xref: /openbmc/linux/fs/ext4/inode.c (revision 9ebdff9aac5ded7bb515e80478afacaaa3abd799)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 		ext4_evict_ea_inode(inode);
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 	 * extents converting worker could merge extents and also have dirtied
227 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 	 * we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list))
231 		inode_io_list_del(inode);
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it. When we are in a running transaction though,
236 	 * we are already protected against freezing and we cannot grab further
237 	 * protection due to lock ordering constraints.
238 	 */
239 	if (!ext4_journal_current_handle()) {
240 		sb_start_intwrite(inode->i_sb);
241 		freeze_protected = true;
242 	}
243 
244 	if (!IS_NOQUOTA(inode))
245 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246 
247 	/*
248 	 * Block bitmap, group descriptor, and inode are accounted in both
249 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 	 */
251 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 	if (IS_ERR(handle)) {
254 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 		/*
256 		 * If we're going to skip the normal cleanup, we still need to
257 		 * make sure that the in-core orphan linked list is properly
258 		 * cleaned up.
259 		 */
260 		ext4_orphan_del(NULL, inode);
261 		if (freeze_protected)
262 			sb_end_intwrite(inode->i_sb);
263 		goto no_delete;
264 	}
265 
266 	if (IS_SYNC(inode))
267 		ext4_handle_sync(handle);
268 
269 	/*
270 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 	 * special handling of symlinks here because i_size is used to
272 	 * determine whether ext4_inode_info->i_data contains symlink data or
273 	 * block mappings. Setting i_size to 0 will remove its fast symlink
274 	 * status. Erase i_data so that it becomes a valid empty block map.
275 	 */
276 	if (ext4_inode_is_fast_symlink(inode))
277 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 	inode->i_size = 0;
279 	err = ext4_mark_inode_dirty(handle, inode);
280 	if (err) {
281 		ext4_warning(inode->i_sb,
282 			     "couldn't mark inode dirty (err %d)", err);
283 		goto stop_handle;
284 	}
285 	if (inode->i_blocks) {
286 		err = ext4_truncate(inode);
287 		if (err) {
288 			ext4_error_err(inode->i_sb, -err,
289 				       "couldn't truncate inode %lu (err %d)",
290 				       inode->i_ino, err);
291 			goto stop_handle;
292 		}
293 	}
294 
295 	/* Remove xattr references. */
296 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 				      extra_credits);
298 	if (err) {
299 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 		ext4_journal_stop(handle);
302 		ext4_orphan_del(NULL, inode);
303 		if (freeze_protected)
304 			sb_end_intwrite(inode->i_sb);
305 		ext4_xattr_inode_array_free(ea_inode_array);
306 		goto no_delete;
307 	}
308 
309 	/*
310 	 * Kill off the orphan record which ext4_truncate created.
311 	 * AKPM: I think this can be inside the above `if'.
312 	 * Note that ext4_orphan_del() has to be able to cope with the
313 	 * deletion of a non-existent orphan - this is because we don't
314 	 * know if ext4_truncate() actually created an orphan record.
315 	 * (Well, we could do this if we need to, but heck - it works)
316 	 */
317 	ext4_orphan_del(handle, inode);
318 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
319 
320 	/*
321 	 * One subtle ordering requirement: if anything has gone wrong
322 	 * (transaction abort, IO errors, whatever), then we can still
323 	 * do these next steps (the fs will already have been marked as
324 	 * having errors), but we can't free the inode if the mark_dirty
325 	 * fails.
326 	 */
327 	if (ext4_mark_inode_dirty(handle, inode))
328 		/* If that failed, just do the required in-core inode clear. */
329 		ext4_clear_inode(inode);
330 	else
331 		ext4_free_inode(handle, inode);
332 	ext4_journal_stop(handle);
333 	if (freeze_protected)
334 		sb_end_intwrite(inode->i_sb);
335 	ext4_xattr_inode_array_free(ea_inode_array);
336 	return;
337 no_delete:
338 	/*
339 	 * Check out some where else accidentally dirty the evicting inode,
340 	 * which may probably cause inode use-after-free issues later.
341 	 */
342 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343 
344 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
347 }
348 
349 #ifdef CONFIG_QUOTA
350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352 	return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355 
356 /*
357  * Called with i_data_sem down, which is important since we can call
358  * ext4_discard_preallocations() from here.
359  */
360 void ext4_da_update_reserve_space(struct inode *inode,
361 					int used, int quota_claim)
362 {
363 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 	struct ext4_inode_info *ei = EXT4_I(inode);
365 
366 	spin_lock(&ei->i_block_reservation_lock);
367 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 	if (unlikely(used > ei->i_reserved_data_blocks)) {
369 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 			 "with only %d reserved data blocks",
371 			 __func__, inode->i_ino, used,
372 			 ei->i_reserved_data_blocks);
373 		WARN_ON(1);
374 		used = ei->i_reserved_data_blocks;
375 	}
376 
377 	/* Update per-inode reservations */
378 	ei->i_reserved_data_blocks -= used;
379 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380 
381 	spin_unlock(&ei->i_block_reservation_lock);
382 
383 	/* Update quota subsystem for data blocks */
384 	if (quota_claim)
385 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 	else {
387 		/*
388 		 * We did fallocate with an offset that is already delayed
389 		 * allocated. So on delayed allocated writeback we should
390 		 * not re-claim the quota for fallocated blocks.
391 		 */
392 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 	}
394 
395 	/*
396 	 * If we have done all the pending block allocations and if
397 	 * there aren't any writers on the inode, we can discard the
398 	 * inode's preallocations.
399 	 */
400 	if ((ei->i_reserved_data_blocks == 0) &&
401 	    !inode_is_open_for_write(inode))
402 		ext4_discard_preallocations(inode, 0);
403 }
404 
405 static int __check_block_validity(struct inode *inode, const char *func,
406 				unsigned int line,
407 				struct ext4_map_blocks *map)
408 {
409 	if (ext4_has_feature_journal(inode->i_sb) &&
410 	    (inode->i_ino ==
411 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 		return 0;
413 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock %llu "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_pblk, map->m_len);
418 		return -EFSCORRUPTED;
419 	}
420 	return 0;
421 }
422 
423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 		       ext4_lblk_t len)
425 {
426 	int ret;
427 
428 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
430 
431 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 	if (ret > 0)
433 		ret = 0;
434 
435 	return ret;
436 }
437 
438 #define check_block_validity(inode, map)	\
439 	__check_block_validity((inode), __func__, __LINE__, (map))
440 
441 #ifdef ES_AGGRESSIVE_TEST
442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443 				       struct inode *inode,
444 				       struct ext4_map_blocks *es_map,
445 				       struct ext4_map_blocks *map,
446 				       int flags)
447 {
448 	int retval;
449 
450 	map->m_flags = 0;
451 	/*
452 	 * There is a race window that the result is not the same.
453 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
454 	 * is that we lookup a block mapping in extent status tree with
455 	 * out taking i_data_sem.  So at the time the unwritten extent
456 	 * could be converted.
457 	 */
458 	down_read(&EXT4_I(inode)->i_data_sem);
459 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 	} else {
462 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 	}
464 	up_read((&EXT4_I(inode)->i_data_sem));
465 
466 	/*
467 	 * We don't check m_len because extent will be collpased in status
468 	 * tree.  So the m_len might not equal.
469 	 */
470 	if (es_map->m_lblk != map->m_lblk ||
471 	    es_map->m_flags != map->m_flags ||
472 	    es_map->m_pblk != map->m_pblk) {
473 		printk("ES cache assertion failed for inode: %lu "
474 		       "es_cached ex [%d/%d/%llu/%x] != "
475 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
477 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 		       map->m_len, map->m_pblk, map->m_flags,
479 		       retval, flags);
480 	}
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483 
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocated.  if
497  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, @map is returned as unmapped but we still do fill map->m_len to
502  * indicate the length of a hole starting at map->m_lblk.
503  *
504  * It returns the error in case of allocation failure.
505  */
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 		    struct ext4_map_blocks *map, int flags)
508 {
509 	struct extent_status es;
510 	int retval;
511 	int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513 	struct ext4_map_blocks orig_map;
514 
515 	memcpy(&orig_map, map, sizeof(*map));
516 #endif
517 
518 	map->m_flags = 0;
519 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 		  flags, map->m_len, (unsigned long) map->m_lblk);
521 
522 	/*
523 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 	 */
525 	if (unlikely(map->m_len > INT_MAX))
526 		map->m_len = INT_MAX;
527 
528 	/* We can handle the block number less than EXT_MAX_BLOCKS */
529 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 		return -EFSCORRUPTED;
531 
532 	/* Lookup extent status tree firstly */
533 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 			map->m_pblk = ext4_es_pblock(&es) +
537 					map->m_lblk - es.es_lblk;
538 			map->m_flags |= ext4_es_is_written(&es) ?
539 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 			retval = es.es_len - (map->m_lblk - es.es_lblk);
541 			if (retval > map->m_len)
542 				retval = map->m_len;
543 			map->m_len = retval;
544 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 			map->m_pblk = 0;
546 			retval = es.es_len - (map->m_lblk - es.es_lblk);
547 			if (retval > map->m_len)
548 				retval = map->m_len;
549 			map->m_len = retval;
550 			retval = 0;
551 		} else {
552 			BUG();
553 		}
554 
555 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 			return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558 		ext4_map_blocks_es_recheck(handle, inode, map,
559 					   &orig_map, flags);
560 #endif
561 		goto found;
562 	}
563 	/*
564 	 * In the query cache no-wait mode, nothing we can do more if we
565 	 * cannot find extent in the cache.
566 	 */
567 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 		return 0;
569 
570 	/*
571 	 * Try to see if we can get the block without requesting a new
572 	 * file system block.
573 	 */
574 	down_read(&EXT4_I(inode)->i_data_sem);
575 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 	} else {
578 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 	}
580 	if (retval > 0) {
581 		unsigned int status;
582 
583 		if (unlikely(retval != map->m_len)) {
584 			ext4_warning(inode->i_sb,
585 				     "ES len assertion failed for inode "
586 				     "%lu: retval %d != map->m_len %d",
587 				     inode->i_ino, retval, map->m_len);
588 			WARN_ON(1);
589 		}
590 
591 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 		    !(status & EXTENT_STATUS_WRITTEN) &&
595 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 				       map->m_lblk + map->m_len - 1))
597 			status |= EXTENT_STATUS_DELAYED;
598 		ret = ext4_es_insert_extent(inode, map->m_lblk,
599 					    map->m_len, map->m_pblk, status);
600 		if (ret < 0)
601 			retval = ret;
602 	}
603 	up_read((&EXT4_I(inode)->i_data_sem));
604 
605 found:
606 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 		ret = check_block_validity(inode, map);
608 		if (ret != 0)
609 			return ret;
610 	}
611 
612 	/* If it is only a block(s) look up */
613 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 		return retval;
615 
616 	/*
617 	 * Returns if the blocks have already allocated
618 	 *
619 	 * Note that if blocks have been preallocated
620 	 * ext4_ext_get_block() returns the create = 0
621 	 * with buffer head unmapped.
622 	 */
623 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 		/*
625 		 * If we need to convert extent to unwritten
626 		 * we continue and do the actual work in
627 		 * ext4_ext_map_blocks()
628 		 */
629 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 			return retval;
631 
632 	/*
633 	 * Here we clear m_flags because after allocating an new extent,
634 	 * it will be set again.
635 	 */
636 	map->m_flags &= ~EXT4_MAP_FLAGS;
637 
638 	/*
639 	 * New blocks allocate and/or writing to unwritten extent
640 	 * will possibly result in updating i_data, so we take
641 	 * the write lock of i_data_sem, and call get_block()
642 	 * with create == 1 flag.
643 	 */
644 	down_write(&EXT4_I(inode)->i_data_sem);
645 
646 	/*
647 	 * We need to check for EXT4 here because migrate
648 	 * could have changed the inode type in between
649 	 */
650 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 	} else {
653 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
654 
655 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 			/*
657 			 * We allocated new blocks which will result in
658 			 * i_data's format changing.  Force the migrate
659 			 * to fail by clearing migrate flags
660 			 */
661 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 		}
663 
664 		/*
665 		 * Update reserved blocks/metadata blocks after successful
666 		 * block allocation which had been deferred till now. We don't
667 		 * support fallocate for non extent files. So we can update
668 		 * reserve space here.
669 		 */
670 		if ((retval > 0) &&
671 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672 			ext4_da_update_reserve_space(inode, retval, 1);
673 	}
674 
675 	if (retval > 0) {
676 		unsigned int status;
677 
678 		if (unlikely(retval != map->m_len)) {
679 			ext4_warning(inode->i_sb,
680 				     "ES len assertion failed for inode "
681 				     "%lu: retval %d != map->m_len %d",
682 				     inode->i_ino, retval, map->m_len);
683 			WARN_ON(1);
684 		}
685 
686 		/*
687 		 * We have to zeroout blocks before inserting them into extent
688 		 * status tree. Otherwise someone could look them up there and
689 		 * use them before they are really zeroed. We also have to
690 		 * unmap metadata before zeroing as otherwise writeback can
691 		 * overwrite zeros with stale data from block device.
692 		 */
693 		if (flags & EXT4_GET_BLOCKS_ZERO &&
694 		    map->m_flags & EXT4_MAP_MAPPED &&
695 		    map->m_flags & EXT4_MAP_NEW) {
696 			ret = ext4_issue_zeroout(inode, map->m_lblk,
697 						 map->m_pblk, map->m_len);
698 			if (ret) {
699 				retval = ret;
700 				goto out_sem;
701 			}
702 		}
703 
704 		/*
705 		 * If the extent has been zeroed out, we don't need to update
706 		 * extent status tree.
707 		 */
708 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710 			if (ext4_es_is_written(&es))
711 				goto out_sem;
712 		}
713 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 		    !(status & EXTENT_STATUS_WRITTEN) &&
717 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 				       map->m_lblk + map->m_len - 1))
719 			status |= EXTENT_STATUS_DELAYED;
720 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 					    map->m_pblk, status);
722 		if (ret < 0) {
723 			retval = ret;
724 			goto out_sem;
725 		}
726 	}
727 
728 out_sem:
729 	up_write((&EXT4_I(inode)->i_data_sem));
730 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 		ret = check_block_validity(inode, map);
732 		if (ret != 0)
733 			return ret;
734 
735 		/*
736 		 * Inodes with freshly allocated blocks where contents will be
737 		 * visible after transaction commit must be on transaction's
738 		 * ordered data list.
739 		 */
740 		if (map->m_flags & EXT4_MAP_NEW &&
741 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 		    !ext4_is_quota_file(inode) &&
744 		    ext4_should_order_data(inode)) {
745 			loff_t start_byte =
746 				(loff_t)map->m_lblk << inode->i_blkbits;
747 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748 
749 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 				ret = ext4_jbd2_inode_add_wait(handle, inode,
751 						start_byte, length);
752 			else
753 				ret = ext4_jbd2_inode_add_write(handle, inode,
754 						start_byte, length);
755 			if (ret)
756 				return ret;
757 		}
758 	}
759 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760 				map->m_flags & EXT4_MAP_MAPPED))
761 		ext4_fc_track_range(handle, inode, map->m_lblk,
762 					map->m_lblk + map->m_len - 1);
763 	if (retval < 0)
764 		ext_debug(inode, "failed with err %d\n", retval);
765 	return retval;
766 }
767 
768 /*
769  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770  * we have to be careful as someone else may be manipulating b_state as well.
771  */
772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773 {
774 	unsigned long old_state;
775 	unsigned long new_state;
776 
777 	flags &= EXT4_MAP_FLAGS;
778 
779 	/* Dummy buffer_head? Set non-atomically. */
780 	if (!bh->b_page) {
781 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782 		return;
783 	}
784 	/*
785 	 * Someone else may be modifying b_state. Be careful! This is ugly but
786 	 * once we get rid of using bh as a container for mapping information
787 	 * to pass to / from get_block functions, this can go away.
788 	 */
789 	old_state = READ_ONCE(bh->b_state);
790 	do {
791 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
793 }
794 
795 static int _ext4_get_block(struct inode *inode, sector_t iblock,
796 			   struct buffer_head *bh, int flags)
797 {
798 	struct ext4_map_blocks map;
799 	int ret = 0;
800 
801 	if (ext4_has_inline_data(inode))
802 		return -ERANGE;
803 
804 	map.m_lblk = iblock;
805 	map.m_len = bh->b_size >> inode->i_blkbits;
806 
807 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
808 			      flags);
809 	if (ret > 0) {
810 		map_bh(bh, inode->i_sb, map.m_pblk);
811 		ext4_update_bh_state(bh, map.m_flags);
812 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
813 		ret = 0;
814 	} else if (ret == 0) {
815 		/* hole case, need to fill in bh->b_size */
816 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
817 	}
818 	return ret;
819 }
820 
821 int ext4_get_block(struct inode *inode, sector_t iblock,
822 		   struct buffer_head *bh, int create)
823 {
824 	return _ext4_get_block(inode, iblock, bh,
825 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
826 }
827 
828 /*
829  * Get block function used when preparing for buffered write if we require
830  * creating an unwritten extent if blocks haven't been allocated.  The extent
831  * will be converted to written after the IO is complete.
832  */
833 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
834 			     struct buffer_head *bh_result, int create)
835 {
836 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
837 		   inode->i_ino, create);
838 	return _ext4_get_block(inode, iblock, bh_result,
839 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
840 }
841 
842 /* Maximum number of blocks we map for direct IO at once. */
843 #define DIO_MAX_BLOCKS 4096
844 
845 /*
846  * `handle' can be NULL if create is zero
847  */
848 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
849 				ext4_lblk_t block, int map_flags)
850 {
851 	struct ext4_map_blocks map;
852 	struct buffer_head *bh;
853 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
854 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
855 	int err;
856 
857 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
858 		    || handle != NULL || create == 0);
859 	ASSERT(create == 0 || !nowait);
860 
861 	map.m_lblk = block;
862 	map.m_len = 1;
863 	err = ext4_map_blocks(handle, inode, &map, map_flags);
864 
865 	if (err == 0)
866 		return create ? ERR_PTR(-ENOSPC) : NULL;
867 	if (err < 0)
868 		return ERR_PTR(err);
869 
870 	if (nowait)
871 		return sb_find_get_block(inode->i_sb, map.m_pblk);
872 
873 	bh = sb_getblk(inode->i_sb, map.m_pblk);
874 	if (unlikely(!bh))
875 		return ERR_PTR(-ENOMEM);
876 	if (map.m_flags & EXT4_MAP_NEW) {
877 		ASSERT(create != 0);
878 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
879 			    || (handle != NULL));
880 
881 		/*
882 		 * Now that we do not always journal data, we should
883 		 * keep in mind whether this should always journal the
884 		 * new buffer as metadata.  For now, regular file
885 		 * writes use ext4_get_block instead, so it's not a
886 		 * problem.
887 		 */
888 		lock_buffer(bh);
889 		BUFFER_TRACE(bh, "call get_create_access");
890 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
891 						     EXT4_JTR_NONE);
892 		if (unlikely(err)) {
893 			unlock_buffer(bh);
894 			goto errout;
895 		}
896 		if (!buffer_uptodate(bh)) {
897 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
898 			set_buffer_uptodate(bh);
899 		}
900 		unlock_buffer(bh);
901 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
902 		err = ext4_handle_dirty_metadata(handle, inode, bh);
903 		if (unlikely(err))
904 			goto errout;
905 	} else
906 		BUFFER_TRACE(bh, "not a new buffer");
907 	return bh;
908 errout:
909 	brelse(bh);
910 	return ERR_PTR(err);
911 }
912 
913 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
914 			       ext4_lblk_t block, int map_flags)
915 {
916 	struct buffer_head *bh;
917 	int ret;
918 
919 	bh = ext4_getblk(handle, inode, block, map_flags);
920 	if (IS_ERR(bh))
921 		return bh;
922 	if (!bh || ext4_buffer_uptodate(bh))
923 		return bh;
924 
925 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
926 	if (ret) {
927 		put_bh(bh);
928 		return ERR_PTR(ret);
929 	}
930 	return bh;
931 }
932 
933 /* Read a contiguous batch of blocks. */
934 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
935 		     bool wait, struct buffer_head **bhs)
936 {
937 	int i, err;
938 
939 	for (i = 0; i < bh_count; i++) {
940 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
941 		if (IS_ERR(bhs[i])) {
942 			err = PTR_ERR(bhs[i]);
943 			bh_count = i;
944 			goto out_brelse;
945 		}
946 	}
947 
948 	for (i = 0; i < bh_count; i++)
949 		/* Note that NULL bhs[i] is valid because of holes. */
950 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
951 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
952 
953 	if (!wait)
954 		return 0;
955 
956 	for (i = 0; i < bh_count; i++)
957 		if (bhs[i])
958 			wait_on_buffer(bhs[i]);
959 
960 	for (i = 0; i < bh_count; i++) {
961 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
962 			err = -EIO;
963 			goto out_brelse;
964 		}
965 	}
966 	return 0;
967 
968 out_brelse:
969 	for (i = 0; i < bh_count; i++) {
970 		brelse(bhs[i]);
971 		bhs[i] = NULL;
972 	}
973 	return err;
974 }
975 
976 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
977 			   struct buffer_head *head,
978 			   unsigned from,
979 			   unsigned to,
980 			   int *partial,
981 			   int (*fn)(handle_t *handle, struct inode *inode,
982 				     struct buffer_head *bh))
983 {
984 	struct buffer_head *bh;
985 	unsigned block_start, block_end;
986 	unsigned blocksize = head->b_size;
987 	int err, ret = 0;
988 	struct buffer_head *next;
989 
990 	for (bh = head, block_start = 0;
991 	     ret == 0 && (bh != head || !block_start);
992 	     block_start = block_end, bh = next) {
993 		next = bh->b_this_page;
994 		block_end = block_start + blocksize;
995 		if (block_end <= from || block_start >= to) {
996 			if (partial && !buffer_uptodate(bh))
997 				*partial = 1;
998 			continue;
999 		}
1000 		err = (*fn)(handle, inode, bh);
1001 		if (!ret)
1002 			ret = err;
1003 	}
1004 	return ret;
1005 }
1006 
1007 /*
1008  * To preserve ordering, it is essential that the hole instantiation and
1009  * the data write be encapsulated in a single transaction.  We cannot
1010  * close off a transaction and start a new one between the ext4_get_block()
1011  * and the commit_write().  So doing the jbd2_journal_start at the start of
1012  * prepare_write() is the right place.
1013  *
1014  * Also, this function can nest inside ext4_writepage().  In that case, we
1015  * *know* that ext4_writepage() has generated enough buffer credits to do the
1016  * whole page.  So we won't block on the journal in that case, which is good,
1017  * because the caller may be PF_MEMALLOC.
1018  *
1019  * By accident, ext4 can be reentered when a transaction is open via
1020  * quota file writes.  If we were to commit the transaction while thus
1021  * reentered, there can be a deadlock - we would be holding a quota
1022  * lock, and the commit would never complete if another thread had a
1023  * transaction open and was blocking on the quota lock - a ranking
1024  * violation.
1025  *
1026  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1027  * will _not_ run commit under these circumstances because handle->h_ref
1028  * is elevated.  We'll still have enough credits for the tiny quotafile
1029  * write.
1030  */
1031 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1032 				struct buffer_head *bh)
1033 {
1034 	int dirty = buffer_dirty(bh);
1035 	int ret;
1036 
1037 	if (!buffer_mapped(bh) || buffer_freed(bh))
1038 		return 0;
1039 	/*
1040 	 * __block_write_begin() could have dirtied some buffers. Clean
1041 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1042 	 * otherwise about fs integrity issues. Setting of the dirty bit
1043 	 * by __block_write_begin() isn't a real problem here as we clear
1044 	 * the bit before releasing a page lock and thus writeback cannot
1045 	 * ever write the buffer.
