xref: /openbmc/linux/fs/ext4/inode.c (revision 9e52484c713321e84e8834803a44ca0a001376d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * Protect us against freezing - iput() caller didn't have to have any
225 	 * protection against it
226 	 */
227 	sb_start_intwrite(inode->i_sb);
228 
229 	if (!IS_NOQUOTA(inode))
230 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231 
232 	/*
233 	 * Block bitmap, group descriptor, and inode are accounted in both
234 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235 	 */
236 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
238 	if (IS_ERR(handle)) {
239 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 		/*
241 		 * If we're going to skip the normal cleanup, we still need to
242 		 * make sure that the in-core orphan linked list is properly
243 		 * cleaned up.
244 		 */
245 		ext4_orphan_del(NULL, inode);
246 		sb_end_intwrite(inode->i_sb);
247 		goto no_delete;
248 	}
249 
250 	if (IS_SYNC(inode))
251 		ext4_handle_sync(handle);
252 
253 	/*
254 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
255 	 * special handling of symlinks here because i_size is used to
256 	 * determine whether ext4_inode_info->i_data contains symlink data or
257 	 * block mappings. Setting i_size to 0 will remove its fast symlink
258 	 * status. Erase i_data so that it becomes a valid empty block map.
259 	 */
260 	if (ext4_inode_is_fast_symlink(inode))
261 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262 	inode->i_size = 0;
263 	err = ext4_mark_inode_dirty(handle, inode);
264 	if (err) {
265 		ext4_warning(inode->i_sb,
266 			     "couldn't mark inode dirty (err %d)", err);
267 		goto stop_handle;
268 	}
269 	if (inode->i_blocks) {
270 		err = ext4_truncate(inode);
271 		if (err) {
272 			ext4_error_err(inode->i_sb, -err,
273 				       "couldn't truncate inode %lu (err %d)",
274 				       inode->i_ino, err);
275 			goto stop_handle;
276 		}
277 	}
278 
279 	/* Remove xattr references. */
280 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
281 				      extra_credits);
282 	if (err) {
283 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
284 stop_handle:
285 		ext4_journal_stop(handle);
286 		ext4_orphan_del(NULL, inode);
287 		sb_end_intwrite(inode->i_sb);
288 		ext4_xattr_inode_array_free(ea_inode_array);
289 		goto no_delete;
290 	}
291 
292 	/*
293 	 * Kill off the orphan record which ext4_truncate created.
294 	 * AKPM: I think this can be inside the above `if'.
295 	 * Note that ext4_orphan_del() has to be able to cope with the
296 	 * deletion of a non-existent orphan - this is because we don't
297 	 * know if ext4_truncate() actually created an orphan record.
298 	 * (Well, we could do this if we need to, but heck - it works)
299 	 */
300 	ext4_orphan_del(handle, inode);
301 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
302 
303 	/*
304 	 * One subtle ordering requirement: if anything has gone wrong
305 	 * (transaction abort, IO errors, whatever), then we can still
306 	 * do these next steps (the fs will already have been marked as
307 	 * having errors), but we can't free the inode if the mark_dirty
308 	 * fails.
309 	 */
310 	if (ext4_mark_inode_dirty(handle, inode))
311 		/* If that failed, just do the required in-core inode clear. */
312 		ext4_clear_inode(inode);
313 	else
314 		ext4_free_inode(handle, inode);
315 	ext4_journal_stop(handle);
316 	sb_end_intwrite(inode->i_sb);
317 	ext4_xattr_inode_array_free(ea_inode_array);
318 	return;
319 no_delete:
320 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
321 }
322 
323 #ifdef CONFIG_QUOTA
324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326 	return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329 
330 /*
331  * Called with i_data_sem down, which is important since we can call
332  * ext4_discard_preallocations() from here.
333  */
334 void ext4_da_update_reserve_space(struct inode *inode,
335 					int used, int quota_claim)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338 	struct ext4_inode_info *ei = EXT4_I(inode);
339 
340 	spin_lock(&ei->i_block_reservation_lock);
341 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342 	if (unlikely(used > ei->i_reserved_data_blocks)) {
343 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344 			 "with only %d reserved data blocks",
345 			 __func__, inode->i_ino, used,
346 			 ei->i_reserved_data_blocks);
347 		WARN_ON(1);
348 		used = ei->i_reserved_data_blocks;
349 	}
350 
351 	/* Update per-inode reservations */
352 	ei->i_reserved_data_blocks -= used;
353 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354 
355 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
356 
357 	/* Update quota subsystem for data blocks */
358 	if (quota_claim)
359 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 	else {
361 		/*
362 		 * We did fallocate with an offset that is already delayed
363 		 * allocated. So on delayed allocated writeback we should
364 		 * not re-claim the quota for fallocated blocks.
365 		 */
366 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 	}
368 
369 	/*
370 	 * If we have done all the pending block allocations and if
371 	 * there aren't any writers on the inode, we can discard the
372 	 * inode's preallocations.
373 	 */
374 	if ((ei->i_reserved_data_blocks == 0) &&
375 	    !inode_is_open_for_write(inode))
376 		ext4_discard_preallocations(inode);
377 }
378 
379 static int __check_block_validity(struct inode *inode, const char *func,
380 				unsigned int line,
381 				struct ext4_map_blocks *map)
382 {
383 	if (ext4_has_feature_journal(inode->i_sb) &&
384 	    (inode->i_ino ==
385 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
386 		return 0;
387 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
388 				   map->m_len)) {
389 		ext4_error_inode(inode, func, line, map->m_pblk,
390 				 "lblock %lu mapped to illegal pblock %llu "
391 				 "(length %d)", (unsigned long) map->m_lblk,
392 				 map->m_pblk, map->m_len);
393 		return -EFSCORRUPTED;
394 	}
395 	return 0;
396 }
397 
398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399 		       ext4_lblk_t len)
400 {
401 	int ret;
402 
403 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
405 
406 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407 	if (ret > 0)
408 		ret = 0;
409 
410 	return ret;
411 }
412 
413 #define check_block_validity(inode, map)	\
414 	__check_block_validity((inode), __func__, __LINE__, (map))
415 
416 #ifdef ES_AGGRESSIVE_TEST
417 static void ext4_map_blocks_es_recheck(handle_t *handle,
418 				       struct inode *inode,
419 				       struct ext4_map_blocks *es_map,
420 				       struct ext4_map_blocks *map,
421 				       int flags)
422 {
423 	int retval;
424 
425 	map->m_flags = 0;
426 	/*
427 	 * There is a race window that the result is not the same.
428 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
429 	 * is that we lookup a block mapping in extent status tree with
430 	 * out taking i_data_sem.  So at the time the unwritten extent
431 	 * could be converted.
432 	 */
433 	down_read(&EXT4_I(inode)->i_data_sem);
434 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
436 	} else {
437 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	/*
442 	 * We don't check m_len because extent will be collpased in status
443 	 * tree.  So the m_len might not equal.
444 	 */
445 	if (es_map->m_lblk != map->m_lblk ||
446 	    es_map->m_flags != map->m_flags ||
447 	    es_map->m_pblk != map->m_pblk) {
448 		printk("ES cache assertion failed for inode: %lu "
449 		       "es_cached ex [%d/%d/%llu/%x] != "
450 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
452 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 		       map->m_len, map->m_pblk, map->m_flags,
454 		       retval, flags);
455 	}
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458 
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 		    struct ext4_map_blocks *map, int flags)
483 {
484 	struct extent_status es;
485 	int retval;
486 	int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 	struct ext4_map_blocks orig_map;
489 
490 	memcpy(&orig_map, map, sizeof(*map));
491 #endif
492 
493 	map->m_flags = 0;
494 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 		  (unsigned long) map->m_lblk);
497 
498 	/*
499 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 	 */
501 	if (unlikely(map->m_len > INT_MAX))
502 		map->m_len = INT_MAX;
503 
504 	/* We can handle the block number less than EXT_MAX_BLOCKS */
505 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 		return -EFSCORRUPTED;
507 
508 	/* Lookup extent status tree firstly */
509 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
510 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 			map->m_pblk = ext4_es_pblock(&es) +
512 					map->m_lblk - es.es_lblk;
513 			map->m_flags |= ext4_es_is_written(&es) ?
514 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 			retval = es.es_len - (map->m_lblk - es.es_lblk);
516 			if (retval > map->m_len)
517 				retval = map->m_len;
518 			map->m_len = retval;
519 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 			map->m_pblk = 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG();
528 		}
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 
536 	/*
537 	 * Try to see if we can get the block without requesting a new
538 	 * file system block.
539 	 */
540 	down_read(&EXT4_I(inode)->i_data_sem);
541 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
543 	} else {
544 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
545 	}
546 	if (retval > 0) {
547 		unsigned int status;
548 
549 		if (unlikely(retval != map->m_len)) {
550 			ext4_warning(inode->i_sb,
551 				     "ES len assertion failed for inode "
552 				     "%lu: retval %d != map->m_len %d",
553 				     inode->i_ino, retval, map->m_len);
554 			WARN_ON(1);
555 		}
556 
557 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
558 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
559 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
560 		    !(status & EXTENT_STATUS_WRITTEN) &&
561 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
562 				       map->m_lblk + map->m_len - 1))
563 			status |= EXTENT_STATUS_DELAYED;
564 		ret = ext4_es_insert_extent(inode, map->m_lblk,
565 					    map->m_len, map->m_pblk, status);
566 		if (ret < 0)
567 			retval = ret;
568 	}
569 	up_read((&EXT4_I(inode)->i_data_sem));
570 
571 found:
572 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
573 		ret = check_block_validity(inode, map);
574 		if (ret != 0)
575 			return ret;
576 	}
577 
578 	/* If it is only a block(s) look up */
579 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
580 		return retval;
581 
582 	/*
583 	 * Returns if the blocks have already allocated
584 	 *
585 	 * Note that if blocks have been preallocated
586 	 * ext4_ext_get_block() returns the create = 0
587 	 * with buffer head unmapped.
588 	 */
589 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
590 		/*
591 		 * If we need to convert extent to unwritten
592 		 * we continue and do the actual work in
593 		 * ext4_ext_map_blocks()
594 		 */
595 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
596 			return retval;
597 
598 	/*
599 	 * Here we clear m_flags because after allocating an new extent,
600 	 * it will be set again.
601 	 */
602 	map->m_flags &= ~EXT4_MAP_FLAGS;
603 
604 	/*
605 	 * New blocks allocate and/or writing to unwritten extent
606 	 * will possibly result in updating i_data, so we take
607 	 * the write lock of i_data_sem, and call get_block()
608 	 * with create == 1 flag.
609 	 */
610 	down_write(&EXT4_I(inode)->i_data_sem);
611 
612 	/*
613 	 * We need to check for EXT4 here because migrate
614 	 * could have changed the inode type in between
615 	 */
616 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
617 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
618 	} else {
619 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
620 
621 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
622 			/*
623 			 * We allocated new blocks which will result in
624 			 * i_data's format changing.  Force the migrate
625 			 * to fail by clearing migrate flags
626 			 */
627 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
628 		}
629 
630 		/*
631 		 * Update reserved blocks/metadata blocks after successful
632 		 * block allocation which had been deferred till now. We don't
633 		 * support fallocate for non extent files. So we can update
634 		 * reserve space here.
635 		 */
636 		if ((retval > 0) &&
637 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
638 			ext4_da_update_reserve_space(inode, retval, 1);
639 	}
640 
641 	if (retval > 0) {
642 		unsigned int status;
643 
644 		if (unlikely(retval != map->m_len)) {
645 			ext4_warning(inode->i_sb,
646 				     "ES len assertion failed for inode "
647 				     "%lu: retval %d != map->m_len %d",
648 				     inode->i_ino, retval, map->m_len);
649 			WARN_ON(1);
650 		}
651 
652 		/*
653 		 * We have to zeroout blocks before inserting them into extent
654 		 * status tree. Otherwise someone could look them up there and
655 		 * use them before they are really zeroed. We also have to
656 		 * unmap metadata before zeroing as otherwise writeback can
657 		 * overwrite zeros with stale data from block device.
658 		 */
659 		if (flags & EXT4_GET_BLOCKS_ZERO &&
660 		    map->m_flags & EXT4_MAP_MAPPED &&
661 		    map->m_flags & EXT4_MAP_NEW) {
662 			ret = ext4_issue_zeroout(inode, map->m_lblk,
663 						 map->m_pblk, map->m_len);
664 			if (ret) {
665 				retval = ret;
666 				goto out_sem;
667 			}
668 		}
669 
670 		/*
671 		 * If the extent has been zeroed out, we don't need to update
672 		 * extent status tree.
673 		 */
674 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
675 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
676 			if (ext4_es_is_written(&es))
677 				goto out_sem;
678 		}
679 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
680 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
681 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
682 		    !(status & EXTENT_STATUS_WRITTEN) &&
683 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
684 				       map->m_lblk + map->m_len - 1))
685 			status |= EXTENT_STATUS_DELAYED;
686 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
687 					    map->m_pblk, status);
688 		if (ret < 0) {
689 			retval = ret;
690 			goto out_sem;
691 		}
692 	}
693 
694 out_sem:
695 	up_write((&EXT4_I(inode)->i_data_sem));
696 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
697 		ret = check_block_validity(inode, map);
698 		if (ret != 0)
699 			return ret;
700 
701 		/*
702 		 * Inodes with freshly allocated blocks where contents will be
703 		 * visible after transaction commit must be on transaction's
704 		 * ordered data list.
705 		 */
706 		if (map->m_flags & EXT4_MAP_NEW &&
707 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
708 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
709 		    !ext4_is_quota_file(inode) &&
710 		    ext4_should_order_data(inode)) {
711 			loff_t start_byte =
712 				(loff_t)map->m_lblk << inode->i_blkbits;
713 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
714 
715 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 				ret = ext4_jbd2_inode_add_wait(handle, inode,
717 						start_byte, length);
718 			else
719 				ret = ext4_jbd2_inode_add_write(handle, inode,
720 						start_byte, length);
721 			if (ret)
722 				return ret;
723 		}
724 	}
725 	return retval;
726 }
727 
728 /*
729  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
730  * we have to be careful as someone else may be manipulating b_state as well.
731  */
732 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
733 {
734 	unsigned long old_state;
735 	unsigned long new_state;
736 
737 	flags &= EXT4_MAP_FLAGS;
738 
739 	/* Dummy buffer_head? Set non-atomically. */
740 	if (!bh->b_page) {
741 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
742 		return;
743 	}
744 	/*
745 	 * Someone else may be modifying b_state. Be careful! This is ugly but
746 	 * once we get rid of using bh as a container for mapping information
747 	 * to pass to / from get_block functions, this can go away.
748 	 */
749 	do {
750 		old_state = READ_ONCE(bh->b_state);
751 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
752 	} while (unlikely(
753 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
754 }
755 
756 static int _ext4_get_block(struct inode *inode, sector_t iblock,
757 			   struct buffer_head *bh, int flags)
758 {
759 	struct ext4_map_blocks map;
760 	int ret = 0;
761 
762 	if (ext4_has_inline_data(inode))
763 		return -ERANGE;
764 
765 	map.m_lblk = iblock;
766 	map.m_len = bh->b_size >> inode->i_blkbits;
767 
768 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
769 			      flags);
770 	if (ret > 0) {
771 		map_bh(bh, inode->i_sb, map.m_pblk);
772 		ext4_update_bh_state(bh, map.m_flags);
773 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
774 		ret = 0;
775 	} else if (ret == 0) {
776 		/* hole case, need to fill in bh->b_size */
777 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 	}
779 	return ret;
780 }
781 
782 int ext4_get_block(struct inode *inode, sector_t iblock,
783 		   struct buffer_head *bh, int create)
784 {
785 	return _ext4_get_block(inode, iblock, bh,
786 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
787 }
788 
789 /*
790  * Get block function used when preparing for buffered write if we require
791  * creating an unwritten extent if blocks haven't been allocated.  The extent
792  * will be converted to written after the IO is complete.
793  */
794 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
795 			     struct buffer_head *bh_result, int create)
796 {
797 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
798 		   inode->i_ino, create);
799 	return _ext4_get_block(inode, iblock, bh_result,
800 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
801 }
802 
803 /* Maximum number of blocks we map for direct IO at once. */
804 #define DIO_MAX_BLOCKS 4096
805 
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810 				ext4_lblk_t block, int map_flags)
811 {
812 	struct ext4_map_blocks map;
813 	struct buffer_head *bh;
814 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
815 	int err;
816 
817 	J_ASSERT(handle != NULL || create == 0);
818 
819 	map.m_lblk = block;
820 	map.m_len = 1;
821 	err = ext4_map_blocks(handle, inode, &map, map_flags);
822 
823 	if (err == 0)
824 		return create ? ERR_PTR(-ENOSPC) : NULL;
825 	if (err < 0)
826 		return ERR_PTR(err);
827 
828 	bh = sb_getblk(inode->i_sb, map.m_pblk);
829 	if (unlikely(!bh))
830 		return ERR_PTR(-ENOMEM);
831 	if (map.m_flags & EXT4_MAP_NEW) {
832 		J_ASSERT(create != 0);
833 		J_ASSERT(handle != NULL);
834 
835 		/*
836 		 * Now that we do not always journal data, we should
837 		 * keep in mind whether this should always journal the
838 		 * new buffer as metadata.  For now, regular file
839 		 * writes use ext4_get_block instead, so it's not a
840 		 * problem.
841 		 */
842 		lock_buffer(bh);
843 		BUFFER_TRACE(bh, "call get_create_access");
844 		err = ext4_journal_get_create_access(handle, bh);
845 		if (unlikely(err)) {
846 			unlock_buffer(bh);
847 			goto errout;
848 		}
849 		if (!buffer_uptodate(bh)) {
850 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
851 			set_buffer_uptodate(bh);
852 		}
853 		unlock_buffer(bh);
854 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
855 		err = ext4_handle_dirty_metadata(handle, inode, bh);
856 		if (unlikely(err))
857 			goto errout;
858 	} else
859 		BUFFER_TRACE(bh, "not a new buffer");
860 	return bh;
861 errout:
862 	brelse(bh);
863 	return ERR_PTR(err);
864 }
865 
866 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
867 			       ext4_lblk_t block, int map_flags)
868 {
869 	struct buffer_head *bh;
870 
871 	bh = ext4_getblk(handle, inode, block, map_flags);
872 	if (IS_ERR(bh))
873 		return bh;
874 	if (!bh || ext4_buffer_uptodate(bh))
875 		return bh;
876 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
877 	wait_on_buffer(bh);
878 	if (buffer_uptodate(bh))
879 		return bh;
880 	put_bh(bh);
881 	return ERR_PTR(-EIO);
882 }
883 
884 /* Read a contiguous batch of blocks. */
885 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
886 		     bool wait, struct buffer_head **bhs)
887 {
888 	int i, err;
889 
890 	for (i = 0; i < bh_count; i++) {
891 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
892 		if (IS_ERR(bhs[i])) {
893 			err = PTR_ERR(bhs[i]);
894 			bh_count = i;
895 			goto out_brelse;
896 		}
897 	}
898 
899 	for (i = 0; i < bh_count; i++)
900 		/* Note that NULL bhs[i] is valid because of holes. */
901 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
902 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
903 				    &bhs[i]);
904 
905 	if (!wait)
906 		return 0;
907 
908 	for (i = 0; i < bh_count; i++)
909 		if (bhs[i])
910 			wait_on_buffer(bhs[i]);
911 
912 	for (i = 0; i < bh_count; i++) {
913 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
914 			err = -EIO;
915 			goto out_brelse;
916 		}
917 	}
918 	return 0;
919 
920 out_brelse:
921 	for (i = 0; i < bh_count; i++) {
922 		brelse(bhs[i]);
923 		bhs[i] = NULL;
924 	}
925 	return err;
926 }
927 
928 int ext4_walk_page_buffers(handle_t *handle,
929 			   struct buffer_head *head,
930 			   unsigned from,
931 			   unsigned to,
932 			   int *partial,
933 			   int (*fn)(handle_t *handle,
934 				     struct buffer_head *bh))
935 {
936 	struct buffer_head *bh;
937 	unsigned block_start, block_end;
938 	unsigned blocksize = head->b_size;
939 	int err, ret = 0;
940 	struct buffer_head *next;
941 
942 	for (bh = head, block_start = 0;
943 	     ret == 0 && (bh != head || !block_start);
944 	     block_start = block_end, bh = next) {
945 		next = bh->b_this_page;
946 		block_end = block_start + blocksize;
947 		if (block_end <= from || block_start >= to) {
948 			if (partial && !buffer_uptodate(bh))
949 				*partial = 1;
950 			continue;
951 		}
952 		err = (*fn)(handle, bh);
953 		if (!ret)
954 			ret = err;
955 	}
956 	return ret;
957 }
958 
959 /*
960  * To preserve ordering, it is essential that the hole instantiation and
961  * the data write be encapsulated in a single transaction.  We cannot
962  * close off a transaction and start a new one between the ext4_get_block()
963  * and the commit_write().  So doing the jbd2_journal_start at the start of
964  * prepare_write() is the right place.
965  *
966  * Also, this function can nest inside ext4_writepage().  In that case, we
967  * *know* that ext4_writepage() has generated enough buffer credits to do the
968  * whole page.  So we won't block on the journal in that case, which is good,
969  * because the caller may be PF_MEMALLOC.
970  *
971  * By accident, ext4 can be reentered when a transaction is open via
972  * quota file writes.  If we were to commit the transaction while thus
973  * reentered, there can be a deadlock - we would be holding a quota
974  * lock, and the commit would never complete if another thread had a
975  * transaction open and was blocking on the quota lock - a ranking
976  * violation.
977  *
978  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
979  * will _not_ run commit under these circumstances because handle->h_ref
980  * is elevated.  We'll still have enough credits for the tiny quotafile
981  * write.
982  */
983 int do_journal_get_write_access(handle_t *handle,
984 				struct buffer_head *bh)
985 {
986 	int dirty = buffer_dirty(bh);
987 	int ret;
988 
989 	if (!buffer_mapped(bh) || buffer_freed(bh))
990 		return 0;
991 	/*
992 	 * __block_write_begin() could have dirtied some buffers. Clean
993 	 * the dirty bit as jbd2_journal_get_write_access() could complain
994 	 * otherwise about fs integrity issues. Setting of the dirty bit
995 	 * by __block_write_begin() isn't a real problem here as we clear
996 	 * the bit before releasing a page lock and thus writeback cannot
997 	 * ever write the buffer.
