xref: /openbmc/linux/fs/ext4/inode.c (revision 79f0be8d2e6ebde27dfb3beff18eb689d5c4e36c)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43 
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45 
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 					      loff_t new_size)
48 {
49 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 						   new_size);
51 }
52 
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 		(inode->i_sb->s_blocksize >> 9) : 0;
62 
63 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65 
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 			struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78 	int err;
79 
80 	might_sleep();
81 
82 	BUFFER_TRACE(bh, "enter");
83 
84 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 		  "data mode %lx\n",
86 		  bh, is_metadata, inode->i_mode,
87 		  test_opt(inode->i_sb, DATA_FLAGS));
88 
89 	/* Never use the revoke function if we are doing full data
90 	 * journaling: there is no need to, and a V1 superblock won't
91 	 * support it.  Otherwise, only skip the revoke on un-journaled
92 	 * data blocks. */
93 
94 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 	    (!is_metadata && !ext4_should_journal_data(inode))) {
96 		if (bh) {
97 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 			return ext4_journal_forget(handle, bh);
99 		}
100 		return 0;
101 	}
102 
103 	/*
104 	 * data!=journal && (is_metadata || should_journal_data(inode))
105 	 */
106 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 	err = ext4_journal_revoke(handle, blocknr, bh);
108 	if (err)
109 		ext4_abort(inode->i_sb, __func__,
110 			   "error %d when attempting revoke", err);
111 	BUFFER_TRACE(bh, "exit");
112 	return err;
113 }
114 
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121 	ext4_lblk_t needed;
122 
123 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124 
125 	/* Give ourselves just enough room to cope with inodes in which
126 	 * i_blocks is corrupt: we've seen disk corruptions in the past
127 	 * which resulted in random data in an inode which looked enough
128 	 * like a regular file for ext4 to try to delete it.  Things
129 	 * will go a bit crazy if that happens, but at least we should
130 	 * try not to panic the whole kernel. */
131 	if (needed < 2)
132 		needed = 2;
133 
134 	/* But we need to bound the transaction so we don't overflow the
135 	 * journal. */
136 	if (needed > EXT4_MAX_TRANS_DATA)
137 		needed = EXT4_MAX_TRANS_DATA;
138 
139 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141 
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154 	handle_t *result;
155 
156 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 	if (!IS_ERR(result))
158 		return result;
159 
160 	ext4_std_error(inode->i_sb, PTR_ERR(result));
161 	return result;
162 }
163 
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 		return 0;
174 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 		return 0;
176 	return 1;
177 }
178 
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186 	jbd_debug(2, "restarting handle %p\n", handle);
187 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189 
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195 	handle_t *handle;
196 	int err;
197 
198 	if (ext4_should_order_data(inode))
199 		ext4_begin_ordered_truncate(inode, 0);
200 	truncate_inode_pages(&inode->i_data, 0);
201 
202 	if (is_bad_inode(inode))
203 		goto no_delete;
204 
205 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 	if (IS_ERR(handle)) {
207 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
208 		/*
209 		 * If we're going to skip the normal cleanup, we still need to
210 		 * make sure that the in-core orphan linked list is properly
211 		 * cleaned up.
212 		 */
213 		ext4_orphan_del(NULL, inode);
214 		goto no_delete;
215 	}
216 
217 	if (IS_SYNC(inode))
218 		handle->h_sync = 1;
219 	inode->i_size = 0;
220 	err = ext4_mark_inode_dirty(handle, inode);
221 	if (err) {
222 		ext4_warning(inode->i_sb, __func__,
223 			     "couldn't mark inode dirty (err %d)", err);
224 		goto stop_handle;
225 	}
226 	if (inode->i_blocks)
227 		ext4_truncate(inode);
228 
229 	/*
230 	 * ext4_ext_truncate() doesn't reserve any slop when it
231 	 * restarts journal transactions; therefore there may not be
232 	 * enough credits left in the handle to remove the inode from
233 	 * the orphan list and set the dtime field.
234 	 */
235 	if (handle->h_buffer_credits < 3) {
236 		err = ext4_journal_extend(handle, 3);
237 		if (err > 0)
238 			err = ext4_journal_restart(handle, 3);
239 		if (err != 0) {
240 			ext4_warning(inode->i_sb, __func__,
241 				     "couldn't extend journal (err %d)", err);
242 		stop_handle:
243 			ext4_journal_stop(handle);
244 			goto no_delete;
245 		}
246 	}
247 
248 	/*
249 	 * Kill off the orphan record which ext4_truncate created.
250 	 * AKPM: I think this can be inside the above `if'.
251 	 * Note that ext4_orphan_del() has to be able to cope with the
252 	 * deletion of a non-existent orphan - this is because we don't
253 	 * know if ext4_truncate() actually created an orphan record.
254 	 * (Well, we could do this if we need to, but heck - it works)
255 	 */
256 	ext4_orphan_del(handle, inode);
257 	EXT4_I(inode)->i_dtime	= get_seconds();
258 
259 	/*
260 	 * One subtle ordering requirement: if anything has gone wrong
261 	 * (transaction abort, IO errors, whatever), then we can still
262 	 * do these next steps (the fs will already have been marked as
263 	 * having errors), but we can't free the inode if the mark_dirty
264 	 * fails.
265 	 */
266 	if (ext4_mark_inode_dirty(handle, inode))
267 		/* If that failed, just do the required in-core inode clear. */
268 		clear_inode(inode);
269 	else
270 		ext4_free_inode(handle, inode);
271 	ext4_journal_stop(handle);
272 	return;
273 no_delete:
274 	clear_inode(inode);	/* We must guarantee clearing of inode... */
275 }
276 
277 typedef struct {
278 	__le32	*p;
279 	__le32	key;
280 	struct buffer_head *bh;
281 } Indirect;
282 
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285 	p->key = *(p->p = v);
286 	p->bh = bh;
287 }
288 
289 /**
290  *	ext4_block_to_path - parse the block number into array of offsets
291  *	@inode: inode in question (we are only interested in its superblock)
292  *	@i_block: block number to be parsed
293  *	@offsets: array to store the offsets in
294  *	@boundary: set this non-zero if the referred-to block is likely to be
295  *	       followed (on disk) by an indirect block.
296  *
297  *	To store the locations of file's data ext4 uses a data structure common
298  *	for UNIX filesystems - tree of pointers anchored in the inode, with
299  *	data blocks at leaves and indirect blocks in intermediate nodes.
300  *	This function translates the block number into path in that tree -
301  *	return value is the path length and @offsets[n] is the offset of
302  *	pointer to (n+1)th node in the nth one. If @block is out of range
303  *	(negative or too large) warning is printed and zero returned.
304  *
305  *	Note: function doesn't find node addresses, so no IO is needed. All
306  *	we need to know is the capacity of indirect blocks (taken from the
307  *	inode->i_sb).
308  */
309 
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319 
320 static int ext4_block_to_path(struct inode *inode,
321 			ext4_lblk_t i_block,
322 			ext4_lblk_t offsets[4], int *boundary)
323 {
324 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 	const long direct_blocks = EXT4_NDIR_BLOCKS,
327 		indirect_blocks = ptrs,
328 		double_blocks = (1 << (ptrs_bits * 2));
329 	int n = 0;
330 	int final = 0;
331 
332 	if (i_block < 0) {
333 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 	} else if (i_block < direct_blocks) {
335 		offsets[n++] = i_block;
336 		final = direct_blocks;
337 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
338 		offsets[n++] = EXT4_IND_BLOCK;
339 		offsets[n++] = i_block;
340 		final = ptrs;
341 	} else if ((i_block -= indirect_blocks) < double_blocks) {
342 		offsets[n++] = EXT4_DIND_BLOCK;
343 		offsets[n++] = i_block >> ptrs_bits;
344 		offsets[n++] = i_block & (ptrs - 1);
345 		final = ptrs;
346 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 		offsets[n++] = EXT4_TIND_BLOCK;
348 		offsets[n++] = i_block >> (ptrs_bits * 2);
349 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 		offsets[n++] = i_block & (ptrs - 1);
351 		final = ptrs;
352 	} else {
353 		ext4_warning(inode->i_sb, "ext4_block_to_path",
354 				"block %lu > max",
355 				i_block + direct_blocks +
356 				indirect_blocks + double_blocks);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 /**
364  *	ext4_get_branch - read the chain of indirect blocks leading to data
365  *	@inode: inode in question
366  *	@depth: depth of the chain (1 - direct pointer, etc.)
367  *	@offsets: offsets of pointers in inode/indirect blocks
368  *	@chain: place to store the result
369  *	@err: here we store the error value
370  *
371  *	Function fills the array of triples <key, p, bh> and returns %NULL
372  *	if everything went OK or the pointer to the last filled triple
373  *	(incomplete one) otherwise. Upon the return chain[i].key contains
374  *	the number of (i+1)-th block in the chain (as it is stored in memory,
375  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *	number (it points into struct inode for i==0 and into the bh->b_data
377  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *	block for i>0 and NULL for i==0. In other words, it holds the block
379  *	numbers of the chain, addresses they were taken from (and where we can
380  *	verify that chain did not change) and buffer_heads hosting these
381  *	numbers.
382  *
383  *	Function stops when it stumbles upon zero pointer (absent block)
384  *		(pointer to last triple returned, *@err == 0)
385  *	or when it gets an IO error reading an indirect block
386  *		(ditto, *@err == -EIO)
387  *	or when it reads all @depth-1 indirect blocks successfully and finds
388  *	the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 				 ext4_lblk_t  *offsets,
395 				 Indirect chain[4], int *err)
396 {
397 	struct super_block *sb = inode->i_sb;
398 	Indirect *p = chain;
399 	struct buffer_head *bh;
400 
401 	*err = 0;
402 	/* i_data is not going away, no lock needed */
403 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 	if (!p->key)
405 		goto no_block;
406 	while (--depth) {
407 		bh = sb_bread(sb, le32_to_cpu(p->key));
408 		if (!bh)
409 			goto failure;
410 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 		/* Reader: end */
412 		if (!p->key)
413 			goto no_block;
414 	}
415 	return NULL;
416 
417 failure:
418 	*err = -EIO;
419 no_block:
420 	return p;
421 }
422 
423 /**
424  *	ext4_find_near - find a place for allocation with sufficient locality
425  *	@inode: owner
426  *	@ind: descriptor of indirect block.
427  *
428  *	This function returns the preferred place for block allocation.
429  *	It is used when heuristic for sequential allocation fails.
430  *	Rules are:
431  *	  + if there is a block to the left of our position - allocate near it.
432  *	  + if pointer will live in indirect block - allocate near that block.
433  *	  + if pointer will live in inode - allocate in the same
434  *	    cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *	Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445 	struct ext4_inode_info *ei = EXT4_I(inode);
446 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 	__le32 *p;
448 	ext4_fsblk_t bg_start;
449 	ext4_fsblk_t last_block;
450 	ext4_grpblk_t colour;
451 
452 	/* Try to find previous block */
453 	for (p = ind->p - 1; p >= start; p--) {
454 		if (*p)
455 			return le32_to_cpu(*p);
456 	}
457 
458 	/* No such thing, so let's try location of indirect block */
459 	if (ind->bh)
460 		return ind->bh->b_blocknr;
461 
462 	/*
463 	 * It is going to be referred to from the inode itself? OK, just put it
464 	 * into the same cylinder group then.
465 	 */
466 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468 
469 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 		colour = (current->pid % 16) *
471 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 	else
473 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 	return bg_start + colour;
475 }
476 
477 /**
478  *	ext4_find_goal - find a preferred place for allocation.
479  *	@inode: owner
480  *	@block:  block we want
481  *	@partial: pointer to the last triple within a chain
482  *
483  *	Normally this function find the preferred place for block allocation,
484  *	returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 		Indirect *partial)
488 {
489 	struct ext4_block_alloc_info *block_i;
490 
491 	block_i =  EXT4_I(inode)->i_block_alloc_info;
492 
493 	/*
494 	 * try the heuristic for sequential allocation,
495 	 * failing that at least try to get decent locality.
496 	 */
497 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 		&& (block_i->last_alloc_physical_block != 0)) {
499 		return block_i->last_alloc_physical_block + 1;
500 	}
501 
502 	return ext4_find_near(inode, partial);
503 }
504 
505 /**
506  *	ext4_blks_to_allocate: Look up the block map and count the number
507  *	of direct blocks need to be allocated for the given branch.
508  *
509  *	@branch: chain of indirect blocks
510  *	@k: number of blocks need for indirect blocks
511  *	@blks: number of data blocks to be mapped.
512  *	@blocks_to_boundary:  the offset in the indirect block
513  *
514  *	return the total number of blocks to be allocate, including the
515  *	direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 		int blocks_to_boundary)
519 {
520 	unsigned long count = 0;
521 
522 	/*
523 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 	 * then it's clear blocks on that path have not allocated
525 	 */
526 	if (k > 0) {
527 		/* right now we don't handle cross boundary allocation */
528 		if (blks < blocks_to_boundary + 1)
529 			count += blks;
530 		else
531 			count += blocks_to_boundary + 1;
532 		return count;
533 	}
534 
535 	count++;
536 	while (count < blks && count <= blocks_to_boundary &&
537 		le32_to_cpu(*(branch[0].p + count)) == 0) {
538 		count++;
539 	}
540 	return count;
541 }
542 
543 /**
544  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *	@indirect_blks: the number of blocks need to allocate for indirect
546  *			blocks
547  *
548  *	@new_blocks: on return it will store the new block numbers for
549  *	the indirect blocks(if needed) and the first direct block,
550  *	@blks:	on return it will store the total number of allocated
551  *		direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 				ext4_lblk_t iblock, ext4_fsblk_t goal,
555 				int indirect_blks, int blks,
556 				ext4_fsblk_t new_blocks[4], int *err)
557 {
558 	int target, i;
559 	unsigned long count = 0, blk_allocated = 0;
560 	int index = 0;
561 	ext4_fsblk_t current_block = 0;
562 	int ret = 0;
563 
564 	/*
565 	 * Here we try to allocate the requested multiple blocks at once,
566 	 * on a best-effort basis.
567 	 * To build a branch, we should allocate blocks for
568 	 * the indirect blocks(if not allocated yet), and at least
569 	 * the first direct block of this branch.  That's the
570 	 * minimum number of blocks need to allocate(required)
571 	 */
572 	/* first we try to allocate the indirect blocks */
573 	target = indirect_blks;
574 	while (target > 0) {
575 		count = target;
576 		/* allocating blocks for indirect blocks and direct blocks */
577 		current_block = ext4_new_meta_blocks(handle, inode,
578 							goal, &count, err);
579 		if (*err)
580 			goto failed_out;
581 
582 		target -= count;
583 		/* allocate blocks for indirect blocks */
584 		while (index < indirect_blks && count) {
585 			new_blocks[index++] = current_block++;
586 			count--;
587 		}
588 		if (count > 0) {
589 			/*
590 			 * save the new block number
591 			 * for the first direct block
592 			 */
593 			new_blocks[index] = current_block;
594 			printk(KERN_INFO "%s returned more blocks than "
595 						"requested\n", __func__);
596 			WARN_ON(1);
597 			break;
598 		}
599 	}
600 
601 	target = blks - count ;
602 	blk_allocated = count;
603 	if (!target)
604 		goto allocated;
605 	/* Now allocate data blocks */
606 	count = target;
607 	/* allocating blocks for data blocks */
608 	current_block = ext4_new_blocks(handle, inode, iblock,
609 						goal, &count, err);
610 	if (*err && (target == blks)) {
611 		/*
612 		 * if the allocation failed and we didn't allocate
613 		 * any blocks before
614 		 */
615 		goto failed_out;
616 	}
617 	if (!*err) {
618 		if (target == blks) {
619 		/*
620 		 * save the new block number
621 		 * for the first direct block
622 		 */
623 			new_blocks[index] = current_block;
624 		}
625 		blk_allocated += count;
626 	}
627 allocated:
628 	/* total number of blocks allocated for direct blocks */
629 	ret = blk_allocated;
630 	*err = 0;
631 	return ret;
632 failed_out:
633 	for (i = 0; i < index; i++)
634 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 	return ret;
636 }
637 
638 /**
639  *	ext4_alloc_branch - allocate and set up a chain of blocks.
640  *	@inode: owner
641  *	@indirect_blks: number of allocated indirect blocks
642  *	@blks: number of allocated direct blocks
643  *	@offsets: offsets (in the blocks) to store the pointers to next.
644  *	@branch: place to store the chain in.
645  *
646  *	This function allocates blocks, zeroes out all but the last one,
647  *	links them into chain and (if we are synchronous) writes them to disk.
648  *	In other words, it prepares a branch that can be spliced onto the
649  *	inode. It stores the information about that chain in the branch[], in
650  *	the same format as ext4_get_branch() would do. We are calling it after
651  *	we had read the existing part of chain and partial points to the last
652  *	triple of that (one with zero ->key). Upon the exit we have the same
653  *	picture as after the successful ext4_get_block(), except that in one
654  *	place chain is disconnected - *branch->p is still zero (we did not
655  *	set the last link), but branch->key contains the number that should
656  *	be placed into *branch->p to fill that gap.
657  *
658  *	If allocation fails we free all blocks we've allocated (and forget
659  *	their buffer_heads) and return the error value the from failed
660  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *	as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 				ext4_lblk_t iblock, int indirect_blks,
665 				int *blks, ext4_fsblk_t goal,
666 				ext4_lblk_t *offsets, Indirect *branch)
667 {
668 	int blocksize = inode->i_sb->s_blocksize;
669 	int i, n = 0;
670 	int err = 0;
671 	struct buffer_head *bh;
672 	int num;
673 	ext4_fsblk_t new_blocks[4];
674 	ext4_fsblk_t current_block;
675 
676 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 				*blks, new_blocks, &err);
678 	if (err)
679 		return err;
680 
681 	branch[0].key = cpu_to_le32(new_blocks[0]);
682 	/*
683 	 * metadata blocks and data blocks are allocated.
684 	 */
685 	for (n = 1; n <= indirect_blks;  n++) {
686 		/*
687 		 * Get buffer_head for parent block, zero it out
688 		 * and set the pointer to new one, then send
689 		 * parent to disk.
690 		 */
691 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 		branch[n].bh = bh;
693 		lock_buffer(bh);
694 		BUFFER_TRACE(bh, "call get_create_access");
695 		err = ext4_journal_get_create_access(handle, bh);
696 		if (err) {
697 			unlock_buffer(bh);
698 			brelse(bh);
699 			goto failed;
700 		}
701 
702 		memset(bh->b_data, 0, blocksize);
703 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 		branch[n].key = cpu_to_le32(new_blocks[n]);
705 		*branch[n].p = branch[n].key;
706 		if (n == indirect_blks) {
707 			current_block = new_blocks[n];
708 			/*
709 			 * End of chain, update the last new metablock of
710 			 * the chain to point to the new allocated
711 			 * data blocks numbers
712 			 */
713 			for (i=1; i < num; i++)
714 				*(branch[n].p + i) = cpu_to_le32(++current_block);
715 		}
716 		BUFFER_TRACE(bh, "marking uptodate");
717 		set_buffer_uptodate(bh);
718 		unlock_buffer(bh);
719 
720 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 		err = ext4_journal_dirty_metadata(handle, bh);
722 		if (err)
723 			goto failed;
724 	}
725 	*blks = num;
726 	return err;
727 failed:
728 	/* Allocation failed, free what we already allocated */
729 	for (i = 1; i <= n ; i++) {
730 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 		ext4_journal_forget(handle, branch[i].bh);
732 	}
733 	for (i = 0; i < indirect_blks; i++)
734 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735 
736 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737 
738 	return err;
739 }
740 
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *	ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 			ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758 	int i;
759 	int err = 0;
760 	struct ext4_block_alloc_info *block_i;
761 	ext4_fsblk_t current_block;
762 
763 	block_i = EXT4_I(inode)->i_block_alloc_info;
764 	/*
765 	 * If we're splicing into a [td]indirect block (as opposed to the
766 	 * inode) then we need to get write access to the [td]indirect block
767 	 * before the splice.