1046 	 */
1047 	if (dirty)
1048 		clear_buffer_dirty(bh);
1049 	BUFFER_TRACE(bh, "get write access");
1050 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1051 					    EXT4_JTR_NONE);
1052 	if (!ret && dirty)
1053 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1054 	return ret;
1055 }
1056 
1057 #ifdef CONFIG_FS_ENCRYPTION
1058 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1059 				  get_block_t *get_block)
1060 {
1061 	unsigned from = pos & (PAGE_SIZE - 1);
1062 	unsigned to = from + len;
1063 	struct inode *inode = page->mapping->host;
1064 	unsigned block_start, block_end;
1065 	sector_t block;
1066 	int err = 0;
1067 	unsigned blocksize = inode->i_sb->s_blocksize;
1068 	unsigned bbits;
1069 	struct buffer_head *bh, *head, *wait[2];
1070 	int nr_wait = 0;
1071 	int i;
1072 
1073 	BUG_ON(!PageLocked(page));
1074 	BUG_ON(from > PAGE_SIZE);
1075 	BUG_ON(to > PAGE_SIZE);
1076 	BUG_ON(from > to);
1077 
1078 	if (!page_has_buffers(page))
1079 		create_empty_buffers(page, blocksize, 0);
1080 	head = page_buffers(page);
1081 	bbits = ilog2(blocksize);
1082 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1083 
1084 	for (bh = head, block_start = 0; bh != head || !block_start;
1085 	    block++, block_start = block_end, bh = bh->b_this_page) {
1086 		block_end = block_start + blocksize;
1087 		if (block_end <= from || block_start >= to) {
1088 			if (PageUptodate(page)) {
1089 				set_buffer_uptodate(bh);
1090 			}
1091 			continue;
1092 		}
1093 		if (buffer_new(bh))
1094 			clear_buffer_new(bh);
1095 		if (!buffer_mapped(bh)) {
1096 			WARN_ON(bh->b_size != blocksize);
1097 			err = get_block(inode, block, bh, 1);
1098 			if (err)
1099 				break;
1100 			if (buffer_new(bh)) {
1101 				if (PageUptodate(page)) {
1102 					clear_buffer_new(bh);
1103 					set_buffer_uptodate(bh);
1104 					mark_buffer_dirty(bh);
1105 					continue;
1106 				}
1107 				if (block_end > to || block_start < from)
1108 					zero_user_segments(page, to, block_end,
1109 							   block_start, from);
1110 				continue;
1111 			}
1112 		}
1113 		if (PageUptodate(page)) {
1114 			set_buffer_uptodate(bh);
1115 			continue;
1116 		}
1117 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118 		    !buffer_unwritten(bh) &&
1119 		    (block_start < from || block_end > to)) {
1120 			ext4_read_bh_lock(bh, 0, false);
1121 			wait[nr_wait++] = bh;
1122 		}
1123 	}
1124 	/*
1125 	 * If we issued read requests, let them complete.
1126 	 */
1127 	for (i = 0; i < nr_wait; i++) {
1128 		wait_on_buffer(wait[i]);
1129 		if (!buffer_uptodate(wait[i]))
1130 			err = -EIO;
1131 	}
1132 	if (unlikely(err)) {
1133 		page_zero_new_buffers(page, from, to);
1134 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1135 		for (i = 0; i < nr_wait; i++) {
1136 			int err2;
1137 
1138 			err2 = fscrypt_decrypt_pagecache_blocks(page_folio(page),
1139 								blocksize,
1140 								bh_offset(wait[i]));
1141 			if (err2) {
1142 				clear_buffer_uptodate(wait[i]);
1143 				err = err2;
1144 			}
1145 		}
1146 	}
1147 
1148 	return err;
1149 }
1150 #endif
1151 
1152 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153 			    loff_t pos, unsigned len,
1154 			    struct page **pagep, void **fsdata)
1155 {
1156 	struct inode *inode = mapping->host;
1157 	int ret, needed_blocks;
1158 	handle_t *handle;
1159 	int retries = 0;
1160 	struct page *page;
1161 	pgoff_t index;
1162 	unsigned from, to;
1163 
1164 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165 		return -EIO;
1166 
1167 	trace_ext4_write_begin(inode, pos, len);
1168 	/*
1169 	 * Reserve one block more for addition to orphan list in case
1170 	 * we allocate blocks but write fails for some reason
1171 	 */
1172 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173 	index = pos >> PAGE_SHIFT;
1174 	from = pos & (PAGE_SIZE - 1);
1175 	to = from + len;
1176 
1177 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179 						    pagep);
1180 		if (ret < 0)
1181 			return ret;
1182 		if (ret == 1)
1183 			return 0;
1184 	}
1185 
1186 	/*
1187 	 * grab_cache_page_write_begin() can take a long time if the
1188 	 * system is thrashing due to memory pressure, or if the page
1189 	 * is being written back.  So grab it first before we start
1190 	 * the transaction handle.  This also allows us to allocate
1191 	 * the page (if needed) without using GFP_NOFS.
1192 	 */
1193 retry_grab:
1194 	page = grab_cache_page_write_begin(mapping, index);
1195 	if (!page)
1196 		return -ENOMEM;
1197 	/*
1198 	 * The same as page allocation, we prealloc buffer heads before
1199 	 * starting the handle.
1200 	 */
1201 	if (!page_has_buffers(page))
1202 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203 
1204 	unlock_page(page);
1205 
1206 retry_journal:
1207 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208 	if (IS_ERR(handle)) {
1209 		put_page(page);
1210 		return PTR_ERR(handle);
1211 	}
1212 
1213 	lock_page(page);
1214 	if (page->mapping != mapping) {
1215 		/* The page got truncated from under us */
1216 		unlock_page(page);
1217 		put_page(page);
1218 		ext4_journal_stop(handle);
1219 		goto retry_grab;
1220 	}
1221 	/* In case writeback began while the page was unlocked */
1222 	wait_for_stable_page(page);
1223 
1224 #ifdef CONFIG_FS_ENCRYPTION
1225 	if (ext4_should_dioread_nolock(inode))
1226 		ret = ext4_block_write_begin(page, pos, len,
1227 					     ext4_get_block_unwritten);
1228 	else
1229 		ret = ext4_block_write_begin(page, pos, len,
1230 					     ext4_get_block);
1231 #else
1232 	if (ext4_should_dioread_nolock(inode))
1233 		ret = __block_write_begin(page, pos, len,
1234 					  ext4_get_block_unwritten);
1235 	else
1236 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1237 #endif
1238 	if (!ret && ext4_should_journal_data(inode)) {
1239 		ret = ext4_walk_page_buffers(handle, inode,
1240 					     page_buffers(page), from, to, NULL,
1241 					     do_journal_get_write_access);
1242 	}
1243 
1244 	if (ret) {
1245 		bool extended = (pos + len > inode->i_size) &&
1246 				!ext4_verity_in_progress(inode);
1247 
1248 		unlock_page(page);
1249 		/*
1250 		 * __block_write_begin may have instantiated a few blocks
1251 		 * outside i_size.  Trim these off again. Don't need
1252 		 * i_size_read because we hold i_rwsem.
1253 		 *
1254 		 * Add inode to orphan list in case we crash before
1255 		 * truncate finishes
1256 		 */
1257 		if (extended && ext4_can_truncate(inode))
1258 			ext4_orphan_add(handle, inode);
1259 
1260 		ext4_journal_stop(handle);
1261 		if (extended) {
1262 			ext4_truncate_failed_write(inode);
1263 			/*
1264 			 * If truncate failed early the inode might
1265 			 * still be on the orphan list; we need to
1266 			 * make sure the inode is removed from the
1267 			 * orphan list in that case.
1268 			 */
1269 			if (inode->i_nlink)
1270 				ext4_orphan_del(NULL, inode);
1271 		}
1272 
1273 		if (ret == -ENOSPC &&
1274 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1275 			goto retry_journal;
1276 		put_page(page);
1277 		return ret;
1278 	}
1279 	*pagep = page;
1280 	return ret;
1281 }
1282 
1283 /* For write_end() in data=journal mode */
1284 static int write_end_fn(handle_t *handle, struct inode *inode,
1285 			struct buffer_head *bh)
1286 {
1287 	int ret;
1288 	if (!buffer_mapped(bh) || buffer_freed(bh))
1289 		return 0;
1290 	set_buffer_uptodate(bh);
1291 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292 	clear_buffer_meta(bh);
1293 	clear_buffer_prio(bh);
1294 	return ret;
1295 }
1296 
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305 			  struct address_space *mapping,
1306 			  loff_t pos, unsigned len, unsigned copied,
1307 			  struct page *page, void *fsdata)
1308 {
1309 	handle_t *handle = ext4_journal_current_handle();
1310 	struct inode *inode = mapping->host;
1311 	loff_t old_size = inode->i_size;
1312 	int ret = 0, ret2;
1313 	int i_size_changed = 0;
1314 	bool verity = ext4_verity_in_progress(inode);
1315 
1316 	trace_ext4_write_end(inode, pos, len, copied);
1317 
1318 	if (ext4_has_inline_data(inode) &&
1319 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321 
1322 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1323 	/*
1324 	 * it's important to update i_size while still holding page lock:
1325 	 * page writeout could otherwise come in and zero beyond i_size.
1326 	 *
1327 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328 	 * blocks are being written past EOF, so skip the i_size update.
1329 	 */
1330 	if (!verity)
1331 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332 	unlock_page(page);
1333 	put_page(page);
1334 
1335 	if (old_size < pos && !verity)
1336 		pagecache_isize_extended(inode, old_size, pos);
1337 	/*
1338 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1339 	 * makes the holding time of page lock longer. Second, it forces lock
1340 	 * ordering of page lock and transaction start for journaling
1341 	 * filesystems.
1342 	 */
1343 	if (i_size_changed)
1344 		ret = ext4_mark_inode_dirty(handle, inode);
1345 
1346 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347 		/* if we have allocated more blocks and copied
1348 		 * less. We will have blocks allocated outside
1349 		 * inode->i_size. So truncate them
1350 		 */
1351 		ext4_orphan_add(handle, inode);
1352 
1353 	ret2 = ext4_journal_stop(handle);
1354 	if (!ret)
1355 		ret = ret2;
1356 
1357 	if (pos + len > inode->i_size && !verity) {
1358 		ext4_truncate_failed_write(inode);
1359 		/*
1360 		 * If truncate failed early the inode might still be
1361 		 * on the orphan list; we need to make sure the inode
1362 		 * is removed from the orphan list in that case.
1363 		 */
1364 		if (inode->i_nlink)
1365 			ext4_orphan_del(NULL, inode);
1366 	}
1367 
1368 	return ret ? ret : copied;
1369 }
1370 
1371 /*
1372  * This is a private version of page_zero_new_buffers() which doesn't
1373  * set the buffer to be dirty, since in data=journalled mode we need
1374  * to call ext4_handle_dirty_metadata() instead.
1375  */
1376 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377 					    struct inode *inode,
1378 					    struct page *page,
1379 					    unsigned from, unsigned to)
1380 {
1381 	unsigned int block_start = 0, block_end;
1382 	struct buffer_head *head, *bh;
1383 
1384 	bh = head = page_buffers(page);
1385 	do {
1386 		block_end = block_start + bh->b_size;
1387 		if (buffer_new(bh)) {
1388 			if (block_end > from && block_start < to) {
1389 				if (!PageUptodate(page)) {
1390 					unsigned start, size;
1391 
1392 					start = max(from, block_start);
1393 					size = min(to, block_end) - start;
1394 
1395 					zero_user(page, start, size);
1396 					write_end_fn(handle, inode, bh);
1397 				}
1398 				clear_buffer_new(bh);
1399 			}
1400 		}
1401 		block_start = block_end;
1402 		bh = bh->b_this_page;
1403 	} while (bh != head);
1404 }
1405 
1406 static int ext4_journalled_write_end(struct file *file,
1407 				     struct address_space *mapping,
1408 				     loff_t pos, unsigned len, unsigned copied,
1409 				     struct page *page, void *fsdata)
1410 {
1411 	handle_t *handle = ext4_journal_current_handle();
1412 	struct inode *inode = mapping->host;
1413 	loff_t old_size = inode->i_size;
1414 	int ret = 0, ret2;
1415 	int partial = 0;
1416 	unsigned from, to;
1417 	int size_changed = 0;
1418 	bool verity = ext4_verity_in_progress(inode);
1419 
1420 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1421 	from = pos & (PAGE_SIZE - 1);
1422 	to = from + len;
1423 
1424 	BUG_ON(!ext4_handle_valid(handle));
1425 
1426 	if (ext4_has_inline_data(inode))
1427 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428 
1429 	if (unlikely(copied < len) && !PageUptodate(page)) {
1430 		copied = 0;
1431 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432 	} else {
1433 		if (unlikely(copied < len))
1434 			ext4_journalled_zero_new_buffers(handle, inode, page,
1435 							 from + copied, to);
1436 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437 					     from, from + copied, &partial,
1438 					     write_end_fn);
1439 		if (!partial)
1440 			SetPageUptodate(page);
1441 	}
1442 	if (!verity)
1443 		size_changed = ext4_update_inode_size(inode, pos + copied);
1444 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446 	unlock_page(page);
1447 	put_page(page);
1448 
1449 	if (old_size < pos && !verity)
1450 		pagecache_isize_extended(inode, old_size, pos);
1451 
1452 	if (size_changed) {
1453 		ret2 = ext4_mark_inode_dirty(handle, inode);
1454 		if (!ret)
1455 			ret = ret2;
1456 	}
1457 
1458 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459 		/* if we have allocated more blocks and copied
1460 		 * less. We will have blocks allocated outside
1461 		 * inode->i_size. So truncate them
1462 		 */
1463 		ext4_orphan_add(handle, inode);
1464 
1465 	ret2 = ext4_journal_stop(handle);
1466 	if (!ret)
1467 		ret = ret2;
1468 	if (pos + len > inode->i_size && !verity) {
1469 		ext4_truncate_failed_write(inode);
1470 		/*
1471 		 * If truncate failed early the inode might still be
1472 		 * on the orphan list; we need to make sure the inode
1473 		 * is removed from the orphan list in that case.
1474 		 */
1475 		if (inode->i_nlink)
1476 			ext4_orphan_del(NULL, inode);
1477 	}
1478 
1479 	return ret ? ret : copied;
1480 }
1481 
1482 /*
1483  * Reserve space for a single cluster
1484  */
1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 	int ret;
1490 
1491 	/*
1492 	 * We will charge metadata quota at writeout time; this saves
1493 	 * us from metadata over-estimation, though we may go over by
1494 	 * a small amount in the end.  Here we just reserve for data.
1495 	 */
1496 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497 	if (ret)
1498 		return ret;
1499 
1500 	spin_lock(&ei->i_block_reservation_lock);
1501 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502 		spin_unlock(&ei->i_block_reservation_lock);
1503 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504 		return -ENOSPC;
1505 	}
1506 	ei->i_reserved_data_blocks++;
1507 	trace_ext4_da_reserve_space(inode);
1508 	spin_unlock(&ei->i_block_reservation_lock);
1509 
1510 	return 0;       /* success */
1511 }
1512 
1513 void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 	struct ext4_inode_info *ei = EXT4_I(inode);
1517 
1518 	if (!to_free)
1519 		return;		/* Nothing to release, exit */
1520 
1521 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522 
1523 	trace_ext4_da_release_space(inode, to_free);
1524 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525 		/*
1526 		 * if there aren't enough reserved blocks, then the
1527 		 * counter is messed up somewhere.  Since this
1528 		 * function is called from invalidate page, it's
1529 		 * harmless to return without any action.
1530 		 */
1531 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532 			 "ino %lu, to_free %d with only %d reserved "
1533 			 "data blocks", inode->i_ino, to_free,
1534 			 ei->i_reserved_data_blocks);
1535 		WARN_ON(1);
1536 		to_free = ei->i_reserved_data_blocks;
1537 	}
1538 	ei->i_reserved_data_blocks -= to_free;
1539 
1540 	/* update fs dirty data blocks counter */
1541 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542 
1543 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544 
1545 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547 
1548 /*
1549  * Delayed allocation stuff
1550  */
1551 
1552 struct mpage_da_data {
1553 	/* These are input fields for ext4_do_writepages() */
1554 	struct inode *inode;
1555 	struct writeback_control *wbc;
1556 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1557 
1558 	/* These are internal state of ext4_do_writepages() */
1559 	pgoff_t first_page;	/* The first page to write */
1560 	pgoff_t next_page;	/* Current page to examine */
1561 	pgoff_t last_page;	/* Last page to examine */
1562 	/*
1563 	 * Extent to map - this can be after first_page because that can be
1564 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1565 	 * is delalloc or unwritten.
1566 	 */
1567 	struct ext4_map_blocks map;
1568 	struct ext4_io_submit io_submit;	/* IO submission data */
1569 	unsigned int do_map:1;
1570 	unsigned int scanned_until_end:1;
1571 };
1572 
1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 				       bool invalidate)
1575 {
1576 	unsigned nr, i;
1577 	pgoff_t index, end;
1578 	struct folio_batch fbatch;
1579 	struct inode *inode = mpd->inode;
1580 	struct address_space *mapping = inode->i_mapping;
1581 
1582 	/* This is necessary when next_page == 0. */
1583 	if (mpd->first_page >= mpd->next_page)
1584 		return;
1585 
1586 	mpd->scanned_until_end = 0;
1587 	index = mpd->first_page;
1588 	end   = mpd->next_page - 1;
1589 	if (invalidate) {
1590 		ext4_lblk_t start, last;
1591 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1593 
1594 		/*
1595 		 * avoid racing with extent status tree scans made by
1596 		 * ext4_insert_delayed_block()
1597 		 */
1598 		down_write(&EXT4_I(inode)->i_data_sem);
1599 		ext4_es_remove_extent(inode, start, last - start + 1);
1600 		up_write(&EXT4_I(inode)->i_data_sem);
1601 	}
1602 
1603 	folio_batch_init(&fbatch);
1604 	while (index <= end) {
1605 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 		if (nr == 0)
1607 			break;
1608 		for (i = 0; i < nr; i++) {
1609 			struct folio *folio = fbatch.folios[i];
1610 
1611 			if (folio->index < mpd->first_page)
1612 				continue;
1613 			if (folio->index + folio_nr_pages(folio) - 1 > end)
1614 				continue;
1615 			BUG_ON(!folio_test_locked(folio));
1616 			BUG_ON(folio_test_writeback(folio));
1617 			if (invalidate) {
1618 				if (folio_mapped(folio))
1619 					folio_clear_dirty_for_io(folio);
1620 				block_invalidate_folio(folio, 0,
1621 						folio_size(folio));
1622 				folio_clear_uptodate(folio);
1623 			}
1624 			folio_unlock(folio);
1625 		}
1626 		folio_batch_release(&fbatch);
1627 	}
1628 }
1629 
1630 static void ext4_print_free_blocks(struct inode *inode)
1631 {
1632 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 	struct super_block *sb = inode->i_sb;
1634 	struct ext4_inode_info *ei = EXT4_I(inode);
1635 
1636 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1638 			ext4_count_free_clusters(sb)));
1639 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 	       (long long) EXT4_C2B(EXT4_SB(sb),
1642 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 	       (long long) EXT4_C2B(EXT4_SB(sb),
1645 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 		 ei->i_reserved_data_blocks);
1649 	return;
1650 }
1651 
1652 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653 				      struct buffer_head *bh)
1654 {
1655 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656 }
1657 
1658 /*
1659  * ext4_insert_delayed_block - adds a delayed block to the extents status
1660  *                             tree, incrementing the reserved cluster/block
1661  *                             count or making a pending reservation
1662  *                             where needed
1663  *
1664  * @inode - file containing the newly added block
1665  * @lblk - logical block to be added
1666  *
1667  * Returns 0 on success, negative error code on failure.
1668  */
1669 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670 {
1671 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 	int ret;
1673 	bool allocated = false;
1674 	bool reserved = false;
1675 
1676 	/*
1677 	 * If the cluster containing lblk is shared with a delayed,
1678 	 * written, or unwritten extent in a bigalloc file system, it's
1679 	 * already been accounted for and does not need to be reserved.
1680 	 * A pending reservation must be made for the cluster if it's
1681 	 * shared with a written or unwritten extent and doesn't already
1682 	 * have one.  Written and unwritten extents can be purged from the
1683 	 * extents status tree if the system is under memory pressure, so
1684 	 * it's necessary to examine the extent tree if a search of the
1685 	 * extents status tree doesn't get a match.
1686 	 */
1687 	if (sbi->s_cluster_ratio == 1) {
1688 		ret = ext4_da_reserve_space(inode);
1689 		if (ret != 0)   /* ENOSPC */
1690 			goto errout;
1691 		reserved = true;
1692 	} else {   /* bigalloc */
1693 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694 			if (!ext4_es_scan_clu(inode,
1695 					      &ext4_es_is_mapped, lblk)) {
1696 				ret = ext4_clu_mapped(inode,
1697 						      EXT4_B2C(sbi, lblk));
1698 				if (ret < 0)
1699 					goto errout;
1700 				if (ret == 0) {
1701 					ret = ext4_da_reserve_space(inode);
1702 					if (ret != 0)   /* ENOSPC */
1703 						goto errout;
1704 					reserved = true;
1705 				} else {
1706 					allocated = true;
1707 				}
1708 			} else {
1709 				allocated = true;
1710 			}
1711 		}
1712 	}
1713 
1714 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715 	if (ret && reserved)
1716 		ext4_da_release_space(inode, 1);
1717 
1718 errout:
1719 	return ret;
1720 }
1721 
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 			      struct ext4_map_blocks *map,
1730 			      struct buffer_head *bh)
1731 {
1732 	struct extent_status es;
1733 	int retval;
1734 	sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 	struct ext4_map_blocks orig_map;
1737 
1738 	memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740 
1741 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 		invalid_block = ~0;
1743 
1744 	map->m_flags = 0;
1745 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1746 		  (unsigned long) map->m_lblk);
1747 
1748 	/* Lookup extent status tree firstly */
1749 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750 		if (ext4_es_is_hole(&es)) {
1751 			retval = 0;
1752 			down_read(&EXT4_I(inode)->i_data_sem);
1753 			goto add_delayed;
1754 		}
1755 
1756 		/*
1757 		 * Delayed extent could be allocated by fallocate.
1758 		 * So we need to check it.
1759 		 */
1760 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 			map_bh(bh, inode->i_sb, invalid_block);
1762 			set_buffer_new(bh);
1763 			set_buffer_delay(bh);
1764 			return 0;
1765 		}
1766 
1767 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 		retval = es.es_len - (iblock - es.es_lblk);
1769 		if (retval > map->m_len)
1770 			retval = map->m_len;
1771 		map->m_len = retval;
1772 		if (ext4_es_is_written(&es))
1773 			map->m_flags |= EXT4_MAP_MAPPED;
1774 		else if (ext4_es_is_unwritten(&es))
1775 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 		else
1777 			BUG();
1778 
1779 #ifdef ES_AGGRESSIVE_TEST
1780 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 		return retval;
1783 	}
1784 
1785 	/*
1786 	 * Try to see if we can get the block without requesting a new
1787 	 * file system block.
1788 	 */
1789 	down_read(&EXT4_I(inode)->i_data_sem);
1790 	if (ext4_has_inline_data(inode))
1791 		retval = 0;
1792 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 	else
1795 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796 
1797 add_delayed:
1798 	if (retval == 0) {
1799 		int ret;
1800 
1801 		/*
1802 		 * XXX: __block_prepare_write() unmaps passed block,
1803 		 * is it OK?
1804 		 */
1805 
1806 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807 		if (ret != 0) {
1808 			retval = ret;
1809 			goto out_unlock;
1810 		}
1811 
1812 		map_bh(bh, inode->i_sb, invalid_block);
1813 		set_buffer_new(bh);
1814 		set_buffer_delay(bh);
1815 	} else if (retval > 0) {
1816 		int ret;
1817 		unsigned int status;
1818 
1819 		if (unlikely(retval != map->m_len)) {
1820 			ext4_warning(inode->i_sb,
1821 				     "ES len assertion failed for inode "
1822 				     "%lu: retval %d != map->m_len %d",
1823 				     inode->i_ino, retval, map->m_len);
1824 			WARN_ON(1);
1825 		}
1826 
1827 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830 					    map->m_pblk, status);
1831 		if (ret != 0)
1832 			retval = ret;
1833 	}
1834 
1835 out_unlock:
1836 	up_read((&EXT4_I(inode)->i_data_sem));
1837 
1838 	return retval;
1839 }
1840 
1841 /*
1842  * This is a special get_block_t callback which is used by
1843  * ext4_da_write_begin().  It will either return mapped block or
1844  * reserve space for a single block.
1845  *
1846  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847  * We also have b_blocknr = -1 and b_bdev initialized properly
1848  *
1849  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851  * initialized properly.
1852  */
1853 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854 			   struct buffer_head *bh, int create)
1855 {
1856 	struct ext4_map_blocks map;
1857 	int ret = 0;
1858 
1859 	BUG_ON(create == 0);
1860 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861 
1862 	map.m_lblk = iblock;
1863 	map.m_len = 1;
1864 
1865 	/*
1866 	 * first, we need to know whether the block is allocated already
1867 	 * preallocated blocks are unmapped but should treated
1868 	 * the same as allocated blocks.
