xref: /openbmc/linux/fs/ext4/inode.c (revision 7f0d8e1d607c1a4fa9a27362a108921d82230874)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (inode->i_nlink) {
181 		/*
182 		 * When journalling data dirty buffers are tracked only in the
183 		 * journal. So although mm thinks everything is clean and
184 		 * ready for reaping the inode might still have some pages to
185 		 * write in the running transaction or waiting to be
186 		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
187 		 * (via truncate_inode_pages()) to discard these buffers can
188 		 * cause data loss. Also even if we did not discard these
189 		 * buffers, we would have no way to find them after the inode
190 		 * is reaped and thus user could see stale data if he tries to
191 		 * read them before the transaction is checkpointed. So be
192 		 * careful and force everything to disk here... We use
193 		 * ei->i_datasync_tid to store the newest transaction
194 		 * containing inode's data.
195 		 *
196 		 * Note that directories do not have this problem because they
197 		 * don't use page cache.
198 		 */
199 		if (inode->i_ino != EXT4_JOURNAL_INO &&
200 		    ext4_should_journal_data(inode) &&
201 		    S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
202 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
203 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
204 
205 			jbd2_complete_transaction(journal, commit_tid);
206 			filemap_write_and_wait(&inode->i_data);
207 		}
208 		truncate_inode_pages_final(&inode->i_data);
209 
210 		goto no_delete;
211 	}
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 	dquot_initialize(inode);
216 
217 	if (ext4_should_order_data(inode))
218 		ext4_begin_ordered_truncate(inode, 0);
219 	truncate_inode_pages_final(&inode->i_data);
220 
221 	/*
222 	 * For inodes with journalled data, transaction commit could have
223 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
224 	 * flag but we still need to remove the inode from the writeback lists.
225 	 */
226 	if (!list_empty_careful(&inode->i_io_list)) {
227 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
228 		inode_io_list_del(inode);
229 	}
230 
231 	/*
232 	 * Protect us against freezing - iput() caller didn't have to have any
233 	 * protection against it. When we are in a running transaction though,
234 	 * we are already protected against freezing and we cannot grab further
235 	 * protection due to lock ordering constraints.
236 	 */
237 	if (!ext4_journal_current_handle()) {
238 		sb_start_intwrite(inode->i_sb);
239 		freeze_protected = true;
240 	}
241 
242 	if (!IS_NOQUOTA(inode))
243 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244 
245 	/*
246 	 * Block bitmap, group descriptor, and inode are accounted in both
247 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
248 	 */
249 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
250 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
251 	if (IS_ERR(handle)) {
252 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
253 		/*
254 		 * If we're going to skip the normal cleanup, we still need to
255 		 * make sure that the in-core orphan linked list is properly
256 		 * cleaned up.
257 		 */
258 		ext4_orphan_del(NULL, inode);
259 		if (freeze_protected)
260 			sb_end_intwrite(inode->i_sb);
261 		goto no_delete;
262 	}
263 
264 	if (IS_SYNC(inode))
265 		ext4_handle_sync(handle);
266 
267 	/*
268 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
269 	 * special handling of symlinks here because i_size is used to
270 	 * determine whether ext4_inode_info->i_data contains symlink data or
271 	 * block mappings. Setting i_size to 0 will remove its fast symlink
272 	 * status. Erase i_data so that it becomes a valid empty block map.
273 	 */
274 	if (ext4_inode_is_fast_symlink(inode))
275 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
276 	inode->i_size = 0;
277 	err = ext4_mark_inode_dirty(handle, inode);
278 	if (err) {
279 		ext4_warning(inode->i_sb,
280 			     "couldn't mark inode dirty (err %d)", err);
281 		goto stop_handle;
282 	}
283 	if (inode->i_blocks) {
284 		err = ext4_truncate(inode);
285 		if (err) {
286 			ext4_error_err(inode->i_sb, -err,
287 				       "couldn't truncate inode %lu (err %d)",
288 				       inode->i_ino, err);
289 			goto stop_handle;
290 		}
291 	}
292 
293 	/* Remove xattr references. */
294 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
295 				      extra_credits);
296 	if (err) {
297 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
298 stop_handle:
299 		ext4_journal_stop(handle);
300 		ext4_orphan_del(NULL, inode);
301 		if (freeze_protected)
302 			sb_end_intwrite(inode->i_sb);
303 		ext4_xattr_inode_array_free(ea_inode_array);
304 		goto no_delete;
305 	}
306 
307 	/*
308 	 * Kill off the orphan record which ext4_truncate created.
309 	 * AKPM: I think this can be inside the above `if'.
310 	 * Note that ext4_orphan_del() has to be able to cope with the
311 	 * deletion of a non-existent orphan - this is because we don't
312 	 * know if ext4_truncate() actually created an orphan record.
313 	 * (Well, we could do this if we need to, but heck - it works)
314 	 */
315 	ext4_orphan_del(handle, inode);
316 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
317 
318 	/*
319 	 * One subtle ordering requirement: if anything has gone wrong
320 	 * (transaction abort, IO errors, whatever), then we can still
321 	 * do these next steps (the fs will already have been marked as
322 	 * having errors), but we can't free the inode if the mark_dirty
323 	 * fails.
324 	 */
325 	if (ext4_mark_inode_dirty(handle, inode))
326 		/* If that failed, just do the required in-core inode clear. */
327 		ext4_clear_inode(inode);
328 	else
329 		ext4_free_inode(handle, inode);
330 	ext4_journal_stop(handle);
331 	if (freeze_protected)
332 		sb_end_intwrite(inode->i_sb);
333 	ext4_xattr_inode_array_free(ea_inode_array);
334 	return;
335 no_delete:
336 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
337 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
338 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
339 }
340 
341 #ifdef CONFIG_QUOTA
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
343 {
344 	return &EXT4_I(inode)->i_reserved_quota;
345 }
346 #endif
347 
348 /*
349  * Called with i_data_sem down, which is important since we can call
350  * ext4_discard_preallocations() from here.
351  */
352 void ext4_da_update_reserve_space(struct inode *inode,
353 					int used, int quota_claim)
354 {
355 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 	struct ext4_inode_info *ei = EXT4_I(inode);
357 
358 	spin_lock(&ei->i_block_reservation_lock);
359 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360 	if (unlikely(used > ei->i_reserved_data_blocks)) {
361 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362 			 "with only %d reserved data blocks",
363 			 __func__, inode->i_ino, used,
364 			 ei->i_reserved_data_blocks);
365 		WARN_ON(1);
366 		used = ei->i_reserved_data_blocks;
367 	}
368 
369 	/* Update per-inode reservations */
370 	ei->i_reserved_data_blocks -= used;
371 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
372 
373 	spin_unlock(&ei->i_block_reservation_lock);
374 
375 	/* Update quota subsystem for data blocks */
376 	if (quota_claim)
377 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
378 	else {
379 		/*
380 		 * We did fallocate with an offset that is already delayed
381 		 * allocated. So on delayed allocated writeback we should
382 		 * not re-claim the quota for fallocated blocks.
383 		 */
384 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
385 	}
386 
387 	/*
388 	 * If we have done all the pending block allocations and if
389 	 * there aren't any writers on the inode, we can discard the
390 	 * inode's preallocations.
391 	 */
392 	if ((ei->i_reserved_data_blocks == 0) &&
393 	    !inode_is_open_for_write(inode))
394 		ext4_discard_preallocations(inode, 0);
395 }
396 
397 static int __check_block_validity(struct inode *inode, const char *func,
398 				unsigned int line,
399 				struct ext4_map_blocks *map)
400 {
401 	if (ext4_has_feature_journal(inode->i_sb) &&
402 	    (inode->i_ino ==
403 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
404 		return 0;
405 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
406 		ext4_error_inode(inode, func, line, map->m_pblk,
407 				 "lblock %lu mapped to illegal pblock %llu "
408 				 "(length %d)", (unsigned long) map->m_lblk,
409 				 map->m_pblk, map->m_len);
410 		return -EFSCORRUPTED;
411 	}
412 	return 0;
413 }
414 
415 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
416 		       ext4_lblk_t len)
417 {
418 	int ret;
419 
420 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
421 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
422 
423 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
424 	if (ret > 0)
425 		ret = 0;
426 
427 	return ret;
428 }
429 
430 #define check_block_validity(inode, map)	\
431 	__check_block_validity((inode), __func__, __LINE__, (map))
432 
433 #ifdef ES_AGGRESSIVE_TEST
434 static void ext4_map_blocks_es_recheck(handle_t *handle,
435 				       struct inode *inode,
436 				       struct ext4_map_blocks *es_map,
437 				       struct ext4_map_blocks *map,
438 				       int flags)
439 {
440 	int retval;
441 
442 	map->m_flags = 0;
443 	/*
444 	 * There is a race window that the result is not the same.
445 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
446 	 * is that we lookup a block mapping in extent status tree with
447 	 * out taking i_data_sem.  So at the time the unwritten extent
448 	 * could be converted.
449 	 */
450 	down_read(&EXT4_I(inode)->i_data_sem);
451 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
452 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
453 	} else {
454 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
455 	}
456 	up_read((&EXT4_I(inode)->i_data_sem));
457 
458 	/*
459 	 * We don't check m_len because extent will be collpased in status
460 	 * tree.  So the m_len might not equal.
461 	 */
462 	if (es_map->m_lblk != map->m_lblk ||
463 	    es_map->m_flags != map->m_flags ||
464 	    es_map->m_pblk != map->m_pblk) {
465 		printk("ES cache assertion failed for inode: %lu "
466 		       "es_cached ex [%d/%d/%llu/%x] != "
467 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
469 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 		       map->m_len, map->m_pblk, map->m_flags,
471 		       retval, flags);
472 	}
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475 
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 		    struct ext4_map_blocks *map, int flags)
500 {
501 	struct extent_status es;
502 	int retval;
503 	int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 	struct ext4_map_blocks orig_map;
506 
507 	memcpy(&orig_map, map, sizeof(*map));
508 #endif
509 
510 	map->m_flags = 0;
511 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
512 		  flags, map->m_len, (unsigned long) map->m_lblk);
513 
514 	/*
515 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
516 	 */
517 	if (unlikely(map->m_len > INT_MAX))
518 		map->m_len = INT_MAX;
519 
520 	/* We can handle the block number less than EXT_MAX_BLOCKS */
521 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522 		return -EFSCORRUPTED;
523 
524 	/* Lookup extent status tree firstly */
525 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
526 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
527 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 			map->m_pblk = ext4_es_pblock(&es) +
529 					map->m_lblk - es.es_lblk;
530 			map->m_flags |= ext4_es_is_written(&es) ?
531 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 			retval = es.es_len - (map->m_lblk - es.es_lblk);
533 			if (retval > map->m_len)
534 				retval = map->m_len;
535 			map->m_len = retval;
536 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 			map->m_pblk = 0;
538 			retval = es.es_len - (map->m_lblk - es.es_lblk);
539 			if (retval > map->m_len)
540 				retval = map->m_len;
541 			map->m_len = retval;
542 			retval = 0;
543 		} else {
544 			BUG();
545 		}
546 
547 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
548 			return retval;
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 	/*
556 	 * In the query cache no-wait mode, nothing we can do more if we
557 	 * cannot find extent in the cache.
558 	 */
559 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
560 		return 0;
561 
562 	/*
563 	 * Try to see if we can get the block without requesting a new
564 	 * file system block.
565 	 */
566 	down_read(&EXT4_I(inode)->i_data_sem);
567 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
568 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
569 	} else {
570 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
571 	}
572 	if (retval > 0) {
573 		unsigned int status;
574 
575 		if (unlikely(retval != map->m_len)) {
576 			ext4_warning(inode->i_sb,
577 				     "ES len assertion failed for inode "
578 				     "%lu: retval %d != map->m_len %d",
579 				     inode->i_ino, retval, map->m_len);
580 			WARN_ON(1);
581 		}
582 
583 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
584 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
585 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
586 		    !(status & EXTENT_STATUS_WRITTEN) &&
587 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
588 				       map->m_lblk + map->m_len - 1))
589 			status |= EXTENT_STATUS_DELAYED;
590 		ret = ext4_es_insert_extent(inode, map->m_lblk,
591 					    map->m_len, map->m_pblk, status);
592 		if (ret < 0)
593 			retval = ret;
594 	}
595 	up_read((&EXT4_I(inode)->i_data_sem));
596 
597 found:
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
599 		ret = check_block_validity(inode, map);
600 		if (ret != 0)
601 			return ret;
602 	}
603 
604 	/* If it is only a block(s) look up */
605 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
606 		return retval;
607 
608 	/*
609 	 * Returns if the blocks have already allocated
610 	 *
611 	 * Note that if blocks have been preallocated
612 	 * ext4_ext_get_block() returns the create = 0
613 	 * with buffer head unmapped.
614 	 */
615 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
616 		/*
617 		 * If we need to convert extent to unwritten
618 		 * we continue and do the actual work in
619 		 * ext4_ext_map_blocks()
620 		 */
621 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
622 			return retval;
623 
624 	/*
625 	 * Here we clear m_flags because after allocating an new extent,
626 	 * it will be set again.
627 	 */
628 	map->m_flags &= ~EXT4_MAP_FLAGS;
629 
630 	/*
631 	 * New blocks allocate and/or writing to unwritten extent
632 	 * will possibly result in updating i_data, so we take
633 	 * the write lock of i_data_sem, and call get_block()
634 	 * with create == 1 flag.
635 	 */
636 	down_write(&EXT4_I(inode)->i_data_sem);
637 
638 	/*
639 	 * We need to check for EXT4 here because migrate
640 	 * could have changed the inode type in between
641 	 */
642 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
643 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
644 	} else {
645 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
646 
647 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
648 			/*
649 			 * We allocated new blocks which will result in
650 			 * i_data's format changing.  Force the migrate
651 			 * to fail by clearing migrate flags
652 			 */
653 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
654 		}
655 
656 		/*
657 		 * Update reserved blocks/metadata blocks after successful
658 		 * block allocation which had been deferred till now. We don't
659 		 * support fallocate for non extent files. So we can update
660 		 * reserve space here.
661 		 */
662 		if ((retval > 0) &&
663 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
664 			ext4_da_update_reserve_space(inode, retval, 1);
665 	}
666 
667 	if (retval > 0) {
668 		unsigned int status;
669 
670 		if (unlikely(retval != map->m_len)) {
671 			ext4_warning(inode->i_sb,
672 				     "ES len assertion failed for inode "
673 				     "%lu: retval %d != map->m_len %d",
674 				     inode->i_ino, retval, map->m_len);
675 			WARN_ON(1);
676 		}
677 
678 		/*
679 		 * We have to zeroout blocks before inserting them into extent
680 		 * status tree. Otherwise someone could look them up there and
681 		 * use them before they are really zeroed. We also have to
682 		 * unmap metadata before zeroing as otherwise writeback can
683 		 * overwrite zeros with stale data from block device.
684 		 */
685 		if (flags & EXT4_GET_BLOCKS_ZERO &&
686 		    map->m_flags & EXT4_MAP_MAPPED &&
687 		    map->m_flags & EXT4_MAP_NEW) {
688 			ret = ext4_issue_zeroout(inode, map->m_lblk,
689 						 map->m_pblk, map->m_len);
690 			if (ret) {
691 				retval = ret;
692 				goto out_sem;
693 			}
694 		}
695 
696 		/*
697 		 * If the extent has been zeroed out, we don't need to update
698 		 * extent status tree.
699 		 */
700 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
701 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
702 			if (ext4_es_is_written(&es))
703 				goto out_sem;
704 		}
705 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
706 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
707 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
708 		    !(status & EXTENT_STATUS_WRITTEN) &&
709 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
710 				       map->m_lblk + map->m_len - 1))
711 			status |= EXTENT_STATUS_DELAYED;
712 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
713 					    map->m_pblk, status);
714 		if (ret < 0) {
715 			retval = ret;
716 			goto out_sem;
717 		}
718 	}
719 
720 out_sem:
721 	up_write((&EXT4_I(inode)->i_data_sem));
722 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
723 		ret = check_block_validity(inode, map);
724 		if (ret != 0)
725 			return ret;
726 
727 		/*
728 		 * Inodes with freshly allocated blocks where contents will be
729 		 * visible after transaction commit must be on transaction's
730 		 * ordered data list.
731 		 */
732 		if (map->m_flags & EXT4_MAP_NEW &&
733 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
734 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
735 		    !ext4_is_quota_file(inode) &&
736 		    ext4_should_order_data(inode)) {
737 			loff_t start_byte =
738 				(loff_t)map->m_lblk << inode->i_blkbits;
739 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
740 
741 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
742 				ret = ext4_jbd2_inode_add_wait(handle, inode,
743 						start_byte, length);
744 			else
745 				ret = ext4_jbd2_inode_add_write(handle, inode,
746 						start_byte, length);
747 			if (ret)
748 				return ret;
749 		}
750 	}
751 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
752 				map->m_flags & EXT4_MAP_MAPPED))
753 		ext4_fc_track_range(handle, inode, map->m_lblk,
754 					map->m_lblk + map->m_len - 1);
755 	if (retval < 0)
756 		ext_debug(inode, "failed with err %d\n", retval);
757 	return retval;
758 }
759 
760 /*
761  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
762  * we have to be careful as someone else may be manipulating b_state as well.
763  */
764 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
765 {
766 	unsigned long old_state;
767 	unsigned long new_state;
768 
769 	flags &= EXT4_MAP_FLAGS;
770 
771 	/* Dummy buffer_head? Set non-atomically. */
772 	if (!bh->b_page) {
773 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
774 		return;
775 	}
776 	/*
777 	 * Someone else may be modifying b_state. Be careful! This is ugly but
778 	 * once we get rid of using bh as a container for mapping information
779 	 * to pass to / from get_block functions, this can go away.
780 	 */
781 	do {
782 		old_state = READ_ONCE(bh->b_state);
783 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
784 	} while (unlikely(
785 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
786 }
787 
788 static int _ext4_get_block(struct inode *inode, sector_t iblock,
789 			   struct buffer_head *bh, int flags)
790 {
791 	struct ext4_map_blocks map;
792 	int ret = 0;
793 
794 	if (ext4_has_inline_data(inode))
795 		return -ERANGE;
796 
797 	map.m_lblk = iblock;
798 	map.m_len = bh->b_size >> inode->i_blkbits;
799 
800 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
801 			      flags);
802 	if (ret > 0) {
803 		map_bh(bh, inode->i_sb, map.m_pblk);
804 		ext4_update_bh_state(bh, map.m_flags);
805 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
806 		ret = 0;
807 	} else if (ret == 0) {
808 		/* hole case, need to fill in bh->b_size */
809 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
810 	}
811 	return ret;
812 }
813 
814 int ext4_get_block(struct inode *inode, sector_t iblock,
815 		   struct buffer_head *bh, int create)
816 {
817 	return _ext4_get_block(inode, iblock, bh,
818 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
819 }
820 
821 /*
822  * Get block function used when preparing for buffered write if we require
823  * creating an unwritten extent if blocks haven't been allocated.  The extent
824  * will be converted to written after the IO is complete.
825  */
826 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
827 			     struct buffer_head *bh_result, int create)
828 {
829 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 		   inode->i_ino, create);
831 	return _ext4_get_block(inode, iblock, bh_result,
832 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
833 }
834 
835 /* Maximum number of blocks we map for direct IO at once. */
836 #define DIO_MAX_BLOCKS 4096
837 
838 /*
839  * `handle' can be NULL if create is zero
840  */
841 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
842 				ext4_lblk_t block, int map_flags)
843 {
844 	struct ext4_map_blocks map;
845 	struct buffer_head *bh;
846 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
847 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
848 	int err;
849 
850 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851 		    || handle != NULL || create == 0);
852 	ASSERT(create == 0 || !nowait);
853 
854 	map.m_lblk = block;
855 	map.m_len = 1;
856 	err = ext4_map_blocks(handle, inode, &map, map_flags);
857 
858 	if (err == 0)
859 		return create ? ERR_PTR(-ENOSPC) : NULL;
860 	if (err < 0)
861 		return ERR_PTR(err);
862 
863 	if (nowait)
864 		return sb_find_get_block(inode->i_sb, map.m_pblk);
865 
866 	bh = sb_getblk(inode->i_sb, map.m_pblk);
867 	if (unlikely(!bh))
868 		return ERR_PTR(-ENOMEM);
869 	if (map.m_flags & EXT4_MAP_NEW) {
870 		ASSERT(create != 0);
871 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 			    || (handle != NULL));
873 
874 		/*
875 		 * Now that we do not always journal data, we should
876 		 * keep in mind whether this should always journal the
877 		 * new buffer as metadata.  For now, regular file
878 		 * writes use ext4_get_block instead, so it's not a
879 		 * problem.
880 		 */
881 		lock_buffer(bh);
882 		BUFFER_TRACE(bh, "call get_create_access");
883 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884 						     EXT4_JTR_NONE);
885 		if (unlikely(err)) {
886 			unlock_buffer(bh);
887 			goto errout;
888 		}
889 		if (!buffer_uptodate(bh)) {
890 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 			set_buffer_uptodate(bh);
892 		}
893 		unlock_buffer(bh);
894 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 		err = ext4_handle_dirty_metadata(handle, inode, bh);
896 		if (unlikely(err))
897 			goto errout;
898 	} else
899 		BUFFER_TRACE(bh, "not a new buffer");
900 	return bh;
901 errout:
902 	brelse(bh);
903 	return ERR_PTR(err);
904 }
905 
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 			       ext4_lblk_t block, int map_flags)
908 {
909 	struct buffer_head *bh;
910 	int ret;
911 
912 	bh = ext4_getblk(handle, inode, block, map_flags);
913 	if (IS_ERR(bh))
914 		return bh;
915 	if (!bh || ext4_buffer_uptodate(bh))
916 		return bh;
917 
918 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919 	if (ret) {
920 		put_bh(bh);
921 		return ERR_PTR(ret);
922 	}
923 	return bh;
924 }
925 
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 		     bool wait, struct buffer_head **bhs)
929 {
930 	int i, err;
931 
932 	for (i = 0; i < bh_count; i++) {
933 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 		if (IS_ERR(bhs[i])) {
935 			err = PTR_ERR(bhs[i]);
936 			bh_count = i;
937 			goto out_brelse;
938 		}
939 	}
940 
941 	for (i = 0; i < bh_count; i++)
942 		/* Note that NULL bhs[i] is valid because of holes. */
943 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945 
946 	if (!wait)
947 		return 0;
948 
949 	for (i = 0; i < bh_count; i++)
950 		if (bhs[i])
951 			wait_on_buffer(bhs[i]);
952 
953 	for (i = 0; i < bh_count; i++) {
954 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
955 			err = -EIO;
956 			goto out_brelse;
957 		}
958 	}
959 	return 0;
960 
961 out_brelse:
962 	for (i = 0; i < bh_count; i++) {
963 		brelse(bhs[i]);
964 		bhs[i] = NULL;
965 	}
966 	return err;
967 }
968 
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 			   struct buffer_head *head,
971 			   unsigned from,
972 			   unsigned to,
973 			   int *partial,
974 			   int (*fn)(handle_t *handle, struct inode *inode,
975 				     struct buffer_head *bh))
976 {
977 	struct buffer_head *bh;
978 	unsigned block_start, block_end;
979 	unsigned blocksize = head->b_size;
980 	int err, ret = 0;
981 	struct buffer_head *next;
982 
983 	for (bh = head, block_start = 0;
984 	     ret == 0 && (bh != head || !block_start);
985 	     block_start = block_end, bh = next) {
986 		next = bh->b_this_page;
987 		block_end = block_start + blocksize;
988 		if (block_end <= from || block_start >= to) {
989 			if (partial && !buffer_uptodate(bh))
990 				*partial = 1;
991 			continue;
992 		}
993 		err = (*fn)(handle, inode, bh);
994 		if (!ret)
995 			ret = err;
996 	}
997 	return ret;
998 }
999 
1000 /*
1001  * To preserve ordering, it is essential that the hole instantiation and
1002  * the data write be encapsulated in a single transaction.  We cannot
1003  * close off a transaction and start a new one between the ext4_get_block()
1004  * and the commit_write().  So doing the jbd2_journal_start at the start of
1005  * prepare_write() is the right place.
