1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 if (inode->i_nlink) { 181 /* 182 * When journalling data dirty buffers are tracked only in the 183 * journal. So although mm thinks everything is clean and 184 * ready for reaping the inode might still have some pages to 185 * write in the running transaction or waiting to be 186 * checkpointed. Thus calling jbd2_journal_invalidate_folio() 187 * (via truncate_inode_pages()) to discard these buffers can 188 * cause data loss. Also even if we did not discard these 189 * buffers, we would have no way to find them after the inode 190 * is reaped and thus user could see stale data if he tries to 191 * read them before the transaction is checkpointed. So be 192 * careful and force everything to disk here... We use 193 * ei->i_datasync_tid to store the newest transaction 194 * containing inode's data. 195 * 196 * Note that directories do not have this problem because they 197 * don't use page cache. 198 */ 199 if (inode->i_ino != EXT4_JOURNAL_INO && 200 ext4_should_journal_data(inode) && 201 S_ISREG(inode->i_mode) && inode->i_data.nrpages) { 202 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 203 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 204 205 jbd2_complete_transaction(journal, commit_tid); 206 filemap_write_and_wait(&inode->i_data); 207 } 208 truncate_inode_pages_final(&inode->i_data); 209 210 goto no_delete; 211 } 212 213 if (is_bad_inode(inode)) 214 goto no_delete; 215 dquot_initialize(inode); 216 217 if (ext4_should_order_data(inode)) 218 ext4_begin_ordered_truncate(inode, 0); 219 truncate_inode_pages_final(&inode->i_data); 220 221 /* 222 * For inodes with journalled data, transaction commit could have 223 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 224 * flag but we still need to remove the inode from the writeback lists. 225 */ 226 if (!list_empty_careful(&inode->i_io_list)) { 227 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 228 inode_io_list_del(inode); 229 } 230 231 /* 232 * Protect us against freezing - iput() caller didn't have to have any 233 * protection against it. When we are in a running transaction though, 234 * we are already protected against freezing and we cannot grab further 235 * protection due to lock ordering constraints. 236 */ 237 if (!ext4_journal_current_handle()) { 238 sb_start_intwrite(inode->i_sb); 239 freeze_protected = true; 240 } 241 242 if (!IS_NOQUOTA(inode)) 243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 244 245 /* 246 * Block bitmap, group descriptor, and inode are accounted in both 247 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 248 */ 249 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 250 ext4_blocks_for_truncate(inode) + extra_credits - 3); 251 if (IS_ERR(handle)) { 252 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 253 /* 254 * If we're going to skip the normal cleanup, we still need to 255 * make sure that the in-core orphan linked list is properly 256 * cleaned up. 257 */ 258 ext4_orphan_del(NULL, inode); 259 if (freeze_protected) 260 sb_end_intwrite(inode->i_sb); 261 goto no_delete; 262 } 263 264 if (IS_SYNC(inode)) 265 ext4_handle_sync(handle); 266 267 /* 268 * Set inode->i_size to 0 before calling ext4_truncate(). We need 269 * special handling of symlinks here because i_size is used to 270 * determine whether ext4_inode_info->i_data contains symlink data or 271 * block mappings. Setting i_size to 0 will remove its fast symlink 272 * status. Erase i_data so that it becomes a valid empty block map. 273 */ 274 if (ext4_inode_is_fast_symlink(inode)) 275 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 276 inode->i_size = 0; 277 err = ext4_mark_inode_dirty(handle, inode); 278 if (err) { 279 ext4_warning(inode->i_sb, 280 "couldn't mark inode dirty (err %d)", err); 281 goto stop_handle; 282 } 283 if (inode->i_blocks) { 284 err = ext4_truncate(inode); 285 if (err) { 286 ext4_error_err(inode->i_sb, -err, 287 "couldn't truncate inode %lu (err %d)", 288 inode->i_ino, err); 289 goto stop_handle; 290 } 291 } 292 293 /* Remove xattr references. */ 294 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 295 extra_credits); 296 if (err) { 297 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 298 stop_handle: 299 ext4_journal_stop(handle); 300 ext4_orphan_del(NULL, inode); 301 if (freeze_protected) 302 sb_end_intwrite(inode->i_sb); 303 ext4_xattr_inode_array_free(ea_inode_array); 304 goto no_delete; 305 } 306 307 /* 308 * Kill off the orphan record which ext4_truncate created. 309 * AKPM: I think this can be inside the above `if'. 310 * Note that ext4_orphan_del() has to be able to cope with the 311 * deletion of a non-existent orphan - this is because we don't 312 * know if ext4_truncate() actually created an orphan record. 313 * (Well, we could do this if we need to, but heck - it works) 314 */ 315 ext4_orphan_del(handle, inode); 316 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 317 318 /* 319 * One subtle ordering requirement: if anything has gone wrong 320 * (transaction abort, IO errors, whatever), then we can still 321 * do these next steps (the fs will already have been marked as 322 * having errors), but we can't free the inode if the mark_dirty 323 * fails. 324 */ 325 if (ext4_mark_inode_dirty(handle, inode)) 326 /* If that failed, just do the required in-core inode clear. */ 327 ext4_clear_inode(inode); 328 else 329 ext4_free_inode(handle, inode); 330 ext4_journal_stop(handle); 331 if (freeze_protected) 332 sb_end_intwrite(inode->i_sb); 333 ext4_xattr_inode_array_free(ea_inode_array); 334 return; 335 no_delete: 336 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 337 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 338 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 339 } 340 341 #ifdef CONFIG_QUOTA 342 qsize_t *ext4_get_reserved_space(struct inode *inode) 343 { 344 return &EXT4_I(inode)->i_reserved_quota; 345 } 346 #endif 347 348 /* 349 * Called with i_data_sem down, which is important since we can call 350 * ext4_discard_preallocations() from here. 351 */ 352 void ext4_da_update_reserve_space(struct inode *inode, 353 int used, int quota_claim) 354 { 355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 356 struct ext4_inode_info *ei = EXT4_I(inode); 357 358 spin_lock(&ei->i_block_reservation_lock); 359 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 360 if (unlikely(used > ei->i_reserved_data_blocks)) { 361 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 362 "with only %d reserved data blocks", 363 __func__, inode->i_ino, used, 364 ei->i_reserved_data_blocks); 365 WARN_ON(1); 366 used = ei->i_reserved_data_blocks; 367 } 368 369 /* Update per-inode reservations */ 370 ei->i_reserved_data_blocks -= used; 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 372 373 spin_unlock(&ei->i_block_reservation_lock); 374 375 /* Update quota subsystem for data blocks */ 376 if (quota_claim) 377 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 378 else { 379 /* 380 * We did fallocate with an offset that is already delayed 381 * allocated. So on delayed allocated writeback we should 382 * not re-claim the quota for fallocated blocks. 383 */ 384 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 385 } 386 387 /* 388 * If we have done all the pending block allocations and if 389 * there aren't any writers on the inode, we can discard the 390 * inode's preallocations. 391 */ 392 if ((ei->i_reserved_data_blocks == 0) && 393 !inode_is_open_for_write(inode)) 394 ext4_discard_preallocations(inode, 0); 395 } 396 397 static int __check_block_validity(struct inode *inode, const char *func, 398 unsigned int line, 399 struct ext4_map_blocks *map) 400 { 401 if (ext4_has_feature_journal(inode->i_sb) && 402 (inode->i_ino == 403 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 404 return 0; 405 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 406 ext4_error_inode(inode, func, line, map->m_pblk, 407 "lblock %lu mapped to illegal pblock %llu " 408 "(length %d)", (unsigned long) map->m_lblk, 409 map->m_pblk, map->m_len); 410 return -EFSCORRUPTED; 411 } 412 return 0; 413 } 414 415 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 416 ext4_lblk_t len) 417 { 418 int ret; 419 420 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 421 return fscrypt_zeroout_range(inode, lblk, pblk, len); 422 423 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 424 if (ret > 0) 425 ret = 0; 426 427 return ret; 428 } 429 430 #define check_block_validity(inode, map) \ 431 __check_block_validity((inode), __func__, __LINE__, (map)) 432 433 #ifdef ES_AGGRESSIVE_TEST 434 static void ext4_map_blocks_es_recheck(handle_t *handle, 435 struct inode *inode, 436 struct ext4_map_blocks *es_map, 437 struct ext4_map_blocks *map, 438 int flags) 439 { 440 int retval; 441 442 map->m_flags = 0; 443 /* 444 * There is a race window that the result is not the same. 445 * e.g. xfstests #223 when dioread_nolock enables. The reason 446 * is that we lookup a block mapping in extent status tree with 447 * out taking i_data_sem. So at the time the unwritten extent 448 * could be converted. 449 */ 450 down_read(&EXT4_I(inode)->i_data_sem); 451 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 452 retval = ext4_ext_map_blocks(handle, inode, map, 0); 453 } else { 454 retval = ext4_ind_map_blocks(handle, inode, map, 0); 455 } 456 up_read((&EXT4_I(inode)->i_data_sem)); 457 458 /* 459 * We don't check m_len because extent will be collpased in status 460 * tree. So the m_len might not equal. 461 */ 462 if (es_map->m_lblk != map->m_lblk || 463 es_map->m_flags != map->m_flags || 464 es_map->m_pblk != map->m_pblk) { 465 printk("ES cache assertion failed for inode: %lu " 466 "es_cached ex [%d/%d/%llu/%x] != " 467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 468 inode->i_ino, es_map->m_lblk, es_map->m_len, 469 es_map->m_pblk, es_map->m_flags, map->m_lblk, 470 map->m_len, map->m_pblk, map->m_flags, 471 retval, flags); 472 } 473 } 474 #endif /* ES_AGGRESSIVE_TEST */ 475 476 /* 477 * The ext4_map_blocks() function tries to look up the requested blocks, 478 * and returns if the blocks are already mapped. 479 * 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 481 * and store the allocated blocks in the result buffer head and mark it 482 * mapped. 483 * 484 * If file type is extents based, it will call ext4_ext_map_blocks(), 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 486 * based files 487 * 488 * On success, it returns the number of blocks being mapped or allocated. if 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 491 * 492 * It returns 0 if plain look up failed (blocks have not been allocated), in 493 * that case, @map is returned as unmapped but we still do fill map->m_len to 494 * indicate the length of a hole starting at map->m_lblk. 495 * 496 * It returns the error in case of allocation failure. 497 */ 498 int ext4_map_blocks(handle_t *handle, struct inode *inode, 499 struct ext4_map_blocks *map, int flags) 500 { 501 struct extent_status es; 502 int retval; 503 int ret = 0; 504 #ifdef ES_AGGRESSIVE_TEST 505 struct ext4_map_blocks orig_map; 506 507 memcpy(&orig_map, map, sizeof(*map)); 508 #endif 509 510 map->m_flags = 0; 511 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 512 flags, map->m_len, (unsigned long) map->m_lblk); 513 514 /* 515 * ext4_map_blocks returns an int, and m_len is an unsigned int 516 */ 517 if (unlikely(map->m_len > INT_MAX)) 518 map->m_len = INT_MAX; 519 520 /* We can handle the block number less than EXT_MAX_BLOCKS */ 521 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 522 return -EFSCORRUPTED; 523 524 /* Lookup extent status tree firstly */ 525 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 526 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 528 map->m_pblk = ext4_es_pblock(&es) + 529 map->m_lblk - es.es_lblk; 530 map->m_flags |= ext4_es_is_written(&es) ? 531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 532 retval = es.es_len - (map->m_lblk - es.es_lblk); 533 if (retval > map->m_len) 534 retval = map->m_len; 535 map->m_len = retval; 536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 537 map->m_pblk = 0; 538 retval = es.es_len - (map->m_lblk - es.es_lblk); 539 if (retval > map->m_len) 540 retval = map->m_len; 541 map->m_len = retval; 542 retval = 0; 543 } else { 544 BUG(); 545 } 546 547 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 548 return retval; 549 #ifdef ES_AGGRESSIVE_TEST 550 ext4_map_blocks_es_recheck(handle, inode, map, 551 &orig_map, flags); 552 #endif 553 goto found; 554 } 555 /* 556 * In the query cache no-wait mode, nothing we can do more if we 557 * cannot find extent in the cache. 558 */ 559 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 560 return 0; 561 562 /* 563 * Try to see if we can get the block without requesting a new 564 * file system block. 565 */ 566 down_read(&EXT4_I(inode)->i_data_sem); 567 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 568 retval = ext4_ext_map_blocks(handle, inode, map, 0); 569 } else { 570 retval = ext4_ind_map_blocks(handle, inode, map, 0); 571 } 572 if (retval > 0) { 573 unsigned int status; 574 575 if (unlikely(retval != map->m_len)) { 576 ext4_warning(inode->i_sb, 577 "ES len assertion failed for inode " 578 "%lu: retval %d != map->m_len %d", 579 inode->i_ino, retval, map->m_len); 580 WARN_ON(1); 581 } 582 583 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 584 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 585 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 586 !(status & EXTENT_STATUS_WRITTEN) && 587 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 588 map->m_lblk + map->m_len - 1)) 589 status |= EXTENT_STATUS_DELAYED; 590 ret = ext4_es_insert_extent(inode, map->m_lblk, 591 map->m_len, map->m_pblk, status); 592 if (ret < 0) 593 retval = ret; 594 } 595 up_read((&EXT4_I(inode)->i_data_sem)); 596 597 found: 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 599 ret = check_block_validity(inode, map); 600 if (ret != 0) 601 return ret; 602 } 603 604 /* If it is only a block(s) look up */ 605 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 606 return retval; 607 608 /* 609 * Returns if the blocks have already allocated 610 * 611 * Note that if blocks have been preallocated 612 * ext4_ext_get_block() returns the create = 0 613 * with buffer head unmapped. 614 */ 615 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 616 /* 617 * If we need to convert extent to unwritten 618 * we continue and do the actual work in 619 * ext4_ext_map_blocks() 620 */ 621 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 622 return retval; 623 624 /* 625 * Here we clear m_flags because after allocating an new extent, 626 * it will be set again. 627 */ 628 map->m_flags &= ~EXT4_MAP_FLAGS; 629 630 /* 631 * New blocks allocate and/or writing to unwritten extent 632 * will possibly result in updating i_data, so we take 633 * the write lock of i_data_sem, and call get_block() 634 * with create == 1 flag. 635 */ 636 down_write(&EXT4_I(inode)->i_data_sem); 637 638 /* 639 * We need to check for EXT4 here because migrate 640 * could have changed the inode type in between 641 */ 642 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 643 retval = ext4_ext_map_blocks(handle, inode, map, flags); 644 } else { 645 retval = ext4_ind_map_blocks(handle, inode, map, flags); 646 647 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 648 /* 649 * We allocated new blocks which will result in 650 * i_data's format changing. Force the migrate 651 * to fail by clearing migrate flags 652 */ 653 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 654 } 655 656 /* 657 * Update reserved blocks/metadata blocks after successful 658 * block allocation which had been deferred till now. We don't 659 * support fallocate for non extent files. So we can update 660 * reserve space here. 661 */ 662 if ((retval > 0) && 663 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 664 ext4_da_update_reserve_space(inode, retval, 1); 665 } 666 667 if (retval > 0) { 668 unsigned int status; 669 670 if (unlikely(retval != map->m_len)) { 671 ext4_warning(inode->i_sb, 672 "ES len assertion failed for inode " 673 "%lu: retval %d != map->m_len %d", 674 inode->i_ino, retval, map->m_len); 675 WARN_ON(1); 676 } 677 678 /* 679 * We have to zeroout blocks before inserting them into extent 680 * status tree. Otherwise someone could look them up there and 681 * use them before they are really zeroed. We also have to 682 * unmap metadata before zeroing as otherwise writeback can 683 * overwrite zeros with stale data from block device. 684 */ 685 if (flags & EXT4_GET_BLOCKS_ZERO && 686 map->m_flags & EXT4_MAP_MAPPED && 687 map->m_flags & EXT4_MAP_NEW) { 688 ret = ext4_issue_zeroout(inode, map->m_lblk, 689 map->m_pblk, map->m_len); 690 if (ret) { 691 retval = ret; 692 goto out_sem; 693 } 694 } 695 696 /* 697 * If the extent has been zeroed out, we don't need to update 698 * extent status tree. 699 */ 700 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 701 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 702 if (ext4_es_is_written(&es)) 703 goto out_sem; 704 } 705 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 706 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 707 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 708 !(status & EXTENT_STATUS_WRITTEN) && 709 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 710 map->m_lblk + map->m_len - 1)) 711 status |= EXTENT_STATUS_DELAYED; 712 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 713 map->m_pblk, status); 714 if (ret < 0) { 715 retval = ret; 716 goto out_sem; 717 } 718 } 719 720 out_sem: 721 up_write((&EXT4_I(inode)->i_data_sem)); 722 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 723 ret = check_block_validity(inode, map); 724 if (ret != 0) 725 return ret; 726 727 /* 728 * Inodes with freshly allocated blocks where contents will be 729 * visible after transaction commit must be on transaction's 730 * ordered data list. 731 */ 732 if (map->m_flags & EXT4_MAP_NEW && 733 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 734 !(flags & EXT4_GET_BLOCKS_ZERO) && 735 !ext4_is_quota_file(inode) && 736 ext4_should_order_data(inode)) { 737 loff_t start_byte = 738 (loff_t)map->m_lblk << inode->i_blkbits; 739 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 740 741 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 742 ret = ext4_jbd2_inode_add_wait(handle, inode, 743 start_byte, length); 744 else 745 ret = ext4_jbd2_inode_add_write(handle, inode, 746 start_byte, length); 747 if (ret) 748 return ret; 749 } 750 } 751 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 752 map->m_flags & EXT4_MAP_MAPPED)) 753 ext4_fc_track_range(handle, inode, map->m_lblk, 754 map->m_lblk + map->m_len - 1); 755 if (retval < 0) 756 ext_debug(inode, "failed with err %d\n", retval); 757 return retval; 758 } 759 760 /* 761 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 762 * we have to be careful as someone else may be manipulating b_state as well. 763 */ 764 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 765 { 766 unsigned long old_state; 767 unsigned long new_state; 768 769 flags &= EXT4_MAP_FLAGS; 770 771 /* Dummy buffer_head? Set non-atomically. */ 772 if (!bh->b_page) { 773 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 774 return; 775 } 776 /* 777 * Someone else may be modifying b_state. Be careful! This is ugly but 778 * once we get rid of using bh as a container for mapping information 779 * to pass to / from get_block functions, this can go away. 780 */ 781 do { 782 old_state = READ_ONCE(bh->b_state); 783 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 784 } while (unlikely( 785 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 786 } 787 788 static int _ext4_get_block(struct inode *inode, sector_t iblock, 789 struct buffer_head *bh, int flags) 790 { 791 struct ext4_map_blocks map; 792 int ret = 0; 793 794 if (ext4_has_inline_data(inode)) 795 return -ERANGE; 796 797 map.m_lblk = iblock; 798 map.m_len = bh->b_size >> inode->i_blkbits; 799 800 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 801 flags); 802 if (ret > 0) { 803 map_bh(bh, inode->i_sb, map.m_pblk); 804 ext4_update_bh_state(bh, map.m_flags); 805 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 806 ret = 0; 807 } else if (ret == 0) { 808 /* hole case, need to fill in bh->b_size */ 809 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 810 } 811 return ret; 812 } 813 814 int ext4_get_block(struct inode *inode, sector_t iblock, 815 struct buffer_head *bh, int create) 816 { 817 return _ext4_get_block(inode, iblock, bh, 818 create ? EXT4_GET_BLOCKS_CREATE : 0); 819 } 820 821 /* 822 * Get block function used when preparing for buffered write if we require 823 * creating an unwritten extent if blocks haven't been allocated. The extent 824 * will be converted to written after the IO is complete. 825 */ 826 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 827 struct buffer_head *bh_result, int create) 828 { 829 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 830 inode->i_ino, create); 831 return _ext4_get_block(inode, iblock, bh_result, 832 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 833 } 834 835 /* Maximum number of blocks we map for direct IO at once. */ 836 #define DIO_MAX_BLOCKS 4096 837 838 /* 839 * `handle' can be NULL if create is zero 840 */ 841 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 842 ext4_lblk_t block, int map_flags) 843 { 844 struct ext4_map_blocks map; 845 struct buffer_head *bh; 846 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 847 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 848 int err; 849 850 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 851 || handle != NULL || create == 0); 852 ASSERT(create == 0 || !nowait); 853 854 map.m_lblk = block; 855 map.m_len = 1; 856 err = ext4_map_blocks(handle, inode, &map, map_flags); 857 858 if (err == 0) 859 return create ? ERR_PTR(-ENOSPC) : NULL; 860 if (err < 0) 861 return ERR_PTR(err); 862 863 if (nowait) 864 return sb_find_get_block(inode->i_sb, map.m_pblk); 865 866 bh = sb_getblk(inode->i_sb, map.m_pblk); 867 if (unlikely(!bh)) 868 return ERR_PTR(-ENOMEM); 869 if (map.m_flags & EXT4_MAP_NEW) { 870 ASSERT(create != 0); 871 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 872 || (handle != NULL)); 873 874 /* 875 * Now that we do not always journal data, we should 876 * keep in mind whether this should always journal the 877 * new buffer as metadata. For now, regular file 878 * writes use ext4_get_block instead, so it's not a 879 * problem. 