1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 #define MPAGE_DA_EXTENT_TAIL 0x01 45 46 static inline int ext4_begin_ordered_truncate(struct inode *inode, 47 loff_t new_size) 48 { 49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 50 new_size); 51 } 52 53 static void ext4_invalidatepage(struct page *page, unsigned long offset); 54 55 /* 56 * Test whether an inode is a fast symlink. 57 */ 58 static int ext4_inode_is_fast_symlink(struct inode *inode) 59 { 60 int ea_blocks = EXT4_I(inode)->i_file_acl ? 61 (inode->i_sb->s_blocksize >> 9) : 0; 62 63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 64 } 65 66 /* 67 * The ext4 forget function must perform a revoke if we are freeing data 68 * which has been journaled. Metadata (eg. indirect blocks) must be 69 * revoked in all cases. 70 * 71 * "bh" may be NULL: a metadata block may have been freed from memory 72 * but there may still be a record of it in the journal, and that record 73 * still needs to be revoked. 74 */ 75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 76 struct buffer_head *bh, ext4_fsblk_t blocknr) 77 { 78 int err; 79 80 might_sleep(); 81 82 BUFFER_TRACE(bh, "enter"); 83 84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 85 "data mode %lx\n", 86 bh, is_metadata, inode->i_mode, 87 test_opt(inode->i_sb, DATA_FLAGS)); 88 89 /* Never use the revoke function if we are doing full data 90 * journaling: there is no need to, and a V1 superblock won't 91 * support it. Otherwise, only skip the revoke on un-journaled 92 * data blocks. */ 93 94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 95 (!is_metadata && !ext4_should_journal_data(inode))) { 96 if (bh) { 97 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 98 return ext4_journal_forget(handle, bh); 99 } 100 return 0; 101 } 102 103 /* 104 * data!=journal && (is_metadata || should_journal_data(inode)) 105 */ 106 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 107 err = ext4_journal_revoke(handle, blocknr, bh); 108 if (err) 109 ext4_abort(inode->i_sb, __func__, 110 "error %d when attempting revoke", err); 111 BUFFER_TRACE(bh, "exit"); 112 return err; 113 } 114 115 /* 116 * Work out how many blocks we need to proceed with the next chunk of a 117 * truncate transaction. 118 */ 119 static unsigned long blocks_for_truncate(struct inode *inode) 120 { 121 ext4_lblk_t needed; 122 123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 124 125 /* Give ourselves just enough room to cope with inodes in which 126 * i_blocks is corrupt: we've seen disk corruptions in the past 127 * which resulted in random data in an inode which looked enough 128 * like a regular file for ext4 to try to delete it. Things 129 * will go a bit crazy if that happens, but at least we should 130 * try not to panic the whole kernel. */ 131 if (needed < 2) 132 needed = 2; 133 134 /* But we need to bound the transaction so we don't overflow the 135 * journal. */ 136 if (needed > EXT4_MAX_TRANS_DATA) 137 needed = EXT4_MAX_TRANS_DATA; 138 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 140 } 141 142 /* 143 * Truncate transactions can be complex and absolutely huge. So we need to 144 * be able to restart the transaction at a conventient checkpoint to make 145 * sure we don't overflow the journal. 146 * 147 * start_transaction gets us a new handle for a truncate transaction, 148 * and extend_transaction tries to extend the existing one a bit. If 149 * extend fails, we need to propagate the failure up and restart the 150 * transaction in the top-level truncate loop. --sct 151 */ 152 static handle_t *start_transaction(struct inode *inode) 153 { 154 handle_t *result; 155 156 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 157 if (!IS_ERR(result)) 158 return result; 159 160 ext4_std_error(inode->i_sb, PTR_ERR(result)); 161 return result; 162 } 163 164 /* 165 * Try to extend this transaction for the purposes of truncation. 166 * 167 * Returns 0 if we managed to create more room. If we can't create more 168 * room, and the transaction must be restarted we return 1. 169 */ 170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 171 { 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 173 return 0; 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 175 return 0; 176 return 1; 177 } 178 179 /* 180 * Restart the transaction associated with *handle. This does a commit, 181 * so before we call here everything must be consistently dirtied against 182 * this transaction. 183 */ 184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 185 { 186 jbd_debug(2, "restarting handle %p\n", handle); 187 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 188 } 189 190 /* 191 * Called at the last iput() if i_nlink is zero. 192 */ 193 void ext4_delete_inode(struct inode *inode) 194 { 195 handle_t *handle; 196 int err; 197 198 if (ext4_should_order_data(inode)) 199 ext4_begin_ordered_truncate(inode, 0); 200 truncate_inode_pages(&inode->i_data, 0); 201 202 if (is_bad_inode(inode)) 203 goto no_delete; 204 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 206 if (IS_ERR(handle)) { 207 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 208 /* 209 * If we're going to skip the normal cleanup, we still need to 210 * make sure that the in-core orphan linked list is properly 211 * cleaned up. 212 */ 213 ext4_orphan_del(NULL, inode); 214 goto no_delete; 215 } 216 217 if (IS_SYNC(inode)) 218 handle->h_sync = 1; 219 inode->i_size = 0; 220 err = ext4_mark_inode_dirty(handle, inode); 221 if (err) { 222 ext4_warning(inode->i_sb, __func__, 223 "couldn't mark inode dirty (err %d)", err); 224 goto stop_handle; 225 } 226 if (inode->i_blocks) 227 ext4_truncate(inode); 228 229 /* 230 * ext4_ext_truncate() doesn't reserve any slop when it 231 * restarts journal transactions; therefore there may not be 232 * enough credits left in the handle to remove the inode from 233 * the orphan list and set the dtime field. 234 */ 235 if (handle->h_buffer_credits < 3) { 236 err = ext4_journal_extend(handle, 3); 237 if (err > 0) 238 err = ext4_journal_restart(handle, 3); 239 if (err != 0) { 240 ext4_warning(inode->i_sb, __func__, 241 "couldn't extend journal (err %d)", err); 242 stop_handle: 243 ext4_journal_stop(handle); 244 goto no_delete; 245 } 246 } 247 248 /* 249 * Kill off the orphan record which ext4_truncate created. 250 * AKPM: I think this can be inside the above `if'. 251 * Note that ext4_orphan_del() has to be able to cope with the 252 * deletion of a non-existent orphan - this is because we don't 253 * know if ext4_truncate() actually created an orphan record. 254 * (Well, we could do this if we need to, but heck - it works) 255 */ 256 ext4_orphan_del(handle, inode); 257 EXT4_I(inode)->i_dtime = get_seconds(); 258 259 /* 260 * One subtle ordering requirement: if anything has gone wrong 261 * (transaction abort, IO errors, whatever), then we can still 262 * do these next steps (the fs will already have been marked as 263 * having errors), but we can't free the inode if the mark_dirty 264 * fails. 265 */ 266 if (ext4_mark_inode_dirty(handle, inode)) 267 /* If that failed, just do the required in-core inode clear. */ 268 clear_inode(inode); 269 else 270 ext4_free_inode(handle, inode); 271 ext4_journal_stop(handle); 272 return; 273 no_delete: 274 clear_inode(inode); /* We must guarantee clearing of inode... */ 275 } 276 277 typedef struct { 278 __le32 *p; 279 __le32 key; 280 struct buffer_head *bh; 281 } Indirect; 282 283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 284 { 285 p->key = *(p->p = v); 286 p->bh = bh; 287 } 288 289 /** 290 * ext4_block_to_path - parse the block number into array of offsets 291 * @inode: inode in question (we are only interested in its superblock) 292 * @i_block: block number to be parsed 293 * @offsets: array to store the offsets in 294 * @boundary: set this non-zero if the referred-to block is likely to be 295 * followed (on disk) by an indirect block. 296 * 297 * To store the locations of file's data ext4 uses a data structure common 298 * for UNIX filesystems - tree of pointers anchored in the inode, with 299 * data blocks at leaves and indirect blocks in intermediate nodes. 300 * This function translates the block number into path in that tree - 301 * return value is the path length and @offsets[n] is the offset of 302 * pointer to (n+1)th node in the nth one. If @block is out of range 303 * (negative or too large) warning is printed and zero returned. 304 * 305 * Note: function doesn't find node addresses, so no IO is needed. All 306 * we need to know is the capacity of indirect blocks (taken from the 307 * inode->i_sb). 308 */ 309 310 /* 311 * Portability note: the last comparison (check that we fit into triple 312 * indirect block) is spelled differently, because otherwise on an 313 * architecture with 32-bit longs and 8Kb pages we might get into trouble 314 * if our filesystem had 8Kb blocks. We might use long long, but that would 315 * kill us on x86. Oh, well, at least the sign propagation does not matter - 316 * i_block would have to be negative in the very beginning, so we would not 317 * get there at all. 318 */ 319 320 static int ext4_block_to_path(struct inode *inode, 321 ext4_lblk_t i_block, 322 ext4_lblk_t offsets[4], int *boundary) 323 { 324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 326 const long direct_blocks = EXT4_NDIR_BLOCKS, 327 indirect_blocks = ptrs, 328 double_blocks = (1 << (ptrs_bits * 2)); 329 int n = 0; 330 int final = 0; 331 332 if (i_block < 0) { 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 334 } else if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "ext4_block_to_path", 354 "block %lu > max", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 /** 364 * ext4_get_branch - read the chain of indirect blocks leading to data 365 * @inode: inode in question 366 * @depth: depth of the chain (1 - direct pointer, etc.) 367 * @offsets: offsets of pointers in inode/indirect blocks 368 * @chain: place to store the result 369 * @err: here we store the error value 370 * 371 * Function fills the array of triples <key, p, bh> and returns %NULL 372 * if everything went OK or the pointer to the last filled triple 373 * (incomplete one) otherwise. Upon the return chain[i].key contains 374 * the number of (i+1)-th block in the chain (as it is stored in memory, 375 * i.e. little-endian 32-bit), chain[i].p contains the address of that 376 * number (it points into struct inode for i==0 and into the bh->b_data 377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 378 * block for i>0 and NULL for i==0. In other words, it holds the block 379 * numbers of the chain, addresses they were taken from (and where we can 380 * verify that chain did not change) and buffer_heads hosting these 381 * numbers. 382 * 383 * Function stops when it stumbles upon zero pointer (absent block) 384 * (pointer to last triple returned, *@err == 0) 385 * or when it gets an IO error reading an indirect block 386 * (ditto, *@err == -EIO) 387 * or when it reads all @depth-1 indirect blocks successfully and finds 388 * the whole chain, all way to the data (returns %NULL, *err == 0). 389 * 390 * Need to be called with 391 * down_read(&EXT4_I(inode)->i_data_sem) 392 */ 393 static Indirect *ext4_get_branch(struct inode *inode, int depth, 394 ext4_lblk_t *offsets, 395 Indirect chain[4], int *err) 396 { 397 struct super_block *sb = inode->i_sb; 398 Indirect *p = chain; 399 struct buffer_head *bh; 400 401 *err = 0; 402 /* i_data is not going away, no lock needed */ 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 404 if (!p->key) 405 goto no_block; 406 while (--depth) { 407 bh = sb_bread(sb, le32_to_cpu(p->key)); 408 if (!bh) 409 goto failure; 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 411 /* Reader: end */ 412 if (!p->key) 413 goto no_block; 414 } 415 return NULL; 416 417 failure: 418 *err = -EIO; 419 no_block: 420 return p; 421 } 422 423 /** 424 * ext4_find_near - find a place for allocation with sufficient locality 425 * @inode: owner 426 * @ind: descriptor of indirect block. 427 * 428 * This function returns the preferred place for block allocation. 429 * It is used when heuristic for sequential allocation fails. 430 * Rules are: 431 * + if there is a block to the left of our position - allocate near it. 432 * + if pointer will live in indirect block - allocate near that block. 433 * + if pointer will live in inode - allocate in the same 434 * cylinder group. 435 * 436 * In the latter case we colour the starting block by the callers PID to 437 * prevent it from clashing with concurrent allocations for a different inode 438 * in the same block group. The PID is used here so that functionally related 439 * files will be close-by on-disk. 440 * 441 * Caller must make sure that @ind is valid and will stay that way. 442 */ 443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 444 { 445 struct ext4_inode_info *ei = EXT4_I(inode); 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 447 __le32 *p; 448 ext4_fsblk_t bg_start; 449 ext4_fsblk_t last_block; 450 ext4_grpblk_t colour; 451 452 /* Try to find previous block */ 453 for (p = ind->p - 1; p >= start; p--) { 454 if (*p) 455 return le32_to_cpu(*p); 456 } 457 458 /* No such thing, so let's try location of indirect block */ 459 if (ind->bh) 460 return ind->bh->b_blocknr; 461 462 /* 463 * It is going to be referred to from the inode itself? OK, just put it 464 * into the same cylinder group then. 465 */ 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 468 469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 470 colour = (current->pid % 16) * 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 472 else 473 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 474 return bg_start + colour; 475 } 476 477 /** 478 * ext4_find_goal - find a preferred place for allocation. 479 * @inode: owner 480 * @block: block we want 481 * @partial: pointer to the last triple within a chain 482 * 483 * Normally this function find the preferred place for block allocation, 484 * returns it. 485 */ 486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 487 Indirect *partial) 488 { 489 struct ext4_block_alloc_info *block_i; 490 491 block_i = EXT4_I(inode)->i_block_alloc_info; 492 493 /* 494 * try the heuristic for sequential allocation, 495 * failing that at least try to get decent locality. 496 */ 497 if (block_i && (block == block_i->last_alloc_logical_block + 1) 498 && (block_i->last_alloc_physical_block != 0)) { 499 return block_i->last_alloc_physical_block + 1; 500 } 501 502 return ext4_find_near(inode, partial); 503 } 504 505 /** 506 * ext4_blks_to_allocate: Look up the block map and count the number 507 * of direct blocks need to be allocated for the given branch. 508 * 509 * @branch: chain of indirect blocks 510 * @k: number of blocks need for indirect blocks 511 * @blks: number of data blocks to be mapped. 512 * @blocks_to_boundary: the offset in the indirect block 513 * 514 * return the total number of blocks to be allocate, including the 515 * direct and indirect blocks. 516 */ 517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 518 int blocks_to_boundary) 519 { 520 unsigned long count = 0; 521 522 /* 523 * Simple case, [t,d]Indirect block(s) has not allocated yet 524 * then it's clear blocks on that path have not allocated 525 */ 526 if (k > 0) { 527 /* right now we don't handle cross boundary allocation */ 528 if (blks < blocks_to_boundary + 1) 529 count += blks; 530 else 531 count += blocks_to_boundary + 1; 532 return count; 533 } 534 535 count++; 536 while (count < blks && count <= blocks_to_boundary && 537 le32_to_cpu(*(branch[0].p + count)) == 0) { 538 count++; 539 } 540 return count; 541 } 542 543 /** 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 545 * @indirect_blks: the number of blocks need to allocate for indirect 546 * blocks 547 * 548 * @new_blocks: on return it will store the new block numbers for 549 * the indirect blocks(if needed) and the first direct block, 550 * @blks: on return it will store the total number of allocated 551 * direct blocks 552 */ 553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 554 ext4_lblk_t iblock, ext4_fsblk_t goal, 555 int indirect_blks, int blks, 556 ext4_fsblk_t new_blocks[4], int *err) 557 { 558 int target, i; 559 unsigned long count = 0, blk_allocated = 0; 560 int index = 0; 561 ext4_fsblk_t current_block = 0; 562 int ret = 0; 563 564 /* 565 * Here we try to allocate the requested multiple blocks at once, 566 * on a best-effort basis. 567 * To build a branch, we should allocate blocks for 568 * the indirect blocks(if not allocated yet), and at least 569 * the first direct block of this branch. That's the 570 * minimum number of blocks need to allocate(required) 571 */ 572 /* first we try to allocate the indirect blocks */ 573 target = indirect_blks; 574 while (target > 0) { 575 count = target; 576 /* allocating blocks for indirect blocks and direct blocks */ 577 current_block = ext4_new_meta_blocks(handle, inode, 578 goal, &count, err); 579 if (*err) 580 goto failed_out; 581 582 target -= count; 583 /* allocate blocks for indirect blocks */ 584 while (index < indirect_blks && count) { 585 new_blocks[index++] = current_block++; 586 count--; 587 } 588 if (count > 0) { 589 /* 590 * save the new block number 591 * for the first direct block 592 */ 593 new_blocks[index] = current_block; 594 printk(KERN_INFO "%s returned more blocks than " 595 "requested\n", __func__); 596 WARN_ON(1); 597 break; 598 } 599 } 600 601 target = blks - count ; 602 blk_allocated = count; 603 if (!target) 604 goto allocated; 605 /* Now allocate data blocks */ 606 count = target; 607 /* allocating blocks for data blocks */ 608 current_block = ext4_new_blocks(handle, inode, iblock, 609 goal, &count, err); 610 if (*err && (target == blks)) { 611 /* 612 * if the allocation failed and we didn't allocate 613 * any blocks before 614 */ 615 goto failed_out; 616 } 617 if (!*err) { 618 if (target == blks) { 619 /* 620 * save the new block number 621 * for the first direct block 622 */ 623 new_blocks[index] = current_block; 624 } 625 blk_allocated += count; 626 } 627 allocated: 628 /* total number of blocks allocated for direct blocks */ 629 ret = blk_allocated; 630 *err = 0; 631 return ret; 632 failed_out: 633 for (i = 0; i < index; i++) 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 635 return ret; 636 } 637 638 /** 639 * ext4_alloc_branch - allocate and set up a chain of blocks. 640 * @inode: owner 641 * @indirect_blks: number of allocated indirect blocks 642 * @blks: number of allocated direct blocks 643 * @offsets: offsets (in the blocks) to store the pointers to next. 644 * @branch: place to store the chain in. 645 * 646 * This function allocates blocks, zeroes out all but the last one, 647 * links them into chain and (if we are synchronous) writes them to disk. 648 * In other words, it prepares a branch that can be spliced onto the 649 * inode. It stores the information about that chain in the branch[], in 650 * the same format as ext4_get_branch() would do. We are calling it after 651 * we had read the existing part of chain and partial points to the last 652 * triple of that (one with zero ->key). Upon the exit we have the same 653 * picture as after the successful ext4_get_block(), except that in one 654 * place chain is disconnected - *branch->p is still zero (we did not 655 * set the last link), but branch->key contains the number that should 656 * be placed into *branch->p to fill that gap. 657 * 658 * If allocation fails we free all blocks we've allocated (and forget 659 * their buffer_heads) and return the error value the from failed 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 661 * as described above and return 0. 