1006  *
1007  * Also, this function can nest inside ext4_writepage().  In that case, we
1008  * *know* that ext4_writepage() has generated enough buffer credits to do the
1009  * whole page.  So we won't block on the journal in that case, which is good,
1010  * because the caller may be PF_MEMALLOC.
1011  *
1012  * By accident, ext4 can be reentered when a transaction is open via
1013  * quota file writes.  If we were to commit the transaction while thus
1014  * reentered, there can be a deadlock - we would be holding a quota
1015  * lock, and the commit would never complete if another thread had a
1016  * transaction open and was blocking on the quota lock - a ranking
1017  * violation.
1018  *
1019  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1020  * will _not_ run commit under these circumstances because handle->h_ref
1021  * is elevated.  We'll still have enough credits for the tiny quotafile
1022  * write.
1023  */
1024 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1025 				struct buffer_head *bh)
1026 {
1027 	int dirty = buffer_dirty(bh);
1028 	int ret;
1029 
1030 	if (!buffer_mapped(bh) || buffer_freed(bh))
1031 		return 0;
1032 	/*
1033 	 * __block_write_begin() could have dirtied some buffers. Clean
1034 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1035 	 * otherwise about fs integrity issues. Setting of the dirty bit
1036 	 * by __block_write_begin() isn't a real problem here as we clear
1037 	 * the bit before releasing a page lock and thus writeback cannot
1038 	 * ever write the buffer.
1039 	 */
1040 	if (dirty)
1041 		clear_buffer_dirty(bh);
1042 	BUFFER_TRACE(bh, "get write access");
1043 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1044 					    EXT4_JTR_NONE);
1045 	if (!ret && dirty)
1046 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1047 	return ret;
1048 }
1049 
1050 #ifdef CONFIG_FS_ENCRYPTION
1051 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1052 				  get_block_t *get_block)
1053 {
1054 	unsigned from = pos & (PAGE_SIZE - 1);
1055 	unsigned to = from + len;
1056 	struct inode *inode = page->mapping->host;
1057 	unsigned block_start, block_end;
1058 	sector_t block;
1059 	int err = 0;
1060 	unsigned blocksize = inode->i_sb->s_blocksize;
1061 	unsigned bbits;
1062 	struct buffer_head *bh, *head, *wait[2];
1063 	int nr_wait = 0;
1064 	int i;
1065 
1066 	BUG_ON(!PageLocked(page));
1067 	BUG_ON(from > PAGE_SIZE);
1068 	BUG_ON(to > PAGE_SIZE);
1069 	BUG_ON(from > to);
1070 
1071 	if (!page_has_buffers(page))
1072 		create_empty_buffers(page, blocksize, 0);
1073 	head = page_buffers(page);
1074 	bbits = ilog2(blocksize);
1075 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1076 
1077 	for (bh = head, block_start = 0; bh != head || !block_start;
1078 	    block++, block_start = block_end, bh = bh->b_this_page) {
1079 		block_end = block_start + blocksize;
1080 		if (block_end <= from || block_start >= to) {
1081 			if (PageUptodate(page)) {
1082 				set_buffer_uptodate(bh);
1083 			}
1084 			continue;
1085 		}
1086 		if (buffer_new(bh))
1087 			clear_buffer_new(bh);
1088 		if (!buffer_mapped(bh)) {
1089 			WARN_ON(bh->b_size != blocksize);
1090 			err = get_block(inode, block, bh, 1);
1091 			if (err)
1092 				break;
1093 			if (buffer_new(bh)) {
1094 				if (PageUptodate(page)) {
1095 					clear_buffer_new(bh);
1096 					set_buffer_uptodate(bh);
1097 					mark_buffer_dirty(bh);
1098 					continue;
1099 				}
1100 				if (block_end > to || block_start < from)
1101 					zero_user_segments(page, to, block_end,
1102 							   block_start, from);
1103 				continue;
1104 			}
1105 		}
1106 		if (PageUptodate(page)) {
1107 			set_buffer_uptodate(bh);
1108 			continue;
1109 		}
1110 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1111 		    !buffer_unwritten(bh) &&
1112 		    (block_start < from || block_end > to)) {
1113 			ext4_read_bh_lock(bh, 0, false);
1114 			wait[nr_wait++] = bh;
1115 		}
1116 	}
1117 	/*
1118 	 * If we issued read requests, let them complete.
1119 	 */
1120 	for (i = 0; i < nr_wait; i++) {
1121 		wait_on_buffer(wait[i]);
1122 		if (!buffer_uptodate(wait[i]))
1123 			err = -EIO;
1124 	}
1125 	if (unlikely(err)) {
1126 		page_zero_new_buffers(page, from, to);
1127 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1128 		for (i = 0; i < nr_wait; i++) {
1129 			int err2;
1130 
1131 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1132 								bh_offset(wait[i]));
1133 			if (err2) {
1134 				clear_buffer_uptodate(wait[i]);
1135 				err = err2;
1136 			}
1137 		}
1138 	}
1139 
1140 	return err;
1141 }
1142 #endif
1143 
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 			    loff_t pos, unsigned len,
1146 			    struct page **pagep, void **fsdata)
1147 {
1148 	struct inode *inode = mapping->host;
1149 	int ret, needed_blocks;
1150 	handle_t *handle;
1151 	int retries = 0;
1152 	struct page *page;
1153 	pgoff_t index;
1154 	unsigned from, to;
1155 
1156 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1157 		return -EIO;
1158 
1159 	trace_ext4_write_begin(inode, pos, len);
1160 	/*
1161 	 * Reserve one block more for addition to orphan list in case
1162 	 * we allocate blocks but write fails for some reason
1163 	 */
1164 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1165 	index = pos >> PAGE_SHIFT;
1166 	from = pos & (PAGE_SIZE - 1);
1167 	to = from + len;
1168 
1169 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1170 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1171 						    pagep);
1172 		if (ret < 0)
1173 			return ret;
1174 		if (ret == 1)
1175 			return 0;
1176 	}
1177 
1178 	/*
1179 	 * grab_cache_page_write_begin() can take a long time if the
1180 	 * system is thrashing due to memory pressure, or if the page
1181 	 * is being written back.  So grab it first before we start
1182 	 * the transaction handle.  This also allows us to allocate
1183 	 * the page (if needed) without using GFP_NOFS.
1184 	 */
1185 retry_grab:
1186 	page = grab_cache_page_write_begin(mapping, index);
1187 	if (!page)
1188 		return -ENOMEM;
1189 	unlock_page(page);
1190 
1191 retry_journal:
1192 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1193 	if (IS_ERR(handle)) {
1194 		put_page(page);
1195 		return PTR_ERR(handle);
1196 	}
1197 
1198 	lock_page(page);
1199 	if (page->mapping != mapping) {
1200 		/* The page got truncated from under us */
1201 		unlock_page(page);
1202 		put_page(page);
1203 		ext4_journal_stop(handle);
1204 		goto retry_grab;
1205 	}
1206 	/* In case writeback began while the page was unlocked */
1207 	wait_for_stable_page(page);
1208 
1209 #ifdef CONFIG_FS_ENCRYPTION
1210 	if (ext4_should_dioread_nolock(inode))
1211 		ret = ext4_block_write_begin(page, pos, len,
1212 					     ext4_get_block_unwritten);
1213 	else
1214 		ret = ext4_block_write_begin(page, pos, len,
1215 					     ext4_get_block);
1216 #else
1217 	if (ext4_should_dioread_nolock(inode))
1218 		ret = __block_write_begin(page, pos, len,
1219 					  ext4_get_block_unwritten);
1220 	else
1221 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1222 #endif
1223 	if (!ret && ext4_should_journal_data(inode)) {
1224 		ret = ext4_walk_page_buffers(handle, inode,
1225 					     page_buffers(page), from, to, NULL,
1226 					     do_journal_get_write_access);
1227 	}
1228 
1229 	if (ret) {
1230 		bool extended = (pos + len > inode->i_size) &&
1231 				!ext4_verity_in_progress(inode);
1232 
1233 		unlock_page(page);
1234 		/*
1235 		 * __block_write_begin may have instantiated a few blocks
1236 		 * outside i_size.  Trim these off again. Don't need
1237 		 * i_size_read because we hold i_rwsem.
1238 		 *
1239 		 * Add inode to orphan list in case we crash before
1240 		 * truncate finishes
1241 		 */
1242 		if (extended && ext4_can_truncate(inode))
1243 			ext4_orphan_add(handle, inode);
1244 
1245 		ext4_journal_stop(handle);
1246 		if (extended) {
1247 			ext4_truncate_failed_write(inode);
1248 			/*
1249 			 * If truncate failed early the inode might
1250 			 * still be on the orphan list; we need to
1251 			 * make sure the inode is removed from the
1252 			 * orphan list in that case.
1253 			 */
1254 			if (inode->i_nlink)
1255 				ext4_orphan_del(NULL, inode);
1256 		}
1257 
1258 		if (ret == -ENOSPC &&
1259 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1260 			goto retry_journal;
1261 		put_page(page);
1262 		return ret;
1263 	}
1264 	*pagep = page;
1265 	return ret;
1266 }
1267 
1268 /* For write_end() in data=journal mode */
1269 static int write_end_fn(handle_t *handle, struct inode *inode,
1270 			struct buffer_head *bh)
1271 {
1272 	int ret;
1273 	if (!buffer_mapped(bh) || buffer_freed(bh))
1274 		return 0;
1275 	set_buffer_uptodate(bh);
1276 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1277 	clear_buffer_meta(bh);
1278 	clear_buffer_prio(bh);
1279 	return ret;
1280 }
1281 
1282 /*
1283  * We need to pick up the new inode size which generic_commit_write gave us
1284  * `file' can be NULL - eg, when called from page_symlink().
1285  *
1286  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1287  * buffers are managed internally.
1288  */
1289 static int ext4_write_end(struct file *file,
1290 			  struct address_space *mapping,
1291 			  loff_t pos, unsigned len, unsigned copied,
1292 			  struct page *page, void *fsdata)
1293 {
1294 	handle_t *handle = ext4_journal_current_handle();
1295 	struct inode *inode = mapping->host;
1296 	loff_t old_size = inode->i_size;
1297 	int ret = 0, ret2;
1298 	int i_size_changed = 0;
1299 	bool verity = ext4_verity_in_progress(inode);
1300 
1301 	trace_ext4_write_end(inode, pos, len, copied);
1302 
1303 	if (ext4_has_inline_data(inode))
1304 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1305 
1306 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1307 	/*
1308 	 * it's important to update i_size while still holding page lock:
1309 	 * page writeout could otherwise come in and zero beyond i_size.
1310 	 *
1311 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1312 	 * blocks are being written past EOF, so skip the i_size update.
1313 	 */
1314 	if (!verity)
1315 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1316 	unlock_page(page);
1317 	put_page(page);
1318 
1319 	if (old_size < pos && !verity)
1320 		pagecache_isize_extended(inode, old_size, pos);
1321 	/*
1322 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1323 	 * makes the holding time of page lock longer. Second, it forces lock
1324 	 * ordering of page lock and transaction start for journaling
1325 	 * filesystems.
1326 	 */
1327 	if (i_size_changed)
1328 		ret = ext4_mark_inode_dirty(handle, inode);
1329 
1330 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 		/* if we have allocated more blocks and copied
1332 		 * less. We will have blocks allocated outside
1333 		 * inode->i_size. So truncate them
1334 		 */
1335 		ext4_orphan_add(handle, inode);
1336 
1337 	ret2 = ext4_journal_stop(handle);
1338 	if (!ret)
1339 		ret = ret2;
1340 
1341 	if (pos + len > inode->i_size && !verity) {
1342 		ext4_truncate_failed_write(inode);
1343 		/*
1344 		 * If truncate failed early the inode might still be
1345 		 * on the orphan list; we need to make sure the inode
1346 		 * is removed from the orphan list in that case.
1347 		 */
1348 		if (inode->i_nlink)
1349 			ext4_orphan_del(NULL, inode);
1350 	}
1351 
1352 	return ret ? ret : copied;
1353 }
1354 
1355 /*
1356  * This is a private version of page_zero_new_buffers() which doesn't
1357  * set the buffer to be dirty, since in data=journalled mode we need
1358  * to call ext4_handle_dirty_metadata() instead.
1359  */
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 					    struct inode *inode,
1362 					    struct page *page,
1363 					    unsigned from, unsigned to)
1364 {
1365 	unsigned int block_start = 0, block_end;
1366 	struct buffer_head *head, *bh;
1367 
1368 	bh = head = page_buffers(page);
1369 	do {
1370 		block_end = block_start + bh->b_size;
1371 		if (buffer_new(bh)) {
1372 			if (block_end > from && block_start < to) {
1373 				if (!PageUptodate(page)) {
1374 					unsigned start, size;
1375 
1376 					start = max(from, block_start);
1377 					size = min(to, block_end) - start;
1378 
1379 					zero_user(page, start, size);
1380 					write_end_fn(handle, inode, bh);
1381 				}
1382 				clear_buffer_new(bh);
1383 			}
1384 		}
1385 		block_start = block_end;
1386 		bh = bh->b_this_page;
1387 	} while (bh != head);
1388 }
1389 
1390 static int ext4_journalled_write_end(struct file *file,
1391 				     struct address_space *mapping,
1392 				     loff_t pos, unsigned len, unsigned copied,
1393 				     struct page *page, void *fsdata)
1394 {
1395 	handle_t *handle = ext4_journal_current_handle();
1396 	struct inode *inode = mapping->host;
1397 	loff_t old_size = inode->i_size;
1398 	int ret = 0, ret2;
1399 	int partial = 0;
1400 	unsigned from, to;
1401 	int size_changed = 0;
1402 	bool verity = ext4_verity_in_progress(inode);
1403 
1404 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 	from = pos & (PAGE_SIZE - 1);
1406 	to = from + len;
1407 
1408 	BUG_ON(!ext4_handle_valid(handle));
1409 
1410 	if (ext4_has_inline_data(inode))
1411 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1412 
1413 	if (unlikely(copied < len) && !PageUptodate(page)) {
1414 		copied = 0;
1415 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1416 	} else {
1417 		if (unlikely(copied < len))
1418 			ext4_journalled_zero_new_buffers(handle, inode, page,
1419 							 from + copied, to);
1420 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1421 					     from, from + copied, &partial,
1422 					     write_end_fn);
1423 		if (!partial)
1424 			SetPageUptodate(page);
1425 	}
1426 	if (!verity)
1427 		size_changed = ext4_update_inode_size(inode, pos + copied);
1428 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1429 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1430 	unlock_page(page);
1431 	put_page(page);
1432 
1433 	if (old_size < pos && !verity)
1434 		pagecache_isize_extended(inode, old_size, pos);
1435 
1436 	if (size_changed) {
1437 		ret2 = ext4_mark_inode_dirty(handle, inode);
1438 		if (!ret)
1439 			ret = ret2;
1440 	}
1441 
1442 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1443 		/* if we have allocated more blocks and copied
1444 		 * less. We will have blocks allocated outside
1445 		 * inode->i_size. So truncate them
1446 		 */
1447 		ext4_orphan_add(handle, inode);
1448 
1449 	ret2 = ext4_journal_stop(handle);
1450 	if (!ret)
1451 		ret = ret2;
1452 	if (pos + len > inode->i_size && !verity) {
1453 		ext4_truncate_failed_write(inode);
1454 		/*
1455 		 * If truncate failed early the inode might still be
1456 		 * on the orphan list; we need to make sure the inode
1457 		 * is removed from the orphan list in that case.
1458 		 */
1459 		if (inode->i_nlink)
1460 			ext4_orphan_del(NULL, inode);
1461 	}
1462 
1463 	return ret ? ret : copied;
1464 }
1465 
1466 /*
1467  * Reserve space for a single cluster
1468  */
1469 static int ext4_da_reserve_space(struct inode *inode)
1470 {
1471 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1472 	struct ext4_inode_info *ei = EXT4_I(inode);
1473 	int ret;
1474 
1475 	/*
1476 	 * We will charge metadata quota at writeout time; this saves
1477 	 * us from metadata over-estimation, though we may go over by
1478 	 * a small amount in the end.  Here we just reserve for data.
1479 	 */
1480 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1481 	if (ret)
1482 		return ret;
1483 
1484 	spin_lock(&ei->i_block_reservation_lock);
1485 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1486 		spin_unlock(&ei->i_block_reservation_lock);
1487 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1488 		return -ENOSPC;
1489 	}
1490 	ei->i_reserved_data_blocks++;
1491 	trace_ext4_da_reserve_space(inode);
1492 	spin_unlock(&ei->i_block_reservation_lock);
1493 
1494 	return 0;       /* success */
1495 }
1496 
1497 void ext4_da_release_space(struct inode *inode, int to_free)
1498 {
1499 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 	struct ext4_inode_info *ei = EXT4_I(inode);
1501 
1502 	if (!to_free)
1503 		return;		/* Nothing to release, exit */
1504 
1505 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1506 
1507 	trace_ext4_da_release_space(inode, to_free);
1508 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1509 		/*
1510 		 * if there aren't enough reserved blocks, then the
1511 		 * counter is messed up somewhere.  Since this
1512 		 * function is called from invalidate page, it's
1513 		 * harmless to return without any action.
1514 		 */
1515 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1516 			 "ino %lu, to_free %d with only %d reserved "
1517 			 "data blocks", inode->i_ino, to_free,
1518 			 ei->i_reserved_data_blocks);
1519 		WARN_ON(1);
1520 		to_free = ei->i_reserved_data_blocks;
1521 	}
1522 	ei->i_reserved_data_blocks -= to_free;
1523 
1524 	/* update fs dirty data blocks counter */
1525 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1526 
1527 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1528 
1529 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1530 }
1531 
1532 /*
1533  * Delayed allocation stuff
1534  */
1535 
1536 struct mpage_da_data {
1537 	struct inode *inode;
1538 	struct writeback_control *wbc;
1539 
1540 	pgoff_t first_page;	/* The first page to write */
1541 	pgoff_t next_page;	/* Current page to examine */
1542 	pgoff_t last_page;	/* Last page to examine */
1543 	/*
1544 	 * Extent to map - this can be after first_page because that can be
1545 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1546 	 * is delalloc or unwritten.
1547 	 */
1548 	struct ext4_map_blocks map;
1549 	struct ext4_io_submit io_submit;	/* IO submission data */
1550 	unsigned int do_map:1;
1551 	unsigned int scanned_until_end:1;
1552 };
1553 
1554 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1555 				       bool invalidate)
1556 {
1557 	int nr_pages, i;
1558 	pgoff_t index, end;
1559 	struct pagevec pvec;
1560 	struct inode *inode = mpd->inode;
1561 	struct address_space *mapping = inode->i_mapping;
1562 
1563 	/* This is necessary when next_page == 0. */
1564 	if (mpd->first_page >= mpd->next_page)
1565 		return;
1566 
1567 	mpd->scanned_until_end = 0;
1568 	index = mpd->first_page;
1569 	end   = mpd->next_page - 1;
1570 	if (invalidate) {
1571 		ext4_lblk_t start, last;
1572 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1573 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1574 
1575 		/*
1576 		 * avoid racing with extent status tree scans made by
1577 		 * ext4_insert_delayed_block()
1578 		 */
1579 		down_write(&EXT4_I(inode)->i_data_sem);
1580 		ext4_es_remove_extent(inode, start, last - start + 1);
1581 		up_write(&EXT4_I(inode)->i_data_sem);
1582 	}
1583 
1584 	pagevec_init(&pvec);
1585 	while (index <= end) {
1586 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1587 		if (nr_pages == 0)
1588 			break;
1589 		for (i = 0; i < nr_pages; i++) {
1590 			struct page *page = pvec.pages[i];
1591 			struct folio *folio = page_folio(page);
1592 
1593 			BUG_ON(!folio_test_locked(folio));
1594 			BUG_ON(folio_test_writeback(folio));
1595 			if (invalidate) {
1596 				if (folio_mapped(folio))
1597 					folio_clear_dirty_for_io(folio);
1598 				block_invalidate_folio(folio, 0,
1599 						folio_size(folio));
1600 				folio_clear_uptodate(folio);
1601 			}
1602 			folio_unlock(folio);
1603 		}
1604 		pagevec_release(&pvec);
1605 	}
1606 }
1607 
1608 static void ext4_print_free_blocks(struct inode *inode)
1609 {
1610 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1611 	struct super_block *sb = inode->i_sb;
1612 	struct ext4_inode_info *ei = EXT4_I(inode);
1613 
1614 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1615 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1616 			ext4_count_free_clusters(sb)));
1617 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1618 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1619 	       (long long) EXT4_C2B(EXT4_SB(sb),
1620 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1621 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1622 	       (long long) EXT4_C2B(EXT4_SB(sb),
1623 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1624 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1625 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1626 		 ei->i_reserved_data_blocks);
1627 	return;
1628 }
1629 
1630 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1631 				      struct buffer_head *bh)
1632 {
1633 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1634 }
1635 
1636 /*
1637  * ext4_insert_delayed_block - adds a delayed block to the extents status
1638  *                             tree, incrementing the reserved cluster/block
1639  *                             count or making a pending reservation
1640  *                             where needed
1641  *
1642  * @inode - file containing the newly added block
1643  * @lblk - logical block to be added
1644  *
1645  * Returns 0 on success, negative error code on failure.
1646  */
1647 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1648 {
1649 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 	int ret;
1651 	bool allocated = false;
1652 	bool reserved = false;
1653 
1654 	/*
1655 	 * If the cluster containing lblk is shared with a delayed,
1656 	 * written, or unwritten extent in a bigalloc file system, it's
1657 	 * already been accounted for and does not need to be reserved.
1658 	 * A pending reservation must be made for the cluster if it's
1659 	 * shared with a written or unwritten extent and doesn't already
1660 	 * have one.  Written and unwritten extents can be purged from the
1661 	 * extents status tree if the system is under memory pressure, so
1662 	 * it's necessary to examine the extent tree if a search of the
1663 	 * extents status tree doesn't get a match.
1664 	 */
1665 	if (sbi->s_cluster_ratio == 1) {
1666 		ret = ext4_da_reserve_space(inode);
1667 		if (ret != 0)   /* ENOSPC */
1668 			goto errout;
1669 		reserved = true;
1670 	} else {   /* bigalloc */
1671 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1672 			if (!ext4_es_scan_clu(inode,
1673 					      &ext4_es_is_mapped, lblk)) {
1674 				ret = ext4_clu_mapped(inode,
1675 						      EXT4_B2C(sbi, lblk));
1676 				if (ret < 0)
1677 					goto errout;
1678 				if (ret == 0) {
1679 					ret = ext4_da_reserve_space(inode);
1680 					if (ret != 0)   /* ENOSPC */
1681 						goto errout;
1682 					reserved = true;
1683 				} else {
1684 					allocated = true;
1685 				}
1686 			} else {
1687 				allocated = true;
1688 			}
1689 		}
1690 	}
1691 
1692 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1693 	if (ret && reserved)
1694 		ext4_da_release_space(inode, 1);
1695 
1696 errout:
1697 	return ret;
1698 }
1699 
1700 /*
1701  * This function is grabs code from the very beginning of
1702  * ext4_map_blocks, but assumes that the caller is from delayed write
1703  * time. This function looks up the requested blocks and sets the
1704  * buffer delay bit under the protection of i_data_sem.
1705  */
1706 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1707 			      struct ext4_map_blocks *map,
1708 			      struct buffer_head *bh)
1709 {
1710 	struct extent_status es;
1711 	int retval;
1712 	sector_t invalid_block = ~((sector_t) 0xffff);
1713 #ifdef ES_AGGRESSIVE_TEST
1714 	struct ext4_map_blocks orig_map;
1715 
1716 	memcpy(&orig_map, map, sizeof(*map));
1717 #endif
1718 
1719 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1720 		invalid_block = ~0;
1721 
1722 	map->m_flags = 0;
1723 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1724 		  (unsigned long) map->m_lblk);
1725 
1726 	/* Lookup extent status tree firstly */
1727 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1728 		if (ext4_es_is_hole(&es)) {
1729 			retval = 0;
1730 			down_read(&EXT4_I(inode)->i_data_sem);
1731 			goto add_delayed;
1732 		}
1733 
1734 		/*
1735 		 * Delayed extent could be allocated by fallocate.
1736 		 * So we need to check it.