880 */ 881 lock_buffer(bh); 882 BUFFER_TRACE(bh, "call get_create_access"); 883 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 884 EXT4_JTR_NONE); 885 if (unlikely(err)) { 886 unlock_buffer(bh); 887 goto errout; 888 } 889 if (!buffer_uptodate(bh)) { 890 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 891 set_buffer_uptodate(bh); 892 } 893 unlock_buffer(bh); 894 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 895 err = ext4_handle_dirty_metadata(handle, inode, bh); 896 if (unlikely(err)) 897 goto errout; 898 } else 899 BUFFER_TRACE(bh, "not a new buffer"); 900 return bh; 901 errout: 902 brelse(bh); 903 return ERR_PTR(err); 904 } 905 906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 907 ext4_lblk_t block, int map_flags) 908 { 909 struct buffer_head *bh; 910 int ret; 911 912 bh = ext4_getblk(handle, inode, block, map_flags); 913 if (IS_ERR(bh)) 914 return bh; 915 if (!bh || ext4_buffer_uptodate(bh)) 916 return bh; 917 918 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 919 if (ret) { 920 put_bh(bh); 921 return ERR_PTR(ret); 922 } 923 return bh; 924 } 925 926 /* Read a contiguous batch of blocks. */ 927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 928 bool wait, struct buffer_head **bhs) 929 { 930 int i, err; 931 932 for (i = 0; i < bh_count; i++) { 933 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 934 if (IS_ERR(bhs[i])) { 935 err = PTR_ERR(bhs[i]); 936 bh_count = i; 937 goto out_brelse; 938 } 939 } 940 941 for (i = 0; i < bh_count; i++) 942 /* Note that NULL bhs[i] is valid because of holes. */ 943 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 944 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 945 946 if (!wait) 947 return 0; 948 949 for (i = 0; i < bh_count; i++) 950 if (bhs[i]) 951 wait_on_buffer(bhs[i]); 952 953 for (i = 0; i < bh_count; i++) { 954 if (bhs[i] && !buffer_uptodate(bhs[i])) { 955 err = -EIO; 956 goto out_brelse; 957 } 958 } 959 return 0; 960 961 out_brelse: 962 for (i = 0; i < bh_count; i++) { 963 brelse(bhs[i]); 964 bhs[i] = NULL; 965 } 966 return err; 967 } 968 969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 970 struct buffer_head *head, 971 unsigned from, 972 unsigned to, 973 int *partial, 974 int (*fn)(handle_t *handle, struct inode *inode, 975 struct buffer_head *bh)) 976 { 977 struct buffer_head *bh; 978 unsigned block_start, block_end; 979 unsigned blocksize = head->b_size; 980 int err, ret = 0; 981 struct buffer_head *next; 982 983 for (bh = head, block_start = 0; 984 ret == 0 && (bh != head || !block_start); 985 block_start = block_end, bh = next) { 986 next = bh->b_this_page; 987 block_end = block_start + blocksize; 988 if (block_end <= from || block_start >= to) { 989 if (partial && !buffer_uptodate(bh)) 990 *partial = 1; 991 continue; 992 } 993 err = (*fn)(handle, inode, bh); 994 if (!ret) 995 ret = err; 996 } 997 return ret; 998 } 999 1000 /* 1001 * To preserve ordering, it is essential that the hole instantiation and 1002 * the data write be encapsulated in a single transaction. We cannot 1003 * close off a transaction and start a new one between the ext4_get_block() 1004 * and the commit_write(). So doing the jbd2_journal_start at the start of 1005 * prepare_write() is the right place. 1006 * 1007 * Also, this function can nest inside ext4_writepage(). In that case, we 1008 * *know* that ext4_writepage() has generated enough buffer credits to do the 1009 * whole page. So we won't block on the journal in that case, which is good, 1010 * because the caller may be PF_MEMALLOC. 1011 * 1012 * By accident, ext4 can be reentered when a transaction is open via 1013 * quota file writes. If we were to commit the transaction while thus 1014 * reentered, there can be a deadlock - we would be holding a quota 1015 * lock, and the commit would never complete if another thread had a 1016 * transaction open and was blocking on the quota lock - a ranking 1017 * violation. 1018 * 1019 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1020 * will _not_ run commit under these circumstances because handle->h_ref 1021 * is elevated. We'll still have enough credits for the tiny quotafile 1022 * write. 1023 */ 1024 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1025 struct buffer_head *bh) 1026 { 1027 int dirty = buffer_dirty(bh); 1028 int ret; 1029 1030 if (!buffer_mapped(bh) || buffer_freed(bh)) 1031 return 0; 1032 /* 1033 * __block_write_begin() could have dirtied some buffers. Clean 1034 * the dirty bit as jbd2_journal_get_write_access() could complain 1035 * otherwise about fs integrity issues. Setting of the dirty bit 1036 * by __block_write_begin() isn't a real problem here as we clear 1037 * the bit before releasing a page lock and thus writeback cannot 1038 * ever write the buffer. 1039 */ 1040 if (dirty) 1041 clear_buffer_dirty(bh); 1042 BUFFER_TRACE(bh, "get write access"); 1043 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1044 EXT4_JTR_NONE); 1045 if (!ret && dirty) 1046 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1047 return ret; 1048 } 1049 1050 #ifdef CONFIG_FS_ENCRYPTION 1051 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1052 get_block_t *get_block) 1053 { 1054 unsigned from = pos & (PAGE_SIZE - 1); 1055 unsigned to = from + len; 1056 struct inode *inode = page->mapping->host; 1057 unsigned block_start, block_end; 1058 sector_t block; 1059 int err = 0; 1060 unsigned blocksize = inode->i_sb->s_blocksize; 1061 unsigned bbits; 1062 struct buffer_head *bh, *head, *wait[2]; 1063 int nr_wait = 0; 1064 int i; 1065 1066 BUG_ON(!PageLocked(page)); 1067 BUG_ON(from > PAGE_SIZE); 1068 BUG_ON(to > PAGE_SIZE); 1069 BUG_ON(from > to); 1070 1071 if (!page_has_buffers(page)) 1072 create_empty_buffers(page, blocksize, 0); 1073 head = page_buffers(page); 1074 bbits = ilog2(blocksize); 1075 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1076 1077 for (bh = head, block_start = 0; bh != head || !block_start; 1078 block++, block_start = block_end, bh = bh->b_this_page) { 1079 block_end = block_start + blocksize; 1080 if (block_end <= from || block_start >= to) { 1081 if (PageUptodate(page)) { 1082 set_buffer_uptodate(bh); 1083 } 1084 continue; 1085 } 1086 if (buffer_new(bh)) 1087 clear_buffer_new(bh); 1088 if (!buffer_mapped(bh)) { 1089 WARN_ON(bh->b_size != blocksize); 1090 err = get_block(inode, block, bh, 1); 1091 if (err) 1092 break; 1093 if (buffer_new(bh)) { 1094 if (PageUptodate(page)) { 1095 clear_buffer_new(bh); 1096 set_buffer_uptodate(bh); 1097 mark_buffer_dirty(bh); 1098 continue; 1099 } 1100 if (block_end > to || block_start < from) 1101 zero_user_segments(page, to, block_end, 1102 block_start, from); 1103 continue; 1104 } 1105 } 1106 if (PageUptodate(page)) { 1107 set_buffer_uptodate(bh); 1108 continue; 1109 } 1110 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1111 !buffer_unwritten(bh) && 1112 (block_start < from || block_end > to)) { 1113 ext4_read_bh_lock(bh, 0, false); 1114 wait[nr_wait++] = bh; 1115 } 1116 } 1117 /* 1118 * If we issued read requests, let them complete. 1119 */ 1120 for (i = 0; i < nr_wait; i++) { 1121 wait_on_buffer(wait[i]); 1122 if (!buffer_uptodate(wait[i])) 1123 err = -EIO; 1124 } 1125 if (unlikely(err)) { 1126 page_zero_new_buffers(page, from, to); 1127 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1128 for (i = 0; i < nr_wait; i++) { 1129 int err2; 1130 1131 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1132 bh_offset(wait[i])); 1133 if (err2) { 1134 clear_buffer_uptodate(wait[i]); 1135 err = err2; 1136 } 1137 } 1138 } 1139 1140 return err; 1141 } 1142 #endif 1143 1144 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1145 loff_t pos, unsigned len, 1146 struct page **pagep, void **fsdata) 1147 { 1148 struct inode *inode = mapping->host; 1149 int ret, needed_blocks; 1150 handle_t *handle; 1151 int retries = 0; 1152 struct page *page; 1153 pgoff_t index; 1154 unsigned from, to; 1155 1156 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1157 return -EIO; 1158 1159 trace_ext4_write_begin(inode, pos, len); 1160 /* 1161 * Reserve one block more for addition to orphan list in case 1162 * we allocate blocks but write fails for some reason 1163 */ 1164 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1165 index = pos >> PAGE_SHIFT; 1166 from = pos & (PAGE_SIZE - 1); 1167 to = from + len; 1168 1169 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1170 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1171 pagep); 1172 if (ret < 0) 1173 return ret; 1174 if (ret == 1) 1175 return 0; 1176 } 1177 1178 /* 1179 * grab_cache_page_write_begin() can take a long time if the 1180 * system is thrashing due to memory pressure, or if the page 1181 * is being written back. So grab it first before we start 1182 * the transaction handle. This also allows us to allocate 1183 * the page (if needed) without using GFP_NOFS. 1184 */ 1185 retry_grab: 1186 page = grab_cache_page_write_begin(mapping, index); 1187 if (!page) 1188 return -ENOMEM; 1189 unlock_page(page); 1190 1191 retry_journal: 1192 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1193 if (IS_ERR(handle)) { 1194 put_page(page); 1195 return PTR_ERR(handle); 1196 } 1197 1198 lock_page(page); 1199 if (page->mapping != mapping) { 1200 /* The page got truncated from under us */ 1201 unlock_page(page); 1202 put_page(page); 1203 ext4_journal_stop(handle); 1204 goto retry_grab; 1205 } 1206 /* In case writeback began while the page was unlocked */ 1207 wait_for_stable_page(page); 1208 1209 #ifdef CONFIG_FS_ENCRYPTION 1210 if (ext4_should_dioread_nolock(inode)) 1211 ret = ext4_block_write_begin(page, pos, len, 1212 ext4_get_block_unwritten); 1213 else 1214 ret = ext4_block_write_begin(page, pos, len, 1215 ext4_get_block); 1216 #else 1217 if (ext4_should_dioread_nolock(inode)) 1218 ret = __block_write_begin(page, pos, len, 1219 ext4_get_block_unwritten); 1220 else 1221 ret = __block_write_begin(page, pos, len, ext4_get_block); 1222 #endif 1223 if (!ret && ext4_should_journal_data(inode)) { 1224 ret = ext4_walk_page_buffers(handle, inode, 1225 page_buffers(page), from, to, NULL, 1226 do_journal_get_write_access); 1227 } 1228 1229 if (ret) { 1230 bool extended = (pos + len > inode->i_size) && 1231 !ext4_verity_in_progress(inode); 1232 1233 unlock_page(page); 1234 /* 1235 * __block_write_begin may have instantiated a few blocks 1236 * outside i_size. Trim these off again. Don't need 1237 * i_size_read because we hold i_rwsem. 1238 * 1239 * Add inode to orphan list in case we crash before 1240 * truncate finishes 1241 */ 1242 if (extended && ext4_can_truncate(inode)) 1243 ext4_orphan_add(handle, inode); 1244 1245 ext4_journal_stop(handle); 1246 if (extended) { 1247 ext4_truncate_failed_write(inode); 1248 /* 1249 * If truncate failed early the inode might 1250 * still be on the orphan list; we need to 1251 * make sure the inode is removed from the 1252 * orphan list in that case. 1253 */ 1254 if (inode->i_nlink) 1255 ext4_orphan_del(NULL, inode); 1256 } 1257 1258 if (ret == -ENOSPC && 1259 ext4_should_retry_alloc(inode->i_sb, &retries)) 1260 goto retry_journal; 1261 put_page(page); 1262 return ret; 1263 } 1264 *pagep = page; 1265 return ret; 1266 } 1267 1268 /* For write_end() in data=journal mode */ 1269 static int write_end_fn(handle_t *handle, struct inode *inode, 1270 struct buffer_head *bh) 1271 { 1272 int ret; 1273 if (!buffer_mapped(bh) || buffer_freed(bh)) 1274 return 0; 1275 set_buffer_uptodate(bh); 1276 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1277 clear_buffer_meta(bh); 1278 clear_buffer_prio(bh); 1279 return ret; 1280 } 1281 1282 /* 1283 * We need to pick up the new inode size which generic_commit_write gave us 1284 * `file' can be NULL - eg, when called from page_symlink(). 1285 * 1286 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1287 * buffers are managed internally. 1288 */ 1289 static int ext4_write_end(struct file *file, 1290 struct address_space *mapping, 1291 loff_t pos, unsigned len, unsigned copied, 1292 struct page *page, void *fsdata) 1293 { 1294 handle_t *handle = ext4_journal_current_handle(); 1295 struct inode *inode = mapping->host; 1296 loff_t old_size = inode->i_size; 1297 int ret = 0, ret2; 1298 int i_size_changed = 0; 1299 bool verity = ext4_verity_in_progress(inode); 1300 1301 trace_ext4_write_end(inode, pos, len, copied); 1302 1303 if (ext4_has_inline_data(inode)) 1304 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1305 1306 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1307 /* 1308 * it's important to update i_size while still holding page lock: 1309 * page writeout could otherwise come in and zero beyond i_size. 1310 * 1311 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1312 * blocks are being written past EOF, so skip the i_size update. 1313 */ 1314 if (!verity) 1315 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1316 unlock_page(page); 1317 put_page(page); 1318 1319 if (old_size < pos && !verity) 1320 pagecache_isize_extended(inode, old_size, pos); 1321 /* 1322 * Don't mark the inode dirty under page lock. First, it unnecessarily 1323 * makes the holding time of page lock longer. Second, it forces lock 1324 * ordering of page lock and transaction start for journaling 1325 * filesystems. 1326 */ 1327 if (i_size_changed) 1328 ret = ext4_mark_inode_dirty(handle, inode); 1329 1330 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1331 /* if we have allocated more blocks and copied 1332 * less. We will have blocks allocated outside 1333 * inode->i_size. So truncate them 1334 */ 1335 ext4_orphan_add(handle, inode); 1336 1337 ret2 = ext4_journal_stop(handle); 1338 if (!ret) 1339 ret = ret2; 1340 1341 if (pos + len > inode->i_size && !verity) { 1342 ext4_truncate_failed_write(inode); 1343 /* 1344 * If truncate failed early the inode might still be 1345 * on the orphan list; we need to make sure the inode 1346 * is removed from the orphan list in that case. 1347 */ 1348 if (inode->i_nlink) 1349 ext4_orphan_del(NULL, inode); 1350 } 1351 1352 return ret ? ret : copied; 1353 } 1354 1355 /* 1356 * This is a private version of page_zero_new_buffers() which doesn't 1357 * set the buffer to be dirty, since in data=journalled mode we need 1358 * to call ext4_handle_dirty_metadata() instead. 1359 */ 1360 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1361 struct inode *inode, 1362 struct page *page, 1363 unsigned from, unsigned to) 1364 { 1365 unsigned int block_start = 0, block_end; 1366 struct buffer_head *head, *bh; 1367 1368 bh = head = page_buffers(page); 1369 do { 1370 block_end = block_start + bh->b_size; 1371 if (buffer_new(bh)) { 1372 if (block_end > from && block_start < to) { 1373 if (!PageUptodate(page)) { 1374 unsigned start, size; 1375 1376 start = max(from, block_start); 1377 size = min(to, block_end) - start; 1378 1379 zero_user(page, start, size); 1380 write_end_fn(handle, inode, bh); 1381 } 1382 clear_buffer_new(bh); 1383 } 1384 } 1385 block_start = block_end; 1386 bh = bh->b_this_page; 1387 } while (bh != head); 1388 } 1389 1390 static int ext4_journalled_write_end(struct file *file, 1391 struct address_space *mapping, 1392 loff_t pos, unsigned len, unsigned copied, 1393 struct page *page, void *fsdata) 1394 { 1395 handle_t *handle = ext4_journal_current_handle(); 1396 struct inode *inode = mapping->host; 1397 loff_t old_size = inode->i_size; 1398 int ret = 0, ret2; 1399 int partial = 0; 1400 unsigned from, to; 1401 int size_changed = 0; 1402 bool verity = ext4_verity_in_progress(inode); 1403 1404 trace_ext4_journalled_write_end(inode, pos, len, copied); 1405 from = pos & (PAGE_SIZE - 1); 1406 to = from + len; 1407 1408 BUG_ON(!ext4_handle_valid(handle)); 1409 1410 if (ext4_has_inline_data(inode)) 1411 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1412 1413 if (unlikely(copied < len) && !PageUptodate(page)) { 1414 copied = 0; 1415 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1416 } else { 1417 if (unlikely(copied < len)) 1418 ext4_journalled_zero_new_buffers(handle, inode, page, 1419 from + copied, to); 1420 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1421 from, from + copied, &partial, 1422 write_end_fn); 1423 if (!partial) 1424 SetPageUptodate(page); 1425 } 1426 if (!verity) 1427 size_changed = ext4_update_inode_size(inode, pos + copied); 1428 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1429 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1430 unlock_page(page); 1431 put_page(page); 1432 1433 if (old_size < pos && !verity) 1434 pagecache_isize_extended(inode, old_size, pos); 1435 1436 if (size_changed) { 1437 ret2 = ext4_mark_inode_dirty(handle, inode); 1438 if (!ret) 1439 ret = ret2; 1440 } 1441 1442 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1443 /* if we have allocated more blocks and copied 1444 * less. We will have blocks allocated outside 1445 * inode->i_size. So truncate them 1446 */ 1447 ext4_orphan_add(handle, inode); 1448 1449 ret2 = ext4_journal_stop(handle); 1450 if (!ret) 1451 ret = ret2; 1452 if (pos + len > inode->i_size && !verity) { 1453 ext4_truncate_failed_write(inode); 1454 /* 1455 * If truncate failed early the inode might still be 1456 * on the orphan list; we need to make sure the inode 1457 * is removed from the orphan list in that case. 1458 */ 1459 if (inode->i_nlink) 1460 ext4_orphan_del(NULL, inode); 1461 } 1462 1463 return ret ? ret : copied; 1464 } 1465 1466 /* 1467 * Reserve space for a single cluster 1468 */ 1469 static int ext4_da_reserve_space(struct inode *inode) 1470 { 1471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1472 struct ext4_inode_info *ei = EXT4_I(inode); 1473 int ret; 1474 1475 /* 1476 * We will charge metadata quota at writeout time; this saves 1477 * us from metadata over-estimation, though we may go over by 1478 * a small amount in the end. Here we just reserve for data. 1479 */ 1480 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1481 if (ret) 1482 return ret; 1483 1484 spin_lock(&ei->i_block_reservation_lock); 1485 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1486 spin_unlock(&ei->i_block_reservation_lock); 1487 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1488 return -ENOSPC; 1489 } 1490 ei->i_reserved_data_blocks++; 1491 trace_ext4_da_reserve_space(inode); 1492 spin_unlock(&ei->i_block_reservation_lock); 1493 1494 return 0; /* success */ 1495 } 1496 1497 void ext4_da_release_space(struct inode *inode, int to_free) 1498 { 1499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1500 struct ext4_inode_info *ei = EXT4_I(inode); 1501 1502 if (!to_free) 1503 return; /* Nothing to release, exit */ 1504 1505 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1506 1507 trace_ext4_da_release_space(inode, to_free); 1508 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1509 /* 1510 * if there aren't enough reserved blocks, then the 1511 * counter is messed up somewhere. Since this 1512 * function is called from invalidate page, it's 1513 * harmless to return without any action. 1514 */ 1515 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1516 "ino %lu, to_free %d with only %d reserved " 1517 "data blocks", inode->i_ino, to_free, 1518 ei->i_reserved_data_blocks); 1519 WARN_ON(1); 1520 to_free = ei->i_reserved_data_blocks; 1521 } 1522 ei->i_reserved_data_blocks -= to_free; 1523 1524 /* update fs dirty data blocks counter */ 1525 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1526 1527 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1528 1529 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1530 } 1531 1532 /* 1533 * Delayed allocation stuff 1534 */ 1535 1536 struct mpage_da_data { 1537 struct inode *inode; 1538 struct writeback_control *wbc; 1539 1540 pgoff_t first_page; /* The first page to write */ 1541 pgoff_t next_page; /* Current page to examine */ 1542 pgoff_t last_page; /* Last page to examine */ 1543 /* 1544 * Extent to map - this can be after first_page because that can be 1545 * fully mapped. We somewhat abuse m_flags to store whether the extent 1546 * is delalloc or unwritten. 1547 */ 1548 struct ext4_map_blocks map; 1549 struct ext4_io_submit io_submit; /* IO submission data */ 1550 unsigned int do_map:1; 1551 unsigned int scanned_until_end:1; 1552 }; 1553 1554 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1555 bool invalidate) 1556 { 1557 int nr_pages, i; 1558 pgoff_t index, end; 1559 struct pagevec pvec; 1560 struct inode *inode = mpd->inode; 1561 struct address_space *mapping = inode->i_mapping; 1562 1563 /* This is necessary when next_page == 0. */ 1564 if (mpd->first_page >= mpd->next_page) 1565 return; 1566 1567 mpd->scanned_until_end = 0; 1568 index = mpd->first_page; 1569 end = mpd->next_page - 1; 1570 if (invalidate) { 1571 ext4_lblk_t start, last; 1572 start = index << (PAGE_SHIFT - inode->i_blkbits); 1573 last = end << (PAGE_SHIFT - inode->i_blkbits); 1574 1575 /* 1576 * avoid racing with extent status tree scans made by 1577 * ext4_insert_delayed_block() 1578 */ 1579 down_write(&EXT4_I(inode)->i_data_sem); 1580 ext4_es_remove_extent(inode, start, last - start + 1); 1581 up_write(&EXT4_I(inode)->i_data_sem); 1582 } 1583 1584 pagevec_init(&pvec); 1585 while (index <= end) { 1586 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1587 if (nr_pages == 0) 1588 break; 1589 for (i = 0; i < nr_pages; i++) { 1590 struct page *page = pvec.pages[i]; 1591 struct folio *folio = page_folio(page); 1592 1593 BUG_ON(!folio_test_locked(folio)); 1594 BUG_ON(folio_test_writeback(folio)); 1595 if (invalidate) { 1596 if (folio_mapped(folio)) 1597 folio_clear_dirty_for_io(folio); 1598 block_invalidate_folio(folio, 0, 1599 folio_size(folio)); 1600 folio_clear_uptodate(folio); 1601 } 1602 folio_unlock(folio); 1603 } 1604 pagevec_release(&pvec); 1605 } 1606 } 1607 1608 static void ext4_print_free_blocks(struct inode *inode) 1609 { 1610 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1611 struct super_block *sb = inode->i_sb; 1612 struct ext4_inode_info *ei = EXT4_I(inode); 1613 1614 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1615 EXT4_C2B(EXT4_SB(inode->i_sb), 1616 ext4_count_free_clusters(sb))); 1617 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1618 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1619 (long long) EXT4_C2B(EXT4_SB(sb), 1620 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1621 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1622 (long long) EXT4_C2B(EXT4_SB(sb), 1623 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1624 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1625 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1626 ei->i_reserved_data_blocks); 1627 return; 1628 } 1629 1630 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1631 struct buffer_head *bh) 1632 { 1633 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1634 } 1635 1636 /* 1637 * ext4_insert_delayed_block - adds a delayed block to the extents status 1638 * tree, incrementing the reserved cluster/block 1639 * count or making a pending reservation 1640 * where needed 1641 * 1642 * @inode - file containing the newly added block 1643 * @lblk - logical block to be added 1644 * 1645 * Returns 0 on success, negative error code on failure. 1646 */ 1647 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1648 { 1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1650 int ret; 1651 bool allocated = false; 1652 bool reserved = false; 1653 1654 /* 1655 * If the cluster containing lblk is shared with a delayed, 1656 * written, or unwritten extent in a bigalloc file system, it's 1657 * already been accounted for and does not need to be reserved. 1658 * A pending reservation must be made for the cluster if it's 1659 * shared with a written or unwritten extent and doesn't already 1660 * have one. Written and unwritten extents can be purged from the 1661 * extents status tree if the system is under memory pressure, so 1662 * it's necessary to examine the extent tree if a search of the 1663 * extents status tree doesn't get a match. 1664 */ 1665 if (sbi->s_cluster_ratio == 1) { 1666 ret = ext4_da_reserve_space(inode); 1667 if (ret != 0) /* ENOSPC */ 1668 goto errout; 1669 reserved = true; 1670 } else { /* bigalloc */ 1671 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1672 if (!ext4_es_scan_clu(inode, 1673 &ext4_es_is_mapped, lblk)) { 1674 ret = ext4_clu_mapped(inode, 1675 EXT4_B2C(sbi, lblk)); 1676 if (ret < 0) 1677 goto errout; 1678 if (ret == 0) { 1679 ret = ext4_da_reserve_space(inode); 1680 if (ret != 0) /* ENOSPC */ 1681 goto errout; 1682 reserved = true; 1683 } else { 1684 allocated = true; 1685 } 1686 } else { 1687 allocated = true; 1688 } 1689 } 1690 } 1691 1692 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1693 if (ret && reserved) 1694 ext4_da_release_space(inode, 1); 1695 1696 errout: 1697 return ret; 1698 } 1699 1700 /* 1701 * This function is grabs code from the very beginning of 1702 * ext4_map_blocks, but assumes that the caller is from delayed write 1703 * time. This function looks up the requested blocks and sets the 1704 * buffer delay bit under the protection of i_data_sem. 1705 */ 1706 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1707 struct ext4_map_blocks *map, 1708 struct buffer_head *bh) 1709 { 1710 struct extent_status es; 1711 int retval; 1712 sector_t invalid_block = ~((sector_t) 0xffff); 1713 #ifdef ES_AGGRESSIVE_TEST 1714 struct ext4_map_blocks orig_map; 1715 1716 memcpy(&orig_map, map, sizeof(*map)); 1717 #endif 1718 1719 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1720 invalid_block = ~0; 1721 1722 map->m_flags = 0; 1723 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1724 (unsigned long) map->m_lblk); 1725 1726 /* Lookup extent status tree firstly */ 1727 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1728 if (ext4_es_is_hole(&es)) { 1729 retval = 0; 1730 down_read(&EXT4_I(inode)->i_data_sem); 1731 goto add_delayed; 1732 } 1733 1734 /* 1735 * Delayed extent could be allocated by fallocate. 