998 	 */
999 	if (dirty)
1000 		clear_buffer_dirty(bh);
1001 	BUFFER_TRACE(bh, "get write access");
1002 	ret = ext4_journal_get_write_access(handle, bh);
1003 	if (!ret && dirty)
1004 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1005 	return ret;
1006 }
1007 
1008 #ifdef CONFIG_FS_ENCRYPTION
1009 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1010 				  get_block_t *get_block)
1011 {
1012 	unsigned from = pos & (PAGE_SIZE - 1);
1013 	unsigned to = from + len;
1014 	struct inode *inode = page->mapping->host;
1015 	unsigned block_start, block_end;
1016 	sector_t block;
1017 	int err = 0;
1018 	unsigned blocksize = inode->i_sb->s_blocksize;
1019 	unsigned bbits;
1020 	struct buffer_head *bh, *head, *wait[2];
1021 	int nr_wait = 0;
1022 	int i;
1023 
1024 	BUG_ON(!PageLocked(page));
1025 	BUG_ON(from > PAGE_SIZE);
1026 	BUG_ON(to > PAGE_SIZE);
1027 	BUG_ON(from > to);
1028 
1029 	if (!page_has_buffers(page))
1030 		create_empty_buffers(page, blocksize, 0);
1031 	head = page_buffers(page);
1032 	bbits = ilog2(blocksize);
1033 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1034 
1035 	for (bh = head, block_start = 0; bh != head || !block_start;
1036 	    block++, block_start = block_end, bh = bh->b_this_page) {
1037 		block_end = block_start + blocksize;
1038 		if (block_end <= from || block_start >= to) {
1039 			if (PageUptodate(page)) {
1040 				if (!buffer_uptodate(bh))
1041 					set_buffer_uptodate(bh);
1042 			}
1043 			continue;
1044 		}
1045 		if (buffer_new(bh))
1046 			clear_buffer_new(bh);
1047 		if (!buffer_mapped(bh)) {
1048 			WARN_ON(bh->b_size != blocksize);
1049 			err = get_block(inode, block, bh, 1);
1050 			if (err)
1051 				break;
1052 			if (buffer_new(bh)) {
1053 				if (PageUptodate(page)) {
1054 					clear_buffer_new(bh);
1055 					set_buffer_uptodate(bh);
1056 					mark_buffer_dirty(bh);
1057 					continue;
1058 				}
1059 				if (block_end > to || block_start < from)
1060 					zero_user_segments(page, to, block_end,
1061 							   block_start, from);
1062 				continue;
1063 			}
1064 		}
1065 		if (PageUptodate(page)) {
1066 			if (!buffer_uptodate(bh))
1067 				set_buffer_uptodate(bh);
1068 			continue;
1069 		}
1070 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1071 		    !buffer_unwritten(bh) &&
1072 		    (block_start < from || block_end > to)) {
1073 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1074 			wait[nr_wait++] = bh;
1075 		}
1076 	}
1077 	/*
1078 	 * If we issued read requests, let them complete.
1079 	 */
1080 	for (i = 0; i < nr_wait; i++) {
1081 		wait_on_buffer(wait[i]);
1082 		if (!buffer_uptodate(wait[i]))
1083 			err = -EIO;
1084 	}
1085 	if (unlikely(err)) {
1086 		page_zero_new_buffers(page, from, to);
1087 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1088 		for (i = 0; i < nr_wait; i++) {
1089 			int err2;
1090 
1091 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1092 								bh_offset(wait[i]));
1093 			if (err2) {
1094 				clear_buffer_uptodate(wait[i]);
1095 				err = err2;
1096 			}
1097 		}
1098 	}
1099 
1100 	return err;
1101 }
1102 #endif
1103 
1104 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1105 			    loff_t pos, unsigned len, unsigned flags,
1106 			    struct page **pagep, void **fsdata)
1107 {
1108 	struct inode *inode = mapping->host;
1109 	int ret, needed_blocks;
1110 	handle_t *handle;
1111 	int retries = 0;
1112 	struct page *page;
1113 	pgoff_t index;
1114 	unsigned from, to;
1115 
1116 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1117 		return -EIO;
1118 
1119 	trace_ext4_write_begin(inode, pos, len, flags);
1120 	/*
1121 	 * Reserve one block more for addition to orphan list in case
1122 	 * we allocate blocks but write fails for some reason
1123 	 */
1124 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1125 	index = pos >> PAGE_SHIFT;
1126 	from = pos & (PAGE_SIZE - 1);
1127 	to = from + len;
1128 
1129 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1130 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1131 						    flags, pagep);
1132 		if (ret < 0)
1133 			return ret;
1134 		if (ret == 1)
1135 			return 0;
1136 	}
1137 
1138 	/*
1139 	 * grab_cache_page_write_begin() can take a long time if the
1140 	 * system is thrashing due to memory pressure, or if the page
1141 	 * is being written back.  So grab it first before we start
1142 	 * the transaction handle.  This also allows us to allocate
1143 	 * the page (if needed) without using GFP_NOFS.
1144 	 */
1145 retry_grab:
1146 	page = grab_cache_page_write_begin(mapping, index, flags);
1147 	if (!page)
1148 		return -ENOMEM;
1149 	unlock_page(page);
1150 
1151 retry_journal:
1152 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1153 	if (IS_ERR(handle)) {
1154 		put_page(page);
1155 		return PTR_ERR(handle);
1156 	}
1157 
1158 	lock_page(page);
1159 	if (page->mapping != mapping) {
1160 		/* The page got truncated from under us */
1161 		unlock_page(page);
1162 		put_page(page);
1163 		ext4_journal_stop(handle);
1164 		goto retry_grab;
1165 	}
1166 	/* In case writeback began while the page was unlocked */
1167 	wait_for_stable_page(page);
1168 
1169 #ifdef CONFIG_FS_ENCRYPTION
1170 	if (ext4_should_dioread_nolock(inode))
1171 		ret = ext4_block_write_begin(page, pos, len,
1172 					     ext4_get_block_unwritten);
1173 	else
1174 		ret = ext4_block_write_begin(page, pos, len,
1175 					     ext4_get_block);
1176 #else
1177 	if (ext4_should_dioread_nolock(inode))
1178 		ret = __block_write_begin(page, pos, len,
1179 					  ext4_get_block_unwritten);
1180 	else
1181 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1182 #endif
1183 	if (!ret && ext4_should_journal_data(inode)) {
1184 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1185 					     from, to, NULL,
1186 					     do_journal_get_write_access);
1187 	}
1188 
1189 	if (ret) {
1190 		bool extended = (pos + len > inode->i_size) &&
1191 				!ext4_verity_in_progress(inode);
1192 
1193 		unlock_page(page);
1194 		/*
1195 		 * __block_write_begin may have instantiated a few blocks
1196 		 * outside i_size.  Trim these off again. Don't need
1197 		 * i_size_read because we hold i_mutex.
1198 		 *
1199 		 * Add inode to orphan list in case we crash before
1200 		 * truncate finishes
1201 		 */
1202 		if (extended && ext4_can_truncate(inode))
1203 			ext4_orphan_add(handle, inode);
1204 
1205 		ext4_journal_stop(handle);
1206 		if (extended) {
1207 			ext4_truncate_failed_write(inode);
1208 			/*
1209 			 * If truncate failed early the inode might
1210 			 * still be on the orphan list; we need to
1211 			 * make sure the inode is removed from the
1212 			 * orphan list in that case.
1213 			 */
1214 			if (inode->i_nlink)
1215 				ext4_orphan_del(NULL, inode);
1216 		}
1217 
1218 		if (ret == -ENOSPC &&
1219 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1220 			goto retry_journal;
1221 		put_page(page);
1222 		return ret;
1223 	}
1224 	*pagep = page;
1225 	return ret;
1226 }
1227 
1228 /* For write_end() in data=journal mode */
1229 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1230 {
1231 	int ret;
1232 	if (!buffer_mapped(bh) || buffer_freed(bh))
1233 		return 0;
1234 	set_buffer_uptodate(bh);
1235 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1236 	clear_buffer_meta(bh);
1237 	clear_buffer_prio(bh);
1238 	return ret;
1239 }
1240 
1241 /*
1242  * We need to pick up the new inode size which generic_commit_write gave us
1243  * `file' can be NULL - eg, when called from page_symlink().
1244  *
1245  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1246  * buffers are managed internally.
1247  */
1248 static int ext4_write_end(struct file *file,
1249 			  struct address_space *mapping,
1250 			  loff_t pos, unsigned len, unsigned copied,
1251 			  struct page *page, void *fsdata)
1252 {
1253 	handle_t *handle = ext4_journal_current_handle();
1254 	struct inode *inode = mapping->host;
1255 	loff_t old_size = inode->i_size;
1256 	int ret = 0, ret2;
1257 	int i_size_changed = 0;
1258 	int inline_data = ext4_has_inline_data(inode);
1259 	bool verity = ext4_verity_in_progress(inode);
1260 
1261 	trace_ext4_write_end(inode, pos, len, copied);
1262 	if (inline_data) {
1263 		ret = ext4_write_inline_data_end(inode, pos, len,
1264 						 copied, page);
1265 		if (ret < 0) {
1266 			unlock_page(page);
1267 			put_page(page);
1268 			goto errout;
1269 		}
1270 		copied = ret;
1271 	} else
1272 		copied = block_write_end(file, mapping, pos,
1273 					 len, copied, page, fsdata);
1274 	/*
1275 	 * it's important to update i_size while still holding page lock:
1276 	 * page writeout could otherwise come in and zero beyond i_size.
1277 	 *
1278 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1279 	 * blocks are being written past EOF, so skip the i_size update.
1280 	 */
1281 	if (!verity)
1282 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1283 	unlock_page(page);
1284 	put_page(page);
1285 
1286 	if (old_size < pos && !verity)
1287 		pagecache_isize_extended(inode, old_size, pos);
1288 	/*
1289 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1290 	 * makes the holding time of page lock longer. Second, it forces lock
1291 	 * ordering of page lock and transaction start for journaling
1292 	 * filesystems.
1293 	 */
1294 	if (i_size_changed || inline_data)
1295 		ext4_mark_inode_dirty(handle, inode);
1296 
1297 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1298 		/* if we have allocated more blocks and copied
1299 		 * less. We will have blocks allocated outside
1300 		 * inode->i_size. So truncate them
1301 		 */
1302 		ext4_orphan_add(handle, inode);
1303 errout:
1304 	ret2 = ext4_journal_stop(handle);
1305 	if (!ret)
1306 		ret = ret2;
1307 
1308 	if (pos + len > inode->i_size && !verity) {
1309 		ext4_truncate_failed_write(inode);
1310 		/*
1311 		 * If truncate failed early the inode might still be
1312 		 * on the orphan list; we need to make sure the inode
1313 		 * is removed from the orphan list in that case.
1314 		 */
1315 		if (inode->i_nlink)
1316 			ext4_orphan_del(NULL, inode);
1317 	}
1318 
1319 	return ret ? ret : copied;
1320 }
1321 
1322 /*
1323  * This is a private version of page_zero_new_buffers() which doesn't
1324  * set the buffer to be dirty, since in data=journalled mode we need
1325  * to call ext4_handle_dirty_metadata() instead.
1326  */
1327 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1328 					    struct page *page,
1329 					    unsigned from, unsigned to)
1330 {
1331 	unsigned int block_start = 0, block_end;
1332 	struct buffer_head *head, *bh;
1333 
1334 	bh = head = page_buffers(page);
1335 	do {
1336 		block_end = block_start + bh->b_size;
1337 		if (buffer_new(bh)) {
1338 			if (block_end > from && block_start < to) {
1339 				if (!PageUptodate(page)) {
1340 					unsigned start, size;
1341 
1342 					start = max(from, block_start);
1343 					size = min(to, block_end) - start;
1344 
1345 					zero_user(page, start, size);
1346 					write_end_fn(handle, bh);
1347 				}
1348 				clear_buffer_new(bh);
1349 			}
1350 		}
1351 		block_start = block_end;
1352 		bh = bh->b_this_page;
1353 	} while (bh != head);
1354 }
1355 
1356 static int ext4_journalled_write_end(struct file *file,
1357 				     struct address_space *mapping,
1358 				     loff_t pos, unsigned len, unsigned copied,
1359 				     struct page *page, void *fsdata)
1360 {
1361 	handle_t *handle = ext4_journal_current_handle();
1362 	struct inode *inode = mapping->host;
1363 	loff_t old_size = inode->i_size;
1364 	int ret = 0, ret2;
1365 	int partial = 0;
1366 	unsigned from, to;
1367 	int size_changed = 0;
1368 	int inline_data = ext4_has_inline_data(inode);
1369 	bool verity = ext4_verity_in_progress(inode);
1370 
1371 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1372 	from = pos & (PAGE_SIZE - 1);
1373 	to = from + len;
1374 
1375 	BUG_ON(!ext4_handle_valid(handle));
1376 
1377 	if (inline_data) {
1378 		ret = ext4_write_inline_data_end(inode, pos, len,
1379 						 copied, page);
1380 		if (ret < 0) {
1381 			unlock_page(page);
1382 			put_page(page);
1383 			goto errout;
1384 		}
1385 		copied = ret;
1386 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1387 		copied = 0;
1388 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1389 	} else {
1390 		if (unlikely(copied < len))
1391 			ext4_journalled_zero_new_buffers(handle, page,
1392 							 from + copied, to);
1393 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1394 					     from + copied, &partial,
1395 					     write_end_fn);
1396 		if (!partial)
1397 			SetPageUptodate(page);
1398 	}
1399 	if (!verity)
1400 		size_changed = ext4_update_inode_size(inode, pos + copied);
1401 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1402 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1403 	unlock_page(page);
1404 	put_page(page);
1405 
1406 	if (old_size < pos && !verity)
1407 		pagecache_isize_extended(inode, old_size, pos);
1408 
1409 	if (size_changed || inline_data) {
1410 		ret2 = ext4_mark_inode_dirty(handle, inode);
1411 		if (!ret)
1412 			ret = ret2;
1413 	}
1414 
1415 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1416 		/* if we have allocated more blocks and copied
1417 		 * less. We will have blocks allocated outside
1418 		 * inode->i_size. So truncate them
1419 		 */
1420 		ext4_orphan_add(handle, inode);
1421 
1422 errout:
1423 	ret2 = ext4_journal_stop(handle);
1424 	if (!ret)
1425 		ret = ret2;
1426 	if (pos + len > inode->i_size && !verity) {
1427 		ext4_truncate_failed_write(inode);
1428 		/*
1429 		 * If truncate failed early the inode might still be
1430 		 * on the orphan list; we need to make sure the inode
1431 		 * is removed from the orphan list in that case.
1432 		 */
1433 		if (inode->i_nlink)
1434 			ext4_orphan_del(NULL, inode);
1435 	}
1436 
1437 	return ret ? ret : copied;
1438 }
1439 
1440 /*
1441  * Reserve space for a single cluster
1442  */
1443 static int ext4_da_reserve_space(struct inode *inode)
1444 {
1445 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1446 	struct ext4_inode_info *ei = EXT4_I(inode);
1447 	int ret;
1448 
1449 	/*
1450 	 * We will charge metadata quota at writeout time; this saves
1451 	 * us from metadata over-estimation, though we may go over by
1452 	 * a small amount in the end.  Here we just reserve for data.
1453 	 */
1454 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1455 	if (ret)
1456 		return ret;
1457 
1458 	spin_lock(&ei->i_block_reservation_lock);
1459 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1460 		spin_unlock(&ei->i_block_reservation_lock);
1461 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1462 		return -ENOSPC;
1463 	}
1464 	ei->i_reserved_data_blocks++;
1465 	trace_ext4_da_reserve_space(inode);
1466 	spin_unlock(&ei->i_block_reservation_lock);
1467 
1468 	return 0;       /* success */
1469 }
1470 
1471 void ext4_da_release_space(struct inode *inode, int to_free)
1472 {
1473 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 	struct ext4_inode_info *ei = EXT4_I(inode);
1475 
1476 	if (!to_free)
1477 		return;		/* Nothing to release, exit */
1478 
1479 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1480 
1481 	trace_ext4_da_release_space(inode, to_free);
1482 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1483 		/*
1484 		 * if there aren't enough reserved blocks, then the
1485 		 * counter is messed up somewhere.  Since this
1486 		 * function is called from invalidate page, it's
1487 		 * harmless to return without any action.
1488 		 */
1489 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1490 			 "ino %lu, to_free %d with only %d reserved "
1491 			 "data blocks", inode->i_ino, to_free,
1492 			 ei->i_reserved_data_blocks);
1493 		WARN_ON(1);
1494 		to_free = ei->i_reserved_data_blocks;
1495 	}
1496 	ei->i_reserved_data_blocks -= to_free;
1497 
1498 	/* update fs dirty data blocks counter */
1499 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1500 
1501 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1502 
1503 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1504 }
1505 
1506 /*
1507  * Delayed allocation stuff
1508  */
1509 
1510 struct mpage_da_data {
1511 	struct inode *inode;
1512 	struct writeback_control *wbc;
1513 
1514 	pgoff_t first_page;	/* The first page to write */
1515 	pgoff_t next_page;	/* Current page to examine */
1516 	pgoff_t last_page;	/* Last page to examine */
1517 	/*
1518 	 * Extent to map - this can be after first_page because that can be
1519 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1520 	 * is delalloc or unwritten.
1521 	 */
1522 	struct ext4_map_blocks map;
1523 	struct ext4_io_submit io_submit;	/* IO submission data */
1524 	unsigned int do_map:1;
1525 };
1526 
1527 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1528 				       bool invalidate)
1529 {
1530 	int nr_pages, i;
1531 	pgoff_t index, end;
1532 	struct pagevec pvec;
1533 	struct inode *inode = mpd->inode;
1534 	struct address_space *mapping = inode->i_mapping;
1535 
1536 	/* This is necessary when next_page == 0. */
1537 	if (mpd->first_page >= mpd->next_page)
1538 		return;
1539 
1540 	index = mpd->first_page;
1541 	end   = mpd->next_page - 1;
1542 	if (invalidate) {
1543 		ext4_lblk_t start, last;
1544 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1545 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1546 		ext4_es_remove_extent(inode, start, last - start + 1);
1547 	}
1548 
1549 	pagevec_init(&pvec);
1550 	while (index <= end) {
1551 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1552 		if (nr_pages == 0)
1553 			break;
1554 		for (i = 0; i < nr_pages; i++) {
1555 			struct page *page = pvec.pages[i];
1556 
1557 			BUG_ON(!PageLocked(page));
1558 			BUG_ON(PageWriteback(page));
1559 			if (invalidate) {
1560 				if (page_mapped(page))
1561 					clear_page_dirty_for_io(page);
1562 				block_invalidatepage(page, 0, PAGE_SIZE);
1563 				ClearPageUptodate(page);
1564 			}
1565 			unlock_page(page);
1566 		}
1567 		pagevec_release(&pvec);
1568 	}
1569 }
1570 
1571 static void ext4_print_free_blocks(struct inode *inode)
1572 {
1573 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1574 	struct super_block *sb = inode->i_sb;
1575 	struct ext4_inode_info *ei = EXT4_I(inode);
1576 
1577 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1578 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1579 			ext4_count_free_clusters(sb)));
1580 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1581 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1582 	       (long long) EXT4_C2B(EXT4_SB(sb),
1583 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1584 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1585 	       (long long) EXT4_C2B(EXT4_SB(sb),
1586 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1587 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1588 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1589 		 ei->i_reserved_data_blocks);
1590 	return;
1591 }
1592 
1593 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1594 {
1595 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1596 }
1597 
1598 /*
1599  * ext4_insert_delayed_block - adds a delayed block to the extents status
1600  *                             tree, incrementing the reserved cluster/block
1601  *                             count or making a pending reservation
1602  *                             where needed
1603  *
1604  * @inode - file containing the newly added block
1605  * @lblk - logical block to be added
1606  *
1607  * Returns 0 on success, negative error code on failure.
1608  */
1609 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1610 {
1611 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1612 	int ret;
1613 	bool allocated = false;
1614 
1615 	/*
1616 	 * If the cluster containing lblk is shared with a delayed,
1617 	 * written, or unwritten extent in a bigalloc file system, it's
1618 	 * already been accounted for and does not need to be reserved.
1619 	 * A pending reservation must be made for the cluster if it's
1620 	 * shared with a written or unwritten extent and doesn't already
1621 	 * have one.  Written and unwritten extents can be purged from the
1622 	 * extents status tree if the system is under memory pressure, so
1623 	 * it's necessary to examine the extent tree if a search of the
1624 	 * extents status tree doesn't get a match.
1625 	 */
1626 	if (sbi->s_cluster_ratio == 1) {
1627 		ret = ext4_da_reserve_space(inode);
1628 		if (ret != 0)   /* ENOSPC */
1629 			goto errout;
1630 	} else {   /* bigalloc */
1631 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1632 			if (!ext4_es_scan_clu(inode,
1633 					      &ext4_es_is_mapped, lblk)) {
1634 				ret = ext4_clu_mapped(inode,
1635 						      EXT4_B2C(sbi, lblk));
1636 				if (ret < 0)
1637 					goto errout;
1638 				if (ret == 0) {
1639 					ret = ext4_da_reserve_space(inode);
1640 					if (ret != 0)   /* ENOSPC */
1641 						goto errout;
1642 				} else {
1643 					allocated = true;
1644 				}
1645 			} else {
1646 				allocated = true;
1647 			}
1648 		}
1649 	}
1650 
1651 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1652 
1653 errout:
1654 	return ret;
1655 }
1656 
1657 /*
1658  * This function is grabs code from the very beginning of
1659  * ext4_map_blocks, but assumes that the caller is from delayed write
1660  * time. This function looks up the requested blocks and sets the
1661  * buffer delay bit under the protection of i_data_sem.
1662  */
1663 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1664 			      struct ext4_map_blocks *map,
1665 			      struct buffer_head *bh)
1666 {
1667 	struct extent_status es;
1668 	int retval;
1669 	sector_t invalid_block = ~((sector_t) 0xffff);
1670 #ifdef ES_AGGRESSIVE_TEST
1671 	struct ext4_map_blocks orig_map;
1672 
1673 	memcpy(&orig_map, map, sizeof(*map));
1674 #endif
1675 
1676 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1677 		invalid_block = ~0;
1678 
1679 	map->m_flags = 0;
1680 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1681 		  "logical block %lu\n", inode->i_ino, map->m_len,
1682 		  (unsigned long) map->m_lblk);
1683 
1684 	/* Lookup extent status tree firstly */
1685 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1686 		if (ext4_es_is_hole(&es)) {
1687 			retval = 0;
1688 			down_read(&EXT4_I(inode)->i_data_sem);
1689 			goto add_delayed;
1690 		}
1691 
1692 		/*
1693 		 * Delayed extent could be allocated by fallocate.
1694 		 * So we need to check it.
1695 		 */
1696 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1697 			map_bh(bh, inode->i_sb, invalid_block);
1698 			set_buffer_new(bh);
1699 			set_buffer_delay(bh);
1700 			return 0;
1701 		}
1702 
1703 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1704 		retval = es.es_len - (iblock - es.es_lblk);
1705 		if (retval > map->m_len)
1706 			retval = map->m_len;
1707 		map->m_len = retval;
1708 		if (ext4_es_is_written(&es))
1709 			map->m_flags |= EXT4_MAP_MAPPED;
1710 		else if (ext4_es_is_unwritten(&es))
1711 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1712 		else
1713 			BUG();
1714 
1715 #ifdef ES_AGGRESSIVE_TEST
1716 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1717 #endif
1718 		return retval;
1719 	}
1720 
1721 	/*
1722 	 * Try to see if we can get the block without requesting a new
1723 	 * file system block.
1724 	 */
1725 	down_read(&EXT4_I(inode)->i_data_sem);
1726 	if (ext4_has_inline_data(inode))
1727 		retval = 0;
1728 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1729 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1730 	else
1731 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1732 
1733 add_delayed:
1734 	if (retval == 0) {
1735 		int ret;
1736 
1737 		/*
1738 		 * XXX: __block_prepare_write() unmaps passed block,
1739 		 * is it OK?