1737 		 */
1738 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1739 			map_bh(bh, inode->i_sb, invalid_block);
1740 			set_buffer_new(bh);
1741 			set_buffer_delay(bh);
1742 			return 0;
1743 		}
1744 
1745 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1746 		retval = es.es_len - (iblock - es.es_lblk);
1747 		if (retval > map->m_len)
1748 			retval = map->m_len;
1749 		map->m_len = retval;
1750 		if (ext4_es_is_written(&es))
1751 			map->m_flags |= EXT4_MAP_MAPPED;
1752 		else if (ext4_es_is_unwritten(&es))
1753 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1754 		else
1755 			BUG();
1756 
1757 #ifdef ES_AGGRESSIVE_TEST
1758 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1759 #endif
1760 		return retval;
1761 	}
1762 
1763 	/*
1764 	 * Try to see if we can get the block without requesting a new
1765 	 * file system block.
1766 	 */
1767 	down_read(&EXT4_I(inode)->i_data_sem);
1768 	if (ext4_has_inline_data(inode))
1769 		retval = 0;
1770 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1771 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1772 	else
1773 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1774 
1775 add_delayed:
1776 	if (retval == 0) {
1777 		int ret;
1778 
1779 		/*
1780 		 * XXX: __block_prepare_write() unmaps passed block,
1781 		 * is it OK?
1782 		 */
1783 
1784 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1785 		if (ret != 0) {
1786 			retval = ret;
1787 			goto out_unlock;
1788 		}
1789 
1790 		map_bh(bh, inode->i_sb, invalid_block);
1791 		set_buffer_new(bh);
1792 		set_buffer_delay(bh);
1793 	} else if (retval > 0) {
1794 		int ret;
1795 		unsigned int status;
1796 
1797 		if (unlikely(retval != map->m_len)) {
1798 			ext4_warning(inode->i_sb,
1799 				     "ES len assertion failed for inode "
1800 				     "%lu: retval %d != map->m_len %d",
1801 				     inode->i_ino, retval, map->m_len);
1802 			WARN_ON(1);
1803 		}
1804 
1805 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1806 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1807 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1808 					    map->m_pblk, status);
1809 		if (ret != 0)
1810 			retval = ret;
1811 	}
1812 
1813 out_unlock:
1814 	up_read((&EXT4_I(inode)->i_data_sem));
1815 
1816 	return retval;
1817 }
1818 
1819 /*
1820  * This is a special get_block_t callback which is used by
1821  * ext4_da_write_begin().  It will either return mapped block or
1822  * reserve space for a single block.
1823  *
1824  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1825  * We also have b_blocknr = -1 and b_bdev initialized properly
1826  *
1827  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1828  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1829  * initialized properly.
1830  */
1831 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1832 			   struct buffer_head *bh, int create)
1833 {
1834 	struct ext4_map_blocks map;
1835 	int ret = 0;
1836 
1837 	BUG_ON(create == 0);
1838 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1839 
1840 	map.m_lblk = iblock;
1841 	map.m_len = 1;
1842 
1843 	/*
1844 	 * first, we need to know whether the block is allocated already
1845 	 * preallocated blocks are unmapped but should treated
1846 	 * the same as allocated blocks.
1847 	 */
1848 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1849 	if (ret <= 0)
1850 		return ret;
1851 
1852 	map_bh(bh, inode->i_sb, map.m_pblk);
1853 	ext4_update_bh_state(bh, map.m_flags);
1854 
1855 	if (buffer_unwritten(bh)) {
1856 		/* A delayed write to unwritten bh should be marked
1857 		 * new and mapped.  Mapped ensures that we don't do
1858 		 * get_block multiple times when we write to the same
1859 		 * offset and new ensures that we do proper zero out
1860 		 * for partial write.
1861 		 */
1862 		set_buffer_new(bh);
1863 		set_buffer_mapped(bh);
1864 	}
1865 	return 0;
1866 }
1867 
1868 static int __ext4_journalled_writepage(struct page *page,
1869 				       unsigned int len)
1870 {
1871 	struct address_space *mapping = page->mapping;
1872 	struct inode *inode = mapping->host;
1873 	handle_t *handle = NULL;
1874 	int ret = 0, err = 0;
1875 	int inline_data = ext4_has_inline_data(inode);
1876 	struct buffer_head *inode_bh = NULL;
1877 	loff_t size;
1878 
1879 	ClearPageChecked(page);
1880 
1881 	if (inline_data) {
1882 		BUG_ON(page->index != 0);
1883 		BUG_ON(len > ext4_get_max_inline_size(inode));
1884 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1885 		if (inode_bh == NULL)
1886 			goto out;
1887 	}
1888 	/*
1889 	 * We need to release the page lock before we start the
1890 	 * journal, so grab a reference so the page won't disappear
1891 	 * out from under us.
1892 	 */
1893 	get_page(page);
1894 	unlock_page(page);
1895 
1896 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1897 				    ext4_writepage_trans_blocks(inode));
1898 	if (IS_ERR(handle)) {
1899 		ret = PTR_ERR(handle);
1900 		put_page(page);
1901 		goto out_no_pagelock;
1902 	}
1903 	BUG_ON(!ext4_handle_valid(handle));
1904 
1905 	lock_page(page);
1906 	put_page(page);
1907 	size = i_size_read(inode);
1908 	if (page->mapping != mapping || page_offset(page) > size) {
1909 		/* The page got truncated from under us */
1910 		ext4_journal_stop(handle);
1911 		ret = 0;
1912 		goto out;
1913 	}
1914 
1915 	if (inline_data) {
1916 		ret = ext4_mark_inode_dirty(handle, inode);
1917 	} else {
1918 		struct buffer_head *page_bufs = page_buffers(page);
1919 
1920 		if (page->index == size >> PAGE_SHIFT)
1921 			len = size & ~PAGE_MASK;
1922 		else
1923 			len = PAGE_SIZE;
1924 
1925 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1926 					     NULL, do_journal_get_write_access);
1927 
1928 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1929 					     NULL, write_end_fn);
1930 	}
1931 	if (ret == 0)
1932 		ret = err;
1933 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1934 	if (ret == 0)
1935 		ret = err;
1936 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937 	err = ext4_journal_stop(handle);
1938 	if (!ret)
1939 		ret = err;
1940 
1941 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1942 out:
1943 	unlock_page(page);
1944 out_no_pagelock:
1945 	brelse(inode_bh);
1946 	return ret;
1947 }
1948 
1949 /*
1950  * Note that we don't need to start a transaction unless we're journaling data
1951  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1952  * need to file the inode to the transaction's list in ordered mode because if
1953  * we are writing back data added by write(), the inode is already there and if
1954  * we are writing back data modified via mmap(), no one guarantees in which
1955  * transaction the data will hit the disk. In case we are journaling data, we
1956  * cannot start transaction directly because transaction start ranks above page
1957  * lock so we have to do some magic.
1958  *
1959  * This function can get called via...
1960  *   - ext4_writepages after taking page lock (have journal handle)
1961  *   - journal_submit_inode_data_buffers (no journal handle)
1962  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1963  *   - grab_page_cache when doing write_begin (have journal handle)
1964  *
1965  * We don't do any block allocation in this function. If we have page with
1966  * multiple blocks we need to write those buffer_heads that are mapped. This
1967  * is important for mmaped based write. So if we do with blocksize 1K
1968  * truncate(f, 1024);
1969  * a = mmap(f, 0, 4096);
1970  * a[0] = 'a';
1971  * truncate(f, 4096);
1972  * we have in the page first buffer_head mapped via page_mkwrite call back
1973  * but other buffer_heads would be unmapped but dirty (dirty done via the
1974  * do_wp_page). So writepage should write the first block. If we modify
1975  * the mmap area beyond 1024 we will again get a page_fault and the
1976  * page_mkwrite callback will do the block allocation and mark the
1977  * buffer_heads mapped.
1978  *
1979  * We redirty the page if we have any buffer_heads that is either delay or
1980  * unwritten in the page.
1981  *
1982  * We can get recursively called as show below.
1983  *
1984  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1985  *		ext4_writepage()
1986  *
1987  * But since we don't do any block allocation we should not deadlock.
1988  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1989  */
1990 static int ext4_writepage(struct page *page,
1991 			  struct writeback_control *wbc)
1992 {
1993 	struct folio *folio = page_folio(page);
1994 	int ret = 0;
1995 	loff_t size;
1996 	unsigned int len;
1997 	struct buffer_head *page_bufs = NULL;
1998 	struct inode *inode = page->mapping->host;
1999 	struct ext4_io_submit io_submit;
2000 	bool keep_towrite = false;
2001 
2002 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2003 		folio_invalidate(folio, 0, folio_size(folio));
2004 		folio_unlock(folio);
2005 		return -EIO;
2006 	}
2007 
2008 	trace_ext4_writepage(page);
2009 	size = i_size_read(inode);
2010 	if (page->index == size >> PAGE_SHIFT &&
2011 	    !ext4_verity_in_progress(inode))
2012 		len = size & ~PAGE_MASK;
2013 	else
2014 		len = PAGE_SIZE;
2015 
2016 	/* Should never happen but for bugs in other kernel subsystems */
2017 	if (!page_has_buffers(page)) {
2018 		ext4_warning_inode(inode,
2019 		   "page %lu does not have buffers attached", page->index);
2020 		ClearPageDirty(page);
2021 		unlock_page(page);
2022 		return 0;
2023 	}
2024 
2025 	page_bufs = page_buffers(page);
2026 	/*
2027 	 * We cannot do block allocation or other extent handling in this
2028 	 * function. If there are buffers needing that, we have to redirty
2029 	 * the page. But we may reach here when we do a journal commit via
2030 	 * journal_submit_inode_data_buffers() and in that case we must write
2031 	 * allocated buffers to achieve data=ordered mode guarantees.
2032 	 *
2033 	 * Also, if there is only one buffer per page (the fs block
2034 	 * size == the page size), if one buffer needs block
2035 	 * allocation or needs to modify the extent tree to clear the
2036 	 * unwritten flag, we know that the page can't be written at
2037 	 * all, so we might as well refuse the write immediately.
2038 	 * Unfortunately if the block size != page size, we can't as
2039 	 * easily detect this case using ext4_walk_page_buffers(), but
2040 	 * for the extremely common case, this is an optimization that
2041 	 * skips a useless round trip through ext4_bio_write_page().
2042 	 */
2043 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2044 				   ext4_bh_delay_or_unwritten)) {
2045 		redirty_page_for_writepage(wbc, page);
2046 		if ((current->flags & PF_MEMALLOC) ||
2047 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2048 			/*
2049 			 * For memory cleaning there's no point in writing only
2050 			 * some buffers. So just bail out. Warn if we came here
2051 			 * from direct reclaim.
2052 			 */
2053 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2054 							== PF_MEMALLOC);
2055 			unlock_page(page);
2056 			return 0;
2057 		}
2058 		keep_towrite = true;
2059 	}
2060 
2061 	if (PageChecked(page) && ext4_should_journal_data(inode))
2062 		/*
2063 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2064 		 * doesn't seem much point in redirtying the page here.
2065 		 */
2066 		return __ext4_journalled_writepage(page, len);
2067 
2068 	ext4_io_submit_init(&io_submit, wbc);
2069 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2070 	if (!io_submit.io_end) {
2071 		redirty_page_for_writepage(wbc, page);
2072 		unlock_page(page);
2073 		return -ENOMEM;
2074 	}
2075 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2076 	ext4_io_submit(&io_submit);
2077 	/* Drop io_end reference we got from init */
2078 	ext4_put_io_end_defer(io_submit.io_end);
2079 	return ret;
2080 }
2081 
2082 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2083 {
2084 	int len;
2085 	loff_t size;
2086 	int err;
2087 
2088 	BUG_ON(page->index != mpd->first_page);
2089 	clear_page_dirty_for_io(page);
2090 	/*
2091 	 * We have to be very careful here!  Nothing protects writeback path
2092 	 * against i_size changes and the page can be writeably mapped into
2093 	 * page tables. So an application can be growing i_size and writing
2094 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2095 	 * write-protects our page in page tables and the page cannot get
2096 	 * written to again until we release page lock. So only after
2097 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2098 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2099 	 * on the barrier provided by TestClearPageDirty in
2100 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2101 	 * after page tables are updated.
2102 	 */
2103 	size = i_size_read(mpd->inode);
2104 	if (page->index == size >> PAGE_SHIFT &&
2105 	    !ext4_verity_in_progress(mpd->inode))
2106 		len = size & ~PAGE_MASK;
2107 	else
2108 		len = PAGE_SIZE;
2109 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2110 	if (!err)
2111 		mpd->wbc->nr_to_write--;
2112 	mpd->first_page++;
2113 
2114 	return err;
2115 }
2116 
2117 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2118 
2119 /*
2120  * mballoc gives us at most this number of blocks...
2121  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2122  * The rest of mballoc seems to handle chunks up to full group size.
2123  */
2124 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2125 
2126 /*
2127  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2128  *
2129  * @mpd - extent of blocks
2130  * @lblk - logical number of the block in the file
2131  * @bh - buffer head we want to add to the extent
2132  *
2133  * The function is used to collect contig. blocks in the same state. If the
2134  * buffer doesn't require mapping for writeback and we haven't started the
2135  * extent of buffers to map yet, the function returns 'true' immediately - the
2136  * caller can write the buffer right away. Otherwise the function returns true
2137  * if the block has been added to the extent, false if the block couldn't be
2138  * added.
2139  */
2140 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2141 				   struct buffer_head *bh)
2142 {
2143 	struct ext4_map_blocks *map = &mpd->map;
2144 
2145 	/* Buffer that doesn't need mapping for writeback? */
2146 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2147 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2148 		/* So far no extent to map => we write the buffer right away */
2149 		if (map->m_len == 0)
2150 			return true;
2151 		return false;
2152 	}
2153 
2154 	/* First block in the extent? */
2155 	if (map->m_len == 0) {
2156 		/* We cannot map unless handle is started... */
2157 		if (!mpd->do_map)
2158 			return false;
2159 		map->m_lblk = lblk;
2160 		map->m_len = 1;
2161 		map->m_flags = bh->b_state & BH_FLAGS;
2162 		return true;
2163 	}
2164 
2165 	/* Don't go larger than mballoc is willing to allocate */
2166 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2167 		return false;
2168 
2169 	/* Can we merge the block to our big extent? */
2170 	if (lblk == map->m_lblk + map->m_len &&
2171 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2172 		map->m_len++;
2173 		return true;
2174 	}
2175 	return false;
2176 }
2177 
2178 /*
2179  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2180  *
2181  * @mpd - extent of blocks for mapping
2182  * @head - the first buffer in the page
2183  * @bh - buffer we should start processing from
2184  * @lblk - logical number of the block in the file corresponding to @bh
2185  *
2186  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2187  * the page for IO if all buffers in this page were mapped and there's no
2188  * accumulated extent of buffers to map or add buffers in the page to the
2189  * extent of buffers to map. The function returns 1 if the caller can continue
2190  * by processing the next page, 0 if it should stop adding buffers to the
2191  * extent to map because we cannot extend it anymore. It can also return value
2192  * < 0 in case of error during IO submission.
2193  */
2194 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2195 				   struct buffer_head *head,
2196 				   struct buffer_head *bh,
2197 				   ext4_lblk_t lblk)
2198 {
2199 	struct inode *inode = mpd->inode;
2200 	int err;
2201 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2202 							>> inode->i_blkbits;
2203 
2204 	if (ext4_verity_in_progress(inode))
2205 		blocks = EXT_MAX_BLOCKS;
2206 
2207 	do {
2208 		BUG_ON(buffer_locked(bh));
2209 
2210 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2211 			/* Found extent to map? */
2212 			if (mpd->map.m_len)
2213 				return 0;
2214 			/* Buffer needs mapping and handle is not started? */
2215 			if (!mpd->do_map)
2216 				return 0;
2217 			/* Everything mapped so far and we hit EOF */
2218 			break;
2219 		}
2220 	} while (lblk++, (bh = bh->b_this_page) != head);
2221 	/* So far everything mapped? Submit the page for IO. */
2222 	if (mpd->map.m_len == 0) {
2223 		err = mpage_submit_page(mpd, head->b_page);
2224 		if (err < 0)
2225 			return err;
2226 	}
2227 	if (lblk >= blocks) {
2228 		mpd->scanned_until_end = 1;
2229 		return 0;
2230 	}
2231 	return 1;
2232 }
2233 
2234 /*
2235  * mpage_process_page - update page buffers corresponding to changed extent and
2236  *		       may submit fully mapped page for IO
2237  *
2238  * @mpd		- description of extent to map, on return next extent to map
2239  * @m_lblk	- logical block mapping.
2240  * @m_pblk	- corresponding physical mapping.
2241  * @map_bh	- determines on return whether this page requires any further
2242  *		  mapping or not.
2243  * Scan given page buffers corresponding to changed extent and update buffer
2244  * state according to new extent state.
2245  * We map delalloc buffers to their physical location, clear unwritten bits.
2246  * If the given page is not fully mapped, we update @map to the next extent in
2247  * the given page that needs mapping & return @map_bh as true.
2248  */
2249 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2250 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2251 			      bool *map_bh)
2252 {
2253 	struct buffer_head *head, *bh;
2254 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2255 	ext4_lblk_t lblk = *m_lblk;
2256 	ext4_fsblk_t pblock = *m_pblk;
2257 	int err = 0;
2258 	int blkbits = mpd->inode->i_blkbits;
2259 	ssize_t io_end_size = 0;
2260 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2261 
2262 	bh = head = page_buffers(page);
2263 	do {
2264 		if (lblk < mpd->map.m_lblk)
2265 			continue;
2266 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2267 			/*
2268 			 * Buffer after end of mapped extent.
2269 			 * Find next buffer in the page to map.
2270 			 */
2271 			mpd->map.m_len = 0;
2272 			mpd->map.m_flags = 0;
2273 			io_end_vec->size += io_end_size;
2274 
2275 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2276 			if (err > 0)
2277 				err = 0;
2278 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2279 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2280 				if (IS_ERR(io_end_vec)) {
2281 					err = PTR_ERR(io_end_vec);
2282 					goto out;
2283 				}
2284 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2285 			}
2286 			*map_bh = true;
2287 			goto out;
2288 		}
2289 		if (buffer_delay(bh)) {
2290 			clear_buffer_delay(bh);
2291 			bh->b_blocknr = pblock++;
2292 		}
2293 		clear_buffer_unwritten(bh);
2294 		io_end_size += (1 << blkbits);
2295 	} while (lblk++, (bh = bh->b_this_page) != head);
2296 
2297 	io_end_vec->size += io_end_size;
2298 	*map_bh = false;
2299 out:
2300 	*m_lblk = lblk;
2301 	*m_pblk = pblock;
2302 	return err;
2303 }
2304 
2305 /*
2306  * mpage_map_buffers - update buffers corresponding to changed extent and
2307  *		       submit fully mapped pages for IO
2308  *
2309  * @mpd - description of extent to map, on return next extent to map
2310  *
2311  * Scan buffers corresponding to changed extent (we expect corresponding pages
2312  * to be already locked) and update buffer state according to new extent state.
2313  * We map delalloc buffers to their physical location, clear unwritten bits,
2314  * and mark buffers as uninit when we perform writes to unwritten extents
2315  * and do extent conversion after IO is finished. If the last page is not fully
2316  * mapped, we update @map to the next extent in the last page that needs
2317  * mapping. Otherwise we submit the page for IO.
2318  */
2319 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2320 {
2321 	struct pagevec pvec;
2322 	int nr_pages, i;
2323 	struct inode *inode = mpd->inode;
2324 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2325 	pgoff_t start, end;
2326 	ext4_lblk_t lblk;
2327 	ext4_fsblk_t pblock;
2328 	int err;
2329 	bool map_bh = false;
2330 
2331 	start = mpd->map.m_lblk >> bpp_bits;
2332 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2333 	lblk = start << bpp_bits;
2334 	pblock = mpd->map.m_pblk;
2335 
2336 	pagevec_init(&pvec);
2337 	while (start <= end) {
2338 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2339 						&start, end);
2340 		if (nr_pages == 0)
2341 			break;
2342 		for (i = 0; i < nr_pages; i++) {
2343 			struct page *page = pvec.pages[i];
2344 
2345 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2346 						 &map_bh);
2347 			/*
2348 			 * If map_bh is true, means page may require further bh
2349 			 * mapping, or maybe the page was submitted for IO.
2350 			 * So we return to call further extent mapping.
2351 			 */
2352 			if (err < 0 || map_bh)
2353 				goto out;
2354 			/* Page fully mapped - let IO run! */
2355 			err = mpage_submit_page(mpd, page);
2356 			if (err < 0)
2357 				goto out;
2358 		}
2359 		pagevec_release(&pvec);
2360 	}
2361 	/* Extent fully mapped and matches with page boundary. We are done. */
2362 	mpd->map.m_len = 0;
2363 	mpd->map.m_flags = 0;
2364 	return 0;
2365 out:
2366 	pagevec_release(&pvec);
2367 	return err;
2368 }
2369 
2370 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2371 {
2372 	struct inode *inode = mpd->inode;
2373 	struct ext4_map_blocks *map = &mpd->map;
2374 	int get_blocks_flags;
2375 	int err, dioread_nolock;
2376 
2377 	trace_ext4_da_write_pages_extent(inode, map);
2378 	/*
2379 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2380 	 * to convert an unwritten extent to be initialized (in the case
2381 	 * where we have written into one or more preallocated blocks).  It is
2382 	 * possible that we're going to need more metadata blocks than
2383 	 * previously reserved. However we must not fail because we're in
2384 	 * writeback and there is nothing we can do about it so it might result
2385 	 * in data loss.  So use reserved blocks to allocate metadata if
2386 	 * possible.
2387 	 *
2388 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2389 	 * the blocks in question are delalloc blocks.  This indicates
2390 	 * that the blocks and quotas has already been checked when
2391 	 * the data was copied into the page cache.
2392 	 */
2393 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2394 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2395 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2396 	dioread_nolock = ext4_should_dioread_nolock(inode);
2397 	if (dioread_nolock)
2398 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2399 	if (map->m_flags & BIT(BH_Delay))
2400 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2401 
2402 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2403 	if (err < 0)
2404 		return err;
2405 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2406 		if (!mpd->io_submit.io_end->handle &&
2407 		    ext4_handle_valid(handle)) {
2408 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2409 			handle->h_rsv_handle = NULL;
2410 		}
2411 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2412 	}
2413 
2414 	BUG_ON(map->m_len == 0);
2415 	return 0;
2416 }
2417 
2418 /*
2419  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2420  *				 mpd->len and submit pages underlying it for IO
2421  *
2422  * @handle - handle for journal operations
2423  * @mpd - extent to map
2424  * @give_up_on_write - we set this to true iff there is a fatal error and there
2425  *                     is no hope of writing the data. The caller should discard
2426  *                     dirty pages to avoid infinite loops.
2427  *
2428  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2429  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2430  * them to initialized or split the described range from larger unwritten
2431  * extent. Note that we need not map all the described range since allocation
2432  * can return less blocks or the range is covered by more unwritten extents. We
2433  * cannot map more because we are limited by reserved transaction credits. On
2434  * the other hand we always make sure that the last touched page is fully
2435  * mapped so that it can be written out (and thus forward progress is
2436  * guaranteed). After mapping we submit all mapped pages for IO.
2437  */
2438 static int mpage_map_and_submit_extent(handle_t *handle,
2439 				       struct mpage_da_data *mpd,
2440 				       bool *give_up_on_write)
2441 {
2442 	struct inode *inode = mpd->inode;
2443 	struct ext4_map_blocks *map = &mpd->map;
2444 	int err;
2445 	loff_t disksize;
2446 	int progress = 0;
2447 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2448 	struct ext4_io_end_vec *io_end_vec;
2449 
2450 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2451 	if (IS_ERR(io_end_vec))
2452 		return PTR_ERR(io_end_vec);
2453 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2454 	do {
2455 		err = mpage_map_one_extent(handle, mpd);
2456 		if (err < 0) {
2457 			struct super_block *sb = inode->i_sb;
2458 
2459 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2460 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2461 				goto invalidate_dirty_pages;
2462 			/*
2463 			 * Let the uper layers retry transient errors.
2464 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2465 			 * is non-zero, a commit should free up blocks.
