xref: /openbmc/linux/fs/ext4/inode.c (revision 7849e9b5ba87aebdc8cef47a6543a715103226c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 
152 		if (ext4_has_inline_data(inode))
153 			return 0;
154 
155 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 	}
157 	return S_ISLNK(inode->i_mode) && inode->i_size &&
158 	       (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160 
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166 	handle_t *handle;
167 	int err;
168 	/*
169 	 * Credits for final inode cleanup and freeing:
170 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 	 */
173 	int extra_credits = 6;
174 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 	bool freeze_protected = false;
176 
177 	trace_ext4_evict_inode(inode);
178 
179 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 		ext4_evict_ea_inode(inode);
181 	if (inode->i_nlink) {
182 		truncate_inode_pages_final(&inode->i_data);
183 
184 		goto no_delete;
185 	}
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 	dquot_initialize(inode);
190 
191 	if (ext4_should_order_data(inode))
192 		ext4_begin_ordered_truncate(inode, 0);
193 	truncate_inode_pages_final(&inode->i_data);
194 
195 	/*
196 	 * For inodes with journalled data, transaction commit could have
197 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 	 * extents converting worker could merge extents and also have dirtied
199 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 	 * we still need to remove the inode from the writeback lists.
201 	 */
202 	if (!list_empty_careful(&inode->i_io_list))
203 		inode_io_list_del(inode);
204 
205 	/*
206 	 * Protect us against freezing - iput() caller didn't have to have any
207 	 * protection against it. When we are in a running transaction though,
208 	 * we are already protected against freezing and we cannot grab further
209 	 * protection due to lock ordering constraints.
210 	 */
211 	if (!ext4_journal_current_handle()) {
212 		sb_start_intwrite(inode->i_sb);
213 		freeze_protected = true;
214 	}
215 
216 	if (!IS_NOQUOTA(inode))
217 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218 
219 	/*
220 	 * Block bitmap, group descriptor, and inode are accounted in both
221 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 	 */
223 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 	if (IS_ERR(handle)) {
226 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 		/*
228 		 * If we're going to skip the normal cleanup, we still need to
229 		 * make sure that the in-core orphan linked list is properly
230 		 * cleaned up.
231 		 */
232 		ext4_orphan_del(NULL, inode);
233 		if (freeze_protected)
234 			sb_end_intwrite(inode->i_sb);
235 		goto no_delete;
236 	}
237 
238 	if (IS_SYNC(inode))
239 		ext4_handle_sync(handle);
240 
241 	/*
242 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 	 * special handling of symlinks here because i_size is used to
244 	 * determine whether ext4_inode_info->i_data contains symlink data or
245 	 * block mappings. Setting i_size to 0 will remove its fast symlink
246 	 * status. Erase i_data so that it becomes a valid empty block map.
247 	 */
248 	if (ext4_inode_is_fast_symlink(inode))
249 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks) {
258 		err = ext4_truncate(inode);
259 		if (err) {
260 			ext4_error_err(inode->i_sb, -err,
261 				       "couldn't truncate inode %lu (err %d)",
262 				       inode->i_ino, err);
263 			goto stop_handle;
264 		}
265 	}
266 
267 	/* Remove xattr references. */
268 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 				      extra_credits);
270 	if (err) {
271 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 		ext4_journal_stop(handle);
274 		ext4_orphan_del(NULL, inode);
275 		if (freeze_protected)
276 			sb_end_intwrite(inode->i_sb);
277 		ext4_xattr_inode_array_free(ea_inode_array);
278 		goto no_delete;
279 	}
280 
281 	/*
282 	 * Kill off the orphan record which ext4_truncate created.
283 	 * AKPM: I think this can be inside the above `if'.
284 	 * Note that ext4_orphan_del() has to be able to cope with the
285 	 * deletion of a non-existent orphan - this is because we don't
286 	 * know if ext4_truncate() actually created an orphan record.
287 	 * (Well, we could do this if we need to, but heck - it works)
288 	 */
289 	ext4_orphan_del(handle, inode);
290 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291 
292 	/*
293 	 * One subtle ordering requirement: if anything has gone wrong
294 	 * (transaction abort, IO errors, whatever), then we can still
295 	 * do these next steps (the fs will already have been marked as
296 	 * having errors), but we can't free the inode if the mark_dirty
297 	 * fails.
298 	 */
299 	if (ext4_mark_inode_dirty(handle, inode))
300 		/* If that failed, just do the required in-core inode clear. */
301 		ext4_clear_inode(inode);
302 	else
303 		ext4_free_inode(handle, inode);
304 	ext4_journal_stop(handle);
305 	if (freeze_protected)
306 		sb_end_intwrite(inode->i_sb);
307 	ext4_xattr_inode_array_free(ea_inode_array);
308 	return;
309 no_delete:
310 	/*
311 	 * Check out some where else accidentally dirty the evicting inode,
312 	 * which may probably cause inode use-after-free issues later.
313 	 */
314 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315 
316 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319 }
320 
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 	return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 
353 	spin_unlock(&ei->i_block_reservation_lock);
354 
355 	/* Update quota subsystem for data blocks */
356 	if (quota_claim)
357 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 	else {
359 		/*
360 		 * We did fallocate with an offset that is already delayed
361 		 * allocated. So on delayed allocated writeback we should
362 		 * not re-claim the quota for fallocated blocks.
363 		 */
364 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 	}
366 
367 	/*
368 	 * If we have done all the pending block allocations and if
369 	 * there aren't any writers on the inode, we can discard the
370 	 * inode's preallocations.
371 	 */
372 	if ((ei->i_reserved_data_blocks == 0) &&
373 	    !inode_is_open_for_write(inode))
374 		ext4_discard_preallocations(inode, 0);
375 }
376 
377 static int __check_block_validity(struct inode *inode, const char *func,
378 				unsigned int line,
379 				struct ext4_map_blocks *map)
380 {
381 	if (ext4_has_feature_journal(inode->i_sb) &&
382 	    (inode->i_ino ==
383 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 		return 0;
385 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock %llu "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_pblk, map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 	} else {
434 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 	}
436 	up_read((&EXT4_I(inode)->i_data_sem));
437 
438 	/*
439 	 * We don't check m_len because extent will be collpased in status
440 	 * tree.  So the m_len might not equal.
441 	 */
442 	if (es_map->m_lblk != map->m_lblk ||
443 	    es_map->m_flags != map->m_flags ||
444 	    es_map->m_pblk != map->m_pblk) {
445 		printk("ES cache assertion failed for inode: %lu "
446 		       "es_cached ex [%d/%d/%llu/%x] != "
447 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 		       map->m_len, map->m_pblk, map->m_flags,
451 		       retval, flags);
452 	}
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455 
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.  if
469  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471  *
472  * It returns 0 if plain look up failed (blocks have not been allocated), in
473  * that case, @map is returned as unmapped but we still do fill map->m_len to
474  * indicate the length of a hole starting at map->m_lblk.
475  *
476  * It returns the error in case of allocation failure.
477  */
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479 		    struct ext4_map_blocks *map, int flags)
480 {
481 	struct extent_status es;
482 	int retval;
483 	int ret = 0;
484 #ifdef ES_AGGRESSIVE_TEST
485 	struct ext4_map_blocks orig_map;
486 
487 	memcpy(&orig_map, map, sizeof(*map));
488 #endif
489 
490 	map->m_flags = 0;
491 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492 		  flags, map->m_len, (unsigned long) map->m_lblk);
493 
494 	/*
495 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
496 	 */
497 	if (unlikely(map->m_len > INT_MAX))
498 		map->m_len = INT_MAX;
499 
500 	/* We can handle the block number less than EXT_MAX_BLOCKS */
501 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502 		return -EFSCORRUPTED;
503 
504 	/* Lookup extent status tree firstly */
505 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508 			map->m_pblk = ext4_es_pblock(&es) +
509 					map->m_lblk - es.es_lblk;
510 			map->m_flags |= ext4_es_is_written(&es) ?
511 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512 			retval = es.es_len - (map->m_lblk - es.es_lblk);
513 			if (retval > map->m_len)
514 				retval = map->m_len;
515 			map->m_len = retval;
516 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517 			map->m_pblk = 0;
518 			retval = es.es_len - (map->m_lblk - es.es_lblk);
519 			if (retval > map->m_len)
520 				retval = map->m_len;
521 			map->m_len = retval;
522 			retval = 0;
523 		} else {
524 			BUG();
525 		}
526 
527 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528 			return retval;
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 	/*
536 	 * In the query cache no-wait mode, nothing we can do more if we
537 	 * cannot find extent in the cache.