1869 	 */
1870 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871 	if (ret <= 0)
1872 		return ret;
1873 
1874 	map_bh(bh, inode->i_sb, map.m_pblk);
1875 	ext4_update_bh_state(bh, map.m_flags);
1876 
1877 	if (buffer_unwritten(bh)) {
1878 		/* A delayed write to unwritten bh should be marked
1879 		 * new and mapped.  Mapped ensures that we don't do
1880 		 * get_block multiple times when we write to the same
1881 		 * offset and new ensures that we do proper zero out
1882 		 * for partial write.
1883 		 */
1884 		set_buffer_new(bh);
1885 		set_buffer_mapped(bh);
1886 	}
1887 	return 0;
1888 }
1889 
1890 static int __ext4_journalled_writepage(struct page *page,
1891 				       unsigned int len)
1892 {
1893 	struct address_space *mapping = page->mapping;
1894 	struct inode *inode = mapping->host;
1895 	handle_t *handle = NULL;
1896 	int ret = 0, err = 0;
1897 	int inline_data = ext4_has_inline_data(inode);
1898 	struct buffer_head *inode_bh = NULL;
1899 	loff_t size;
1900 
1901 	ClearPageChecked(page);
1902 
1903 	if (inline_data) {
1904 		BUG_ON(page->index != 0);
1905 		BUG_ON(len > ext4_get_max_inline_size(inode));
1906 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907 		if (inode_bh == NULL)
1908 			goto out;
1909 	}
1910 	/*
1911 	 * We need to release the page lock before we start the
1912 	 * journal, so grab a reference so the page won't disappear
1913 	 * out from under us.
1914 	 */
1915 	get_page(page);
1916 	unlock_page(page);
1917 
1918 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919 				    ext4_writepage_trans_blocks(inode));
1920 	if (IS_ERR(handle)) {
1921 		ret = PTR_ERR(handle);
1922 		put_page(page);
1923 		goto out_no_pagelock;
1924 	}
1925 	BUG_ON(!ext4_handle_valid(handle));
1926 
1927 	lock_page(page);
1928 	put_page(page);
1929 	size = i_size_read(inode);
1930 	if (page->mapping != mapping || page_offset(page) > size) {
1931 		/* The page got truncated from under us */
1932 		ext4_journal_stop(handle);
1933 		ret = 0;
1934 		goto out;
1935 	}
1936 
1937 	if (inline_data) {
1938 		ret = ext4_mark_inode_dirty(handle, inode);
1939 	} else {
1940 		struct buffer_head *page_bufs = page_buffers(page);
1941 
1942 		if (page->index == size >> PAGE_SHIFT)
1943 			len = size & ~PAGE_MASK;
1944 		else
1945 			len = PAGE_SIZE;
1946 
1947 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948 					     NULL, do_journal_get_write_access);
1949 
1950 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951 					     NULL, write_end_fn);
1952 	}
1953 	if (ret == 0)
1954 		ret = err;
1955 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956 	if (ret == 0)
1957 		ret = err;
1958 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959 	err = ext4_journal_stop(handle);
1960 	if (!ret)
1961 		ret = err;
1962 
1963 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964 out:
1965 	unlock_page(page);
1966 out_no_pagelock:
1967 	brelse(inode_bh);
1968 	return ret;
1969 }
1970 
1971 /*
1972  * Note that we don't need to start a transaction unless we're journaling data
1973  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974  * need to file the inode to the transaction's list in ordered mode because if
1975  * we are writing back data added by write(), the inode is already there and if
1976  * we are writing back data modified via mmap(), no one guarantees in which
1977  * transaction the data will hit the disk. In case we are journaling data, we
1978  * cannot start transaction directly because transaction start ranks above page
1979  * lock so we have to do some magic.
1980  *
1981  * This function can get called via...
1982  *   - ext4_writepages after taking page lock (have journal handle)
1983  *   - journal_submit_inode_data_buffers (no journal handle)
1984  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985  *   - grab_page_cache when doing write_begin (have journal handle)
1986  *
1987  * We don't do any block allocation in this function. If we have page with
1988  * multiple blocks we need to write those buffer_heads that are mapped. This
1989  * is important for mmaped based write. So if we do with blocksize 1K
1990  * truncate(f, 1024);
1991  * a = mmap(f, 0, 4096);
1992  * a[0] = 'a';
1993  * truncate(f, 4096);
1994  * we have in the page first buffer_head mapped via page_mkwrite call back
1995  * but other buffer_heads would be unmapped but dirty (dirty done via the
1996  * do_wp_page). So writepage should write the first block. If we modify
1997  * the mmap area beyond 1024 we will again get a page_fault and the
1998  * page_mkwrite callback will do the block allocation and mark the
1999  * buffer_heads mapped.
2000  *
2001  * We redirty the page if we have any buffer_heads that is either delay or
2002  * unwritten in the page.
2003  *
2004  * We can get recursively called as show below.
2005  *
2006  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007  *		ext4_writepage()
2008  *
2009  * But since we don't do any block allocation we should not deadlock.
2010  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011  */
2012 static int ext4_writepage(struct page *page,
2013 			  struct writeback_control *wbc)
2014 {
2015 	struct folio *folio = page_folio(page);
2016 	int ret = 0;
2017 	loff_t size;
2018 	unsigned int len;
2019 	struct buffer_head *page_bufs = NULL;
2020 	struct inode *inode = page->mapping->host;
2021 	struct ext4_io_submit io_submit;
2022 
2023 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2024 		folio_invalidate(folio, 0, folio_size(folio));
2025 		folio_unlock(folio);
2026 		return -EIO;
2027 	}
2028 
2029 	trace_ext4_writepage(page);
2030 	size = i_size_read(inode);
2031 	if (page->index == size >> PAGE_SHIFT &&
2032 	    !ext4_verity_in_progress(inode))
2033 		len = size & ~PAGE_MASK;
2034 	else
2035 		len = PAGE_SIZE;
2036 
2037 	/* Should never happen but for bugs in other kernel subsystems */
2038 	if (!page_has_buffers(page)) {
2039 		ext4_warning_inode(inode,
2040 		   "page %lu does not have buffers attached", page->index);
2041 		ClearPageDirty(page);
2042 		unlock_page(page);
2043 		return 0;
2044 	}
2045 
2046 	page_bufs = page_buffers(page);
2047 	/*
2048 	 * We cannot do block allocation or other extent handling in this
2049 	 * function. If there are buffers needing that, we have to redirty
2050 	 * the page. But we may reach here when we do a journal commit via
2051 	 * journal_submit_inode_data_buffers() and in that case we must write
2052 	 * allocated buffers to achieve data=ordered mode guarantees.
2053 	 *
2054 	 * Also, if there is only one buffer per page (the fs block
2055 	 * size == the page size), if one buffer needs block
2056 	 * allocation or needs to modify the extent tree to clear the
2057 	 * unwritten flag, we know that the page can't be written at
2058 	 * all, so we might as well refuse the write immediately.
2059 	 * Unfortunately if the block size != page size, we can't as
2060 	 * easily detect this case using ext4_walk_page_buffers(), but
2061 	 * for the extremely common case, this is an optimization that
2062 	 * skips a useless round trip through ext4_bio_write_page().
2063 	 */
2064 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2065 				   ext4_bh_delay_or_unwritten)) {
2066 		redirty_page_for_writepage(wbc, page);
2067 		if ((current->flags & PF_MEMALLOC) ||
2068 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2069 			/*
2070 			 * For memory cleaning there's no point in writing only
2071 			 * some buffers. So just bail out. Warn if we came here
2072 			 * from direct reclaim.
2073 			 */
2074 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2075 							== PF_MEMALLOC);
2076 			unlock_page(page);
2077 			return 0;
2078 		}
2079 	}
2080 
2081 	if (PageChecked(page) && ext4_should_journal_data(inode))
2082 		/*
2083 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2084 		 * doesn't seem much point in redirtying the page here.
2085 		 */
2086 		return __ext4_journalled_writepage(page, len);
2087 
2088 	ext4_io_submit_init(&io_submit, wbc);
2089 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2090 	if (!io_submit.io_end) {
2091 		redirty_page_for_writepage(wbc, page);
2092 		unlock_page(page);
2093 		return -ENOMEM;
2094 	}
2095 	ret = ext4_bio_write_page(&io_submit, page, len);
2096 	ext4_io_submit(&io_submit);
2097 	/* Drop io_end reference we got from init */
2098 	ext4_put_io_end_defer(io_submit.io_end);
2099 	return ret;
2100 }
2101 
2102 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2103 {
2104 	int len;
2105 	loff_t size;
2106 	int err;
2107 
2108 	BUG_ON(page->index != mpd->first_page);
2109 	clear_page_dirty_for_io(page);
2110 	/*
2111 	 * We have to be very careful here!  Nothing protects writeback path
2112 	 * against i_size changes and the page can be writeably mapped into
2113 	 * page tables. So an application can be growing i_size and writing
2114 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2115 	 * write-protects our page in page tables and the page cannot get
2116 	 * written to again until we release page lock. So only after
2117 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2118 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2119 	 * on the barrier provided by TestClearPageDirty in
2120 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2121 	 * after page tables are updated.
2122 	 */
2123 	size = i_size_read(mpd->inode);
2124 	if (page->index == size >> PAGE_SHIFT &&
2125 	    !ext4_verity_in_progress(mpd->inode))
2126 		len = size & ~PAGE_MASK;
2127 	else
2128 		len = PAGE_SIZE;
2129 	err = ext4_bio_write_page(&mpd->io_submit, page, len);
2130 	if (!err)
2131 		mpd->wbc->nr_to_write--;
2132 	mpd->first_page++;
2133 
2134 	return err;
2135 }
2136 
2137 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2138 
2139 /*
2140  * mballoc gives us at most this number of blocks...
2141  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2142  * The rest of mballoc seems to handle chunks up to full group size.
2143  */
2144 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2145 
2146 /*
2147  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2148  *
2149  * @mpd - extent of blocks
2150  * @lblk - logical number of the block in the file
2151  * @bh - buffer head we want to add to the extent
2152  *
2153  * The function is used to collect contig. blocks in the same state. If the
2154  * buffer doesn't require mapping for writeback and we haven't started the
2155  * extent of buffers to map yet, the function returns 'true' immediately - the
2156  * caller can write the buffer right away. Otherwise the function returns true
2157  * if the block has been added to the extent, false if the block couldn't be
2158  * added.
2159  */
2160 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2161 				   struct buffer_head *bh)
2162 {
2163 	struct ext4_map_blocks *map = &mpd->map;
2164 
2165 	/* Buffer that doesn't need mapping for writeback? */
2166 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2167 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2168 		/* So far no extent to map => we write the buffer right away */
2169 		if (map->m_len == 0)
2170 			return true;
2171 		return false;
2172 	}
2173 
2174 	/* First block in the extent? */
2175 	if (map->m_len == 0) {
2176 		/* We cannot map unless handle is started... */
2177 		if (!mpd->do_map)
2178 			return false;
2179 		map->m_lblk = lblk;
2180 		map->m_len = 1;
2181 		map->m_flags = bh->b_state & BH_FLAGS;
2182 		return true;
2183 	}
2184 
2185 	/* Don't go larger than mballoc is willing to allocate */
2186 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2187 		return false;
2188 
2189 	/* Can we merge the block to our big extent? */
2190 	if (lblk == map->m_lblk + map->m_len &&
2191 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2192 		map->m_len++;
2193 		return true;
2194 	}
2195 	return false;
2196 }
2197 
2198 /*
2199  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2200  *
2201  * @mpd - extent of blocks for mapping
2202  * @head - the first buffer in the page
2203  * @bh - buffer we should start processing from
2204  * @lblk - logical number of the block in the file corresponding to @bh
2205  *
2206  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2207  * the page for IO if all buffers in this page were mapped and there's no
2208  * accumulated extent of buffers to map or add buffers in the page to the
2209  * extent of buffers to map. The function returns 1 if the caller can continue
2210  * by processing the next page, 0 if it should stop adding buffers to the
2211  * extent to map because we cannot extend it anymore. It can also return value
2212  * < 0 in case of error during IO submission.
2213  */
2214 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2215 				   struct buffer_head *head,
2216 				   struct buffer_head *bh,
2217 				   ext4_lblk_t lblk)
2218 {
2219 	struct inode *inode = mpd->inode;
2220 	int err;
2221 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2222 							>> inode->i_blkbits;
2223 
2224 	if (ext4_verity_in_progress(inode))
2225 		blocks = EXT_MAX_BLOCKS;
2226 
2227 	do {
2228 		BUG_ON(buffer_locked(bh));
2229 
2230 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231 			/* Found extent to map? */
2232 			if (mpd->map.m_len)
2233 				return 0;
2234 			/* Buffer needs mapping and handle is not started? */
2235 			if (!mpd->do_map)
2236 				return 0;
2237 			/* Everything mapped so far and we hit EOF */
2238 			break;
2239 		}
2240 	} while (lblk++, (bh = bh->b_this_page) != head);
2241 	/* So far everything mapped? Submit the page for IO. */
2242 	if (mpd->map.m_len == 0) {
2243 		err = mpage_submit_page(mpd, head->b_page);
2244 		if (err < 0)
2245 			return err;
2246 	}
2247 	if (lblk >= blocks) {
2248 		mpd->scanned_until_end = 1;
2249 		return 0;
2250 	}
2251 	return 1;
2252 }
2253 
2254 /*
2255  * mpage_process_page - update page buffers corresponding to changed extent and
2256  *		       may submit fully mapped page for IO
2257  *
2258  * @mpd		- description of extent to map, on return next extent to map
2259  * @m_lblk	- logical block mapping.
2260  * @m_pblk	- corresponding physical mapping.
2261  * @map_bh	- determines on return whether this page requires any further
2262  *		  mapping or not.
2263  * Scan given page buffers corresponding to changed extent and update buffer
2264  * state according to new extent state.
2265  * We map delalloc buffers to their physical location, clear unwritten bits.
2266  * If the given page is not fully mapped, we update @map to the next extent in
2267  * the given page that needs mapping & return @map_bh as true.
2268  */
2269 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2270 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2271 			      bool *map_bh)
2272 {
2273 	struct buffer_head *head, *bh;
2274 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2275 	ext4_lblk_t lblk = *m_lblk;
2276 	ext4_fsblk_t pblock = *m_pblk;
2277 	int err = 0;
2278 	int blkbits = mpd->inode->i_blkbits;
2279 	ssize_t io_end_size = 0;
2280 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2281 
2282 	bh = head = page_buffers(page);
2283 	do {
2284 		if (lblk < mpd->map.m_lblk)
2285 			continue;
2286 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287 			/*
2288 			 * Buffer after end of mapped extent.
2289 			 * Find next buffer in the page to map.
2290 			 */
2291 			mpd->map.m_len = 0;
2292 			mpd->map.m_flags = 0;
2293 			io_end_vec->size += io_end_size;
2294 
2295 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2296 			if (err > 0)
2297 				err = 0;
2298 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2299 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2300 				if (IS_ERR(io_end_vec)) {
2301 					err = PTR_ERR(io_end_vec);
2302 					goto out;
2303 				}
2304 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2305 			}
2306 			*map_bh = true;
2307 			goto out;
2308 		}
2309 		if (buffer_delay(bh)) {
2310 			clear_buffer_delay(bh);
2311 			bh->b_blocknr = pblock++;
2312 		}
2313 		clear_buffer_unwritten(bh);
2314 		io_end_size += (1 << blkbits);
2315 	} while (lblk++, (bh = bh->b_this_page) != head);
2316 
2317 	io_end_vec->size += io_end_size;
2318 	*map_bh = false;
2319 out:
2320 	*m_lblk = lblk;
2321 	*m_pblk = pblock;
2322 	return err;
2323 }
2324 
2325 /*
2326  * mpage_map_buffers - update buffers corresponding to changed extent and
2327  *		       submit fully mapped pages for IO
2328  *
2329  * @mpd - description of extent to map, on return next extent to map
2330  *
2331  * Scan buffers corresponding to changed extent (we expect corresponding pages
2332  * to be already locked) and update buffer state according to new extent state.
2333  * We map delalloc buffers to their physical location, clear unwritten bits,
2334  * and mark buffers as uninit when we perform writes to unwritten extents
2335  * and do extent conversion after IO is finished. If the last page is not fully
2336  * mapped, we update @map to the next extent in the last page that needs
2337  * mapping. Otherwise we submit the page for IO.
2338  */
2339 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340 {
2341 	struct folio_batch fbatch;
2342 	unsigned nr, i;
2343 	struct inode *inode = mpd->inode;
2344 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2345 	pgoff_t start, end;
2346 	ext4_lblk_t lblk;
2347 	ext4_fsblk_t pblock;
2348 	int err;
2349 	bool map_bh = false;
2350 
2351 	start = mpd->map.m_lblk >> bpp_bits;
2352 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353 	lblk = start << bpp_bits;
2354 	pblock = mpd->map.m_pblk;
2355 
2356 	folio_batch_init(&fbatch);
2357 	while (start <= end) {
2358 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2359 		if (nr == 0)
2360 			break;
2361 		for (i = 0; i < nr; i++) {
2362 			struct page *page = &fbatch.folios[i]->page;
2363 
2364 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2365 						 &map_bh);
2366 			/*
2367 			 * If map_bh is true, means page may require further bh
2368 			 * mapping, or maybe the page was submitted for IO.
2369 			 * So we return to call further extent mapping.
2370 			 */
2371 			if (err < 0 || map_bh)
2372 				goto out;
2373 			/* Page fully mapped - let IO run! */
2374 			err = mpage_submit_page(mpd, page);
2375 			if (err < 0)
2376 				goto out;
2377 		}
2378 		folio_batch_release(&fbatch);
2379 	}
2380 	/* Extent fully mapped and matches with page boundary. We are done. */
2381 	mpd->map.m_len = 0;
2382 	mpd->map.m_flags = 0;
2383 	return 0;
2384 out:
2385 	folio_batch_release(&fbatch);
2386 	return err;
2387 }
2388 
2389 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2390 {
2391 	struct inode *inode = mpd->inode;
2392 	struct ext4_map_blocks *map = &mpd->map;
2393 	int get_blocks_flags;
2394 	int err, dioread_nolock;
2395 
2396 	trace_ext4_da_write_pages_extent(inode, map);
2397 	/*
2398 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2399 	 * to convert an unwritten extent to be initialized (in the case
2400 	 * where we have written into one or more preallocated blocks).  It is
2401 	 * possible that we're going to need more metadata blocks than
2402 	 * previously reserved. However we must not fail because we're in
2403 	 * writeback and there is nothing we can do about it so it might result
2404 	 * in data loss.  So use reserved blocks to allocate metadata if
2405 	 * possible.
2406 	 *
2407 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2408 	 * the blocks in question are delalloc blocks.  This indicates
2409 	 * that the blocks and quotas has already been checked when
2410 	 * the data was copied into the page cache.
2411 	 */
2412 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2413 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2414 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2415 	dioread_nolock = ext4_should_dioread_nolock(inode);
2416 	if (dioread_nolock)
2417 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2418 	if (map->m_flags & BIT(BH_Delay))
2419 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2420 
2421 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2422 	if (err < 0)
2423 		return err;
2424 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2425 		if (!mpd->io_submit.io_end->handle &&
2426 		    ext4_handle_valid(handle)) {
2427 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2428 			handle->h_rsv_handle = NULL;
2429 		}
2430 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2431 	}
2432 
2433 	BUG_ON(map->m_len == 0);
2434 	return 0;
2435 }
2436 
2437 /*
2438  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2439  *				 mpd->len and submit pages underlying it for IO
2440  *
2441  * @handle - handle for journal operations
2442  * @mpd - extent to map
2443  * @give_up_on_write - we set this to true iff there is a fatal error and there
2444  *                     is no hope of writing the data. The caller should discard
2445  *                     dirty pages to avoid infinite loops.
2446  *
2447  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2448  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2449  * them to initialized or split the described range from larger unwritten
2450  * extent. Note that we need not map all the described range since allocation
2451  * can return less blocks or the range is covered by more unwritten extents. We
2452  * cannot map more because we are limited by reserved transaction credits. On
2453  * the other hand we always make sure that the last touched page is fully
2454  * mapped so that it can be written out (and thus forward progress is
2455  * guaranteed). After mapping we submit all mapped pages for IO.
2456  */
2457 static int mpage_map_and_submit_extent(handle_t *handle,
2458 				       struct mpage_da_data *mpd,
2459 				       bool *give_up_on_write)
2460 {
2461 	struct inode *inode = mpd->inode;
2462 	struct ext4_map_blocks *map = &mpd->map;
2463 	int err;
2464 	loff_t disksize;
2465 	int progress = 0;
2466 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2467 	struct ext4_io_end_vec *io_end_vec;
2468 
2469 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2470 	if (IS_ERR(io_end_vec))
2471 		return PTR_ERR(io_end_vec);
2472 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2473 	do {
2474 		err = mpage_map_one_extent(handle, mpd);
2475 		if (err < 0) {
2476 			struct super_block *sb = inode->i_sb;
2477 
2478 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2479 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2480 				goto invalidate_dirty_pages;
2481 			/*
2482 			 * Let the uper layers retry transient errors.
2483 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2484 			 * is non-zero, a commit should free up blocks.
2485 			 */
2486 			if ((err == -ENOMEM) ||
2487 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2488 				if (progress)
2489 					goto update_disksize;
2490 				return err;
2491 			}
2492 			ext4_msg(sb, KERN_CRIT,
2493 				 "Delayed block allocation failed for "
2494 				 "inode %lu at logical offset %llu with"
2495 				 " max blocks %u with error %d",
2496 				 inode->i_ino,
2497 				 (unsigned long long)map->m_lblk,
2498 				 (unsigned)map->m_len, -err);
2499 			ext4_msg(sb, KERN_CRIT,
2500 				 "This should not happen!! Data will "
2501 				 "be lost\n");
2502 			if (err == -ENOSPC)
2503 				ext4_print_free_blocks(inode);
2504 		invalidate_dirty_pages:
2505 			*give_up_on_write = true;
2506 			return err;
2507 		}
2508 		progress = 1;
2509 		/*
2510 		 * Update buffer state, submit mapped pages, and get us new
2511 		 * extent to map
2512 		 */
2513 		err = mpage_map_and_submit_buffers(mpd);
2514 		if (err < 0)
2515 			goto update_disksize;
2516 	} while (map->m_len);
2517 
2518 update_disksize:
2519 	/*
2520 	 * Update on-disk size after IO is submitted.  Races with
2521 	 * truncate are avoided by checking i_size under i_data_sem.
2522 	 */
2523 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2524 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525 		int err2;
2526 		loff_t i_size;
2527 
2528 		down_write(&EXT4_I(inode)->i_data_sem);
2529 		i_size = i_size_read(inode);
2530 		if (disksize > i_size)
2531 			disksize = i_size;
2532 		if (disksize > EXT4_I(inode)->i_disksize)
2533 			EXT4_I(inode)->i_disksize = disksize;
2534 		up_write(&EXT4_I(inode)->i_data_sem);
2535 		err2 = ext4_mark_inode_dirty(handle, inode);
2536 		if (err2) {
2537 			ext4_error_err(inode->i_sb, -err2,
2538 				       "Failed to mark inode %lu dirty",
2539 				       inode->i_ino);
2540 		}
2541 		if (!err)
2542 			err = err2;
2543 	}
2544 	return err;
2545 }
2546 
2547 /*
2548  * Calculate the total number of credits to reserve for one writepages
2549  * iteration. This is called from ext4_writepages(). We map an extent of
2550  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2551  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2552  * bpp - 1 blocks in bpp different extents.
2553  */
2554 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2555 {
2556 	int bpp = ext4_journal_blocks_per_page(inode);
2557 
2558 	return ext4_meta_trans_blocks(inode,
2559 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2560 }
2561 
2562 /* Return true if the page needs to be written as part of transaction commit */
2563 static bool ext4_page_nomap_can_writeout(struct page *page)
2564 {
2565 	struct buffer_head *bh, *head;
2566 
2567 	bh = head = page_buffers(page);
2568 	do {
2569 		if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh))
2570 			return true;
2571 	} while ((bh = bh->b_this_page) != head);
2572 	return false;
2573 }
2574 
2575 /*
2576  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2577  * 				 needing mapping, submit mapped pages
2578  *
2579  * @mpd - where to look for pages
2580  *
2581  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2582  * IO immediately. If we cannot map blocks, we submit just already mapped
2583  * buffers in the page for IO and keep page dirty. When we can map blocks and
2584  * we find a page which isn't mapped we start accumulating extent of buffers
2585  * underlying these pages that needs mapping (formed by either delayed or
2586  * unwritten buffers). We also lock the pages containing these buffers. The
2587  * extent found is returned in @mpd structure (starting at mpd->lblk with
2588  * length mpd->len blocks).
