1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 #include <linux/iomap.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 159 /* 160 * Restart the transaction associated with *handle. This does a commit, 161 * so before we call here everything must be consistently dirtied against 162 * this transaction. 163 */ 164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 165 int nblocks) 166 { 167 int ret; 168 169 /* 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 171 * moment, get_block can be called only for blocks inside i_size since 172 * page cache has been already dropped and writes are blocked by 173 * i_mutex. So we can safely drop the i_data_sem here. 174 */ 175 BUG_ON(EXT4_JOURNAL(inode) == NULL); 176 jbd_debug(2, "restarting handle %p\n", handle); 177 up_write(&EXT4_I(inode)->i_data_sem); 178 ret = ext4_journal_restart(handle, nblocks); 179 down_write(&EXT4_I(inode)->i_data_sem); 180 ext4_discard_preallocations(inode); 181 182 return ret; 183 } 184 185 /* 186 * Called at the last iput() if i_nlink is zero. 187 */ 188 void ext4_evict_inode(struct inode *inode) 189 { 190 handle_t *handle; 191 int err; 192 int extra_credits = 3; 193 struct ext4_xattr_inode_array *ea_inode_array = NULL; 194 195 trace_ext4_evict_inode(inode); 196 197 if (inode->i_nlink) { 198 /* 199 * When journalling data dirty buffers are tracked only in the 200 * journal. So although mm thinks everything is clean and 201 * ready for reaping the inode might still have some pages to 202 * write in the running transaction or waiting to be 203 * checkpointed. Thus calling jbd2_journal_invalidatepage() 204 * (via truncate_inode_pages()) to discard these buffers can 205 * cause data loss. Also even if we did not discard these 206 * buffers, we would have no way to find them after the inode 207 * is reaped and thus user could see stale data if he tries to 208 * read them before the transaction is checkpointed. So be 209 * careful and force everything to disk here... We use 210 * ei->i_datasync_tid to store the newest transaction 211 * containing inode's data. 212 * 213 * Note that directories do not have this problem because they 214 * don't use page cache. 215 */ 216 if (inode->i_ino != EXT4_JOURNAL_INO && 217 ext4_should_journal_data(inode) && 218 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 219 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 220 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 221 222 jbd2_complete_transaction(journal, commit_tid); 223 filemap_write_and_wait(&inode->i_data); 224 } 225 truncate_inode_pages_final(&inode->i_data); 226 227 goto no_delete; 228 } 229 230 if (is_bad_inode(inode)) 231 goto no_delete; 232 dquot_initialize(inode); 233 234 if (ext4_should_order_data(inode)) 235 ext4_begin_ordered_truncate(inode, 0); 236 truncate_inode_pages_final(&inode->i_data); 237 238 /* 239 * Protect us against freezing - iput() caller didn't have to have any 240 * protection against it 241 */ 242 sb_start_intwrite(inode->i_sb); 243 244 if (!IS_NOQUOTA(inode)) 245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 246 247 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 248 ext4_blocks_for_truncate(inode)+extra_credits); 249 if (IS_ERR(handle)) { 250 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 251 /* 252 * If we're going to skip the normal cleanup, we still need to 253 * make sure that the in-core orphan linked list is properly 254 * cleaned up. 255 */ 256 ext4_orphan_del(NULL, inode); 257 sb_end_intwrite(inode->i_sb); 258 goto no_delete; 259 } 260 261 if (IS_SYNC(inode)) 262 ext4_handle_sync(handle); 263 inode->i_size = 0; 264 err = ext4_mark_inode_dirty(handle, inode); 265 if (err) { 266 ext4_warning(inode->i_sb, 267 "couldn't mark inode dirty (err %d)", err); 268 goto stop_handle; 269 } 270 if (inode->i_blocks) { 271 err = ext4_truncate(inode); 272 if (err) { 273 ext4_error(inode->i_sb, 274 "couldn't truncate inode %lu (err %d)", 275 inode->i_ino, err); 276 goto stop_handle; 277 } 278 } 279 280 /* Remove xattr references. */ 281 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 282 extra_credits); 283 if (err) { 284 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 285 stop_handle: 286 ext4_journal_stop(handle); 287 ext4_orphan_del(NULL, inode); 288 sb_end_intwrite(inode->i_sb); 289 ext4_xattr_inode_array_free(ea_inode_array); 290 goto no_delete; 291 } 292 293 /* 294 * Kill off the orphan record which ext4_truncate created. 295 * AKPM: I think this can be inside the above `if'. 296 * Note that ext4_orphan_del() has to be able to cope with the 297 * deletion of a non-existent orphan - this is because we don't 298 * know if ext4_truncate() actually created an orphan record. 299 * (Well, we could do this if we need to, but heck - it works) 300 */ 301 ext4_orphan_del(handle, inode); 302 EXT4_I(inode)->i_dtime = get_seconds(); 303 304 /* 305 * One subtle ordering requirement: if anything has gone wrong 306 * (transaction abort, IO errors, whatever), then we can still 307 * do these next steps (the fs will already have been marked as 308 * having errors), but we can't free the inode if the mark_dirty 309 * fails. 310 */ 311 if (ext4_mark_inode_dirty(handle, inode)) 312 /* If that failed, just do the required in-core inode clear. */ 313 ext4_clear_inode(inode); 314 else 315 ext4_free_inode(handle, inode); 316 ext4_journal_stop(handle); 317 sb_end_intwrite(inode->i_sb); 318 ext4_xattr_inode_array_free(ea_inode_array); 319 return; 320 no_delete: 321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 322 } 323 324 #ifdef CONFIG_QUOTA 325 qsize_t *ext4_get_reserved_space(struct inode *inode) 326 { 327 return &EXT4_I(inode)->i_reserved_quota; 328 } 329 #endif 330 331 /* 332 * Called with i_data_sem down, which is important since we can call 333 * ext4_discard_preallocations() from here. 334 */ 335 void ext4_da_update_reserve_space(struct inode *inode, 336 int used, int quota_claim) 337 { 338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 339 struct ext4_inode_info *ei = EXT4_I(inode); 340 341 spin_lock(&ei->i_block_reservation_lock); 342 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 343 if (unlikely(used > ei->i_reserved_data_blocks)) { 344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 345 "with only %d reserved data blocks", 346 __func__, inode->i_ino, used, 347 ei->i_reserved_data_blocks); 348 WARN_ON(1); 349 used = ei->i_reserved_data_blocks; 350 } 351 352 /* Update per-inode reservations */ 353 ei->i_reserved_data_blocks -= used; 354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 355 356 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 357 358 /* Update quota subsystem for data blocks */ 359 if (quota_claim) 360 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 361 else { 362 /* 363 * We did fallocate with an offset that is already delayed 364 * allocated. So on delayed allocated writeback we should 365 * not re-claim the quota for fallocated blocks. 366 */ 367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 368 } 369 370 /* 371 * If we have done all the pending block allocations and if 372 * there aren't any writers on the inode, we can discard the 373 * inode's preallocations. 374 */ 375 if ((ei->i_reserved_data_blocks == 0) && 376 (atomic_read(&inode->i_writecount) == 0)) 377 ext4_discard_preallocations(inode); 378 } 379 380 static int __check_block_validity(struct inode *inode, const char *func, 381 unsigned int line, 382 struct ext4_map_blocks *map) 383 { 384 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 385 map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (ext4_encrypted_inode(inode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, flags & 433 EXT4_GET_BLOCKS_KEEP_SIZE); 434 } else { 435 retval = ext4_ind_map_blocks(handle, inode, map, flags & 436 EXT4_GET_BLOCKS_KEEP_SIZE); 437 } 438 up_read((&EXT4_I(inode)->i_data_sem)); 439 440 /* 441 * We don't check m_len because extent will be collpased in status 442 * tree. So the m_len might not equal. 443 */ 444 if (es_map->m_lblk != map->m_lblk || 445 es_map->m_flags != map->m_flags || 446 es_map->m_pblk != map->m_pblk) { 447 printk("ES cache assertion failed for inode: %lu " 448 "es_cached ex [%d/%d/%llu/%x] != " 449 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 450 inode->i_ino, es_map->m_lblk, es_map->m_len, 451 es_map->m_pblk, es_map->m_flags, map->m_lblk, 452 map->m_len, map->m_pblk, map->m_flags, 453 retval, flags); 454 } 455 } 456 #endif /* ES_AGGRESSIVE_TEST */ 457 458 /* 459 * The ext4_map_blocks() function tries to look up the requested blocks, 460 * and returns if the blocks are already mapped. 461 * 462 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 463 * and store the allocated blocks in the result buffer head and mark it 464 * mapped. 465 * 466 * If file type is extents based, it will call ext4_ext_map_blocks(), 467 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 468 * based files 469 * 470 * On success, it returns the number of blocks being mapped or allocated. if 471 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 472 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 473 * 474 * It returns 0 if plain look up failed (blocks have not been allocated), in 475 * that case, @map is returned as unmapped but we still do fill map->m_len to 476 * indicate the length of a hole starting at map->m_lblk. 477 * 478 * It returns the error in case of allocation failure. 479 */ 480 int ext4_map_blocks(handle_t *handle, struct inode *inode, 481 struct ext4_map_blocks *map, int flags) 482 { 483 struct extent_status es; 484 int retval; 485 int ret = 0; 486 #ifdef ES_AGGRESSIVE_TEST 487 struct ext4_map_blocks orig_map; 488 489 memcpy(&orig_map, map, sizeof(*map)); 490 #endif 491 492 map->m_flags = 0; 493 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 494 "logical block %lu\n", inode->i_ino, flags, map->m_len, 495 (unsigned long) map->m_lblk); 496 497 /* 498 * ext4_map_blocks returns an int, and m_len is an unsigned int 499 */ 500 if (unlikely(map->m_len > INT_MAX)) 501 map->m_len = INT_MAX; 502 503 /* We can handle the block number less than EXT_MAX_BLOCKS */ 504 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 505 return -EFSCORRUPTED; 506 507 /* Lookup extent status tree firstly */ 508 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 509 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 510 map->m_pblk = ext4_es_pblock(&es) + 511 map->m_lblk - es.es_lblk; 512 map->m_flags |= ext4_es_is_written(&es) ? 513 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 514 retval = es.es_len - (map->m_lblk - es.es_lblk); 515 if (retval > map->m_len) 516 retval = map->m_len; 517 map->m_len = retval; 518 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 519 map->m_pblk = 0; 520 retval = es.es_len - (map->m_lblk - es.es_lblk); 521 if (retval > map->m_len) 522 retval = map->m_len; 523 map->m_len = retval; 524 retval = 0; 525 } else { 526 BUG_ON(1); 527 } 528 #ifdef ES_AGGRESSIVE_TEST 529 ext4_map_blocks_es_recheck(handle, inode, map, 530 &orig_map, flags); 531 #endif 532 goto found; 533 } 534 535 /* 536 * Try to see if we can get the block without requesting a new 537 * file system block. 538 */ 539 down_read(&EXT4_I(inode)->i_data_sem); 540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 541 retval = ext4_ext_map_blocks(handle, inode, map, flags & 542 EXT4_GET_BLOCKS_KEEP_SIZE); 543 } else { 544 retval = ext4_ind_map_blocks(handle, inode, map, flags & 545 EXT4_GET_BLOCKS_KEEP_SIZE); 546 } 547 if (retval > 0) { 548 unsigned int status; 549 550 if (unlikely(retval != map->m_len)) { 551 ext4_warning(inode->i_sb, 552 "ES len assertion failed for inode " 553 "%lu: retval %d != map->m_len %d", 554 inode->i_ino, retval, map->m_len); 555 WARN_ON(1); 556 } 557 558 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 559 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 560 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 561 !(status & EXTENT_STATUS_WRITTEN) && 562 ext4_find_delalloc_range(inode, map->m_lblk, 563 map->m_lblk + map->m_len - 1)) 564 status |= EXTENT_STATUS_DELAYED; 565 ret = ext4_es_insert_extent(inode, map->m_lblk, 566 map->m_len, map->m_pblk, status); 567 if (ret < 0) 568 retval = ret; 569 } 570 up_read((&EXT4_I(inode)->i_data_sem)); 571 572 found: 573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 574 ret = check_block_validity(inode, map); 575 if (ret != 0) 576 return ret; 577 } 578 579 /* If it is only a block(s) look up */ 580 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 581 return retval; 582 583 /* 584 * Returns if the blocks have already allocated 585 * 586 * Note that if blocks have been preallocated 587 * ext4_ext_get_block() returns the create = 0 588 * with buffer head unmapped. 589 */ 590 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 591 /* 592 * If we need to convert extent to unwritten 593 * we continue and do the actual work in 594 * ext4_ext_map_blocks() 595 */ 596 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 597 return retval; 598 599 /* 600 * Here we clear m_flags because after allocating an new extent, 601 * it will be set again. 602 */ 603 map->m_flags &= ~EXT4_MAP_FLAGS; 604 605 /* 606 * New blocks allocate and/or writing to unwritten extent 607 * will possibly result in updating i_data, so we take 608 * the write lock of i_data_sem, and call get_block() 609 * with create == 1 flag. 610 */ 611 down_write(&EXT4_I(inode)->i_data_sem); 612 613 /* 614 * We need to check for EXT4 here because migrate 615 * could have changed the inode type in between 616 */ 617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 618 retval = ext4_ext_map_blocks(handle, inode, map, flags); 619 } else { 620 retval = ext4_ind_map_blocks(handle, inode, map, flags); 621 622 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 623 /* 624 * We allocated new blocks which will result in 625 * i_data's format changing. Force the migrate 626 * to fail by clearing migrate flags 627 */ 628 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 629 } 630 631 /* 632 * Update reserved blocks/metadata blocks after successful 633 * block allocation which had been deferred till now. We don't 634 * support fallocate for non extent files. So we can update 635 * reserve space here. 636 */ 637 if ((retval > 0) && 638 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 639 ext4_da_update_reserve_space(inode, retval, 1); 640 } 641 642 if (retval > 0) { 643 unsigned int status; 644 645 if (unlikely(retval != map->m_len)) { 646 ext4_warning(inode->i_sb, 647 "ES len assertion failed for inode " 648 "%lu: retval %d != map->m_len %d", 649 inode->i_ino, retval, map->m_len); 650 WARN_ON(1); 651 } 652 653 /* 654 * We have to zeroout blocks before inserting them into extent 655 * status tree. Otherwise someone could look them up there and 656 * use them before they are really zeroed. We also have to 657 * unmap metadata before zeroing as otherwise writeback can 658 * overwrite zeros with stale data from block device. 659 */ 660 if (flags & EXT4_GET_BLOCKS_ZERO && 661 map->m_flags & EXT4_MAP_MAPPED && 662 map->m_flags & EXT4_MAP_NEW) { 663 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 664 map->m_len); 665 ret = ext4_issue_zeroout(inode, map->m_lblk, 666 map->m_pblk, map->m_len); 667 if (ret) { 668 retval = ret; 669 goto out_sem; 670 } 671 } 672 673 /* 674 * If the extent has been zeroed out, we don't need to update 675 * extent status tree. 676 */ 677 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 678 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 679 if (ext4_es_is_written(&es)) 680 goto out_sem; 681 } 682 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 683 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 684 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 685 !(status & EXTENT_STATUS_WRITTEN) && 686 ext4_find_delalloc_range(inode, map->m_lblk, 687 map->m_lblk + map->m_len - 1)) 688 status |= EXTENT_STATUS_DELAYED; 689 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 690 map->m_pblk, status); 691 if (ret < 0) { 692 retval = ret; 693 goto out_sem; 694 } 695 } 696 697 out_sem: 698 up_write((&EXT4_I(inode)->i_data_sem)); 699 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 700 ret = check_block_validity(inode, map); 701 if (ret != 0) 702 return ret; 703 704 /* 705 * Inodes with freshly allocated blocks where contents will be 706 * visible after transaction commit must be on transaction's 707 * ordered data list. 708 */ 709 if (map->m_flags & EXT4_MAP_NEW && 710 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 711 !(flags & EXT4_GET_BLOCKS_ZERO) && 712 !ext4_is_quota_file(inode) && 713 ext4_should_order_data(inode)) { 714 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 715 ret = ext4_jbd2_inode_add_wait(handle, inode); 716 else 717 ret = ext4_jbd2_inode_add_write(handle, inode); 718 if (ret) 719 return ret; 720 } 721 } 722 return retval; 723 } 724 725 /* 726 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 727 * we have to be careful as someone else may be manipulating b_state as well. 728 */ 729 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 730 { 731 unsigned long old_state; 732 unsigned long new_state; 733 734 flags &= EXT4_MAP_FLAGS; 735 736 /* Dummy buffer_head? Set non-atomically. */ 737 if (!bh->b_page) { 738 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 739 return; 740 } 741 /* 742 * Someone else may be modifying b_state. Be careful! This is ugly but 743 * once we get rid of using bh as a container for mapping information 744 * to pass to / from get_block functions, this can go away. 745 */ 746 do { 747 old_state = READ_ONCE(bh->b_state); 748 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 749 } while (unlikely( 750 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 751 } 752 753 static int _ext4_get_block(struct inode *inode, sector_t iblock, 754 struct buffer_head *bh, int flags) 755 { 756 struct ext4_map_blocks map; 757 int ret = 0; 758 759 if (ext4_has_inline_data(inode)) 760 return -ERANGE; 761 762 map.m_lblk = iblock; 763 map.m_len = bh->b_size >> inode->i_blkbits; 764 765 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 766 flags); 767 if (ret > 0) { 768 map_bh(bh, inode->i_sb, map.m_pblk); 769 ext4_update_bh_state(bh, map.m_flags); 770 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 771 ret = 0; 772 } else if (ret == 0) { 773 /* hole case, need to fill in bh->b_size */ 774 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 775 } 776 return ret; 777 } 778 779 int ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int create) 781 { 782 return _ext4_get_block(inode, iblock, bh, 783 create ? EXT4_GET_BLOCKS_CREATE : 0); 784 } 785 786 /* 787 * Get block function used when preparing for buffered write if we require 788 * creating an unwritten extent if blocks haven't been allocated. The extent 789 * will be converted to written after the IO is complete. 790 */ 791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 792 struct buffer_head *bh_result, int create) 793 { 794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 795 inode->i_ino, create); 796 return _ext4_get_block(inode, iblock, bh_result, 797 EXT4_GET_BLOCKS_IO_CREATE_EXT); 798 } 799 800 /* Maximum number of blocks we map for direct IO at once. */ 801 #define DIO_MAX_BLOCKS 4096 802 803 /* 804 * Get blocks function for the cases that need to start a transaction - 805 * generally difference cases of direct IO and DAX IO. It also handles retries 806 * in case of ENOSPC. 807 */ 808 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh_result, int flags) 810 { 811 int dio_credits; 812 handle_t *handle; 813 int retries = 0; 814 int ret; 815 816 /* Trim mapping request to maximum we can map at once for DIO */ 817 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 818 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 819 dio_credits = ext4_chunk_trans_blocks(inode, 820 bh_result->b_size >> inode->i_blkbits); 821 retry: 822 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 823 if (IS_ERR(handle)) 824 return PTR_ERR(handle); 825 826 ret = _ext4_get_block(inode, iblock, bh_result, flags); 827 ext4_journal_stop(handle); 828 829 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 830 goto retry; 831 return ret; 832 } 833 834 /* Get block function for DIO reads and writes to inodes without extents */ 835 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 836 struct buffer_head *bh, int create) 837 { 838 /* We don't expect handle for direct IO */ 839 WARN_ON_ONCE(ext4_journal_current_handle()); 840 841 if (!create) 842 return _ext4_get_block(inode, iblock, bh, 0); 843 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 844 } 845 846 /* 847 * Get block function for AIO DIO writes when we create unwritten extent if 848 * blocks are not allocated yet. The extent will be converted to written 849 * after IO is complete. 850 */ 851 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 852 sector_t iblock, struct buffer_head *bh_result, int create) 853 { 854 int ret; 855 856 /* We don't expect handle for direct IO */ 857 WARN_ON_ONCE(ext4_journal_current_handle()); 858 859 ret = ext4_get_block_trans(inode, iblock, bh_result, 860 EXT4_GET_BLOCKS_IO_CREATE_EXT); 861 862 /* 863 * When doing DIO using unwritten extents, we need io_end to convert 864 * unwritten extents to written on IO completion. We allocate io_end 865 * once we spot unwritten extent and store it in b_private. Generic 866 * DIO code keeps b_private set and furthermore passes the value to 867 * our completion callback in 'private' argument. 868 */ 869 if (!ret && buffer_unwritten(bh_result)) { 870 if (!bh_result->b_private) { 871 ext4_io_end_t *io_end; 872 873 io_end = ext4_init_io_end(inode, GFP_KERNEL); 874 if (!io_end) 875 return -ENOMEM; 876 bh_result->b_private = io_end; 877 ext4_set_io_unwritten_flag(inode, io_end); 878 } 879 set_buffer_defer_completion(bh_result); 880 } 881 882 return ret; 883 } 884 885 /* 886 * Get block function for non-AIO DIO writes when we create unwritten extent if 887 * blocks are not allocated yet. The extent will be converted to written 888 * after IO is complete from ext4_ext_direct_IO() function. 889 */ 890 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 891 sector_t iblock, struct buffer_head *bh_result, int create) 892 { 893 int ret; 894 895 /* We don't expect handle for direct IO */ 896 WARN_ON_ONCE(ext4_journal_current_handle()); 897 898 ret = ext4_get_block_trans(inode, iblock, bh_result, 899 EXT4_GET_BLOCKS_IO_CREATE_EXT); 900 901 /* 902 * Mark inode as having pending DIO writes to unwritten extents. 903 * ext4_ext_direct_IO() checks this flag and converts extents to 904 * written. 