1736 * So we need to check it. 1737 */ 1738 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1739 map_bh(bh, inode->i_sb, invalid_block); 1740 set_buffer_new(bh); 1741 set_buffer_delay(bh); 1742 return 0; 1743 } 1744 1745 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1746 retval = es.es_len - (iblock - es.es_lblk); 1747 if (retval > map->m_len) 1748 retval = map->m_len; 1749 map->m_len = retval; 1750 if (ext4_es_is_written(&es)) 1751 map->m_flags |= EXT4_MAP_MAPPED; 1752 else if (ext4_es_is_unwritten(&es)) 1753 map->m_flags |= EXT4_MAP_UNWRITTEN; 1754 else 1755 BUG(); 1756 1757 #ifdef ES_AGGRESSIVE_TEST 1758 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1759 #endif 1760 return retval; 1761 } 1762 1763 /* 1764 * Try to see if we can get the block without requesting a new 1765 * file system block. 1766 */ 1767 down_read(&EXT4_I(inode)->i_data_sem); 1768 if (ext4_has_inline_data(inode)) 1769 retval = 0; 1770 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1771 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1772 else 1773 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1774 1775 add_delayed: 1776 if (retval == 0) { 1777 int ret; 1778 1779 /* 1780 * XXX: __block_prepare_write() unmaps passed block, 1781 * is it OK? 1782 */ 1783 1784 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1785 if (ret != 0) { 1786 retval = ret; 1787 goto out_unlock; 1788 } 1789 1790 map_bh(bh, inode->i_sb, invalid_block); 1791 set_buffer_new(bh); 1792 set_buffer_delay(bh); 1793 } else if (retval > 0) { 1794 int ret; 1795 unsigned int status; 1796 1797 if (unlikely(retval != map->m_len)) { 1798 ext4_warning(inode->i_sb, 1799 "ES len assertion failed for inode " 1800 "%lu: retval %d != map->m_len %d", 1801 inode->i_ino, retval, map->m_len); 1802 WARN_ON(1); 1803 } 1804 1805 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1806 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1807 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1808 map->m_pblk, status); 1809 if (ret != 0) 1810 retval = ret; 1811 } 1812 1813 out_unlock: 1814 up_read((&EXT4_I(inode)->i_data_sem)); 1815 1816 return retval; 1817 } 1818 1819 /* 1820 * This is a special get_block_t callback which is used by 1821 * ext4_da_write_begin(). It will either return mapped block or 1822 * reserve space for a single block. 1823 * 1824 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1825 * We also have b_blocknr = -1 and b_bdev initialized properly 1826 * 1827 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1828 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1829 * initialized properly. 1830 */ 1831 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1832 struct buffer_head *bh, int create) 1833 { 1834 struct ext4_map_blocks map; 1835 int ret = 0; 1836 1837 BUG_ON(create == 0); 1838 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1839 1840 map.m_lblk = iblock; 1841 map.m_len = 1; 1842 1843 /* 1844 * first, we need to know whether the block is allocated already 1845 * preallocated blocks are unmapped but should treated 1846 * the same as allocated blocks. 1847 */ 1848 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1849 if (ret <= 0) 1850 return ret; 1851 1852 map_bh(bh, inode->i_sb, map.m_pblk); 1853 ext4_update_bh_state(bh, map.m_flags); 1854 1855 if (buffer_unwritten(bh)) { 1856 /* A delayed write to unwritten bh should be marked 1857 * new and mapped. Mapped ensures that we don't do 1858 * get_block multiple times when we write to the same 1859 * offset and new ensures that we do proper zero out 1860 * for partial write. 1861 */ 1862 set_buffer_new(bh); 1863 set_buffer_mapped(bh); 1864 } 1865 return 0; 1866 } 1867 1868 static int __ext4_journalled_writepage(struct page *page, 1869 unsigned int len) 1870 { 1871 struct address_space *mapping = page->mapping; 1872 struct inode *inode = mapping->host; 1873 handle_t *handle = NULL; 1874 int ret = 0, err = 0; 1875 int inline_data = ext4_has_inline_data(inode); 1876 struct buffer_head *inode_bh = NULL; 1877 loff_t size; 1878 1879 ClearPageChecked(page); 1880 1881 if (inline_data) { 1882 BUG_ON(page->index != 0); 1883 BUG_ON(len > ext4_get_max_inline_size(inode)); 1884 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1885 if (inode_bh == NULL) 1886 goto out; 1887 } 1888 /* 1889 * We need to release the page lock before we start the 1890 * journal, so grab a reference so the page won't disappear 1891 * out from under us. 1892 */ 1893 get_page(page); 1894 unlock_page(page); 1895 1896 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1897 ext4_writepage_trans_blocks(inode)); 1898 if (IS_ERR(handle)) { 1899 ret = PTR_ERR(handle); 1900 put_page(page); 1901 goto out_no_pagelock; 1902 } 1903 BUG_ON(!ext4_handle_valid(handle)); 1904 1905 lock_page(page); 1906 put_page(page); 1907 size = i_size_read(inode); 1908 if (page->mapping != mapping || page_offset(page) > size) { 1909 /* The page got truncated from under us */ 1910 ext4_journal_stop(handle); 1911 ret = 0; 1912 goto out; 1913 } 1914 1915 if (inline_data) { 1916 ret = ext4_mark_inode_dirty(handle, inode); 1917 } else { 1918 struct buffer_head *page_bufs = page_buffers(page); 1919 1920 if (page->index == size >> PAGE_SHIFT) 1921 len = size & ~PAGE_MASK; 1922 else 1923 len = PAGE_SIZE; 1924 1925 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1926 NULL, do_journal_get_write_access); 1927 1928 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1929 NULL, write_end_fn); 1930 } 1931 if (ret == 0) 1932 ret = err; 1933 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1934 if (ret == 0) 1935 ret = err; 1936 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1937 err = ext4_journal_stop(handle); 1938 if (!ret) 1939 ret = err; 1940 1941 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1942 out: 1943 unlock_page(page); 1944 out_no_pagelock: 1945 brelse(inode_bh); 1946 return ret; 1947 } 1948 1949 /* 1950 * Note that we don't need to start a transaction unless we're journaling data 1951 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1952 * need to file the inode to the transaction's list in ordered mode because if 1953 * we are writing back data added by write(), the inode is already there and if 1954 * we are writing back data modified via mmap(), no one guarantees in which 1955 * transaction the data will hit the disk. In case we are journaling data, we 1956 * cannot start transaction directly because transaction start ranks above page 1957 * lock so we have to do some magic. 1958 * 1959 * This function can get called via... 1960 * - ext4_writepages after taking page lock (have journal handle) 1961 * - journal_submit_inode_data_buffers (no journal handle) 1962 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1963 * - grab_page_cache when doing write_begin (have journal handle) 1964 * 1965 * We don't do any block allocation in this function. If we have page with 1966 * multiple blocks we need to write those buffer_heads that are mapped. This 1967 * is important for mmaped based write. So if we do with blocksize 1K 1968 * truncate(f, 1024); 1969 * a = mmap(f, 0, 4096); 1970 * a[0] = 'a'; 1971 * truncate(f, 4096); 1972 * we have in the page first buffer_head mapped via page_mkwrite call back 1973 * but other buffer_heads would be unmapped but dirty (dirty done via the 1974 * do_wp_page). So writepage should write the first block. If we modify 1975 * the mmap area beyond 1024 we will again get a page_fault and the 1976 * page_mkwrite callback will do the block allocation and mark the 1977 * buffer_heads mapped. 1978 * 1979 * We redirty the page if we have any buffer_heads that is either delay or 1980 * unwritten in the page. 1981 * 1982 * We can get recursively called as show below. 1983 * 1984 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1985 * ext4_writepage() 1986 * 1987 * But since we don't do any block allocation we should not deadlock. 1988 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1989 */ 1990 static int ext4_writepage(struct page *page, 1991 struct writeback_control *wbc) 1992 { 1993 struct folio *folio = page_folio(page); 1994 int ret = 0; 1995 loff_t size; 1996 unsigned int len; 1997 struct buffer_head *page_bufs = NULL; 1998 struct inode *inode = page->mapping->host; 1999 struct ext4_io_submit io_submit; 2000 bool keep_towrite = false; 2001 2002 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2003 folio_invalidate(folio, 0, folio_size(folio)); 2004 folio_unlock(folio); 2005 return -EIO; 2006 } 2007 2008 trace_ext4_writepage(page); 2009 size = i_size_read(inode); 2010 if (page->index == size >> PAGE_SHIFT && 2011 !ext4_verity_in_progress(inode)) 2012 len = size & ~PAGE_MASK; 2013 else 2014 len = PAGE_SIZE; 2015 2016 /* Should never happen but for bugs in other kernel subsystems */ 2017 if (!page_has_buffers(page)) { 2018 ext4_warning_inode(inode, 2019 "page %lu does not have buffers attached", page->index); 2020 ClearPageDirty(page); 2021 unlock_page(page); 2022 return 0; 2023 } 2024 2025 page_bufs = page_buffers(page); 2026 /* 2027 * We cannot do block allocation or other extent handling in this 2028 * function. If there are buffers needing that, we have to redirty 2029 * the page. But we may reach here when we do a journal commit via 2030 * journal_submit_inode_data_buffers() and in that case we must write 2031 * allocated buffers to achieve data=ordered mode guarantees. 2032 * 2033 * Also, if there is only one buffer per page (the fs block 2034 * size == the page size), if one buffer needs block 2035 * allocation or needs to modify the extent tree to clear the 2036 * unwritten flag, we know that the page can't be written at 2037 * all, so we might as well refuse the write immediately. 2038 * Unfortunately if the block size != page size, we can't as 2039 * easily detect this case using ext4_walk_page_buffers(), but 2040 * for the extremely common case, this is an optimization that 2041 * skips a useless round trip through ext4_bio_write_page(). 2042 */ 2043 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2044 ext4_bh_delay_or_unwritten)) { 2045 redirty_page_for_writepage(wbc, page); 2046 if ((current->flags & PF_MEMALLOC) || 2047 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2048 /* 2049 * For memory cleaning there's no point in writing only 2050 * some buffers. So just bail out. Warn if we came here 2051 * from direct reclaim. 2052 */ 2053 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2054 == PF_MEMALLOC); 2055 unlock_page(page); 2056 return 0; 2057 } 2058 keep_towrite = true; 2059 } 2060 2061 if (PageChecked(page) && ext4_should_journal_data(inode)) 2062 /* 2063 * It's mmapped pagecache. Add buffers and journal it. There 2064 * doesn't seem much point in redirtying the page here. 2065 */ 2066 return __ext4_journalled_writepage(page, len); 2067 2068 ext4_io_submit_init(&io_submit, wbc); 2069 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2070 if (!io_submit.io_end) { 2071 redirty_page_for_writepage(wbc, page); 2072 unlock_page(page); 2073 return -ENOMEM; 2074 } 2075 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2076 ext4_io_submit(&io_submit); 2077 /* Drop io_end reference we got from init */ 2078 ext4_put_io_end_defer(io_submit.io_end); 2079 return ret; 2080 } 2081 2082 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2083 { 2084 int len; 2085 loff_t size; 2086 int err; 2087 2088 BUG_ON(page->index != mpd->first_page); 2089 clear_page_dirty_for_io(page); 2090 /* 2091 * We have to be very careful here! Nothing protects writeback path 2092 * against i_size changes and the page can be writeably mapped into 2093 * page tables. So an application can be growing i_size and writing 2094 * data through mmap while writeback runs. clear_page_dirty_for_io() 2095 * write-protects our page in page tables and the page cannot get 2096 * written to again until we release page lock. So only after 2097 * clear_page_dirty_for_io() we are safe to sample i_size for 2098 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2099 * on the barrier provided by TestClearPageDirty in 2100 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2101 * after page tables are updated. 2102 */ 2103 size = i_size_read(mpd->inode); 2104 if (page->index == size >> PAGE_SHIFT && 2105 !ext4_verity_in_progress(mpd->inode)) 2106 len = size & ~PAGE_MASK; 2107 else 2108 len = PAGE_SIZE; 2109 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2110 if (!err) 2111 mpd->wbc->nr_to_write--; 2112 mpd->first_page++; 2113 2114 return err; 2115 } 2116 2117 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2118 2119 /* 2120 * mballoc gives us at most this number of blocks... 2121 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2122 * The rest of mballoc seems to handle chunks up to full group size. 2123 */ 2124 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2125 2126 /* 2127 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2128 * 2129 * @mpd - extent of blocks 2130 * @lblk - logical number of the block in the file 2131 * @bh - buffer head we want to add to the extent 2132 * 2133 * The function is used to collect contig. blocks in the same state. If the 2134 * buffer doesn't require mapping for writeback and we haven't started the 2135 * extent of buffers to map yet, the function returns 'true' immediately - the 2136 * caller can write the buffer right away. Otherwise the function returns true 2137 * if the block has been added to the extent, false if the block couldn't be 2138 * added. 2139 */ 2140 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2141 struct buffer_head *bh) 2142 { 2143 struct ext4_map_blocks *map = &mpd->map; 2144 2145 /* Buffer that doesn't need mapping for writeback? */ 2146 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2147 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2148 /* So far no extent to map => we write the buffer right away */ 2149 if (map->m_len == 0) 2150 return true; 2151 return false; 2152 } 2153 2154 /* First block in the extent? */ 2155 if (map->m_len == 0) { 2156 /* We cannot map unless handle is started... */ 2157 if (!mpd->do_map) 2158 return false; 2159 map->m_lblk = lblk; 2160 map->m_len = 1; 2161 map->m_flags = bh->b_state & BH_FLAGS; 2162 return true; 2163 } 2164 2165 /* Don't go larger than mballoc is willing to allocate */ 2166 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2167 return false; 2168 2169 /* Can we merge the block to our big extent? */ 2170 if (lblk == map->m_lblk + map->m_len && 2171 (bh->b_state & BH_FLAGS) == map->m_flags) { 2172 map->m_len++; 2173 return true; 2174 } 2175 return false; 2176 } 2177 2178 /* 2179 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2180 * 2181 * @mpd - extent of blocks for mapping 2182 * @head - the first buffer in the page 2183 * @bh - buffer we should start processing from 2184 * @lblk - logical number of the block in the file corresponding to @bh 2185 * 2186 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2187 * the page for IO if all buffers in this page were mapped and there's no 2188 * accumulated extent of buffers to map or add buffers in the page to the 2189 * extent of buffers to map. The function returns 1 if the caller can continue 2190 * by processing the next page, 0 if it should stop adding buffers to the 2191 * extent to map because we cannot extend it anymore. It can also return value 2192 * < 0 in case of error during IO submission. 2193 */ 2194 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2195 struct buffer_head *head, 2196 struct buffer_head *bh, 2197 ext4_lblk_t lblk) 2198 { 2199 struct inode *inode = mpd->inode; 2200 int err; 2201 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2202 >> inode->i_blkbits; 2203 2204 if (ext4_verity_in_progress(inode)) 2205 blocks = EXT_MAX_BLOCKS; 2206 2207 do { 2208 BUG_ON(buffer_locked(bh)); 2209 2210 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2211 /* Found extent to map? */ 2212 if (mpd->map.m_len) 2213 return 0; 2214 /* Buffer needs mapping and handle is not started? */ 2215 if (!mpd->do_map) 2216 return 0; 2217 /* Everything mapped so far and we hit EOF */ 2218 break; 2219 } 2220 } while (lblk++, (bh = bh->b_this_page) != head); 2221 /* So far everything mapped? Submit the page for IO. */ 2222 if (mpd->map.m_len == 0) { 2223 err = mpage_submit_page(mpd, head->b_page); 2224 if (err < 0) 2225 return err; 2226 } 2227 if (lblk >= blocks) { 2228 mpd->scanned_until_end = 1; 2229 return 0; 2230 } 2231 return 1; 2232 } 2233 2234 /* 2235 * mpage_process_page - update page buffers corresponding to changed extent and 2236 * may submit fully mapped page for IO 2237 * 2238 * @mpd - description of extent to map, on return next extent to map 2239 * @m_lblk - logical block mapping. 2240 * @m_pblk - corresponding physical mapping. 2241 * @map_bh - determines on return whether this page requires any further 2242 * mapping or not. 2243 * Scan given page buffers corresponding to changed extent and update buffer 2244 * state according to new extent state. 2245 * We map delalloc buffers to their physical location, clear unwritten bits. 2246 * If the given page is not fully mapped, we update @map to the next extent in 2247 * the given page that needs mapping & return @map_bh as true. 2248 */ 2249 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2250 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2251 bool *map_bh) 2252 { 2253 struct buffer_head *head, *bh; 2254 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2255 ext4_lblk_t lblk = *m_lblk; 2256 ext4_fsblk_t pblock = *m_pblk; 2257 int err = 0; 2258 int blkbits = mpd->inode->i_blkbits; 2259 ssize_t io_end_size = 0; 2260 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2261 2262 bh = head = page_buffers(page); 2263 do { 2264 if (lblk < mpd->map.m_lblk) 2265 continue; 2266 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2267 /* 2268 * Buffer after end of mapped extent. 2269 * Find next buffer in the page to map. 2270 */ 2271 mpd->map.m_len = 0; 2272 mpd->map.m_flags = 0; 2273 io_end_vec->size += io_end_size; 2274 2275 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2276 if (err > 0) 2277 err = 0; 2278 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2279 io_end_vec = ext4_alloc_io_end_vec(io_end); 2280 if (IS_ERR(io_end_vec)) { 2281 err = PTR_ERR(io_end_vec); 2282 goto out; 2283 } 2284 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2285 } 2286 *map_bh = true; 2287 goto out; 2288 } 2289 if (buffer_delay(bh)) { 2290 clear_buffer_delay(bh); 2291 bh->b_blocknr = pblock++; 2292 } 2293 clear_buffer_unwritten(bh); 2294 io_end_size += (1 << blkbits); 2295 } while (lblk++, (bh = bh->b_this_page) != head); 2296 2297 io_end_vec->size += io_end_size; 2298 *map_bh = false; 2299 out: 2300 *m_lblk = lblk; 2301 *m_pblk = pblock; 2302 return err; 2303 } 2304 2305 /* 2306 * mpage_map_buffers - update buffers corresponding to changed extent and 2307 * submit fully mapped pages for IO 2308 * 2309 * @mpd - description of extent to map, on return next extent to map 2310 * 2311 * Scan buffers corresponding to changed extent (we expect corresponding pages 2312 * to be already locked) and update buffer state according to new extent state. 2313 * We map delalloc buffers to their physical location, clear unwritten bits, 2314 * and mark buffers as uninit when we perform writes to unwritten extents 2315 * and do extent conversion after IO is finished. If the last page is not fully 2316 * mapped, we update @map to the next extent in the last page that needs 2317 * mapping. Otherwise we submit the page for IO. 2318 */ 2319 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2320 { 2321 struct pagevec pvec; 2322 int nr_pages, i; 2323 struct inode *inode = mpd->inode; 2324 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2325 pgoff_t start, end; 2326 ext4_lblk_t lblk; 2327 ext4_fsblk_t pblock; 2328 int err; 2329 bool map_bh = false; 2330 2331 start = mpd->map.m_lblk >> bpp_bits; 2332 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2333 lblk = start << bpp_bits; 2334 pblock = mpd->map.m_pblk; 2335 2336 pagevec_init(&pvec); 2337 while (start <= end) { 2338 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2339 &start, end); 2340 if (nr_pages == 0) 2341 break; 2342 for (i = 0; i < nr_pages; i++) { 2343 struct page *page = pvec.pages[i]; 2344 2345 err = mpage_process_page(mpd, page, &lblk, &pblock, 2346 &map_bh); 2347 /* 2348 * If map_bh is true, means page may require further bh 2349 * mapping, or maybe the page was submitted for IO. 2350 * So we return to call further extent mapping. 2351 */ 2352 if (err < 0 || map_bh) 2353 goto out; 2354 /* Page fully mapped - let IO run! */ 2355 err = mpage_submit_page(mpd, page); 2356 if (err < 0) 2357 goto out; 2358 } 2359 pagevec_release(&pvec); 2360 } 2361 /* Extent fully mapped and matches with page boundary. We are done. */ 2362 mpd->map.m_len = 0; 2363 mpd->map.m_flags = 0; 2364 return 0; 2365 out: 2366 pagevec_release(&pvec); 2367 return err; 2368 } 2369 2370 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2371 { 2372 struct inode *inode = mpd->inode; 2373 struct ext4_map_blocks *map = &mpd->map; 2374 int get_blocks_flags; 2375 int err, dioread_nolock; 2376 2377 trace_ext4_da_write_pages_extent(inode, map); 2378 /* 2379 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2380 * to convert an unwritten extent to be initialized (in the case 2381 * where we have written into one or more preallocated blocks). It is 2382 * possible that we're going to need more metadata blocks than 2383 * previously reserved. However we must not fail because we're in 2384 * writeback and there is nothing we can do about it so it might result 2385 * in data loss. So use reserved blocks to allocate metadata if 2386 * possible. 2387 * 2388 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2389 * the blocks in question are delalloc blocks. This indicates 2390 * that the blocks and quotas has already been checked when 2391 * the data was copied into the page cache. 2392 */ 2393 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2394 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2395 EXT4_GET_BLOCKS_IO_SUBMIT; 2396 dioread_nolock = ext4_should_dioread_nolock(inode); 2397 if (dioread_nolock) 2398 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2399 if (map->m_flags & BIT(BH_Delay)) 2400 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2401 2402 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2403 if (err < 0) 2404 return err; 2405 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2406 if (!mpd->io_submit.io_end->handle && 2407 ext4_handle_valid(handle)) { 2408 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2409 handle->h_rsv_handle = NULL; 2410 } 2411 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2412 } 2413 2414 BUG_ON(map->m_len == 0); 2415 return 0; 2416 } 2417 2418 /* 2419 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2420 * mpd->len and submit pages underlying it for IO 2421 * 2422 * @handle - handle for journal operations 2423 * @mpd - extent to map 2424 * @give_up_on_write - we set this to true iff there is a fatal error and there 2425 * is no hope of writing the data. The caller should discard 2426 * dirty pages to avoid infinite loops. 