2589  *
2590  * Note that this function can attach bios to one io_end structure which are
2591  * neither logically nor physically contiguous. Although it may seem as an
2592  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2593  * case as we need to track IO to all buffers underlying a page in one io_end.
2594  */
2595 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2596 {
2597 	struct address_space *mapping = mpd->inode->i_mapping;
2598 	struct folio_batch fbatch;
2599 	unsigned int nr_folios;
2600 	long left = mpd->wbc->nr_to_write;
2601 	pgoff_t index = mpd->first_page;
2602 	pgoff_t end = mpd->last_page;
2603 	xa_mark_t tag;
2604 	int i, err = 0;
2605 	int blkbits = mpd->inode->i_blkbits;
2606 	ext4_lblk_t lblk;
2607 	struct buffer_head *head;
2608 
2609 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2610 		tag = PAGECACHE_TAG_TOWRITE;
2611 	else
2612 		tag = PAGECACHE_TAG_DIRTY;
2613 	folio_batch_init(&fbatch);
2614 	mpd->map.m_len = 0;
2615 	mpd->next_page = index;
2616 	while (index <= end) {
2617 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2618 				tag, &fbatch);
2619 		if (nr_folios == 0)
2620 			break;
2621 
2622 		for (i = 0; i < nr_folios; i++) {
2623 			struct folio *folio = fbatch.folios[i];
2624 
2625 			/*
2626 			 * Accumulated enough dirty pages? This doesn't apply
2627 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2628 			 * keep going because someone may be concurrently
2629 			 * dirtying pages, and we might have synced a lot of
2630 			 * newly appeared dirty pages, but have not synced all
2631 			 * of the old dirty pages.
2632 			 */
2633 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2634 				goto out;
2635 
2636 			/* If we can't merge this page, we are done. */
2637 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2638 				goto out;
2639 
2640 			folio_lock(folio);
2641 			/*
2642 			 * If the page is no longer dirty, or its mapping no
2643 			 * longer corresponds to inode we are writing (which
2644 			 * means it has been truncated or invalidated), or the
2645 			 * page is already under writeback and we are not doing
2646 			 * a data integrity writeback, skip the page
2647 			 */
2648 			if (!folio_test_dirty(folio) ||
2649 			    (folio_test_writeback(folio) &&
2650 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2651 			    unlikely(folio->mapping != mapping)) {
2652 				folio_unlock(folio);
2653 				continue;
2654 			}
2655 
2656 			folio_wait_writeback(folio);
2657 			BUG_ON(folio_test_writeback(folio));
2658 
2659 			/*
2660 			 * Should never happen but for buggy code in
2661 			 * other subsystems that call
2662 			 * set_page_dirty() without properly warning
2663 			 * the file system first.  See [1] for more
2664 			 * information.
2665 			 *
2666 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2667 			 */
2668 			if (!folio_buffers(folio)) {
2669 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2670 				folio_clear_dirty(folio);
2671 				folio_unlock(folio);
2672 				continue;
2673 			}
2674 
2675 			if (mpd->map.m_len == 0)
2676 				mpd->first_page = folio->index;
2677 			mpd->next_page = folio->index + folio_nr_pages(folio);
2678 			/*
2679 			 * Writeout for transaction commit where we cannot
2680 			 * modify metadata is simple. Just submit the page.
2681 			 */
2682 			if (!mpd->can_map) {
2683 				if (ext4_page_nomap_can_writeout(&folio->page)) {
2684 					err = mpage_submit_page(mpd, &folio->page);
2685 					if (err < 0)
2686 						goto out;
2687 				} else {
2688 					folio_unlock(folio);
2689 					mpd->first_page += folio_nr_pages(folio);
2690 				}
2691 			} else {
2692 				/* Add all dirty buffers to mpd */
2693 				lblk = ((ext4_lblk_t)folio->index) <<
2694 					(PAGE_SHIFT - blkbits);
2695 				head = folio_buffers(folio);
2696 				err = mpage_process_page_bufs(mpd, head, head,
2697 						lblk);
2698 				if (err <= 0)
2699 					goto out;
2700 				err = 0;
2701 			}
2702 			left -= folio_nr_pages(folio);
2703 		}
2704 		folio_batch_release(&fbatch);
2705 		cond_resched();
2706 	}
2707 	mpd->scanned_until_end = 1;
2708 	return 0;
2709 out:
2710 	folio_batch_release(&fbatch);
2711 	return err;
2712 }
2713 
2714 static int ext4_writepage_cb(struct folio *folio, struct writeback_control *wbc,
2715 			     void *data)
2716 {
2717 	return ext4_writepage(&folio->page, wbc);
2718 }
2719 
2720 static int ext4_do_writepages(struct mpage_da_data *mpd)
2721 {
2722 	struct writeback_control *wbc = mpd->wbc;
2723 	pgoff_t	writeback_index = 0;
2724 	long nr_to_write = wbc->nr_to_write;
2725 	int range_whole = 0;
2726 	int cycled = 1;
2727 	handle_t *handle = NULL;
2728 	struct inode *inode = mpd->inode;
2729 	struct address_space *mapping = inode->i_mapping;
2730 	int needed_blocks, rsv_blocks = 0, ret = 0;
2731 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2732 	struct blk_plug plug;
2733 	bool give_up_on_write = false;
2734 
2735 	trace_ext4_writepages(inode, wbc);
2736 
2737 	/*
2738 	 * No pages to write? This is mainly a kludge to avoid starting
2739 	 * a transaction for special inodes like journal inode on last iput()
2740 	 * because that could violate lock ordering on umount
2741 	 */
2742 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2743 		goto out_writepages;
2744 
2745 	if (ext4_should_journal_data(inode)) {
2746 		blk_start_plug(&plug);
2747 		ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL);
2748 		blk_finish_plug(&plug);
2749 		goto out_writepages;
2750 	}
2751 
2752 	/*
2753 	 * If the filesystem has aborted, it is read-only, so return
2754 	 * right away instead of dumping stack traces later on that
2755 	 * will obscure the real source of the problem.  We test
2756 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2757 	 * the latter could be true if the filesystem is mounted
2758 	 * read-only, and in that case, ext4_writepages should
2759 	 * *never* be called, so if that ever happens, we would want
2760 	 * the stack trace.
2761 	 */
2762 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2763 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2764 		ret = -EROFS;
2765 		goto out_writepages;
2766 	}
2767 
2768 	/*
2769 	 * If we have inline data and arrive here, it means that
2770 	 * we will soon create the block for the 1st page, so
2771 	 * we'd better clear the inline data here.
2772 	 */
2773 	if (ext4_has_inline_data(inode)) {
2774 		/* Just inode will be modified... */
2775 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2776 		if (IS_ERR(handle)) {
2777 			ret = PTR_ERR(handle);
2778 			goto out_writepages;
2779 		}
2780 		BUG_ON(ext4_test_inode_state(inode,
2781 				EXT4_STATE_MAY_INLINE_DATA));
2782 		ext4_destroy_inline_data(handle, inode);
2783 		ext4_journal_stop(handle);
2784 	}
2785 
2786 	if (ext4_should_dioread_nolock(inode)) {
2787 		/*
2788 		 * We may need to convert up to one extent per block in
2789 		 * the page and we may dirty the inode.
2790 		 */
2791 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2792 						PAGE_SIZE >> inode->i_blkbits);
2793 	}
2794 
2795 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2796 		range_whole = 1;
2797 
2798 	if (wbc->range_cyclic) {
2799 		writeback_index = mapping->writeback_index;
2800 		if (writeback_index)
2801 			cycled = 0;
2802 		mpd->first_page = writeback_index;
2803 		mpd->last_page = -1;
2804 	} else {
2805 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2806 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2807 	}
2808 
2809 	ext4_io_submit_init(&mpd->io_submit, wbc);
2810 retry:
2811 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812 		tag_pages_for_writeback(mapping, mpd->first_page,
2813 					mpd->last_page);
2814 	blk_start_plug(&plug);
2815 
2816 	/*
2817 	 * First writeback pages that don't need mapping - we can avoid
2818 	 * starting a transaction unnecessarily and also avoid being blocked
2819 	 * in the block layer on device congestion while having transaction
2820 	 * started.
2821 	 */
2822 	mpd->do_map = 0;
2823 	mpd->scanned_until_end = 0;
2824 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2825 	if (!mpd->io_submit.io_end) {
2826 		ret = -ENOMEM;
2827 		goto unplug;
2828 	}
2829 	ret = mpage_prepare_extent_to_map(mpd);
2830 	/* Unlock pages we didn't use */
2831 	mpage_release_unused_pages(mpd, false);
2832 	/* Submit prepared bio */
2833 	ext4_io_submit(&mpd->io_submit);
2834 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2835 	mpd->io_submit.io_end = NULL;
2836 	if (ret < 0)
2837 		goto unplug;
2838 
2839 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2840 		/* For each extent of pages we use new io_end */
2841 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2842 		if (!mpd->io_submit.io_end) {
2843 			ret = -ENOMEM;
2844 			break;
2845 		}
2846 
2847 		WARN_ON_ONCE(!mpd->can_map);
2848 		/*
2849 		 * We have two constraints: We find one extent to map and we
2850 		 * must always write out whole page (makes a difference when
2851 		 * blocksize < pagesize) so that we don't block on IO when we
2852 		 * try to write out the rest of the page. Journalled mode is
2853 		 * not supported by delalloc.
2854 		 */
2855 		BUG_ON(ext4_should_journal_data(inode));
2856 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2857 
2858 		/* start a new transaction */
2859 		handle = ext4_journal_start_with_reserve(inode,
2860 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861 		if (IS_ERR(handle)) {
2862 			ret = PTR_ERR(handle);
2863 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864 			       "%ld pages, ino %lu; err %d", __func__,
2865 				wbc->nr_to_write, inode->i_ino, ret);
2866 			/* Release allocated io_end */
2867 			ext4_put_io_end(mpd->io_submit.io_end);
2868 			mpd->io_submit.io_end = NULL;
2869 			break;
2870 		}
2871 		mpd->do_map = 1;
2872 
2873 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2874 		ret = mpage_prepare_extent_to_map(mpd);
2875 		if (!ret && mpd->map.m_len)
2876 			ret = mpage_map_and_submit_extent(handle, mpd,
2877 					&give_up_on_write);
2878 		/*
2879 		 * Caution: If the handle is synchronous,
2880 		 * ext4_journal_stop() can wait for transaction commit
2881 		 * to finish which may depend on writeback of pages to
2882 		 * complete or on page lock to be released.  In that
2883 		 * case, we have to wait until after we have
2884 		 * submitted all the IO, released page locks we hold,
2885 		 * and dropped io_end reference (for extent conversion
2886 		 * to be able to complete) before stopping the handle.
2887 		 */
2888 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2889 			ext4_journal_stop(handle);
2890 			handle = NULL;
2891 			mpd->do_map = 0;
2892 		}
2893 		/* Unlock pages we didn't use */
2894 		mpage_release_unused_pages(mpd, give_up_on_write);
2895 		/* Submit prepared bio */
2896 		ext4_io_submit(&mpd->io_submit);
2897 
2898 		/*
2899 		 * Drop our io_end reference we got from init. We have
2900 		 * to be careful and use deferred io_end finishing if
2901 		 * we are still holding the transaction as we can
2902 		 * release the last reference to io_end which may end
2903 		 * up doing unwritten extent conversion.
2904 		 */
2905 		if (handle) {
2906 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2907 			ext4_journal_stop(handle);
2908 		} else
2909 			ext4_put_io_end(mpd->io_submit.io_end);
2910 		mpd->io_submit.io_end = NULL;
2911 
2912 		if (ret == -ENOSPC && sbi->s_journal) {
2913 			/*
2914 			 * Commit the transaction which would
2915 			 * free blocks released in the transaction
2916 			 * and try again
2917 			 */
2918 			jbd2_journal_force_commit_nested(sbi->s_journal);
2919 			ret = 0;
2920 			continue;
2921 		}
2922 		/* Fatal error - ENOMEM, EIO... */
2923 		if (ret)
2924 			break;
2925 	}
2926 unplug:
2927 	blk_finish_plug(&plug);
2928 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2929 		cycled = 1;
2930 		mpd->last_page = writeback_index - 1;
2931 		mpd->first_page = 0;
2932 		goto retry;
2933 	}
2934 
2935 	/* Update index */
2936 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2937 		/*
2938 		 * Set the writeback_index so that range_cyclic
2939 		 * mode will write it back later
2940 		 */
2941 		mapping->writeback_index = mpd->first_page;
2942 
2943 out_writepages:
2944 	trace_ext4_writepages_result(inode, wbc, ret,
2945 				     nr_to_write - wbc->nr_to_write);
2946 	return ret;
2947 }
2948 
2949 static int ext4_writepages(struct address_space *mapping,
2950 			   struct writeback_control *wbc)
2951 {
2952 	struct super_block *sb = mapping->host->i_sb;
2953 	struct mpage_da_data mpd = {
2954 		.inode = mapping->host,
2955 		.wbc = wbc,
2956 		.can_map = 1,
2957 	};
2958 	int ret;
2959 
2960 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2961 		return -EIO;
2962 
2963 	percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2964 	ret = ext4_do_writepages(&mpd);
2965 	percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2966 
2967 	return ret;
2968 }
2969 
2970 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2971 {
2972 	struct writeback_control wbc = {
2973 		.sync_mode = WB_SYNC_ALL,
2974 		.nr_to_write = LONG_MAX,
2975 		.range_start = jinode->i_dirty_start,
2976 		.range_end = jinode->i_dirty_end,
2977 	};
2978 	struct mpage_da_data mpd = {
2979 		.inode = jinode->i_vfs_inode,
2980 		.wbc = &wbc,
2981 		.can_map = 0,
2982 	};
2983 	return ext4_do_writepages(&mpd);
2984 }
2985 
2986 static int ext4_dax_writepages(struct address_space *mapping,
2987 			       struct writeback_control *wbc)
2988 {
2989 	int ret;
2990 	long nr_to_write = wbc->nr_to_write;
2991 	struct inode *inode = mapping->host;
2992 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2993 
2994 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2995 		return -EIO;
2996 
2997 	percpu_down_read(&sbi->s_writepages_rwsem);
2998 	trace_ext4_writepages(inode, wbc);
2999 
3000 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
3001 	trace_ext4_writepages_result(inode, wbc, ret,
3002 				     nr_to_write - wbc->nr_to_write);
3003 	percpu_up_read(&sbi->s_writepages_rwsem);
3004 	return ret;
3005 }
3006 
3007 static int ext4_nonda_switch(struct super_block *sb)
3008 {
3009 	s64 free_clusters, dirty_clusters;
3010 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3011 
3012 	/*
3013 	 * switch to non delalloc mode if we are running low
3014 	 * on free block. The free block accounting via percpu
3015 	 * counters can get slightly wrong with percpu_counter_batch getting
3016 	 * accumulated on each CPU without updating global counters
3017 	 * Delalloc need an accurate free block accounting. So switch
3018 	 * to non delalloc when we are near to error range.
3019 	 */
3020 	free_clusters =
3021 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3022 	dirty_clusters =
3023 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3024 	/*
3025 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3026 	 */
3027 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3028 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3029 
3030 	if (2 * free_clusters < 3 * dirty_clusters ||
3031 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3032 		/*
3033 		 * free block count is less than 150% of dirty blocks
3034 		 * or free blocks is less than watermark
3035 		 */
3036 		return 1;
3037 	}
3038 	return 0;
3039 }
3040 
3041 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3042 			       loff_t pos, unsigned len,
3043 			       struct page **pagep, void **fsdata)
3044 {
3045 	int ret, retries = 0;
3046 	struct page *page;
3047 	pgoff_t index;
3048 	struct inode *inode = mapping->host;
3049 
3050 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3051 		return -EIO;
3052 
3053 	index = pos >> PAGE_SHIFT;
3054 
3055 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3056 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3057 		return ext4_write_begin(file, mapping, pos,
3058 					len, pagep, fsdata);
3059 	}
3060 	*fsdata = (void *)0;
3061 	trace_ext4_da_write_begin(inode, pos, len);
3062 
3063 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3064 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
3065 						      pagep, fsdata);
3066 		if (ret < 0)
3067 			return ret;
3068 		if (ret == 1)
3069 			return 0;
3070 	}
3071 
3072 retry:
3073 	page = grab_cache_page_write_begin(mapping, index);
3074 	if (!page)
3075 		return -ENOMEM;
3076 
3077 	/* In case writeback began while the page was unlocked */
3078 	wait_for_stable_page(page);
3079 
3080 #ifdef CONFIG_FS_ENCRYPTION
3081 	ret = ext4_block_write_begin(page, pos, len,
3082 				     ext4_da_get_block_prep);
3083 #else
3084 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3085 #endif
3086 	if (ret < 0) {
3087 		unlock_page(page);
3088 		put_page(page);
3089 		/*
3090 		 * block_write_begin may have instantiated a few blocks
3091 		 * outside i_size.  Trim these off again. Don't need
3092 		 * i_size_read because we hold inode lock.
3093 		 */
3094 		if (pos + len > inode->i_size)
3095 			ext4_truncate_failed_write(inode);
3096 
3097 		if (ret == -ENOSPC &&
3098 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3099 			goto retry;
3100 		return ret;
3101 	}
3102 
3103 	*pagep = page;
3104 	return ret;
3105 }
3106 
3107 /*
3108  * Check if we should update i_disksize
3109  * when write to the end of file but not require block allocation
3110  */
3111 static int ext4_da_should_update_i_disksize(struct page *page,
3112 					    unsigned long offset)
3113 {
3114 	struct buffer_head *bh;
3115 	struct inode *inode = page->mapping->host;
3116 	unsigned int idx;
3117 	int i;
3118 
3119 	bh = page_buffers(page);
3120 	idx = offset >> inode->i_blkbits;
3121 
3122 	for (i = 0; i < idx; i++)
3123 		bh = bh->b_this_page;
3124 
3125 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3126 		return 0;
3127 	return 1;
3128 }
3129 
3130 static int ext4_da_write_end(struct file *file,
3131 			     struct address_space *mapping,
3132 			     loff_t pos, unsigned len, unsigned copied,
3133 			     struct page *page, void *fsdata)
3134 {
3135 	struct inode *inode = mapping->host;
3136 	loff_t new_i_size;
3137 	unsigned long start, end;
3138 	int write_mode = (int)(unsigned long)fsdata;
3139 
3140 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 		return ext4_write_end(file, mapping, pos,
3142 				      len, copied, page, fsdata);
3143 
3144 	trace_ext4_da_write_end(inode, pos, len, copied);
3145 
3146 	if (write_mode != CONVERT_INLINE_DATA &&
3147 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3148 	    ext4_has_inline_data(inode))
3149 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3150 
3151 	start = pos & (PAGE_SIZE - 1);
3152 	end = start + copied - 1;
3153 
3154 	/*
3155 	 * Since we are holding inode lock, we are sure i_disksize <=
3156 	 * i_size. We also know that if i_disksize < i_size, there are
3157 	 * delalloc writes pending in the range upto i_size. If the end of
3158 	 * the current write is <= i_size, there's no need to touch
3159 	 * i_disksize since writeback will push i_disksize upto i_size
3160 	 * eventually. If the end of the current write is > i_size and
3161 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3162 	 * check), we need to update i_disksize here as neither
3163 	 * ext4_writepage() nor certain ext4_writepages() paths not
3164 	 * allocating blocks update i_disksize.
3165 	 *
3166 	 * Note that we defer inode dirtying to generic_write_end() /
3167 	 * ext4_da_write_inline_data_end().
3168 	 */
3169 	new_i_size = pos + copied;
3170 	if (copied && new_i_size > inode->i_size &&
3171 	    ext4_da_should_update_i_disksize(page, end))
3172 		ext4_update_i_disksize(inode, new_i_size);
3173 
3174 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3175 }
3176 
3177 /*
3178  * Force all delayed allocation blocks to be allocated for a given inode.
3179  */
3180 int ext4_alloc_da_blocks(struct inode *inode)
3181 {
3182 	trace_ext4_alloc_da_blocks(inode);
3183 
3184 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3185 		return 0;
3186 
3187 	/*
3188 	 * We do something simple for now.  The filemap_flush() will
3189 	 * also start triggering a write of the data blocks, which is
3190 	 * not strictly speaking necessary (and for users of
3191 	 * laptop_mode, not even desirable).  However, to do otherwise
3192 	 * would require replicating code paths in:
3193 	 *
3194 	 * ext4_writepages() ->
3195 	 *    write_cache_pages() ---> (via passed in callback function)
3196 	 *        __mpage_da_writepage() -->
3197 	 *           mpage_add_bh_to_extent()
3198 	 *           mpage_da_map_blocks()
3199 	 *
3200 	 * The problem is that write_cache_pages(), located in
3201 	 * mm/page-writeback.c, marks pages clean in preparation for
3202 	 * doing I/O, which is not desirable if we're not planning on
3203 	 * doing I/O at all.
3204 	 *
3205 	 * We could call write_cache_pages(), and then redirty all of
3206 	 * the pages by calling redirty_page_for_writepage() but that
3207 	 * would be ugly in the extreme.  So instead we would need to
3208 	 * replicate parts of the code in the above functions,
3209 	 * simplifying them because we wouldn't actually intend to
3210 	 * write out the pages, but rather only collect contiguous
3211 	 * logical block extents, call the multi-block allocator, and
3212 	 * then update the buffer heads with the block allocations.
3213 	 *
3214 	 * For now, though, we'll cheat by calling filemap_flush(),
3215 	 * which will map the blocks, and start the I/O, but not
3216 	 * actually wait for the I/O to complete.
3217 	 */
3218 	return filemap_flush(inode->i_mapping);
3219 }
3220 
3221 /*
3222  * bmap() is special.  It gets used by applications such as lilo and by
3223  * the swapper to find the on-disk block of a specific piece of data.
3224  *
3225  * Naturally, this is dangerous if the block concerned is still in the
3226  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3227  * filesystem and enables swap, then they may get a nasty shock when the
3228  * data getting swapped to that swapfile suddenly gets overwritten by
3229  * the original zero's written out previously to the journal and
3230  * awaiting writeback in the kernel's buffer cache.
3231  *
3232  * So, if we see any bmap calls here on a modified, data-journaled file,
3233  * take extra steps to flush any blocks which might be in the cache.
3234  */
3235 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3236 {
3237 	struct inode *inode = mapping->host;
3238 	journal_t *journal;
3239 	sector_t ret = 0;
3240 	int err;
3241 
3242 	inode_lock_shared(inode);
3243 	/*
3244 	 * We can get here for an inline file via the FIBMAP ioctl
3245 	 */
3246 	if (ext4_has_inline_data(inode))
3247 		goto out;
3248 
3249 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3250 			test_opt(inode->i_sb, DELALLOC)) {
3251 		/*
3252 		 * With delalloc we want to sync the file
3253 		 * so that we can make sure we allocate
3254 		 * blocks for file
3255 		 */
3256 		filemap_write_and_wait(mapping);
3257 	}
3258 
3259 	if (EXT4_JOURNAL(inode) &&
3260 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3261 		/*
3262 		 * This is a REALLY heavyweight approach, but the use of
3263 		 * bmap on dirty files is expected to be extremely rare:
3264 		 * only if we run lilo or swapon on a freshly made file
3265 		 * do we expect this to happen.
3266 		 *
3267 		 * (bmap requires CAP_SYS_RAWIO so this does not
3268 		 * represent an unprivileged user DOS attack --- we'd be
3269 		 * in trouble if mortal users could trigger this path at
3270 		 * will.)
3271 		 *
3272 		 * NB. EXT4_STATE_JDATA is not set on files other than
3273 		 * regular files.  If somebody wants to bmap a directory
3274 		 * or symlink and gets confused because the buffer
3275 		 * hasn't yet been flushed to disk, they deserve
3276 		 * everything they get.