2466 			 */
2467 			if ((err == -ENOMEM) ||
2468 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2469 				if (progress)
2470 					goto update_disksize;
2471 				return err;
2472 			}
2473 			ext4_msg(sb, KERN_CRIT,
2474 				 "Delayed block allocation failed for "
2475 				 "inode %lu at logical offset %llu with"
2476 				 " max blocks %u with error %d",
2477 				 inode->i_ino,
2478 				 (unsigned long long)map->m_lblk,
2479 				 (unsigned)map->m_len, -err);
2480 			ext4_msg(sb, KERN_CRIT,
2481 				 "This should not happen!! Data will "
2482 				 "be lost\n");
2483 			if (err == -ENOSPC)
2484 				ext4_print_free_blocks(inode);
2485 		invalidate_dirty_pages:
2486 			*give_up_on_write = true;
2487 			return err;
2488 		}
2489 		progress = 1;
2490 		/*
2491 		 * Update buffer state, submit mapped pages, and get us new
2492 		 * extent to map
2493 		 */
2494 		err = mpage_map_and_submit_buffers(mpd);
2495 		if (err < 0)
2496 			goto update_disksize;
2497 	} while (map->m_len);
2498 
2499 update_disksize:
2500 	/*
2501 	 * Update on-disk size after IO is submitted.  Races with
2502 	 * truncate are avoided by checking i_size under i_data_sem.
2503 	 */
2504 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2505 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2506 		int err2;
2507 		loff_t i_size;
2508 
2509 		down_write(&EXT4_I(inode)->i_data_sem);
2510 		i_size = i_size_read(inode);
2511 		if (disksize > i_size)
2512 			disksize = i_size;
2513 		if (disksize > EXT4_I(inode)->i_disksize)
2514 			EXT4_I(inode)->i_disksize = disksize;
2515 		up_write(&EXT4_I(inode)->i_data_sem);
2516 		err2 = ext4_mark_inode_dirty(handle, inode);
2517 		if (err2) {
2518 			ext4_error_err(inode->i_sb, -err2,
2519 				       "Failed to mark inode %lu dirty",
2520 				       inode->i_ino);
2521 		}
2522 		if (!err)
2523 			err = err2;
2524 	}
2525 	return err;
2526 }
2527 
2528 /*
2529  * Calculate the total number of credits to reserve for one writepages
2530  * iteration. This is called from ext4_writepages(). We map an extent of
2531  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2532  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2533  * bpp - 1 blocks in bpp different extents.
2534  */
2535 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2536 {
2537 	int bpp = ext4_journal_blocks_per_page(inode);
2538 
2539 	return ext4_meta_trans_blocks(inode,
2540 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2541 }
2542 
2543 /*
2544  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2545  * 				 and underlying extent to map
2546  *
2547  * @mpd - where to look for pages
2548  *
2549  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2550  * IO immediately. When we find a page which isn't mapped we start accumulating
2551  * extent of buffers underlying these pages that needs mapping (formed by
2552  * either delayed or unwritten buffers). We also lock the pages containing
2553  * these buffers. The extent found is returned in @mpd structure (starting at
2554  * mpd->lblk with length mpd->len blocks).
2555  *
2556  * Note that this function can attach bios to one io_end structure which are
2557  * neither logically nor physically contiguous. Although it may seem as an
2558  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2559  * case as we need to track IO to all buffers underlying a page in one io_end.
2560  */
2561 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2562 {
2563 	struct address_space *mapping = mpd->inode->i_mapping;
2564 	struct pagevec pvec;
2565 	unsigned int nr_pages;
2566 	long left = mpd->wbc->nr_to_write;
2567 	pgoff_t index = mpd->first_page;
2568 	pgoff_t end = mpd->last_page;
2569 	xa_mark_t tag;
2570 	int i, err = 0;
2571 	int blkbits = mpd->inode->i_blkbits;
2572 	ext4_lblk_t lblk;
2573 	struct buffer_head *head;
2574 
2575 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2576 		tag = PAGECACHE_TAG_TOWRITE;
2577 	else
2578 		tag = PAGECACHE_TAG_DIRTY;
2579 
2580 	pagevec_init(&pvec);
2581 	mpd->map.m_len = 0;
2582 	mpd->next_page = index;
2583 	while (index <= end) {
2584 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2585 				tag);
2586 		if (nr_pages == 0)
2587 			break;
2588 
2589 		for (i = 0; i < nr_pages; i++) {
2590 			struct page *page = pvec.pages[i];
2591 
2592 			/*
2593 			 * Accumulated enough dirty pages? This doesn't apply
2594 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2595 			 * keep going because someone may be concurrently
2596 			 * dirtying pages, and we might have synced a lot of
2597 			 * newly appeared dirty pages, but have not synced all
2598 			 * of the old dirty pages.
2599 			 */
2600 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2601 				goto out;
2602 
2603 			/* If we can't merge this page, we are done. */
2604 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2605 				goto out;
2606 
2607 			lock_page(page);
2608 			/*
2609 			 * If the page is no longer dirty, or its mapping no
2610 			 * longer corresponds to inode we are writing (which
2611 			 * means it has been truncated or invalidated), or the
2612 			 * page is already under writeback and we are not doing
2613 			 * a data integrity writeback, skip the page
2614 			 */
2615 			if (!PageDirty(page) ||
2616 			    (PageWriteback(page) &&
2617 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2618 			    unlikely(page->mapping != mapping)) {
2619 				unlock_page(page);
2620 				continue;
2621 			}
2622 
2623 			wait_on_page_writeback(page);
2624 			BUG_ON(PageWriteback(page));
2625 
2626 			/*
2627 			 * Should never happen but for buggy code in
2628 			 * other subsystems that call
2629 			 * set_page_dirty() without properly warning
2630 			 * the file system first.  See [1] for more
2631 			 * information.
2632 			 *
2633 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2634 			 */
2635 			if (!page_has_buffers(page)) {
2636 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2637 				ClearPageDirty(page);
2638 				unlock_page(page);
2639 				continue;
2640 			}
2641 
2642 			if (mpd->map.m_len == 0)
2643 				mpd->first_page = page->index;
2644 			mpd->next_page = page->index + 1;
2645 			/* Add all dirty buffers to mpd */
2646 			lblk = ((ext4_lblk_t)page->index) <<
2647 				(PAGE_SHIFT - blkbits);
2648 			head = page_buffers(page);
2649 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2650 			if (err <= 0)
2651 				goto out;
2652 			err = 0;
2653 			left--;
2654 		}
2655 		pagevec_release(&pvec);
2656 		cond_resched();
2657 	}
2658 	mpd->scanned_until_end = 1;
2659 	return 0;
2660 out:
2661 	pagevec_release(&pvec);
2662 	return err;
2663 }
2664 
2665 static int ext4_writepages(struct address_space *mapping,
2666 			   struct writeback_control *wbc)
2667 {
2668 	pgoff_t	writeback_index = 0;
2669 	long nr_to_write = wbc->nr_to_write;
2670 	int range_whole = 0;
2671 	int cycled = 1;
2672 	handle_t *handle = NULL;
2673 	struct mpage_da_data mpd;
2674 	struct inode *inode = mapping->host;
2675 	int needed_blocks, rsv_blocks = 0, ret = 0;
2676 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2677 	struct blk_plug plug;
2678 	bool give_up_on_write = false;
2679 
2680 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2681 		return -EIO;
2682 
2683 	percpu_down_read(&sbi->s_writepages_rwsem);
2684 	trace_ext4_writepages(inode, wbc);
2685 
2686 	/*
2687 	 * No pages to write? This is mainly a kludge to avoid starting
2688 	 * a transaction for special inodes like journal inode on last iput()
2689 	 * because that could violate lock ordering on umount
2690 	 */
2691 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2692 		goto out_writepages;
2693 
2694 	if (ext4_should_journal_data(inode)) {
2695 		ret = generic_writepages(mapping, wbc);
2696 		goto out_writepages;
2697 	}
2698 
2699 	/*
2700 	 * If the filesystem has aborted, it is read-only, so return
2701 	 * right away instead of dumping stack traces later on that
2702 	 * will obscure the real source of the problem.  We test
2703 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2704 	 * the latter could be true if the filesystem is mounted
2705 	 * read-only, and in that case, ext4_writepages should
2706 	 * *never* be called, so if that ever happens, we would want
2707 	 * the stack trace.
2708 	 */
2709 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2710 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2711 		ret = -EROFS;
2712 		goto out_writepages;
2713 	}
2714 
2715 	/*
2716 	 * If we have inline data and arrive here, it means that
2717 	 * we will soon create the block for the 1st page, so
2718 	 * we'd better clear the inline data here.
2719 	 */
2720 	if (ext4_has_inline_data(inode)) {
2721 		/* Just inode will be modified... */
2722 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2723 		if (IS_ERR(handle)) {
2724 			ret = PTR_ERR(handle);
2725 			goto out_writepages;
2726 		}
2727 		BUG_ON(ext4_test_inode_state(inode,
2728 				EXT4_STATE_MAY_INLINE_DATA));
2729 		ext4_destroy_inline_data(handle, inode);
2730 		ext4_journal_stop(handle);
2731 	}
2732 
2733 	if (ext4_should_dioread_nolock(inode)) {
2734 		/*
2735 		 * We may need to convert up to one extent per block in
2736 		 * the page and we may dirty the inode.
2737 		 */
2738 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2739 						PAGE_SIZE >> inode->i_blkbits);
2740 	}
2741 
2742 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2743 		range_whole = 1;
2744 
2745 	if (wbc->range_cyclic) {
2746 		writeback_index = mapping->writeback_index;
2747 		if (writeback_index)
2748 			cycled = 0;
2749 		mpd.first_page = writeback_index;
2750 		mpd.last_page = -1;
2751 	} else {
2752 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2753 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2754 	}
2755 
2756 	mpd.inode = inode;
2757 	mpd.wbc = wbc;
2758 	ext4_io_submit_init(&mpd.io_submit, wbc);
2759 retry:
2760 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2761 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2762 	blk_start_plug(&plug);
2763 
2764 	/*
2765 	 * First writeback pages that don't need mapping - we can avoid
2766 	 * starting a transaction unnecessarily and also avoid being blocked
2767 	 * in the block layer on device congestion while having transaction
2768 	 * started.
2769 	 */
2770 	mpd.do_map = 0;
2771 	mpd.scanned_until_end = 0;
2772 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2773 	if (!mpd.io_submit.io_end) {
2774 		ret = -ENOMEM;
2775 		goto unplug;
2776 	}
2777 	ret = mpage_prepare_extent_to_map(&mpd);
2778 	/* Unlock pages we didn't use */
2779 	mpage_release_unused_pages(&mpd, false);
2780 	/* Submit prepared bio */
2781 	ext4_io_submit(&mpd.io_submit);
2782 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2783 	mpd.io_submit.io_end = NULL;
2784 	if (ret < 0)
2785 		goto unplug;
2786 
2787 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2788 		/* For each extent of pages we use new io_end */
2789 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2790 		if (!mpd.io_submit.io_end) {
2791 			ret = -ENOMEM;
2792 			break;
2793 		}
2794 
2795 		/*
2796 		 * We have two constraints: We find one extent to map and we
2797 		 * must always write out whole page (makes a difference when
2798 		 * blocksize < pagesize) so that we don't block on IO when we
2799 		 * try to write out the rest of the page. Journalled mode is
2800 		 * not supported by delalloc.
2801 		 */
2802 		BUG_ON(ext4_should_journal_data(inode));
2803 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2804 
2805 		/* start a new transaction */
2806 		handle = ext4_journal_start_with_reserve(inode,
2807 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2808 		if (IS_ERR(handle)) {
2809 			ret = PTR_ERR(handle);
2810 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2811 			       "%ld pages, ino %lu; err %d", __func__,
2812 				wbc->nr_to_write, inode->i_ino, ret);
2813 			/* Release allocated io_end */
2814 			ext4_put_io_end(mpd.io_submit.io_end);
2815 			mpd.io_submit.io_end = NULL;
2816 			break;
2817 		}
2818 		mpd.do_map = 1;
2819 
2820 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2821 		ret = mpage_prepare_extent_to_map(&mpd);
2822 		if (!ret && mpd.map.m_len)
2823 			ret = mpage_map_and_submit_extent(handle, &mpd,
2824 					&give_up_on_write);
2825 		/*
2826 		 * Caution: If the handle is synchronous,
2827 		 * ext4_journal_stop() can wait for transaction commit
2828 		 * to finish which may depend on writeback of pages to
2829 		 * complete or on page lock to be released.  In that
2830 		 * case, we have to wait until after we have
2831 		 * submitted all the IO, released page locks we hold,
2832 		 * and dropped io_end reference (for extent conversion
2833 		 * to be able to complete) before stopping the handle.
2834 		 */
2835 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2836 			ext4_journal_stop(handle);
2837 			handle = NULL;
2838 			mpd.do_map = 0;
2839 		}
2840 		/* Unlock pages we didn't use */
2841 		mpage_release_unused_pages(&mpd, give_up_on_write);
2842 		/* Submit prepared bio */
2843 		ext4_io_submit(&mpd.io_submit);
2844 
2845 		/*
2846 		 * Drop our io_end reference we got from init. We have
2847 		 * to be careful and use deferred io_end finishing if
2848 		 * we are still holding the transaction as we can
2849 		 * release the last reference to io_end which may end
2850 		 * up doing unwritten extent conversion.
2851 		 */
2852 		if (handle) {
2853 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2854 			ext4_journal_stop(handle);
2855 		} else
2856 			ext4_put_io_end(mpd.io_submit.io_end);
2857 		mpd.io_submit.io_end = NULL;
2858 
2859 		if (ret == -ENOSPC && sbi->s_journal) {
2860 			/*
2861 			 * Commit the transaction which would
2862 			 * free blocks released in the transaction
2863 			 * and try again
2864 			 */
2865 			jbd2_journal_force_commit_nested(sbi->s_journal);
2866 			ret = 0;
2867 			continue;
2868 		}
2869 		/* Fatal error - ENOMEM, EIO... */
2870 		if (ret)
2871 			break;
2872 	}
2873 unplug:
2874 	blk_finish_plug(&plug);
2875 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2876 		cycled = 1;
2877 		mpd.last_page = writeback_index - 1;
2878 		mpd.first_page = 0;
2879 		goto retry;
2880 	}
2881 
2882 	/* Update index */
2883 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2884 		/*
2885 		 * Set the writeback_index so that range_cyclic
2886 		 * mode will write it back later
2887 		 */
2888 		mapping->writeback_index = mpd.first_page;
2889 
2890 out_writepages:
2891 	trace_ext4_writepages_result(inode, wbc, ret,
2892 				     nr_to_write - wbc->nr_to_write);
2893 	percpu_up_read(&sbi->s_writepages_rwsem);
2894 	return ret;
2895 }
2896 
2897 static int ext4_dax_writepages(struct address_space *mapping,
2898 			       struct writeback_control *wbc)
2899 {
2900 	int ret;
2901 	long nr_to_write = wbc->nr_to_write;
2902 	struct inode *inode = mapping->host;
2903 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2904 
2905 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2906 		return -EIO;
2907 
2908 	percpu_down_read(&sbi->s_writepages_rwsem);
2909 	trace_ext4_writepages(inode, wbc);
2910 
2911 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2912 	trace_ext4_writepages_result(inode, wbc, ret,
2913 				     nr_to_write - wbc->nr_to_write);
2914 	percpu_up_read(&sbi->s_writepages_rwsem);
2915 	return ret;
2916 }
2917 
2918 static int ext4_nonda_switch(struct super_block *sb)
2919 {
2920 	s64 free_clusters, dirty_clusters;
2921 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2922 
2923 	/*
2924 	 * switch to non delalloc mode if we are running low
2925 	 * on free block. The free block accounting via percpu
2926 	 * counters can get slightly wrong with percpu_counter_batch getting
2927 	 * accumulated on each CPU without updating global counters
2928 	 * Delalloc need an accurate free block accounting. So switch
2929 	 * to non delalloc when we are near to error range.
2930 	 */
2931 	free_clusters =
2932 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2933 	dirty_clusters =
2934 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2935 	/*
2936 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2937 	 */
2938 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2939 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2940 
2941 	if (2 * free_clusters < 3 * dirty_clusters ||
2942 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2943 		/*
2944 		 * free block count is less than 150% of dirty blocks
2945 		 * or free blocks is less than watermark
2946 		 */
2947 		return 1;
2948 	}
2949 	return 0;
2950 }
2951 
2952 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2953 			       loff_t pos, unsigned len,
2954 			       struct page **pagep, void **fsdata)
2955 {
2956 	int ret, retries = 0;
2957 	struct page *page;
2958 	pgoff_t index;
2959 	struct inode *inode = mapping->host;
2960 
2961 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962 		return -EIO;
2963 
2964 	index = pos >> PAGE_SHIFT;
2965 
2966 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2967 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2968 		return ext4_write_begin(file, mapping, pos,
2969 					len, pagep, fsdata);
2970 	}
2971 	*fsdata = (void *)0;
2972 	trace_ext4_da_write_begin(inode, pos, len);
2973 
2974 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2975 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2976 						      pagep, fsdata);
2977 		if (ret < 0)
2978 			return ret;
2979 		if (ret == 1)
2980 			return 0;
2981 	}
2982 
2983 retry:
2984 	page = grab_cache_page_write_begin(mapping, index);
2985 	if (!page)
2986 		return -ENOMEM;
2987 
2988 	/* In case writeback began while the page was unlocked */
2989 	wait_for_stable_page(page);
2990 
2991 #ifdef CONFIG_FS_ENCRYPTION
2992 	ret = ext4_block_write_begin(page, pos, len,
2993 				     ext4_da_get_block_prep);
2994 #else
2995 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2996 #endif
2997 	if (ret < 0) {
2998 		unlock_page(page);
2999 		put_page(page);
3000 		/*
3001 		 * block_write_begin may have instantiated a few blocks
3002 		 * outside i_size.  Trim these off again. Don't need
3003 		 * i_size_read because we hold inode lock.
3004 		 */
3005 		if (pos + len > inode->i_size)
3006 			ext4_truncate_failed_write(inode);
3007 
3008 		if (ret == -ENOSPC &&
3009 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3010 			goto retry;
3011 		return ret;
3012 	}
3013 
3014 	*pagep = page;
3015 	return ret;
3016 }
3017 
3018 /*
3019  * Check if we should update i_disksize
3020  * when write to the end of file but not require block allocation
3021  */
3022 static int ext4_da_should_update_i_disksize(struct page *page,
3023 					    unsigned long offset)
3024 {
3025 	struct buffer_head *bh;
3026 	struct inode *inode = page->mapping->host;
3027 	unsigned int idx;
3028 	int i;
3029 
3030 	bh = page_buffers(page);
3031 	idx = offset >> inode->i_blkbits;
3032 
3033 	for (i = 0; i < idx; i++)
3034 		bh = bh->b_this_page;
3035 
3036 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3037 		return 0;
3038 	return 1;
3039 }
3040 
3041 static int ext4_da_write_end(struct file *file,
3042 			     struct address_space *mapping,
3043 			     loff_t pos, unsigned len, unsigned copied,
3044 			     struct page *page, void *fsdata)
3045 {
3046 	struct inode *inode = mapping->host;
3047 	loff_t new_i_size;
3048 	unsigned long start, end;
3049 	int write_mode = (int)(unsigned long)fsdata;
3050 
3051 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3052 		return ext4_write_end(file, mapping, pos,
3053 				      len, copied, page, fsdata);
3054 
3055 	trace_ext4_da_write_end(inode, pos, len, copied);
3056 
3057 	if (write_mode != CONVERT_INLINE_DATA &&
3058 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059 	    ext4_has_inline_data(inode))
3060 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3061 
3062 	start = pos & (PAGE_SIZE - 1);
3063 	end = start + copied - 1;
3064 
3065 	/*
3066 	 * Since we are holding inode lock, we are sure i_disksize <=
3067 	 * i_size. We also know that if i_disksize < i_size, there are
3068 	 * delalloc writes pending in the range upto i_size. If the end of
3069 	 * the current write is <= i_size, there's no need to touch
3070 	 * i_disksize since writeback will push i_disksize upto i_size
3071 	 * eventually. If the end of the current write is > i_size and
3072 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3073 	 * check), we need to update i_disksize here as neither
3074 	 * ext4_writepage() nor certain ext4_writepages() paths not
3075 	 * allocating blocks update i_disksize.
3076 	 *
3077 	 * Note that we defer inode dirtying to generic_write_end() /
3078 	 * ext4_da_write_inline_data_end().
3079 	 */
3080 	new_i_size = pos + copied;
3081 	if (copied && new_i_size > inode->i_size &&
3082 	    ext4_da_should_update_i_disksize(page, end))
3083 		ext4_update_i_disksize(inode, new_i_size);
3084 
3085 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3086 }
3087 
3088 /*
3089  * Force all delayed allocation blocks to be allocated for a given inode.
3090  */
3091 int ext4_alloc_da_blocks(struct inode *inode)
3092 {
3093 	trace_ext4_alloc_da_blocks(inode);
3094 
3095 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3096 		return 0;
3097 
3098 	/*
3099 	 * We do something simple for now.  The filemap_flush() will
3100 	 * also start triggering a write of the data blocks, which is
3101 	 * not strictly speaking necessary (and for users of
3102 	 * laptop_mode, not even desirable).  However, to do otherwise
3103 	 * would require replicating code paths in:
3104 	 *
3105 	 * ext4_writepages() ->
3106 	 *    write_cache_pages() ---> (via passed in callback function)
3107 	 *        __mpage_da_writepage() -->
3108 	 *           mpage_add_bh_to_extent()
3109 	 *           mpage_da_map_blocks()
3110 	 *
3111 	 * The problem is that write_cache_pages(), located in
3112 	 * mm/page-writeback.c, marks pages clean in preparation for
3113 	 * doing I/O, which is not desirable if we're not planning on
3114 	 * doing I/O at all.
3115 	 *
3116 	 * We could call write_cache_pages(), and then redirty all of
3117 	 * the pages by calling redirty_page_for_writepage() but that
3118 	 * would be ugly in the extreme.  So instead we would need to
3119 	 * replicate parts of the code in the above functions,
3120 	 * simplifying them because we wouldn't actually intend to
3121 	 * write out the pages, but rather only collect contiguous
3122 	 * logical block extents, call the multi-block allocator, and
3123 	 * then update the buffer heads with the block allocations.
3124 	 *
3125 	 * For now, though, we'll cheat by calling filemap_flush(),
3126 	 * which will map the blocks, and start the I/O, but not
3127 	 * actually wait for the I/O to complete.
3128 	 */
3129 	return filemap_flush(inode->i_mapping);
3130 }
3131 
3132 /*
3133  * bmap() is special.  It gets used by applications such as lilo and by
3134  * the swapper to find the on-disk block of a specific piece of data.
3135  *
3136  * Naturally, this is dangerous if the block concerned is still in the
3137  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3138  * filesystem and enables swap, then they may get a nasty shock when the
3139  * data getting swapped to that swapfile suddenly gets overwritten by
3140  * the original zero's written out previously to the journal and
3141  * awaiting writeback in the kernel's buffer cache.
3142  *
3143  * So, if we see any bmap calls here on a modified, data-journaled file,
3144  * take extra steps to flush any blocks which might be in the cache.
3145  */
3146 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3147 {
3148 	struct inode *inode = mapping->host;
3149 	journal_t *journal;
3150 	int err;
3151 
3152 	/*
3153 	 * We can get here for an inline file via the FIBMAP ioctl
3154 	 */
3155 	if (ext4_has_inline_data(inode))
3156 		return 0;
3157 
3158 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3159 			test_opt(inode->i_sb, DELALLOC)) {
3160 		/*
3161 		 * With delalloc we want to sync the file
3162 		 * so that we can make sure we allocate
3163 		 * blocks for file
3164 		 */
3165 		filemap_write_and_wait(mapping);
3166 	}
3167 
3168 	if (EXT4_JOURNAL(inode) &&
3169 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3170 		/*
3171 		 * This is a REALLY heavyweight approach, but the use of
3172 		 * bmap on dirty files is expected to be extremely rare:
3173 		 * only if we run lilo or swapon on a freshly made file
3174 		 * do we expect this to happen.
3175 		 *
3176 		 * (bmap requires CAP_SYS_RAWIO so this does not
3177 		 * represent an unprivileged user DOS attack --- we'd be
3178 		 * in trouble if mortal users could trigger this path at
3179 		 * will.)