2427 * 2428 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2429 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2430 * them to initialized or split the described range from larger unwritten 2431 * extent. Note that we need not map all the described range since allocation 2432 * can return less blocks or the range is covered by more unwritten extents. We 2433 * cannot map more because we are limited by reserved transaction credits. On 2434 * the other hand we always make sure that the last touched page is fully 2435 * mapped so that it can be written out (and thus forward progress is 2436 * guaranteed). After mapping we submit all mapped pages for IO. 2437 */ 2438 static int mpage_map_and_submit_extent(handle_t *handle, 2439 struct mpage_da_data *mpd, 2440 bool *give_up_on_write) 2441 { 2442 struct inode *inode = mpd->inode; 2443 struct ext4_map_blocks *map = &mpd->map; 2444 int err; 2445 loff_t disksize; 2446 int progress = 0; 2447 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2448 struct ext4_io_end_vec *io_end_vec; 2449 2450 io_end_vec = ext4_alloc_io_end_vec(io_end); 2451 if (IS_ERR(io_end_vec)) 2452 return PTR_ERR(io_end_vec); 2453 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2454 do { 2455 err = mpage_map_one_extent(handle, mpd); 2456 if (err < 0) { 2457 struct super_block *sb = inode->i_sb; 2458 2459 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2460 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2461 goto invalidate_dirty_pages; 2462 /* 2463 * Let the uper layers retry transient errors. 2464 * In the case of ENOSPC, if ext4_count_free_blocks() 2465 * is non-zero, a commit should free up blocks. 2466 */ 2467 if ((err == -ENOMEM) || 2468 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2469 if (progress) 2470 goto update_disksize; 2471 return err; 2472 } 2473 ext4_msg(sb, KERN_CRIT, 2474 "Delayed block allocation failed for " 2475 "inode %lu at logical offset %llu with" 2476 " max blocks %u with error %d", 2477 inode->i_ino, 2478 (unsigned long long)map->m_lblk, 2479 (unsigned)map->m_len, -err); 2480 ext4_msg(sb, KERN_CRIT, 2481 "This should not happen!! Data will " 2482 "be lost\n"); 2483 if (err == -ENOSPC) 2484 ext4_print_free_blocks(inode); 2485 invalidate_dirty_pages: 2486 *give_up_on_write = true; 2487 return err; 2488 } 2489 progress = 1; 2490 /* 2491 * Update buffer state, submit mapped pages, and get us new 2492 * extent to map 2493 */ 2494 err = mpage_map_and_submit_buffers(mpd); 2495 if (err < 0) 2496 goto update_disksize; 2497 } while (map->m_len); 2498 2499 update_disksize: 2500 /* 2501 * Update on-disk size after IO is submitted. Races with 2502 * truncate are avoided by checking i_size under i_data_sem. 2503 */ 2504 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2505 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2506 int err2; 2507 loff_t i_size; 2508 2509 down_write(&EXT4_I(inode)->i_data_sem); 2510 i_size = i_size_read(inode); 2511 if (disksize > i_size) 2512 disksize = i_size; 2513 if (disksize > EXT4_I(inode)->i_disksize) 2514 EXT4_I(inode)->i_disksize = disksize; 2515 up_write(&EXT4_I(inode)->i_data_sem); 2516 err2 = ext4_mark_inode_dirty(handle, inode); 2517 if (err2) { 2518 ext4_error_err(inode->i_sb, -err2, 2519 "Failed to mark inode %lu dirty", 2520 inode->i_ino); 2521 } 2522 if (!err) 2523 err = err2; 2524 } 2525 return err; 2526 } 2527 2528 /* 2529 * Calculate the total number of credits to reserve for one writepages 2530 * iteration. This is called from ext4_writepages(). We map an extent of 2531 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2532 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2533 * bpp - 1 blocks in bpp different extents. 2534 */ 2535 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2536 { 2537 int bpp = ext4_journal_blocks_per_page(inode); 2538 2539 return ext4_meta_trans_blocks(inode, 2540 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2541 } 2542 2543 /* 2544 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2545 * and underlying extent to map 2546 * 2547 * @mpd - where to look for pages 2548 * 2549 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2550 * IO immediately. When we find a page which isn't mapped we start accumulating 2551 * extent of buffers underlying these pages that needs mapping (formed by 2552 * either delayed or unwritten buffers). We also lock the pages containing 2553 * these buffers. The extent found is returned in @mpd structure (starting at 2554 * mpd->lblk with length mpd->len blocks). 2555 * 2556 * Note that this function can attach bios to one io_end structure which are 2557 * neither logically nor physically contiguous. Although it may seem as an 2558 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2559 * case as we need to track IO to all buffers underlying a page in one io_end. 2560 */ 2561 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2562 { 2563 struct address_space *mapping = mpd->inode->i_mapping; 2564 struct pagevec pvec; 2565 unsigned int nr_pages; 2566 long left = mpd->wbc->nr_to_write; 2567 pgoff_t index = mpd->first_page; 2568 pgoff_t end = mpd->last_page; 2569 xa_mark_t tag; 2570 int i, err = 0; 2571 int blkbits = mpd->inode->i_blkbits; 2572 ext4_lblk_t lblk; 2573 struct buffer_head *head; 2574 2575 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2576 tag = PAGECACHE_TAG_TOWRITE; 2577 else 2578 tag = PAGECACHE_TAG_DIRTY; 2579 2580 pagevec_init(&pvec); 2581 mpd->map.m_len = 0; 2582 mpd->next_page = index; 2583 while (index <= end) { 2584 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2585 tag); 2586 if (nr_pages == 0) 2587 break; 2588 2589 for (i = 0; i < nr_pages; i++) { 2590 struct page *page = pvec.pages[i]; 2591 2592 /* 2593 * Accumulated enough dirty pages? This doesn't apply 2594 * to WB_SYNC_ALL mode. For integrity sync we have to 2595 * keep going because someone may be concurrently 2596 * dirtying pages, and we might have synced a lot of 2597 * newly appeared dirty pages, but have not synced all 2598 * of the old dirty pages. 2599 */ 2600 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2601 goto out; 2602 2603 /* If we can't merge this page, we are done. */ 2604 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2605 goto out; 2606 2607 lock_page(page); 2608 /* 2609 * If the page is no longer dirty, or its mapping no 2610 * longer corresponds to inode we are writing (which 2611 * means it has been truncated or invalidated), or the 2612 * page is already under writeback and we are not doing 2613 * a data integrity writeback, skip the page 2614 */ 2615 if (!PageDirty(page) || 2616 (PageWriteback(page) && 2617 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2618 unlikely(page->mapping != mapping)) { 2619 unlock_page(page); 2620 continue; 2621 } 2622 2623 wait_on_page_writeback(page); 2624 BUG_ON(PageWriteback(page)); 2625 2626 /* 2627 * Should never happen but for buggy code in 2628 * other subsystems that call 2629 * set_page_dirty() without properly warning 2630 * the file system first. See [1] for more 2631 * information. 2632 * 2633 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2634 */ 2635 if (!page_has_buffers(page)) { 2636 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index); 2637 ClearPageDirty(page); 2638 unlock_page(page); 2639 continue; 2640 } 2641 2642 if (mpd->map.m_len == 0) 2643 mpd->first_page = page->index; 2644 mpd->next_page = page->index + 1; 2645 /* Add all dirty buffers to mpd */ 2646 lblk = ((ext4_lblk_t)page->index) << 2647 (PAGE_SHIFT - blkbits); 2648 head = page_buffers(page); 2649 err = mpage_process_page_bufs(mpd, head, head, lblk); 2650 if (err <= 0) 2651 goto out; 2652 err = 0; 2653 left--; 2654 } 2655 pagevec_release(&pvec); 2656 cond_resched(); 2657 } 2658 mpd->scanned_until_end = 1; 2659 return 0; 2660 out: 2661 pagevec_release(&pvec); 2662 return err; 2663 } 2664 2665 static int ext4_writepages(struct address_space *mapping, 2666 struct writeback_control *wbc) 2667 { 2668 pgoff_t writeback_index = 0; 2669 long nr_to_write = wbc->nr_to_write; 2670 int range_whole = 0; 2671 int cycled = 1; 2672 handle_t *handle = NULL; 2673 struct mpage_da_data mpd; 2674 struct inode *inode = mapping->host; 2675 int needed_blocks, rsv_blocks = 0, ret = 0; 2676 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2677 struct blk_plug plug; 2678 bool give_up_on_write = false; 2679 2680 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2681 return -EIO; 2682 2683 percpu_down_read(&sbi->s_writepages_rwsem); 2684 trace_ext4_writepages(inode, wbc); 2685 2686 /* 2687 * No pages to write? This is mainly a kludge to avoid starting 2688 * a transaction for special inodes like journal inode on last iput() 2689 * because that could violate lock ordering on umount 2690 */ 2691 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2692 goto out_writepages; 2693 2694 if (ext4_should_journal_data(inode)) { 2695 ret = generic_writepages(mapping, wbc); 2696 goto out_writepages; 2697 } 2698 2699 /* 2700 * If the filesystem has aborted, it is read-only, so return 2701 * right away instead of dumping stack traces later on that 2702 * will obscure the real source of the problem. We test 2703 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2704 * the latter could be true if the filesystem is mounted 2705 * read-only, and in that case, ext4_writepages should 2706 * *never* be called, so if that ever happens, we would want 2707 * the stack trace. 2708 */ 2709 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2710 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2711 ret = -EROFS; 2712 goto out_writepages; 2713 } 2714 2715 /* 2716 * If we have inline data and arrive here, it means that 2717 * we will soon create the block for the 1st page, so 2718 * we'd better clear the inline data here. 2719 */ 2720 if (ext4_has_inline_data(inode)) { 2721 /* Just inode will be modified... */ 2722 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2723 if (IS_ERR(handle)) { 2724 ret = PTR_ERR(handle); 2725 goto out_writepages; 2726 } 2727 BUG_ON(ext4_test_inode_state(inode, 2728 EXT4_STATE_MAY_INLINE_DATA)); 2729 ext4_destroy_inline_data(handle, inode); 2730 ext4_journal_stop(handle); 2731 } 2732 2733 if (ext4_should_dioread_nolock(inode)) { 2734 /* 2735 * We may need to convert up to one extent per block in 2736 * the page and we may dirty the inode. 2737 */ 2738 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2739 PAGE_SIZE >> inode->i_blkbits); 2740 } 2741 2742 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2743 range_whole = 1; 2744 2745 if (wbc->range_cyclic) { 2746 writeback_index = mapping->writeback_index; 2747 if (writeback_index) 2748 cycled = 0; 2749 mpd.first_page = writeback_index; 2750 mpd.last_page = -1; 2751 } else { 2752 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2753 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2754 } 2755 2756 mpd.inode = inode; 2757 mpd.wbc = wbc; 2758 ext4_io_submit_init(&mpd.io_submit, wbc); 2759 retry: 2760 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2761 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2762 blk_start_plug(&plug); 2763 2764 /* 2765 * First writeback pages that don't need mapping - we can avoid 2766 * starting a transaction unnecessarily and also avoid being blocked 2767 * in the block layer on device congestion while having transaction 2768 * started. 2769 */ 2770 mpd.do_map = 0; 2771 mpd.scanned_until_end = 0; 2772 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2773 if (!mpd.io_submit.io_end) { 2774 ret = -ENOMEM; 2775 goto unplug; 2776 } 2777 ret = mpage_prepare_extent_to_map(&mpd); 2778 /* Unlock pages we didn't use */ 2779 mpage_release_unused_pages(&mpd, false); 2780 /* Submit prepared bio */ 2781 ext4_io_submit(&mpd.io_submit); 2782 ext4_put_io_end_defer(mpd.io_submit.io_end); 2783 mpd.io_submit.io_end = NULL; 2784 if (ret < 0) 2785 goto unplug; 2786 2787 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2788 /* For each extent of pages we use new io_end */ 2789 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2790 if (!mpd.io_submit.io_end) { 2791 ret = -ENOMEM; 2792 break; 2793 } 2794 2795 /* 2796 * We have two constraints: We find one extent to map and we 2797 * must always write out whole page (makes a difference when 2798 * blocksize < pagesize) so that we don't block on IO when we 2799 * try to write out the rest of the page. Journalled mode is 2800 * not supported by delalloc. 2801 */ 2802 BUG_ON(ext4_should_journal_data(inode)); 2803 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2804 2805 /* start a new transaction */ 2806 handle = ext4_journal_start_with_reserve(inode, 2807 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2808 if (IS_ERR(handle)) { 2809 ret = PTR_ERR(handle); 2810 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2811 "%ld pages, ino %lu; err %d", __func__, 2812 wbc->nr_to_write, inode->i_ino, ret); 2813 /* Release allocated io_end */ 2814 ext4_put_io_end(mpd.io_submit.io_end); 2815 mpd.io_submit.io_end = NULL; 2816 break; 2817 } 2818 mpd.do_map = 1; 2819 2820 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2821 ret = mpage_prepare_extent_to_map(&mpd); 2822 if (!ret && mpd.map.m_len) 2823 ret = mpage_map_and_submit_extent(handle, &mpd, 2824 &give_up_on_write); 2825 /* 2826 * Caution: If the handle is synchronous, 2827 * ext4_journal_stop() can wait for transaction commit 2828 * to finish which may depend on writeback of pages to 2829 * complete or on page lock to be released. In that 2830 * case, we have to wait until after we have 2831 * submitted all the IO, released page locks we hold, 2832 * and dropped io_end reference (for extent conversion 2833 * to be able to complete) before stopping the handle. 2834 */ 2835 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2836 ext4_journal_stop(handle); 2837 handle = NULL; 2838 mpd.do_map = 0; 2839 } 2840 /* Unlock pages we didn't use */ 2841 mpage_release_unused_pages(&mpd, give_up_on_write); 2842 /* Submit prepared bio */ 2843 ext4_io_submit(&mpd.io_submit); 2844 2845 /* 2846 * Drop our io_end reference we got from init. We have 2847 * to be careful and use deferred io_end finishing if 2848 * we are still holding the transaction as we can 2849 * release the last reference to io_end which may end 2850 * up doing unwritten extent conversion. 2851 */ 2852 if (handle) { 2853 ext4_put_io_end_defer(mpd.io_submit.io_end); 2854 ext4_journal_stop(handle); 2855 } else 2856 ext4_put_io_end(mpd.io_submit.io_end); 2857 mpd.io_submit.io_end = NULL; 2858 2859 if (ret == -ENOSPC && sbi->s_journal) { 2860 /* 2861 * Commit the transaction which would 2862 * free blocks released in the transaction 2863 * and try again 2864 */ 2865 jbd2_journal_force_commit_nested(sbi->s_journal); 2866 ret = 0; 2867 continue; 2868 } 2869 /* Fatal error - ENOMEM, EIO... */ 2870 if (ret) 2871 break; 2872 } 2873 unplug: 2874 blk_finish_plug(&plug); 2875 if (!ret && !cycled && wbc->nr_to_write > 0) { 2876 cycled = 1; 2877 mpd.last_page = writeback_index - 1; 2878 mpd.first_page = 0; 2879 goto retry; 2880 } 2881 2882 /* Update index */ 2883 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2884 /* 2885 * Set the writeback_index so that range_cyclic 2886 * mode will write it back later 2887 */ 2888 mapping->writeback_index = mpd.first_page; 2889 2890 out_writepages: 2891 trace_ext4_writepages_result(inode, wbc, ret, 2892 nr_to_write - wbc->nr_to_write); 2893 percpu_up_read(&sbi->s_writepages_rwsem); 2894 return ret; 2895 } 2896 2897 static int ext4_dax_writepages(struct address_space *mapping, 2898 struct writeback_control *wbc) 2899 { 2900 int ret; 2901 long nr_to_write = wbc->nr_to_write; 2902 struct inode *inode = mapping->host; 2903 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2904 2905 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2906 return -EIO; 2907 2908 percpu_down_read(&sbi->s_writepages_rwsem); 2909 trace_ext4_writepages(inode, wbc); 2910 2911 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2912 trace_ext4_writepages_result(inode, wbc, ret, 2913 nr_to_write - wbc->nr_to_write); 2914 percpu_up_read(&sbi->s_writepages_rwsem); 2915 return ret; 2916 } 2917 2918 static int ext4_nonda_switch(struct super_block *sb) 2919 { 2920 s64 free_clusters, dirty_clusters; 2921 struct ext4_sb_info *sbi = EXT4_SB(sb); 2922 2923 /* 2924 * switch to non delalloc mode if we are running low 2925 * on free block. The free block accounting via percpu 2926 * counters can get slightly wrong with percpu_counter_batch getting 2927 * accumulated on each CPU without updating global counters 2928 * Delalloc need an accurate free block accounting. So switch 2929 * to non delalloc when we are near to error range. 2930 */ 2931 free_clusters = 2932 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2933 dirty_clusters = 2934 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2935 /* 2936 * Start pushing delalloc when 1/2 of free blocks are dirty. 2937 */ 2938 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2939 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2940 2941 if (2 * free_clusters < 3 * dirty_clusters || 2942 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2943 /* 2944 * free block count is less than 150% of dirty blocks 2945 * or free blocks is less than watermark 2946 */ 2947 return 1; 2948 } 2949 return 0; 2950 } 2951 2952 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2953 loff_t pos, unsigned len, 2954 struct page **pagep, void **fsdata) 2955 { 2956 int ret, retries = 0; 2957 struct page *page; 2958 pgoff_t index; 2959 struct inode *inode = mapping->host; 2960 2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2962 return -EIO; 2963 2964 index = pos >> PAGE_SHIFT; 2965 2966 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2967 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2968 return ext4_write_begin(file, mapping, pos, 2969 len, pagep, fsdata); 2970 } 2971 *fsdata = (void *)0; 2972 trace_ext4_da_write_begin(inode, pos, len); 2973 2974 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2975 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2976 pagep, fsdata); 2977 if (ret < 0) 2978 return ret; 2979 if (ret == 1) 2980 return 0; 2981 } 2982 2983 retry: 2984 page = grab_cache_page_write_begin(mapping, index); 2985 if (!page) 2986 return -ENOMEM; 2987 2988 /* In case writeback began while the page was unlocked */ 2989 wait_for_stable_page(page); 2990 2991 #ifdef CONFIG_FS_ENCRYPTION 2992 ret = ext4_block_write_begin(page, pos, len, 2993 ext4_da_get_block_prep); 2994 #else 2995 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2996 #endif 2997 if (ret < 0) { 2998 unlock_page(page); 2999 put_page(page); 3000 /* 3001 * block_write_begin may have instantiated a few blocks 3002 * outside i_size. Trim these off again. Don't need 3003 * i_size_read because we hold inode lock. 3004 */ 3005 if (pos + len > inode->i_size) 3006 ext4_truncate_failed_write(inode); 3007 3008 if (ret == -ENOSPC && 3009 ext4_should_retry_alloc(inode->i_sb, &retries)) 3010 goto retry; 3011 return ret; 3012 } 3013 3014 *pagep = page; 3015 return ret; 3016 } 3017 3018 /* 3019 * Check if we should update i_disksize 3020 * when write to the end of file but not require block allocation 3021 */ 3022 static int ext4_da_should_update_i_disksize(struct page *page, 3023 unsigned long offset) 3024 { 3025 struct buffer_head *bh; 3026 struct inode *inode = page->mapping->host; 3027 unsigned int idx; 3028 int i; 3029 3030 bh = page_buffers(page); 3031 idx = offset >> inode->i_blkbits; 3032 3033 for (i = 0; i < idx; i++) 3034 bh = bh->b_this_page; 3035 3036 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3037 return 0; 3038 return 1; 3039 } 3040 3041 static int ext4_da_write_end(struct file *file, 3042 struct address_space *mapping, 3043 loff_t pos, unsigned len, unsigned copied, 3044 struct page *page, void *fsdata) 3045 { 3046 struct inode *inode = mapping->host; 3047 loff_t new_i_size; 3048 unsigned long start, end; 3049 int write_mode = (int)(unsigned long)fsdata; 3050 3051 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3052 return ext4_write_end(file, mapping, pos, 3053 len, copied, page, fsdata); 3054 3055 trace_ext4_da_write_end(inode, pos, len, copied); 3056 3057 if (write_mode != CONVERT_INLINE_DATA && 3058 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3059 ext4_has_inline_data(inode)) 3060 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3061 3062 start = pos & (PAGE_SIZE - 1); 3063 end = start + copied - 1; 3064 3065 /* 3066 * Since we are holding inode lock, we are sure i_disksize <= 3067 * i_size. We also know that if i_disksize < i_size, there are 3068 * delalloc writes pending in the range upto i_size. If the end of 3069 * the current write is <= i_size, there's no need to touch 3070 * i_disksize since writeback will push i_disksize upto i_size 3071 * eventually. If the end of the current write is > i_size and 3072 * inside an allocated block (ext4_da_should_update_i_disksize() 3073 * check), we need to update i_disksize here as neither 3074 * ext4_writepage() nor certain ext4_writepages() paths not 3075 * allocating blocks update i_disksize. 3076 * 3077 * Note that we defer inode dirtying to generic_write_end() / 3078 * ext4_da_write_inline_data_end(). 3079 */ 3080 new_i_size = pos + copied; 3081 if (copied && new_i_size > inode->i_size && 3082 ext4_da_should_update_i_disksize(page, end)) 3083 ext4_update_i_disksize(inode, new_i_size); 3084 3085 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3086 } 3087 3088 /* 3089 * Force all delayed allocation blocks to be allocated for a given inode. 3090 */ 3091 int ext4_alloc_da_blocks(struct inode *inode) 3092 { 3093 trace_ext4_alloc_da_blocks(inode); 3094 3095 if (!EXT4_I(inode)->i_reserved_data_blocks) 3096 return 0; 3097 3098 /* 3099 * We do something simple for now. The filemap_flush() will 3100 * also start triggering a write of the data blocks, which is 3101 * not strictly speaking necessary (and for users of 3102 * laptop_mode, not even desirable). However, to do otherwise 3103 * would require replicating code paths in: 3104 * 3105 * ext4_writepages() -> 3106 * write_cache_pages() ---> (via passed in callback function) 3107 * __mpage_da_writepage() --> 3108 * mpage_add_bh_to_extent() 3109 * mpage_da_map_blocks() 3110 * 3111 * The problem is that write_cache_pages(), located in 3112 * mm/page-writeback.c, marks pages clean in preparation for 3113 * doing I/O, which is not desirable if we're not planning on 3114 * doing I/O at all. 3115 * 3116 * We could call write_cache_pages(), and then redirty all of 3117 * the pages by calling redirty_page_for_writepage() but that 3118 * would be ugly in the extreme. So instead we would need to 3119 * replicate parts of the code in the above functions, 3120 * simplifying them because we wouldn't actually intend to 3121 * write out the pages, but rather only collect contiguous 3122 * logical block extents, call the multi-block allocator, and 3123 * then update the buffer heads with the block allocations. 3124 * 3125 * For now, though, we'll cheat by calling filemap_flush(), 3126 * which will map the blocks, and start the I/O, but not 3127 * actually wait for the I/O to complete. 3128 */ 3129 return filemap_flush(inode->i_mapping); 3130 } 3131 3132 /* 3133 * bmap() is special. It gets used by applications such as lilo and by 3134 * the swapper to find the on-disk block of a specific piece of data. 3135 * 3136 * Naturally, this is dangerous if the block concerned is still in the 3137 * journal. If somebody makes a swapfile on an ext4 data-journaling 3138 * filesystem and enables swap, then they may get a nasty shock when the 3139 * data getting swapped to that swapfile suddenly gets overwritten by 3140 * the original zero's written out previously to the journal and 3141 * awaiting writeback in the kernel's buffer cache. 3142 * 3143 * So, if we see any bmap calls here on a modified, data-journaled file, 3144 * take extra steps to flush any blocks which might be in the cache. 3145 */ 3146 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3147 { 3148 struct inode *inode = mapping->host; 3149 journal_t *journal; 3150 int err; 3151 3152 /* 3153 * We can get here for an inline file via the FIBMAP ioctl 3154 */ 3155 if (ext4_has_inline_data(inode)) 3156 return 0; 3157 3158 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3159 test_opt(inode->i_sb, DELALLOC)) { 3160 /* 3161 * With delalloc we want to sync the file 3162 * so that we can make sure we allocate 3163 * blocks for file 3164 */ 3165 filemap_write_and_wait(mapping); 3166 } 3167 3168 if (EXT4_JOURNAL(inode) && 3169 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3170 /* 3171 * This is a REALLY heavyweight approach, but the use of 3172 * bmap on dirty files is expected to be extremely rare: 3173 * only if we run lilo or swapon on a freshly made file 3174 * do we expect this to happen. 