)->i_mmap_sem);
5990 	err = filemap_fault(vmf);
5991 	up_read(&EXT4_I(inode)->i_mmap_sem);
5992 
5993 	return err;
5994 }
5995 
5996 /*
5997  * Find the first extent at or after @lblk in an inode that is not a hole.
5998  * Search for @map_len blocks at most. The extent is returned in @result.
5999  *
6000  * The function returns 1 if we found an extent. The function returns 0 in
6001  * case there is no extent at or after @lblk and in that case also sets
6002  * @result->es_len to 0. In case of error, the error code is returned.
6003  */
6004 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6005 			 unsigned int map_len, struct extent_status *result)
6006 {
6007 	struct ext4_map_blocks map;
6008 	struct extent_status es = {};
6009 	int ret;
6010 
6011 	map.m_lblk = lblk;
6012 	map.m_len = map_len;
6013 
6014 	/*
6015 	 * For non-extent based files this loop may iterate several times since
6016 	 * we do not determine full hole size.
6017 	 */
6018 	while (map.m_len > 0) {
6019 		ret = ext4_map_blocks(NULL, inode, &map, 0);
6020 		if (ret < 0)
6021 			return ret;
6022 		/* There's extent covering m_lblk? Just return it. */
6023 		if (ret > 0) {
6024 			int status;
6025 
6026 			ext4_es_store_pblock(result, map.m_pblk);
6027 			result->es_lblk = map.m_lblk;
6028 			result->es_len = map.m_len;
6029 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
6030 				status = EXTENT_STATUS_UNWRITTEN;
6031 			else
6032 				status = EXTENT_STATUS_WRITTEN;
6033 			ext4_es_store_status(result, status);
6034 			return 1;
6035 		}
6036 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6037 						  map.m_lblk + map.m_len - 1,
6038 						  &es);
6039 		/* Is delalloc data before next block in extent tree? */
6040 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6041 			ext4_lblk_t offset = 0;
6042 
6043 			if (es.es_lblk < lblk)
6044 				offset = lblk - es.es_lblk;
6045 			result->es_lblk = es.es_lblk + offset;
6046 			ext4_es_store_pblock(result,
6047 					     ext4_es_pblock(&es) + offset);
6048 			result->es_len = es.es_len - offset;
6049 			ext4_es_store_status(result, ext4_es_status(&es));
6050 
6051 			return 1;
6052 		}
6053 		/* There's a hole at m_lblk, advance us after it */
6054 		map.m_lblk += map.m_len;
6055 		map_len -= map.m_len;
6056 		map.m_len = map_len;
6057 		cond_resched();
6058 	}
6059 	result->es_len = 0;
6060 	return 0;
6061 }
6062