3180 		 *
3181 		 * NB. EXT4_STATE_JDATA is not set on files other than
3182 		 * regular files.  If somebody wants to bmap a directory
3183 		 * or symlink and gets confused because the buffer
3184 		 * hasn't yet been flushed to disk, they deserve
3185 		 * everything they get.
3186 		 */
3187 
3188 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3189 		journal = EXT4_JOURNAL(inode);
3190 		jbd2_journal_lock_updates(journal);
3191 		err = jbd2_journal_flush(journal, 0);
3192 		jbd2_journal_unlock_updates(journal);
3193 
3194 		if (err)
3195 			return 0;
3196 	}
3197 
3198 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3199 }
3200 
3201 static int ext4_read_folio(struct file *file, struct folio *folio)
3202 {
3203 	struct page *page = &folio->page;
3204 	int ret = -EAGAIN;
3205 	struct inode *inode = page->mapping->host;
3206 
3207 	trace_ext4_readpage(page);
3208 
3209 	if (ext4_has_inline_data(inode))
3210 		ret = ext4_readpage_inline(inode, page);
3211 
3212 	if (ret == -EAGAIN)
3213 		return ext4_mpage_readpages(inode, NULL, page);
3214 
3215 	return ret;
3216 }
3217 
3218 static void ext4_readahead(struct readahead_control *rac)
3219 {
3220 	struct inode *inode = rac->mapping->host;
3221 
3222 	/* If the file has inline data, no need to do readahead. */
3223 	if (ext4_has_inline_data(inode))
3224 		return;
3225 
3226 	ext4_mpage_readpages(inode, rac, NULL);
3227 }
3228 
3229 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3230 				size_t length)
3231 {
3232 	trace_ext4_invalidate_folio(folio, offset, length);
3233 
3234 	/* No journalling happens on data buffers when this function is used */
3235 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3236 
3237 	block_invalidate_folio(folio, offset, length);
3238 }
3239 
3240 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3241 					    size_t offset, size_t length)
3242 {
3243 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3244 
3245 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3246 
3247 	/*
3248 	 * If it's a full truncate we just forget about the pending dirtying
3249 	 */
3250 	if (offset == 0 && length == folio_size(folio))
3251 		folio_clear_checked(folio);
3252 
3253 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3254 }
3255 
3256 /* Wrapper for aops... */
3257 static void ext4_journalled_invalidate_folio(struct folio *folio,
3258 					   size_t offset,
3259 					   size_t length)
3260 {
3261 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3262 }
3263 
3264 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3265 {
3266 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3267 
3268 	trace_ext4_releasepage(&folio->page);
3269 
3270 	/* Page has dirty journalled data -> cannot release */
3271 	if (folio_test_checked(folio))
3272 		return false;
3273 	if (journal)
3274 		return jbd2_journal_try_to_free_buffers(journal, folio);
3275 	else
3276 		return try_to_free_buffers(folio);
3277 }
3278 
3279 static bool ext4_inode_datasync_dirty(struct inode *inode)
3280 {
3281 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3282 
3283 	if (journal) {
3284 		if (jbd2_transaction_committed(journal,
3285 			EXT4_I(inode)->i_datasync_tid))
3286 			return false;
3287 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3288 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3289 		return true;
3290 	}
3291 
3292 	/* Any metadata buffers to write? */
3293 	if (!list_empty(&inode->i_mapping->private_list))
3294 		return true;
3295 	return inode->i_state & I_DIRTY_DATASYNC;
3296 }
3297 
3298 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3299 			   struct ext4_map_blocks *map, loff_t offset,
3300 			   loff_t length, unsigned int flags)
3301 {
3302 	u8 blkbits = inode->i_blkbits;
3303 
3304 	/*
3305 	 * Writes that span EOF might trigger an I/O size update on completion,
3306 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3307 	 * there is no other metadata changes being made or are pending.
3308 	 */
3309 	iomap->flags = 0;
3310 	if (ext4_inode_datasync_dirty(inode) ||
3311 	    offset + length > i_size_read(inode))
3312 		iomap->flags |= IOMAP_F_DIRTY;
3313 
3314 	if (map->m_flags & EXT4_MAP_NEW)
3315 		iomap->flags |= IOMAP_F_NEW;
3316 
3317 	if (flags & IOMAP_DAX)
3318 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3319 	else
3320 		iomap->bdev = inode->i_sb->s_bdev;
3321 	iomap->offset = (u64) map->m_lblk << blkbits;
3322 	iomap->length = (u64) map->m_len << blkbits;
3323 
3324 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3325 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3326 		iomap->flags |= IOMAP_F_MERGED;
3327 
3328 	/*
3329 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3330 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3331 	 * set. In order for any allocated unwritten extents to be converted
3332 	 * into written extents correctly within the ->end_io() handler, we
3333 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3334 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3335 	 * been set first.
3336 	 */
3337 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3338 		iomap->type = IOMAP_UNWRITTEN;
3339 		iomap->addr = (u64) map->m_pblk << blkbits;
3340 		if (flags & IOMAP_DAX)
3341 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3342 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3343 		iomap->type = IOMAP_MAPPED;
3344 		iomap->addr = (u64) map->m_pblk << blkbits;
3345 		if (flags & IOMAP_DAX)
3346 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3347 	} else {
3348 		iomap->type = IOMAP_HOLE;
3349 		iomap->addr = IOMAP_NULL_ADDR;
3350 	}
3351 }
3352 
3353 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3354 			    unsigned int flags)
3355 {
3356 	handle_t *handle;
3357 	u8 blkbits = inode->i_blkbits;
3358 	int ret, dio_credits, m_flags = 0, retries = 0;
3359 
3360 	/*
3361 	 * Trim the mapping request to the maximum value that we can map at
3362 	 * once for direct I/O.
3363 	 */
3364 	if (map->m_len > DIO_MAX_BLOCKS)
3365 		map->m_len = DIO_MAX_BLOCKS;
3366 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3367 
3368 retry:
3369 	/*
3370 	 * Either we allocate blocks and then don't get an unwritten extent, so
3371 	 * in that case we have reserved enough credits. Or, the blocks are
3372 	 * already allocated and unwritten. In that case, the extent conversion
3373 	 * fits into the credits as well.
3374 	 */
3375 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3376 	if (IS_ERR(handle))
3377 		return PTR_ERR(handle);
3378 
3379 	/*
3380 	 * DAX and direct I/O are the only two operations that are currently
3381 	 * supported with IOMAP_WRITE.
3382 	 */
3383 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3384 	if (flags & IOMAP_DAX)
3385 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3386 	/*
3387 	 * We use i_size instead of i_disksize here because delalloc writeback
3388 	 * can complete at any point during the I/O and subsequently push the
3389 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3390 	 * happening and thus expose allocated blocks to direct I/O reads.
3391 	 */
3392 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3393 		m_flags = EXT4_GET_BLOCKS_CREATE;
3394 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3395 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3396 
3397 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3398 
3399 	/*
3400 	 * We cannot fill holes in indirect tree based inodes as that could
3401 	 * expose stale data in the case of a crash. Use the magic error code
3402 	 * to fallback to buffered I/O.
3403 	 */
3404 	if (!m_flags && !ret)
3405 		ret = -ENOTBLK;
3406 
3407 	ext4_journal_stop(handle);
3408 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3409 		goto retry;
3410 
3411 	return ret;
3412 }
3413 
3414 
3415 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3416 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3417 {
3418 	int ret;
3419 	struct ext4_map_blocks map;
3420 	u8 blkbits = inode->i_blkbits;
3421 
3422 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3423 		return -EINVAL;
3424 
3425 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3426 		return -ERANGE;
3427 
3428 	/*
3429 	 * Calculate the first and last logical blocks respectively.
3430 	 */
3431 	map.m_lblk = offset >> blkbits;
3432 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3433 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3434 
3435 	if (flags & IOMAP_WRITE) {
3436 		/*
3437 		 * We check here if the blocks are already allocated, then we
3438 		 * don't need to start a journal txn and we can directly return
3439 		 * the mapping information. This could boost performance
3440 		 * especially in multi-threaded overwrite requests.
3441 		 */
3442 		if (offset + length <= i_size_read(inode)) {
3443 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3444 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3445 				goto out;
3446 		}
3447 		ret = ext4_iomap_alloc(inode, &map, flags);
3448 	} else {
3449 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3450 	}
3451 
3452 	if (ret < 0)
3453 		return ret;
3454 out:
3455 	/*
3456 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3457 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3458 	 * limiting the length of the mapping returned.
3459 	 */
3460 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3461 
3462 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3463 
3464 	return 0;
3465 }
3466 
3467 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3468 		loff_t length, unsigned flags, struct iomap *iomap,
3469 		struct iomap *srcmap)
3470 {
3471 	int ret;
3472 
3473 	/*
3474 	 * Even for writes we don't need to allocate blocks, so just pretend
3475 	 * we are reading to save overhead of starting a transaction.
3476 	 */
3477 	flags &= ~IOMAP_WRITE;
3478 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3479 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3480 	return ret;
3481 }
3482 
3483 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3484 			  ssize_t written, unsigned flags, struct iomap *iomap)
3485 {
3486 	/*
3487 	 * Check to see whether an error occurred while writing out the data to
3488 	 * the allocated blocks. If so, return the magic error code so that we
3489 	 * fallback to buffered I/O and attempt to complete the remainder of
3490 	 * the I/O. Any blocks that may have been allocated in preparation for
3491 	 * the direct I/O will be reused during buffered I/O.
3492 	 */
3493 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3494 		return -ENOTBLK;
3495 
3496 	return 0;
3497 }
3498 
3499 const struct iomap_ops ext4_iomap_ops = {
3500 	.iomap_begin		= ext4_iomap_begin,
3501 	.iomap_end		= ext4_iomap_end,
3502 };
3503 
3504 const struct iomap_ops ext4_iomap_overwrite_ops = {
3505 	.iomap_begin		= ext4_iomap_overwrite_begin,
3506 	.iomap_end		= ext4_iomap_end,
3507 };
3508 
3509 static bool ext4_iomap_is_delalloc(struct inode *inode,
3510 				   struct ext4_map_blocks *map)
3511 {
3512 	struct extent_status es;
3513 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3514 
3515 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3516 				  map->m_lblk, end, &es);
3517 
3518 	if (!es.es_len || es.es_lblk > end)
3519 		return false;
3520 
3521 	if (es.es_lblk > map->m_lblk) {
3522 		map->m_len = es.es_lblk - map->m_lblk;
3523 		return false;
3524 	}
3525 
3526 	offset = map->m_lblk - es.es_lblk;
3527 	map->m_len = es.es_len - offset;
3528 
3529 	return true;
3530 }
3531 
3532 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3533 				   loff_t length, unsigned int flags,
3534 				   struct iomap *iomap, struct iomap *srcmap)
3535 {
3536 	int ret;
3537 	bool delalloc = false;
3538 	struct ext4_map_blocks map;
3539 	u8 blkbits = inode->i_blkbits;
3540 
3541 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3542 		return -EINVAL;
3543 
3544 	if (ext4_has_inline_data(inode)) {
3545 		ret = ext4_inline_data_iomap(inode, iomap);
3546 		if (ret != -EAGAIN) {
3547 			if (ret == 0 && offset >= iomap->length)
3548 				ret = -ENOENT;
3549 			return ret;
3550 		}
3551 	}
3552 
3553 	/*
3554 	 * Calculate the first and last logical block respectively.
3555 	 */
3556 	map.m_lblk = offset >> blkbits;
3557 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3558 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3559 
3560 	/*
3561 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3562 	 * So handle it here itself instead of querying ext4_map_blocks().
3563 	 * Since ext4_map_blocks() will warn about it and will return
3564 	 * -EIO error.
3565 	 */
3566 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3567 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3568 
3569 		if (offset >= sbi->s_bitmap_maxbytes) {
3570 			map.m_flags = 0;
3571 			goto set_iomap;
3572 		}
3573 	}
3574 
3575 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3576 	if (ret < 0)
3577 		return ret;
3578 	if (ret == 0)
3579 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3580 
3581 set_iomap:
3582 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3583 	if (delalloc && iomap->type == IOMAP_HOLE)
3584 		iomap->type = IOMAP_DELALLOC;
3585 
3586 	return 0;
3587 }
3588 
3589 const struct iomap_ops ext4_iomap_report_ops = {
3590 	.iomap_begin = ext4_iomap_begin_report,
3591 };
3592 
3593 /*
3594  * Whenever the folio is being dirtied, corresponding buffers should already
3595  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3596  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3597  * lists here because ->dirty_folio is called under VFS locks and the folio
3598  * is not necessarily locked.
3599  *
3600  * We cannot just dirty the folio and leave attached buffers clean, because the
3601  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3602  * or jbddirty because all the journalling code will explode.
3603  *
3604  * So what we do is to mark the folio "pending dirty" and next time writepage
3605  * is called, propagate that into the buffers appropriately.
3606  */
3607 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3608 		struct folio *folio)
3609 {
3610 	WARN_ON_ONCE(!folio_buffers(folio));
3611 	folio_set_checked(folio);
3612 	return filemap_dirty_folio(mapping, folio);
3613 }
3614 
3615 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3616 {
3617 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3618 	WARN_ON_ONCE(!folio_buffers(folio));
3619 	return block_dirty_folio(mapping, folio);
3620 }
3621 
3622 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3623 				    struct file *file, sector_t *span)
3624 {
3625 	return iomap_swapfile_activate(sis, file, span,
3626 				       &ext4_iomap_report_ops);
3627 }
3628 
3629 static const struct address_space_operations ext4_aops = {
3630 	.read_folio		= ext4_read_folio,
3631 	.readahead		= ext4_readahead,
3632 	.writepage		= ext4_writepage,
3633 	.writepages		= ext4_writepages,
3634 	.write_begin		= ext4_write_begin,
3635 	.write_end		= ext4_write_end,
3636 	.dirty_folio		= ext4_dirty_folio,
3637 	.bmap			= ext4_bmap,
3638 	.invalidate_folio	= ext4_invalidate_folio,
3639 	.release_folio		= ext4_release_folio,
3640 	.direct_IO		= noop_direct_IO,
3641 	.migratepage		= buffer_migrate_page,
3642 	.is_partially_uptodate  = block_is_partially_uptodate,
3643 	.error_remove_page	= generic_error_remove_page,
3644 	.swap_activate		= ext4_iomap_swap_activate,
3645 };
3646 
3647 static const struct address_space_operations ext4_journalled_aops = {
3648 	.read_folio		= ext4_read_folio,
3649 	.readahead		= ext4_readahead,
3650 	.writepage		= ext4_writepage,
3651 	.writepages		= ext4_writepages,
3652 	.write_begin		= ext4_write_begin,
3653 	.write_end		= ext4_journalled_write_end,
3654 	.dirty_folio		= ext4_journalled_dirty_folio,
3655 	.bmap			= ext4_bmap,
3656 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3657 	.release_folio		= ext4_release_folio,
3658 	.direct_IO		= noop_direct_IO,
3659 	.is_partially_uptodate  = block_is_partially_uptodate,
3660 	.error_remove_page	= generic_error_remove_page,
3661 	.swap_activate		= ext4_iomap_swap_activate,
3662 };
3663 
3664 static const struct address_space_operations ext4_da_aops = {
3665 	.read_folio		= ext4_read_folio,
3666 	.readahead		= ext4_readahead,
3667 	.writepage		= ext4_writepage,
3668 	.writepages		= ext4_writepages,
3669 	.write_begin		= ext4_da_write_begin,
3670 	.write_end		= ext4_da_write_end,
3671 	.dirty_folio		= ext4_dirty_folio,
3672 	.bmap			= ext4_bmap,
3673 	.invalidate_folio	= ext4_invalidate_folio,
3674 	.release_folio		= ext4_release_folio,
3675 	.direct_IO		= noop_direct_IO,
3676 	.migratepage		= buffer_migrate_page,
3677 	.is_partially_uptodate  = block_is_partially_uptodate,
3678 	.error_remove_page	= generic_error_remove_page,
3679 	.swap_activate		= ext4_iomap_swap_activate,
3680 };
3681 
3682 static const struct address_space_operations ext4_dax_aops = {
3683 	.writepages		= ext4_dax_writepages,
3684 	.direct_IO		= noop_direct_IO,
3685 	.dirty_folio		= noop_dirty_folio,
3686 	.bmap			= ext4_bmap,
3687 	.swap_activate		= ext4_iomap_swap_activate,
3688 };
3689 
3690 void ext4_set_aops(struct inode *inode)
3691 {
3692 	switch (ext4_inode_journal_mode(inode)) {
3693 	case EXT4_INODE_ORDERED_DATA_MODE:
3694 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3695 		break;
3696 	case EXT4_INODE_JOURNAL_DATA_MODE:
3697 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3698 		return;
3699 	default:
3700 		BUG();
3701 	}
3702 	if (IS_DAX(inode))
3703 		inode->i_mapping->a_ops = &ext4_dax_aops;
3704 	else if (test_opt(inode->i_sb, DELALLOC))
3705 		inode->i_mapping->a_ops = &ext4_da_aops;
3706 	else
3707 		inode->i_mapping->a_ops = &ext4_aops;
3708 }
3709 
3710 static int __ext4_block_zero_page_range(handle_t *handle,
3711 		struct address_space *mapping, loff_t from, loff_t length)
3712 {
3713 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3714 	unsigned offset = from & (PAGE_SIZE-1);
3715 	unsigned blocksize, pos;
3716 	ext4_lblk_t iblock;
3717 	struct inode *inode = mapping->host;
3718 	struct buffer_head *bh;
3719 	struct page *page;
3720 	int err = 0;
3721 
3722 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3723 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3724 	if (!page)
3725 		return -ENOMEM;
3726 
3727 	blocksize = inode->i_sb->s_blocksize;
3728 
3729 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3730 
3731 	if (!page_has_buffers(page))
3732 		create_empty_buffers(page, blocksize, 0);
3733 
3734 	/* Find the buffer that contains "offset" */
3735 	bh = page_buffers(page);
3736 	pos = blocksize;
3737 	while (offset >= pos) {
3738 		bh = bh->b_this_page;
3739 		iblock++;
3740 		pos += blocksize;
3741 	}
3742 	if (buffer_freed(bh)) {
3743 		BUFFER_TRACE(bh, "freed: skip");
3744 		goto unlock;
3745 	}
3746 	if (!buffer_mapped(bh)) {
3747 		BUFFER_TRACE(bh, "unmapped");
3748 		ext4_get_block(inode, iblock, bh, 0);
3749 		/* unmapped? It's a hole - nothing to do */
3750 		if (!buffer_mapped(bh)) {
3751 			BUFFER_TRACE(bh, "still unmapped");
3752 			goto unlock;
3753 		}
3754 	}
3755 
3756 	/* Ok, it's mapped. Make sure it's up-to-date */
3757 	if (PageUptodate(page))
3758 		set_buffer_uptodate(bh);
3759 
3760 	if (!buffer_uptodate(bh)) {
3761 		err = ext4_read_bh_lock(bh, 0, true);
3762 		if (err)
3763 			goto unlock;
3764 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3765 			/* We expect the key to be set. */
3766 			BUG_ON(!fscrypt_has_encryption_key(inode));
3767 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3768 							       bh_offset(bh));
3769 			if (err) {
3770 				clear_buffer_uptodate(bh);
3771 				goto unlock;
3772 			}
3773 		}
3774 	}
3775 	if (ext4_should_journal_data(inode)) {
3776 		BUFFER_TRACE(bh, "get write access");
3777 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3778 						    EXT4_JTR_NONE);
3779 		if (err)
3780 			goto unlock;
3781 	}
3782 	zero_user(page, offset, length);
3783 	BUFFER_TRACE(bh, "zeroed end of block");
3784 
3785 	if (ext4_should_journal_data(inode)) {
3786 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3787 	} else {
3788 		err = 0;
3789 		mark_buffer_dirty(bh);
3790 		if (ext4_should_order_data(inode))
3791 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3792 					length);
3793 	}
3794 
3795 unlock:
3796 	unlock_page(page);
3797 	put_page(page);
3798 	return err;
3799 }
3800 
3801 /*
3802  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3803  * starting from file offset 'from'.  The range to be zero'd must
3804  * be contained with in one block.  If the specified range exceeds
3805  * the end of the block it will be shortened to end of the block
3806  * that corresponds to 'from'
3807  */
3808 static int ext4_block_zero_page_range(handle_t *handle,
3809 		struct address_space *mapping, loff_t from, loff_t length)
3810 {
3811 	struct inode *inode = mapping->host;
3812 	unsigned offset = from & (PAGE_SIZE-1);
3813 	unsigned blocksize = inode->i_sb->s_blocksize;
3814 	unsigned max = blocksize - (offset & (blocksize - 1));
3815 
3816 	/*
3817 	 * correct length if it does not fall between
3818 	 * 'from' and the end of the block
3819 	 */
3820 	if (length > max || length < 0)
3821 		length = max;
3822 
3823 	if (IS_DAX(inode)) {
3824 		return dax_zero_range(inode, from, length, NULL,
3825 				      &ext4_iomap_ops);
3826 	}
3827 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3828 }
3829 
3830 /*
3831  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3832  * up to the end of the block which corresponds to `from'.
3833  * This required during truncate. We need to physically zero the tail end
3834  * of that block so it doesn't yield old data if the file is later grown.
3835  */
3836 static int ext4_block_truncate_page(handle_t *handle,
3837 		struct address_space *mapping, loff_t from)
3838 {
3839 	unsigned offset = from & (PAGE_SIZE-1);
3840 	unsigned length;
3841 	unsigned blocksize;
3842 	struct inode *inode = mapping->host;
3843 
3844 	/* If we are processing an encrypted inode during orphan list handling */
3845 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3846 		return 0;
3847 
3848 	blocksize = inode->i_sb->s_blocksize;
3849 	length = blocksize - (offset & (blocksize - 1));
3850 
3851 	return ext4_block_zero_page_range(handle, mapping, from, length);
3852 }
3853 
3854 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3855 			     loff_t lstart, loff_t length)
3856 {
3857 	struct super_block *sb = inode->i_sb;
3858 	struct address_space *mapping = inode->i_mapping;
3859 	unsigned partial_start, partial_end;
3860 	ext4_fsblk_t start, end;
3861 	loff_t byte_end = (lstart + length - 1);
3862 	int err = 0;
3863 
3864 	partial_start = lstart & (sb->s_blocksize - 1);
3865 	partial_end = byte_end & (sb->s_blocksize - 1);
3866 
3867 	start = lstart >> sb->s_blocksize_bits;
3868 	end = byte_end >> sb->s_blocksize_bits;
3869 
3870 	/* Handle partial zero within the single block */
3871 	if (start == end &&
3872 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3873 		err = ext4_block_zero_page_range(handle, mapping,
3874 						 lstart, length);
3875 		return err;
3876 	}
3877 	/* Handle partial zero out on the start of the range */
3878 	if (partial_start) {
3879 		err = ext4_block_zero_page_range(handle, mapping,
3880 						 lstart, sb->s_blocksize);
3881 		if (err)
3882 			return err;
3883 	}
3884 	/* Handle partial zero out on the end of the range */
3885 	if (partial_end != sb->s_blocksize - 1)
3886 		err = ext4_block_zero_page_range(handle, mapping,
3887 						 byte_end - partial_end,
3888 						 partial_end + 1);
3889 	return err;
3890 }
3891 
3892 int ext4_can_truncate(struct inode *inode)
3893 {
3894 	if (S_ISREG(inode->i_mode))
3895 		return 1;
3896 	if (S_ISDIR(inode->i_mode))
3897 		return 1;
3898 	if (S_ISLNK(inode->i_mode))
3899 		return !ext4_inode_is_fast_symlink(inode);
3900 	return 0;
3901 }
3902 
3903 /*
3904  * We have to make sure i_disksize gets properly updated before we truncate
3905  * page cache due to hole punching or zero range. Otherwise i_disksize update
3906  * can get lost as it may have been postponed to submission of writeback but
3907  * that will never happen after we truncate page cache.