768 	 */
769 	if (where->bh) {
770 		BUFFER_TRACE(where->bh, "get_write_access");
771 		err = ext4_journal_get_write_access(handle, where->bh);
772 		if (err)
773 			goto err_out;
774 	}
775 	/* That's it */
776 
777 	*where->p = where->key;
778 
779 	/*
780 	 * Update the host buffer_head or inode to point to more just allocated
781 	 * direct blocks blocks
782 	 */
783 	if (num == 0 && blks > 1) {
784 		current_block = le32_to_cpu(where->key) + 1;
785 		for (i = 1; i < blks; i++)
786 			*(where->p + i) = cpu_to_le32(current_block++);
787 	}
788 
789 	/*
790 	 * update the most recently allocated logical & physical block
791 	 * in i_block_alloc_info, to assist find the proper goal block for next
792 	 * allocation
793 	 */
794 	if (block_i) {
795 		block_i->last_alloc_logical_block = block + blks - 1;
796 		block_i->last_alloc_physical_block =
797 				le32_to_cpu(where[num].key) + blks - 1;
798 	}
799 
800 	/* We are done with atomic stuff, now do the rest of housekeeping */
801 
802 	inode->i_ctime = ext4_current_time(inode);
803 	ext4_mark_inode_dirty(handle, inode);
804 
805 	/* had we spliced it onto indirect block? */
806 	if (where->bh) {
807 		/*
808 		 * If we spliced it onto an indirect block, we haven't
809 		 * altered the inode.  Note however that if it is being spliced
810 		 * onto an indirect block at the very end of the file (the
811 		 * file is growing) then we *will* alter the inode to reflect
812 		 * the new i_size.  But that is not done here - it is done in
813 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814 		 */
815 		jbd_debug(5, "splicing indirect only\n");
816 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 		err = ext4_journal_dirty_metadata(handle, where->bh);
818 		if (err)
819 			goto err_out;
820 	} else {
821 		/*
822 		 * OK, we spliced it into the inode itself on a direct block.
823 		 * Inode was dirtied above.
824 		 */
825 		jbd_debug(5, "splicing direct\n");
826 	}
827 	return err;
828 
829 err_out:
830 	for (i = 1; i <= num; i++) {
831 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 		ext4_journal_forget(handle, where[i].bh);
833 		ext4_free_blocks(handle, inode,
834 					le32_to_cpu(where[i-1].key), 1, 0);
835 	}
836 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837 
838 	return err;
839 }
840 
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 		ext4_lblk_t iblock, unsigned long maxblocks,
866 		struct buffer_head *bh_result,
867 		int create, int extend_disksize)
868 {
869 	int err = -EIO;
870 	ext4_lblk_t offsets[4];
871 	Indirect chain[4];
872 	Indirect *partial;
873 	ext4_fsblk_t goal;
874 	int indirect_blks;
875 	int blocks_to_boundary = 0;
876 	int depth;
877 	struct ext4_inode_info *ei = EXT4_I(inode);
878 	int count = 0;
879 	ext4_fsblk_t first_block = 0;
880 	loff_t disksize;
881 
882 
883 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 	J_ASSERT(handle != NULL || create == 0);
885 	depth = ext4_block_to_path(inode, iblock, offsets,
886 					&blocks_to_boundary);
887 
888 	if (depth == 0)
889 		goto out;
890 
891 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892 
893 	/* Simplest case - block found, no allocation needed */
894 	if (!partial) {
895 		first_block = le32_to_cpu(chain[depth - 1].key);
896 		clear_buffer_new(bh_result);
897 		count++;
898 		/*map more blocks*/
899 		while (count < maxblocks && count <= blocks_to_boundary) {
900 			ext4_fsblk_t blk;
901 
902 			blk = le32_to_cpu(*(chain[depth-1].p + count));
903 
904 			if (blk == first_block + count)
905 				count++;
906 			else
907 				break;
908 		}
909 		goto got_it;
910 	}
911 
912 	/* Next simple case - plain lookup or failed read of indirect block */
913 	if (!create || err == -EIO)
914 		goto cleanup;
915 
916 	/*
917 	 * Okay, we need to do block allocation.  Lazily initialize the block
918 	 * allocation info here if necessary
919 	*/
920 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 		ext4_init_block_alloc_info(inode);
922 
923 	goal = ext4_find_goal(inode, iblock, partial);
924 
925 	/* the number of blocks need to allocate for [d,t]indirect blocks */
926 	indirect_blks = (chain + depth) - partial - 1;
927 
928 	/*
929 	 * Next look up the indirect map to count the totoal number of
930 	 * direct blocks to allocate for this branch.
931 	 */
932 	count = ext4_blks_to_allocate(partial, indirect_blks,
933 					maxblocks, blocks_to_boundary);
934 	/*
935 	 * Block out ext4_truncate while we alter the tree
936 	 */
937 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 					&count, goal,
939 					offsets + (partial - chain), partial);
940 
941 	/*
942 	 * The ext4_splice_branch call will free and forget any buffers
943 	 * on the new chain if there is a failure, but that risks using
944 	 * up transaction credits, especially for bitmaps where the
945 	 * credits cannot be returned.  Can we handle this somehow?  We
946 	 * may need to return -EAGAIN upwards in the worst case.  --sct
947 	 */
948 	if (!err)
949 		err = ext4_splice_branch(handle, inode, iblock,
950 					partial, indirect_blks, count);
951 	/*
952 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
953 	 * protect it if you're about to implement concurrent
954 	 * ext4_get_block() -bzzz
955 	*/
956 	if (!err && extend_disksize) {
957 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 		if (disksize > i_size_read(inode))
959 			disksize = i_size_read(inode);
960 		if (disksize > ei->i_disksize)
961 			ei->i_disksize = disksize;
962 	}
963 	if (err)
964 		goto cleanup;
965 
966 	set_buffer_new(bh_result);
967 got_it:
968 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 	if (count > blocks_to_boundary)
970 		set_buffer_boundary(bh_result);
971 	err = count;
972 	/* Clean up and exit */
973 	partial = chain + depth - 1;	/* the whole chain */
974 cleanup:
975 	while (partial > chain) {
976 		BUFFER_TRACE(partial->bh, "call brelse");
977 		brelse(partial->bh);
978 		partial--;
979 	}
980 	BUFFER_TRACE(bh_result, "returned");
981 out:
982 	return err;
983 }
984 
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 	int ind_blks, dind_blks, tind_blks;
993 
994 	/* number of new indirect blocks needed */
995 	ind_blks = (blocks + icap - 1) / icap;
996 
997 	dind_blks = (ind_blks + icap - 1) / icap;
998 
999 	tind_blks = 1;
1000 
1001 	return ind_blks + dind_blks + tind_blks;
1002 }
1003 
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010 	if (!blocks)
1011 		return 0;
1012 
1013 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 		return ext4_ext_calc_metadata_amount(inode, blocks);
1015 
1016 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018 
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 	int total, mdb, mdb_free;
1023 
1024 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 	/* recalculate the number of metablocks still need to be reserved */
1026 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 	mdb = ext4_calc_metadata_amount(inode, total);
1028 
1029 	/* figure out how many metablocks to release */
1030 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032 
1033 	if (mdb_free) {
1034 		/* Account for allocated meta_blocks */
1035 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036 
1037 		/* update fs dirty blocks counter */
1038 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041 	}
1042 
1043 	/* update per-inode reservations */
1044 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1046 
1047 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049 
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 			unsigned long max_blocks, struct buffer_head *bh,
1074 			int create, int extend_disksize, int flag)
1075 {
1076 	int retval;
1077 
1078 	clear_buffer_mapped(bh);
1079 
1080 	/*
1081 	 * Try to see if we can get  the block without requesting
1082 	 * for new file system block.
1083 	 */
1084 	down_read((&EXT4_I(inode)->i_data_sem));
1085 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 				bh, 0, 0);
1088 	} else {
1089 		retval = ext4_get_blocks_handle(handle,
1090 				inode, block, max_blocks, bh, 0, 0);
1091 	}
1092 	up_read((&EXT4_I(inode)->i_data_sem));
1093 
1094 	/* If it is only a block(s) look up */
1095 	if (!create)
1096 		return retval;
1097 
1098 	/*
1099 	 * Returns if the blocks have already allocated
1100 	 *
1101 	 * Note that if blocks have been preallocated
1102 	 * ext4_ext_get_block() returns th create = 0
1103 	 * with buffer head unmapped.
1104 	 */
1105 	if (retval > 0 && buffer_mapped(bh))
1106 		return retval;
1107 
1108 	/*
1109 	 * New blocks allocate and/or writing to uninitialized extent
1110 	 * will possibly result in updating i_data, so we take
1111 	 * the write lock of i_data_sem, and call get_blocks()
1112 	 * with create == 1 flag.
1113 	 */
1114 	down_write((&EXT4_I(inode)->i_data_sem));
1115 
1116 	/*
1117 	 * if the caller is from delayed allocation writeout path
1118 	 * we have already reserved fs blocks for allocation
1119 	 * let the underlying get_block() function know to
1120 	 * avoid double accounting
1121 	 */
1122 	if (flag)
1123 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124 	/*
1125 	 * We need to check for EXT4 here because migrate
1126 	 * could have changed the inode type in between
1127 	 */
1128 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 				bh, create, extend_disksize);
1131 	} else {
1132 		retval = ext4_get_blocks_handle(handle, inode, block,
1133 				max_blocks, bh, create, extend_disksize);
1134 
1135 		if (retval > 0 && buffer_new(bh)) {
1136 			/*
1137 			 * We allocated new blocks which will result in
1138 			 * i_data's format changing.  Force the migrate
1139 			 * to fail by clearing migrate flags
1140 			 */
1141 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 							~EXT4_EXT_MIGRATE;
1143 		}
1144 	}
1145 
1146 	if (flag) {
1147 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148 		/*
1149 		 * Update reserved blocks/metadata blocks
1150 		 * after successful block allocation
1151 		 * which were deferred till now
1152 		 */
1153 		if ((retval > 0) && buffer_delay(bh))
1154 			ext4_da_update_reserve_space(inode, retval);
1155 	}
1156 
1157 	up_write((&EXT4_I(inode)->i_data_sem));
1158 	return retval;
1159 }
1160 
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163 
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165 			struct buffer_head *bh_result, int create)
1166 {
1167 	handle_t *handle = ext4_journal_current_handle();
1168 	int ret = 0, started = 0;
1169 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170 	int dio_credits;
1171 
1172 	if (create && !handle) {
1173 		/* Direct IO write... */
1174 		if (max_blocks > DIO_MAX_BLOCKS)
1175 			max_blocks = DIO_MAX_BLOCKS;
1176 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 		handle = ext4_journal_start(inode, dio_credits);
1178 		if (IS_ERR(handle)) {
1179 			ret = PTR_ERR(handle);
1180 			goto out;
1181 		}
1182 		started = 1;
1183 	}
1184 
1185 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186 					max_blocks, bh_result, create, 0, 0);
1187 	if (ret > 0) {
1188 		bh_result->b_size = (ret << inode->i_blkbits);
1189 		ret = 0;
1190 	}
1191 	if (started)
1192 		ext4_journal_stop(handle);
1193 out:
1194 	return ret;
1195 }
1196 
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201 				ext4_lblk_t block, int create, int *errp)
1202 {
1203 	struct buffer_head dummy;
1204 	int fatal = 0, err;
1205 
1206 	J_ASSERT(handle != NULL || create == 0);
1207 
1208 	dummy.b_state = 0;
1209 	dummy.b_blocknr = -1000;
1210 	buffer_trace_init(&dummy.b_history);
1211 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212 					&dummy, create, 1, 0);
1213 	/*
1214 	 * ext4_get_blocks_handle() returns number of blocks
1215 	 * mapped. 0 in case of a HOLE.
1216 	 */
1217 	if (err > 0) {
1218 		if (err > 1)
1219 			WARN_ON(1);
1220 		err = 0;
1221 	}
1222 	*errp = err;
1223 	if (!err && buffer_mapped(&dummy)) {
1224 		struct buffer_head *bh;
1225 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 		if (!bh) {
1227 			*errp = -EIO;
1228 			goto err;
1229 		}
1230 		if (buffer_new(&dummy)) {
1231 			J_ASSERT(create != 0);
1232 			J_ASSERT(handle != NULL);
1233 
1234 			/*
1235 			 * Now that we do not always journal data, we should
1236 			 * keep in mind whether this should always journal the
1237 			 * new buffer as metadata.  For now, regular file
1238 			 * writes use ext4_get_block instead, so it's not a
1239 			 * problem.
1240 			 */
1241 			lock_buffer(bh);
1242 			BUFFER_TRACE(bh, "call get_create_access");
1243 			fatal = ext4_journal_get_create_access(handle, bh);
1244 			if (!fatal && !buffer_uptodate(bh)) {
1245 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246 				set_buffer_uptodate(bh);
1247 			}
1248 			unlock_buffer(bh);
1249 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 			err = ext4_journal_dirty_metadata(handle, bh);
1251 			if (!fatal)
1252 				fatal = err;
1253 		} else {
1254 			BUFFER_TRACE(bh, "not a new buffer");
1255 		}
1256 		if (fatal) {
1257 			*errp = fatal;
1258 			brelse(bh);
1259 			bh = NULL;
1260 		}
1261 		return bh;
1262 	}
1263 err:
1264 	return NULL;
1265 }
1266 
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268 			       ext4_lblk_t block, int create, int *err)
1269 {
1270 	struct buffer_head *bh;
1271 
1272 	bh = ext4_getblk(handle, inode, block, create, err);
1273 	if (!bh)
1274 		return bh;
1275 	if (buffer_uptodate(bh))
1276 		return bh;
1277 	ll_rw_block(READ_META, 1, &bh);
1278 	wait_on_buffer(bh);
1279 	if (buffer_uptodate(bh))
1280 		return bh;
1281 	put_bh(bh);
1282 	*err = -EIO;
1283 	return NULL;
1284 }
1285 
1286 static int walk_page_buffers(handle_t *handle,
1287 			     struct buffer_head *head,
1288 			     unsigned from,
1289 			     unsigned to,
1290 			     int *partial,
1291 			     int (*fn)(handle_t *handle,
1292 				       struct buffer_head *bh))
1293 {
1294 	struct buffer_head *bh;
1295 	unsigned block_start, block_end;
1296 	unsigned blocksize = head->b_size;
1297 	int err, ret = 0;
1298 	struct buffer_head *next;
1299 
1300 	for (bh = head, block_start = 0;
1301 	     ret == 0 && (bh != head || !block_start);
1302 	     block_start = block_end, bh = next)
1303 	{
1304 		next = bh->b_this_page;
1305 		block_end = block_start + blocksize;
1306 		if (block_end <= from || block_start >= to) {
1307 			if (partial && !buffer_uptodate(bh))
1308 				*partial = 1;
1309 			continue;
1310 		}
1311 		err = (*fn)(handle, bh);
1312 		if (!ret)
1313 			ret = err;
1314 	}
1315 	return ret;
1316 }
1317 
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344 					struct buffer_head *bh)
1345 {
1346 	if (!buffer_mapped(bh) || buffer_freed(bh))
1347 		return 0;
1348 	return ext4_journal_get_write_access(handle, bh);
1349 }
1350 
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 				loff_t pos, unsigned len, unsigned flags,
1353 				struct page **pagep, void **fsdata)
1354 {
1355 	struct inode *inode = mapping->host;
1356 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357 	handle_t *handle;
1358 	int retries = 0;
1359 	struct page *page;
1360  	pgoff_t index;
1361 	unsigned from, to;
1362 
1363  	index = pos >> PAGE_CACHE_SHIFT;
1364 	from = pos & (PAGE_CACHE_SIZE - 1);
1365 	to = from + len;
1366 
1367 retry:
1368 	handle = ext4_journal_start(inode, needed_blocks);
1369 	if (IS_ERR(handle)) {
1370 		ret = PTR_ERR(handle);
1371 		goto out;
1372 	}
1373 
1374 	page = __grab_cache_page(mapping, index);
1375 	if (!page) {
1376 		ext4_journal_stop(handle);
1377 		ret = -ENOMEM;
1378 		goto out;
1379 	}
1380 	*pagep = page;
1381 
1382 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 							ext4_get_block);
1384 
1385 	if (!ret && ext4_should_journal_data(inode)) {
1386 		ret = walk_page_buffers(handle, page_buffers(page),
1387 				from, to, NULL, do_journal_get_write_access);
1388 	}
1389 
1390 	if (ret) {
1391 		unlock_page(page);
1392 		ext4_journal_stop(handle);
1393 		page_cache_release(page);
1394 	}
1395 
1396 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397 		goto retry;
1398 out:
1399 	return ret;
1400 }
1401 
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 {
1405 	if (!buffer_mapped(bh) || buffer_freed(bh))
1406 		return 0;
1407 	set_buffer_uptodate(bh);
1408 	return ext4_journal_dirty_metadata(handle, bh);
1409 }
1410 
1411 /*
1412  * We need to pick up the new inode size which generic_commit_write gave us
1413  * `file' can be NULL - eg, when called from page_symlink().
1414  *
1415  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1416  * buffers are managed internally.
1417  */
1418 static int ext4_ordered_write_end(struct file *file,
1419 				struct address_space *mapping,
1420 				loff_t pos, unsigned len, unsigned copied,
1421 				struct page *page, void *fsdata)
1422 {
1423 	handle_t *handle = ext4_journal_current_handle();
1424 	struct inode *inode = mapping->host;
1425 	int ret = 0, ret2;
1426 
1427 	ret = ext4_jbd2_file_inode(handle, inode);
1428 
1429 	if (ret == 0) {
1430 		/*
1431 		 * generic_write_end() will run mark_inode_dirty() if i_size
1432 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1433 		 * into that.