662 */ 663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 664 ext4_lblk_t iblock, int indirect_blks, 665 int *blks, ext4_fsblk_t goal, 666 ext4_lblk_t *offsets, Indirect *branch) 667 { 668 int blocksize = inode->i_sb->s_blocksize; 669 int i, n = 0; 670 int err = 0; 671 struct buffer_head *bh; 672 int num; 673 ext4_fsblk_t new_blocks[4]; 674 ext4_fsblk_t current_block; 675 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 677 *blks, new_blocks, &err); 678 if (err) 679 return err; 680 681 branch[0].key = cpu_to_le32(new_blocks[0]); 682 /* 683 * metadata blocks and data blocks are allocated. 684 */ 685 for (n = 1; n <= indirect_blks; n++) { 686 /* 687 * Get buffer_head for parent block, zero it out 688 * and set the pointer to new one, then send 689 * parent to disk. 690 */ 691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 692 branch[n].bh = bh; 693 lock_buffer(bh); 694 BUFFER_TRACE(bh, "call get_create_access"); 695 err = ext4_journal_get_create_access(handle, bh); 696 if (err) { 697 unlock_buffer(bh); 698 brelse(bh); 699 goto failed; 700 } 701 702 memset(bh->b_data, 0, blocksize); 703 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 704 branch[n].key = cpu_to_le32(new_blocks[n]); 705 *branch[n].p = branch[n].key; 706 if (n == indirect_blks) { 707 current_block = new_blocks[n]; 708 /* 709 * End of chain, update the last new metablock of 710 * the chain to point to the new allocated 711 * data blocks numbers 712 */ 713 for (i=1; i < num; i++) 714 *(branch[n].p + i) = cpu_to_le32(++current_block); 715 } 716 BUFFER_TRACE(bh, "marking uptodate"); 717 set_buffer_uptodate(bh); 718 unlock_buffer(bh); 719 720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 721 err = ext4_journal_dirty_metadata(handle, bh); 722 if (err) 723 goto failed; 724 } 725 *blks = num; 726 return err; 727 failed: 728 /* Allocation failed, free what we already allocated */ 729 for (i = 1; i <= n ; i++) { 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 731 ext4_journal_forget(handle, branch[i].bh); 732 } 733 for (i = 0; i < indirect_blks; i++) 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 735 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 737 738 return err; 739 } 740 741 /** 742 * ext4_splice_branch - splice the allocated branch onto inode. 743 * @inode: owner 744 * @block: (logical) number of block we are adding 745 * @chain: chain of indirect blocks (with a missing link - see 746 * ext4_alloc_branch) 747 * @where: location of missing link 748 * @num: number of indirect blocks we are adding 749 * @blks: number of direct blocks we are adding 750 * 751 * This function fills the missing link and does all housekeeping needed in 752 * inode (->i_blocks, etc.). In case of success we end up with the full 753 * chain to new block and return 0. 754 */ 755 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 756 ext4_lblk_t block, Indirect *where, int num, int blks) 757 { 758 int i; 759 int err = 0; 760 struct ext4_block_alloc_info *block_i; 761 ext4_fsblk_t current_block; 762 763 block_i = EXT4_I(inode)->i_block_alloc_info; 764 /* 765 * If we're splicing into a [td]indirect block (as opposed to the 766 * inode) then we need to get write access to the [td]indirect block 767 * before the splice. 768 */ 769 if (where->bh) { 770 BUFFER_TRACE(where->bh, "get_write_access"); 771 err = ext4_journal_get_write_access(handle, where->bh); 772 if (err) 773 goto err_out; 774 } 775 /* That's it */ 776 777 *where->p = where->key; 778 779 /* 780 * Update the host buffer_head or inode to point to more just allocated 781 * direct blocks blocks 782 */ 783 if (num == 0 && blks > 1) { 784 current_block = le32_to_cpu(where->key) + 1; 785 for (i = 1; i < blks; i++) 786 *(where->p + i) = cpu_to_le32(current_block++); 787 } 788 789 /* 790 * update the most recently allocated logical & physical block 791 * in i_block_alloc_info, to assist find the proper goal block for next 792 * allocation 793 */ 794 if (block_i) { 795 block_i->last_alloc_logical_block = block + blks - 1; 796 block_i->last_alloc_physical_block = 797 le32_to_cpu(where[num].key) + blks - 1; 798 } 799 800 /* We are done with atomic stuff, now do the rest of housekeeping */ 801 802 inode->i_ctime = ext4_current_time(inode); 803 ext4_mark_inode_dirty(handle, inode); 804 805 /* had we spliced it onto indirect block? */ 806 if (where->bh) { 807 /* 808 * If we spliced it onto an indirect block, we haven't 809 * altered the inode. Note however that if it is being spliced 810 * onto an indirect block at the very end of the file (the 811 * file is growing) then we *will* alter the inode to reflect 812 * the new i_size. But that is not done here - it is done in 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 814 */ 815 jbd_debug(5, "splicing indirect only\n"); 816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 817 err = ext4_journal_dirty_metadata(handle, where->bh); 818 if (err) 819 goto err_out; 820 } else { 821 /* 822 * OK, we spliced it into the inode itself on a direct block. 823 * Inode was dirtied above. 824 */ 825 jbd_debug(5, "splicing direct\n"); 826 } 827 return err; 828 829 err_out: 830 for (i = 1; i <= num; i++) { 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 832 ext4_journal_forget(handle, where[i].bh); 833 ext4_free_blocks(handle, inode, 834 le32_to_cpu(where[i-1].key), 1, 0); 835 } 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 837 838 return err; 839 } 840 841 /* 842 * Allocation strategy is simple: if we have to allocate something, we will 843 * have to go the whole way to leaf. So let's do it before attaching anything 844 * to tree, set linkage between the newborn blocks, write them if sync is 845 * required, recheck the path, free and repeat if check fails, otherwise 846 * set the last missing link (that will protect us from any truncate-generated 847 * removals - all blocks on the path are immune now) and possibly force the 848 * write on the parent block. 849 * That has a nice additional property: no special recovery from the failed 850 * allocations is needed - we simply release blocks and do not touch anything 851 * reachable from inode. 852 * 853 * `handle' can be NULL if create == 0. 854 * 855 * return > 0, # of blocks mapped or allocated. 856 * return = 0, if plain lookup failed. 857 * return < 0, error case. 858 * 859 * 860 * Need to be called with 861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 863 */ 864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 865 ext4_lblk_t iblock, unsigned long maxblocks, 866 struct buffer_head *bh_result, 867 int create, int extend_disksize) 868 { 869 int err = -EIO; 870 ext4_lblk_t offsets[4]; 871 Indirect chain[4]; 872 Indirect *partial; 873 ext4_fsblk_t goal; 874 int indirect_blks; 875 int blocks_to_boundary = 0; 876 int depth; 877 struct ext4_inode_info *ei = EXT4_I(inode); 878 int count = 0; 879 ext4_fsblk_t first_block = 0; 880 loff_t disksize; 881 882 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 884 J_ASSERT(handle != NULL || create == 0); 885 depth = ext4_block_to_path(inode, iblock, offsets, 886 &blocks_to_boundary); 887 888 if (depth == 0) 889 goto out; 890 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 892 893 /* Simplest case - block found, no allocation needed */ 894 if (!partial) { 895 first_block = le32_to_cpu(chain[depth - 1].key); 896 clear_buffer_new(bh_result); 897 count++; 898 /*map more blocks*/ 899 while (count < maxblocks && count <= blocks_to_boundary) { 900 ext4_fsblk_t blk; 901 902 blk = le32_to_cpu(*(chain[depth-1].p + count)); 903 904 if (blk == first_block + count) 905 count++; 906 else 907 break; 908 } 909 goto got_it; 910 } 911 912 /* Next simple case - plain lookup or failed read of indirect block */ 913 if (!create || err == -EIO) 914 goto cleanup; 915 916 /* 917 * Okay, we need to do block allocation. Lazily initialize the block 918 * allocation info here if necessary 919 */ 920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 921 ext4_init_block_alloc_info(inode); 922 923 goal = ext4_find_goal(inode, iblock, partial); 924 925 /* the number of blocks need to allocate for [d,t]indirect blocks */ 926 indirect_blks = (chain + depth) - partial - 1; 927 928 /* 929 * Next look up the indirect map to count the totoal number of 930 * direct blocks to allocate for this branch. 931 */ 932 count = ext4_blks_to_allocate(partial, indirect_blks, 933 maxblocks, blocks_to_boundary); 934 /* 935 * Block out ext4_truncate while we alter the tree 936 */ 937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 938 &count, goal, 939 offsets + (partial - chain), partial); 940 941 /* 942 * The ext4_splice_branch call will free and forget any buffers 943 * on the new chain if there is a failure, but that risks using 944 * up transaction credits, especially for bitmaps where the 945 * credits cannot be returned. Can we handle this somehow? We 946 * may need to return -EAGAIN upwards in the worst case. --sct 947 */ 948 if (!err) 949 err = ext4_splice_branch(handle, inode, iblock, 950 partial, indirect_blks, count); 951 /* 952 * i_disksize growing is protected by i_data_sem. Don't forget to 953 * protect it if you're about to implement concurrent 954 * ext4_get_block() -bzzz 955 */ 956 if (!err && extend_disksize) { 957 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 958 if (disksize > i_size_read(inode)) 959 disksize = i_size_read(inode); 960 if (disksize > ei->i_disksize) 961 ei->i_disksize = disksize; 962 } 963 if (err) 964 goto cleanup; 965 966 set_buffer_new(bh_result); 967 got_it: 968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 969 if (count > blocks_to_boundary) 970 set_buffer_boundary(bh_result); 971 err = count; 972 /* Clean up and exit */ 973 partial = chain + depth - 1; /* the whole chain */ 974 cleanup: 975 while (partial > chain) { 976 BUFFER_TRACE(partial->bh, "call brelse"); 977 brelse(partial->bh); 978 partial--; 979 } 980 BUFFER_TRACE(bh_result, "returned"); 981 out: 982 return err; 983 } 984 985 /* 986 * Calculate the number of metadata blocks need to reserve 987 * to allocate @blocks for non extent file based file 988 */ 989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 990 { 991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 992 int ind_blks, dind_blks, tind_blks; 993 994 /* number of new indirect blocks needed */ 995 ind_blks = (blocks + icap - 1) / icap; 996 997 dind_blks = (ind_blks + icap - 1) / icap; 998 999 tind_blks = 1; 1000 1001 return ind_blks + dind_blks + tind_blks; 1002 } 1003 1004 /* 1005 * Calculate the number of metadata blocks need to reserve 1006 * to allocate given number of blocks 1007 */ 1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1009 { 1010 if (!blocks) 1011 return 0; 1012 1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1014 return ext4_ext_calc_metadata_amount(inode, blocks); 1015 1016 return ext4_indirect_calc_metadata_amount(inode, blocks); 1017 } 1018 1019 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1022 int total, mdb, mdb_free; 1023 1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1025 /* recalculate the number of metablocks still need to be reserved */ 1026 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1027 mdb = ext4_calc_metadata_amount(inode, total); 1028 1029 /* figure out how many metablocks to release */ 1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1032 1033 if (mdb_free) { 1034 /* Account for allocated meta_blocks */ 1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1036 1037 /* update fs dirty blocks counter */ 1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1039 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1041 } 1042 1043 /* update per-inode reservations */ 1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1045 EXT4_I(inode)->i_reserved_data_blocks -= used; 1046 1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1048 } 1049 1050 /* 1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1052 * and returns if the blocks are already mapped. 1053 * 1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1055 * and store the allocated blocks in the result buffer head and mark it 1056 * mapped. 1057 * 1058 * If file type is extents based, it will call ext4_ext_get_blocks(), 1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1060 * based files 1061 * 1062 * On success, it returns the number of blocks being mapped or allocate. 1063 * if create==0 and the blocks are pre-allocated and uninitialized block, 1064 * the result buffer head is unmapped. If the create ==1, it will make sure 1065 * the buffer head is mapped. 1066 * 1067 * It returns 0 if plain look up failed (blocks have not been allocated), in 1068 * that casem, buffer head is unmapped 1069 * 1070 * It returns the error in case of allocation failure. 1071 */ 1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1073 unsigned long max_blocks, struct buffer_head *bh, 1074 int create, int extend_disksize, int flag) 1075 { 1076 int retval; 1077 1078 clear_buffer_mapped(bh); 1079 1080 /* 1081 * Try to see if we can get the block without requesting 1082 * for new file system block. 1083 */ 1084 down_read((&EXT4_I(inode)->i_data_sem)); 1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1087 bh, 0, 0); 1088 } else { 1089 retval = ext4_get_blocks_handle(handle, 1090 inode, block, max_blocks, bh, 0, 0); 1091 } 1092 up_read((&EXT4_I(inode)->i_data_sem)); 1093 1094 /* If it is only a block(s) look up */ 1095 if (!create) 1096 return retval; 1097 1098 /* 1099 * Returns if the blocks have already allocated 1100 * 1101 * Note that if blocks have been preallocated 1102 * ext4_ext_get_block() returns th create = 0 1103 * with buffer head unmapped. 1104 */ 1105 if (retval > 0 && buffer_mapped(bh)) 1106 return retval; 1107 1108 /* 1109 * New blocks allocate and/or writing to uninitialized extent 1110 * will possibly result in updating i_data, so we take 1111 * the write lock of i_data_sem, and call get_blocks() 1112 * with create == 1 flag. 1113 */ 1114 down_write((&EXT4_I(inode)->i_data_sem)); 1115 1116 /* 1117 * if the caller is from delayed allocation writeout path 1118 * we have already reserved fs blocks for allocation 1119 * let the underlying get_block() function know to 1120 * avoid double accounting 1121 */ 1122 if (flag) 1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1124 /* 1125 * We need to check for EXT4 here because migrate 1126 * could have changed the inode type in between 1127 */ 1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1130 bh, create, extend_disksize); 1131 } else { 1132 retval = ext4_get_blocks_handle(handle, inode, block, 1133 max_blocks, bh, create, extend_disksize); 1134 1135 if (retval > 0 && buffer_new(bh)) { 1136 /* 1137 * We allocated new blocks which will result in 1138 * i_data's format changing. Force the migrate 1139 * to fail by clearing migrate flags 1140 */ 1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1142 ~EXT4_EXT_MIGRATE; 1143 } 1144 } 1145 1146 if (flag) { 1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1148 /* 1149 * Update reserved blocks/metadata blocks 1150 * after successful block allocation 1151 * which were deferred till now 1152 */ 1153 if ((retval > 0) && buffer_delay(bh)) 1154 ext4_da_update_reserve_space(inode, retval); 1155 } 1156 1157 up_write((&EXT4_I(inode)->i_data_sem)); 1158 return retval; 1159 } 1160 1161 /* Maximum number of blocks we map for direct IO at once. */ 1162 #define DIO_MAX_BLOCKS 4096 1163 1164 static int ext4_get_block(struct inode *inode, sector_t iblock, 1165 struct buffer_head *bh_result, int create) 1166 { 1167 handle_t *handle = ext4_journal_current_handle(); 1168 int ret = 0, started = 0; 1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1170 int dio_credits; 1171 1172 if (create && !handle) { 1173 /* Direct IO write... */ 1174 if (max_blocks > DIO_MAX_BLOCKS) 1175 max_blocks = DIO_MAX_BLOCKS; 1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1177 handle = ext4_journal_start(inode, dio_credits); 1178 if (IS_ERR(handle)) { 1179 ret = PTR_ERR(handle); 1180 goto out; 1181 } 1182 started = 1; 1183 } 1184 1185 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1186 max_blocks, bh_result, create, 0, 0); 1187 if (ret > 0) { 1188 bh_result->b_size = (ret << inode->i_blkbits); 1189 ret = 0; 1190 } 1191 if (started) 1192 ext4_journal_stop(handle); 1193 out: 1194 return ret; 1195 } 1196 1197 /* 1198 * `handle' can be NULL if create is zero 1199 */ 1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1201 ext4_lblk_t block, int create, int *errp) 1202 { 1203 struct buffer_head dummy; 1204 int fatal = 0, err; 1205 1206 J_ASSERT(handle != NULL || create == 0); 1207 1208 dummy.b_state = 0; 1209 dummy.b_blocknr = -1000; 1210 buffer_trace_init(&dummy.b_history); 1211 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1212 &dummy, create, 1, 0); 1213 /* 1214 * ext4_get_blocks_handle() returns number of blocks 1215 * mapped. 0 in case of a HOLE. 1216 */ 1217 if (err > 0) { 1218 if (err > 1) 1219 WARN_ON(1); 1220 err = 0; 1221 } 1222 *errp = err; 1223 if (!err && buffer_mapped(&dummy)) { 1224 struct buffer_head *bh; 1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1226 if (!bh) { 1227 *errp = -EIO; 1228 goto err; 1229 } 1230 if (buffer_new(&dummy)) { 1231 J_ASSERT(create != 0); 1232 J_ASSERT(handle != NULL); 1233 1234 /* 1235 * Now that we do not always journal data, we should 1236 * keep in mind whether this should always journal the 1237 * new buffer as metadata. For now, regular file 1238 * writes use ext4_get_block instead, so it's not a 1239 * problem. 1240 */ 1241 lock_buffer(bh); 1242 BUFFER_TRACE(bh, "call get_create_access"); 1243 fatal = ext4_journal_get_create_access(handle, bh); 1244 if (!fatal && !buffer_uptodate(bh)) { 1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1246 set_buffer_uptodate(bh); 1247 } 1248 unlock_buffer(bh); 1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1250 err = ext4_journal_dirty_metadata(handle, bh); 1251 if (!fatal) 1252 fatal = err; 1253 } else { 1254 BUFFER_TRACE(bh, "not a new buffer"); 1255 } 1256 if (fatal) { 1257 *errp = fatal; 1258 brelse(bh); 1259 bh = NULL; 1260 } 1261 return bh; 1262 } 1263 err: 1264 return NULL; 1265 } 1266 1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1268 ext4_lblk_t block, int create, int *err) 1269 { 1270 struct buffer_head *bh; 1271 1272 bh = ext4_getblk(handle, inode, block, create, err); 1273 if (!bh) 1274 return bh; 1275 if (buffer_uptodate(bh)) 1276 return bh; 1277 ll_rw_block(READ_META, 1, &bh); 1278 wait_on_buffer(bh); 1279 if (buffer_uptodate(bh)) 1280 return bh; 1281 put_bh(bh); 1282 *err = -EIO; 1283 return NULL; 1284 } 1285 1286 static int walk_page_buffers(handle_t *handle, 1287 struct buffer_head *head, 1288 unsigned from, 1289 unsigned to, 1290 int *partial, 1291 int (*fn)(handle_t *handle, 1292 struct buffer_head *bh)) 1293 { 1294 struct buffer_head *bh; 1295 unsigned block_start, block_end; 1296 unsigned blocksize = head->b_size; 1297 int err, ret = 0; 1298 struct buffer_head *next; 1299 1300 for (bh = head, block_start = 0; 1301 ret == 0 && (bh != head || !block_start); 1302 block_start = block_end, bh = next) 1303 { 1304 next = bh->b_this_page; 1305 block_end = block_start + blocksize; 1306 if (block_end <= from || block_start >= to) { 1307 if (partial && !buffer_uptodate(bh)) 1308 *partial = 1; 1309 continue; 1310 } 1311 err = (*fn)(handle, bh); 1312 if (!ret) 1313 ret = err; 1314 } 1315 return ret; 1316 } 1317 1318 /* 1319 * To preserve ordering, it is essential that the hole instantiation and 1320 * the data write be encapsulated in a single transaction. We cannot 1321 * close off a transaction and start a new one between the ext4_get_block() 1322 * and the commit_write(). So doing the jbd2_journal_start at the start of 1323 * prepare_write() is the right place. 