538 	 */
539 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540 		return 0;
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	down_read(&EXT4_I(inode)->i_data_sem);
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
549 	} else {
550 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
551 	}
552 	if (retval > 0) {
553 		unsigned int status;
554 
555 		if (unlikely(retval != map->m_len)) {
556 			ext4_warning(inode->i_sb,
557 				     "ES len assertion failed for inode "
558 				     "%lu: retval %d != map->m_len %d",
559 				     inode->i_ino, retval, map->m_len);
560 			WARN_ON(1);
561 		}
562 
563 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 		    !(status & EXTENT_STATUS_WRITTEN) &&
567 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568 				       map->m_lblk + map->m_len - 1))
569 			status |= EXTENT_STATUS_DELAYED;
570 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
571 				      map->m_pblk, status);
572 	}
573 	up_read((&EXT4_I(inode)->i_data_sem));
574 
575 found:
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 
582 	/* If it is only a block(s) look up */
583 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 		return retval;
585 
586 	/*
587 	 * Returns if the blocks have already allocated
588 	 *
589 	 * Note that if blocks have been preallocated
590 	 * ext4_ext_get_block() returns the create = 0
591 	 * with buffer head unmapped.
592 	 */
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 		/*
595 		 * If we need to convert extent to unwritten
596 		 * we continue and do the actual work in
597 		 * ext4_ext_map_blocks()
598 		 */
599 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600 			return retval;
601 
602 	/*
603 	 * Here we clear m_flags because after allocating an new extent,
604 	 * it will be set again.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_FLAGS;
607 
608 	/*
609 	 * New blocks allocate and/or writing to unwritten extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_block()
612 	 * with create == 1 flag.
613 	 */
614 	down_write(&EXT4_I(inode)->i_data_sem);
615 
616 	/*
617 	 * We need to check for EXT4 here because migrate
618 	 * could have changed the inode type in between
619 	 */
620 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 	} else {
623 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624 
625 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 			/*
627 			 * We allocated new blocks which will result in
628 			 * i_data's format changing.  Force the migrate
629 			 * to fail by clearing migrate flags
630 			 */
631 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632 		}
633 	}
634 
635 	if (retval > 0) {
636 		unsigned int status;
637 
638 		if (unlikely(retval != map->m_len)) {
639 			ext4_warning(inode->i_sb,
640 				     "ES len assertion failed for inode "
641 				     "%lu: retval %d != map->m_len %d",
642 				     inode->i_ino, retval, map->m_len);
643 			WARN_ON(1);
644 		}
645 
646 		/*
647 		 * We have to zeroout blocks before inserting them into extent
648 		 * status tree. Otherwise someone could look them up there and
649 		 * use them before they are really zeroed. We also have to
650 		 * unmap metadata before zeroing as otherwise writeback can
651 		 * overwrite zeros with stale data from block device.
652 		 */
653 		if (flags & EXT4_GET_BLOCKS_ZERO &&
654 		    map->m_flags & EXT4_MAP_MAPPED &&
655 		    map->m_flags & EXT4_MAP_NEW) {
656 			ret = ext4_issue_zeroout(inode, map->m_lblk,
657 						 map->m_pblk, map->m_len);
658 			if (ret) {
659 				retval = ret;
660 				goto out_sem;
661 			}
662 		}
663 
664 		/*
665 		 * If the extent has been zeroed out, we don't need to update
666 		 * extent status tree.
667 		 */
668 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
670 			if (ext4_es_is_written(&es))
671 				goto out_sem;
672 		}
673 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676 		    !(status & EXTENT_STATUS_WRITTEN) &&
677 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
678 				       map->m_lblk + map->m_len - 1))
679 			status |= EXTENT_STATUS_DELAYED;
680 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
681 				      map->m_pblk, status);
682 	}
683 
684 out_sem:
685 	up_write((&EXT4_I(inode)->i_data_sem));
686 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687 		ret = check_block_validity(inode, map);
688 		if (ret != 0)
689 			return ret;
690 
691 		/*
692 		 * Inodes with freshly allocated blocks where contents will be
693 		 * visible after transaction commit must be on transaction's
694 		 * ordered data list.
695 		 */
696 		if (map->m_flags & EXT4_MAP_NEW &&
697 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
699 		    !ext4_is_quota_file(inode) &&
700 		    ext4_should_order_data(inode)) {
701 			loff_t start_byte =
702 				(loff_t)map->m_lblk << inode->i_blkbits;
703 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
704 
705 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706 				ret = ext4_jbd2_inode_add_wait(handle, inode,
707 						start_byte, length);
708 			else
709 				ret = ext4_jbd2_inode_add_write(handle, inode,
710 						start_byte, length);
711 			if (ret)
712 				return ret;
713 		}
714 	}
715 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716 				map->m_flags & EXT4_MAP_MAPPED))
717 		ext4_fc_track_range(handle, inode, map->m_lblk,
718 					map->m_lblk + map->m_len - 1);
719 	if (retval < 0)
720 		ext_debug(inode, "failed with err %d\n", retval);
721 	return retval;
722 }
723 
724 /*
725  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726  * we have to be careful as someone else may be manipulating b_state as well.
727  */
728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
729 {
730 	unsigned long old_state;
731 	unsigned long new_state;
732 
733 	flags &= EXT4_MAP_FLAGS;
734 
735 	/* Dummy buffer_head? Set non-atomically. */
736 	if (!bh->b_page) {
737 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
738 		return;
739 	}
740 	/*
741 	 * Someone else may be modifying b_state. Be careful! This is ugly but
742 	 * once we get rid of using bh as a container for mapping information
743 	 * to pass to / from get_block functions, this can go away.
744 	 */
745 	old_state = READ_ONCE(bh->b_state);
746 	do {
747 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
749 }
750 
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 			   struct buffer_head *bh, int flags)
753 {
754 	struct ext4_map_blocks map;
755 	int ret = 0;
756 
757 	if (ext4_has_inline_data(inode))
758 		return -ERANGE;
759 
760 	map.m_lblk = iblock;
761 	map.m_len = bh->b_size >> inode->i_blkbits;
762 
763 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 			      flags);
765 	if (ret > 0) {
766 		map_bh(bh, inode->i_sb, map.m_pblk);
767 		ext4_update_bh_state(bh, map.m_flags);
768 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 		ret = 0;
770 	} else if (ret == 0) {
771 		/* hole case, need to fill in bh->b_size */
772 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773 	}
774 	return ret;
775 }
776 
777 int ext4_get_block(struct inode *inode, sector_t iblock,
778 		   struct buffer_head *bh, int create)
779 {
780 	return _ext4_get_block(inode, iblock, bh,
781 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
782 }
783 
784 /*
785  * Get block function used when preparing for buffered write if we require
786  * creating an unwritten extent if blocks haven't been allocated.  The extent
787  * will be converted to written after the IO is complete.
788  */
789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790 			     struct buffer_head *bh_result, int create)
791 {
792 	int ret = 0;
793 
794 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795 		   inode->i_ino, create);
796 	ret = _ext4_get_block(inode, iblock, bh_result,
797 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
798 
799 	/*
800 	 * If the buffer is marked unwritten, mark it as new to make sure it is
801 	 * zeroed out correctly in case of partial writes. Otherwise, there is
802 	 * a chance of stale data getting exposed.
803 	 */
804 	if (ret == 0 && buffer_unwritten(bh_result))
805 		set_buffer_new(bh_result);
806 
807 	return ret;
808 }
809 
810 /* Maximum number of blocks we map for direct IO at once. */
811 #define DIO_MAX_BLOCKS 4096
812 
813 /*
814  * `handle' can be NULL if create is zero
815  */
816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
817 				ext4_lblk_t block, int map_flags)
818 {
819 	struct ext4_map_blocks map;
820 	struct buffer_head *bh;
821 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
822 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
823 	int err;
824 
825 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
826 		    || handle != NULL || create == 0);
827 	ASSERT(create == 0 || !nowait);
828 
829 	map.m_lblk = block;
830 	map.m_len = 1;
831 	err = ext4_map_blocks(handle, inode, &map, map_flags);
832 
833 	if (err == 0)
834 		return create ? ERR_PTR(-ENOSPC) : NULL;
835 	if (err < 0)
836 		return ERR_PTR(err);
837 
838 	if (nowait)
839 		return sb_find_get_block(inode->i_sb, map.m_pblk);
840 
841 	bh = sb_getblk(inode->i_sb, map.m_pblk);
842 	if (unlikely(!bh))
843 		return ERR_PTR(-ENOMEM);
844 	if (map.m_flags & EXT4_MAP_NEW) {
845 		ASSERT(create != 0);
846 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
847 			    || (handle != NULL));
848 
849 		/*
850 		 * Now that we do not always journal data, we should
851 		 * keep in mind whether this should always journal the
852 		 * new buffer as metadata.  For now, regular file
853 		 * writes use ext4_get_block instead, so it's not a
854 		 * problem.