1434 		 */
1435 		loff_t new_i_size;
1436 
1437 		new_i_size = pos + copied;
1438 		if (new_i_size > EXT4_I(inode)->i_disksize)
1439 			EXT4_I(inode)->i_disksize = new_i_size;
1440 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1441 							page, fsdata);
1442 		copied = ret2;
1443 		if (ret2 < 0)
1444 			ret = ret2;
1445 	}
1446 	ret2 = ext4_journal_stop(handle);
1447 	if (!ret)
1448 		ret = ret2;
1449 
1450 	return ret ? ret : copied;
1451 }
1452 
1453 static int ext4_writeback_write_end(struct file *file,
1454 				struct address_space *mapping,
1455 				loff_t pos, unsigned len, unsigned copied,
1456 				struct page *page, void *fsdata)
1457 {
1458 	handle_t *handle = ext4_journal_current_handle();
1459 	struct inode *inode = mapping->host;
1460 	int ret = 0, ret2;
1461 	loff_t new_i_size;
1462 
1463 	new_i_size = pos + copied;
1464 	if (new_i_size > EXT4_I(inode)->i_disksize)
1465 		EXT4_I(inode)->i_disksize = new_i_size;
1466 
1467 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1468 							page, fsdata);
1469 	copied = ret2;
1470 	if (ret2 < 0)
1471 		ret = ret2;
1472 
1473 	ret2 = ext4_journal_stop(handle);
1474 	if (!ret)
1475 		ret = ret2;
1476 
1477 	return ret ? ret : copied;
1478 }
1479 
1480 static int ext4_journalled_write_end(struct file *file,
1481 				struct address_space *mapping,
1482 				loff_t pos, unsigned len, unsigned copied,
1483 				struct page *page, void *fsdata)
1484 {
1485 	handle_t *handle = ext4_journal_current_handle();
1486 	struct inode *inode = mapping->host;
1487 	int ret = 0, ret2;
1488 	int partial = 0;
1489 	unsigned from, to;
1490 
1491 	from = pos & (PAGE_CACHE_SIZE - 1);
1492 	to = from + len;
1493 
1494 	if (copied < len) {
1495 		if (!PageUptodate(page))
1496 			copied = 0;
1497 		page_zero_new_buffers(page, from+copied, to);
1498 	}
1499 
1500 	ret = walk_page_buffers(handle, page_buffers(page), from,
1501 				to, &partial, write_end_fn);
1502 	if (!partial)
1503 		SetPageUptodate(page);
1504 	if (pos+copied > inode->i_size)
1505 		i_size_write(inode, pos+copied);
1506 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508 		EXT4_I(inode)->i_disksize = inode->i_size;
1509 		ret2 = ext4_mark_inode_dirty(handle, inode);
1510 		if (!ret)
1511 			ret = ret2;
1512 	}
1513 
1514 	unlock_page(page);
1515 	ret2 = ext4_journal_stop(handle);
1516 	if (!ret)
1517 		ret = ret2;
1518 	page_cache_release(page);
1519 
1520 	return ret ? ret : copied;
1521 }
1522 
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525 	int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528 
1529 	/*
1530 	 * recalculate the amount of metadata blocks to reserve
1531 	 * in order to allocate nrblocks
1532 	 * worse case is one extent per block
1533 	 */
1534 repeat:
1535 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 	mdblocks = ext4_calc_metadata_amount(inode, total);
1538 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539 
1540 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 	total = md_needed + nrblocks;
1542 
1543 	if (ext4_claim_free_blocks(sbi, total)) {
1544 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 			yield();
1547 			goto repeat;
1548 		}
1549 		return -ENOSPC;
1550 	}
1551 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553 
1554 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 	return 0;       /* success */
1556 }
1557 
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 	int total, mdb, mdb_free, release;
1562 
1563 	if (!to_free)
1564 		return;		/* Nothing to release, exit */
1565 
1566 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567 
1568 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569 		/*
1570 		 * if there is no reserved blocks, but we try to free some
1571 		 * then the counter is messed up somewhere.
1572 		 * but since this function is called from invalidate
1573 		 * page, it's harmless to return without any action
1574 		 */
1575 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 			    "blocks for inode %lu, but there is no reserved "
1577 			    "data blocks\n", to_free, inode->i_ino);
1578 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 		return;
1580 	}
1581 
1582 	/* recalculate the number of metablocks still need to be reserved */
1583 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 	mdb = ext4_calc_metadata_amount(inode, total);
1585 
1586 	/* figure out how many metablocks to release */
1587 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589 
1590 	release = to_free + mdb_free;
1591 
1592 	/* update fs dirty blocks counter for truncate case */
1593 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594 
1595 	/* update per-inode reservations */
1596 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598 
1599 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603 
1604 static void ext4_da_page_release_reservation(struct page *page,
1605 						unsigned long offset)
1606 {
1607 	int to_release = 0;
1608 	struct buffer_head *head, *bh;
1609 	unsigned int curr_off = 0;
1610 
1611 	head = page_buffers(page);
1612 	bh = head;
1613 	do {
1614 		unsigned int next_off = curr_off + bh->b_size;
1615 
1616 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 			to_release++;
1618 			clear_buffer_delay(bh);
1619 		}
1620 		curr_off = next_off;
1621 	} while ((bh = bh->b_this_page) != head);
1622 	ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624 
1625 /*
1626  * Delayed allocation stuff
1627  */
1628 
1629 struct mpage_da_data {
1630 	struct inode *inode;
1631 	struct buffer_head lbh;			/* extent of blocks */
1632 	unsigned long first_page, next_page;	/* extent of pages */
1633 	get_block_t *get_block;
1634 	struct writeback_control *wbc;
1635 	int io_done;
1636 	long pages_written;
1637 };
1638 
1639 /*
1640  * mpage_da_submit_io - walks through extent of pages and try to write
1641  * them with writepage() call back
1642  *
1643  * @mpd->inode: inode
1644  * @mpd->first_page: first page of the extent
1645  * @mpd->next_page: page after the last page of the extent
1646  * @mpd->get_block: the filesystem's block mapper function
1647  *
1648  * By the time mpage_da_submit_io() is called we expect all blocks
1649  * to be allocated. this may be wrong if allocation failed.
1650  *
1651  * As pages are already locked by write_cache_pages(), we can't use it
1652  */
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654 {
1655 	struct address_space *mapping = mpd->inode->i_mapping;
1656 	int ret = 0, err, nr_pages, i;
1657 	unsigned long index, end;
1658 	struct pagevec pvec;
1659 
1660 	BUG_ON(mpd->next_page <= mpd->first_page);
1661 	pagevec_init(&pvec, 0);
1662 	index = mpd->first_page;
1663 	end = mpd->next_page - 1;
1664 
1665 	while (index <= end) {
1666 		/* XXX: optimize tail */
1667 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668 		if (nr_pages == 0)
1669 			break;
1670 		for (i = 0; i < nr_pages; i++) {
1671 			struct page *page = pvec.pages[i];
1672 
1673 			index = page->index;
1674 			if (index > end)
1675 				break;
1676 			index++;
1677 
1678 			err = mapping->a_ops->writepage(page, mpd->wbc);
1679 			if (!err)
1680 				mpd->pages_written++;
1681 			/*
1682 			 * In error case, we have to continue because
1683 			 * remaining pages are still locked
1684 			 * XXX: unlock and re-dirty them?
1685 			 */
1686 			if (ret == 0)
1687 				ret = err;
1688 		}
1689 		pagevec_release(&pvec);
1690 	}
1691 	return ret;
1692 }
1693 
1694 /*
1695  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1696  *
1697  * @mpd->inode - inode to walk through
1698  * @exbh->b_blocknr - first block on a disk
1699  * @exbh->b_size - amount of space in bytes
1700  * @logical - first logical block to start assignment with
1701  *
1702  * the function goes through all passed space and put actual disk
1703  * block numbers into buffer heads, dropping BH_Delay
1704  */
1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706 				 struct buffer_head *exbh)
1707 {
1708 	struct inode *inode = mpd->inode;
1709 	struct address_space *mapping = inode->i_mapping;
1710 	int blocks = exbh->b_size >> inode->i_blkbits;
1711 	sector_t pblock = exbh->b_blocknr, cur_logical;
1712 	struct buffer_head *head, *bh;
1713 	pgoff_t index, end;
1714 	struct pagevec pvec;
1715 	int nr_pages, i;
1716 
1717 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720 
1721 	pagevec_init(&pvec, 0);
1722 
1723 	while (index <= end) {
1724 		/* XXX: optimize tail */
1725 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726 		if (nr_pages == 0)
1727 			break;
1728 		for (i = 0; i < nr_pages; i++) {
1729 			struct page *page = pvec.pages[i];
1730 
1731 			index = page->index;
1732 			if (index > end)
1733 				break;
1734 			index++;
1735 
1736 			BUG_ON(!PageLocked(page));
1737 			BUG_ON(PageWriteback(page));
1738 			BUG_ON(!page_has_buffers(page));
1739 
1740 			bh = page_buffers(page);
1741 			head = bh;
1742 
1743 			/* skip blocks out of the range */
1744 			do {
1745 				if (cur_logical >= logical)
1746 					break;
1747 				cur_logical++;
1748 			} while ((bh = bh->b_this_page) != head);
1749 
1750 			do {
1751 				if (cur_logical >= logical + blocks)
1752 					break;
1753 				if (buffer_delay(bh)) {
1754 					bh->b_blocknr = pblock;
1755 					clear_buffer_delay(bh);
1756 					bh->b_bdev = inode->i_sb->s_bdev;
1757 				} else if (buffer_unwritten(bh)) {
1758 					bh->b_blocknr = pblock;
1759 					clear_buffer_unwritten(bh);
1760 					set_buffer_mapped(bh);
1761 					set_buffer_new(bh);
1762 					bh->b_bdev = inode->i_sb->s_bdev;
1763 				} else if (buffer_mapped(bh))
1764 					BUG_ON(bh->b_blocknr != pblock);
1765 
1766 				cur_logical++;
1767 				pblock++;
1768 			} while ((bh = bh->b_this_page) != head);
1769 		}
1770 		pagevec_release(&pvec);
1771 	}
1772 }
1773 
1774 
1775 /*
1776  * __unmap_underlying_blocks - just a helper function to unmap
1777  * set of blocks described by @bh
1778  */
1779 static inline void __unmap_underlying_blocks(struct inode *inode,
1780 					     struct buffer_head *bh)
1781 {
1782 	struct block_device *bdev = inode->i_sb->s_bdev;
1783 	int blocks, i;
1784 
1785 	blocks = bh->b_size >> inode->i_blkbits;
1786 	for (i = 0; i < blocks; i++)
1787 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1788 }
1789 
1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791 					sector_t logical, long blk_cnt)
1792 {
1793 	int nr_pages, i;
1794 	pgoff_t index, end;
1795 	struct pagevec pvec;
1796 	struct inode *inode = mpd->inode;
1797 	struct address_space *mapping = inode->i_mapping;
1798 
1799 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800 	end   = (logical + blk_cnt - 1) >>
1801 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1802 	while (index <= end) {
1803 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804 		if (nr_pages == 0)
1805 			break;
1806 		for (i = 0; i < nr_pages; i++) {
1807 			struct page *page = pvec.pages[i];
1808 			index = page->index;
1809 			if (index > end)
1810 				break;
1811 			index++;
1812 
1813 			BUG_ON(!PageLocked(page));
1814 			BUG_ON(PageWriteback(page));
1815 			block_invalidatepage(page, 0);
1816 			ClearPageUptodate(page);
1817 			unlock_page(page);
1818 		}
1819 	}
1820 	return;
1821 }
1822 
1823 /*
1824  * mpage_da_map_blocks - go through given space
1825  *
1826  * @mpd->lbh - bh describing space
1827  * @mpd->get_block - the filesystem's block mapper function
1828  *
1829  * The function skips space we know is already mapped to disk blocks.
1830  *
1831  */
1832 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1833 {
1834 	int err = 0;
1835 	struct buffer_head new;
1836 	struct buffer_head *lbh = &mpd->lbh;
1837 	sector_t next = lbh->b_blocknr;
1838 
1839 	/*
1840 	 * We consider only non-mapped and non-allocated blocks
1841 	 */
1842 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1843 		return 0;
1844 	new.b_state = lbh->b_state;
1845 	new.b_blocknr = 0;
1846 	new.b_size = lbh->b_size;
1847 	/*
1848 	 * If we didn't accumulate anything
1849 	 * to write simply return
1850 	 */
1851 	if (!new.b_size)
1852 		return 0;
1853 	err = mpd->get_block(mpd->inode, next, &new, 1);
1854 	if (err) {
1855 
1856 		/* If get block returns with error
1857 		 * we simply return. Later writepage
1858 		 * will redirty the page and writepages
1859 		 * will find the dirty page again
1860 		 */
1861 		if (err == -EAGAIN)
1862 			return 0;
1863 		/*
1864 		 * get block failure will cause us
1865 		 * to loop in writepages. Because
1866 		 * a_ops->writepage won't be able to
1867 		 * make progress. The page will be redirtied
1868 		 * by writepage and writepages will again
1869 		 * try to write the same.
1870 		 */
1871 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872 				  "at logical offset %llu with max blocks "
1873 				  "%zd with error %d\n",
1874 				  __func__, mpd->inode->i_ino,
1875 				  (unsigned long long)next,
1876 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1877 		printk(KERN_EMERG "This should not happen.!! "
1878 					"Data will be lost\n");
1879 		if (err == -ENOSPC) {
1880 			printk(KERN_CRIT "Total free blocks count %lld\n",
1881 				ext4_count_free_blocks(mpd->inode->i_sb));
1882 		}
1883 		/* invlaidate all the pages */
1884 		ext4_da_block_invalidatepages(mpd, next,
1885 				lbh->b_size >> mpd->inode->i_blkbits);
1886 		return err;
1887 	}
1888 	BUG_ON(new.b_size == 0);
1889 
1890 	if (buffer_new(&new))
1891 		__unmap_underlying_blocks(mpd->inode, &new);
1892 
1893 	/*
1894 	 * If blocks are delayed marked, we need to
1895 	 * put actual blocknr and drop delayed bit
1896 	 */
1897 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898 		mpage_put_bnr_to_bhs(mpd, next, &new);
1899 
1900 	return 0;
1901 }
1902 
1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904 		(1 << BH_Delay) | (1 << BH_Unwritten))
1905 
1906 /*
1907  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1908  *
1909  * @mpd->lbh - extent of blocks
1910  * @logical - logical number of the block in the file
1911  * @bh - bh of the block (used to access block's state)
1912  *
1913  * the function is used to collect contig. blocks in same state
1914  */
1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916 				   sector_t logical, struct buffer_head *bh)
1917 {
1918 	sector_t next;
1919 	size_t b_size = bh->b_size;
1920 	struct buffer_head *lbh = &mpd->lbh;
1921 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1922 
1923 	/* check if thereserved journal credits might overflow */
1924 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1926 			/*
1927 			 * With non-extent format we are limited by the journal
1928 			 * credit available.  Total credit needed to insert
1929 			 * nrblocks contiguous blocks is dependent on the
1930 			 * nrblocks.  So limit nrblocks.
1931 			 */
1932 			goto flush_it;
1933 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934 				EXT4_MAX_TRANS_DATA) {
1935 			/*
1936 			 * Adding the new buffer_head would make it cross the
1937 			 * allowed limit for which we have journal credit
1938 			 * reserved. So limit the new bh->b_size
1939 			 */
1940 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941 						mpd->inode->i_blkbits;
1942 			/* we will do mpage_da_submit_io in the next loop */
1943 		}
1944 	}
1945 	/*
1946 	 * First block in the extent
1947 	 */
1948 	if (lbh->b_size == 0) {
1949 		lbh->b_blocknr = logical;
1950 		lbh->b_size = b_size;
1951 		lbh->b_state = bh->b_state & BH_FLAGS;
1952 		return;
1953 	}
1954 
1955 	next = lbh->b_blocknr + nrblocks;
1956 	/*
1957 	 * Can we merge the block to our big extent?
1958 	 */
1959 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1960 		lbh->b_size += b_size;
1961 		return;
1962 	}
1963 
1964 flush_it:
1965 	/*
1966 	 * We couldn't merge the block to our extent, so we
1967 	 * need to flush current  extent and start new one
1968 	 */
1969 	if (mpage_da_map_blocks(mpd) == 0)
1970 		mpage_da_submit_io(mpd);
1971 	mpd->io_done = 1;
1972 	return;
1973 }
1974 
1975 /*
1976  * __mpage_da_writepage - finds extent of pages and blocks
1977  *
1978  * @page: page to consider
1979  * @wbc: not used, we just follow rules
1980  * @data: context
1981  *
1982  * The function finds extents of pages and scan them for all blocks.
1983  */
1984 static int __mpage_da_writepage(struct page *page,
1985 				struct writeback_control *wbc, void *data)
1986 {
1987 	struct mpage_da_data *mpd = data;
1988 	struct inode *inode = mpd->inode;
1989 	struct buffer_head *bh, *head, fake;
1990 	sector_t logical;
1991 
1992 	if (mpd->io_done) {
1993 		/*
1994 		 * Rest of the page in the page_vec
1995 		 * redirty then and skip then. We will
1996 		 * try to to write them again after
1997 		 * starting a new transaction
1998 		 */
1999 		redirty_page_for_writepage(wbc, page);
2000 		unlock_page(page);
2001 		return MPAGE_DA_EXTENT_TAIL;
2002 	}
2003 	/*
2004 	 * Can we merge this page to current extent?
2005 	 */
2006 	if (mpd->next_page != page->index) {
2007 		/*
2008 		 * Nope, we can't. So, we map non-allocated blocks
2009 		 * and start IO on them using writepage()
2010 		 */
2011 		if (mpd->next_page != mpd->first_page) {
2012 			if (mpage_da_map_blocks(mpd) == 0)
2013 				mpage_da_submit_io(mpd);
2014 			/*
2015 			 * skip rest of the page in the page_vec
2016 			 */
2017 			mpd->io_done = 1;
2018 			redirty_page_for_writepage(wbc, page);
2019 			unlock_page(page);
2020 			return MPAGE_DA_EXTENT_TAIL;
2021 		}
2022 
2023 		/*
2024 		 * Start next extent of pages ...
2025 		 */
2026 		mpd->first_page = page->index;
2027 
2028 		/*
2029 		 * ... and blocks
2030 		 */
2031 		mpd->lbh.b_size = 0;
2032 		mpd->lbh.b_state = 0;
2033 		mpd->lbh.b_blocknr = 0;
2034 	}
2035 
2036 	mpd->next_page = page->index + 1;
2037 	logical = (sector_t) page->index <<
2038 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039 
2040 	if (!page_has_buffers(page)) {
2041 		/*
2042 		 * There is no attached buffer heads yet (mmap?)
2043 		 * we treat the page asfull of dirty blocks
2044 		 */
2045 		bh = &fake;
2046 		bh->b_size = PAGE_CACHE_SIZE;
2047 		bh->b_state = 0;
2048 		set_buffer_dirty(bh);
2049 		set_buffer_uptodate(bh);
2050 		mpage_add_bh_to_extent(mpd, logical, bh);
2051 		if (mpd->io_done)
2052 			return MPAGE_DA_EXTENT_TAIL;
2053 	} else {
2054 		/*
2055 		 * Page with regular buffer heads, just add all dirty ones
2056 		 */
2057 		head = page_buffers(page);
2058 		bh = head;
2059 		do {
2060 			BUG_ON(buffer_locked(bh));
2061 			if (buffer_dirty(bh) &&
2062 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2063 				mpage_add_bh_to_extent(mpd, logical, bh);
2064 				if (mpd->io_done)
2065 					return MPAGE_DA_EXTENT_TAIL;
2066 			}
2067 			logical++;
2068 		} while ((bh = bh->b_this_page) != head);
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /*
2075  * mpage_da_writepages - walk the list of dirty pages of the given
2076  * address space, allocates non-allocated blocks, maps newly-allocated
2077  * blocks to existing bhs and issue IO them
2078  *
2079  * @mapping: address space structure to write
2080  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081  * @get_block: the filesystem's block mapper function.
2082  *
2083  * This is a library function, which implements the writepages()
2084  * address_space_operation.