3175 * 3176 * (bmap requires CAP_SYS_RAWIO so this does not 3177 * represent an unprivileged user DOS attack --- we'd be 3178 * in trouble if mortal users could trigger this path at 3179 * will.) 3180 * 3181 * NB. EXT4_STATE_JDATA is not set on files other than 3182 * regular files. If somebody wants to bmap a directory 3183 * or symlink and gets confused because the buffer 3184 * hasn't yet been flushed to disk, they deserve 3185 * everything they get. 3186 */ 3187 3188 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3189 journal = EXT4_JOURNAL(inode); 3190 jbd2_journal_lock_updates(journal); 3191 err = jbd2_journal_flush(journal, 0); 3192 jbd2_journal_unlock_updates(journal); 3193 3194 if (err) 3195 return 0; 3196 } 3197 3198 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3199 } 3200 3201 static int ext4_read_folio(struct file *file, struct folio *folio) 3202 { 3203 struct page *page = &folio->page; 3204 int ret = -EAGAIN; 3205 struct inode *inode = page->mapping->host; 3206 3207 trace_ext4_readpage(page); 3208 3209 if (ext4_has_inline_data(inode)) 3210 ret = ext4_readpage_inline(inode, page); 3211 3212 if (ret == -EAGAIN) 3213 return ext4_mpage_readpages(inode, NULL, page); 3214 3215 return ret; 3216 } 3217 3218 static void ext4_readahead(struct readahead_control *rac) 3219 { 3220 struct inode *inode = rac->mapping->host; 3221 3222 /* If the file has inline data, no need to do readahead. */ 3223 if (ext4_has_inline_data(inode)) 3224 return; 3225 3226 ext4_mpage_readpages(inode, rac, NULL); 3227 } 3228 3229 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3230 size_t length) 3231 { 3232 trace_ext4_invalidate_folio(folio, offset, length); 3233 3234 /* No journalling happens on data buffers when this function is used */ 3235 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3236 3237 block_invalidate_folio(folio, offset, length); 3238 } 3239 3240 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3241 size_t offset, size_t length) 3242 { 3243 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3244 3245 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3246 3247 /* 3248 * If it's a full truncate we just forget about the pending dirtying 3249 */ 3250 if (offset == 0 && length == folio_size(folio)) 3251 folio_clear_checked(folio); 3252 3253 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3254 } 3255 3256 /* Wrapper for aops... */ 3257 static void ext4_journalled_invalidate_folio(struct folio *folio, 3258 size_t offset, 3259 size_t length) 3260 { 3261 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3262 } 3263 3264 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3265 { 3266 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3267 3268 trace_ext4_releasepage(&folio->page); 3269 3270 /* Page has dirty journalled data -> cannot release */ 3271 if (folio_test_checked(folio)) 3272 return false; 3273 if (journal) 3274 return jbd2_journal_try_to_free_buffers(journal, folio); 3275 else 3276 return try_to_free_buffers(folio); 3277 } 3278 3279 static bool ext4_inode_datasync_dirty(struct inode *inode) 3280 { 3281 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3282 3283 if (journal) { 3284 if (jbd2_transaction_committed(journal, 3285 EXT4_I(inode)->i_datasync_tid)) 3286 return false; 3287 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3288 return !list_empty(&EXT4_I(inode)->i_fc_list); 3289 return true; 3290 } 3291 3292 /* Any metadata buffers to write? */ 3293 if (!list_empty(&inode->i_mapping->private_list)) 3294 return true; 3295 return inode->i_state & I_DIRTY_DATASYNC; 3296 } 3297 3298 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3299 struct ext4_map_blocks *map, loff_t offset, 3300 loff_t length, unsigned int flags) 3301 { 3302 u8 blkbits = inode->i_blkbits; 3303 3304 /* 3305 * Writes that span EOF might trigger an I/O size update on completion, 3306 * so consider them to be dirty for the purpose of O_DSYNC, even if 3307 * there is no other metadata changes being made or are pending. 3308 */ 3309 iomap->flags = 0; 3310 if (ext4_inode_datasync_dirty(inode) || 3311 offset + length > i_size_read(inode)) 3312 iomap->flags |= IOMAP_F_DIRTY; 3313 3314 if (map->m_flags & EXT4_MAP_NEW) 3315 iomap->flags |= IOMAP_F_NEW; 3316 3317 if (flags & IOMAP_DAX) 3318 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3319 else 3320 iomap->bdev = inode->i_sb->s_bdev; 3321 iomap->offset = (u64) map->m_lblk << blkbits; 3322 iomap->length = (u64) map->m_len << blkbits; 3323 3324 if ((map->m_flags & EXT4_MAP_MAPPED) && 3325 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3326 iomap->flags |= IOMAP_F_MERGED; 3327 3328 /* 3329 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3330 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3331 * set. In order for any allocated unwritten extents to be converted 3332 * into written extents correctly within the ->end_io() handler, we 3333 * need to ensure that the iomap->type is set appropriately. Hence, the 3334 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3335 * been set first. 3336 */ 3337 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3338 iomap->type = IOMAP_UNWRITTEN; 3339 iomap->addr = (u64) map->m_pblk << blkbits; 3340 if (flags & IOMAP_DAX) 3341 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3342 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3343 iomap->type = IOMAP_MAPPED; 3344 iomap->addr = (u64) map->m_pblk << blkbits; 3345 if (flags & IOMAP_DAX) 3346 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3347 } else { 3348 iomap->type = IOMAP_HOLE; 3349 iomap->addr = IOMAP_NULL_ADDR; 3350 } 3351 } 3352 3353 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3354 unsigned int flags) 3355 { 3356 handle_t *handle; 3357 u8 blkbits = inode->i_blkbits; 3358 int ret, dio_credits, m_flags = 0, retries = 0; 3359 3360 /* 3361 * Trim the mapping request to the maximum value that we can map at 3362 * once for direct I/O. 3363 */ 3364 if (map->m_len > DIO_MAX_BLOCKS) 3365 map->m_len = DIO_MAX_BLOCKS; 3366 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3367 3368 retry: 3369 /* 3370 * Either we allocate blocks and then don't get an unwritten extent, so 3371 * in that case we have reserved enough credits. Or, the blocks are 3372 * already allocated and unwritten. In that case, the extent conversion 3373 * fits into the credits as well. 3374 */ 3375 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3376 if (IS_ERR(handle)) 3377 return PTR_ERR(handle); 3378 3379 /* 3380 * DAX and direct I/O are the only two operations that are currently 3381 * supported with IOMAP_WRITE. 3382 */ 3383 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3384 if (flags & IOMAP_DAX) 3385 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3386 /* 3387 * We use i_size instead of i_disksize here because delalloc writeback 3388 * can complete at any point during the I/O and subsequently push the 3389 * i_disksize out to i_size. This could be beyond where direct I/O is 3390 * happening and thus expose allocated blocks to direct I/O reads. 3391 */ 3392 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3393 m_flags = EXT4_GET_BLOCKS_CREATE; 3394 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3395 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3396 3397 ret = ext4_map_blocks(handle, inode, map, m_flags); 3398 3399 /* 3400 * We cannot fill holes in indirect tree based inodes as that could 3401 * expose stale data in the case of a crash. Use the magic error code 3402 * to fallback to buffered I/O. 3403 */ 3404 if (!m_flags && !ret) 3405 ret = -ENOTBLK; 3406 3407 ext4_journal_stop(handle); 3408 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3409 goto retry; 3410 3411 return ret; 3412 } 3413 3414 3415 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3416 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3417 { 3418 int ret; 3419 struct ext4_map_blocks map; 3420 u8 blkbits = inode->i_blkbits; 3421 3422 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3423 return -EINVAL; 3424 3425 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3426 return -ERANGE; 3427 3428 /* 3429 * Calculate the first and last logical blocks respectively. 3430 */ 3431 map.m_lblk = offset >> blkbits; 3432 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3433 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3434 3435 if (flags & IOMAP_WRITE) { 3436 /* 3437 * We check here if the blocks are already allocated, then we 3438 * don't need to start a journal txn and we can directly return 3439 * the mapping information. This could boost performance 3440 * especially in multi-threaded overwrite requests. 3441 */ 3442 if (offset + length <= i_size_read(inode)) { 3443 ret = ext4_map_blocks(NULL, inode, &map, 0); 3444 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3445 goto out; 3446 } 3447 ret = ext4_iomap_alloc(inode, &map, flags); 3448 } else { 3449 ret = ext4_map_blocks(NULL, inode, &map, 0); 3450 } 3451 3452 if (ret < 0) 3453 return ret; 3454 out: 3455 /* 3456 * When inline encryption is enabled, sometimes I/O to an encrypted file 3457 * has to be broken up to guarantee DUN contiguity. Handle this by 3458 * limiting the length of the mapping returned. 3459 */ 3460 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3461 3462 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3463 3464 return 0; 3465 } 3466 3467 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3468 loff_t length, unsigned flags, struct iomap *iomap, 3469 struct iomap *srcmap) 3470 { 3471 int ret; 3472 3473 /* 3474 * Even for writes we don't need to allocate blocks, so just pretend 3475 * we are reading to save overhead of starting a transaction. 3476 */ 3477 flags &= ~IOMAP_WRITE; 3478 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3479 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3480 return ret; 3481 } 3482 3483 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3484 ssize_t written, unsigned flags, struct iomap *iomap) 3485 { 3486 /* 3487 * Check to see whether an error occurred while writing out the data to 3488 * the allocated blocks. If so, return the magic error code so that we 3489 * fallback to buffered I/O and attempt to complete the remainder of 3490 * the I/O. Any blocks that may have been allocated in preparation for 3491 * the direct I/O will be reused during buffered I/O. 3492 */ 3493 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3494 return -ENOTBLK; 3495 3496 return 0; 3497 } 3498 3499 const struct iomap_ops ext4_iomap_ops = { 3500 .iomap_begin = ext4_iomap_begin, 3501 .iomap_end = ext4_iomap_end, 3502 }; 3503 3504 const struct iomap_ops ext4_iomap_overwrite_ops = { 3505 .iomap_begin = ext4_iomap_overwrite_begin, 3506 .iomap_end = ext4_iomap_end, 3507 }; 3508 3509 static bool ext4_iomap_is_delalloc(struct inode *inode, 3510 struct ext4_map_blocks *map) 3511 { 3512 struct extent_status es; 3513 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3514 3515 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3516 map->m_lblk, end, &es); 3517 3518 if (!es.es_len || es.es_lblk > end) 3519 return false; 3520 3521 if (es.es_lblk > map->m_lblk) { 3522 map->m_len = es.es_lblk - map->m_lblk; 3523 return false; 3524 } 3525 3526 offset = map->m_lblk - es.es_lblk; 3527 map->m_len = es.es_len - offset; 3528 3529 return true; 3530 } 3531 3532 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3533 loff_t length, unsigned int flags, 3534 struct iomap *iomap, struct iomap *srcmap) 3535 { 3536 int ret; 3537 bool delalloc = false; 3538 struct ext4_map_blocks map; 3539 u8 blkbits = inode->i_blkbits; 3540 3541 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3542 return -EINVAL; 3543 3544 if (ext4_has_inline_data(inode)) { 3545 ret = ext4_inline_data_iomap(inode, iomap); 3546 if (ret != -EAGAIN) { 3547 if (ret == 0 && offset >= iomap->length) 3548 ret = -ENOENT; 3549 return ret; 3550 } 3551 } 3552 3553 /* 3554 * Calculate the first and last logical block respectively. 3555 */ 3556 map.m_lblk = offset >> blkbits; 3557 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3558 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3559 3560 /* 3561 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3562 * So handle it here itself instead of querying ext4_map_blocks(). 3563 * Since ext4_map_blocks() will warn about it and will return 3564 * -EIO error. 3565 */ 3566 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3567 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3568 3569 if (offset >= sbi->s_bitmap_maxbytes) { 3570 map.m_flags = 0; 3571 goto set_iomap; 3572 } 3573 } 3574 3575 ret = ext4_map_blocks(NULL, inode, &map, 0); 3576 if (ret < 0) 3577 return ret; 3578 if (ret == 0) 3579 delalloc = ext4_iomap_is_delalloc(inode, &map); 3580 3581 set_iomap: 3582 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3583 if (delalloc && iomap->type == IOMAP_HOLE) 3584 iomap->type = IOMAP_DELALLOC; 3585 3586 return 0; 3587 } 3588 3589 const struct iomap_ops ext4_iomap_report_ops = { 3590 .iomap_begin = ext4_iomap_begin_report, 3591 }; 3592 3593 /* 3594 * Whenever the folio is being dirtied, corresponding buffers should already 3595 * be attached to the transaction (we take care of this in ext4_page_mkwrite() 3596 * and ext4_write_begin()). However we cannot move buffers to dirty transaction 3597 * lists here because ->dirty_folio is called under VFS locks and the folio 3598 * is not necessarily locked. 3599 * 3600 * We cannot just dirty the folio and leave attached buffers clean, because the 3601 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3602 * or jbddirty because all the journalling code will explode. 3603 * 3604 * So what we do is to mark the folio "pending dirty" and next time writepage 3605 * is called, propagate that into the buffers appropriately. 3606 */ 3607 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3608 struct folio *folio) 3609 { 3610 WARN_ON_ONCE(!folio_buffers(folio)); 3611 folio_set_checked(folio); 3612 return filemap_dirty_folio(mapping, folio); 3613 } 3614 3615 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3616 { 3617 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3618 WARN_ON_ONCE(!folio_buffers(folio)); 3619 return block_dirty_folio(mapping, folio); 3620 } 3621 3622 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3623 struct file *file, sector_t *span) 3624 { 3625 return iomap_swapfile_activate(sis, file, span, 3626 &ext4_iomap_report_ops); 3627 } 3628 3629 static const struct address_space_operations ext4_aops = { 3630 .read_folio = ext4_read_folio, 3631 .readahead = ext4_readahead, 3632 .writepage = ext4_writepage, 3633 .writepages = ext4_writepages, 3634 .write_begin = ext4_write_begin, 3635 .write_end = ext4_write_end, 3636 .dirty_folio = ext4_dirty_folio, 3637 .bmap = ext4_bmap, 3638 .invalidate_folio = ext4_invalidate_folio, 3639 .release_folio = ext4_release_folio, 3640 .direct_IO = noop_direct_IO, 3641 .migratepage = buffer_migrate_page, 3642 .is_partially_uptodate = block_is_partially_uptodate, 3643 .error_remove_page = generic_error_remove_page, 3644 .swap_activate = ext4_iomap_swap_activate, 3645 }; 3646 3647 static const struct address_space_operations ext4_journalled_aops = { 3648 .read_folio = ext4_read_folio, 3649 .readahead = ext4_readahead, 3650 .writepage = ext4_writepage, 3651 .writepages = ext4_writepages, 3652 .write_begin = ext4_write_begin, 3653 .write_end = ext4_journalled_write_end, 3654 .dirty_folio = ext4_journalled_dirty_folio, 3655 .bmap = ext4_bmap, 3656 .invalidate_folio = ext4_journalled_invalidate_folio, 3657 .release_folio = ext4_release_folio, 3658 .direct_IO = noop_direct_IO, 3659 .is_partially_uptodate = block_is_partially_uptodate, 3660 .error_remove_page = generic_error_remove_page, 3661 .swap_activate = ext4_iomap_swap_activate, 3662 }; 3663 3664 static const struct address_space_operations ext4_da_aops = { 3665 .read_folio = ext4_read_folio, 3666 .readahead = ext4_readahead, 3667 .writepage = ext4_writepage, 3668 .writepages = ext4_writepages, 3669 .write_begin = ext4_da_write_begin, 3670 .write_end = ext4_da_write_end, 3671 .dirty_folio = ext4_dirty_folio, 3672 .bmap = ext4_bmap, 3673 .invalidate_folio = ext4_invalidate_folio, 3674 .release_folio = ext4_release_folio, 3675 .direct_IO = noop_direct_IO, 3676 .migratepage = buffer_migrate_page, 3677 .is_partially_uptodate = block_is_partially_uptodate, 3678 .error_remove_page = generic_error_remove_page, 3679 .swap_activate = ext4_iomap_swap_activate, 3680 }; 3681 3682 static const struct address_space_operations ext4_dax_aops = { 3683 .writepages = ext4_dax_writepages, 3684 .direct_IO = noop_direct_IO, 3685 .dirty_folio = noop_dirty_folio, 3686 .bmap = ext4_bmap, 3687 .swap_activate = ext4_iomap_swap_activate, 3688 }; 3689 3690 void ext4_set_aops(struct inode *inode) 3691 { 3692 switch (ext4_inode_journal_mode(inode)) { 3693 case EXT4_INODE_ORDERED_DATA_MODE: 3694 case EXT4_INODE_WRITEBACK_DATA_MODE: 3695 break; 3696 case EXT4_INODE_JOURNAL_DATA_MODE: 3697 inode->i_mapping->a_ops = &ext4_journalled_aops; 3698 return; 3699 default: 3700 BUG(); 3701 } 3702 if (IS_DAX(inode)) 3703 inode->i_mapping->a_ops = &ext4_dax_aops; 3704 else if (test_opt(inode->i_sb, DELALLOC)) 3705 inode->i_mapping->a_ops = &ext4_da_aops; 3706 else 3707 inode->i_mapping->a_ops = &ext4_aops; 3708 } 3709 3710 static int __ext4_block_zero_page_range(handle_t *handle, 3711 struct address_space *mapping, loff_t from, loff_t length) 3712 { 3713 ext4_fsblk_t index = from >> PAGE_SHIFT; 3714 unsigned offset = from & (PAGE_SIZE-1); 3715 unsigned blocksize, pos; 3716 ext4_lblk_t iblock; 3717 struct inode *inode = mapping->host; 3718 struct buffer_head *bh; 3719 struct page *page; 3720 int err = 0; 3721 3722 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3723 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3724 if (!page) 3725 return -ENOMEM; 3726 3727 blocksize = inode->i_sb->s_blocksize; 3728 3729 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3730 3731 if (!page_has_buffers(page)) 3732 create_empty_buffers(page, blocksize, 0); 3733 3734 /* Find the buffer that contains "offset" */ 3735 bh = page_buffers(page); 3736 pos = blocksize; 3737 while (offset >= pos) { 3738 bh = bh->b_this_page; 3739 iblock++; 3740 pos += blocksize; 3741 } 3742 if (buffer_freed(bh)) { 3743 BUFFER_TRACE(bh, "freed: skip"); 3744 goto unlock; 3745 } 3746 if (!buffer_mapped(bh)) { 3747 BUFFER_TRACE(bh, "unmapped"); 3748 ext4_get_block(inode, iblock, bh, 0); 3749 /* unmapped? It's a hole - nothing to do */ 3750 if (!buffer_mapped(bh)) { 3751 BUFFER_TRACE(bh, "still unmapped"); 3752 goto unlock; 3753 } 3754 } 3755 3756 /* Ok, it's mapped. Make sure it's up-to-date */ 3757 if (PageUptodate(page)) 3758 set_buffer_uptodate(bh); 3759 3760 if (!buffer_uptodate(bh)) { 3761 err = ext4_read_bh_lock(bh, 0, true); 3762 if (err) 3763 goto unlock; 3764 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3765 /* We expect the key to be set. */ 3766 BUG_ON(!fscrypt_has_encryption_key(inode)); 3767 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3768 bh_offset(bh)); 3769 if (err) { 3770 clear_buffer_uptodate(bh); 3771 goto unlock; 3772 } 3773 } 3774 } 3775 if (ext4_should_journal_data(inode)) { 3776 BUFFER_TRACE(bh, "get write access"); 3777 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3778 EXT4_JTR_NONE); 3779 if (err) 3780 goto unlock; 3781 } 3782 zero_user(page, offset, length); 3783 BUFFER_TRACE(bh, "zeroed end of block"); 3784 3785 if (ext4_should_journal_data(inode)) { 3786 err = ext4_handle_dirty_metadata(handle, inode, bh); 3787 } else { 3788 err = 0; 3789 mark_buffer_dirty(bh); 3790 if (ext4_should_order_data(inode)) 3791 err = ext4_jbd2_inode_add_write(handle, inode, from, 3792 length); 3793 } 3794 3795 unlock: 3796 unlock_page(page); 3797 put_page(page); 3798 return err; 3799 } 3800 3801 /* 3802 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3803 * starting from file offset 'from'. The range to be zero'd must 3804 * be contained with in one block. If the specified range exceeds 3805 * the end of the block it will be shortened to end of the block 3806 * that corresponds to 'from' 3807 */ 3808 static int ext4_block_zero_page_range(handle_t *handle, 3809 struct address_space *mapping, loff_t from, loff_t length) 3810 { 3811 struct inode *inode = mapping->host; 3812 unsigned offset = from & (PAGE_SIZE-1); 3813 unsigned blocksize = inode->i_sb->s_blocksize; 3814 unsigned max = blocksize - (offset & (blocksize - 1)); 3815 3816 /* 3817 * correct length if it does not fall between 3818 * 'from' and the end of the block 3819 */ 3820 if (length > max || length < 0) 3821 length = max; 3822 3823 if (IS_DAX(inode)) { 3824 return dax_zero_range(inode, from, length, NULL, 3825 &ext4_iomap_ops); 3826 } 3827 return __ext4_block_zero_page_range(handle, mapping, from, length); 3828 } 3829 3830 /* 3831 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3832 * up to the end of the block which corresponds to `from'. 3833 * This required during truncate. We need to physically zero the tail end 3834 * of that block so it doesn't yield old data if the file is later grown. 3835 */ 3836 static int ext4_block_truncate_page(handle_t *handle, 3837 struct address_space *mapping, loff_t from) 3838 { 3839 unsigned offset = from & (PAGE_SIZE-1); 3840 unsigned length; 3841 unsigned blocksize; 3842 struct inode *inode = mapping->host; 3843 3844 /* If we are processing an encrypted inode during orphan list handling */ 3845 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3846 return 0; 3847 3848 blocksize = inode->i_sb->s_blocksize; 3849 length = blocksize - (offset & (blocksize - 1)); 3850 3851 return ext4_block_zero_page_range(handle, mapping, from, length); 3852 } 3853 3854 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3855 loff_t lstart, loff_t length) 3856 { 3857 struct super_block *sb = inode->i_sb; 3858 struct address_space *mapping = inode->i_mapping; 3859 unsigned partial_start, partial_end; 3860 ext4_fsblk_t start, end; 3861 loff_t byte_end = (lstart + length - 1); 3862 int err = 0; 3863 3864 partial_start = lstart & (sb->s_blocksize - 1); 3865 partial_end = byte_end & (sb->s_blocksize - 1); 3866 3867 start = lstart >> sb->s_blocksize_bits; 3868 end = byte_end >> sb->s_blocksize_bits; 3869 3870 /* Handle partial zero within the single block */ 3871 if (start == end && 3872 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3873 err = ext4_block_zero_page_range(handle, mapping, 3874 lstart, length); 3875 return err; 3876 } 3877 /* Handle partial zero out on the start of the range */ 3878 if (partial_start) { 3879 err = ext4_block_zero_page_range(handle, mapping, 3880 lstart, sb->s_blocksize); 3881 if (err) 3882 return err; 3883 } 3884 /* Handle partial zero out on the end of the range */ 3885 if (partial_end != sb->s_blocksize - 1) 3886 err = ext4_block_zero_page_range(handle, mapping, 3887 byte_end - partial_end, 3888 partial_end + 1); 3889 return err; 3890 } 3891 3892 int ext4_can_truncate(struct inode *inode) 3893 { 3894 if (S_ISREG(inode->i_mode)) 3895 return 1; 3896 if (S_ISDIR(inode->i_mode)) 3897 return 1; 3898 if (S_ISLNK(inode->i_mode)) 3899 return !ext4_inode_is_fast_symlink(inode); 3900 return 0; 3901 } 3902 3903 /* 3904 * We have to make sure i_disksize gets properly updated before we truncate 3905 * page cache due to hole punching or zero range. Otherwise i_disksize update 3906 * can get lost as it may have been postponed to submission of writeback but 3907 * that will never happen after we truncate page cache. 