855 		 */
856 		lock_buffer(bh);
857 		BUFFER_TRACE(bh, "call get_create_access");
858 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
859 						     EXT4_JTR_NONE);
860 		if (unlikely(err)) {
861 			unlock_buffer(bh);
862 			goto errout;
863 		}
864 		if (!buffer_uptodate(bh)) {
865 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
866 			set_buffer_uptodate(bh);
867 		}
868 		unlock_buffer(bh);
869 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
870 		err = ext4_handle_dirty_metadata(handle, inode, bh);
871 		if (unlikely(err))
872 			goto errout;
873 	} else
874 		BUFFER_TRACE(bh, "not a new buffer");
875 	return bh;
876 errout:
877 	brelse(bh);
878 	return ERR_PTR(err);
879 }
880 
881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
882 			       ext4_lblk_t block, int map_flags)
883 {
884 	struct buffer_head *bh;
885 	int ret;
886 
887 	bh = ext4_getblk(handle, inode, block, map_flags);
888 	if (IS_ERR(bh))
889 		return bh;
890 	if (!bh || ext4_buffer_uptodate(bh))
891 		return bh;
892 
893 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
894 	if (ret) {
895 		put_bh(bh);
896 		return ERR_PTR(ret);
897 	}
898 	return bh;
899 }
900 
901 /* Read a contiguous batch of blocks. */
902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
903 		     bool wait, struct buffer_head **bhs)
904 {
905 	int i, err;
906 
907 	for (i = 0; i < bh_count; i++) {
908 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
909 		if (IS_ERR(bhs[i])) {
910 			err = PTR_ERR(bhs[i]);
911 			bh_count = i;
912 			goto out_brelse;
913 		}
914 	}
915 
916 	for (i = 0; i < bh_count; i++)
917 		/* Note that NULL bhs[i] is valid because of holes. */
918 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
919 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
920 
921 	if (!wait)
922 		return 0;
923 
924 	for (i = 0; i < bh_count; i++)
925 		if (bhs[i])
926 			wait_on_buffer(bhs[i]);
927 
928 	for (i = 0; i < bh_count; i++) {
929 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
930 			err = -EIO;
931 			goto out_brelse;
932 		}
933 	}
934 	return 0;
935 
936 out_brelse:
937 	for (i = 0; i < bh_count; i++) {
938 		brelse(bhs[i]);
939 		bhs[i] = NULL;
940 	}
941 	return err;
942 }
943 
944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
945 			   struct buffer_head *head,
946 			   unsigned from,
947 			   unsigned to,
948 			   int *partial,
949 			   int (*fn)(handle_t *handle, struct inode *inode,
950 				     struct buffer_head *bh))
951 {
952 	struct buffer_head *bh;
953 	unsigned block_start, block_end;
954 	unsigned blocksize = head->b_size;
955 	int err, ret = 0;
956 	struct buffer_head *next;
957 
958 	for (bh = head, block_start = 0;
959 	     ret == 0 && (bh != head || !block_start);
960 	     block_start = block_end, bh = next) {
961 		next = bh->b_this_page;
962 		block_end = block_start + blocksize;
963 		if (block_end <= from || block_start >= to) {
964 			if (partial && !buffer_uptodate(bh))
965 				*partial = 1;
966 			continue;
967 		}
968 		err = (*fn)(handle, inode, bh);
969 		if (!ret)
970 			ret = err;
971 	}
972 	return ret;
973 }
974 
975 /*
976  * Helper for handling dirtying of journalled data. We also mark the folio as
977  * dirty so that writeback code knows about this page (and inode) contains
978  * dirty data. ext4_writepages() then commits appropriate transaction to
979  * make data stable.
980  */
981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
982 {
983 	folio_mark_dirty(bh->b_folio);
984 	return ext4_handle_dirty_metadata(handle, NULL, bh);
985 }
986 
987 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
988 				struct buffer_head *bh)
989 {
990 	int dirty = buffer_dirty(bh);
991 	int ret;
992 
993 	if (!buffer_mapped(bh) || buffer_freed(bh))
994 		return 0;
995 	/*
996 	 * __block_write_begin() could have dirtied some buffers. Clean
997 	 * the dirty bit as jbd2_journal_get_write_access() could complain
998 	 * otherwise about fs integrity issues. Setting of the dirty bit
999 	 * by __block_write_begin() isn't a real problem here as we clear
1000 	 * the bit before releasing a page lock and thus writeback cannot
1001 	 * ever write the buffer.
1002 	 */
1003 	if (dirty)
1004 		clear_buffer_dirty(bh);
1005 	BUFFER_TRACE(bh, "get write access");
1006 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1007 					    EXT4_JTR_NONE);
1008 	if (!ret && dirty)
1009 		ret = ext4_dirty_journalled_data(handle, bh);
1010 	return ret;
1011 }
1012 
1013 #ifdef CONFIG_FS_ENCRYPTION
1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1015 				  get_block_t *get_block)
1016 {
1017 	unsigned from = pos & (PAGE_SIZE - 1);
1018 	unsigned to = from + len;
1019 	struct inode *inode = folio->mapping->host;
1020 	unsigned block_start, block_end;
1021 	sector_t block;
1022 	int err = 0;
1023 	unsigned blocksize = inode->i_sb->s_blocksize;
1024 	unsigned bbits;
1025 	struct buffer_head *bh, *head, *wait[2];
1026 	int nr_wait = 0;
1027 	int i;
1028 
1029 	BUG_ON(!folio_test_locked(folio));
1030 	BUG_ON(from > PAGE_SIZE);
1031 	BUG_ON(to > PAGE_SIZE);
1032 	BUG_ON(from > to);
1033 
1034 	head = folio_buffers(folio);
1035 	if (!head) {
1036 		create_empty_buffers(&folio->page, blocksize, 0);
1037 		head = folio_buffers(folio);
1038 	}
1039 	bbits = ilog2(blocksize);
1040 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041 
1042 	for (bh = head, block_start = 0; bh != head || !block_start;
1043 	    block++, block_start = block_end, bh = bh->b_this_page) {
1044 		block_end = block_start + blocksize;
1045 		if (block_end <= from || block_start >= to) {
1046 			if (folio_test_uptodate(folio)) {
1047 				set_buffer_uptodate(bh);
1048 			}
1049 			continue;
1050 		}
1051 		if (buffer_new(bh))
1052 			clear_buffer_new(bh);
1053 		if (!buffer_mapped(bh)) {
1054 			WARN_ON(bh->b_size != blocksize);
1055 			err = get_block(inode, block, bh, 1);
1056 			if (err)
1057 				break;
1058 			if (buffer_new(bh)) {
1059 				if (folio_test_uptodate(folio)) {
1060 					clear_buffer_new(bh);
1061 					set_buffer_uptodate(bh);
1062 					mark_buffer_dirty(bh);
1063 					continue;
1064 				}
1065 				if (block_end > to || block_start < from)
1066 					folio_zero_segments(folio, to,
1067 							    block_end,
1068 							    block_start, from);
1069 				continue;
1070 			}
1071 		}
1072 		if (folio_test_uptodate(folio)) {
1073 			set_buffer_uptodate(bh);
1074 			continue;
1075 		}
1076 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077 		    !buffer_unwritten(bh) &&
1078 		    (block_start < from || block_end > to)) {
1079 			ext4_read_bh_lock(bh, 0, false);
1080 			wait[nr_wait++] = bh;
1081 		}
1082 	}
1083 	/*
1084 	 * If we issued read requests, let them complete.
1085 	 */
1086 	for (i = 0; i < nr_wait; i++) {
1087 		wait_on_buffer(wait[i]);
1088 		if (!buffer_uptodate(wait[i]))
1089 			err = -EIO;
1090 	}
1091 	if (unlikely(err)) {
1092 		folio_zero_new_buffers(folio, from, to);
1093 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094 		for (i = 0; i < nr_wait; i++) {
1095 			int err2;
1096 
1097 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098 						blocksize, bh_offset(wait[i]));
1099 			if (err2) {
1100 				clear_buffer_uptodate(wait[i]);
1101 				err = err2;
1102 			}
1103 		}
1104 	}
1105 
1106 	return err;
1107 }
1108 #endif
1109 
1110 /*
1111  * To preserve ordering, it is essential that the hole instantiation and
1112  * the data write be encapsulated in a single transaction.  We cannot
1113  * close off a transaction and start a new one between the ext4_get_block()
1114  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115  * ext4_write_begin() is the right place.
1116  */
1117 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118 			    loff_t pos, unsigned len,
1119 			    struct page **pagep, void **fsdata)
1120 {
1121 	struct inode *inode = mapping->host;
1122 	int ret, needed_blocks;
1123 	handle_t *handle;
1124 	int retries = 0;
1125 	struct folio *folio;
1126 	pgoff_t index;
1127 	unsigned from, to;
1128 
1129 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130 		return -EIO;
1131 
1132 	trace_ext4_write_begin(inode, pos, len);
1133 	/*
1134 	 * Reserve one block more for addition to orphan list in case
1135 	 * we allocate blocks but write fails for some reason
1136 	 */
1137 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138 	index = pos >> PAGE_SHIFT;
1139 	from = pos & (PAGE_SIZE - 1);
1140 	to = from + len;
1141 
1142 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144 						    pagep);
1145 		if (ret < 0)
1146 			return ret;
1147 		if (ret == 1)
1148 			return 0;
1149 	}
1150 
1151 	/*
1152 	 * __filemap_get_folio() can take a long time if the
1153 	 * system is thrashing due to memory pressure, or if the folio
1154 	 * is being written back.  So grab it first before we start
1155 	 * the transaction handle.  This also allows us to allocate
1156 	 * the folio (if needed) without using GFP_NOFS.