1324 * 1325 * Also, this function can nest inside ext4_writepage() -> 1326 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1327 * has generated enough buffer credits to do the whole page. So we won't 1328 * block on the journal in that case, which is good, because the caller may 1329 * be PF_MEMALLOC. 1330 * 1331 * By accident, ext4 can be reentered when a transaction is open via 1332 * quota file writes. If we were to commit the transaction while thus 1333 * reentered, there can be a deadlock - we would be holding a quota 1334 * lock, and the commit would never complete if another thread had a 1335 * transaction open and was blocking on the quota lock - a ranking 1336 * violation. 1337 * 1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1339 * will _not_ run commit under these circumstances because handle->h_ref 1340 * is elevated. We'll still have enough credits for the tiny quotafile 1341 * write. 1342 */ 1343 static int do_journal_get_write_access(handle_t *handle, 1344 struct buffer_head *bh) 1345 { 1346 if (!buffer_mapped(bh) || buffer_freed(bh)) 1347 return 0; 1348 return ext4_journal_get_write_access(handle, bh); 1349 } 1350 1351 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1352 loff_t pos, unsigned len, unsigned flags, 1353 struct page **pagep, void **fsdata) 1354 { 1355 struct inode *inode = mapping->host; 1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1357 handle_t *handle; 1358 int retries = 0; 1359 struct page *page; 1360 pgoff_t index; 1361 unsigned from, to; 1362 1363 index = pos >> PAGE_CACHE_SHIFT; 1364 from = pos & (PAGE_CACHE_SIZE - 1); 1365 to = from + len; 1366 1367 retry: 1368 handle = ext4_journal_start(inode, needed_blocks); 1369 if (IS_ERR(handle)) { 1370 ret = PTR_ERR(handle); 1371 goto out; 1372 } 1373 1374 page = __grab_cache_page(mapping, index); 1375 if (!page) { 1376 ext4_journal_stop(handle); 1377 ret = -ENOMEM; 1378 goto out; 1379 } 1380 *pagep = page; 1381 1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1383 ext4_get_block); 1384 1385 if (!ret && ext4_should_journal_data(inode)) { 1386 ret = walk_page_buffers(handle, page_buffers(page), 1387 from, to, NULL, do_journal_get_write_access); 1388 } 1389 1390 if (ret) { 1391 unlock_page(page); 1392 ext4_journal_stop(handle); 1393 page_cache_release(page); 1394 } 1395 1396 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1397 goto retry; 1398 out: 1399 return ret; 1400 } 1401 1402 /* For write_end() in data=journal mode */ 1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1404 { 1405 if (!buffer_mapped(bh) || buffer_freed(bh)) 1406 return 0; 1407 set_buffer_uptodate(bh); 1408 return ext4_journal_dirty_metadata(handle, bh); 1409 } 1410 1411 /* 1412 * We need to pick up the new inode size which generic_commit_write gave us 1413 * `file' can be NULL - eg, when called from page_symlink(). 1414 * 1415 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1416 * buffers are managed internally. 1417 */ 1418 static int ext4_ordered_write_end(struct file *file, 1419 struct address_space *mapping, 1420 loff_t pos, unsigned len, unsigned copied, 1421 struct page *page, void *fsdata) 1422 { 1423 handle_t *handle = ext4_journal_current_handle(); 1424 struct inode *inode = mapping->host; 1425 int ret = 0, ret2; 1426 1427 ret = ext4_jbd2_file_inode(handle, inode); 1428 1429 if (ret == 0) { 1430 /* 1431 * generic_write_end() will run mark_inode_dirty() if i_size 1432 * changes. So let's piggyback the i_disksize mark_inode_dirty 1433 * into that. 1434 */ 1435 loff_t new_i_size; 1436 1437 new_i_size = pos + copied; 1438 if (new_i_size > EXT4_I(inode)->i_disksize) 1439 EXT4_I(inode)->i_disksize = new_i_size; 1440 ret2 = generic_write_end(file, mapping, pos, len, copied, 1441 page, fsdata); 1442 copied = ret2; 1443 if (ret2 < 0) 1444 ret = ret2; 1445 } 1446 ret2 = ext4_journal_stop(handle); 1447 if (!ret) 1448 ret = ret2; 1449 1450 return ret ? ret : copied; 1451 } 1452 1453 static int ext4_writeback_write_end(struct file *file, 1454 struct address_space *mapping, 1455 loff_t pos, unsigned len, unsigned copied, 1456 struct page *page, void *fsdata) 1457 { 1458 handle_t *handle = ext4_journal_current_handle(); 1459 struct inode *inode = mapping->host; 1460 int ret = 0, ret2; 1461 loff_t new_i_size; 1462 1463 new_i_size = pos + copied; 1464 if (new_i_size > EXT4_I(inode)->i_disksize) 1465 EXT4_I(inode)->i_disksize = new_i_size; 1466 1467 ret2 = generic_write_end(file, mapping, pos, len, copied, 1468 page, fsdata); 1469 copied = ret2; 1470 if (ret2 < 0) 1471 ret = ret2; 1472 1473 ret2 = ext4_journal_stop(handle); 1474 if (!ret) 1475 ret = ret2; 1476 1477 return ret ? ret : copied; 1478 } 1479 1480 static int ext4_journalled_write_end(struct file *file, 1481 struct address_space *mapping, 1482 loff_t pos, unsigned len, unsigned copied, 1483 struct page *page, void *fsdata) 1484 { 1485 handle_t *handle = ext4_journal_current_handle(); 1486 struct inode *inode = mapping->host; 1487 int ret = 0, ret2; 1488 int partial = 0; 1489 unsigned from, to; 1490 1491 from = pos & (PAGE_CACHE_SIZE - 1); 1492 to = from + len; 1493 1494 if (copied < len) { 1495 if (!PageUptodate(page)) 1496 copied = 0; 1497 page_zero_new_buffers(page, from+copied, to); 1498 } 1499 1500 ret = walk_page_buffers(handle, page_buffers(page), from, 1501 to, &partial, write_end_fn); 1502 if (!partial) 1503 SetPageUptodate(page); 1504 if (pos+copied > inode->i_size) 1505 i_size_write(inode, pos+copied); 1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1507 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1508 EXT4_I(inode)->i_disksize = inode->i_size; 1509 ret2 = ext4_mark_inode_dirty(handle, inode); 1510 if (!ret) 1511 ret = ret2; 1512 } 1513 1514 unlock_page(page); 1515 ret2 = ext4_journal_stop(handle); 1516 if (!ret) 1517 ret = ret2; 1518 page_cache_release(page); 1519 1520 return ret ? ret : copied; 1521 } 1522 1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1524 { 1525 int retries = 0; 1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1527 unsigned long md_needed, mdblocks, total = 0; 1528 1529 /* 1530 * recalculate the amount of metadata blocks to reserve 1531 * in order to allocate nrblocks 1532 * worse case is one extent per block 1533 */ 1534 repeat: 1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1537 mdblocks = ext4_calc_metadata_amount(inode, total); 1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1539 1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1541 total = md_needed + nrblocks; 1542 1543 if (ext4_claim_free_blocks(sbi, total)) { 1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1546 yield(); 1547 goto repeat; 1548 } 1549 return -ENOSPC; 1550 } 1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1553 1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1555 return 0; /* success */ 1556 } 1557 1558 static void ext4_da_release_space(struct inode *inode, int to_free) 1559 { 1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1561 int total, mdb, mdb_free, release; 1562 1563 if (!to_free) 1564 return; /* Nothing to release, exit */ 1565 1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1567 1568 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1569 /* 1570 * if there is no reserved blocks, but we try to free some 1571 * then the counter is messed up somewhere. 1572 * but since this function is called from invalidate 1573 * page, it's harmless to return without any action 1574 */ 1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1576 "blocks for inode %lu, but there is no reserved " 1577 "data blocks\n", to_free, inode->i_ino); 1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1579 return; 1580 } 1581 1582 /* recalculate the number of metablocks still need to be reserved */ 1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1584 mdb = ext4_calc_metadata_amount(inode, total); 1585 1586 /* figure out how many metablocks to release */ 1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1589 1590 release = to_free + mdb_free; 1591 1592 /* update fs dirty blocks counter for truncate case */ 1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1594 1595 /* update per-inode reservations */ 1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1598 1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1602 } 1603 1604 static void ext4_da_page_release_reservation(struct page *page, 1605 unsigned long offset) 1606 { 1607 int to_release = 0; 1608 struct buffer_head *head, *bh; 1609 unsigned int curr_off = 0; 1610 1611 head = page_buffers(page); 1612 bh = head; 1613 do { 1614 unsigned int next_off = curr_off + bh->b_size; 1615 1616 if ((offset <= curr_off) && (buffer_delay(bh))) { 1617 to_release++; 1618 clear_buffer_delay(bh); 1619 } 1620 curr_off = next_off; 1621 } while ((bh = bh->b_this_page) != head); 1622 ext4_da_release_space(page->mapping->host, to_release); 1623 } 1624 1625 /* 1626 * Delayed allocation stuff 1627 */ 1628 1629 struct mpage_da_data { 1630 struct inode *inode; 1631 struct buffer_head lbh; /* extent of blocks */ 1632 unsigned long first_page, next_page; /* extent of pages */ 1633 get_block_t *get_block; 1634 struct writeback_control *wbc; 1635 int io_done; 1636 long pages_written; 1637 }; 1638 1639 /* 1640 * mpage_da_submit_io - walks through extent of pages and try to write 1641 * them with writepage() call back 1642 * 1643 * @mpd->inode: inode 1644 * @mpd->first_page: first page of the extent 1645 * @mpd->next_page: page after the last page of the extent 1646 * @mpd->get_block: the filesystem's block mapper function 1647 * 1648 * By the time mpage_da_submit_io() is called we expect all blocks 1649 * to be allocated. this may be wrong if allocation failed. 1650 * 1651 * As pages are already locked by write_cache_pages(), we can't use it 1652 */ 1653 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1654 { 1655 struct address_space *mapping = mpd->inode->i_mapping; 1656 int ret = 0, err, nr_pages, i; 1657 unsigned long index, end; 1658 struct pagevec pvec; 1659 1660 BUG_ON(mpd->next_page <= mpd->first_page); 1661 pagevec_init(&pvec, 0); 1662 index = mpd->first_page; 1663 end = mpd->next_page - 1; 1664 1665 while (index <= end) { 1666 /* XXX: optimize tail */ 1667 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1668 if (nr_pages == 0) 1669 break; 1670 for (i = 0; i < nr_pages; i++) { 1671 struct page *page = pvec.pages[i]; 1672 1673 index = page->index; 1674 if (index > end) 1675 break; 1676 index++; 1677 1678 err = mapping->a_ops->writepage(page, mpd->wbc); 1679 if (!err) 1680 mpd->pages_written++; 1681 /* 1682 * In error case, we have to continue because 1683 * remaining pages are still locked 1684 * XXX: unlock and re-dirty them? 1685 */ 1686 if (ret == 0) 1687 ret = err; 1688 } 1689 pagevec_release(&pvec); 1690 } 1691 return ret; 1692 } 1693 1694 /* 1695 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1696 * 1697 * @mpd->inode - inode to walk through 1698 * @exbh->b_blocknr - first block on a disk 1699 * @exbh->b_size - amount of space in bytes 1700 * @logical - first logical block to start assignment with 1701 * 1702 * the function goes through all passed space and put actual disk 1703 * block numbers into buffer heads, dropping BH_Delay 1704 */ 1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1706 struct buffer_head *exbh) 1707 { 1708 struct inode *inode = mpd->inode; 1709 struct address_space *mapping = inode->i_mapping; 1710 int blocks = exbh->b_size >> inode->i_blkbits; 1711 sector_t pblock = exbh->b_blocknr, cur_logical; 1712 struct buffer_head *head, *bh; 1713 pgoff_t index, end; 1714 struct pagevec pvec; 1715 int nr_pages, i; 1716 1717 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1718 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1719 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1720 1721 pagevec_init(&pvec, 0); 1722 1723 while (index <= end) { 1724 /* XXX: optimize tail */ 1725 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1726 if (nr_pages == 0) 1727 break; 1728 for (i = 0; i < nr_pages; i++) { 1729 struct page *page = pvec.pages[i]; 1730 1731 index = page->index; 1732 if (index > end) 1733 break; 1734 index++; 1735 1736 BUG_ON(!PageLocked(page)); 1737 BUG_ON(PageWriteback(page)); 1738 BUG_ON(!page_has_buffers(page)); 1739 1740 bh = page_buffers(page); 1741 head = bh; 1742 1743 /* skip blocks out of the range */ 1744 do { 1745 if (cur_logical >= logical) 1746 break; 1747 cur_logical++; 1748 } while ((bh = bh->b_this_page) != head); 1749 1750 do { 1751 if (cur_logical >= logical + blocks) 1752 break; 1753 if (buffer_delay(bh)) { 1754 bh->b_blocknr = pblock; 1755 clear_buffer_delay(bh); 1756 bh->b_bdev = inode->i_sb->s_bdev; 1757 } else if (buffer_unwritten(bh)) { 1758 bh->b_blocknr = pblock; 1759 clear_buffer_unwritten(bh); 1760 set_buffer_mapped(bh); 1761 set_buffer_new(bh); 1762 bh->b_bdev = inode->i_sb->s_bdev; 1763 } else if (buffer_mapped(bh)) 1764 BUG_ON(bh->b_blocknr != pblock); 1765 1766 cur_logical++; 1767 pblock++; 1768 } while ((bh = bh->b_this_page) != head); 1769 } 1770 pagevec_release(&pvec); 1771 } 1772 } 1773 1774 1775 /* 1776 * __unmap_underlying_blocks - just a helper function to unmap 1777 * set of blocks described by @bh 1778 */ 1779 static inline void __unmap_underlying_blocks(struct inode *inode, 1780 struct buffer_head *bh) 1781 { 1782 struct block_device *bdev = inode->i_sb->s_bdev; 1783 int blocks, i; 1784 1785 blocks = bh->b_size >> inode->i_blkbits; 1786 for (i = 0; i < blocks; i++) 1787 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1788 } 1789 1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1791 sector_t logical, long blk_cnt) 1792 { 1793 int nr_pages, i; 1794 pgoff_t index, end; 1795 struct pagevec pvec; 1796 struct inode *inode = mpd->inode; 1797 struct address_space *mapping = inode->i_mapping; 1798 1799 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1800 end = (logical + blk_cnt - 1) >> 1801 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1802 while (index <= end) { 1803 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1804 if (nr_pages == 0) 1805 break; 1806 for (i = 0; i < nr_pages; i++) { 1807 struct page *page = pvec.pages[i]; 1808 index = page->index; 1809 if (index > end) 1810 break; 1811 index++; 1812 1813 BUG_ON(!PageLocked(page)); 1814 BUG_ON(PageWriteback(page)); 1815 block_invalidatepage(page, 0); 1816 ClearPageUptodate(page); 1817 unlock_page(page); 1818 } 1819 } 1820 return; 1821 } 1822 1823 /* 1824 * mpage_da_map_blocks - go through given space 1825 * 1826 * @mpd->lbh - bh describing space 1827 * @mpd->get_block - the filesystem's block mapper function 1828 * 1829 * The function skips space we know is already mapped to disk blocks. 1830 * 1831 */ 1832 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 1833 { 1834 int err = 0; 1835 struct buffer_head new; 1836 struct buffer_head *lbh = &mpd->lbh; 1837 sector_t next = lbh->b_blocknr; 1838 1839 /* 1840 * We consider only non-mapped and non-allocated blocks 1841 */ 1842 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1843 return 0; 1844 new.b_state = lbh->b_state; 1845 new.b_blocknr = 0; 1846 new.b_size = lbh->b_size; 1847 /* 1848 * If we didn't accumulate anything 1849 * to write simply return 1850 */ 1851 if (!new.b_size) 1852 return 0; 1853 err = mpd->get_block(mpd->inode, next, &new, 1); 1854 if (err) { 1855 1856 /* If get block returns with error 1857 * we simply return. Later writepage 1858 * will redirty the page and writepages 1859 * will find the dirty page again 1860 */ 1861 if (err == -EAGAIN) 1862 return 0; 1863 /* 1864 * get block failure will cause us 1865 * to loop in writepages. Because 1866 * a_ops->writepage won't be able to 1867 * make progress. The page will be redirtied 1868 * by writepage and writepages will again 1869 * try to write the same. 1870 */ 1871 printk(KERN_EMERG "%s block allocation failed for inode %lu " 1872 "at logical offset %llu with max blocks " 1873 "%zd with error %d\n", 1874 __func__, mpd->inode->i_ino, 1875 (unsigned long long)next, 1876 lbh->b_size >> mpd->inode->i_blkbits, err); 1877 printk(KERN_EMERG "This should not happen.!! " 1878 "Data will be lost\n"); 1879 if (err == -ENOSPC) { 1880 printk(KERN_CRIT "Total free blocks count %lld\n", 1881 ext4_count_free_blocks(mpd->inode->i_sb)); 1882 } 1883 /* invlaidate all the pages */ 1884 ext4_da_block_invalidatepages(mpd, next, 1885 lbh->b_size >> mpd->inode->i_blkbits); 1886 return err; 1887 } 1888 BUG_ON(new.b_size == 0); 1889 1890 if (buffer_new(&new)) 1891 __unmap_underlying_blocks(mpd->inode, &new); 1892 1893 /* 1894 * If blocks are delayed marked, we need to 1895 * put actual blocknr and drop delayed bit 1896 */ 1897 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1898 mpage_put_bnr_to_bhs(mpd, next, &new); 1899 1900 return 0; 1901 } 1902 1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1904 (1 << BH_Delay) | (1 << BH_Unwritten)) 1905 1906 /* 1907 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1908 * 1909 * @mpd->lbh - extent of blocks 1910 * @logical - logical number of the block in the file 1911 * @bh - bh of the block (used to access block's state) 1912 * 1913 * the function is used to collect contig. blocks in same state 1914 */ 1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1916 sector_t logical, struct buffer_head *bh) 1917 { 1918 sector_t next; 1919 size_t b_size = bh->b_size; 1920 struct buffer_head *lbh = &mpd->lbh; 1921 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1922 1923 /* check if thereserved journal credits might overflow */ 1924 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1925 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1926 /* 1927 * With non-extent format we are limited by the journal 1928 * credit available. Total credit needed to insert 1929 * nrblocks contiguous blocks is dependent on the 1930 * nrblocks. So limit nrblocks. 1931 */ 1932 goto flush_it; 1933 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1934 EXT4_MAX_TRANS_DATA) { 1935 /* 1936 * Adding the new buffer_head would make it cross the 1937 * allowed limit for which we have journal credit 1938 * reserved. So limit the new bh->b_size 1939 */ 1940 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1941 mpd->inode->i_blkbits; 1942 /* we will do mpage_da_submit_io in the next loop */ 1943 } 1944 } 1945 /* 1946 * First block in the extent 1947 */ 1948 if (lbh->b_size == 0) { 1949 lbh->b_blocknr = logical; 1950 lbh->b_size = b_size; 1951 lbh->b_state = bh->b_state & BH_FLAGS; 1952 return; 1953 } 1954 1955 next = lbh->b_blocknr + nrblocks; 1956 /* 1957 * Can we merge the block to our big extent? 