905 */ 906 if (!ret && buffer_unwritten(bh_result)) 907 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 908 909 return ret; 910 } 911 912 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 913 struct buffer_head *bh_result, int create) 914 { 915 int ret; 916 917 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 918 inode->i_ino, create); 919 /* We don't expect handle for direct IO */ 920 WARN_ON_ONCE(ext4_journal_current_handle()); 921 922 ret = _ext4_get_block(inode, iblock, bh_result, 0); 923 /* 924 * Blocks should have been preallocated! ext4_file_write_iter() checks 925 * that. 926 */ 927 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 928 929 return ret; 930 } 931 932 933 /* 934 * `handle' can be NULL if create is zero 935 */ 936 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 937 ext4_lblk_t block, int map_flags) 938 { 939 struct ext4_map_blocks map; 940 struct buffer_head *bh; 941 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 942 int err; 943 944 J_ASSERT(handle != NULL || create == 0); 945 946 map.m_lblk = block; 947 map.m_len = 1; 948 err = ext4_map_blocks(handle, inode, &map, map_flags); 949 950 if (err == 0) 951 return create ? ERR_PTR(-ENOSPC) : NULL; 952 if (err < 0) 953 return ERR_PTR(err); 954 955 bh = sb_getblk(inode->i_sb, map.m_pblk); 956 if (unlikely(!bh)) 957 return ERR_PTR(-ENOMEM); 958 if (map.m_flags & EXT4_MAP_NEW) { 959 J_ASSERT(create != 0); 960 J_ASSERT(handle != NULL); 961 962 /* 963 * Now that we do not always journal data, we should 964 * keep in mind whether this should always journal the 965 * new buffer as metadata. For now, regular file 966 * writes use ext4_get_block instead, so it's not a 967 * problem. 968 */ 969 lock_buffer(bh); 970 BUFFER_TRACE(bh, "call get_create_access"); 971 err = ext4_journal_get_create_access(handle, bh); 972 if (unlikely(err)) { 973 unlock_buffer(bh); 974 goto errout; 975 } 976 if (!buffer_uptodate(bh)) { 977 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 978 set_buffer_uptodate(bh); 979 } 980 unlock_buffer(bh); 981 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 982 err = ext4_handle_dirty_metadata(handle, inode, bh); 983 if (unlikely(err)) 984 goto errout; 985 } else 986 BUFFER_TRACE(bh, "not a new buffer"); 987 return bh; 988 errout: 989 brelse(bh); 990 return ERR_PTR(err); 991 } 992 993 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 994 ext4_lblk_t block, int map_flags) 995 { 996 struct buffer_head *bh; 997 998 bh = ext4_getblk(handle, inode, block, map_flags); 999 if (IS_ERR(bh)) 1000 return bh; 1001 if (!bh || buffer_uptodate(bh)) 1002 return bh; 1003 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1004 wait_on_buffer(bh); 1005 if (buffer_uptodate(bh)) 1006 return bh; 1007 put_bh(bh); 1008 return ERR_PTR(-EIO); 1009 } 1010 1011 int ext4_walk_page_buffers(handle_t *handle, 1012 struct buffer_head *head, 1013 unsigned from, 1014 unsigned to, 1015 int *partial, 1016 int (*fn)(handle_t *handle, 1017 struct buffer_head *bh)) 1018 { 1019 struct buffer_head *bh; 1020 unsigned block_start, block_end; 1021 unsigned blocksize = head->b_size; 1022 int err, ret = 0; 1023 struct buffer_head *next; 1024 1025 for (bh = head, block_start = 0; 1026 ret == 0 && (bh != head || !block_start); 1027 block_start = block_end, bh = next) { 1028 next = bh->b_this_page; 1029 block_end = block_start + blocksize; 1030 if (block_end <= from || block_start >= to) { 1031 if (partial && !buffer_uptodate(bh)) 1032 *partial = 1; 1033 continue; 1034 } 1035 err = (*fn)(handle, bh); 1036 if (!ret) 1037 ret = err; 1038 } 1039 return ret; 1040 } 1041 1042 /* 1043 * To preserve ordering, it is essential that the hole instantiation and 1044 * the data write be encapsulated in a single transaction. We cannot 1045 * close off a transaction and start a new one between the ext4_get_block() 1046 * and the commit_write(). So doing the jbd2_journal_start at the start of 1047 * prepare_write() is the right place. 1048 * 1049 * Also, this function can nest inside ext4_writepage(). In that case, we 1050 * *know* that ext4_writepage() has generated enough buffer credits to do the 1051 * whole page. So we won't block on the journal in that case, which is good, 1052 * because the caller may be PF_MEMALLOC. 1053 * 1054 * By accident, ext4 can be reentered when a transaction is open via 1055 * quota file writes. If we were to commit the transaction while thus 1056 * reentered, there can be a deadlock - we would be holding a quota 1057 * lock, and the commit would never complete if another thread had a 1058 * transaction open and was blocking on the quota lock - a ranking 1059 * violation. 1060 * 1061 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1062 * will _not_ run commit under these circumstances because handle->h_ref 1063 * is elevated. We'll still have enough credits for the tiny quotafile 1064 * write. 1065 */ 1066 int do_journal_get_write_access(handle_t *handle, 1067 struct buffer_head *bh) 1068 { 1069 int dirty = buffer_dirty(bh); 1070 int ret; 1071 1072 if (!buffer_mapped(bh) || buffer_freed(bh)) 1073 return 0; 1074 /* 1075 * __block_write_begin() could have dirtied some buffers. Clean 1076 * the dirty bit as jbd2_journal_get_write_access() could complain 1077 * otherwise about fs integrity issues. Setting of the dirty bit 1078 * by __block_write_begin() isn't a real problem here as we clear 1079 * the bit before releasing a page lock and thus writeback cannot 1080 * ever write the buffer. 1081 */ 1082 if (dirty) 1083 clear_buffer_dirty(bh); 1084 BUFFER_TRACE(bh, "get write access"); 1085 ret = ext4_journal_get_write_access(handle, bh); 1086 if (!ret && dirty) 1087 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1088 return ret; 1089 } 1090 1091 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1092 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1093 get_block_t *get_block) 1094 { 1095 unsigned from = pos & (PAGE_SIZE - 1); 1096 unsigned to = from + len; 1097 struct inode *inode = page->mapping->host; 1098 unsigned block_start, block_end; 1099 sector_t block; 1100 int err = 0; 1101 unsigned blocksize = inode->i_sb->s_blocksize; 1102 unsigned bbits; 1103 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1104 bool decrypt = false; 1105 1106 BUG_ON(!PageLocked(page)); 1107 BUG_ON(from > PAGE_SIZE); 1108 BUG_ON(to > PAGE_SIZE); 1109 BUG_ON(from > to); 1110 1111 if (!page_has_buffers(page)) 1112 create_empty_buffers(page, blocksize, 0); 1113 head = page_buffers(page); 1114 bbits = ilog2(blocksize); 1115 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1116 1117 for (bh = head, block_start = 0; bh != head || !block_start; 1118 block++, block_start = block_end, bh = bh->b_this_page) { 1119 block_end = block_start + blocksize; 1120 if (block_end <= from || block_start >= to) { 1121 if (PageUptodate(page)) { 1122 if (!buffer_uptodate(bh)) 1123 set_buffer_uptodate(bh); 1124 } 1125 continue; 1126 } 1127 if (buffer_new(bh)) 1128 clear_buffer_new(bh); 1129 if (!buffer_mapped(bh)) { 1130 WARN_ON(bh->b_size != blocksize); 1131 err = get_block(inode, block, bh, 1); 1132 if (err) 1133 break; 1134 if (buffer_new(bh)) { 1135 clean_bdev_bh_alias(bh); 1136 if (PageUptodate(page)) { 1137 clear_buffer_new(bh); 1138 set_buffer_uptodate(bh); 1139 mark_buffer_dirty(bh); 1140 continue; 1141 } 1142 if (block_end > to || block_start < from) 1143 zero_user_segments(page, to, block_end, 1144 block_start, from); 1145 continue; 1146 } 1147 } 1148 if (PageUptodate(page)) { 1149 if (!buffer_uptodate(bh)) 1150 set_buffer_uptodate(bh); 1151 continue; 1152 } 1153 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1154 !buffer_unwritten(bh) && 1155 (block_start < from || block_end > to)) { 1156 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1157 *wait_bh++ = bh; 1158 decrypt = ext4_encrypted_inode(inode) && 1159 S_ISREG(inode->i_mode); 1160 } 1161 } 1162 /* 1163 * If we issued read requests, let them complete. 1164 */ 1165 while (wait_bh > wait) { 1166 wait_on_buffer(*--wait_bh); 1167 if (!buffer_uptodate(*wait_bh)) 1168 err = -EIO; 1169 } 1170 if (unlikely(err)) 1171 page_zero_new_buffers(page, from, to); 1172 else if (decrypt) 1173 err = fscrypt_decrypt_page(page->mapping->host, page, 1174 PAGE_SIZE, 0, page->index); 1175 return err; 1176 } 1177 #endif 1178 1179 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1180 loff_t pos, unsigned len, unsigned flags, 1181 struct page **pagep, void **fsdata) 1182 { 1183 struct inode *inode = mapping->host; 1184 int ret, needed_blocks; 1185 handle_t *handle; 1186 int retries = 0; 1187 struct page *page; 1188 pgoff_t index; 1189 unsigned from, to; 1190 1191 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1192 return -EIO; 1193 1194 trace_ext4_write_begin(inode, pos, len, flags); 1195 /* 1196 * Reserve one block more for addition to orphan list in case 1197 * we allocate blocks but write fails for some reason 1198 */ 1199 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1200 index = pos >> PAGE_SHIFT; 1201 from = pos & (PAGE_SIZE - 1); 1202 to = from + len; 1203 1204 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1205 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1206 flags, pagep); 1207 if (ret < 0) 1208 return ret; 1209 if (ret == 1) 1210 return 0; 1211 } 1212 1213 /* 1214 * grab_cache_page_write_begin() can take a long time if the 1215 * system is thrashing due to memory pressure, or if the page 1216 * is being written back. So grab it first before we start 1217 * the transaction handle. This also allows us to allocate 1218 * the page (if needed) without using GFP_NOFS. 1219 */ 1220 retry_grab: 1221 page = grab_cache_page_write_begin(mapping, index, flags); 1222 if (!page) 1223 return -ENOMEM; 1224 unlock_page(page); 1225 1226 retry_journal: 1227 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1228 if (IS_ERR(handle)) { 1229 put_page(page); 1230 return PTR_ERR(handle); 1231 } 1232 1233 lock_page(page); 1234 if (page->mapping != mapping) { 1235 /* The page got truncated from under us */ 1236 unlock_page(page); 1237 put_page(page); 1238 ext4_journal_stop(handle); 1239 goto retry_grab; 1240 } 1241 /* In case writeback began while the page was unlocked */ 1242 wait_for_stable_page(page); 1243 1244 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1245 if (ext4_should_dioread_nolock(inode)) 1246 ret = ext4_block_write_begin(page, pos, len, 1247 ext4_get_block_unwritten); 1248 else 1249 ret = ext4_block_write_begin(page, pos, len, 1250 ext4_get_block); 1251 #else 1252 if (ext4_should_dioread_nolock(inode)) 1253 ret = __block_write_begin(page, pos, len, 1254 ext4_get_block_unwritten); 1255 else 1256 ret = __block_write_begin(page, pos, len, ext4_get_block); 1257 #endif 1258 if (!ret && ext4_should_journal_data(inode)) { 1259 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1260 from, to, NULL, 1261 do_journal_get_write_access); 1262 } 1263 1264 if (ret) { 1265 unlock_page(page); 1266 /* 1267 * __block_write_begin may have instantiated a few blocks 1268 * outside i_size. Trim these off again. Don't need 1269 * i_size_read because we hold i_mutex. 1270 * 1271 * Add inode to orphan list in case we crash before 1272 * truncate finishes 1273 */ 1274 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1275 ext4_orphan_add(handle, inode); 1276 1277 ext4_journal_stop(handle); 1278 if (pos + len > inode->i_size) { 1279 ext4_truncate_failed_write(inode); 1280 /* 1281 * If truncate failed early the inode might 1282 * still be on the orphan list; we need to 1283 * make sure the inode is removed from the 1284 * orphan list in that case. 1285 */ 1286 if (inode->i_nlink) 1287 ext4_orphan_del(NULL, inode); 1288 } 1289 1290 if (ret == -ENOSPC && 1291 ext4_should_retry_alloc(inode->i_sb, &retries)) 1292 goto retry_journal; 1293 put_page(page); 1294 return ret; 1295 } 1296 *pagep = page; 1297 return ret; 1298 } 1299 1300 /* For write_end() in data=journal mode */ 1301 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1302 { 1303 int ret; 1304 if (!buffer_mapped(bh) || buffer_freed(bh)) 1305 return 0; 1306 set_buffer_uptodate(bh); 1307 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1308 clear_buffer_meta(bh); 1309 clear_buffer_prio(bh); 1310 return ret; 1311 } 1312 1313 /* 1314 * We need to pick up the new inode size which generic_commit_write gave us 1315 * `file' can be NULL - eg, when called from page_symlink(). 1316 * 1317 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1318 * buffers are managed internally. 1319 */ 1320 static int ext4_write_end(struct file *file, 1321 struct address_space *mapping, 1322 loff_t pos, unsigned len, unsigned copied, 1323 struct page *page, void *fsdata) 1324 { 1325 handle_t *handle = ext4_journal_current_handle(); 1326 struct inode *inode = mapping->host; 1327 loff_t old_size = inode->i_size; 1328 int ret = 0, ret2; 1329 int i_size_changed = 0; 1330 1331 trace_ext4_write_end(inode, pos, len, copied); 1332 if (ext4_has_inline_data(inode)) { 1333 ret = ext4_write_inline_data_end(inode, pos, len, 1334 copied, page); 1335 if (ret < 0) { 1336 unlock_page(page); 1337 put_page(page); 1338 goto errout; 1339 } 1340 copied = ret; 1341 } else 1342 copied = block_write_end(file, mapping, pos, 1343 len, copied, page, fsdata); 1344 /* 1345 * it's important to update i_size while still holding page lock: 1346 * page writeout could otherwise come in and zero beyond i_size. 1347 */ 1348 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1349 unlock_page(page); 1350 put_page(page); 1351 1352 if (old_size < pos) 1353 pagecache_isize_extended(inode, old_size, pos); 1354 /* 1355 * Don't mark the inode dirty under page lock. First, it unnecessarily 1356 * makes the holding time of page lock longer. Second, it forces lock 1357 * ordering of page lock and transaction start for journaling 1358 * filesystems. 1359 */ 1360 if (i_size_changed) 1361 ext4_mark_inode_dirty(handle, inode); 1362 1363 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1364 /* if we have allocated more blocks and copied 1365 * less. We will have blocks allocated outside 1366 * inode->i_size. So truncate them 1367 */ 1368 ext4_orphan_add(handle, inode); 1369 errout: 1370 ret2 = ext4_journal_stop(handle); 1371 if (!ret) 1372 ret = ret2; 1373 1374 if (pos + len > inode->i_size) { 1375 ext4_truncate_failed_write(inode); 1376 /* 1377 * If truncate failed early the inode might still be 1378 * on the orphan list; we need to make sure the inode 1379 * is removed from the orphan list in that case. 1380 */ 1381 if (inode->i_nlink) 1382 ext4_orphan_del(NULL, inode); 1383 } 1384 1385 return ret ? ret : copied; 1386 } 1387 1388 /* 1389 * This is a private version of page_zero_new_buffers() which doesn't 1390 * set the buffer to be dirty, since in data=journalled mode we need 1391 * to call ext4_handle_dirty_metadata() instead. 1392 */ 1393 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1394 struct page *page, 1395 unsigned from, unsigned to) 1396 { 1397 unsigned int block_start = 0, block_end; 1398 struct buffer_head *head, *bh; 1399 1400 bh = head = page_buffers(page); 1401 do { 1402 block_end = block_start + bh->b_size; 1403 if (buffer_new(bh)) { 1404 if (block_end > from && block_start < to) { 1405 if (!PageUptodate(page)) { 1406 unsigned start, size; 1407 1408 start = max(from, block_start); 1409 size = min(to, block_end) - start; 1410 1411 zero_user(page, start, size); 1412 write_end_fn(handle, bh); 1413 } 1414 clear_buffer_new(bh); 1415 } 1416 } 1417 block_start = block_end; 1418 bh = bh->b_this_page; 1419 } while (bh != head); 1420 } 1421 1422 static int ext4_journalled_write_end(struct file *file, 1423 struct address_space *mapping, 1424 loff_t pos, unsigned len, unsigned copied, 1425 struct page *page, void *fsdata) 1426 { 1427 handle_t *handle = ext4_journal_current_handle(); 1428 struct inode *inode = mapping->host; 1429 loff_t old_size = inode->i_size; 1430 int ret = 0, ret2; 1431 int partial = 0; 1432 unsigned from, to; 1433 int size_changed = 0; 1434 1435 trace_ext4_journalled_write_end(inode, pos, len, copied); 1436 from = pos & (PAGE_SIZE - 1); 1437 to = from + len; 1438 1439 BUG_ON(!ext4_handle_valid(handle)); 1440 1441 if (ext4_has_inline_data(inode)) { 1442 ret = ext4_write_inline_data_end(inode, pos, len, 1443 copied, page); 1444 if (ret < 0) { 1445 unlock_page(page); 1446 put_page(page); 1447 goto errout; 1448 } 1449 copied = ret; 1450 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1451 copied = 0; 1452 ext4_journalled_zero_new_buffers(handle, page, from, to); 1453 } else { 1454 if (unlikely(copied < len)) 1455 ext4_journalled_zero_new_buffers(handle, page, 1456 from + copied, to); 1457 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1458 from + copied, &partial, 1459 write_end_fn); 1460 if (!partial) 1461 SetPageUptodate(page); 1462 } 1463 size_changed = ext4_update_inode_size(inode, pos + copied); 1464 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1465 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1466 unlock_page(page); 1467 put_page(page); 1468 1469 if (old_size < pos) 1470 pagecache_isize_extended(inode, old_size, pos); 1471 1472 if (size_changed) { 1473 ret2 = ext4_mark_inode_dirty(handle, inode); 1474 if (!ret) 1475 ret = ret2; 1476 } 1477 1478 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1479 /* if we have allocated more blocks and copied 1480 * less. We will have blocks allocated outside 1481 * inode->i_size. So truncate them 1482 */ 1483 ext4_orphan_add(handle, inode); 1484 1485 errout: 1486 ret2 = ext4_journal_stop(handle); 1487 if (!ret) 1488 ret = ret2; 1489 if (pos + len > inode->i_size) { 1490 ext4_truncate_failed_write(inode); 1491 /* 1492 * If truncate failed early the inode might still be 1493 * on the orphan list; we need to make sure the inode 1494 * is removed from the orphan list in that case. 1495 */ 1496 if (inode->i_nlink) 1497 ext4_orphan_del(NULL, inode); 1498 } 1499 1500 return ret ? ret : copied; 1501 } 1502 1503 /* 1504 * Reserve space for a single cluster 1505 */ 1506 static int ext4_da_reserve_space(struct inode *inode) 1507 { 1508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1509 struct ext4_inode_info *ei = EXT4_I(inode); 1510 int ret; 1511 1512 /* 1513 * We will charge metadata quota at writeout time; this saves 1514 * us from metadata over-estimation, though we may go over by 1515 * a small amount in the end. Here we just reserve for data. 1516 */ 1517 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1518 if (ret) 1519 return ret; 1520 1521 spin_lock(&ei->i_block_reservation_lock); 1522 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1523 spin_unlock(&ei->i_block_reservation_lock); 1524 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1525 return -ENOSPC; 1526 } 1527 ei->i_reserved_data_blocks++; 1528 trace_ext4_da_reserve_space(inode); 1529 spin_unlock(&ei->i_block_reservation_lock); 1530 1531 return 0; /* success */ 1532 } 1533 1534 static void ext4_da_release_space(struct inode *inode, int to_free) 1535 { 1536 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1537 struct ext4_inode_info *ei = EXT4_I(inode); 1538 1539 if (!to_free) 1540 return; /* Nothing to release, exit */ 1541 1542 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1543 1544 trace_ext4_da_release_space(inode, to_free); 1545 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1546 /* 1547 * if there aren't enough reserved blocks, then the 1548 * counter is messed up somewhere. Since this 1549 * function is called from invalidate page, it's 1550 * harmless to return without any action. 1551 */ 1552 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1553 "ino %lu, to_free %d with only %d reserved " 1554 "data blocks", inode->i_ino, to_free, 1555 ei->i_reserved_data_blocks); 1556 WARN_ON(1); 1557 to_free = ei->i_reserved_data_blocks; 1558 } 1559 ei->i_reserved_data_blocks -= to_free; 1560 1561 /* update fs dirty data blocks counter */ 1562 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1563 1564 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1565 1566 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1567 } 1568 1569 static void ext4_da_page_release_reservation(struct page *page, 1570 unsigned int offset, 1571 unsigned int length) 1572 { 1573 int to_release = 0, contiguous_blks = 0; 1574 struct buffer_head *head, *bh; 1575 unsigned int curr_off = 0; 1576 struct inode *inode = page->mapping->host; 1577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1578 unsigned int stop = offset + length; 1579 int num_clusters; 1580 ext4_fsblk_t lblk; 1581 1582 BUG_ON(stop > PAGE_SIZE || stop < length); 1583 1584 head = page_buffers(page); 1585 bh = head; 1586 do { 1587 unsigned int next_off = curr_off + bh->b_size; 1588 1589 if (next_off > stop) 1590 break; 1591 1592 if ((offset <= curr_off) && (buffer_delay(bh))) { 1593 to_release++; 1594 contiguous_blks++; 1595 clear_buffer_delay(bh); 1596 } else if (contiguous_blks) { 1597 lblk = page->index << 1598 (PAGE_SHIFT - inode->i_blkbits); 1599 lblk += (curr_off >> inode->i_blkbits) - 1600 contiguous_blks; 1601 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1602 contiguous_blks = 0; 1603 } 1604 curr_off = next_off; 1605 } while ((bh = bh->b_this_page) != head); 1606 1607 if (contiguous_blks) { 1608 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1609 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1610 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1611 } 1612 1613 /* If we have released all the blocks belonging to a cluster, then we 1614 * need to release the reserved space for that cluster. */ 1615 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1616 while (num_clusters > 0) { 1617 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1618 ((num_clusters - 1) << sbi->s_cluster_bits); 1619 if (sbi->s_cluster_ratio == 1 || 1620 !ext4_find_delalloc_cluster(inode, lblk)) 1621 ext4_da_release_space(inode, 1); 1622 1623 num_clusters--; 1624 } 1625 } 1626 1627 /* 1628 * Delayed allocation stuff 1629 */ 1630 1631 struct mpage_da_data { 1632 struct inode *inode; 1633 struct writeback_control *wbc; 1634 1635 pgoff_t first_page; /* The first page to write */ 1636 pgoff_t next_page; /* Current page to examine */ 1637 pgoff_t last_page; /* Last page to examine */ 1638 /* 1639 * Extent to map - this can be after first_page because that can be 1640 * fully mapped. We somewhat abuse m_flags to store whether the extent 1641 * is delalloc or unwritten. 1642 */ 1643 struct ext4_map_blocks map; 1644 struct ext4_io_submit io_submit; /* IO submission data */ 1645 unsigned int do_map:1; 1646 }; 1647 1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1649 bool invalidate) 1650 { 1651 int nr_pages, i; 1652 pgoff_t index, end; 1653 struct pagevec pvec; 1654 struct inode *inode = mpd->inode; 1655 struct address_space *mapping = inode->i_mapping; 1656 1657 /* This is necessary when next_page == 0. */ 1658 if (mpd->first_page >= mpd->next_page) 1659 return; 1660 1661 index = mpd->first_page; 1662 end = mpd->next_page - 1; 1663 if (invalidate) { 1664 ext4_lblk_t start, last; 1665 start = index << (PAGE_SHIFT - inode->i_blkbits); 1666 last = end << (PAGE_SHIFT - inode->i_blkbits); 1667 ext4_es_remove_extent(inode, start, last - start + 1); 1668 } 1669 1670 pagevec_init(&pvec, 0); 1671 while (index <= end) { 1672 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1673 if (nr_pages == 0) 1674 break; 1675 for (i = 0; i < nr_pages; i++) { 1676 struct page *page = pvec.pages[i]; 1677 if (page->index > end) 1678 break; 1679 BUG_ON(!PageLocked(page)); 1680 BUG_ON(PageWriteback(page)); 1681 if (invalidate) { 1682 if (page_mapped(page)) 1683 clear_page_dirty_for_io(page); 1684 block_invalidatepage(page, 0, PAGE_SIZE); 1685 ClearPageUptodate(page); 1686 } 1687 unlock_page(page); 1688 } 1689 index = pvec.pages[nr_pages - 1]->index + 1; 1690 pagevec_release(&pvec); 1691 } 1692 } 1693 1694 static void ext4_print_free_blocks(struct inode *inode) 1695 { 1696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1697 struct super_block *sb = inode->i_sb; 1698 struct ext4_inode_info *ei = EXT4_I(inode); 1699 1700 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1701 EXT4_C2B(EXT4_SB(inode->i_sb), 1702 ext4_count_free_clusters(sb))); 1703 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1704 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1705 (long long) EXT4_C2B(EXT4_SB(sb), 1706 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1707 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1708 (long long) EXT4_C2B(EXT4_SB(sb), 1709 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1710 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1711 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1712 ei->i_reserved_data_blocks); 1713 return; 1714 } 1715 1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1717 { 1718 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1719 } 1720 1721 /* 1722 * This function is grabs code from the very beginning of 1723 * ext4_map_blocks, but assumes that the caller is from delayed write 1724 * time. This function looks up the requested blocks and sets the 1725 * buffer delay bit under the protection of i_data_sem. 1726 */ 1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1728 struct ext4_map_blocks *map, 1729 struct buffer_head *bh) 1730 { 1731 struct extent_status es; 1732 int retval; 1733 sector_t invalid_block = ~((sector_t) 0xffff); 1734 #ifdef ES_AGGRESSIVE_TEST 1735 struct ext4_map_blocks orig_map; 1736 1737 memcpy(&orig_map, map, sizeof(*map)); 1738 #endif 1739 1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1741 invalid_block = ~0; 1742 1743 map->m_flags = 0; 1744 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1745 "logical block %lu\n", inode->i_ino, map->m_len, 1746 (unsigned long) map->m_lblk); 1747 1748 /* Lookup extent status tree firstly */ 1749 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1750 if (ext4_es_is_hole(&es)) { 1751 retval = 0; 1752 down_read(&EXT4_I(inode)->i_data_sem); 1753 goto add_delayed; 1754 } 1755 1756 /* 1757 * Delayed extent could be allocated by fallocate. 