2085  */
2086 static int mpage_da_writepages(struct address_space *mapping,
2087 			       struct writeback_control *wbc,
2088 			       get_block_t get_block)
2089 {
2090 	struct mpage_da_data mpd;
2091 	long to_write;
2092 	int ret;
2093 
2094 	if (!get_block)
2095 		return generic_writepages(mapping, wbc);
2096 
2097 	mpd.wbc = wbc;
2098 	mpd.inode = mapping->host;
2099 	mpd.lbh.b_size = 0;
2100 	mpd.lbh.b_state = 0;
2101 	mpd.lbh.b_blocknr = 0;
2102 	mpd.first_page = 0;
2103 	mpd.next_page = 0;
2104 	mpd.get_block = get_block;
2105 	mpd.io_done = 0;
2106 	mpd.pages_written = 0;
2107 
2108 	to_write = wbc->nr_to_write;
2109 
2110 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2111 
2112 	/*
2113 	 * Handle last extent of pages
2114 	 */
2115 	if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2116 		if (mpage_da_map_blocks(&mpd) == 0)
2117 			mpage_da_submit_io(&mpd);
2118 	}
2119 
2120 	wbc->nr_to_write = to_write - mpd.pages_written;
2121 	return ret;
2122 }
2123 
2124 /*
2125  * this is a special callback for ->write_begin() only
2126  * it's intention is to return mapped block or reserve space
2127  */
2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129 				  struct buffer_head *bh_result, int create)
2130 {
2131 	int ret = 0;
2132 
2133 	BUG_ON(create == 0);
2134 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2135 
2136 	/*
2137 	 * first, we need to know whether the block is allocated already
2138 	 * preallocated blocks are unmapped but should treated
2139 	 * the same as allocated blocks.
2140 	 */
2141 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2142 	if ((ret == 0) && !buffer_delay(bh_result)) {
2143 		/* the block isn't (pre)allocated yet, let's reserve space */
2144 		/*
2145 		 * XXX: __block_prepare_write() unmaps passed block,
2146 		 * is it OK?
2147 		 */
2148 		ret = ext4_da_reserve_space(inode, 1);
2149 		if (ret)
2150 			/* not enough space to reserve */
2151 			return ret;
2152 
2153 		map_bh(bh_result, inode->i_sb, 0);
2154 		set_buffer_new(bh_result);
2155 		set_buffer_delay(bh_result);
2156 	} else if (ret > 0) {
2157 		bh_result->b_size = (ret << inode->i_blkbits);
2158 		ret = 0;
2159 	}
2160 
2161 	return ret;
2162 }
2163 #define		EXT4_DELALLOC_RSVED	1
2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165 				   struct buffer_head *bh_result, int create)
2166 {
2167 	int ret;
2168 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169 	loff_t disksize = EXT4_I(inode)->i_disksize;
2170 	handle_t *handle = NULL;
2171 
2172 	handle = ext4_journal_current_handle();
2173 	if (!handle) {
2174 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175 				   bh_result, 0, 0, 0);
2176 		BUG_ON(!ret);
2177 	} else {
2178 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2179 				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
2180 	}
2181 
2182 	if (ret > 0) {
2183 		bh_result->b_size = (ret << inode->i_blkbits);
2184 
2185 		/*
2186 		 * Update on-disk size along with block allocation
2187 		 * we don't use 'extend_disksize' as size may change
2188 		 * within already allocated block -bzzz
2189 		 */
2190 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2191 		if (disksize > i_size_read(inode))
2192 			disksize = i_size_read(inode);
2193 		if (disksize > EXT4_I(inode)->i_disksize) {
2194 			/*
2195 			 * XXX: replace with spinlock if seen contended -bzzz
2196 			 */
2197 			down_write(&EXT4_I(inode)->i_data_sem);
2198 			if (disksize > EXT4_I(inode)->i_disksize)
2199 				EXT4_I(inode)->i_disksize = disksize;
2200 			up_write(&EXT4_I(inode)->i_data_sem);
2201 
2202 			if (EXT4_I(inode)->i_disksize == disksize) {
2203 				ret = ext4_mark_inode_dirty(handle, inode);
2204 				return ret;
2205 			}
2206 		}
2207 		ret = 0;
2208 	}
2209 	return ret;
2210 }
2211 
2212 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2213 {
2214 	/*
2215 	 * unmapped buffer is possible for holes.
2216 	 * delay buffer is possible with delayed allocation
2217 	 */
2218 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2219 }
2220 
2221 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2222 				   struct buffer_head *bh_result, int create)
2223 {
2224 	int ret = 0;
2225 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2226 
2227 	/*
2228 	 * we don't want to do block allocation in writepage
2229 	 * so call get_block_wrap with create = 0
2230 	 */
2231 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2232 				   bh_result, 0, 0, 0);
2233 	if (ret > 0) {
2234 		bh_result->b_size = (ret << inode->i_blkbits);
2235 		ret = 0;
2236 	}
2237 	return ret;
2238 }
2239 
2240 /*
2241  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2242  * get called via journal_submit_inode_data_buffers (no journal handle)
2243  * get called via shrink_page_list via pdflush (no journal handle)
2244  * or grab_page_cache when doing write_begin (have journal handle)
2245  */
2246 static int ext4_da_writepage(struct page *page,
2247 				struct writeback_control *wbc)
2248 {
2249 	int ret = 0;
2250 	loff_t size;
2251 	unsigned long len;
2252 	struct buffer_head *page_bufs;
2253 	struct inode *inode = page->mapping->host;
2254 
2255 	size = i_size_read(inode);
2256 	if (page->index == size >> PAGE_CACHE_SHIFT)
2257 		len = size & ~PAGE_CACHE_MASK;
2258 	else
2259 		len = PAGE_CACHE_SIZE;
2260 
2261 	if (page_has_buffers(page)) {
2262 		page_bufs = page_buffers(page);
2263 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2264 					ext4_bh_unmapped_or_delay)) {
2265 			/*
2266 			 * We don't want to do  block allocation
2267 			 * So redirty the page and return
2268 			 * We may reach here when we do a journal commit
2269 			 * via journal_submit_inode_data_buffers.
2270 			 * If we don't have mapping block we just ignore
2271 			 * them. We can also reach here via shrink_page_list
2272 			 */
2273 			redirty_page_for_writepage(wbc, page);
2274 			unlock_page(page);
2275 			return 0;
2276 		}
2277 	} else {
2278 		/*
2279 		 * The test for page_has_buffers() is subtle:
2280 		 * We know the page is dirty but it lost buffers. That means
2281 		 * that at some moment in time after write_begin()/write_end()
2282 		 * has been called all buffers have been clean and thus they
2283 		 * must have been written at least once. So they are all
2284 		 * mapped and we can happily proceed with mapping them
2285 		 * and writing the page.
2286 		 *
2287 		 * Try to initialize the buffer_heads and check whether
2288 		 * all are mapped and non delay. We don't want to
2289 		 * do block allocation here.
2290 		 */
2291 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2292 						ext4_normal_get_block_write);
2293 		if (!ret) {
2294 			page_bufs = page_buffers(page);
2295 			/* check whether all are mapped and non delay */
2296 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2297 						ext4_bh_unmapped_or_delay)) {
2298 				redirty_page_for_writepage(wbc, page);
2299 				unlock_page(page);
2300 				return 0;
2301 			}
2302 		} else {
2303 			/*
2304 			 * We can't do block allocation here
2305 			 * so just redity the page and unlock
2306 			 * and return
2307 			 */
2308 			redirty_page_for_writepage(wbc, page);
2309 			unlock_page(page);
2310 			return 0;
2311 		}
2312 	}
2313 
2314 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2315 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2316 	else
2317 		ret = block_write_full_page(page,
2318 						ext4_normal_get_block_write,
2319 						wbc);
2320 
2321 	return ret;
2322 }
2323 
2324 /*
2325  * This is called via ext4_da_writepages() to
2326  * calulate the total number of credits to reserve to fit
2327  * a single extent allocation into a single transaction,
2328  * ext4_da_writpeages() will loop calling this before
2329  * the block allocation.
2330  */
2331 
2332 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2333 {
2334 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2335 
2336 	/*
2337 	 * With non-extent format the journal credit needed to
2338 	 * insert nrblocks contiguous block is dependent on
2339 	 * number of contiguous block. So we will limit
2340 	 * number of contiguous block to a sane value
2341 	 */
2342 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2343 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2344 		max_blocks = EXT4_MAX_TRANS_DATA;
2345 
2346 	return ext4_chunk_trans_blocks(inode, max_blocks);
2347 }
2348 
2349 static int ext4_da_writepages(struct address_space *mapping,
2350 			      struct writeback_control *wbc)
2351 {
2352 	handle_t *handle = NULL;
2353 	loff_t range_start = 0;
2354 	struct inode *inode = mapping->host;
2355 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2356 	long to_write, pages_skipped = 0;
2357 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2358 
2359 	/*
2360 	 * No pages to write? This is mainly a kludge to avoid starting
2361 	 * a transaction for special inodes like journal inode on last iput()
2362 	 * because that could violate lock ordering on umount
2363 	 */
2364 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2365 		return 0;
2366 	/*
2367 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2368 	 * This make sure small files blocks are allocated in
2369 	 * single attempt. This ensure that small files
2370 	 * get less fragmented.
2371 	 */
2372 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2373 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2374 		wbc->nr_to_write = sbi->s_mb_stream_request;
2375 	}
2376 
2377 	if (!wbc->range_cyclic)
2378 		/*
2379 		 * If range_cyclic is not set force range_cont
2380 		 * and save the old writeback_index
2381 		 */
2382 		wbc->range_cont = 1;
2383 
2384 	range_start =  wbc->range_start;
2385 	pages_skipped = wbc->pages_skipped;
2386 
2387 restart_loop:
2388 	to_write = wbc->nr_to_write;
2389 	while (!ret && to_write > 0) {
2390 
2391 		/*
2392 		 * we  insert one extent at a time. So we need
2393 		 * credit needed for single extent allocation.
2394 		 * journalled mode is currently not supported
2395 		 * by delalloc
2396 		 */
2397 		BUG_ON(ext4_should_journal_data(inode));
2398 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2399 
2400 		/* start a new transaction*/
2401 		handle = ext4_journal_start(inode, needed_blocks);
2402 		if (IS_ERR(handle)) {
2403 			ret = PTR_ERR(handle);
2404 			printk(KERN_EMERG "%s: jbd2_start: "
2405 			       "%ld pages, ino %lu; err %d\n", __func__,
2406 				wbc->nr_to_write, inode->i_ino, ret);
2407 			dump_stack();
2408 			goto out_writepages;
2409 		}
2410 		if (ext4_should_order_data(inode)) {
2411 			/*
2412 			 * With ordered mode we need to add
2413 			 * the inode to the journal handl
2414 			 * when we do block allocation.
2415 			 */
2416 			ret = ext4_jbd2_file_inode(handle, inode);
2417 			if (ret) {
2418 				ext4_journal_stop(handle);
2419 				goto out_writepages;
2420 			}
2421 		}
2422 
2423 		to_write -= wbc->nr_to_write;
2424 		ret = mpage_da_writepages(mapping, wbc,
2425 					  ext4_da_get_block_write);
2426 		ext4_journal_stop(handle);
2427 		if (ret == MPAGE_DA_EXTENT_TAIL) {
2428 			/*
2429 			 * got one extent now try with
2430 			 * rest of the pages
2431 			 */
2432 			to_write += wbc->nr_to_write;
2433 			ret = 0;
2434 		} else if (wbc->nr_to_write) {
2435 			/*
2436 			 * There is no more writeout needed
2437 			 * or we requested for a noblocking writeout
2438 			 * and we found the device congested
2439 			 */
2440 			to_write += wbc->nr_to_write;
2441 			break;
2442 		}
2443 		wbc->nr_to_write = to_write;
2444 	}
2445 
2446 	if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2447 		/* We skipped pages in this loop */
2448 		wbc->range_start = range_start;
2449 		wbc->nr_to_write = to_write +
2450 				wbc->pages_skipped - pages_skipped;
2451 		wbc->pages_skipped = pages_skipped;
2452 		goto restart_loop;
2453 	}
2454 
2455 out_writepages:
2456 	wbc->nr_to_write = to_write - nr_to_writebump;
2457 	wbc->range_start = range_start;
2458 	return ret;
2459 }
2460 
2461 #define FALL_BACK_TO_NONDELALLOC 1
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464 	s64 free_blocks, dirty_blocks;
2465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2466 
2467 	/*
2468 	 * switch to non delalloc mode if we are running low
2469 	 * on free block. The free block accounting via percpu
2470 	 * counters can get slightly wrong with FBC_BATCH getting
2471 	 * accumulated on each CPU without updating global counters
2472 	 * Delalloc need an accurate free block accounting. So switch
2473 	 * to non delalloc when we are near to error range.
2474 	 */
2475 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2476 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2477 	if (2 * free_blocks < 3 * dirty_blocks ||
2478 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2479 		/*
2480 		 * free block count is less that 150% of dirty blocks
2481 		 * or free blocks is less that watermark
2482 		 */
2483 		return 1;
2484 	}
2485 	return 0;
2486 }
2487 
2488 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2489 				loff_t pos, unsigned len, unsigned flags,
2490 				struct page **pagep, void **fsdata)
2491 {
2492 	int ret, retries = 0;
2493 	struct page *page;
2494 	pgoff_t index;
2495 	unsigned from, to;
2496 	struct inode *inode = mapping->host;
2497 	handle_t *handle;
2498 
2499 	index = pos >> PAGE_CACHE_SHIFT;
2500 	from = pos & (PAGE_CACHE_SIZE - 1);
2501 	to = from + len;
2502 
2503 	if (ext4_nonda_switch(inode->i_sb)) {
2504 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2505 		return ext4_write_begin(file, mapping, pos,
2506 					len, flags, pagep, fsdata);
2507 	}
2508 	*fsdata = (void *)0;
2509 retry:
2510 	/*
2511 	 * With delayed allocation, we don't log the i_disksize update
2512 	 * if there is delayed block allocation. But we still need
2513 	 * to journalling the i_disksize update if writes to the end
2514 	 * of file which has an already mapped buffer.
2515 	 */
2516 	handle = ext4_journal_start(inode, 1);
2517 	if (IS_ERR(handle)) {
2518 		ret = PTR_ERR(handle);
2519 		goto out;
2520 	}
2521 
2522 	page = __grab_cache_page(mapping, index);
2523 	if (!page) {
2524 		ext4_journal_stop(handle);
2525 		ret = -ENOMEM;
2526 		goto out;
2527 	}
2528 	*pagep = page;
2529 
2530 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2531 							ext4_da_get_block_prep);
2532 	if (ret < 0) {
2533 		unlock_page(page);
2534 		ext4_journal_stop(handle);
2535 		page_cache_release(page);
2536 	}
2537 
2538 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2539 		goto retry;
2540 out:
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Check if we should update i_disksize
2546  * when write to the end of file but not require block allocation
2547  */
2548 static int ext4_da_should_update_i_disksize(struct page *page,
2549 					 unsigned long offset)
2550 {
2551 	struct buffer_head *bh;
2552 	struct inode *inode = page->mapping->host;
2553 	unsigned int idx;
2554 	int i;
2555 
2556 	bh = page_buffers(page);
2557 	idx = offset >> inode->i_blkbits;
2558 
2559 	for (i = 0; i < idx; i++)
2560 		bh = bh->b_this_page;
2561 
2562 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2563 		return 0;
2564 	return 1;
2565 }
2566 
2567 static int ext4_da_write_end(struct file *file,
2568 				struct address_space *mapping,
2569 				loff_t pos, unsigned len, unsigned copied,
2570 				struct page *page, void *fsdata)
2571 {
2572 	struct inode *inode = mapping->host;
2573 	int ret = 0, ret2;
2574 	handle_t *handle = ext4_journal_current_handle();
2575 	loff_t new_i_size;
2576 	unsigned long start, end;
2577 	int write_mode = (int)(unsigned long)fsdata;
2578 
2579 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2580 		if (ext4_should_order_data(inode)) {
2581 			return ext4_ordered_write_end(file, mapping, pos,
2582 					len, copied, page, fsdata);
2583 		} else if (ext4_should_writeback_data(inode)) {
2584 			return ext4_writeback_write_end(file, mapping, pos,
2585 					len, copied, page, fsdata);
2586 		} else {
2587 			BUG();
2588 		}
2589 	}
2590 
2591 	start = pos & (PAGE_CACHE_SIZE - 1);
2592 	end = start + copied - 1;
2593 
2594 	/*
2595 	 * generic_write_end() will run mark_inode_dirty() if i_size
2596 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2597 	 * into that.
2598 	 */
2599 
2600 	new_i_size = pos + copied;
2601 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2602 		if (ext4_da_should_update_i_disksize(page, end)) {
2603 			down_write(&EXT4_I(inode)->i_data_sem);
2604 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2605 				/*
2606 				 * Updating i_disksize when extending file
2607 				 * without needing block allocation
2608 				 */
2609 				if (ext4_should_order_data(inode))
2610 					ret = ext4_jbd2_file_inode(handle,
2611 								   inode);
2612 
2613 				EXT4_I(inode)->i_disksize = new_i_size;
2614 			}
2615 			up_write(&EXT4_I(inode)->i_data_sem);
2616 		}
2617 	}
2618 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2619 							page, fsdata);
2620 	copied = ret2;
2621 	if (ret2 < 0)
2622 		ret = ret2;
2623 	ret2 = ext4_journal_stop(handle);
2624 	if (!ret)
2625 		ret = ret2;
2626 
2627 	return ret ? ret : copied;
2628 }
2629 
2630 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2631 {
2632 	/*
2633 	 * Drop reserved blocks
2634 	 */
2635 	BUG_ON(!PageLocked(page));
2636 	if (!page_has_buffers(page))
2637 		goto out;
2638 
2639 	ext4_da_page_release_reservation(page, offset);
2640 
2641 out:
2642 	ext4_invalidatepage(page, offset);
2643 
2644 	return;
2645 }
2646 
2647 
2648 /*
2649  * bmap() is special.  It gets used by applications such as lilo and by
2650  * the swapper to find the on-disk block of a specific piece of data.
2651  *
2652  * Naturally, this is dangerous if the block concerned is still in the
2653  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2654  * filesystem and enables swap, then they may get a nasty shock when the
2655  * data getting swapped to that swapfile suddenly gets overwritten by
2656  * the original zero's written out previously to the journal and
2657  * awaiting writeback in the kernel's buffer cache.
2658  *
2659  * So, if we see any bmap calls here on a modified, data-journaled file,
2660  * take extra steps to flush any blocks which might be in the cache.
2661  */
2662 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2663 {
2664 	struct inode *inode = mapping->host;
2665 	journal_t *journal;
2666 	int err;
2667 
2668 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2669 			test_opt(inode->i_sb, DELALLOC)) {
2670 		/*
2671 		 * With delalloc we want to sync the file
2672 		 * so that we can make sure we allocate
2673 		 * blocks for file
2674 		 */
2675 		filemap_write_and_wait(mapping);
2676 	}
2677 
2678 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2679 		/*
2680 		 * This is a REALLY heavyweight approach, but the use of
2681 		 * bmap on dirty files is expected to be extremely rare:
2682 		 * only if we run lilo or swapon on a freshly made file
2683 		 * do we expect this to happen.
2684 		 *
2685 		 * (bmap requires CAP_SYS_RAWIO so this does not
2686 		 * represent an unprivileged user DOS attack --- we'd be
2687 		 * in trouble if mortal users could trigger this path at
2688 		 * will.)