1157 	 */
1158 retry_grab:
1159 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160 					mapping_gfp_mask(mapping));
1161 	if (IS_ERR(folio))
1162 		return PTR_ERR(folio);
1163 	/*
1164 	 * The same as page allocation, we prealloc buffer heads before
1165 	 * starting the handle.
1166 	 */
1167 	if (!folio_buffers(folio))
1168 		create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1169 
1170 	folio_unlock(folio);
1171 
1172 retry_journal:
1173 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174 	if (IS_ERR(handle)) {
1175 		folio_put(folio);
1176 		return PTR_ERR(handle);
1177 	}
1178 
1179 	folio_lock(folio);
1180 	if (folio->mapping != mapping) {
1181 		/* The folio got truncated from under us */
1182 		folio_unlock(folio);
1183 		folio_put(folio);
1184 		ext4_journal_stop(handle);
1185 		goto retry_grab;
1186 	}
1187 	/* In case writeback began while the folio was unlocked */
1188 	folio_wait_stable(folio);
1189 
1190 #ifdef CONFIG_FS_ENCRYPTION
1191 	if (ext4_should_dioread_nolock(inode))
1192 		ret = ext4_block_write_begin(folio, pos, len,
1193 					     ext4_get_block_unwritten);
1194 	else
1195 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196 #else
1197 	if (ext4_should_dioread_nolock(inode))
1198 		ret = __block_write_begin(&folio->page, pos, len,
1199 					  ext4_get_block_unwritten);
1200 	else
1201 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202 #endif
1203 	if (!ret && ext4_should_journal_data(inode)) {
1204 		ret = ext4_walk_page_buffers(handle, inode,
1205 					     folio_buffers(folio), from, to,
1206 					     NULL, do_journal_get_write_access);
1207 	}
1208 
1209 	if (ret) {
1210 		bool extended = (pos + len > inode->i_size) &&
1211 				!ext4_verity_in_progress(inode);
1212 
1213 		folio_unlock(folio);
1214 		/*
1215 		 * __block_write_begin may have instantiated a few blocks
1216 		 * outside i_size.  Trim these off again. Don't need
1217 		 * i_size_read because we hold i_rwsem.
1218 		 *
1219 		 * Add inode to orphan list in case we crash before
1220 		 * truncate finishes
1221 		 */
1222 		if (extended && ext4_can_truncate(inode))
1223 			ext4_orphan_add(handle, inode);
1224 
1225 		ext4_journal_stop(handle);
1226 		if (extended) {
1227 			ext4_truncate_failed_write(inode);
1228 			/*
1229 			 * If truncate failed early the inode might
1230 			 * still be on the orphan list; we need to
1231 			 * make sure the inode is removed from the
1232 			 * orphan list in that case.
1233 			 */
1234 			if (inode->i_nlink)
1235 				ext4_orphan_del(NULL, inode);
1236 		}
1237 
1238 		if (ret == -ENOSPC &&
1239 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240 			goto retry_journal;
1241 		folio_put(folio);
1242 		return ret;
1243 	}
1244 	*pagep = &folio->page;
1245 	return ret;
1246 }
1247 
1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct inode *inode,
1250 			struct buffer_head *bh)
1251 {
1252 	int ret;
1253 	if (!buffer_mapped(bh) || buffer_freed(bh))
1254 		return 0;
1255 	set_buffer_uptodate(bh);
1256 	ret = ext4_dirty_journalled_data(handle, bh);
1257 	clear_buffer_meta(bh);
1258 	clear_buffer_prio(bh);
1259 	return ret;
1260 }
1261 
1262 /*
1263  * We need to pick up the new inode size which generic_commit_write gave us
1264  * `file' can be NULL - eg, when called from page_symlink().
1265  *
1266  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1267  * buffers are managed internally.
1268  */
1269 static int ext4_write_end(struct file *file,
1270 			  struct address_space *mapping,
1271 			  loff_t pos, unsigned len, unsigned copied,
1272 			  struct page *page, void *fsdata)
1273 {
1274 	struct folio *folio = page_folio(page);
1275 	handle_t *handle = ext4_journal_current_handle();
1276 	struct inode *inode = mapping->host;
1277 	loff_t old_size = inode->i_size;
1278 	int ret = 0, ret2;
1279 	int i_size_changed = 0;
1280 	bool verity = ext4_verity_in_progress(inode);
1281 
1282 	trace_ext4_write_end(inode, pos, len, copied);
1283 
1284 	if (ext4_has_inline_data(inode) &&
1285 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286 		return ext4_write_inline_data_end(inode, pos, len, copied,
1287 						  folio);
1288 
1289 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290 	/*
1291 	 * it's important to update i_size while still holding folio lock:
1292 	 * page writeout could otherwise come in and zero beyond i_size.
1293 	 *
1294 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295 	 * blocks are being written past EOF, so skip the i_size update.
1296 	 */
1297 	if (!verity)
1298 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299 	folio_unlock(folio);
1300 	folio_put(folio);
1301 
1302 	if (old_size < pos && !verity)
1303 		pagecache_isize_extended(inode, old_size, pos);
1304 	/*
1305 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306 	 * makes the holding time of folio lock longer. Second, it forces lock
1307 	 * ordering of folio lock and transaction start for journaling
1308 	 * filesystems.
1309 	 */
1310 	if (i_size_changed)
1311 		ret = ext4_mark_inode_dirty(handle, inode);
1312 
1313 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314 		/* if we have allocated more blocks and copied
1315 		 * less. We will have blocks allocated outside
1316 		 * inode->i_size. So truncate them
1317 		 */
1318 		ext4_orphan_add(handle, inode);
1319 
1320 	ret2 = ext4_journal_stop(handle);
1321 	if (!ret)
1322 		ret = ret2;
1323 
1324 	if (pos + len > inode->i_size && !verity) {
1325 		ext4_truncate_failed_write(inode);
1326 		/*
1327 		 * If truncate failed early the inode might still be
1328 		 * on the orphan list; we need to make sure the inode
1329 		 * is removed from the orphan list in that case.
1330 		 */
1331 		if (inode->i_nlink)
1332 			ext4_orphan_del(NULL, inode);
1333 	}
1334 
1335 	return ret ? ret : copied;
1336 }
1337 
1338 /*
1339  * This is a private version of folio_zero_new_buffers() which doesn't
1340  * set the buffer to be dirty, since in data=journalled mode we need
1341  * to call ext4_dirty_journalled_data() instead.
1342  */
1343 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344 					    struct inode *inode,
1345 					    struct folio *folio,
1346 					    unsigned from, unsigned to)
1347 {
1348 	unsigned int block_start = 0, block_end;
1349 	struct buffer_head *head, *bh;
1350 
1351 	bh = head = folio_buffers(folio);
1352 	do {
1353 		block_end = block_start + bh->b_size;
1354 		if (buffer_new(bh)) {
1355 			if (block_end > from && block_start < to) {
1356 				if (!folio_test_uptodate(folio)) {
1357 					unsigned start, size;
1358 
1359 					start = max(from, block_start);
1360 					size = min(to, block_end) - start;
1361 
1362 					folio_zero_range(folio, start, size);
1363 					write_end_fn(handle, inode, bh);
1364 				}
1365 				clear_buffer_new(bh);
1366 			}
1367 		}
1368 		block_start = block_end;
1369 		bh = bh->b_this_page;
1370 	} while (bh != head);
1371 }
1372 
1373 static int ext4_journalled_write_end(struct file *file,
1374 				     struct address_space *mapping,
1375 				     loff_t pos, unsigned len, unsigned copied,
1376 				     struct page *page, void *fsdata)
1377 {
1378 	struct folio *folio = page_folio(page);
1379 	handle_t *handle = ext4_journal_current_handle();
1380 	struct inode *inode = mapping->host;
1381 	loff_t old_size = inode->i_size;
1382 	int ret = 0, ret2;
1383 	int partial = 0;
1384 	unsigned from, to;
1385 	int size_changed = 0;
1386 	bool verity = ext4_verity_in_progress(inode);
1387 
1388 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389 	from = pos & (PAGE_SIZE - 1);
1390 	to = from + len;
1391 
1392 	BUG_ON(!ext4_handle_valid(handle));
1393 
1394 	if (ext4_has_inline_data(inode))
1395 		return ext4_write_inline_data_end(inode, pos, len, copied,
1396 						  folio);
1397 
1398 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399 		copied = 0;
1400 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401 						 from, to);
1402 	} else {
1403 		if (unlikely(copied < len))
1404 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405 							 from + copied, to);
1406 		ret = ext4_walk_page_buffers(handle, inode,
1407 					     folio_buffers(folio),
1408 					     from, from + copied, &partial,
1409 					     write_end_fn);
1410 		if (!partial)
1411 			folio_mark_uptodate(folio);
1412 	}
1413 	if (!verity)
1414 		size_changed = ext4_update_inode_size(inode, pos + copied);
1415 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416 	folio_unlock(folio);
1417 	folio_put(folio);
1418 
1419 	if (old_size < pos && !verity)
1420 		pagecache_isize_extended(inode, old_size, pos);
1421 
1422 	if (size_changed) {
1423 		ret2 = ext4_mark_inode_dirty(handle, inode);
1424 		if (!ret)
1425 			ret = ret2;
1426 	}
1427 
1428 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429 		/* if we have allocated more blocks and copied
1430 		 * less. We will have blocks allocated outside
1431 		 * inode->i_size. So truncate them
1432 		 */
1433 		ext4_orphan_add(handle, inode);
1434 
1435 	ret2 = ext4_journal_stop(handle);
1436 	if (!ret)
1437 		ret = ret2;
1438 	if (pos + len > inode->i_size && !verity) {
1439 		ext4_truncate_failed_write(inode);
1440 		/*
1441 		 * If truncate failed early the inode might still be
1442 		 * on the orphan list; we need to make sure the inode
1443 		 * is removed from the orphan list in that case.