1758 * So we need to check it. 1759 */ 1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1761 map_bh(bh, inode->i_sb, invalid_block); 1762 set_buffer_new(bh); 1763 set_buffer_delay(bh); 1764 return 0; 1765 } 1766 1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1768 retval = es.es_len - (iblock - es.es_lblk); 1769 if (retval > map->m_len) 1770 retval = map->m_len; 1771 map->m_len = retval; 1772 if (ext4_es_is_written(&es)) 1773 map->m_flags |= EXT4_MAP_MAPPED; 1774 else if (ext4_es_is_unwritten(&es)) 1775 map->m_flags |= EXT4_MAP_UNWRITTEN; 1776 else 1777 BUG_ON(1); 1778 1779 #ifdef ES_AGGRESSIVE_TEST 1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1781 #endif 1782 return retval; 1783 } 1784 1785 /* 1786 * Try to see if we can get the block without requesting a new 1787 * file system block. 1788 */ 1789 down_read(&EXT4_I(inode)->i_data_sem); 1790 if (ext4_has_inline_data(inode)) 1791 retval = 0; 1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1794 else 1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1796 1797 add_delayed: 1798 if (retval == 0) { 1799 int ret; 1800 /* 1801 * XXX: __block_prepare_write() unmaps passed block, 1802 * is it OK? 1803 */ 1804 /* 1805 * If the block was allocated from previously allocated cluster, 1806 * then we don't need to reserve it again. However we still need 1807 * to reserve metadata for every block we're going to write. 1808 */ 1809 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1810 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1811 ret = ext4_da_reserve_space(inode); 1812 if (ret) { 1813 /* not enough space to reserve */ 1814 retval = ret; 1815 goto out_unlock; 1816 } 1817 } 1818 1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1820 ~0, EXTENT_STATUS_DELAYED); 1821 if (ret) { 1822 retval = ret; 1823 goto out_unlock; 1824 } 1825 1826 map_bh(bh, inode->i_sb, invalid_block); 1827 set_buffer_new(bh); 1828 set_buffer_delay(bh); 1829 } else if (retval > 0) { 1830 int ret; 1831 unsigned int status; 1832 1833 if (unlikely(retval != map->m_len)) { 1834 ext4_warning(inode->i_sb, 1835 "ES len assertion failed for inode " 1836 "%lu: retval %d != map->m_len %d", 1837 inode->i_ino, retval, map->m_len); 1838 WARN_ON(1); 1839 } 1840 1841 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1842 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1843 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1844 map->m_pblk, status); 1845 if (ret != 0) 1846 retval = ret; 1847 } 1848 1849 out_unlock: 1850 up_read((&EXT4_I(inode)->i_data_sem)); 1851 1852 return retval; 1853 } 1854 1855 /* 1856 * This is a special get_block_t callback which is used by 1857 * ext4_da_write_begin(). It will either return mapped block or 1858 * reserve space for a single block. 1859 * 1860 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1861 * We also have b_blocknr = -1 and b_bdev initialized properly 1862 * 1863 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1864 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1865 * initialized properly. 1866 */ 1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1868 struct buffer_head *bh, int create) 1869 { 1870 struct ext4_map_blocks map; 1871 int ret = 0; 1872 1873 BUG_ON(create == 0); 1874 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1875 1876 map.m_lblk = iblock; 1877 map.m_len = 1; 1878 1879 /* 1880 * first, we need to know whether the block is allocated already 1881 * preallocated blocks are unmapped but should treated 1882 * the same as allocated blocks. 1883 */ 1884 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1885 if (ret <= 0) 1886 return ret; 1887 1888 map_bh(bh, inode->i_sb, map.m_pblk); 1889 ext4_update_bh_state(bh, map.m_flags); 1890 1891 if (buffer_unwritten(bh)) { 1892 /* A delayed write to unwritten bh should be marked 1893 * new and mapped. Mapped ensures that we don't do 1894 * get_block multiple times when we write to the same 1895 * offset and new ensures that we do proper zero out 1896 * for partial write. 1897 */ 1898 set_buffer_new(bh); 1899 set_buffer_mapped(bh); 1900 } 1901 return 0; 1902 } 1903 1904 static int bget_one(handle_t *handle, struct buffer_head *bh) 1905 { 1906 get_bh(bh); 1907 return 0; 1908 } 1909 1910 static int bput_one(handle_t *handle, struct buffer_head *bh) 1911 { 1912 put_bh(bh); 1913 return 0; 1914 } 1915 1916 static int __ext4_journalled_writepage(struct page *page, 1917 unsigned int len) 1918 { 1919 struct address_space *mapping = page->mapping; 1920 struct inode *inode = mapping->host; 1921 struct buffer_head *page_bufs = NULL; 1922 handle_t *handle = NULL; 1923 int ret = 0, err = 0; 1924 int inline_data = ext4_has_inline_data(inode); 1925 struct buffer_head *inode_bh = NULL; 1926 1927 ClearPageChecked(page); 1928 1929 if (inline_data) { 1930 BUG_ON(page->index != 0); 1931 BUG_ON(len > ext4_get_max_inline_size(inode)); 1932 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1933 if (inode_bh == NULL) 1934 goto out; 1935 } else { 1936 page_bufs = page_buffers(page); 1937 if (!page_bufs) { 1938 BUG(); 1939 goto out; 1940 } 1941 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1942 NULL, bget_one); 1943 } 1944 /* 1945 * We need to release the page lock before we start the 1946 * journal, so grab a reference so the page won't disappear 1947 * out from under us. 1948 */ 1949 get_page(page); 1950 unlock_page(page); 1951 1952 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1953 ext4_writepage_trans_blocks(inode)); 1954 if (IS_ERR(handle)) { 1955 ret = PTR_ERR(handle); 1956 put_page(page); 1957 goto out_no_pagelock; 1958 } 1959 BUG_ON(!ext4_handle_valid(handle)); 1960 1961 lock_page(page); 1962 put_page(page); 1963 if (page->mapping != mapping) { 1964 /* The page got truncated from under us */ 1965 ext4_journal_stop(handle); 1966 ret = 0; 1967 goto out; 1968 } 1969 1970 if (inline_data) { 1971 BUFFER_TRACE(inode_bh, "get write access"); 1972 ret = ext4_journal_get_write_access(handle, inode_bh); 1973 1974 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1975 1976 } else { 1977 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1978 do_journal_get_write_access); 1979 1980 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1981 write_end_fn); 1982 } 1983 if (ret == 0) 1984 ret = err; 1985 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1986 err = ext4_journal_stop(handle); 1987 if (!ret) 1988 ret = err; 1989 1990 if (!ext4_has_inline_data(inode)) 1991 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1992 NULL, bput_one); 1993 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1994 out: 1995 unlock_page(page); 1996 out_no_pagelock: 1997 brelse(inode_bh); 1998 return ret; 1999 } 2000 2001 /* 2002 * Note that we don't need to start a transaction unless we're journaling data 2003 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2004 * need to file the inode to the transaction's list in ordered mode because if 2005 * we are writing back data added by write(), the inode is already there and if 2006 * we are writing back data modified via mmap(), no one guarantees in which 2007 * transaction the data will hit the disk. In case we are journaling data, we 2008 * cannot start transaction directly because transaction start ranks above page 2009 * lock so we have to do some magic. 2010 * 2011 * This function can get called via... 2012 * - ext4_writepages after taking page lock (have journal handle) 2013 * - journal_submit_inode_data_buffers (no journal handle) 2014 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2015 * - grab_page_cache when doing write_begin (have journal handle) 2016 * 2017 * We don't do any block allocation in this function. If we have page with 2018 * multiple blocks we need to write those buffer_heads that are mapped. This 2019 * is important for mmaped based write. So if we do with blocksize 1K 2020 * truncate(f, 1024); 2021 * a = mmap(f, 0, 4096); 2022 * a[0] = 'a'; 2023 * truncate(f, 4096); 2024 * we have in the page first buffer_head mapped via page_mkwrite call back 2025 * but other buffer_heads would be unmapped but dirty (dirty done via the 2026 * do_wp_page). So writepage should write the first block. If we modify 2027 * the mmap area beyond 1024 we will again get a page_fault and the 2028 * page_mkwrite callback will do the block allocation and mark the 2029 * buffer_heads mapped. 2030 * 2031 * We redirty the page if we have any buffer_heads that is either delay or 2032 * unwritten in the page. 2033 * 2034 * We can get recursively called as show below. 2035 * 2036 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2037 * ext4_writepage() 2038 * 2039 * But since we don't do any block allocation we should not deadlock. 2040 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2041 */ 2042 static int ext4_writepage(struct page *page, 2043 struct writeback_control *wbc) 2044 { 2045 int ret = 0; 2046 loff_t size; 2047 unsigned int len; 2048 struct buffer_head *page_bufs = NULL; 2049 struct inode *inode = page->mapping->host; 2050 struct ext4_io_submit io_submit; 2051 bool keep_towrite = false; 2052 2053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2054 ext4_invalidatepage(page, 0, PAGE_SIZE); 2055 unlock_page(page); 2056 return -EIO; 2057 } 2058 2059 trace_ext4_writepage(page); 2060 size = i_size_read(inode); 2061 if (page->index == size >> PAGE_SHIFT) 2062 len = size & ~PAGE_MASK; 2063 else 2064 len = PAGE_SIZE; 2065 2066 page_bufs = page_buffers(page); 2067 /* 2068 * We cannot do block allocation or other extent handling in this 2069 * function. If there are buffers needing that, we have to redirty 2070 * the page. But we may reach here when we do a journal commit via 2071 * journal_submit_inode_data_buffers() and in that case we must write 2072 * allocated buffers to achieve data=ordered mode guarantees. 2073 * 2074 * Also, if there is only one buffer per page (the fs block 2075 * size == the page size), if one buffer needs block 2076 * allocation or needs to modify the extent tree to clear the 2077 * unwritten flag, we know that the page can't be written at 2078 * all, so we might as well refuse the write immediately. 2079 * Unfortunately if the block size != page size, we can't as 2080 * easily detect this case using ext4_walk_page_buffers(), but 2081 * for the extremely common case, this is an optimization that 2082 * skips a useless round trip through ext4_bio_write_page(). 2083 */ 2084 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2085 ext4_bh_delay_or_unwritten)) { 2086 redirty_page_for_writepage(wbc, page); 2087 if ((current->flags & PF_MEMALLOC) || 2088 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2089 /* 2090 * For memory cleaning there's no point in writing only 2091 * some buffers. So just bail out. Warn if we came here 2092 * from direct reclaim. 2093 */ 2094 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2095 == PF_MEMALLOC); 2096 unlock_page(page); 2097 return 0; 2098 } 2099 keep_towrite = true; 2100 } 2101 2102 if (PageChecked(page) && ext4_should_journal_data(inode)) 2103 /* 2104 * It's mmapped pagecache. Add buffers and journal it. There 2105 * doesn't seem much point in redirtying the page here. 2106 */ 2107 return __ext4_journalled_writepage(page, len); 2108 2109 ext4_io_submit_init(&io_submit, wbc); 2110 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2111 if (!io_submit.io_end) { 2112 redirty_page_for_writepage(wbc, page); 2113 unlock_page(page); 2114 return -ENOMEM; 2115 } 2116 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2117 ext4_io_submit(&io_submit); 2118 /* Drop io_end reference we got from init */ 2119 ext4_put_io_end_defer(io_submit.io_end); 2120 return ret; 2121 } 2122 2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2124 { 2125 int len; 2126 loff_t size; 2127 int err; 2128 2129 BUG_ON(page->index != mpd->first_page); 2130 clear_page_dirty_for_io(page); 2131 /* 2132 * We have to be very careful here! Nothing protects writeback path 2133 * against i_size changes and the page can be writeably mapped into 2134 * page tables. So an application can be growing i_size and writing 2135 * data through mmap while writeback runs. clear_page_dirty_for_io() 2136 * write-protects our page in page tables and the page cannot get 2137 * written to again until we release page lock. So only after 2138 * clear_page_dirty_for_io() we are safe to sample i_size for 2139 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2140 * on the barrier provided by TestClearPageDirty in 2141 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2142 * after page tables are updated. 2143 */ 2144 size = i_size_read(mpd->inode); 2145 if (page->index == size >> PAGE_SHIFT) 2146 len = size & ~PAGE_MASK; 2147 else 2148 len = PAGE_SIZE; 2149 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2150 if (!err) 2151 mpd->wbc->nr_to_write--; 2152 mpd->first_page++; 2153 2154 return err; 2155 } 2156 2157 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2158 2159 /* 2160 * mballoc gives us at most this number of blocks... 2161 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2162 * The rest of mballoc seems to handle chunks up to full group size. 2163 */ 2164 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2165 2166 /* 2167 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2168 * 2169 * @mpd - extent of blocks 2170 * @lblk - logical number of the block in the file 2171 * @bh - buffer head we want to add to the extent 2172 * 2173 * The function is used to collect contig. blocks in the same state. If the 2174 * buffer doesn't require mapping for writeback and we haven't started the 2175 * extent of buffers to map yet, the function returns 'true' immediately - the 2176 * caller can write the buffer right away. Otherwise the function returns true 2177 * if the block has been added to the extent, false if the block couldn't be 2178 * added. 2179 */ 2180 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2181 struct buffer_head *bh) 2182 { 2183 struct ext4_map_blocks *map = &mpd->map; 2184 2185 /* Buffer that doesn't need mapping for writeback? */ 2186 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2187 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2188 /* So far no extent to map => we write the buffer right away */ 2189 if (map->m_len == 0) 2190 return true; 2191 return false; 2192 } 2193 2194 /* First block in the extent? */ 2195 if (map->m_len == 0) { 2196 /* We cannot map unless handle is started... */ 2197 if (!mpd->do_map) 2198 return false; 2199 map->m_lblk = lblk; 2200 map->m_len = 1; 2201 map->m_flags = bh->b_state & BH_FLAGS; 2202 return true; 2203 } 2204 2205 /* Don't go larger than mballoc is willing to allocate */ 2206 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2207 return false; 2208 2209 /* Can we merge the block to our big extent? */ 2210 if (lblk == map->m_lblk + map->m_len && 2211 (bh->b_state & BH_FLAGS) == map->m_flags) { 2212 map->m_len++; 2213 return true; 2214 } 2215 return false; 2216 } 2217 2218 /* 2219 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2220 * 2221 * @mpd - extent of blocks for mapping 2222 * @head - the first buffer in the page 2223 * @bh - buffer we should start processing from 2224 * @lblk - logical number of the block in the file corresponding to @bh 2225 * 2226 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2227 * the page for IO if all buffers in this page were mapped and there's no 2228 * accumulated extent of buffers to map or add buffers in the page to the 2229 * extent of buffers to map. The function returns 1 if the caller can continue 2230 * by processing the next page, 0 if it should stop adding buffers to the 2231 * extent to map because we cannot extend it anymore. It can also return value 2232 * < 0 in case of error during IO submission. 2233 */ 2234 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2235 struct buffer_head *head, 2236 struct buffer_head *bh, 2237 ext4_lblk_t lblk) 2238 { 2239 struct inode *inode = mpd->inode; 2240 int err; 2241 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2242 >> inode->i_blkbits; 2243 2244 do { 2245 BUG_ON(buffer_locked(bh)); 2246 2247 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2248 /* Found extent to map? */ 2249 if (mpd->map.m_len) 2250 return 0; 2251 /* Buffer needs mapping and handle is not started? */ 2252 if (!mpd->do_map) 2253 return 0; 2254 /* Everything mapped so far and we hit EOF */ 2255 break; 2256 } 2257 } while (lblk++, (bh = bh->b_this_page) != head); 2258 /* So far everything mapped? Submit the page for IO. */ 2259 if (mpd->map.m_len == 0) { 2260 err = mpage_submit_page(mpd, head->b_page); 2261 if (err < 0) 2262 return err; 2263 } 2264 return lblk < blocks; 2265 } 2266 2267 /* 2268 * mpage_map_buffers - update buffers corresponding to changed extent and 2269 * submit fully mapped pages for IO 2270 * 2271 * @mpd - description of extent to map, on return next extent to map 2272 * 2273 * Scan buffers corresponding to changed extent (we expect corresponding pages 2274 * to be already locked) and update buffer state according to new extent state. 2275 * We map delalloc buffers to their physical location, clear unwritten bits, 2276 * and mark buffers as uninit when we perform writes to unwritten extents 2277 * and do extent conversion after IO is finished. If the last page is not fully 2278 * mapped, we update @map to the next extent in the last page that needs 2279 * mapping. Otherwise we submit the page for IO. 2280 */ 2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2282 { 2283 struct pagevec pvec; 2284 int nr_pages, i; 2285 struct inode *inode = mpd->inode; 2286 struct buffer_head *head, *bh; 2287 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2288 pgoff_t start, end; 2289 ext4_lblk_t lblk; 2290 sector_t pblock; 2291 int err; 2292 2293 start = mpd->map.m_lblk >> bpp_bits; 2294 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2295 lblk = start << bpp_bits; 2296 pblock = mpd->map.m_pblk; 2297 2298 pagevec_init(&pvec, 0); 2299 while (start <= end) { 2300 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2301 PAGEVEC_SIZE); 2302 if (nr_pages == 0) 2303 break; 2304 for (i = 0; i < nr_pages; i++) { 2305 struct page *page = pvec.pages[i]; 2306 2307 if (page->index > end) 2308 break; 2309 /* Up to 'end' pages must be contiguous */ 2310 BUG_ON(page->index != start); 2311 bh = head = page_buffers(page); 2312 do { 2313 if (lblk < mpd->map.m_lblk) 2314 continue; 2315 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2316 /* 2317 * Buffer after end of mapped extent. 2318 * Find next buffer in the page to map. 2319 */ 2320 mpd->map.m_len = 0; 2321 mpd->map.m_flags = 0; 2322 /* 2323 * FIXME: If dioread_nolock supports 2324 * blocksize < pagesize, we need to make 2325 * sure we add size mapped so far to 2326 * io_end->size as the following call 2327 * can submit the page for IO. 2328 */ 2329 err = mpage_process_page_bufs(mpd, head, 2330 bh, lblk); 2331 pagevec_release(&pvec); 2332 if (err > 0) 2333 err = 0; 2334 return err; 2335 } 2336 if (buffer_delay(bh)) { 2337 clear_buffer_delay(bh); 2338 bh->b_blocknr = pblock++; 2339 } 2340 clear_buffer_unwritten(bh); 2341 } while (lblk++, (bh = bh->b_this_page) != head); 2342 2343 /* 2344 * FIXME: This is going to break if dioread_nolock 2345 * supports blocksize < pagesize as we will try to 2346 * convert potentially unmapped parts of inode. 2347 */ 2348 mpd->io_submit.io_end->size += PAGE_SIZE; 2349 /* Page fully mapped - let IO run! */ 2350 err = mpage_submit_page(mpd, page); 2351 if (err < 0) { 2352 pagevec_release(&pvec); 2353 return err; 2354 } 2355 start++; 2356 } 2357 pagevec_release(&pvec); 2358 } 2359 /* Extent fully mapped and matches with page boundary. We are done. */ 2360 mpd->map.m_len = 0; 2361 mpd->map.m_flags = 0; 2362 return 0; 2363 } 2364 2365 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2366 { 2367 struct inode *inode = mpd->inode; 2368 struct ext4_map_blocks *map = &mpd->map; 2369 int get_blocks_flags; 2370 int err, dioread_nolock; 2371 2372 trace_ext4_da_write_pages_extent(inode, map); 2373 /* 2374 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2375 * to convert an unwritten extent to be initialized (in the case 2376 * where we have written into one or more preallocated blocks). It is 2377 * possible that we're going to need more metadata blocks than 2378 * previously reserved. However we must not fail because we're in 2379 * writeback and there is nothing we can do about it so it might result 2380 * in data loss. So use reserved blocks to allocate metadata if 2381 * possible. 2382 * 2383 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2384 * the blocks in question are delalloc blocks. This indicates 2385 * that the blocks and quotas has already been checked when 2386 * the data was copied into the page cache. 2387 */ 2388 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2389 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2390 EXT4_GET_BLOCKS_IO_SUBMIT; 2391 dioread_nolock = ext4_should_dioread_nolock(inode); 2392 if (dioread_nolock) 2393 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2394 if (map->m_flags & (1 << BH_Delay)) 2395 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2396 2397 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2398 if (err < 0) 2399 return err; 2400 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2401 if (!mpd->io_submit.io_end->handle && 2402 ext4_handle_valid(handle)) { 2403 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2404 handle->h_rsv_handle = NULL; 2405 } 2406 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2407 } 2408 2409 BUG_ON(map->m_len == 0); 2410 if (map->m_flags & EXT4_MAP_NEW) { 2411 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2412 map->m_len); 2413 } 2414 return 0; 2415 } 2416 2417 /* 2418 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2419 * mpd->len and submit pages underlying it for IO 2420 * 2421 * @handle - handle for journal operations 2422 * @mpd - extent to map 2423 * @give_up_on_write - we set this to true iff there is a fatal error and there 2424 * is no hope of writing the data. The caller should discard 2425 * dirty pages to avoid infinite loops. 