1740 		 */
1741 
1742 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1743 		if (ret != 0) {
1744 			retval = ret;
1745 			goto out_unlock;
1746 		}
1747 
1748 		map_bh(bh, inode->i_sb, invalid_block);
1749 		set_buffer_new(bh);
1750 		set_buffer_delay(bh);
1751 	} else if (retval > 0) {
1752 		int ret;
1753 		unsigned int status;
1754 
1755 		if (unlikely(retval != map->m_len)) {
1756 			ext4_warning(inode->i_sb,
1757 				     "ES len assertion failed for inode "
1758 				     "%lu: retval %d != map->m_len %d",
1759 				     inode->i_ino, retval, map->m_len);
1760 			WARN_ON(1);
1761 		}
1762 
1763 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1764 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1765 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1766 					    map->m_pblk, status);
1767 		if (ret != 0)
1768 			retval = ret;
1769 	}
1770 
1771 out_unlock:
1772 	up_read((&EXT4_I(inode)->i_data_sem));
1773 
1774 	return retval;
1775 }
1776 
1777 /*
1778  * This is a special get_block_t callback which is used by
1779  * ext4_da_write_begin().  It will either return mapped block or
1780  * reserve space for a single block.
1781  *
1782  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1783  * We also have b_blocknr = -1 and b_bdev initialized properly
1784  *
1785  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1786  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1787  * initialized properly.
1788  */
1789 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1790 			   struct buffer_head *bh, int create)
1791 {
1792 	struct ext4_map_blocks map;
1793 	int ret = 0;
1794 
1795 	BUG_ON(create == 0);
1796 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1797 
1798 	map.m_lblk = iblock;
1799 	map.m_len = 1;
1800 
1801 	/*
1802 	 * first, we need to know whether the block is allocated already
1803 	 * preallocated blocks are unmapped but should treated
1804 	 * the same as allocated blocks.
1805 	 */
1806 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1807 	if (ret <= 0)
1808 		return ret;
1809 
1810 	map_bh(bh, inode->i_sb, map.m_pblk);
1811 	ext4_update_bh_state(bh, map.m_flags);
1812 
1813 	if (buffer_unwritten(bh)) {
1814 		/* A delayed write to unwritten bh should be marked
1815 		 * new and mapped.  Mapped ensures that we don't do
1816 		 * get_block multiple times when we write to the same
1817 		 * offset and new ensures that we do proper zero out
1818 		 * for partial write.
1819 		 */
1820 		set_buffer_new(bh);
1821 		set_buffer_mapped(bh);
1822 	}
1823 	return 0;
1824 }
1825 
1826 static int bget_one(handle_t *handle, struct buffer_head *bh)
1827 {
1828 	get_bh(bh);
1829 	return 0;
1830 }
1831 
1832 static int bput_one(handle_t *handle, struct buffer_head *bh)
1833 {
1834 	put_bh(bh);
1835 	return 0;
1836 }
1837 
1838 static int __ext4_journalled_writepage(struct page *page,
1839 				       unsigned int len)
1840 {
1841 	struct address_space *mapping = page->mapping;
1842 	struct inode *inode = mapping->host;
1843 	struct buffer_head *page_bufs = NULL;
1844 	handle_t *handle = NULL;
1845 	int ret = 0, err = 0;
1846 	int inline_data = ext4_has_inline_data(inode);
1847 	struct buffer_head *inode_bh = NULL;
1848 
1849 	ClearPageChecked(page);
1850 
1851 	if (inline_data) {
1852 		BUG_ON(page->index != 0);
1853 		BUG_ON(len > ext4_get_max_inline_size(inode));
1854 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1855 		if (inode_bh == NULL)
1856 			goto out;
1857 	} else {
1858 		page_bufs = page_buffers(page);
1859 		if (!page_bufs) {
1860 			BUG();
1861 			goto out;
1862 		}
1863 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1864 				       NULL, bget_one);
1865 	}
1866 	/*
1867 	 * We need to release the page lock before we start the
1868 	 * journal, so grab a reference so the page won't disappear
1869 	 * out from under us.
1870 	 */
1871 	get_page(page);
1872 	unlock_page(page);
1873 
1874 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1875 				    ext4_writepage_trans_blocks(inode));
1876 	if (IS_ERR(handle)) {
1877 		ret = PTR_ERR(handle);
1878 		put_page(page);
1879 		goto out_no_pagelock;
1880 	}
1881 	BUG_ON(!ext4_handle_valid(handle));
1882 
1883 	lock_page(page);
1884 	put_page(page);
1885 	if (page->mapping != mapping) {
1886 		/* The page got truncated from under us */
1887 		ext4_journal_stop(handle);
1888 		ret = 0;
1889 		goto out;
1890 	}
1891 
1892 	if (inline_data) {
1893 		ret = ext4_mark_inode_dirty(handle, inode);
1894 	} else {
1895 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1896 					     do_journal_get_write_access);
1897 
1898 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1899 					     write_end_fn);
1900 	}
1901 	if (ret == 0)
1902 		ret = err;
1903 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1904 	err = ext4_journal_stop(handle);
1905 	if (!ret)
1906 		ret = err;
1907 
1908 	if (!ext4_has_inline_data(inode))
1909 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1910 				       NULL, bput_one);
1911 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1912 out:
1913 	unlock_page(page);
1914 out_no_pagelock:
1915 	brelse(inode_bh);
1916 	return ret;
1917 }
1918 
1919 /*
1920  * Note that we don't need to start a transaction unless we're journaling data
1921  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1922  * need to file the inode to the transaction's list in ordered mode because if
1923  * we are writing back data added by write(), the inode is already there and if
1924  * we are writing back data modified via mmap(), no one guarantees in which
1925  * transaction the data will hit the disk. In case we are journaling data, we
1926  * cannot start transaction directly because transaction start ranks above page
1927  * lock so we have to do some magic.
1928  *
1929  * This function can get called via...
1930  *   - ext4_writepages after taking page lock (have journal handle)
1931  *   - journal_submit_inode_data_buffers (no journal handle)
1932  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1933  *   - grab_page_cache when doing write_begin (have journal handle)
1934  *
1935  * We don't do any block allocation in this function. If we have page with
1936  * multiple blocks we need to write those buffer_heads that are mapped. This
1937  * is important for mmaped based write. So if we do with blocksize 1K
1938  * truncate(f, 1024);
1939  * a = mmap(f, 0, 4096);
1940  * a[0] = 'a';
1941  * truncate(f, 4096);
1942  * we have in the page first buffer_head mapped via page_mkwrite call back
1943  * but other buffer_heads would be unmapped but dirty (dirty done via the
1944  * do_wp_page). So writepage should write the first block. If we modify
1945  * the mmap area beyond 1024 we will again get a page_fault and the
1946  * page_mkwrite callback will do the block allocation and mark the
1947  * buffer_heads mapped.
1948  *
1949  * We redirty the page if we have any buffer_heads that is either delay or
1950  * unwritten in the page.
1951  *
1952  * We can get recursively called as show below.
1953  *
1954  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1955  *		ext4_writepage()
1956  *
1957  * But since we don't do any block allocation we should not deadlock.
1958  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1959  */
1960 static int ext4_writepage(struct page *page,
1961 			  struct writeback_control *wbc)
1962 {
1963 	int ret = 0;
1964 	loff_t size;
1965 	unsigned int len;
1966 	struct buffer_head *page_bufs = NULL;
1967 	struct inode *inode = page->mapping->host;
1968 	struct ext4_io_submit io_submit;
1969 	bool keep_towrite = false;
1970 
1971 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1972 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1973 		unlock_page(page);
1974 		return -EIO;
1975 	}
1976 
1977 	trace_ext4_writepage(page);
1978 	size = i_size_read(inode);
1979 	if (page->index == size >> PAGE_SHIFT &&
1980 	    !ext4_verity_in_progress(inode))
1981 		len = size & ~PAGE_MASK;
1982 	else
1983 		len = PAGE_SIZE;
1984 
1985 	page_bufs = page_buffers(page);
1986 	/*
1987 	 * We cannot do block allocation or other extent handling in this
1988 	 * function. If there are buffers needing that, we have to redirty
1989 	 * the page. But we may reach here when we do a journal commit via
1990 	 * journal_submit_inode_data_buffers() and in that case we must write
1991 	 * allocated buffers to achieve data=ordered mode guarantees.
1992 	 *
1993 	 * Also, if there is only one buffer per page (the fs block
1994 	 * size == the page size), if one buffer needs block
1995 	 * allocation or needs to modify the extent tree to clear the
1996 	 * unwritten flag, we know that the page can't be written at
1997 	 * all, so we might as well refuse the write immediately.
1998 	 * Unfortunately if the block size != page size, we can't as
1999 	 * easily detect this case using ext4_walk_page_buffers(), but
2000 	 * for the extremely common case, this is an optimization that
2001 	 * skips a useless round trip through ext4_bio_write_page().
2002 	 */
2003 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2004 				   ext4_bh_delay_or_unwritten)) {
2005 		redirty_page_for_writepage(wbc, page);
2006 		if ((current->flags & PF_MEMALLOC) ||
2007 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2008 			/*
2009 			 * For memory cleaning there's no point in writing only
2010 			 * some buffers. So just bail out. Warn if we came here
2011 			 * from direct reclaim.
2012 			 */
2013 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2014 							== PF_MEMALLOC);
2015 			unlock_page(page);
2016 			return 0;
2017 		}
2018 		keep_towrite = true;
2019 	}
2020 
2021 	if (PageChecked(page) && ext4_should_journal_data(inode))
2022 		/*
2023 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2024 		 * doesn't seem much point in redirtying the page here.
2025 		 */
2026 		return __ext4_journalled_writepage(page, len);
2027 
2028 	ext4_io_submit_init(&io_submit, wbc);
2029 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2030 	if (!io_submit.io_end) {
2031 		redirty_page_for_writepage(wbc, page);
2032 		unlock_page(page);
2033 		return -ENOMEM;
2034 	}
2035 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2036 	ext4_io_submit(&io_submit);
2037 	/* Drop io_end reference we got from init */
2038 	ext4_put_io_end_defer(io_submit.io_end);
2039 	return ret;
2040 }
2041 
2042 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2043 {
2044 	int len;
2045 	loff_t size;
2046 	int err;
2047 
2048 	BUG_ON(page->index != mpd->first_page);
2049 	clear_page_dirty_for_io(page);
2050 	/*
2051 	 * We have to be very careful here!  Nothing protects writeback path
2052 	 * against i_size changes and the page can be writeably mapped into
2053 	 * page tables. So an application can be growing i_size and writing
2054 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2055 	 * write-protects our page in page tables and the page cannot get
2056 	 * written to again until we release page lock. So only after
2057 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2058 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2059 	 * on the barrier provided by TestClearPageDirty in
2060 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2061 	 * after page tables are updated.
2062 	 */
2063 	size = i_size_read(mpd->inode);
2064 	if (page->index == size >> PAGE_SHIFT &&
2065 	    !ext4_verity_in_progress(mpd->inode))
2066 		len = size & ~PAGE_MASK;
2067 	else
2068 		len = PAGE_SIZE;
2069 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2070 	if (!err)
2071 		mpd->wbc->nr_to_write--;
2072 	mpd->first_page++;
2073 
2074 	return err;
2075 }
2076 
2077 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2078 
2079 /*
2080  * mballoc gives us at most this number of blocks...
2081  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2082  * The rest of mballoc seems to handle chunks up to full group size.
2083  */
2084 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2085 
2086 /*
2087  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2088  *
2089  * @mpd - extent of blocks
2090  * @lblk - logical number of the block in the file
2091  * @bh - buffer head we want to add to the extent
2092  *
2093  * The function is used to collect contig. blocks in the same state. If the
2094  * buffer doesn't require mapping for writeback and we haven't started the
2095  * extent of buffers to map yet, the function returns 'true' immediately - the
2096  * caller can write the buffer right away. Otherwise the function returns true
2097  * if the block has been added to the extent, false if the block couldn't be
2098  * added.
2099  */
2100 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2101 				   struct buffer_head *bh)
2102 {
2103 	struct ext4_map_blocks *map = &mpd->map;
2104 
2105 	/* Buffer that doesn't need mapping for writeback? */
2106 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2107 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2108 		/* So far no extent to map => we write the buffer right away */
2109 		if (map->m_len == 0)
2110 			return true;
2111 		return false;
2112 	}
2113 
2114 	/* First block in the extent? */
2115 	if (map->m_len == 0) {
2116 		/* We cannot map unless handle is started... */
2117 		if (!mpd->do_map)
2118 			return false;
2119 		map->m_lblk = lblk;
2120 		map->m_len = 1;
2121 		map->m_flags = bh->b_state & BH_FLAGS;
2122 		return true;
2123 	}
2124 
2125 	/* Don't go larger than mballoc is willing to allocate */
2126 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2127 		return false;
2128 
2129 	/* Can we merge the block to our big extent? */
2130 	if (lblk == map->m_lblk + map->m_len &&
2131 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2132 		map->m_len++;
2133 		return true;
2134 	}
2135 	return false;
2136 }
2137 
2138 /*
2139  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2140  *
2141  * @mpd - extent of blocks for mapping
2142  * @head - the first buffer in the page
2143  * @bh - buffer we should start processing from
2144  * @lblk - logical number of the block in the file corresponding to @bh
2145  *
2146  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2147  * the page for IO if all buffers in this page were mapped and there's no
2148  * accumulated extent of buffers to map or add buffers in the page to the
2149  * extent of buffers to map. The function returns 1 if the caller can continue
2150  * by processing the next page, 0 if it should stop adding buffers to the
2151  * extent to map because we cannot extend it anymore. It can also return value
2152  * < 0 in case of error during IO submission.
2153  */
2154 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2155 				   struct buffer_head *head,
2156 				   struct buffer_head *bh,
2157 				   ext4_lblk_t lblk)
2158 {
2159 	struct inode *inode = mpd->inode;
2160 	int err;
2161 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2162 							>> inode->i_blkbits;
2163 
2164 	if (ext4_verity_in_progress(inode))
2165 		blocks = EXT_MAX_BLOCKS;
2166 
2167 	do {
2168 		BUG_ON(buffer_locked(bh));
2169 
2170 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2171 			/* Found extent to map? */
2172 			if (mpd->map.m_len)
2173 				return 0;
2174 			/* Buffer needs mapping and handle is not started? */
2175 			if (!mpd->do_map)
2176 				return 0;
2177 			/* Everything mapped so far and we hit EOF */
2178 			break;
2179 		}
2180 	} while (lblk++, (bh = bh->b_this_page) != head);
2181 	/* So far everything mapped? Submit the page for IO. */
2182 	if (mpd->map.m_len == 0) {
2183 		err = mpage_submit_page(mpd, head->b_page);
2184 		if (err < 0)
2185 			return err;
2186 	}
2187 	return lblk < blocks;
2188 }
2189 
2190 /*
2191  * mpage_process_page - update page buffers corresponding to changed extent and
2192  *		       may submit fully mapped page for IO
2193  *
2194  * @mpd		- description of extent to map, on return next extent to map
2195  * @m_lblk	- logical block mapping.
2196  * @m_pblk	- corresponding physical mapping.
2197  * @map_bh	- determines on return whether this page requires any further
2198  *		  mapping or not.
2199  * Scan given page buffers corresponding to changed extent and update buffer
2200  * state according to new extent state.
2201  * We map delalloc buffers to their physical location, clear unwritten bits.
2202  * If the given page is not fully mapped, we update @map to the next extent in
2203  * the given page that needs mapping & return @map_bh as true.
2204  */
2205 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2206 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2207 			      bool *map_bh)
2208 {
2209 	struct buffer_head *head, *bh;
2210 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2211 	ext4_lblk_t lblk = *m_lblk;
2212 	ext4_fsblk_t pblock = *m_pblk;
2213 	int err = 0;
2214 	int blkbits = mpd->inode->i_blkbits;
2215 	ssize_t io_end_size = 0;
2216 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2217 
2218 	bh = head = page_buffers(page);
2219 	do {
2220 		if (lblk < mpd->map.m_lblk)
2221 			continue;
2222 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2223 			/*
2224 			 * Buffer after end of mapped extent.
2225 			 * Find next buffer in the page to map.
2226 			 */
2227 			mpd->map.m_len = 0;
2228 			mpd->map.m_flags = 0;
2229 			io_end_vec->size += io_end_size;
2230 			io_end_size = 0;
2231 
2232 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2233 			if (err > 0)
2234 				err = 0;
2235 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2236 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2237 				if (IS_ERR(io_end_vec)) {
2238 					err = PTR_ERR(io_end_vec);
2239 					goto out;
2240 				}
2241 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2242 			}
2243 			*map_bh = true;
2244 			goto out;
2245 		}
2246 		if (buffer_delay(bh)) {
2247 			clear_buffer_delay(bh);
2248 			bh->b_blocknr = pblock++;
2249 		}
2250 		clear_buffer_unwritten(bh);
2251 		io_end_size += (1 << blkbits);
2252 	} while (lblk++, (bh = bh->b_this_page) != head);
2253 
2254 	io_end_vec->size += io_end_size;
2255 	io_end_size = 0;
2256 	*map_bh = false;
2257 out:
2258 	*m_lblk = lblk;
2259 	*m_pblk = pblock;
2260 	return err;
2261 }
2262 
2263 /*
2264  * mpage_map_buffers - update buffers corresponding to changed extent and
2265  *		       submit fully mapped pages for IO
2266  *
2267  * @mpd - description of extent to map, on return next extent to map
2268  *
2269  * Scan buffers corresponding to changed extent (we expect corresponding pages
2270  * to be already locked) and update buffer state according to new extent state.
2271  * We map delalloc buffers to their physical location, clear unwritten bits,
2272  * and mark buffers as uninit when we perform writes to unwritten extents
2273  * and do extent conversion after IO is finished. If the last page is not fully
2274  * mapped, we update @map to the next extent in the last page that needs
2275  * mapping. Otherwise we submit the page for IO.
2276  */
2277 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2278 {
2279 	struct pagevec pvec;
2280 	int nr_pages, i;
2281 	struct inode *inode = mpd->inode;
2282 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2283 	pgoff_t start, end;
2284 	ext4_lblk_t lblk;
2285 	ext4_fsblk_t pblock;
2286 	int err;
2287 	bool map_bh = false;
2288 
2289 	start = mpd->map.m_lblk >> bpp_bits;
2290 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2291 	lblk = start << bpp_bits;
2292 	pblock = mpd->map.m_pblk;
2293 
2294 	pagevec_init(&pvec);
2295 	while (start <= end) {
2296 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2297 						&start, end);
2298 		if (nr_pages == 0)
2299 			break;
2300 		for (i = 0; i < nr_pages; i++) {
2301 			struct page *page = pvec.pages[i];
2302 
2303 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2304 						 &map_bh);
2305 			/*
2306 			 * If map_bh is true, means page may require further bh
2307 			 * mapping, or maybe the page was submitted for IO.
2308 			 * So we return to call further extent mapping.
2309 			 */
2310 			if (err < 0 || map_bh == true)
2311 				goto out;
2312 			/* Page fully mapped - let IO run! */
2313 			err = mpage_submit_page(mpd, page);
2314 			if (err < 0)
2315 				goto out;
2316 		}
2317 		pagevec_release(&pvec);
2318 	}
2319 	/* Extent fully mapped and matches with page boundary. We are done. */
2320 	mpd->map.m_len = 0;
2321 	mpd->map.m_flags = 0;
2322 	return 0;
2323 out:
2324 	pagevec_release(&pvec);
2325 	return err;
2326 }
2327 
2328 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2329 {
2330 	struct inode *inode = mpd->inode;
2331 	struct ext4_map_blocks *map = &mpd->map;
2332 	int get_blocks_flags;
2333 	int err, dioread_nolock;
2334 
2335 	trace_ext4_da_write_pages_extent(inode, map);
2336 	/*
2337 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2338 	 * to convert an unwritten extent to be initialized (in the case
2339 	 * where we have written into one or more preallocated blocks).  It is
2340 	 * possible that we're going to need more metadata blocks than
2341 	 * previously reserved. However we must not fail because we're in
2342 	 * writeback and there is nothing we can do about it so it might result
2343 	 * in data loss.  So use reserved blocks to allocate metadata if
2344 	 * possible.
2345 	 *
2346 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2347 	 * the blocks in question are delalloc blocks.  This indicates
2348 	 * that the blocks and quotas has already been checked when
2349 	 * the data was copied into the page cache.
2350 	 */
2351 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2352 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2353 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2354 	dioread_nolock = ext4_should_dioread_nolock(inode);
2355 	if (dioread_nolock)
2356 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2357 	if (map->m_flags & (1 << BH_Delay))
2358 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2359 
2360 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2361 	if (err < 0)
2362 		return err;
2363 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2364 		if (!mpd->io_submit.io_end->handle &&
2365 		    ext4_handle_valid(handle)) {
2366 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2367 			handle->h_rsv_handle = NULL;
2368 		}
2369 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2370 	}
2371 
2372 	BUG_ON(map->m_len == 0);
2373 	return 0;
2374 }
2375 
2376 /*
2377  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2378  *				 mpd->len and submit pages underlying it for IO
2379  *
2380  * @handle - handle for journal operations
2381  * @mpd - extent to map
2382  * @give_up_on_write - we set this to true iff there is a fatal error and there
2383  *                     is no hope of writing the data. The caller should discard
2384  *                     dirty pages to avoid infinite loops.
2385  *
2386  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2387  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2388  * them to initialized or split the described range from larger unwritten
2389  * extent. Note that we need not map all the described range since allocation
2390  * can return less blocks or the range is covered by more unwritten extents. We
2391  * cannot map more because we are limited by reserved transaction credits. On
2392  * the other hand we always make sure that the last touched page is fully
2393  * mapped so that it can be written out (and thus forward progress is
2394  * guaranteed). After mapping we submit all mapped pages for IO.
2395  */
2396 static int mpage_map_and_submit_extent(handle_t *handle,
2397 				       struct mpage_da_data *mpd,
2398 				       bool *give_up_on_write)
2399 {
2400 	struct inode *inode = mpd->inode;
2401 	struct ext4_map_blocks *map = &mpd->map;
2402 	int err;
2403 	loff_t disksize;
2404 	int progress = 0;
2405 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2406 	struct ext4_io_end_vec *io_end_vec;
2407 
2408 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2409 	if (IS_ERR(io_end_vec))
2410 		return PTR_ERR(io_end_vec);
2411 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2412 	do {
2413 		err = mpage_map_one_extent(handle, mpd);
2414 		if (err < 0) {
2415 			struct super_block *sb = inode->i_sb;
2416 
2417 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2418 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2419 				goto invalidate_dirty_pages;
2420 			/*
2421 			 * Let the uper layers retry transient errors.
2422 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2423 			 * is non-zero, a commit should free up blocks.
2424 			 */
2425 			if ((err == -ENOMEM) ||
2426 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2427 				if (progress)
2428 					goto update_disksize;
2429 				return err;
2430 			}
2431 			ext4_msg(sb, KERN_CRIT,
2432 				 "Delayed block allocation failed for "
2433 				 "inode %lu at logical offset %llu with"
2434 				 " max blocks %u with error %d",
2435 				 inode->i_ino,
2436 				 (unsigned long long)map->m_lblk,
2437 				 (unsigned)map->m_len, -err);
2438 			ext4_msg(sb, KERN_CRIT,
2439 				 "This should not happen!! Data will "
2440 				 "be lost\n");
2441 			if (err == -ENOSPC)
2442 				ext4_print_free_blocks(inode);
2443 		invalidate_dirty_pages:
2444 			*give_up_on_write = true;
2445 			return err;
2446 		}
2447 		progress = 1;
2448 		/*
2449 		 * Update buffer state, submit mapped pages, and get us new
2450 		 * extent to map
2451 		 */
2452 		err = mpage_map_and_submit_buffers(mpd);
2453 		if (err < 0)
2454 			goto update_disksize;
2455 	} while (map->m_len);
2456 
2457 update_disksize:
2458 	/*
2459 	 * Update on-disk size after IO is submitted.  Races with
2460 	 * truncate are avoided by checking i_size under i_data_sem.
