1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/ext4_jbd2.h> 29 #include <linux/jbd2.h> 30 #include <linux/highuid.h> 31 #include <linux/pagemap.h> 32 #include <linux/quotaops.h> 33 #include <linux/string.h> 34 #include <linux/buffer_head.h> 35 #include <linux/writeback.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "xattr.h" 40 #include "acl.h" 41 42 /* 43 * Test whether an inode is a fast symlink. 44 */ 45 static int ext4_inode_is_fast_symlink(struct inode *inode) 46 { 47 int ea_blocks = EXT4_I(inode)->i_file_acl ? 48 (inode->i_sb->s_blocksize >> 9) : 0; 49 50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 51 } 52 53 /* 54 * The ext4 forget function must perform a revoke if we are freeing data 55 * which has been journaled. Metadata (eg. indirect blocks) must be 56 * revoked in all cases. 57 * 58 * "bh" may be NULL: a metadata block may have been freed from memory 59 * but there may still be a record of it in the journal, and that record 60 * still needs to be revoked. 61 */ 62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 63 struct buffer_head *bh, ext4_fsblk_t blocknr) 64 { 65 int err; 66 67 might_sleep(); 68 69 BUFFER_TRACE(bh, "enter"); 70 71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 72 "data mode %lx\n", 73 bh, is_metadata, inode->i_mode, 74 test_opt(inode->i_sb, DATA_FLAGS)); 75 76 /* Never use the revoke function if we are doing full data 77 * journaling: there is no need to, and a V1 superblock won't 78 * support it. Otherwise, only skip the revoke on un-journaled 79 * data blocks. */ 80 81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 82 (!is_metadata && !ext4_should_journal_data(inode))) { 83 if (bh) { 84 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 85 return ext4_journal_forget(handle, bh); 86 } 87 return 0; 88 } 89 90 /* 91 * data!=journal && (is_metadata || should_journal_data(inode)) 92 */ 93 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 94 err = ext4_journal_revoke(handle, blocknr, bh); 95 if (err) 96 ext4_abort(inode->i_sb, __FUNCTION__, 97 "error %d when attempting revoke", err); 98 BUFFER_TRACE(bh, "exit"); 99 return err; 100 } 101 102 /* 103 * Work out how many blocks we need to proceed with the next chunk of a 104 * truncate transaction. 105 */ 106 static unsigned long blocks_for_truncate(struct inode *inode) 107 { 108 unsigned long needed; 109 110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 111 112 /* Give ourselves just enough room to cope with inodes in which 113 * i_blocks is corrupt: we've seen disk corruptions in the past 114 * which resulted in random data in an inode which looked enough 115 * like a regular file for ext4 to try to delete it. Things 116 * will go a bit crazy if that happens, but at least we should 117 * try not to panic the whole kernel. */ 118 if (needed < 2) 119 needed = 2; 120 121 /* But we need to bound the transaction so we don't overflow the 122 * journal. */ 123 if (needed > EXT4_MAX_TRANS_DATA) 124 needed = EXT4_MAX_TRANS_DATA; 125 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 127 } 128 129 /* 130 * Truncate transactions can be complex and absolutely huge. So we need to 131 * be able to restart the transaction at a conventient checkpoint to make 132 * sure we don't overflow the journal. 133 * 134 * start_transaction gets us a new handle for a truncate transaction, 135 * and extend_transaction tries to extend the existing one a bit. If 136 * extend fails, we need to propagate the failure up and restart the 137 * transaction in the top-level truncate loop. --sct 138 */ 139 static handle_t *start_transaction(struct inode *inode) 140 { 141 handle_t *result; 142 143 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 144 if (!IS_ERR(result)) 145 return result; 146 147 ext4_std_error(inode->i_sb, PTR_ERR(result)); 148 return result; 149 } 150 151 /* 152 * Try to extend this transaction for the purposes of truncation. 153 * 154 * Returns 0 if we managed to create more room. If we can't create more 155 * room, and the transaction must be restarted we return 1. 156 */ 157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 158 { 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 160 return 0; 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 162 return 0; 163 return 1; 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 172 { 173 jbd_debug(2, "restarting handle %p\n", handle); 174 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 175 } 176 177 /* 178 * Called at the last iput() if i_nlink is zero. 179 */ 180 void ext4_delete_inode (struct inode * inode) 181 { 182 handle_t *handle; 183 184 truncate_inode_pages(&inode->i_data, 0); 185 186 if (is_bad_inode(inode)) 187 goto no_delete; 188 189 handle = start_transaction(inode); 190 if (IS_ERR(handle)) { 191 /* 192 * If we're going to skip the normal cleanup, we still need to 193 * make sure that the in-core orphan linked list is properly 194 * cleaned up. 195 */ 196 ext4_orphan_del(NULL, inode); 197 goto no_delete; 198 } 199 200 if (IS_SYNC(inode)) 201 handle->h_sync = 1; 202 inode->i_size = 0; 203 if (inode->i_blocks) 204 ext4_truncate(inode); 205 /* 206 * Kill off the orphan record which ext4_truncate created. 207 * AKPM: I think this can be inside the above `if'. 208 * Note that ext4_orphan_del() has to be able to cope with the 209 * deletion of a non-existent orphan - this is because we don't 210 * know if ext4_truncate() actually created an orphan record. 211 * (Well, we could do this if we need to, but heck - it works) 212 */ 213 ext4_orphan_del(handle, inode); 214 EXT4_I(inode)->i_dtime = get_seconds(); 215 216 /* 217 * One subtle ordering requirement: if anything has gone wrong 218 * (transaction abort, IO errors, whatever), then we can still 219 * do these next steps (the fs will already have been marked as 220 * having errors), but we can't free the inode if the mark_dirty 221 * fails. 222 */ 223 if (ext4_mark_inode_dirty(handle, inode)) 224 /* If that failed, just do the required in-core inode clear. */ 225 clear_inode(inode); 226 else 227 ext4_free_inode(handle, inode); 228 ext4_journal_stop(handle); 229 return; 230 no_delete: 231 clear_inode(inode); /* We must guarantee clearing of inode... */ 232 } 233 234 typedef struct { 235 __le32 *p; 236 __le32 key; 237 struct buffer_head *bh; 238 } Indirect; 239 240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 241 { 242 p->key = *(p->p = v); 243 p->bh = bh; 244 } 245 246 static int verify_chain(Indirect *from, Indirect *to) 247 { 248 while (from <= to && from->key == *from->p) 249 from++; 250 return (from > to); 251 } 252 253 /** 254 * ext4_block_to_path - parse the block number into array of offsets 255 * @inode: inode in question (we are only interested in its superblock) 256 * @i_block: block number to be parsed 257 * @offsets: array to store the offsets in 258 * @boundary: set this non-zero if the referred-to block is likely to be 259 * followed (on disk) by an indirect block. 260 * 261 * To store the locations of file's data ext4 uses a data structure common 262 * for UNIX filesystems - tree of pointers anchored in the inode, with 263 * data blocks at leaves and indirect blocks in intermediate nodes. 264 * This function translates the block number into path in that tree - 265 * return value is the path length and @offsets[n] is the offset of 266 * pointer to (n+1)th node in the nth one. If @block is out of range 267 * (negative or too large) warning is printed and zero returned. 268 * 269 * Note: function doesn't find node addresses, so no IO is needed. All 270 * we need to know is the capacity of indirect blocks (taken from the 271 * inode->i_sb). 272 */ 273 274 /* 275 * Portability note: the last comparison (check that we fit into triple 276 * indirect block) is spelled differently, because otherwise on an 277 * architecture with 32-bit longs and 8Kb pages we might get into trouble 278 * if our filesystem had 8Kb blocks. We might use long long, but that would 279 * kill us on x86. Oh, well, at least the sign propagation does not matter - 280 * i_block would have to be negative in the very beginning, so we would not 281 * get there at all. 282 */ 283 284 static int ext4_block_to_path(struct inode *inode, 285 long i_block, int offsets[4], int *boundary) 286 { 287 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 288 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 289 const long direct_blocks = EXT4_NDIR_BLOCKS, 290 indirect_blocks = ptrs, 291 double_blocks = (1 << (ptrs_bits * 2)); 292 int n = 0; 293 int final = 0; 294 295 if (i_block < 0) { 296 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 297 } else if (i_block < direct_blocks) { 298 offsets[n++] = i_block; 299 final = direct_blocks; 300 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 301 offsets[n++] = EXT4_IND_BLOCK; 302 offsets[n++] = i_block; 303 final = ptrs; 304 } else if ((i_block -= indirect_blocks) < double_blocks) { 305 offsets[n++] = EXT4_DIND_BLOCK; 306 offsets[n++] = i_block >> ptrs_bits; 307 offsets[n++] = i_block & (ptrs - 1); 308 final = ptrs; 309 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 310 offsets[n++] = EXT4_TIND_BLOCK; 311 offsets[n++] = i_block >> (ptrs_bits * 2); 312 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 313 offsets[n++] = i_block & (ptrs - 1); 314 final = ptrs; 315 } else { 316 ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big"); 317 } 318 if (boundary) 319 *boundary = final - 1 - (i_block & (ptrs - 1)); 320 return n; 321 } 322 323 /** 324 * ext4_get_branch - read the chain of indirect blocks leading to data 325 * @inode: inode in question 326 * @depth: depth of the chain (1 - direct pointer, etc.) 327 * @offsets: offsets of pointers in inode/indirect blocks 328 * @chain: place to store the result 329 * @err: here we store the error value 330 * 331 * Function fills the array of triples <key, p, bh> and returns %NULL 332 * if everything went OK or the pointer to the last filled triple 333 * (incomplete one) otherwise. Upon the return chain[i].key contains 334 * the number of (i+1)-th block in the chain (as it is stored in memory, 335 * i.e. little-endian 32-bit), chain[i].p contains the address of that 336 * number (it points into struct inode for i==0 and into the bh->b_data 337 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 338 * block for i>0 and NULL for i==0. In other words, it holds the block 339 * numbers of the chain, addresses they were taken from (and where we can 340 * verify that chain did not change) and buffer_heads hosting these 341 * numbers. 342 * 343 * Function stops when it stumbles upon zero pointer (absent block) 344 * (pointer to last triple returned, *@err == 0) 345 * or when it gets an IO error reading an indirect block 346 * (ditto, *@err == -EIO) 347 * or when it notices that chain had been changed while it was reading 348 * (ditto, *@err == -EAGAIN) 349 * or when it reads all @depth-1 indirect blocks successfully and finds 350 * the whole chain, all way to the data (returns %NULL, *err == 0). 351 */ 352 static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets, 353 Indirect chain[4], int *err) 354 { 355 struct super_block *sb = inode->i_sb; 356 Indirect *p = chain; 357 struct buffer_head *bh; 358 359 *err = 0; 360 /* i_data is not going away, no lock needed */ 361 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 362 if (!p->key) 363 goto no_block; 364 while (--depth) { 365 bh = sb_bread(sb, le32_to_cpu(p->key)); 366 if (!bh) 367 goto failure; 368 /* Reader: pointers */ 369 if (!verify_chain(chain, p)) 370 goto changed; 371 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 372 /* Reader: end */ 373 if (!p->key) 374 goto no_block; 375 } 376 return NULL; 377 378 changed: 379 brelse(bh); 380 *err = -EAGAIN; 381 goto no_block; 382 failure: 383 *err = -EIO; 384 no_block: 385 return p; 386 } 387 388 /** 389 * ext4_find_near - find a place for allocation with sufficient locality 390 * @inode: owner 391 * @ind: descriptor of indirect block. 392 * 393 * This function returns the prefered place for block allocation. 394 * It is used when heuristic for sequential allocation fails. 395 * Rules are: 396 * + if there is a block to the left of our position - allocate near it. 397 * + if pointer will live in indirect block - allocate near that block. 398 * + if pointer will live in inode - allocate in the same 399 * cylinder group. 400 * 401 * In the latter case we colour the starting block by the callers PID to 402 * prevent it from clashing with concurrent allocations for a different inode 403 * in the same block group. The PID is used here so that functionally related 404 * files will be close-by on-disk. 405 * 406 * Caller must make sure that @ind is valid and will stay that way. 407 */ 408 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 409 { 410 struct ext4_inode_info *ei = EXT4_I(inode); 411 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 412 __le32 *p; 413 ext4_fsblk_t bg_start; 414 ext4_grpblk_t colour; 415 416 /* Try to find previous block */ 417 for (p = ind->p - 1; p >= start; p--) { 418 if (*p) 419 return le32_to_cpu(*p); 420 } 421 422 /* No such thing, so let's try location of indirect block */ 423 if (ind->bh) 424 return ind->bh->b_blocknr; 425 426 /* 427 * It is going to be referred to from the inode itself? OK, just put it 428 * into the same cylinder group then. 429 */ 430 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 431 colour = (current->pid % 16) * 432 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 433 return bg_start + colour; 434 } 435 436 /** 437 * ext4_find_goal - find a prefered place for allocation. 