3908  */
3909 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3910 				      loff_t len)
3911 {
3912 	handle_t *handle;
3913 	int ret;
3914 
3915 	loff_t size = i_size_read(inode);
3916 
3917 	WARN_ON(!inode_is_locked(inode));
3918 	if (offset > size || offset + len < size)
3919 		return 0;
3920 
3921 	if (EXT4_I(inode)->i_disksize >= size)
3922 		return 0;
3923 
3924 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3925 	if (IS_ERR(handle))
3926 		return PTR_ERR(handle);
3927 	ext4_update_i_disksize(inode, size);
3928 	ret = ext4_mark_inode_dirty(handle, inode);
3929 	ext4_journal_stop(handle);
3930 
3931 	return ret;
3932 }
3933 
3934 static void ext4_wait_dax_page(struct inode *inode)
3935 {
3936 	filemap_invalidate_unlock(inode->i_mapping);
3937 	schedule();
3938 	filemap_invalidate_lock(inode->i_mapping);
3939 }
3940 
3941 int ext4_break_layouts(struct inode *inode)
3942 {
3943 	struct page *page;
3944 	int error;
3945 
3946 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3947 		return -EINVAL;
3948 
3949 	do {
3950 		page = dax_layout_busy_page(inode->i_mapping);
3951 		if (!page)
3952 			return 0;
3953 
3954 		error = ___wait_var_event(&page->_refcount,
3955 				atomic_read(&page->_refcount) == 1,
3956 				TASK_INTERRUPTIBLE, 0, 0,
3957 				ext4_wait_dax_page(inode));
3958 	} while (error == 0);
3959 
3960 	return error;
3961 }
3962 
3963 /*
3964  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3965  * associated with the given offset and length
3966  *
3967  * @inode:  File inode
3968  * @offset: The offset where the hole will begin
3969  * @len:    The length of the hole
3970  *
3971  * Returns: 0 on success or negative on failure
3972  */
3973 
3974 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3975 {
3976 	struct inode *inode = file_inode(file);
3977 	struct super_block *sb = inode->i_sb;
3978 	ext4_lblk_t first_block, stop_block;
3979 	struct address_space *mapping = inode->i_mapping;
3980 	loff_t first_block_offset, last_block_offset, max_length;
3981 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3982 	handle_t *handle;
3983 	unsigned int credits;
3984 	int ret = 0, ret2 = 0;
3985 
3986 	trace_ext4_punch_hole(inode, offset, length, 0);
3987 
3988 	/*
3989 	 * Write out all dirty pages to avoid race conditions
3990 	 * Then release them.
3991 	 */
3992 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3993 		ret = filemap_write_and_wait_range(mapping, offset,
3994 						   offset + length - 1);
3995 		if (ret)
3996 			return ret;
3997 	}
3998 
3999 	inode_lock(inode);
4000 
4001 	/* No need to punch hole beyond i_size */
4002 	if (offset >= inode->i_size)
4003 		goto out_mutex;
4004 
4005 	/*
4006 	 * If the hole extends beyond i_size, set the hole
4007 	 * to end after the page that contains i_size
4008 	 */
4009 	if (offset + length > inode->i_size) {
4010 		length = inode->i_size +
4011 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4012 		   offset;
4013 	}
4014 
4015 	/*
4016 	 * For punch hole the length + offset needs to be within one block
4017 	 * before last range. Adjust the length if it goes beyond that limit.
4018 	 */
4019 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4020 	if (offset + length > max_length)
4021 		length = max_length - offset;
4022 
4023 	if (offset & (sb->s_blocksize - 1) ||
4024 	    (offset + length) & (sb->s_blocksize - 1)) {
4025 		/*
4026 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4027 		 * partial block
4028 		 */
4029 		ret = ext4_inode_attach_jinode(inode);
4030 		if (ret < 0)
4031 			goto out_mutex;
4032 
4033 	}
4034 
4035 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4036 	inode_dio_wait(inode);
4037 
4038 	ret = file_modified(file);
4039 	if (ret)
4040 		goto out_mutex;
4041 
4042 	/*
4043 	 * Prevent page faults from reinstantiating pages we have released from
4044 	 * page cache.
4045 	 */
4046 	filemap_invalidate_lock(mapping);
4047 
4048 	ret = ext4_break_layouts(inode);
4049 	if (ret)
4050 		goto out_dio;
4051 
4052 	first_block_offset = round_up(offset, sb->s_blocksize);
4053 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4054 
4055 	/* Now release the pages and zero block aligned part of pages*/
4056 	if (last_block_offset > first_block_offset) {
4057 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4058 		if (ret)
4059 			goto out_dio;
4060 		truncate_pagecache_range(inode, first_block_offset,
4061 					 last_block_offset);
4062 	}
4063 
4064 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065 		credits = ext4_writepage_trans_blocks(inode);
4066 	else
4067 		credits = ext4_blocks_for_truncate(inode);
4068 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4069 	if (IS_ERR(handle)) {
4070 		ret = PTR_ERR(handle);
4071 		ext4_std_error(sb, ret);
4072 		goto out_dio;
4073 	}
4074 
4075 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4076 				       length);
4077 	if (ret)
4078 		goto out_stop;
4079 
4080 	first_block = (offset + sb->s_blocksize - 1) >>
4081 		EXT4_BLOCK_SIZE_BITS(sb);
4082 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4083 
4084 	/* If there are blocks to remove, do it */
4085 	if (stop_block > first_block) {
4086 
4087 		down_write(&EXT4_I(inode)->i_data_sem);
4088 		ext4_discard_preallocations(inode, 0);
4089 
4090 		ret = ext4_es_remove_extent(inode, first_block,
4091 					    stop_block - first_block);
4092 		if (ret) {
4093 			up_write(&EXT4_I(inode)->i_data_sem);
4094 			goto out_stop;
4095 		}
4096 
4097 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4098 			ret = ext4_ext_remove_space(inode, first_block,
4099 						    stop_block - 1);
4100 		else
4101 			ret = ext4_ind_remove_space(handle, inode, first_block,
4102 						    stop_block);
4103 
4104 		up_write(&EXT4_I(inode)->i_data_sem);
4105 	}
4106 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4107 	if (IS_SYNC(inode))
4108 		ext4_handle_sync(handle);
4109 
4110 	inode->i_mtime = inode->i_ctime = current_time(inode);
4111 	ret2 = ext4_mark_inode_dirty(handle, inode);
4112 	if (unlikely(ret2))
4113 		ret = ret2;
4114 	if (ret >= 0)
4115 		ext4_update_inode_fsync_trans(handle, inode, 1);
4116 out_stop:
4117 	ext4_journal_stop(handle);
4118 out_dio:
4119 	filemap_invalidate_unlock(mapping);
4120 out_mutex:
4121 	inode_unlock(inode);
4122 	return ret;
4123 }
4124 
4125 int ext4_inode_attach_jinode(struct inode *inode)
4126 {
4127 	struct ext4_inode_info *ei = EXT4_I(inode);
4128 	struct jbd2_inode *jinode;
4129 
4130 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4131 		return 0;
4132 
4133 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4134 	spin_lock(&inode->i_lock);
4135 	if (!ei->jinode) {
4136 		if (!jinode) {
4137 			spin_unlock(&inode->i_lock);
4138 			return -ENOMEM;
4139 		}
4140 		ei->jinode = jinode;
4141 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4142 		jinode = NULL;
4143 	}
4144 	spin_unlock(&inode->i_lock);
4145 	if (unlikely(jinode != NULL))
4146 		jbd2_free_inode(jinode);
4147 	return 0;
4148 }
4149 
4150 /*
4151  * ext4_truncate()
4152  *
4153  * We block out ext4_get_block() block instantiations across the entire
4154  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4155  * simultaneously on behalf of the same inode.
4156  *
4157  * As we work through the truncate and commit bits of it to the journal there
4158  * is one core, guiding principle: the file's tree must always be consistent on
4159  * disk.  We must be able to restart the truncate after a crash.
4160  *
4161  * The file's tree may be transiently inconsistent in memory (although it
4162  * probably isn't), but whenever we close off and commit a journal transaction,
4163  * the contents of (the filesystem + the journal) must be consistent and
4164  * restartable.  It's pretty simple, really: bottom up, right to left (although
4165  * left-to-right works OK too).
4166  *
4167  * Note that at recovery time, journal replay occurs *before* the restart of
4168  * truncate against the orphan inode list.
4169  *
4170  * The committed inode has the new, desired i_size (which is the same as
4171  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4172  * that this inode's truncate did not complete and it will again call
4173  * ext4_truncate() to have another go.  So there will be instantiated blocks
4174  * to the right of the truncation point in a crashed ext4 filesystem.  But
4175  * that's fine - as long as they are linked from the inode, the post-crash
4176  * ext4_truncate() run will find them and release them.
4177  */
4178 int ext4_truncate(struct inode *inode)
4179 {
4180 	struct ext4_inode_info *ei = EXT4_I(inode);
4181 	unsigned int credits;
4182 	int err = 0, err2;
4183 	handle_t *handle;
4184 	struct address_space *mapping = inode->i_mapping;
4185 
4186 	/*
4187 	 * There is a possibility that we're either freeing the inode
4188 	 * or it's a completely new inode. In those cases we might not
4189 	 * have i_rwsem locked because it's not necessary.
4190 	 */
4191 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4192 		WARN_ON(!inode_is_locked(inode));
4193 	trace_ext4_truncate_enter(inode);
4194 
4195 	if (!ext4_can_truncate(inode))
4196 		goto out_trace;
4197 
4198 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4199 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4200 
4201 	if (ext4_has_inline_data(inode)) {
4202 		int has_inline = 1;
4203 
4204 		err = ext4_inline_data_truncate(inode, &has_inline);
4205 		if (err || has_inline)
4206 			goto out_trace;
4207 	}
4208 
4209 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4210 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4211 		if (ext4_inode_attach_jinode(inode) < 0)
4212 			goto out_trace;
4213 	}
4214 
4215 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4216 		credits = ext4_writepage_trans_blocks(inode);
4217 	else
4218 		credits = ext4_blocks_for_truncate(inode);
4219 
4220 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4221 	if (IS_ERR(handle)) {
4222 		err = PTR_ERR(handle);
4223 		goto out_trace;
4224 	}
4225 
4226 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4227 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4228 
4229 	/*
4230 	 * We add the inode to the orphan list, so that if this
4231 	 * truncate spans multiple transactions, and we crash, we will
4232 	 * resume the truncate when the filesystem recovers.  It also
4233 	 * marks the inode dirty, to catch the new size.
4234 	 *
4235 	 * Implication: the file must always be in a sane, consistent
4236 	 * truncatable state while each transaction commits.
4237 	 */
4238 	err = ext4_orphan_add(handle, inode);
4239 	if (err)
4240 		goto out_stop;
4241 
4242 	down_write(&EXT4_I(inode)->i_data_sem);
4243 
4244 	ext4_discard_preallocations(inode, 0);
4245 
4246 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4247 		err = ext4_ext_truncate(handle, inode);
4248 	else
4249 		ext4_ind_truncate(handle, inode);
4250 
4251 	up_write(&ei->i_data_sem);
4252 	if (err)
4253 		goto out_stop;
4254 
4255 	if (IS_SYNC(inode))
4256 		ext4_handle_sync(handle);
4257 
4258 out_stop:
4259 	/*
4260 	 * If this was a simple ftruncate() and the file will remain alive,
4261 	 * then we need to clear up the orphan record which we created above.
4262 	 * However, if this was a real unlink then we were called by
4263 	 * ext4_evict_inode(), and we allow that function to clean up the
4264 	 * orphan info for us.
4265 	 */
4266 	if (inode->i_nlink)
4267 		ext4_orphan_del(handle, inode);
4268 
4269 	inode->i_mtime = inode->i_ctime = current_time(inode);
4270 	err2 = ext4_mark_inode_dirty(handle, inode);
4271 	if (unlikely(err2 && !err))
4272 		err = err2;
4273 	ext4_journal_stop(handle);
4274 
4275 out_trace:
4276 	trace_ext4_truncate_exit(inode);
4277 	return err;
4278 }
4279 
4280 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4281 {
4282 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4283 		return inode_peek_iversion_raw(inode);
4284 	else
4285 		return inode_peek_iversion(inode);
4286 }
4287 
4288 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4289 				 struct ext4_inode_info *ei)
4290 {
4291 	struct inode *inode = &(ei->vfs_inode);
4292 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4293 	struct super_block *sb = inode->i_sb;
4294 
4295 	if (i_blocks <= ~0U) {
4296 		/*
4297 		 * i_blocks can be represented in a 32 bit variable
4298 		 * as multiple of 512 bytes
4299 		 */
4300 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4301 		raw_inode->i_blocks_high = 0;
4302 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4303 		return 0;
4304 	}
4305 
4306 	/*
4307 	 * This should never happen since sb->s_maxbytes should not have
4308 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4309 	 * feature in ext4_fill_super().
4310 	 */
4311 	if (!ext4_has_feature_huge_file(sb))
4312 		return -EFSCORRUPTED;
4313 
4314 	if (i_blocks <= 0xffffffffffffULL) {
4315 		/*
4316 		 * i_blocks can be represented in a 48 bit variable
4317 		 * as multiple of 512 bytes
4318 		 */
4319 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4320 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4321 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4322 	} else {
4323 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4324 		/* i_block is stored in file system block size */
4325 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4326 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4327 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4328 	}
4329 	return 0;
4330 }
4331 
4332 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4333 {
4334 	struct ext4_inode_info *ei = EXT4_I(inode);
4335 	uid_t i_uid;
4336 	gid_t i_gid;
4337 	projid_t i_projid;
4338 	int block;
4339 	int err;
4340 
4341 	err = ext4_inode_blocks_set(raw_inode, ei);
4342 
4343 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4344 	i_uid = i_uid_read(inode);
4345 	i_gid = i_gid_read(inode);
4346 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4347 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4348 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4349 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4350 		/*
4351 		 * Fix up interoperability with old kernels. Otherwise,
4352 		 * old inodes get re-used with the upper 16 bits of the
4353 		 * uid/gid intact.
4354 		 */
4355 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4356 			raw_inode->i_uid_high = 0;
4357 			raw_inode->i_gid_high = 0;
4358 		} else {
4359 			raw_inode->i_uid_high =
4360 				cpu_to_le16(high_16_bits(i_uid));
4361 			raw_inode->i_gid_high =
4362 				cpu_to_le16(high_16_bits(i_gid));
4363 		}
4364 	} else {
4365 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4366 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4367 		raw_inode->i_uid_high = 0;
4368 		raw_inode->i_gid_high = 0;
4369 	}
4370 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4371 
4372 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4373 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4374 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4375 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4376 
4377 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4378 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4379 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4380 		raw_inode->i_file_acl_high =
4381 			cpu_to_le16(ei->i_file_acl >> 32);
4382 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4383 	ext4_isize_set(raw_inode, ei->i_disksize);
4384 
4385 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4386 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4387 		if (old_valid_dev(inode->i_rdev)) {
4388 			raw_inode->i_block[0] =
4389 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4390 			raw_inode->i_block[1] = 0;
4391 		} else {
4392 			raw_inode->i_block[0] = 0;
4393 			raw_inode->i_block[1] =
4394 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4395 			raw_inode->i_block[2] = 0;
4396 		}
4397 	} else if (!ext4_has_inline_data(inode)) {
4398 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4399 			raw_inode->i_block[block] = ei->i_data[block];
4400 	}
4401 
4402 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4403 		u64 ivers = ext4_inode_peek_iversion(inode);
4404 
4405 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4406 		if (ei->i_extra_isize) {
4407 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4408 				raw_inode->i_version_hi =
4409 					cpu_to_le32(ivers >> 32);
4410 			raw_inode->i_extra_isize =
4411 				cpu_to_le16(ei->i_extra_isize);
4412 		}
4413 	}
4414 
4415 	if (i_projid != EXT4_DEF_PROJID &&
4416 	    !ext4_has_feature_project(inode->i_sb))
4417 		err = err ?: -EFSCORRUPTED;
4418 
4419 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4420 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4421 		raw_inode->i_projid = cpu_to_le32(i_projid);
4422 
4423 	ext4_inode_csum_set(inode, raw_inode, ei);
4424 	return err;
4425 }
4426 
4427 /*
4428  * ext4_get_inode_loc returns with an extra refcount against the inode's
4429  * underlying buffer_head on success. If we pass 'inode' and it does not
4430  * have in-inode xattr, we have all inode data in memory that is needed
4431  * to recreate the on-disk version of this inode.
4432  */
4433 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4434 				struct inode *inode, struct ext4_iloc *iloc,
4435 				ext4_fsblk_t *ret_block)
4436 {
4437 	struct ext4_group_desc	*gdp;
4438 	struct buffer_head	*bh;
4439 	ext4_fsblk_t		block;
4440 	struct blk_plug		plug;
4441 	int			inodes_per_block, inode_offset;
4442 
4443 	iloc->bh = NULL;
4444 	if (ino < EXT4_ROOT_INO ||
4445 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4446 		return -EFSCORRUPTED;
4447 
4448 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4449 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4450 	if (!gdp)
4451 		return -EIO;
4452 
4453 	/*
4454 	 * Figure out the offset within the block group inode table
4455 	 */
4456 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4457 	inode_offset = ((ino - 1) %
4458 			EXT4_INODES_PER_GROUP(sb));
4459 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4460 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4461 
4462 	bh = sb_getblk(sb, block);
4463 	if (unlikely(!bh))
4464 		return -ENOMEM;
4465 	if (ext4_buffer_uptodate(bh))
4466 		goto has_buffer;
4467 
4468 	lock_buffer(bh);
4469 	if (ext4_buffer_uptodate(bh)) {
4470 		/* Someone brought it uptodate while we waited */
4471 		unlock_buffer(bh);
4472 		goto has_buffer;
4473 	}
4474 
4475 	/*
4476 	 * If we have all information of the inode in memory and this
4477 	 * is the only valid inode in the block, we need not read the
4478 	 * block.
4479 	 */
4480 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4481 		struct buffer_head *bitmap_bh;
4482 		int i, start;
4483 
4484 		start = inode_offset & ~(inodes_per_block - 1);
4485 
4486 		/* Is the inode bitmap in cache? */
4487 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4488 		if (unlikely(!bitmap_bh))
4489 			goto make_io;
4490 
4491 		/*
4492 		 * If the inode bitmap isn't in cache then the
4493 		 * optimisation may end up performing two reads instead
4494 		 * of one, so skip it.
4495 		 */
4496 		if (!buffer_uptodate(bitmap_bh)) {
4497 			brelse(bitmap_bh);
4498 			goto make_io;
4499 		}
4500 		for (i = start; i < start + inodes_per_block; i++) {
4501 			if (i == inode_offset)
4502 				continue;
4503 			if (ext4_test_bit(i, bitmap_bh->b_data))
4504 				break;
4505 		}
4506 		brelse(bitmap_bh);
4507 		if (i == start + inodes_per_block) {
4508 			struct ext4_inode *raw_inode =
4509 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4510 
4511 			/* all other inodes are free, so skip I/O */
4512 			memset(bh->b_data, 0, bh->b_size);
4513 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4514 				ext4_fill_raw_inode(inode, raw_inode);
4515 			set_buffer_uptodate(bh);
4516 			unlock_buffer(bh);
4517 			goto has_buffer;
4518 		}
4519 	}
4520 
4521 make_io:
4522 	/*
4523 	 * If we need to do any I/O, try to pre-readahead extra
4524 	 * blocks from the inode table.
4525 	 */
4526 	blk_start_plug(&plug);
4527 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4528 		ext4_fsblk_t b, end, table;
4529 		unsigned num;
4530 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4531 
4532 		table = ext4_inode_table(sb, gdp);
4533 		/* s_inode_readahead_blks is always a power of 2 */
4534 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4535 		if (table > b)
4536 			b = table;
4537 		end = b + ra_blks;
4538 		num = EXT4_INODES_PER_GROUP(sb);
4539 		if (ext4_has_group_desc_csum(sb))
4540 			num -= ext4_itable_unused_count(sb, gdp);
4541 		table += num / inodes_per_block;
4542 		if (end > table)
4543 			end = table;
4544 		while (b <= end)
4545 			ext4_sb_breadahead_unmovable(sb, b++);
4546 	}
4547 
4548 	/*
4549 	 * There are other valid inodes in the buffer, this inode
4550 	 * has in-inode xattrs, or we don't have this inode in memory.
4551 	 * Read the block from disk.
4552 	 */
4553 	trace_ext4_load_inode(sb, ino);
4554 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4555 	blk_finish_plug(&plug);
4556 	wait_on_buffer(bh);
4557 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4558 	if (!buffer_uptodate(bh)) {
4559 		if (ret_block)
4560 			*ret_block = block;
4561 		brelse(bh);
4562 		return -EIO;
4563 	}
4564 has_buffer:
4565 	iloc->bh = bh;
4566 	return 0;
4567 }
4568 
4569 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4570 					struct ext4_iloc *iloc)
4571 {
4572 	ext4_fsblk_t err_blk = 0;
4573 	int ret;
4574 
4575 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4576 					&err_blk);
4577 
4578 	if (ret == -EIO)
4579 		ext4_error_inode_block(inode, err_blk, EIO,
4580 					"unable to read itable block");
4581 
4582 	return ret;
4583 }
4584 
4585 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4586 {
4587 	ext4_fsblk_t err_blk = 0;
4588 	int ret;
4589 
4590 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4591 					&err_blk);
4592 
4593 	if (ret == -EIO)
4594 		ext4_error_inode_block(inode, err_blk, EIO,
4595 					"unable to read itable block");
4596 
4597 	return ret;
4598 }
4599 
4600 
4601 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4602 			  struct ext4_iloc *iloc)
4603 {
4604 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4605 }
4606 
4607 static bool ext4_should_enable_dax(struct inode *inode)
4608 {
4609 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4610 
4611 	if (test_opt2(inode->i_sb, DAX_NEVER))
4612 		return false;
4613 	if (!S_ISREG(inode->i_mode))
4614 		return false;
4615 	if (ext4_should_journal_data(inode))
4616 		return false;
4617 	if (ext4_has_inline_data(inode))
4618 		return false;
4619 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4620 		return false;
4621 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4622 		return false;
4623 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4624 		return false;
4625 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4626 		return true;
4627 
4628 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4629 }
4630 
4631 void ext4_set_inode_flags(struct inode *inode, bool init)
4632 {
4633 	unsigned int flags = EXT4_I(inode)->i_flags;
4634 	unsigned int new_fl = 0;
4635 
4636 	WARN_ON_ONCE(IS_DAX(inode) && init);
4637 
4638 	if (flags & EXT4_SYNC_FL)
4639 		new_fl |= S_SYNC;
4640 	if (flags & EXT4_APPEND_FL)
4641 		new_fl |= S_APPEND;
4642 	if (flags & EXT4_IMMUTABLE_FL)
4643 		new_fl |= S_IMMUTABLE;
4644 	if (flags & EXT4_NOATIME_FL)
4645 		new_fl |= S_NOATIME;
4646 	if (flags & EXT4_DIRSYNC_FL)
4647 		new_fl |= S_DIRSYNC;
4648 
4649 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4650 	 * here if already set. */
4651 	new_fl |= (inode->i_flags & S_DAX);
4652 	if (init && ext4_should_enable_dax(inode))
4653 		new_fl |= S_DAX;
4654 
4655 	if (flags & EXT4_ENCRYPT_FL)
4656 		new_fl |= S_ENCRYPTED;
4657 	if (flags & EXT4_CASEFOLD_FL)
4658 		new_fl |= S_CASEFOLD;
4659 	if (flags & EXT4_VERITY_FL)
4660 		new_fl |= S_VERITY;
4661 	inode_set_flags(inode, new_fl,
4662 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4663 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4664 }
4665 
4666 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4667 				  struct ext4_inode_info *ei)
4668 {
4669 	blkcnt_t i_blocks ;
4670 	struct inode *inode = &(ei->vfs_inode);
4671 	struct super_block *sb = inode->i_sb;
4672 
4673 	if (ext4_has_feature_huge_file(sb)) {
4674 		/* we are using combined 48 bit field */
4675 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4676 					le32_to_cpu(raw_inode->i_blocks_lo);
4677 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4678 			/* i_blocks represent file system block size */
4679 			return i_blocks  << (inode->i_blkbits - 9);
4680 		} else {
4681 			return i_blocks;
4682 		}
4683 	} else {
4684 		return le32_to_cpu(raw_inode->i_blocks_lo);
4685 	}
4686 }
4687 
4688 static inline int ext4_iget_extra_inode(struct inode *inode,
4689 					 struct ext4_inode *raw_inode,
4690 					 struct ext4_inode_info *ei)
4691 {
4692 	__le32 *magic = (void *)raw_inode +
4693 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4694 
4695 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4696 	    EXT4_INODE_SIZE(inode->i_sb) &&
4697 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4698 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4699 		return ext4_find_inline_data_nolock(inode);
4700 	} else
4701 		EXT4_I(inode)->i_inline_off = 0;
4702 	return 0;
4703 }
4704 
4705 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4706 {
4707 	if (!ext4_has_feature_project(inode->i_sb))
4708 		return -EOPNOTSUPP;
4709 	*projid = EXT4_I(inode)->i_projid;
4710 	return 0;
4711 }
4712 
4713 /*
4714  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4715  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4716  * set.