2461 	 */
2462 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2463 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2464 		int err2;
2465 		loff_t i_size;
2466 
2467 		down_write(&EXT4_I(inode)->i_data_sem);
2468 		i_size = i_size_read(inode);
2469 		if (disksize > i_size)
2470 			disksize = i_size;
2471 		if (disksize > EXT4_I(inode)->i_disksize)
2472 			EXT4_I(inode)->i_disksize = disksize;
2473 		up_write(&EXT4_I(inode)->i_data_sem);
2474 		err2 = ext4_mark_inode_dirty(handle, inode);
2475 		if (err2) {
2476 			ext4_error_err(inode->i_sb, -err2,
2477 				       "Failed to mark inode %lu dirty",
2478 				       inode->i_ino);
2479 		}
2480 		if (!err)
2481 			err = err2;
2482 	}
2483 	return err;
2484 }
2485 
2486 /*
2487  * Calculate the total number of credits to reserve for one writepages
2488  * iteration. This is called from ext4_writepages(). We map an extent of
2489  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2490  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2491  * bpp - 1 blocks in bpp different extents.
2492  */
2493 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2494 {
2495 	int bpp = ext4_journal_blocks_per_page(inode);
2496 
2497 	return ext4_meta_trans_blocks(inode,
2498 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2499 }
2500 
2501 /*
2502  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2503  * 				 and underlying extent to map
2504  *
2505  * @mpd - where to look for pages
2506  *
2507  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2508  * IO immediately. When we find a page which isn't mapped we start accumulating
2509  * extent of buffers underlying these pages that needs mapping (formed by
2510  * either delayed or unwritten buffers). We also lock the pages containing
2511  * these buffers. The extent found is returned in @mpd structure (starting at
2512  * mpd->lblk with length mpd->len blocks).
2513  *
2514  * Note that this function can attach bios to one io_end structure which are
2515  * neither logically nor physically contiguous. Although it may seem as an
2516  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2517  * case as we need to track IO to all buffers underlying a page in one io_end.
2518  */
2519 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2520 {
2521 	struct address_space *mapping = mpd->inode->i_mapping;
2522 	struct pagevec pvec;
2523 	unsigned int nr_pages;
2524 	long left = mpd->wbc->nr_to_write;
2525 	pgoff_t index = mpd->first_page;
2526 	pgoff_t end = mpd->last_page;
2527 	xa_mark_t tag;
2528 	int i, err = 0;
2529 	int blkbits = mpd->inode->i_blkbits;
2530 	ext4_lblk_t lblk;
2531 	struct buffer_head *head;
2532 
2533 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2534 		tag = PAGECACHE_TAG_TOWRITE;
2535 	else
2536 		tag = PAGECACHE_TAG_DIRTY;
2537 
2538 	pagevec_init(&pvec);
2539 	mpd->map.m_len = 0;
2540 	mpd->next_page = index;
2541 	while (index <= end) {
2542 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2543 				tag);
2544 		if (nr_pages == 0)
2545 			goto out;
2546 
2547 		for (i = 0; i < nr_pages; i++) {
2548 			struct page *page = pvec.pages[i];
2549 
2550 			/*
2551 			 * Accumulated enough dirty pages? This doesn't apply
2552 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2553 			 * keep going because someone may be concurrently
2554 			 * dirtying pages, and we might have synced a lot of
2555 			 * newly appeared dirty pages, but have not synced all
2556 			 * of the old dirty pages.
2557 			 */
2558 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2559 				goto out;
2560 
2561 			/* If we can't merge this page, we are done. */
2562 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2563 				goto out;
2564 
2565 			lock_page(page);
2566 			/*
2567 			 * If the page is no longer dirty, or its mapping no
2568 			 * longer corresponds to inode we are writing (which
2569 			 * means it has been truncated or invalidated), or the
2570 			 * page is already under writeback and we are not doing
2571 			 * a data integrity writeback, skip the page
2572 			 */
2573 			if (!PageDirty(page) ||
2574 			    (PageWriteback(page) &&
2575 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2576 			    unlikely(page->mapping != mapping)) {
2577 				unlock_page(page);
2578 				continue;
2579 			}
2580 
2581 			wait_on_page_writeback(page);
2582 			BUG_ON(PageWriteback(page));
2583 
2584 			if (mpd->map.m_len == 0)
2585 				mpd->first_page = page->index;
2586 			mpd->next_page = page->index + 1;
2587 			/* Add all dirty buffers to mpd */
2588 			lblk = ((ext4_lblk_t)page->index) <<
2589 				(PAGE_SHIFT - blkbits);
2590 			head = page_buffers(page);
2591 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2592 			if (err <= 0)
2593 				goto out;
2594 			err = 0;
2595 			left--;
2596 		}
2597 		pagevec_release(&pvec);
2598 		cond_resched();
2599 	}
2600 	return 0;
2601 out:
2602 	pagevec_release(&pvec);
2603 	return err;
2604 }
2605 
2606 static int ext4_writepages(struct address_space *mapping,
2607 			   struct writeback_control *wbc)
2608 {
2609 	pgoff_t	writeback_index = 0;
2610 	long nr_to_write = wbc->nr_to_write;
2611 	int range_whole = 0;
2612 	int cycled = 1;
2613 	handle_t *handle = NULL;
2614 	struct mpage_da_data mpd;
2615 	struct inode *inode = mapping->host;
2616 	int needed_blocks, rsv_blocks = 0, ret = 0;
2617 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2618 	bool done;
2619 	struct blk_plug plug;
2620 	bool give_up_on_write = false;
2621 
2622 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2623 		return -EIO;
2624 
2625 	percpu_down_read(&sbi->s_writepages_rwsem);
2626 	trace_ext4_writepages(inode, wbc);
2627 
2628 	/*
2629 	 * No pages to write? This is mainly a kludge to avoid starting
2630 	 * a transaction for special inodes like journal inode on last iput()
2631 	 * because that could violate lock ordering on umount
2632 	 */
2633 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2634 		goto out_writepages;
2635 
2636 	if (ext4_should_journal_data(inode)) {
2637 		ret = generic_writepages(mapping, wbc);
2638 		goto out_writepages;
2639 	}
2640 
2641 	/*
2642 	 * If the filesystem has aborted, it is read-only, so return
2643 	 * right away instead of dumping stack traces later on that
2644 	 * will obscure the real source of the problem.  We test
2645 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2646 	 * the latter could be true if the filesystem is mounted
2647 	 * read-only, and in that case, ext4_writepages should
2648 	 * *never* be called, so if that ever happens, we would want
2649 	 * the stack trace.
2650 	 */
2651 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2652 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2653 		ret = -EROFS;
2654 		goto out_writepages;
2655 	}
2656 
2657 	/*
2658 	 * If we have inline data and arrive here, it means that
2659 	 * we will soon create the block for the 1st page, so
2660 	 * we'd better clear the inline data here.
2661 	 */
2662 	if (ext4_has_inline_data(inode)) {
2663 		/* Just inode will be modified... */
2664 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2665 		if (IS_ERR(handle)) {
2666 			ret = PTR_ERR(handle);
2667 			goto out_writepages;
2668 		}
2669 		BUG_ON(ext4_test_inode_state(inode,
2670 				EXT4_STATE_MAY_INLINE_DATA));
2671 		ext4_destroy_inline_data(handle, inode);
2672 		ext4_journal_stop(handle);
2673 	}
2674 
2675 	if (ext4_should_dioread_nolock(inode)) {
2676 		/*
2677 		 * We may need to convert up to one extent per block in
2678 		 * the page and we may dirty the inode.
2679 		 */
2680 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2681 						PAGE_SIZE >> inode->i_blkbits);
2682 	}
2683 
2684 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2685 		range_whole = 1;
2686 
2687 	if (wbc->range_cyclic) {
2688 		writeback_index = mapping->writeback_index;
2689 		if (writeback_index)
2690 			cycled = 0;
2691 		mpd.first_page = writeback_index;
2692 		mpd.last_page = -1;
2693 	} else {
2694 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2695 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2696 	}
2697 
2698 	mpd.inode = inode;
2699 	mpd.wbc = wbc;
2700 	ext4_io_submit_init(&mpd.io_submit, wbc);
2701 retry:
2702 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2703 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2704 	done = false;
2705 	blk_start_plug(&plug);
2706 
2707 	/*
2708 	 * First writeback pages that don't need mapping - we can avoid
2709 	 * starting a transaction unnecessarily and also avoid being blocked
2710 	 * in the block layer on device congestion while having transaction
2711 	 * started.
2712 	 */
2713 	mpd.do_map = 0;
2714 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2715 	if (!mpd.io_submit.io_end) {
2716 		ret = -ENOMEM;
2717 		goto unplug;
2718 	}
2719 	ret = mpage_prepare_extent_to_map(&mpd);
2720 	/* Unlock pages we didn't use */
2721 	mpage_release_unused_pages(&mpd, false);
2722 	/* Submit prepared bio */
2723 	ext4_io_submit(&mpd.io_submit);
2724 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2725 	mpd.io_submit.io_end = NULL;
2726 	if (ret < 0)
2727 		goto unplug;
2728 
2729 	while (!done && mpd.first_page <= mpd.last_page) {
2730 		/* For each extent of pages we use new io_end */
2731 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2732 		if (!mpd.io_submit.io_end) {
2733 			ret = -ENOMEM;
2734 			break;
2735 		}
2736 
2737 		/*
2738 		 * We have two constraints: We find one extent to map and we
2739 		 * must always write out whole page (makes a difference when
2740 		 * blocksize < pagesize) so that we don't block on IO when we
2741 		 * try to write out the rest of the page. Journalled mode is
2742 		 * not supported by delalloc.
2743 		 */
2744 		BUG_ON(ext4_should_journal_data(inode));
2745 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2746 
2747 		/* start a new transaction */
2748 		handle = ext4_journal_start_with_reserve(inode,
2749 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2750 		if (IS_ERR(handle)) {
2751 			ret = PTR_ERR(handle);
2752 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2753 			       "%ld pages, ino %lu; err %d", __func__,
2754 				wbc->nr_to_write, inode->i_ino, ret);
2755 			/* Release allocated io_end */
2756 			ext4_put_io_end(mpd.io_submit.io_end);
2757 			mpd.io_submit.io_end = NULL;
2758 			break;
2759 		}
2760 		mpd.do_map = 1;
2761 
2762 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2763 		ret = mpage_prepare_extent_to_map(&mpd);
2764 		if (!ret) {
2765 			if (mpd.map.m_len)
2766 				ret = mpage_map_and_submit_extent(handle, &mpd,
2767 					&give_up_on_write);
2768 			else {
2769 				/*
2770 				 * We scanned the whole range (or exhausted
2771 				 * nr_to_write), submitted what was mapped and
2772 				 * didn't find anything needing mapping. We are
2773 				 * done.
2774 				 */
2775 				done = true;
2776 			}
2777 		}
2778 		/*
2779 		 * Caution: If the handle is synchronous,
2780 		 * ext4_journal_stop() can wait for transaction commit
2781 		 * to finish which may depend on writeback of pages to
2782 		 * complete or on page lock to be released.  In that
2783 		 * case, we have to wait until after after we have
2784 		 * submitted all the IO, released page locks we hold,
2785 		 * and dropped io_end reference (for extent conversion
2786 		 * to be able to complete) before stopping the handle.
2787 		 */
2788 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2789 			ext4_journal_stop(handle);
2790 			handle = NULL;
2791 			mpd.do_map = 0;
2792 		}
2793 		/* Unlock pages we didn't use */
2794 		mpage_release_unused_pages(&mpd, give_up_on_write);
2795 		/* Submit prepared bio */
2796 		ext4_io_submit(&mpd.io_submit);
2797 
2798 		/*
2799 		 * Drop our io_end reference we got from init. We have
2800 		 * to be careful and use deferred io_end finishing if
2801 		 * we are still holding the transaction as we can
2802 		 * release the last reference to io_end which may end
2803 		 * up doing unwritten extent conversion.
2804 		 */
2805 		if (handle) {
2806 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2807 			ext4_journal_stop(handle);
2808 		} else
2809 			ext4_put_io_end(mpd.io_submit.io_end);
2810 		mpd.io_submit.io_end = NULL;
2811 
2812 		if (ret == -ENOSPC && sbi->s_journal) {
2813 			/*
2814 			 * Commit the transaction which would
2815 			 * free blocks released in the transaction
2816 			 * and try again
2817 			 */
2818 			jbd2_journal_force_commit_nested(sbi->s_journal);
2819 			ret = 0;
2820 			continue;
2821 		}
2822 		/* Fatal error - ENOMEM, EIO... */
2823 		if (ret)
2824 			break;
2825 	}
2826 unplug:
2827 	blk_finish_plug(&plug);
2828 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2829 		cycled = 1;
2830 		mpd.last_page = writeback_index - 1;
2831 		mpd.first_page = 0;
2832 		goto retry;
2833 	}
2834 
2835 	/* Update index */
2836 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2837 		/*
2838 		 * Set the writeback_index so that range_cyclic
2839 		 * mode will write it back later
2840 		 */
2841 		mapping->writeback_index = mpd.first_page;
2842 
2843 out_writepages:
2844 	trace_ext4_writepages_result(inode, wbc, ret,
2845 				     nr_to_write - wbc->nr_to_write);
2846 	percpu_up_read(&sbi->s_writepages_rwsem);
2847 	return ret;
2848 }
2849 
2850 static int ext4_dax_writepages(struct address_space *mapping,
2851 			       struct writeback_control *wbc)
2852 {
2853 	int ret;
2854 	long nr_to_write = wbc->nr_to_write;
2855 	struct inode *inode = mapping->host;
2856 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2857 
2858 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2859 		return -EIO;
2860 
2861 	percpu_down_read(&sbi->s_writepages_rwsem);
2862 	trace_ext4_writepages(inode, wbc);
2863 
2864 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2865 	trace_ext4_writepages_result(inode, wbc, ret,
2866 				     nr_to_write - wbc->nr_to_write);
2867 	percpu_up_read(&sbi->s_writepages_rwsem);
2868 	return ret;
2869 }
2870 
2871 static int ext4_nonda_switch(struct super_block *sb)
2872 {
2873 	s64 free_clusters, dirty_clusters;
2874 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2875 
2876 	/*
2877 	 * switch to non delalloc mode if we are running low
2878 	 * on free block. The free block accounting via percpu
2879 	 * counters can get slightly wrong with percpu_counter_batch getting
2880 	 * accumulated on each CPU without updating global counters
2881 	 * Delalloc need an accurate free block accounting. So switch
2882 	 * to non delalloc when we are near to error range.
2883 	 */
2884 	free_clusters =
2885 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2886 	dirty_clusters =
2887 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2888 	/*
2889 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2890 	 */
2891 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2892 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2893 
2894 	if (2 * free_clusters < 3 * dirty_clusters ||
2895 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2896 		/*
2897 		 * free block count is less than 150% of dirty blocks
2898 		 * or free blocks is less than watermark
2899 		 */
2900 		return 1;
2901 	}
2902 	return 0;
2903 }
2904 
2905 /* We always reserve for an inode update; the superblock could be there too */
2906 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2907 {
2908 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2909 		return 1;
2910 
2911 	if (pos + len <= 0x7fffffffULL)
2912 		return 1;
2913 
2914 	/* We might need to update the superblock to set LARGE_FILE */
2915 	return 2;
2916 }
2917 
2918 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2919 			       loff_t pos, unsigned len, unsigned flags,
2920 			       struct page **pagep, void **fsdata)
2921 {
2922 	int ret, retries = 0;
2923 	struct page *page;
2924 	pgoff_t index;
2925 	struct inode *inode = mapping->host;
2926 	handle_t *handle;
2927 
2928 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2929 		return -EIO;
2930 
2931 	index = pos >> PAGE_SHIFT;
2932 
2933 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2934 	    ext4_verity_in_progress(inode)) {
2935 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2936 		return ext4_write_begin(file, mapping, pos,
2937 					len, flags, pagep, fsdata);
2938 	}
2939 	*fsdata = (void *)0;
2940 	trace_ext4_da_write_begin(inode, pos, len, flags);
2941 
2942 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2943 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2944 						      pos, len, flags,
2945 						      pagep, fsdata);
2946 		if (ret < 0)
2947 			return ret;
2948 		if (ret == 1)
2949 			return 0;
2950 	}
2951 
2952 	/*
2953 	 * grab_cache_page_write_begin() can take a long time if the
2954 	 * system is thrashing due to memory pressure, or if the page
2955 	 * is being written back.  So grab it first before we start
2956 	 * the transaction handle.  This also allows us to allocate
2957 	 * the page (if needed) without using GFP_NOFS.
2958 	 */
2959 retry_grab:
2960 	page = grab_cache_page_write_begin(mapping, index, flags);
2961 	if (!page)
2962 		return -ENOMEM;
2963 	unlock_page(page);
2964 
2965 	/*
2966 	 * With delayed allocation, we don't log the i_disksize update
2967 	 * if there is delayed block allocation. But we still need
2968 	 * to journalling the i_disksize update if writes to the end
2969 	 * of file which has an already mapped buffer.
2970 	 */
2971 retry_journal:
2972 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2973 				ext4_da_write_credits(inode, pos, len));
2974 	if (IS_ERR(handle)) {
2975 		put_page(page);
2976 		return PTR_ERR(handle);
2977 	}
2978 
2979 	lock_page(page);
2980 	if (page->mapping != mapping) {
2981 		/* The page got truncated from under us */
2982 		unlock_page(page);
2983 		put_page(page);
2984 		ext4_journal_stop(handle);
2985 		goto retry_grab;
2986 	}
2987 	/* In case writeback began while the page was unlocked */
2988 	wait_for_stable_page(page);
2989 
2990 #ifdef CONFIG_FS_ENCRYPTION
2991 	ret = ext4_block_write_begin(page, pos, len,
2992 				     ext4_da_get_block_prep);
2993 #else
2994 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2995 #endif
2996 	if (ret < 0) {
2997 		unlock_page(page);
2998 		ext4_journal_stop(handle);
2999 		/*
3000 		 * block_write_begin may have instantiated a few blocks
3001 		 * outside i_size.  Trim these off again. Don't need
3002 		 * i_size_read because we hold i_mutex.
3003 		 */
3004 		if (pos + len > inode->i_size)
3005 			ext4_truncate_failed_write(inode);
3006 
3007 		if (ret == -ENOSPC &&
3008 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3009 			goto retry_journal;
3010 
3011 		put_page(page);
3012 		return ret;
3013 	}
3014 
3015 	*pagep = page;
3016 	return ret;
3017 }
3018 
3019 /*
3020  * Check if we should update i_disksize
3021  * when write to the end of file but not require block allocation
3022  */
3023 static int ext4_da_should_update_i_disksize(struct page *page,
3024 					    unsigned long offset)
3025 {
3026 	struct buffer_head *bh;
3027 	struct inode *inode = page->mapping->host;
3028 	unsigned int idx;
3029 	int i;
3030 
3031 	bh = page_buffers(page);
3032 	idx = offset >> inode->i_blkbits;
3033 
3034 	for (i = 0; i < idx; i++)
3035 		bh = bh->b_this_page;
3036 
3037 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3038 		return 0;
3039 	return 1;
3040 }
3041 
3042 static int ext4_da_write_end(struct file *file,
3043 			     struct address_space *mapping,
3044 			     loff_t pos, unsigned len, unsigned copied,
3045 			     struct page *page, void *fsdata)
3046 {
3047 	struct inode *inode = mapping->host;
3048 	int ret = 0, ret2;
3049 	handle_t *handle = ext4_journal_current_handle();
3050 	loff_t new_i_size;
3051 	unsigned long start, end;
3052 	int write_mode = (int)(unsigned long)fsdata;
3053 
3054 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3055 		return ext4_write_end(file, mapping, pos,
3056 				      len, copied, page, fsdata);
3057 
3058 	trace_ext4_da_write_end(inode, pos, len, copied);
3059 	start = pos & (PAGE_SIZE - 1);
3060 	end = start + copied - 1;
3061 
3062 	/*
3063 	 * generic_write_end() will run mark_inode_dirty() if i_size
3064 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3065 	 * into that.
3066 	 */
3067 	new_i_size = pos + copied;
3068 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3069 		if (ext4_has_inline_data(inode) ||
3070 		    ext4_da_should_update_i_disksize(page, end)) {
3071 			ext4_update_i_disksize(inode, new_i_size);
3072 			/* We need to mark inode dirty even if
3073 			 * new_i_size is less that inode->i_size
3074 			 * bu greater than i_disksize.(hint delalloc)
3075 			 */
3076 			ext4_mark_inode_dirty(handle, inode);
3077 		}
3078 	}
3079 
3080 	if (write_mode != CONVERT_INLINE_DATA &&
3081 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3082 	    ext4_has_inline_data(inode))
3083 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3084 						     page);
3085 	else
3086 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3087 							page, fsdata);
3088 
3089 	copied = ret2;
3090 	if (ret2 < 0)
3091 		ret = ret2;
3092 	ret2 = ext4_journal_stop(handle);
3093 	if (!ret)
3094 		ret = ret2;
3095 
3096 	return ret ? ret : copied;
3097 }
3098 
3099 /*
3100  * Force all delayed allocation blocks to be allocated for a given inode.
3101  */
3102 int ext4_alloc_da_blocks(struct inode *inode)
3103 {
3104 	trace_ext4_alloc_da_blocks(inode);
3105 
3106 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3107 		return 0;
3108 
3109 	/*
3110 	 * We do something simple for now.  The filemap_flush() will
3111 	 * also start triggering a write of the data blocks, which is
3112 	 * not strictly speaking necessary (and for users of
3113 	 * laptop_mode, not even desirable).  However, to do otherwise
3114 	 * would require replicating code paths in:
3115 	 *
3116 	 * ext4_writepages() ->
3117 	 *    write_cache_pages() ---> (via passed in callback function)
3118 	 *        __mpage_da_writepage() -->
3119 	 *           mpage_add_bh_to_extent()
3120 	 *           mpage_da_map_blocks()
3121 	 *
3122 	 * The problem is that write_cache_pages(), located in
3123 	 * mm/page-writeback.c, marks pages clean in preparation for
3124 	 * doing I/O, which is not desirable if we're not planning on
3125 	 * doing I/O at all.
3126 	 *
3127 	 * We could call write_cache_pages(), and then redirty all of
3128 	 * the pages by calling redirty_page_for_writepage() but that
3129 	 * would be ugly in the extreme.  So instead we would need to
3130 	 * replicate parts of the code in the above functions,
3131 	 * simplifying them because we wouldn't actually intend to
3132 	 * write out the pages, but rather only collect contiguous
3133 	 * logical block extents, call the multi-block allocator, and
3134 	 * then update the buffer heads with the block allocations.
3135 	 *
3136 	 * For now, though, we'll cheat by calling filemap_flush(),
3137 	 * which will map the blocks, and start the I/O, but not
3138 	 * actually wait for the I/O to complete.
3139 	 */
3140 	return filemap_flush(inode->i_mapping);
3141 }
3142 
3143 /*
3144  * bmap() is special.  It gets used by applications such as lilo and by
3145  * the swapper to find the on-disk block of a specific piece of data.
3146  *
3147  * Naturally, this is dangerous if the block concerned is still in the
3148  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3149  * filesystem and enables swap, then they may get a nasty shock when the
3150  * data getting swapped to that swapfile suddenly gets overwritten by
3151  * the original zero's written out previously to the journal and
3152  * awaiting writeback in the kernel's buffer cache.