438 * @inode: owner 439 * @block: block we want 440 * @chain: chain of indirect blocks 441 * @partial: pointer to the last triple within a chain 442 * @goal: place to store the result. 443 * 444 * Normally this function find the prefered place for block allocation, 445 * stores it in *@goal and returns zero. 446 */ 447 448 static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block, 449 Indirect chain[4], Indirect *partial) 450 { 451 struct ext4_block_alloc_info *block_i; 452 453 block_i = EXT4_I(inode)->i_block_alloc_info; 454 455 /* 456 * try the heuristic for sequential allocation, 457 * failing that at least try to get decent locality. 458 */ 459 if (block_i && (block == block_i->last_alloc_logical_block + 1) 460 && (block_i->last_alloc_physical_block != 0)) { 461 return block_i->last_alloc_physical_block + 1; 462 } 463 464 return ext4_find_near(inode, partial); 465 } 466 467 /** 468 * ext4_blks_to_allocate: Look up the block map and count the number 469 * of direct blocks need to be allocated for the given branch. 470 * 471 * @branch: chain of indirect blocks 472 * @k: number of blocks need for indirect blocks 473 * @blks: number of data blocks to be mapped. 474 * @blocks_to_boundary: the offset in the indirect block 475 * 476 * return the total number of blocks to be allocate, including the 477 * direct and indirect blocks. 478 */ 479 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 480 int blocks_to_boundary) 481 { 482 unsigned long count = 0; 483 484 /* 485 * Simple case, [t,d]Indirect block(s) has not allocated yet 486 * then it's clear blocks on that path have not allocated 487 */ 488 if (k > 0) { 489 /* right now we don't handle cross boundary allocation */ 490 if (blks < blocks_to_boundary + 1) 491 count += blks; 492 else 493 count += blocks_to_boundary + 1; 494 return count; 495 } 496 497 count++; 498 while (count < blks && count <= blocks_to_boundary && 499 le32_to_cpu(*(branch[0].p + count)) == 0) { 500 count++; 501 } 502 return count; 503 } 504 505 /** 506 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 507 * @indirect_blks: the number of blocks need to allocate for indirect 508 * blocks 509 * 510 * @new_blocks: on return it will store the new block numbers for 511 * the indirect blocks(if needed) and the first direct block, 512 * @blks: on return it will store the total number of allocated 513 * direct blocks 514 */ 515 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 516 ext4_fsblk_t goal, int indirect_blks, int blks, 517 ext4_fsblk_t new_blocks[4], int *err) 518 { 519 int target, i; 520 unsigned long count = 0; 521 int index = 0; 522 ext4_fsblk_t current_block = 0; 523 int ret = 0; 524 525 /* 526 * Here we try to allocate the requested multiple blocks at once, 527 * on a best-effort basis. 528 * To build a branch, we should allocate blocks for 529 * the indirect blocks(if not allocated yet), and at least 530 * the first direct block of this branch. That's the 531 * minimum number of blocks need to allocate(required) 532 */ 533 target = blks + indirect_blks; 534 535 while (1) { 536 count = target; 537 /* allocating blocks for indirect blocks and direct blocks */ 538 current_block = ext4_new_blocks(handle,inode,goal,&count,err); 539 if (*err) 540 goto failed_out; 541 542 target -= count; 543 /* allocate blocks for indirect blocks */ 544 while (index < indirect_blks && count) { 545 new_blocks[index++] = current_block++; 546 count--; 547 } 548 549 if (count > 0) 550 break; 551 } 552 553 /* save the new block number for the first direct block */ 554 new_blocks[index] = current_block; 555 556 /* total number of blocks allocated for direct blocks */ 557 ret = count; 558 *err = 0; 559 return ret; 560 failed_out: 561 for (i = 0; i <index; i++) 562 ext4_free_blocks(handle, inode, new_blocks[i], 1); 563 return ret; 564 } 565 566 /** 567 * ext4_alloc_branch - allocate and set up a chain of blocks. 568 * @inode: owner 569 * @indirect_blks: number of allocated indirect blocks 570 * @blks: number of allocated direct blocks 571 * @offsets: offsets (in the blocks) to store the pointers to next. 572 * @branch: place to store the chain in. 573 * 574 * This function allocates blocks, zeroes out all but the last one, 575 * links them into chain and (if we are synchronous) writes them to disk. 576 * In other words, it prepares a branch that can be spliced onto the 577 * inode. It stores the information about that chain in the branch[], in 578 * the same format as ext4_get_branch() would do. We are calling it after 579 * we had read the existing part of chain and partial points to the last 580 * triple of that (one with zero ->key). Upon the exit we have the same 581 * picture as after the successful ext4_get_block(), except that in one 582 * place chain is disconnected - *branch->p is still zero (we did not 583 * set the last link), but branch->key contains the number that should 584 * be placed into *branch->p to fill that gap. 585 * 586 * If allocation fails we free all blocks we've allocated (and forget 587 * their buffer_heads) and return the error value the from failed 588 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 589 * as described above and return 0. 590 */ 591 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 592 int indirect_blks, int *blks, ext4_fsblk_t goal, 593 int *offsets, Indirect *branch) 594 { 595 int blocksize = inode->i_sb->s_blocksize; 596 int i, n = 0; 597 int err = 0; 598 struct buffer_head *bh; 599 int num; 600 ext4_fsblk_t new_blocks[4]; 601 ext4_fsblk_t current_block; 602 603 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, 604 *blks, new_blocks, &err); 605 if (err) 606 return err; 607 608 branch[0].key = cpu_to_le32(new_blocks[0]); 609 /* 610 * metadata blocks and data blocks are allocated. 611 */ 612 for (n = 1; n <= indirect_blks; n++) { 613 /* 614 * Get buffer_head for parent block, zero it out 615 * and set the pointer to new one, then send 616 * parent to disk. 617 */ 618 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 619 branch[n].bh = bh; 620 lock_buffer(bh); 621 BUFFER_TRACE(bh, "call get_create_access"); 622 err = ext4_journal_get_create_access(handle, bh); 623 if (err) { 624 unlock_buffer(bh); 625 brelse(bh); 626 goto failed; 627 } 628 629 memset(bh->b_data, 0, blocksize); 630 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 631 branch[n].key = cpu_to_le32(new_blocks[n]); 632 *branch[n].p = branch[n].key; 633 if ( n == indirect_blks) { 634 current_block = new_blocks[n]; 635 /* 636 * End of chain, update the last new metablock of 637 * the chain to point to the new allocated 638 * data blocks numbers 639 */ 640 for (i=1; i < num; i++) 641 *(branch[n].p + i) = cpu_to_le32(++current_block); 642 } 643 BUFFER_TRACE(bh, "marking uptodate"); 644 set_buffer_uptodate(bh); 645 unlock_buffer(bh); 646 647 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 648 err = ext4_journal_dirty_metadata(handle, bh); 649 if (err) 650 goto failed; 651 } 652 *blks = num; 653 return err; 654 failed: 655 /* Allocation failed, free what we already allocated */ 656 for (i = 1; i <= n ; i++) { 657 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 658 ext4_journal_forget(handle, branch[i].bh); 659 } 660 for (i = 0; i <indirect_blks; i++) 661 ext4_free_blocks(handle, inode, new_blocks[i], 1); 662 663 ext4_free_blocks(handle, inode, new_blocks[i], num); 664 665 return err; 666 } 667 668 /** 669 * ext4_splice_branch - splice the allocated branch onto inode. 670 * @inode: owner 671 * @block: (logical) number of block we are adding 672 * @chain: chain of indirect blocks (with a missing link - see 673 * ext4_alloc_branch) 674 * @where: location of missing link 675 * @num: number of indirect blocks we are adding 676 * @blks: number of direct blocks we are adding 677 * 678 * This function fills the missing link and does all housekeeping needed in 679 * inode (->i_blocks, etc.). In case of success we end up with the full 680 * chain to new block and return 0. 681 */ 682 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 683 long block, Indirect *where, int num, int blks) 684 { 685 int i; 686 int err = 0; 687 struct ext4_block_alloc_info *block_i; 688 ext4_fsblk_t current_block; 689 690 block_i = EXT4_I(inode)->i_block_alloc_info; 691 /* 692 * If we're splicing into a [td]indirect block (as opposed to the 693 * inode) then we need to get write access to the [td]indirect block 694 * before the splice. 695 */ 696 if (where->bh) { 697 BUFFER_TRACE(where->bh, "get_write_access"); 698 err = ext4_journal_get_write_access(handle, where->bh); 699 if (err) 700 goto err_out; 701 } 702 /* That's it */ 703 704 *where->p = where->key; 705 706 /* 707 * Update the host buffer_head or inode to point to more just allocated 708 * direct blocks blocks 709 */ 710 if (num == 0 && blks > 1) { 711 current_block = le32_to_cpu(where->key) + 1; 712 for (i = 1; i < blks; i++) 713 *(where->p + i ) = cpu_to_le32(current_block++); 714 } 715 716 /* 717 * update the most recently allocated logical & physical block 718 * in i_block_alloc_info, to assist find the proper goal block for next 719 * allocation 720 */ 721 if (block_i) { 722 block_i->last_alloc_logical_block = block + blks - 1; 723 block_i->last_alloc_physical_block = 724 le32_to_cpu(where[num].key) + blks - 1; 725 } 726 727 /* We are done with atomic stuff, now do the rest of housekeeping */ 728 729 inode->i_ctime = ext4_current_time(inode); 730 ext4_mark_inode_dirty(handle, inode); 731 732 /* had we spliced it onto indirect block? */ 733 if (where->bh) { 734 /* 735 * If we spliced it onto an indirect block, we haven't 736 * altered the inode. Note however that if it is being spliced 737 * onto an indirect block at the very end of the file (the 738 * file is growing) then we *will* alter the inode to reflect 739 * the new i_size. But that is not done here - it is done in 740 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 741 */ 742 jbd_debug(5, "splicing indirect only\n"); 743 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 744 err = ext4_journal_dirty_metadata(handle, where->bh); 745 if (err) 746 goto err_out; 747 } else { 748 /* 749 * OK, we spliced it into the inode itself on a direct block. 750 * Inode was dirtied above. 751 */ 752 jbd_debug(5, "splicing direct\n"); 753 } 754 return err; 755 756 err_out: 757 for (i = 1; i <= num; i++) { 758 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 759 ext4_journal_forget(handle, where[i].bh); 760 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); 761 } 762 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); 763 764 return err; 765 } 766 767 /* 768 * Allocation strategy is simple: if we have to allocate something, we will 769 * have to go the whole way to leaf. So let's do it before attaching anything 770 * to tree, set linkage between the newborn blocks, write them if sync is 771 * required, recheck the path, free and repeat if check fails, otherwise 772 * set the last missing link (that will protect us from any truncate-generated 773 * removals - all blocks on the path are immune now) and possibly force the 774 * write on the parent block. 775 * That has a nice additional property: no special recovery from the failed 776 * allocations is needed - we simply release blocks and do not touch anything 777 * reachable from inode. 778 * 779 * `handle' can be NULL if create == 0. 780 * 781 * The BKL may not be held on entry here. Be sure to take it early. 782 * return > 0, # of blocks mapped or allocated. 783 * return = 0, if plain lookup failed. 784 * return < 0, error case. 785 */ 786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 787 sector_t iblock, unsigned long maxblocks, 788 struct buffer_head *bh_result, 789 int create, int extend_disksize) 790 { 791 int err = -EIO; 792 int offsets[4]; 793 Indirect chain[4]; 794 Indirect *partial; 795 ext4_fsblk_t goal; 796 int indirect_blks; 797 int blocks_to_boundary = 0; 798 int depth; 799 struct ext4_inode_info *ei = EXT4_I(inode); 800 int count = 0; 801 ext4_fsblk_t first_block = 0; 802 803 804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 805 J_ASSERT(handle != NULL || create == 0); 806 depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 807 808 if (depth == 0) 809 goto out; 810 811 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 812 813 /* Simplest case - block found, no allocation needed */ 814 if (!partial) { 815 first_block = le32_to_cpu(chain[depth - 1].key); 816 clear_buffer_new(bh_result); 817 count++; 818 /*map more blocks*/ 819 while (count < maxblocks && count <= blocks_to_boundary) { 820 ext4_fsblk_t blk; 821 822 if (!verify_chain(chain, partial)) { 823 /* 824 * Indirect block might be removed by 825 * truncate while we were reading it. 826 * Handling of that case: forget what we've 827 * got now. Flag the err as EAGAIN, so it 828 * will reread. 