2689 		 *
2690 		 * NB. EXT4_STATE_JDATA is not set on files other than
2691 		 * regular files.  If somebody wants to bmap a directory
2692 		 * or symlink and gets confused because the buffer
2693 		 * hasn't yet been flushed to disk, they deserve
2694 		 * everything they get.
2695 		 */
2696 
2697 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2698 		journal = EXT4_JOURNAL(inode);
2699 		jbd2_journal_lock_updates(journal);
2700 		err = jbd2_journal_flush(journal);
2701 		jbd2_journal_unlock_updates(journal);
2702 
2703 		if (err)
2704 			return 0;
2705 	}
2706 
2707 	return generic_block_bmap(mapping, block, ext4_get_block);
2708 }
2709 
2710 static int bget_one(handle_t *handle, struct buffer_head *bh)
2711 {
2712 	get_bh(bh);
2713 	return 0;
2714 }
2715 
2716 static int bput_one(handle_t *handle, struct buffer_head *bh)
2717 {
2718 	put_bh(bh);
2719 	return 0;
2720 }
2721 
2722 /*
2723  * Note that we don't need to start a transaction unless we're journaling data
2724  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2725  * need to file the inode to the transaction's list in ordered mode because if
2726  * we are writing back data added by write(), the inode is already there and if
2727  * we are writing back data modified via mmap(), noone guarantees in which
2728  * transaction the data will hit the disk. In case we are journaling data, we
2729  * cannot start transaction directly because transaction start ranks above page
2730  * lock so we have to do some magic.
2731  *
2732  * In all journaling modes block_write_full_page() will start the I/O.
2733  *
2734  * Problem:
2735  *
2736  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2737  *		ext4_writepage()
2738  *
2739  * Similar for:
2740  *
2741  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2742  *
2743  * Same applies to ext4_get_block().  We will deadlock on various things like
2744  * lock_journal and i_data_sem
2745  *
2746  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2747  * allocations fail.
2748  *
2749  * 16May01: If we're reentered then journal_current_handle() will be
2750  *	    non-zero. We simply *return*.
2751  *
2752  * 1 July 2001: @@@ FIXME:
2753  *   In journalled data mode, a data buffer may be metadata against the
2754  *   current transaction.  But the same file is part of a shared mapping
2755  *   and someone does a writepage() on it.
2756  *
2757  *   We will move the buffer onto the async_data list, but *after* it has
2758  *   been dirtied. So there's a small window where we have dirty data on
2759  *   BJ_Metadata.
2760  *
2761  *   Note that this only applies to the last partial page in the file.  The
2762  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2763  *   broken code anyway: it's wrong for msync()).
2764  *
2765  *   It's a rare case: affects the final partial page, for journalled data
2766  *   where the file is subject to bith write() and writepage() in the same
2767  *   transction.  To fix it we'll need a custom block_write_full_page().
2768  *   We'll probably need that anyway for journalling writepage() output.
2769  *
2770  * We don't honour synchronous mounts for writepage().  That would be
2771  * disastrous.  Any write() or metadata operation will sync the fs for
2772  * us.
2773  *
2774  */
2775 static int __ext4_normal_writepage(struct page *page,
2776 				struct writeback_control *wbc)
2777 {
2778 	struct inode *inode = page->mapping->host;
2779 
2780 	if (test_opt(inode->i_sb, NOBH))
2781 		return nobh_writepage(page,
2782 					ext4_normal_get_block_write, wbc);
2783 	else
2784 		return block_write_full_page(page,
2785 						ext4_normal_get_block_write,
2786 						wbc);
2787 }
2788 
2789 static int ext4_normal_writepage(struct page *page,
2790 				struct writeback_control *wbc)
2791 {
2792 	struct inode *inode = page->mapping->host;
2793 	loff_t size = i_size_read(inode);
2794 	loff_t len;
2795 
2796 	J_ASSERT(PageLocked(page));
2797 	if (page->index == size >> PAGE_CACHE_SHIFT)
2798 		len = size & ~PAGE_CACHE_MASK;
2799 	else
2800 		len = PAGE_CACHE_SIZE;
2801 
2802 	if (page_has_buffers(page)) {
2803 		/* if page has buffers it should all be mapped
2804 		 * and allocated. If there are not buffers attached
2805 		 * to the page we know the page is dirty but it lost
2806 		 * buffers. That means that at some moment in time
2807 		 * after write_begin() / write_end() has been called
2808 		 * all buffers have been clean and thus they must have been
2809 		 * written at least once. So they are all mapped and we can
2810 		 * happily proceed with mapping them and writing the page.
2811 		 */
2812 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2813 					ext4_bh_unmapped_or_delay));
2814 	}
2815 
2816 	if (!ext4_journal_current_handle())
2817 		return __ext4_normal_writepage(page, wbc);
2818 
2819 	redirty_page_for_writepage(wbc, page);
2820 	unlock_page(page);
2821 	return 0;
2822 }
2823 
2824 static int __ext4_journalled_writepage(struct page *page,
2825 				struct writeback_control *wbc)
2826 {
2827 	struct address_space *mapping = page->mapping;
2828 	struct inode *inode = mapping->host;
2829 	struct buffer_head *page_bufs;
2830 	handle_t *handle = NULL;
2831 	int ret = 0;
2832 	int err;
2833 
2834 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2835 					ext4_normal_get_block_write);
2836 	if (ret != 0)
2837 		goto out_unlock;
2838 
2839 	page_bufs = page_buffers(page);
2840 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2841 								bget_one);
2842 	/* As soon as we unlock the page, it can go away, but we have
2843 	 * references to buffers so we are safe */
2844 	unlock_page(page);
2845 
2846 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2847 	if (IS_ERR(handle)) {
2848 		ret = PTR_ERR(handle);
2849 		goto out;
2850 	}
2851 
2852 	ret = walk_page_buffers(handle, page_bufs, 0,
2853 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2854 
2855 	err = walk_page_buffers(handle, page_bufs, 0,
2856 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2857 	if (ret == 0)
2858 		ret = err;
2859 	err = ext4_journal_stop(handle);
2860 	if (!ret)
2861 		ret = err;
2862 
2863 	walk_page_buffers(handle, page_bufs, 0,
2864 				PAGE_CACHE_SIZE, NULL, bput_one);
2865 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2866 	goto out;
2867 
2868 out_unlock:
2869 	unlock_page(page);
2870 out:
2871 	return ret;
2872 }
2873 
2874 static int ext4_journalled_writepage(struct page *page,
2875 				struct writeback_control *wbc)
2876 {
2877 	struct inode *inode = page->mapping->host;
2878 	loff_t size = i_size_read(inode);
2879 	loff_t len;
2880 
2881 	J_ASSERT(PageLocked(page));
2882 	if (page->index == size >> PAGE_CACHE_SHIFT)
2883 		len = size & ~PAGE_CACHE_MASK;
2884 	else
2885 		len = PAGE_CACHE_SIZE;
2886 
2887 	if (page_has_buffers(page)) {
2888 		/* if page has buffers it should all be mapped
2889 		 * and allocated. If there are not buffers attached
2890 		 * to the page we know the page is dirty but it lost
2891 		 * buffers. That means that at some moment in time
2892 		 * after write_begin() / write_end() has been called
2893 		 * all buffers have been clean and thus they must have been
2894 		 * written at least once. So they are all mapped and we can
2895 		 * happily proceed with mapping them and writing the page.
2896 		 */
2897 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2898 					ext4_bh_unmapped_or_delay));
2899 	}
2900 
2901 	if (ext4_journal_current_handle())
2902 		goto no_write;
2903 
2904 	if (PageChecked(page)) {
2905 		/*
2906 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2907 		 * doesn't seem much point in redirtying the page here.
2908 		 */
2909 		ClearPageChecked(page);
2910 		return __ext4_journalled_writepage(page, wbc);
2911 	} else {
2912 		/*
2913 		 * It may be a page full of checkpoint-mode buffers.  We don't
2914 		 * really know unless we go poke around in the buffer_heads.
2915 		 * But block_write_full_page will do the right thing.
2916 		 */
2917 		return block_write_full_page(page,
2918 						ext4_normal_get_block_write,
2919 						wbc);
2920 	}
2921 no_write:
2922 	redirty_page_for_writepage(wbc, page);
2923 	unlock_page(page);
2924 	return 0;
2925 }
2926 
2927 static int ext4_readpage(struct file *file, struct page *page)
2928 {
2929 	return mpage_readpage(page, ext4_get_block);
2930 }
2931 
2932 static int
2933 ext4_readpages(struct file *file, struct address_space *mapping,
2934 		struct list_head *pages, unsigned nr_pages)
2935 {
2936 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2937 }
2938 
2939 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2940 {
2941 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2942 
2943 	/*
2944 	 * If it's a full truncate we just forget about the pending dirtying
2945 	 */
2946 	if (offset == 0)
2947 		ClearPageChecked(page);
2948 
2949 	jbd2_journal_invalidatepage(journal, page, offset);
2950 }
2951 
2952 static int ext4_releasepage(struct page *page, gfp_t wait)
2953 {
2954 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2955 
2956 	WARN_ON(PageChecked(page));
2957 	if (!page_has_buffers(page))
2958 		return 0;
2959 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2960 }
2961 
2962 /*
2963  * If the O_DIRECT write will extend the file then add this inode to the
2964  * orphan list.  So recovery will truncate it back to the original size
2965  * if the machine crashes during the write.
2966  *
2967  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2968  * crashes then stale disk data _may_ be exposed inside the file. But current
2969  * VFS code falls back into buffered path in that case so we are safe.
2970  */
2971 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2972 			const struct iovec *iov, loff_t offset,
2973 			unsigned long nr_segs)
2974 {
2975 	struct file *file = iocb->ki_filp;
2976 	struct inode *inode = file->f_mapping->host;
2977 	struct ext4_inode_info *ei = EXT4_I(inode);
2978 	handle_t *handle;
2979 	ssize_t ret;
2980 	int orphan = 0;
2981 	size_t count = iov_length(iov, nr_segs);
2982 
2983 	if (rw == WRITE) {
2984 		loff_t final_size = offset + count;
2985 
2986 		if (final_size > inode->i_size) {
2987 			/* Credits for sb + inode write */
2988 			handle = ext4_journal_start(inode, 2);
2989 			if (IS_ERR(handle)) {
2990 				ret = PTR_ERR(handle);
2991 				goto out;
2992 			}
2993 			ret = ext4_orphan_add(handle, inode);
2994 			if (ret) {
2995 				ext4_journal_stop(handle);
2996 				goto out;
2997 			}
2998 			orphan = 1;
2999 			ei->i_disksize = inode->i_size;
3000 			ext4_journal_stop(handle);
3001 		}
3002 	}
3003 
3004 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3005 				 offset, nr_segs,
3006 				 ext4_get_block, NULL);
3007 
3008 	if (orphan) {
3009 		int err;
3010 
3011 		/* Credits for sb + inode write */
3012 		handle = ext4_journal_start(inode, 2);
3013 		if (IS_ERR(handle)) {
3014 			/* This is really bad luck. We've written the data
3015 			 * but cannot extend i_size. Bail out and pretend
3016 			 * the write failed... */
3017 			ret = PTR_ERR(handle);
3018 			goto out;
3019 		}
3020 		if (inode->i_nlink)
3021 			ext4_orphan_del(handle, inode);
3022 		if (ret > 0) {
3023 			loff_t end = offset + ret;
3024 			if (end > inode->i_size) {
3025 				ei->i_disksize = end;
3026 				i_size_write(inode, end);
3027 				/*
3028 				 * We're going to return a positive `ret'
3029 				 * here due to non-zero-length I/O, so there's
3030 				 * no way of reporting error returns from
3031 				 * ext4_mark_inode_dirty() to userspace.  So
3032 				 * ignore it.
3033 				 */
3034 				ext4_mark_inode_dirty(handle, inode);
3035 			}
3036 		}
3037 		err = ext4_journal_stop(handle);
3038 		if (ret == 0)
3039 			ret = err;
3040 	}
3041 out:
3042 	return ret;
3043 }
3044 
3045 /*
3046  * Pages can be marked dirty completely asynchronously from ext4's journalling
3047  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3048  * much here because ->set_page_dirty is called under VFS locks.  The page is
3049  * not necessarily locked.
3050  *
3051  * We cannot just dirty the page and leave attached buffers clean, because the
3052  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3053  * or jbddirty because all the journalling code will explode.
3054  *
3055  * So what we do is to mark the page "pending dirty" and next time writepage
3056  * is called, propagate that into the buffers appropriately.
3057  */
3058 static int ext4_journalled_set_page_dirty(struct page *page)
3059 {
3060 	SetPageChecked(page);
3061 	return __set_page_dirty_nobuffers(page);
3062 }
3063 
3064 static const struct address_space_operations ext4_ordered_aops = {
3065 	.readpage		= ext4_readpage,
3066 	.readpages		= ext4_readpages,
3067 	.writepage		= ext4_normal_writepage,
3068 	.sync_page		= block_sync_page,
3069 	.write_begin		= ext4_write_begin,
3070 	.write_end		= ext4_ordered_write_end,
3071 	.bmap			= ext4_bmap,
3072 	.invalidatepage		= ext4_invalidatepage,
3073 	.releasepage		= ext4_releasepage,
3074 	.direct_IO		= ext4_direct_IO,
3075 	.migratepage		= buffer_migrate_page,
3076 	.is_partially_uptodate  = block_is_partially_uptodate,
3077 };
3078 
3079 static const struct address_space_operations ext4_writeback_aops = {
3080 	.readpage		= ext4_readpage,
3081 	.readpages		= ext4_readpages,
3082 	.writepage		= ext4_normal_writepage,
3083 	.sync_page		= block_sync_page,
3084 	.write_begin		= ext4_write_begin,
3085 	.write_end		= ext4_writeback_write_end,
3086 	.bmap			= ext4_bmap,
3087 	.invalidatepage		= ext4_invalidatepage,
3088 	.releasepage		= ext4_releasepage,
3089 	.direct_IO		= ext4_direct_IO,
3090 	.migratepage		= buffer_migrate_page,
3091 	.is_partially_uptodate  = block_is_partially_uptodate,
3092 };
3093 
3094 static const struct address_space_operations ext4_journalled_aops = {
3095 	.readpage		= ext4_readpage,
3096 	.readpages		= ext4_readpages,
3097 	.writepage		= ext4_journalled_writepage,
3098 	.sync_page		= block_sync_page,
3099 	.write_begin		= ext4_write_begin,
3100 	.write_end		= ext4_journalled_write_end,
3101 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3102 	.bmap			= ext4_bmap,
3103 	.invalidatepage		= ext4_invalidatepage,
3104 	.releasepage		= ext4_releasepage,
3105 	.is_partially_uptodate  = block_is_partially_uptodate,
3106 };
3107 
3108 static const struct address_space_operations ext4_da_aops = {
3109 	.readpage		= ext4_readpage,
3110 	.readpages		= ext4_readpages,
3111 	.writepage		= ext4_da_writepage,
3112 	.writepages		= ext4_da_writepages,
3113 	.sync_page		= block_sync_page,
3114 	.write_begin		= ext4_da_write_begin,
3115 	.write_end		= ext4_da_write_end,
3116 	.bmap			= ext4_bmap,
3117 	.invalidatepage		= ext4_da_invalidatepage,
3118 	.releasepage		= ext4_releasepage,
3119 	.direct_IO		= ext4_direct_IO,
3120 	.migratepage		= buffer_migrate_page,
3121 	.is_partially_uptodate  = block_is_partially_uptodate,
3122 };
3123 
3124 void ext4_set_aops(struct inode *inode)
3125 {
3126 	if (ext4_should_order_data(inode) &&
3127 		test_opt(inode->i_sb, DELALLOC))
3128 		inode->i_mapping->a_ops = &ext4_da_aops;
3129 	else if (ext4_should_order_data(inode))
3130 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3131 	else if (ext4_should_writeback_data(inode) &&
3132 		 test_opt(inode->i_sb, DELALLOC))
3133 		inode->i_mapping->a_ops = &ext4_da_aops;
3134 	else if (ext4_should_writeback_data(inode))
3135 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3136 	else
3137 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3138 }
3139 
3140 /*
3141  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3142  * up to the end of the block which corresponds to `from'.
3143  * This required during truncate. We need to physically zero the tail end
3144  * of that block so it doesn't yield old data if the file is later grown.
3145  */
3146 int ext4_block_truncate_page(handle_t *handle,
3147 		struct address_space *mapping, loff_t from)
3148 {
3149 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3150 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3151 	unsigned blocksize, length, pos;
3152 	ext4_lblk_t iblock;
3153 	struct inode *inode = mapping->host;
3154 	struct buffer_head *bh;
3155 	struct page *page;
3156 	int err = 0;
3157 
3158 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3159 	if (!page)
3160 		return -EINVAL;
3161 
3162 	blocksize = inode->i_sb->s_blocksize;
3163 	length = blocksize - (offset & (blocksize - 1));
3164 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3165 
3166 	/*
3167 	 * For "nobh" option,  we can only work if we don't need to
3168 	 * read-in the page - otherwise we create buffers to do the IO.
3169 	 */
3170 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3171 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3172 		zero_user(page, offset, length);
3173 		set_page_dirty(page);
3174 		goto unlock;
3175 	}
3176 
3177 	if (!page_has_buffers(page))
3178 		create_empty_buffers(page, blocksize, 0);
3179 
3180 	/* Find the buffer that contains "offset" */
3181 	bh = page_buffers(page);
3182 	pos = blocksize;
3183 	while (offset >= pos) {
3184 		bh = bh->b_this_page;
3185 		iblock++;
3186 		pos += blocksize;
3187 	}
3188 
3189 	err = 0;
3190 	if (buffer_freed(bh)) {
3191 		BUFFER_TRACE(bh, "freed: skip");
3192 		goto unlock;
3193 	}
3194 
3195 	if (!buffer_mapped(bh)) {
3196 		BUFFER_TRACE(bh, "unmapped");
3197 		ext4_get_block(inode, iblock, bh, 0);
3198 		/* unmapped? It's a hole - nothing to do */
3199 		if (!buffer_mapped(bh)) {
3200 			BUFFER_TRACE(bh, "still unmapped");
3201 			goto unlock;
3202 		}
3203 	}
3204 
3205 	/* Ok, it's mapped. Make sure it's up-to-date */
3206 	if (PageUptodate(page))
3207 		set_buffer_uptodate(bh);
3208 
3209 	if (!buffer_uptodate(bh)) {
3210 		err = -EIO;
3211 		ll_rw_block(READ, 1, &bh);
3212 		wait_on_buffer(bh);
3213 		/* Uhhuh. Read error. Complain and punt. */
3214 		if (!buffer_uptodate(bh))
3215 			goto unlock;
3216 	}
3217 
3218 	if (ext4_should_journal_data(inode)) {
3219 		BUFFER_TRACE(bh, "get write access");
3220 		err = ext4_journal_get_write_access(handle, bh);
3221 		if (err)
3222 			goto unlock;
3223 	}
3224 
3225 	zero_user(page, offset, length);
3226 
3227 	BUFFER_TRACE(bh, "zeroed end of block");
3228 
3229 	err = 0;
3230 	if (ext4_should_journal_data(inode)) {
3231 		err = ext4_journal_dirty_metadata(handle, bh);
3232 	} else {
3233 		if (ext4_should_order_data(inode))
3234 			err = ext4_jbd2_file_inode(handle, inode);
3235 		mark_buffer_dirty(bh);
3236 	}
3237 
3238 unlock:
3239 	unlock_page(page);
3240 	page_cache_release(page);
3241 	return err;
3242 }
3243 
3244 /*
3245  * Probably it should be a library function... search for first non-zero word
3246  * or memcmp with zero_page, whatever is better for particular architecture.