3153  *
3154  * So, if we see any bmap calls here on a modified, data-journaled file,
3155  * take extra steps to flush any blocks which might be in the cache.
3156  */
3157 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3158 {
3159 	struct inode *inode = mapping->host;
3160 	journal_t *journal;
3161 	int err;
3162 
3163 	/*
3164 	 * We can get here for an inline file via the FIBMAP ioctl
3165 	 */
3166 	if (ext4_has_inline_data(inode))
3167 		return 0;
3168 
3169 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3170 			test_opt(inode->i_sb, DELALLOC)) {
3171 		/*
3172 		 * With delalloc we want to sync the file
3173 		 * so that we can make sure we allocate
3174 		 * blocks for file
3175 		 */
3176 		filemap_write_and_wait(mapping);
3177 	}
3178 
3179 	if (EXT4_JOURNAL(inode) &&
3180 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3181 		/*
3182 		 * This is a REALLY heavyweight approach, but the use of
3183 		 * bmap on dirty files is expected to be extremely rare:
3184 		 * only if we run lilo or swapon on a freshly made file
3185 		 * do we expect this to happen.
3186 		 *
3187 		 * (bmap requires CAP_SYS_RAWIO so this does not
3188 		 * represent an unprivileged user DOS attack --- we'd be
3189 		 * in trouble if mortal users could trigger this path at
3190 		 * will.)
3191 		 *
3192 		 * NB. EXT4_STATE_JDATA is not set on files other than
3193 		 * regular files.  If somebody wants to bmap a directory
3194 		 * or symlink and gets confused because the buffer
3195 		 * hasn't yet been flushed to disk, they deserve
3196 		 * everything they get.
3197 		 */
3198 
3199 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3200 		journal = EXT4_JOURNAL(inode);
3201 		jbd2_journal_lock_updates(journal);
3202 		err = jbd2_journal_flush(journal);
3203 		jbd2_journal_unlock_updates(journal);
3204 
3205 		if (err)
3206 			return 0;
3207 	}
3208 
3209 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3210 }
3211 
3212 static int ext4_readpage(struct file *file, struct page *page)
3213 {
3214 	int ret = -EAGAIN;
3215 	struct inode *inode = page->mapping->host;
3216 
3217 	trace_ext4_readpage(page);
3218 
3219 	if (ext4_has_inline_data(inode))
3220 		ret = ext4_readpage_inline(inode, page);
3221 
3222 	if (ret == -EAGAIN)
3223 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3224 						false);
3225 
3226 	return ret;
3227 }
3228 
3229 static int
3230 ext4_readpages(struct file *file, struct address_space *mapping,
3231 		struct list_head *pages, unsigned nr_pages)
3232 {
3233 	struct inode *inode = mapping->host;
3234 
3235 	/* If the file has inline data, no need to do readpages. */
3236 	if (ext4_has_inline_data(inode))
3237 		return 0;
3238 
3239 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3240 }
3241 
3242 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3243 				unsigned int length)
3244 {
3245 	trace_ext4_invalidatepage(page, offset, length);
3246 
3247 	/* No journalling happens on data buffers when this function is used */
3248 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3249 
3250 	block_invalidatepage(page, offset, length);
3251 }
3252 
3253 static int __ext4_journalled_invalidatepage(struct page *page,
3254 					    unsigned int offset,
3255 					    unsigned int length)
3256 {
3257 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3258 
3259 	trace_ext4_journalled_invalidatepage(page, offset, length);
3260 
3261 	/*
3262 	 * If it's a full truncate we just forget about the pending dirtying
3263 	 */
3264 	if (offset == 0 && length == PAGE_SIZE)
3265 		ClearPageChecked(page);
3266 
3267 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3268 }
3269 
3270 /* Wrapper for aops... */
3271 static void ext4_journalled_invalidatepage(struct page *page,
3272 					   unsigned int offset,
3273 					   unsigned int length)
3274 {
3275 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3276 }
3277 
3278 static int ext4_releasepage(struct page *page, gfp_t wait)
3279 {
3280 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3281 
3282 	trace_ext4_releasepage(page);
3283 
3284 	/* Page has dirty journalled data -> cannot release */
3285 	if (PageChecked(page))
3286 		return 0;
3287 	if (journal)
3288 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3289 	else
3290 		return try_to_free_buffers(page);
3291 }
3292 
3293 static bool ext4_inode_datasync_dirty(struct inode *inode)
3294 {
3295 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3296 
3297 	if (journal)
3298 		return !jbd2_transaction_committed(journal,
3299 					EXT4_I(inode)->i_datasync_tid);
3300 	/* Any metadata buffers to write? */
3301 	if (!list_empty(&inode->i_mapping->private_list))
3302 		return true;
3303 	return inode->i_state & I_DIRTY_DATASYNC;
3304 }
3305 
3306 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3307 			   struct ext4_map_blocks *map, loff_t offset,
3308 			   loff_t length)
3309 {
3310 	u8 blkbits = inode->i_blkbits;
3311 
3312 	/*
3313 	 * Writes that span EOF might trigger an I/O size update on completion,
3314 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3315 	 * there is no other metadata changes being made or are pending.
3316 	 */
3317 	iomap->flags = 0;
3318 	if (ext4_inode_datasync_dirty(inode) ||
3319 	    offset + length > i_size_read(inode))
3320 		iomap->flags |= IOMAP_F_DIRTY;
3321 
3322 	if (map->m_flags & EXT4_MAP_NEW)
3323 		iomap->flags |= IOMAP_F_NEW;
3324 
3325 	iomap->bdev = inode->i_sb->s_bdev;
3326 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3327 	iomap->offset = (u64) map->m_lblk << blkbits;
3328 	iomap->length = (u64) map->m_len << blkbits;
3329 
3330 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3331 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3332 		iomap->flags |= IOMAP_F_MERGED;
3333 
3334 	/*
3335 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3336 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3337 	 * set. In order for any allocated unwritten extents to be converted
3338 	 * into written extents correctly within the ->end_io() handler, we
3339 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3340 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3341 	 * been set first.
3342 	 */
3343 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3344 		iomap->type = IOMAP_UNWRITTEN;
3345 		iomap->addr = (u64) map->m_pblk << blkbits;
3346 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3347 		iomap->type = IOMAP_MAPPED;
3348 		iomap->addr = (u64) map->m_pblk << blkbits;
3349 	} else {
3350 		iomap->type = IOMAP_HOLE;
3351 		iomap->addr = IOMAP_NULL_ADDR;
3352 	}
3353 }
3354 
3355 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3356 			    unsigned int flags)
3357 {
3358 	handle_t *handle;
3359 	u8 blkbits = inode->i_blkbits;
3360 	int ret, dio_credits, m_flags = 0, retries = 0;
3361 
3362 	/*
3363 	 * Trim the mapping request to the maximum value that we can map at
3364 	 * once for direct I/O.
3365 	 */
3366 	if (map->m_len > DIO_MAX_BLOCKS)
3367 		map->m_len = DIO_MAX_BLOCKS;
3368 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3369 
3370 retry:
3371 	/*
3372 	 * Either we allocate blocks and then don't get an unwritten extent, so
3373 	 * in that case we have reserved enough credits. Or, the blocks are
3374 	 * already allocated and unwritten. In that case, the extent conversion
3375 	 * fits into the credits as well.
3376 	 */
3377 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3378 	if (IS_ERR(handle))
3379 		return PTR_ERR(handle);
3380 
3381 	/*
3382 	 * DAX and direct I/O are the only two operations that are currently
3383 	 * supported with IOMAP_WRITE.
3384 	 */
3385 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3386 	if (IS_DAX(inode))
3387 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3388 	/*
3389 	 * We use i_size instead of i_disksize here because delalloc writeback
3390 	 * can complete at any point during the I/O and subsequently push the
3391 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3392 	 * happening and thus expose allocated blocks to direct I/O reads.
3393 	 */
3394 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3395 		m_flags = EXT4_GET_BLOCKS_CREATE;
3396 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3397 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3398 
3399 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3400 
3401 	/*
3402 	 * We cannot fill holes in indirect tree based inodes as that could
3403 	 * expose stale data in the case of a crash. Use the magic error code
3404 	 * to fallback to buffered I/O.
3405 	 */
3406 	if (!m_flags && !ret)
3407 		ret = -ENOTBLK;
3408 
3409 	ext4_journal_stop(handle);
3410 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3411 		goto retry;
3412 
3413 	return ret;
3414 }
3415 
3416 
3417 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3418 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3419 {
3420 	int ret;
3421 	struct ext4_map_blocks map;
3422 	u8 blkbits = inode->i_blkbits;
3423 
3424 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3425 		return -EINVAL;
3426 
3427 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3428 		return -ERANGE;
3429 
3430 	/*
3431 	 * Calculate the first and last logical blocks respectively.
3432 	 */
3433 	map.m_lblk = offset >> blkbits;
3434 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3435 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3436 
3437 	if (flags & IOMAP_WRITE)
3438 		ret = ext4_iomap_alloc(inode, &map, flags);
3439 	else
3440 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3441 
3442 	if (ret < 0)
3443 		return ret;
3444 
3445 	ext4_set_iomap(inode, iomap, &map, offset, length);
3446 
3447 	return 0;
3448 }
3449 
3450 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3451 		loff_t length, unsigned flags, struct iomap *iomap,
3452 		struct iomap *srcmap)
3453 {
3454 	int ret;
3455 
3456 	/*
3457 	 * Even for writes we don't need to allocate blocks, so just pretend
3458 	 * we are reading to save overhead of starting a transaction.
3459 	 */
3460 	flags &= ~IOMAP_WRITE;
3461 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3462 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3463 	return ret;
3464 }
3465 
3466 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3467 			  ssize_t written, unsigned flags, struct iomap *iomap)
3468 {
3469 	/*
3470 	 * Check to see whether an error occurred while writing out the data to
3471 	 * the allocated blocks. If so, return the magic error code so that we
3472 	 * fallback to buffered I/O and attempt to complete the remainder of
3473 	 * the I/O. Any blocks that may have been allocated in preparation for
3474 	 * the direct I/O will be reused during buffered I/O.
3475 	 */
3476 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3477 		return -ENOTBLK;
3478 
3479 	return 0;
3480 }
3481 
3482 const struct iomap_ops ext4_iomap_ops = {
3483 	.iomap_begin		= ext4_iomap_begin,
3484 	.iomap_end		= ext4_iomap_end,
3485 };
3486 
3487 const struct iomap_ops ext4_iomap_overwrite_ops = {
3488 	.iomap_begin		= ext4_iomap_overwrite_begin,
3489 	.iomap_end		= ext4_iomap_end,
3490 };
3491 
3492 static bool ext4_iomap_is_delalloc(struct inode *inode,
3493 				   struct ext4_map_blocks *map)
3494 {
3495 	struct extent_status es;
3496 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3497 
3498 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3499 				  map->m_lblk, end, &es);
3500 
3501 	if (!es.es_len || es.es_lblk > end)
3502 		return false;
3503 
3504 	if (es.es_lblk > map->m_lblk) {
3505 		map->m_len = es.es_lblk - map->m_lblk;
3506 		return false;
3507 	}
3508 
3509 	offset = map->m_lblk - es.es_lblk;
3510 	map->m_len = es.es_len - offset;
3511 
3512 	return true;
3513 }
3514 
3515 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3516 				   loff_t length, unsigned int flags,
3517 				   struct iomap *iomap, struct iomap *srcmap)
3518 {
3519 	int ret;
3520 	bool delalloc = false;
3521 	struct ext4_map_blocks map;
3522 	u8 blkbits = inode->i_blkbits;
3523 
3524 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3525 		return -EINVAL;
3526 
3527 	if (ext4_has_inline_data(inode)) {
3528 		ret = ext4_inline_data_iomap(inode, iomap);
3529 		if (ret != -EAGAIN) {
3530 			if (ret == 0 && offset >= iomap->length)
3531 				ret = -ENOENT;
3532 			return ret;
3533 		}
3534 	}
3535 
3536 	/*
3537 	 * Calculate the first and last logical block respectively.
3538 	 */
3539 	map.m_lblk = offset >> blkbits;
3540 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3541 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3542 
3543 	/*
3544 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3545 	 * So handle it here itself instead of querying ext4_map_blocks().
3546 	 * Since ext4_map_blocks() will warn about it and will return
3547 	 * -EIO error.
3548 	 */
3549 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3550 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3551 
3552 		if (offset >= sbi->s_bitmap_maxbytes) {
3553 			map.m_flags = 0;
3554 			goto set_iomap;
3555 		}
3556 	}
3557 
3558 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3559 	if (ret < 0)
3560 		return ret;
3561 	if (ret == 0)
3562 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3563 
3564 set_iomap:
3565 	ext4_set_iomap(inode, iomap, &map, offset, length);
3566 	if (delalloc && iomap->type == IOMAP_HOLE)
3567 		iomap->type = IOMAP_DELALLOC;
3568 
3569 	return 0;
3570 }
3571 
3572 const struct iomap_ops ext4_iomap_report_ops = {
3573 	.iomap_begin = ext4_iomap_begin_report,
3574 };
3575 
3576 /*
3577  * Pages can be marked dirty completely asynchronously from ext4's journalling
3578  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3579  * much here because ->set_page_dirty is called under VFS locks.  The page is
3580  * not necessarily locked.
3581  *
3582  * We cannot just dirty the page and leave attached buffers clean, because the
3583  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3584  * or jbddirty because all the journalling code will explode.
3585  *
3586  * So what we do is to mark the page "pending dirty" and next time writepage
3587  * is called, propagate that into the buffers appropriately.
3588  */
3589 static int ext4_journalled_set_page_dirty(struct page *page)
3590 {
3591 	SetPageChecked(page);
3592 	return __set_page_dirty_nobuffers(page);
3593 }
3594 
3595 static int ext4_set_page_dirty(struct page *page)
3596 {
3597 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3598 	WARN_ON_ONCE(!page_has_buffers(page));
3599 	return __set_page_dirty_buffers(page);
3600 }
3601 
3602 static const struct address_space_operations ext4_aops = {
3603 	.readpage		= ext4_readpage,
3604 	.readpages		= ext4_readpages,
3605 	.writepage		= ext4_writepage,
3606 	.writepages		= ext4_writepages,
3607 	.write_begin		= ext4_write_begin,
3608 	.write_end		= ext4_write_end,
3609 	.set_page_dirty		= ext4_set_page_dirty,
3610 	.bmap			= ext4_bmap,
3611 	.invalidatepage		= ext4_invalidatepage,
3612 	.releasepage		= ext4_releasepage,
3613 	.direct_IO		= noop_direct_IO,
3614 	.migratepage		= buffer_migrate_page,
3615 	.is_partially_uptodate  = block_is_partially_uptodate,
3616 	.error_remove_page	= generic_error_remove_page,
3617 };
3618 
3619 static const struct address_space_operations ext4_journalled_aops = {
3620 	.readpage		= ext4_readpage,
3621 	.readpages		= ext4_readpages,
3622 	.writepage		= ext4_writepage,
3623 	.writepages		= ext4_writepages,
3624 	.write_begin		= ext4_write_begin,
3625 	.write_end		= ext4_journalled_write_end,
3626 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3627 	.bmap			= ext4_bmap,
3628 	.invalidatepage		= ext4_journalled_invalidatepage,
3629 	.releasepage		= ext4_releasepage,
3630 	.direct_IO		= noop_direct_IO,
3631 	.is_partially_uptodate  = block_is_partially_uptodate,
3632 	.error_remove_page	= generic_error_remove_page,
3633 };
3634 
3635 static const struct address_space_operations ext4_da_aops = {
3636 	.readpage		= ext4_readpage,
3637 	.readpages		= ext4_readpages,
3638 	.writepage		= ext4_writepage,
3639 	.writepages		= ext4_writepages,
3640 	.write_begin		= ext4_da_write_begin,
3641 	.write_end		= ext4_da_write_end,
3642 	.set_page_dirty		= ext4_set_page_dirty,
3643 	.bmap			= ext4_bmap,
3644 	.invalidatepage		= ext4_invalidatepage,
3645 	.releasepage		= ext4_releasepage,
3646 	.direct_IO		= noop_direct_IO,
3647 	.migratepage		= buffer_migrate_page,
3648 	.is_partially_uptodate  = block_is_partially_uptodate,
3649 	.error_remove_page	= generic_error_remove_page,
3650 };
3651 
3652 static const struct address_space_operations ext4_dax_aops = {
3653 	.writepages		= ext4_dax_writepages,
3654 	.direct_IO		= noop_direct_IO,
3655 	.set_page_dirty		= noop_set_page_dirty,
3656 	.bmap			= ext4_bmap,
3657 	.invalidatepage		= noop_invalidatepage,
3658 };
3659 
3660 void ext4_set_aops(struct inode *inode)
3661 {
3662 	switch (ext4_inode_journal_mode(inode)) {
3663 	case EXT4_INODE_ORDERED_DATA_MODE:
3664 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3665 		break;
3666 	case EXT4_INODE_JOURNAL_DATA_MODE:
3667 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3668 		return;
3669 	default:
3670 		BUG();
3671 	}
3672 	if (IS_DAX(inode))
3673 		inode->i_mapping->a_ops = &ext4_dax_aops;
3674 	else if (test_opt(inode->i_sb, DELALLOC))
3675 		inode->i_mapping->a_ops = &ext4_da_aops;
3676 	else
3677 		inode->i_mapping->a_ops = &ext4_aops;
3678 }
3679 
3680 static int __ext4_block_zero_page_range(handle_t *handle,
3681 		struct address_space *mapping, loff_t from, loff_t length)
3682 {
3683 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3684 	unsigned offset = from & (PAGE_SIZE-1);
3685 	unsigned blocksize, pos;
3686 	ext4_lblk_t iblock;
3687 	struct inode *inode = mapping->host;
3688 	struct buffer_head *bh;
3689 	struct page *page;
3690 	int err = 0;
3691 
3692 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3693 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3694 	if (!page)
3695 		return -ENOMEM;
3696 
3697 	blocksize = inode->i_sb->s_blocksize;
3698 
3699 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700 
3701 	if (!page_has_buffers(page))
3702 		create_empty_buffers(page, blocksize, 0);
3703 
3704 	/* Find the buffer that contains "offset" */
3705 	bh = page_buffers(page);
3706 	pos = blocksize;
3707 	while (offset >= pos) {
3708 		bh = bh->b_this_page;
3709 		iblock++;
3710 		pos += blocksize;
3711 	}
3712 	if (buffer_freed(bh)) {
3713 		BUFFER_TRACE(bh, "freed: skip");
3714 		goto unlock;
3715 	}
3716 	if (!buffer_mapped(bh)) {
3717 		BUFFER_TRACE(bh, "unmapped");
3718 		ext4_get_block(inode, iblock, bh, 0);
3719 		/* unmapped? It's a hole - nothing to do */
3720 		if (!buffer_mapped(bh)) {
3721 			BUFFER_TRACE(bh, "still unmapped");
3722 			goto unlock;
3723 		}
3724 	}
3725 
3726 	/* Ok, it's mapped. Make sure it's up-to-date */
3727 	if (PageUptodate(page))
3728 		set_buffer_uptodate(bh);
3729 
3730 	if (!buffer_uptodate(bh)) {
3731 		err = -EIO;
3732 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3733 		wait_on_buffer(bh);
3734 		/* Uhhuh. Read error. Complain and punt. */
3735 		if (!buffer_uptodate(bh))
3736 			goto unlock;
3737 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3738 			/* We expect the key to be set. */
3739 			BUG_ON(!fscrypt_has_encryption_key(inode));
3740 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3741 							       bh_offset(bh));
3742 			if (err) {
3743 				clear_buffer_uptodate(bh);
3744 				goto unlock;
3745 			}
3746 		}
3747 	}
3748 	if (ext4_should_journal_data(inode)) {
3749 		BUFFER_TRACE(bh, "get write access");
3750 		err = ext4_journal_get_write_access(handle, bh);
3751 		if (err)
3752 			goto unlock;
3753 	}
3754 	zero_user(page, offset, length);
3755 	BUFFER_TRACE(bh, "zeroed end of block");
3756 
3757 	if (ext4_should_journal_data(inode)) {
3758 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3759 	} else {
3760 		err = 0;
3761 		mark_buffer_dirty(bh);
3762 		if (ext4_should_order_data(inode))
3763 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3764 					length);
3765 	}
3766 
3767 unlock:
3768 	unlock_page(page);
3769 	put_page(page);
3770 	return err;
3771 }
3772 
3773 /*
3774  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3775  * starting from file offset 'from'.  The range to be zero'd must
3776  * be contained with in one block.  If the specified range exceeds
3777  * the end of the block it will be shortened to end of the block
3778  * that cooresponds to 'from'
3779  */
3780 static int ext4_block_zero_page_range(handle_t *handle,
3781 		struct address_space *mapping, loff_t from, loff_t length)
3782 {
3783 	struct inode *inode = mapping->host;
3784 	unsigned offset = from & (PAGE_SIZE-1);
3785 	unsigned blocksize = inode->i_sb->s_blocksize;
3786 	unsigned max = blocksize - (offset & (blocksize - 1));
3787 
3788 	/*
3789 	 * correct length if it does not fall between
3790 	 * 'from' and the end of the block
3791 	 */
3792 	if (length > max || length < 0)
3793 		length = max;
3794 
3795 	if (IS_DAX(inode)) {
3796 		return iomap_zero_range(inode, from, length, NULL,
3797 					&ext4_iomap_ops);
3798 	}
3799 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3800 }
3801 
3802 /*
3803  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3804  * up to the end of the block which corresponds to `from'.
3805  * This required during truncate. We need to physically zero the tail end
3806  * of that block so it doesn't yield old data if the file is later grown.
3807  */
3808 static int ext4_block_truncate_page(handle_t *handle,
3809 		struct address_space *mapping, loff_t from)
3810 {
3811 	unsigned offset = from & (PAGE_SIZE-1);
3812 	unsigned length;
3813 	unsigned blocksize;
3814 	struct inode *inode = mapping->host;
3815 
3816 	/* If we are processing an encrypted inode during orphan list handling */
3817 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3818 		return 0;
3819 
3820 	blocksize = inode->i_sb->s_blocksize;
3821 	length = blocksize - (offset & (blocksize - 1));
3822 
3823 	return ext4_block_zero_page_range(handle, mapping, from, length);
3824 }
3825 
3826 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3827 			     loff_t lstart, loff_t length)
3828 {
3829 	struct super_block *sb = inode->i_sb;
3830 	struct address_space *mapping = inode->i_mapping;
3831 	unsigned partial_start, partial_end;
3832 	ext4_fsblk_t start, end;
3833 	loff_t byte_end = (lstart + length - 1);
3834 	int err = 0;
3835 
3836 	partial_start = lstart & (sb->s_blocksize - 1);
3837 	partial_end = byte_end & (sb->s_blocksize - 1);
3838 
3839 	start = lstart >> sb->s_blocksize_bits;
3840 	end = byte_end >> sb->s_blocksize_bits;
3841 
3842 	/* Handle partial zero within the single block */
3843 	if (start == end &&
3844 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3845 		err = ext4_block_zero_page_range(handle, mapping,
3846 						 lstart, length);
3847 		return err;
3848 	}
3849 	/* Handle partial zero out on the start of the range */
3850 	if (partial_start) {
3851 		err = ext4_block_zero_page_range(handle, mapping,
3852 						 lstart, sb->s_blocksize);
3853 		if (err)
3854 			return err;
3855 	}
3856 	/* Handle partial zero out on the end of the range */
3857 	if (partial_end != sb->s_blocksize - 1)
3858 		err = ext4_block_zero_page_range(handle, mapping,
3859 						 byte_end - partial_end,
3860 						 partial_end + 1);
3861 	return err;
3862 }
3863 
3864 int ext4_can_truncate(struct inode *inode)
3865 {
3866 	if (S_ISREG(inode->i_mode))
3867 		return 1;
3868 	if (S_ISDIR(inode->i_mode))
3869 		return 1;
3870 	if (S_ISLNK(inode->i_mode))
3871 		return !ext4_inode_is_fast_symlink(inode);
3872 	return 0;
3873 }
3874 
3875 /*
3876  * We have to make sure i_disksize gets properly updated before we truncate
3877  * page cache due to hole punching or zero range. Otherwise i_disksize update
3878  * can get lost as it may have been postponed to submission of writeback but
3879  * that will never happen after we truncate page cache.