829 */ 830 err = -EAGAIN; 831 count = 0; 832 break; 833 } 834 blk = le32_to_cpu(*(chain[depth-1].p + count)); 835 836 if (blk == first_block + count) 837 count++; 838 else 839 break; 840 } 841 if (err != -EAGAIN) 842 goto got_it; 843 } 844 845 /* Next simple case - plain lookup or failed read of indirect block */ 846 if (!create || err == -EIO) 847 goto cleanup; 848 849 mutex_lock(&ei->truncate_mutex); 850 851 /* 852 * If the indirect block is missing while we are reading 853 * the chain(ext4_get_branch() returns -EAGAIN err), or 854 * if the chain has been changed after we grab the semaphore, 855 * (either because another process truncated this branch, or 856 * another get_block allocated this branch) re-grab the chain to see if 857 * the request block has been allocated or not. 858 * 859 * Since we already block the truncate/other get_block 860 * at this point, we will have the current copy of the chain when we 861 * splice the branch into the tree. 862 */ 863 if (err == -EAGAIN || !verify_chain(chain, partial)) { 864 while (partial > chain) { 865 brelse(partial->bh); 866 partial--; 867 } 868 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 869 if (!partial) { 870 count++; 871 mutex_unlock(&ei->truncate_mutex); 872 if (err) 873 goto cleanup; 874 clear_buffer_new(bh_result); 875 goto got_it; 876 } 877 } 878 879 /* 880 * Okay, we need to do block allocation. Lazily initialize the block 881 * allocation info here if necessary 882 */ 883 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 884 ext4_init_block_alloc_info(inode); 885 886 goal = ext4_find_goal(inode, iblock, chain, partial); 887 888 /* the number of blocks need to allocate for [d,t]indirect blocks */ 889 indirect_blks = (chain + depth) - partial - 1; 890 891 /* 892 * Next look up the indirect map to count the totoal number of 893 * direct blocks to allocate for this branch. 894 */ 895 count = ext4_blks_to_allocate(partial, indirect_blks, 896 maxblocks, blocks_to_boundary); 897 /* 898 * Block out ext4_truncate while we alter the tree 899 */ 900 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, 901 offsets + (partial - chain), partial); 902 903 /* 904 * The ext4_splice_branch call will free and forget any buffers 905 * on the new chain if there is a failure, but that risks using 906 * up transaction credits, especially for bitmaps where the 907 * credits cannot be returned. Can we handle this somehow? We 908 * may need to return -EAGAIN upwards in the worst case. --sct 909 */ 910 if (!err) 911 err = ext4_splice_branch(handle, inode, iblock, 912 partial, indirect_blks, count); 913 /* 914 * i_disksize growing is protected by truncate_mutex. Don't forget to 915 * protect it if you're about to implement concurrent 916 * ext4_get_block() -bzzz 917 */ 918 if (!err && extend_disksize && inode->i_size > ei->i_disksize) 919 ei->i_disksize = inode->i_size; 920 mutex_unlock(&ei->truncate_mutex); 921 if (err) 922 goto cleanup; 923 924 set_buffer_new(bh_result); 925 got_it: 926 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 927 if (count > blocks_to_boundary) 928 set_buffer_boundary(bh_result); 929 err = count; 930 /* Clean up and exit */ 931 partial = chain + depth - 1; /* the whole chain */ 932 cleanup: 933 while (partial > chain) { 934 BUFFER_TRACE(partial->bh, "call brelse"); 935 brelse(partial->bh); 936 partial--; 937 } 938 BUFFER_TRACE(bh_result, "returned"); 939 out: 940 return err; 941 } 942 943 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32) 944 945 static int ext4_get_block(struct inode *inode, sector_t iblock, 946 struct buffer_head *bh_result, int create) 947 { 948 handle_t *handle = ext4_journal_current_handle(); 949 int ret = 0; 950 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 951 952 if (!create) 953 goto get_block; /* A read */ 954 955 if (max_blocks == 1) 956 goto get_block; /* A single block get */ 957 958 if (handle->h_transaction->t_state == T_LOCKED) { 959 /* 960 * Huge direct-io writes can hold off commits for long 961 * periods of time. Let this commit run. 962 */ 963 ext4_journal_stop(handle); 964 handle = ext4_journal_start(inode, DIO_CREDITS); 965 if (IS_ERR(handle)) 966 ret = PTR_ERR(handle); 967 goto get_block; 968 } 969 970 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) { 971 /* 972 * Getting low on buffer credits... 973 */ 974 ret = ext4_journal_extend(handle, DIO_CREDITS); 975 if (ret > 0) { 976 /* 977 * Couldn't extend the transaction. Start a new one. 978 */ 979 ret = ext4_journal_restart(handle, DIO_CREDITS); 980 } 981 } 982 983 get_block: 984 if (ret == 0) { 985 ret = ext4_get_blocks_wrap(handle, inode, iblock, 986 max_blocks, bh_result, create, 0); 987 if (ret > 0) { 988 bh_result->b_size = (ret << inode->i_blkbits); 989 ret = 0; 990 } 991 } 992 return ret; 993 } 994 995 /* 996 * `handle' can be NULL if create is zero 997 */ 998 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 999 long block, int create, int *errp) 1000 { 1001 struct buffer_head dummy; 1002 int fatal = 0, err; 1003 1004 J_ASSERT(handle != NULL || create == 0); 1005 1006 dummy.b_state = 0; 1007 dummy.b_blocknr = -1000; 1008 buffer_trace_init(&dummy.b_history); 1009 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1010 &dummy, create, 1); 1011 /* 1012 * ext4_get_blocks_handle() returns number of blocks 1013 * mapped. 0 in case of a HOLE. 1014 */ 1015 if (err > 0) { 1016 if (err > 1) 1017 WARN_ON(1); 1018 err = 0; 1019 } 1020 *errp = err; 1021 if (!err && buffer_mapped(&dummy)) { 1022 struct buffer_head *bh; 1023 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1024 if (!bh) { 1025 *errp = -EIO; 1026 goto err; 1027 } 1028 if (buffer_new(&dummy)) { 1029 J_ASSERT(create != 0); 1030 J_ASSERT(handle != NULL); 1031 1032 /* 1033 * Now that we do not always journal data, we should 1034 * keep in mind whether this should always journal the 1035 * new buffer as metadata. For now, regular file 1036 * writes use ext4_get_block instead, so it's not a 1037 * problem. 1038 */ 1039 lock_buffer(bh); 1040 BUFFER_TRACE(bh, "call get_create_access"); 1041 fatal = ext4_journal_get_create_access(handle, bh); 1042 if (!fatal && !buffer_uptodate(bh)) { 1043 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1044 set_buffer_uptodate(bh); 1045 } 1046 unlock_buffer(bh); 1047 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1048 err = ext4_journal_dirty_metadata(handle, bh); 1049 if (!fatal) 1050 fatal = err; 1051 } else { 1052 BUFFER_TRACE(bh, "not a new buffer"); 1053 } 1054 if (fatal) { 1055 *errp = fatal; 1056 brelse(bh); 1057 bh = NULL; 1058 } 1059 return bh; 1060 } 1061 err: 1062 return NULL; 1063 } 1064 1065 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1066 int block, int create, int *err) 1067 { 1068 struct buffer_head * bh; 1069 1070 bh = ext4_getblk(handle, inode, block, create, err); 1071 if (!bh) 1072 return bh; 1073 if (buffer_uptodate(bh)) 1074 return bh; 1075 ll_rw_block(READ_META, 1, &bh); 1076 wait_on_buffer(bh); 1077 if (buffer_uptodate(bh)) 1078 return bh; 1079 put_bh(bh); 1080 *err = -EIO; 1081 return NULL; 1082 } 1083 1084 static int walk_page_buffers( handle_t *handle, 1085 struct buffer_head *head, 1086 unsigned from, 1087 unsigned to, 1088 int *partial, 1089 int (*fn)( handle_t *handle, 1090 struct buffer_head *bh)) 1091 { 1092 struct buffer_head *bh; 1093 unsigned block_start, block_end; 1094 unsigned blocksize = head->b_size; 1095 int err, ret = 0; 1096 struct buffer_head *next; 1097 1098 for ( bh = head, block_start = 0; 1099 ret == 0 && (bh != head || !block_start); 1100 block_start = block_end, bh = next) 1101 { 1102 next = bh->b_this_page; 1103 block_end = block_start + blocksize; 1104 if (block_end <= from || block_start >= to) { 1105 if (partial && !buffer_uptodate(bh)) 1106 *partial = 1; 1107 continue; 1108 } 1109 err = (*fn)(handle, bh); 1110 if (!ret) 1111 ret = err; 1112 } 1113 return ret; 1114 } 1115 1116 /* 1117 * To preserve ordering, it is essential that the hole instantiation and 1118 * the data write be encapsulated in a single transaction. We cannot 1119 * close off a transaction and start a new one between the ext4_get_block() 1120 * and the commit_write(). So doing the jbd2_journal_start at the start of 1121 * prepare_write() is the right place. 1122 * 1123 * Also, this function can nest inside ext4_writepage() -> 1124 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1125 * has generated enough buffer credits to do the whole page. So we won't 1126 * block on the journal in that case, which is good, because the caller may 1127 * be PF_MEMALLOC. 1128 * 1129 * By accident, ext4 can be reentered when a transaction is open via 1130 * quota file writes. If we were to commit the transaction while thus 1131 * reentered, there can be a deadlock - we would be holding a quota 1132 * lock, and the commit would never complete if another thread had a 1133 * transaction open and was blocking on the quota lock - a ranking 1134 * violation. 1135 * 1136 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1137 * will _not_ run commit under these circumstances because handle->h_ref 1138 * is elevated. We'll still have enough credits for the tiny quotafile 1139 * write. 1140 */ 1141 static int do_journal_get_write_access(handle_t *handle, 1142 struct buffer_head *bh) 1143 { 1144 if (!buffer_mapped(bh) || buffer_freed(bh)) 1145 return 0; 1146 return ext4_journal_get_write_access(handle, bh); 1147 } 1148 1149 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1150 loff_t pos, unsigned len, unsigned flags, 1151 struct page **pagep, void **fsdata) 1152 { 1153 struct inode *inode = mapping->host; 1154 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1155 handle_t *handle; 1156 int retries = 0; 1157 struct page *page; 1158 pgoff_t index; 1159 unsigned from, to; 1160 1161 index = pos >> PAGE_CACHE_SHIFT; 1162 from = pos & (PAGE_CACHE_SIZE - 1); 1163 to = from + len; 1164 1165 retry: 1166 page = __grab_cache_page(mapping, index); 1167 if (!page) 1168 return -ENOMEM; 1169 *pagep = page; 1170 1171 handle = ext4_journal_start(inode, needed_blocks); 1172 if (IS_ERR(handle)) { 1173 unlock_page(page); 1174 page_cache_release(page); 1175 ret = PTR_ERR(handle); 1176 goto out; 1177 } 1178 1179 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1180 ext4_get_block); 1181 1182 if (!ret && ext4_should_journal_data(inode)) { 1183 ret = walk_page_buffers(handle, page_buffers(page), 1184 from, to, NULL, do_journal_get_write_access); 1185 } 1186 1187 if (ret) { 1188 ext4_journal_stop(handle); 1189 unlock_page(page); 1190 page_cache_release(page); 1191 } 1192 1193 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1194 goto retry; 1195 out: 1196 return ret; 1197 } 1198 1199 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1200 { 1201 int err = jbd2_journal_dirty_data(handle, bh); 1202 if (err) 1203 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__, 1204 bh, handle, err); 1205 return err; 1206 } 1207 1208 /* For write_end() in data=journal mode */ 1209 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1210 { 1211 if (!buffer_mapped(bh) || buffer_freed(bh)) 1212 return 0; 1213 set_buffer_uptodate(bh); 1214 return ext4_journal_dirty_metadata(handle, bh); 1215 } 1216 1217 /* 1218 * Generic write_end handler for ordered and writeback ext4 journal modes. 1219 * We can't use generic_write_end, because that unlocks the page and we need to 1220 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run 1221 * after block_write_end. 1222 */ 1223 static int ext4_generic_write_end(struct file *file, 1224 struct address_space *mapping, 1225 loff_t pos, unsigned len, unsigned copied, 1226 struct page *page, void *fsdata) 1227 { 1228 struct inode *inode = file->f_mapping->host; 1229 1230 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1231 1232 if (pos+copied > inode->i_size) { 1233 i_size_write(inode, pos+copied); 1234 mark_inode_dirty(inode); 1235 } 1236 1237 return copied; 1238 } 1239 1240 /* 1241 * We need to pick up the new inode size which generic_commit_write gave us 1242 * `file' can be NULL - eg, when called from page_symlink(). 1243 * 1244 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1245 * buffers are managed internally. 