1958 */ 1959 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1960 lbh->b_size += b_size; 1961 return; 1962 } 1963 1964 flush_it: 1965 /* 1966 * We couldn't merge the block to our extent, so we 1967 * need to flush current extent and start new one 1968 */ 1969 if (mpage_da_map_blocks(mpd) == 0) 1970 mpage_da_submit_io(mpd); 1971 mpd->io_done = 1; 1972 return; 1973 } 1974 1975 /* 1976 * __mpage_da_writepage - finds extent of pages and blocks 1977 * 1978 * @page: page to consider 1979 * @wbc: not used, we just follow rules 1980 * @data: context 1981 * 1982 * The function finds extents of pages and scan them for all blocks. 1983 */ 1984 static int __mpage_da_writepage(struct page *page, 1985 struct writeback_control *wbc, void *data) 1986 { 1987 struct mpage_da_data *mpd = data; 1988 struct inode *inode = mpd->inode; 1989 struct buffer_head *bh, *head, fake; 1990 sector_t logical; 1991 1992 if (mpd->io_done) { 1993 /* 1994 * Rest of the page in the page_vec 1995 * redirty then and skip then. We will 1996 * try to to write them again after 1997 * starting a new transaction 1998 */ 1999 redirty_page_for_writepage(wbc, page); 2000 unlock_page(page); 2001 return MPAGE_DA_EXTENT_TAIL; 2002 } 2003 /* 2004 * Can we merge this page to current extent? 2005 */ 2006 if (mpd->next_page != page->index) { 2007 /* 2008 * Nope, we can't. So, we map non-allocated blocks 2009 * and start IO on them using writepage() 2010 */ 2011 if (mpd->next_page != mpd->first_page) { 2012 if (mpage_da_map_blocks(mpd) == 0) 2013 mpage_da_submit_io(mpd); 2014 /* 2015 * skip rest of the page in the page_vec 2016 */ 2017 mpd->io_done = 1; 2018 redirty_page_for_writepage(wbc, page); 2019 unlock_page(page); 2020 return MPAGE_DA_EXTENT_TAIL; 2021 } 2022 2023 /* 2024 * Start next extent of pages ... 2025 */ 2026 mpd->first_page = page->index; 2027 2028 /* 2029 * ... and blocks 2030 */ 2031 mpd->lbh.b_size = 0; 2032 mpd->lbh.b_state = 0; 2033 mpd->lbh.b_blocknr = 0; 2034 } 2035 2036 mpd->next_page = page->index + 1; 2037 logical = (sector_t) page->index << 2038 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2039 2040 if (!page_has_buffers(page)) { 2041 /* 2042 * There is no attached buffer heads yet (mmap?) 2043 * we treat the page asfull of dirty blocks 2044 */ 2045 bh = &fake; 2046 bh->b_size = PAGE_CACHE_SIZE; 2047 bh->b_state = 0; 2048 set_buffer_dirty(bh); 2049 set_buffer_uptodate(bh); 2050 mpage_add_bh_to_extent(mpd, logical, bh); 2051 if (mpd->io_done) 2052 return MPAGE_DA_EXTENT_TAIL; 2053 } else { 2054 /* 2055 * Page with regular buffer heads, just add all dirty ones 2056 */ 2057 head = page_buffers(page); 2058 bh = head; 2059 do { 2060 BUG_ON(buffer_locked(bh)); 2061 if (buffer_dirty(bh) && 2062 (!buffer_mapped(bh) || buffer_delay(bh))) { 2063 mpage_add_bh_to_extent(mpd, logical, bh); 2064 if (mpd->io_done) 2065 return MPAGE_DA_EXTENT_TAIL; 2066 } 2067 logical++; 2068 } while ((bh = bh->b_this_page) != head); 2069 } 2070 2071 return 0; 2072 } 2073 2074 /* 2075 * mpage_da_writepages - walk the list of dirty pages of the given 2076 * address space, allocates non-allocated blocks, maps newly-allocated 2077 * blocks to existing bhs and issue IO them 2078 * 2079 * @mapping: address space structure to write 2080 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2081 * @get_block: the filesystem's block mapper function. 2082 * 2083 * This is a library function, which implements the writepages() 2084 * address_space_operation. 2085 */ 2086 static int mpage_da_writepages(struct address_space *mapping, 2087 struct writeback_control *wbc, 2088 get_block_t get_block) 2089 { 2090 struct mpage_da_data mpd; 2091 long to_write; 2092 int ret; 2093 2094 if (!get_block) 2095 return generic_writepages(mapping, wbc); 2096 2097 mpd.wbc = wbc; 2098 mpd.inode = mapping->host; 2099 mpd.lbh.b_size = 0; 2100 mpd.lbh.b_state = 0; 2101 mpd.lbh.b_blocknr = 0; 2102 mpd.first_page = 0; 2103 mpd.next_page = 0; 2104 mpd.get_block = get_block; 2105 mpd.io_done = 0; 2106 mpd.pages_written = 0; 2107 2108 to_write = wbc->nr_to_write; 2109 2110 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd); 2111 2112 /* 2113 * Handle last extent of pages 2114 */ 2115 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2116 if (mpage_da_map_blocks(&mpd) == 0) 2117 mpage_da_submit_io(&mpd); 2118 } 2119 2120 wbc->nr_to_write = to_write - mpd.pages_written; 2121 return ret; 2122 } 2123 2124 /* 2125 * this is a special callback for ->write_begin() only 2126 * it's intention is to return mapped block or reserve space 2127 */ 2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2129 struct buffer_head *bh_result, int create) 2130 { 2131 int ret = 0; 2132 2133 BUG_ON(create == 0); 2134 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2135 2136 /* 2137 * first, we need to know whether the block is allocated already 2138 * preallocated blocks are unmapped but should treated 2139 * the same as allocated blocks. 2140 */ 2141 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2142 if ((ret == 0) && !buffer_delay(bh_result)) { 2143 /* the block isn't (pre)allocated yet, let's reserve space */ 2144 /* 2145 * XXX: __block_prepare_write() unmaps passed block, 2146 * is it OK? 2147 */ 2148 ret = ext4_da_reserve_space(inode, 1); 2149 if (ret) 2150 /* not enough space to reserve */ 2151 return ret; 2152 2153 map_bh(bh_result, inode->i_sb, 0); 2154 set_buffer_new(bh_result); 2155 set_buffer_delay(bh_result); 2156 } else if (ret > 0) { 2157 bh_result->b_size = (ret << inode->i_blkbits); 2158 ret = 0; 2159 } 2160 2161 return ret; 2162 } 2163 #define EXT4_DELALLOC_RSVED 1 2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2165 struct buffer_head *bh_result, int create) 2166 { 2167 int ret; 2168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2169 loff_t disksize = EXT4_I(inode)->i_disksize; 2170 handle_t *handle = NULL; 2171 2172 handle = ext4_journal_current_handle(); 2173 if (!handle) { 2174 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2175 bh_result, 0, 0, 0); 2176 BUG_ON(!ret); 2177 } else { 2178 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2179 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2180 } 2181 2182 if (ret > 0) { 2183 bh_result->b_size = (ret << inode->i_blkbits); 2184 2185 /* 2186 * Update on-disk size along with block allocation 2187 * we don't use 'extend_disksize' as size may change 2188 * within already allocated block -bzzz 2189 */ 2190 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2191 if (disksize > i_size_read(inode)) 2192 disksize = i_size_read(inode); 2193 if (disksize > EXT4_I(inode)->i_disksize) { 2194 /* 2195 * XXX: replace with spinlock if seen contended -bzzz 2196 */ 2197 down_write(&EXT4_I(inode)->i_data_sem); 2198 if (disksize > EXT4_I(inode)->i_disksize) 2199 EXT4_I(inode)->i_disksize = disksize; 2200 up_write(&EXT4_I(inode)->i_data_sem); 2201 2202 if (EXT4_I(inode)->i_disksize == disksize) { 2203 ret = ext4_mark_inode_dirty(handle, inode); 2204 return ret; 2205 } 2206 } 2207 ret = 0; 2208 } 2209 return ret; 2210 } 2211 2212 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2213 { 2214 /* 2215 * unmapped buffer is possible for holes. 2216 * delay buffer is possible with delayed allocation 2217 */ 2218 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2219 } 2220 2221 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2222 struct buffer_head *bh_result, int create) 2223 { 2224 int ret = 0; 2225 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2226 2227 /* 2228 * we don't want to do block allocation in writepage 2229 * so call get_block_wrap with create = 0 2230 */ 2231 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2232 bh_result, 0, 0, 0); 2233 if (ret > 0) { 2234 bh_result->b_size = (ret << inode->i_blkbits); 2235 ret = 0; 2236 } 2237 return ret; 2238 } 2239 2240 /* 2241 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2242 * get called via journal_submit_inode_data_buffers (no journal handle) 2243 * get called via shrink_page_list via pdflush (no journal handle) 2244 * or grab_page_cache when doing write_begin (have journal handle) 2245 */ 2246 static int ext4_da_writepage(struct page *page, 2247 struct writeback_control *wbc) 2248 { 2249 int ret = 0; 2250 loff_t size; 2251 unsigned long len; 2252 struct buffer_head *page_bufs; 2253 struct inode *inode = page->mapping->host; 2254 2255 size = i_size_read(inode); 2256 if (page->index == size >> PAGE_CACHE_SHIFT) 2257 len = size & ~PAGE_CACHE_MASK; 2258 else 2259 len = PAGE_CACHE_SIZE; 2260 2261 if (page_has_buffers(page)) { 2262 page_bufs = page_buffers(page); 2263 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2264 ext4_bh_unmapped_or_delay)) { 2265 /* 2266 * We don't want to do block allocation 2267 * So redirty the page and return 2268 * We may reach here when we do a journal commit 2269 * via journal_submit_inode_data_buffers. 2270 * If we don't have mapping block we just ignore 2271 * them. We can also reach here via shrink_page_list 2272 */ 2273 redirty_page_for_writepage(wbc, page); 2274 unlock_page(page); 2275 return 0; 2276 } 2277 } else { 2278 /* 2279 * The test for page_has_buffers() is subtle: 2280 * We know the page is dirty but it lost buffers. That means 2281 * that at some moment in time after write_begin()/write_end() 2282 * has been called all buffers have been clean and thus they 2283 * must have been written at least once. So they are all 2284 * mapped and we can happily proceed with mapping them 2285 * and writing the page. 2286 * 2287 * Try to initialize the buffer_heads and check whether 2288 * all are mapped and non delay. We don't want to 2289 * do block allocation here. 2290 */ 2291 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2292 ext4_normal_get_block_write); 2293 if (!ret) { 2294 page_bufs = page_buffers(page); 2295 /* check whether all are mapped and non delay */ 2296 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2297 ext4_bh_unmapped_or_delay)) { 2298 redirty_page_for_writepage(wbc, page); 2299 unlock_page(page); 2300 return 0; 2301 } 2302 } else { 2303 /* 2304 * We can't do block allocation here 2305 * so just redity the page and unlock 2306 * and return 2307 */ 2308 redirty_page_for_writepage(wbc, page); 2309 unlock_page(page); 2310 return 0; 2311 } 2312 } 2313 2314 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2315 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2316 else 2317 ret = block_write_full_page(page, 2318 ext4_normal_get_block_write, 2319 wbc); 2320 2321 return ret; 2322 } 2323 2324 /* 2325 * This is called via ext4_da_writepages() to 2326 * calulate the total number of credits to reserve to fit 2327 * a single extent allocation into a single transaction, 2328 * ext4_da_writpeages() will loop calling this before 2329 * the block allocation. 2330 */ 2331 2332 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2333 { 2334 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2335 2336 /* 2337 * With non-extent format the journal credit needed to 2338 * insert nrblocks contiguous block is dependent on 2339 * number of contiguous block. So we will limit 2340 * number of contiguous block to a sane value 2341 */ 2342 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2343 (max_blocks > EXT4_MAX_TRANS_DATA)) 2344 max_blocks = EXT4_MAX_TRANS_DATA; 2345 2346 return ext4_chunk_trans_blocks(inode, max_blocks); 2347 } 2348 2349 static int ext4_da_writepages(struct address_space *mapping, 2350 struct writeback_control *wbc) 2351 { 2352 handle_t *handle = NULL; 2353 loff_t range_start = 0; 2354 struct inode *inode = mapping->host; 2355 int needed_blocks, ret = 0, nr_to_writebump = 0; 2356 long to_write, pages_skipped = 0; 2357 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2358 2359 /* 2360 * No pages to write? This is mainly a kludge to avoid starting 2361 * a transaction for special inodes like journal inode on last iput() 2362 * because that could violate lock ordering on umount 2363 */ 2364 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2365 return 0; 2366 /* 2367 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2368 * This make sure small files blocks are allocated in 2369 * single attempt. This ensure that small files 2370 * get less fragmented. 2371 */ 2372 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2373 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2374 wbc->nr_to_write = sbi->s_mb_stream_request; 2375 } 2376 2377 if (!wbc->range_cyclic) 2378 /* 2379 * If range_cyclic is not set force range_cont 2380 * and save the old writeback_index 2381 */ 2382 wbc->range_cont = 1; 2383 2384 range_start = wbc->range_start; 2385 pages_skipped = wbc->pages_skipped; 2386 2387 restart_loop: 2388 to_write = wbc->nr_to_write; 2389 while (!ret && to_write > 0) { 2390 2391 /* 2392 * we insert one extent at a time. So we need 2393 * credit needed for single extent allocation. 2394 * journalled mode is currently not supported 2395 * by delalloc 2396 */ 2397 BUG_ON(ext4_should_journal_data(inode)); 2398 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2399 2400 /* start a new transaction*/ 2401 handle = ext4_journal_start(inode, needed_blocks); 2402 if (IS_ERR(handle)) { 2403 ret = PTR_ERR(handle); 2404 printk(KERN_EMERG "%s: jbd2_start: " 2405 "%ld pages, ino %lu; err %d\n", __func__, 2406 wbc->nr_to_write, inode->i_ino, ret); 2407 dump_stack(); 2408 goto out_writepages; 2409 } 2410 if (ext4_should_order_data(inode)) { 2411 /* 2412 * With ordered mode we need to add 2413 * the inode to the journal handl 2414 * when we do block allocation. 2415 */ 2416 ret = ext4_jbd2_file_inode(handle, inode); 2417 if (ret) { 2418 ext4_journal_stop(handle); 2419 goto out_writepages; 2420 } 2421 } 2422 2423 to_write -= wbc->nr_to_write; 2424 ret = mpage_da_writepages(mapping, wbc, 2425 ext4_da_get_block_write); 2426 ext4_journal_stop(handle); 2427 if (ret == MPAGE_DA_EXTENT_TAIL) { 2428 /* 2429 * got one extent now try with 2430 * rest of the pages 2431 */ 2432 to_write += wbc->nr_to_write; 2433 ret = 0; 2434 } else if (wbc->nr_to_write) { 2435 /* 2436 * There is no more writeout needed 2437 * or we requested for a noblocking writeout 2438 * and we found the device congested 2439 */ 2440 to_write += wbc->nr_to_write; 2441 break; 2442 } 2443 wbc->nr_to_write = to_write; 2444 } 2445 2446 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) { 2447 /* We skipped pages in this loop */ 2448 wbc->range_start = range_start; 2449 wbc->nr_to_write = to_write + 2450 wbc->pages_skipped - pages_skipped; 2451 wbc->pages_skipped = pages_skipped; 2452 goto restart_loop; 2453 } 2454 2455 out_writepages: 2456 wbc->nr_to_write = to_write - nr_to_writebump; 2457 wbc->range_start = range_start; 2458 return ret; 2459 } 2460 2461 #define FALL_BACK_TO_NONDELALLOC 1 2462 static int ext4_nonda_switch(struct super_block *sb) 2463 { 2464 s64 free_blocks, dirty_blocks; 2465 struct ext4_sb_info *sbi = EXT4_SB(sb); 2466 2467 /* 2468 * switch to non delalloc mode if we are running low 2469 * on free block. The free block accounting via percpu 2470 * counters can get slightly wrong with FBC_BATCH getting 2471 * accumulated on each CPU without updating global counters 2472 * Delalloc need an accurate free block accounting. So switch 2473 * to non delalloc when we are near to error range. 2474 */ 2475 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2476 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2477 if (2 * free_blocks < 3 * dirty_blocks || 2478 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2479 /* 2480 * free block count is less that 150% of dirty blocks 2481 * or free blocks is less that watermark 2482 */ 2483 return 1; 2484 } 2485 return 0; 2486 } 2487 2488 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2489 loff_t pos, unsigned len, unsigned flags, 2490 struct page **pagep, void **fsdata) 2491 { 2492 int ret, retries = 0; 2493 struct page *page; 2494 pgoff_t index; 2495 unsigned from, to; 2496 struct inode *inode = mapping->host; 2497 handle_t *handle; 2498 2499 index = pos >> PAGE_CACHE_SHIFT; 2500 from = pos & (PAGE_CACHE_SIZE - 1); 2501 to = from + len; 2502 2503 if (ext4_nonda_switch(inode->i_sb)) { 2504 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2505 return ext4_write_begin(file, mapping, pos, 2506 len, flags, pagep, fsdata); 2507 } 2508 *fsdata = (void *)0; 2509 retry: 2510 /* 2511 * With delayed allocation, we don't log the i_disksize update 2512 * if there is delayed block allocation. But we still need 2513 * to journalling the i_disksize update if writes to the end 2514 * of file which has an already mapped buffer. 2515 */ 2516 handle = ext4_journal_start(inode, 1); 2517 if (IS_ERR(handle)) { 2518 ret = PTR_ERR(handle); 2519 goto out; 2520 } 2521 2522 page = __grab_cache_page(mapping, index); 2523 if (!page) { 2524 ext4_journal_stop(handle); 2525 ret = -ENOMEM; 2526 goto out; 2527 } 2528 *pagep = page; 2529 2530 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2531 ext4_da_get_block_prep); 2532 if (ret < 0) { 2533 unlock_page(page); 2534 ext4_journal_stop(handle); 2535 page_cache_release(page); 2536 } 2537 2538 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2539 goto retry; 2540 out: 2541 return ret; 2542 } 2543 2544 /* 2545 * Check if we should update i_disksize 2546 * when write to the end of file but not require block allocation 2547 */ 2548 static int ext4_da_should_update_i_disksize(struct page *page, 2549 unsigned long offset) 2550 { 2551 struct buffer_head *bh; 2552 struct inode *inode = page->mapping->host; 2553 unsigned int idx; 2554 int i; 2555 2556 bh = page_buffers(page); 2557 idx = offset >> inode->i_blkbits; 2558 2559 for (i = 0; i < idx; i++) 2560 bh = bh->b_this_page; 2561 2562 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2563 return 0; 2564 return 1; 2565 } 2566 2567 static int ext4_da_write_end(struct file *file, 2568 struct address_space *mapping, 2569 loff_t pos, unsigned len, unsigned copied, 2570 struct page *page, void *fsdata) 2571 { 2572 struct inode *inode = mapping->host; 2573 int ret = 0, ret2; 2574 handle_t *handle = ext4_journal_current_handle(); 2575 loff_t new_i_size; 2576 unsigned long start, end; 2577 int write_mode = (int)(unsigned long)fsdata; 2578 2579 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2580 if (ext4_should_order_data(inode)) { 2581 return ext4_ordered_write_end(file, mapping, pos, 2582 len, copied, page, fsdata); 2583 } else if (ext4_should_writeback_data(inode)) { 2584 return ext4_writeback_write_end(file, mapping, pos, 2585 len, copied, page, fsdata); 2586 } else { 2587 BUG(); 2588 } 2589 } 2590 2591 start = pos & (PAGE_CACHE_SIZE - 1); 2592 end = start + copied - 1; 2593 2594 /* 2595 * generic_write_end() will run mark_inode_dirty() if i_size 2596 * changes. So let's piggyback the i_disksize mark_inode_dirty 2597 * into that. 2598 */ 2599 2600 new_i_size = pos + copied; 2601 if (new_i_size > EXT4_I(inode)->i_disksize) { 2602 if (ext4_da_should_update_i_disksize(page, end)) { 2603 down_write(&EXT4_I(inode)->i_data_sem); 2604 if (new_i_size > EXT4_I(inode)->i_disksize) { 2605 /* 2606 * Updating i_disksize when extending file 2607 * without needing block allocation 2608 */ 2609 if (ext4_should_order_data(inode)) 2610 ret = ext4_jbd2_file_inode(handle, 2611 inode); 2612 2613 EXT4_I(inode)->i_disksize = new_i_size; 2614 } 2615 up_write(&EXT4_I(inode)->i_data_sem); 2616 } 2617 } 2618 ret2 = generic_write_end(file, mapping, pos, len, copied, 2619 page, fsdata); 2620 copied = ret2; 2621 if (ret2 < 0) 2622 ret = ret2; 2623 ret2 = ext4_journal_stop(handle); 2624 if (!ret) 2625 ret = ret2; 2626 2627 return ret ? ret : copied; 2628 } 2629 2630 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2631 { 2632 /* 2633 * Drop reserved blocks 2634 */ 2635 BUG_ON(!PageLocked(page)); 2636 if (!page_has_buffers(page)) 2637 goto out; 2638 2639 ext4_da_page_release_reservation(page, offset); 2640 2641 out: 2642 ext4_invalidatepage(page, offset); 2643 2644 return; 2645 } 2646 2647 2648 /* 2649 * bmap() is special. It gets used by applications such as lilo and by 2650 * the swapper to find the on-disk block of a specific piece of data. 2651 * 2652 * Naturally, this is dangerous if the block concerned is still in the 2653 * journal. If somebody makes a swapfile on an ext4 data-journaling 2654 * filesystem and enables swap, then they may get a nasty shock when the 2655 * data getting swapped to that swapfile suddenly gets overwritten by 2656 * the original zero's written out previously to the journal and 2657 * awaiting writeback in the kernel's buffer cache. 