3277 		 */
3278 
3279 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3280 		journal = EXT4_JOURNAL(inode);
3281 		jbd2_journal_lock_updates(journal);
3282 		err = jbd2_journal_flush(journal, 0);
3283 		jbd2_journal_unlock_updates(journal);
3284 
3285 		if (err)
3286 			goto out;
3287 	}
3288 
3289 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3290 
3291 out:
3292 	inode_unlock_shared(inode);
3293 	return ret;
3294 }
3295 
3296 static int ext4_read_folio(struct file *file, struct folio *folio)
3297 {
3298 	struct page *page = &folio->page;
3299 	int ret = -EAGAIN;
3300 	struct inode *inode = page->mapping->host;
3301 
3302 	trace_ext4_readpage(page);
3303 
3304 	if (ext4_has_inline_data(inode))
3305 		ret = ext4_readpage_inline(inode, page);
3306 
3307 	if (ret == -EAGAIN)
3308 		return ext4_mpage_readpages(inode, NULL, page);
3309 
3310 	return ret;
3311 }
3312 
3313 static void ext4_readahead(struct readahead_control *rac)
3314 {
3315 	struct inode *inode = rac->mapping->host;
3316 
3317 	/* If the file has inline data, no need to do readahead. */
3318 	if (ext4_has_inline_data(inode))
3319 		return;
3320 
3321 	ext4_mpage_readpages(inode, rac, NULL);
3322 }
3323 
3324 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3325 				size_t length)
3326 {
3327 	trace_ext4_invalidate_folio(folio, offset, length);
3328 
3329 	/* No journalling happens on data buffers when this function is used */
3330 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3331 
3332 	block_invalidate_folio(folio, offset, length);
3333 }
3334 
3335 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3336 					    size_t offset, size_t length)
3337 {
3338 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3339 
3340 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3341 
3342 	/*
3343 	 * If it's a full truncate we just forget about the pending dirtying
3344 	 */
3345 	if (offset == 0 && length == folio_size(folio))
3346 		folio_clear_checked(folio);
3347 
3348 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3349 }
3350 
3351 /* Wrapper for aops... */
3352 static void ext4_journalled_invalidate_folio(struct folio *folio,
3353 					   size_t offset,
3354 					   size_t length)
3355 {
3356 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3357 }
3358 
3359 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3360 {
3361 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3362 
3363 	trace_ext4_releasepage(&folio->page);
3364 
3365 	/* Page has dirty journalled data -> cannot release */
3366 	if (folio_test_checked(folio))
3367 		return false;
3368 	if (journal)
3369 		return jbd2_journal_try_to_free_buffers(journal, folio);
3370 	else
3371 		return try_to_free_buffers(folio);
3372 }
3373 
3374 static bool ext4_inode_datasync_dirty(struct inode *inode)
3375 {
3376 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3377 
3378 	if (journal) {
3379 		if (jbd2_transaction_committed(journal,
3380 			EXT4_I(inode)->i_datasync_tid))
3381 			return false;
3382 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3383 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3384 		return true;
3385 	}
3386 
3387 	/* Any metadata buffers to write? */
3388 	if (!list_empty(&inode->i_mapping->private_list))
3389 		return true;
3390 	return inode->i_state & I_DIRTY_DATASYNC;
3391 }
3392 
3393 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3394 			   struct ext4_map_blocks *map, loff_t offset,
3395 			   loff_t length, unsigned int flags)
3396 {
3397 	u8 blkbits = inode->i_blkbits;
3398 
3399 	/*
3400 	 * Writes that span EOF might trigger an I/O size update on completion,
3401 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3402 	 * there is no other metadata changes being made or are pending.
3403 	 */
3404 	iomap->flags = 0;
3405 	if (ext4_inode_datasync_dirty(inode) ||
3406 	    offset + length > i_size_read(inode))
3407 		iomap->flags |= IOMAP_F_DIRTY;
3408 
3409 	if (map->m_flags & EXT4_MAP_NEW)
3410 		iomap->flags |= IOMAP_F_NEW;
3411 
3412 	if (flags & IOMAP_DAX)
3413 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3414 	else
3415 		iomap->bdev = inode->i_sb->s_bdev;
3416 	iomap->offset = (u64) map->m_lblk << blkbits;
3417 	iomap->length = (u64) map->m_len << blkbits;
3418 
3419 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3420 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3421 		iomap->flags |= IOMAP_F_MERGED;
3422 
3423 	/*
3424 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3425 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3426 	 * set. In order for any allocated unwritten extents to be converted
3427 	 * into written extents correctly within the ->end_io() handler, we
3428 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3429 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3430 	 * been set first.
3431 	 */
3432 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3433 		iomap->type = IOMAP_UNWRITTEN;
3434 		iomap->addr = (u64) map->m_pblk << blkbits;
3435 		if (flags & IOMAP_DAX)
3436 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3437 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3438 		iomap->type = IOMAP_MAPPED;
3439 		iomap->addr = (u64) map->m_pblk << blkbits;
3440 		if (flags & IOMAP_DAX)
3441 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3442 	} else {
3443 		iomap->type = IOMAP_HOLE;
3444 		iomap->addr = IOMAP_NULL_ADDR;
3445 	}
3446 }
3447 
3448 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3449 			    unsigned int flags)
3450 {
3451 	handle_t *handle;
3452 	u8 blkbits = inode->i_blkbits;
3453 	int ret, dio_credits, m_flags = 0, retries = 0;
3454 
3455 	/*
3456 	 * Trim the mapping request to the maximum value that we can map at
3457 	 * once for direct I/O.
3458 	 */
3459 	if (map->m_len > DIO_MAX_BLOCKS)
3460 		map->m_len = DIO_MAX_BLOCKS;
3461 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3462 
3463 retry:
3464 	/*
3465 	 * Either we allocate blocks and then don't get an unwritten extent, so
3466 	 * in that case we have reserved enough credits. Or, the blocks are
3467 	 * already allocated and unwritten. In that case, the extent conversion
3468 	 * fits into the credits as well.
3469 	 */
3470 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3471 	if (IS_ERR(handle))
3472 		return PTR_ERR(handle);
3473 
3474 	/*
3475 	 * DAX and direct I/O are the only two operations that are currently
3476 	 * supported with IOMAP_WRITE.
3477 	 */
3478 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3479 	if (flags & IOMAP_DAX)
3480 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3481 	/*
3482 	 * We use i_size instead of i_disksize here because delalloc writeback
3483 	 * can complete at any point during the I/O and subsequently push the
3484 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3485 	 * happening and thus expose allocated blocks to direct I/O reads.
3486 	 */
3487 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3488 		m_flags = EXT4_GET_BLOCKS_CREATE;
3489 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3490 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3491 
3492 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3493 
3494 	/*
3495 	 * We cannot fill holes in indirect tree based inodes as that could
3496 	 * expose stale data in the case of a crash. Use the magic error code
3497 	 * to fallback to buffered I/O.
3498 	 */
3499 	if (!m_flags && !ret)
3500 		ret = -ENOTBLK;
3501 
3502 	ext4_journal_stop(handle);
3503 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3504 		goto retry;
3505 
3506 	return ret;
3507 }
3508 
3509 
3510 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3511 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3512 {
3513 	int ret;
3514 	struct ext4_map_blocks map;
3515 	u8 blkbits = inode->i_blkbits;
3516 
3517 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3518 		return -EINVAL;
3519 
3520 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3521 		return -ERANGE;
3522 
3523 	/*
3524 	 * Calculate the first and last logical blocks respectively.
3525 	 */
3526 	map.m_lblk = offset >> blkbits;
3527 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3528 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3529 
3530 	if (flags & IOMAP_WRITE) {
3531 		/*
3532 		 * We check here if the blocks are already allocated, then we
3533 		 * don't need to start a journal txn and we can directly return
3534 		 * the mapping information. This could boost performance
3535 		 * especially in multi-threaded overwrite requests.
3536 		 */
3537 		if (offset + length <= i_size_read(inode)) {
3538 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3539 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3540 				goto out;
3541 		}
3542 		ret = ext4_iomap_alloc(inode, &map, flags);
3543 	} else {
3544 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3545 	}
3546 
3547 	if (ret < 0)
3548 		return ret;
3549 out:
3550 	/*
3551 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3552 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3553 	 * limiting the length of the mapping returned.
3554 	 */
3555 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3556 
3557 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3558 
3559 	return 0;
3560 }
3561 
3562 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3563 		loff_t length, unsigned flags, struct iomap *iomap,
3564 		struct iomap *srcmap)
3565 {
3566 	int ret;
3567 
3568 	/*
3569 	 * Even for writes we don't need to allocate blocks, so just pretend
3570 	 * we are reading to save overhead of starting a transaction.
3571 	 */
3572 	flags &= ~IOMAP_WRITE;
3573 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3574 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3575 	return ret;
3576 }
3577 
3578 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3579 			  ssize_t written, unsigned flags, struct iomap *iomap)
3580 {
3581 	/*
3582 	 * Check to see whether an error occurred while writing out the data to
3583 	 * the allocated blocks. If so, return the magic error code so that we
3584 	 * fallback to buffered I/O and attempt to complete the remainder of
3585 	 * the I/O. Any blocks that may have been allocated in preparation for
3586 	 * the direct I/O will be reused during buffered I/O.
3587 	 */
3588 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3589 		return -ENOTBLK;
3590 
3591 	return 0;
3592 }
3593 
3594 const struct iomap_ops ext4_iomap_ops = {
3595 	.iomap_begin		= ext4_iomap_begin,
3596 	.iomap_end		= ext4_iomap_end,
3597 };
3598 
3599 const struct iomap_ops ext4_iomap_overwrite_ops = {
3600 	.iomap_begin		= ext4_iomap_overwrite_begin,
3601 	.iomap_end		= ext4_iomap_end,
3602 };
3603 
3604 static bool ext4_iomap_is_delalloc(struct inode *inode,
3605 				   struct ext4_map_blocks *map)
3606 {
3607 	struct extent_status es;
3608 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3609 
3610 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3611 				  map->m_lblk, end, &es);
3612 
3613 	if (!es.es_len || es.es_lblk > end)
3614 		return false;
3615 
3616 	if (es.es_lblk > map->m_lblk) {
3617 		map->m_len = es.es_lblk - map->m_lblk;
3618 		return false;
3619 	}
3620 
3621 	offset = map->m_lblk - es.es_lblk;
3622 	map->m_len = es.es_len - offset;
3623 
3624 	return true;
3625 }
3626 
3627 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3628 				   loff_t length, unsigned int flags,
3629 				   struct iomap *iomap, struct iomap *srcmap)
3630 {
3631 	int ret;
3632 	bool delalloc = false;
3633 	struct ext4_map_blocks map;
3634 	u8 blkbits = inode->i_blkbits;
3635 
3636 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3637 		return -EINVAL;
3638 
3639 	if (ext4_has_inline_data(inode)) {
3640 		ret = ext4_inline_data_iomap(inode, iomap);
3641 		if (ret != -EAGAIN) {
3642 			if (ret == 0 && offset >= iomap->length)
3643 				ret = -ENOENT;
3644 			return ret;
3645 		}
3646 	}
3647 
3648 	/*
3649 	 * Calculate the first and last logical block respectively.
3650 	 */
3651 	map.m_lblk = offset >> blkbits;
3652 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3653 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3654 
3655 	/*
3656 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3657 	 * So handle it here itself instead of querying ext4_map_blocks().
3658 	 * Since ext4_map_blocks() will warn about it and will return
3659 	 * -EIO error.
3660 	 */
3661 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3662 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3663 
3664 		if (offset >= sbi->s_bitmap_maxbytes) {
3665 			map.m_flags = 0;
3666 			goto set_iomap;
3667 		}
3668 	}
3669 
3670 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3671 	if (ret < 0)
3672 		return ret;
3673 	if (ret == 0)
3674 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3675 
3676 set_iomap:
3677 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3678 	if (delalloc && iomap->type == IOMAP_HOLE)
3679 		iomap->type = IOMAP_DELALLOC;
3680 
3681 	return 0;
3682 }
3683 
3684 const struct iomap_ops ext4_iomap_report_ops = {
3685 	.iomap_begin = ext4_iomap_begin_report,
3686 };
3687 
3688 /*
3689  * Whenever the folio is being dirtied, corresponding buffers should already
3690  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3691  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3692  * lists here because ->dirty_folio is called under VFS locks and the folio
3693  * is not necessarily locked.
3694  *
3695  * We cannot just dirty the folio and leave attached buffers clean, because the
3696  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3697  * or jbddirty because all the journalling code will explode.
3698  *
3699  * So what we do is to mark the folio "pending dirty" and next time writepage
3700  * is called, propagate that into the buffers appropriately.
3701  */
3702 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3703 		struct folio *folio)
3704 {
3705 	WARN_ON_ONCE(!folio_buffers(folio));
3706 	folio_set_checked(folio);
3707 	return filemap_dirty_folio(mapping, folio);
3708 }
3709 
3710 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3711 {
3712 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3713 	WARN_ON_ONCE(!folio_buffers(folio));
3714 	return block_dirty_folio(mapping, folio);
3715 }
3716 
3717 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3718 				    struct file *file, sector_t *span)
3719 {
3720 	return iomap_swapfile_activate(sis, file, span,
3721 				       &ext4_iomap_report_ops);
3722 }
3723 
3724 static const struct address_space_operations ext4_aops = {
3725 	.read_folio		= ext4_read_folio,
3726 	.readahead		= ext4_readahead,
3727 	.writepages		= ext4_writepages,
3728 	.write_begin		= ext4_write_begin,
3729 	.write_end		= ext4_write_end,
3730 	.dirty_folio		= ext4_dirty_folio,
3731 	.bmap			= ext4_bmap,
3732 	.invalidate_folio	= ext4_invalidate_folio,
3733 	.release_folio		= ext4_release_folio,
3734 	.direct_IO		= noop_direct_IO,
3735 	.migrate_folio		= buffer_migrate_folio,
3736 	.is_partially_uptodate  = block_is_partially_uptodate,
3737 	.error_remove_page	= generic_error_remove_page,
3738 	.swap_activate		= ext4_iomap_swap_activate,
3739 };
3740 
3741 static const struct address_space_operations ext4_journalled_aops = {
3742 	.read_folio		= ext4_read_folio,
3743 	.readahead		= ext4_readahead,
3744 	.writepages		= ext4_writepages,
3745 	.write_begin		= ext4_write_begin,
3746 	.write_end		= ext4_journalled_write_end,
3747 	.dirty_folio		= ext4_journalled_dirty_folio,
3748 	.bmap			= ext4_bmap,
3749 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3750 	.release_folio		= ext4_release_folio,
3751 	.direct_IO		= noop_direct_IO,
3752 	.migrate_folio		= buffer_migrate_folio_norefs,
3753 	.is_partially_uptodate  = block_is_partially_uptodate,
3754 	.error_remove_page	= generic_error_remove_page,
3755 	.swap_activate		= ext4_iomap_swap_activate,
3756 };
3757 
3758 static const struct address_space_operations ext4_da_aops = {
3759 	.read_folio		= ext4_read_folio,
3760 	.readahead		= ext4_readahead,
3761 	.writepages		= ext4_writepages,
3762 	.write_begin		= ext4_da_write_begin,
3763 	.write_end		= ext4_da_write_end,
3764 	.dirty_folio		= ext4_dirty_folio,
3765 	.bmap			= ext4_bmap,
3766 	.invalidate_folio	= ext4_invalidate_folio,
3767 	.release_folio		= ext4_release_folio,
3768 	.direct_IO		= noop_direct_IO,
3769 	.migrate_folio		= buffer_migrate_folio,
3770 	.is_partially_uptodate  = block_is_partially_uptodate,
3771 	.error_remove_page	= generic_error_remove_page,
3772 	.swap_activate		= ext4_iomap_swap_activate,
3773 };
3774 
3775 static const struct address_space_operations ext4_dax_aops = {
3776 	.writepages		= ext4_dax_writepages,
3777 	.direct_IO		= noop_direct_IO,
3778 	.dirty_folio		= noop_dirty_folio,
3779 	.bmap			= ext4_bmap,
3780 	.swap_activate		= ext4_iomap_swap_activate,
3781 };
3782 
3783 void ext4_set_aops(struct inode *inode)
3784 {
3785 	switch (ext4_inode_journal_mode(inode)) {
3786 	case EXT4_INODE_ORDERED_DATA_MODE:
3787 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3788 		break;
3789 	case EXT4_INODE_JOURNAL_DATA_MODE:
3790 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3791 		return;
3792 	default:
3793 		BUG();
3794 	}
3795 	if (IS_DAX(inode))
3796 		inode->i_mapping->a_ops = &ext4_dax_aops;
3797 	else if (test_opt(inode->i_sb, DELALLOC))
3798 		inode->i_mapping->a_ops = &ext4_da_aops;
3799 	else
3800 		inode->i_mapping->a_ops = &ext4_aops;
3801 }
3802 
3803 static int __ext4_block_zero_page_range(handle_t *handle,
3804 		struct address_space *mapping, loff_t from, loff_t length)
3805 {
3806 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3807 	unsigned offset = from & (PAGE_SIZE-1);
3808 	unsigned blocksize, pos;
3809 	ext4_lblk_t iblock;
3810 	struct inode *inode = mapping->host;
3811 	struct buffer_head *bh;
3812 	struct page *page;
3813 	int err = 0;
3814 
3815 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3816 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3817 	if (!page)
3818 		return -ENOMEM;
3819 
3820 	blocksize = inode->i_sb->s_blocksize;
3821 
3822 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3823 
3824 	if (!page_has_buffers(page))
3825 		create_empty_buffers(page, blocksize, 0);
3826 
3827 	/* Find the buffer that contains "offset" */
3828 	bh = page_buffers(page);
3829 	pos = blocksize;
3830 	while (offset >= pos) {
3831 		bh = bh->b_this_page;
3832 		iblock++;
3833 		pos += blocksize;
3834 	}
3835 	if (buffer_freed(bh)) {
3836 		BUFFER_TRACE(bh, "freed: skip");
3837 		goto unlock;
3838 	}
3839 	if (!buffer_mapped(bh)) {
3840 		BUFFER_TRACE(bh, "unmapped");
3841 		ext4_get_block(inode, iblock, bh, 0);
3842 		/* unmapped? It's a hole - nothing to do */
3843 		if (!buffer_mapped(bh)) {
3844 			BUFFER_TRACE(bh, "still unmapped");
3845 			goto unlock;
3846 		}
3847 	}
3848 
3849 	/* Ok, it's mapped. Make sure it's up-to-date */
3850 	if (PageUptodate(page))
3851 		set_buffer_uptodate(bh);
3852 
3853 	if (!buffer_uptodate(bh)) {
3854 		err = ext4_read_bh_lock(bh, 0, true);
3855 		if (err)
3856 			goto unlock;
3857 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3858 			/* We expect the key to be set. */
3859 			BUG_ON(!fscrypt_has_encryption_key(inode));
3860 			err = fscrypt_decrypt_pagecache_blocks(page_folio(page),
3861 							       blocksize,
3862 							       bh_offset(bh));
3863 			if (err) {
3864 				clear_buffer_uptodate(bh);
3865 				goto unlock;
3866 			}
3867 		}
3868 	}
3869 	if (ext4_should_journal_data(inode)) {
3870 		BUFFER_TRACE(bh, "get write access");
3871 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3872 						    EXT4_JTR_NONE);
3873 		if (err)
3874 			goto unlock;
3875 	}
3876 	zero_user(page, offset, length);
3877 	BUFFER_TRACE(bh, "zeroed end of block");
3878 
3879 	if (ext4_should_journal_data(inode)) {
3880 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3881 	} else {
3882 		err = 0;
3883 		mark_buffer_dirty(bh);
3884 		if (ext4_should_order_data(inode))
3885 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3886 					length);
3887 	}
3888 
3889 unlock:
3890 	unlock_page(page);
3891 	put_page(page);
3892 	return err;
3893 }
3894 
3895 /*
3896  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3897  * starting from file offset 'from'.  The range to be zero'd must
3898  * be contained with in one block.  If the specified range exceeds
3899  * the end of the block it will be shortened to end of the block
3900  * that corresponds to 'from'
3901  */
3902 static int ext4_block_zero_page_range(handle_t *handle,
3903 		struct address_space *mapping, loff_t from, loff_t length)
3904 {
3905 	struct inode *inode = mapping->host;
3906 	unsigned offset = from & (PAGE_SIZE-1);
3907 	unsigned blocksize = inode->i_sb->s_blocksize;
3908 	unsigned max = blocksize - (offset & (blocksize - 1));
3909 
3910 	/*
3911 	 * correct length if it does not fall between
3912 	 * 'from' and the end of the block
3913 	 */
3914 	if (length > max || length < 0)
3915 		length = max;
3916 
3917 	if (IS_DAX(inode)) {
3918 		return dax_zero_range(inode, from, length, NULL,
3919 				      &ext4_iomap_ops);
3920 	}
3921 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3922 }
3923 
3924 /*
3925  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3926  * up to the end of the block which corresponds to `from'.
3927  * This required during truncate. We need to physically zero the tail end
3928  * of that block so it doesn't yield old data if the file is later grown.
3929  */
3930 static int ext4_block_truncate_page(handle_t *handle,
3931 		struct address_space *mapping, loff_t from)
3932 {
3933 	unsigned offset = from & (PAGE_SIZE-1);
3934 	unsigned length;
3935 	unsigned blocksize;
3936 	struct inode *inode = mapping->host;
3937 
3938 	/* If we are processing an encrypted inode during orphan list handling */
3939 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3940 		return 0;
3941 
3942 	blocksize = inode->i_sb->s_blocksize;
3943 	length = blocksize - (offset & (blocksize - 1));
3944 
3945 	return ext4_block_zero_page_range(handle, mapping, from, length);
3946 }
3947 
3948 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3949 			     loff_t lstart, loff_t length)
3950 {
3951 	struct super_block *sb = inode->i_sb;
3952 	struct address_space *mapping = inode->i_mapping;
3953 	unsigned partial_start, partial_end;
3954 	ext4_fsblk_t start, end;
3955 	loff_t byte_end = (lstart + length - 1);
3956 	int err = 0;
3957 
3958 	partial_start = lstart & (sb->s_blocksize - 1);
3959 	partial_end = byte_end & (sb->s_blocksize - 1);
3960 
3961 	start = lstart >> sb->s_blocksize_bits;
3962 	end = byte_end >> sb->s_blocksize_bits;
3963 
3964 	/* Handle partial zero within the single block */
3965 	if (start == end &&
3966 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3967 		err = ext4_block_zero_page_range(handle, mapping,
3968 						 lstart, length);
3969 		return err;
3970 	}
3971 	/* Handle partial zero out on the start of the range */
3972 	if (partial_start) {
3973 		err = ext4_block_zero_page_range(handle, mapping,
3974 						 lstart, sb->s_blocksize);
3975 		if (err)
3976 			return err;
3977 	}
3978 	/* Handle partial zero out on the end of the range */
3979 	if (partial_end != sb->s_blocksize - 1)
3980 		err = ext4_block_zero_page_range(handle, mapping,
3981 						 byte_end - partial_end,
3982 						 partial_end + 1);
3983 	return err;
3984 }
3985 
3986 int ext4_can_truncate(struct inode *inode)
3987 {
3988 	if (S_ISREG(inode->i_mode))
3989 		return 1;
3990 	if (S_ISDIR(inode->i_mode))
3991 		return 1;
3992 	if (S_ISLNK(inode->i_mode))
3993 		return !ext4_inode_is_fast_symlink(inode);
3994 	return 0;
3995 }
3996 
3997 /*
3998  * We have to make sure i_disksize gets properly updated before we truncate
3999  * page cache due to hole punching or zero range. Otherwise i_disksize update
4000  * can get lost as it may have been postponed to submission of writeback but
4001  * that will never happen after we truncate page cache.
4002  */
4003 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4004 				      loff_t len)
4005 {
4006 	handle_t *handle;
4007 	int ret;
4008 
4009 	loff_t size = i_size_read(inode);
4010 
4011 	WARN_ON(!inode_is_locked(inode));
4012 	if (offset > size || offset + len < size)
4013 		return 0;
4014 
4015 	if (EXT4_I(inode)->i_disksize >= size)
4016 		return 0;
4017 
4018 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4019 	if (IS_ERR(handle))
4020 		return PTR_ERR(handle);
4021 	ext4_update_i_disksize(inode, size);
4022 	ret = ext4_mark_inode_dirty(handle, inode);
4023 	ext4_journal_stop(handle);
4024 
4025 	return ret;
4026 }
4027 
4028 static void ext4_wait_dax_page(struct inode *inode)
4029 {
4030 	filemap_invalidate_unlock(inode->i_mapping);
4031 	schedule();
4032 	filemap_invalidate_lock(inode->i_mapping);
4033 }
4034 
4035 int ext4_break_layouts(struct inode *inode)
4036 {
4037 	struct page *page;
4038 	int error;
4039 
4040 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4041 		return -EINVAL;
4042 
4043 	do {
4044 		page = dax_layout_busy_page(inode->i_mapping);
4045 		if (!page)
4046 			return 0;
4047 
4048 		error = ___wait_var_event(&page->_refcount,
4049 				atomic_read(&page->_refcount) == 1,
4050 				TASK_INTERRUPTIBLE, 0, 0,
4051 				ext4_wait_dax_page(inode));
4052 	} while (error == 0);
4053 
4054 	return error;
4055 }
4056 
4057 /*
4058  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4059  * associated with the given offset and length
4060  *
4061  * @inode:  File inode
4062  * @offset: The offset where the hole will begin
4063  * @len:    The length of the hole
4064  *
4065  * Returns: 0 on success or negative on failure
4066  */
4067 
4068 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4069 {
4070 	struct inode *inode = file_inode(file);
4071 	struct super_block *sb = inode->i_sb;
4072 	ext4_lblk_t first_block, stop_block;
4073 	struct address_space *mapping = inode->i_mapping;
4074 	loff_t first_block_offset, last_block_offset, max_length;
4075 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4076 	handle_t *handle;
4077 	unsigned int credits;
4078 	int ret = 0, ret2 = 0;
4079 
4080 	trace_ext4_punch_hole(inode, offset, length, 0);
4081 
4082 	/*
4083 	 * Write out all dirty pages to avoid race conditions
4084 	 * Then release them.