3247  * Linus?
3248  */
3249 static inline int all_zeroes(__le32 *p, __le32 *q)
3250 {
3251 	while (p < q)
3252 		if (*p++)
3253 			return 0;
3254 	return 1;
3255 }
3256 
3257 /**
3258  *	ext4_find_shared - find the indirect blocks for partial truncation.
3259  *	@inode:	  inode in question
3260  *	@depth:	  depth of the affected branch
3261  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3262  *	@chain:	  place to store the pointers to partial indirect blocks
3263  *	@top:	  place to the (detached) top of branch
3264  *
3265  *	This is a helper function used by ext4_truncate().
3266  *
3267  *	When we do truncate() we may have to clean the ends of several
3268  *	indirect blocks but leave the blocks themselves alive. Block is
3269  *	partially truncated if some data below the new i_size is refered
3270  *	from it (and it is on the path to the first completely truncated
3271  *	data block, indeed).  We have to free the top of that path along
3272  *	with everything to the right of the path. Since no allocation
3273  *	past the truncation point is possible until ext4_truncate()
3274  *	finishes, we may safely do the latter, but top of branch may
3275  *	require special attention - pageout below the truncation point
3276  *	might try to populate it.
3277  *
3278  *	We atomically detach the top of branch from the tree, store the
3279  *	block number of its root in *@top, pointers to buffer_heads of
3280  *	partially truncated blocks - in @chain[].bh and pointers to
3281  *	their last elements that should not be removed - in
3282  *	@chain[].p. Return value is the pointer to last filled element
3283  *	of @chain.
3284  *
3285  *	The work left to caller to do the actual freeing of subtrees:
3286  *		a) free the subtree starting from *@top
3287  *		b) free the subtrees whose roots are stored in
3288  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3289  *		c) free the subtrees growing from the inode past the @chain[0].
3290  *			(no partially truncated stuff there).  */
3291 
3292 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3293 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3294 {
3295 	Indirect *partial, *p;
3296 	int k, err;
3297 
3298 	*top = 0;
3299 	/* Make k index the deepest non-null offest + 1 */
3300 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3301 		;
3302 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3303 	/* Writer: pointers */
3304 	if (!partial)
3305 		partial = chain + k-1;
3306 	/*
3307 	 * If the branch acquired continuation since we've looked at it -
3308 	 * fine, it should all survive and (new) top doesn't belong to us.
3309 	 */
3310 	if (!partial->key && *partial->p)
3311 		/* Writer: end */
3312 		goto no_top;
3313 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3314 		;
3315 	/*
3316 	 * OK, we've found the last block that must survive. The rest of our
3317 	 * branch should be detached before unlocking. However, if that rest
3318 	 * of branch is all ours and does not grow immediately from the inode
3319 	 * it's easier to cheat and just decrement partial->p.
3320 	 */
3321 	if (p == chain + k - 1 && p > chain) {
3322 		p->p--;
3323 	} else {
3324 		*top = *p->p;
3325 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3326 #if 0
3327 		*p->p = 0;
3328 #endif
3329 	}
3330 	/* Writer: end */
3331 
3332 	while (partial > p) {
3333 		brelse(partial->bh);
3334 		partial--;
3335 	}
3336 no_top:
3337 	return partial;
3338 }
3339 
3340 /*
3341  * Zero a number of block pointers in either an inode or an indirect block.
3342  * If we restart the transaction we must again get write access to the
3343  * indirect block for further modification.
3344  *
3345  * We release `count' blocks on disk, but (last - first) may be greater
3346  * than `count' because there can be holes in there.
3347  */
3348 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3349 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3350 		unsigned long count, __le32 *first, __le32 *last)
3351 {
3352 	__le32 *p;
3353 	if (try_to_extend_transaction(handle, inode)) {
3354 		if (bh) {
3355 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3356 			ext4_journal_dirty_metadata(handle, bh);
3357 		}
3358 		ext4_mark_inode_dirty(handle, inode);
3359 		ext4_journal_test_restart(handle, inode);
3360 		if (bh) {
3361 			BUFFER_TRACE(bh, "retaking write access");
3362 			ext4_journal_get_write_access(handle, bh);
3363 		}
3364 	}
3365 
3366 	/*
3367 	 * Any buffers which are on the journal will be in memory. We find
3368 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3369 	 * on them.  We've already detached each block from the file, so
3370 	 * bforget() in jbd2_journal_forget() should be safe.
3371 	 *
3372 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3373 	 */
3374 	for (p = first; p < last; p++) {
3375 		u32 nr = le32_to_cpu(*p);
3376 		if (nr) {
3377 			struct buffer_head *tbh;
3378 
3379 			*p = 0;
3380 			tbh = sb_find_get_block(inode->i_sb, nr);
3381 			ext4_forget(handle, 0, inode, tbh, nr);
3382 		}
3383 	}
3384 
3385 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3386 }
3387 
3388 /**
3389  * ext4_free_data - free a list of data blocks
3390  * @handle:	handle for this transaction
3391  * @inode:	inode we are dealing with
3392  * @this_bh:	indirect buffer_head which contains *@first and *@last
3393  * @first:	array of block numbers
3394  * @last:	points immediately past the end of array
3395  *
3396  * We are freeing all blocks refered from that array (numbers are stored as
3397  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3398  *
3399  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3400  * blocks are contiguous then releasing them at one time will only affect one
3401  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3402  * actually use a lot of journal space.
3403  *
3404  * @this_bh will be %NULL if @first and @last point into the inode's direct
3405  * block pointers.
3406  */
3407 static void ext4_free_data(handle_t *handle, struct inode *inode,
3408 			   struct buffer_head *this_bh,
3409 			   __le32 *first, __le32 *last)
3410 {
3411 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3412 	unsigned long count = 0;	    /* Number of blocks in the run */
3413 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3414 					       corresponding to
3415 					       block_to_free */
3416 	ext4_fsblk_t nr;		    /* Current block # */
3417 	__le32 *p;			    /* Pointer into inode/ind
3418 					       for current block */
3419 	int err;
3420 
3421 	if (this_bh) {				/* For indirect block */
3422 		BUFFER_TRACE(this_bh, "get_write_access");
3423 		err = ext4_journal_get_write_access(handle, this_bh);
3424 		/* Important: if we can't update the indirect pointers
3425 		 * to the blocks, we can't free them. */
3426 		if (err)
3427 			return;
3428 	}
3429 
3430 	for (p = first; p < last; p++) {
3431 		nr = le32_to_cpu(*p);
3432 		if (nr) {
3433 			/* accumulate blocks to free if they're contiguous */
3434 			if (count == 0) {
3435 				block_to_free = nr;
3436 				block_to_free_p = p;
3437 				count = 1;
3438 			} else if (nr == block_to_free + count) {
3439 				count++;
3440 			} else {
3441 				ext4_clear_blocks(handle, inode, this_bh,
3442 						  block_to_free,
3443 						  count, block_to_free_p, p);
3444 				block_to_free = nr;
3445 				block_to_free_p = p;
3446 				count = 1;
3447 			}
3448 		}
3449 	}
3450 
3451 	if (count > 0)
3452 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3453 				  count, block_to_free_p, p);
3454 
3455 	if (this_bh) {
3456 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3457 
3458 		/*
3459 		 * The buffer head should have an attached journal head at this
3460 		 * point. However, if the data is corrupted and an indirect
3461 		 * block pointed to itself, it would have been detached when
3462 		 * the block was cleared. Check for this instead of OOPSing.
3463 		 */
3464 		if (bh2jh(this_bh))
3465 			ext4_journal_dirty_metadata(handle, this_bh);
3466 		else
3467 			ext4_error(inode->i_sb, __func__,
3468 				   "circular indirect block detected, "
3469 				   "inode=%lu, block=%llu",
3470 				   inode->i_ino,
3471 				   (unsigned long long) this_bh->b_blocknr);
3472 	}
3473 }
3474 
3475 /**
3476  *	ext4_free_branches - free an array of branches
3477  *	@handle: JBD handle for this transaction
3478  *	@inode:	inode we are dealing with
3479  *	@parent_bh: the buffer_head which contains *@first and *@last
3480  *	@first:	array of block numbers
3481  *	@last:	pointer immediately past the end of array
3482  *	@depth:	depth of the branches to free
3483  *
3484  *	We are freeing all blocks refered from these branches (numbers are
3485  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3486  *	appropriately.
3487  */
3488 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3489 			       struct buffer_head *parent_bh,
3490 			       __le32 *first, __le32 *last, int depth)
3491 {
3492 	ext4_fsblk_t nr;
3493 	__le32 *p;
3494 
3495 	if (is_handle_aborted(handle))
3496 		return;
3497 
3498 	if (depth--) {
3499 		struct buffer_head *bh;
3500 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3501 		p = last;
3502 		while (--p >= first) {
3503 			nr = le32_to_cpu(*p);
3504 			if (!nr)
3505 				continue;		/* A hole */
3506 
3507 			/* Go read the buffer for the next level down */
3508 			bh = sb_bread(inode->i_sb, nr);
3509 
3510 			/*
3511 			 * A read failure? Report error and clear slot
3512 			 * (should be rare).
3513 			 */
3514 			if (!bh) {
3515 				ext4_error(inode->i_sb, "ext4_free_branches",
3516 					   "Read failure, inode=%lu, block=%llu",
3517 					   inode->i_ino, nr);
3518 				continue;
3519 			}
3520 
3521 			/* This zaps the entire block.  Bottom up. */
3522 			BUFFER_TRACE(bh, "free child branches");
3523 			ext4_free_branches(handle, inode, bh,
3524 					(__le32 *) bh->b_data,
3525 					(__le32 *) bh->b_data + addr_per_block,
3526 					depth);
3527 
3528 			/*
3529 			 * We've probably journalled the indirect block several
3530 			 * times during the truncate.  But it's no longer
3531 			 * needed and we now drop it from the transaction via
3532 			 * jbd2_journal_revoke().
3533 			 *
3534 			 * That's easy if it's exclusively part of this
3535 			 * transaction.  But if it's part of the committing
3536 			 * transaction then jbd2_journal_forget() will simply
3537 			 * brelse() it.  That means that if the underlying
3538 			 * block is reallocated in ext4_get_block(),
3539 			 * unmap_underlying_metadata() will find this block
3540 			 * and will try to get rid of it.  damn, damn.
3541 			 *
3542 			 * If this block has already been committed to the
3543 			 * journal, a revoke record will be written.  And
3544 			 * revoke records must be emitted *before* clearing
3545 			 * this block's bit in the bitmaps.
3546 			 */
3547 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3548 
3549 			/*
3550 			 * Everything below this this pointer has been
3551 			 * released.  Now let this top-of-subtree go.
3552 			 *
3553 			 * We want the freeing of this indirect block to be
3554 			 * atomic in the journal with the updating of the
3555 			 * bitmap block which owns it.  So make some room in
3556 			 * the journal.
3557 			 *
3558 			 * We zero the parent pointer *after* freeing its
3559 			 * pointee in the bitmaps, so if extend_transaction()
3560 			 * for some reason fails to put the bitmap changes and
3561 			 * the release into the same transaction, recovery
3562 			 * will merely complain about releasing a free block,
3563 			 * rather than leaking blocks.
3564 			 */
3565 			if (is_handle_aborted(handle))
3566 				return;
3567 			if (try_to_extend_transaction(handle, inode)) {
3568 				ext4_mark_inode_dirty(handle, inode);
3569 				ext4_journal_test_restart(handle, inode);
3570 			}
3571 
3572 			ext4_free_blocks(handle, inode, nr, 1, 1);
3573 
3574 			if (parent_bh) {
3575 				/*
3576 				 * The block which we have just freed is
3577 				 * pointed to by an indirect block: journal it
3578 				 */
3579 				BUFFER_TRACE(parent_bh, "get_write_access");
3580 				if (!ext4_journal_get_write_access(handle,
3581 								   parent_bh)){
3582 					*p = 0;
3583 					BUFFER_TRACE(parent_bh,
3584 					"call ext4_journal_dirty_metadata");
3585 					ext4_journal_dirty_metadata(handle,
3586 								    parent_bh);
3587 				}
3588 			}
3589 		}
3590 	} else {
3591 		/* We have reached the bottom of the tree. */
3592 		BUFFER_TRACE(parent_bh, "free data blocks");
3593 		ext4_free_data(handle, inode, parent_bh, first, last);
3594 	}
3595 }
3596 
3597 int ext4_can_truncate(struct inode *inode)
3598 {
3599 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3600 		return 0;
3601 	if (S_ISREG(inode->i_mode))
3602 		return 1;
3603 	if (S_ISDIR(inode->i_mode))
3604 		return 1;
3605 	if (S_ISLNK(inode->i_mode))
3606 		return !ext4_inode_is_fast_symlink(inode);
3607 	return 0;
3608 }
3609 
3610 /*
3611  * ext4_truncate()
3612  *
3613  * We block out ext4_get_block() block instantiations across the entire
3614  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3615  * simultaneously on behalf of the same inode.
3616  *
3617  * As we work through the truncate and commmit bits of it to the journal there
3618  * is one core, guiding principle: the file's tree must always be consistent on
3619  * disk.  We must be able to restart the truncate after a crash.
3620  *
3621  * The file's tree may be transiently inconsistent in memory (although it
3622  * probably isn't), but whenever we close off and commit a journal transaction,
3623  * the contents of (the filesystem + the journal) must be consistent and
3624  * restartable.  It's pretty simple, really: bottom up, right to left (although
3625  * left-to-right works OK too).
3626  *
3627  * Note that at recovery time, journal replay occurs *before* the restart of
3628  * truncate against the orphan inode list.
3629  *
3630  * The committed inode has the new, desired i_size (which is the same as
3631  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3632  * that this inode's truncate did not complete and it will again call
3633  * ext4_truncate() to have another go.  So there will be instantiated blocks
3634  * to the right of the truncation point in a crashed ext4 filesystem.  But
3635  * that's fine - as long as they are linked from the inode, the post-crash
3636  * ext4_truncate() run will find them and release them.
3637  */
3638 void ext4_truncate(struct inode *inode)
3639 {
3640 	handle_t *handle;
3641 	struct ext4_inode_info *ei = EXT4_I(inode);
3642 	__le32 *i_data = ei->i_data;
3643 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3644 	struct address_space *mapping = inode->i_mapping;
3645 	ext4_lblk_t offsets[4];
3646 	Indirect chain[4];
3647 	Indirect *partial;
3648 	__le32 nr = 0;
3649 	int n;
3650 	ext4_lblk_t last_block;
3651 	unsigned blocksize = inode->i_sb->s_blocksize;
3652 
3653 	if (!ext4_can_truncate(inode))
3654 		return;
3655 
3656 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3657 		ext4_ext_truncate(inode);
3658 		return;
3659 	}
3660 
3661 	handle = start_transaction(inode);
3662 	if (IS_ERR(handle))
3663 		return;		/* AKPM: return what? */
3664 
3665 	last_block = (inode->i_size + blocksize-1)
3666 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3667 
3668 	if (inode->i_size & (blocksize - 1))
3669 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3670 			goto out_stop;
3671 
3672 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3673 	if (n == 0)
3674 		goto out_stop;	/* error */
3675 
3676 	/*
3677 	 * OK.  This truncate is going to happen.  We add the inode to the
3678 	 * orphan list, so that if this truncate spans multiple transactions,
3679 	 * and we crash, we will resume the truncate when the filesystem
3680 	 * recovers.  It also marks the inode dirty, to catch the new size.
3681 	 *
3682 	 * Implication: the file must always be in a sane, consistent
3683 	 * truncatable state while each transaction commits.
3684 	 */
3685 	if (ext4_orphan_add(handle, inode))
3686 		goto out_stop;
3687 
3688 	/*
3689 	 * From here we block out all ext4_get_block() callers who want to
3690 	 * modify the block allocation tree.
3691 	 */
3692 	down_write(&ei->i_data_sem);
3693 
3694 	ext4_discard_reservation(inode);
3695 
3696 	/*
3697 	 * The orphan list entry will now protect us from any crash which
3698 	 * occurs before the truncate completes, so it is now safe to propagate
3699 	 * the new, shorter inode size (held for now in i_size) into the
3700 	 * on-disk inode. We do this via i_disksize, which is the value which
3701 	 * ext4 *really* writes onto the disk inode.
3702 	 */
3703 	ei->i_disksize = inode->i_size;
3704 
3705 	if (n == 1) {		/* direct blocks */
3706 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3707 			       i_data + EXT4_NDIR_BLOCKS);
3708 		goto do_indirects;
3709 	}
3710 
3711 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3712 	/* Kill the top of shared branch (not detached) */
3713 	if (nr) {
3714 		if (partial == chain) {
3715 			/* Shared branch grows from the inode */
3716 			ext4_free_branches(handle, inode, NULL,
3717 					   &nr, &nr+1, (chain+n-1) - partial);
3718 			*partial->p = 0;
3719 			/*
3720 			 * We mark the inode dirty prior to restart,
3721 			 * and prior to stop.  No need for it here.
3722 			 */
3723 		} else {
3724 			/* Shared branch grows from an indirect block */
3725 			BUFFER_TRACE(partial->bh, "get_write_access");
3726 			ext4_free_branches(handle, inode, partial->bh,
3727 					partial->p,
3728 					partial->p+1, (chain+n-1) - partial);
3729 		}
3730 	}
3731 	/* Clear the ends of indirect blocks on the shared branch */
3732 	while (partial > chain) {
3733 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3734 				   (__le32*)partial->bh->b_data+addr_per_block,
3735 				   (chain+n-1) - partial);
3736 		BUFFER_TRACE(partial->bh, "call brelse");
3737 		brelse (partial->bh);
3738 		partial--;
3739 	}
3740 do_indirects:
3741 	/* Kill the remaining (whole) subtrees */
3742 	switch (offsets[0]) {
3743 	default:
3744 		nr = i_data[EXT4_IND_BLOCK];
3745 		if (nr) {
3746 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3747 			i_data[EXT4_IND_BLOCK] = 0;
3748 		}
3749 	case EXT4_IND_BLOCK:
3750 		nr = i_data[EXT4_DIND_BLOCK];
3751 		if (nr) {
3752 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3753 			i_data[EXT4_DIND_BLOCK] = 0;
3754 		}
3755 	case EXT4_DIND_BLOCK:
3756 		nr = i_data[EXT4_TIND_BLOCK];
3757 		if (nr) {
3758 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3759 			i_data[EXT4_TIND_BLOCK] = 0;
3760 		}
3761 	case EXT4_TIND_BLOCK:
3762 		;
3763 	}
3764 
3765 	up_write(&ei->i_data_sem);
3766 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3767 	ext4_mark_inode_dirty(handle, inode);
3768 
3769 	/*
3770 	 * In a multi-transaction truncate, we only make the final transaction
3771 	 * synchronous
3772 	 */
3773 	if (IS_SYNC(inode))
3774 		handle->h_sync = 1;
3775 out_stop:
3776 	/*
3777 	 * If this was a simple ftruncate(), and the file will remain alive
3778 	 * then we need to clear up the orphan record which we created above.