2658 * 2659 * So, if we see any bmap calls here on a modified, data-journaled file, 2660 * take extra steps to flush any blocks which might be in the cache. 2661 */ 2662 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2663 { 2664 struct inode *inode = mapping->host; 2665 journal_t *journal; 2666 int err; 2667 2668 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2669 test_opt(inode->i_sb, DELALLOC)) { 2670 /* 2671 * With delalloc we want to sync the file 2672 * so that we can make sure we allocate 2673 * blocks for file 2674 */ 2675 filemap_write_and_wait(mapping); 2676 } 2677 2678 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2679 /* 2680 * This is a REALLY heavyweight approach, but the use of 2681 * bmap on dirty files is expected to be extremely rare: 2682 * only if we run lilo or swapon on a freshly made file 2683 * do we expect this to happen. 2684 * 2685 * (bmap requires CAP_SYS_RAWIO so this does not 2686 * represent an unprivileged user DOS attack --- we'd be 2687 * in trouble if mortal users could trigger this path at 2688 * will.) 2689 * 2690 * NB. EXT4_STATE_JDATA is not set on files other than 2691 * regular files. If somebody wants to bmap a directory 2692 * or symlink and gets confused because the buffer 2693 * hasn't yet been flushed to disk, they deserve 2694 * everything they get. 2695 */ 2696 2697 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2698 journal = EXT4_JOURNAL(inode); 2699 jbd2_journal_lock_updates(journal); 2700 err = jbd2_journal_flush(journal); 2701 jbd2_journal_unlock_updates(journal); 2702 2703 if (err) 2704 return 0; 2705 } 2706 2707 return generic_block_bmap(mapping, block, ext4_get_block); 2708 } 2709 2710 static int bget_one(handle_t *handle, struct buffer_head *bh) 2711 { 2712 get_bh(bh); 2713 return 0; 2714 } 2715 2716 static int bput_one(handle_t *handle, struct buffer_head *bh) 2717 { 2718 put_bh(bh); 2719 return 0; 2720 } 2721 2722 /* 2723 * Note that we don't need to start a transaction unless we're journaling data 2724 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2725 * need to file the inode to the transaction's list in ordered mode because if 2726 * we are writing back data added by write(), the inode is already there and if 2727 * we are writing back data modified via mmap(), noone guarantees in which 2728 * transaction the data will hit the disk. In case we are journaling data, we 2729 * cannot start transaction directly because transaction start ranks above page 2730 * lock so we have to do some magic. 2731 * 2732 * In all journaling modes block_write_full_page() will start the I/O. 2733 * 2734 * Problem: 2735 * 2736 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2737 * ext4_writepage() 2738 * 2739 * Similar for: 2740 * 2741 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2742 * 2743 * Same applies to ext4_get_block(). We will deadlock on various things like 2744 * lock_journal and i_data_sem 2745 * 2746 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2747 * allocations fail. 2748 * 2749 * 16May01: If we're reentered then journal_current_handle() will be 2750 * non-zero. We simply *return*. 2751 * 2752 * 1 July 2001: @@@ FIXME: 2753 * In journalled data mode, a data buffer may be metadata against the 2754 * current transaction. But the same file is part of a shared mapping 2755 * and someone does a writepage() on it. 2756 * 2757 * We will move the buffer onto the async_data list, but *after* it has 2758 * been dirtied. So there's a small window where we have dirty data on 2759 * BJ_Metadata. 2760 * 2761 * Note that this only applies to the last partial page in the file. The 2762 * bit which block_write_full_page() uses prepare/commit for. (That's 2763 * broken code anyway: it's wrong for msync()). 2764 * 2765 * It's a rare case: affects the final partial page, for journalled data 2766 * where the file is subject to bith write() and writepage() in the same 2767 * transction. To fix it we'll need a custom block_write_full_page(). 2768 * We'll probably need that anyway for journalling writepage() output. 2769 * 2770 * We don't honour synchronous mounts for writepage(). That would be 2771 * disastrous. Any write() or metadata operation will sync the fs for 2772 * us. 2773 * 2774 */ 2775 static int __ext4_normal_writepage(struct page *page, 2776 struct writeback_control *wbc) 2777 { 2778 struct inode *inode = page->mapping->host; 2779 2780 if (test_opt(inode->i_sb, NOBH)) 2781 return nobh_writepage(page, 2782 ext4_normal_get_block_write, wbc); 2783 else 2784 return block_write_full_page(page, 2785 ext4_normal_get_block_write, 2786 wbc); 2787 } 2788 2789 static int ext4_normal_writepage(struct page *page, 2790 struct writeback_control *wbc) 2791 { 2792 struct inode *inode = page->mapping->host; 2793 loff_t size = i_size_read(inode); 2794 loff_t len; 2795 2796 J_ASSERT(PageLocked(page)); 2797 if (page->index == size >> PAGE_CACHE_SHIFT) 2798 len = size & ~PAGE_CACHE_MASK; 2799 else 2800 len = PAGE_CACHE_SIZE; 2801 2802 if (page_has_buffers(page)) { 2803 /* if page has buffers it should all be mapped 2804 * and allocated. If there are not buffers attached 2805 * to the page we know the page is dirty but it lost 2806 * buffers. That means that at some moment in time 2807 * after write_begin() / write_end() has been called 2808 * all buffers have been clean and thus they must have been 2809 * written at least once. So they are all mapped and we can 2810 * happily proceed with mapping them and writing the page. 2811 */ 2812 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2813 ext4_bh_unmapped_or_delay)); 2814 } 2815 2816 if (!ext4_journal_current_handle()) 2817 return __ext4_normal_writepage(page, wbc); 2818 2819 redirty_page_for_writepage(wbc, page); 2820 unlock_page(page); 2821 return 0; 2822 } 2823 2824 static int __ext4_journalled_writepage(struct page *page, 2825 struct writeback_control *wbc) 2826 { 2827 struct address_space *mapping = page->mapping; 2828 struct inode *inode = mapping->host; 2829 struct buffer_head *page_bufs; 2830 handle_t *handle = NULL; 2831 int ret = 0; 2832 int err; 2833 2834 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2835 ext4_normal_get_block_write); 2836 if (ret != 0) 2837 goto out_unlock; 2838 2839 page_bufs = page_buffers(page); 2840 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2841 bget_one); 2842 /* As soon as we unlock the page, it can go away, but we have 2843 * references to buffers so we are safe */ 2844 unlock_page(page); 2845 2846 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2847 if (IS_ERR(handle)) { 2848 ret = PTR_ERR(handle); 2849 goto out; 2850 } 2851 2852 ret = walk_page_buffers(handle, page_bufs, 0, 2853 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2854 2855 err = walk_page_buffers(handle, page_bufs, 0, 2856 PAGE_CACHE_SIZE, NULL, write_end_fn); 2857 if (ret == 0) 2858 ret = err; 2859 err = ext4_journal_stop(handle); 2860 if (!ret) 2861 ret = err; 2862 2863 walk_page_buffers(handle, page_bufs, 0, 2864 PAGE_CACHE_SIZE, NULL, bput_one); 2865 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2866 goto out; 2867 2868 out_unlock: 2869 unlock_page(page); 2870 out: 2871 return ret; 2872 } 2873 2874 static int ext4_journalled_writepage(struct page *page, 2875 struct writeback_control *wbc) 2876 { 2877 struct inode *inode = page->mapping->host; 2878 loff_t size = i_size_read(inode); 2879 loff_t len; 2880 2881 J_ASSERT(PageLocked(page)); 2882 if (page->index == size >> PAGE_CACHE_SHIFT) 2883 len = size & ~PAGE_CACHE_MASK; 2884 else 2885 len = PAGE_CACHE_SIZE; 2886 2887 if (page_has_buffers(page)) { 2888 /* if page has buffers it should all be mapped 2889 * and allocated. If there are not buffers attached 2890 * to the page we know the page is dirty but it lost 2891 * buffers. That means that at some moment in time 2892 * after write_begin() / write_end() has been called 2893 * all buffers have been clean and thus they must have been 2894 * written at least once. So they are all mapped and we can 2895 * happily proceed with mapping them and writing the page. 2896 */ 2897 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2898 ext4_bh_unmapped_or_delay)); 2899 } 2900 2901 if (ext4_journal_current_handle()) 2902 goto no_write; 2903 2904 if (PageChecked(page)) { 2905 /* 2906 * It's mmapped pagecache. Add buffers and journal it. There 2907 * doesn't seem much point in redirtying the page here. 2908 */ 2909 ClearPageChecked(page); 2910 return __ext4_journalled_writepage(page, wbc); 2911 } else { 2912 /* 2913 * It may be a page full of checkpoint-mode buffers. We don't 2914 * really know unless we go poke around in the buffer_heads. 2915 * But block_write_full_page will do the right thing. 2916 */ 2917 return block_write_full_page(page, 2918 ext4_normal_get_block_write, 2919 wbc); 2920 } 2921 no_write: 2922 redirty_page_for_writepage(wbc, page); 2923 unlock_page(page); 2924 return 0; 2925 } 2926 2927 static int ext4_readpage(struct file *file, struct page *page) 2928 { 2929 return mpage_readpage(page, ext4_get_block); 2930 } 2931 2932 static int 2933 ext4_readpages(struct file *file, struct address_space *mapping, 2934 struct list_head *pages, unsigned nr_pages) 2935 { 2936 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2937 } 2938 2939 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2940 { 2941 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2942 2943 /* 2944 * If it's a full truncate we just forget about the pending dirtying 2945 */ 2946 if (offset == 0) 2947 ClearPageChecked(page); 2948 2949 jbd2_journal_invalidatepage(journal, page, offset); 2950 } 2951 2952 static int ext4_releasepage(struct page *page, gfp_t wait) 2953 { 2954 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2955 2956 WARN_ON(PageChecked(page)); 2957 if (!page_has_buffers(page)) 2958 return 0; 2959 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2960 } 2961 2962 /* 2963 * If the O_DIRECT write will extend the file then add this inode to the 2964 * orphan list. So recovery will truncate it back to the original size 2965 * if the machine crashes during the write. 2966 * 2967 * If the O_DIRECT write is intantiating holes inside i_size and the machine 2968 * crashes then stale disk data _may_ be exposed inside the file. But current 2969 * VFS code falls back into buffered path in that case so we are safe. 2970 */ 2971 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2972 const struct iovec *iov, loff_t offset, 2973 unsigned long nr_segs) 2974 { 2975 struct file *file = iocb->ki_filp; 2976 struct inode *inode = file->f_mapping->host; 2977 struct ext4_inode_info *ei = EXT4_I(inode); 2978 handle_t *handle; 2979 ssize_t ret; 2980 int orphan = 0; 2981 size_t count = iov_length(iov, nr_segs); 2982 2983 if (rw == WRITE) { 2984 loff_t final_size = offset + count; 2985 2986 if (final_size > inode->i_size) { 2987 /* Credits for sb + inode write */ 2988 handle = ext4_journal_start(inode, 2); 2989 if (IS_ERR(handle)) { 2990 ret = PTR_ERR(handle); 2991 goto out; 2992 } 2993 ret = ext4_orphan_add(handle, inode); 2994 if (ret) { 2995 ext4_journal_stop(handle); 2996 goto out; 2997 } 2998 orphan = 1; 2999 ei->i_disksize = inode->i_size; 3000 ext4_journal_stop(handle); 3001 } 3002 } 3003 3004 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3005 offset, nr_segs, 3006 ext4_get_block, NULL); 3007 3008 if (orphan) { 3009 int err; 3010 3011 /* Credits for sb + inode write */ 3012 handle = ext4_journal_start(inode, 2); 3013 if (IS_ERR(handle)) { 3014 /* This is really bad luck. We've written the data 3015 * but cannot extend i_size. Bail out and pretend 3016 * the write failed... */ 3017 ret = PTR_ERR(handle); 3018 goto out; 3019 } 3020 if (inode->i_nlink) 3021 ext4_orphan_del(handle, inode); 3022 if (ret > 0) { 3023 loff_t end = offset + ret; 3024 if (end > inode->i_size) { 3025 ei->i_disksize = end; 3026 i_size_write(inode, end); 3027 /* 3028 * We're going to return a positive `ret' 3029 * here due to non-zero-length I/O, so there's 3030 * no way of reporting error returns from 3031 * ext4_mark_inode_dirty() to userspace. So 3032 * ignore it. 3033 */ 3034 ext4_mark_inode_dirty(handle, inode); 3035 } 3036 } 3037 err = ext4_journal_stop(handle); 3038 if (ret == 0) 3039 ret = err; 3040 } 3041 out: 3042 return ret; 3043 } 3044 3045 /* 3046 * Pages can be marked dirty completely asynchronously from ext4's journalling 3047 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3048 * much here because ->set_page_dirty is called under VFS locks. The page is 3049 * not necessarily locked. 3050 * 3051 * We cannot just dirty the page and leave attached buffers clean, because the 3052 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3053 * or jbddirty because all the journalling code will explode. 3054 * 3055 * So what we do is to mark the page "pending dirty" and next time writepage 3056 * is called, propagate that into the buffers appropriately. 3057 */ 3058 static int ext4_journalled_set_page_dirty(struct page *page) 3059 { 3060 SetPageChecked(page); 3061 return __set_page_dirty_nobuffers(page); 3062 } 3063 3064 static const struct address_space_operations ext4_ordered_aops = { 3065 .readpage = ext4_readpage, 3066 .readpages = ext4_readpages, 3067 .writepage = ext4_normal_writepage, 3068 .sync_page = block_sync_page, 3069 .write_begin = ext4_write_begin, 3070 .write_end = ext4_ordered_write_end, 3071 .bmap = ext4_bmap, 3072 .invalidatepage = ext4_invalidatepage, 3073 .releasepage = ext4_releasepage, 3074 .direct_IO = ext4_direct_IO, 3075 .migratepage = buffer_migrate_page, 3076 .is_partially_uptodate = block_is_partially_uptodate, 3077 }; 3078 3079 static const struct address_space_operations ext4_writeback_aops = { 3080 .readpage = ext4_readpage, 3081 .readpages = ext4_readpages, 3082 .writepage = ext4_normal_writepage, 3083 .sync_page = block_sync_page, 3084 .write_begin = ext4_write_begin, 3085 .write_end = ext4_writeback_write_end, 3086 .bmap = ext4_bmap, 3087 .invalidatepage = ext4_invalidatepage, 3088 .releasepage = ext4_releasepage, 3089 .direct_IO = ext4_direct_IO, 3090 .migratepage = buffer_migrate_page, 3091 .is_partially_uptodate = block_is_partially_uptodate, 3092 }; 3093 3094 static const struct address_space_operations ext4_journalled_aops = { 3095 .readpage = ext4_readpage, 3096 .readpages = ext4_readpages, 3097 .writepage = ext4_journalled_writepage, 3098 .sync_page = block_sync_page, 3099 .write_begin = ext4_write_begin, 3100 .write_end = ext4_journalled_write_end, 3101 .set_page_dirty = ext4_journalled_set_page_dirty, 3102 .bmap = ext4_bmap, 3103 .invalidatepage = ext4_invalidatepage, 3104 .releasepage = ext4_releasepage, 3105 .is_partially_uptodate = block_is_partially_uptodate, 3106 }; 3107 3108 static const struct address_space_operations ext4_da_aops = { 3109 .readpage = ext4_readpage, 3110 .readpages = ext4_readpages, 3111 .writepage = ext4_da_writepage, 3112 .writepages = ext4_da_writepages, 3113 .sync_page = block_sync_page, 3114 .write_begin = ext4_da_write_begin, 3115 .write_end = ext4_da_write_end, 3116 .bmap = ext4_bmap, 3117 .invalidatepage = ext4_da_invalidatepage, 3118 .releasepage = ext4_releasepage, 3119 .direct_IO = ext4_direct_IO, 3120 .migratepage = buffer_migrate_page, 3121 .is_partially_uptodate = block_is_partially_uptodate, 3122 }; 3123 3124 void ext4_set_aops(struct inode *inode) 3125 { 3126 if (ext4_should_order_data(inode) && 3127 test_opt(inode->i_sb, DELALLOC)) 3128 inode->i_mapping->a_ops = &ext4_da_aops; 3129 else if (ext4_should_order_data(inode)) 3130 inode->i_mapping->a_ops = &ext4_ordered_aops; 3131 else if (ext4_should_writeback_data(inode) && 3132 test_opt(inode->i_sb, DELALLOC)) 3133 inode->i_mapping->a_ops = &ext4_da_aops; 3134 else if (ext4_should_writeback_data(inode)) 3135 inode->i_mapping->a_ops = &ext4_writeback_aops; 3136 else 3137 inode->i_mapping->a_ops = &ext4_journalled_aops; 3138 } 3139 3140 /* 3141 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3142 * up to the end of the block which corresponds to `from'. 3143 * This required during truncate. We need to physically zero the tail end 3144 * of that block so it doesn't yield old data if the file is later grown. 3145 */ 3146 int ext4_block_truncate_page(handle_t *handle, 3147 struct address_space *mapping, loff_t from) 3148 { 3149 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3150 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3151 unsigned blocksize, length, pos; 3152 ext4_lblk_t iblock; 3153 struct inode *inode = mapping->host; 3154 struct buffer_head *bh; 3155 struct page *page; 3156 int err = 0; 3157 3158 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3159 if (!page) 3160 return -EINVAL; 3161 3162 blocksize = inode->i_sb->s_blocksize; 3163 length = blocksize - (offset & (blocksize - 1)); 3164 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3165 3166 /* 3167 * For "nobh" option, we can only work if we don't need to 3168 * read-in the page - otherwise we create buffers to do the IO. 3169 */ 3170 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3171 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3172 zero_user(page, offset, length); 3173 set_page_dirty(page); 3174 goto unlock; 3175 } 3176 3177 if (!page_has_buffers(page)) 3178 create_empty_buffers(page, blocksize, 0); 3179 3180 /* Find the buffer that contains "offset" */ 3181 bh = page_buffers(page); 3182 pos = blocksize; 3183 while (offset >= pos) { 3184 bh = bh->b_this_page; 3185 iblock++; 3186 pos += blocksize; 3187 } 3188 3189 err = 0; 3190 if (buffer_freed(bh)) { 3191 BUFFER_TRACE(bh, "freed: skip"); 3192 goto unlock; 3193 } 3194 3195 if (!buffer_mapped(bh)) { 3196 BUFFER_TRACE(bh, "unmapped"); 3197 ext4_get_block(inode, iblock, bh, 0); 3198 /* unmapped? It's a hole - nothing to do */ 3199 if (!buffer_mapped(bh)) { 3200 BUFFER_TRACE(bh, "still unmapped"); 3201 goto unlock; 3202 } 3203 } 3204 3205 /* Ok, it's mapped. Make sure it's up-to-date */ 3206 if (PageUptodate(page)) 3207 set_buffer_uptodate(bh); 3208 3209 if (!buffer_uptodate(bh)) { 3210 err = -EIO; 3211 ll_rw_block(READ, 1, &bh); 3212 wait_on_buffer(bh); 3213 /* Uhhuh. Read error. Complain and punt. */ 3214 if (!buffer_uptodate(bh)) 3215 goto unlock; 3216 } 3217 3218 if (ext4_should_journal_data(inode)) { 3219 BUFFER_TRACE(bh, "get write access"); 3220 err = ext4_journal_get_write_access(handle, bh); 3221 if (err) 3222 goto unlock; 3223 } 3224 3225 zero_user(page, offset, length); 3226 3227 BUFFER_TRACE(bh, "zeroed end of block"); 3228 3229 err = 0; 3230 if (ext4_should_journal_data(inode)) { 3231 err = ext4_journal_dirty_metadata(handle, bh); 3232 } else { 3233 if (ext4_should_order_data(inode)) 3234 err = ext4_jbd2_file_inode(handle, inode); 3235 mark_buffer_dirty(bh); 3236 } 3237 3238 unlock: 3239 unlock_page(page); 3240 page_cache_release(page); 3241 return err; 3242 } 3243 3244 /* 3245 * Probably it should be a library function... search for first non-zero word 3246 * or memcmp with zero_page, whatever is better for particular architecture. 