2426 * 2427 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2428 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2429 * them to initialized or split the described range from larger unwritten 2430 * extent. Note that we need not map all the described range since allocation 2431 * can return less blocks or the range is covered by more unwritten extents. We 2432 * cannot map more because we are limited by reserved transaction credits. On 2433 * the other hand we always make sure that the last touched page is fully 2434 * mapped so that it can be written out (and thus forward progress is 2435 * guaranteed). After mapping we submit all mapped pages for IO. 2436 */ 2437 static int mpage_map_and_submit_extent(handle_t *handle, 2438 struct mpage_da_data *mpd, 2439 bool *give_up_on_write) 2440 { 2441 struct inode *inode = mpd->inode; 2442 struct ext4_map_blocks *map = &mpd->map; 2443 int err; 2444 loff_t disksize; 2445 int progress = 0; 2446 2447 mpd->io_submit.io_end->offset = 2448 ((loff_t)map->m_lblk) << inode->i_blkbits; 2449 do { 2450 err = mpage_map_one_extent(handle, mpd); 2451 if (err < 0) { 2452 struct super_block *sb = inode->i_sb; 2453 2454 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2455 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2456 goto invalidate_dirty_pages; 2457 /* 2458 * Let the uper layers retry transient errors. 2459 * In the case of ENOSPC, if ext4_count_free_blocks() 2460 * is non-zero, a commit should free up blocks. 2461 */ 2462 if ((err == -ENOMEM) || 2463 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2464 if (progress) 2465 goto update_disksize; 2466 return err; 2467 } 2468 ext4_msg(sb, KERN_CRIT, 2469 "Delayed block allocation failed for " 2470 "inode %lu at logical offset %llu with" 2471 " max blocks %u with error %d", 2472 inode->i_ino, 2473 (unsigned long long)map->m_lblk, 2474 (unsigned)map->m_len, -err); 2475 ext4_msg(sb, KERN_CRIT, 2476 "This should not happen!! Data will " 2477 "be lost\n"); 2478 if (err == -ENOSPC) 2479 ext4_print_free_blocks(inode); 2480 invalidate_dirty_pages: 2481 *give_up_on_write = true; 2482 return err; 2483 } 2484 progress = 1; 2485 /* 2486 * Update buffer state, submit mapped pages, and get us new 2487 * extent to map 2488 */ 2489 err = mpage_map_and_submit_buffers(mpd); 2490 if (err < 0) 2491 goto update_disksize; 2492 } while (map->m_len); 2493 2494 update_disksize: 2495 /* 2496 * Update on-disk size after IO is submitted. Races with 2497 * truncate are avoided by checking i_size under i_data_sem. 2498 */ 2499 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2500 if (disksize > EXT4_I(inode)->i_disksize) { 2501 int err2; 2502 loff_t i_size; 2503 2504 down_write(&EXT4_I(inode)->i_data_sem); 2505 i_size = i_size_read(inode); 2506 if (disksize > i_size) 2507 disksize = i_size; 2508 if (disksize > EXT4_I(inode)->i_disksize) 2509 EXT4_I(inode)->i_disksize = disksize; 2510 up_write(&EXT4_I(inode)->i_data_sem); 2511 err2 = ext4_mark_inode_dirty(handle, inode); 2512 if (err2) 2513 ext4_error(inode->i_sb, 2514 "Failed to mark inode %lu dirty", 2515 inode->i_ino); 2516 if (!err) 2517 err = err2; 2518 } 2519 return err; 2520 } 2521 2522 /* 2523 * Calculate the total number of credits to reserve for one writepages 2524 * iteration. This is called from ext4_writepages(). We map an extent of 2525 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2526 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2527 * bpp - 1 blocks in bpp different extents. 2528 */ 2529 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2530 { 2531 int bpp = ext4_journal_blocks_per_page(inode); 2532 2533 return ext4_meta_trans_blocks(inode, 2534 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2535 } 2536 2537 /* 2538 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2539 * and underlying extent to map 2540 * 2541 * @mpd - where to look for pages 2542 * 2543 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2544 * IO immediately. When we find a page which isn't mapped we start accumulating 2545 * extent of buffers underlying these pages that needs mapping (formed by 2546 * either delayed or unwritten buffers). We also lock the pages containing 2547 * these buffers. The extent found is returned in @mpd structure (starting at 2548 * mpd->lblk with length mpd->len blocks). 2549 * 2550 * Note that this function can attach bios to one io_end structure which are 2551 * neither logically nor physically contiguous. Although it may seem as an 2552 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2553 * case as we need to track IO to all buffers underlying a page in one io_end. 2554 */ 2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2556 { 2557 struct address_space *mapping = mpd->inode->i_mapping; 2558 struct pagevec pvec; 2559 unsigned int nr_pages; 2560 long left = mpd->wbc->nr_to_write; 2561 pgoff_t index = mpd->first_page; 2562 pgoff_t end = mpd->last_page; 2563 int tag; 2564 int i, err = 0; 2565 int blkbits = mpd->inode->i_blkbits; 2566 ext4_lblk_t lblk; 2567 struct buffer_head *head; 2568 2569 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2570 tag = PAGECACHE_TAG_TOWRITE; 2571 else 2572 tag = PAGECACHE_TAG_DIRTY; 2573 2574 pagevec_init(&pvec, 0); 2575 mpd->map.m_len = 0; 2576 mpd->next_page = index; 2577 while (index <= end) { 2578 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2579 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2580 if (nr_pages == 0) 2581 goto out; 2582 2583 for (i = 0; i < nr_pages; i++) { 2584 struct page *page = pvec.pages[i]; 2585 2586 /* 2587 * At this point, the page may be truncated or 2588 * invalidated (changing page->mapping to NULL), or 2589 * even swizzled back from swapper_space to tmpfs file 2590 * mapping. However, page->index will not change 2591 * because we have a reference on the page. 2592 */ 2593 if (page->index > end) 2594 goto out; 2595 2596 /* 2597 * Accumulated enough dirty pages? This doesn't apply 2598 * to WB_SYNC_ALL mode. For integrity sync we have to 2599 * keep going because someone may be concurrently 2600 * dirtying pages, and we might have synced a lot of 2601 * newly appeared dirty pages, but have not synced all 2602 * of the old dirty pages. 2603 */ 2604 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2605 goto out; 2606 2607 /* If we can't merge this page, we are done. */ 2608 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2609 goto out; 2610 2611 lock_page(page); 2612 /* 2613 * If the page is no longer dirty, or its mapping no 2614 * longer corresponds to inode we are writing (which 2615 * means it has been truncated or invalidated), or the 2616 * page is already under writeback and we are not doing 2617 * a data integrity writeback, skip the page 2618 */ 2619 if (!PageDirty(page) || 2620 (PageWriteback(page) && 2621 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2622 unlikely(page->mapping != mapping)) { 2623 unlock_page(page); 2624 continue; 2625 } 2626 2627 wait_on_page_writeback(page); 2628 BUG_ON(PageWriteback(page)); 2629 2630 if (mpd->map.m_len == 0) 2631 mpd->first_page = page->index; 2632 mpd->next_page = page->index + 1; 2633 /* Add all dirty buffers to mpd */ 2634 lblk = ((ext4_lblk_t)page->index) << 2635 (PAGE_SHIFT - blkbits); 2636 head = page_buffers(page); 2637 err = mpage_process_page_bufs(mpd, head, head, lblk); 2638 if (err <= 0) 2639 goto out; 2640 err = 0; 2641 left--; 2642 } 2643 pagevec_release(&pvec); 2644 cond_resched(); 2645 } 2646 return 0; 2647 out: 2648 pagevec_release(&pvec); 2649 return err; 2650 } 2651 2652 static int __writepage(struct page *page, struct writeback_control *wbc, 2653 void *data) 2654 { 2655 struct address_space *mapping = data; 2656 int ret = ext4_writepage(page, wbc); 2657 mapping_set_error(mapping, ret); 2658 return ret; 2659 } 2660 2661 static int ext4_writepages(struct address_space *mapping, 2662 struct writeback_control *wbc) 2663 { 2664 pgoff_t writeback_index = 0; 2665 long nr_to_write = wbc->nr_to_write; 2666 int range_whole = 0; 2667 int cycled = 1; 2668 handle_t *handle = NULL; 2669 struct mpage_da_data mpd; 2670 struct inode *inode = mapping->host; 2671 int needed_blocks, rsv_blocks = 0, ret = 0; 2672 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2673 bool done; 2674 struct blk_plug plug; 2675 bool give_up_on_write = false; 2676 2677 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2678 return -EIO; 2679 2680 percpu_down_read(&sbi->s_journal_flag_rwsem); 2681 trace_ext4_writepages(inode, wbc); 2682 2683 if (dax_mapping(mapping)) { 2684 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2685 wbc); 2686 goto out_writepages; 2687 } 2688 2689 /* 2690 * No pages to write? This is mainly a kludge to avoid starting 2691 * a transaction for special inodes like journal inode on last iput() 2692 * because that could violate lock ordering on umount 2693 */ 2694 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2695 goto out_writepages; 2696 2697 if (ext4_should_journal_data(inode)) { 2698 struct blk_plug plug; 2699 2700 blk_start_plug(&plug); 2701 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2702 blk_finish_plug(&plug); 2703 goto out_writepages; 2704 } 2705 2706 /* 2707 * If the filesystem has aborted, it is read-only, so return 2708 * right away instead of dumping stack traces later on that 2709 * will obscure the real source of the problem. We test 2710 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2711 * the latter could be true if the filesystem is mounted 2712 * read-only, and in that case, ext4_writepages should 2713 * *never* be called, so if that ever happens, we would want 2714 * the stack trace. 2715 */ 2716 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2717 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2718 ret = -EROFS; 2719 goto out_writepages; 2720 } 2721 2722 if (ext4_should_dioread_nolock(inode)) { 2723 /* 2724 * We may need to convert up to one extent per block in 2725 * the page and we may dirty the inode. 2726 */ 2727 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2728 } 2729 2730 /* 2731 * If we have inline data and arrive here, it means that 2732 * we will soon create the block for the 1st page, so 2733 * we'd better clear the inline data here. 2734 */ 2735 if (ext4_has_inline_data(inode)) { 2736 /* Just inode will be modified... */ 2737 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2738 if (IS_ERR(handle)) { 2739 ret = PTR_ERR(handle); 2740 goto out_writepages; 2741 } 2742 BUG_ON(ext4_test_inode_state(inode, 2743 EXT4_STATE_MAY_INLINE_DATA)); 2744 ext4_destroy_inline_data(handle, inode); 2745 ext4_journal_stop(handle); 2746 } 2747 2748 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2749 range_whole = 1; 2750 2751 if (wbc->range_cyclic) { 2752 writeback_index = mapping->writeback_index; 2753 if (writeback_index) 2754 cycled = 0; 2755 mpd.first_page = writeback_index; 2756 mpd.last_page = -1; 2757 } else { 2758 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2759 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2760 } 2761 2762 mpd.inode = inode; 2763 mpd.wbc = wbc; 2764 ext4_io_submit_init(&mpd.io_submit, wbc); 2765 retry: 2766 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2767 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2768 done = false; 2769 blk_start_plug(&plug); 2770 2771 /* 2772 * First writeback pages that don't need mapping - we can avoid 2773 * starting a transaction unnecessarily and also avoid being blocked 2774 * in the block layer on device congestion while having transaction 2775 * started. 2776 */ 2777 mpd.do_map = 0; 2778 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2779 if (!mpd.io_submit.io_end) { 2780 ret = -ENOMEM; 2781 goto unplug; 2782 } 2783 ret = mpage_prepare_extent_to_map(&mpd); 2784 /* Submit prepared bio */ 2785 ext4_io_submit(&mpd.io_submit); 2786 ext4_put_io_end_defer(mpd.io_submit.io_end); 2787 mpd.io_submit.io_end = NULL; 2788 /* Unlock pages we didn't use */ 2789 mpage_release_unused_pages(&mpd, false); 2790 if (ret < 0) 2791 goto unplug; 2792 2793 while (!done && mpd.first_page <= mpd.last_page) { 2794 /* For each extent of pages we use new io_end */ 2795 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2796 if (!mpd.io_submit.io_end) { 2797 ret = -ENOMEM; 2798 break; 2799 } 2800 2801 /* 2802 * We have two constraints: We find one extent to map and we 2803 * must always write out whole page (makes a difference when 2804 * blocksize < pagesize) so that we don't block on IO when we 2805 * try to write out the rest of the page. Journalled mode is 2806 * not supported by delalloc. 2807 */ 2808 BUG_ON(ext4_should_journal_data(inode)); 2809 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2810 2811 /* start a new transaction */ 2812 handle = ext4_journal_start_with_reserve(inode, 2813 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2814 if (IS_ERR(handle)) { 2815 ret = PTR_ERR(handle); 2816 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2817 "%ld pages, ino %lu; err %d", __func__, 2818 wbc->nr_to_write, inode->i_ino, ret); 2819 /* Release allocated io_end */ 2820 ext4_put_io_end(mpd.io_submit.io_end); 2821 mpd.io_submit.io_end = NULL; 2822 break; 2823 } 2824 mpd.do_map = 1; 2825 2826 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2827 ret = mpage_prepare_extent_to_map(&mpd); 2828 if (!ret) { 2829 if (mpd.map.m_len) 2830 ret = mpage_map_and_submit_extent(handle, &mpd, 2831 &give_up_on_write); 2832 else { 2833 /* 2834 * We scanned the whole range (or exhausted 2835 * nr_to_write), submitted what was mapped and 2836 * didn't find anything needing mapping. We are 2837 * done. 2838 */ 2839 done = true; 2840 } 2841 } 2842 /* 2843 * Caution: If the handle is synchronous, 2844 * ext4_journal_stop() can wait for transaction commit 2845 * to finish which may depend on writeback of pages to 2846 * complete or on page lock to be released. In that 2847 * case, we have to wait until after after we have 2848 * submitted all the IO, released page locks we hold, 2849 * and dropped io_end reference (for extent conversion 2850 * to be able to complete) before stopping the handle. 2851 */ 2852 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2853 ext4_journal_stop(handle); 2854 handle = NULL; 2855 mpd.do_map = 0; 2856 } 2857 /* Submit prepared bio */ 2858 ext4_io_submit(&mpd.io_submit); 2859 /* Unlock pages we didn't use */ 2860 mpage_release_unused_pages(&mpd, give_up_on_write); 2861 /* 2862 * Drop our io_end reference we got from init. We have 2863 * to be careful and use deferred io_end finishing if 2864 * we are still holding the transaction as we can 2865 * release the last reference to io_end which may end 2866 * up doing unwritten extent conversion. 2867 */ 2868 if (handle) { 2869 ext4_put_io_end_defer(mpd.io_submit.io_end); 2870 ext4_journal_stop(handle); 2871 } else 2872 ext4_put_io_end(mpd.io_submit.io_end); 2873 mpd.io_submit.io_end = NULL; 2874 2875 if (ret == -ENOSPC && sbi->s_journal) { 2876 /* 2877 * Commit the transaction which would 2878 * free blocks released in the transaction 2879 * and try again 2880 */ 2881 jbd2_journal_force_commit_nested(sbi->s_journal); 2882 ret = 0; 2883 continue; 2884 } 2885 /* Fatal error - ENOMEM, EIO... */ 2886 if (ret) 2887 break; 2888 } 2889 unplug: 2890 blk_finish_plug(&plug); 2891 if (!ret && !cycled && wbc->nr_to_write > 0) { 2892 cycled = 1; 2893 mpd.last_page = writeback_index - 1; 2894 mpd.first_page = 0; 2895 goto retry; 2896 } 2897 2898 /* Update index */ 2899 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2900 /* 2901 * Set the writeback_index so that range_cyclic 2902 * mode will write it back later 2903 */ 2904 mapping->writeback_index = mpd.first_page; 2905 2906 out_writepages: 2907 trace_ext4_writepages_result(inode, wbc, ret, 2908 nr_to_write - wbc->nr_to_write); 2909 percpu_up_read(&sbi->s_journal_flag_rwsem); 2910 return ret; 2911 } 2912 2913 static int ext4_nonda_switch(struct super_block *sb) 2914 { 2915 s64 free_clusters, dirty_clusters; 2916 struct ext4_sb_info *sbi = EXT4_SB(sb); 2917 2918 /* 2919 * switch to non delalloc mode if we are running low 2920 * on free block. The free block accounting via percpu 2921 * counters can get slightly wrong with percpu_counter_batch getting 2922 * accumulated on each CPU without updating global counters 2923 * Delalloc need an accurate free block accounting. So switch 2924 * to non delalloc when we are near to error range. 2925 */ 2926 free_clusters = 2927 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2928 dirty_clusters = 2929 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2930 /* 2931 * Start pushing delalloc when 1/2 of free blocks are dirty. 2932 */ 2933 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2934 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2935 2936 if (2 * free_clusters < 3 * dirty_clusters || 2937 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2938 /* 2939 * free block count is less than 150% of dirty blocks 2940 * or free blocks is less than watermark 2941 */ 2942 return 1; 2943 } 2944 return 0; 2945 } 2946 2947 /* We always reserve for an inode update; the superblock could be there too */ 2948 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2949 { 2950 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2951 return 1; 2952 2953 if (pos + len <= 0x7fffffffULL) 2954 return 1; 2955 2956 /* We might need to update the superblock to set LARGE_FILE */ 2957 return 2; 2958 } 2959 2960 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2961 loff_t pos, unsigned len, unsigned flags, 2962 struct page **pagep, void **fsdata) 2963 { 2964 int ret, retries = 0; 2965 struct page *page; 2966 pgoff_t index; 2967 struct inode *inode = mapping->host; 2968 handle_t *handle; 2969 2970 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2971 return -EIO; 2972 2973 index = pos >> PAGE_SHIFT; 2974 2975 if (ext4_nonda_switch(inode->i_sb) || 2976 S_ISLNK(inode->i_mode)) { 2977 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2978 return ext4_write_begin(file, mapping, pos, 2979 len, flags, pagep, fsdata); 2980 } 2981 *fsdata = (void *)0; 2982 trace_ext4_da_write_begin(inode, pos, len, flags); 2983 2984 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2985 ret = ext4_da_write_inline_data_begin(mapping, inode, 2986 pos, len, flags, 2987 pagep, fsdata); 2988 if (ret < 0) 2989 return ret; 2990 if (ret == 1) 2991 return 0; 2992 } 2993 2994 /* 2995 * grab_cache_page_write_begin() can take a long time if the 2996 * system is thrashing due to memory pressure, or if the page 2997 * is being written back. So grab it first before we start 2998 * the transaction handle. This also allows us to allocate 2999 * the page (if needed) without using GFP_NOFS. 3000 */ 3001 retry_grab: 3002 page = grab_cache_page_write_begin(mapping, index, flags); 3003 if (!page) 3004 return -ENOMEM; 3005 unlock_page(page); 3006 3007 /* 3008 * With delayed allocation, we don't log the i_disksize update 3009 * if there is delayed block allocation. But we still need 3010 * to journalling the i_disksize update if writes to the end 3011 * of file which has an already mapped buffer. 3012 */ 3013 retry_journal: 3014 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3015 ext4_da_write_credits(inode, pos, len)); 3016 if (IS_ERR(handle)) { 3017 put_page(page); 3018 return PTR_ERR(handle); 3019 } 3020 3021 lock_page(page); 3022 if (page->mapping != mapping) { 3023 /* The page got truncated from under us */ 3024 unlock_page(page); 3025 put_page(page); 3026 ext4_journal_stop(handle); 3027 goto retry_grab; 3028 } 3029 /* In case writeback began while the page was unlocked */ 3030 wait_for_stable_page(page); 3031 3032 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3033 ret = ext4_block_write_begin(page, pos, len, 3034 ext4_da_get_block_prep); 3035 #else 3036 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3037 #endif 3038 if (ret < 0) { 3039 unlock_page(page); 3040 ext4_journal_stop(handle); 3041 /* 3042 * block_write_begin may have instantiated a few blocks 3043 * outside i_size. Trim these off again. Don't need 3044 * i_size_read because we hold i_mutex. 3045 */ 3046 if (pos + len > inode->i_size) 3047 ext4_truncate_failed_write(inode); 3048 3049 if (ret == -ENOSPC && 3050 ext4_should_retry_alloc(inode->i_sb, &retries)) 3051 goto retry_journal; 3052 3053 put_page(page); 3054 return ret; 3055 } 3056 3057 *pagep = page; 3058 return ret; 3059 } 3060 3061 /* 3062 * Check if we should update i_disksize 3063 * when write to the end of file but not require block allocation 3064 */ 3065 static int ext4_da_should_update_i_disksize(struct page *page, 3066 unsigned long offset) 3067 { 3068 struct buffer_head *bh; 3069 struct inode *inode = page->mapping->host; 3070 unsigned int idx; 3071 int i; 3072 3073 bh = page_buffers(page); 3074 idx = offset >> inode->i_blkbits; 3075 3076 for (i = 0; i < idx; i++) 3077 bh = bh->b_this_page; 3078 3079 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3080 return 0; 3081 return 1; 3082 } 3083 3084 static int ext4_da_write_end(struct file *file, 3085 struct address_space *mapping, 3086 loff_t pos, unsigned len, unsigned copied, 3087 struct page *page, void *fsdata) 3088 { 3089 struct inode *inode = mapping->host; 3090 int ret = 0, ret2; 3091 handle_t *handle = ext4_journal_current_handle(); 3092 loff_t new_i_size; 3093 unsigned long start, end; 3094 int write_mode = (int)(unsigned long)fsdata; 3095 3096 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3097 return ext4_write_end(file, mapping, pos, 3098 len, copied, page, fsdata); 3099 3100 trace_ext4_da_write_end(inode, pos, len, copied); 3101 start = pos & (PAGE_SIZE - 1); 3102 end = start + copied - 1; 3103 3104 /* 3105 * generic_write_end() will run mark_inode_dirty() if i_size 3106 * changes. So let's piggyback the i_disksize mark_inode_dirty 3107 * into that. 3108 */ 3109 new_i_size = pos + copied; 3110 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3111 if (ext4_has_inline_data(inode) || 3112 ext4_da_should_update_i_disksize(page, end)) { 3113 ext4_update_i_disksize(inode, new_i_size); 3114 /* We need to mark inode dirty even if 3115 * new_i_size is less that inode->i_size 3116 * bu greater than i_disksize.(hint delalloc) 3117 */ 3118 ext4_mark_inode_dirty(handle, inode); 3119 } 3120 } 3121 3122 if (write_mode != CONVERT_INLINE_DATA && 3123 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3124 ext4_has_inline_data(inode)) 3125 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3126 page); 3127 else 3128 ret2 = generic_write_end(file, mapping, pos, len, copied, 3129 page, fsdata); 3130 3131 copied = ret2; 3132 if (ret2 < 0) 3133 ret = ret2; 3134 ret2 = ext4_journal_stop(handle); 3135 if (!ret) 3136 ret = ret2; 3137 3138 return ret ? ret : copied; 3139 } 3140 3141 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3142 unsigned int length) 3143 { 3144 /* 3145 * Drop reserved blocks 3146 */ 3147 BUG_ON(!PageLocked(page)); 3148 if (!page_has_buffers(page)) 3149 goto out; 3150 3151 ext4_da_page_release_reservation(page, offset, length); 3152 3153 out: 3154 ext4_invalidatepage(page, offset, length); 3155 3156 return; 3157 } 3158 3159 /* 3160 * Force all delayed allocation blocks to be allocated for a given inode. 