1444 		 */
1445 		if (inode->i_nlink)
1446 			ext4_orphan_del(NULL, inode);
1447 	}
1448 
1449 	return ret ? ret : copied;
1450 }
1451 
1452 /*
1453  * Reserve space for a single cluster
1454  */
1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458 	struct ext4_inode_info *ei = EXT4_I(inode);
1459 	int ret;
1460 
1461 	/*
1462 	 * We will charge metadata quota at writeout time; this saves
1463 	 * us from metadata over-estimation, though we may go over by
1464 	 * a small amount in the end.  Here we just reserve for data.
1465 	 */
1466 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467 	if (ret)
1468 		return ret;
1469 
1470 	spin_lock(&ei->i_block_reservation_lock);
1471 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472 		spin_unlock(&ei->i_block_reservation_lock);
1473 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474 		return -ENOSPC;
1475 	}
1476 	ei->i_reserved_data_blocks++;
1477 	trace_ext4_da_reserve_space(inode);
1478 	spin_unlock(&ei->i_block_reservation_lock);
1479 
1480 	return 0;       /* success */
1481 }
1482 
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486 	struct ext4_inode_info *ei = EXT4_I(inode);
1487 
1488 	if (!to_free)
1489 		return;		/* Nothing to release, exit */
1490 
1491 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492 
1493 	trace_ext4_da_release_space(inode, to_free);
1494 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495 		/*
1496 		 * if there aren't enough reserved blocks, then the
1497 		 * counter is messed up somewhere.  Since this
1498 		 * function is called from invalidate page, it's
1499 		 * harmless to return without any action.
1500 		 */
1501 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502 			 "ino %lu, to_free %d with only %d reserved "
1503 			 "data blocks", inode->i_ino, to_free,
1504 			 ei->i_reserved_data_blocks);
1505 		WARN_ON(1);
1506 		to_free = ei->i_reserved_data_blocks;
1507 	}
1508 	ei->i_reserved_data_blocks -= to_free;
1509 
1510 	/* update fs dirty data blocks counter */
1511 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512 
1513 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514 
1515 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517 
1518 /*
1519  * Delayed allocation stuff
1520  */
1521 
1522 struct mpage_da_data {
1523 	/* These are input fields for ext4_do_writepages() */
1524 	struct inode *inode;
1525 	struct writeback_control *wbc;
1526 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1527 
1528 	/* These are internal state of ext4_do_writepages() */
1529 	pgoff_t first_page;	/* The first page to write */
1530 	pgoff_t next_page;	/* Current page to examine */
1531 	pgoff_t last_page;	/* Last page to examine */
1532 	/*
1533 	 * Extent to map - this can be after first_page because that can be
1534 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535 	 * is delalloc or unwritten.
1536 	 */
1537 	struct ext4_map_blocks map;
1538 	struct ext4_io_submit io_submit;	/* IO submission data */
1539 	unsigned int do_map:1;
1540 	unsigned int scanned_until_end:1;
1541 	unsigned int journalled_more_data:1;
1542 };
1543 
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545 				       bool invalidate)
1546 {
1547 	unsigned nr, i;
1548 	pgoff_t index, end;
1549 	struct folio_batch fbatch;
1550 	struct inode *inode = mpd->inode;
1551 	struct address_space *mapping = inode->i_mapping;
1552 
1553 	/* This is necessary when next_page == 0. */
1554 	if (mpd->first_page >= mpd->next_page)
1555 		return;
1556 
1557 	mpd->scanned_until_end = 0;
1558 	index = mpd->first_page;
1559 	end   = mpd->next_page - 1;
1560 	if (invalidate) {
1561 		ext4_lblk_t start, last;
1562 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564 
1565 		/*
1566 		 * avoid racing with extent status tree scans made by
1567 		 * ext4_insert_delayed_block()
1568 		 */
1569 		down_write(&EXT4_I(inode)->i_data_sem);
1570 		ext4_es_remove_extent(inode, start, last - start + 1);
1571 		up_write(&EXT4_I(inode)->i_data_sem);
1572 	}
1573 
1574 	folio_batch_init(&fbatch);
1575 	while (index <= end) {
1576 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577 		if (nr == 0)
1578 			break;
1579 		for (i = 0; i < nr; i++) {
1580 			struct folio *folio = fbatch.folios[i];
1581 
1582 			if (folio->index < mpd->first_page)
1583 				continue;
1584 			if (folio_next_index(folio) - 1 > end)
1585 				continue;
1586 			BUG_ON(!folio_test_locked(folio));
1587 			BUG_ON(folio_test_writeback(folio));
1588 			if (invalidate) {
1589 				if (folio_mapped(folio))
1590 					folio_clear_dirty_for_io(folio);
1591 				block_invalidate_folio(folio, 0,
1592 						folio_size(folio));
1593 				folio_clear_uptodate(folio);
1594 			}
1595 			folio_unlock(folio);
1596 		}
1597 		folio_batch_release(&fbatch);
1598 	}
1599 }
1600 
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 	struct super_block *sb = inode->i_sb;
1605 	struct ext4_inode_info *ei = EXT4_I(inode);
1606 
1607 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609 			ext4_count_free_clusters(sb)));
1610 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 	       (long long) EXT4_C2B(EXT4_SB(sb),
1613 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 	       (long long) EXT4_C2B(EXT4_SB(sb),
1616 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 		 ei->i_reserved_data_blocks);
1620 	return;
1621 }
1622 
1623 /*
1624  * ext4_insert_delayed_block - adds a delayed block to the extents status
1625  *                             tree, incrementing the reserved cluster/block
1626  *                             count or making a pending reservation
1627  *                             where needed
1628  *
1629  * @inode - file containing the newly added block
1630  * @lblk - logical block to be added
1631  *
1632  * Returns 0 on success, negative error code on failure.
1633  */
1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635 {
1636 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637 	int ret;
1638 	bool allocated = false;
1639 
1640 	/*
1641 	 * If the cluster containing lblk is shared with a delayed,
1642 	 * written, or unwritten extent in a bigalloc file system, it's
1643 	 * already been accounted for and does not need to be reserved.
1644 	 * A pending reservation must be made for the cluster if it's
1645 	 * shared with a written or unwritten extent and doesn't already
1646 	 * have one.  Written and unwritten extents can be purged from the
1647 	 * extents status tree if the system is under memory pressure, so
1648 	 * it's necessary to examine the extent tree if a search of the
1649 	 * extents status tree doesn't get a match.
1650 	 */
1651 	if (sbi->s_cluster_ratio == 1) {
1652 		ret = ext4_da_reserve_space(inode);
1653 		if (ret != 0)   /* ENOSPC */
1654 			return ret;
1655 	} else {   /* bigalloc */
1656 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657 			if (!ext4_es_scan_clu(inode,
1658 					      &ext4_es_is_mapped, lblk)) {
1659 				ret = ext4_clu_mapped(inode,
1660 						      EXT4_B2C(sbi, lblk));
1661 				if (ret < 0)
1662 					return ret;
1663 				if (ret == 0) {
1664 					ret = ext4_da_reserve_space(inode);
1665 					if (ret != 0)   /* ENOSPC */
1666 						return ret;
1667 				} else {
1668 					allocated = true;
1669 				}
1670 			} else {
1671 				allocated = true;
1672 			}
1673 		}
1674 	}
1675 
1676 	ext4_es_insert_delayed_block(inode, lblk, allocated);
1677 	return 0;
1678 }
1679 
1680 /*
1681  * This function is grabs code from the very beginning of
1682  * ext4_map_blocks, but assumes that the caller is from delayed write
1683  * time. This function looks up the requested blocks and sets the
1684  * buffer delay bit under the protection of i_data_sem.