3247 * Linus? 3248 */ 3249 static inline int all_zeroes(__le32 *p, __le32 *q) 3250 { 3251 while (p < q) 3252 if (*p++) 3253 return 0; 3254 return 1; 3255 } 3256 3257 /** 3258 * ext4_find_shared - find the indirect blocks for partial truncation. 3259 * @inode: inode in question 3260 * @depth: depth of the affected branch 3261 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3262 * @chain: place to store the pointers to partial indirect blocks 3263 * @top: place to the (detached) top of branch 3264 * 3265 * This is a helper function used by ext4_truncate(). 3266 * 3267 * When we do truncate() we may have to clean the ends of several 3268 * indirect blocks but leave the blocks themselves alive. Block is 3269 * partially truncated if some data below the new i_size is refered 3270 * from it (and it is on the path to the first completely truncated 3271 * data block, indeed). We have to free the top of that path along 3272 * with everything to the right of the path. Since no allocation 3273 * past the truncation point is possible until ext4_truncate() 3274 * finishes, we may safely do the latter, but top of branch may 3275 * require special attention - pageout below the truncation point 3276 * might try to populate it. 3277 * 3278 * We atomically detach the top of branch from the tree, store the 3279 * block number of its root in *@top, pointers to buffer_heads of 3280 * partially truncated blocks - in @chain[].bh and pointers to 3281 * their last elements that should not be removed - in 3282 * @chain[].p. Return value is the pointer to last filled element 3283 * of @chain. 3284 * 3285 * The work left to caller to do the actual freeing of subtrees: 3286 * a) free the subtree starting from *@top 3287 * b) free the subtrees whose roots are stored in 3288 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3289 * c) free the subtrees growing from the inode past the @chain[0]. 3290 * (no partially truncated stuff there). */ 3291 3292 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3293 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3294 { 3295 Indirect *partial, *p; 3296 int k, err; 3297 3298 *top = 0; 3299 /* Make k index the deepest non-null offest + 1 */ 3300 for (k = depth; k > 1 && !offsets[k-1]; k--) 3301 ; 3302 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3303 /* Writer: pointers */ 3304 if (!partial) 3305 partial = chain + k-1; 3306 /* 3307 * If the branch acquired continuation since we've looked at it - 3308 * fine, it should all survive and (new) top doesn't belong to us. 3309 */ 3310 if (!partial->key && *partial->p) 3311 /* Writer: end */ 3312 goto no_top; 3313 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3314 ; 3315 /* 3316 * OK, we've found the last block that must survive. The rest of our 3317 * branch should be detached before unlocking. However, if that rest 3318 * of branch is all ours and does not grow immediately from the inode 3319 * it's easier to cheat and just decrement partial->p. 3320 */ 3321 if (p == chain + k - 1 && p > chain) { 3322 p->p--; 3323 } else { 3324 *top = *p->p; 3325 /* Nope, don't do this in ext4. Must leave the tree intact */ 3326 #if 0 3327 *p->p = 0; 3328 #endif 3329 } 3330 /* Writer: end */ 3331 3332 while (partial > p) { 3333 brelse(partial->bh); 3334 partial--; 3335 } 3336 no_top: 3337 return partial; 3338 } 3339 3340 /* 3341 * Zero a number of block pointers in either an inode or an indirect block. 3342 * If we restart the transaction we must again get write access to the 3343 * indirect block for further modification. 3344 * 3345 * We release `count' blocks on disk, but (last - first) may be greater 3346 * than `count' because there can be holes in there. 3347 */ 3348 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3349 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3350 unsigned long count, __le32 *first, __le32 *last) 3351 { 3352 __le32 *p; 3353 if (try_to_extend_transaction(handle, inode)) { 3354 if (bh) { 3355 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3356 ext4_journal_dirty_metadata(handle, bh); 3357 } 3358 ext4_mark_inode_dirty(handle, inode); 3359 ext4_journal_test_restart(handle, inode); 3360 if (bh) { 3361 BUFFER_TRACE(bh, "retaking write access"); 3362 ext4_journal_get_write_access(handle, bh); 3363 } 3364 } 3365 3366 /* 3367 * Any buffers which are on the journal will be in memory. We find 3368 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3369 * on them. We've already detached each block from the file, so 3370 * bforget() in jbd2_journal_forget() should be safe. 3371 * 3372 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3373 */ 3374 for (p = first; p < last; p++) { 3375 u32 nr = le32_to_cpu(*p); 3376 if (nr) { 3377 struct buffer_head *tbh; 3378 3379 *p = 0; 3380 tbh = sb_find_get_block(inode->i_sb, nr); 3381 ext4_forget(handle, 0, inode, tbh, nr); 3382 } 3383 } 3384 3385 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3386 } 3387 3388 /** 3389 * ext4_free_data - free a list of data blocks 3390 * @handle: handle for this transaction 3391 * @inode: inode we are dealing with 3392 * @this_bh: indirect buffer_head which contains *@first and *@last 3393 * @first: array of block numbers 3394 * @last: points immediately past the end of array 3395 * 3396 * We are freeing all blocks refered from that array (numbers are stored as 3397 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3398 * 3399 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3400 * blocks are contiguous then releasing them at one time will only affect one 3401 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3402 * actually use a lot of journal space. 3403 * 3404 * @this_bh will be %NULL if @first and @last point into the inode's direct 3405 * block pointers. 3406 */ 3407 static void ext4_free_data(handle_t *handle, struct inode *inode, 3408 struct buffer_head *this_bh, 3409 __le32 *first, __le32 *last) 3410 { 3411 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3412 unsigned long count = 0; /* Number of blocks in the run */ 3413 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3414 corresponding to 3415 block_to_free */ 3416 ext4_fsblk_t nr; /* Current block # */ 3417 __le32 *p; /* Pointer into inode/ind 3418 for current block */ 3419 int err; 3420 3421 if (this_bh) { /* For indirect block */ 3422 BUFFER_TRACE(this_bh, "get_write_access"); 3423 err = ext4_journal_get_write_access(handle, this_bh); 3424 /* Important: if we can't update the indirect pointers 3425 * to the blocks, we can't free them. */ 3426 if (err) 3427 return; 3428 } 3429 3430 for (p = first; p < last; p++) { 3431 nr = le32_to_cpu(*p); 3432 if (nr) { 3433 /* accumulate blocks to free if they're contiguous */ 3434 if (count == 0) { 3435 block_to_free = nr; 3436 block_to_free_p = p; 3437 count = 1; 3438 } else if (nr == block_to_free + count) { 3439 count++; 3440 } else { 3441 ext4_clear_blocks(handle, inode, this_bh, 3442 block_to_free, 3443 count, block_to_free_p, p); 3444 block_to_free = nr; 3445 block_to_free_p = p; 3446 count = 1; 3447 } 3448 } 3449 } 3450 3451 if (count > 0) 3452 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3453 count, block_to_free_p, p); 3454 3455 if (this_bh) { 3456 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3457 3458 /* 3459 * The buffer head should have an attached journal head at this 3460 * point. However, if the data is corrupted and an indirect 3461 * block pointed to itself, it would have been detached when 3462 * the block was cleared. Check for this instead of OOPSing. 3463 */ 3464 if (bh2jh(this_bh)) 3465 ext4_journal_dirty_metadata(handle, this_bh); 3466 else 3467 ext4_error(inode->i_sb, __func__, 3468 "circular indirect block detected, " 3469 "inode=%lu, block=%llu", 3470 inode->i_ino, 3471 (unsigned long long) this_bh->b_blocknr); 3472 } 3473 } 3474 3475 /** 3476 * ext4_free_branches - free an array of branches 3477 * @handle: JBD handle for this transaction 3478 * @inode: inode we are dealing with 3479 * @parent_bh: the buffer_head which contains *@first and *@last 3480 * @first: array of block numbers 3481 * @last: pointer immediately past the end of array 3482 * @depth: depth of the branches to free 3483 * 3484 * We are freeing all blocks refered from these branches (numbers are 3485 * stored as little-endian 32-bit) and updating @inode->i_blocks 3486 * appropriately. 3487 */ 3488 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3489 struct buffer_head *parent_bh, 3490 __le32 *first, __le32 *last, int depth) 3491 { 3492 ext4_fsblk_t nr; 3493 __le32 *p; 3494 3495 if (is_handle_aborted(handle)) 3496 return; 3497 3498 if (depth--) { 3499 struct buffer_head *bh; 3500 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3501 p = last; 3502 while (--p >= first) { 3503 nr = le32_to_cpu(*p); 3504 if (!nr) 3505 continue; /* A hole */ 3506 3507 /* Go read the buffer for the next level down */ 3508 bh = sb_bread(inode->i_sb, nr); 3509 3510 /* 3511 * A read failure? Report error and clear slot 3512 * (should be rare). 3513 */ 3514 if (!bh) { 3515 ext4_error(inode->i_sb, "ext4_free_branches", 3516 "Read failure, inode=%lu, block=%llu", 3517 inode->i_ino, nr); 3518 continue; 3519 } 3520 3521 /* This zaps the entire block. Bottom up. */ 3522 BUFFER_TRACE(bh, "free child branches"); 3523 ext4_free_branches(handle, inode, bh, 3524 (__le32 *) bh->b_data, 3525 (__le32 *) bh->b_data + addr_per_block, 3526 depth); 3527 3528 /* 3529 * We've probably journalled the indirect block several 3530 * times during the truncate. But it's no longer 3531 * needed and we now drop it from the transaction via 3532 * jbd2_journal_revoke(). 3533 * 3534 * That's easy if it's exclusively part of this 3535 * transaction. But if it's part of the committing 3536 * transaction then jbd2_journal_forget() will simply 3537 * brelse() it. That means that if the underlying 3538 * block is reallocated in ext4_get_block(), 3539 * unmap_underlying_metadata() will find this block 3540 * and will try to get rid of it. damn, damn. 3541 * 3542 * If this block has already been committed to the 3543 * journal, a revoke record will be written. And 3544 * revoke records must be emitted *before* clearing 3545 * this block's bit in the bitmaps. 3546 */ 3547 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3548 3549 /* 3550 * Everything below this this pointer has been 3551 * released. Now let this top-of-subtree go. 3552 * 3553 * We want the freeing of this indirect block to be 3554 * atomic in the journal with the updating of the 3555 * bitmap block which owns it. So make some room in 3556 * the journal. 3557 * 3558 * We zero the parent pointer *after* freeing its 3559 * pointee in the bitmaps, so if extend_transaction() 3560 * for some reason fails to put the bitmap changes and 3561 * the release into the same transaction, recovery 3562 * will merely complain about releasing a free block, 3563 * rather than leaking blocks. 3564 */ 3565 if (is_handle_aborted(handle)) 3566 return; 3567 if (try_to_extend_transaction(handle, inode)) { 3568 ext4_mark_inode_dirty(handle, inode); 3569 ext4_journal_test_restart(handle, inode); 3570 } 3571 3572 ext4_free_blocks(handle, inode, nr, 1, 1); 3573 3574 if (parent_bh) { 3575 /* 3576 * The block which we have just freed is 3577 * pointed to by an indirect block: journal it 3578 */ 3579 BUFFER_TRACE(parent_bh, "get_write_access"); 3580 if (!ext4_journal_get_write_access(handle, 3581 parent_bh)){ 3582 *p = 0; 3583 BUFFER_TRACE(parent_bh, 3584 "call ext4_journal_dirty_metadata"); 3585 ext4_journal_dirty_metadata(handle, 3586 parent_bh); 3587 } 3588 } 3589 } 3590 } else { 3591 /* We have reached the bottom of the tree. */ 3592 BUFFER_TRACE(parent_bh, "free data blocks"); 3593 ext4_free_data(handle, inode, parent_bh, first, last); 3594 } 3595 } 3596 3597 int ext4_can_truncate(struct inode *inode) 3598 { 3599 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3600 return 0; 3601 if (S_ISREG(inode->i_mode)) 3602 return 1; 3603 if (S_ISDIR(inode->i_mode)) 3604 return 1; 3605 if (S_ISLNK(inode->i_mode)) 3606 return !ext4_inode_is_fast_symlink(inode); 3607 return 0; 3608 } 3609 3610 /* 3611 * ext4_truncate() 3612 * 3613 * We block out ext4_get_block() block instantiations across the entire 3614 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3615 * simultaneously on behalf of the same inode. 3616 * 3617 * As we work through the truncate and commmit bits of it to the journal there 3618 * is one core, guiding principle: the file's tree must always be consistent on 3619 * disk. We must be able to restart the truncate after a crash. 3620 * 3621 * The file's tree may be transiently inconsistent in memory (although it 3622 * probably isn't), but whenever we close off and commit a journal transaction, 3623 * the contents of (the filesystem + the journal) must be consistent and 3624 * restartable. It's pretty simple, really: bottom up, right to left (although 3625 * left-to-right works OK too). 3626 * 3627 * Note that at recovery time, journal replay occurs *before* the restart of 3628 * truncate against the orphan inode list. 3629 * 3630 * The committed inode has the new, desired i_size (which is the same as 3631 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3632 * that this inode's truncate did not complete and it will again call 3633 * ext4_truncate() to have another go. So there will be instantiated blocks 3634 * to the right of the truncation point in a crashed ext4 filesystem. But 3635 * that's fine - as long as they are linked from the inode, the post-crash 3636 * ext4_truncate() run will find them and release them. 3637 */ 3638 void ext4_truncate(struct inode *inode) 3639 { 3640 handle_t *handle; 3641 struct ext4_inode_info *ei = EXT4_I(inode); 3642 __le32 *i_data = ei->i_data; 3643 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3644 struct address_space *mapping = inode->i_mapping; 3645 ext4_lblk_t offsets[4]; 3646 Indirect chain[4]; 3647 Indirect *partial; 3648 __le32 nr = 0; 3649 int n; 3650 ext4_lblk_t last_block; 3651 unsigned blocksize = inode->i_sb->s_blocksize; 3652 3653 if (!ext4_can_truncate(inode)) 3654 return; 3655 3656 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3657 ext4_ext_truncate(inode); 3658 return; 3659 } 3660 3661 handle = start_transaction(inode); 3662 if (IS_ERR(handle)) 3663 return; /* AKPM: return what? */ 3664 3665 last_block = (inode->i_size + blocksize-1) 3666 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3667 3668 if (inode->i_size & (blocksize - 1)) 3669 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3670 goto out_stop; 3671 3672 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3673 if (n == 0) 3674 goto out_stop; /* error */ 3675 3676 /* 3677 * OK. This truncate is going to happen. We add the inode to the 3678 * orphan list, so that if this truncate spans multiple transactions, 3679 * and we crash, we will resume the truncate when the filesystem 3680 * recovers. It also marks the inode dirty, to catch the new size. 3681 * 3682 * Implication: the file must always be in a sane, consistent 3683 * truncatable state while each transaction commits. 3684 */ 3685 if (ext4_orphan_add(handle, inode)) 3686 goto out_stop; 3687 3688 /* 3689 * From here we block out all ext4_get_block() callers who want to 3690 * modify the block allocation tree. 3691 */ 3692 down_write(&ei->i_data_sem); 3693 3694 ext4_discard_reservation(inode); 3695 3696 /* 3697 * The orphan list entry will now protect us from any crash which 3698 * occurs before the truncate completes, so it is now safe to propagate 3699 * the new, shorter inode size (held for now in i_size) into the 3700 * on-disk inode. We do this via i_disksize, which is the value which 3701 * ext4 *really* writes onto the disk inode. 3702 */ 3703 ei->i_disksize = inode->i_size; 3704 3705 if (n == 1) { /* direct blocks */ 3706 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3707 i_data + EXT4_NDIR_BLOCKS); 3708 goto do_indirects; 3709 } 3710 3711 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3712 /* Kill the top of shared branch (not detached) */ 3713 if (nr) { 3714 if (partial == chain) { 3715 /* Shared branch grows from the inode */ 3716 ext4_free_branches(handle, inode, NULL, 3717 &nr, &nr+1, (chain+n-1) - partial); 3718 *partial->p = 0; 3719 /* 3720 * We mark the inode dirty prior to restart, 3721 * and prior to stop. No need for it here. 3722 */ 3723 } else { 3724 /* Shared branch grows from an indirect block */ 3725 BUFFER_TRACE(partial->bh, "get_write_access"); 3726 ext4_free_branches(handle, inode, partial->bh, 3727 partial->p, 3728 partial->p+1, (chain+n-1) - partial); 3729 } 3730 } 3731 /* Clear the ends of indirect blocks on the shared branch */ 3732 while (partial > chain) { 3733 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3734 (__le32*)partial->bh->b_data+addr_per_block, 3735 (chain+n-1) - partial); 3736 BUFFER_TRACE(partial->bh, "call brelse"); 3737 brelse (partial->bh); 3738 partial--; 3739 } 3740 do_indirects: 3741 /* Kill the remaining (whole) subtrees */ 3742 switch (offsets[0]) { 3743 default: 3744 nr = i_data[EXT4_IND_BLOCK]; 3745 if (nr) { 3746 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3747 i_data[EXT4_IND_BLOCK] = 0; 3748 } 3749 case EXT4_IND_BLOCK: 3750 nr = i_data[EXT4_DIND_BLOCK]; 3751 if (nr) { 3752 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3753 i_data[EXT4_DIND_BLOCK] = 0; 3754 } 3755 case EXT4_DIND_BLOCK: 3756 nr = i_data[EXT4_TIND_BLOCK]; 3757 if (nr) { 3758 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3759 i_data[EXT4_TIND_BLOCK] = 0; 3760 } 3761 case EXT4_TIND_BLOCK: 3762 ; 3763 } 3764 3765 up_write(&ei->i_data_sem); 3766 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3767 ext4_mark_inode_dirty(handle, inode); 3768 3769 /* 3770 * In a multi-transaction truncate, we only make the final transaction 3771 * synchronous 3772 */ 3773 if (IS_SYNC(inode)) 3774 handle->h_sync = 1; 3775 out_stop: 3776 /* 3777 * If this was a simple ftruncate(), and the file will remain alive 3778 * then we need to clear up the orphan record which we created above. 