1246 */ 1247 static int ext4_ordered_write_end(struct file *file, 1248 struct address_space *mapping, 1249 loff_t pos, unsigned len, unsigned copied, 1250 struct page *page, void *fsdata) 1251 { 1252 handle_t *handle = ext4_journal_current_handle(); 1253 struct inode *inode = file->f_mapping->host; 1254 unsigned from, to; 1255 int ret = 0, ret2; 1256 1257 from = pos & (PAGE_CACHE_SIZE - 1); 1258 to = from + len; 1259 1260 ret = walk_page_buffers(handle, page_buffers(page), 1261 from, to, NULL, ext4_journal_dirty_data); 1262 1263 if (ret == 0) { 1264 /* 1265 * generic_write_end() will run mark_inode_dirty() if i_size 1266 * changes. So let's piggyback the i_disksize mark_inode_dirty 1267 * into that. 1268 */ 1269 loff_t new_i_size; 1270 1271 new_i_size = pos + copied; 1272 if (new_i_size > EXT4_I(inode)->i_disksize) 1273 EXT4_I(inode)->i_disksize = new_i_size; 1274 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1275 page, fsdata); 1276 if (copied < 0) 1277 ret = copied; 1278 } 1279 ret2 = ext4_journal_stop(handle); 1280 if (!ret) 1281 ret = ret2; 1282 unlock_page(page); 1283 page_cache_release(page); 1284 1285 return ret ? ret : copied; 1286 } 1287 1288 static int ext4_writeback_write_end(struct file *file, 1289 struct address_space *mapping, 1290 loff_t pos, unsigned len, unsigned copied, 1291 struct page *page, void *fsdata) 1292 { 1293 handle_t *handle = ext4_journal_current_handle(); 1294 struct inode *inode = file->f_mapping->host; 1295 int ret = 0, ret2; 1296 loff_t new_i_size; 1297 1298 new_i_size = pos + copied; 1299 if (new_i_size > EXT4_I(inode)->i_disksize) 1300 EXT4_I(inode)->i_disksize = new_i_size; 1301 1302 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1303 page, fsdata); 1304 if (copied < 0) 1305 ret = copied; 1306 1307 ret2 = ext4_journal_stop(handle); 1308 if (!ret) 1309 ret = ret2; 1310 unlock_page(page); 1311 page_cache_release(page); 1312 1313 return ret ? ret : copied; 1314 } 1315 1316 static int ext4_journalled_write_end(struct file *file, 1317 struct address_space *mapping, 1318 loff_t pos, unsigned len, unsigned copied, 1319 struct page *page, void *fsdata) 1320 { 1321 handle_t *handle = ext4_journal_current_handle(); 1322 struct inode *inode = mapping->host; 1323 int ret = 0, ret2; 1324 int partial = 0; 1325 unsigned from, to; 1326 1327 from = pos & (PAGE_CACHE_SIZE - 1); 1328 to = from + len; 1329 1330 if (copied < len) { 1331 if (!PageUptodate(page)) 1332 copied = 0; 1333 page_zero_new_buffers(page, from+copied, to); 1334 } 1335 1336 ret = walk_page_buffers(handle, page_buffers(page), from, 1337 to, &partial, write_end_fn); 1338 if (!partial) 1339 SetPageUptodate(page); 1340 if (pos+copied > inode->i_size) 1341 i_size_write(inode, pos+copied); 1342 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1343 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1344 EXT4_I(inode)->i_disksize = inode->i_size; 1345 ret2 = ext4_mark_inode_dirty(handle, inode); 1346 if (!ret) 1347 ret = ret2; 1348 } 1349 1350 ret2 = ext4_journal_stop(handle); 1351 if (!ret) 1352 ret = ret2; 1353 unlock_page(page); 1354 page_cache_release(page); 1355 1356 return ret ? ret : copied; 1357 } 1358 1359 /* 1360 * bmap() is special. It gets used by applications such as lilo and by 1361 * the swapper to find the on-disk block of a specific piece of data. 1362 * 1363 * Naturally, this is dangerous if the block concerned is still in the 1364 * journal. If somebody makes a swapfile on an ext4 data-journaling 1365 * filesystem and enables swap, then they may get a nasty shock when the 1366 * data getting swapped to that swapfile suddenly gets overwritten by 1367 * the original zero's written out previously to the journal and 1368 * awaiting writeback in the kernel's buffer cache. 1369 * 1370 * So, if we see any bmap calls here on a modified, data-journaled file, 1371 * take extra steps to flush any blocks which might be in the cache. 1372 */ 1373 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 1374 { 1375 struct inode *inode = mapping->host; 1376 journal_t *journal; 1377 int err; 1378 1379 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 1380 /* 1381 * This is a REALLY heavyweight approach, but the use of 1382 * bmap on dirty files is expected to be extremely rare: 1383 * only if we run lilo or swapon on a freshly made file 1384 * do we expect this to happen. 1385 * 1386 * (bmap requires CAP_SYS_RAWIO so this does not 1387 * represent an unprivileged user DOS attack --- we'd be 1388 * in trouble if mortal users could trigger this path at 1389 * will.) 1390 * 1391 * NB. EXT4_STATE_JDATA is not set on files other than 1392 * regular files. If somebody wants to bmap a directory 1393 * or symlink and gets confused because the buffer 1394 * hasn't yet been flushed to disk, they deserve 1395 * everything they get. 1396 */ 1397 1398 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 1399 journal = EXT4_JOURNAL(inode); 1400 jbd2_journal_lock_updates(journal); 1401 err = jbd2_journal_flush(journal); 1402 jbd2_journal_unlock_updates(journal); 1403 1404 if (err) 1405 return 0; 1406 } 1407 1408 return generic_block_bmap(mapping,block,ext4_get_block); 1409 } 1410 1411 static int bget_one(handle_t *handle, struct buffer_head *bh) 1412 { 1413 get_bh(bh); 1414 return 0; 1415 } 1416 1417 static int bput_one(handle_t *handle, struct buffer_head *bh) 1418 { 1419 put_bh(bh); 1420 return 0; 1421 } 1422 1423 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1424 { 1425 if (buffer_mapped(bh)) 1426 return ext4_journal_dirty_data(handle, bh); 1427 return 0; 1428 } 1429 1430 /* 1431 * Note that we always start a transaction even if we're not journalling 1432 * data. This is to preserve ordering: any hole instantiation within 1433 * __block_write_full_page -> ext4_get_block() should be journalled 1434 * along with the data so we don't crash and then get metadata which 1435 * refers to old data. 1436 * 1437 * In all journalling modes block_write_full_page() will start the I/O. 1438 * 1439 * Problem: 1440 * 1441 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1442 * ext4_writepage() 1443 * 1444 * Similar for: 1445 * 1446 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1447 * 1448 * Same applies to ext4_get_block(). We will deadlock on various things like 1449 * lock_journal and i_truncate_mutex. 1450 * 1451 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1452 * allocations fail. 1453 * 1454 * 16May01: If we're reentered then journal_current_handle() will be 1455 * non-zero. We simply *return*. 1456 * 1457 * 1 July 2001: @@@ FIXME: 1458 * In journalled data mode, a data buffer may be metadata against the 1459 * current transaction. But the same file is part of a shared mapping 1460 * and someone does a writepage() on it. 1461 * 1462 * We will move the buffer onto the async_data list, but *after* it has 1463 * been dirtied. So there's a small window where we have dirty data on 1464 * BJ_Metadata. 1465 * 1466 * Note that this only applies to the last partial page in the file. The 1467 * bit which block_write_full_page() uses prepare/commit for. (That's 1468 * broken code anyway: it's wrong for msync()). 1469 * 1470 * It's a rare case: affects the final partial page, for journalled data 1471 * where the file is subject to bith write() and writepage() in the same 1472 * transction. To fix it we'll need a custom block_write_full_page(). 1473 * We'll probably need that anyway for journalling writepage() output. 1474 * 1475 * We don't honour synchronous mounts for writepage(). That would be 1476 * disastrous. Any write() or metadata operation will sync the fs for 1477 * us. 1478 * 1479 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1480 * we don't need to open a transaction here. 1481 */ 1482 static int ext4_ordered_writepage(struct page *page, 1483 struct writeback_control *wbc) 1484 { 1485 struct inode *inode = page->mapping->host; 1486 struct buffer_head *page_bufs; 1487 handle_t *handle = NULL; 1488 int ret = 0; 1489 int err; 1490 1491 J_ASSERT(PageLocked(page)); 1492 1493 /* 1494 * We give up here if we're reentered, because it might be for a 1495 * different filesystem. 1496 */ 1497 if (ext4_journal_current_handle()) 1498 goto out_fail; 1499 1500 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1501 1502 if (IS_ERR(handle)) { 1503 ret = PTR_ERR(handle); 1504 goto out_fail; 1505 } 1506 1507 if (!page_has_buffers(page)) { 1508 create_empty_buffers(page, inode->i_sb->s_blocksize, 1509 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1510 } 1511 page_bufs = page_buffers(page); 1512 walk_page_buffers(handle, page_bufs, 0, 1513 PAGE_CACHE_SIZE, NULL, bget_one); 1514 1515 ret = block_write_full_page(page, ext4_get_block, wbc); 1516 1517 /* 1518 * The page can become unlocked at any point now, and 1519 * truncate can then come in and change things. So we 1520 * can't touch *page from now on. But *page_bufs is 1521 * safe due to elevated refcount. 1522 */ 1523 1524 /* 1525 * And attach them to the current transaction. But only if 1526 * block_write_full_page() succeeded. Otherwise they are unmapped, 1527 * and generally junk. 1528 */ 1529 if (ret == 0) { 1530 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1531 NULL, jbd2_journal_dirty_data_fn); 1532 if (!ret) 1533 ret = err; 1534 } 1535 walk_page_buffers(handle, page_bufs, 0, 1536 PAGE_CACHE_SIZE, NULL, bput_one); 1537 err = ext4_journal_stop(handle); 1538 if (!ret) 1539 ret = err; 1540 return ret; 1541 1542 out_fail: 1543 redirty_page_for_writepage(wbc, page); 1544 unlock_page(page); 1545 return ret; 1546 } 1547 1548 static int ext4_writeback_writepage(struct page *page, 1549 struct writeback_control *wbc) 1550 { 1551 struct inode *inode = page->mapping->host; 1552 handle_t *handle = NULL; 1553 int ret = 0; 1554 int err; 1555 1556 if (ext4_journal_current_handle()) 1557 goto out_fail; 1558 1559 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1560 if (IS_ERR(handle)) { 1561 ret = PTR_ERR(handle); 1562 goto out_fail; 1563 } 1564 1565 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1566 ret = nobh_writepage(page, ext4_get_block, wbc); 1567 else 1568 ret = block_write_full_page(page, ext4_get_block, wbc); 1569 1570 err = ext4_journal_stop(handle); 1571 if (!ret) 1572 ret = err; 1573 return ret; 1574 1575 out_fail: 1576 redirty_page_for_writepage(wbc, page); 1577 unlock_page(page); 1578 return ret; 1579 } 1580 1581 static int ext4_journalled_writepage(struct page *page, 1582 struct writeback_control *wbc) 1583 { 1584 struct inode *inode = page->mapping->host; 1585 handle_t *handle = NULL; 1586 int ret = 0; 1587 int err; 1588 1589 if (ext4_journal_current_handle()) 1590 goto no_write; 1591 1592 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1593 if (IS_ERR(handle)) { 1594 ret = PTR_ERR(handle); 1595 goto no_write; 1596 } 1597 1598 if (!page_has_buffers(page) || PageChecked(page)) { 1599 /* 1600 * It's mmapped pagecache. Add buffers and journal it. There 1601 * doesn't seem much point in redirtying the page here. 1602 */ 1603 ClearPageChecked(page); 1604 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 1605 ext4_get_block); 1606 if (ret != 0) { 1607 ext4_journal_stop(handle); 1608 goto out_unlock; 1609 } 1610 ret = walk_page_buffers(handle, page_buffers(page), 0, 1611 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1612 1613 err = walk_page_buffers(handle, page_buffers(page), 0, 1614 PAGE_CACHE_SIZE, NULL, write_end_fn); 1615 if (ret == 0) 1616 ret = err; 1617 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1618 unlock_page(page); 1619 } else { 1620 /* 1621 * It may be a page full of checkpoint-mode buffers. We don't 1622 * really know unless we go poke around in the buffer_heads. 1623 * But block_write_full_page will do the right thing. 1624 */ 1625 ret = block_write_full_page(page, ext4_get_block, wbc); 1626 } 1627 err = ext4_journal_stop(handle); 1628 if (!ret) 1629 ret = err; 1630 out: 1631 return ret; 1632 1633 no_write: 1634 redirty_page_for_writepage(wbc, page); 1635 out_unlock: 1636 unlock_page(page); 1637 goto out; 1638 } 1639 1640 static int ext4_readpage(struct file *file, struct page *page) 1641 { 1642 return mpage_readpage(page, ext4_get_block); 1643 } 1644 1645 static int 1646 ext4_readpages(struct file *file, struct address_space *mapping, 1647 struct list_head *pages, unsigned nr_pages) 1648 { 1649 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 1650 } 1651 1652 static void ext4_invalidatepage(struct page *page, unsigned long offset) 1653 { 1654 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1655 1656 /* 1657 * If it's a full truncate we just forget about the pending dirtying 1658 */ 1659 if (offset == 0) 1660 ClearPageChecked(page); 1661 1662 jbd2_journal_invalidatepage(journal, page, offset); 1663 } 1664 1665 static int ext4_releasepage(struct page *page, gfp_t wait) 1666 { 1667 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1668 1669 WARN_ON(PageChecked(page)); 1670 if (!page_has_buffers(page)) 1671 return 0; 1672 return jbd2_journal_try_to_free_buffers(journal, page, wait); 1673 } 1674 1675 /* 1676 * If the O_DIRECT write will extend the file then add this inode to the 1677 * orphan list. So recovery will truncate it back to the original size 1678 * if the machine crashes during the write. 1679 * 1680 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1681 * crashes then stale disk data _may_ be exposed inside the file. 1682 */ 1683 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 1684 const struct iovec *iov, loff_t offset, 1685 unsigned long nr_segs) 1686 { 1687 struct file *file = iocb->ki_filp; 1688 struct inode *inode = file->f_mapping->host; 1689 struct ext4_inode_info *ei = EXT4_I(inode); 1690 handle_t *handle = NULL; 1691 ssize_t ret; 1692 int orphan = 0; 1693 size_t count = iov_length(iov, nr_segs); 1694 1695 if (rw == WRITE) { 1696 loff_t final_size = offset + count; 1697 1698 handle = ext4_journal_start(inode, DIO_CREDITS); 1699 if (IS_ERR(handle)) { 1700 ret = PTR_ERR(handle); 1701 goto out; 1702 } 1703 if (final_size > inode->i_size) { 1704 ret = ext4_orphan_add(handle, inode); 1705 if (ret) 1706 goto out_stop; 1707 orphan = 1; 1708 ei->i_disksize = inode->i_size; 1709 } 1710 } 1711 1712 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1713 offset, nr_segs, 1714 ext4_get_block, NULL); 1715 1716 /* 1717 * Reacquire the handle: ext4_get_block() can restart the transaction 1718 */ 1719 handle = ext4_journal_current_handle(); 1720 1721 out_stop: 1722 if (handle) { 1723 int err; 1724 1725 if (orphan && inode->i_nlink) 1726 ext4_orphan_del(handle, inode); 1727 if (orphan && ret > 0) { 1728 loff_t end = offset + ret; 1729 if (end > inode->i_size) { 1730 ei->i_disksize = end; 1731 i_size_write(inode, end); 1732 /* 1733 * We're going to return a positive `ret' 1734 * here due to non-zero-length I/O, so there's 1735 * no way of reporting error returns from 1736 * ext4_mark_inode_dirty() to userspace. So 1737 * ignore it. 1738 */ 1739 ext4_mark_inode_dirty(handle, inode); 1740 } 1741 } 1742 err = ext4_journal_stop(handle); 1743 if (ret == 0) 1744 ret = err; 1745 } 1746 out: 1747 return ret; 1748 } 1749 1750 /* 1751 * Pages can be marked dirty completely asynchronously from ext4's journalling 1752 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1753 * much here because ->set_page_dirty is called under VFS locks. The page is 1754 * not necessarily locked. 