3908 */ 3909 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3910 loff_t len) 3911 { 3912 handle_t *handle; 3913 int ret; 3914 3915 loff_t size = i_size_read(inode); 3916 3917 WARN_ON(!inode_is_locked(inode)); 3918 if (offset > size || offset + len < size) 3919 return 0; 3920 3921 if (EXT4_I(inode)->i_disksize >= size) 3922 return 0; 3923 3924 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3925 if (IS_ERR(handle)) 3926 return PTR_ERR(handle); 3927 ext4_update_i_disksize(inode, size); 3928 ret = ext4_mark_inode_dirty(handle, inode); 3929 ext4_journal_stop(handle); 3930 3931 return ret; 3932 } 3933 3934 static void ext4_wait_dax_page(struct inode *inode) 3935 { 3936 filemap_invalidate_unlock(inode->i_mapping); 3937 schedule(); 3938 filemap_invalidate_lock(inode->i_mapping); 3939 } 3940 3941 int ext4_break_layouts(struct inode *inode) 3942 { 3943 struct page *page; 3944 int error; 3945 3946 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3947 return -EINVAL; 3948 3949 do { 3950 page = dax_layout_busy_page(inode->i_mapping); 3951 if (!page) 3952 return 0; 3953 3954 error = ___wait_var_event(&page->_refcount, 3955 atomic_read(&page->_refcount) == 1, 3956 TASK_INTERRUPTIBLE, 0, 0, 3957 ext4_wait_dax_page(inode)); 3958 } while (error == 0); 3959 3960 return error; 3961 } 3962 3963 /* 3964 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3965 * associated with the given offset and length 3966 * 3967 * @inode: File inode 3968 * @offset: The offset where the hole will begin 3969 * @len: The length of the hole 3970 * 3971 * Returns: 0 on success or negative on failure 3972 */ 3973 3974 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3975 { 3976 struct inode *inode = file_inode(file); 3977 struct super_block *sb = inode->i_sb; 3978 ext4_lblk_t first_block, stop_block; 3979 struct address_space *mapping = inode->i_mapping; 3980 loff_t first_block_offset, last_block_offset, max_length; 3981 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3982 handle_t *handle; 3983 unsigned int credits; 3984 int ret = 0, ret2 = 0; 3985 3986 trace_ext4_punch_hole(inode, offset, length, 0); 3987 3988 /* 3989 * Write out all dirty pages to avoid race conditions 3990 * Then release them. 3991 */ 3992 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3993 ret = filemap_write_and_wait_range(mapping, offset, 3994 offset + length - 1); 3995 if (ret) 3996 return ret; 3997 } 3998 3999 inode_lock(inode); 4000 4001 /* No need to punch hole beyond i_size */ 4002 if (offset >= inode->i_size) 4003 goto out_mutex; 4004 4005 /* 4006 * If the hole extends beyond i_size, set the hole 4007 * to end after the page that contains i_size 4008 */ 4009 if (offset + length > inode->i_size) { 4010 length = inode->i_size + 4011 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4012 offset; 4013 } 4014 4015 /* 4016 * For punch hole the length + offset needs to be within one block 4017 * before last range. Adjust the length if it goes beyond that limit. 4018 */ 4019 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 4020 if (offset + length > max_length) 4021 length = max_length - offset; 4022 4023 if (offset & (sb->s_blocksize - 1) || 4024 (offset + length) & (sb->s_blocksize - 1)) { 4025 /* 4026 * Attach jinode to inode for jbd2 if we do any zeroing of 4027 * partial block 4028 */ 4029 ret = ext4_inode_attach_jinode(inode); 4030 if (ret < 0) 4031 goto out_mutex; 4032 4033 } 4034 4035 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4036 inode_dio_wait(inode); 4037 4038 ret = file_modified(file); 4039 if (ret) 4040 goto out_mutex; 4041 4042 /* 4043 * Prevent page faults from reinstantiating pages we have released from 4044 * page cache. 4045 */ 4046 filemap_invalidate_lock(mapping); 4047 4048 ret = ext4_break_layouts(inode); 4049 if (ret) 4050 goto out_dio; 4051 4052 first_block_offset = round_up(offset, sb->s_blocksize); 4053 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4054 4055 /* Now release the pages and zero block aligned part of pages*/ 4056 if (last_block_offset > first_block_offset) { 4057 ret = ext4_update_disksize_before_punch(inode, offset, length); 4058 if (ret) 4059 goto out_dio; 4060 truncate_pagecache_range(inode, first_block_offset, 4061 last_block_offset); 4062 } 4063 4064 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4065 credits = ext4_writepage_trans_blocks(inode); 4066 else 4067 credits = ext4_blocks_for_truncate(inode); 4068 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4069 if (IS_ERR(handle)) { 4070 ret = PTR_ERR(handle); 4071 ext4_std_error(sb, ret); 4072 goto out_dio; 4073 } 4074 4075 ret = ext4_zero_partial_blocks(handle, inode, offset, 4076 length); 4077 if (ret) 4078 goto out_stop; 4079 4080 first_block = (offset + sb->s_blocksize - 1) >> 4081 EXT4_BLOCK_SIZE_BITS(sb); 4082 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4083 4084 /* If there are blocks to remove, do it */ 4085 if (stop_block > first_block) { 4086 4087 down_write(&EXT4_I(inode)->i_data_sem); 4088 ext4_discard_preallocations(inode, 0); 4089 4090 ret = ext4_es_remove_extent(inode, first_block, 4091 stop_block - first_block); 4092 if (ret) { 4093 up_write(&EXT4_I(inode)->i_data_sem); 4094 goto out_stop; 4095 } 4096 4097 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4098 ret = ext4_ext_remove_space(inode, first_block, 4099 stop_block - 1); 4100 else 4101 ret = ext4_ind_remove_space(handle, inode, first_block, 4102 stop_block); 4103 4104 up_write(&EXT4_I(inode)->i_data_sem); 4105 } 4106 ext4_fc_track_range(handle, inode, first_block, stop_block); 4107 if (IS_SYNC(inode)) 4108 ext4_handle_sync(handle); 4109 4110 inode->i_mtime = inode->i_ctime = current_time(inode); 4111 ret2 = ext4_mark_inode_dirty(handle, inode); 4112 if (unlikely(ret2)) 4113 ret = ret2; 4114 if (ret >= 0) 4115 ext4_update_inode_fsync_trans(handle, inode, 1); 4116 out_stop: 4117 ext4_journal_stop(handle); 4118 out_dio: 4119 filemap_invalidate_unlock(mapping); 4120 out_mutex: 4121 inode_unlock(inode); 4122 return ret; 4123 } 4124 4125 int ext4_inode_attach_jinode(struct inode *inode) 4126 { 4127 struct ext4_inode_info *ei = EXT4_I(inode); 4128 struct jbd2_inode *jinode; 4129 4130 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4131 return 0; 4132 4133 jinode = jbd2_alloc_inode(GFP_KERNEL); 4134 spin_lock(&inode->i_lock); 4135 if (!ei->jinode) { 4136 if (!jinode) { 4137 spin_unlock(&inode->i_lock); 4138 return -ENOMEM; 4139 } 4140 ei->jinode = jinode; 4141 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4142 jinode = NULL; 4143 } 4144 spin_unlock(&inode->i_lock); 4145 if (unlikely(jinode != NULL)) 4146 jbd2_free_inode(jinode); 4147 return 0; 4148 } 4149 4150 /* 4151 * ext4_truncate() 4152 * 4153 * We block out ext4_get_block() block instantiations across the entire 4154 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4155 * simultaneously on behalf of the same inode. 4156 * 4157 * As we work through the truncate and commit bits of it to the journal there 4158 * is one core, guiding principle: the file's tree must always be consistent on 4159 * disk. We must be able to restart the truncate after a crash. 4160 * 4161 * The file's tree may be transiently inconsistent in memory (although it 4162 * probably isn't), but whenever we close off and commit a journal transaction, 4163 * the contents of (the filesystem + the journal) must be consistent and 4164 * restartable. It's pretty simple, really: bottom up, right to left (although 4165 * left-to-right works OK too). 4166 * 4167 * Note that at recovery time, journal replay occurs *before* the restart of 4168 * truncate against the orphan inode list. 4169 * 4170 * The committed inode has the new, desired i_size (which is the same as 4171 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4172 * that this inode's truncate did not complete and it will again call 4173 * ext4_truncate() to have another go. So there will be instantiated blocks 4174 * to the right of the truncation point in a crashed ext4 filesystem. But 4175 * that's fine - as long as they are linked from the inode, the post-crash 4176 * ext4_truncate() run will find them and release them. 4177 */ 4178 int ext4_truncate(struct inode *inode) 4179 { 4180 struct ext4_inode_info *ei = EXT4_I(inode); 4181 unsigned int credits; 4182 int err = 0, err2; 4183 handle_t *handle; 4184 struct address_space *mapping = inode->i_mapping; 4185 4186 /* 4187 * There is a possibility that we're either freeing the inode 4188 * or it's a completely new inode. In those cases we might not 4189 * have i_rwsem locked because it's not necessary. 4190 */ 4191 if (!(inode->i_state & (I_NEW|I_FREEING))) 4192 WARN_ON(!inode_is_locked(inode)); 4193 trace_ext4_truncate_enter(inode); 4194 4195 if (!ext4_can_truncate(inode)) 4196 goto out_trace; 4197 4198 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4199 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4200 4201 if (ext4_has_inline_data(inode)) { 4202 int has_inline = 1; 4203 4204 err = ext4_inline_data_truncate(inode, &has_inline); 4205 if (err || has_inline) 4206 goto out_trace; 4207 } 4208 4209 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4210 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4211 if (ext4_inode_attach_jinode(inode) < 0) 4212 goto out_trace; 4213 } 4214 4215 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4216 credits = ext4_writepage_trans_blocks(inode); 4217 else 4218 credits = ext4_blocks_for_truncate(inode); 4219 4220 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4221 if (IS_ERR(handle)) { 4222 err = PTR_ERR(handle); 4223 goto out_trace; 4224 } 4225 4226 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4227 ext4_block_truncate_page(handle, mapping, inode->i_size); 4228 4229 /* 4230 * We add the inode to the orphan list, so that if this 4231 * truncate spans multiple transactions, and we crash, we will 4232 * resume the truncate when the filesystem recovers. It also 4233 * marks the inode dirty, to catch the new size. 4234 * 4235 * Implication: the file must always be in a sane, consistent 4236 * truncatable state while each transaction commits. 4237 */ 4238 err = ext4_orphan_add(handle, inode); 4239 if (err) 4240 goto out_stop; 4241 4242 down_write(&EXT4_I(inode)->i_data_sem); 4243 4244 ext4_discard_preallocations(inode, 0); 4245 4246 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4247 err = ext4_ext_truncate(handle, inode); 4248 else 4249 ext4_ind_truncate(handle, inode); 4250 4251 up_write(&ei->i_data_sem); 4252 if (err) 4253 goto out_stop; 4254 4255 if (IS_SYNC(inode)) 4256 ext4_handle_sync(handle); 4257 4258 out_stop: 4259 /* 4260 * If this was a simple ftruncate() and the file will remain alive, 4261 * then we need to clear up the orphan record which we created above. 4262 * However, if this was a real unlink then we were called by 4263 * ext4_evict_inode(), and we allow that function to clean up the 4264 * orphan info for us. 4265 */ 4266 if (inode->i_nlink) 4267 ext4_orphan_del(handle, inode); 4268 4269 inode->i_mtime = inode->i_ctime = current_time(inode); 4270 err2 = ext4_mark_inode_dirty(handle, inode); 4271 if (unlikely(err2 && !err)) 4272 err = err2; 4273 ext4_journal_stop(handle); 4274 4275 out_trace: 4276 trace_ext4_truncate_exit(inode); 4277 return err; 4278 } 4279 4280 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4281 { 4282 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4283 return inode_peek_iversion_raw(inode); 4284 else 4285 return inode_peek_iversion(inode); 4286 } 4287 4288 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4289 struct ext4_inode_info *ei) 4290 { 4291 struct inode *inode = &(ei->vfs_inode); 4292 u64 i_blocks = READ_ONCE(inode->i_blocks); 4293 struct super_block *sb = inode->i_sb; 4294 4295 if (i_blocks <= ~0U) { 4296 /* 4297 * i_blocks can be represented in a 32 bit variable 4298 * as multiple of 512 bytes 4299 */ 4300 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4301 raw_inode->i_blocks_high = 0; 4302 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4303 return 0; 4304 } 4305 4306 /* 4307 * This should never happen since sb->s_maxbytes should not have 4308 * allowed this, sb->s_maxbytes was set according to the huge_file 4309 * feature in ext4_fill_super(). 4310 */ 4311 if (!ext4_has_feature_huge_file(sb)) 4312 return -EFSCORRUPTED; 4313 4314 if (i_blocks <= 0xffffffffffffULL) { 4315 /* 4316 * i_blocks can be represented in a 48 bit variable 4317 * as multiple of 512 bytes 4318 */ 4319 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4320 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4321 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4322 } else { 4323 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4324 /* i_block is stored in file system block size */ 4325 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4326 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4327 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4328 } 4329 return 0; 4330 } 4331 4332 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4333 { 4334 struct ext4_inode_info *ei = EXT4_I(inode); 4335 uid_t i_uid; 4336 gid_t i_gid; 4337 projid_t i_projid; 4338 int block; 4339 int err; 4340 4341 err = ext4_inode_blocks_set(raw_inode, ei); 4342 4343 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4344 i_uid = i_uid_read(inode); 4345 i_gid = i_gid_read(inode); 4346 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4347 if (!(test_opt(inode->i_sb, NO_UID32))) { 4348 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4349 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4350 /* 4351 * Fix up interoperability with old kernels. Otherwise, 4352 * old inodes get re-used with the upper 16 bits of the 4353 * uid/gid intact. 4354 */ 4355 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4356 raw_inode->i_uid_high = 0; 4357 raw_inode->i_gid_high = 0; 4358 } else { 4359 raw_inode->i_uid_high = 4360 cpu_to_le16(high_16_bits(i_uid)); 4361 raw_inode->i_gid_high = 4362 cpu_to_le16(high_16_bits(i_gid)); 4363 } 4364 } else { 4365 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4366 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4367 raw_inode->i_uid_high = 0; 4368 raw_inode->i_gid_high = 0; 4369 } 4370 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4371 4372 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4373 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4374 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4375 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4376 4377 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4378 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4379 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4380 raw_inode->i_file_acl_high = 4381 cpu_to_le16(ei->i_file_acl >> 32); 4382 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4383 ext4_isize_set(raw_inode, ei->i_disksize); 4384 4385 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4386 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4387 if (old_valid_dev(inode->i_rdev)) { 4388 raw_inode->i_block[0] = 4389 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4390 raw_inode->i_block[1] = 0; 4391 } else { 4392 raw_inode->i_block[0] = 0; 4393 raw_inode->i_block[1] = 4394 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4395 raw_inode->i_block[2] = 0; 4396 } 4397 } else if (!ext4_has_inline_data(inode)) { 4398 for (block = 0; block < EXT4_N_BLOCKS; block++) 4399 raw_inode->i_block[block] = ei->i_data[block]; 4400 } 4401 4402 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4403 u64 ivers = ext4_inode_peek_iversion(inode); 4404 4405 raw_inode->i_disk_version = cpu_to_le32(ivers); 4406 if (ei->i_extra_isize) { 4407 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4408 raw_inode->i_version_hi = 4409 cpu_to_le32(ivers >> 32); 4410 raw_inode->i_extra_isize = 4411 cpu_to_le16(ei->i_extra_isize); 4412 } 4413 } 4414 4415 if (i_projid != EXT4_DEF_PROJID && 4416 !ext4_has_feature_project(inode->i_sb)) 4417 err = err ?: -EFSCORRUPTED; 4418 4419 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4420 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4421 raw_inode->i_projid = cpu_to_le32(i_projid); 4422 4423 ext4_inode_csum_set(inode, raw_inode, ei); 4424 return err; 4425 } 4426 4427 /* 4428 * ext4_get_inode_loc returns with an extra refcount against the inode's 4429 * underlying buffer_head on success. If we pass 'inode' and it does not 4430 * have in-inode xattr, we have all inode data in memory that is needed 4431 * to recreate the on-disk version of this inode. 4432 */ 4433 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4434 struct inode *inode, struct ext4_iloc *iloc, 4435 ext4_fsblk_t *ret_block) 4436 { 4437 struct ext4_group_desc *gdp; 4438 struct buffer_head *bh; 4439 ext4_fsblk_t block; 4440 struct blk_plug plug; 4441 int inodes_per_block, inode_offset; 4442 4443 iloc->bh = NULL; 4444 if (ino < EXT4_ROOT_INO || 4445 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4446 return -EFSCORRUPTED; 4447 4448 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4449 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4450 if (!gdp) 4451 return -EIO; 4452 4453 /* 4454 * Figure out the offset within the block group inode table 4455 */ 4456 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4457 inode_offset = ((ino - 1) % 4458 EXT4_INODES_PER_GROUP(sb)); 4459 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4460 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4461 4462 bh = sb_getblk(sb, block); 4463 if (unlikely(!bh)) 4464 return -ENOMEM; 4465 if (ext4_buffer_uptodate(bh)) 4466 goto has_buffer; 4467 4468 lock_buffer(bh); 4469 if (ext4_buffer_uptodate(bh)) { 4470 /* Someone brought it uptodate while we waited */ 4471 unlock_buffer(bh); 4472 goto has_buffer; 4473 } 4474 4475 /* 4476 * If we have all information of the inode in memory and this 4477 * is the only valid inode in the block, we need not read the 4478 * block. 4479 */ 4480 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4481 struct buffer_head *bitmap_bh; 4482 int i, start; 4483 4484 start = inode_offset & ~(inodes_per_block - 1); 4485 4486 /* Is the inode bitmap in cache? */ 4487 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4488 if (unlikely(!bitmap_bh)) 4489 goto make_io; 4490 4491 /* 4492 * If the inode bitmap isn't in cache then the 4493 * optimisation may end up performing two reads instead 4494 * of one, so skip it. 4495 */ 4496 if (!buffer_uptodate(bitmap_bh)) { 4497 brelse(bitmap_bh); 4498 goto make_io; 4499 } 4500 for (i = start; i < start + inodes_per_block; i++) { 4501 if (i == inode_offset) 4502 continue; 4503 if (ext4_test_bit(i, bitmap_bh->b_data)) 4504 break; 4505 } 4506 brelse(bitmap_bh); 4507 if (i == start + inodes_per_block) { 4508 struct ext4_inode *raw_inode = 4509 (struct ext4_inode *) (bh->b_data + iloc->offset); 4510 4511 /* all other inodes are free, so skip I/O */ 4512 memset(bh->b_data, 0, bh->b_size); 4513 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4514 ext4_fill_raw_inode(inode, raw_inode); 4515 set_buffer_uptodate(bh); 4516 unlock_buffer(bh); 4517 goto has_buffer; 4518 } 4519 } 4520 4521 make_io: 4522 /* 4523 * If we need to do any I/O, try to pre-readahead extra 4524 * blocks from the inode table. 4525 */ 4526 blk_start_plug(&plug); 4527 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4528 ext4_fsblk_t b, end, table; 4529 unsigned num; 4530 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4531 4532 table = ext4_inode_table(sb, gdp); 4533 /* s_inode_readahead_blks is always a power of 2 */ 4534 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4535 if (table > b) 4536 b = table; 4537 end = b + ra_blks; 4538 num = EXT4_INODES_PER_GROUP(sb); 4539 if (ext4_has_group_desc_csum(sb)) 4540 num -= ext4_itable_unused_count(sb, gdp); 4541 table += num / inodes_per_block; 4542 if (end > table) 4543 end = table; 4544 while (b <= end) 4545 ext4_sb_breadahead_unmovable(sb, b++); 4546 } 4547 4548 /* 4549 * There are other valid inodes in the buffer, this inode 4550 * has in-inode xattrs, or we don't have this inode in memory. 4551 * Read the block from disk. 4552 */ 4553 trace_ext4_load_inode(sb, ino); 4554 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4555 blk_finish_plug(&plug); 4556 wait_on_buffer(bh); 4557 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4558 if (!buffer_uptodate(bh)) { 4559 if (ret_block) 4560 *ret_block = block; 4561 brelse(bh); 4562 return -EIO; 4563 } 4564 has_buffer: 4565 iloc->bh = bh; 4566 return 0; 4567 } 4568 4569 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4570 struct ext4_iloc *iloc) 4571 { 4572 ext4_fsblk_t err_blk = 0; 4573 int ret; 4574 4575 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4576 &err_blk); 4577 4578 if (ret == -EIO) 4579 ext4_error_inode_block(inode, err_blk, EIO, 4580 "unable to read itable block"); 4581 4582 return ret; 4583 } 4584 4585 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4586 { 4587 ext4_fsblk_t err_blk = 0; 4588 int ret; 4589 4590 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4591 &err_blk); 4592 4593 if (ret == -EIO) 4594 ext4_error_inode_block(inode, err_blk, EIO, 4595 "unable to read itable block"); 4596 4597 return ret; 4598 } 4599 4600 4601 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4602 struct ext4_iloc *iloc) 4603 { 4604 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4605 } 4606 4607 static bool ext4_should_enable_dax(struct inode *inode) 4608 { 4609 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4610 4611 if (test_opt2(inode->i_sb, DAX_NEVER)) 4612 return false; 4613 if (!S_ISREG(inode->i_mode)) 4614 return false; 4615 if (ext4_should_journal_data(inode)) 4616 return false; 4617 if (ext4_has_inline_data(inode)) 4618 return false; 4619 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4620 return false; 4621 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4622 return false; 4623 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4624 return false; 4625 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4626 return true; 4627 4628 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4629 } 4630 4631 void ext4_set_inode_flags(struct inode *inode, bool init) 4632 { 4633 unsigned int flags = EXT4_I(inode)->i_flags; 4634 unsigned int new_fl = 0; 4635 4636 WARN_ON_ONCE(IS_DAX(inode) && init); 4637 4638 if (flags & EXT4_SYNC_FL) 4639 new_fl |= S_SYNC; 4640 if (flags & EXT4_APPEND_FL) 4641 new_fl |= S_APPEND; 4642 if (flags & EXT4_IMMUTABLE_FL) 4643 new_fl |= S_IMMUTABLE; 4644 if (flags & EXT4_NOATIME_FL) 4645 new_fl |= S_NOATIME; 4646 if (flags & EXT4_DIRSYNC_FL) 4647 new_fl |= S_DIRSYNC; 4648 4649 /* Because of the way inode_set_flags() works we must preserve S_DAX 4650 * here if already set. */ 4651 new_fl |= (inode->i_flags & S_DAX); 4652 if (init && ext4_should_enable_dax(inode)) 4653 new_fl |= S_DAX; 4654 4655 if (flags & EXT4_ENCRYPT_FL) 4656 new_fl |= S_ENCRYPTED; 4657 if (flags & EXT4_CASEFOLD_FL) 4658 new_fl |= S_CASEFOLD; 4659 if (flags & EXT4_VERITY_FL) 4660 new_fl |= S_VERITY; 4661 inode_set_flags(inode, new_fl, 4662 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4663 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4664 } 4665 4666 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4667 struct ext4_inode_info *ei) 4668 { 4669 blkcnt_t i_blocks ; 4670 struct inode *inode = &(ei->vfs_inode); 4671 struct super_block *sb = inode->i_sb; 4672 4673 if (ext4_has_feature_huge_file(sb)) { 4674 /* we are using combined 48 bit field */ 4675 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4676 le32_to_cpu(raw_inode->i_blocks_lo); 4677 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4678 /* i_blocks represent file system block size */ 4679 return i_blocks << (inode->i_blkbits - 9); 4680 } else { 4681 return i_blocks; 4682 } 4683 } else { 4684 return le32_to_cpu(raw_inode->i_blocks_lo); 4685 } 4686 } 4687 4688 static inline int ext4_iget_extra_inode(struct inode *inode, 4689 struct ext4_inode *raw_inode, 4690 struct ext4_inode_info *ei) 4691 { 4692 __le32 *magic = (void *)raw_inode + 4693 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4694 4695 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4696 EXT4_INODE_SIZE(inode->i_sb) && 4697 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4698 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4699 return ext4_find_inline_data_nolock(inode); 4700 } else 4701 EXT4_I(inode)->i_inline_off = 0; 4702 return 0; 4703 } 4704 4705 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4706 { 4707 if (!ext4_has_feature_project(inode->i_sb)) 4708 return -EOPNOTSUPP; 4709 *projid = EXT4_I(inode)->i_projid; 4710 return 0; 4711 } 4712 4713 /* 4714 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4715 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4716 * set. 4717 */ 4718 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4719 { 4720 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4721 inode_set_iversion_raw(inode, val); 4722 else 4723 inode_set_iversion_queried(inode, val); 4724 } 4725 4726 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4727 ext4_iget_flags flags, const char *function, 4728 unsigned int line) 4729 { 4730 struct ext4_iloc iloc; 4731 struct ext4_inode *raw_inode; 4732 struct ext4_inode_info *ei; 4733 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4734 struct inode *inode; 4735 journal_t *journal = EXT4_SB(sb)->s_journal; 4736 long ret; 4737 loff_t size; 4738 int block; 4739 uid_t i_uid; 4740 gid_t i_gid; 4741 projid_t i_projid; 4742 4743 if ((!