4717  */
4718 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4719 {
4720 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4721 		inode_set_iversion_raw(inode, val);
4722 	else
4723 		inode_set_iversion_queried(inode, val);
4724 }
4725 
4726 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727 			  ext4_iget_flags flags, const char *function,
4728 			  unsigned int line)
4729 {
4730 	struct ext4_iloc iloc;
4731 	struct ext4_inode *raw_inode;
4732 	struct ext4_inode_info *ei;
4733 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734 	struct inode *inode;
4735 	journal_t *journal = EXT4_SB(sb)->s_journal;
4736 	long ret;
4737 	loff_t size;
4738 	int block;
4739 	uid_t i_uid;
4740 	gid_t i_gid;
4741 	projid_t i_projid;
4742 
4743 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4744 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4745 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4746 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4747 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4748 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4749 	    (ino < EXT4_ROOT_INO) ||
4750 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4751 		if (flags & EXT4_IGET_HANDLE)
4752 			return ERR_PTR(-ESTALE);
4753 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4754 			     "inode #%lu: comm %s: iget: illegal inode #",
4755 			     ino, current->comm);
4756 		return ERR_PTR(-EFSCORRUPTED);
4757 	}
4758 
4759 	inode = iget_locked(sb, ino);
4760 	if (!inode)
4761 		return ERR_PTR(-ENOMEM);
4762 	if (!(inode->i_state & I_NEW))
4763 		return inode;
4764 
4765 	ei = EXT4_I(inode);
4766 	iloc.bh = NULL;
4767 
4768 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4769 	if (ret < 0)
4770 		goto bad_inode;
4771 	raw_inode = ext4_raw_inode(&iloc);
4772 
4773 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4774 		ext4_error_inode(inode, function, line, 0,
4775 				 "iget: root inode unallocated");
4776 		ret = -EFSCORRUPTED;
4777 		goto bad_inode;
4778 	}
4779 
4780 	if ((flags & EXT4_IGET_HANDLE) &&
4781 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782 		ret = -ESTALE;
4783 		goto bad_inode;
4784 	}
4785 
4786 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789 			EXT4_INODE_SIZE(inode->i_sb) ||
4790 		    (ei->i_extra_isize & 3)) {
4791 			ext4_error_inode(inode, function, line, 0,
4792 					 "iget: bad extra_isize %u "
4793 					 "(inode size %u)",
4794 					 ei->i_extra_isize,
4795 					 EXT4_INODE_SIZE(inode->i_sb));
4796 			ret = -EFSCORRUPTED;
4797 			goto bad_inode;
4798 		}
4799 	} else
4800 		ei->i_extra_isize = 0;
4801 
4802 	/* Precompute checksum seed for inode metadata */
4803 	if (ext4_has_metadata_csum(sb)) {
4804 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805 		__u32 csum;
4806 		__le32 inum = cpu_to_le32(inode->i_ino);
4807 		__le32 gen = raw_inode->i_generation;
4808 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809 				   sizeof(inum));
4810 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811 					      sizeof(gen));
4812 	}
4813 
4814 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817 		ext4_error_inode_err(inode, function, line, 0,
4818 				EFSBADCRC, "iget: checksum invalid");
4819 		ret = -EFSBADCRC;
4820 		goto bad_inode;
4821 	}
4822 
4823 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826 	if (ext4_has_feature_project(sb) &&
4827 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830 	else
4831 		i_projid = EXT4_DEF_PROJID;
4832 
4833 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836 	}
4837 	i_uid_write(inode, i_uid);
4838 	i_gid_write(inode, i_gid);
4839 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841 
4842 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843 	ei->i_inline_off = 0;
4844 	ei->i_dir_start_lookup = 0;
4845 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846 	/* We now have enough fields to check if the inode was active or not.
4847 	 * This is needed because nfsd might try to access dead inodes
4848 	 * the test is that same one that e2fsck uses
4849 	 * NeilBrown 1999oct15
4850 	 */
4851 	if (inode->i_nlink == 0) {
4852 		if ((inode->i_mode == 0 ||
4853 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854 		    ino != EXT4_BOOT_LOADER_INO) {
4855 			/* this inode is deleted */
4856 			ret = -ESTALE;
4857 			goto bad_inode;
4858 		}
4859 		/* The only unlinked inodes we let through here have
4860 		 * valid i_mode and are being read by the orphan
4861 		 * recovery code: that's fine, we're about to complete
4862 		 * the process of deleting those.
4863 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4864 		 * not initialized on a new filesystem. */
4865 	}
4866 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4867 	ext4_set_inode_flags(inode, true);
4868 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4869 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4870 	if (ext4_has_feature_64bit(sb))
4871 		ei->i_file_acl |=
4872 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4873 	inode->i_size = ext4_isize(sb, raw_inode);
4874 	if ((size = i_size_read(inode)) < 0) {
4875 		ext4_error_inode(inode, function, line, 0,
4876 				 "iget: bad i_size value: %lld", size);
4877 		ret = -EFSCORRUPTED;
4878 		goto bad_inode;
4879 	}
4880 	/*
4881 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4882 	 * we'd normally treat htree data as empty space. But with metadata
4883 	 * checksumming that corrupts checksums so forbid that.
4884 	 */
4885 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4886 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4887 		ext4_error_inode(inode, function, line, 0,
4888 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4889 		ret = -EFSCORRUPTED;
4890 		goto bad_inode;
4891 	}
4892 	ei->i_disksize = inode->i_size;
4893 #ifdef CONFIG_QUOTA
4894 	ei->i_reserved_quota = 0;
4895 #endif
4896 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4897 	ei->i_block_group = iloc.block_group;
4898 	ei->i_last_alloc_group = ~0;
4899 	/*
4900 	 * NOTE! The in-memory inode i_data array is in little-endian order
4901 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4902 	 */
4903 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4904 		ei->i_data[block] = raw_inode->i_block[block];
4905 	INIT_LIST_HEAD(&ei->i_orphan);
4906 	ext4_fc_init_inode(&ei->vfs_inode);
4907 
4908 	/*
4909 	 * Set transaction id's of transactions that have to be committed
4910 	 * to finish f[data]sync. We set them to currently running transaction
4911 	 * as we cannot be sure that the inode or some of its metadata isn't
4912 	 * part of the transaction - the inode could have been reclaimed and
4913 	 * now it is reread from disk.
4914 	 */
4915 	if (journal) {
4916 		transaction_t *transaction;
4917 		tid_t tid;
4918 
4919 		read_lock(&journal->j_state_lock);
4920 		if (journal->j_running_transaction)
4921 			transaction = journal->j_running_transaction;
4922 		else
4923 			transaction = journal->j_committing_transaction;
4924 		if (transaction)
4925 			tid = transaction->t_tid;
4926 		else
4927 			tid = journal->j_commit_sequence;
4928 		read_unlock(&journal->j_state_lock);
4929 		ei->i_sync_tid = tid;
4930 		ei->i_datasync_tid = tid;
4931 	}
4932 
4933 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4934 		if (ei->i_extra_isize == 0) {
4935 			/* The extra space is currently unused. Use it. */
4936 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4937 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4938 					    EXT4_GOOD_OLD_INODE_SIZE;
4939 		} else {
4940 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4941 			if (ret)
4942 				goto bad_inode;
4943 		}
4944 	}
4945 
4946 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4947 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4948 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4949 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4950 
4951 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4952 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4953 
4954 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4955 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4956 				ivers |=
4957 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4958 		}
4959 		ext4_inode_set_iversion_queried(inode, ivers);
4960 	}
4961 
4962 	ret = 0;
4963 	if (ei->i_file_acl &&
4964 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4965 		ext4_error_inode(inode, function, line, 0,
4966 				 "iget: bad extended attribute block %llu",
4967 				 ei->i_file_acl);
4968 		ret = -EFSCORRUPTED;
4969 		goto bad_inode;
4970 	} else if (!ext4_has_inline_data(inode)) {
4971 		/* validate the block references in the inode */
4972 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4973 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4974 			(S_ISLNK(inode->i_mode) &&
4975 			!ext4_inode_is_fast_symlink(inode)))) {
4976 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4977 				ret = ext4_ext_check_inode(inode);
4978 			else
4979 				ret = ext4_ind_check_inode(inode);
4980 		}
4981 	}
4982 	if (ret)
4983 		goto bad_inode;
4984 
4985 	if (S_ISREG(inode->i_mode)) {
4986 		inode->i_op = &ext4_file_inode_operations;
4987 		inode->i_fop = &ext4_file_operations;
4988 		ext4_set_aops(inode);
4989 	} else if (S_ISDIR(inode->i_mode)) {
4990 		inode->i_op = &ext4_dir_inode_operations;
4991 		inode->i_fop = &ext4_dir_operations;
4992 	} else if (S_ISLNK(inode->i_mode)) {
4993 		/* VFS does not allow setting these so must be corruption */
4994 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4995 			ext4_error_inode(inode, function, line, 0,
4996 					 "iget: immutable or append flags "
4997 					 "not allowed on symlinks");
4998 			ret = -EFSCORRUPTED;
4999 			goto bad_inode;
5000 		}
5001 		if (IS_ENCRYPTED(inode)) {
5002 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5003 		} else if (ext4_inode_is_fast_symlink(inode)) {
5004 			inode->i_link = (char *)ei->i_data;
5005 			inode->i_op = &ext4_fast_symlink_inode_operations;
5006 			nd_terminate_link(ei->i_data, inode->i_size,
5007 				sizeof(ei->i_data) - 1);
5008 		} else {
5009 			inode->i_op = &ext4_symlink_inode_operations;
5010 		}
5011 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5012 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5013 		inode->i_op = &ext4_special_inode_operations;
5014 		if (raw_inode->i_block[0])
5015 			init_special_inode(inode, inode->i_mode,
5016 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5017 		else
5018 			init_special_inode(inode, inode->i_mode,
5019 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5020 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5021 		make_bad_inode(inode);
5022 	} else {
5023 		ret = -EFSCORRUPTED;
5024 		ext4_error_inode(inode, function, line, 0,
5025 				 "iget: bogus i_mode (%o)", inode->i_mode);
5026 		goto bad_inode;
5027 	}
5028 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5029 		ext4_error_inode(inode, function, line, 0,
5030 				 "casefold flag without casefold feature");
5031 	brelse(iloc.bh);
5032 
5033 	unlock_new_inode(inode);
5034 	return inode;
5035 
5036 bad_inode:
5037 	brelse(iloc.bh);
5038 	iget_failed(inode);
5039 	return ERR_PTR(ret);
5040 }
5041 
5042 static void __ext4_update_other_inode_time(struct super_block *sb,
5043 					   unsigned long orig_ino,
5044 					   unsigned long ino,
5045 					   struct ext4_inode *raw_inode)
5046 {
5047 	struct inode *inode;
5048 
5049 	inode = find_inode_by_ino_rcu(sb, ino);
5050 	if (!inode)
5051 		return;
5052 
5053 	if (!inode_is_dirtytime_only(inode))
5054 		return;
5055 
5056 	spin_lock(&inode->i_lock);
5057 	if (inode_is_dirtytime_only(inode)) {
5058 		struct ext4_inode_info	*ei = EXT4_I(inode);
5059 
5060 		inode->i_state &= ~I_DIRTY_TIME;
5061 		spin_unlock(&inode->i_lock);
5062 
5063 		spin_lock(&ei->i_raw_lock);
5064 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5065 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5066 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5067 		ext4_inode_csum_set(inode, raw_inode, ei);
5068 		spin_unlock(&ei->i_raw_lock);
5069 		trace_ext4_other_inode_update_time(inode, orig_ino);
5070 		return;
5071 	}
5072 	spin_unlock(&inode->i_lock);
5073 }
5074 
5075 /*
5076  * Opportunistically update the other time fields for other inodes in
5077  * the same inode table block.
5078  */
5079 static void ext4_update_other_inodes_time(struct super_block *sb,
5080 					  unsigned long orig_ino, char *buf)
5081 {
5082 	unsigned long ino;
5083 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5084 	int inode_size = EXT4_INODE_SIZE(sb);
5085 
5086 	/*
5087 	 * Calculate the first inode in the inode table block.  Inode
5088 	 * numbers are one-based.  That is, the first inode in a block
5089 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5090 	 */
5091 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5092 	rcu_read_lock();
5093 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5094 		if (ino == orig_ino)
5095 			continue;
5096 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5097 					       (struct ext4_inode *)buf);
5098 	}
5099 	rcu_read_unlock();
5100 }
5101 
5102 /*
5103  * Post the struct inode info into an on-disk inode location in the
5104  * buffer-cache.  This gobbles the caller's reference to the
5105  * buffer_head in the inode location struct.
5106  *
5107  * The caller must have write access to iloc->bh.
5108  */
5109 static int ext4_do_update_inode(handle_t *handle,
5110 				struct inode *inode,
5111 				struct ext4_iloc *iloc)
5112 {
5113 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5114 	struct ext4_inode_info *ei = EXT4_I(inode);
5115 	struct buffer_head *bh = iloc->bh;
5116 	struct super_block *sb = inode->i_sb;
5117 	int err;
5118 	int need_datasync = 0, set_large_file = 0;
5119 
5120 	spin_lock(&ei->i_raw_lock);
5121 
5122 	/*
5123 	 * For fields not tracked in the in-memory inode, initialise them
5124 	 * to zero for new inodes.
5125 	 */
5126 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5127 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5128 
5129 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5130 		need_datasync = 1;
5131 	if (ei->i_disksize > 0x7fffffffULL) {
5132 		if (!ext4_has_feature_large_file(sb) ||
5133 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5134 			set_large_file = 1;
5135 	}
5136 
5137 	err = ext4_fill_raw_inode(inode, raw_inode);
5138 	spin_unlock(&ei->i_raw_lock);
5139 	if (err) {
5140 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5141 		goto out_brelse;
5142 	}
5143 
5144 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5145 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146 					      bh->b_data);
5147 
5148 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5149 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 	if (err)
5151 		goto out_error;
5152 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5153 	if (set_large_file) {
5154 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5155 		err = ext4_journal_get_write_access(handle, sb,
5156 						    EXT4_SB(sb)->s_sbh,
5157 						    EXT4_JTR_NONE);
5158 		if (err)
5159 			goto out_error;
5160 		lock_buffer(EXT4_SB(sb)->s_sbh);
5161 		ext4_set_feature_large_file(sb);
5162 		ext4_superblock_csum_set(sb);
5163 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5164 		ext4_handle_sync(handle);
5165 		err = ext4_handle_dirty_metadata(handle, NULL,
5166 						 EXT4_SB(sb)->s_sbh);
5167 	}
5168 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5169 out_error:
5170 	ext4_std_error(inode->i_sb, err);
5171 out_brelse:
5172 	brelse(bh);
5173 	return err;
5174 }
5175 
5176 /*
5177  * ext4_write_inode()
5178  *
5179  * We are called from a few places:
5180  *
5181  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5182  *   Here, there will be no transaction running. We wait for any running
5183  *   transaction to commit.
5184  *
5185  * - Within flush work (sys_sync(), kupdate and such).
5186  *   We wait on commit, if told to.
5187  *
5188  * - Within iput_final() -> write_inode_now()
5189  *   We wait on commit, if told to.
5190  *
5191  * In all cases it is actually safe for us to return without doing anything,
5192  * because the inode has been copied into a raw inode buffer in
5193  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5194  * writeback.
5195  *
5196  * Note that we are absolutely dependent upon all inode dirtiers doing the
5197  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5198  * which we are interested.
5199  *
5200  * It would be a bug for them to not do this.  The code:
5201  *
5202  *	mark_inode_dirty(inode)
5203  *	stuff();
5204  *	inode->i_size = expr;
5205  *
5206  * is in error because write_inode() could occur while `stuff()' is running,
5207  * and the new i_size will be lost.  Plus the inode will no longer be on the
5208  * superblock's dirty inode list.
5209  */
5210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5211 {
5212 	int err;
5213 
5214 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5215 	    sb_rdonly(inode->i_sb))
5216 		return 0;
5217 
5218 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5219 		return -EIO;
5220 
5221 	if (EXT4_SB(inode->i_sb)->s_journal) {
5222 		if (ext4_journal_current_handle()) {
5223 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5224 			dump_stack();
5225 			return -EIO;
5226 		}
5227 
5228 		/*
5229 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5230 		 * ext4_sync_fs() will force the commit after everything is
5231 		 * written.
5232 		 */
5233 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5234 			return 0;
5235 
5236 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5237 						EXT4_I(inode)->i_sync_tid);
5238 	} else {
5239 		struct ext4_iloc iloc;
5240 
5241 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5242 		if (err)
5243 			return err;
5244 		/*
5245 		 * sync(2) will flush the whole buffer cache. No need to do
5246 		 * it here separately for each inode.
5247 		 */
5248 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5249 			sync_dirty_buffer(iloc.bh);
5250 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5251 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5252 					       "IO error syncing inode");
5253 			err = -EIO;
5254 		}
5255 		brelse(iloc.bh);
5256 	}
5257 	return err;
5258 }
5259 
5260 /*
5261  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5262  * buffers that are attached to a folio straddling i_size and are undergoing
5263  * commit. In that case we have to wait for commit to finish and try again.
5264  */
5265 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5266 {
5267 	unsigned offset;
5268 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5269 	tid_t commit_tid = 0;
5270 	int ret;
5271 
5272 	offset = inode->i_size & (PAGE_SIZE - 1);
5273 	/*
5274 	 * If the folio is fully truncated, we don't need to wait for any commit
5275 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5276 	 * strip all buffers from the folio but keep the folio dirty which can then
5277 	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5278 	 * buffers). Also we don't need to wait for any commit if all buffers in
5279 	 * the folio remain valid. This is most beneficial for the common case of
5280 	 * blocksize == PAGESIZE.
5281 	 */
5282 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5283 		return;
5284 	while (1) {
5285 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5286 				      inode->i_size >> PAGE_SHIFT);
5287 		if (!folio)
5288 			return;
5289 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5290 						folio_size(folio) - offset);
5291 		folio_unlock(folio);
5292 		folio_put(folio);
5293 		if (ret != -EBUSY)
5294 			return;
5295 		commit_tid = 0;
5296 		read_lock(&journal->j_state_lock);
5297 		if (journal->j_committing_transaction)
5298 			commit_tid = journal->j_committing_transaction->t_tid;
5299 		read_unlock(&journal->j_state_lock);
5300 		if (commit_tid)
5301 			jbd2_log_wait_commit(journal, commit_tid);
5302 	}
5303 }
5304 
5305 /*
5306  * ext4_setattr()
5307  *
5308  * Called from notify_change.
5309  *
5310  * We want to trap VFS attempts to truncate the file as soon as
5311  * possible.  In particular, we want to make sure that when the VFS
5312  * shrinks i_size, we put the inode on the orphan list and modify
5313  * i_disksize immediately, so that during the subsequent flushing of
5314  * dirty pages and freeing of disk blocks, we can guarantee that any
5315  * commit will leave the blocks being flushed in an unused state on
5316  * disk.  (On recovery, the inode will get truncated and the blocks will
5317  * be freed, so we have a strong guarantee that no future commit will
5318  * leave these blocks visible to the user.)
5319  *
5320  * Another thing we have to assure is that if we are in ordered mode
5321  * and inode is still attached to the committing transaction, we must
5322  * we start writeout of all the dirty pages which are being truncated.
5323  * This way we are sure that all the data written in the previous
5324  * transaction are already on disk (truncate waits for pages under
5325  * writeback).
5326  *
5327  * Called with inode->i_rwsem down.
5328  */
5329 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5330 		 struct iattr *attr)
5331 {
5332 	struct inode *inode = d_inode(dentry);
5333 	int error, rc = 0;
5334 	int orphan = 0;
5335 	const unsigned int ia_valid = attr->ia_valid;
5336 
5337 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5338 		return -EIO;
5339 
5340 	if (unlikely(IS_IMMUTABLE(inode)))
5341 		return -EPERM;
5342 
5343 	if (unlikely(IS_APPEND(inode) &&
5344 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5345 				  ATTR_GID | ATTR_TIMES_SET))))
5346 		return -EPERM;
5347 
5348 	error = setattr_prepare(mnt_userns, dentry, attr);
5349 	if (error)
5350 		return error;
5351 
5352 	error = fscrypt_prepare_setattr(dentry, attr);
5353 	if (error)
5354 		return error;
5355 
5356 	error = fsverity_prepare_setattr(dentry, attr);
5357 	if (error)
5358 		return error;
5359 
5360 	if (is_quota_modification(inode, attr)) {
5361 		error = dquot_initialize(inode);
5362 		if (error)
5363 			return error;
5364 	}
5365 
5366 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5367 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5368 		handle_t *handle;
5369 
5370 		/* (user+group)*(old+new) structure, inode write (sb,
5371 		 * inode block, ? - but truncate inode update has it) */
5372 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5373 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5374 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5375 		if (IS_ERR(handle)) {
5376 			error = PTR_ERR(handle);
5377 			goto err_out;
5378 		}
5379 
5380 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5381 		 * counts xattr inode references.
5382 		 */
5383 		down_read(&EXT4_I(inode)->xattr_sem);
5384 		error = dquot_transfer(inode, attr);
5385 		up_read(&EXT4_I(inode)->xattr_sem);
5386 
5387 		if (error) {
5388 			ext4_journal_stop(handle);
5389 			return error;
5390 		}
5391 		/* Update corresponding info in inode so that everything is in
5392 		 * one transaction */
5393 		if (attr->ia_valid & ATTR_UID)
5394 			inode->i_uid = attr->ia_uid;
5395 		if (attr->ia_valid & ATTR_GID)
5396 			inode->i_gid = attr->ia_gid;
5397 		error = ext4_mark_inode_dirty(handle, inode);
5398 		ext4_journal_stop(handle);
5399 		if (unlikely(error)) {
5400 			return error;
5401 		}
5402 	}
5403 
5404 	if (attr->ia_valid & ATTR_SIZE) {
5405 		handle_t *handle;
5406 		loff_t oldsize = inode->i_size;
5407 		loff_t old_disksize;
5408 		int shrink = (attr->ia_size < inode->i_size);
5409 
5410 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5411 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5412 
5413 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5414 				return -EFBIG;
5415 			}
5416 		}
5417 		if (!S_ISREG(inode->i_mode)) {
5418 			return -EINVAL;
5419 		}
5420 
5421 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5422 			inode_inc_iversion(inode);
5423 
5424 		if (shrink) {
5425 			if (ext4_should_order_data(inode)) {
5426 				error = ext4_begin_ordered_truncate(inode,
5427 							    attr->ia_size);
5428 				if (error)
5429 					goto err_out;
5430 			}
5431 			/*
5432 			 * Blocks are going to be removed from the inode. Wait
5433 			 * for dio in flight.
5434 			 */
5435 			inode_dio_wait(inode);
5436 		}
5437 
5438 		filemap_invalidate_lock(inode->i_mapping);
5439 
5440 		rc = ext4_break_layouts(inode);
5441 		if (rc) {
5442 			filemap_invalidate_unlock(inode->i_mapping);
5443 			goto err_out;
5444 		}
5445 
5446 		if (attr->ia_size != inode->i_size) {
5447 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5448 			if (IS_ERR(handle)) {
5449 				error = PTR_ERR(handle);
5450 				goto out_mmap_sem;
5451 			}
5452 			if (ext4_handle_valid(handle) && shrink) {
5453 				error = ext4_orphan_add(handle, inode);
5454 				orphan = 1;
5455 			}
5456 			/*
5457 			 * Update c/mtime on truncate up, ext4_truncate() will
5458 			 * update c/mtime in shrink case below
5459 			 */
5460 			if (!shrink) {
5461 				inode->i_mtime = current_time(inode);
5462 				inode->i_ctime = inode->i_mtime;
5463 			}
5464 
5465 			if (shrink)
5466 				ext4_fc_track_range(handle, inode,
5467 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5468 					inode->i_sb->s_blocksize_bits,
5469 					EXT_MAX_BLOCKS - 1);
5470 			else
5471 				ext4_fc_track_range(
5472 					handle, inode,
5473 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5474 					inode->i_sb->s_blocksize_bits,
5475 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5476 					inode->i_sb->s_blocksize_bits);
5477 
5478 			down_write(&EXT4_I(inode)->i_data_sem);
5479 			old_disksize = EXT4_I(inode)->i_disksize;
5480 			EXT4_I(inode)->i_disksize = attr->ia_size;
5481 			rc = ext4_mark_inode_dirty(handle, inode);
5482 			if (!error)
5483 				error = rc;
5484 			/*
5485 			 * We have to update i_size under i_data_sem together
5486 			 * with i_disksize to avoid races with writeback code
5487 			 * running ext4_wb_update_i_disksize().