3779 	 * However, if this was a real unlink then we were called by
3780 	 * ext4_delete_inode(), and we allow that function to clean up the
3781 	 * orphan info for us.
3782 	 */
3783 	if (inode->i_nlink)
3784 		ext4_orphan_del(handle, inode);
3785 
3786 	ext4_journal_stop(handle);
3787 }
3788 
3789 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3790 		unsigned long ino, struct ext4_iloc *iloc)
3791 {
3792 	ext4_group_t block_group;
3793 	unsigned long offset;
3794 	ext4_fsblk_t block;
3795 	struct ext4_group_desc *gdp;
3796 
3797 	if (!ext4_valid_inum(sb, ino)) {
3798 		/*
3799 		 * This error is already checked for in namei.c unless we are
3800 		 * looking at an NFS filehandle, in which case no error
3801 		 * report is needed
3802 		 */
3803 		return 0;
3804 	}
3805 
3806 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3807 	gdp = ext4_get_group_desc(sb, block_group, NULL);
3808 	if (!gdp)
3809 		return 0;
3810 
3811 	/*
3812 	 * Figure out the offset within the block group inode table
3813 	 */
3814 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3815 		EXT4_INODE_SIZE(sb);
3816 	block = ext4_inode_table(sb, gdp) +
3817 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3818 
3819 	iloc->block_group = block_group;
3820 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3821 	return block;
3822 }
3823 
3824 /*
3825  * ext4_get_inode_loc returns with an extra refcount against the inode's
3826  * underlying buffer_head on success. If 'in_mem' is true, we have all
3827  * data in memory that is needed to recreate the on-disk version of this
3828  * inode.
3829  */
3830 static int __ext4_get_inode_loc(struct inode *inode,
3831 				struct ext4_iloc *iloc, int in_mem)
3832 {
3833 	ext4_fsblk_t block;
3834 	struct buffer_head *bh;
3835 
3836 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3837 	if (!block)
3838 		return -EIO;
3839 
3840 	bh = sb_getblk(inode->i_sb, block);
3841 	if (!bh) {
3842 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3843 				"unable to read inode block - "
3844 				"inode=%lu, block=%llu",
3845 				 inode->i_ino, block);
3846 		return -EIO;
3847 	}
3848 	if (!buffer_uptodate(bh)) {
3849 		lock_buffer(bh);
3850 
3851 		/*
3852 		 * If the buffer has the write error flag, we have failed
3853 		 * to write out another inode in the same block.  In this
3854 		 * case, we don't have to read the block because we may
3855 		 * read the old inode data successfully.
3856 		 */
3857 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3858 			set_buffer_uptodate(bh);
3859 
3860 		if (buffer_uptodate(bh)) {
3861 			/* someone brought it uptodate while we waited */
3862 			unlock_buffer(bh);
3863 			goto has_buffer;
3864 		}
3865 
3866 		/*
3867 		 * If we have all information of the inode in memory and this
3868 		 * is the only valid inode in the block, we need not read the
3869 		 * block.
3870 		 */
3871 		if (in_mem) {
3872 			struct buffer_head *bitmap_bh;
3873 			struct ext4_group_desc *desc;
3874 			int inodes_per_buffer;
3875 			int inode_offset, i;
3876 			ext4_group_t block_group;
3877 			int start;
3878 
3879 			block_group = (inode->i_ino - 1) /
3880 					EXT4_INODES_PER_GROUP(inode->i_sb);
3881 			inodes_per_buffer = bh->b_size /
3882 				EXT4_INODE_SIZE(inode->i_sb);
3883 			inode_offset = ((inode->i_ino - 1) %
3884 					EXT4_INODES_PER_GROUP(inode->i_sb));
3885 			start = inode_offset & ~(inodes_per_buffer - 1);
3886 
3887 			/* Is the inode bitmap in cache? */
3888 			desc = ext4_get_group_desc(inode->i_sb,
3889 						block_group, NULL);
3890 			if (!desc)
3891 				goto make_io;
3892 
3893 			bitmap_bh = sb_getblk(inode->i_sb,
3894 				ext4_inode_bitmap(inode->i_sb, desc));
3895 			if (!bitmap_bh)
3896 				goto make_io;
3897 
3898 			/*
3899 			 * If the inode bitmap isn't in cache then the
3900 			 * optimisation may end up performing two reads instead
3901 			 * of one, so skip it.
3902 			 */
3903 			if (!buffer_uptodate(bitmap_bh)) {
3904 				brelse(bitmap_bh);
3905 				goto make_io;
3906 			}
3907 			for (i = start; i < start + inodes_per_buffer; i++) {
3908 				if (i == inode_offset)
3909 					continue;
3910 				if (ext4_test_bit(i, bitmap_bh->b_data))
3911 					break;
3912 			}
3913 			brelse(bitmap_bh);
3914 			if (i == start + inodes_per_buffer) {
3915 				/* all other inodes are free, so skip I/O */
3916 				memset(bh->b_data, 0, bh->b_size);
3917 				set_buffer_uptodate(bh);
3918 				unlock_buffer(bh);
3919 				goto has_buffer;
3920 			}
3921 		}
3922 
3923 make_io:
3924 		/*
3925 		 * There are other valid inodes in the buffer, this inode
3926 		 * has in-inode xattrs, or we don't have this inode in memory.
3927 		 * Read the block from disk.
3928 		 */
3929 		get_bh(bh);
3930 		bh->b_end_io = end_buffer_read_sync;
3931 		submit_bh(READ_META, bh);
3932 		wait_on_buffer(bh);
3933 		if (!buffer_uptodate(bh)) {
3934 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3935 					"unable to read inode block - "
3936 					"inode=%lu, block=%llu",
3937 					inode->i_ino, block);
3938 			brelse(bh);
3939 			return -EIO;
3940 		}
3941 	}
3942 has_buffer:
3943 	iloc->bh = bh;
3944 	return 0;
3945 }
3946 
3947 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3948 {
3949 	/* We have all inode data except xattrs in memory here. */
3950 	return __ext4_get_inode_loc(inode, iloc,
3951 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3952 }
3953 
3954 void ext4_set_inode_flags(struct inode *inode)
3955 {
3956 	unsigned int flags = EXT4_I(inode)->i_flags;
3957 
3958 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3959 	if (flags & EXT4_SYNC_FL)
3960 		inode->i_flags |= S_SYNC;
3961 	if (flags & EXT4_APPEND_FL)
3962 		inode->i_flags |= S_APPEND;
3963 	if (flags & EXT4_IMMUTABLE_FL)
3964 		inode->i_flags |= S_IMMUTABLE;
3965 	if (flags & EXT4_NOATIME_FL)
3966 		inode->i_flags |= S_NOATIME;
3967 	if (flags & EXT4_DIRSYNC_FL)
3968 		inode->i_flags |= S_DIRSYNC;
3969 }
3970 
3971 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3972 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3973 {
3974 	unsigned int flags = ei->vfs_inode.i_flags;
3975 
3976 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3977 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3978 	if (flags & S_SYNC)
3979 		ei->i_flags |= EXT4_SYNC_FL;
3980 	if (flags & S_APPEND)
3981 		ei->i_flags |= EXT4_APPEND_FL;
3982 	if (flags & S_IMMUTABLE)
3983 		ei->i_flags |= EXT4_IMMUTABLE_FL;
3984 	if (flags & S_NOATIME)
3985 		ei->i_flags |= EXT4_NOATIME_FL;
3986 	if (flags & S_DIRSYNC)
3987 		ei->i_flags |= EXT4_DIRSYNC_FL;
3988 }
3989 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3990 					struct ext4_inode_info *ei)
3991 {
3992 	blkcnt_t i_blocks ;
3993 	struct inode *inode = &(ei->vfs_inode);
3994 	struct super_block *sb = inode->i_sb;
3995 
3996 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3998 		/* we are using combined 48 bit field */
3999 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4000 					le32_to_cpu(raw_inode->i_blocks_lo);
4001 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4002 			/* i_blocks represent file system block size */
4003 			return i_blocks  << (inode->i_blkbits - 9);
4004 		} else {
4005 			return i_blocks;
4006 		}
4007 	} else {
4008 		return le32_to_cpu(raw_inode->i_blocks_lo);
4009 	}
4010 }
4011 
4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4013 {
4014 	struct ext4_iloc iloc;
4015 	struct ext4_inode *raw_inode;
4016 	struct ext4_inode_info *ei;
4017 	struct buffer_head *bh;
4018 	struct inode *inode;
4019 	long ret;
4020 	int block;
4021 
4022 	inode = iget_locked(sb, ino);
4023 	if (!inode)
4024 		return ERR_PTR(-ENOMEM);
4025 	if (!(inode->i_state & I_NEW))
4026 		return inode;
4027 
4028 	ei = EXT4_I(inode);
4029 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4030 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4031 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4032 #endif
4033 	ei->i_block_alloc_info = NULL;
4034 
4035 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4036 	if (ret < 0)
4037 		goto bad_inode;
4038 	bh = iloc.bh;
4039 	raw_inode = ext4_raw_inode(&iloc);
4040 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4041 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4042 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4043 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4044 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4045 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4046 	}
4047 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4048 
4049 	ei->i_state = 0;
4050 	ei->i_dir_start_lookup = 0;
4051 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4052 	/* We now have enough fields to check if the inode was active or not.
4053 	 * This is needed because nfsd might try to access dead inodes
4054 	 * the test is that same one that e2fsck uses
4055 	 * NeilBrown 1999oct15
4056 	 */
4057 	if (inode->i_nlink == 0) {
4058 		if (inode->i_mode == 0 ||
4059 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4060 			/* this inode is deleted */
4061 			brelse(bh);
4062 			ret = -ESTALE;
4063 			goto bad_inode;
4064 		}
4065 		/* The only unlinked inodes we let through here have
4066 		 * valid i_mode and are being read by the orphan
4067 		 * recovery code: that's fine, we're about to complete
4068 		 * the process of deleting those. */
4069 	}
4070 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4071 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4072 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4073 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4074 	    cpu_to_le32(EXT4_OS_HURD)) {
4075 		ei->i_file_acl |=
4076 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4077 	}
4078 	inode->i_size = ext4_isize(raw_inode);
4079 	ei->i_disksize = inode->i_size;
4080 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4081 	ei->i_block_group = iloc.block_group;
4082 	/*
4083 	 * NOTE! The in-memory inode i_data array is in little-endian order
4084 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4085 	 */
4086 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4087 		ei->i_data[block] = raw_inode->i_block[block];
4088 	INIT_LIST_HEAD(&ei->i_orphan);
4089 
4090 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4091 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4092 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4093 		    EXT4_INODE_SIZE(inode->i_sb)) {
4094 			brelse(bh);
4095 			ret = -EIO;
4096 			goto bad_inode;
4097 		}
4098 		if (ei->i_extra_isize == 0) {
4099 			/* The extra space is currently unused. Use it. */
4100 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4101 					    EXT4_GOOD_OLD_INODE_SIZE;
4102 		} else {
4103 			__le32 *magic = (void *)raw_inode +
4104 					EXT4_GOOD_OLD_INODE_SIZE +
4105 					ei->i_extra_isize;
4106 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4107 				 ei->i_state |= EXT4_STATE_XATTR;
4108 		}
4109 	} else
4110 		ei->i_extra_isize = 0;
4111 
4112 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4113 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4114 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4115 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4116 
4117 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4119 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4120 			inode->i_version |=
4121 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4122 	}
4123 
4124 	if (S_ISREG(inode->i_mode)) {
4125 		inode->i_op = &ext4_file_inode_operations;
4126 		inode->i_fop = &ext4_file_operations;
4127 		ext4_set_aops(inode);
4128 	} else if (S_ISDIR(inode->i_mode)) {
4129 		inode->i_op = &ext4_dir_inode_operations;
4130 		inode->i_fop = &ext4_dir_operations;
4131 	} else if (S_ISLNK(inode->i_mode)) {
4132 		if (ext4_inode_is_fast_symlink(inode))
4133 			inode->i_op = &ext4_fast_symlink_inode_operations;
4134 		else {
4135 			inode->i_op = &ext4_symlink_inode_operations;
4136 			ext4_set_aops(inode);
4137 		}
4138 	} else {
4139 		inode->i_op = &ext4_special_inode_operations;
4140 		if (raw_inode->i_block[0])
4141 			init_special_inode(inode, inode->i_mode,
4142 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4143 		else
4144 			init_special_inode(inode, inode->i_mode,
4145 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4146 	}
4147 	brelse(iloc.bh);
4148 	ext4_set_inode_flags(inode);
4149 	unlock_new_inode(inode);
4150 	return inode;
4151 
4152 bad_inode:
4153 	iget_failed(inode);
4154 	return ERR_PTR(ret);
4155 }
4156 
4157 static int ext4_inode_blocks_set(handle_t *handle,
4158 				struct ext4_inode *raw_inode,
4159 				struct ext4_inode_info *ei)
4160 {
4161 	struct inode *inode = &(ei->vfs_inode);
4162 	u64 i_blocks = inode->i_blocks;
4163 	struct super_block *sb = inode->i_sb;
4164 	int err = 0;
4165 
4166 	if (i_blocks <= ~0U) {
4167 		/*
4168 		 * i_blocks can be represnted in a 32 bit variable
4169 		 * as multiple of 512 bytes
4170 		 */
4171 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4172 		raw_inode->i_blocks_high = 0;
4173 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4174 	} else if (i_blocks <= 0xffffffffffffULL) {
4175 		/*
4176 		 * i_blocks can be represented in a 48 bit variable
4177 		 * as multiple of 512 bytes
4178 		 */
4179 		err = ext4_update_rocompat_feature(handle, sb,
4180 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4181 		if (err)
4182 			goto  err_out;
4183 		/* i_block is stored in the split  48 bit fields */
4184 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4185 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4186 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4187 	} else {
4188 		/*
4189 		 * i_blocks should be represented in a 48 bit variable
4190 		 * as multiple of  file system block size
4191 		 */
4192 		err = ext4_update_rocompat_feature(handle, sb,
4193 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4194 		if (err)
4195 			goto  err_out;
4196 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4197 		/* i_block is stored in file system block size */
4198 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4199 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4200 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4201 	}
4202 err_out:
4203 	return err;
4204 }
4205 
4206 /*
4207  * Post the struct inode info into an on-disk inode location in the
4208  * buffer-cache.  This gobbles the caller's reference to the
4209  * buffer_head in the inode location struct.
4210  *
4211  * The caller must have write access to iloc->bh.
4212  */
4213 static int ext4_do_update_inode(handle_t *handle,
4214 				struct inode *inode,
4215 				struct ext4_iloc *iloc)
4216 {
4217 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4218 	struct ext4_inode_info *ei = EXT4_I(inode);
4219 	struct buffer_head *bh = iloc->bh;
4220 	int err = 0, rc, block;
4221 
4222 	/* For fields not not tracking in the in-memory inode,
4223 	 * initialise them to zero for new inodes. */
4224 	if (ei->i_state & EXT4_STATE_NEW)
4225 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4226 
4227 	ext4_get_inode_flags(ei);
4228 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4229 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4230 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4231 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4232 /*
4233  * Fix up interoperability with old kernels. Otherwise, old inodes get
4234  * re-used with the upper 16 bits of the uid/gid intact
4235  */
4236 		if (!ei->i_dtime) {
4237 			raw_inode->i_uid_high =
4238 				cpu_to_le16(high_16_bits(inode->i_uid));
4239 			raw_inode->i_gid_high =
4240 				cpu_to_le16(high_16_bits(inode->i_gid));
4241 		} else {
4242 			raw_inode->i_uid_high = 0;
4243 			raw_inode->i_gid_high = 0;
4244 		}
4245 	} else {
4246 		raw_inode->i_uid_low =
4247 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4248 		raw_inode->i_gid_low =
4249 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4250 		raw_inode->i_uid_high = 0;
4251 		raw_inode->i_gid_high = 0;
4252 	}
4253 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4254 
4255 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4256 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4257 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4258 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4259 
4260 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4261 		goto out_brelse;
4262 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4263 	/* clear the migrate flag in the raw_inode */
4264 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4265 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4266 	    cpu_to_le32(EXT4_OS_HURD))
4267 		raw_inode->i_file_acl_high =
4268 			cpu_to_le16(ei->i_file_acl >> 32);
4269 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4270 	ext4_isize_set(raw_inode, ei->i_disksize);
4271 	if (ei->i_disksize > 0x7fffffffULL) {
4272 		struct super_block *sb = inode->i_sb;
4273 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4274 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4275 				EXT4_SB(sb)->s_es->s_rev_level ==
4276 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4277 			/* If this is the first large file
4278 			 * created, add a flag to the superblock.
4279 			 */
4280 			err = ext4_journal_get_write_access(handle,
4281 					EXT4_SB(sb)->s_sbh);
4282 			if (err)
4283 				goto out_brelse;
4284 			ext4_update_dynamic_rev(sb);
4285 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4286 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4287 			sb->s_dirt = 1;
4288 			handle->h_sync = 1;
4289 			err = ext4_journal_dirty_metadata(handle,
4290 					EXT4_SB(sb)->s_sbh);
4291 		}
4292 	}
4293 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4294 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4295 		if (old_valid_dev(inode->i_rdev)) {
4296 			raw_inode->i_block[0] =
4297 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4298 			raw_inode->i_block[1] = 0;
4299 		} else {
4300 			raw_inode->i_block[0] = 0;
4301 			raw_inode->i_block[1] =
4302 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4303 			raw_inode->i_block[2] = 0;
4304 		}
4305 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4306 		raw_inode->i_block[block] = ei->i_data[block];
4307 
4308 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4309 	if (ei->i_extra_isize) {
4310 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4311 			raw_inode->i_version_hi =
4312 			cpu_to_le32(inode->i_version >> 32);
4313 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4314 	}
4315 
4316 
4317 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4318 	rc = ext4_journal_dirty_metadata(handle, bh);
4319 	if (!err)
4320 		err = rc;
4321 	ei->i_state &= ~EXT4_STATE_NEW;
4322 
4323 out_brelse:
4324 	brelse(bh);
4325 	ext4_std_error(inode->i_sb, err);
4326 	return err;
4327 }
4328 
4329 /*
4330  * ext4_write_inode()
4331  *
4332  * We are called from a few places:
4333  *
4334  * - Within generic_file_write() for O_SYNC files.
4335  *   Here, there will be no transaction running. We wait for any running
4336  *   trasnaction to commit.
4337  *
4338  * - Within sys_sync(), kupdate and such.
4339  *   We wait on commit, if tol to.
4340  *
4341  * - Within prune_icache() (PF_MEMALLOC == true)
4342  *   Here we simply return.  We can't afford to block kswapd on the
4343  *   journal commit.
4344  *
4345  * In all cases it is actually safe for us to return without doing anything,
4346  * because the inode has been copied into a raw inode buffer in
4347  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4348  * knfsd.
4349  *
4350  * Note that we are absolutely dependent upon all inode dirtiers doing the
4351  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4352  * which we are interested.
4353  *
4354  * It would be a bug for them to not do this.  The code:
4355  *
4356  *	mark_inode_dirty(inode)
4357  *	stuff();
4358  *	inode->i_size = expr;
4359  *
4360  * is in error because a kswapd-driven write_inode() could occur while
4361  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4362  * will no longer be on the superblock's dirty inode list.