(flags & EXT4_IGET_SPECIAL) && 4744 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4745 ino == le32_to_cpu(es->s_usr_quota_inum) || 4746 ino == le32_to_cpu(es->s_grp_quota_inum) || 4747 ino == le32_to_cpu(es->s_prj_quota_inum) || 4748 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4749 (ino < EXT4_ROOT_INO) || 4750 (ino > le32_to_cpu(es->s_inodes_count))) { 4751 if (flags & EXT4_IGET_HANDLE) 4752 return ERR_PTR(-ESTALE); 4753 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4754 "inode #%lu: comm %s: iget: illegal inode #", 4755 ino, current->comm); 4756 return ERR_PTR(-EFSCORRUPTED); 4757 } 4758 4759 inode = iget_locked(sb, ino); 4760 if (!inode) 4761 return ERR_PTR(-ENOMEM); 4762 if (!(inode->i_state & I_NEW)) 4763 return inode; 4764 4765 ei = EXT4_I(inode); 4766 iloc.bh = NULL; 4767 4768 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4769 if (ret < 0) 4770 goto bad_inode; 4771 raw_inode = ext4_raw_inode(&iloc); 4772 4773 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4774 ext4_error_inode(inode, function, line, 0, 4775 "iget: root inode unallocated"); 4776 ret = -EFSCORRUPTED; 4777 goto bad_inode; 4778 } 4779 4780 if ((flags & EXT4_IGET_HANDLE) && 4781 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4782 ret = -ESTALE; 4783 goto bad_inode; 4784 } 4785 4786 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4787 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4788 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4789 EXT4_INODE_SIZE(inode->i_sb) || 4790 (ei->i_extra_isize & 3)) { 4791 ext4_error_inode(inode, function, line, 0, 4792 "iget: bad extra_isize %u " 4793 "(inode size %u)", 4794 ei->i_extra_isize, 4795 EXT4_INODE_SIZE(inode->i_sb)); 4796 ret = -EFSCORRUPTED; 4797 goto bad_inode; 4798 } 4799 } else 4800 ei->i_extra_isize = 0; 4801 4802 /* Precompute checksum seed for inode metadata */ 4803 if (ext4_has_metadata_csum(sb)) { 4804 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4805 __u32 csum; 4806 __le32 inum = cpu_to_le32(inode->i_ino); 4807 __le32 gen = raw_inode->i_generation; 4808 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4809 sizeof(inum)); 4810 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4811 sizeof(gen)); 4812 } 4813 4814 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4815 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4816 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4817 ext4_error_inode_err(inode, function, line, 0, 4818 EFSBADCRC, "iget: checksum invalid"); 4819 ret = -EFSBADCRC; 4820 goto bad_inode; 4821 } 4822 4823 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4824 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4825 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4826 if (ext4_has_feature_project(sb) && 4827 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4828 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4829 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4830 else 4831 i_projid = EXT4_DEF_PROJID; 4832 4833 if (!(test_opt(inode->i_sb, NO_UID32))) { 4834 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4835 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4836 } 4837 i_uid_write(inode, i_uid); 4838 i_gid_write(inode, i_gid); 4839 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4840 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4841 4842 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4843 ei->i_inline_off = 0; 4844 ei->i_dir_start_lookup = 0; 4845 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4846 /* We now have enough fields to check if the inode was active or not. 4847 * This is needed because nfsd might try to access dead inodes 4848 * the test is that same one that e2fsck uses 4849 * NeilBrown 1999oct15 4850 */ 4851 if (inode->i_nlink == 0) { 4852 if ((inode->i_mode == 0 || 4853 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4854 ino != EXT4_BOOT_LOADER_INO) { 4855 /* this inode is deleted */ 4856 ret = -ESTALE; 4857 goto bad_inode; 4858 } 4859 /* The only unlinked inodes we let through here have 4860 * valid i_mode and are being read by the orphan 4861 * recovery code: that's fine, we're about to complete 4862 * the process of deleting those. 4863 * OR it is the EXT4_BOOT_LOADER_INO which is 4864 * not initialized on a new filesystem. */ 4865 } 4866 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4867 ext4_set_inode_flags(inode, true); 4868 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4869 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4870 if (ext4_has_feature_64bit(sb)) 4871 ei->i_file_acl |= 4872 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4873 inode->i_size = ext4_isize(sb, raw_inode); 4874 if ((size = i_size_read(inode)) < 0) { 4875 ext4_error_inode(inode, function, line, 0, 4876 "iget: bad i_size value: %lld", size); 4877 ret = -EFSCORRUPTED; 4878 goto bad_inode; 4879 } 4880 /* 4881 * If dir_index is not enabled but there's dir with INDEX flag set, 4882 * we'd normally treat htree data as empty space. But with metadata 4883 * checksumming that corrupts checksums so forbid that. 4884 */ 4885 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4886 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4887 ext4_error_inode(inode, function, line, 0, 4888 "iget: Dir with htree data on filesystem without dir_index feature."); 4889 ret = -EFSCORRUPTED; 4890 goto bad_inode; 4891 } 4892 ei->i_disksize = inode->i_size; 4893 #ifdef CONFIG_QUOTA 4894 ei->i_reserved_quota = 0; 4895 #endif 4896 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4897 ei->i_block_group = iloc.block_group; 4898 ei->i_last_alloc_group = ~0; 4899 /* 4900 * NOTE! The in-memory inode i_data array is in little-endian order 4901 * even on big-endian machines: we do NOT byteswap the block numbers! 4902 */ 4903 for (block = 0; block < EXT4_N_BLOCKS; block++) 4904 ei->i_data[block] = raw_inode->i_block[block]; 4905 INIT_LIST_HEAD(&ei->i_orphan); 4906 ext4_fc_init_inode(&ei->vfs_inode); 4907 4908 /* 4909 * Set transaction id's of transactions that have to be committed 4910 * to finish f[data]sync. We set them to currently running transaction 4911 * as we cannot be sure that the inode or some of its metadata isn't 4912 * part of the transaction - the inode could have been reclaimed and 4913 * now it is reread from disk. 4914 */ 4915 if (journal) { 4916 transaction_t *transaction; 4917 tid_t tid; 4918 4919 read_lock(&journal->j_state_lock); 4920 if (journal->j_running_transaction) 4921 transaction = journal->j_running_transaction; 4922 else 4923 transaction = journal->j_committing_transaction; 4924 if (transaction) 4925 tid = transaction->t_tid; 4926 else 4927 tid = journal->j_commit_sequence; 4928 read_unlock(&journal->j_state_lock); 4929 ei->i_sync_tid = tid; 4930 ei->i_datasync_tid = tid; 4931 } 4932 4933 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4934 if (ei->i_extra_isize == 0) { 4935 /* The extra space is currently unused. Use it. */ 4936 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4937 ei->i_extra_isize = sizeof(struct ext4_inode) - 4938 EXT4_GOOD_OLD_INODE_SIZE; 4939 } else { 4940 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4941 if (ret) 4942 goto bad_inode; 4943 } 4944 } 4945 4946 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4947 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4948 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4949 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4950 4951 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4952 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4953 4954 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4955 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4956 ivers |= 4957 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4958 } 4959 ext4_inode_set_iversion_queried(inode, ivers); 4960 } 4961 4962 ret = 0; 4963 if (ei->i_file_acl && 4964 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4965 ext4_error_inode(inode, function, line, 0, 4966 "iget: bad extended attribute block %llu", 4967 ei->i_file_acl); 4968 ret = -EFSCORRUPTED; 4969 goto bad_inode; 4970 } else if (!ext4_has_inline_data(inode)) { 4971 /* validate the block references in the inode */ 4972 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4973 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4974 (S_ISLNK(inode->i_mode) && 4975 !ext4_inode_is_fast_symlink(inode)))) { 4976 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4977 ret = ext4_ext_check_inode(inode); 4978 else 4979 ret = ext4_ind_check_inode(inode); 4980 } 4981 } 4982 if (ret) 4983 goto bad_inode; 4984 4985 if (S_ISREG(inode->i_mode)) { 4986 inode->i_op = &ext4_file_inode_operations; 4987 inode->i_fop = &ext4_file_operations; 4988 ext4_set_aops(inode); 4989 } else if (S_ISDIR(inode->i_mode)) { 4990 inode->i_op = &ext4_dir_inode_operations; 4991 inode->i_fop = &ext4_dir_operations; 4992 } else if (S_ISLNK(inode->i_mode)) { 4993 /* VFS does not allow setting these so must be corruption */ 4994 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4995 ext4_error_inode(inode, function, line, 0, 4996 "iget: immutable or append flags " 4997 "not allowed on symlinks"); 4998 ret = -EFSCORRUPTED; 4999 goto bad_inode; 5000 } 5001 if (IS_ENCRYPTED(inode)) { 5002 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5003 } else if (ext4_inode_is_fast_symlink(inode)) { 5004 inode->i_link = (char *)ei->i_data; 5005 inode->i_op = &ext4_fast_symlink_inode_operations; 5006 nd_terminate_link(ei->i_data, inode->i_size, 5007 sizeof(ei->i_data) - 1); 5008 } else { 5009 inode->i_op = &ext4_symlink_inode_operations; 5010 } 5011 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5012 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5013 inode->i_op = &ext4_special_inode_operations; 5014 if (raw_inode->i_block[0]) 5015 init_special_inode(inode, inode->i_mode, 5016 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5017 else 5018 init_special_inode(inode, inode->i_mode, 5019 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5020 } else if (ino == EXT4_BOOT_LOADER_INO) { 5021 make_bad_inode(inode); 5022 } else { 5023 ret = -EFSCORRUPTED; 5024 ext4_error_inode(inode, function, line, 0, 5025 "iget: bogus i_mode (%o)", inode->i_mode); 5026 goto bad_inode; 5027 } 5028 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5029 ext4_error_inode(inode, function, line, 0, 5030 "casefold flag without casefold feature"); 5031 brelse(iloc.bh); 5032 5033 unlock_new_inode(inode); 5034 return inode; 5035 5036 bad_inode: 5037 brelse(iloc.bh); 5038 iget_failed(inode); 5039 return ERR_PTR(ret); 5040 } 5041 5042 static void __ext4_update_other_inode_time(struct super_block *sb, 5043 unsigned long orig_ino, 5044 unsigned long ino, 5045 struct ext4_inode *raw_inode) 5046 { 5047 struct inode *inode; 5048 5049 inode = find_inode_by_ino_rcu(sb, ino); 5050 if (!inode) 5051 return; 5052 5053 if (!inode_is_dirtytime_only(inode)) 5054 return; 5055 5056 spin_lock(&inode->i_lock); 5057 if (inode_is_dirtytime_only(inode)) { 5058 struct ext4_inode_info *ei = EXT4_I(inode); 5059 5060 inode->i_state &= ~I_DIRTY_TIME; 5061 spin_unlock(&inode->i_lock); 5062 5063 spin_lock(&ei->i_raw_lock); 5064 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5065 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5066 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5067 ext4_inode_csum_set(inode, raw_inode, ei); 5068 spin_unlock(&ei->i_raw_lock); 5069 trace_ext4_other_inode_update_time(inode, orig_ino); 5070 return; 5071 } 5072 spin_unlock(&inode->i_lock); 5073 } 5074 5075 /* 5076 * Opportunistically update the other time fields for other inodes in 5077 * the same inode table block. 5078 */ 5079 static void ext4_update_other_inodes_time(struct super_block *sb, 5080 unsigned long orig_ino, char *buf) 5081 { 5082 unsigned long ino; 5083 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5084 int inode_size = EXT4_INODE_SIZE(sb); 5085 5086 /* 5087 * Calculate the first inode in the inode table block. Inode 5088 * numbers are one-based. That is, the first inode in a block 5089 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5090 */ 5091 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5092 rcu_read_lock(); 5093 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5094 if (ino == orig_ino) 5095 continue; 5096 __ext4_update_other_inode_time(sb, orig_ino, ino, 5097 (struct ext4_inode *)buf); 5098 } 5099 rcu_read_unlock(); 5100 } 5101 5102 /* 5103 * Post the struct inode info into an on-disk inode location in the 5104 * buffer-cache. This gobbles the caller's reference to the 5105 * buffer_head in the inode location struct. 5106 * 5107 * The caller must have write access to iloc->bh. 5108 */ 5109 static int ext4_do_update_inode(handle_t *handle, 5110 struct inode *inode, 5111 struct ext4_iloc *iloc) 5112 { 5113 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5114 struct ext4_inode_info *ei = EXT4_I(inode); 5115 struct buffer_head *bh = iloc->bh; 5116 struct super_block *sb = inode->i_sb; 5117 int err; 5118 int need_datasync = 0, set_large_file = 0; 5119 5120 spin_lock(&ei->i_raw_lock); 5121 5122 /* 5123 * For fields not tracked in the in-memory inode, initialise them 5124 * to zero for new inodes. 5125 */ 5126 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5127 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5128 5129 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5130 need_datasync = 1; 5131 if (ei->i_disksize > 0x7fffffffULL) { 5132 if (!ext4_has_feature_large_file(sb) || 5133 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5134 set_large_file = 1; 5135 } 5136 5137 err = ext4_fill_raw_inode(inode, raw_inode); 5138 spin_unlock(&ei->i_raw_lock); 5139 if (err) { 5140 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5141 goto out_brelse; 5142 } 5143 5144 if (inode->i_sb->s_flags & SB_LAZYTIME) 5145 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5146 bh->b_data); 5147 5148 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5149 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5150 if (err) 5151 goto out_error; 5152 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5153 if (set_large_file) { 5154 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5155 err = ext4_journal_get_write_access(handle, sb, 5156 EXT4_SB(sb)->s_sbh, 5157 EXT4_JTR_NONE); 5158 if (err) 5159 goto out_error; 5160 lock_buffer(EXT4_SB(sb)->s_sbh); 5161 ext4_set_feature_large_file(sb); 5162 ext4_superblock_csum_set(sb); 5163 unlock_buffer(EXT4_SB(sb)->s_sbh); 5164 ext4_handle_sync(handle); 5165 err = ext4_handle_dirty_metadata(handle, NULL, 5166 EXT4_SB(sb)->s_sbh); 5167 } 5168 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5169 out_error: 5170 ext4_std_error(inode->i_sb, err); 5171 out_brelse: 5172 brelse(bh); 5173 return err; 5174 } 5175 5176 /* 5177 * ext4_write_inode() 5178 * 5179 * We are called from a few places: 5180 * 5181 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5182 * Here, there will be no transaction running. We wait for any running 5183 * transaction to commit. 5184 * 5185 * - Within flush work (sys_sync(), kupdate and such). 5186 * We wait on commit, if told to. 5187 * 5188 * - Within iput_final() -> write_inode_now() 5189 * We wait on commit, if told to. 5190 * 5191 * In all cases it is actually safe for us to return without doing anything, 5192 * because the inode has been copied into a raw inode buffer in 5193 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5194 * writeback. 5195 * 5196 * Note that we are absolutely dependent upon all inode dirtiers doing the 5197 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5198 * which we are interested. 5199 * 5200 * It would be a bug for them to not do this. The code: 5201 * 5202 * mark_inode_dirty(inode) 5203 * stuff(); 5204 * inode->i_size = expr; 5205 * 5206 * is in error because write_inode() could occur while `stuff()' is running, 5207 * and the new i_size will be lost. Plus the inode will no longer be on the 5208 * superblock's dirty inode list. 5209 */ 5210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5211 { 5212 int err; 5213 5214 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5215 sb_rdonly(inode->i_sb)) 5216 return 0; 5217 5218 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5219 return -EIO; 5220 5221 if (EXT4_SB(inode->i_sb)->s_journal) { 5222 if (ext4_journal_current_handle()) { 5223 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5224 dump_stack(); 5225 return -EIO; 5226 } 5227 5228 /* 5229 * No need to force transaction in WB_SYNC_NONE mode. Also 5230 * ext4_sync_fs() will force the commit after everything is 5231 * written. 5232 */ 5233 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5234 return 0; 5235 5236 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5237 EXT4_I(inode)->i_sync_tid); 5238 } else { 5239 struct ext4_iloc iloc; 5240 5241 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5242 if (err) 5243 return err; 5244 /* 5245 * sync(2) will flush the whole buffer cache. No need to do 5246 * it here separately for each inode. 5247 */ 5248 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5249 sync_dirty_buffer(iloc.bh); 5250 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5251 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5252 "IO error syncing inode"); 5253 err = -EIO; 5254 } 5255 brelse(iloc.bh); 5256 } 5257 return err; 5258 } 5259 5260 /* 5261 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5262 * buffers that are attached to a folio straddling i_size and are undergoing 5263 * commit. In that case we have to wait for commit to finish and try again. 5264 */ 5265 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5266 { 5267 unsigned offset; 5268 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5269 tid_t commit_tid = 0; 5270 int ret; 5271 5272 offset = inode->i_size & (PAGE_SIZE - 1); 5273 /* 5274 * If the folio is fully truncated, we don't need to wait for any commit 5275 * (and we even should not as __ext4_journalled_invalidate_folio() may 5276 * strip all buffers from the folio but keep the folio dirty which can then 5277 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without 5278 * buffers). Also we don't need to wait for any commit if all buffers in 5279 * the folio remain valid. This is most beneficial for the common case of 5280 * blocksize == PAGESIZE. 5281 */ 5282 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5283 return; 5284 while (1) { 5285 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5286 inode->i_size >> PAGE_SHIFT); 5287 if (!folio) 5288 return; 5289 ret = __ext4_journalled_invalidate_folio(folio, offset, 5290 folio_size(folio) - offset); 5291 folio_unlock(folio); 5292 folio_put(folio); 5293 if (ret != -EBUSY) 5294 return; 5295 commit_tid = 0; 5296 read_lock(&journal->j_state_lock); 5297 if (journal->j_committing_transaction) 5298 commit_tid = journal->j_committing_transaction->t_tid; 5299 read_unlock(&journal->j_state_lock); 5300 if (commit_tid) 5301 jbd2_log_wait_commit(journal, commit_tid); 5302 } 5303 } 5304 5305 /* 5306 * ext4_setattr() 5307 * 5308 * Called from notify_change. 5309 * 5310 * We want to trap VFS attempts to truncate the file as soon as 5311 * possible. In particular, we want to make sure that when the VFS 5312 * shrinks i_size, we put the inode on the orphan list and modify 5313 * i_disksize immediately, so that during the subsequent flushing of 5314 * dirty pages and freeing of disk blocks, we can guarantee that any 5315 * commit will leave the blocks being flushed in an unused state on 5316 * disk. (On recovery, the inode will get truncated and the blocks will 5317 * be freed, so we have a strong guarantee that no future commit will 5318 * leave these blocks visible to the user.) 5319 * 5320 * Another thing we have to assure is that if we are in ordered mode 5321 * and inode is still attached to the committing transaction, we must 5322 * we start writeout of all the dirty pages which are being truncated. 5323 * This way we are sure that all the data written in the previous 5324 * transaction are already on disk (truncate waits for pages under 5325 * writeback). 5326 * 5327 * Called with inode->i_rwsem down. 5328 */ 5329 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5330 struct iattr *attr) 5331 { 5332 struct inode *inode = d_inode(dentry); 5333 int error, rc = 0; 5334 int orphan = 0; 5335 const unsigned int ia_valid = attr->ia_valid; 5336 5337 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5338 return -EIO; 5339 5340 if (unlikely(IS_IMMUTABLE(inode))) 5341 return -EPERM; 5342 5343 if (unlikely(IS_APPEND(inode) && 5344 (ia_valid & (ATTR_MODE | ATTR_UID | 5345 ATTR_GID | ATTR_TIMES_SET)))) 5346 return -EPERM; 5347 5348 error = setattr_prepare(mnt_userns, dentry, attr); 5349 if (error) 5350 return error; 5351 5352 error = fscrypt_prepare_setattr(dentry, attr); 5353 if (error) 5354 return error; 5355 5356 error = fsverity_prepare_setattr(dentry, attr); 5357 if (error) 5358 return error; 5359 5360 if (is_quota_modification(inode, attr)) { 5361 error = dquot_initialize(inode); 5362 if (error) 5363 return error; 5364 } 5365 5366 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5367 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5368 handle_t *handle; 5369 5370 /* (user+group)*(old+new) structure, inode write (sb, 5371 * inode block, ? - but truncate inode update has it) */ 5372 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5373 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5374 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5375 if (IS_ERR(handle)) { 5376 error = PTR_ERR(handle); 5377 goto err_out; 5378 } 5379 5380 /* dquot_transfer() calls back ext4_get_inode_usage() which 5381 * counts xattr inode references. 5382 */ 5383 down_read(&EXT4_I(inode)->xattr_sem); 5384 error = dquot_transfer(inode, attr); 5385 up_read(&EXT4_I(inode)->xattr_sem); 5386 5387 if (error) { 5388 ext4_journal_stop(handle); 5389 return error; 5390 } 5391 /* Update corresponding info in inode so that everything is in 5392 * one transaction */ 5393 if (attr->ia_valid & ATTR_UID) 5394 inode->i_uid = attr->ia_uid; 5395 if (attr->ia_valid & ATTR_GID) 5396 inode->i_gid = attr->ia_gid; 5397 error = ext4_mark_inode_dirty(handle, inode); 5398 ext4_journal_stop(handle); 5399 if (unlikely(error)) { 5400 return error; 5401 } 5402 } 5403 5404 if (attr->ia_valid & ATTR_SIZE) { 5405 handle_t *handle; 5406 loff_t oldsize = inode->i_size; 5407 loff_t old_disksize; 5408 int shrink = (attr->ia_size < inode->i_size); 5409 5410 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5411 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5412 5413 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5414 return -EFBIG; 5415 } 5416 } 5417 if (!S_ISREG(inode->i_mode)) { 5418 return -EINVAL; 5419 } 5420 5421 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5422 inode_inc_iversion(inode); 5423 5424 if (shrink) { 5425 if (ext4_should_order_data(inode)) { 5426 error = ext4_begin_ordered_truncate(inode, 5427 attr->ia_size); 5428 if (error) 5429 goto err_out; 5430 } 5431 /* 5432 * Blocks are going to be removed from the inode. Wait 5433 * for dio in flight. 