4085 	 */
4086 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4087 		ret = filemap_write_and_wait_range(mapping, offset,
4088 						   offset + length - 1);
4089 		if (ret)
4090 			return ret;
4091 	}
4092 
4093 	inode_lock(inode);
4094 
4095 	/* No need to punch hole beyond i_size */
4096 	if (offset >= inode->i_size)
4097 		goto out_mutex;
4098 
4099 	/*
4100 	 * If the hole extends beyond i_size, set the hole
4101 	 * to end after the page that contains i_size
4102 	 */
4103 	if (offset + length > inode->i_size) {
4104 		length = inode->i_size +
4105 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4106 		   offset;
4107 	}
4108 
4109 	/*
4110 	 * For punch hole the length + offset needs to be within one block
4111 	 * before last range. Adjust the length if it goes beyond that limit.
4112 	 */
4113 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4114 	if (offset + length > max_length)
4115 		length = max_length - offset;
4116 
4117 	if (offset & (sb->s_blocksize - 1) ||
4118 	    (offset + length) & (sb->s_blocksize - 1)) {
4119 		/*
4120 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4121 		 * partial block
4122 		 */
4123 		ret = ext4_inode_attach_jinode(inode);
4124 		if (ret < 0)
4125 			goto out_mutex;
4126 
4127 	}
4128 
4129 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4130 	inode_dio_wait(inode);
4131 
4132 	ret = file_modified(file);
4133 	if (ret)
4134 		goto out_mutex;
4135 
4136 	/*
4137 	 * Prevent page faults from reinstantiating pages we have released from
4138 	 * page cache.
4139 	 */
4140 	filemap_invalidate_lock(mapping);
4141 
4142 	ret = ext4_break_layouts(inode);
4143 	if (ret)
4144 		goto out_dio;
4145 
4146 	first_block_offset = round_up(offset, sb->s_blocksize);
4147 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4148 
4149 	/* Now release the pages and zero block aligned part of pages*/
4150 	if (last_block_offset > first_block_offset) {
4151 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4152 		if (ret)
4153 			goto out_dio;
4154 		truncate_pagecache_range(inode, first_block_offset,
4155 					 last_block_offset);
4156 	}
4157 
4158 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4159 		credits = ext4_writepage_trans_blocks(inode);
4160 	else
4161 		credits = ext4_blocks_for_truncate(inode);
4162 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4163 	if (IS_ERR(handle)) {
4164 		ret = PTR_ERR(handle);
4165 		ext4_std_error(sb, ret);
4166 		goto out_dio;
4167 	}
4168 
4169 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4170 				       length);
4171 	if (ret)
4172 		goto out_stop;
4173 
4174 	first_block = (offset + sb->s_blocksize - 1) >>
4175 		EXT4_BLOCK_SIZE_BITS(sb);
4176 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4177 
4178 	/* If there are blocks to remove, do it */
4179 	if (stop_block > first_block) {
4180 
4181 		down_write(&EXT4_I(inode)->i_data_sem);
4182 		ext4_discard_preallocations(inode, 0);
4183 
4184 		ret = ext4_es_remove_extent(inode, first_block,
4185 					    stop_block - first_block);
4186 		if (ret) {
4187 			up_write(&EXT4_I(inode)->i_data_sem);
4188 			goto out_stop;
4189 		}
4190 
4191 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4192 			ret = ext4_ext_remove_space(inode, first_block,
4193 						    stop_block - 1);
4194 		else
4195 			ret = ext4_ind_remove_space(handle, inode, first_block,
4196 						    stop_block);
4197 
4198 		up_write(&EXT4_I(inode)->i_data_sem);
4199 	}
4200 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4201 	if (IS_SYNC(inode))
4202 		ext4_handle_sync(handle);
4203 
4204 	inode->i_mtime = inode->i_ctime = current_time(inode);
4205 	ret2 = ext4_mark_inode_dirty(handle, inode);
4206 	if (unlikely(ret2))
4207 		ret = ret2;
4208 	if (ret >= 0)
4209 		ext4_update_inode_fsync_trans(handle, inode, 1);
4210 out_stop:
4211 	ext4_journal_stop(handle);
4212 out_dio:
4213 	filemap_invalidate_unlock(mapping);
4214 out_mutex:
4215 	inode_unlock(inode);
4216 	return ret;
4217 }
4218 
4219 int ext4_inode_attach_jinode(struct inode *inode)
4220 {
4221 	struct ext4_inode_info *ei = EXT4_I(inode);
4222 	struct jbd2_inode *jinode;
4223 
4224 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4225 		return 0;
4226 
4227 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4228 	spin_lock(&inode->i_lock);
4229 	if (!ei->jinode) {
4230 		if (!jinode) {
4231 			spin_unlock(&inode->i_lock);
4232 			return -ENOMEM;
4233 		}
4234 		ei->jinode = jinode;
4235 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4236 		jinode = NULL;
4237 	}
4238 	spin_unlock(&inode->i_lock);
4239 	if (unlikely(jinode != NULL))
4240 		jbd2_free_inode(jinode);
4241 	return 0;
4242 }
4243 
4244 /*
4245  * ext4_truncate()
4246  *
4247  * We block out ext4_get_block() block instantiations across the entire
4248  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4249  * simultaneously on behalf of the same inode.
4250  *
4251  * As we work through the truncate and commit bits of it to the journal there
4252  * is one core, guiding principle: the file's tree must always be consistent on
4253  * disk.  We must be able to restart the truncate after a crash.
4254  *
4255  * The file's tree may be transiently inconsistent in memory (although it
4256  * probably isn't), but whenever we close off and commit a journal transaction,
4257  * the contents of (the filesystem + the journal) must be consistent and
4258  * restartable.  It's pretty simple, really: bottom up, right to left (although
4259  * left-to-right works OK too).
4260  *
4261  * Note that at recovery time, journal replay occurs *before* the restart of
4262  * truncate against the orphan inode list.
4263  *
4264  * The committed inode has the new, desired i_size (which is the same as
4265  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4266  * that this inode's truncate did not complete and it will again call
4267  * ext4_truncate() to have another go.  So there will be instantiated blocks
4268  * to the right of the truncation point in a crashed ext4 filesystem.  But
4269  * that's fine - as long as they are linked from the inode, the post-crash
4270  * ext4_truncate() run will find them and release them.
4271  */
4272 int ext4_truncate(struct inode *inode)
4273 {
4274 	struct ext4_inode_info *ei = EXT4_I(inode);
4275 	unsigned int credits;
4276 	int err = 0, err2;
4277 	handle_t *handle;
4278 	struct address_space *mapping = inode->i_mapping;
4279 
4280 	/*
4281 	 * There is a possibility that we're either freeing the inode
4282 	 * or it's a completely new inode. In those cases we might not
4283 	 * have i_rwsem locked because it's not necessary.
4284 	 */
4285 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4286 		WARN_ON(!inode_is_locked(inode));
4287 	trace_ext4_truncate_enter(inode);
4288 
4289 	if (!ext4_can_truncate(inode))
4290 		goto out_trace;
4291 
4292 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4293 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4294 
4295 	if (ext4_has_inline_data(inode)) {
4296 		int has_inline = 1;
4297 
4298 		err = ext4_inline_data_truncate(inode, &has_inline);
4299 		if (err || has_inline)
4300 			goto out_trace;
4301 	}
4302 
4303 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4304 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4305 		err = ext4_inode_attach_jinode(inode);
4306 		if (err)
4307 			goto out_trace;
4308 	}
4309 
4310 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4311 		credits = ext4_writepage_trans_blocks(inode);
4312 	else
4313 		credits = ext4_blocks_for_truncate(inode);
4314 
4315 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4316 	if (IS_ERR(handle)) {
4317 		err = PTR_ERR(handle);
4318 		goto out_trace;
4319 	}
4320 
4321 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4322 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4323 
4324 	/*
4325 	 * We add the inode to the orphan list, so that if this
4326 	 * truncate spans multiple transactions, and we crash, we will
4327 	 * resume the truncate when the filesystem recovers.  It also
4328 	 * marks the inode dirty, to catch the new size.
4329 	 *
4330 	 * Implication: the file must always be in a sane, consistent
4331 	 * truncatable state while each transaction commits.
4332 	 */
4333 	err = ext4_orphan_add(handle, inode);
4334 	if (err)
4335 		goto out_stop;
4336 
4337 	down_write(&EXT4_I(inode)->i_data_sem);
4338 
4339 	ext4_discard_preallocations(inode, 0);
4340 
4341 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4342 		err = ext4_ext_truncate(handle, inode);
4343 	else
4344 		ext4_ind_truncate(handle, inode);
4345 
4346 	up_write(&ei->i_data_sem);
4347 	if (err)
4348 		goto out_stop;
4349 
4350 	if (IS_SYNC(inode))
4351 		ext4_handle_sync(handle);
4352 
4353 out_stop:
4354 	/*
4355 	 * If this was a simple ftruncate() and the file will remain alive,
4356 	 * then we need to clear up the orphan record which we created above.
4357 	 * However, if this was a real unlink then we were called by
4358 	 * ext4_evict_inode(), and we allow that function to clean up the
4359 	 * orphan info for us.
4360 	 */
4361 	if (inode->i_nlink)
4362 		ext4_orphan_del(handle, inode);
4363 
4364 	inode->i_mtime = inode->i_ctime = current_time(inode);
4365 	err2 = ext4_mark_inode_dirty(handle, inode);
4366 	if (unlikely(err2 && !err))
4367 		err = err2;
4368 	ext4_journal_stop(handle);
4369 
4370 out_trace:
4371 	trace_ext4_truncate_exit(inode);
4372 	return err;
4373 }
4374 
4375 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4376 {
4377 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4378 		return inode_peek_iversion_raw(inode);
4379 	else
4380 		return inode_peek_iversion(inode);
4381 }
4382 
4383 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4384 				 struct ext4_inode_info *ei)
4385 {
4386 	struct inode *inode = &(ei->vfs_inode);
4387 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4388 	struct super_block *sb = inode->i_sb;
4389 
4390 	if (i_blocks <= ~0U) {
4391 		/*
4392 		 * i_blocks can be represented in a 32 bit variable
4393 		 * as multiple of 512 bytes
4394 		 */
4395 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4396 		raw_inode->i_blocks_high = 0;
4397 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 		return 0;
4399 	}
4400 
4401 	/*
4402 	 * This should never happen since sb->s_maxbytes should not have
4403 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4404 	 * feature in ext4_fill_super().
4405 	 */
4406 	if (!ext4_has_feature_huge_file(sb))
4407 		return -EFSCORRUPTED;
4408 
4409 	if (i_blocks <= 0xffffffffffffULL) {
4410 		/*
4411 		 * i_blocks can be represented in a 48 bit variable
4412 		 * as multiple of 512 bytes
4413 		 */
4414 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4415 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4416 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4417 	} else {
4418 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419 		/* i_block is stored in file system block size */
4420 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4421 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4422 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4423 	}
4424 	return 0;
4425 }
4426 
4427 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4428 {
4429 	struct ext4_inode_info *ei = EXT4_I(inode);
4430 	uid_t i_uid;
4431 	gid_t i_gid;
4432 	projid_t i_projid;
4433 	int block;
4434 	int err;
4435 
4436 	err = ext4_inode_blocks_set(raw_inode, ei);
4437 
4438 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4439 	i_uid = i_uid_read(inode);
4440 	i_gid = i_gid_read(inode);
4441 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4442 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4443 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4444 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4445 		/*
4446 		 * Fix up interoperability with old kernels. Otherwise,
4447 		 * old inodes get re-used with the upper 16 bits of the
4448 		 * uid/gid intact.
4449 		 */
4450 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4451 			raw_inode->i_uid_high = 0;
4452 			raw_inode->i_gid_high = 0;
4453 		} else {
4454 			raw_inode->i_uid_high =
4455 				cpu_to_le16(high_16_bits(i_uid));
4456 			raw_inode->i_gid_high =
4457 				cpu_to_le16(high_16_bits(i_gid));
4458 		}
4459 	} else {
4460 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4461 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4462 		raw_inode->i_uid_high = 0;
4463 		raw_inode->i_gid_high = 0;
4464 	}
4465 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4466 
4467 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4468 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4469 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4470 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4471 
4472 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4473 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4474 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4475 		raw_inode->i_file_acl_high =
4476 			cpu_to_le16(ei->i_file_acl >> 32);
4477 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4478 	ext4_isize_set(raw_inode, ei->i_disksize);
4479 
4480 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482 		if (old_valid_dev(inode->i_rdev)) {
4483 			raw_inode->i_block[0] =
4484 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4485 			raw_inode->i_block[1] = 0;
4486 		} else {
4487 			raw_inode->i_block[0] = 0;
4488 			raw_inode->i_block[1] =
4489 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4490 			raw_inode->i_block[2] = 0;
4491 		}
4492 	} else if (!ext4_has_inline_data(inode)) {
4493 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4494 			raw_inode->i_block[block] = ei->i_data[block];
4495 	}
4496 
4497 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4498 		u64 ivers = ext4_inode_peek_iversion(inode);
4499 
4500 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4501 		if (ei->i_extra_isize) {
4502 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4503 				raw_inode->i_version_hi =
4504 					cpu_to_le32(ivers >> 32);
4505 			raw_inode->i_extra_isize =
4506 				cpu_to_le16(ei->i_extra_isize);
4507 		}
4508 	}
4509 
4510 	if (i_projid != EXT4_DEF_PROJID &&
4511 	    !ext4_has_feature_project(inode->i_sb))
4512 		err = err ?: -EFSCORRUPTED;
4513 
4514 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4515 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4516 		raw_inode->i_projid = cpu_to_le32(i_projid);
4517 
4518 	ext4_inode_csum_set(inode, raw_inode, ei);
4519 	return err;
4520 }
4521 
4522 /*
4523  * ext4_get_inode_loc returns with an extra refcount against the inode's
4524  * underlying buffer_head on success. If we pass 'inode' and it does not
4525  * have in-inode xattr, we have all inode data in memory that is needed
4526  * to recreate the on-disk version of this inode.
4527  */
4528 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4529 				struct inode *inode, struct ext4_iloc *iloc,
4530 				ext4_fsblk_t *ret_block)
4531 {
4532 	struct ext4_group_desc	*gdp;
4533 	struct buffer_head	*bh;
4534 	ext4_fsblk_t		block;
4535 	struct blk_plug		plug;
4536 	int			inodes_per_block, inode_offset;
4537 
4538 	iloc->bh = NULL;
4539 	if (ino < EXT4_ROOT_INO ||
4540 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4541 		return -EFSCORRUPTED;
4542 
4543 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4544 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4545 	if (!gdp)
4546 		return -EIO;
4547 
4548 	/*
4549 	 * Figure out the offset within the block group inode table
4550 	 */
4551 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4552 	inode_offset = ((ino - 1) %
4553 			EXT4_INODES_PER_GROUP(sb));
4554 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4555 
4556 	block = ext4_inode_table(sb, gdp);
4557 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4558 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4559 		ext4_error(sb, "Invalid inode table block %llu in "
4560 			   "block_group %u", block, iloc->block_group);
4561 		return -EFSCORRUPTED;
4562 	}
4563 	block += (inode_offset / inodes_per_block);
4564 
4565 	bh = sb_getblk(sb, block);
4566 	if (unlikely(!bh))
4567 		return -ENOMEM;
4568 	if (ext4_buffer_uptodate(bh))
4569 		goto has_buffer;
4570 
4571 	lock_buffer(bh);
4572 	if (ext4_buffer_uptodate(bh)) {
4573 		/* Someone brought it uptodate while we waited */
4574 		unlock_buffer(bh);
4575 		goto has_buffer;
4576 	}
4577 
4578 	/*
4579 	 * If we have all information of the inode in memory and this
4580 	 * is the only valid inode in the block, we need not read the
4581 	 * block.
4582 	 */
4583 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4584 		struct buffer_head *bitmap_bh;
4585 		int i, start;
4586 
4587 		start = inode_offset & ~(inodes_per_block - 1);
4588 
4589 		/* Is the inode bitmap in cache? */
4590 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4591 		if (unlikely(!bitmap_bh))
4592 			goto make_io;
4593 
4594 		/*
4595 		 * If the inode bitmap isn't in cache then the
4596 		 * optimisation may end up performing two reads instead
4597 		 * of one, so skip it.
4598 		 */
4599 		if (!buffer_uptodate(bitmap_bh)) {
4600 			brelse(bitmap_bh);
4601 			goto make_io;
4602 		}
4603 		for (i = start; i < start + inodes_per_block; i++) {
4604 			if (i == inode_offset)
4605 				continue;
4606 			if (ext4_test_bit(i, bitmap_bh->b_data))
4607 				break;
4608 		}
4609 		brelse(bitmap_bh);
4610 		if (i == start + inodes_per_block) {
4611 			struct ext4_inode *raw_inode =
4612 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4613 
4614 			/* all other inodes are free, so skip I/O */
4615 			memset(bh->b_data, 0, bh->b_size);
4616 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4617 				ext4_fill_raw_inode(inode, raw_inode);
4618 			set_buffer_uptodate(bh);
4619 			unlock_buffer(bh);
4620 			goto has_buffer;
4621 		}
4622 	}
4623 
4624 make_io:
4625 	/*
4626 	 * If we need to do any I/O, try to pre-readahead extra
4627 	 * blocks from the inode table.
4628 	 */
4629 	blk_start_plug(&plug);
4630 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4631 		ext4_fsblk_t b, end, table;
4632 		unsigned num;
4633 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4634 
4635 		table = ext4_inode_table(sb, gdp);
4636 		/* s_inode_readahead_blks is always a power of 2 */
4637 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4638 		if (table > b)
4639 			b = table;
4640 		end = b + ra_blks;
4641 		num = EXT4_INODES_PER_GROUP(sb);
4642 		if (ext4_has_group_desc_csum(sb))
4643 			num -= ext4_itable_unused_count(sb, gdp);
4644 		table += num / inodes_per_block;
4645 		if (end > table)
4646 			end = table;
4647 		while (b <= end)
4648 			ext4_sb_breadahead_unmovable(sb, b++);
4649 	}
4650 
4651 	/*
4652 	 * There are other valid inodes in the buffer, this inode
4653 	 * has in-inode xattrs, or we don't have this inode in memory.
4654 	 * Read the block from disk.
4655 	 */
4656 	trace_ext4_load_inode(sb, ino);
4657 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4658 	blk_finish_plug(&plug);
4659 	wait_on_buffer(bh);
4660 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4661 	if (!buffer_uptodate(bh)) {
4662 		if (ret_block)
4663 			*ret_block = block;
4664 		brelse(bh);
4665 		return -EIO;
4666 	}
4667 has_buffer:
4668 	iloc->bh = bh;
4669 	return 0;
4670 }
4671 
4672 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4673 					struct ext4_iloc *iloc)
4674 {
4675 	ext4_fsblk_t err_blk = 0;
4676 	int ret;
4677 
4678 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4679 					&err_blk);
4680 
4681 	if (ret == -EIO)
4682 		ext4_error_inode_block(inode, err_blk, EIO,
4683 					"unable to read itable block");
4684 
4685 	return ret;
4686 }
4687 
4688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689 {
4690 	ext4_fsblk_t err_blk = 0;
4691 	int ret;
4692 
4693 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4694 					&err_blk);
4695 
4696 	if (ret == -EIO)
4697 		ext4_error_inode_block(inode, err_blk, EIO,
4698 					"unable to read itable block");
4699 
4700 	return ret;
4701 }
4702 
4703 
4704 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4705 			  struct ext4_iloc *iloc)
4706 {
4707 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4708 }
4709 
4710 static bool ext4_should_enable_dax(struct inode *inode)
4711 {
4712 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713 
4714 	if (test_opt2(inode->i_sb, DAX_NEVER))
4715 		return false;
4716 	if (!S_ISREG(inode->i_mode))
4717 		return false;
4718 	if (ext4_should_journal_data(inode))
4719 		return false;
4720 	if (ext4_has_inline_data(inode))
4721 		return false;
4722 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4723 		return false;
4724 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4725 		return false;
4726 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4727 		return false;
4728 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4729 		return true;
4730 
4731 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4732 }
4733 
4734 void ext4_set_inode_flags(struct inode *inode, bool init)
4735 {
4736 	unsigned int flags = EXT4_I(inode)->i_flags;
4737 	unsigned int new_fl = 0;
4738 
4739 	WARN_ON_ONCE(IS_DAX(inode) && init);
4740 
4741 	if (flags & EXT4_SYNC_FL)
4742 		new_fl |= S_SYNC;
4743 	if (flags & EXT4_APPEND_FL)
4744 		new_fl |= S_APPEND;
4745 	if (flags & EXT4_IMMUTABLE_FL)
4746 		new_fl |= S_IMMUTABLE;
4747 	if (flags & EXT4_NOATIME_FL)
4748 		new_fl |= S_NOATIME;
4749 	if (flags & EXT4_DIRSYNC_FL)
4750 		new_fl |= S_DIRSYNC;
4751 
4752 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4753 	 * here if already set. */
4754 	new_fl |= (inode->i_flags & S_DAX);
4755 	if (init && ext4_should_enable_dax(inode))
4756 		new_fl |= S_DAX;
4757 
4758 	if (flags & EXT4_ENCRYPT_FL)
4759 		new_fl |= S_ENCRYPTED;
4760 	if (flags & EXT4_CASEFOLD_FL)
4761 		new_fl |= S_CASEFOLD;
4762 	if (flags & EXT4_VERITY_FL)
4763 		new_fl |= S_VERITY;
4764 	inode_set_flags(inode, new_fl,
4765 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4766 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4767 }
4768 
4769 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4770 				  struct ext4_inode_info *ei)
4771 {
4772 	blkcnt_t i_blocks ;
4773 	struct inode *inode = &(ei->vfs_inode);
4774 	struct super_block *sb = inode->i_sb;
4775 
4776 	if (ext4_has_feature_huge_file(sb)) {
4777 		/* we are using combined 48 bit field */
4778 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779 					le32_to_cpu(raw_inode->i_blocks_lo);
4780 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4781 			/* i_blocks represent file system block size */
4782 			return i_blocks  << (inode->i_blkbits - 9);
4783 		} else {
4784 			return i_blocks;
4785 		}
4786 	} else {
4787 		return le32_to_cpu(raw_inode->i_blocks_lo);
4788 	}
4789 }
4790 
4791 static inline int ext4_iget_extra_inode(struct inode *inode,
4792 					 struct ext4_inode *raw_inode,
4793 					 struct ext4_inode_info *ei)
4794 {
4795 	__le32 *magic = (void *)raw_inode +
4796 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4797 
4798 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4799 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4800 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4801 		return ext4_find_inline_data_nolock(inode);
4802 	} else
4803 		EXT4_I(inode)->i_inline_off = 0;
4804 	return 0;
4805 }
4806 
4807 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4808 {
4809 	if (!ext4_has_feature_project(inode->i_sb))
4810 		return -EOPNOTSUPP;
4811 	*projid = EXT4_I(inode)->i_projid;
4812 	return 0;
4813 }
4814 
4815 /*
4816  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4817  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4818  * set.