3161 */ 3162 int ext4_alloc_da_blocks(struct inode *inode) 3163 { 3164 trace_ext4_alloc_da_blocks(inode); 3165 3166 if (!EXT4_I(inode)->i_reserved_data_blocks) 3167 return 0; 3168 3169 /* 3170 * We do something simple for now. The filemap_flush() will 3171 * also start triggering a write of the data blocks, which is 3172 * not strictly speaking necessary (and for users of 3173 * laptop_mode, not even desirable). However, to do otherwise 3174 * would require replicating code paths in: 3175 * 3176 * ext4_writepages() -> 3177 * write_cache_pages() ---> (via passed in callback function) 3178 * __mpage_da_writepage() --> 3179 * mpage_add_bh_to_extent() 3180 * mpage_da_map_blocks() 3181 * 3182 * The problem is that write_cache_pages(), located in 3183 * mm/page-writeback.c, marks pages clean in preparation for 3184 * doing I/O, which is not desirable if we're not planning on 3185 * doing I/O at all. 3186 * 3187 * We could call write_cache_pages(), and then redirty all of 3188 * the pages by calling redirty_page_for_writepage() but that 3189 * would be ugly in the extreme. So instead we would need to 3190 * replicate parts of the code in the above functions, 3191 * simplifying them because we wouldn't actually intend to 3192 * write out the pages, but rather only collect contiguous 3193 * logical block extents, call the multi-block allocator, and 3194 * then update the buffer heads with the block allocations. 3195 * 3196 * For now, though, we'll cheat by calling filemap_flush(), 3197 * which will map the blocks, and start the I/O, but not 3198 * actually wait for the I/O to complete. 3199 */ 3200 return filemap_flush(inode->i_mapping); 3201 } 3202 3203 /* 3204 * bmap() is special. It gets used by applications such as lilo and by 3205 * the swapper to find the on-disk block of a specific piece of data. 3206 * 3207 * Naturally, this is dangerous if the block concerned is still in the 3208 * journal. If somebody makes a swapfile on an ext4 data-journaling 3209 * filesystem and enables swap, then they may get a nasty shock when the 3210 * data getting swapped to that swapfile suddenly gets overwritten by 3211 * the original zero's written out previously to the journal and 3212 * awaiting writeback in the kernel's buffer cache. 3213 * 3214 * So, if we see any bmap calls here on a modified, data-journaled file, 3215 * take extra steps to flush any blocks which might be in the cache. 3216 */ 3217 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3218 { 3219 struct inode *inode = mapping->host; 3220 journal_t *journal; 3221 int err; 3222 3223 /* 3224 * We can get here for an inline file via the FIBMAP ioctl 3225 */ 3226 if (ext4_has_inline_data(inode)) 3227 return 0; 3228 3229 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3230 test_opt(inode->i_sb, DELALLOC)) { 3231 /* 3232 * With delalloc we want to sync the file 3233 * so that we can make sure we allocate 3234 * blocks for file 3235 */ 3236 filemap_write_and_wait(mapping); 3237 } 3238 3239 if (EXT4_JOURNAL(inode) && 3240 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3241 /* 3242 * This is a REALLY heavyweight approach, but the use of 3243 * bmap on dirty files is expected to be extremely rare: 3244 * only if we run lilo or swapon on a freshly made file 3245 * do we expect this to happen. 3246 * 3247 * (bmap requires CAP_SYS_RAWIO so this does not 3248 * represent an unprivileged user DOS attack --- we'd be 3249 * in trouble if mortal users could trigger this path at 3250 * will.) 3251 * 3252 * NB. EXT4_STATE_JDATA is not set on files other than 3253 * regular files. If somebody wants to bmap a directory 3254 * or symlink and gets confused because the buffer 3255 * hasn't yet been flushed to disk, they deserve 3256 * everything they get. 3257 */ 3258 3259 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3260 journal = EXT4_JOURNAL(inode); 3261 jbd2_journal_lock_updates(journal); 3262 err = jbd2_journal_flush(journal); 3263 jbd2_journal_unlock_updates(journal); 3264 3265 if (err) 3266 return 0; 3267 } 3268 3269 return generic_block_bmap(mapping, block, ext4_get_block); 3270 } 3271 3272 static int ext4_readpage(struct file *file, struct page *page) 3273 { 3274 int ret = -EAGAIN; 3275 struct inode *inode = page->mapping->host; 3276 3277 trace_ext4_readpage(page); 3278 3279 if (ext4_has_inline_data(inode)) 3280 ret = ext4_readpage_inline(inode, page); 3281 3282 if (ret == -EAGAIN) 3283 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3284 3285 return ret; 3286 } 3287 3288 static int 3289 ext4_readpages(struct file *file, struct address_space *mapping, 3290 struct list_head *pages, unsigned nr_pages) 3291 { 3292 struct inode *inode = mapping->host; 3293 3294 /* If the file has inline data, no need to do readpages. */ 3295 if (ext4_has_inline_data(inode)) 3296 return 0; 3297 3298 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3299 } 3300 3301 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3302 unsigned int length) 3303 { 3304 trace_ext4_invalidatepage(page, offset, length); 3305 3306 /* No journalling happens on data buffers when this function is used */ 3307 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3308 3309 block_invalidatepage(page, offset, length); 3310 } 3311 3312 static int __ext4_journalled_invalidatepage(struct page *page, 3313 unsigned int offset, 3314 unsigned int length) 3315 { 3316 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3317 3318 trace_ext4_journalled_invalidatepage(page, offset, length); 3319 3320 /* 3321 * If it's a full truncate we just forget about the pending dirtying 3322 */ 3323 if (offset == 0 && length == PAGE_SIZE) 3324 ClearPageChecked(page); 3325 3326 return jbd2_journal_invalidatepage(journal, page, offset, length); 3327 } 3328 3329 /* Wrapper for aops... */ 3330 static void ext4_journalled_invalidatepage(struct page *page, 3331 unsigned int offset, 3332 unsigned int length) 3333 { 3334 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3335 } 3336 3337 static int ext4_releasepage(struct page *page, gfp_t wait) 3338 { 3339 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3340 3341 trace_ext4_releasepage(page); 3342 3343 /* Page has dirty journalled data -> cannot release */ 3344 if (PageChecked(page)) 3345 return 0; 3346 if (journal) 3347 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3348 else 3349 return try_to_free_buffers(page); 3350 } 3351 3352 #ifdef CONFIG_FS_DAX 3353 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3354 unsigned flags, struct iomap *iomap) 3355 { 3356 struct block_device *bdev; 3357 unsigned int blkbits = inode->i_blkbits; 3358 unsigned long first_block = offset >> blkbits; 3359 unsigned long last_block = (offset + length - 1) >> blkbits; 3360 struct ext4_map_blocks map; 3361 int ret; 3362 3363 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3364 return -ERANGE; 3365 3366 map.m_lblk = first_block; 3367 map.m_len = last_block - first_block + 1; 3368 3369 if (!(flags & IOMAP_WRITE)) { 3370 ret = ext4_map_blocks(NULL, inode, &map, 0); 3371 } else { 3372 int dio_credits; 3373 handle_t *handle; 3374 int retries = 0; 3375 3376 /* Trim mapping request to maximum we can map at once for DIO */ 3377 if (map.m_len > DIO_MAX_BLOCKS) 3378 map.m_len = DIO_MAX_BLOCKS; 3379 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3380 retry: 3381 /* 3382 * Either we allocate blocks and then we don't get unwritten 3383 * extent so we have reserved enough credits, or the blocks 3384 * are already allocated and unwritten and in that case 3385 * extent conversion fits in the credits as well. 3386 */ 3387 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3388 dio_credits); 3389 if (IS_ERR(handle)) 3390 return PTR_ERR(handle); 3391 3392 ret = ext4_map_blocks(handle, inode, &map, 3393 EXT4_GET_BLOCKS_CREATE_ZERO); 3394 if (ret < 0) { 3395 ext4_journal_stop(handle); 3396 if (ret == -ENOSPC && 3397 ext4_should_retry_alloc(inode->i_sb, &retries)) 3398 goto retry; 3399 return ret; 3400 } 3401 3402 /* 3403 * If we added blocks beyond i_size, we need to make sure they 3404 * will get truncated if we crash before updating i_size in 3405 * ext4_iomap_end(). For faults we don't need to do that (and 3406 * even cannot because for orphan list operations inode_lock is 3407 * required) - if we happen to instantiate block beyond i_size, 3408 * it is because we race with truncate which has already added 3409 * the inode to the orphan list. 3410 */ 3411 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3412 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3413 int err; 3414 3415 err = ext4_orphan_add(handle, inode); 3416 if (err < 0) { 3417 ext4_journal_stop(handle); 3418 return err; 3419 } 3420 } 3421 ext4_journal_stop(handle); 3422 } 3423 3424 iomap->flags = 0; 3425 bdev = inode->i_sb->s_bdev; 3426 iomap->bdev = bdev; 3427 if (blk_queue_dax(bdev->bd_queue)) 3428 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name); 3429 else 3430 iomap->dax_dev = NULL; 3431 iomap->offset = first_block << blkbits; 3432 3433 if (ret == 0) { 3434 iomap->type = IOMAP_HOLE; 3435 iomap->blkno = IOMAP_NULL_BLOCK; 3436 iomap->length = (u64)map.m_len << blkbits; 3437 } else { 3438 if (map.m_flags & EXT4_MAP_MAPPED) { 3439 iomap->type = IOMAP_MAPPED; 3440 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3441 iomap->type = IOMAP_UNWRITTEN; 3442 } else { 3443 WARN_ON_ONCE(1); 3444 return -EIO; 3445 } 3446 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3447 iomap->length = (u64)map.m_len << blkbits; 3448 } 3449 3450 if (map.m_flags & EXT4_MAP_NEW) 3451 iomap->flags |= IOMAP_F_NEW; 3452 return 0; 3453 } 3454 3455 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3456 ssize_t written, unsigned flags, struct iomap *iomap) 3457 { 3458 int ret = 0; 3459 handle_t *handle; 3460 int blkbits = inode->i_blkbits; 3461 bool truncate = false; 3462 3463 fs_put_dax(iomap->dax_dev); 3464 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3465 return 0; 3466 3467 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3468 if (IS_ERR(handle)) { 3469 ret = PTR_ERR(handle); 3470 goto orphan_del; 3471 } 3472 if (ext4_update_inode_size(inode, offset + written)) 3473 ext4_mark_inode_dirty(handle, inode); 3474 /* 3475 * We may need to truncate allocated but not written blocks beyond EOF. 3476 */ 3477 if (iomap->offset + iomap->length > 3478 ALIGN(inode->i_size, 1 << blkbits)) { 3479 ext4_lblk_t written_blk, end_blk; 3480 3481 written_blk = (offset + written) >> blkbits; 3482 end_blk = (offset + length) >> blkbits; 3483 if (written_blk < end_blk && ext4_can_truncate(inode)) 3484 truncate = true; 3485 } 3486 /* 3487 * Remove inode from orphan list if we were extending a inode and 3488 * everything went fine. 3489 */ 3490 if (!truncate && inode->i_nlink && 3491 !list_empty(&EXT4_I(inode)->i_orphan)) 3492 ext4_orphan_del(handle, inode); 3493 ext4_journal_stop(handle); 3494 if (truncate) { 3495 ext4_truncate_failed_write(inode); 3496 orphan_del: 3497 /* 3498 * If truncate failed early the inode might still be on the 3499 * orphan list; we need to make sure the inode is removed from 3500 * the orphan list in that case. 3501 */ 3502 if (inode->i_nlink) 3503 ext4_orphan_del(NULL, inode); 3504 } 3505 return ret; 3506 } 3507 3508 const struct iomap_ops ext4_iomap_ops = { 3509 .iomap_begin = ext4_iomap_begin, 3510 .iomap_end = ext4_iomap_end, 3511 }; 3512 3513 #endif 3514 3515 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3516 ssize_t size, void *private) 3517 { 3518 ext4_io_end_t *io_end = private; 3519 3520 /* if not async direct IO just return */ 3521 if (!io_end) 3522 return 0; 3523 3524 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3525 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3526 io_end, io_end->inode->i_ino, iocb, offset, size); 3527 3528 /* 3529 * Error during AIO DIO. We cannot convert unwritten extents as the 3530 * data was not written. Just clear the unwritten flag and drop io_end. 3531 */ 3532 if (size <= 0) { 3533 ext4_clear_io_unwritten_flag(io_end); 3534 size = 0; 3535 } 3536 io_end->offset = offset; 3537 io_end->size = size; 3538 ext4_put_io_end(io_end); 3539 3540 return 0; 3541 } 3542 3543 /* 3544 * Handling of direct IO writes. 3545 * 3546 * For ext4 extent files, ext4 will do direct-io write even to holes, 3547 * preallocated extents, and those write extend the file, no need to 3548 * fall back to buffered IO. 3549 * 3550 * For holes, we fallocate those blocks, mark them as unwritten 3551 * If those blocks were preallocated, we mark sure they are split, but 3552 * still keep the range to write as unwritten. 3553 * 3554 * The unwritten extents will be converted to written when DIO is completed. 3555 * For async direct IO, since the IO may still pending when return, we 3556 * set up an end_io call back function, which will do the conversion 3557 * when async direct IO completed. 3558 * 3559 * If the O_DIRECT write will extend the file then add this inode to the 3560 * orphan list. So recovery will truncate it back to the original size 3561 * if the machine crashes during the write. 3562 * 3563 */ 3564 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3565 { 3566 struct file *file = iocb->ki_filp; 3567 struct inode *inode = file->f_mapping->host; 3568 struct ext4_inode_info *ei = EXT4_I(inode); 3569 ssize_t ret; 3570 loff_t offset = iocb->ki_pos; 3571 size_t count = iov_iter_count(iter); 3572 int overwrite = 0; 3573 get_block_t *get_block_func = NULL; 3574 int dio_flags = 0; 3575 loff_t final_size = offset + count; 3576 int orphan = 0; 3577 handle_t *handle; 3578 3579 if (final_size > inode->i_size) { 3580 /* Credits for sb + inode write */ 3581 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3582 if (IS_ERR(handle)) { 3583 ret = PTR_ERR(handle); 3584 goto out; 3585 } 3586 ret = ext4_orphan_add(handle, inode); 3587 if (ret) { 3588 ext4_journal_stop(handle); 3589 goto out; 3590 } 3591 orphan = 1; 3592 ei->i_disksize = inode->i_size; 3593 ext4_journal_stop(handle); 3594 } 3595 3596 BUG_ON(iocb->private == NULL); 3597 3598 /* 3599 * Make all waiters for direct IO properly wait also for extent 3600 * conversion. This also disallows race between truncate() and 3601 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3602 */ 3603 inode_dio_begin(inode); 3604 3605 /* If we do a overwrite dio, i_mutex locking can be released */ 3606 overwrite = *((int *)iocb->private); 3607 3608 if (overwrite) 3609 inode_unlock(inode); 3610 3611 /* 3612 * For extent mapped files we could direct write to holes and fallocate. 3613 * 3614 * Allocated blocks to fill the hole are marked as unwritten to prevent 3615 * parallel buffered read to expose the stale data before DIO complete 3616 * the data IO. 3617 * 3618 * As to previously fallocated extents, ext4 get_block will just simply 3619 * mark the buffer mapped but still keep the extents unwritten. 3620 * 3621 * For non AIO case, we will convert those unwritten extents to written 3622 * after return back from blockdev_direct_IO. That way we save us from 3623 * allocating io_end structure and also the overhead of offloading 3624 * the extent convertion to a workqueue. 3625 * 3626 * For async DIO, the conversion needs to be deferred when the 3627 * IO is completed. The ext4 end_io callback function will be 3628 * called to take care of the conversion work. Here for async 3629 * case, we allocate an io_end structure to hook to the iocb. 3630 */ 3631 iocb->private = NULL; 3632 if (overwrite) 3633 get_block_func = ext4_dio_get_block_overwrite; 3634 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3635 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3636 get_block_func = ext4_dio_get_block; 3637 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3638 } else if (is_sync_kiocb(iocb)) { 3639 get_block_func = ext4_dio_get_block_unwritten_sync; 3640 dio_flags = DIO_LOCKING; 3641 } else { 3642 get_block_func = ext4_dio_get_block_unwritten_async; 3643 dio_flags = DIO_LOCKING; 3644 } 3645 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3646 get_block_func, ext4_end_io_dio, NULL, 3647 dio_flags); 3648 3649 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3650 EXT4_STATE_DIO_UNWRITTEN)) { 3651 int err; 3652 /* 3653 * for non AIO case, since the IO is already 3654 * completed, we could do the conversion right here 3655 */ 3656 err = ext4_convert_unwritten_extents(NULL, inode, 3657 offset, ret); 3658 if (err < 0) 3659 ret = err; 3660 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3661 } 3662 3663 inode_dio_end(inode); 3664 /* take i_mutex locking again if we do a ovewrite dio */ 3665 if (overwrite) 3666 inode_lock(inode); 3667 3668 if (ret < 0 && final_size > inode->i_size) 3669 ext4_truncate_failed_write(inode); 3670 3671 /* Handle extending of i_size after direct IO write */ 3672 if (orphan) { 3673 int err; 3674 3675 /* Credits for sb + inode write */ 3676 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3677 if (IS_ERR(handle)) { 3678 /* This is really bad luck. We've written the data 3679 * but cannot extend i_size. Bail out and pretend 3680 * the write failed... */ 3681 ret = PTR_ERR(handle); 3682 if (inode->i_nlink) 3683 ext4_orphan_del(NULL, inode); 3684 3685 goto out; 3686 } 3687 if (inode->i_nlink) 3688 ext4_orphan_del(handle, inode); 3689 if (ret > 0) { 3690 loff_t end = offset + ret; 3691 if (end > inode->i_size) { 3692 ei->i_disksize = end; 3693 i_size_write(inode, end); 3694 /* 3695 * We're going to return a positive `ret' 3696 * here due to non-zero-length I/O, so there's 3697 * no way of reporting error returns from 3698 * ext4_mark_inode_dirty() to userspace. So 3699 * ignore it. 3700 */ 3701 ext4_mark_inode_dirty(handle, inode); 3702 } 3703 } 3704 err = ext4_journal_stop(handle); 3705 if (ret == 0) 3706 ret = err; 3707 } 3708 out: 3709 return ret; 3710 } 3711 3712 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3713 { 3714 struct address_space *mapping = iocb->ki_filp->f_mapping; 3715 struct inode *inode = mapping->host; 3716 size_t count = iov_iter_count(iter); 3717 ssize_t ret; 3718 3719 /* 3720 * Shared inode_lock is enough for us - it protects against concurrent 3721 * writes & truncates and since we take care of writing back page cache, 3722 * we are protected against page writeback as well. 3723 */ 3724 inode_lock_shared(inode); 3725 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3726 iocb->ki_pos + count - 1); 3727 if (ret) 3728 goto out_unlock; 3729 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3730 iter, ext4_dio_get_block, NULL, NULL, 0); 3731 out_unlock: 3732 inode_unlock_shared(inode); 3733 return ret; 3734 } 3735 3736 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3737 { 3738 struct file *file = iocb->ki_filp; 3739 struct inode *inode = file->f_mapping->host; 3740 size_t count = iov_iter_count(iter); 3741 loff_t offset = iocb->ki_pos; 3742 ssize_t ret; 3743 3744 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3745 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3746 return 0; 3747 #endif 3748 3749 /* 3750 * If we are doing data journalling we don't support O_DIRECT 3751 */ 3752 if (ext4_should_journal_data(inode)) 3753 return 0; 3754 3755 /* Let buffer I/O handle the inline data case. */ 3756 if (ext4_has_inline_data(inode)) 3757 return 0; 3758 3759 /* DAX uses iomap path now */ 3760 if (WARN_ON_ONCE(IS_DAX(inode))) 3761 return 0; 3762 3763 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3764 if (iov_iter_rw(iter) == READ) 3765 ret = ext4_direct_IO_read(iocb, iter); 3766 else 3767 ret = ext4_direct_IO_write(iocb, iter); 3768 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3769 return ret; 3770 } 3771 3772 /* 3773 * Pages can be marked dirty completely asynchronously from ext4's journalling 3774 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3775 * much here because ->set_page_dirty is called under VFS locks. The page is 3776 * not necessarily locked. 3777 * 3778 * We cannot just dirty the page and leave attached buffers clean, because the 3779 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3780 * or jbddirty because all the journalling code will explode. 3781 * 3782 * So what we do is to mark the page "pending dirty" and next time writepage 3783 * is called, propagate that into the buffers appropriately. 3784 */ 3785 static int ext4_journalled_set_page_dirty(struct page *page) 3786 { 3787 SetPageChecked(page); 3788 return __set_page_dirty_nobuffers(page); 3789 } 3790 3791 static int ext4_set_page_dirty(struct page *page) 3792 { 3793 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3794 WARN_ON_ONCE(!page_has_buffers(page)); 3795 return __set_page_dirty_buffers(page); 3796 } 3797 3798 static const struct address_space_operations ext4_aops = { 3799 .readpage = ext4_readpage, 3800 .readpages = ext4_readpages, 3801 .writepage = ext4_writepage, 3802 .writepages = ext4_writepages, 3803 .write_begin = ext4_write_begin, 3804 .write_end = ext4_write_end, 3805 .set_page_dirty = ext4_set_page_dirty, 3806 .bmap = ext4_bmap, 3807 .invalidatepage = ext4_invalidatepage, 3808 .releasepage = ext4_releasepage, 3809 .direct_IO = ext4_direct_IO, 3810 .migratepage = buffer_migrate_page, 3811 .is_partially_uptodate = block_is_partially_uptodate, 3812 .error_remove_page = generic_error_remove_page, 3813 }; 3814 3815 static const struct address_space_operations ext4_journalled_aops = { 3816 .readpage = ext4_readpage, 3817 .readpages = ext4_readpages, 3818 .writepage = ext4_writepage, 3819 .writepages = ext4_writepages, 3820 .write_begin = ext4_write_begin, 3821 .write_end = ext4_journalled_write_end, 3822 .set_page_dirty = ext4_journalled_set_page_dirty, 3823 .bmap = ext4_bmap, 3824 .invalidatepage = ext4_journalled_invalidatepage, 3825 .releasepage = ext4_releasepage, 3826 .direct_IO = ext4_direct_IO, 3827 .is_partially_uptodate = block_is_partially_uptodate, 3828 .error_remove_page = generic_error_remove_page, 3829 }; 3830 3831 static const struct address_space_operations ext4_da_aops = { 3832 .readpage = ext4_readpage, 3833 .readpages = ext4_readpages, 3834 .writepage = ext4_writepage, 3835 .writepages = ext4_writepages, 3836 .write_begin = ext4_da_write_begin, 3837 .write_end = ext4_da_write_end, 3838 .set_page_dirty = ext4_set_page_dirty, 3839 .bmap = ext4_bmap, 3840 .invalidatepage = ext4_da_invalidatepage, 3841 .releasepage = ext4_releasepage, 3842 .direct_IO = ext4_direct_IO, 3843 .migratepage = buffer_migrate_page, 3844 .is_partially_uptodate = block_is_partially_uptodate, 3845 .error_remove_page = generic_error_remove_page, 3846 }; 3847 3848 void ext4_set_aops(struct inode *inode) 3849 { 3850 switch (ext4_inode_journal_mode(inode)) { 3851 case EXT4_INODE_ORDERED_DATA_MODE: 3852 case EXT4_INODE_WRITEBACK_DATA_MODE: 3853 break; 3854 case EXT4_INODE_JOURNAL_DATA_MODE: 3855 inode->i_mapping->a_ops = &ext4_journalled_aops; 3856 return; 3857 default: 3858 BUG(); 3859 } 3860 if (test_opt(inode->i_sb, DELALLOC)) 3861 inode->i_mapping->a_ops = &ext4_da_aops; 3862 else 3863 inode->i_mapping->a_ops = &ext4_aops; 3864 } 3865 3866 static int __ext4_block_zero_page_range(handle_t *handle, 3867 struct address_space *mapping, loff_t from, loff_t length) 3868 { 3869 ext4_fsblk_t index = from >> PAGE_SHIFT; 3870 unsigned offset = from & (PAGE_SIZE-1); 3871 unsigned blocksize, pos; 3872 ext4_lblk_t iblock; 3873 struct inode *inode = mapping->host; 3874 struct buffer_head *bh; 3875 struct page *page; 3876 int err = 0; 3877 3878 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3879 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3880 if (!page) 3881 return -ENOMEM; 3882 3883 blocksize = inode->i_sb->s_blocksize; 3884 3885 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3886 3887 if (!page_has_buffers(page)) 3888 create_empty_buffers(page, blocksize, 0); 3889 3890 /* Find the buffer that contains "offset" */ 3891 bh = page_buffers(page); 3892 pos = blocksize; 3893 while (offset >= pos) { 3894 bh = bh->b_this_page; 3895 iblock++; 3896 pos += blocksize; 3897 } 3898 if (buffer_freed(bh)) { 3899 BUFFER_TRACE(bh, "freed: skip"); 3900 goto unlock; 3901 } 3902 if (!buffer_mapped(bh)) { 3903 BUFFER_TRACE(bh, "unmapped"); 3904 ext4_get_block(inode, iblock, bh, 0); 3905 /* unmapped? It's a hole - nothing to do */ 3906 if (!buffer_mapped(bh)) { 3907 BUFFER_TRACE(bh, "still unmapped"); 3908 goto unlock; 3909 } 3910 } 3911 3912 /* Ok, it's mapped. Make sure it's up-to-date */ 3913 if (PageUptodate(page)) 3914 set_buffer_uptodate(bh); 3915 3916 if (!buffer_uptodate(bh)) { 3917 err = -EIO; 3918 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3919 wait_on_buffer(bh); 3920 /* Uhhuh. Read error. Complain and punt. */ 3921 if (!buffer_uptodate(bh)) 3922 goto unlock; 3923 if (S_ISREG(inode->i_mode) && 3924 ext4_encrypted_inode(inode)) { 3925 /* We expect the key to be set. */ 3926 BUG_ON(!fscrypt_has_encryption_key(inode)); 3927 BUG_ON(blocksize != PAGE_SIZE); 3928 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3929 page, PAGE_SIZE, 0, page->index)); 3930 } 3931 } 3932 if (ext4_should_journal_data(inode)) { 3933 BUFFER_TRACE(bh, "get write access"); 3934 err = ext4_journal_get_write_access(handle, bh); 3935 if (err) 3936 goto unlock; 3937 } 3938 zero_user(page, offset, length); 3939 BUFFER_TRACE(bh, "zeroed end of block"); 3940 3941 if (ext4_should_journal_data(inode)) { 3942 err = ext4_handle_dirty_metadata(handle, inode, bh); 3943 } else { 3944 err = 0; 3945 mark_buffer_dirty(bh); 3946 if (ext4_should_order_data(inode)) 3947 err = ext4_jbd2_inode_add_write(handle, inode); 3948 } 3949 3950 unlock: 3951 unlock_page(page); 3952 put_page(page); 3953 return err; 3954 } 3955 3956 /* 3957 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3958 * starting from file offset 'from'. The range to be zero'd must 3959 * be contained with in one block. If the specified range exceeds 3960 * the end of the block it will be shortened to end of the block 3961 * that cooresponds to 'from' 3962 */ 3963 static int ext4_block_zero_page_range(handle_t *handle, 3964 struct address_space *mapping, loff_t from, loff_t length) 3965 { 3966 struct inode *inode = mapping->host; 3967 unsigned offset = from & (PAGE_SIZE-1); 3968 unsigned blocksize = inode->i_sb->s_blocksize; 3969 unsigned max = blocksize - (offset & (blocksize - 1)); 3970 3971 /* 3972 * correct length if it does not fall between 3973 * 'from' and the end of the block 3974 */ 3975 if (length > max || length < 0) 3976 length = max; 3977 3978 if (IS_DAX(inode)) { 3979 return iomap_zero_range(inode, from, length, NULL, 3980 &ext4_iomap_ops); 3981 } 3982 return __ext4_block_zero_page_range(handle, mapping, from, length); 3983 } 3984 3985 /* 3986 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3987 * up to the end of the block which corresponds to `from'. 