1755 * 1756 * We cannot just dirty the page and leave attached buffers clean, because the 1757 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1758 * or jbddirty because all the journalling code will explode. 1759 * 1760 * So what we do is to mark the page "pending dirty" and next time writepage 1761 * is called, propagate that into the buffers appropriately. 1762 */ 1763 static int ext4_journalled_set_page_dirty(struct page *page) 1764 { 1765 SetPageChecked(page); 1766 return __set_page_dirty_nobuffers(page); 1767 } 1768 1769 static const struct address_space_operations ext4_ordered_aops = { 1770 .readpage = ext4_readpage, 1771 .readpages = ext4_readpages, 1772 .writepage = ext4_ordered_writepage, 1773 .sync_page = block_sync_page, 1774 .write_begin = ext4_write_begin, 1775 .write_end = ext4_ordered_write_end, 1776 .bmap = ext4_bmap, 1777 .invalidatepage = ext4_invalidatepage, 1778 .releasepage = ext4_releasepage, 1779 .direct_IO = ext4_direct_IO, 1780 .migratepage = buffer_migrate_page, 1781 }; 1782 1783 static const struct address_space_operations ext4_writeback_aops = { 1784 .readpage = ext4_readpage, 1785 .readpages = ext4_readpages, 1786 .writepage = ext4_writeback_writepage, 1787 .sync_page = block_sync_page, 1788 .write_begin = ext4_write_begin, 1789 .write_end = ext4_writeback_write_end, 1790 .bmap = ext4_bmap, 1791 .invalidatepage = ext4_invalidatepage, 1792 .releasepage = ext4_releasepage, 1793 .direct_IO = ext4_direct_IO, 1794 .migratepage = buffer_migrate_page, 1795 }; 1796 1797 static const struct address_space_operations ext4_journalled_aops = { 1798 .readpage = ext4_readpage, 1799 .readpages = ext4_readpages, 1800 .writepage = ext4_journalled_writepage, 1801 .sync_page = block_sync_page, 1802 .write_begin = ext4_write_begin, 1803 .write_end = ext4_journalled_write_end, 1804 .set_page_dirty = ext4_journalled_set_page_dirty, 1805 .bmap = ext4_bmap, 1806 .invalidatepage = ext4_invalidatepage, 1807 .releasepage = ext4_releasepage, 1808 }; 1809 1810 void ext4_set_aops(struct inode *inode) 1811 { 1812 if (ext4_should_order_data(inode)) 1813 inode->i_mapping->a_ops = &ext4_ordered_aops; 1814 else if (ext4_should_writeback_data(inode)) 1815 inode->i_mapping->a_ops = &ext4_writeback_aops; 1816 else 1817 inode->i_mapping->a_ops = &ext4_journalled_aops; 1818 } 1819 1820 /* 1821 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 1822 * up to the end of the block which corresponds to `from'. 1823 * This required during truncate. We need to physically zero the tail end 1824 * of that block so it doesn't yield old data if the file is later grown. 1825 */ 1826 int ext4_block_truncate_page(handle_t *handle, struct page *page, 1827 struct address_space *mapping, loff_t from) 1828 { 1829 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1830 unsigned offset = from & (PAGE_CACHE_SIZE-1); 1831 unsigned blocksize, iblock, length, pos; 1832 struct inode *inode = mapping->host; 1833 struct buffer_head *bh; 1834 int err = 0; 1835 1836 blocksize = inode->i_sb->s_blocksize; 1837 length = blocksize - (offset & (blocksize - 1)); 1838 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1839 1840 /* 1841 * For "nobh" option, we can only work if we don't need to 1842 * read-in the page - otherwise we create buffers to do the IO. 1843 */ 1844 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 1845 ext4_should_writeback_data(inode) && PageUptodate(page)) { 1846 zero_user_page(page, offset, length, KM_USER0); 1847 set_page_dirty(page); 1848 goto unlock; 1849 } 1850 1851 if (!page_has_buffers(page)) 1852 create_empty_buffers(page, blocksize, 0); 1853 1854 /* Find the buffer that contains "offset" */ 1855 bh = page_buffers(page); 1856 pos = blocksize; 1857 while (offset >= pos) { 1858 bh = bh->b_this_page; 1859 iblock++; 1860 pos += blocksize; 1861 } 1862 1863 err = 0; 1864 if (buffer_freed(bh)) { 1865 BUFFER_TRACE(bh, "freed: skip"); 1866 goto unlock; 1867 } 1868 1869 if (!buffer_mapped(bh)) { 1870 BUFFER_TRACE(bh, "unmapped"); 1871 ext4_get_block(inode, iblock, bh, 0); 1872 /* unmapped? It's a hole - nothing to do */ 1873 if (!buffer_mapped(bh)) { 1874 BUFFER_TRACE(bh, "still unmapped"); 1875 goto unlock; 1876 } 1877 } 1878 1879 /* Ok, it's mapped. Make sure it's up-to-date */ 1880 if (PageUptodate(page)) 1881 set_buffer_uptodate(bh); 1882 1883 if (!buffer_uptodate(bh)) { 1884 err = -EIO; 1885 ll_rw_block(READ, 1, &bh); 1886 wait_on_buffer(bh); 1887 /* Uhhuh. Read error. Complain and punt. */ 1888 if (!buffer_uptodate(bh)) 1889 goto unlock; 1890 } 1891 1892 if (ext4_should_journal_data(inode)) { 1893 BUFFER_TRACE(bh, "get write access"); 1894 err = ext4_journal_get_write_access(handle, bh); 1895 if (err) 1896 goto unlock; 1897 } 1898 1899 zero_user_page(page, offset, length, KM_USER0); 1900 1901 BUFFER_TRACE(bh, "zeroed end of block"); 1902 1903 err = 0; 1904 if (ext4_should_journal_data(inode)) { 1905 err = ext4_journal_dirty_metadata(handle, bh); 1906 } else { 1907 if (ext4_should_order_data(inode)) 1908 err = ext4_journal_dirty_data(handle, bh); 1909 mark_buffer_dirty(bh); 1910 } 1911 1912 unlock: 1913 unlock_page(page); 1914 page_cache_release(page); 1915 return err; 1916 } 1917 1918 /* 1919 * Probably it should be a library function... search for first non-zero word 1920 * or memcmp with zero_page, whatever is better for particular architecture. 1921 * Linus? 1922 */ 1923 static inline int all_zeroes(__le32 *p, __le32 *q) 1924 { 1925 while (p < q) 1926 if (*p++) 1927 return 0; 1928 return 1; 1929 } 1930 1931 /** 1932 * ext4_find_shared - find the indirect blocks for partial truncation. 1933 * @inode: inode in question 1934 * @depth: depth of the affected branch 1935 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 1936 * @chain: place to store the pointers to partial indirect blocks 1937 * @top: place to the (detached) top of branch 1938 * 1939 * This is a helper function used by ext4_truncate(). 1940 * 1941 * When we do truncate() we may have to clean the ends of several 1942 * indirect blocks but leave the blocks themselves alive. Block is 1943 * partially truncated if some data below the new i_size is refered 1944 * from it (and it is on the path to the first completely truncated 1945 * data block, indeed). We have to free the top of that path along 1946 * with everything to the right of the path. Since no allocation 1947 * past the truncation point is possible until ext4_truncate() 1948 * finishes, we may safely do the latter, but top of branch may 1949 * require special attention - pageout below the truncation point 1950 * might try to populate it. 1951 * 1952 * We atomically detach the top of branch from the tree, store the 1953 * block number of its root in *@top, pointers to buffer_heads of 1954 * partially truncated blocks - in @chain[].bh and pointers to 1955 * their last elements that should not be removed - in 1956 * @chain[].p. Return value is the pointer to last filled element 1957 * of @chain. 1958 * 1959 * The work left to caller to do the actual freeing of subtrees: 1960 * a) free the subtree starting from *@top 1961 * b) free the subtrees whose roots are stored in 1962 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1963 * c) free the subtrees growing from the inode past the @chain[0]. 1964 * (no partially truncated stuff there). */ 1965 1966 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1967 int offsets[4], Indirect chain[4], __le32 *top) 1968 { 1969 Indirect *partial, *p; 1970 int k, err; 1971 1972 *top = 0; 1973 /* Make k index the deepest non-null offest + 1 */ 1974 for (k = depth; k > 1 && !offsets[k-1]; k--) 1975 ; 1976 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1977 /* Writer: pointers */ 1978 if (!partial) 1979 partial = chain + k-1; 1980 /* 1981 * If the branch acquired continuation since we've looked at it - 1982 * fine, it should all survive and (new) top doesn't belong to us. 1983 */ 1984 if (!partial->key && *partial->p) 1985 /* Writer: end */ 1986 goto no_top; 1987 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 1988 ; 1989 /* 1990 * OK, we've found the last block that must survive. The rest of our 1991 * branch should be detached before unlocking. However, if that rest 1992 * of branch is all ours and does not grow immediately from the inode 1993 * it's easier to cheat and just decrement partial->p. 1994 */ 1995 if (p == chain + k - 1 && p > chain) { 1996 p->p--; 1997 } else { 1998 *top = *p->p; 1999 /* Nope, don't do this in ext4. Must leave the tree intact */ 2000 #if 0 2001 *p->p = 0; 2002 #endif 2003 } 2004 /* Writer: end */ 2005 2006 while(partial > p) { 2007 brelse(partial->bh); 2008 partial--; 2009 } 2010 no_top: 2011 return partial; 2012 } 2013 2014 /* 2015 * Zero a number of block pointers in either an inode or an indirect block. 2016 * If we restart the transaction we must again get write access to the 2017 * indirect block for further modification. 2018 * 2019 * We release `count' blocks on disk, but (last - first) may be greater 2020 * than `count' because there can be holes in there. 2021 */ 2022 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 2023 struct buffer_head *bh, ext4_fsblk_t block_to_free, 2024 unsigned long count, __le32 *first, __le32 *last) 2025 { 2026 __le32 *p; 2027 if (try_to_extend_transaction(handle, inode)) { 2028 if (bh) { 2029 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2030 ext4_journal_dirty_metadata(handle, bh); 2031 } 2032 ext4_mark_inode_dirty(handle, inode); 2033 ext4_journal_test_restart(handle, inode); 2034 if (bh) { 2035 BUFFER_TRACE(bh, "retaking write access"); 2036 ext4_journal_get_write_access(handle, bh); 2037 } 2038 } 2039 2040 /* 2041 * Any buffers which are on the journal will be in memory. We find 2042 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 2043 * on them. We've already detached each block from the file, so 2044 * bforget() in jbd2_journal_forget() should be safe. 2045 * 2046 * AKPM: turn on bforget in jbd2_journal_forget()!!! 2047 */ 2048 for (p = first; p < last; p++) { 2049 u32 nr = le32_to_cpu(*p); 2050 if (nr) { 2051 struct buffer_head *bh; 2052 2053 *p = 0; 2054 bh = sb_find_get_block(inode->i_sb, nr); 2055 ext4_forget(handle, 0, inode, bh, nr); 2056 } 2057 } 2058 2059 ext4_free_blocks(handle, inode, block_to_free, count); 2060 } 2061 2062 /** 2063 * ext4_free_data - free a list of data blocks 2064 * @handle: handle for this transaction 2065 * @inode: inode we are dealing with 2066 * @this_bh: indirect buffer_head which contains *@first and *@last 2067 * @first: array of block numbers 2068 * @last: points immediately past the end of array 2069 * 2070 * We are freeing all blocks refered from that array (numbers are stored as 2071 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2072 * 2073 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2074 * blocks are contiguous then releasing them at one time will only affect one 2075 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2076 * actually use a lot of journal space. 2077 * 2078 * @this_bh will be %NULL if @first and @last point into the inode's direct 2079 * block pointers. 2080 */ 2081 static void ext4_free_data(handle_t *handle, struct inode *inode, 2082 struct buffer_head *this_bh, 2083 __le32 *first, __le32 *last) 2084 { 2085 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2086 unsigned long count = 0; /* Number of blocks in the run */ 2087 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2088 corresponding to 2089 block_to_free */ 2090 ext4_fsblk_t nr; /* Current block # */ 2091 __le32 *p; /* Pointer into inode/ind 2092 for current block */ 2093 int err; 2094 2095 if (this_bh) { /* For indirect block */ 2096 BUFFER_TRACE(this_bh, "get_write_access"); 2097 err = ext4_journal_get_write_access(handle, this_bh); 2098 /* Important: if we can't update the indirect pointers 2099 * to the blocks, we can't free them. */ 2100 if (err) 2101 return; 2102 } 2103 2104 for (p = first; p < last; p++) { 2105 nr = le32_to_cpu(*p); 2106 if (nr) { 2107 /* accumulate blocks to free if they're contiguous */ 2108 if (count == 0) { 2109 block_to_free = nr; 2110 block_to_free_p = p; 2111 count = 1; 2112 } else if (nr == block_to_free + count) { 2113 count++; 2114 } else { 2115 ext4_clear_blocks(handle, inode, this_bh, 2116 block_to_free, 2117 count, block_to_free_p, p); 2118 block_to_free = nr; 2119 block_to_free_p = p; 2120 count = 1; 2121 } 2122 } 2123 } 2124 2125 if (count > 0) 2126 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 2127 count, block_to_free_p, p); 2128 2129 if (this_bh) { 2130 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 2131 ext4_journal_dirty_metadata(handle, this_bh); 2132 } 2133 } 2134 2135 /** 2136 * ext4_free_branches - free an array of branches 2137 * @handle: JBD handle for this transaction 2138 * @inode: inode we are dealing with 2139 * @parent_bh: the buffer_head which contains *@first and *@last 2140 * @first: array of block numbers 2141 * @last: pointer immediately past the end of array 2142 * @depth: depth of the branches to free 2143 * 2144 * We are freeing all blocks refered from these branches (numbers are 2145 * stored as little-endian 32-bit) and updating @inode->i_blocks 2146 * appropriately. 