3779 * However, if this was a real unlink then we were called by 3780 * ext4_delete_inode(), and we allow that function to clean up the 3781 * orphan info for us. 3782 */ 3783 if (inode->i_nlink) 3784 ext4_orphan_del(handle, inode); 3785 3786 ext4_journal_stop(handle); 3787 } 3788 3789 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 3790 unsigned long ino, struct ext4_iloc *iloc) 3791 { 3792 ext4_group_t block_group; 3793 unsigned long offset; 3794 ext4_fsblk_t block; 3795 struct ext4_group_desc *gdp; 3796 3797 if (!ext4_valid_inum(sb, ino)) { 3798 /* 3799 * This error is already checked for in namei.c unless we are 3800 * looking at an NFS filehandle, in which case no error 3801 * report is needed 3802 */ 3803 return 0; 3804 } 3805 3806 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 3807 gdp = ext4_get_group_desc(sb, block_group, NULL); 3808 if (!gdp) 3809 return 0; 3810 3811 /* 3812 * Figure out the offset within the block group inode table 3813 */ 3814 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 3815 EXT4_INODE_SIZE(sb); 3816 block = ext4_inode_table(sb, gdp) + 3817 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 3818 3819 iloc->block_group = block_group; 3820 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 3821 return block; 3822 } 3823 3824 /* 3825 * ext4_get_inode_loc returns with an extra refcount against the inode's 3826 * underlying buffer_head on success. If 'in_mem' is true, we have all 3827 * data in memory that is needed to recreate the on-disk version of this 3828 * inode. 3829 */ 3830 static int __ext4_get_inode_loc(struct inode *inode, 3831 struct ext4_iloc *iloc, int in_mem) 3832 { 3833 ext4_fsblk_t block; 3834 struct buffer_head *bh; 3835 3836 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 3837 if (!block) 3838 return -EIO; 3839 3840 bh = sb_getblk(inode->i_sb, block); 3841 if (!bh) { 3842 ext4_error (inode->i_sb, "ext4_get_inode_loc", 3843 "unable to read inode block - " 3844 "inode=%lu, block=%llu", 3845 inode->i_ino, block); 3846 return -EIO; 3847 } 3848 if (!buffer_uptodate(bh)) { 3849 lock_buffer(bh); 3850 3851 /* 3852 * If the buffer has the write error flag, we have failed 3853 * to write out another inode in the same block. In this 3854 * case, we don't have to read the block because we may 3855 * read the old inode data successfully. 3856 */ 3857 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3858 set_buffer_uptodate(bh); 3859 3860 if (buffer_uptodate(bh)) { 3861 /* someone brought it uptodate while we waited */ 3862 unlock_buffer(bh); 3863 goto has_buffer; 3864 } 3865 3866 /* 3867 * If we have all information of the inode in memory and this 3868 * is the only valid inode in the block, we need not read the 3869 * block. 3870 */ 3871 if (in_mem) { 3872 struct buffer_head *bitmap_bh; 3873 struct ext4_group_desc *desc; 3874 int inodes_per_buffer; 3875 int inode_offset, i; 3876 ext4_group_t block_group; 3877 int start; 3878 3879 block_group = (inode->i_ino - 1) / 3880 EXT4_INODES_PER_GROUP(inode->i_sb); 3881 inodes_per_buffer = bh->b_size / 3882 EXT4_INODE_SIZE(inode->i_sb); 3883 inode_offset = ((inode->i_ino - 1) % 3884 EXT4_INODES_PER_GROUP(inode->i_sb)); 3885 start = inode_offset & ~(inodes_per_buffer - 1); 3886 3887 /* Is the inode bitmap in cache? */ 3888 desc = ext4_get_group_desc(inode->i_sb, 3889 block_group, NULL); 3890 if (!desc) 3891 goto make_io; 3892 3893 bitmap_bh = sb_getblk(inode->i_sb, 3894 ext4_inode_bitmap(inode->i_sb, desc)); 3895 if (!bitmap_bh) 3896 goto make_io; 3897 3898 /* 3899 * If the inode bitmap isn't in cache then the 3900 * optimisation may end up performing two reads instead 3901 * of one, so skip it. 3902 */ 3903 if (!buffer_uptodate(bitmap_bh)) { 3904 brelse(bitmap_bh); 3905 goto make_io; 3906 } 3907 for (i = start; i < start + inodes_per_buffer; i++) { 3908 if (i == inode_offset) 3909 continue; 3910 if (ext4_test_bit(i, bitmap_bh->b_data)) 3911 break; 3912 } 3913 brelse(bitmap_bh); 3914 if (i == start + inodes_per_buffer) { 3915 /* all other inodes are free, so skip I/O */ 3916 memset(bh->b_data, 0, bh->b_size); 3917 set_buffer_uptodate(bh); 3918 unlock_buffer(bh); 3919 goto has_buffer; 3920 } 3921 } 3922 3923 make_io: 3924 /* 3925 * There are other valid inodes in the buffer, this inode 3926 * has in-inode xattrs, or we don't have this inode in memory. 3927 * Read the block from disk. 3928 */ 3929 get_bh(bh); 3930 bh->b_end_io = end_buffer_read_sync; 3931 submit_bh(READ_META, bh); 3932 wait_on_buffer(bh); 3933 if (!buffer_uptodate(bh)) { 3934 ext4_error(inode->i_sb, "ext4_get_inode_loc", 3935 "unable to read inode block - " 3936 "inode=%lu, block=%llu", 3937 inode->i_ino, block); 3938 brelse(bh); 3939 return -EIO; 3940 } 3941 } 3942 has_buffer: 3943 iloc->bh = bh; 3944 return 0; 3945 } 3946 3947 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3948 { 3949 /* We have all inode data except xattrs in memory here. */ 3950 return __ext4_get_inode_loc(inode, iloc, 3951 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3952 } 3953 3954 void ext4_set_inode_flags(struct inode *inode) 3955 { 3956 unsigned int flags = EXT4_I(inode)->i_flags; 3957 3958 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3959 if (flags & EXT4_SYNC_FL) 3960 inode->i_flags |= S_SYNC; 3961 if (flags & EXT4_APPEND_FL) 3962 inode->i_flags |= S_APPEND; 3963 if (flags & EXT4_IMMUTABLE_FL) 3964 inode->i_flags |= S_IMMUTABLE; 3965 if (flags & EXT4_NOATIME_FL) 3966 inode->i_flags |= S_NOATIME; 3967 if (flags & EXT4_DIRSYNC_FL) 3968 inode->i_flags |= S_DIRSYNC; 3969 } 3970 3971 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3972 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3973 { 3974 unsigned int flags = ei->vfs_inode.i_flags; 3975 3976 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3977 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 3978 if (flags & S_SYNC) 3979 ei->i_flags |= EXT4_SYNC_FL; 3980 if (flags & S_APPEND) 3981 ei->i_flags |= EXT4_APPEND_FL; 3982 if (flags & S_IMMUTABLE) 3983 ei->i_flags |= EXT4_IMMUTABLE_FL; 3984 if (flags & S_NOATIME) 3985 ei->i_flags |= EXT4_NOATIME_FL; 3986 if (flags & S_DIRSYNC) 3987 ei->i_flags |= EXT4_DIRSYNC_FL; 3988 } 3989 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3990 struct ext4_inode_info *ei) 3991 { 3992 blkcnt_t i_blocks ; 3993 struct inode *inode = &(ei->vfs_inode); 3994 struct super_block *sb = inode->i_sb; 3995 3996 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3997 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3998 /* we are using combined 48 bit field */ 3999 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4000 le32_to_cpu(raw_inode->i_blocks_lo); 4001 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4002 /* i_blocks represent file system block size */ 4003 return i_blocks << (inode->i_blkbits - 9); 4004 } else { 4005 return i_blocks; 4006 } 4007 } else { 4008 return le32_to_cpu(raw_inode->i_blocks_lo); 4009 } 4010 } 4011 4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4013 { 4014 struct ext4_iloc iloc; 4015 struct ext4_inode *raw_inode; 4016 struct ext4_inode_info *ei; 4017 struct buffer_head *bh; 4018 struct inode *inode; 4019 long ret; 4020 int block; 4021 4022 inode = iget_locked(sb, ino); 4023 if (!inode) 4024 return ERR_PTR(-ENOMEM); 4025 if (!(inode->i_state & I_NEW)) 4026 return inode; 4027 4028 ei = EXT4_I(inode); 4029 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 4030 ei->i_acl = EXT4_ACL_NOT_CACHED; 4031 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 4032 #endif 4033 ei->i_block_alloc_info = NULL; 4034 4035 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4036 if (ret < 0) 4037 goto bad_inode; 4038 bh = iloc.bh; 4039 raw_inode = ext4_raw_inode(&iloc); 4040 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4041 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4042 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4043 if (!(test_opt(inode->i_sb, NO_UID32))) { 4044 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4045 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4046 } 4047 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4048 4049 ei->i_state = 0; 4050 ei->i_dir_start_lookup = 0; 4051 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4052 /* We now have enough fields to check if the inode was active or not. 4053 * This is needed because nfsd might try to access dead inodes 4054 * the test is that same one that e2fsck uses 4055 * NeilBrown 1999oct15 4056 */ 4057 if (inode->i_nlink == 0) { 4058 if (inode->i_mode == 0 || 4059 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4060 /* this inode is deleted */ 4061 brelse(bh); 4062 ret = -ESTALE; 4063 goto bad_inode; 4064 } 4065 /* The only unlinked inodes we let through here have 4066 * valid i_mode and are being read by the orphan 4067 * recovery code: that's fine, we're about to complete 4068 * the process of deleting those. */ 4069 } 4070 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4071 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4072 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4073 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4074 cpu_to_le32(EXT4_OS_HURD)) { 4075 ei->i_file_acl |= 4076 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4077 } 4078 inode->i_size = ext4_isize(raw_inode); 4079 ei->i_disksize = inode->i_size; 4080 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4081 ei->i_block_group = iloc.block_group; 4082 /* 4083 * NOTE! The in-memory inode i_data array is in little-endian order 4084 * even on big-endian machines: we do NOT byteswap the block numbers! 4085 */ 4086 for (block = 0; block < EXT4_N_BLOCKS; block++) 4087 ei->i_data[block] = raw_inode->i_block[block]; 4088 INIT_LIST_HEAD(&ei->i_orphan); 4089 4090 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4091 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4092 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4093 EXT4_INODE_SIZE(inode->i_sb)) { 4094 brelse(bh); 4095 ret = -EIO; 4096 goto bad_inode; 4097 } 4098 if (ei->i_extra_isize == 0) { 4099 /* The extra space is currently unused. Use it. */ 4100 ei->i_extra_isize = sizeof(struct ext4_inode) - 4101 EXT4_GOOD_OLD_INODE_SIZE; 4102 } else { 4103 __le32 *magic = (void *)raw_inode + 4104 EXT4_GOOD_OLD_INODE_SIZE + 4105 ei->i_extra_isize; 4106 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4107 ei->i_state |= EXT4_STATE_XATTR; 4108 } 4109 } else 4110 ei->i_extra_isize = 0; 4111 4112 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4113 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4114 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4115 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4116 4117 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4119 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4120 inode->i_version |= 4121 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4122 } 4123 4124 if (S_ISREG(inode->i_mode)) { 4125 inode->i_op = &ext4_file_inode_operations; 4126 inode->i_fop = &ext4_file_operations; 4127 ext4_set_aops(inode); 4128 } else if (S_ISDIR(inode->i_mode)) { 4129 inode->i_op = &ext4_dir_inode_operations; 4130 inode->i_fop = &ext4_dir_operations; 4131 } else if (S_ISLNK(inode->i_mode)) { 4132 if (ext4_inode_is_fast_symlink(inode)) 4133 inode->i_op = &ext4_fast_symlink_inode_operations; 4134 else { 4135 inode->i_op = &ext4_symlink_inode_operations; 4136 ext4_set_aops(inode); 4137 } 4138 } else { 4139 inode->i_op = &ext4_special_inode_operations; 4140 if (raw_inode->i_block[0]) 4141 init_special_inode(inode, inode->i_mode, 4142 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4143 else 4144 init_special_inode(inode, inode->i_mode, 4145 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4146 } 4147 brelse(iloc.bh); 4148 ext4_set_inode_flags(inode); 4149 unlock_new_inode(inode); 4150 return inode; 4151 4152 bad_inode: 4153 iget_failed(inode); 4154 return ERR_PTR(ret); 4155 } 4156 4157 static int ext4_inode_blocks_set(handle_t *handle, 4158 struct ext4_inode *raw_inode, 4159 struct ext4_inode_info *ei) 4160 { 4161 struct inode *inode = &(ei->vfs_inode); 4162 u64 i_blocks = inode->i_blocks; 4163 struct super_block *sb = inode->i_sb; 4164 int err = 0; 4165 4166 if (i_blocks <= ~0U) { 4167 /* 4168 * i_blocks can be represnted in a 32 bit variable 4169 * as multiple of 512 bytes 4170 */ 4171 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4172 raw_inode->i_blocks_high = 0; 4173 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4174 } else if (i_blocks <= 0xffffffffffffULL) { 4175 /* 4176 * i_blocks can be represented in a 48 bit variable 4177 * as multiple of 512 bytes 4178 */ 4179 err = ext4_update_rocompat_feature(handle, sb, 4180 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4181 if (err) 4182 goto err_out; 4183 /* i_block is stored in the split 48 bit fields */ 4184 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4185 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4186 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4187 } else { 4188 /* 4189 * i_blocks should be represented in a 48 bit variable 4190 * as multiple of file system block size 4191 */ 4192 err = ext4_update_rocompat_feature(handle, sb, 4193 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4194 if (err) 4195 goto err_out; 4196 ei->i_flags |= EXT4_HUGE_FILE_FL; 4197 /* i_block is stored in file system block size */ 4198 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4199 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4200 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4201 } 4202 err_out: 4203 return err; 4204 } 4205 4206 /* 4207 * Post the struct inode info into an on-disk inode location in the 4208 * buffer-cache. This gobbles the caller's reference to the 4209 * buffer_head in the inode location struct. 4210 * 4211 * The caller must have write access to iloc->bh. 4212 */ 4213 static int ext4_do_update_inode(handle_t *handle, 4214 struct inode *inode, 4215 struct ext4_iloc *iloc) 4216 { 4217 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4218 struct ext4_inode_info *ei = EXT4_I(inode); 4219 struct buffer_head *bh = iloc->bh; 4220 int err = 0, rc, block; 4221 4222 /* For fields not not tracking in the in-memory inode, 4223 * initialise them to zero for new inodes. */ 4224 if (ei->i_state & EXT4_STATE_NEW) 4225 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4226 4227 ext4_get_inode_flags(ei); 4228 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4229 if (!(test_opt(inode->i_sb, NO_UID32))) { 4230 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4231 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4232 /* 4233 * Fix up interoperability with old kernels. Otherwise, old inodes get 4234 * re-used with the upper 16 bits of the uid/gid intact 4235 */ 4236 if (!ei->i_dtime) { 4237 raw_inode->i_uid_high = 4238 cpu_to_le16(high_16_bits(inode->i_uid)); 4239 raw_inode->i_gid_high = 4240 cpu_to_le16(high_16_bits(inode->i_gid)); 4241 } else { 4242 raw_inode->i_uid_high = 0; 4243 raw_inode->i_gid_high = 0; 4244 } 4245 } else { 4246 raw_inode->i_uid_low = 4247 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4248 raw_inode->i_gid_low = 4249 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4250 raw_inode->i_uid_high = 0; 4251 raw_inode->i_gid_high = 0; 4252 } 4253 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4254 4255 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4256 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4257 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4258 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4259 4260 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4261 goto out_brelse; 4262 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4263 /* clear the migrate flag in the raw_inode */ 4264 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4265 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4266 cpu_to_le32(EXT4_OS_HURD)) 4267 raw_inode->i_file_acl_high = 4268 cpu_to_le16(ei->i_file_acl >> 32); 4269 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4270 ext4_isize_set(raw_inode, ei->i_disksize); 4271 if (ei->i_disksize > 0x7fffffffULL) { 4272 struct super_block *sb = inode->i_sb; 4273 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4274 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4275 EXT4_SB(sb)->s_es->s_rev_level == 4276 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4277 /* If this is the first large file 4278 * created, add a flag to the superblock. 4279 */ 4280 err = ext4_journal_get_write_access(handle, 4281 EXT4_SB(sb)->s_sbh); 4282 if (err) 4283 goto out_brelse; 4284 ext4_update_dynamic_rev(sb); 4285 EXT4_SET_RO_COMPAT_FEATURE(sb, 4286 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4287 sb->s_dirt = 1; 4288 handle->h_sync = 1; 4289 err = ext4_journal_dirty_metadata(handle, 4290 EXT4_SB(sb)->s_sbh); 4291 } 4292 } 4293 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4294 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4295 if (old_valid_dev(inode->i_rdev)) { 4296 raw_inode->i_block[0] = 4297 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4298 raw_inode->i_block[1] = 0; 4299 } else { 4300 raw_inode->i_block[0] = 0; 4301 raw_inode->i_block[1] = 4302 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4303 raw_inode->i_block[2] = 0; 4304 } 4305 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4306 raw_inode->i_block[block] = ei->i_data[block]; 4307 4308 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4309 if (ei->i_extra_isize) { 4310 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4311 raw_inode->i_version_hi = 4312 cpu_to_le32(inode->i_version >> 32); 4313 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4314 } 4315 4316 4317 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4318 rc = ext4_journal_dirty_metadata(handle, bh); 4319 if (!err) 4320 err = rc; 4321 ei->i_state &= ~EXT4_STATE_NEW; 4322 4323 out_brelse: 4324 brelse(bh); 4325 ext4_std_error(inode->i_sb, err); 4326 return err; 4327 } 4328 4329 /* 4330 * ext4_write_inode() 4331 * 4332 * We are called from a few places: 4333 * 4334 * - Within generic_file_write() for O_SYNC files. 4335 * Here, there will be no transaction running. We wait for any running 4336 * trasnaction to commit. 4337 * 4338 * - Within sys_sync(), kupdate and such. 4339 * We wait on commit, if tol to. 4340 * 4341 * - Within prune_icache() (PF_MEMALLOC == true) 4342 * Here we simply return. We can't afford to block kswapd on the 4343 * journal commit. 4344 * 4345 * In all cases it is actually safe for us to return without doing anything, 4346 * because the inode has been copied into a raw inode buffer in 4347 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4348 * knfsd. 4349 * 4350 * Note that we are absolutely dependent upon all inode dirtiers doing the 4351 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4352 * which we are interested. 4353 * 4354 * It would be a bug for them to not do this. The code: 4355 * 4356 * mark_inode_dirty(inode) 4357 * stuff(); 4358 * inode->i_size = expr; 4359 * 4360 * is in error because a kswapd-driven write_inode() could occur while 4361 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4362 * will no longer be on the superblock's dirty inode list. 4363 */ 4364 int ext4_write_inode(struct inode *inode, int wait) 4365 { 4366 if (current->flags & PF_MEMALLOC) 4367 return 0; 4368 4369 if (ext4_journal_current_handle()) { 4370 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4371 dump_stack(); 4372 return -EIO; 4373 } 4374 4375 if (!wait) 4376 return 0; 4377 4378 return ext4_force_commit(inode->i_sb); 4379 } 4380 4381 /* 4382 * ext4_setattr() 4383 * 4384 * Called from notify_change. 