1685  */
1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687 			      struct ext4_map_blocks *map,
1688 			      struct buffer_head *bh)
1689 {
1690 	struct extent_status es;
1691 	int retval;
1692 	sector_t invalid_block = ~((sector_t) 0xffff);
1693 #ifdef ES_AGGRESSIVE_TEST
1694 	struct ext4_map_blocks orig_map;
1695 
1696 	memcpy(&orig_map, map, sizeof(*map));
1697 #endif
1698 
1699 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700 		invalid_block = ~0;
1701 
1702 	map->m_flags = 0;
1703 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704 		  (unsigned long) map->m_lblk);
1705 
1706 	/* Lookup extent status tree firstly */
1707 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708 		if (ext4_es_is_hole(&es)) {
1709 			down_read(&EXT4_I(inode)->i_data_sem);
1710 			goto add_delayed;
1711 		}
1712 
1713 		/*
1714 		 * Delayed extent could be allocated by fallocate.
1715 		 * So we need to check it.
1716 		 */
1717 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1718 			map_bh(bh, inode->i_sb, invalid_block);
1719 			set_buffer_new(bh);
1720 			set_buffer_delay(bh);
1721 			return 0;
1722 		}
1723 
1724 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1725 		retval = es.es_len - (iblock - es.es_lblk);
1726 		if (retval > map->m_len)
1727 			retval = map->m_len;
1728 		map->m_len = retval;
1729 		if (ext4_es_is_written(&es))
1730 			map->m_flags |= EXT4_MAP_MAPPED;
1731 		else if (ext4_es_is_unwritten(&es))
1732 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1733 		else
1734 			BUG();
1735 
1736 #ifdef ES_AGGRESSIVE_TEST
1737 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1738 #endif
1739 		return retval;
1740 	}
1741 
1742 	/*
1743 	 * Try to see if we can get the block without requesting a new
1744 	 * file system block.
1745 	 */
1746 	down_read(&EXT4_I(inode)->i_data_sem);
1747 	if (ext4_has_inline_data(inode))
1748 		retval = 0;
1749 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1750 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1751 	else
1752 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1753 	if (retval < 0)
1754 		goto out_unlock;
1755 	if (retval > 0) {
1756 		unsigned int status;
1757 
1758 		if (unlikely(retval != map->m_len)) {
1759 			ext4_warning(inode->i_sb,
1760 				     "ES len assertion failed for inode "
1761 				     "%lu: retval %d != map->m_len %d",
1762 				     inode->i_ino, retval, map->m_len);
1763 			WARN_ON(1);
1764 		}
1765 
1766 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769 				      map->m_pblk, status);
1770 		goto out_unlock;
1771 	}
1772 
1773 add_delayed:
1774 	/*
1775 	 * XXX: __block_prepare_write() unmaps passed block,
1776 	 * is it OK?
1777 	 */
1778 	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1779 	if (retval)
1780 		goto out_unlock;
1781 
1782 	map_bh(bh, inode->i_sb, invalid_block);
1783 	set_buffer_new(bh);
1784 	set_buffer_delay(bh);
1785 
1786 out_unlock:
1787 	up_read((&EXT4_I(inode)->i_data_sem));
1788 	return retval;
1789 }
1790 
1791 /*
1792  * This is a special get_block_t callback which is used by
1793  * ext4_da_write_begin().  It will either return mapped block or
1794  * reserve space for a single block.
1795  *
1796  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1797  * We also have b_blocknr = -1 and b_bdev initialized properly
1798  *
1799  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1800  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1801  * initialized properly.
1802  */
1803 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1804 			   struct buffer_head *bh, int create)
1805 {
1806 	struct ext4_map_blocks map;
1807 	int ret = 0;
1808 
1809 	BUG_ON(create == 0);
1810 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1811 
1812 	map.m_lblk = iblock;
1813 	map.m_len = 1;
1814 
1815 	/*
1816 	 * first, we need to know whether the block is allocated already
1817 	 * preallocated blocks are unmapped but should treated
1818 	 * the same as allocated blocks.
1819 	 */
1820 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1821 	if (ret <= 0)
1822 		return ret;
1823 
1824 	map_bh(bh, inode->i_sb, map.m_pblk);
1825 	ext4_update_bh_state(bh, map.m_flags);
1826 
1827 	if (buffer_unwritten(bh)) {
1828 		/* A delayed write to unwritten bh should be marked
1829 		 * new and mapped.  Mapped ensures that we don't do
1830 		 * get_block multiple times when we write to the same
1831 		 * offset and new ensures that we do proper zero out
1832 		 * for partial write.
1833 		 */
1834 		set_buffer_new(bh);
1835 		set_buffer_mapped(bh);
1836 	}
1837 	return 0;
1838 }
1839 
1840 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1841 {
1842 	mpd->first_page += folio_nr_pages(folio);
1843 	folio_unlock(folio);
1844 }
1845 
1846 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1847 {
1848 	size_t len;
1849 	loff_t size;
1850 	int err;
1851 
1852 	BUG_ON(folio->index != mpd->first_page);
1853 	folio_clear_dirty_for_io(folio);
1854 	/*
1855 	 * We have to be very careful here!  Nothing protects writeback path
1856 	 * against i_size changes and the page can be writeably mapped into
1857 	 * page tables. So an application can be growing i_size and writing
1858 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1859 	 * write-protects our page in page tables and the page cannot get
1860 	 * written to again until we release folio lock. So only after
1861 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1862 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1863 	 * on the barrier provided by folio_test_clear_dirty() in
1864 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1865 	 * after page tables are updated.
1866 	 */
1867 	size = i_size_read(mpd->inode);
1868 	len = folio_size(folio);
1869 	if (folio_pos(folio) + len > size &&
1870 	    !ext4_verity_in_progress(mpd->inode))
1871 		len = size & ~PAGE_MASK;
1872 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1873 	if (!err)
1874 		mpd->wbc->nr_to_write--;
1875 
1876 	return err;
1877 }
1878 
1879 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1880 
1881 /*
1882  * mballoc gives us at most this number of blocks...
1883  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1884  * The rest of mballoc seems to handle chunks up to full group size.
1885  */
1886 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1887 
1888 /*
1889  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1890  *
1891  * @mpd - extent of blocks
1892  * @lblk - logical number of the block in the file
1893  * @bh - buffer head we want to add to the extent
1894  *
1895  * The function is used to collect contig. blocks in the same state. If the
1896  * buffer doesn't require mapping for writeback and we haven't started the
1897  * extent of buffers to map yet, the function returns 'true' immediately - the
1898  * caller can write the buffer right away. Otherwise the function returns true
1899  * if the block has been added to the extent, false if the block couldn't be
1900  * added.
1901  */
1902 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1903 				   struct buffer_head *bh)
1904 {
1905 	struct ext4_map_blocks *map = &mpd->map;
1906 
1907 	/* Buffer that doesn't need mapping for writeback? */
1908 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1909 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1910 		/* So far no extent to map => we write the buffer right away */
1911 		if (map->m_len == 0)
1912 			return true;
1913 		return false;
1914 	}
1915 
1916 	/* First block in the extent? */
1917 	if (map->m_len == 0) {
1918 		/* We cannot map unless handle is started... */
1919 		if (!mpd->do_map)
1920 			return false;
1921 		map->m_lblk = lblk;
1922 		map->m_len = 1;
1923 		map->m_flags = bh->b_state & BH_FLAGS;
1924 		return true;
1925 	}
1926 
1927 	/* Don't go larger than mballoc is willing to allocate */
1928 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1929 		return false;
1930 
1931 	/* Can we merge the block to our big extent? */
1932 	if (lblk == map->m_lblk + map->m_len &&
1933 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1934 		map->m_len++;
1935 		return true;
1936 	}
1937 	return false;
1938 }
1939 
1940 /*
1941  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1942  *
1943  * @mpd - extent of blocks for mapping
1944  * @head - the first buffer in the page
1945  * @bh - buffer we should start processing from
1946  * @lblk - logical number of the block in the file corresponding to @bh
1947  *
1948  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1949  * the page for IO if all buffers in this page were mapped and there's no
1950  * accumulated extent of buffers to map or add buffers in the page to the
1951  * extent of buffers to map. The function returns 1 if the caller can continue
1952  * by processing the next page, 0 if it should stop adding buffers to the
1953  * extent to map because we cannot extend it anymore. It can also return value
1954  * < 0 in case of error during IO submission.