3880  */
3881 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3882 				      loff_t len)
3883 {
3884 	handle_t *handle;
3885 	loff_t size = i_size_read(inode);
3886 
3887 	WARN_ON(!inode_is_locked(inode));
3888 	if (offset > size || offset + len < size)
3889 		return 0;
3890 
3891 	if (EXT4_I(inode)->i_disksize >= size)
3892 		return 0;
3893 
3894 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3895 	if (IS_ERR(handle))
3896 		return PTR_ERR(handle);
3897 	ext4_update_i_disksize(inode, size);
3898 	ext4_mark_inode_dirty(handle, inode);
3899 	ext4_journal_stop(handle);
3900 
3901 	return 0;
3902 }
3903 
3904 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3905 {
3906 	up_write(&ei->i_mmap_sem);
3907 	schedule();
3908 	down_write(&ei->i_mmap_sem);
3909 }
3910 
3911 int ext4_break_layouts(struct inode *inode)
3912 {
3913 	struct ext4_inode_info *ei = EXT4_I(inode);
3914 	struct page *page;
3915 	int error;
3916 
3917 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3918 		return -EINVAL;
3919 
3920 	do {
3921 		page = dax_layout_busy_page(inode->i_mapping);
3922 		if (!page)
3923 			return 0;
3924 
3925 		error = ___wait_var_event(&page->_refcount,
3926 				atomic_read(&page->_refcount) == 1,
3927 				TASK_INTERRUPTIBLE, 0, 0,
3928 				ext4_wait_dax_page(ei));
3929 	} while (error == 0);
3930 
3931 	return error;
3932 }
3933 
3934 /*
3935  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936  * associated with the given offset and length
3937  *
3938  * @inode:  File inode
3939  * @offset: The offset where the hole will begin
3940  * @len:    The length of the hole
3941  *
3942  * Returns: 0 on success or negative on failure
3943  */
3944 
3945 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3946 {
3947 	struct super_block *sb = inode->i_sb;
3948 	ext4_lblk_t first_block, stop_block;
3949 	struct address_space *mapping = inode->i_mapping;
3950 	loff_t first_block_offset, last_block_offset;
3951 	handle_t *handle;
3952 	unsigned int credits;
3953 	int ret = 0;
3954 
3955 	trace_ext4_punch_hole(inode, offset, length, 0);
3956 
3957 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3958 	if (ext4_has_inline_data(inode)) {
3959 		down_write(&EXT4_I(inode)->i_mmap_sem);
3960 		ret = ext4_convert_inline_data(inode);
3961 		up_write(&EXT4_I(inode)->i_mmap_sem);
3962 		if (ret)
3963 			return ret;
3964 	}
3965 
3966 	/*
3967 	 * Write out all dirty pages to avoid race conditions
3968 	 * Then release them.
3969 	 */
3970 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3971 		ret = filemap_write_and_wait_range(mapping, offset,
3972 						   offset + length - 1);
3973 		if (ret)
3974 			return ret;
3975 	}
3976 
3977 	inode_lock(inode);
3978 
3979 	/* No need to punch hole beyond i_size */
3980 	if (offset >= inode->i_size)
3981 		goto out_mutex;
3982 
3983 	/*
3984 	 * If the hole extends beyond i_size, set the hole
3985 	 * to end after the page that contains i_size
3986 	 */
3987 	if (offset + length > inode->i_size) {
3988 		length = inode->i_size +
3989 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3990 		   offset;
3991 	}
3992 
3993 	if (offset & (sb->s_blocksize - 1) ||
3994 	    (offset + length) & (sb->s_blocksize - 1)) {
3995 		/*
3996 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3997 		 * partial block
3998 		 */
3999 		ret = ext4_inode_attach_jinode(inode);
4000 		if (ret < 0)
4001 			goto out_mutex;
4002 
4003 	}
4004 
4005 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4006 	inode_dio_wait(inode);
4007 
4008 	/*
4009 	 * Prevent page faults from reinstantiating pages we have released from
4010 	 * page cache.
4011 	 */
4012 	down_write(&EXT4_I(inode)->i_mmap_sem);
4013 
4014 	ret = ext4_break_layouts(inode);
4015 	if (ret)
4016 		goto out_dio;
4017 
4018 	first_block_offset = round_up(offset, sb->s_blocksize);
4019 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4020 
4021 	/* Now release the pages and zero block aligned part of pages*/
4022 	if (last_block_offset > first_block_offset) {
4023 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4024 		if (ret)
4025 			goto out_dio;
4026 		truncate_pagecache_range(inode, first_block_offset,
4027 					 last_block_offset);
4028 	}
4029 
4030 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4031 		credits = ext4_writepage_trans_blocks(inode);
4032 	else
4033 		credits = ext4_blocks_for_truncate(inode);
4034 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4035 	if (IS_ERR(handle)) {
4036 		ret = PTR_ERR(handle);
4037 		ext4_std_error(sb, ret);
4038 		goto out_dio;
4039 	}
4040 
4041 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4042 				       length);
4043 	if (ret)
4044 		goto out_stop;
4045 
4046 	first_block = (offset + sb->s_blocksize - 1) >>
4047 		EXT4_BLOCK_SIZE_BITS(sb);
4048 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4049 
4050 	/* If there are blocks to remove, do it */
4051 	if (stop_block > first_block) {
4052 
4053 		down_write(&EXT4_I(inode)->i_data_sem);
4054 		ext4_discard_preallocations(inode);
4055 
4056 		ret = ext4_es_remove_extent(inode, first_block,
4057 					    stop_block - first_block);
4058 		if (ret) {
4059 			up_write(&EXT4_I(inode)->i_data_sem);
4060 			goto out_stop;
4061 		}
4062 
4063 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4064 			ret = ext4_ext_remove_space(inode, first_block,
4065 						    stop_block - 1);
4066 		else
4067 			ret = ext4_ind_remove_space(handle, inode, first_block,
4068 						    stop_block);
4069 
4070 		up_write(&EXT4_I(inode)->i_data_sem);
4071 	}
4072 	if (IS_SYNC(inode))
4073 		ext4_handle_sync(handle);
4074 
4075 	inode->i_mtime = inode->i_ctime = current_time(inode);
4076 	ext4_mark_inode_dirty(handle, inode);
4077 	if (ret >= 0)
4078 		ext4_update_inode_fsync_trans(handle, inode, 1);
4079 out_stop:
4080 	ext4_journal_stop(handle);
4081 out_dio:
4082 	up_write(&EXT4_I(inode)->i_mmap_sem);
4083 out_mutex:
4084 	inode_unlock(inode);
4085 	return ret;
4086 }
4087 
4088 int ext4_inode_attach_jinode(struct inode *inode)
4089 {
4090 	struct ext4_inode_info *ei = EXT4_I(inode);
4091 	struct jbd2_inode *jinode;
4092 
4093 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4094 		return 0;
4095 
4096 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4097 	spin_lock(&inode->i_lock);
4098 	if (!ei->jinode) {
4099 		if (!jinode) {
4100 			spin_unlock(&inode->i_lock);
4101 			return -ENOMEM;
4102 		}
4103 		ei->jinode = jinode;
4104 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4105 		jinode = NULL;
4106 	}
4107 	spin_unlock(&inode->i_lock);
4108 	if (unlikely(jinode != NULL))
4109 		jbd2_free_inode(jinode);
4110 	return 0;
4111 }
4112 
4113 /*
4114  * ext4_truncate()
4115  *
4116  * We block out ext4_get_block() block instantiations across the entire
4117  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4118  * simultaneously on behalf of the same inode.
4119  *
4120  * As we work through the truncate and commit bits of it to the journal there
4121  * is one core, guiding principle: the file's tree must always be consistent on
4122  * disk.  We must be able to restart the truncate after a crash.
4123  *
4124  * The file's tree may be transiently inconsistent in memory (although it
4125  * probably isn't), but whenever we close off and commit a journal transaction,
4126  * the contents of (the filesystem + the journal) must be consistent and
4127  * restartable.  It's pretty simple, really: bottom up, right to left (although
4128  * left-to-right works OK too).
4129  *
4130  * Note that at recovery time, journal replay occurs *before* the restart of
4131  * truncate against the orphan inode list.
4132  *
4133  * The committed inode has the new, desired i_size (which is the same as
4134  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4135  * that this inode's truncate did not complete and it will again call
4136  * ext4_truncate() to have another go.  So there will be instantiated blocks
4137  * to the right of the truncation point in a crashed ext4 filesystem.  But
4138  * that's fine - as long as they are linked from the inode, the post-crash
4139  * ext4_truncate() run will find them and release them.
4140  */
4141 int ext4_truncate(struct inode *inode)
4142 {
4143 	struct ext4_inode_info *ei = EXT4_I(inode);
4144 	unsigned int credits;
4145 	int err = 0;
4146 	handle_t *handle;
4147 	struct address_space *mapping = inode->i_mapping;
4148 
4149 	/*
4150 	 * There is a possibility that we're either freeing the inode
4151 	 * or it's a completely new inode. In those cases we might not
4152 	 * have i_mutex locked because it's not necessary.
4153 	 */
4154 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4155 		WARN_ON(!inode_is_locked(inode));
4156 	trace_ext4_truncate_enter(inode);
4157 
4158 	if (!ext4_can_truncate(inode))
4159 		return 0;
4160 
4161 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4162 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4163 
4164 	if (ext4_has_inline_data(inode)) {
4165 		int has_inline = 1;
4166 
4167 		err = ext4_inline_data_truncate(inode, &has_inline);
4168 		if (err)
4169 			return err;
4170 		if (has_inline)
4171 			return 0;
4172 	}
4173 
4174 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4175 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4176 		if (ext4_inode_attach_jinode(inode) < 0)
4177 			return 0;
4178 	}
4179 
4180 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4181 		credits = ext4_writepage_trans_blocks(inode);
4182 	else
4183 		credits = ext4_blocks_for_truncate(inode);
4184 
4185 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4186 	if (IS_ERR(handle))
4187 		return PTR_ERR(handle);
4188 
4189 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4190 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4191 
4192 	/*
4193 	 * We add the inode to the orphan list, so that if this
4194 	 * truncate spans multiple transactions, and we crash, we will
4195 	 * resume the truncate when the filesystem recovers.  It also
4196 	 * marks the inode dirty, to catch the new size.
4197 	 *
4198 	 * Implication: the file must always be in a sane, consistent
4199 	 * truncatable state while each transaction commits.
4200 	 */
4201 	err = ext4_orphan_add(handle, inode);
4202 	if (err)
4203 		goto out_stop;
4204 
4205 	down_write(&EXT4_I(inode)->i_data_sem);
4206 
4207 	ext4_discard_preallocations(inode);
4208 
4209 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4210 		err = ext4_ext_truncate(handle, inode);
4211 	else
4212 		ext4_ind_truncate(handle, inode);
4213 
4214 	up_write(&ei->i_data_sem);
4215 	if (err)
4216 		goto out_stop;
4217 
4218 	if (IS_SYNC(inode))
4219 		ext4_handle_sync(handle);
4220 
4221 out_stop:
4222 	/*
4223 	 * If this was a simple ftruncate() and the file will remain alive,
4224 	 * then we need to clear up the orphan record which we created above.
4225 	 * However, if this was a real unlink then we were called by
4226 	 * ext4_evict_inode(), and we allow that function to clean up the
4227 	 * orphan info for us.
4228 	 */
4229 	if (inode->i_nlink)
4230 		ext4_orphan_del(handle, inode);
4231 
4232 	inode->i_mtime = inode->i_ctime = current_time(inode);
4233 	ext4_mark_inode_dirty(handle, inode);
4234 	ext4_journal_stop(handle);
4235 
4236 	trace_ext4_truncate_exit(inode);
4237 	return err;
4238 }
4239 
4240 /*
4241  * ext4_get_inode_loc returns with an extra refcount against the inode's
4242  * underlying buffer_head on success. If 'in_mem' is true, we have all
4243  * data in memory that is needed to recreate the on-disk version of this
4244  * inode.
4245  */
4246 static int __ext4_get_inode_loc(struct inode *inode,
4247 				struct ext4_iloc *iloc, int in_mem)
4248 {
4249 	struct ext4_group_desc	*gdp;
4250 	struct buffer_head	*bh;
4251 	struct super_block	*sb = inode->i_sb;
4252 	ext4_fsblk_t		block;
4253 	struct blk_plug		plug;
4254 	int			inodes_per_block, inode_offset;
4255 
4256 	iloc->bh = NULL;
4257 	if (inode->i_ino < EXT4_ROOT_INO ||
4258 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4259 		return -EFSCORRUPTED;
4260 
4261 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4262 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4263 	if (!gdp)
4264 		return -EIO;
4265 
4266 	/*
4267 	 * Figure out the offset within the block group inode table
4268 	 */
4269 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4270 	inode_offset = ((inode->i_ino - 1) %
4271 			EXT4_INODES_PER_GROUP(sb));
4272 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4273 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4274 
4275 	bh = sb_getblk(sb, block);
4276 	if (unlikely(!bh))
4277 		return -ENOMEM;
4278 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4279 		goto simulate_eio;
4280 	if (!buffer_uptodate(bh)) {
4281 		lock_buffer(bh);
4282 
4283 		/*
4284 		 * If the buffer has the write error flag, we have failed
4285 		 * to write out another inode in the same block.  In this
4286 		 * case, we don't have to read the block because we may
4287 		 * read the old inode data successfully.
4288 		 */
4289 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4290 			set_buffer_uptodate(bh);
4291 
4292 		if (buffer_uptodate(bh)) {
4293 			/* someone brought it uptodate while we waited */
4294 			unlock_buffer(bh);
4295 			goto has_buffer;
4296 		}
4297 
4298 		/*
4299 		 * If we have all information of the inode in memory and this
4300 		 * is the only valid inode in the block, we need not read the
4301 		 * block.
4302 		 */
4303 		if (in_mem) {
4304 			struct buffer_head *bitmap_bh;
4305 			int i, start;
4306 
4307 			start = inode_offset & ~(inodes_per_block - 1);
4308 
4309 			/* Is the inode bitmap in cache? */
4310 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4311 			if (unlikely(!bitmap_bh))
4312 				goto make_io;
4313 
4314 			/*
4315 			 * If the inode bitmap isn't in cache then the
4316 			 * optimisation may end up performing two reads instead
4317 			 * of one, so skip it.
4318 			 */
4319 			if (!buffer_uptodate(bitmap_bh)) {
4320 				brelse(bitmap_bh);
4321 				goto make_io;
4322 			}
4323 			for (i = start; i < start + inodes_per_block; i++) {
4324 				if (i == inode_offset)
4325 					continue;
4326 				if (ext4_test_bit(i, bitmap_bh->b_data))
4327 					break;
4328 			}
4329 			brelse(bitmap_bh);
4330 			if (i == start + inodes_per_block) {
4331 				/* all other inodes are free, so skip I/O */
4332 				memset(bh->b_data, 0, bh->b_size);
4333 				set_buffer_uptodate(bh);
4334 				unlock_buffer(bh);
4335 				goto has_buffer;
4336 			}
4337 		}
4338 
4339 make_io:
4340 		/*
4341 		 * If we need to do any I/O, try to pre-readahead extra
4342 		 * blocks from the inode table.
4343 		 */
4344 		blk_start_plug(&plug);
4345 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4346 			ext4_fsblk_t b, end, table;
4347 			unsigned num;
4348 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4349 
4350 			table = ext4_inode_table(sb, gdp);
4351 			/* s_inode_readahead_blks is always a power of 2 */
4352 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4353 			if (table > b)
4354 				b = table;
4355 			end = b + ra_blks;
4356 			num = EXT4_INODES_PER_GROUP(sb);
4357 			if (ext4_has_group_desc_csum(sb))
4358 				num -= ext4_itable_unused_count(sb, gdp);
4359 			table += num / inodes_per_block;
4360 			if (end > table)
4361 				end = table;
4362 			while (b <= end)
4363 				sb_breadahead_unmovable(sb, b++);
4364 		}
4365 
4366 		/*
4367 		 * There are other valid inodes in the buffer, this inode
4368 		 * has in-inode xattrs, or we don't have this inode in memory.
4369 		 * Read the block from disk.
4370 		 */
4371 		trace_ext4_load_inode(inode);
4372 		get_bh(bh);
4373 		bh->b_end_io = end_buffer_read_sync;
4374 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4375 		blk_finish_plug(&plug);
4376 		wait_on_buffer(bh);
4377 		if (!buffer_uptodate(bh)) {
4378 		simulate_eio:
4379 			ext4_error_inode_block(inode, block, EIO,
4380 					       "unable to read itable block");
4381 			brelse(bh);
4382 			return -EIO;
4383 		}
4384 	}
4385 has_buffer:
4386 	iloc->bh = bh;
4387 	return 0;
4388 }
4389 
4390 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4391 {
4392 	/* We have all inode data except xattrs in memory here. */
4393 	return __ext4_get_inode_loc(inode, iloc,
4394 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4395 }
4396 
4397 static bool ext4_should_use_dax(struct inode *inode)
4398 {
4399 	if (!test_opt(inode->i_sb, DAX))
4400 		return false;
4401 	if (!S_ISREG(inode->i_mode))
4402 		return false;
4403 	if (ext4_should_journal_data(inode))
4404 		return false;
4405 	if (ext4_has_inline_data(inode))
4406 		return false;
4407 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4408 		return false;
4409 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4410 		return false;
4411 	return true;
4412 }
4413 
4414 void ext4_set_inode_flags(struct inode *inode)
4415 {
4416 	unsigned int flags = EXT4_I(inode)->i_flags;
4417 	unsigned int new_fl = 0;
4418 
4419 	if (flags & EXT4_SYNC_FL)
4420 		new_fl |= S_SYNC;
4421 	if (flags & EXT4_APPEND_FL)
4422 		new_fl |= S_APPEND;
4423 	if (flags & EXT4_IMMUTABLE_FL)
4424 		new_fl |= S_IMMUTABLE;
4425 	if (flags & EXT4_NOATIME_FL)
4426 		new_fl |= S_NOATIME;
4427 	if (flags & EXT4_DIRSYNC_FL)
4428 		new_fl |= S_DIRSYNC;
4429 	if (ext4_should_use_dax(inode))
4430 		new_fl |= S_DAX;
4431 	if (flags & EXT4_ENCRYPT_FL)
4432 		new_fl |= S_ENCRYPTED;
4433 	if (flags & EXT4_CASEFOLD_FL)
4434 		new_fl |= S_CASEFOLD;
4435 	if (flags & EXT4_VERITY_FL)
4436 		new_fl |= S_VERITY;
4437 	inode_set_flags(inode, new_fl,
4438 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4439 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4440 }
4441 
4442 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4443 				  struct ext4_inode_info *ei)
4444 {
4445 	blkcnt_t i_blocks ;
4446 	struct inode *inode = &(ei->vfs_inode);
4447 	struct super_block *sb = inode->i_sb;
4448 
4449 	if (ext4_has_feature_huge_file(sb)) {
4450 		/* we are using combined 48 bit field */
4451 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4452 					le32_to_cpu(raw_inode->i_blocks_lo);
4453 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4454 			/* i_blocks represent file system block size */
4455 			return i_blocks  << (inode->i_blkbits - 9);
4456 		} else {
4457 			return i_blocks;
4458 		}
4459 	} else {
4460 		return le32_to_cpu(raw_inode->i_blocks_lo);
4461 	}
4462 }
4463 
4464 static inline int ext4_iget_extra_inode(struct inode *inode,
4465 					 struct ext4_inode *raw_inode,
4466 					 struct ext4_inode_info *ei)
4467 {
4468 	__le32 *magic = (void *)raw_inode +
4469 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4470 
4471 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4472 	    EXT4_INODE_SIZE(inode->i_sb) &&
4473 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4474 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4475 		return ext4_find_inline_data_nolock(inode);
4476 	} else
4477 		EXT4_I(inode)->i_inline_off = 0;
4478 	return 0;
4479 }
4480 
4481 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4482 {
4483 	if (!ext4_has_feature_project(inode->i_sb))
4484 		return -EOPNOTSUPP;
4485 	*projid = EXT4_I(inode)->i_projid;
4486 	return 0;
4487 }
4488 
4489 /*
4490  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4491  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4492  * set.
4493  */
4494 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4495 {
4496 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4497 		inode_set_iversion_raw(inode, val);
4498 	else
4499 		inode_set_iversion_queried(inode, val);
4500 }
4501 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4502 {
4503 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4504 		return inode_peek_iversion_raw(inode);
4505 	else
4506 		return inode_peek_iversion(inode);
4507 }
4508 
4509 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4510 			  ext4_iget_flags flags, const char *function,
4511 			  unsigned int line)
4512 {
4513 	struct ext4_iloc iloc;
4514 	struct ext4_inode *raw_inode;
4515 	struct ext4_inode_info *ei;
4516 	struct inode *inode;
4517 	journal_t *journal = EXT4_SB(sb)->s_journal;
4518 	long ret;
4519 	loff_t size;
4520 	int block;
4521 	uid_t i_uid;
4522 	gid_t i_gid;
4523 	projid_t i_projid;
4524 
4525 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4526 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4527 	    (ino < EXT4_ROOT_INO) ||
4528 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4529 		if (flags & EXT4_IGET_HANDLE)
4530 			return ERR_PTR(-ESTALE);
4531 		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4532 			     "inode #%lu: comm %s: iget: illegal inode #",
4533 			     ino, current->comm);
4534 		return ERR_PTR(-EFSCORRUPTED);
4535 	}
4536 
4537 	inode = iget_locked(sb, ino);
4538 	if (!inode)
4539 		return ERR_PTR(-ENOMEM);
4540 	if (!(inode->i_state & I_NEW))
4541 		return inode;
4542 
4543 	ei = EXT4_I(inode);
4544 	iloc.bh = NULL;
4545 
4546 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4547 	if (ret < 0)
4548 		goto bad_inode;
4549 	raw_inode = ext4_raw_inode(&iloc);
4550 
4551 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4552 		ext4_error_inode(inode, function, line, 0,
4553 				 "iget: root inode unallocated");
4554 		ret = -EFSCORRUPTED;
4555 		goto bad_inode;
4556 	}
4557 
4558 	if ((flags & EXT4_IGET_HANDLE) &&
4559 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4560 		ret = -ESTALE;
4561 		goto bad_inode;
4562 	}
4563 
4564 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4565 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4566 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4567 			EXT4_INODE_SIZE(inode->i_sb) ||
4568 		    (ei->i_extra_isize & 3)) {
4569 			ext4_error_inode(inode, function, line, 0,
4570 					 "iget: bad extra_isize %u "
4571 					 "(inode size %u)",
4572 					 ei->i_extra_isize,
4573 					 EXT4_INODE_SIZE(inode->i_sb));
4574 			ret = -EFSCORRUPTED;
4575 			goto bad_inode;
4576 		}
4577 	} else
4578 		ei->i_extra_isize = 0;
4579 
4580 	/* Precompute checksum seed for inode metadata */
4581 	if (ext4_has_metadata_csum(sb)) {
4582 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4583 		__u32 csum;
4584 		__le32 inum = cpu_to_le32(inode->i_ino);
4585 		__le32 gen = raw_inode->i_generation;
4586 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4587 				   sizeof(inum));
4588 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4589 					      sizeof(gen));
4590 	}
4591 
4592 	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4593 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4594 		ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4595 				     "iget: checksum invalid");
4596 		ret = -EFSBADCRC;
4597 		goto bad_inode;
4598 	}
4599 
4600 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4601 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4602 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4603 	if (ext4_has_feature_project(sb) &&
4604 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4605 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4606 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4607 	else
4608 		i_projid = EXT4_DEF_PROJID;
4609 
4610 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4611 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4612 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4613 	}
4614 	i_uid_write(inode, i_uid);
4615 	i_gid_write(inode, i_gid);
4616 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4617 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4618 
4619 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4620 	ei->i_inline_off = 0;
4621 	ei->i_dir_start_lookup = 0;
4622 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4623 	/* We now have enough fields to check if the inode was active or not.