3988 * This required during truncate. We need to physically zero the tail end 3989 * of that block so it doesn't yield old data if the file is later grown. 3990 */ 3991 static int ext4_block_truncate_page(handle_t *handle, 3992 struct address_space *mapping, loff_t from) 3993 { 3994 unsigned offset = from & (PAGE_SIZE-1); 3995 unsigned length; 3996 unsigned blocksize; 3997 struct inode *inode = mapping->host; 3998 3999 /* If we are processing an encrypted inode during orphan list handling */ 4000 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4001 return 0; 4002 4003 blocksize = inode->i_sb->s_blocksize; 4004 length = blocksize - (offset & (blocksize - 1)); 4005 4006 return ext4_block_zero_page_range(handle, mapping, from, length); 4007 } 4008 4009 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4010 loff_t lstart, loff_t length) 4011 { 4012 struct super_block *sb = inode->i_sb; 4013 struct address_space *mapping = inode->i_mapping; 4014 unsigned partial_start, partial_end; 4015 ext4_fsblk_t start, end; 4016 loff_t byte_end = (lstart + length - 1); 4017 int err = 0; 4018 4019 partial_start = lstart & (sb->s_blocksize - 1); 4020 partial_end = byte_end & (sb->s_blocksize - 1); 4021 4022 start = lstart >> sb->s_blocksize_bits; 4023 end = byte_end >> sb->s_blocksize_bits; 4024 4025 /* Handle partial zero within the single block */ 4026 if (start == end && 4027 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4028 err = ext4_block_zero_page_range(handle, mapping, 4029 lstart, length); 4030 return err; 4031 } 4032 /* Handle partial zero out on the start of the range */ 4033 if (partial_start) { 4034 err = ext4_block_zero_page_range(handle, mapping, 4035 lstart, sb->s_blocksize); 4036 if (err) 4037 return err; 4038 } 4039 /* Handle partial zero out on the end of the range */ 4040 if (partial_end != sb->s_blocksize - 1) 4041 err = ext4_block_zero_page_range(handle, mapping, 4042 byte_end - partial_end, 4043 partial_end + 1); 4044 return err; 4045 } 4046 4047 int ext4_can_truncate(struct inode *inode) 4048 { 4049 if (S_ISREG(inode->i_mode)) 4050 return 1; 4051 if (S_ISDIR(inode->i_mode)) 4052 return 1; 4053 if (S_ISLNK(inode->i_mode)) 4054 return !ext4_inode_is_fast_symlink(inode); 4055 return 0; 4056 } 4057 4058 /* 4059 * We have to make sure i_disksize gets properly updated before we truncate 4060 * page cache due to hole punching or zero range. Otherwise i_disksize update 4061 * can get lost as it may have been postponed to submission of writeback but 4062 * that will never happen after we truncate page cache. 4063 */ 4064 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4065 loff_t len) 4066 { 4067 handle_t *handle; 4068 loff_t size = i_size_read(inode); 4069 4070 WARN_ON(!inode_is_locked(inode)); 4071 if (offset > size || offset + len < size) 4072 return 0; 4073 4074 if (EXT4_I(inode)->i_disksize >= size) 4075 return 0; 4076 4077 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4078 if (IS_ERR(handle)) 4079 return PTR_ERR(handle); 4080 ext4_update_i_disksize(inode, size); 4081 ext4_mark_inode_dirty(handle, inode); 4082 ext4_journal_stop(handle); 4083 4084 return 0; 4085 } 4086 4087 /* 4088 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4089 * associated with the given offset and length 4090 * 4091 * @inode: File inode 4092 * @offset: The offset where the hole will begin 4093 * @len: The length of the hole 4094 * 4095 * Returns: 0 on success or negative on failure 4096 */ 4097 4098 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4099 { 4100 struct super_block *sb = inode->i_sb; 4101 ext4_lblk_t first_block, stop_block; 4102 struct address_space *mapping = inode->i_mapping; 4103 loff_t first_block_offset, last_block_offset; 4104 handle_t *handle; 4105 unsigned int credits; 4106 int ret = 0; 4107 4108 if (!S_ISREG(inode->i_mode)) 4109 return -EOPNOTSUPP; 4110 4111 trace_ext4_punch_hole(inode, offset, length, 0); 4112 4113 /* 4114 * Write out all dirty pages to avoid race conditions 4115 * Then release them. 4116 */ 4117 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4118 ret = filemap_write_and_wait_range(mapping, offset, 4119 offset + length - 1); 4120 if (ret) 4121 return ret; 4122 } 4123 4124 inode_lock(inode); 4125 4126 /* No need to punch hole beyond i_size */ 4127 if (offset >= inode->i_size) 4128 goto out_mutex; 4129 4130 /* 4131 * If the hole extends beyond i_size, set the hole 4132 * to end after the page that contains i_size 4133 */ 4134 if (offset + length > inode->i_size) { 4135 length = inode->i_size + 4136 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4137 offset; 4138 } 4139 4140 if (offset & (sb->s_blocksize - 1) || 4141 (offset + length) & (sb->s_blocksize - 1)) { 4142 /* 4143 * Attach jinode to inode for jbd2 if we do any zeroing of 4144 * partial block 4145 */ 4146 ret = ext4_inode_attach_jinode(inode); 4147 if (ret < 0) 4148 goto out_mutex; 4149 4150 } 4151 4152 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4153 ext4_inode_block_unlocked_dio(inode); 4154 inode_dio_wait(inode); 4155 4156 /* 4157 * Prevent page faults from reinstantiating pages we have released from 4158 * page cache. 4159 */ 4160 down_write(&EXT4_I(inode)->i_mmap_sem); 4161 first_block_offset = round_up(offset, sb->s_blocksize); 4162 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4163 4164 /* Now release the pages and zero block aligned part of pages*/ 4165 if (last_block_offset > first_block_offset) { 4166 ret = ext4_update_disksize_before_punch(inode, offset, length); 4167 if (ret) 4168 goto out_dio; 4169 truncate_pagecache_range(inode, first_block_offset, 4170 last_block_offset); 4171 } 4172 4173 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4174 credits = ext4_writepage_trans_blocks(inode); 4175 else 4176 credits = ext4_blocks_for_truncate(inode); 4177 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4178 if (IS_ERR(handle)) { 4179 ret = PTR_ERR(handle); 4180 ext4_std_error(sb, ret); 4181 goto out_dio; 4182 } 4183 4184 ret = ext4_zero_partial_blocks(handle, inode, offset, 4185 length); 4186 if (ret) 4187 goto out_stop; 4188 4189 first_block = (offset + sb->s_blocksize - 1) >> 4190 EXT4_BLOCK_SIZE_BITS(sb); 4191 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4192 4193 /* If there are no blocks to remove, return now */ 4194 if (first_block >= stop_block) 4195 goto out_stop; 4196 4197 down_write(&EXT4_I(inode)->i_data_sem); 4198 ext4_discard_preallocations(inode); 4199 4200 ret = ext4_es_remove_extent(inode, first_block, 4201 stop_block - first_block); 4202 if (ret) { 4203 up_write(&EXT4_I(inode)->i_data_sem); 4204 goto out_stop; 4205 } 4206 4207 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4208 ret = ext4_ext_remove_space(inode, first_block, 4209 stop_block - 1); 4210 else 4211 ret = ext4_ind_remove_space(handle, inode, first_block, 4212 stop_block); 4213 4214 up_write(&EXT4_I(inode)->i_data_sem); 4215 if (IS_SYNC(inode)) 4216 ext4_handle_sync(handle); 4217 4218 inode->i_mtime = inode->i_ctime = current_time(inode); 4219 ext4_mark_inode_dirty(handle, inode); 4220 if (ret >= 0) 4221 ext4_update_inode_fsync_trans(handle, inode, 1); 4222 out_stop: 4223 ext4_journal_stop(handle); 4224 out_dio: 4225 up_write(&EXT4_I(inode)->i_mmap_sem); 4226 ext4_inode_resume_unlocked_dio(inode); 4227 out_mutex: 4228 inode_unlock(inode); 4229 return ret; 4230 } 4231 4232 int ext4_inode_attach_jinode(struct inode *inode) 4233 { 4234 struct ext4_inode_info *ei = EXT4_I(inode); 4235 struct jbd2_inode *jinode; 4236 4237 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4238 return 0; 4239 4240 jinode = jbd2_alloc_inode(GFP_KERNEL); 4241 spin_lock(&inode->i_lock); 4242 if (!ei->jinode) { 4243 if (!jinode) { 4244 spin_unlock(&inode->i_lock); 4245 return -ENOMEM; 4246 } 4247 ei->jinode = jinode; 4248 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4249 jinode = NULL; 4250 } 4251 spin_unlock(&inode->i_lock); 4252 if (unlikely(jinode != NULL)) 4253 jbd2_free_inode(jinode); 4254 return 0; 4255 } 4256 4257 /* 4258 * ext4_truncate() 4259 * 4260 * We block out ext4_get_block() block instantiations across the entire 4261 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4262 * simultaneously on behalf of the same inode. 4263 * 4264 * As we work through the truncate and commit bits of it to the journal there 4265 * is one core, guiding principle: the file's tree must always be consistent on 4266 * disk. We must be able to restart the truncate after a crash. 4267 * 4268 * The file's tree may be transiently inconsistent in memory (although it 4269 * probably isn't), but whenever we close off and commit a journal transaction, 4270 * the contents of (the filesystem + the journal) must be consistent and 4271 * restartable. It's pretty simple, really: bottom up, right to left (although 4272 * left-to-right works OK too). 4273 * 4274 * Note that at recovery time, journal replay occurs *before* the restart of 4275 * truncate against the orphan inode list. 4276 * 4277 * The committed inode has the new, desired i_size (which is the same as 4278 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4279 * that this inode's truncate did not complete and it will again call 4280 * ext4_truncate() to have another go. So there will be instantiated blocks 4281 * to the right of the truncation point in a crashed ext4 filesystem. But 4282 * that's fine - as long as they are linked from the inode, the post-crash 4283 * ext4_truncate() run will find them and release them. 4284 */ 4285 int ext4_truncate(struct inode *inode) 4286 { 4287 struct ext4_inode_info *ei = EXT4_I(inode); 4288 unsigned int credits; 4289 int err = 0; 4290 handle_t *handle; 4291 struct address_space *mapping = inode->i_mapping; 4292 4293 /* 4294 * There is a possibility that we're either freeing the inode 4295 * or it's a completely new inode. In those cases we might not 4296 * have i_mutex locked because it's not necessary. 4297 */ 4298 if (!(inode->i_state & (I_NEW|I_FREEING))) 4299 WARN_ON(!inode_is_locked(inode)); 4300 trace_ext4_truncate_enter(inode); 4301 4302 if (!ext4_can_truncate(inode)) 4303 return 0; 4304 4305 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4306 4307 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4308 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4309 4310 if (ext4_has_inline_data(inode)) { 4311 int has_inline = 1; 4312 4313 err = ext4_inline_data_truncate(inode, &has_inline); 4314 if (err) 4315 return err; 4316 if (has_inline) 4317 return 0; 4318 } 4319 4320 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4321 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4322 if (ext4_inode_attach_jinode(inode) < 0) 4323 return 0; 4324 } 4325 4326 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4327 credits = ext4_writepage_trans_blocks(inode); 4328 else 4329 credits = ext4_blocks_for_truncate(inode); 4330 4331 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4332 if (IS_ERR(handle)) 4333 return PTR_ERR(handle); 4334 4335 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4336 ext4_block_truncate_page(handle, mapping, inode->i_size); 4337 4338 /* 4339 * We add the inode to the orphan list, so that if this 4340 * truncate spans multiple transactions, and we crash, we will 4341 * resume the truncate when the filesystem recovers. It also 4342 * marks the inode dirty, to catch the new size. 4343 * 4344 * Implication: the file must always be in a sane, consistent 4345 * truncatable state while each transaction commits. 4346 */ 4347 err = ext4_orphan_add(handle, inode); 4348 if (err) 4349 goto out_stop; 4350 4351 down_write(&EXT4_I(inode)->i_data_sem); 4352 4353 ext4_discard_preallocations(inode); 4354 4355 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4356 err = ext4_ext_truncate(handle, inode); 4357 else 4358 ext4_ind_truncate(handle, inode); 4359 4360 up_write(&ei->i_data_sem); 4361 if (err) 4362 goto out_stop; 4363 4364 if (IS_SYNC(inode)) 4365 ext4_handle_sync(handle); 4366 4367 out_stop: 4368 /* 4369 * If this was a simple ftruncate() and the file will remain alive, 4370 * then we need to clear up the orphan record which we created above. 4371 * However, if this was a real unlink then we were called by 4372 * ext4_evict_inode(), and we allow that function to clean up the 4373 * orphan info for us. 4374 */ 4375 if (inode->i_nlink) 4376 ext4_orphan_del(handle, inode); 4377 4378 inode->i_mtime = inode->i_ctime = current_time(inode); 4379 ext4_mark_inode_dirty(handle, inode); 4380 ext4_journal_stop(handle); 4381 4382 trace_ext4_truncate_exit(inode); 4383 return err; 4384 } 4385 4386 /* 4387 * ext4_get_inode_loc returns with an extra refcount against the inode's 4388 * underlying buffer_head on success. If 'in_mem' is true, we have all 4389 * data in memory that is needed to recreate the on-disk version of this 4390 * inode. 4391 */ 4392 static int __ext4_get_inode_loc(struct inode *inode, 4393 struct ext4_iloc *iloc, int in_mem) 4394 { 4395 struct ext4_group_desc *gdp; 4396 struct buffer_head *bh; 4397 struct super_block *sb = inode->i_sb; 4398 ext4_fsblk_t block; 4399 int inodes_per_block, inode_offset; 4400 4401 iloc->bh = NULL; 4402 if (!ext4_valid_inum(sb, inode->i_ino)) 4403 return -EFSCORRUPTED; 4404 4405 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4406 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4407 if (!gdp) 4408 return -EIO; 4409 4410 /* 4411 * Figure out the offset within the block group inode table 4412 */ 4413 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4414 inode_offset = ((inode->i_ino - 1) % 4415 EXT4_INODES_PER_GROUP(sb)); 4416 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4417 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4418 4419 bh = sb_getblk(sb, block); 4420 if (unlikely(!bh)) 4421 return -ENOMEM; 4422 if (!buffer_uptodate(bh)) { 4423 lock_buffer(bh); 4424 4425 /* 4426 * If the buffer has the write error flag, we have failed 4427 * to write out another inode in the same block. In this 4428 * case, we don't have to read the block because we may 4429 * read the old inode data successfully. 4430 */ 4431 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4432 set_buffer_uptodate(bh); 4433 4434 if (buffer_uptodate(bh)) { 4435 /* someone brought it uptodate while we waited */ 4436 unlock_buffer(bh); 4437 goto has_buffer; 4438 } 4439 4440 /* 4441 * If we have all information of the inode in memory and this 4442 * is the only valid inode in the block, we need not read the 4443 * block. 4444 */ 4445 if (in_mem) { 4446 struct buffer_head *bitmap_bh; 4447 int i, start; 4448 4449 start = inode_offset & ~(inodes_per_block - 1); 4450 4451 /* Is the inode bitmap in cache? */ 4452 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4453 if (unlikely(!bitmap_bh)) 4454 goto make_io; 4455 4456 /* 4457 * If the inode bitmap isn't in cache then the 4458 * optimisation may end up performing two reads instead 4459 * of one, so skip it. 4460 */ 4461 if (!buffer_uptodate(bitmap_bh)) { 4462 brelse(bitmap_bh); 4463 goto make_io; 4464 } 4465 for (i = start; i < start + inodes_per_block; i++) { 4466 if (i == inode_offset) 4467 continue; 4468 if (ext4_test_bit(i, bitmap_bh->b_data)) 4469 break; 4470 } 4471 brelse(bitmap_bh); 4472 if (i == start + inodes_per_block) { 4473 /* all other inodes are free, so skip I/O */ 4474 memset(bh->b_data, 0, bh->b_size); 4475 set_buffer_uptodate(bh); 4476 unlock_buffer(bh); 4477 goto has_buffer; 4478 } 4479 } 4480 4481 make_io: 4482 /* 4483 * If we need to do any I/O, try to pre-readahead extra 4484 * blocks from the inode table. 4485 */ 4486 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4487 ext4_fsblk_t b, end, table; 4488 unsigned num; 4489 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4490 4491 table = ext4_inode_table(sb, gdp); 4492 /* s_inode_readahead_blks is always a power of 2 */ 4493 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4494 if (table > b) 4495 b = table; 4496 end = b + ra_blks; 4497 num = EXT4_INODES_PER_GROUP(sb); 4498 if (ext4_has_group_desc_csum(sb)) 4499 num -= ext4_itable_unused_count(sb, gdp); 4500 table += num / inodes_per_block; 4501 if (end > table) 4502 end = table; 4503 while (b <= end) 4504 sb_breadahead(sb, b++); 4505 } 4506 4507 /* 4508 * There are other valid inodes in the buffer, this inode 4509 * has in-inode xattrs, or we don't have this inode in memory. 4510 * Read the block from disk. 4511 */ 4512 trace_ext4_load_inode(inode); 4513 get_bh(bh); 4514 bh->b_end_io = end_buffer_read_sync; 4515 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4516 wait_on_buffer(bh); 4517 if (!buffer_uptodate(bh)) { 4518 EXT4_ERROR_INODE_BLOCK(inode, block, 4519 "unable to read itable block"); 4520 brelse(bh); 4521 return -EIO; 4522 } 4523 } 4524 has_buffer: 4525 iloc->bh = bh; 4526 return 0; 4527 } 4528 4529 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4530 { 4531 /* We have all inode data except xattrs in memory here. */ 4532 return __ext4_get_inode_loc(inode, iloc, 4533 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4534 } 4535 4536 void ext4_set_inode_flags(struct inode *inode) 4537 { 4538 unsigned int flags = EXT4_I(inode)->i_flags; 4539 unsigned int new_fl = 0; 4540 4541 if (flags & EXT4_SYNC_FL) 4542 new_fl |= S_SYNC; 4543 if (flags & EXT4_APPEND_FL) 4544 new_fl |= S_APPEND; 4545 if (flags & EXT4_IMMUTABLE_FL) 4546 new_fl |= S_IMMUTABLE; 4547 if (flags & EXT4_NOATIME_FL) 4548 new_fl |= S_NOATIME; 4549 if (flags & EXT4_DIRSYNC_FL) 4550 new_fl |= S_DIRSYNC; 4551 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4552 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4553 !ext4_encrypted_inode(inode)) 4554 new_fl |= S_DAX; 4555 inode_set_flags(inode, new_fl, 4556 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4557 } 4558 4559 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4560 struct ext4_inode_info *ei) 4561 { 4562 blkcnt_t i_blocks ; 4563 struct inode *inode = &(ei->vfs_inode); 4564 struct super_block *sb = inode->i_sb; 4565 4566 if (ext4_has_feature_huge_file(sb)) { 4567 /* we are using combined 48 bit field */ 4568 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4569 le32_to_cpu(raw_inode->i_blocks_lo); 4570 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4571 /* i_blocks represent file system block size */ 4572 return i_blocks << (inode->i_blkbits - 9); 4573 } else { 4574 return i_blocks; 4575 } 4576 } else { 4577 return le32_to_cpu(raw_inode->i_blocks_lo); 4578 } 4579 } 4580 4581 static inline void ext4_iget_extra_inode(struct inode *inode, 4582 struct ext4_inode *raw_inode, 4583 struct ext4_inode_info *ei) 4584 { 4585 __le32 *magic = (void *)raw_inode + 4586 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4587 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4588 EXT4_INODE_SIZE(inode->i_sb) && 4589 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4590 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4591 ext4_find_inline_data_nolock(inode); 4592 } else 4593 EXT4_I(inode)->i_inline_off = 0; 4594 } 4595 4596 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4597 { 4598 if (!ext4_has_feature_project(inode->i_sb)) 4599 return -EOPNOTSUPP; 4600 *projid = EXT4_I(inode)->i_projid; 4601 return 0; 4602 } 4603 4604 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4605 { 4606 struct ext4_iloc iloc; 4607 struct ext4_inode *raw_inode; 4608 struct ext4_inode_info *ei; 4609 struct inode *inode; 4610 journal_t *journal = EXT4_SB(sb)->s_journal; 4611 long ret; 4612 loff_t size; 4613 int block; 4614 uid_t i_uid; 4615 gid_t i_gid; 4616 projid_t i_projid; 4617 4618 inode = iget_locked(sb, ino); 4619 if (!inode) 4620 return ERR_PTR(-ENOMEM); 4621 if (!