1955  */
1956 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1957 				   struct buffer_head *head,
1958 				   struct buffer_head *bh,
1959 				   ext4_lblk_t lblk)
1960 {
1961 	struct inode *inode = mpd->inode;
1962 	int err;
1963 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1964 							>> inode->i_blkbits;
1965 
1966 	if (ext4_verity_in_progress(inode))
1967 		blocks = EXT_MAX_BLOCKS;
1968 
1969 	do {
1970 		BUG_ON(buffer_locked(bh));
1971 
1972 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1973 			/* Found extent to map? */
1974 			if (mpd->map.m_len)
1975 				return 0;
1976 			/* Buffer needs mapping and handle is not started? */
1977 			if (!mpd->do_map)
1978 				return 0;
1979 			/* Everything mapped so far and we hit EOF */
1980 			break;
1981 		}
1982 	} while (lblk++, (bh = bh->b_this_page) != head);
1983 	/* So far everything mapped? Submit the page for IO. */
1984 	if (mpd->map.m_len == 0) {
1985 		err = mpage_submit_folio(mpd, head->b_folio);
1986 		if (err < 0)
1987 			return err;
1988 		mpage_folio_done(mpd, head->b_folio);
1989 	}
1990 	if (lblk >= blocks) {
1991 		mpd->scanned_until_end = 1;
1992 		return 0;
1993 	}
1994 	return 1;
1995 }
1996 
1997 /*
1998  * mpage_process_folio - update folio buffers corresponding to changed extent
1999  *			 and may submit fully mapped page for IO
2000  * @mpd: description of extent to map, on return next extent to map
2001  * @folio: Contains these buffers.
2002  * @m_lblk: logical block mapping.
2003  * @m_pblk: corresponding physical mapping.
2004  * @map_bh: determines on return whether this page requires any further
2005  *		  mapping or not.
2006  *
2007  * Scan given folio buffers corresponding to changed extent and update buffer
2008  * state according to new extent state.
2009  * We map delalloc buffers to their physical location, clear unwritten bits.
2010  * If the given folio is not fully mapped, we update @mpd to the next extent in
2011  * the given folio that needs mapping & return @map_bh as true.
2012  */
2013 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2014 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2015 			      bool *map_bh)
2016 {
2017 	struct buffer_head *head, *bh;
2018 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2019 	ext4_lblk_t lblk = *m_lblk;
2020 	ext4_fsblk_t pblock = *m_pblk;
2021 	int err = 0;
2022 	int blkbits = mpd->inode->i_blkbits;
2023 	ssize_t io_end_size = 0;
2024 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2025 
2026 	bh = head = folio_buffers(folio);
2027 	do {
2028 		if (lblk < mpd->map.m_lblk)
2029 			continue;
2030 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2031 			/*
2032 			 * Buffer after end of mapped extent.
2033 			 * Find next buffer in the folio to map.
2034 			 */
2035 			mpd->map.m_len = 0;
2036 			mpd->map.m_flags = 0;
2037 			io_end_vec->size += io_end_size;
2038 
2039 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2040 			if (err > 0)
2041 				err = 0;
2042 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2043 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2044 				if (IS_ERR(io_end_vec)) {
2045 					err = PTR_ERR(io_end_vec);
2046 					goto out;
2047 				}
2048 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2049 			}
2050 			*map_bh = true;
2051 			goto out;
2052 		}
2053 		if (buffer_delay(bh)) {
2054 			clear_buffer_delay(bh);
2055 			bh->b_blocknr = pblock++;
2056 		}
2057 		clear_buffer_unwritten(bh);
2058 		io_end_size += (1 << blkbits);
2059 	} while (lblk++, (bh = bh->b_this_page) != head);
2060 
2061 	io_end_vec->size += io_end_size;
2062 	*map_bh = false;
2063 out:
2064 	*m_lblk = lblk;
2065 	*m_pblk = pblock;
2066 	return err;
2067 }
2068 
2069 /*
2070  * mpage_map_buffers - update buffers corresponding to changed extent and
2071  *		       submit fully mapped pages for IO
2072  *
2073  * @mpd - description of extent to map, on return next extent to map
2074  *
2075  * Scan buffers corresponding to changed extent (we expect corresponding pages
2076  * to be already locked) and update buffer state according to new extent state.
2077  * We map delalloc buffers to their physical location, clear unwritten bits,
2078  * and mark buffers as uninit when we perform writes to unwritten extents
2079  * and do extent conversion after IO is finished. If the last page is not fully
2080  * mapped, we update @map to the next extent in the last page that needs
2081  * mapping. Otherwise we submit the page for IO.
2082  */
2083 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2084 {
2085 	struct folio_batch fbatch;
2086 	unsigned nr, i;
2087 	struct inode *inode = mpd->inode;
2088 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2089 	pgoff_t start, end;
2090 	ext4_lblk_t lblk;
2091 	ext4_fsblk_t pblock;
2092 	int err;
2093 	bool map_bh = false;
2094 
2095 	start = mpd->map.m_lblk >> bpp_bits;
2096 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2097 	lblk = start << bpp_bits;
2098 	pblock = mpd->map.m_pblk;
2099 
2100 	folio_batch_init(&fbatch);
2101 	while (start <= end) {
2102 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2103 		if (nr == 0)
2104 			break;
2105 		for (i = 0; i < nr; i++) {
2106 			struct folio *folio = fbatch.folios[i];
2107 
2108 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2109 						 &map_bh);
2110 			/*
2111 			 * If map_bh is true, means page may require further bh
2112 			 * mapping, or maybe the page was submitted for IO.
2113 			 * So we return to call further extent mapping.
2114 			 */
2115 			if (err < 0 || map_bh)
2116 				goto out;
2117 			/* Page fully mapped - let IO run! */
2118 			err = mpage_submit_folio(mpd, folio);
2119 			if (err < 0)
2120 				goto out;
2121 			mpage_folio_done(mpd, folio);
2122 		}
2123 		folio_batch_release(&fbatch);
2124 	}
2125 	/* Extent fully mapped and matches with page boundary. We are done. */
2126 	mpd->map.m_len = 0;
2127 	mpd->map.m_flags = 0;
2128 	return 0;
2129 out:
2130 	folio_batch_release(&fbatch);
2131 	return err;
2132 }
2133 
2134 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2135 {
2136 	struct inode *inode = mpd->inode;
2137 	struct ext4_map_blocks *map = &mpd->map;
2138 	int get_blocks_flags;
2139 	int err, dioread_nolock;
2140 
2141 	trace_ext4_da_write_pages_extent(inode, map);
2142 	/*
2143 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2144 	 * to convert an unwritten extent to be initialized (in the case
2145 	 * where we have written into one or more preallocated blocks).  It is
2146 	 * possible that we're going to need more metadata blocks than
2147 	 * previously reserved. However we must not fail because we're in
2148 	 * writeback and there is nothing we can do about it so it might result
2149 	 * in data loss.  So use reserved blocks to allocate metadata if
2150 	 * possible.
2151 	 *
2152 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2153 	 * the blocks in question are delalloc blocks.  This indicates
2154 	 * that the blocks and quotas has already been checked when
2155 	 * the data was copied into the page cache.
2156 	 */
2157 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2158 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2159 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2160 	dioread_nolock = ext4_should_dioread_nolock(inode);
2161 	if (dioread_nolock)
2162 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2163 	if (map->m_flags & BIT(BH_Delay))
2164 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2165 
2166 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2167 	if (err < 0)
2168 		return err;
2169 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2170 		if (!mpd->io_submit.io_end->handle &&
2171 		    ext4_handle_valid(handle)) {
2172 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2173 			handle->h_rsv_handle = NULL;
2174 		}
2175 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2176 	}
2177 
2178 	BUG_ON(map->m_len == 0);
2179 	return 0;
2180 }
2181 
2182 /*
2183  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2184  *				 mpd->len and submit pages underlying it for IO
2185  *
2186  * @handle - handle for journal operations
2187  * @mpd - extent to map
2188  * @give_up_on_write - we set this to true iff there is a fatal error and there
2189  *                     is no hope of writing the data. The caller should discard
2190  *                     dirty pages to avoid infinite loops.
2191  *
2192  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2193  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2194  * them to initialized or split the described range from larger unwritten
2195  * extent. Note that we need not map all the described range since allocation
2196  * can return less blocks or the range is covered by more unwritten extents. We
2197  * cannot map more because we are limited by reserved transaction credits. On
2198  * the other hand we always make sure that the last touched page is fully
2199  * mapped so that it can be written out (and thus forward progress is
2200  * guaranteed). After mapping we submit all mapped pages for IO.
2201  */
2202 static int mpage_map_and_submit_extent(handle_t *handle,
2203 				       struct mpage_da_data *mpd,
2204 				       bool *give_up_on_write)
2205 {
2206 	struct inode *inode = mpd->inode;
2207 	struct ext4_map_blocks *map = &mpd->map;
2208 	int err;
2209 	loff_t disksize;
2210 	int progress = 0;
2211 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2212 	struct ext4_io_end_vec *io_end_vec;
2213 
2214 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2215 	if (IS_ERR(io_end_vec))
2216 		return PTR_ERR(io_end_vec);
2217 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2218 	do {
2219 		err = mpage_map_one_extent(handle, mpd);
2220 		if (err < 0) {
2221 			struct super_block *sb = inode->i_sb;
2222 
2223 			if (ext4_forced_shutdown(sb))
2224 				goto invalidate_dirty_pages;
2225 			/*
2226 			 * Let the uper layers retry transient errors.