4819  */
4820 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4821 {
4822 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4823 		inode_set_iversion_raw(inode, val);
4824 	else
4825 		inode_set_iversion_queried(inode, val);
4826 }
4827 
4828 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4829 			  ext4_iget_flags flags, const char *function,
4830 			  unsigned int line)
4831 {
4832 	struct ext4_iloc iloc;
4833 	struct ext4_inode *raw_inode;
4834 	struct ext4_inode_info *ei;
4835 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4836 	struct inode *inode;
4837 	journal_t *journal = EXT4_SB(sb)->s_journal;
4838 	long ret;
4839 	loff_t size;
4840 	int block;
4841 	uid_t i_uid;
4842 	gid_t i_gid;
4843 	projid_t i_projid;
4844 
4845 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4846 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4847 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4848 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4849 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4850 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4851 	    (ino < EXT4_ROOT_INO) ||
4852 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4853 		if (flags & EXT4_IGET_HANDLE)
4854 			return ERR_PTR(-ESTALE);
4855 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4856 			     "inode #%lu: comm %s: iget: illegal inode #",
4857 			     ino, current->comm);
4858 		return ERR_PTR(-EFSCORRUPTED);
4859 	}
4860 
4861 	inode = iget_locked(sb, ino);
4862 	if (!inode)
4863 		return ERR_PTR(-ENOMEM);
4864 	if (!(inode->i_state & I_NEW))
4865 		return inode;
4866 
4867 	ei = EXT4_I(inode);
4868 	iloc.bh = NULL;
4869 
4870 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4871 	if (ret < 0)
4872 		goto bad_inode;
4873 	raw_inode = ext4_raw_inode(&iloc);
4874 
4875 	if ((flags & EXT4_IGET_HANDLE) &&
4876 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4877 		ret = -ESTALE;
4878 		goto bad_inode;
4879 	}
4880 
4881 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4882 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4883 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4884 			EXT4_INODE_SIZE(inode->i_sb) ||
4885 		    (ei->i_extra_isize & 3)) {
4886 			ext4_error_inode(inode, function, line, 0,
4887 					 "iget: bad extra_isize %u "
4888 					 "(inode size %u)",
4889 					 ei->i_extra_isize,
4890 					 EXT4_INODE_SIZE(inode->i_sb));
4891 			ret = -EFSCORRUPTED;
4892 			goto bad_inode;
4893 		}
4894 	} else
4895 		ei->i_extra_isize = 0;
4896 
4897 	/* Precompute checksum seed for inode metadata */
4898 	if (ext4_has_metadata_csum(sb)) {
4899 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4900 		__u32 csum;
4901 		__le32 inum = cpu_to_le32(inode->i_ino);
4902 		__le32 gen = raw_inode->i_generation;
4903 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4904 				   sizeof(inum));
4905 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4906 					      sizeof(gen));
4907 	}
4908 
4909 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4910 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4911 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4912 		ext4_error_inode_err(inode, function, line, 0,
4913 				EFSBADCRC, "iget: checksum invalid");
4914 		ret = -EFSBADCRC;
4915 		goto bad_inode;
4916 	}
4917 
4918 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4919 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4920 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4921 	if (ext4_has_feature_project(sb) &&
4922 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4923 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4924 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4925 	else
4926 		i_projid = EXT4_DEF_PROJID;
4927 
4928 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4929 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4930 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4931 	}
4932 	i_uid_write(inode, i_uid);
4933 	i_gid_write(inode, i_gid);
4934 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4935 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4936 
4937 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4938 	ei->i_inline_off = 0;
4939 	ei->i_dir_start_lookup = 0;
4940 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4941 	/* We now have enough fields to check if the inode was active or not.
4942 	 * This is needed because nfsd might try to access dead inodes
4943 	 * the test is that same one that e2fsck uses
4944 	 * NeilBrown 1999oct15
4945 	 */
4946 	if (inode->i_nlink == 0) {
4947 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4948 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4949 		    ino != EXT4_BOOT_LOADER_INO) {
4950 			/* this inode is deleted or unallocated */
4951 			if (flags & EXT4_IGET_SPECIAL) {
4952 				ext4_error_inode(inode, function, line, 0,
4953 						 "iget: special inode unallocated");
4954 				ret = -EFSCORRUPTED;
4955 			} else
4956 				ret = -ESTALE;
4957 			goto bad_inode;
4958 		}
4959 		/* The only unlinked inodes we let through here have
4960 		 * valid i_mode and are being read by the orphan
4961 		 * recovery code: that's fine, we're about to complete
4962 		 * the process of deleting those.
4963 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4964 		 * not initialized on a new filesystem. */
4965 	}
4966 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4967 	ext4_set_inode_flags(inode, true);
4968 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4969 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4970 	if (ext4_has_feature_64bit(sb))
4971 		ei->i_file_acl |=
4972 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4973 	inode->i_size = ext4_isize(sb, raw_inode);
4974 	if ((size = i_size_read(inode)) < 0) {
4975 		ext4_error_inode(inode, function, line, 0,
4976 				 "iget: bad i_size value: %lld", size);
4977 		ret = -EFSCORRUPTED;
4978 		goto bad_inode;
4979 	}
4980 	/*
4981 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4982 	 * we'd normally treat htree data as empty space. But with metadata
4983 	 * checksumming that corrupts checksums so forbid that.
4984 	 */
4985 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4986 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4987 		ext4_error_inode(inode, function, line, 0,
4988 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4989 		ret = -EFSCORRUPTED;
4990 		goto bad_inode;
4991 	}
4992 	ei->i_disksize = inode->i_size;
4993 #ifdef CONFIG_QUOTA
4994 	ei->i_reserved_quota = 0;
4995 #endif
4996 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4997 	ei->i_block_group = iloc.block_group;
4998 	ei->i_last_alloc_group = ~0;
4999 	/*
5000 	 * NOTE! The in-memory inode i_data array is in little-endian order
5001 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5002 	 */
5003 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5004 		ei->i_data[block] = raw_inode->i_block[block];
5005 	INIT_LIST_HEAD(&ei->i_orphan);
5006 	ext4_fc_init_inode(&ei->vfs_inode);
5007 
5008 	/*
5009 	 * Set transaction id's of transactions that have to be committed
5010 	 * to finish f[data]sync. We set them to currently running transaction
5011 	 * as we cannot be sure that the inode or some of its metadata isn't
5012 	 * part of the transaction - the inode could have been reclaimed and
5013 	 * now it is reread from disk.
5014 	 */
5015 	if (journal) {
5016 		transaction_t *transaction;
5017 		tid_t tid;
5018 
5019 		read_lock(&journal->j_state_lock);
5020 		if (journal->j_running_transaction)
5021 			transaction = journal->j_running_transaction;
5022 		else
5023 			transaction = journal->j_committing_transaction;
5024 		if (transaction)
5025 			tid = transaction->t_tid;
5026 		else
5027 			tid = journal->j_commit_sequence;
5028 		read_unlock(&journal->j_state_lock);
5029 		ei->i_sync_tid = tid;
5030 		ei->i_datasync_tid = tid;
5031 	}
5032 
5033 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5034 		if (ei->i_extra_isize == 0) {
5035 			/* The extra space is currently unused. Use it. */
5036 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5037 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5038 					    EXT4_GOOD_OLD_INODE_SIZE;
5039 		} else {
5040 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5041 			if (ret)
5042 				goto bad_inode;
5043 		}
5044 	}
5045 
5046 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5047 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5048 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5049 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5050 
5051 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5052 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5053 
5054 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5055 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5056 				ivers |=
5057 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5058 		}
5059 		ext4_inode_set_iversion_queried(inode, ivers);
5060 	}
5061 
5062 	ret = 0;
5063 	if (ei->i_file_acl &&
5064 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5065 		ext4_error_inode(inode, function, line, 0,
5066 				 "iget: bad extended attribute block %llu",
5067 				 ei->i_file_acl);
5068 		ret = -EFSCORRUPTED;
5069 		goto bad_inode;
5070 	} else if (!ext4_has_inline_data(inode)) {
5071 		/* validate the block references in the inode */
5072 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5073 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5074 			(S_ISLNK(inode->i_mode) &&
5075 			!ext4_inode_is_fast_symlink(inode)))) {
5076 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5077 				ret = ext4_ext_check_inode(inode);
5078 			else
5079 				ret = ext4_ind_check_inode(inode);
5080 		}
5081 	}
5082 	if (ret)
5083 		goto bad_inode;
5084 
5085 	if (S_ISREG(inode->i_mode)) {
5086 		inode->i_op = &ext4_file_inode_operations;
5087 		inode->i_fop = &ext4_file_operations;
5088 		ext4_set_aops(inode);
5089 	} else if (S_ISDIR(inode->i_mode)) {
5090 		inode->i_op = &ext4_dir_inode_operations;
5091 		inode->i_fop = &ext4_dir_operations;
5092 	} else if (S_ISLNK(inode->i_mode)) {
5093 		/* VFS does not allow setting these so must be corruption */
5094 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5095 			ext4_error_inode(inode, function, line, 0,
5096 					 "iget: immutable or append flags "
5097 					 "not allowed on symlinks");
5098 			ret = -EFSCORRUPTED;
5099 			goto bad_inode;
5100 		}
5101 		if (IS_ENCRYPTED(inode)) {
5102 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5103 		} else if (ext4_inode_is_fast_symlink(inode)) {
5104 			inode->i_link = (char *)ei->i_data;
5105 			inode->i_op = &ext4_fast_symlink_inode_operations;
5106 			nd_terminate_link(ei->i_data, inode->i_size,
5107 				sizeof(ei->i_data) - 1);
5108 		} else {
5109 			inode->i_op = &ext4_symlink_inode_operations;
5110 		}
5111 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5112 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5113 		inode->i_op = &ext4_special_inode_operations;
5114 		if (raw_inode->i_block[0])
5115 			init_special_inode(inode, inode->i_mode,
5116 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5117 		else
5118 			init_special_inode(inode, inode->i_mode,
5119 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5120 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5121 		make_bad_inode(inode);
5122 	} else {
5123 		ret = -EFSCORRUPTED;
5124 		ext4_error_inode(inode, function, line, 0,
5125 				 "iget: bogus i_mode (%o)", inode->i_mode);
5126 		goto bad_inode;
5127 	}
5128 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5129 		ext4_error_inode(inode, function, line, 0,
5130 				 "casefold flag without casefold feature");
5131 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5132 		ext4_error_inode(inode, function, line, 0,
5133 				 "bad inode without EXT4_IGET_BAD flag");
5134 		ret = -EUCLEAN;
5135 		goto bad_inode;
5136 	}
5137 
5138 	brelse(iloc.bh);
5139 	unlock_new_inode(inode);
5140 	return inode;
5141 
5142 bad_inode:
5143 	brelse(iloc.bh);
5144 	iget_failed(inode);
5145 	return ERR_PTR(ret);
5146 }
5147 
5148 static void __ext4_update_other_inode_time(struct super_block *sb,
5149 					   unsigned long orig_ino,
5150 					   unsigned long ino,
5151 					   struct ext4_inode *raw_inode)
5152 {
5153 	struct inode *inode;
5154 
5155 	inode = find_inode_by_ino_rcu(sb, ino);
5156 	if (!inode)
5157 		return;
5158 
5159 	if (!inode_is_dirtytime_only(inode))
5160 		return;
5161 
5162 	spin_lock(&inode->i_lock);
5163 	if (inode_is_dirtytime_only(inode)) {
5164 		struct ext4_inode_info	*ei = EXT4_I(inode);
5165 
5166 		inode->i_state &= ~I_DIRTY_TIME;
5167 		spin_unlock(&inode->i_lock);
5168 
5169 		spin_lock(&ei->i_raw_lock);
5170 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5171 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5172 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5173 		ext4_inode_csum_set(inode, raw_inode, ei);
5174 		spin_unlock(&ei->i_raw_lock);
5175 		trace_ext4_other_inode_update_time(inode, orig_ino);
5176 		return;
5177 	}
5178 	spin_unlock(&inode->i_lock);
5179 }
5180 
5181 /*
5182  * Opportunistically update the other time fields for other inodes in
5183  * the same inode table block.
5184  */
5185 static void ext4_update_other_inodes_time(struct super_block *sb,
5186 					  unsigned long orig_ino, char *buf)
5187 {
5188 	unsigned long ino;
5189 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5190 	int inode_size = EXT4_INODE_SIZE(sb);
5191 
5192 	/*
5193 	 * Calculate the first inode in the inode table block.  Inode
5194 	 * numbers are one-based.  That is, the first inode in a block
5195 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5196 	 */
5197 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5198 	rcu_read_lock();
5199 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5200 		if (ino == orig_ino)
5201 			continue;
5202 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5203 					       (struct ext4_inode *)buf);
5204 	}
5205 	rcu_read_unlock();
5206 }
5207 
5208 /*
5209  * Post the struct inode info into an on-disk inode location in the
5210  * buffer-cache.  This gobbles the caller's reference to the
5211  * buffer_head in the inode location struct.
5212  *
5213  * The caller must have write access to iloc->bh.
5214  */
5215 static int ext4_do_update_inode(handle_t *handle,
5216 				struct inode *inode,
5217 				struct ext4_iloc *iloc)
5218 {
5219 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220 	struct ext4_inode_info *ei = EXT4_I(inode);
5221 	struct buffer_head *bh = iloc->bh;
5222 	struct super_block *sb = inode->i_sb;
5223 	int err;
5224 	int need_datasync = 0, set_large_file = 0;
5225 
5226 	spin_lock(&ei->i_raw_lock);
5227 
5228 	/*
5229 	 * For fields not tracked in the in-memory inode, initialise them
5230 	 * to zero for new inodes.
5231 	 */
5232 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5233 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5234 
5235 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5236 		need_datasync = 1;
5237 	if (ei->i_disksize > 0x7fffffffULL) {
5238 		if (!ext4_has_feature_large_file(sb) ||
5239 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5240 			set_large_file = 1;
5241 	}
5242 
5243 	err = ext4_fill_raw_inode(inode, raw_inode);
5244 	spin_unlock(&ei->i_raw_lock);
5245 	if (err) {
5246 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5247 		goto out_brelse;
5248 	}
5249 
5250 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5251 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5252 					      bh->b_data);
5253 
5254 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5255 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5256 	if (err)
5257 		goto out_error;
5258 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5259 	if (set_large_file) {
5260 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5261 		err = ext4_journal_get_write_access(handle, sb,
5262 						    EXT4_SB(sb)->s_sbh,
5263 						    EXT4_JTR_NONE);
5264 		if (err)
5265 			goto out_error;
5266 		lock_buffer(EXT4_SB(sb)->s_sbh);
5267 		ext4_set_feature_large_file(sb);
5268 		ext4_superblock_csum_set(sb);
5269 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5270 		ext4_handle_sync(handle);
5271 		err = ext4_handle_dirty_metadata(handle, NULL,
5272 						 EXT4_SB(sb)->s_sbh);
5273 	}
5274 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5275 out_error:
5276 	ext4_std_error(inode->i_sb, err);
5277 out_brelse:
5278 	brelse(bh);
5279 	return err;
5280 }
5281 
5282 /*
5283  * ext4_write_inode()
5284  *
5285  * We are called from a few places:
5286  *
5287  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5288  *   Here, there will be no transaction running. We wait for any running
5289  *   transaction to commit.
5290  *
5291  * - Within flush work (sys_sync(), kupdate and such).
5292  *   We wait on commit, if told to.
5293  *
5294  * - Within iput_final() -> write_inode_now()
5295  *   We wait on commit, if told to.
5296  *
5297  * In all cases it is actually safe for us to return without doing anything,
5298  * because the inode has been copied into a raw inode buffer in
5299  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5300  * writeback.
5301  *
5302  * Note that we are absolutely dependent upon all inode dirtiers doing the
5303  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5304  * which we are interested.
5305  *
5306  * It would be a bug for them to not do this.  The code:
5307  *
5308  *	mark_inode_dirty(inode)
5309  *	stuff();
5310  *	inode->i_size = expr;
5311  *
5312  * is in error because write_inode() could occur while `stuff()' is running,
5313  * and the new i_size will be lost.  Plus the inode will no longer be on the
5314  * superblock's dirty inode list.
5315  */
5316 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5317 {
5318 	int err;
5319 
5320 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5321 	    sb_rdonly(inode->i_sb))
5322 		return 0;
5323 
5324 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5325 		return -EIO;
5326 
5327 	if (EXT4_SB(inode->i_sb)->s_journal) {
5328 		if (ext4_journal_current_handle()) {
5329 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5330 			dump_stack();
5331 			return -EIO;
5332 		}
5333 
5334 		/*
5335 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5336 		 * ext4_sync_fs() will force the commit after everything is
5337 		 * written.
5338 		 */
5339 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5340 			return 0;
5341 
5342 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5343 						EXT4_I(inode)->i_sync_tid);
5344 	} else {
5345 		struct ext4_iloc iloc;
5346 
5347 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5348 		if (err)
5349 			return err;
5350 		/*
5351 		 * sync(2) will flush the whole buffer cache. No need to do
5352 		 * it here separately for each inode.
5353 		 */
5354 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5355 			sync_dirty_buffer(iloc.bh);
5356 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5357 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5358 					       "IO error syncing inode");
5359 			err = -EIO;
5360 		}
5361 		brelse(iloc.bh);
5362 	}
5363 	return err;
5364 }
5365 
5366 /*
5367  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5368  * buffers that are attached to a folio straddling i_size and are undergoing
5369  * commit. In that case we have to wait for commit to finish and try again.
5370  */
5371 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5372 {
5373 	unsigned offset;
5374 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5375 	tid_t commit_tid = 0;
5376 	int ret;
5377 
5378 	offset = inode->i_size & (PAGE_SIZE - 1);
5379 	/*
5380 	 * If the folio is fully truncated, we don't need to wait for any commit
5381 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5382 	 * strip all buffers from the folio but keep the folio dirty which can then
5383 	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5384 	 * buffers). Also we don't need to wait for any commit if all buffers in
5385 	 * the folio remain valid. This is most beneficial for the common case of
5386 	 * blocksize == PAGESIZE.
5387 	 */
5388 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5389 		return;
5390 	while (1) {
5391 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5392 				      inode->i_size >> PAGE_SHIFT);
5393 		if (!folio)
5394 			return;
5395 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5396 						folio_size(folio) - offset);
5397 		folio_unlock(folio);
5398 		folio_put(folio);
5399 		if (ret != -EBUSY)
5400 			return;
5401 		commit_tid = 0;
5402 		read_lock(&journal->j_state_lock);
5403 		if (journal->j_committing_transaction)
5404 			commit_tid = journal->j_committing_transaction->t_tid;
5405 		read_unlock(&journal->j_state_lock);
5406 		if (commit_tid)
5407 			jbd2_log_wait_commit(journal, commit_tid);
5408 	}
5409 }
5410 
5411 /*
5412  * ext4_setattr()
5413  *
5414  * Called from notify_change.
5415  *
5416  * We want to trap VFS attempts to truncate the file as soon as
5417  * possible.  In particular, we want to make sure that when the VFS
5418  * shrinks i_size, we put the inode on the orphan list and modify
5419  * i_disksize immediately, so that during the subsequent flushing of
5420  * dirty pages and freeing of disk blocks, we can guarantee that any
5421  * commit will leave the blocks being flushed in an unused state on
5422  * disk.  (On recovery, the inode will get truncated and the blocks will
5423  * be freed, so we have a strong guarantee that no future commit will
5424  * leave these blocks visible to the user.)
5425  *
5426  * Another thing we have to assure is that if we are in ordered mode
5427  * and inode is still attached to the committing transaction, we must
5428  * we start writeout of all the dirty pages which are being truncated.
5429  * This way we are sure that all the data written in the previous
5430  * transaction are already on disk (truncate waits for pages under
5431  * writeback).
5432  *
5433  * Called with inode->i_rwsem down.
5434  */
5435 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5436 		 struct iattr *attr)
5437 {
5438 	struct inode *inode = d_inode(dentry);
5439 	int error, rc = 0;
5440 	int orphan = 0;
5441 	const unsigned int ia_valid = attr->ia_valid;
5442 	bool inc_ivers = true;
5443 
5444 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5445 		return -EIO;
5446 
5447 	if (unlikely(IS_IMMUTABLE(inode)))
5448 		return -EPERM;
5449 
5450 	if (unlikely(IS_APPEND(inode) &&
5451 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5452 				  ATTR_GID | ATTR_TIMES_SET))))
5453 		return -EPERM;
5454 
5455 	error = setattr_prepare(idmap, dentry, attr);
5456 	if (error)
5457 		return error;
5458 
5459 	error = fscrypt_prepare_setattr(dentry, attr);
5460 	if (error)
5461 		return error;
5462 
5463 	error = fsverity_prepare_setattr(dentry, attr);
5464 	if (error)
5465 		return error;
5466 
5467 	if (is_quota_modification(idmap, inode, attr)) {
5468 		error = dquot_initialize(inode);
5469 		if (error)
5470 			return error;
5471 	}
5472 
5473 	if (i_uid_needs_update(idmap, attr, inode) ||
5474 	    i_gid_needs_update(idmap, attr, inode)) {
5475 		handle_t *handle;
5476 
5477 		/* (user+group)*(old+new) structure, inode write (sb,
5478 		 * inode block, ? - but truncate inode update has it) */
5479 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5480 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5481 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5482 		if (IS_ERR(handle)) {
5483 			error = PTR_ERR(handle);
5484 			goto err_out;
5485 		}
5486 
5487 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5488 		 * counts xattr inode references.
5489 		 */
5490 		down_read(&EXT4_I(inode)->xattr_sem);
5491 		error = dquot_transfer(idmap, inode, attr);
5492 		up_read(&EXT4_I(inode)->xattr_sem);
5493 
5494 		if (error) {
5495 			ext4_journal_stop(handle);
5496 			return error;
5497 		}
5498 		/* Update corresponding info in inode so that everything is in
5499 		 * one transaction */
5500 		i_uid_update(idmap, attr, inode);
5501 		i_gid_update(idmap, attr, inode);
5502 		error = ext4_mark_inode_dirty(handle, inode);
5503 		ext4_journal_stop(handle);
5504 		if (unlikely(error)) {
5505 			return error;
5506 		}
5507 	}
5508 
5509 	if (attr->ia_valid & ATTR_SIZE) {
5510 		handle_t *handle;
5511 		loff_t oldsize = inode->i_size;
5512 		loff_t old_disksize;
5513 		int shrink = (attr->ia_size < inode->i_size);
5514 
5515 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5516 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5517 
5518 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5519 				return -EFBIG;
5520 			}
5521 		}
5522 		if (!S_ISREG(inode->i_mode)) {
5523 			return -EINVAL;
5524 		}
5525 
5526 		if (attr->ia_size == inode->i_size)
5527 			inc_ivers = false;
5528 
5529 		if (shrink) {
5530 			if (ext4_should_order_data(inode)) {
5531 				error = ext4_begin_ordered_truncate(inode,
5532 							    attr->ia_size);
5533 				if (error)
5534 					goto err_out;
5535 			}
5536 			/*
5537 			 * Blocks are going to be removed from the inode. Wait
5538 			 * for dio in flight.
5539 			 */
5540 			inode_dio_wait(inode);
5541 		}
5542 
5543 		filemap_invalidate_lock(inode->i_mapping);
5544 
5545 		rc = ext4_break_layouts(inode);
5546 		if (rc) {
5547 			filemap_invalidate_unlock(inode->i_mapping);
5548 			goto err_out;
5549 		}
5550 
5551 		if (attr->ia_size != inode->i_size) {
5552 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5553 			if (IS_ERR(handle)) {
5554 				error = PTR_ERR(handle);
5555 				goto out_mmap_sem;
5556 			}
5557 			if (ext4_handle_valid(handle) && shrink) {
5558 				error = ext4_orphan_add(handle, inode);
5559 				orphan = 1;
5560 			}
5561 			/*
5562 			 * Update c/mtime on truncate up, ext4_truncate() will
5563 			 * update c/mtime in shrink case below
5564 			 */
5565 			if (!shrink) {
5566 				inode->i_mtime = current_time(inode);
5567 				inode->i_ctime = inode->i_mtime;
5568 			}
5569 
5570 			if (shrink)
5571 				ext4_fc_track_range(handle, inode,
5572 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5573 					inode->i_sb->s_blocksize_bits,
5574 					EXT_MAX_BLOCKS - 1);
5575 			else
5576 				ext4_fc_track_range(
5577 					handle, inode,
5578 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5579 					inode->i_sb->s_blocksize_bits,
5580 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5581 					inode->i_sb->s_blocksize_bits);
5582 
5583 			down_write(&EXT4_I(inode)->i_data_sem);
5584 			old_disksize = EXT4_I(inode)->i_disksize;
5585 			EXT4_I(inode)->i_disksize = attr->ia_size;
5586 			rc = ext4_mark_inode_dirty(handle, inode);
5587 			if (!error)
5588 				error = rc;
5589 			/*
5590 			 * We have to update i_size under i_data_sem together
5591 			 * with i_disksize to avoid races with writeback code
5592 			 * running ext4_wb_update_i_disksize().