4624 	 * This is needed because nfsd might try to access dead inodes
4625 	 * the test is that same one that e2fsck uses
4626 	 * NeilBrown 1999oct15
4627 	 */
4628 	if (inode->i_nlink == 0) {
4629 		if ((inode->i_mode == 0 ||
4630 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4631 		    ino != EXT4_BOOT_LOADER_INO) {
4632 			/* this inode is deleted */
4633 			ret = -ESTALE;
4634 			goto bad_inode;
4635 		}
4636 		/* The only unlinked inodes we let through here have
4637 		 * valid i_mode and are being read by the orphan
4638 		 * recovery code: that's fine, we're about to complete
4639 		 * the process of deleting those.
4640 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4641 		 * not initialized on a new filesystem. */
4642 	}
4643 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4644 	ext4_set_inode_flags(inode);
4645 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4646 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4647 	if (ext4_has_feature_64bit(sb))
4648 		ei->i_file_acl |=
4649 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4650 	inode->i_size = ext4_isize(sb, raw_inode);
4651 	if ((size = i_size_read(inode)) < 0) {
4652 		ext4_error_inode(inode, function, line, 0,
4653 				 "iget: bad i_size value: %lld", size);
4654 		ret = -EFSCORRUPTED;
4655 		goto bad_inode;
4656 	}
4657 	/*
4658 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4659 	 * we'd normally treat htree data as empty space. But with metadata
4660 	 * checksumming that corrupts checksums so forbid that.
4661 	 */
4662 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4663 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4664 		ext4_error_inode(inode, function, line, 0,
4665 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4666 		ret = -EFSCORRUPTED;
4667 		goto bad_inode;
4668 	}
4669 	ei->i_disksize = inode->i_size;
4670 #ifdef CONFIG_QUOTA
4671 	ei->i_reserved_quota = 0;
4672 #endif
4673 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4674 	ei->i_block_group = iloc.block_group;
4675 	ei->i_last_alloc_group = ~0;
4676 	/*
4677 	 * NOTE! The in-memory inode i_data array is in little-endian order
4678 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4679 	 */
4680 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4681 		ei->i_data[block] = raw_inode->i_block[block];
4682 	INIT_LIST_HEAD(&ei->i_orphan);
4683 
4684 	/*
4685 	 * Set transaction id's of transactions that have to be committed
4686 	 * to finish f[data]sync. We set them to currently running transaction
4687 	 * as we cannot be sure that the inode or some of its metadata isn't
4688 	 * part of the transaction - the inode could have been reclaimed and
4689 	 * now it is reread from disk.
4690 	 */
4691 	if (journal) {
4692 		transaction_t *transaction;
4693 		tid_t tid;
4694 
4695 		read_lock(&journal->j_state_lock);
4696 		if (journal->j_running_transaction)
4697 			transaction = journal->j_running_transaction;
4698 		else
4699 			transaction = journal->j_committing_transaction;
4700 		if (transaction)
4701 			tid = transaction->t_tid;
4702 		else
4703 			tid = journal->j_commit_sequence;
4704 		read_unlock(&journal->j_state_lock);
4705 		ei->i_sync_tid = tid;
4706 		ei->i_datasync_tid = tid;
4707 	}
4708 
4709 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4710 		if (ei->i_extra_isize == 0) {
4711 			/* The extra space is currently unused. Use it. */
4712 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4713 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4714 					    EXT4_GOOD_OLD_INODE_SIZE;
4715 		} else {
4716 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4717 			if (ret)
4718 				goto bad_inode;
4719 		}
4720 	}
4721 
4722 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4723 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4724 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4725 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4726 
4727 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4728 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4729 
4730 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4732 				ivers |=
4733 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4734 		}
4735 		ext4_inode_set_iversion_queried(inode, ivers);
4736 	}
4737 
4738 	ret = 0;
4739 	if (ei->i_file_acl &&
4740 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4741 		ext4_error_inode(inode, function, line, 0,
4742 				 "iget: bad extended attribute block %llu",
4743 				 ei->i_file_acl);
4744 		ret = -EFSCORRUPTED;
4745 		goto bad_inode;
4746 	} else if (!ext4_has_inline_data(inode)) {
4747 		/* validate the block references in the inode */
4748 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4749 		   (S_ISLNK(inode->i_mode) &&
4750 		    !ext4_inode_is_fast_symlink(inode))) {
4751 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4752 				ret = ext4_ext_check_inode(inode);
4753 			else
4754 				ret = ext4_ind_check_inode(inode);
4755 		}
4756 	}
4757 	if (ret)
4758 		goto bad_inode;
4759 
4760 	if (S_ISREG(inode->i_mode)) {
4761 		inode->i_op = &ext4_file_inode_operations;
4762 		inode->i_fop = &ext4_file_operations;
4763 		ext4_set_aops(inode);
4764 	} else if (S_ISDIR(inode->i_mode)) {
4765 		inode->i_op = &ext4_dir_inode_operations;
4766 		inode->i_fop = &ext4_dir_operations;
4767 	} else if (S_ISLNK(inode->i_mode)) {
4768 		/* VFS does not allow setting these so must be corruption */
4769 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4770 			ext4_error_inode(inode, function, line, 0,
4771 					 "iget: immutable or append flags "
4772 					 "not allowed on symlinks");
4773 			ret = -EFSCORRUPTED;
4774 			goto bad_inode;
4775 		}
4776 		if (IS_ENCRYPTED(inode)) {
4777 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4778 			ext4_set_aops(inode);
4779 		} else if (ext4_inode_is_fast_symlink(inode)) {
4780 			inode->i_link = (char *)ei->i_data;
4781 			inode->i_op = &ext4_fast_symlink_inode_operations;
4782 			nd_terminate_link(ei->i_data, inode->i_size,
4783 				sizeof(ei->i_data) - 1);
4784 		} else {
4785 			inode->i_op = &ext4_symlink_inode_operations;
4786 			ext4_set_aops(inode);
4787 		}
4788 		inode_nohighmem(inode);
4789 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4790 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4791 		inode->i_op = &ext4_special_inode_operations;
4792 		if (raw_inode->i_block[0])
4793 			init_special_inode(inode, inode->i_mode,
4794 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4795 		else
4796 			init_special_inode(inode, inode->i_mode,
4797 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4798 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4799 		make_bad_inode(inode);
4800 	} else {
4801 		ret = -EFSCORRUPTED;
4802 		ext4_error_inode(inode, function, line, 0,
4803 				 "iget: bogus i_mode (%o)", inode->i_mode);
4804 		goto bad_inode;
4805 	}
4806 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4807 		ext4_error_inode(inode, function, line, 0,
4808 				 "casefold flag without casefold feature");
4809 	brelse(iloc.bh);
4810 
4811 	unlock_new_inode(inode);
4812 	return inode;
4813 
4814 bad_inode:
4815 	brelse(iloc.bh);
4816 	iget_failed(inode);
4817 	return ERR_PTR(ret);
4818 }
4819 
4820 static int ext4_inode_blocks_set(handle_t *handle,
4821 				struct ext4_inode *raw_inode,
4822 				struct ext4_inode_info *ei)
4823 {
4824 	struct inode *inode = &(ei->vfs_inode);
4825 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4826 	struct super_block *sb = inode->i_sb;
4827 
4828 	if (i_blocks <= ~0U) {
4829 		/*
4830 		 * i_blocks can be represented in a 32 bit variable
4831 		 * as multiple of 512 bytes
4832 		 */
4833 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4834 		raw_inode->i_blocks_high = 0;
4835 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4836 		return 0;
4837 	}
4838 	if (!ext4_has_feature_huge_file(sb))
4839 		return -EFBIG;
4840 
4841 	if (i_blocks <= 0xffffffffffffULL) {
4842 		/*
4843 		 * i_blocks can be represented in a 48 bit variable
4844 		 * as multiple of 512 bytes
4845 		 */
4846 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4847 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4848 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4849 	} else {
4850 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4851 		/* i_block is stored in file system block size */
4852 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4853 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4854 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4855 	}
4856 	return 0;
4857 }
4858 
4859 struct other_inode {
4860 	unsigned long		orig_ino;
4861 	struct ext4_inode	*raw_inode;
4862 };
4863 
4864 static int other_inode_match(struct inode * inode, unsigned long ino,
4865 			     void *data)
4866 {
4867 	struct other_inode *oi = (struct other_inode *) data;
4868 
4869 	if ((inode->i_ino != ino) ||
4870 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4871 			       I_DIRTY_INODE)) ||
4872 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4873 		return 0;
4874 	spin_lock(&inode->i_lock);
4875 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4876 				I_DIRTY_INODE)) == 0) &&
4877 	    (inode->i_state & I_DIRTY_TIME)) {
4878 		struct ext4_inode_info	*ei = EXT4_I(inode);
4879 
4880 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4881 		spin_unlock(&inode->i_lock);
4882 
4883 		spin_lock(&ei->i_raw_lock);
4884 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4885 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4886 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4887 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4888 		spin_unlock(&ei->i_raw_lock);
4889 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4890 		return -1;
4891 	}
4892 	spin_unlock(&inode->i_lock);
4893 	return -1;
4894 }
4895 
4896 /*
4897  * Opportunistically update the other time fields for other inodes in
4898  * the same inode table block.
4899  */
4900 static void ext4_update_other_inodes_time(struct super_block *sb,
4901 					  unsigned long orig_ino, char *buf)
4902 {
4903 	struct other_inode oi;
4904 	unsigned long ino;
4905 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4906 	int inode_size = EXT4_INODE_SIZE(sb);
4907 
4908 	oi.orig_ino = orig_ino;
4909 	/*
4910 	 * Calculate the first inode in the inode table block.  Inode
4911 	 * numbers are one-based.  That is, the first inode in a block
4912 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4913 	 */
4914 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4915 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4916 		if (ino == orig_ino)
4917 			continue;
4918 		oi.raw_inode = (struct ext4_inode *) buf;
4919 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4920 	}
4921 }
4922 
4923 /*
4924  * Post the struct inode info into an on-disk inode location in the
4925  * buffer-cache.  This gobbles the caller's reference to the
4926  * buffer_head in the inode location struct.
4927  *
4928  * The caller must have write access to iloc->bh.
4929  */
4930 static int ext4_do_update_inode(handle_t *handle,
4931 				struct inode *inode,
4932 				struct ext4_iloc *iloc)
4933 {
4934 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4935 	struct ext4_inode_info *ei = EXT4_I(inode);
4936 	struct buffer_head *bh = iloc->bh;
4937 	struct super_block *sb = inode->i_sb;
4938 	int err = 0, rc, block;
4939 	int need_datasync = 0, set_large_file = 0;
4940 	uid_t i_uid;
4941 	gid_t i_gid;
4942 	projid_t i_projid;
4943 
4944 	spin_lock(&ei->i_raw_lock);
4945 
4946 	/* For fields not tracked in the in-memory inode,
4947 	 * initialise them to zero for new inodes. */
4948 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4949 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4950 
4951 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4952 	i_uid = i_uid_read(inode);
4953 	i_gid = i_gid_read(inode);
4954 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4955 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4956 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4957 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4958 /*
4959  * Fix up interoperability with old kernels. Otherwise, old inodes get
4960  * re-used with the upper 16 bits of the uid/gid intact
4961  */
4962 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4963 			raw_inode->i_uid_high = 0;
4964 			raw_inode->i_gid_high = 0;
4965 		} else {
4966 			raw_inode->i_uid_high =
4967 				cpu_to_le16(high_16_bits(i_uid));
4968 			raw_inode->i_gid_high =
4969 				cpu_to_le16(high_16_bits(i_gid));
4970 		}
4971 	} else {
4972 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4973 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4974 		raw_inode->i_uid_high = 0;
4975 		raw_inode->i_gid_high = 0;
4976 	}
4977 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4978 
4979 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4980 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4981 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4982 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4983 
4984 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4985 	if (err) {
4986 		spin_unlock(&ei->i_raw_lock);
4987 		goto out_brelse;
4988 	}
4989 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4990 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4991 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4992 		raw_inode->i_file_acl_high =
4993 			cpu_to_le16(ei->i_file_acl >> 32);
4994 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4995 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
4996 		ext4_isize_set(raw_inode, ei->i_disksize);
4997 		need_datasync = 1;
4998 	}
4999 	if (ei->i_disksize > 0x7fffffffULL) {
5000 		if (!ext4_has_feature_large_file(sb) ||
5001 				EXT4_SB(sb)->s_es->s_rev_level ==
5002 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5003 			set_large_file = 1;
5004 	}
5005 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5006 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5007 		if (old_valid_dev(inode->i_rdev)) {
5008 			raw_inode->i_block[0] =
5009 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5010 			raw_inode->i_block[1] = 0;
5011 		} else {
5012 			raw_inode->i_block[0] = 0;
5013 			raw_inode->i_block[1] =
5014 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5015 			raw_inode->i_block[2] = 0;
5016 		}
5017 	} else if (!ext4_has_inline_data(inode)) {
5018 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5019 			raw_inode->i_block[block] = ei->i_data[block];
5020 	}
5021 
5022 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5023 		u64 ivers = ext4_inode_peek_iversion(inode);
5024 
5025 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5026 		if (ei->i_extra_isize) {
5027 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5028 				raw_inode->i_version_hi =
5029 					cpu_to_le32(ivers >> 32);
5030 			raw_inode->i_extra_isize =
5031 				cpu_to_le16(ei->i_extra_isize);
5032 		}
5033 	}
5034 
5035 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5036 	       i_projid != EXT4_DEF_PROJID);
5037 
5038 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5039 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5040 		raw_inode->i_projid = cpu_to_le32(i_projid);
5041 
5042 	ext4_inode_csum_set(inode, raw_inode, ei);
5043 	spin_unlock(&ei->i_raw_lock);
5044 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5045 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5046 					      bh->b_data);
5047 
5048 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5049 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5050 	if (!err)
5051 		err = rc;
5052 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5053 	if (set_large_file) {
5054 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5055 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5056 		if (err)
5057 			goto out_brelse;
5058 		ext4_set_feature_large_file(sb);
5059 		ext4_handle_sync(handle);
5060 		err = ext4_handle_dirty_super(handle, sb);
5061 	}
5062 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5063 out_brelse:
5064 	brelse(bh);
5065 	ext4_std_error(inode->i_sb, err);
5066 	return err;
5067 }
5068 
5069 /*
5070  * ext4_write_inode()
5071  *
5072  * We are called from a few places:
5073  *
5074  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5075  *   Here, there will be no transaction running. We wait for any running
5076  *   transaction to commit.
5077  *
5078  * - Within flush work (sys_sync(), kupdate and such).
5079  *   We wait on commit, if told to.
5080  *
5081  * - Within iput_final() -> write_inode_now()
5082  *   We wait on commit, if told to.
5083  *
5084  * In all cases it is actually safe for us to return without doing anything,
5085  * because the inode has been copied into a raw inode buffer in
5086  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5087  * writeback.
5088  *
5089  * Note that we are absolutely dependent upon all inode dirtiers doing the
5090  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5091  * which we are interested.
5092  *
5093  * It would be a bug for them to not do this.  The code:
5094  *
5095  *	mark_inode_dirty(inode)
5096  *	stuff();
5097  *	inode->i_size = expr;
5098  *
5099  * is in error because write_inode() could occur while `stuff()' is running,
5100  * and the new i_size will be lost.  Plus the inode will no longer be on the
5101  * superblock's dirty inode list.
5102  */
5103 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5104 {
5105 	int err;
5106 
5107 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5108 	    sb_rdonly(inode->i_sb))
5109 		return 0;
5110 
5111 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5112 		return -EIO;
5113 
5114 	if (EXT4_SB(inode->i_sb)->s_journal) {
5115 		if (ext4_journal_current_handle()) {
5116 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5117 			dump_stack();
5118 			return -EIO;
5119 		}
5120 
5121 		/*
5122 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5123 		 * ext4_sync_fs() will force the commit after everything is
5124 		 * written.
5125 		 */
5126 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5127 			return 0;
5128 
5129 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5130 						EXT4_I(inode)->i_sync_tid);
5131 	} else {
5132 		struct ext4_iloc iloc;
5133 
5134 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5135 		if (err)
5136 			return err;
5137 		/*
5138 		 * sync(2) will flush the whole buffer cache. No need to do
5139 		 * it here separately for each inode.
5140 		 */
5141 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5142 			sync_dirty_buffer(iloc.bh);
5143 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5144 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5145 					       "IO error syncing inode");
5146 			err = -EIO;
5147 		}
5148 		brelse(iloc.bh);
5149 	}
5150 	return err;
5151 }
5152 
5153 /*
5154  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5155  * buffers that are attached to a page stradding i_size and are undergoing
5156  * commit. In that case we have to wait for commit to finish and try again.
5157  */
5158 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5159 {
5160 	struct page *page;
5161 	unsigned offset;
5162 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5163 	tid_t commit_tid = 0;
5164 	int ret;
5165 
5166 	offset = inode->i_size & (PAGE_SIZE - 1);
5167 	/*
5168 	 * If the page is fully truncated, we don't need to wait for any commit
5169 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5170 	 * strip all buffers from the page but keep the page dirty which can then
5171 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5172 	 * buffers). Also we don't need to wait for any commit if all buffers in
5173 	 * the page remain valid. This is most beneficial for the common case of
5174 	 * blocksize == PAGESIZE.
5175 	 */
5176 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5177 		return;
5178 	while (1) {
5179 		page = find_lock_page(inode->i_mapping,
5180 				      inode->i_size >> PAGE_SHIFT);
5181 		if (!page)
5182 			return;
5183 		ret = __ext4_journalled_invalidatepage(page, offset,
5184 						PAGE_SIZE - offset);
5185 		unlock_page(page);
5186 		put_page(page);
5187 		if (ret != -EBUSY)
5188 			return;
5189 		commit_tid = 0;
5190 		read_lock(&journal->j_state_lock);
5191 		if (journal->j_committing_transaction)
5192 			commit_tid = journal->j_committing_transaction->t_tid;
5193 		read_unlock(&journal->j_state_lock);
5194 		if (commit_tid)
5195 			jbd2_log_wait_commit(journal, commit_tid);
5196 	}
5197 }
5198 
5199 /*
5200  * ext4_setattr()
5201  *
5202  * Called from notify_change.
5203  *
5204  * We want to trap VFS attempts to truncate the file as soon as
5205  * possible.  In particular, we want to make sure that when the VFS
5206  * shrinks i_size, we put the inode on the orphan list and modify
5207  * i_disksize immediately, so that during the subsequent flushing of
5208  * dirty pages and freeing of disk blocks, we can guarantee that any
5209  * commit will leave the blocks being flushed in an unused state on
5210  * disk.  (On recovery, the inode will get truncated and the blocks will
5211  * be freed, so we have a strong guarantee that no future commit will
5212  * leave these blocks visible to the user.)
5213  *
5214  * Another thing we have to assure is that if we are in ordered mode
5215  * and inode is still attached to the committing transaction, we must
5216  * we start writeout of all the dirty pages which are being truncated.
5217  * This way we are sure that all the data written in the previous
5218  * transaction are already on disk (truncate waits for pages under
5219  * writeback).
5220  *
5221  * Called with inode->i_mutex down.
5222  */
5223 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5224 {
5225 	struct inode *inode = d_inode(dentry);
5226 	int error, rc = 0;
5227 	int orphan = 0;
5228 	const unsigned int ia_valid = attr->ia_valid;
5229 
5230 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5231 		return -EIO;
5232 
5233 	if (unlikely(IS_IMMUTABLE(inode)))
5234 		return -EPERM;
5235 
5236 	if (unlikely(IS_APPEND(inode) &&
5237 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5238 				  ATTR_GID | ATTR_TIMES_SET))))
5239 		return -EPERM;
5240 
5241 	error = setattr_prepare(dentry, attr);
5242 	if (error)
5243 		return error;
5244 
5245 	error = fscrypt_prepare_setattr(dentry, attr);
5246 	if (error)
5247 		return error;
5248 
5249 	error = fsverity_prepare_setattr(dentry, attr);
5250 	if (error)
5251 		return error;
5252 
5253 	if (is_quota_modification(inode, attr)) {
5254 		error = dquot_initialize(inode);
5255 		if (error)
5256 			return error;
5257 	}
5258 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5259 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5260 		handle_t *handle;
5261 
5262 		/* (user+group)*(old+new) structure, inode write (sb,
5263 		 * inode block, ? - but truncate inode update has it) */
5264 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5265 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5266 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5267 		if (IS_ERR(handle)) {
5268 			error = PTR_ERR(handle);
5269 			goto err_out;
5270 		}
5271 
5272 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5273 		 * counts xattr inode references.
5274 		 */
5275 		down_read(&EXT4_I(inode)->xattr_sem);
5276 		error = dquot_transfer(inode, attr);
5277 		up_read(&EXT4_I(inode)->xattr_sem);
5278 
5279 		if (error) {
5280 			ext4_journal_stop(handle);
5281 			return error;
5282 		}
5283 		/* Update corresponding info in inode so that everything is in
5284 		 * one transaction */
5285 		if (attr->ia_valid & ATTR_UID)
5286 			inode->i_uid = attr->ia_uid;
5287 		if (attr->ia_valid & ATTR_GID)
5288 			inode->i_gid = attr->ia_gid;
5289 		error = ext4_mark_inode_dirty(handle, inode);
5290 		ext4_journal_stop(handle);
5291 	}
5292 
5293 	if (attr->ia_valid & ATTR_SIZE) {
5294 		handle_t *handle;
5295 		loff_t oldsize = inode->i_size;
5296 		int shrink = (attr->ia_size < inode->i_size);
5297 
5298 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5299 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5300 
5301 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5302 				return -EFBIG;
5303 		}
5304 		if (!S_ISREG(inode->i_mode))
5305 			return -EINVAL;
5306 
5307 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5308 			inode_inc_iversion(inode);
5309 
5310 		if (shrink) {
5311 			if (ext4_should_order_data(inode)) {
5312 				error = ext4_begin_ordered_truncate(inode,
5313 							    attr->ia_size);
5314 				if (error)
5315 					goto err_out;
5316 			}
5317 			/*
5318 			 * Blocks are going to be removed from the inode. Wait
5319 			 * for dio in flight.