4385 * 4386 * We want to trap VFS attempts to truncate the file as soon as 4387 * possible. In particular, we want to make sure that when the VFS 4388 * shrinks i_size, we put the inode on the orphan list and modify 4389 * i_disksize immediately, so that during the subsequent flushing of 4390 * dirty pages and freeing of disk blocks, we can guarantee that any 4391 * commit will leave the blocks being flushed in an unused state on 4392 * disk. (On recovery, the inode will get truncated and the blocks will 4393 * be freed, so we have a strong guarantee that no future commit will 4394 * leave these blocks visible to the user.) 4395 * 4396 * Another thing we have to assure is that if we are in ordered mode 4397 * and inode is still attached to the committing transaction, we must 4398 * we start writeout of all the dirty pages which are being truncated. 4399 * This way we are sure that all the data written in the previous 4400 * transaction are already on disk (truncate waits for pages under 4401 * writeback). 4402 * 4403 * Called with inode->i_mutex down. 4404 */ 4405 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4406 { 4407 struct inode *inode = dentry->d_inode; 4408 int error, rc = 0; 4409 const unsigned int ia_valid = attr->ia_valid; 4410 4411 error = inode_change_ok(inode, attr); 4412 if (error) 4413 return error; 4414 4415 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4416 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4417 handle_t *handle; 4418 4419 /* (user+group)*(old+new) structure, inode write (sb, 4420 * inode block, ? - but truncate inode update has it) */ 4421 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4422 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4423 if (IS_ERR(handle)) { 4424 error = PTR_ERR(handle); 4425 goto err_out; 4426 } 4427 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4428 if (error) { 4429 ext4_journal_stop(handle); 4430 return error; 4431 } 4432 /* Update corresponding info in inode so that everything is in 4433 * one transaction */ 4434 if (attr->ia_valid & ATTR_UID) 4435 inode->i_uid = attr->ia_uid; 4436 if (attr->ia_valid & ATTR_GID) 4437 inode->i_gid = attr->ia_gid; 4438 error = ext4_mark_inode_dirty(handle, inode); 4439 ext4_journal_stop(handle); 4440 } 4441 4442 if (attr->ia_valid & ATTR_SIZE) { 4443 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4445 4446 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4447 error = -EFBIG; 4448 goto err_out; 4449 } 4450 } 4451 } 4452 4453 if (S_ISREG(inode->i_mode) && 4454 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4455 handle_t *handle; 4456 4457 handle = ext4_journal_start(inode, 3); 4458 if (IS_ERR(handle)) { 4459 error = PTR_ERR(handle); 4460 goto err_out; 4461 } 4462 4463 error = ext4_orphan_add(handle, inode); 4464 EXT4_I(inode)->i_disksize = attr->ia_size; 4465 rc = ext4_mark_inode_dirty(handle, inode); 4466 if (!error) 4467 error = rc; 4468 ext4_journal_stop(handle); 4469 4470 if (ext4_should_order_data(inode)) { 4471 error = ext4_begin_ordered_truncate(inode, 4472 attr->ia_size); 4473 if (error) { 4474 /* Do as much error cleanup as possible */ 4475 handle = ext4_journal_start(inode, 3); 4476 if (IS_ERR(handle)) { 4477 ext4_orphan_del(NULL, inode); 4478 goto err_out; 4479 } 4480 ext4_orphan_del(handle, inode); 4481 ext4_journal_stop(handle); 4482 goto err_out; 4483 } 4484 } 4485 } 4486 4487 rc = inode_setattr(inode, attr); 4488 4489 /* If inode_setattr's call to ext4_truncate failed to get a 4490 * transaction handle at all, we need to clean up the in-core 4491 * orphan list manually. */ 4492 if (inode->i_nlink) 4493 ext4_orphan_del(NULL, inode); 4494 4495 if (!rc && (ia_valid & ATTR_MODE)) 4496 rc = ext4_acl_chmod(inode); 4497 4498 err_out: 4499 ext4_std_error(inode->i_sb, error); 4500 if (!error) 4501 error = rc; 4502 return error; 4503 } 4504 4505 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4506 struct kstat *stat) 4507 { 4508 struct inode *inode; 4509 unsigned long delalloc_blocks; 4510 4511 inode = dentry->d_inode; 4512 generic_fillattr(inode, stat); 4513 4514 /* 4515 * We can't update i_blocks if the block allocation is delayed 4516 * otherwise in the case of system crash before the real block 4517 * allocation is done, we will have i_blocks inconsistent with 4518 * on-disk file blocks. 4519 * We always keep i_blocks updated together with real 4520 * allocation. But to not confuse with user, stat 4521 * will return the blocks that include the delayed allocation 4522 * blocks for this file. 4523 */ 4524 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4525 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4526 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4527 4528 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4529 return 0; 4530 } 4531 4532 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4533 int chunk) 4534 { 4535 int indirects; 4536 4537 /* if nrblocks are contiguous */ 4538 if (chunk) { 4539 /* 4540 * With N contiguous data blocks, it need at most 4541 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4542 * 2 dindirect blocks 4543 * 1 tindirect block 4544 */ 4545 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4546 return indirects + 3; 4547 } 4548 /* 4549 * if nrblocks are not contiguous, worse case, each block touch 4550 * a indirect block, and each indirect block touch a double indirect 4551 * block, plus a triple indirect block 4552 */ 4553 indirects = nrblocks * 2 + 1; 4554 return indirects; 4555 } 4556 4557 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4558 { 4559 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4560 return ext4_indirect_trans_blocks(inode, nrblocks, 0); 4561 return ext4_ext_index_trans_blocks(inode, nrblocks, 0); 4562 } 4563 /* 4564 * Account for index blocks, block groups bitmaps and block group 4565 * descriptor blocks if modify datablocks and index blocks 4566 * worse case, the indexs blocks spread over different block groups 4567 * 4568 * If datablocks are discontiguous, they are possible to spread over 4569 * different block groups too. If they are contiugous, with flexbg, 4570 * they could still across block group boundary. 4571 * 4572 * Also account for superblock, inode, quota and xattr blocks 4573 */ 4574 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4575 { 4576 int groups, gdpblocks; 4577 int idxblocks; 4578 int ret = 0; 4579 4580 /* 4581 * How many index blocks need to touch to modify nrblocks? 4582 * The "Chunk" flag indicating whether the nrblocks is 4583 * physically contiguous on disk 4584 * 4585 * For Direct IO and fallocate, they calls get_block to allocate 4586 * one single extent at a time, so they could set the "Chunk" flag 4587 */ 4588 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4589 4590 ret = idxblocks; 4591 4592 /* 4593 * Now let's see how many group bitmaps and group descriptors need 4594 * to account 4595 */ 4596 groups = idxblocks; 4597 if (chunk) 4598 groups += 1; 4599 else 4600 groups += nrblocks; 4601 4602 gdpblocks = groups; 4603 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4604 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4605 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4606 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4607 4608 /* bitmaps and block group descriptor blocks */ 4609 ret += groups + gdpblocks; 4610 4611 /* Blocks for super block, inode, quota and xattr blocks */ 4612 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4613 4614 return ret; 4615 } 4616 4617 /* 4618 * Calulate the total number of credits to reserve to fit 4619 * the modification of a single pages into a single transaction, 4620 * which may include multiple chunks of block allocations. 4621 * 4622 * This could be called via ext4_write_begin() 4623 * 4624 * We need to consider the worse case, when 4625 * one new block per extent. 4626 */ 4627 int ext4_writepage_trans_blocks(struct inode *inode) 4628 { 4629 int bpp = ext4_journal_blocks_per_page(inode); 4630 int ret; 4631 4632 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4633 4634 /* Account for data blocks for journalled mode */ 4635 if (ext4_should_journal_data(inode)) 4636 ret += bpp; 4637 return ret; 4638 } 4639 4640 /* 4641 * Calculate the journal credits for a chunk of data modification. 4642 * 4643 * This is called from DIO, fallocate or whoever calling 4644 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4645 * 4646 * journal buffers for data blocks are not included here, as DIO 4647 * and fallocate do no need to journal data buffers. 4648 */ 4649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4650 { 4651 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4652 } 4653 4654 /* 4655 * The caller must have previously called ext4_reserve_inode_write(). 4656 * Give this, we know that the caller already has write access to iloc->bh. 4657 */ 4658 int ext4_mark_iloc_dirty(handle_t *handle, 4659 struct inode *inode, struct ext4_iloc *iloc) 4660 { 4661 int err = 0; 4662 4663 if (test_opt(inode->i_sb, I_VERSION)) 4664 inode_inc_iversion(inode); 4665 4666 /* the do_update_inode consumes one bh->b_count */ 4667 get_bh(iloc->bh); 4668 4669 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4670 err = ext4_do_update_inode(handle, inode, iloc); 4671 put_bh(iloc->bh); 4672 return err; 4673 } 4674 4675 /* 4676 * On success, We end up with an outstanding reference count against 4677 * iloc->bh. This _must_ be cleaned up later. 4678 */ 4679 4680 int 4681 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4682 struct ext4_iloc *iloc) 4683 { 4684 int err = 0; 4685 if (handle) { 4686 err = ext4_get_inode_loc(inode, iloc); 4687 if (!err) { 4688 BUFFER_TRACE(iloc->bh, "get_write_access"); 4689 err = ext4_journal_get_write_access(handle, iloc->bh); 4690 if (err) { 4691 brelse(iloc->bh); 4692 iloc->bh = NULL; 4693 } 4694 } 4695 } 4696 ext4_std_error(inode->i_sb, err); 4697 return err; 4698 } 4699 4700 /* 4701 * Expand an inode by new_extra_isize bytes. 4702 * Returns 0 on success or negative error number on failure. 4703 */ 4704 static int ext4_expand_extra_isize(struct inode *inode, 4705 unsigned int new_extra_isize, 4706 struct ext4_iloc iloc, 4707 handle_t *handle) 4708 { 4709 struct ext4_inode *raw_inode; 4710 struct ext4_xattr_ibody_header *header; 4711 struct ext4_xattr_entry *entry; 4712 4713 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4714 return 0; 4715 4716 raw_inode = ext4_raw_inode(&iloc); 4717 4718 header = IHDR(inode, raw_inode); 4719 entry = IFIRST(header); 4720 4721 /* No extended attributes present */ 4722 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4723 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4724 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4725 new_extra_isize); 4726 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4727 return 0; 4728 } 4729 4730 /* try to expand with EAs present */ 4731 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4732 raw_inode, handle); 4733 } 4734 4735 /* 4736 * What we do here is to mark the in-core inode as clean with respect to inode 4737 * dirtiness (it may still be data-dirty). 4738 * This means that the in-core inode may be reaped by prune_icache 4739 * without having to perform any I/O. This is a very good thing, 4740 * because *any* task may call prune_icache - even ones which 4741 * have a transaction open against a different journal. 4742 * 4743 * Is this cheating? Not really. Sure, we haven't written the 4744 * inode out, but prune_icache isn't a user-visible syncing function. 4745 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4746 * we start and wait on commits. 4747 * 4748 * Is this efficient/effective? Well, we're being nice to the system 4749 * by cleaning up our inodes proactively so they can be reaped 4750 * without I/O. But we are potentially leaving up to five seconds' 4751 * worth of inodes floating about which prune_icache wants us to 4752 * write out. One way to fix that would be to get prune_icache() 4753 * to do a write_super() to free up some memory. It has the desired 4754 * effect. 4755 */ 4756 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4757 { 4758 struct ext4_iloc iloc; 4759 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4760 static unsigned int mnt_count; 4761 int err, ret; 4762 4763 might_sleep(); 4764 err = ext4_reserve_inode_write(handle, inode, &iloc); 4765 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4766 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4767 /* 4768 * We need extra buffer credits since we may write into EA block 4769 * with this same handle. If journal_extend fails, then it will 4770 * only result in a minor loss of functionality for that inode. 4771 * If this is felt to be critical, then e2fsck should be run to 4772 * force a large enough s_min_extra_isize. 4773 */ 4774 if ((jbd2_journal_extend(handle, 4775 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4776 ret = ext4_expand_extra_isize(inode, 4777 sbi->s_want_extra_isize, 4778 iloc, handle); 4779 if (ret) { 4780 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4781 if (mnt_count != 4782 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4783 ext4_warning(inode->i_sb, __func__, 4784 "Unable to expand inode %lu. Delete" 4785 " some EAs or run e2fsck.", 4786 inode->i_ino); 4787 mnt_count = 4788 le16_to_cpu(sbi->s_es->s_mnt_count); 4789 } 4790 } 4791 } 4792 } 4793 if (!err) 4794 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4795 return err; 4796 } 4797 4798 /* 4799 * ext4_dirty_inode() is called from __mark_inode_dirty() 4800 * 4801 * We're really interested in the case where a file is being extended. 4802 * i_size has been changed by generic_commit_write() and we thus need 4803 * to include the updated inode in the current transaction. 4804 * 4805 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4806 * are allocated to the file. 4807 * 4808 * If the inode is marked synchronous, we don't honour that here - doing 4809 * so would cause a commit on atime updates, which we don't bother doing. 4810 * We handle synchronous inodes at the highest possible level. 4811 */ 4812 void ext4_dirty_inode(struct inode *inode) 4813 { 4814 handle_t *current_handle = ext4_journal_current_handle(); 4815 handle_t *handle; 4816 4817 handle = ext4_journal_start(inode, 2); 4818 if (IS_ERR(handle)) 4819 goto out; 4820 if (current_handle && 4821 current_handle->h_transaction != handle->h_transaction) { 4822 /* This task has a transaction open against a different fs */ 4823 printk(KERN_EMERG "%s: transactions do not match!\n", 4824 __func__); 4825 } else { 4826 jbd_debug(5, "marking dirty. outer handle=%p\n", 4827 current_handle); 4828 ext4_mark_inode_dirty(handle, inode); 4829 } 4830 ext4_journal_stop(handle); 4831 out: 4832 return; 4833 } 4834 4835 #if 0 4836 /* 4837 * Bind an inode's backing buffer_head into this transaction, to prevent 4838 * it from being flushed to disk early. Unlike 4839 * ext4_reserve_inode_write, this leaves behind no bh reference and 4840 * returns no iloc structure, so the caller needs to repeat the iloc 4841 * lookup to mark the inode dirty later. 4842 */ 4843 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4844 { 4845 struct ext4_iloc iloc; 4846 4847 int err = 0; 4848 if (handle) { 4849 err = ext4_get_inode_loc(inode, &iloc); 4850 if (!err) { 4851 BUFFER_TRACE(iloc.bh, "get_write_access"); 4852 err = jbd2_journal_get_write_access(handle, iloc.bh); 4853 if (!err) 4854 err = ext4_journal_dirty_metadata(handle, 4855 iloc.bh); 4856 brelse(iloc.bh); 4857 } 4858 } 4859 ext4_std_error(inode->i_sb, err); 4860 return err; 4861 } 4862 #endif 4863 4864 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4865 { 4866 journal_t *journal; 4867 handle_t *handle; 4868 int err; 4869 4870 /* 4871 * We have to be very careful here: changing a data block's 4872 * journaling status dynamically is dangerous. If we write a 4873 * data block to the journal, change the status and then delete 4874 * that block, we risk forgetting to revoke the old log record 4875 * from the journal and so a subsequent replay can corrupt data. 4876 * So, first we make sure that the journal is empty and that 4877 * nobody is changing anything. 4878 */ 4879 4880 journal = EXT4_JOURNAL(inode); 4881 if (is_journal_aborted(journal)) 4882 return -EROFS; 4883 4884 jbd2_journal_lock_updates(journal); 4885 jbd2_journal_flush(journal); 4886 4887 /* 4888 * OK, there are no updates running now, and all cached data is 4889 * synced to disk. We are now in a completely consistent state 4890 * which doesn't have anything in the journal, and we know that 4891 * no filesystem updates are running, so it is safe to modify 4892 * the inode's in-core data-journaling state flag now. 4893 */ 4894 4895 if (val) 4896 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4897 else 4898 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4899 ext4_set_aops(inode); 4900 4901 jbd2_journal_unlock_updates(journal); 4902 4903 /* Finally we can mark the inode as dirty. */ 4904 4905 handle = ext4_journal_start(inode, 1); 4906 if (IS_ERR(handle)) 4907 return PTR_ERR(handle); 4908 4909 err = ext4_mark_inode_dirty(handle, inode); 4910 handle->h_sync = 1; 4911 ext4_journal_stop(handle); 4912 ext4_std_error(inode->i_sb, err); 4913 4914 return err; 4915 } 4916 4917 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4918 { 4919 return !buffer_mapped(bh); 4920 } 4921 4922 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4923 { 4924 loff_t size; 4925 unsigned long len; 4926 int ret = -EINVAL; 4927 void *fsdata; 4928 struct file *file = vma->vm_file; 4929 struct inode *inode = file->f_path.dentry->d_inode; 4930 struct address_space *mapping = inode->i_mapping; 4931 4932 /* 4933 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4934 * get i_mutex because we are already holding mmap_sem. 4935 */ 4936 down_read(&inode->i_alloc_sem); 4937 size = i_size_read(inode); 4938 if (page->mapping != mapping || size <= page_offset(page) 4939 || !PageUptodate(page)) { 4940 /* page got truncated from under us? */ 4941 goto out_unlock; 4942 } 4943 ret = 0; 4944 if (PageMappedToDisk(page)) 4945 goto out_unlock; 4946 4947 if (page->index == size >> PAGE_CACHE_SHIFT) 4948 len = size & ~PAGE_CACHE_MASK; 4949 else 4950 len = PAGE_CACHE_SIZE; 4951 4952 if (page_has_buffers(page)) { 4953 /* return if we have all the buffers mapped */ 4954 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4955 ext4_bh_unmapped)) 4956 goto out_unlock; 4957 } 4958 /* 4959 * OK, we need to fill the hole... Do write_begin write_end 4960 * to do block allocation/reservation.We are not holding 4961 * inode.i__mutex here. That allow * parallel write_begin, 4962 * write_end call. lock_page prevent this from happening 4963 * on the same page though 4964 */ 4965 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4966 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 4967 if (ret < 0) 4968 goto out_unlock; 4969 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4970 len, len, page, fsdata); 4971 if (ret < 0) 4972 goto out_unlock; 4973 ret = 0; 4974 out_unlock: 4975 up_read(&inode->i_alloc_sem); 4976 return ret; 4977 } 4978