5488 			 */
5489 			if (!error)
5490 				i_size_write(inode, attr->ia_size);
5491 			else
5492 				EXT4_I(inode)->i_disksize = old_disksize;
5493 			up_write(&EXT4_I(inode)->i_data_sem);
5494 			ext4_journal_stop(handle);
5495 			if (error)
5496 				goto out_mmap_sem;
5497 			if (!shrink) {
5498 				pagecache_isize_extended(inode, oldsize,
5499 							 inode->i_size);
5500 			} else if (ext4_should_journal_data(inode)) {
5501 				ext4_wait_for_tail_page_commit(inode);
5502 			}
5503 		}
5504 
5505 		/*
5506 		 * Truncate pagecache after we've waited for commit
5507 		 * in data=journal mode to make pages freeable.
5508 		 */
5509 		truncate_pagecache(inode, inode->i_size);
5510 		/*
5511 		 * Call ext4_truncate() even if i_size didn't change to
5512 		 * truncate possible preallocated blocks.
5513 		 */
5514 		if (attr->ia_size <= oldsize) {
5515 			rc = ext4_truncate(inode);
5516 			if (rc)
5517 				error = rc;
5518 		}
5519 out_mmap_sem:
5520 		filemap_invalidate_unlock(inode->i_mapping);
5521 	}
5522 
5523 	if (!error) {
5524 		setattr_copy(mnt_userns, inode, attr);
5525 		mark_inode_dirty(inode);
5526 	}
5527 
5528 	/*
5529 	 * If the call to ext4_truncate failed to get a transaction handle at
5530 	 * all, we need to clean up the in-core orphan list manually.
5531 	 */
5532 	if (orphan && inode->i_nlink)
5533 		ext4_orphan_del(NULL, inode);
5534 
5535 	if (!error && (ia_valid & ATTR_MODE))
5536 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5537 
5538 err_out:
5539 	if  (error)
5540 		ext4_std_error(inode->i_sb, error);
5541 	if (!error)
5542 		error = rc;
5543 	return error;
5544 }
5545 
5546 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5547 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5548 {
5549 	struct inode *inode = d_inode(path->dentry);
5550 	struct ext4_inode *raw_inode;
5551 	struct ext4_inode_info *ei = EXT4_I(inode);
5552 	unsigned int flags;
5553 
5554 	if ((request_mask & STATX_BTIME) &&
5555 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5556 		stat->result_mask |= STATX_BTIME;
5557 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5558 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5559 	}
5560 
5561 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5562 	if (flags & EXT4_APPEND_FL)
5563 		stat->attributes |= STATX_ATTR_APPEND;
5564 	if (flags & EXT4_COMPR_FL)
5565 		stat->attributes |= STATX_ATTR_COMPRESSED;
5566 	if (flags & EXT4_ENCRYPT_FL)
5567 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5568 	if (flags & EXT4_IMMUTABLE_FL)
5569 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5570 	if (flags & EXT4_NODUMP_FL)
5571 		stat->attributes |= STATX_ATTR_NODUMP;
5572 	if (flags & EXT4_VERITY_FL)
5573 		stat->attributes |= STATX_ATTR_VERITY;
5574 
5575 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5576 				  STATX_ATTR_COMPRESSED |
5577 				  STATX_ATTR_ENCRYPTED |
5578 				  STATX_ATTR_IMMUTABLE |
5579 				  STATX_ATTR_NODUMP |
5580 				  STATX_ATTR_VERITY);
5581 
5582 	generic_fillattr(mnt_userns, inode, stat);
5583 	return 0;
5584 }
5585 
5586 int ext4_file_getattr(struct user_namespace *mnt_userns,
5587 		      const struct path *path, struct kstat *stat,
5588 		      u32 request_mask, unsigned int query_flags)
5589 {
5590 	struct inode *inode = d_inode(path->dentry);
5591 	u64 delalloc_blocks;
5592 
5593 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5594 
5595 	/*
5596 	 * If there is inline data in the inode, the inode will normally not
5597 	 * have data blocks allocated (it may have an external xattr block).
5598 	 * Report at least one sector for such files, so tools like tar, rsync,
5599 	 * others don't incorrectly think the file is completely sparse.
5600 	 */
5601 	if (unlikely(ext4_has_inline_data(inode)))
5602 		stat->blocks += (stat->size + 511) >> 9;
5603 
5604 	/*
5605 	 * We can't update i_blocks if the block allocation is delayed
5606 	 * otherwise in the case of system crash before the real block
5607 	 * allocation is done, we will have i_blocks inconsistent with
5608 	 * on-disk file blocks.
5609 	 * We always keep i_blocks updated together with real
5610 	 * allocation. But to not confuse with user, stat
5611 	 * will return the blocks that include the delayed allocation
5612 	 * blocks for this file.
5613 	 */
5614 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5615 				   EXT4_I(inode)->i_reserved_data_blocks);
5616 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5617 	return 0;
5618 }
5619 
5620 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5621 				   int pextents)
5622 {
5623 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5624 		return ext4_ind_trans_blocks(inode, lblocks);
5625 	return ext4_ext_index_trans_blocks(inode, pextents);
5626 }
5627 
5628 /*
5629  * Account for index blocks, block groups bitmaps and block group
5630  * descriptor blocks if modify datablocks and index blocks
5631  * worse case, the indexs blocks spread over different block groups
5632  *
5633  * If datablocks are discontiguous, they are possible to spread over
5634  * different block groups too. If they are contiguous, with flexbg,
5635  * they could still across block group boundary.
5636  *
5637  * Also account for superblock, inode, quota and xattr blocks
5638  */
5639 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5640 				  int pextents)
5641 {
5642 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5643 	int gdpblocks;
5644 	int idxblocks;
5645 	int ret = 0;
5646 
5647 	/*
5648 	 * How many index blocks need to touch to map @lblocks logical blocks
5649 	 * to @pextents physical extents?
5650 	 */
5651 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5652 
5653 	ret = idxblocks;
5654 
5655 	/*
5656 	 * Now let's see how many group bitmaps and group descriptors need
5657 	 * to account
5658 	 */
5659 	groups = idxblocks + pextents;
5660 	gdpblocks = groups;
5661 	if (groups > ngroups)
5662 		groups = ngroups;
5663 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5664 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5665 
5666 	/* bitmaps and block group descriptor blocks */
5667 	ret += groups + gdpblocks;
5668 
5669 	/* Blocks for super block, inode, quota and xattr blocks */
5670 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5671 
5672 	return ret;
5673 }
5674 
5675 /*
5676  * Calculate the total number of credits to reserve to fit
5677  * the modification of a single pages into a single transaction,
5678  * which may include multiple chunks of block allocations.
5679  *
5680  * This could be called via ext4_write_begin()
5681  *
5682  * We need to consider the worse case, when
5683  * one new block per extent.
5684  */
5685 int ext4_writepage_trans_blocks(struct inode *inode)
5686 {
5687 	int bpp = ext4_journal_blocks_per_page(inode);
5688 	int ret;
5689 
5690 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5691 
5692 	/* Account for data blocks for journalled mode */
5693 	if (ext4_should_journal_data(inode))
5694 		ret += bpp;
5695 	return ret;
5696 }
5697 
5698 /*
5699  * Calculate the journal credits for a chunk of data modification.
5700  *
5701  * This is called from DIO, fallocate or whoever calling
5702  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5703  *
5704  * journal buffers for data blocks are not included here, as DIO
5705  * and fallocate do no need to journal data buffers.
5706  */
5707 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5708 {
5709 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5710 }
5711 
5712 /*
5713  * The caller must have previously called ext4_reserve_inode_write().
5714  * Give this, we know that the caller already has write access to iloc->bh.
5715  */
5716 int ext4_mark_iloc_dirty(handle_t *handle,
5717 			 struct inode *inode, struct ext4_iloc *iloc)
5718 {
5719 	int err = 0;
5720 
5721 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5722 		put_bh(iloc->bh);
5723 		return -EIO;
5724 	}
5725 	ext4_fc_track_inode(handle, inode);
5726 
5727 	if (IS_I_VERSION(inode))
5728 		inode_inc_iversion(inode);
5729 
5730 	/* the do_update_inode consumes one bh->b_count */
5731 	get_bh(iloc->bh);
5732 
5733 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5734 	err = ext4_do_update_inode(handle, inode, iloc);
5735 	put_bh(iloc->bh);
5736 	return err;
5737 }
5738 
5739 /*
5740  * On success, We end up with an outstanding reference count against
5741  * iloc->bh.  This _must_ be cleaned up later.
5742  */
5743 
5744 int
5745 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5746 			 struct ext4_iloc *iloc)
5747 {
5748 	int err;
5749 
5750 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5751 		return -EIO;
5752 
5753 	err = ext4_get_inode_loc(inode, iloc);
5754 	if (!err) {
5755 		BUFFER_TRACE(iloc->bh, "get_write_access");
5756 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5757 						    iloc->bh, EXT4_JTR_NONE);
5758 		if (err) {
5759 			brelse(iloc->bh);
5760 			iloc->bh = NULL;
5761 		}
5762 	}
5763 	ext4_std_error(inode->i_sb, err);
5764 	return err;
5765 }
5766 
5767 static int __ext4_expand_extra_isize(struct inode *inode,
5768 				     unsigned int new_extra_isize,
5769 				     struct ext4_iloc *iloc,
5770 				     handle_t *handle, int *no_expand)
5771 {
5772 	struct ext4_inode *raw_inode;
5773 	struct ext4_xattr_ibody_header *header;
5774 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5775 	struct ext4_inode_info *ei = EXT4_I(inode);
5776 	int error;
5777 
5778 	/* this was checked at iget time, but double check for good measure */
5779 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5780 	    (ei->i_extra_isize & 3)) {
5781 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5782 				 ei->i_extra_isize,
5783 				 EXT4_INODE_SIZE(inode->i_sb));
5784 		return -EFSCORRUPTED;
5785 	}
5786 	if ((new_extra_isize < ei->i_extra_isize) ||
5787 	    (new_extra_isize < 4) ||
5788 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5789 		return -EINVAL;	/* Should never happen */
5790 
5791 	raw_inode = ext4_raw_inode(iloc);
5792 
5793 	header = IHDR(inode, raw_inode);
5794 
5795 	/* No extended attributes present */
5796 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5797 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5798 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5799 		       EXT4_I(inode)->i_extra_isize, 0,
5800 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5801 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5802 		return 0;
5803 	}
5804 
5805 	/* try to expand with EAs present */
5806 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5807 					   raw_inode, handle);
5808 	if (error) {
5809 		/*
5810 		 * Inode size expansion failed; don't try again
5811 		 */
5812 		*no_expand = 1;
5813 	}
5814 
5815 	return error;
5816 }
5817 
5818 /*
5819  * Expand an inode by new_extra_isize bytes.
5820  * Returns 0 on success or negative error number on failure.
5821  */
5822 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5823 					  unsigned int new_extra_isize,
5824 					  struct ext4_iloc iloc,
5825 					  handle_t *handle)
5826 {
5827 	int no_expand;
5828 	int error;
5829 
5830 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5831 		return -EOVERFLOW;
5832 
5833 	/*
5834 	 * In nojournal mode, we can immediately attempt to expand
5835 	 * the inode.  When journaled, we first need to obtain extra
5836 	 * buffer credits since we may write into the EA block
5837 	 * with this same handle. If journal_extend fails, then it will
5838 	 * only result in a minor loss of functionality for that inode.
5839 	 * If this is felt to be critical, then e2fsck should be run to
5840 	 * force a large enough s_min_extra_isize.
5841 	 */
5842 	if (ext4_journal_extend(handle,
5843 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5844 		return -ENOSPC;
5845 
5846 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5847 		return -EBUSY;
5848 
5849 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5850 					  handle, &no_expand);
5851 	ext4_write_unlock_xattr(inode, &no_expand);
5852 
5853 	return error;
5854 }
5855 
5856 int ext4_expand_extra_isize(struct inode *inode,
5857 			    unsigned int new_extra_isize,
5858 			    struct ext4_iloc *iloc)
5859 {
5860 	handle_t *handle;
5861 	int no_expand;
5862 	int error, rc;
5863 
5864 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5865 		brelse(iloc->bh);
5866 		return -EOVERFLOW;
5867 	}
5868 
5869 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5870 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5871 	if (IS_ERR(handle)) {
5872 		error = PTR_ERR(handle);
5873 		brelse(iloc->bh);
5874 		return error;
5875 	}
5876 
5877 	ext4_write_lock_xattr(inode, &no_expand);
5878 
5879 	BUFFER_TRACE(iloc->bh, "get_write_access");
5880 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5881 					      EXT4_JTR_NONE);
5882 	if (error) {
5883 		brelse(iloc->bh);
5884 		goto out_unlock;
5885 	}
5886 
5887 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5888 					  handle, &no_expand);
5889 
5890 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5891 	if (!error)
5892 		error = rc;
5893 
5894 out_unlock:
5895 	ext4_write_unlock_xattr(inode, &no_expand);
5896 	ext4_journal_stop(handle);
5897 	return error;
5898 }
5899 
5900 /*
5901  * What we do here is to mark the in-core inode as clean with respect to inode
5902  * dirtiness (it may still be data-dirty).
5903  * This means that the in-core inode may be reaped by prune_icache
5904  * without having to perform any I/O.  This is a very good thing,
5905  * because *any* task may call prune_icache - even ones which
5906  * have a transaction open against a different journal.
5907  *
5908  * Is this cheating?  Not really.  Sure, we haven't written the
5909  * inode out, but prune_icache isn't a user-visible syncing function.
5910  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5911  * we start and wait on commits.
5912  */
5913 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5914 				const char *func, unsigned int line)
5915 {
5916 	struct ext4_iloc iloc;
5917 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5918 	int err;
5919 
5920 	might_sleep();
5921 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5922 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5923 	if (err)
5924 		goto out;
5925 
5926 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5927 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5928 					       iloc, handle);
5929 
5930 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5931 out:
5932 	if (unlikely(err))
5933 		ext4_error_inode_err(inode, func, line, 0, err,
5934 					"mark_inode_dirty error");
5935 	return err;
5936 }
5937 
5938 /*
5939  * ext4_dirty_inode() is called from __mark_inode_dirty()
5940  *
5941  * We're really interested in the case where a file is being extended.
5942  * i_size has been changed by generic_commit_write() and we thus need
5943  * to include the updated inode in the current transaction.
5944  *
5945  * Also, dquot_alloc_block() will always dirty the inode when blocks
5946  * are allocated to the file.
5947  *
5948  * If the inode is marked synchronous, we don't honour that here - doing
5949  * so would cause a commit on atime updates, which we don't bother doing.
5950  * We handle synchronous inodes at the highest possible level.
5951  */
5952 void ext4_dirty_inode(struct inode *inode, int flags)
5953 {
5954 	handle_t *handle;
5955 
5956 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5957 	if (IS_ERR(handle))
5958 		return;
5959 	ext4_mark_inode_dirty(handle, inode);
5960 	ext4_journal_stop(handle);
5961 }
5962 
5963 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5964 {
5965 	journal_t *journal;
5966 	handle_t *handle;
5967 	int err;
5968 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5969 
5970 	/*
5971 	 * We have to be very careful here: changing a data block's
5972 	 * journaling status dynamically is dangerous.  If we write a
5973 	 * data block to the journal, change the status and then delete
5974 	 * that block, we risk forgetting to revoke the old log record
5975 	 * from the journal and so a subsequent replay can corrupt data.
5976 	 * So, first we make sure that the journal is empty and that
5977 	 * nobody is changing anything.
5978 	 */
5979 
5980 	journal = EXT4_JOURNAL(inode);
5981 	if (!journal)
5982 		return 0;
5983 	if (is_journal_aborted(journal))
5984 		return -EROFS;
5985 
5986 	/* Wait for all existing dio workers */
5987 	inode_dio_wait(inode);
5988 
5989 	/*
5990 	 * Before flushing the journal and switching inode's aops, we have
5991 	 * to flush all dirty data the inode has. There can be outstanding
5992 	 * delayed allocations, there can be unwritten extents created by
5993 	 * fallocate or buffered writes in dioread_nolock mode covered by
5994 	 * dirty data which can be converted only after flushing the dirty
5995 	 * data (and journalled aops don't know how to handle these cases).
5996 	 */
5997 	if (val) {
5998 		filemap_invalidate_lock(inode->i_mapping);
5999 		err = filemap_write_and_wait(inode->i_mapping);
6000 		if (err < 0) {
6001 			filemap_invalidate_unlock(inode->i_mapping);
6002 			return err;
6003 		}
6004 	}
6005 
6006 	percpu_down_write(&sbi->s_writepages_rwsem);
6007 	jbd2_journal_lock_updates(journal);
6008 
6009 	/*
6010 	 * OK, there are no updates running now, and all cached data is
6011 	 * synced to disk.  We are now in a completely consistent state
6012 	 * which doesn't have anything in the journal, and we know that
6013 	 * no filesystem updates are running, so it is safe to modify
6014 	 * the inode's in-core data-journaling state flag now.
6015 	 */
6016 
6017 	if (val)
6018 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6019 	else {
6020 		err = jbd2_journal_flush(journal, 0);
6021 		if (err < 0) {
6022 			jbd2_journal_unlock_updates(journal);
6023 			percpu_up_write(&sbi->s_writepages_rwsem);
6024 			return err;
6025 		}
6026 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6027 	}
6028 	ext4_set_aops(inode);
6029 
6030 	jbd2_journal_unlock_updates(journal);
6031 	percpu_up_write(&sbi->s_writepages_rwsem);
6032 
6033 	if (val)
6034 		filemap_invalidate_unlock(inode->i_mapping);
6035 
6036 	/* Finally we can mark the inode as dirty. */
6037 
6038 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6039 	if (IS_ERR(handle))
6040 		return PTR_ERR(handle);
6041 
6042 	ext4_fc_mark_ineligible(inode->i_sb,
6043 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6044 	err = ext4_mark_inode_dirty(handle, inode);
6045 	ext4_handle_sync(handle);
6046 	ext4_journal_stop(handle);
6047 	ext4_std_error(inode->i_sb, err);
6048 
6049 	return err;
6050 }
6051 
6052 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6053 			    struct buffer_head *bh)
6054 {
6055 	return !buffer_mapped(bh);
6056 }
6057 
6058 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6059 {
6060 	struct vm_area_struct *vma = vmf->vma;
6061 	struct page *page = vmf->page;
6062 	loff_t size;
6063 	unsigned long len;
6064 	int err;
6065 	vm_fault_t ret;
6066 	struct file *file = vma->vm_file;
6067 	struct inode *inode = file_inode(file);
6068 	struct address_space *mapping = inode->i_mapping;
6069 	handle_t *handle;
6070 	get_block_t *get_block;
6071 	int retries = 0;
6072 
6073 	if (unlikely(IS_IMMUTABLE(inode)))
6074 		return VM_FAULT_SIGBUS;
6075 
6076 	sb_start_pagefault(inode->i_sb);
6077 	file_update_time(vma->vm_file);
6078 
6079 	filemap_invalidate_lock_shared(mapping);
6080 
6081 	err = ext4_convert_inline_data(inode);
6082 	if (err)
6083 		goto out_ret;
6084 
6085 	/*
6086 	 * On data journalling we skip straight to the transaction handle:
6087 	 * there's no delalloc; page truncated will be checked later; the
6088 	 * early return w/ all buffers mapped (calculates size/len) can't
6089 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6090 	 */
6091 	if (ext4_should_journal_data(inode))
6092 		goto retry_alloc;
6093 
6094 	/* Delalloc case is easy... */
6095 	if (test_opt(inode->i_sb, DELALLOC) &&
6096 	    !ext4_nonda_switch(inode->i_sb)) {
6097 		do {
6098 			err = block_page_mkwrite(vma, vmf,
6099 						   ext4_da_get_block_prep);
6100 		} while (err == -ENOSPC &&
6101 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6102 		goto out_ret;
6103 	}
6104 
6105 	lock_page(page);
6106 	size = i_size_read(inode);
6107 	/* Page got truncated from under us? */
6108 	if (page->mapping != mapping || page_offset(page) > size) {
6109 		unlock_page(page);
6110 		ret = VM_FAULT_NOPAGE;
6111 		goto out;
6112 	}
6113 
6114 	if (page->index == size >> PAGE_SHIFT)
6115 		len = size & ~PAGE_MASK;
6116 	else
6117 		len = PAGE_SIZE;
6118 	/*
6119 	 * Return if we have all the buffers mapped. This avoids the need to do
6120 	 * journal_start/journal_stop which can block and take a long time
6121 	 *
6122 	 * This cannot be done for data journalling, as we have to add the
6123 	 * inode to the transaction's list to writeprotect pages on commit.
6124 	 */
6125 	if (page_has_buffers(page)) {
6126 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6127 					    0, len, NULL,
6128 					    ext4_bh_unmapped)) {
6129 			/* Wait so that we don't change page under IO */
6130 			wait_for_stable_page(page);
6131 			ret = VM_FAULT_LOCKED;
6132 			goto out;
6133 		}
6134 	}
6135 	unlock_page(page);
6136 	/* OK, we need to fill the hole... */
6137 	if (ext4_should_dioread_nolock(inode))
6138 		get_block = ext4_get_block_unwritten;
6139 	else
6140 		get_block = ext4_get_block;
6141 retry_alloc:
6142 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6143 				    ext4_writepage_trans_blocks(inode));
6144 	if (IS_ERR(handle)) {
6145 		ret = VM_FAULT_SIGBUS;
6146 		goto out;
6147 	}
6148 	/*
6149 	 * Data journalling can't use block_page_mkwrite() because it
6150 	 * will set_buffer_dirty() before do_journal_get_write_access()
6151 	 * thus might hit warning messages for dirty metadata buffers.
6152 	 */
6153 	if (!ext4_should_journal_data(inode)) {
6154 		err = block_page_mkwrite(vma, vmf, get_block);
6155 	} else {
6156 		lock_page(page);
6157 		size = i_size_read(inode);
6158 		/* Page got truncated from under us? */
6159 		if (page->mapping != mapping || page_offset(page) > size) {
6160 			ret = VM_FAULT_NOPAGE;
6161 			goto out_error;
6162 		}
6163 
6164 		if (page->index == size >> PAGE_SHIFT)
6165 			len = size & ~PAGE_MASK;
6166 		else
6167 			len = PAGE_SIZE;
6168 
6169 		err = __block_write_begin(page, 0, len, ext4_get_block);
6170 		if (!err) {
6171 			ret = VM_FAULT_SIGBUS;
6172 			if (ext4_walk_page_buffers(handle, inode,
6173 					page_buffers(page), 0, len, NULL,
6174 					do_journal_get_write_access))
6175 				goto out_error;
6176 			if (ext4_walk_page_buffers(handle, inode,
6177 					page_buffers(page), 0, len, NULL,
6178 					write_end_fn))
6179 				goto out_error;
6180 			if (ext4_jbd2_inode_add_write(handle, inode,
6181 						      page_offset(page), len))
6182 				goto out_error;
6183 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6184 		} else {
6185 			unlock_page(page);
6186 		}
6187 	}
6188 	ext4_journal_stop(handle);
6189 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6190 		goto retry_alloc;
6191 out_ret:
6192 	ret = block_page_mkwrite_return(err);
6193 out:
6194 	filemap_invalidate_unlock_shared(mapping);
6195 	sb_end_pagefault(inode->i_sb);
6196 	return ret;
6197 out_error:
6198 	unlock_page(page);
6199 	ext4_journal_stop(handle);
6200 	goto out;
6201 }
6202