(inode->i_state & I_NEW)) 4622 return inode; 4623 4624 ei = EXT4_I(inode); 4625 iloc.bh = NULL; 4626 4627 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4628 if (ret < 0) 4629 goto bad_inode; 4630 raw_inode = ext4_raw_inode(&iloc); 4631 4632 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4633 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4634 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4635 EXT4_INODE_SIZE(inode->i_sb) || 4636 (ei->i_extra_isize & 3)) { 4637 EXT4_ERROR_INODE(inode, 4638 "bad extra_isize %u (inode size %u)", 4639 ei->i_extra_isize, 4640 EXT4_INODE_SIZE(inode->i_sb)); 4641 ret = -EFSCORRUPTED; 4642 goto bad_inode; 4643 } 4644 } else 4645 ei->i_extra_isize = 0; 4646 4647 /* Precompute checksum seed for inode metadata */ 4648 if (ext4_has_metadata_csum(sb)) { 4649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4650 __u32 csum; 4651 __le32 inum = cpu_to_le32(inode->i_ino); 4652 __le32 gen = raw_inode->i_generation; 4653 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4654 sizeof(inum)); 4655 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4656 sizeof(gen)); 4657 } 4658 4659 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4660 EXT4_ERROR_INODE(inode, "checksum invalid"); 4661 ret = -EFSBADCRC; 4662 goto bad_inode; 4663 } 4664 4665 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4666 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4667 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4668 if (ext4_has_feature_project(sb) && 4669 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4670 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4671 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4672 else 4673 i_projid = EXT4_DEF_PROJID; 4674 4675 if (!(test_opt(inode->i_sb, NO_UID32))) { 4676 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4677 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4678 } 4679 i_uid_write(inode, i_uid); 4680 i_gid_write(inode, i_gid); 4681 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4682 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4683 4684 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4685 ei->i_inline_off = 0; 4686 ei->i_dir_start_lookup = 0; 4687 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4688 /* We now have enough fields to check if the inode was active or not. 4689 * This is needed because nfsd might try to access dead inodes 4690 * the test is that same one that e2fsck uses 4691 * NeilBrown 1999oct15 4692 */ 4693 if (inode->i_nlink == 0) { 4694 if ((inode->i_mode == 0 || 4695 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4696 ino != EXT4_BOOT_LOADER_INO) { 4697 /* this inode is deleted */ 4698 ret = -ESTALE; 4699 goto bad_inode; 4700 } 4701 /* The only unlinked inodes we let through here have 4702 * valid i_mode and are being read by the orphan 4703 * recovery code: that's fine, we're about to complete 4704 * the process of deleting those. 4705 * OR it is the EXT4_BOOT_LOADER_INO which is 4706 * not initialized on a new filesystem. */ 4707 } 4708 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4709 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4710 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4711 if (ext4_has_feature_64bit(sb)) 4712 ei->i_file_acl |= 4713 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4714 inode->i_size = ext4_isize(sb, raw_inode); 4715 if ((size = i_size_read(inode)) < 0) { 4716 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4717 ret = -EFSCORRUPTED; 4718 goto bad_inode; 4719 } 4720 ei->i_disksize = inode->i_size; 4721 #ifdef CONFIG_QUOTA 4722 ei->i_reserved_quota = 0; 4723 #endif 4724 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4725 ei->i_block_group = iloc.block_group; 4726 ei->i_last_alloc_group = ~0; 4727 /* 4728 * NOTE! The in-memory inode i_data array is in little-endian order 4729 * even on big-endian machines: we do NOT byteswap the block numbers! 4730 */ 4731 for (block = 0; block < EXT4_N_BLOCKS; block++) 4732 ei->i_data[block] = raw_inode->i_block[block]; 4733 INIT_LIST_HEAD(&ei->i_orphan); 4734 4735 /* 4736 * Set transaction id's of transactions that have to be committed 4737 * to finish f[data]sync. We set them to currently running transaction 4738 * as we cannot be sure that the inode or some of its metadata isn't 4739 * part of the transaction - the inode could have been reclaimed and 4740 * now it is reread from disk. 4741 */ 4742 if (journal) { 4743 transaction_t *transaction; 4744 tid_t tid; 4745 4746 read_lock(&journal->j_state_lock); 4747 if (journal->j_running_transaction) 4748 transaction = journal->j_running_transaction; 4749 else 4750 transaction = journal->j_committing_transaction; 4751 if (transaction) 4752 tid = transaction->t_tid; 4753 else 4754 tid = journal->j_commit_sequence; 4755 read_unlock(&journal->j_state_lock); 4756 ei->i_sync_tid = tid; 4757 ei->i_datasync_tid = tid; 4758 } 4759 4760 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4761 if (ei->i_extra_isize == 0) { 4762 /* The extra space is currently unused. Use it. */ 4763 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4764 ei->i_extra_isize = sizeof(struct ext4_inode) - 4765 EXT4_GOOD_OLD_INODE_SIZE; 4766 } else { 4767 ext4_iget_extra_inode(inode, raw_inode, ei); 4768 } 4769 } 4770 4771 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4772 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4773 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4774 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4775 4776 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4777 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4778 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4779 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4780 inode->i_version |= 4781 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4782 } 4783 } 4784 4785 ret = 0; 4786 if (ei->i_file_acl && 4787 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4788 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4789 ei->i_file_acl); 4790 ret = -EFSCORRUPTED; 4791 goto bad_inode; 4792 } else if (!ext4_has_inline_data(inode)) { 4793 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4794 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4795 (S_ISLNK(inode->i_mode) && 4796 !ext4_inode_is_fast_symlink(inode)))) 4797 /* Validate extent which is part of inode */ 4798 ret = ext4_ext_check_inode(inode); 4799 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4800 (S_ISLNK(inode->i_mode) && 4801 !ext4_inode_is_fast_symlink(inode))) { 4802 /* Validate block references which are part of inode */ 4803 ret = ext4_ind_check_inode(inode); 4804 } 4805 } 4806 if (ret) 4807 goto bad_inode; 4808 4809 if (S_ISREG(inode->i_mode)) { 4810 inode->i_op = &ext4_file_inode_operations; 4811 inode->i_fop = &ext4_file_operations; 4812 ext4_set_aops(inode); 4813 } else if (S_ISDIR(inode->i_mode)) { 4814 inode->i_op = &ext4_dir_inode_operations; 4815 inode->i_fop = &ext4_dir_operations; 4816 } else if (S_ISLNK(inode->i_mode)) { 4817 if (ext4_encrypted_inode(inode)) { 4818 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4819 ext4_set_aops(inode); 4820 } else if (ext4_inode_is_fast_symlink(inode)) { 4821 inode->i_link = (char *)ei->i_data; 4822 inode->i_op = &ext4_fast_symlink_inode_operations; 4823 nd_terminate_link(ei->i_data, inode->i_size, 4824 sizeof(ei->i_data) - 1); 4825 } else { 4826 inode->i_op = &ext4_symlink_inode_operations; 4827 ext4_set_aops(inode); 4828 } 4829 inode_nohighmem(inode); 4830 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4831 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4832 inode->i_op = &ext4_special_inode_operations; 4833 if (raw_inode->i_block[0]) 4834 init_special_inode(inode, inode->i_mode, 4835 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4836 else 4837 init_special_inode(inode, inode->i_mode, 4838 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4839 } else if (ino == EXT4_BOOT_LOADER_INO) { 4840 make_bad_inode(inode); 4841 } else { 4842 ret = -EFSCORRUPTED; 4843 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4844 goto bad_inode; 4845 } 4846 brelse(iloc.bh); 4847 ext4_set_inode_flags(inode); 4848 4849 if (ei->i_flags & EXT4_EA_INODE_FL) { 4850 ext4_xattr_inode_set_class(inode); 4851 4852 inode_lock(inode); 4853 inode->i_flags |= S_NOQUOTA; 4854 inode_unlock(inode); 4855 } 4856 4857 unlock_new_inode(inode); 4858 return inode; 4859 4860 bad_inode: 4861 brelse(iloc.bh); 4862 iget_failed(inode); 4863 return ERR_PTR(ret); 4864 } 4865 4866 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4867 { 4868 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4869 return ERR_PTR(-EFSCORRUPTED); 4870 return ext4_iget(sb, ino); 4871 } 4872 4873 static int ext4_inode_blocks_set(handle_t *handle, 4874 struct ext4_inode *raw_inode, 4875 struct ext4_inode_info *ei) 4876 { 4877 struct inode *inode = &(ei->vfs_inode); 4878 u64 i_blocks = inode->i_blocks; 4879 struct super_block *sb = inode->i_sb; 4880 4881 if (i_blocks <= ~0U) { 4882 /* 4883 * i_blocks can be represented in a 32 bit variable 4884 * as multiple of 512 bytes 4885 */ 4886 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4887 raw_inode->i_blocks_high = 0; 4888 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4889 return 0; 4890 } 4891 if (!ext4_has_feature_huge_file(sb)) 4892 return -EFBIG; 4893 4894 if (i_blocks <= 0xffffffffffffULL) { 4895 /* 4896 * i_blocks can be represented in a 48 bit variable 4897 * as multiple of 512 bytes 4898 */ 4899 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4900 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4901 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4902 } else { 4903 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4904 /* i_block is stored in file system block size */ 4905 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4906 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4907 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4908 } 4909 return 0; 4910 } 4911 4912 struct other_inode { 4913 unsigned long orig_ino; 4914 struct ext4_inode *raw_inode; 4915 }; 4916 4917 static int other_inode_match(struct inode * inode, unsigned long ino, 4918 void *data) 4919 { 4920 struct other_inode *oi = (struct other_inode *) data; 4921 4922 if ((inode->i_ino != ino) || 4923 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4924 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4925 ((inode->i_state & I_DIRTY_TIME) == 0)) 4926 return 0; 4927 spin_lock(&inode->i_lock); 4928 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4929 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4930 (inode->i_state & I_DIRTY_TIME)) { 4931 struct ext4_inode_info *ei = EXT4_I(inode); 4932 4933 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4934 spin_unlock(&inode->i_lock); 4935 4936 spin_lock(&ei->i_raw_lock); 4937 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4938 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4939 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4940 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4941 spin_unlock(&ei->i_raw_lock); 4942 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4943 return -1; 4944 } 4945 spin_unlock(&inode->i_lock); 4946 return -1; 4947 } 4948 4949 /* 4950 * Opportunistically update the other time fields for other inodes in 4951 * the same inode table block. 4952 */ 4953 static void ext4_update_other_inodes_time(struct super_block *sb, 4954 unsigned long orig_ino, char *buf) 4955 { 4956 struct other_inode oi; 4957 unsigned long ino; 4958 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4959 int inode_size = EXT4_INODE_SIZE(sb); 4960 4961 oi.orig_ino = orig_ino; 4962 /* 4963 * Calculate the first inode in the inode table block. Inode 4964 * numbers are one-based. That is, the first inode in a block 4965 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4966 */ 4967 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4968 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4969 if (ino == orig_ino) 4970 continue; 4971 oi.raw_inode = (struct ext4_inode *) buf; 4972 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4973 } 4974 } 4975 4976 /* 4977 * Post the struct inode info into an on-disk inode location in the 4978 * buffer-cache. This gobbles the caller's reference to the 4979 * buffer_head in the inode location struct. 4980 * 4981 * The caller must have write access to iloc->bh. 4982 */ 4983 static int ext4_do_update_inode(handle_t *handle, 4984 struct inode *inode, 4985 struct ext4_iloc *iloc) 4986 { 4987 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4988 struct ext4_inode_info *ei = EXT4_I(inode); 4989 struct buffer_head *bh = iloc->bh; 4990 struct super_block *sb = inode->i_sb; 4991 int err = 0, rc, block; 4992 int need_datasync = 0, set_large_file = 0; 4993 uid_t i_uid; 4994 gid_t i_gid; 4995 projid_t i_projid; 4996 4997 spin_lock(&ei->i_raw_lock); 4998 4999 /* For fields not tracked in the in-memory inode, 5000 * initialise them to zero for new inodes. */ 5001 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5002 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5003 5004 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5005 i_uid = i_uid_read(inode); 5006 i_gid = i_gid_read(inode); 5007 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5008 if (!(test_opt(inode->i_sb, NO_UID32))) { 5009 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5010 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5011 /* 5012 * Fix up interoperability with old kernels. Otherwise, old inodes get 5013 * re-used with the upper 16 bits of the uid/gid intact 5014 */ 5015 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5016 raw_inode->i_uid_high = 0; 5017 raw_inode->i_gid_high = 0; 5018 } else { 5019 raw_inode->i_uid_high = 5020 cpu_to_le16(high_16_bits(i_uid)); 5021 raw_inode->i_gid_high = 5022 cpu_to_le16(high_16_bits(i_gid)); 5023 } 5024 } else { 5025 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5026 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5027 raw_inode->i_uid_high = 0; 5028 raw_inode->i_gid_high = 0; 5029 } 5030 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5031 5032 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5033 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5034 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5035 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5036 5037 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5038 if (err) { 5039 spin_unlock(&ei->i_raw_lock); 5040 goto out_brelse; 5041 } 5042 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5043 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5044 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5045 raw_inode->i_file_acl_high = 5046 cpu_to_le16(ei->i_file_acl >> 32); 5047 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5048 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5049 ext4_isize_set(raw_inode, ei->i_disksize); 5050 need_datasync = 1; 5051 } 5052 if (ei->i_disksize > 0x7fffffffULL) { 5053 if (!ext4_has_feature_large_file(sb) || 5054 EXT4_SB(sb)->s_es->s_rev_level == 5055 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5056 set_large_file = 1; 5057 } 5058 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5059 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5060 if (old_valid_dev(inode->i_rdev)) { 5061 raw_inode->i_block[0] = 5062 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5063 raw_inode->i_block[1] = 0; 5064 } else { 5065 raw_inode->i_block[0] = 0; 5066 raw_inode->i_block[1] = 5067 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5068 raw_inode->i_block[2] = 0; 5069 } 5070 } else if (!ext4_has_inline_data(inode)) { 5071 for (block = 0; block < EXT4_N_BLOCKS; block++) 5072 raw_inode->i_block[block] = ei->i_data[block]; 5073 } 5074 5075 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5076 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5077 if (ei->i_extra_isize) { 5078 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5079 raw_inode->i_version_hi = 5080 cpu_to_le32(inode->i_version >> 32); 5081 raw_inode->i_extra_isize = 5082 cpu_to_le16(ei->i_extra_isize); 5083 } 5084 } 5085 5086 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5087 i_projid != EXT4_DEF_PROJID); 5088 5089 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5090 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5091 raw_inode->i_projid = cpu_to_le32(i_projid); 5092 5093 ext4_inode_csum_set(inode, raw_inode, ei); 5094 spin_unlock(&ei->i_raw_lock); 5095 if (inode->i_sb->s_flags & MS_LAZYTIME) 5096 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5097 bh->b_data); 5098 5099 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5100 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5101 if (!err) 5102 err = rc; 5103 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5104 if (set_large_file) { 5105 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5106 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5107 if (err) 5108 goto out_brelse; 5109 ext4_update_dynamic_rev(sb); 5110 ext4_set_feature_large_file(sb); 5111 ext4_handle_sync(handle); 5112 err = ext4_handle_dirty_super(handle, sb); 5113 } 5114 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5115 out_brelse: 5116 brelse(bh); 5117 ext4_std_error(inode->i_sb, err); 5118 return err; 5119 } 5120 5121 /* 5122 * ext4_write_inode() 5123 * 5124 * We are called from a few places: 5125 * 5126 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5127 * Here, there will be no transaction running. We wait for any running 5128 * transaction to commit. 5129 * 5130 * - Within flush work (sys_sync(), kupdate and such). 5131 * We wait on commit, if told to. 5132 * 5133 * - Within iput_final() -> write_inode_now() 5134 * We wait on commit, if told to. 5135 * 5136 * In all cases it is actually safe for us to return without doing anything, 5137 * because the inode has been copied into a raw inode buffer in 5138 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5139 * writeback. 5140 * 5141 * Note that we are absolutely dependent upon all inode dirtiers doing the 5142 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5143 * which we are interested. 5144 * 5145 * It would be a bug for them to not do this. The code: 5146 * 5147 * mark_inode_dirty(inode) 5148 * stuff(); 5149 * inode->i_size = expr; 5150 * 5151 * is in error because write_inode() could occur while `stuff()' is running, 5152 * and the new i_size will be lost. Plus the inode will no longer be on the 5153 * superblock's dirty inode list. 5154 */ 5155 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5156 { 5157 int err; 5158 5159 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5160 return 0; 5161 5162 if (EXT4_SB(inode->i_sb)->s_journal) { 5163 if (ext4_journal_current_handle()) { 5164 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5165 dump_stack(); 5166 return -EIO; 5167 } 5168 5169 /* 5170 * No need to force transaction in WB_SYNC_NONE mode. Also 5171 * ext4_sync_fs() will force the commit after everything is 5172 * written. 5173 */ 5174 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5175 return 0; 5176 5177 err = ext4_force_commit(inode->i_sb); 5178 } else { 5179 struct ext4_iloc iloc; 5180 5181 err = __ext4_get_inode_loc(inode, &iloc, 0); 5182 if (err) 5183 return err; 5184 /* 5185 * sync(2) will flush the whole buffer cache. No need to do 5186 * it here separately for each inode. 5187 */ 5188 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5189 sync_dirty_buffer(iloc.bh); 5190 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5191 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5192 "IO error syncing inode"); 5193 err = -EIO; 5194 } 5195 brelse(iloc.bh); 5196 } 5197 return err; 5198 } 5199 5200 /* 5201 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5202 * buffers that are attached to a page stradding i_size and are undergoing 5203 * commit. In that case we have to wait for commit to finish and try again. 5204 */ 5205 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5206 { 5207 struct page *page; 5208 unsigned offset; 5209 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5210 tid_t commit_tid = 0; 5211 int ret; 5212 5213 offset = inode->i_size & (PAGE_SIZE - 1); 5214 /* 5215 * All buffers in the last page remain valid? Then there's nothing to 5216 * do. We do the check mainly to optimize the common PAGE_SIZE == 5217 * blocksize case 5218 */ 5219 if (offset > PAGE_SIZE - i_blocksize(inode)) 5220 return; 5221 while (1) { 5222 page = find_lock_page(inode->i_mapping, 5223 inode->i_size >> PAGE_SHIFT); 5224 if (!page) 5225 return; 5226 ret = __ext4_journalled_invalidatepage(page, offset, 5227 PAGE_SIZE - offset); 5228 unlock_page(page); 5229 put_page(page); 5230 if (ret != -EBUSY) 5231 return; 5232 commit_tid = 0; 5233 read_lock(&journal->j_state_lock); 5234 if (journal->j_committing_transaction) 5235 commit_tid = journal->j_committing_transaction->t_tid; 5236 read_unlock(&journal->j_state_lock); 5237 if (commit_tid) 5238 jbd2_log_wait_commit(journal, commit_tid); 5239 } 5240 } 5241 5242 /* 5243 * ext4_setattr() 5244 * 5245 * Called from notify_change. 5246 * 5247 * We want to trap VFS attempts to truncate the file as soon as 5248 * possible. In particular, we want to make sure that when the VFS 5249 * shrinks i_size, we put the inode on the orphan list and modify 5250 * i_disksize immediately, so that during the subsequent flushing of 5251 * dirty pages and freeing of disk blocks, we can guarantee that any 5252 * commit will leave the blocks being flushed in an unused state on 5253 * disk. (On recovery, the inode will get truncated and the blocks will 5254 * be freed, so we have a strong guarantee that no future commit will 5255 * leave these blocks visible to the user.) 5256 * 5257 * Another thing we have to assure is that if we are in ordered mode 5258 * and inode is still attached to the committing transaction, we must 5259 * we start writeout of all the dirty pages which are being truncated. 5260 * This way we are sure that all the data written in the previous 5261 * transaction are already on disk (truncate waits for pages under 5262 * writeback). 5263 * 5264 * Called with inode->i_mutex down. 5265 */ 5266 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5267 { 5268 struct inode *inode = d_inode(dentry); 5269 int error, rc = 0; 5270 int orphan = 0; 5271 const unsigned int ia_valid = attr->ia_valid; 5272 5273 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5274 return -EIO; 5275 5276 error = setattr_prepare(dentry, attr); 5277 if (error) 5278 return error; 5279 5280 if (is_quota_modification(inode, attr)) { 5281 error = dquot_initialize(inode); 5282 if (error) 5283 return error; 5284 } 5285 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5286 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5287 handle_t *handle; 5288 5289 /* (user+group)*(old+new) structure, inode write (sb, 5290 * inode block, ? - but truncate inode update has it) */ 5291 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5292 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5293 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5294 if (IS_ERR(handle)) { 5295 error = PTR_ERR(handle); 5296 goto err_out; 5297 } 5298 5299 /* dquot_transfer() calls back ext4_get_inode_usage() which 5300 * counts xattr inode references. 