5434 */ 5435 inode_dio_wait(inode); 5436 } 5437 5438 filemap_invalidate_lock(inode->i_mapping); 5439 5440 rc = ext4_break_layouts(inode); 5441 if (rc) { 5442 filemap_invalidate_unlock(inode->i_mapping); 5443 goto err_out; 5444 } 5445 5446 if (attr->ia_size != inode->i_size) { 5447 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5448 if (IS_ERR(handle)) { 5449 error = PTR_ERR(handle); 5450 goto out_mmap_sem; 5451 } 5452 if (ext4_handle_valid(handle) && shrink) { 5453 error = ext4_orphan_add(handle, inode); 5454 orphan = 1; 5455 } 5456 /* 5457 * Update c/mtime on truncate up, ext4_truncate() will 5458 * update c/mtime in shrink case below 5459 */ 5460 if (!shrink) { 5461 inode->i_mtime = current_time(inode); 5462 inode->i_ctime = inode->i_mtime; 5463 } 5464 5465 if (shrink) 5466 ext4_fc_track_range(handle, inode, 5467 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5468 inode->i_sb->s_blocksize_bits, 5469 EXT_MAX_BLOCKS - 1); 5470 else 5471 ext4_fc_track_range( 5472 handle, inode, 5473 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5474 inode->i_sb->s_blocksize_bits, 5475 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5476 inode->i_sb->s_blocksize_bits); 5477 5478 down_write(&EXT4_I(inode)->i_data_sem); 5479 old_disksize = EXT4_I(inode)->i_disksize; 5480 EXT4_I(inode)->i_disksize = attr->ia_size; 5481 rc = ext4_mark_inode_dirty(handle, inode); 5482 if (!error) 5483 error = rc; 5484 /* 5485 * We have to update i_size under i_data_sem together 5486 * with i_disksize to avoid races with writeback code 5487 * running ext4_wb_update_i_disksize(). 5488 */ 5489 if (!error) 5490 i_size_write(inode, attr->ia_size); 5491 else 5492 EXT4_I(inode)->i_disksize = old_disksize; 5493 up_write(&EXT4_I(inode)->i_data_sem); 5494 ext4_journal_stop(handle); 5495 if (error) 5496 goto out_mmap_sem; 5497 if (!shrink) { 5498 pagecache_isize_extended(inode, oldsize, 5499 inode->i_size); 5500 } else if (ext4_should_journal_data(inode)) { 5501 ext4_wait_for_tail_page_commit(inode); 5502 } 5503 } 5504 5505 /* 5506 * Truncate pagecache after we've waited for commit 5507 * in data=journal mode to make pages freeable. 5508 */ 5509 truncate_pagecache(inode, inode->i_size); 5510 /* 5511 * Call ext4_truncate() even if i_size didn't change to 5512 * truncate possible preallocated blocks. 5513 */ 5514 if (attr->ia_size <= oldsize) { 5515 rc = ext4_truncate(inode); 5516 if (rc) 5517 error = rc; 5518 } 5519 out_mmap_sem: 5520 filemap_invalidate_unlock(inode->i_mapping); 5521 } 5522 5523 if (!error) { 5524 setattr_copy(mnt_userns, inode, attr); 5525 mark_inode_dirty(inode); 5526 } 5527 5528 /* 5529 * If the call to ext4_truncate failed to get a transaction handle at 5530 * all, we need to clean up the in-core orphan list manually. 5531 */ 5532 if (orphan && inode->i_nlink) 5533 ext4_orphan_del(NULL, inode); 5534 5535 if (!error && (ia_valid & ATTR_MODE)) 5536 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5537 5538 err_out: 5539 if (error) 5540 ext4_std_error(inode->i_sb, error); 5541 if (!error) 5542 error = rc; 5543 return error; 5544 } 5545 5546 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5547 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5548 { 5549 struct inode *inode = d_inode(path->dentry); 5550 struct ext4_inode *raw_inode; 5551 struct ext4_inode_info *ei = EXT4_I(inode); 5552 unsigned int flags; 5553 5554 if ((request_mask & STATX_BTIME) && 5555 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5556 stat->result_mask |= STATX_BTIME; 5557 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5558 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5559 } 5560 5561 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5562 if (flags & EXT4_APPEND_FL) 5563 stat->attributes |= STATX_ATTR_APPEND; 5564 if (flags & EXT4_COMPR_FL) 5565 stat->attributes |= STATX_ATTR_COMPRESSED; 5566 if (flags & EXT4_ENCRYPT_FL) 5567 stat->attributes |= STATX_ATTR_ENCRYPTED; 5568 if (flags & EXT4_IMMUTABLE_FL) 5569 stat->attributes |= STATX_ATTR_IMMUTABLE; 5570 if (flags & EXT4_NODUMP_FL) 5571 stat->attributes |= STATX_ATTR_NODUMP; 5572 if (flags & EXT4_VERITY_FL) 5573 stat->attributes |= STATX_ATTR_VERITY; 5574 5575 stat->attributes_mask |= (STATX_ATTR_APPEND | 5576 STATX_ATTR_COMPRESSED | 5577 STATX_ATTR_ENCRYPTED | 5578 STATX_ATTR_IMMUTABLE | 5579 STATX_ATTR_NODUMP | 5580 STATX_ATTR_VERITY); 5581 5582 generic_fillattr(mnt_userns, inode, stat); 5583 return 0; 5584 } 5585 5586 int ext4_file_getattr(struct user_namespace *mnt_userns, 5587 const struct path *path, struct kstat *stat, 5588 u32 request_mask, unsigned int query_flags) 5589 { 5590 struct inode *inode = d_inode(path->dentry); 5591 u64 delalloc_blocks; 5592 5593 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5594 5595 /* 5596 * If there is inline data in the inode, the inode will normally not 5597 * have data blocks allocated (it may have an external xattr block). 5598 * Report at least one sector for such files, so tools like tar, rsync, 5599 * others don't incorrectly think the file is completely sparse. 5600 */ 5601 if (unlikely(ext4_has_inline_data(inode))) 5602 stat->blocks += (stat->size + 511) >> 9; 5603 5604 /* 5605 * We can't update i_blocks if the block allocation is delayed 5606 * otherwise in the case of system crash before the real block 5607 * allocation is done, we will have i_blocks inconsistent with 5608 * on-disk file blocks. 5609 * We always keep i_blocks updated together with real 5610 * allocation. But to not confuse with user, stat 5611 * will return the blocks that include the delayed allocation 5612 * blocks for this file. 5613 */ 5614 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5615 EXT4_I(inode)->i_reserved_data_blocks); 5616 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5617 return 0; 5618 } 5619 5620 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5621 int pextents) 5622 { 5623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5624 return ext4_ind_trans_blocks(inode, lblocks); 5625 return ext4_ext_index_trans_blocks(inode, pextents); 5626 } 5627 5628 /* 5629 * Account for index blocks, block groups bitmaps and block group 5630 * descriptor blocks if modify datablocks and index blocks 5631 * worse case, the indexs blocks spread over different block groups 5632 * 5633 * If datablocks are discontiguous, they are possible to spread over 5634 * different block groups too. If they are contiguous, with flexbg, 5635 * they could still across block group boundary. 5636 * 5637 * Also account for superblock, inode, quota and xattr blocks 5638 */ 5639 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5640 int pextents) 5641 { 5642 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5643 int gdpblocks; 5644 int idxblocks; 5645 int ret = 0; 5646 5647 /* 5648 * How many index blocks need to touch to map @lblocks logical blocks 5649 * to @pextents physical extents? 5650 */ 5651 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5652 5653 ret = idxblocks; 5654 5655 /* 5656 * Now let's see how many group bitmaps and group descriptors need 5657 * to account 5658 */ 5659 groups = idxblocks + pextents; 5660 gdpblocks = groups; 5661 if (groups > ngroups) 5662 groups = ngroups; 5663 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5664 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5665 5666 /* bitmaps and block group descriptor blocks */ 5667 ret += groups + gdpblocks; 5668 5669 /* Blocks for super block, inode, quota and xattr blocks */ 5670 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5671 5672 return ret; 5673 } 5674 5675 /* 5676 * Calculate the total number of credits to reserve to fit 5677 * the modification of a single pages into a single transaction, 5678 * which may include multiple chunks of block allocations. 5679 * 5680 * This could be called via ext4_write_begin() 5681 * 5682 * We need to consider the worse case, when 5683 * one new block per extent. 5684 */ 5685 int ext4_writepage_trans_blocks(struct inode *inode) 5686 { 5687 int bpp = ext4_journal_blocks_per_page(inode); 5688 int ret; 5689 5690 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5691 5692 /* Account for data blocks for journalled mode */ 5693 if (ext4_should_journal_data(inode)) 5694 ret += bpp; 5695 return ret; 5696 } 5697 5698 /* 5699 * Calculate the journal credits for a chunk of data modification. 5700 * 5701 * This is called from DIO, fallocate or whoever calling 5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5703 * 5704 * journal buffers for data blocks are not included here, as DIO 5705 * and fallocate do no need to journal data buffers. 5706 */ 5707 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5708 { 5709 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5710 } 5711 5712 /* 5713 * The caller must have previously called ext4_reserve_inode_write(). 5714 * Give this, we know that the caller already has write access to iloc->bh. 5715 */ 5716 int ext4_mark_iloc_dirty(handle_t *handle, 5717 struct inode *inode, struct ext4_iloc *iloc) 5718 { 5719 int err = 0; 5720 5721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5722 put_bh(iloc->bh); 5723 return -EIO; 5724 } 5725 ext4_fc_track_inode(handle, inode); 5726 5727 if (IS_I_VERSION(inode)) 5728 inode_inc_iversion(inode); 5729 5730 /* the do_update_inode consumes one bh->b_count */ 5731 get_bh(iloc->bh); 5732 5733 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5734 err = ext4_do_update_inode(handle, inode, iloc); 5735 put_bh(iloc->bh); 5736 return err; 5737 } 5738 5739 /* 5740 * On success, We end up with an outstanding reference count against 5741 * iloc->bh. This _must_ be cleaned up later. 5742 */ 5743 5744 int 5745 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5746 struct ext4_iloc *iloc) 5747 { 5748 int err; 5749 5750 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5751 return -EIO; 5752 5753 err = ext4_get_inode_loc(inode, iloc); 5754 if (!err) { 5755 BUFFER_TRACE(iloc->bh, "get_write_access"); 5756 err = ext4_journal_get_write_access(handle, inode->i_sb, 5757 iloc->bh, EXT4_JTR_NONE); 5758 if (err) { 5759 brelse(iloc->bh); 5760 iloc->bh = NULL; 5761 } 5762 } 5763 ext4_std_error(inode->i_sb, err); 5764 return err; 5765 } 5766 5767 static int __ext4_expand_extra_isize(struct inode *inode, 5768 unsigned int new_extra_isize, 5769 struct ext4_iloc *iloc, 5770 handle_t *handle, int *no_expand) 5771 { 5772 struct ext4_inode *raw_inode; 5773 struct ext4_xattr_ibody_header *header; 5774 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5775 struct ext4_inode_info *ei = EXT4_I(inode); 5776 int error; 5777 5778 /* this was checked at iget time, but double check for good measure */ 5779 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5780 (ei->i_extra_isize & 3)) { 5781 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5782 ei->i_extra_isize, 5783 EXT4_INODE_SIZE(inode->i_sb)); 5784 return -EFSCORRUPTED; 5785 } 5786 if ((new_extra_isize < ei->i_extra_isize) || 5787 (new_extra_isize < 4) || 5788 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5789 return -EINVAL; /* Should never happen */ 5790 5791 raw_inode = ext4_raw_inode(iloc); 5792 5793 header = IHDR(inode, raw_inode); 5794 5795 /* No extended attributes present */ 5796 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5797 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5798 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5799 EXT4_I(inode)->i_extra_isize, 0, 5800 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5801 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5802 return 0; 5803 } 5804 5805 /* try to expand with EAs present */ 5806 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5807 raw_inode, handle); 5808 if (error) { 5809 /* 5810 * Inode size expansion failed; don't try again 5811 */ 5812 *no_expand = 1; 5813 } 5814 5815 return error; 5816 } 5817 5818 /* 5819 * Expand an inode by new_extra_isize bytes. 5820 * Returns 0 on success or negative error number on failure. 5821 */ 5822 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5823 unsigned int new_extra_isize, 5824 struct ext4_iloc iloc, 5825 handle_t *handle) 5826 { 5827 int no_expand; 5828 int error; 5829 5830 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5831 return -EOVERFLOW; 5832 5833 /* 5834 * In nojournal mode, we can immediately attempt to expand 5835 * the inode. When journaled, we first need to obtain extra 5836 * buffer credits since we may write into the EA block 5837 * with this same handle. If journal_extend fails, then it will 5838 * only result in a minor loss of functionality for that inode. 5839 * If this is felt to be critical, then e2fsck should be run to 5840 * force a large enough s_min_extra_isize. 5841 */ 5842 if (ext4_journal_extend(handle, 5843 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5844 return -ENOSPC; 5845 5846 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5847 return -EBUSY; 5848 5849 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5850 handle, &no_expand); 5851 ext4_write_unlock_xattr(inode, &no_expand); 5852 5853 return error; 5854 } 5855 5856 int ext4_expand_extra_isize(struct inode *inode, 5857 unsigned int new_extra_isize, 5858 struct ext4_iloc *iloc) 5859 { 5860 handle_t *handle; 5861 int no_expand; 5862 int error, rc; 5863 5864 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5865 brelse(iloc->bh); 5866 return -EOVERFLOW; 5867 } 5868 5869 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5870 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5871 if (IS_ERR(handle)) { 5872 error = PTR_ERR(handle); 5873 brelse(iloc->bh); 5874 return error; 5875 } 5876 5877 ext4_write_lock_xattr(inode, &no_expand); 5878 5879 BUFFER_TRACE(iloc->bh, "get_write_access"); 5880 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5881 EXT4_JTR_NONE); 5882 if (error) { 5883 brelse(iloc->bh); 5884 goto out_unlock; 5885 } 5886 5887 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5888 handle, &no_expand); 5889 5890 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5891 if (!error) 5892 error = rc; 5893 5894 out_unlock: 5895 ext4_write_unlock_xattr(inode, &no_expand); 5896 ext4_journal_stop(handle); 5897 return error; 5898 } 5899 5900 /* 5901 * What we do here is to mark the in-core inode as clean with respect to inode 5902 * dirtiness (it may still be data-dirty). 5903 * This means that the in-core inode may be reaped by prune_icache 5904 * without having to perform any I/O. This is a very good thing, 5905 * because *any* task may call prune_icache - even ones which 5906 * have a transaction open against a different journal. 5907 * 5908 * Is this cheating? Not really. Sure, we haven't written the 5909 * inode out, but prune_icache isn't a user-visible syncing function. 5910 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5911 * we start and wait on commits. 5912 */ 5913 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5914 const char *func, unsigned int line) 5915 { 5916 struct ext4_iloc iloc; 5917 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5918 int err; 5919 5920 might_sleep(); 5921 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5922 err = ext4_reserve_inode_write(handle, inode, &iloc); 5923 if (err) 5924 goto out; 5925 5926 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5927 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5928 iloc, handle); 5929 5930 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5931 out: 5932 if (unlikely(err)) 5933 ext4_error_inode_err(inode, func, line, 0, err, 5934 "mark_inode_dirty error"); 5935 return err; 5936 } 5937 5938 /* 5939 * ext4_dirty_inode() is called from __mark_inode_dirty() 5940 * 5941 * We're really interested in the case where a file is being extended. 5942 * i_size has been changed by generic_commit_write() and we thus need 5943 * to include the updated inode in the current transaction. 5944 * 5945 * Also, dquot_alloc_block() will always dirty the inode when blocks 5946 * are allocated to the file. 5947 * 5948 * If the inode is marked synchronous, we don't honour that here - doing 5949 * so would cause a commit on atime updates, which we don't bother doing. 5950 * We handle synchronous inodes at the highest possible level. 5951 */ 5952 void ext4_dirty_inode(struct inode *inode, int flags) 5953 { 5954 handle_t *handle; 5955 5956 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5957 if (IS_ERR(handle)) 5958 return; 5959 ext4_mark_inode_dirty(handle, inode); 5960 ext4_journal_stop(handle); 5961 } 5962 5963 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5964 { 5965 journal_t *journal; 5966 handle_t *handle; 5967 int err; 5968 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5969 5970 /* 5971 * We have to be very careful here: changing a data block's 5972 * journaling status dynamically is dangerous. If we write a 5973 * data block to the journal, change the status and then delete 5974 * that block, we risk forgetting to revoke the old log record 5975 * from the journal and so a subsequent replay can corrupt data. 5976 * So, first we make sure that the journal is empty and that 5977 * nobody is changing anything. 5978 */ 5979 5980 journal = EXT4_JOURNAL(inode); 5981 if (!journal) 5982 return 0; 5983 if (is_journal_aborted(journal)) 5984 return -EROFS; 5985 5986 /* Wait for all existing dio workers */ 5987 inode_dio_wait(inode); 5988 5989 /* 5990 * Before flushing the journal and switching inode's aops, we have 5991 * to flush all dirty data the inode has. There can be outstanding 5992 * delayed allocations, there can be unwritten extents created by 5993 * fallocate or buffered writes in dioread_nolock mode covered by 5994 * dirty data which can be converted only after flushing the dirty 5995 * data (and journalled aops don't know how to handle these cases). 5996 */ 5997 if (val) { 5998 filemap_invalidate_lock(inode->i_mapping); 5999 err = filemap_write_and_wait(inode->i_mapping); 6000 if (err < 0) { 6001 filemap_invalidate_unlock(inode->i_mapping); 6002 return err; 6003 } 6004 } 6005 6006 percpu_down_write(&sbi->s_writepages_rwsem); 6007 jbd2_journal_lock_updates(journal); 6008 6009 /* 6010 * OK, there are no updates running now, and all cached data is 6011 * synced to disk. We are now in a completely consistent state 6012 * which doesn't have anything in the journal, and we know that 6013 * no filesystem updates are running, so it is safe to modify 6014 * the inode's in-core data-journaling state flag now. 6015 */ 6016 6017 if (val) 6018 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6019 else { 6020 err = jbd2_journal_flush(journal, 0); 6021 if (err < 0) { 6022 jbd2_journal_unlock_updates(journal); 6023 percpu_up_write(&sbi->s_writepages_rwsem); 6024 return err; 6025 } 6026 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6027 } 6028 ext4_set_aops(inode); 6029 6030 jbd2_journal_unlock_updates(journal); 6031 percpu_up_write(&sbi->s_writepages_rwsem); 6032 6033 if (val) 6034 filemap_invalidate_unlock(inode->i_mapping); 6035 6036 /* Finally we can mark the inode as dirty. */ 6037 6038 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6039 if (IS_ERR(handle)) 6040 return PTR_ERR(handle); 6041 6042 ext4_fc_mark_ineligible(inode->i_sb, 6043 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6044 err = ext4_mark_inode_dirty(handle, inode); 6045 ext4_handle_sync(handle); 6046 ext4_journal_stop(handle); 6047 ext4_std_error(inode->i_sb, err); 6048 6049 return err; 6050 } 6051 6052 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6053 struct buffer_head *bh) 6054 { 6055 return !buffer_mapped(bh); 6056 } 6057 6058 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6059 { 6060 struct vm_area_struct *vma = vmf->vma; 6061 struct page *page = vmf->page; 6062 loff_t size; 6063 unsigned long len; 6064 int err; 6065 vm_fault_t ret; 6066 struct file *file = vma->vm_file; 6067 struct inode *inode = file_inode(file); 6068 struct address_space *mapping = inode->i_mapping; 6069 handle_t *handle; 6070 get_block_t *get_block; 6071 int retries = 0; 6072 6073 if (unlikely(IS_IMMUTABLE(inode))) 6074 return VM_FAULT_SIGBUS; 6075 6076 sb_start_pagefault(inode->i_sb); 6077 file_update_time(vma->vm_file); 6078 6079 filemap_invalidate_lock_shared(mapping); 6080 6081 err = ext4_convert_inline_data(inode); 6082 if (err) 6083 goto out_ret; 6084 6085 /* 6086 * On data journalling we skip straight to the transaction handle: 6087 * there's no delalloc; page truncated will be checked later; the 6088 * early return w/ all buffers mapped (calculates size/len) can't 6089 * be used; and there's no dioread_nolock, so only ext4_get_block. 6090 */ 6091 if (ext4_should_journal_data(inode)) 6092 goto retry_alloc; 6093 6094 /* Delalloc case is easy... */ 6095 if (test_opt(inode->i_sb, DELALLOC) && 6096 !ext4_nonda_switch(inode->i_sb)) { 6097 do { 6098 err = block_page_mkwrite(vma, vmf, 6099 ext4_da_get_block_prep); 6100 } while (err == -ENOSPC && 6101 ext4_should_retry_alloc(inode->i_sb, &retries)); 6102 goto out_ret; 6103 } 6104 6105 lock_page(page); 6106 size = i_size_read(inode); 6107 /* Page got truncated from under us? */ 6108 if (page->mapping != mapping || page_offset(page) > size) { 6109 unlock_page(page); 6110 ret = VM_FAULT_NOPAGE; 6111 goto out; 6112 } 6113 6114 if (page->index == size >> PAGE_SHIFT) 6115 len = size & ~PAGE_MASK; 6116 else 6117 len = PAGE_SIZE; 6118 /* 6119 * Return if we have all the buffers mapped. This avoids the need to do 6120 * journal_start/journal_stop which can block and take a long time 6121 * 6122 * This cannot be done for data journalling, as we have to add the 6123 * inode to the transaction's list to writeprotect pages on commit. 6124 */ 6125 if (page_has_buffers(page)) { 6126 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6127 0, len, NULL, 6128 ext4_bh_unmapped)) { 6129 /* Wait so that we don't change page under IO */ 6130 wait_for_stable_page(page); 6131 ret = VM_FAULT_LOCKED; 6132 goto out; 6133 } 6134 } 6135 unlock_page(page); 6136 /* OK, we need to fill the hole... */ 6137 if (ext4_should_dioread_nolock(inode)) 6138 get_block = ext4_get_block_unwritten; 6139 else 6140 get_block = ext4_get_block; 6141 retry_alloc: 6142 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6143 ext4_writepage_trans_blocks(inode)); 6144 if (IS_ERR(handle)) { 6145 ret = VM_FAULT_SIGBUS; 6146 goto out; 6147 } 6148 /* 6149 * Data journalling can't use block_page_mkwrite() because it 6150 * will set_buffer_dirty() before do_journal_get_write_access() 6151 * thus might hit warning messages for dirty metadata buffers. 6152 */ 6153 if (!ext4_should_journal_data(inode)) { 6154 err = block_page_mkwrite(vma, vmf, get_block); 6155 } else { 6156 lock_page(page); 6157 size = i_size_read(inode); 6158 /* Page got truncated from under us? */ 6159 if (page->mapping != mapping || page_offset(page) > size) { 6160 ret = VM_FAULT_NOPAGE; 6161 goto out_error; 6162 } 6163 6164 if (page->index == size >> PAGE_SHIFT) 6165 len = size & ~PAGE_MASK; 6166 else 6167 len = PAGE_SIZE; 6168 6169 err = __block_write_begin(page, 0, len, ext4_get_block); 6170 if (!err) { 6171 ret = VM_FAULT_SIGBUS; 6172 if (ext4_walk_page_buffers(handle, inode, 6173 page_buffers(page), 0, len, NULL, 6174 do_journal_get_write_access)) 6175 goto out_error; 6176 if (ext4_walk_page_buffers(handle, inode, 6177 page_buffers(page), 0, len, NULL, 6178 write_end_fn)) 6179 goto out_error; 6180 if (ext4_jbd2_inode_add_write(handle, inode, 6181 page_offset(page), len)) 6182 goto out_error; 6183 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6184 } else { 6185 unlock_page(page); 6186 } 6187 } 6188 ext4_journal_stop(handle); 6189 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6190 goto retry_alloc; 6191 out_ret: 6192 ret = block_page_mkwrite_return(err); 6193 out: 6194 filemap_invalidate_unlock_shared(mapping); 6195 sb_end_pagefault(inode->i_sb); 6196 return ret; 6197 out_error: 6198 unlock_page(page); 6199 ext4_journal_stop(handle); 6200 goto out; 6201 } 6202