2147 */ 2148 static void ext4_free_branches(handle_t *handle, struct inode *inode, 2149 struct buffer_head *parent_bh, 2150 __le32 *first, __le32 *last, int depth) 2151 { 2152 ext4_fsblk_t nr; 2153 __le32 *p; 2154 2155 if (is_handle_aborted(handle)) 2156 return; 2157 2158 if (depth--) { 2159 struct buffer_head *bh; 2160 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2161 p = last; 2162 while (--p >= first) { 2163 nr = le32_to_cpu(*p); 2164 if (!nr) 2165 continue; /* A hole */ 2166 2167 /* Go read the buffer for the next level down */ 2168 bh = sb_bread(inode->i_sb, nr); 2169 2170 /* 2171 * A read failure? Report error and clear slot 2172 * (should be rare). 2173 */ 2174 if (!bh) { 2175 ext4_error(inode->i_sb, "ext4_free_branches", 2176 "Read failure, inode=%lu, block=%llu", 2177 inode->i_ino, nr); 2178 continue; 2179 } 2180 2181 /* This zaps the entire block. Bottom up. */ 2182 BUFFER_TRACE(bh, "free child branches"); 2183 ext4_free_branches(handle, inode, bh, 2184 (__le32*)bh->b_data, 2185 (__le32*)bh->b_data + addr_per_block, 2186 depth); 2187 2188 /* 2189 * We've probably journalled the indirect block several 2190 * times during the truncate. But it's no longer 2191 * needed and we now drop it from the transaction via 2192 * jbd2_journal_revoke(). 2193 * 2194 * That's easy if it's exclusively part of this 2195 * transaction. But if it's part of the committing 2196 * transaction then jbd2_journal_forget() will simply 2197 * brelse() it. That means that if the underlying 2198 * block is reallocated in ext4_get_block(), 2199 * unmap_underlying_metadata() will find this block 2200 * and will try to get rid of it. damn, damn. 2201 * 2202 * If this block has already been committed to the 2203 * journal, a revoke record will be written. And 2204 * revoke records must be emitted *before* clearing 2205 * this block's bit in the bitmaps. 2206 */ 2207 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 2208 2209 /* 2210 * Everything below this this pointer has been 2211 * released. Now let this top-of-subtree go. 2212 * 2213 * We want the freeing of this indirect block to be 2214 * atomic in the journal with the updating of the 2215 * bitmap block which owns it. So make some room in 2216 * the journal. 2217 * 2218 * We zero the parent pointer *after* freeing its 2219 * pointee in the bitmaps, so if extend_transaction() 2220 * for some reason fails to put the bitmap changes and 2221 * the release into the same transaction, recovery 2222 * will merely complain about releasing a free block, 2223 * rather than leaking blocks. 2224 */ 2225 if (is_handle_aborted(handle)) 2226 return; 2227 if (try_to_extend_transaction(handle, inode)) { 2228 ext4_mark_inode_dirty(handle, inode); 2229 ext4_journal_test_restart(handle, inode); 2230 } 2231 2232 ext4_free_blocks(handle, inode, nr, 1); 2233 2234 if (parent_bh) { 2235 /* 2236 * The block which we have just freed is 2237 * pointed to by an indirect block: journal it 2238 */ 2239 BUFFER_TRACE(parent_bh, "get_write_access"); 2240 if (!ext4_journal_get_write_access(handle, 2241 parent_bh)){ 2242 *p = 0; 2243 BUFFER_TRACE(parent_bh, 2244 "call ext4_journal_dirty_metadata"); 2245 ext4_journal_dirty_metadata(handle, 2246 parent_bh); 2247 } 2248 } 2249 } 2250 } else { 2251 /* We have reached the bottom of the tree. */ 2252 BUFFER_TRACE(parent_bh, "free data blocks"); 2253 ext4_free_data(handle, inode, parent_bh, first, last); 2254 } 2255 } 2256 2257 /* 2258 * ext4_truncate() 2259 * 2260 * We block out ext4_get_block() block instantiations across the entire 2261 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 2262 * simultaneously on behalf of the same inode. 2263 * 2264 * As we work through the truncate and commmit bits of it to the journal there 2265 * is one core, guiding principle: the file's tree must always be consistent on 2266 * disk. We must be able to restart the truncate after a crash. 2267 * 2268 * The file's tree may be transiently inconsistent in memory (although it 2269 * probably isn't), but whenever we close off and commit a journal transaction, 2270 * the contents of (the filesystem + the journal) must be consistent and 2271 * restartable. It's pretty simple, really: bottom up, right to left (although 2272 * left-to-right works OK too). 2273 * 2274 * Note that at recovery time, journal replay occurs *before* the restart of 2275 * truncate against the orphan inode list. 2276 * 2277 * The committed inode has the new, desired i_size (which is the same as 2278 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 2279 * that this inode's truncate did not complete and it will again call 2280 * ext4_truncate() to have another go. So there will be instantiated blocks 2281 * to the right of the truncation point in a crashed ext4 filesystem. But 2282 * that's fine - as long as they are linked from the inode, the post-crash 2283 * ext4_truncate() run will find them and release them. 2284 */ 2285 void ext4_truncate(struct inode *inode) 2286 { 2287 handle_t *handle; 2288 struct ext4_inode_info *ei = EXT4_I(inode); 2289 __le32 *i_data = ei->i_data; 2290 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2291 struct address_space *mapping = inode->i_mapping; 2292 int offsets[4]; 2293 Indirect chain[4]; 2294 Indirect *partial; 2295 __le32 nr = 0; 2296 int n; 2297 long last_block; 2298 unsigned blocksize = inode->i_sb->s_blocksize; 2299 struct page *page; 2300 2301 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2302 S_ISLNK(inode->i_mode))) 2303 return; 2304 if (ext4_inode_is_fast_symlink(inode)) 2305 return; 2306 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2307 return; 2308 2309 /* 2310 * We have to lock the EOF page here, because lock_page() nests 2311 * outside jbd2_journal_start(). 2312 */ 2313 if ((inode->i_size & (blocksize - 1)) == 0) { 2314 /* Block boundary? Nothing to do */ 2315 page = NULL; 2316 } else { 2317 page = grab_cache_page(mapping, 2318 inode->i_size >> PAGE_CACHE_SHIFT); 2319 if (!page) 2320 return; 2321 } 2322 2323 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 2324 return ext4_ext_truncate(inode, page); 2325 2326 handle = start_transaction(inode); 2327 if (IS_ERR(handle)) { 2328 if (page) { 2329 clear_highpage(page); 2330 flush_dcache_page(page); 2331 unlock_page(page); 2332 page_cache_release(page); 2333 } 2334 return; /* AKPM: return what? */ 2335 } 2336 2337 last_block = (inode->i_size + blocksize-1) 2338 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 2339 2340 if (page) 2341 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2342 2343 n = ext4_block_to_path(inode, last_block, offsets, NULL); 2344 if (n == 0) 2345 goto out_stop; /* error */ 2346 2347 /* 2348 * OK. This truncate is going to happen. We add the inode to the 2349 * orphan list, so that if this truncate spans multiple transactions, 2350 * and we crash, we will resume the truncate when the filesystem 2351 * recovers. It also marks the inode dirty, to catch the new size. 2352 * 2353 * Implication: the file must always be in a sane, consistent 2354 * truncatable state while each transaction commits. 2355 */ 2356 if (ext4_orphan_add(handle, inode)) 2357 goto out_stop; 2358 2359 /* 2360 * The orphan list entry will now protect us from any crash which 2361 * occurs before the truncate completes, so it is now safe to propagate 2362 * the new, shorter inode size (held for now in i_size) into the 2363 * on-disk inode. We do this via i_disksize, which is the value which 2364 * ext4 *really* writes onto the disk inode. 2365 */ 2366 ei->i_disksize = inode->i_size; 2367 2368 /* 2369 * From here we block out all ext4_get_block() callers who want to 2370 * modify the block allocation tree. 2371 */ 2372 mutex_lock(&ei->truncate_mutex); 2373 2374 if (n == 1) { /* direct blocks */ 2375 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 2376 i_data + EXT4_NDIR_BLOCKS); 2377 goto do_indirects; 2378 } 2379 2380 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 2381 /* Kill the top of shared branch (not detached) */ 2382 if (nr) { 2383 if (partial == chain) { 2384 /* Shared branch grows from the inode */ 2385 ext4_free_branches(handle, inode, NULL, 2386 &nr, &nr+1, (chain+n-1) - partial); 2387 *partial->p = 0; 2388 /* 2389 * We mark the inode dirty prior to restart, 2390 * and prior to stop. No need for it here. 2391 */ 2392 } else { 2393 /* Shared branch grows from an indirect block */ 2394 BUFFER_TRACE(partial->bh, "get_write_access"); 2395 ext4_free_branches(handle, inode, partial->bh, 2396 partial->p, 2397 partial->p+1, (chain+n-1) - partial); 2398 } 2399 } 2400 /* Clear the ends of indirect blocks on the shared branch */ 2401 while (partial > chain) { 2402 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 2403 (__le32*)partial->bh->b_data+addr_per_block, 2404 (chain+n-1) - partial); 2405 BUFFER_TRACE(partial->bh, "call brelse"); 2406 brelse (partial->bh); 2407 partial--; 2408 } 2409 do_indirects: 2410 /* Kill the remaining (whole) subtrees */ 2411 switch (offsets[0]) { 2412 default: 2413 nr = i_data[EXT4_IND_BLOCK]; 2414 if (nr) { 2415 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2416 i_data[EXT4_IND_BLOCK] = 0; 2417 } 2418 case EXT4_IND_BLOCK: 2419 nr = i_data[EXT4_DIND_BLOCK]; 2420 if (nr) { 2421 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2422 i_data[EXT4_DIND_BLOCK] = 0; 2423 } 2424 case EXT4_DIND_BLOCK: 2425 nr = i_data[EXT4_TIND_BLOCK]; 2426 if (nr) { 2427 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2428 i_data[EXT4_TIND_BLOCK] = 0; 2429 } 2430 case EXT4_TIND_BLOCK: 2431 ; 2432 } 2433 2434 ext4_discard_reservation(inode); 2435 2436 mutex_unlock(&ei->truncate_mutex); 2437 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 2438 ext4_mark_inode_dirty(handle, inode); 2439 2440 /* 2441 * In a multi-transaction truncate, we only make the final transaction 2442 * synchronous 2443 */ 2444 if (IS_SYNC(inode)) 2445 handle->h_sync = 1; 2446 out_stop: 2447 /* 2448 * If this was a simple ftruncate(), and the file will remain alive 2449 * then we need to clear up the orphan record which we created above. 2450 * However, if this was a real unlink then we were called by 2451 * ext4_delete_inode(), and we allow that function to clean up the 2452 * orphan info for us. 2453 */ 2454 if (inode->i_nlink) 2455 ext4_orphan_del(handle, inode); 2456 2457 ext4_journal_stop(handle); 2458 } 2459 2460 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 2461 unsigned long ino, struct ext4_iloc *iloc) 2462 { 2463 unsigned long desc, group_desc, block_group; 2464 unsigned long offset; 2465 ext4_fsblk_t block; 2466 struct buffer_head *bh; 2467 struct ext4_group_desc * gdp; 2468 2469 if (!ext4_valid_inum(sb, ino)) { 2470 /* 2471 * This error is already checked for in namei.c unless we are 2472 * looking at an NFS filehandle, in which case no error 2473 * report is needed 2474 */ 2475 return 0; 2476 } 2477 2478 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 2479 if (block_group >= EXT4_SB(sb)->s_groups_count) { 2480 ext4_error(sb,"ext4_get_inode_block","group >= groups count"); 2481 return 0; 2482 } 2483 smp_rmb(); 2484 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2485 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2486 bh = EXT4_SB(sb)->s_group_desc[group_desc]; 2487 if (!bh) { 2488 ext4_error (sb, "ext4_get_inode_block", 2489 "Descriptor not loaded"); 2490 return 0; 2491 } 2492 2493 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data + 2494 desc * EXT4_DESC_SIZE(sb)); 2495 /* 2496 * Figure out the offset within the block group inode table 2497 */ 2498 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 2499 EXT4_INODE_SIZE(sb); 2500 block = ext4_inode_table(sb, gdp) + 2501 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 2502 2503 iloc->block_group = block_group; 2504 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 2505 return block; 2506 } 2507 2508 /* 2509 * ext4_get_inode_loc returns with an extra refcount against the inode's 2510 * underlying buffer_head on success. If 'in_mem' is true, we have all 2511 * data in memory that is needed to recreate the on-disk version of this 2512 * inode. 2513 */ 2514 static int __ext4_get_inode_loc(struct inode *inode, 2515 struct ext4_iloc *iloc, int in_mem) 2516 { 2517 ext4_fsblk_t block; 2518 struct buffer_head *bh; 2519 2520 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2521 if (!block) 2522 return -EIO; 2523 2524 bh = sb_getblk(inode->i_sb, block); 2525 if (!bh) { 2526 ext4_error (inode->i_sb, "ext4_get_inode_loc", 2527 "unable to read inode block - " 2528 "inode=%lu, block=%llu", 2529 inode->i_ino, block); 2530 return -EIO; 2531 } 2532 if (!buffer_uptodate(bh)) { 2533 lock_buffer(bh); 2534 if (buffer_uptodate(bh)) { 2535 /* someone brought it uptodate while we waited */ 2536 unlock_buffer(bh); 2537 goto has_buffer; 2538 } 2539 2540 /* 2541 * If we have all information of the inode in memory and this 2542 * is the only valid inode in the block, we need not read the 2543 * block. 