5301 */ 5302 down_read(&EXT4_I(inode)->xattr_sem); 5303 error = dquot_transfer(inode, attr); 5304 up_read(&EXT4_I(inode)->xattr_sem); 5305 5306 if (error) { 5307 ext4_journal_stop(handle); 5308 return error; 5309 } 5310 /* Update corresponding info in inode so that everything is in 5311 * one transaction */ 5312 if (attr->ia_valid & ATTR_UID) 5313 inode->i_uid = attr->ia_uid; 5314 if (attr->ia_valid & ATTR_GID) 5315 inode->i_gid = attr->ia_gid; 5316 error = ext4_mark_inode_dirty(handle, inode); 5317 ext4_journal_stop(handle); 5318 } 5319 5320 if (attr->ia_valid & ATTR_SIZE) { 5321 handle_t *handle; 5322 loff_t oldsize = inode->i_size; 5323 int shrink = (attr->ia_size <= inode->i_size); 5324 5325 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5327 5328 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5329 return -EFBIG; 5330 } 5331 if (!S_ISREG(inode->i_mode)) 5332 return -EINVAL; 5333 5334 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5335 inode_inc_iversion(inode); 5336 5337 if (ext4_should_order_data(inode) && 5338 (attr->ia_size < inode->i_size)) { 5339 error = ext4_begin_ordered_truncate(inode, 5340 attr->ia_size); 5341 if (error) 5342 goto err_out; 5343 } 5344 if (attr->ia_size != inode->i_size) { 5345 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5346 if (IS_ERR(handle)) { 5347 error = PTR_ERR(handle); 5348 goto err_out; 5349 } 5350 if (ext4_handle_valid(handle) && shrink) { 5351 error = ext4_orphan_add(handle, inode); 5352 orphan = 1; 5353 } 5354 /* 5355 * Update c/mtime on truncate up, ext4_truncate() will 5356 * update c/mtime in shrink case below 5357 */ 5358 if (!shrink) { 5359 inode->i_mtime = current_time(inode); 5360 inode->i_ctime = inode->i_mtime; 5361 } 5362 down_write(&EXT4_I(inode)->i_data_sem); 5363 EXT4_I(inode)->i_disksize = attr->ia_size; 5364 rc = ext4_mark_inode_dirty(handle, inode); 5365 if (!error) 5366 error = rc; 5367 /* 5368 * We have to update i_size under i_data_sem together 5369 * with i_disksize to avoid races with writeback code 5370 * running ext4_wb_update_i_disksize(). 5371 */ 5372 if (!error) 5373 i_size_write(inode, attr->ia_size); 5374 up_write(&EXT4_I(inode)->i_data_sem); 5375 ext4_journal_stop(handle); 5376 if (error) { 5377 if (orphan) 5378 ext4_orphan_del(NULL, inode); 5379 goto err_out; 5380 } 5381 } 5382 if (!shrink) 5383 pagecache_isize_extended(inode, oldsize, inode->i_size); 5384 5385 /* 5386 * Blocks are going to be removed from the inode. Wait 5387 * for dio in flight. Temporarily disable 5388 * dioread_nolock to prevent livelock. 5389 */ 5390 if (orphan) { 5391 if (!ext4_should_journal_data(inode)) { 5392 ext4_inode_block_unlocked_dio(inode); 5393 inode_dio_wait(inode); 5394 ext4_inode_resume_unlocked_dio(inode); 5395 } else 5396 ext4_wait_for_tail_page_commit(inode); 5397 } 5398 down_write(&EXT4_I(inode)->i_mmap_sem); 5399 /* 5400 * Truncate pagecache after we've waited for commit 5401 * in data=journal mode to make pages freeable. 5402 */ 5403 truncate_pagecache(inode, inode->i_size); 5404 if (shrink) { 5405 rc = ext4_truncate(inode); 5406 if (rc) 5407 error = rc; 5408 } 5409 up_write(&EXT4_I(inode)->i_mmap_sem); 5410 } 5411 5412 if (!error) { 5413 setattr_copy(inode, attr); 5414 mark_inode_dirty(inode); 5415 } 5416 5417 /* 5418 * If the call to ext4_truncate failed to get a transaction handle at 5419 * all, we need to clean up the in-core orphan list manually. 5420 */ 5421 if (orphan && inode->i_nlink) 5422 ext4_orphan_del(NULL, inode); 5423 5424 if (!error && (ia_valid & ATTR_MODE)) 5425 rc = posix_acl_chmod(inode, inode->i_mode); 5426 5427 err_out: 5428 ext4_std_error(inode->i_sb, error); 5429 if (!error) 5430 error = rc; 5431 return error; 5432 } 5433 5434 int ext4_getattr(const struct path *path, struct kstat *stat, 5435 u32 request_mask, unsigned int query_flags) 5436 { 5437 struct inode *inode = d_inode(path->dentry); 5438 struct ext4_inode *raw_inode; 5439 struct ext4_inode_info *ei = EXT4_I(inode); 5440 unsigned int flags; 5441 5442 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5443 stat->result_mask |= STATX_BTIME; 5444 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5445 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5446 } 5447 5448 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5449 if (flags & EXT4_APPEND_FL) 5450 stat->attributes |= STATX_ATTR_APPEND; 5451 if (flags & EXT4_COMPR_FL) 5452 stat->attributes |= STATX_ATTR_COMPRESSED; 5453 if (flags & EXT4_ENCRYPT_FL) 5454 stat->attributes |= STATX_ATTR_ENCRYPTED; 5455 if (flags & EXT4_IMMUTABLE_FL) 5456 stat->attributes |= STATX_ATTR_IMMUTABLE; 5457 if (flags & EXT4_NODUMP_FL) 5458 stat->attributes |= STATX_ATTR_NODUMP; 5459 5460 stat->attributes_mask |= (STATX_ATTR_APPEND | 5461 STATX_ATTR_COMPRESSED | 5462 STATX_ATTR_ENCRYPTED | 5463 STATX_ATTR_IMMUTABLE | 5464 STATX_ATTR_NODUMP); 5465 5466 generic_fillattr(inode, stat); 5467 return 0; 5468 } 5469 5470 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5471 u32 request_mask, unsigned int query_flags) 5472 { 5473 struct inode *inode = d_inode(path->dentry); 5474 u64 delalloc_blocks; 5475 5476 ext4_getattr(path, stat, request_mask, query_flags); 5477 5478 /* 5479 * If there is inline data in the inode, the inode will normally not 5480 * have data blocks allocated (it may have an external xattr block). 5481 * Report at least one sector for such files, so tools like tar, rsync, 5482 * others don't incorrectly think the file is completely sparse. 5483 */ 5484 if (unlikely(ext4_has_inline_data(inode))) 5485 stat->blocks += (stat->size + 511) >> 9; 5486 5487 /* 5488 * We can't update i_blocks if the block allocation is delayed 5489 * otherwise in the case of system crash before the real block 5490 * allocation is done, we will have i_blocks inconsistent with 5491 * on-disk file blocks. 5492 * We always keep i_blocks updated together with real 5493 * allocation. But to not confuse with user, stat 5494 * will return the blocks that include the delayed allocation 5495 * blocks for this file. 5496 */ 5497 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5498 EXT4_I(inode)->i_reserved_data_blocks); 5499 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5500 return 0; 5501 } 5502 5503 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5504 int pextents) 5505 { 5506 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5507 return ext4_ind_trans_blocks(inode, lblocks); 5508 return ext4_ext_index_trans_blocks(inode, pextents); 5509 } 5510 5511 /* 5512 * Account for index blocks, block groups bitmaps and block group 5513 * descriptor blocks if modify datablocks and index blocks 5514 * worse case, the indexs blocks spread over different block groups 5515 * 5516 * If datablocks are discontiguous, they are possible to spread over 5517 * different block groups too. If they are contiguous, with flexbg, 5518 * they could still across block group boundary. 5519 * 5520 * Also account for superblock, inode, quota and xattr blocks 5521 */ 5522 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5523 int pextents) 5524 { 5525 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5526 int gdpblocks; 5527 int idxblocks; 5528 int ret = 0; 5529 5530 /* 5531 * How many index blocks need to touch to map @lblocks logical blocks 5532 * to @pextents physical extents? 5533 */ 5534 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5535 5536 ret = idxblocks; 5537 5538 /* 5539 * Now let's see how many group bitmaps and group descriptors need 5540 * to account 5541 */ 5542 groups = idxblocks + pextents; 5543 gdpblocks = groups; 5544 if (groups > ngroups) 5545 groups = ngroups; 5546 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5547 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5548 5549 /* bitmaps and block group descriptor blocks */ 5550 ret += groups + gdpblocks; 5551 5552 /* Blocks for super block, inode, quota and xattr blocks */ 5553 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5554 5555 return ret; 5556 } 5557 5558 /* 5559 * Calculate the total number of credits to reserve to fit 5560 * the modification of a single pages into a single transaction, 5561 * which may include multiple chunks of block allocations. 5562 * 5563 * This could be called via ext4_write_begin() 5564 * 5565 * We need to consider the worse case, when 5566 * one new block per extent. 5567 */ 5568 int ext4_writepage_trans_blocks(struct inode *inode) 5569 { 5570 int bpp = ext4_journal_blocks_per_page(inode); 5571 int ret; 5572 5573 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5574 5575 /* Account for data blocks for journalled mode */ 5576 if (ext4_should_journal_data(inode)) 5577 ret += bpp; 5578 return ret; 5579 } 5580 5581 /* 5582 * Calculate the journal credits for a chunk of data modification. 5583 * 5584 * This is called from DIO, fallocate or whoever calling 5585 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5586 * 5587 * journal buffers for data blocks are not included here, as DIO 5588 * and fallocate do no need to journal data buffers. 5589 */ 5590 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5591 { 5592 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5593 } 5594 5595 /* 5596 * The caller must have previously called ext4_reserve_inode_write(). 5597 * Give this, we know that the caller already has write access to iloc->bh. 5598 */ 5599 int ext4_mark_iloc_dirty(handle_t *handle, 5600 struct inode *inode, struct ext4_iloc *iloc) 5601 { 5602 int err = 0; 5603 5604 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5605 return -EIO; 5606 5607 if (IS_I_VERSION(inode)) 5608 inode_inc_iversion(inode); 5609 5610 /* the do_update_inode consumes one bh->b_count */ 5611 get_bh(iloc->bh); 5612 5613 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5614 err = ext4_do_update_inode(handle, inode, iloc); 5615 put_bh(iloc->bh); 5616 return err; 5617 } 5618 5619 /* 5620 * On success, We end up with an outstanding reference count against 5621 * iloc->bh. This _must_ be cleaned up later. 5622 */ 5623 5624 int 5625 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5626 struct ext4_iloc *iloc) 5627 { 5628 int err; 5629 5630 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5631 return -EIO; 5632 5633 err = ext4_get_inode_loc(inode, iloc); 5634 if (!err) { 5635 BUFFER_TRACE(iloc->bh, "get_write_access"); 5636 err = ext4_journal_get_write_access(handle, iloc->bh); 5637 if (err) { 5638 brelse(iloc->bh); 5639 iloc->bh = NULL; 5640 } 5641 } 5642 ext4_std_error(inode->i_sb, err); 5643 return err; 5644 } 5645 5646 /* 5647 * Expand an inode by new_extra_isize bytes. 5648 * Returns 0 on success or negative error number on failure. 5649 */ 5650 static int ext4_expand_extra_isize(struct inode *inode, 5651 unsigned int new_extra_isize, 5652 struct ext4_iloc iloc, 5653 handle_t *handle) 5654 { 5655 struct ext4_inode *raw_inode; 5656 struct ext4_xattr_ibody_header *header; 5657 5658 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5659 return 0; 5660 5661 raw_inode = ext4_raw_inode(&iloc); 5662 5663 header = IHDR(inode, raw_inode); 5664 5665 /* No extended attributes present */ 5666 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5667 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5668 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5669 EXT4_I(inode)->i_extra_isize, 0, 5670 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5671 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5672 return 0; 5673 } 5674 5675 /* try to expand with EAs present */ 5676 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5677 raw_inode, handle); 5678 } 5679 5680 /* 5681 * What we do here is to mark the in-core inode as clean with respect to inode 5682 * dirtiness (it may still be data-dirty). 5683 * This means that the in-core inode may be reaped by prune_icache 5684 * without having to perform any I/O. This is a very good thing, 5685 * because *any* task may call prune_icache - even ones which 5686 * have a transaction open against a different journal. 5687 * 5688 * Is this cheating? Not really. Sure, we haven't written the 5689 * inode out, but prune_icache isn't a user-visible syncing function. 5690 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5691 * we start and wait on commits. 5692 */ 5693 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5694 { 5695 struct ext4_iloc iloc; 5696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5697 static unsigned int mnt_count; 5698 int err, ret; 5699 5700 might_sleep(); 5701 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5702 err = ext4_reserve_inode_write(handle, inode, &iloc); 5703 if (err) 5704 return err; 5705 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5706 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5707 /* 5708 * In nojournal mode, we can immediately attempt to expand 5709 * the inode. When journaled, we first need to obtain extra 5710 * buffer credits since we may write into the EA block 5711 * with this same handle. If journal_extend fails, then it will 5712 * only result in a minor loss of functionality for that inode. 5713 * If this is felt to be critical, then e2fsck should be run to 5714 * force a large enough s_min_extra_isize. 5715 */ 5716 if (!ext4_handle_valid(handle) || 5717 jbd2_journal_extend(handle, 5718 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) { 5719 ret = ext4_expand_extra_isize(inode, 5720 sbi->s_want_extra_isize, 5721 iloc, handle); 5722 if (ret) { 5723 if (mnt_count != 5724 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5725 ext4_warning(inode->i_sb, 5726 "Unable to expand inode %lu. Delete" 5727 " some EAs or run e2fsck.", 5728 inode->i_ino); 5729 mnt_count = 5730 le16_to_cpu(sbi->s_es->s_mnt_count); 5731 } 5732 } 5733 } 5734 } 5735 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5736 } 5737 5738 /* 5739 * ext4_dirty_inode() is called from __mark_inode_dirty() 5740 * 5741 * We're really interested in the case where a file is being extended. 5742 * i_size has been changed by generic_commit_write() and we thus need 5743 * to include the updated inode in the current transaction. 5744 * 5745 * Also, dquot_alloc_block() will always dirty the inode when blocks 5746 * are allocated to the file. 5747 * 5748 * If the inode is marked synchronous, we don't honour that here - doing 5749 * so would cause a commit on atime updates, which we don't bother doing. 5750 * We handle synchronous inodes at the highest possible level. 5751 * 5752 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5753 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5754 * to copy into the on-disk inode structure are the timestamp files. 5755 */ 5756 void ext4_dirty_inode(struct inode *inode, int flags) 5757 { 5758 handle_t *handle; 5759 5760 if (flags == I_DIRTY_TIME) 5761 return; 5762 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5763 if (IS_ERR(handle)) 5764 goto out; 5765 5766 ext4_mark_inode_dirty(handle, inode); 5767 5768 ext4_journal_stop(handle); 5769 out: 5770 return; 5771 } 5772 5773 #if 0 5774 /* 5775 * Bind an inode's backing buffer_head into this transaction, to prevent 5776 * it from being flushed to disk early. Unlike 5777 * ext4_reserve_inode_write, this leaves behind no bh reference and 5778 * returns no iloc structure, so the caller needs to repeat the iloc 5779 * lookup to mark the inode dirty later. 5780 */ 5781 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5782 { 5783 struct ext4_iloc iloc; 5784 5785 int err = 0; 5786 if (handle) { 5787 err = ext4_get_inode_loc(inode, &iloc); 5788 if (!err) { 5789 BUFFER_TRACE(iloc.bh, "get_write_access"); 5790 err = jbd2_journal_get_write_access(handle, iloc.bh); 5791 if (!err) 5792 err = ext4_handle_dirty_metadata(handle, 5793 NULL, 5794 iloc.bh); 5795 brelse(iloc.bh); 5796 } 5797 } 5798 ext4_std_error(inode->i_sb, err); 5799 return err; 5800 } 5801 #endif 5802 5803 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5804 { 5805 journal_t *journal; 5806 handle_t *handle; 5807 int err; 5808 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5809 5810 /* 5811 * We have to be very careful here: changing a data block's 5812 * journaling status dynamically is dangerous. If we write a 5813 * data block to the journal, change the status and then delete 5814 * that block, we risk forgetting to revoke the old log record 5815 * from the journal and so a subsequent replay can corrupt data. 5816 * So, first we make sure that the journal is empty and that 5817 * nobody is changing anything. 5818 */ 5819 5820 journal = EXT4_JOURNAL(inode); 5821 if (!journal) 5822 return 0; 5823 if (is_journal_aborted(journal)) 5824 return -EROFS; 5825 5826 /* Wait for all existing dio workers */ 5827 ext4_inode_block_unlocked_dio(inode); 5828 inode_dio_wait(inode); 5829 5830 /* 5831 * Before flushing the journal and switching inode's aops, we have 5832 * to flush all dirty data the inode has. There can be outstanding 5833 * delayed allocations, there can be unwritten extents created by 5834 * fallocate or buffered writes in dioread_nolock mode covered by 5835 * dirty data which can be converted only after flushing the dirty 5836 * data (and journalled aops don't know how to handle these cases). 5837 */ 5838 if (val) { 5839 down_write(&EXT4_I(inode)->i_mmap_sem); 5840 err = filemap_write_and_wait(inode->i_mapping); 5841 if (err < 0) { 5842 up_write(&EXT4_I(inode)->i_mmap_sem); 5843 ext4_inode_resume_unlocked_dio(inode); 5844 return err; 5845 } 5846 } 5847 5848 percpu_down_write(&sbi->s_journal_flag_rwsem); 5849 jbd2_journal_lock_updates(journal); 5850 5851 /* 5852 * OK, there are no updates running now, and all cached data is 5853 * synced to disk. We are now in a completely consistent state 5854 * which doesn't have anything in the journal, and we know that 5855 * no filesystem updates are running, so it is safe to modify 5856 * the inode's in-core data-journaling state flag now. 5857 */ 5858 5859 if (val) 5860 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5861 else { 5862 err = jbd2_journal_flush(journal); 5863 if (err < 0) { 5864 jbd2_journal_unlock_updates(journal); 5865 percpu_up_write(&sbi->s_journal_flag_rwsem); 5866 ext4_inode_resume_unlocked_dio(inode); 5867 return err; 5868 } 5869 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5870 } 5871 ext4_set_aops(inode); 5872 /* 5873 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5874 * E.g. S_DAX may get cleared / set. 5875 */ 5876 ext4_set_inode_flags(inode); 5877 5878 jbd2_journal_unlock_updates(journal); 5879 percpu_up_write(&sbi->s_journal_flag_rwsem); 5880 5881 if (val) 5882 up_write(&EXT4_I(inode)->i_mmap_sem); 5883 ext4_inode_resume_unlocked_dio(inode); 5884 5885 /* Finally we can mark the inode as dirty. */ 5886 5887 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5888 if (IS_ERR(handle)) 5889 return PTR_ERR(handle); 5890 5891 err = ext4_mark_inode_dirty(handle, inode); 5892 ext4_handle_sync(handle); 5893 ext4_journal_stop(handle); 5894 ext4_std_error(inode->i_sb, err); 5895 5896 return err; 5897 } 5898 5899 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5900 { 5901 return !buffer_mapped(bh); 5902 } 5903 5904 int ext4_page_mkwrite(struct vm_fault *vmf) 5905 { 5906 struct vm_area_struct *vma = vmf->vma; 5907 struct page *page = vmf->page; 5908 loff_t size; 5909 unsigned long len; 5910 int ret; 5911 struct file *file = vma->vm_file; 5912 struct inode *inode = file_inode(file); 5913 struct address_space *mapping = inode->i_mapping; 5914 handle_t *handle; 5915 get_block_t *get_block; 5916 int retries = 0; 5917 5918 sb_start_pagefault(inode->i_sb); 5919 file_update_time(vma->vm_file); 5920 5921 down_read(&EXT4_I(inode)->i_mmap_sem); 5922 5923 ret = ext4_convert_inline_data(inode); 5924 if (ret) 5925 goto out_ret; 5926 5927 /* Delalloc case is easy... */ 5928 if (test_opt(inode->i_sb, DELALLOC) && 5929 !ext4_should_journal_data(inode) && 5930 !ext4_nonda_switch(inode->i_sb)) { 5931 do { 5932 ret = block_page_mkwrite(vma, vmf, 5933 ext4_da_get_block_prep); 5934 } while (ret == -ENOSPC && 5935 ext4_should_retry_alloc(inode->i_sb, &retries)); 5936 goto out_ret; 5937 } 5938 5939 lock_page(page); 5940 size = i_size_read(inode); 5941 /* Page got truncated from under us? */ 5942 if (page->mapping != mapping || page_offset(page) > size) { 5943 unlock_page(page); 5944 ret = VM_FAULT_NOPAGE; 5945 goto out; 5946 } 5947 5948 if (page->index == size >> PAGE_SHIFT) 5949 len = size & ~PAGE_MASK; 5950 else 5951 len = PAGE_SIZE; 5952 /* 5953 * Return if we have all the buffers mapped. This avoids the need to do 5954 * journal_start/journal_stop which can block and take a long time 5955 */ 5956 if (page_has_buffers(page)) { 5957 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5958 0, len, NULL, 5959 ext4_bh_unmapped)) { 5960 /* Wait so that we don't change page under IO */ 5961 wait_for_stable_page(page); 5962 ret = VM_FAULT_LOCKED; 5963 goto out; 5964 } 5965 } 5966 unlock_page(page); 5967 /* OK, we need to fill the hole... */ 5968 if (ext4_should_dioread_nolock(inode)) 5969 get_block = ext4_get_block_unwritten; 5970 else 5971 get_block = ext4_get_block; 5972 retry_alloc: 5973 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5974 ext4_writepage_trans_blocks(inode)); 5975 if (IS_ERR(handle)) { 5976 ret = VM_FAULT_SIGBUS; 5977 goto out; 5978 } 5979 ret = block_page_mkwrite(vma, vmf, get_block); 5980 if (!ret && ext4_should_journal_data(inode)) { 5981 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5982 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5983 unlock_page(page); 5984 ret = VM_FAULT_SIGBUS; 5985 ext4_journal_stop(handle); 5986 goto out; 5987 } 5988 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5989 } 5990 ext4_journal_stop(handle); 5991 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5992 goto retry_alloc; 5993 out_ret: 5994 ret = block_page_mkwrite_return(ret); 5995 out: 5996 up_read(&EXT4_I(inode)->i_mmap_sem); 5997 sb_end_pagefault(inode->i_sb); 5998 return ret; 5999 } 6000 6001 int ext4_filemap_fault(struct vm_fault *vmf) 6002 { 6003 struct inode *inode = file_inode(vmf->vma->vm_file); 6004 int err; 6005 6006 down_read(&EXT4_I(inode)->i_mmap_sem); 6007 err = filemap_fault(vmf); 6008 up_read(&EXT4_I(inode)->i_mmap_sem); 6009 6010 return err; 6011 } 6012 6013 /* 6014 * Find the first extent at or after @lblk in an inode that is not a hole. 6015 * Search for @map_len blocks at most. The extent is returned in @result. 6016 * 6017 * The function returns 1 if we found an extent. The function returns 0 in 6018 * case there is no extent at or after @lblk and in that case also sets 6019 * @result->es_len to 0. In case of error, the error code is returned. 6020 */ 6021 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 6022 unsigned int map_len, struct extent_status *result) 6023 { 6024 struct ext4_map_blocks map; 6025 struct extent_status es = {}; 6026 int ret; 6027 6028 map.m_lblk = lblk; 6029 map.m_len = map_len; 6030 6031 /* 6032 * For non-extent based files this loop may iterate several times since 6033 * we do not determine full hole size. 6034 */ 6035 while (map.m_len > 0) { 6036 ret = ext4_map_blocks(NULL, inode, &map, 0); 6037 if (ret < 0) 6038 return ret; 6039 /* There's extent covering m_lblk? Just return it. */ 6040 if (ret > 0) { 6041 int status; 6042 6043 ext4_es_store_pblock(result, map.m_pblk); 6044 result->es_lblk = map.m_lblk; 6045 result->es_len = map.m_len; 6046 if (map.m_flags & EXT4_MAP_UNWRITTEN) 6047 status = EXTENT_STATUS_UNWRITTEN; 6048 else 6049 status = EXTENT_STATUS_WRITTEN; 6050 ext4_es_store_status(result, status); 6051 return 1; 6052 } 6053 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 6054 map.m_lblk + map.m_len - 1, 6055 &es); 6056 /* Is delalloc data before next block in extent tree? */ 6057 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 6058 ext4_lblk_t offset = 0; 6059 6060 if (es.es_lblk < lblk) 6061 offset = lblk - es.es_lblk; 6062 result->es_lblk = es.es_lblk + offset; 6063 ext4_es_store_pblock(result, 6064 ext4_es_pblock(&es) + offset); 6065 result->es_len = es.es_len - offset; 6066 ext4_es_store_status(result, ext4_es_status(&es)); 6067 6068 return 1; 6069 } 6070 /* There's a hole at m_lblk, advance us after it */ 6071 map.m_lblk += map.m_len; 6072 map_len -= map.m_len; 6073 map.m_len = map_len; 6074 cond_resched(); 6075 } 6076 result->es_len = 0; 6077 return 0; 6078 } 6079