5593 			 */
5594 			if (!error)
5595 				i_size_write(inode, attr->ia_size);
5596 			else
5597 				EXT4_I(inode)->i_disksize = old_disksize;
5598 			up_write(&EXT4_I(inode)->i_data_sem);
5599 			ext4_journal_stop(handle);
5600 			if (error)
5601 				goto out_mmap_sem;
5602 			if (!shrink) {
5603 				pagecache_isize_extended(inode, oldsize,
5604 							 inode->i_size);
5605 			} else if (ext4_should_journal_data(inode)) {
5606 				ext4_wait_for_tail_page_commit(inode);
5607 			}
5608 		}
5609 
5610 		/*
5611 		 * Truncate pagecache after we've waited for commit
5612 		 * in data=journal mode to make pages freeable.
5613 		 */
5614 		truncate_pagecache(inode, inode->i_size);
5615 		/*
5616 		 * Call ext4_truncate() even if i_size didn't change to
5617 		 * truncate possible preallocated blocks.
5618 		 */
5619 		if (attr->ia_size <= oldsize) {
5620 			rc = ext4_truncate(inode);
5621 			if (rc)
5622 				error = rc;
5623 		}
5624 out_mmap_sem:
5625 		filemap_invalidate_unlock(inode->i_mapping);
5626 	}
5627 
5628 	if (!error) {
5629 		if (inc_ivers)
5630 			inode_inc_iversion(inode);
5631 		setattr_copy(idmap, inode, attr);
5632 		mark_inode_dirty(inode);
5633 	}
5634 
5635 	/*
5636 	 * If the call to ext4_truncate failed to get a transaction handle at
5637 	 * all, we need to clean up the in-core orphan list manually.
5638 	 */
5639 	if (orphan && inode->i_nlink)
5640 		ext4_orphan_del(NULL, inode);
5641 
5642 	if (!error && (ia_valid & ATTR_MODE))
5643 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5644 
5645 err_out:
5646 	if  (error)
5647 		ext4_std_error(inode->i_sb, error);
5648 	if (!error)
5649 		error = rc;
5650 	return error;
5651 }
5652 
5653 u32 ext4_dio_alignment(struct inode *inode)
5654 {
5655 	if (fsverity_active(inode))
5656 		return 0;
5657 	if (ext4_should_journal_data(inode))
5658 		return 0;
5659 	if (ext4_has_inline_data(inode))
5660 		return 0;
5661 	if (IS_ENCRYPTED(inode)) {
5662 		if (!fscrypt_dio_supported(inode))
5663 			return 0;
5664 		return i_blocksize(inode);
5665 	}
5666 	return 1; /* use the iomap defaults */
5667 }
5668 
5669 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5670 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5671 {
5672 	struct inode *inode = d_inode(path->dentry);
5673 	struct ext4_inode *raw_inode;
5674 	struct ext4_inode_info *ei = EXT4_I(inode);
5675 	unsigned int flags;
5676 
5677 	if ((request_mask & STATX_BTIME) &&
5678 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5679 		stat->result_mask |= STATX_BTIME;
5680 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5681 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5682 	}
5683 
5684 	/*
5685 	 * Return the DIO alignment restrictions if requested.  We only return
5686 	 * this information when requested, since on encrypted files it might
5687 	 * take a fair bit of work to get if the file wasn't opened recently.
5688 	 */
5689 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5690 		u32 dio_align = ext4_dio_alignment(inode);
5691 
5692 		stat->result_mask |= STATX_DIOALIGN;
5693 		if (dio_align == 1) {
5694 			struct block_device *bdev = inode->i_sb->s_bdev;
5695 
5696 			/* iomap defaults */
5697 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5698 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5699 		} else {
5700 			stat->dio_mem_align = dio_align;
5701 			stat->dio_offset_align = dio_align;
5702 		}
5703 	}
5704 
5705 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5706 	if (flags & EXT4_APPEND_FL)
5707 		stat->attributes |= STATX_ATTR_APPEND;
5708 	if (flags & EXT4_COMPR_FL)
5709 		stat->attributes |= STATX_ATTR_COMPRESSED;
5710 	if (flags & EXT4_ENCRYPT_FL)
5711 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5712 	if (flags & EXT4_IMMUTABLE_FL)
5713 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5714 	if (flags & EXT4_NODUMP_FL)
5715 		stat->attributes |= STATX_ATTR_NODUMP;
5716 	if (flags & EXT4_VERITY_FL)
5717 		stat->attributes |= STATX_ATTR_VERITY;
5718 
5719 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5720 				  STATX_ATTR_COMPRESSED |
5721 				  STATX_ATTR_ENCRYPTED |
5722 				  STATX_ATTR_IMMUTABLE |
5723 				  STATX_ATTR_NODUMP |
5724 				  STATX_ATTR_VERITY);
5725 
5726 	generic_fillattr(idmap, inode, stat);
5727 	return 0;
5728 }
5729 
5730 int ext4_file_getattr(struct mnt_idmap *idmap,
5731 		      const struct path *path, struct kstat *stat,
5732 		      u32 request_mask, unsigned int query_flags)
5733 {
5734 	struct inode *inode = d_inode(path->dentry);
5735 	u64 delalloc_blocks;
5736 
5737 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5738 
5739 	/*
5740 	 * If there is inline data in the inode, the inode will normally not
5741 	 * have data blocks allocated (it may have an external xattr block).
5742 	 * Report at least one sector for such files, so tools like tar, rsync,
5743 	 * others don't incorrectly think the file is completely sparse.
5744 	 */
5745 	if (unlikely(ext4_has_inline_data(inode)))
5746 		stat->blocks += (stat->size + 511) >> 9;
5747 
5748 	/*
5749 	 * We can't update i_blocks if the block allocation is delayed
5750 	 * otherwise in the case of system crash before the real block
5751 	 * allocation is done, we will have i_blocks inconsistent with
5752 	 * on-disk file blocks.
5753 	 * We always keep i_blocks updated together with real
5754 	 * allocation. But to not confuse with user, stat
5755 	 * will return the blocks that include the delayed allocation
5756 	 * blocks for this file.
5757 	 */
5758 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5759 				   EXT4_I(inode)->i_reserved_data_blocks);
5760 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5761 	return 0;
5762 }
5763 
5764 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5765 				   int pextents)
5766 {
5767 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5768 		return ext4_ind_trans_blocks(inode, lblocks);
5769 	return ext4_ext_index_trans_blocks(inode, pextents);
5770 }
5771 
5772 /*
5773  * Account for index blocks, block groups bitmaps and block group
5774  * descriptor blocks if modify datablocks and index blocks
5775  * worse case, the indexs blocks spread over different block groups
5776  *
5777  * If datablocks are discontiguous, they are possible to spread over
5778  * different block groups too. If they are contiguous, with flexbg,
5779  * they could still across block group boundary.
5780  *
5781  * Also account for superblock, inode, quota and xattr blocks
5782  */
5783 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5784 				  int pextents)
5785 {
5786 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5787 	int gdpblocks;
5788 	int idxblocks;
5789 	int ret;
5790 
5791 	/*
5792 	 * How many index blocks need to touch to map @lblocks logical blocks
5793 	 * to @pextents physical extents?
5794 	 */
5795 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5796 
5797 	ret = idxblocks;
5798 
5799 	/*
5800 	 * Now let's see how many group bitmaps and group descriptors need
5801 	 * to account
5802 	 */
5803 	groups = idxblocks + pextents;
5804 	gdpblocks = groups;
5805 	if (groups > ngroups)
5806 		groups = ngroups;
5807 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5808 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5809 
5810 	/* bitmaps and block group descriptor blocks */
5811 	ret += groups + gdpblocks;
5812 
5813 	/* Blocks for super block, inode, quota and xattr blocks */
5814 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5815 
5816 	return ret;
5817 }
5818 
5819 /*
5820  * Calculate the total number of credits to reserve to fit
5821  * the modification of a single pages into a single transaction,
5822  * which may include multiple chunks of block allocations.
5823  *
5824  * This could be called via ext4_write_begin()
5825  *
5826  * We need to consider the worse case, when
5827  * one new block per extent.
5828  */
5829 int ext4_writepage_trans_blocks(struct inode *inode)
5830 {
5831 	int bpp = ext4_journal_blocks_per_page(inode);
5832 	int ret;
5833 
5834 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5835 
5836 	/* Account for data blocks for journalled mode */
5837 	if (ext4_should_journal_data(inode))
5838 		ret += bpp;
5839 	return ret;
5840 }
5841 
5842 /*
5843  * Calculate the journal credits for a chunk of data modification.
5844  *
5845  * This is called from DIO, fallocate or whoever calling
5846  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5847  *
5848  * journal buffers for data blocks are not included here, as DIO
5849  * and fallocate do no need to journal data buffers.
5850  */
5851 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5852 {
5853 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5854 }
5855 
5856 /*
5857  * The caller must have previously called ext4_reserve_inode_write().
5858  * Give this, we know that the caller already has write access to iloc->bh.
5859  */
5860 int ext4_mark_iloc_dirty(handle_t *handle,
5861 			 struct inode *inode, struct ext4_iloc *iloc)
5862 {
5863 	int err = 0;
5864 
5865 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5866 		put_bh(iloc->bh);
5867 		return -EIO;
5868 	}
5869 	ext4_fc_track_inode(handle, inode);
5870 
5871 	/* the do_update_inode consumes one bh->b_count */
5872 	get_bh(iloc->bh);
5873 
5874 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5875 	err = ext4_do_update_inode(handle, inode, iloc);
5876 	put_bh(iloc->bh);
5877 	return err;
5878 }
5879 
5880 /*
5881  * On success, We end up with an outstanding reference count against
5882  * iloc->bh.  This _must_ be cleaned up later.
5883  */
5884 
5885 int
5886 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5887 			 struct ext4_iloc *iloc)
5888 {
5889 	int err;
5890 
5891 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5892 		return -EIO;
5893 
5894 	err = ext4_get_inode_loc(inode, iloc);
5895 	if (!err) {
5896 		BUFFER_TRACE(iloc->bh, "get_write_access");
5897 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5898 						    iloc->bh, EXT4_JTR_NONE);
5899 		if (err) {
5900 			brelse(iloc->bh);
5901 			iloc->bh = NULL;
5902 		}
5903 	}
5904 	ext4_std_error(inode->i_sb, err);
5905 	return err;
5906 }
5907 
5908 static int __ext4_expand_extra_isize(struct inode *inode,
5909 				     unsigned int new_extra_isize,
5910 				     struct ext4_iloc *iloc,
5911 				     handle_t *handle, int *no_expand)
5912 {
5913 	struct ext4_inode *raw_inode;
5914 	struct ext4_xattr_ibody_header *header;
5915 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5916 	struct ext4_inode_info *ei = EXT4_I(inode);
5917 	int error;
5918 
5919 	/* this was checked at iget time, but double check for good measure */
5920 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5921 	    (ei->i_extra_isize & 3)) {
5922 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5923 				 ei->i_extra_isize,
5924 				 EXT4_INODE_SIZE(inode->i_sb));
5925 		return -EFSCORRUPTED;
5926 	}
5927 	if ((new_extra_isize < ei->i_extra_isize) ||
5928 	    (new_extra_isize < 4) ||
5929 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5930 		return -EINVAL;	/* Should never happen */
5931 
5932 	raw_inode = ext4_raw_inode(iloc);
5933 
5934 	header = IHDR(inode, raw_inode);
5935 
5936 	/* No extended attributes present */
5937 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5938 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5939 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5940 		       EXT4_I(inode)->i_extra_isize, 0,
5941 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5942 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5943 		return 0;
5944 	}
5945 
5946 	/*
5947 	 * We may need to allocate external xattr block so we need quotas
5948 	 * initialized. Here we can be called with various locks held so we
5949 	 * cannot affort to initialize quotas ourselves. So just bail.
5950 	 */
5951 	if (dquot_initialize_needed(inode))
5952 		return -EAGAIN;
5953 
5954 	/* try to expand with EAs present */
5955 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5956 					   raw_inode, handle);
5957 	if (error) {
5958 		/*
5959 		 * Inode size expansion failed; don't try again
5960 		 */
5961 		*no_expand = 1;
5962 	}
5963 
5964 	return error;
5965 }
5966 
5967 /*
5968  * Expand an inode by new_extra_isize bytes.
5969  * Returns 0 on success or negative error number on failure.
5970  */
5971 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5972 					  unsigned int new_extra_isize,
5973 					  struct ext4_iloc iloc,
5974 					  handle_t *handle)
5975 {
5976 	int no_expand;
5977 	int error;
5978 
5979 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5980 		return -EOVERFLOW;
5981 
5982 	/*
5983 	 * In nojournal mode, we can immediately attempt to expand
5984 	 * the inode.  When journaled, we first need to obtain extra
5985 	 * buffer credits since we may write into the EA block
5986 	 * with this same handle. If journal_extend fails, then it will
5987 	 * only result in a minor loss of functionality for that inode.
5988 	 * If this is felt to be critical, then e2fsck should be run to
5989 	 * force a large enough s_min_extra_isize.
5990 	 */
5991 	if (ext4_journal_extend(handle,
5992 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5993 		return -ENOSPC;
5994 
5995 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5996 		return -EBUSY;
5997 
5998 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5999 					  handle, &no_expand);
6000 	ext4_write_unlock_xattr(inode, &no_expand);
6001 
6002 	return error;
6003 }
6004 
6005 int ext4_expand_extra_isize(struct inode *inode,
6006 			    unsigned int new_extra_isize,
6007 			    struct ext4_iloc *iloc)
6008 {
6009 	handle_t *handle;
6010 	int no_expand;
6011 	int error, rc;
6012 
6013 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6014 		brelse(iloc->bh);
6015 		return -EOVERFLOW;
6016 	}
6017 
6018 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6019 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6020 	if (IS_ERR(handle)) {
6021 		error = PTR_ERR(handle);
6022 		brelse(iloc->bh);
6023 		return error;
6024 	}
6025 
6026 	ext4_write_lock_xattr(inode, &no_expand);
6027 
6028 	BUFFER_TRACE(iloc->bh, "get_write_access");
6029 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6030 					      EXT4_JTR_NONE);
6031 	if (error) {
6032 		brelse(iloc->bh);
6033 		goto out_unlock;
6034 	}
6035 
6036 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6037 					  handle, &no_expand);
6038 
6039 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6040 	if (!error)
6041 		error = rc;
6042 
6043 out_unlock:
6044 	ext4_write_unlock_xattr(inode, &no_expand);
6045 	ext4_journal_stop(handle);
6046 	return error;
6047 }
6048 
6049 /*
6050  * What we do here is to mark the in-core inode as clean with respect to inode
6051  * dirtiness (it may still be data-dirty).
6052  * This means that the in-core inode may be reaped by prune_icache
6053  * without having to perform any I/O.  This is a very good thing,
6054  * because *any* task may call prune_icache - even ones which
6055  * have a transaction open against a different journal.
6056  *
6057  * Is this cheating?  Not really.  Sure, we haven't written the
6058  * inode out, but prune_icache isn't a user-visible syncing function.
6059  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6060  * we start and wait on commits.
6061  */
6062 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6063 				const char *func, unsigned int line)
6064 {
6065 	struct ext4_iloc iloc;
6066 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6067 	int err;
6068 
6069 	might_sleep();
6070 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6071 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6072 	if (err)
6073 		goto out;
6074 
6075 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6076 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6077 					       iloc, handle);
6078 
6079 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6080 out:
6081 	if (unlikely(err))
6082 		ext4_error_inode_err(inode, func, line, 0, err,
6083 					"mark_inode_dirty error");
6084 	return err;
6085 }
6086 
6087 /*
6088  * ext4_dirty_inode() is called from __mark_inode_dirty()
6089  *
6090  * We're really interested in the case where a file is being extended.
6091  * i_size has been changed by generic_commit_write() and we thus need
6092  * to include the updated inode in the current transaction.
6093  *
6094  * Also, dquot_alloc_block() will always dirty the inode when blocks
6095  * are allocated to the file.
6096  *
6097  * If the inode is marked synchronous, we don't honour that here - doing
6098  * so would cause a commit on atime updates, which we don't bother doing.
6099  * We handle synchronous inodes at the highest possible level.
6100  */
6101 void ext4_dirty_inode(struct inode *inode, int flags)
6102 {
6103 	handle_t *handle;
6104 
6105 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6106 	if (IS_ERR(handle))
6107 		return;
6108 	ext4_mark_inode_dirty(handle, inode);
6109 	ext4_journal_stop(handle);
6110 }
6111 
6112 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6113 {
6114 	journal_t *journal;
6115 	handle_t *handle;
6116 	int err;
6117 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6118 
6119 	/*
6120 	 * We have to be very careful here: changing a data block's
6121 	 * journaling status dynamically is dangerous.  If we write a
6122 	 * data block to the journal, change the status and then delete
6123 	 * that block, we risk forgetting to revoke the old log record
6124 	 * from the journal and so a subsequent replay can corrupt data.
6125 	 * So, first we make sure that the journal is empty and that
6126 	 * nobody is changing anything.
6127 	 */
6128 
6129 	journal = EXT4_JOURNAL(inode);
6130 	if (!journal)
6131 		return 0;
6132 	if (is_journal_aborted(journal))
6133 		return -EROFS;
6134 
6135 	/* Wait for all existing dio workers */
6136 	inode_dio_wait(inode);
6137 
6138 	/*
6139 	 * Before flushing the journal and switching inode's aops, we have
6140 	 * to flush all dirty data the inode has. There can be outstanding
6141 	 * delayed allocations, there can be unwritten extents created by
6142 	 * fallocate or buffered writes in dioread_nolock mode covered by
6143 	 * dirty data which can be converted only after flushing the dirty
6144 	 * data (and journalled aops don't know how to handle these cases).
6145 	 */
6146 	if (val) {
6147 		filemap_invalidate_lock(inode->i_mapping);
6148 		err = filemap_write_and_wait(inode->i_mapping);
6149 		if (err < 0) {
6150 			filemap_invalidate_unlock(inode->i_mapping);
6151 			return err;
6152 		}
6153 	}
6154 
6155 	percpu_down_write(&sbi->s_writepages_rwsem);
6156 	jbd2_journal_lock_updates(journal);
6157 
6158 	/*
6159 	 * OK, there are no updates running now, and all cached data is
6160 	 * synced to disk.  We are now in a completely consistent state
6161 	 * which doesn't have anything in the journal, and we know that
6162 	 * no filesystem updates are running, so it is safe to modify
6163 	 * the inode's in-core data-journaling state flag now.
6164 	 */
6165 
6166 	if (val)
6167 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6168 	else {
6169 		err = jbd2_journal_flush(journal, 0);
6170 		if (err < 0) {
6171 			jbd2_journal_unlock_updates(journal);
6172 			percpu_up_write(&sbi->s_writepages_rwsem);
6173 			return err;
6174 		}
6175 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6176 	}
6177 	ext4_set_aops(inode);
6178 
6179 	jbd2_journal_unlock_updates(journal);
6180 	percpu_up_write(&sbi->s_writepages_rwsem);
6181 
6182 	if (val)
6183 		filemap_invalidate_unlock(inode->i_mapping);
6184 
6185 	/* Finally we can mark the inode as dirty. */
6186 
6187 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6188 	if (IS_ERR(handle))
6189 		return PTR_ERR(handle);
6190 
6191 	ext4_fc_mark_ineligible(inode->i_sb,
6192 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6193 	err = ext4_mark_inode_dirty(handle, inode);
6194 	ext4_handle_sync(handle);
6195 	ext4_journal_stop(handle);
6196 	ext4_std_error(inode->i_sb, err);
6197 
6198 	return err;
6199 }
6200 
6201 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6202 			    struct buffer_head *bh)
6203 {
6204 	return !buffer_mapped(bh);
6205 }
6206 
6207 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6208 {
6209 	struct vm_area_struct *vma = vmf->vma;
6210 	struct page *page = vmf->page;
6211 	loff_t size;
6212 	unsigned long len;
6213 	int err;
6214 	vm_fault_t ret;
6215 	struct file *file = vma->vm_file;
6216 	struct inode *inode = file_inode(file);
6217 	struct address_space *mapping = inode->i_mapping;
6218 	handle_t *handle;
6219 	get_block_t *get_block;
6220 	int retries = 0;
6221 
6222 	if (unlikely(IS_IMMUTABLE(inode)))
6223 		return VM_FAULT_SIGBUS;
6224 
6225 	sb_start_pagefault(inode->i_sb);
6226 	file_update_time(vma->vm_file);
6227 
6228 	filemap_invalidate_lock_shared(mapping);
6229 
6230 	err = ext4_convert_inline_data(inode);
6231 	if (err)
6232 		goto out_ret;
6233 
6234 	/*
6235 	 * On data journalling we skip straight to the transaction handle:
6236 	 * there's no delalloc; page truncated will be checked later; the
6237 	 * early return w/ all buffers mapped (calculates size/len) can't
6238 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6239 	 */
6240 	if (ext4_should_journal_data(inode))
6241 		goto retry_alloc;
6242 
6243 	/* Delalloc case is easy... */
6244 	if (test_opt(inode->i_sb, DELALLOC) &&
6245 	    !ext4_nonda_switch(inode->i_sb)) {
6246 		do {
6247 			err = block_page_mkwrite(vma, vmf,
6248 						   ext4_da_get_block_prep);
6249 		} while (err == -ENOSPC &&
6250 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6251 		goto out_ret;
6252 	}
6253 
6254 	lock_page(page);
6255 	size = i_size_read(inode);
6256 	/* Page got truncated from under us? */
6257 	if (page->mapping != mapping || page_offset(page) > size) {
6258 		unlock_page(page);
6259 		ret = VM_FAULT_NOPAGE;
6260 		goto out;
6261 	}
6262 
6263 	if (page->index == size >> PAGE_SHIFT)
6264 		len = size & ~PAGE_MASK;
6265 	else
6266 		len = PAGE_SIZE;
6267 	/*
6268 	 * Return if we have all the buffers mapped. This avoids the need to do
6269 	 * journal_start/journal_stop which can block and take a long time
6270 	 *
6271 	 * This cannot be done for data journalling, as we have to add the
6272 	 * inode to the transaction's list to writeprotect pages on commit.
6273 	 */
6274 	if (page_has_buffers(page)) {
6275 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6276 					    0, len, NULL,
6277 					    ext4_bh_unmapped)) {
6278 			/* Wait so that we don't change page under IO */
6279 			wait_for_stable_page(page);
6280 			ret = VM_FAULT_LOCKED;
6281 			goto out;
6282 		}
6283 	}
6284 	unlock_page(page);
6285 	/* OK, we need to fill the hole... */
6286 	if (ext4_should_dioread_nolock(inode))
6287 		get_block = ext4_get_block_unwritten;
6288 	else
6289 		get_block = ext4_get_block;
6290 retry_alloc:
6291 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6292 				    ext4_writepage_trans_blocks(inode));
6293 	if (IS_ERR(handle)) {
6294 		ret = VM_FAULT_SIGBUS;
6295 		goto out;
6296 	}
6297 	/*
6298 	 * Data journalling can't use block_page_mkwrite() because it
6299 	 * will set_buffer_dirty() before do_journal_get_write_access()
6300 	 * thus might hit warning messages for dirty metadata buffers.
6301 	 */
6302 	if (!ext4_should_journal_data(inode)) {
6303 		err = block_page_mkwrite(vma, vmf, get_block);
6304 	} else {
6305 		lock_page(page);
6306 		size = i_size_read(inode);
6307 		/* Page got truncated from under us? */
6308 		if (page->mapping != mapping || page_offset(page) > size) {
6309 			ret = VM_FAULT_NOPAGE;
6310 			goto out_error;
6311 		}
6312 
6313 		if (page->index == size >> PAGE_SHIFT)
6314 			len = size & ~PAGE_MASK;
6315 		else
6316 			len = PAGE_SIZE;
6317 
6318 		err = __block_write_begin(page, 0, len, ext4_get_block);
6319 		if (!err) {
6320 			ret = VM_FAULT_SIGBUS;
6321 			if (ext4_walk_page_buffers(handle, inode,
6322 					page_buffers(page), 0, len, NULL,
6323 					do_journal_get_write_access))
6324 				goto out_error;
6325 			if (ext4_walk_page_buffers(handle, inode,
6326 					page_buffers(page), 0, len, NULL,
6327 					write_end_fn))
6328 				goto out_error;
6329 			if (ext4_jbd2_inode_add_write(handle, inode,
6330 						      page_offset(page), len))
6331 				goto out_error;
6332 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6333 		} else {
6334 			unlock_page(page);
6335 		}
6336 	}
6337 	ext4_journal_stop(handle);
6338 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6339 		goto retry_alloc;
6340 out_ret:
6341 	ret = block_page_mkwrite_return(err);
6342 out:
6343 	filemap_invalidate_unlock_shared(mapping);
6344 	sb_end_pagefault(inode->i_sb);
6345 	return ret;
6346 out_error:
6347 	unlock_page(page);
6348 	ext4_journal_stop(handle);
6349 	goto out;
6350 }
6351