2544 */ 2545 if (in_mem) { 2546 struct buffer_head *bitmap_bh; 2547 struct ext4_group_desc *desc; 2548 int inodes_per_buffer; 2549 int inode_offset, i; 2550 int block_group; 2551 int start; 2552 2553 block_group = (inode->i_ino - 1) / 2554 EXT4_INODES_PER_GROUP(inode->i_sb); 2555 inodes_per_buffer = bh->b_size / 2556 EXT4_INODE_SIZE(inode->i_sb); 2557 inode_offset = ((inode->i_ino - 1) % 2558 EXT4_INODES_PER_GROUP(inode->i_sb)); 2559 start = inode_offset & ~(inodes_per_buffer - 1); 2560 2561 /* Is the inode bitmap in cache? */ 2562 desc = ext4_get_group_desc(inode->i_sb, 2563 block_group, NULL); 2564 if (!desc) 2565 goto make_io; 2566 2567 bitmap_bh = sb_getblk(inode->i_sb, 2568 ext4_inode_bitmap(inode->i_sb, desc)); 2569 if (!bitmap_bh) 2570 goto make_io; 2571 2572 /* 2573 * If the inode bitmap isn't in cache then the 2574 * optimisation may end up performing two reads instead 2575 * of one, so skip it. 2576 */ 2577 if (!buffer_uptodate(bitmap_bh)) { 2578 brelse(bitmap_bh); 2579 goto make_io; 2580 } 2581 for (i = start; i < start + inodes_per_buffer; i++) { 2582 if (i == inode_offset) 2583 continue; 2584 if (ext4_test_bit(i, bitmap_bh->b_data)) 2585 break; 2586 } 2587 brelse(bitmap_bh); 2588 if (i == start + inodes_per_buffer) { 2589 /* all other inodes are free, so skip I/O */ 2590 memset(bh->b_data, 0, bh->b_size); 2591 set_buffer_uptodate(bh); 2592 unlock_buffer(bh); 2593 goto has_buffer; 2594 } 2595 } 2596 2597 make_io: 2598 /* 2599 * There are other valid inodes in the buffer, this inode 2600 * has in-inode xattrs, or we don't have this inode in memory. 2601 * Read the block from disk. 2602 */ 2603 get_bh(bh); 2604 bh->b_end_io = end_buffer_read_sync; 2605 submit_bh(READ_META, bh); 2606 wait_on_buffer(bh); 2607 if (!buffer_uptodate(bh)) { 2608 ext4_error(inode->i_sb, "ext4_get_inode_loc", 2609 "unable to read inode block - " 2610 "inode=%lu, block=%llu", 2611 inode->i_ino, block); 2612 brelse(bh); 2613 return -EIO; 2614 } 2615 } 2616 has_buffer: 2617 iloc->bh = bh; 2618 return 0; 2619 } 2620 2621 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 2622 { 2623 /* We have all inode data except xattrs in memory here. */ 2624 return __ext4_get_inode_loc(inode, iloc, 2625 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 2626 } 2627 2628 void ext4_set_inode_flags(struct inode *inode) 2629 { 2630 unsigned int flags = EXT4_I(inode)->i_flags; 2631 2632 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2633 if (flags & EXT4_SYNC_FL) 2634 inode->i_flags |= S_SYNC; 2635 if (flags & EXT4_APPEND_FL) 2636 inode->i_flags |= S_APPEND; 2637 if (flags & EXT4_IMMUTABLE_FL) 2638 inode->i_flags |= S_IMMUTABLE; 2639 if (flags & EXT4_NOATIME_FL) 2640 inode->i_flags |= S_NOATIME; 2641 if (flags & EXT4_DIRSYNC_FL) 2642 inode->i_flags |= S_DIRSYNC; 2643 } 2644 2645 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 2646 void ext4_get_inode_flags(struct ext4_inode_info *ei) 2647 { 2648 unsigned int flags = ei->vfs_inode.i_flags; 2649 2650 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 2651 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 2652 if (flags & S_SYNC) 2653 ei->i_flags |= EXT4_SYNC_FL; 2654 if (flags & S_APPEND) 2655 ei->i_flags |= EXT4_APPEND_FL; 2656 if (flags & S_IMMUTABLE) 2657 ei->i_flags |= EXT4_IMMUTABLE_FL; 2658 if (flags & S_NOATIME) 2659 ei->i_flags |= EXT4_NOATIME_FL; 2660 if (flags & S_DIRSYNC) 2661 ei->i_flags |= EXT4_DIRSYNC_FL; 2662 } 2663 2664 void ext4_read_inode(struct inode * inode) 2665 { 2666 struct ext4_iloc iloc; 2667 struct ext4_inode *raw_inode; 2668 struct ext4_inode_info *ei = EXT4_I(inode); 2669 struct buffer_head *bh; 2670 int block; 2671 2672 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 2673 ei->i_acl = EXT4_ACL_NOT_CACHED; 2674 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 2675 #endif 2676 ei->i_block_alloc_info = NULL; 2677 2678 if (__ext4_get_inode_loc(inode, &iloc, 0)) 2679 goto bad_inode; 2680 bh = iloc.bh; 2681 raw_inode = ext4_raw_inode(&iloc); 2682 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2683 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2684 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2685 if(!(test_opt (inode->i_sb, NO_UID32))) { 2686 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2687 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2688 } 2689 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 2690 inode->i_size = le32_to_cpu(raw_inode->i_size); 2691 2692 ei->i_state = 0; 2693 ei->i_dir_start_lookup = 0; 2694 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2695 /* We now have enough fields to check if the inode was active or not. 2696 * This is needed because nfsd might try to access dead inodes 2697 * the test is that same one that e2fsck uses 2698 * NeilBrown 1999oct15 2699 */ 2700 if (inode->i_nlink == 0) { 2701 if (inode->i_mode == 0 || 2702 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 2703 /* this inode is deleted */ 2704 brelse (bh); 2705 goto bad_inode; 2706 } 2707 /* The only unlinked inodes we let through here have 2708 * valid i_mode and are being read by the orphan 2709 * recovery code: that's fine, we're about to complete 2710 * the process of deleting those. */ 2711 } 2712 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 2713 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2714 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 2715 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2716 cpu_to_le32(EXT4_OS_HURD)) 2717 ei->i_file_acl |= 2718 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 2719 if (!S_ISREG(inode->i_mode)) { 2720 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 2721 } else { 2722 inode->i_size |= 2723 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 2724 } 2725 ei->i_disksize = inode->i_size; 2726 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2727 ei->i_block_group = iloc.block_group; 2728 /* 2729 * NOTE! The in-memory inode i_data array is in little-endian order 2730 * even on big-endian machines: we do NOT byteswap the block numbers! 2731 */ 2732 for (block = 0; block < EXT4_N_BLOCKS; block++) 2733 ei->i_data[block] = raw_inode->i_block[block]; 2734 INIT_LIST_HEAD(&ei->i_orphan); 2735 2736 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 && 2737 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2738 /* 2739 * When mke2fs creates big inodes it does not zero out 2740 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE, 2741 * so ignore those first few inodes. 2742 */ 2743 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2744 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2745 EXT4_INODE_SIZE(inode->i_sb)) { 2746 brelse (bh); 2747 goto bad_inode; 2748 } 2749 if (ei->i_extra_isize == 0) { 2750 /* The extra space is currently unused. Use it. */ 2751 ei->i_extra_isize = sizeof(struct ext4_inode) - 2752 EXT4_GOOD_OLD_INODE_SIZE; 2753 } else { 2754 __le32 *magic = (void *)raw_inode + 2755 EXT4_GOOD_OLD_INODE_SIZE + 2756 ei->i_extra_isize; 2757 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 2758 ei->i_state |= EXT4_STATE_XATTR; 2759 } 2760 } else 2761 ei->i_extra_isize = 0; 2762 2763 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 2764 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 2765 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 2766 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 2767 2768 if (S_ISREG(inode->i_mode)) { 2769 inode->i_op = &ext4_file_inode_operations; 2770 inode->i_fop = &ext4_file_operations; 2771 ext4_set_aops(inode); 2772 } else if (S_ISDIR(inode->i_mode)) { 2773 inode->i_op = &ext4_dir_inode_operations; 2774 inode->i_fop = &ext4_dir_operations; 2775 } else if (S_ISLNK(inode->i_mode)) { 2776 if (ext4_inode_is_fast_symlink(inode)) 2777 inode->i_op = &ext4_fast_symlink_inode_operations; 2778 else { 2779 inode->i_op = &ext4_symlink_inode_operations; 2780 ext4_set_aops(inode); 2781 } 2782 } else { 2783 inode->i_op = &ext4_special_inode_operations; 2784 if (raw_inode->i_block[0]) 2785 init_special_inode(inode, inode->i_mode, 2786 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 2787 else 2788 init_special_inode(inode, inode->i_mode, 2789 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 2790 } 2791 brelse (iloc.bh); 2792 ext4_set_inode_flags(inode); 2793 return; 2794 2795 bad_inode: 2796 make_bad_inode(inode); 2797 return; 2798 } 2799 2800 /* 2801 * Post the struct inode info into an on-disk inode location in the 2802 * buffer-cache. This gobbles the caller's reference to the 2803 * buffer_head in the inode location struct. 2804 * 2805 * The caller must have write access to iloc->bh. 2806 */ 2807 static int ext4_do_update_inode(handle_t *handle, 2808 struct inode *inode, 2809 struct ext4_iloc *iloc) 2810 { 2811 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 2812 struct ext4_inode_info *ei = EXT4_I(inode); 2813 struct buffer_head *bh = iloc->bh; 2814 int err = 0, rc, block; 2815 2816 /* For fields not not tracking in the in-memory inode, 2817 * initialise them to zero for new inodes. */ 2818 if (ei->i_state & EXT4_STATE_NEW) 2819 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 2820 2821 ext4_get_inode_flags(ei); 2822 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 2823 if(!(test_opt(inode->i_sb, NO_UID32))) { 2824 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 2825 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 2826 /* 2827 * Fix up interoperability with old kernels. Otherwise, old inodes get 2828 * re-used with the upper 16 bits of the uid/gid intact 2829 */ 2830 if(!ei->i_dtime) { 2831 raw_inode->i_uid_high = 2832 cpu_to_le16(high_16_bits(inode->i_uid)); 2833 raw_inode->i_gid_high = 2834 cpu_to_le16(high_16_bits(inode->i_gid)); 2835 } else { 2836 raw_inode->i_uid_high = 0; 2837 raw_inode->i_gid_high = 0; 2838 } 2839 } else { 2840 raw_inode->i_uid_low = 2841 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 2842 raw_inode->i_gid_low = 2843 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 2844 raw_inode->i_uid_high = 0; 2845 raw_inode->i_gid_high = 0; 2846 } 2847 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 2848 raw_inode->i_size = cpu_to_le32(ei->i_disksize); 2849 2850 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 2851 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 2852 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 2853 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 2854 2855 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 2856 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 2857 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 2858 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2859 cpu_to_le32(EXT4_OS_HURD)) 2860 raw_inode->i_file_acl_high = 2861 cpu_to_le16(ei->i_file_acl >> 32); 2862 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 2863 if (!S_ISREG(inode->i_mode)) { 2864 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 2865 } else { 2866 raw_inode->i_size_high = 2867 cpu_to_le32(ei->i_disksize >> 32); 2868 if (ei->i_disksize > 0x7fffffffULL) { 2869 struct super_block *sb = inode->i_sb; 2870 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 2871 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 2872 EXT4_SB(sb)->s_es->s_rev_level == 2873 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 2874 /* If this is the first large file 2875 * created, add a flag to the superblock. 2876 */ 2877 err = ext4_journal_get_write_access(handle, 2878 EXT4_SB(sb)->s_sbh); 2879 if (err) 2880 goto out_brelse; 2881 ext4_update_dynamic_rev(sb); 2882 EXT4_SET_RO_COMPAT_FEATURE(sb, 2883 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 2884 sb->s_dirt = 1; 2885 handle->h_sync = 1; 2886 err = ext4_journal_dirty_metadata(handle, 2887 EXT4_SB(sb)->s_sbh); 2888 } 2889 } 2890 } 2891 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 2892 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 2893 if (old_valid_dev(inode->i_rdev)) { 2894 raw_inode->i_block[0] = 2895 cpu_to_le32(old_encode_dev(inode->i_rdev)); 2896 raw_inode->i_block[1] = 0; 2897 } else { 2898 raw_inode->i_block[0] = 0; 2899 raw_inode->i_block[1] = 2900 cpu_to_le32(new_encode_dev(inode->i_rdev)); 2901 raw_inode->i_block[2] = 0; 2902 } 2903 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 2904 raw_inode->i_block[block] = ei->i_data[block]; 2905 2906 if (ei->i_extra_isize) 2907 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 2908 2909 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2910 rc = ext4_journal_dirty_metadata(handle, bh); 2911 if (!err) 2912 err = rc; 2913 ei->i_state &= ~EXT4_STATE_NEW; 2914 2915 out_brelse: 2916 brelse (bh); 2917 ext4_std_error(inode->i_sb, err); 2918 return err; 2919 } 2920 2921 /* 2922 * ext4_write_inode() 2923 * 2924 * We are called from a few places: 2925 * 2926 * - Within generic_file_write() for O_SYNC files. 2927 * Here, there will be no transaction running. We wait for any running 2928 * trasnaction to commit. 2929 * 2930 * - Within sys_sync(), kupdate and such. 2931 * We wait on commit, if tol to. 2932 * 2933 * - Within prune_icache() (PF_MEMALLOC == true) 2934 * Here we simply return. We can't afford to block kswapd on the 2935 * journal commit. 2936 * 2937 * In all cases it is actually safe for us to return without doing anything, 2938 * because the inode has been copied into a raw inode buffer in 2939 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 2940 * knfsd. 2941 * 2942 * Note that we are absolutely dependent upon all inode dirtiers doing the 2943 * right thing: they *must* call mark_inode_dirty() after dirtying info in 2944 * which we are interested. 2945 * 2946 * It would be a bug for them to not do this. The code: 2947 * 2948 * mark_inode_dirty(inode) 2949 * stuff(); 2950 * inode->i_size = expr; 2951 * 2952 * is in error because a kswapd-driven write_inode() could occur while 2953 * `stuff()' is running, and the new i_size will be lost. Plus the inode 2954 * will no longer be on the superblock's dirty inode list. 2955 */ 2956 int ext4_write_inode(struct inode *inode, int wait) 2957 { 2958 if (current->flags & PF_MEMALLOC) 2959 return 0; 2960 2961 if (ext4_journal_current_handle()) { 2962 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 2963 dump_stack(); 2964 return -EIO; 2965 } 2966 2967 if (!wait) 2968 return 0; 2969 2970 return ext4_force_commit(inode->i_sb); 2971 } 2972 2973 /* 2974 * ext4_setattr() 2975 * 2976 * Called from notify_change. 