5320 			 */
5321 			inode_dio_wait(inode);
5322 		}
5323 
5324 		down_write(&EXT4_I(inode)->i_mmap_sem);
5325 
5326 		rc = ext4_break_layouts(inode);
5327 		if (rc) {
5328 			up_write(&EXT4_I(inode)->i_mmap_sem);
5329 			return rc;
5330 		}
5331 
5332 		if (attr->ia_size != inode->i_size) {
5333 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5334 			if (IS_ERR(handle)) {
5335 				error = PTR_ERR(handle);
5336 				goto out_mmap_sem;
5337 			}
5338 			if (ext4_handle_valid(handle) && shrink) {
5339 				error = ext4_orphan_add(handle, inode);
5340 				orphan = 1;
5341 			}
5342 			/*
5343 			 * Update c/mtime on truncate up, ext4_truncate() will
5344 			 * update c/mtime in shrink case below
5345 			 */
5346 			if (!shrink) {
5347 				inode->i_mtime = current_time(inode);
5348 				inode->i_ctime = inode->i_mtime;
5349 			}
5350 			down_write(&EXT4_I(inode)->i_data_sem);
5351 			EXT4_I(inode)->i_disksize = attr->ia_size;
5352 			rc = ext4_mark_inode_dirty(handle, inode);
5353 			if (!error)
5354 				error = rc;
5355 			/*
5356 			 * We have to update i_size under i_data_sem together
5357 			 * with i_disksize to avoid races with writeback code
5358 			 * running ext4_wb_update_i_disksize().
5359 			 */
5360 			if (!error)
5361 				i_size_write(inode, attr->ia_size);
5362 			up_write(&EXT4_I(inode)->i_data_sem);
5363 			ext4_journal_stop(handle);
5364 			if (error)
5365 				goto out_mmap_sem;
5366 			if (!shrink) {
5367 				pagecache_isize_extended(inode, oldsize,
5368 							 inode->i_size);
5369 			} else if (ext4_should_journal_data(inode)) {
5370 				ext4_wait_for_tail_page_commit(inode);
5371 			}
5372 		}
5373 
5374 		/*
5375 		 * Truncate pagecache after we've waited for commit
5376 		 * in data=journal mode to make pages freeable.
5377 		 */
5378 		truncate_pagecache(inode, inode->i_size);
5379 		/*
5380 		 * Call ext4_truncate() even if i_size didn't change to
5381 		 * truncate possible preallocated blocks.
5382 		 */
5383 		if (attr->ia_size <= oldsize) {
5384 			rc = ext4_truncate(inode);
5385 			if (rc)
5386 				error = rc;
5387 		}
5388 out_mmap_sem:
5389 		up_write(&EXT4_I(inode)->i_mmap_sem);
5390 	}
5391 
5392 	if (!error) {
5393 		setattr_copy(inode, attr);
5394 		mark_inode_dirty(inode);
5395 	}
5396 
5397 	/*
5398 	 * If the call to ext4_truncate failed to get a transaction handle at
5399 	 * all, we need to clean up the in-core orphan list manually.
5400 	 */
5401 	if (orphan && inode->i_nlink)
5402 		ext4_orphan_del(NULL, inode);
5403 
5404 	if (!error && (ia_valid & ATTR_MODE))
5405 		rc = posix_acl_chmod(inode, inode->i_mode);
5406 
5407 err_out:
5408 	ext4_std_error(inode->i_sb, error);
5409 	if (!error)
5410 		error = rc;
5411 	return error;
5412 }
5413 
5414 int ext4_getattr(const struct path *path, struct kstat *stat,
5415 		 u32 request_mask, unsigned int query_flags)
5416 {
5417 	struct inode *inode = d_inode(path->dentry);
5418 	struct ext4_inode *raw_inode;
5419 	struct ext4_inode_info *ei = EXT4_I(inode);
5420 	unsigned int flags;
5421 
5422 	if ((request_mask & STATX_BTIME) &&
5423 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5424 		stat->result_mask |= STATX_BTIME;
5425 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5426 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5427 	}
5428 
5429 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5430 	if (flags & EXT4_APPEND_FL)
5431 		stat->attributes |= STATX_ATTR_APPEND;
5432 	if (flags & EXT4_COMPR_FL)
5433 		stat->attributes |= STATX_ATTR_COMPRESSED;
5434 	if (flags & EXT4_ENCRYPT_FL)
5435 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5436 	if (flags & EXT4_IMMUTABLE_FL)
5437 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5438 	if (flags & EXT4_NODUMP_FL)
5439 		stat->attributes |= STATX_ATTR_NODUMP;
5440 	if (flags & EXT4_VERITY_FL)
5441 		stat->attributes |= STATX_ATTR_VERITY;
5442 
5443 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5444 				  STATX_ATTR_COMPRESSED |
5445 				  STATX_ATTR_ENCRYPTED |
5446 				  STATX_ATTR_IMMUTABLE |
5447 				  STATX_ATTR_NODUMP |
5448 				  STATX_ATTR_VERITY);
5449 
5450 	generic_fillattr(inode, stat);
5451 	return 0;
5452 }
5453 
5454 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5455 		      u32 request_mask, unsigned int query_flags)
5456 {
5457 	struct inode *inode = d_inode(path->dentry);
5458 	u64 delalloc_blocks;
5459 
5460 	ext4_getattr(path, stat, request_mask, query_flags);
5461 
5462 	/*
5463 	 * If there is inline data in the inode, the inode will normally not
5464 	 * have data blocks allocated (it may have an external xattr block).
5465 	 * Report at least one sector for such files, so tools like tar, rsync,
5466 	 * others don't incorrectly think the file is completely sparse.
5467 	 */
5468 	if (unlikely(ext4_has_inline_data(inode)))
5469 		stat->blocks += (stat->size + 511) >> 9;
5470 
5471 	/*
5472 	 * We can't update i_blocks if the block allocation is delayed
5473 	 * otherwise in the case of system crash before the real block
5474 	 * allocation is done, we will have i_blocks inconsistent with
5475 	 * on-disk file blocks.
5476 	 * We always keep i_blocks updated together with real
5477 	 * allocation. But to not confuse with user, stat
5478 	 * will return the blocks that include the delayed allocation
5479 	 * blocks for this file.
5480 	 */
5481 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5482 				   EXT4_I(inode)->i_reserved_data_blocks);
5483 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5484 	return 0;
5485 }
5486 
5487 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5488 				   int pextents)
5489 {
5490 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5491 		return ext4_ind_trans_blocks(inode, lblocks);
5492 	return ext4_ext_index_trans_blocks(inode, pextents);
5493 }
5494 
5495 /*
5496  * Account for index blocks, block groups bitmaps and block group
5497  * descriptor blocks if modify datablocks and index blocks
5498  * worse case, the indexs blocks spread over different block groups
5499  *
5500  * If datablocks are discontiguous, they are possible to spread over
5501  * different block groups too. If they are contiguous, with flexbg,
5502  * they could still across block group boundary.
5503  *
5504  * Also account for superblock, inode, quota and xattr blocks
5505  */
5506 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5507 				  int pextents)
5508 {
5509 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5510 	int gdpblocks;
5511 	int idxblocks;
5512 	int ret = 0;
5513 
5514 	/*
5515 	 * How many index blocks need to touch to map @lblocks logical blocks
5516 	 * to @pextents physical extents?
5517 	 */
5518 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5519 
5520 	ret = idxblocks;
5521 
5522 	/*
5523 	 * Now let's see how many group bitmaps and group descriptors need
5524 	 * to account
5525 	 */
5526 	groups = idxblocks + pextents;
5527 	gdpblocks = groups;
5528 	if (groups > ngroups)
5529 		groups = ngroups;
5530 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5531 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5532 
5533 	/* bitmaps and block group descriptor blocks */
5534 	ret += groups + gdpblocks;
5535 
5536 	/* Blocks for super block, inode, quota and xattr blocks */
5537 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5538 
5539 	return ret;
5540 }
5541 
5542 /*
5543  * Calculate the total number of credits to reserve to fit
5544  * the modification of a single pages into a single transaction,
5545  * which may include multiple chunks of block allocations.
5546  *
5547  * This could be called via ext4_write_begin()
5548  *
5549  * We need to consider the worse case, when
5550  * one new block per extent.
5551  */
5552 int ext4_writepage_trans_blocks(struct inode *inode)
5553 {
5554 	int bpp = ext4_journal_blocks_per_page(inode);
5555 	int ret;
5556 
5557 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5558 
5559 	/* Account for data blocks for journalled mode */
5560 	if (ext4_should_journal_data(inode))
5561 		ret += bpp;
5562 	return ret;
5563 }
5564 
5565 /*
5566  * Calculate the journal credits for a chunk of data modification.
5567  *
5568  * This is called from DIO, fallocate or whoever calling
5569  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5570  *
5571  * journal buffers for data blocks are not included here, as DIO
5572  * and fallocate do no need to journal data buffers.
5573  */
5574 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5575 {
5576 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5577 }
5578 
5579 /*
5580  * The caller must have previously called ext4_reserve_inode_write().
5581  * Give this, we know that the caller already has write access to iloc->bh.
5582  */
5583 int ext4_mark_iloc_dirty(handle_t *handle,
5584 			 struct inode *inode, struct ext4_iloc *iloc)
5585 {
5586 	int err = 0;
5587 
5588 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5589 		put_bh(iloc->bh);
5590 		return -EIO;
5591 	}
5592 	if (IS_I_VERSION(inode))
5593 		inode_inc_iversion(inode);
5594 
5595 	/* the do_update_inode consumes one bh->b_count */
5596 	get_bh(iloc->bh);
5597 
5598 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5599 	err = ext4_do_update_inode(handle, inode, iloc);
5600 	put_bh(iloc->bh);
5601 	return err;
5602 }
5603 
5604 /*
5605  * On success, We end up with an outstanding reference count against
5606  * iloc->bh.  This _must_ be cleaned up later.
5607  */
5608 
5609 int
5610 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5611 			 struct ext4_iloc *iloc)
5612 {
5613 	int err;
5614 
5615 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5616 		return -EIO;
5617 
5618 	err = ext4_get_inode_loc(inode, iloc);
5619 	if (!err) {
5620 		BUFFER_TRACE(iloc->bh, "get_write_access");
5621 		err = ext4_journal_get_write_access(handle, iloc->bh);
5622 		if (err) {
5623 			brelse(iloc->bh);
5624 			iloc->bh = NULL;
5625 		}
5626 	}
5627 	ext4_std_error(inode->i_sb, err);
5628 	return err;
5629 }
5630 
5631 static int __ext4_expand_extra_isize(struct inode *inode,
5632 				     unsigned int new_extra_isize,
5633 				     struct ext4_iloc *iloc,
5634 				     handle_t *handle, int *no_expand)
5635 {
5636 	struct ext4_inode *raw_inode;
5637 	struct ext4_xattr_ibody_header *header;
5638 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5639 	struct ext4_inode_info *ei = EXT4_I(inode);
5640 	int error;
5641 
5642 	/* this was checked at iget time, but double check for good measure */
5643 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5644 	    (ei->i_extra_isize & 3)) {
5645 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5646 				 ei->i_extra_isize,
5647 				 EXT4_INODE_SIZE(inode->i_sb));
5648 		return -EFSCORRUPTED;
5649 	}
5650 	if ((new_extra_isize < ei->i_extra_isize) ||
5651 	    (new_extra_isize < 4) ||
5652 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5653 		return -EINVAL;	/* Should never happen */
5654 
5655 	raw_inode = ext4_raw_inode(iloc);
5656 
5657 	header = IHDR(inode, raw_inode);
5658 
5659 	/* No extended attributes present */
5660 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5661 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5662 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5663 		       EXT4_I(inode)->i_extra_isize, 0,
5664 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5665 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5666 		return 0;
5667 	}
5668 
5669 	/* try to expand with EAs present */
5670 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5671 					   raw_inode, handle);
5672 	if (error) {
5673 		/*
5674 		 * Inode size expansion failed; don't try again
5675 		 */
5676 		*no_expand = 1;
5677 	}
5678 
5679 	return error;
5680 }
5681 
5682 /*
5683  * Expand an inode by new_extra_isize bytes.
5684  * Returns 0 on success or negative error number on failure.
5685  */
5686 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5687 					  unsigned int new_extra_isize,
5688 					  struct ext4_iloc iloc,
5689 					  handle_t *handle)
5690 {
5691 	int no_expand;
5692 	int error;
5693 
5694 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5695 		return -EOVERFLOW;
5696 
5697 	/*
5698 	 * In nojournal mode, we can immediately attempt to expand
5699 	 * the inode.  When journaled, we first need to obtain extra
5700 	 * buffer credits since we may write into the EA block
5701 	 * with this same handle. If journal_extend fails, then it will
5702 	 * only result in a minor loss of functionality for that inode.
5703 	 * If this is felt to be critical, then e2fsck should be run to
5704 	 * force a large enough s_min_extra_isize.
5705 	 */
5706 	if (ext4_journal_extend(handle,
5707 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5708 		return -ENOSPC;
5709 
5710 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5711 		return -EBUSY;
5712 
5713 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5714 					  handle, &no_expand);
5715 	ext4_write_unlock_xattr(inode, &no_expand);
5716 
5717 	return error;
5718 }
5719 
5720 int ext4_expand_extra_isize(struct inode *inode,
5721 			    unsigned int new_extra_isize,
5722 			    struct ext4_iloc *iloc)
5723 {
5724 	handle_t *handle;
5725 	int no_expand;
5726 	int error, rc;
5727 
5728 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5729 		brelse(iloc->bh);
5730 		return -EOVERFLOW;
5731 	}
5732 
5733 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5734 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5735 	if (IS_ERR(handle)) {
5736 		error = PTR_ERR(handle);
5737 		brelse(iloc->bh);
5738 		return error;
5739 	}
5740 
5741 	ext4_write_lock_xattr(inode, &no_expand);
5742 
5743 	BUFFER_TRACE(iloc->bh, "get_write_access");
5744 	error = ext4_journal_get_write_access(handle, iloc->bh);
5745 	if (error) {
5746 		brelse(iloc->bh);
5747 		goto out_unlock;
5748 	}
5749 
5750 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5751 					  handle, &no_expand);
5752 
5753 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5754 	if (!error)
5755 		error = rc;
5756 
5757 out_unlock:
5758 	ext4_write_unlock_xattr(inode, &no_expand);
5759 	ext4_journal_stop(handle);
5760 	return error;
5761 }
5762 
5763 /*
5764  * What we do here is to mark the in-core inode as clean with respect to inode
5765  * dirtiness (it may still be data-dirty).
5766  * This means that the in-core inode may be reaped by prune_icache
5767  * without having to perform any I/O.  This is a very good thing,
5768  * because *any* task may call prune_icache - even ones which
5769  * have a transaction open against a different journal.
5770  *
5771  * Is this cheating?  Not really.  Sure, we haven't written the
5772  * inode out, but prune_icache isn't a user-visible syncing function.
5773  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5774  * we start and wait on commits.
5775  */
5776 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5777 {
5778 	struct ext4_iloc iloc;
5779 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5780 	int err;
5781 
5782 	might_sleep();
5783 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5784 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5785 	if (err)
5786 		return err;
5787 
5788 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5789 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5790 					       iloc, handle);
5791 
5792 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5793 }
5794 
5795 /*
5796  * ext4_dirty_inode() is called from __mark_inode_dirty()
5797  *
5798  * We're really interested in the case where a file is being extended.
5799  * i_size has been changed by generic_commit_write() and we thus need
5800  * to include the updated inode in the current transaction.
5801  *
5802  * Also, dquot_alloc_block() will always dirty the inode when blocks
5803  * are allocated to the file.
5804  *
5805  * If the inode is marked synchronous, we don't honour that here - doing
5806  * so would cause a commit on atime updates, which we don't bother doing.
5807  * We handle synchronous inodes at the highest possible level.
5808  *
5809  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5810  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5811  * to copy into the on-disk inode structure are the timestamp files.
5812  */
5813 void ext4_dirty_inode(struct inode *inode, int flags)
5814 {
5815 	handle_t *handle;
5816 
5817 	if (flags == I_DIRTY_TIME)
5818 		return;
5819 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5820 	if (IS_ERR(handle))
5821 		goto out;
5822 
5823 	ext4_mark_inode_dirty(handle, inode);
5824 
5825 	ext4_journal_stop(handle);
5826 out:
5827 	return;
5828 }
5829 
5830 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5831 {
5832 	journal_t *journal;
5833 	handle_t *handle;
5834 	int err;
5835 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5836 
5837 	/*
5838 	 * We have to be very careful here: changing a data block's
5839 	 * journaling status dynamically is dangerous.  If we write a
5840 	 * data block to the journal, change the status and then delete
5841 	 * that block, we risk forgetting to revoke the old log record
5842 	 * from the journal and so a subsequent replay can corrupt data.
5843 	 * So, first we make sure that the journal is empty and that
5844 	 * nobody is changing anything.
5845 	 */
5846 
5847 	journal = EXT4_JOURNAL(inode);
5848 	if (!journal)
5849 		return 0;
5850 	if (is_journal_aborted(journal))
5851 		return -EROFS;
5852 
5853 	/* Wait for all existing dio workers */
5854 	inode_dio_wait(inode);
5855 
5856 	/*
5857 	 * Before flushing the journal and switching inode's aops, we have
5858 	 * to flush all dirty data the inode has. There can be outstanding
5859 	 * delayed allocations, there can be unwritten extents created by
5860 	 * fallocate or buffered writes in dioread_nolock mode covered by
5861 	 * dirty data which can be converted only after flushing the dirty
5862 	 * data (and journalled aops don't know how to handle these cases).
5863 	 */
5864 	if (val) {
5865 		down_write(&EXT4_I(inode)->i_mmap_sem);
5866 		err = filemap_write_and_wait(inode->i_mapping);
5867 		if (err < 0) {
5868 			up_write(&EXT4_I(inode)->i_mmap_sem);
5869 			return err;
5870 		}
5871 	}
5872 
5873 	percpu_down_write(&sbi->s_writepages_rwsem);
5874 	jbd2_journal_lock_updates(journal);
5875 
5876 	/*
5877 	 * OK, there are no updates running now, and all cached data is
5878 	 * synced to disk.  We are now in a completely consistent state
5879 	 * which doesn't have anything in the journal, and we know that
5880 	 * no filesystem updates are running, so it is safe to modify
5881 	 * the inode's in-core data-journaling state flag now.
5882 	 */
5883 
5884 	if (val)
5885 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5886 	else {
5887 		err = jbd2_journal_flush(journal);
5888 		if (err < 0) {
5889 			jbd2_journal_unlock_updates(journal);
5890 			percpu_up_write(&sbi->s_writepages_rwsem);
5891 			return err;
5892 		}
5893 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5894 	}
5895 	ext4_set_aops(inode);
5896 
5897 	jbd2_journal_unlock_updates(journal);
5898 	percpu_up_write(&sbi->s_writepages_rwsem);
5899 
5900 	if (val)
5901 		up_write(&EXT4_I(inode)->i_mmap_sem);
5902 
5903 	/* Finally we can mark the inode as dirty. */
5904 
5905 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5906 	if (IS_ERR(handle))
5907 		return PTR_ERR(handle);
5908 
5909 	err = ext4_mark_inode_dirty(handle, inode);
5910 	ext4_handle_sync(handle);
5911 	ext4_journal_stop(handle);
5912 	ext4_std_error(inode->i_sb, err);
5913 
5914 	return err;
5915 }
5916 
5917 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5918 {
5919 	return !buffer_mapped(bh);
5920 }
5921 
5922 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5923 {
5924 	struct vm_area_struct *vma = vmf->vma;
5925 	struct page *page = vmf->page;
5926 	loff_t size;
5927 	unsigned long len;
5928 	int err;
5929 	vm_fault_t ret;
5930 	struct file *file = vma->vm_file;
5931 	struct inode *inode = file_inode(file);
5932 	struct address_space *mapping = inode->i_mapping;
5933 	handle_t *handle;
5934 	get_block_t *get_block;
5935 	int retries = 0;
5936 
5937 	if (unlikely(IS_IMMUTABLE(inode)))
5938 		return VM_FAULT_SIGBUS;
5939 
5940 	sb_start_pagefault(inode->i_sb);
5941 	file_update_time(vma->vm_file);
5942 
5943 	down_read(&EXT4_I(inode)->i_mmap_sem);
5944 
5945 	err = ext4_convert_inline_data(inode);
5946 	if (err)
5947 		goto out_ret;
5948 
5949 	/* Delalloc case is easy... */
5950 	if (test_opt(inode->i_sb, DELALLOC) &&
5951 	    !ext4_should_journal_data(inode) &&
5952 	    !ext4_nonda_switch(inode->i_sb)) {
5953 		do {
5954 			err = block_page_mkwrite(vma, vmf,
5955 						   ext4_da_get_block_prep);
5956 		} while (err == -ENOSPC &&
5957 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5958 		goto out_ret;
5959 	}
5960 
5961 	lock_page(page);
5962 	size = i_size_read(inode);
5963 	/* Page got truncated from under us? */
5964 	if (page->mapping != mapping || page_offset(page) > size) {
5965 		unlock_page(page);
5966 		ret = VM_FAULT_NOPAGE;
5967 		goto out;
5968 	}
5969 
5970 	if (page->index == size >> PAGE_SHIFT)
5971 		len = size & ~PAGE_MASK;
5972 	else
5973 		len = PAGE_SIZE;
5974 	/*
5975 	 * Return if we have all the buffers mapped. This avoids the need to do
5976 	 * journal_start/journal_stop which can block and take a long time
5977 	 */
5978 	if (page_has_buffers(page)) {
5979 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5980 					    0, len, NULL,
5981 					    ext4_bh_unmapped)) {
5982 			/* Wait so that we don't change page under IO */
5983 			wait_for_stable_page(page);
5984 			ret = VM_FAULT_LOCKED;
5985 			goto out;
5986 		}
5987 	}
5988 	unlock_page(page);
5989 	/* OK, we need to fill the hole... */
5990 	if (ext4_should_dioread_nolock(inode))
5991 		get_block = ext4_get_block_unwritten;
5992 	else
5993 		get_block = ext4_get_block;
5994 retry_alloc:
5995 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5996 				    ext4_writepage_trans_blocks(inode));
5997 	if (IS_ERR(handle)) {
5998 		ret = VM_FAULT_SIGBUS;
5999 		goto out;
6000 	}
6001 	err = block_page_mkwrite(vma, vmf, get_block);
6002 	if (!err && ext4_should_journal_data(inode)) {
6003 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6004 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6005 			unlock_page(page);
6006 			ret = VM_FAULT_SIGBUS;
6007 			ext4_journal_stop(handle);
6008 			goto out;
6009 		}
6010 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6011 	}
6012 	ext4_journal_stop(handle);
6013 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6014 		goto retry_alloc;
6015 out_ret:
6016 	ret = block_page_mkwrite_return(err);
6017 out:
6018 	up_read(&EXT4_I(inode)->i_mmap_sem);
6019 	sb_end_pagefault(inode->i_sb);
6020 	return ret;
6021 }
6022 
6023 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6024 {
6025 	struct inode *inode = file_inode(vmf->vma->vm_file);
6026 	vm_fault_t ret;
6027 
6028 	down_read(&EXT4_I(inode)->i_mmap_sem);
6029 	ret = filemap_fault(vmf);
6030 	up_read(&EXT4_I(inode)->i_mmap_sem);
6031 
6032 	return ret;
6033 }
6034