4363  */
4364 int ext4_write_inode(struct inode *inode, int wait)
4365 {
4366 	if (current->flags & PF_MEMALLOC)
4367 		return 0;
4368 
4369 	if (ext4_journal_current_handle()) {
4370 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4371 		dump_stack();
4372 		return -EIO;
4373 	}
4374 
4375 	if (!wait)
4376 		return 0;
4377 
4378 	return ext4_force_commit(inode->i_sb);
4379 }
4380 
4381 /*
4382  * ext4_setattr()
4383  *
4384  * Called from notify_change.
4385  *
4386  * We want to trap VFS attempts to truncate the file as soon as
4387  * possible.  In particular, we want to make sure that when the VFS
4388  * shrinks i_size, we put the inode on the orphan list and modify
4389  * i_disksize immediately, so that during the subsequent flushing of
4390  * dirty pages and freeing of disk blocks, we can guarantee that any
4391  * commit will leave the blocks being flushed in an unused state on
4392  * disk.  (On recovery, the inode will get truncated and the blocks will
4393  * be freed, so we have a strong guarantee that no future commit will
4394  * leave these blocks visible to the user.)
4395  *
4396  * Another thing we have to assure is that if we are in ordered mode
4397  * and inode is still attached to the committing transaction, we must
4398  * we start writeout of all the dirty pages which are being truncated.
4399  * This way we are sure that all the data written in the previous
4400  * transaction are already on disk (truncate waits for pages under
4401  * writeback).
4402  *
4403  * Called with inode->i_mutex down.
4404  */
4405 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4406 {
4407 	struct inode *inode = dentry->d_inode;
4408 	int error, rc = 0;
4409 	const unsigned int ia_valid = attr->ia_valid;
4410 
4411 	error = inode_change_ok(inode, attr);
4412 	if (error)
4413 		return error;
4414 
4415 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4416 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4417 		handle_t *handle;
4418 
4419 		/* (user+group)*(old+new) structure, inode write (sb,
4420 		 * inode block, ? - but truncate inode update has it) */
4421 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4422 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4423 		if (IS_ERR(handle)) {
4424 			error = PTR_ERR(handle);
4425 			goto err_out;
4426 		}
4427 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4428 		if (error) {
4429 			ext4_journal_stop(handle);
4430 			return error;
4431 		}
4432 		/* Update corresponding info in inode so that everything is in
4433 		 * one transaction */
4434 		if (attr->ia_valid & ATTR_UID)
4435 			inode->i_uid = attr->ia_uid;
4436 		if (attr->ia_valid & ATTR_GID)
4437 			inode->i_gid = attr->ia_gid;
4438 		error = ext4_mark_inode_dirty(handle, inode);
4439 		ext4_journal_stop(handle);
4440 	}
4441 
4442 	if (attr->ia_valid & ATTR_SIZE) {
4443 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4444 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4445 
4446 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4447 				error = -EFBIG;
4448 				goto err_out;
4449 			}
4450 		}
4451 	}
4452 
4453 	if (S_ISREG(inode->i_mode) &&
4454 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4455 		handle_t *handle;
4456 
4457 		handle = ext4_journal_start(inode, 3);
4458 		if (IS_ERR(handle)) {
4459 			error = PTR_ERR(handle);
4460 			goto err_out;
4461 		}
4462 
4463 		error = ext4_orphan_add(handle, inode);
4464 		EXT4_I(inode)->i_disksize = attr->ia_size;
4465 		rc = ext4_mark_inode_dirty(handle, inode);
4466 		if (!error)
4467 			error = rc;
4468 		ext4_journal_stop(handle);
4469 
4470 		if (ext4_should_order_data(inode)) {
4471 			error = ext4_begin_ordered_truncate(inode,
4472 							    attr->ia_size);
4473 			if (error) {
4474 				/* Do as much error cleanup as possible */
4475 				handle = ext4_journal_start(inode, 3);
4476 				if (IS_ERR(handle)) {
4477 					ext4_orphan_del(NULL, inode);
4478 					goto err_out;
4479 				}
4480 				ext4_orphan_del(handle, inode);
4481 				ext4_journal_stop(handle);
4482 				goto err_out;
4483 			}
4484 		}
4485 	}
4486 
4487 	rc = inode_setattr(inode, attr);
4488 
4489 	/* If inode_setattr's call to ext4_truncate failed to get a
4490 	 * transaction handle at all, we need to clean up the in-core
4491 	 * orphan list manually. */
4492 	if (inode->i_nlink)
4493 		ext4_orphan_del(NULL, inode);
4494 
4495 	if (!rc && (ia_valid & ATTR_MODE))
4496 		rc = ext4_acl_chmod(inode);
4497 
4498 err_out:
4499 	ext4_std_error(inode->i_sb, error);
4500 	if (!error)
4501 		error = rc;
4502 	return error;
4503 }
4504 
4505 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4506 		 struct kstat *stat)
4507 {
4508 	struct inode *inode;
4509 	unsigned long delalloc_blocks;
4510 
4511 	inode = dentry->d_inode;
4512 	generic_fillattr(inode, stat);
4513 
4514 	/*
4515 	 * We can't update i_blocks if the block allocation is delayed
4516 	 * otherwise in the case of system crash before the real block
4517 	 * allocation is done, we will have i_blocks inconsistent with
4518 	 * on-disk file blocks.
4519 	 * We always keep i_blocks updated together with real
4520 	 * allocation. But to not confuse with user, stat
4521 	 * will return the blocks that include the delayed allocation
4522 	 * blocks for this file.
4523 	 */
4524 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4525 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4526 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4527 
4528 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4529 	return 0;
4530 }
4531 
4532 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4533 				      int chunk)
4534 {
4535 	int indirects;
4536 
4537 	/* if nrblocks are contiguous */
4538 	if (chunk) {
4539 		/*
4540 		 * With N contiguous data blocks, it need at most
4541 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4542 		 * 2 dindirect blocks
4543 		 * 1 tindirect block
4544 		 */
4545 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4546 		return indirects + 3;
4547 	}
4548 	/*
4549 	 * if nrblocks are not contiguous, worse case, each block touch
4550 	 * a indirect block, and each indirect block touch a double indirect
4551 	 * block, plus a triple indirect block
4552 	 */
4553 	indirects = nrblocks * 2 + 1;
4554 	return indirects;
4555 }
4556 
4557 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4558 {
4559 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4560 		return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4561 	return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4562 }
4563 /*
4564  * Account for index blocks, block groups bitmaps and block group
4565  * descriptor blocks if modify datablocks and index blocks
4566  * worse case, the indexs blocks spread over different block groups
4567  *
4568  * If datablocks are discontiguous, they are possible to spread over
4569  * different block groups too. If they are contiugous, with flexbg,
4570  * they could still across block group boundary.
4571  *
4572  * Also account for superblock, inode, quota and xattr blocks
4573  */
4574 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4575 {
4576 	int groups, gdpblocks;
4577 	int idxblocks;
4578 	int ret = 0;
4579 
4580 	/*
4581 	 * How many index blocks need to touch to modify nrblocks?
4582 	 * The "Chunk" flag indicating whether the nrblocks is
4583 	 * physically contiguous on disk
4584 	 *
4585 	 * For Direct IO and fallocate, they calls get_block to allocate
4586 	 * one single extent at a time, so they could set the "Chunk" flag
4587 	 */
4588 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4589 
4590 	ret = idxblocks;
4591 
4592 	/*
4593 	 * Now let's see how many group bitmaps and group descriptors need
4594 	 * to account
4595 	 */
4596 	groups = idxblocks;
4597 	if (chunk)
4598 		groups += 1;
4599 	else
4600 		groups += nrblocks;
4601 
4602 	gdpblocks = groups;
4603 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4604 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4605 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4606 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4607 
4608 	/* bitmaps and block group descriptor blocks */
4609 	ret += groups + gdpblocks;
4610 
4611 	/* Blocks for super block, inode, quota and xattr blocks */
4612 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4613 
4614 	return ret;
4615 }
4616 
4617 /*
4618  * Calulate the total number of credits to reserve to fit
4619  * the modification of a single pages into a single transaction,
4620  * which may include multiple chunks of block allocations.
4621  *
4622  * This could be called via ext4_write_begin()
4623  *
4624  * We need to consider the worse case, when
4625  * one new block per extent.
4626  */
4627 int ext4_writepage_trans_blocks(struct inode *inode)
4628 {
4629 	int bpp = ext4_journal_blocks_per_page(inode);
4630 	int ret;
4631 
4632 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4633 
4634 	/* Account for data blocks for journalled mode */
4635 	if (ext4_should_journal_data(inode))
4636 		ret += bpp;
4637 	return ret;
4638 }
4639 
4640 /*
4641  * Calculate the journal credits for a chunk of data modification.
4642  *
4643  * This is called from DIO, fallocate or whoever calling
4644  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4645  *
4646  * journal buffers for data blocks are not included here, as DIO
4647  * and fallocate do no need to journal data buffers.
4648  */
4649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4650 {
4651 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4652 }
4653 
4654 /*
4655  * The caller must have previously called ext4_reserve_inode_write().
4656  * Give this, we know that the caller already has write access to iloc->bh.
4657  */
4658 int ext4_mark_iloc_dirty(handle_t *handle,
4659 		struct inode *inode, struct ext4_iloc *iloc)
4660 {
4661 	int err = 0;
4662 
4663 	if (test_opt(inode->i_sb, I_VERSION))
4664 		inode_inc_iversion(inode);
4665 
4666 	/* the do_update_inode consumes one bh->b_count */
4667 	get_bh(iloc->bh);
4668 
4669 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4670 	err = ext4_do_update_inode(handle, inode, iloc);
4671 	put_bh(iloc->bh);
4672 	return err;
4673 }
4674 
4675 /*
4676  * On success, We end up with an outstanding reference count against
4677  * iloc->bh.  This _must_ be cleaned up later.
4678  */
4679 
4680 int
4681 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4682 			 struct ext4_iloc *iloc)
4683 {
4684 	int err = 0;
4685 	if (handle) {
4686 		err = ext4_get_inode_loc(inode, iloc);
4687 		if (!err) {
4688 			BUFFER_TRACE(iloc->bh, "get_write_access");
4689 			err = ext4_journal_get_write_access(handle, iloc->bh);
4690 			if (err) {
4691 				brelse(iloc->bh);
4692 				iloc->bh = NULL;
4693 			}
4694 		}
4695 	}
4696 	ext4_std_error(inode->i_sb, err);
4697 	return err;
4698 }
4699 
4700 /*
4701  * Expand an inode by new_extra_isize bytes.
4702  * Returns 0 on success or negative error number on failure.
4703  */
4704 static int ext4_expand_extra_isize(struct inode *inode,
4705 				   unsigned int new_extra_isize,
4706 				   struct ext4_iloc iloc,
4707 				   handle_t *handle)
4708 {
4709 	struct ext4_inode *raw_inode;
4710 	struct ext4_xattr_ibody_header *header;
4711 	struct ext4_xattr_entry *entry;
4712 
4713 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4714 		return 0;
4715 
4716 	raw_inode = ext4_raw_inode(&iloc);
4717 
4718 	header = IHDR(inode, raw_inode);
4719 	entry = IFIRST(header);
4720 
4721 	/* No extended attributes present */
4722 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4723 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4724 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4725 			new_extra_isize);
4726 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4727 		return 0;
4728 	}
4729 
4730 	/* try to expand with EAs present */
4731 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4732 					  raw_inode, handle);
4733 }
4734 
4735 /*
4736  * What we do here is to mark the in-core inode as clean with respect to inode
4737  * dirtiness (it may still be data-dirty).
4738  * This means that the in-core inode may be reaped by prune_icache
4739  * without having to perform any I/O.  This is a very good thing,
4740  * because *any* task may call prune_icache - even ones which
4741  * have a transaction open against a different journal.
4742  *
4743  * Is this cheating?  Not really.  Sure, we haven't written the
4744  * inode out, but prune_icache isn't a user-visible syncing function.
4745  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4746  * we start and wait on commits.
4747  *
4748  * Is this efficient/effective?  Well, we're being nice to the system
4749  * by cleaning up our inodes proactively so they can be reaped
4750  * without I/O.  But we are potentially leaving up to five seconds'
4751  * worth of inodes floating about which prune_icache wants us to
4752  * write out.  One way to fix that would be to get prune_icache()
4753  * to do a write_super() to free up some memory.  It has the desired
4754  * effect.
4755  */
4756 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4757 {
4758 	struct ext4_iloc iloc;
4759 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4760 	static unsigned int mnt_count;
4761 	int err, ret;
4762 
4763 	might_sleep();
4764 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4765 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4766 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4767 		/*
4768 		 * We need extra buffer credits since we may write into EA block
4769 		 * with this same handle. If journal_extend fails, then it will
4770 		 * only result in a minor loss of functionality for that inode.
4771 		 * If this is felt to be critical, then e2fsck should be run to
4772 		 * force a large enough s_min_extra_isize.
4773 		 */
4774 		if ((jbd2_journal_extend(handle,
4775 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4776 			ret = ext4_expand_extra_isize(inode,
4777 						      sbi->s_want_extra_isize,
4778 						      iloc, handle);
4779 			if (ret) {
4780 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4781 				if (mnt_count !=
4782 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4783 					ext4_warning(inode->i_sb, __func__,
4784 					"Unable to expand inode %lu. Delete"
4785 					" some EAs or run e2fsck.",
4786 					inode->i_ino);
4787 					mnt_count =
4788 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4789 				}
4790 			}
4791 		}
4792 	}
4793 	if (!err)
4794 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4795 	return err;
4796 }
4797 
4798 /*
4799  * ext4_dirty_inode() is called from __mark_inode_dirty()
4800  *
4801  * We're really interested in the case where a file is being extended.
4802  * i_size has been changed by generic_commit_write() and we thus need
4803  * to include the updated inode in the current transaction.
4804  *
4805  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4806  * are allocated to the file.
4807  *
4808  * If the inode is marked synchronous, we don't honour that here - doing
4809  * so would cause a commit on atime updates, which we don't bother doing.
4810  * We handle synchronous inodes at the highest possible level.
4811  */
4812 void ext4_dirty_inode(struct inode *inode)
4813 {
4814 	handle_t *current_handle = ext4_journal_current_handle();
4815 	handle_t *handle;
4816 
4817 	handle = ext4_journal_start(inode, 2);
4818 	if (IS_ERR(handle))
4819 		goto out;
4820 	if (current_handle &&
4821 		current_handle->h_transaction != handle->h_transaction) {
4822 		/* This task has a transaction open against a different fs */
4823 		printk(KERN_EMERG "%s: transactions do not match!\n",
4824 		       __func__);
4825 	} else {
4826 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4827 				current_handle);
4828 		ext4_mark_inode_dirty(handle, inode);
4829 	}
4830 	ext4_journal_stop(handle);
4831 out:
4832 	return;
4833 }
4834 
4835 #if 0
4836 /*
4837  * Bind an inode's backing buffer_head into this transaction, to prevent
4838  * it from being flushed to disk early.  Unlike
4839  * ext4_reserve_inode_write, this leaves behind no bh reference and
4840  * returns no iloc structure, so the caller needs to repeat the iloc
4841  * lookup to mark the inode dirty later.
4842  */
4843 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4844 {
4845 	struct ext4_iloc iloc;
4846 
4847 	int err = 0;
4848 	if (handle) {
4849 		err = ext4_get_inode_loc(inode, &iloc);
4850 		if (!err) {
4851 			BUFFER_TRACE(iloc.bh, "get_write_access");
4852 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4853 			if (!err)
4854 				err = ext4_journal_dirty_metadata(handle,
4855 								  iloc.bh);
4856 			brelse(iloc.bh);
4857 		}
4858 	}
4859 	ext4_std_error(inode->i_sb, err);
4860 	return err;
4861 }
4862 #endif
4863 
4864 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4865 {
4866 	journal_t *journal;
4867 	handle_t *handle;
4868 	int err;
4869 
4870 	/*
4871 	 * We have to be very careful here: changing a data block's
4872 	 * journaling status dynamically is dangerous.  If we write a
4873 	 * data block to the journal, change the status and then delete
4874 	 * that block, we risk forgetting to revoke the old log record
4875 	 * from the journal and so a subsequent replay can corrupt data.
4876 	 * So, first we make sure that the journal is empty and that
4877 	 * nobody is changing anything.
4878 	 */
4879 
4880 	journal = EXT4_JOURNAL(inode);
4881 	if (is_journal_aborted(journal))
4882 		return -EROFS;
4883 
4884 	jbd2_journal_lock_updates(journal);
4885 	jbd2_journal_flush(journal);
4886 
4887 	/*
4888 	 * OK, there are no updates running now, and all cached data is
4889 	 * synced to disk.  We are now in a completely consistent state
4890 	 * which doesn't have anything in the journal, and we know that
4891 	 * no filesystem updates are running, so it is safe to modify
4892 	 * the inode's in-core data-journaling state flag now.
4893 	 */
4894 
4895 	if (val)
4896 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4897 	else
4898 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4899 	ext4_set_aops(inode);
4900 
4901 	jbd2_journal_unlock_updates(journal);
4902 
4903 	/* Finally we can mark the inode as dirty. */
4904 
4905 	handle = ext4_journal_start(inode, 1);
4906 	if (IS_ERR(handle))
4907 		return PTR_ERR(handle);
4908 
4909 	err = ext4_mark_inode_dirty(handle, inode);
4910 	handle->h_sync = 1;
4911 	ext4_journal_stop(handle);
4912 	ext4_std_error(inode->i_sb, err);
4913 
4914 	return err;
4915 }
4916 
4917 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4918 {
4919 	return !buffer_mapped(bh);
4920 }
4921 
4922 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4923 {
4924 	loff_t size;
4925 	unsigned long len;
4926 	int ret = -EINVAL;
4927 	void *fsdata;
4928 	struct file *file = vma->vm_file;
4929 	struct inode *inode = file->f_path.dentry->d_inode;
4930 	struct address_space *mapping = inode->i_mapping;
4931 
4932 	/*
4933 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4934 	 * get i_mutex because we are already holding mmap_sem.
4935 	 */
4936 	down_read(&inode->i_alloc_sem);
4937 	size = i_size_read(inode);
4938 	if (page->mapping != mapping || size <= page_offset(page)
4939 	    || !PageUptodate(page)) {
4940 		/* page got truncated from under us? */
4941 		goto out_unlock;
4942 	}
4943 	ret = 0;
4944 	if (PageMappedToDisk(page))
4945 		goto out_unlock;
4946 
4947 	if (page->index == size >> PAGE_CACHE_SHIFT)
4948 		len = size & ~PAGE_CACHE_MASK;
4949 	else
4950 		len = PAGE_CACHE_SIZE;
4951 
4952 	if (page_has_buffers(page)) {
4953 		/* return if we have all the buffers mapped */
4954 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4955 				       ext4_bh_unmapped))
4956 			goto out_unlock;
4957 	}
4958 	/*
4959 	 * OK, we need to fill the hole... Do write_begin write_end
4960 	 * to do block allocation/reservation.We are not holding
4961 	 * inode.i__mutex here. That allow * parallel write_begin,
4962 	 * write_end call. lock_page prevent this from happening
4963 	 * on the same page though
4964 	 */
4965 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4966 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4967 	if (ret < 0)
4968 		goto out_unlock;
4969 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4970 			len, len, page, fsdata);
4971 	if (ret < 0)
4972 		goto out_unlock;
4973 	ret = 0;
4974 out_unlock:
4975 	up_read(&inode->i_alloc_sem);
4976 	return ret;
4977 }
4978