2977 * 2978 * We want to trap VFS attempts to truncate the file as soon as 2979 * possible. In particular, we want to make sure that when the VFS 2980 * shrinks i_size, we put the inode on the orphan list and modify 2981 * i_disksize immediately, so that during the subsequent flushing of 2982 * dirty pages and freeing of disk blocks, we can guarantee that any 2983 * commit will leave the blocks being flushed in an unused state on 2984 * disk. (On recovery, the inode will get truncated and the blocks will 2985 * be freed, so we have a strong guarantee that no future commit will 2986 * leave these blocks visible to the user.) 2987 * 2988 * Called with inode->sem down. 2989 */ 2990 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 2991 { 2992 struct inode *inode = dentry->d_inode; 2993 int error, rc = 0; 2994 const unsigned int ia_valid = attr->ia_valid; 2995 2996 error = inode_change_ok(inode, attr); 2997 if (error) 2998 return error; 2999 3000 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3001 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3002 handle_t *handle; 3003 3004 /* (user+group)*(old+new) structure, inode write (sb, 3005 * inode block, ? - but truncate inode update has it) */ 3006 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 3007 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 3008 if (IS_ERR(handle)) { 3009 error = PTR_ERR(handle); 3010 goto err_out; 3011 } 3012 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3013 if (error) { 3014 ext4_journal_stop(handle); 3015 return error; 3016 } 3017 /* Update corresponding info in inode so that everything is in 3018 * one transaction */ 3019 if (attr->ia_valid & ATTR_UID) 3020 inode->i_uid = attr->ia_uid; 3021 if (attr->ia_valid & ATTR_GID) 3022 inode->i_gid = attr->ia_gid; 3023 error = ext4_mark_inode_dirty(handle, inode); 3024 ext4_journal_stop(handle); 3025 } 3026 3027 if (S_ISREG(inode->i_mode) && 3028 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3029 handle_t *handle; 3030 3031 handle = ext4_journal_start(inode, 3); 3032 if (IS_ERR(handle)) { 3033 error = PTR_ERR(handle); 3034 goto err_out; 3035 } 3036 3037 error = ext4_orphan_add(handle, inode); 3038 EXT4_I(inode)->i_disksize = attr->ia_size; 3039 rc = ext4_mark_inode_dirty(handle, inode); 3040 if (!error) 3041 error = rc; 3042 ext4_journal_stop(handle); 3043 } 3044 3045 rc = inode_setattr(inode, attr); 3046 3047 /* If inode_setattr's call to ext4_truncate failed to get a 3048 * transaction handle at all, we need to clean up the in-core 3049 * orphan list manually. */ 3050 if (inode->i_nlink) 3051 ext4_orphan_del(NULL, inode); 3052 3053 if (!rc && (ia_valid & ATTR_MODE)) 3054 rc = ext4_acl_chmod(inode); 3055 3056 err_out: 3057 ext4_std_error(inode->i_sb, error); 3058 if (!error) 3059 error = rc; 3060 return error; 3061 } 3062 3063 3064 /* 3065 * How many blocks doth make a writepage()? 3066 * 3067 * With N blocks per page, it may be: 3068 * N data blocks 3069 * 2 indirect block 3070 * 2 dindirect 3071 * 1 tindirect 3072 * N+5 bitmap blocks (from the above) 3073 * N+5 group descriptor summary blocks 3074 * 1 inode block 3075 * 1 superblock. 3076 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 3077 * 3078 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 3079 * 3080 * With ordered or writeback data it's the same, less the N data blocks. 3081 * 3082 * If the inode's direct blocks can hold an integral number of pages then a 3083 * page cannot straddle two indirect blocks, and we can only touch one indirect 3084 * and dindirect block, and the "5" above becomes "3". 3085 * 3086 * This still overestimates under most circumstances. If we were to pass the 3087 * start and end offsets in here as well we could do block_to_path() on each 3088 * block and work out the exact number of indirects which are touched. Pah. 3089 */ 3090 3091 int ext4_writepage_trans_blocks(struct inode *inode) 3092 { 3093 int bpp = ext4_journal_blocks_per_page(inode); 3094 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 3095 int ret; 3096 3097 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3098 return ext4_ext_writepage_trans_blocks(inode, bpp); 3099 3100 if (ext4_should_journal_data(inode)) 3101 ret = 3 * (bpp + indirects) + 2; 3102 else 3103 ret = 2 * (bpp + indirects) + 2; 3104 3105 #ifdef CONFIG_QUOTA 3106 /* We know that structure was already allocated during DQUOT_INIT so 3107 * we will be updating only the data blocks + inodes */ 3108 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 3109 #endif 3110 3111 return ret; 3112 } 3113 3114 /* 3115 * The caller must have previously called ext4_reserve_inode_write(). 3116 * Give this, we know that the caller already has write access to iloc->bh. 3117 */ 3118 int ext4_mark_iloc_dirty(handle_t *handle, 3119 struct inode *inode, struct ext4_iloc *iloc) 3120 { 3121 int err = 0; 3122 3123 /* the do_update_inode consumes one bh->b_count */ 3124 get_bh(iloc->bh); 3125 3126 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 3127 err = ext4_do_update_inode(handle, inode, iloc); 3128 put_bh(iloc->bh); 3129 return err; 3130 } 3131 3132 /* 3133 * On success, We end up with an outstanding reference count against 3134 * iloc->bh. This _must_ be cleaned up later. 3135 */ 3136 3137 int 3138 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 3139 struct ext4_iloc *iloc) 3140 { 3141 int err = 0; 3142 if (handle) { 3143 err = ext4_get_inode_loc(inode, iloc); 3144 if (!err) { 3145 BUFFER_TRACE(iloc->bh, "get_write_access"); 3146 err = ext4_journal_get_write_access(handle, iloc->bh); 3147 if (err) { 3148 brelse(iloc->bh); 3149 iloc->bh = NULL; 3150 } 3151 } 3152 } 3153 ext4_std_error(inode->i_sb, err); 3154 return err; 3155 } 3156 3157 /* 3158 * Expand an inode by new_extra_isize bytes. 3159 * Returns 0 on success or negative error number on failure. 3160 */ 3161 int ext4_expand_extra_isize(struct inode *inode, unsigned int new_extra_isize, 3162 struct ext4_iloc iloc, handle_t *handle) 3163 { 3164 struct ext4_inode *raw_inode; 3165 struct ext4_xattr_ibody_header *header; 3166 struct ext4_xattr_entry *entry; 3167 3168 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 3169 return 0; 3170 3171 raw_inode = ext4_raw_inode(&iloc); 3172 3173 header = IHDR(inode, raw_inode); 3174 entry = IFIRST(header); 3175 3176 /* No extended attributes present */ 3177 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 3178 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 3179 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 3180 new_extra_isize); 3181 EXT4_I(inode)->i_extra_isize = new_extra_isize; 3182 return 0; 3183 } 3184 3185 /* try to expand with EAs present */ 3186 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 3187 raw_inode, handle); 3188 } 3189 3190 /* 3191 * What we do here is to mark the in-core inode as clean with respect to inode 3192 * dirtiness (it may still be data-dirty). 3193 * This means that the in-core inode may be reaped by prune_icache 3194 * without having to perform any I/O. This is a very good thing, 3195 * because *any* task may call prune_icache - even ones which 3196 * have a transaction open against a different journal. 3197 * 3198 * Is this cheating? Not really. Sure, we haven't written the 3199 * inode out, but prune_icache isn't a user-visible syncing function. 3200 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3201 * we start and wait on commits. 3202 * 3203 * Is this efficient/effective? Well, we're being nice to the system 3204 * by cleaning up our inodes proactively so they can be reaped 3205 * without I/O. But we are potentially leaving up to five seconds' 3206 * worth of inodes floating about which prune_icache wants us to 3207 * write out. One way to fix that would be to get prune_icache() 3208 * to do a write_super() to free up some memory. It has the desired 3209 * effect. 3210 */ 3211 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 3212 { 3213 struct ext4_iloc iloc; 3214 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3215 static unsigned int mnt_count; 3216 int err, ret; 3217 3218 might_sleep(); 3219 err = ext4_reserve_inode_write(handle, inode, &iloc); 3220 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 3221 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 3222 /* 3223 * We need extra buffer credits since we may write into EA block 3224 * with this same handle. If journal_extend fails, then it will 3225 * only result in a minor loss of functionality for that inode. 3226 * If this is felt to be critical, then e2fsck should be run to 3227 * force a large enough s_min_extra_isize. 3228 */ 3229 if ((jbd2_journal_extend(handle, 3230 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 3231 ret = ext4_expand_extra_isize(inode, 3232 sbi->s_want_extra_isize, 3233 iloc, handle); 3234 if (ret) { 3235 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 3236 if (mnt_count != 3237 le16_to_cpu(sbi->s_es->s_mnt_count)) { 3238 ext4_warning(inode->i_sb, __FUNCTION__, 3239 "Unable to expand inode %lu. Delete" 3240 " some EAs or run e2fsck.", 3241 inode->i_ino); 3242 mnt_count = 3243 le16_to_cpu(sbi->s_es->s_mnt_count); 3244 } 3245 } 3246 } 3247 } 3248 if (!err) 3249 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3250 return err; 3251 } 3252 3253 /* 3254 * ext4_dirty_inode() is called from __mark_inode_dirty() 3255 * 3256 * We're really interested in the case where a file is being extended. 3257 * i_size has been changed by generic_commit_write() and we thus need 3258 * to include the updated inode in the current transaction. 3259 * 3260 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 3261 * are allocated to the file. 3262 * 3263 * If the inode is marked synchronous, we don't honour that here - doing 3264 * so would cause a commit on atime updates, which we don't bother doing. 3265 * We handle synchronous inodes at the highest possible level. 3266 */ 3267 void ext4_dirty_inode(struct inode *inode) 3268 { 3269 handle_t *current_handle = ext4_journal_current_handle(); 3270 handle_t *handle; 3271 3272 handle = ext4_journal_start(inode, 2); 3273 if (IS_ERR(handle)) 3274 goto out; 3275 if (current_handle && 3276 current_handle->h_transaction != handle->h_transaction) { 3277 /* This task has a transaction open against a different fs */ 3278 printk(KERN_EMERG "%s: transactions do not match!\n", 3279 __FUNCTION__); 3280 } else { 3281 jbd_debug(5, "marking dirty. outer handle=%p\n", 3282 current_handle); 3283 ext4_mark_inode_dirty(handle, inode); 3284 } 3285 ext4_journal_stop(handle); 3286 out: 3287 return; 3288 } 3289 3290 #if 0 3291 /* 3292 * Bind an inode's backing buffer_head into this transaction, to prevent 3293 * it from being flushed to disk early. Unlike 3294 * ext4_reserve_inode_write, this leaves behind no bh reference and 3295 * returns no iloc structure, so the caller needs to repeat the iloc 3296 * lookup to mark the inode dirty later. 3297 */ 3298 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 3299 { 3300 struct ext4_iloc iloc; 3301 3302 int err = 0; 3303 if (handle) { 3304 err = ext4_get_inode_loc(inode, &iloc); 3305 if (!err) { 3306 BUFFER_TRACE(iloc.bh, "get_write_access"); 3307 err = jbd2_journal_get_write_access(handle, iloc.bh); 3308 if (!err) 3309 err = ext4_journal_dirty_metadata(handle, 3310 iloc.bh); 3311 brelse(iloc.bh); 3312 } 3313 } 3314 ext4_std_error(inode->i_sb, err); 3315 return err; 3316 } 3317 #endif 3318 3319 int ext4_change_inode_journal_flag(struct inode *inode, int val) 3320 { 3321 journal_t *journal; 3322 handle_t *handle; 3323 int err; 3324 3325 /* 3326 * We have to be very careful here: changing a data block's 3327 * journaling status dynamically is dangerous. If we write a 3328 * data block to the journal, change the status and then delete 3329 * that block, we risk forgetting to revoke the old log record 3330 * from the journal and so a subsequent replay can corrupt data. 3331 * So, first we make sure that the journal is empty and that 3332 * nobody is changing anything. 3333 */ 3334 3335 journal = EXT4_JOURNAL(inode); 3336 if (is_journal_aborted(journal)) 3337 return -EROFS; 3338 3339 jbd2_journal_lock_updates(journal); 3340 jbd2_journal_flush(journal); 3341 3342 /* 3343 * OK, there are no updates running now, and all cached data is 3344 * synced to disk. We are now in a completely consistent state 3345 * which doesn't have anything in the journal, and we know that 3346 * no filesystem updates are running, so it is safe to modify 3347 * the inode's in-core data-journaling state flag now. 3348 */ 3349 3350 if (val) 3351 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 3352 else 3353 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 3354 ext4_set_aops(inode); 3355 3356 jbd2_journal_unlock_updates(journal); 3357 3358 /* Finally we can mark the inode as dirty. */ 3359 3360 handle = ext4_journal_start(inode, 1); 3361 if (IS_ERR(handle)) 3362 return PTR_ERR(handle); 3363 3364 err = ext4_mark_inode_dirty(handle, inode); 3365 handle->h_sync = 1; 3366 ext4_journal_stop(handle); 3367 ext4_std_error(inode->i_sb, err); 3368 3369 return err; 3370 } 3371