2227 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2228 			 * is non-zero, a commit should free up blocks.
2229 			 */
2230 			if ((err == -ENOMEM) ||
2231 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2232 				if (progress)
2233 					goto update_disksize;
2234 				return err;
2235 			}
2236 			ext4_msg(sb, KERN_CRIT,
2237 				 "Delayed block allocation failed for "
2238 				 "inode %lu at logical offset %llu with"
2239 				 " max blocks %u with error %d",
2240 				 inode->i_ino,
2241 				 (unsigned long long)map->m_lblk,
2242 				 (unsigned)map->m_len, -err);
2243 			ext4_msg(sb, KERN_CRIT,
2244 				 "This should not happen!! Data will "
2245 				 "be lost\n");
2246 			if (err == -ENOSPC)
2247 				ext4_print_free_blocks(inode);
2248 		invalidate_dirty_pages:
2249 			*give_up_on_write = true;
2250 			return err;
2251 		}
2252 		progress = 1;
2253 		/*
2254 		 * Update buffer state, submit mapped pages, and get us new
2255 		 * extent to map
2256 		 */
2257 		err = mpage_map_and_submit_buffers(mpd);
2258 		if (err < 0)
2259 			goto update_disksize;
2260 	} while (map->m_len);
2261 
2262 update_disksize:
2263 	/*
2264 	 * Update on-disk size after IO is submitted.  Races with
2265 	 * truncate are avoided by checking i_size under i_data_sem.
2266 	 */
2267 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2268 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2269 		int err2;
2270 		loff_t i_size;
2271 
2272 		down_write(&EXT4_I(inode)->i_data_sem);
2273 		i_size = i_size_read(inode);
2274 		if (disksize > i_size)
2275 			disksize = i_size;
2276 		if (disksize > EXT4_I(inode)->i_disksize)
2277 			EXT4_I(inode)->i_disksize = disksize;
2278 		up_write(&EXT4_I(inode)->i_data_sem);
2279 		err2 = ext4_mark_inode_dirty(handle, inode);
2280 		if (err2) {
2281 			ext4_error_err(inode->i_sb, -err2,
2282 				       "Failed to mark inode %lu dirty",
2283 				       inode->i_ino);
2284 		}
2285 		if (!err)
2286 			err = err2;
2287 	}
2288 	return err;
2289 }
2290 
2291 /*
2292  * Calculate the total number of credits to reserve for one writepages
2293  * iteration. This is called from ext4_writepages(). We map an extent of
2294  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2295  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2296  * bpp - 1 blocks in bpp different extents.
2297  */
2298 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2299 {
2300 	int bpp = ext4_journal_blocks_per_page(inode);
2301 
2302 	return ext4_meta_trans_blocks(inode,
2303 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2304 }
2305 
2306 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2307 				     size_t len)
2308 {
2309 	struct buffer_head *page_bufs = folio_buffers(folio);
2310 	struct inode *inode = folio->mapping->host;
2311 	int ret, err;
2312 
2313 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2314 				     NULL, do_journal_get_write_access);
2315 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2316 				     NULL, write_end_fn);
2317 	if (ret == 0)
2318 		ret = err;
2319 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2320 	if (ret == 0)
2321 		ret = err;
2322 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2323 
2324 	return ret;
2325 }
2326 
2327 static int mpage_journal_page_buffers(handle_t *handle,
2328 				      struct mpage_da_data *mpd,
2329 				      struct folio *folio)
2330 {
2331 	struct inode *inode = mpd->inode;
2332 	loff_t size = i_size_read(inode);
2333 	size_t len = folio_size(folio);
2334 
2335 	folio_clear_checked(folio);
2336 	mpd->wbc->nr_to_write--;
2337 
2338 	if (folio_pos(folio) + len > size &&
2339 	    !ext4_verity_in_progress(inode))
2340 		len = size & (len - 1);
2341 
2342 	return ext4_journal_folio_buffers(handle, folio, len);
2343 }
2344 
2345 /*
2346  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2347  * 				 needing mapping, submit mapped pages
2348  *
2349  * @mpd - where to look for pages
2350  *
2351  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2352  * IO immediately. If we cannot map blocks, we submit just already mapped
2353  * buffers in the page for IO and keep page dirty. When we can map blocks and
2354  * we find a page which isn't mapped we start accumulating extent of buffers
2355  * underlying these pages that needs mapping (formed by either delayed or
2356  * unwritten buffers). We also lock the pages containing these buffers. The
2357  * extent found is returned in @mpd structure (starting at mpd->lblk with
2358  * length mpd->len blocks).
2359  *
2360  * Note that this function can attach bios to one io_end structure which are
2361  * neither logically nor physically contiguous. Although it may seem as an
2362  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2363  * case as we need to track IO to all buffers underlying a page in one io_end.
2364  */
2365 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2366 {
2367 	struct address_space *mapping = mpd->inode->i_mapping;
2368 	struct folio_batch fbatch;
2369 	unsigned int nr_folios;
2370 	pgoff_t index = mpd->first_page;
2371 	pgoff_t end = mpd->last_page;
2372 	xa_mark_t tag;
2373 	int i, err = 0;
2374 	int blkbits = mpd->inode->i_blkbits;
2375 	ext4_lblk_t lblk;
2376 	struct buffer_head *head;
2377 	handle_t *handle = NULL;
2378 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2379 
2380 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2381 		tag = PAGECACHE_TAG_TOWRITE;
2382 	else
2383 		tag = PAGECACHE_TAG_DIRTY;
2384 
2385 	mpd->map.m_len = 0;
2386 	mpd->next_page = index;
2387 	if (ext4_should_journal_data(mpd->inode)) {
2388 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2389 					    bpp);
2390 		if (IS_ERR(handle))
2391 			return PTR_ERR(handle);
2392 	}
2393 	folio_batch_init(&fbatch);
2394 	while (index <= end) {
2395 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2396 				tag, &fbatch);
2397 		if (nr_folios == 0)
2398 			break;
2399 
2400 		for (i = 0; i < nr_folios; i++) {
2401 			struct folio *folio = fbatch.folios[i];
2402 
2403 			/*
2404 			 * Accumulated enough dirty pages? This doesn't apply
2405 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2406 			 * keep going because someone may be concurrently
2407 			 * dirtying pages, and we might have synced a lot of
2408 			 * newly appeared dirty pages, but have not synced all
2409 			 * of the old dirty pages.
2410 			 */
2411 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2412 			    mpd->wbc->nr_to_write <=
2413 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2414 				goto out;
2415 
2416 			/* If we can't merge this page, we are done. */
2417 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2418 				goto out;
2419 
2420 			if (handle) {
2421 				err = ext4_journal_ensure_credits(handle, bpp,
2422 								  0);
2423 				if (err < 0)
2424 					goto out;
2425 			}
2426 
2427 			folio_lock(folio);
2428 			/*
2429 			 * If the page is no longer dirty, or its mapping no
2430 			 * longer corresponds to inode we are writing (which
2431 			 * means it has been truncated or invalidated), or the
2432 			 * page is already under writeback and we are not doing
2433 			 * a data integrity writeback, skip the page
2434 			 */
2435 			if (!folio_test_dirty(folio) ||
2436 			    (folio_test_writeback(folio) &&
2437 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2438 			    unlikely(folio->mapping != mapping)) {
2439 				folio_unlock(folio);
2440 				continue;
2441 			}
2442 
2443 			folio_wait_writeback(folio);
2444 			BUG_ON(folio_test_writeback(folio));
2445 
2446 			/*
2447 			 * Should never happen but for buggy code in
2448 			 * other subsystems that call
2449 			 * set_page_dirty() without properly warning
2450 			 * the file system first.  See [1] for more
2451 			 * information.
2452 			 *
2453 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2454 			 */
2455 			if (!folio_buffers(folio)) {
2456 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2457 				folio_clear_dirty(folio);
2458 				folio_unlock(folio);
2459 				continue;
2460 			}
2461 
2462 			if (mpd->map.m_len == 0)
2463 				mpd->first_page = folio->index;
2464 			mpd->next_page = folio_next_index(folio);
2465 			/*
2466 			 * Writeout when we cannot modify metadata is simple.
2467 			 * Just submit the page. For data=journal mode we
2468 			 * first handle writeout of the page for checkpoint and
2469 			 * only after that handle delayed page dirtying. This
2470 			 * makes sure current data is checkpointed to the final
2471 			 * location before possibly journalling it again which
2472 			 * is desirable when the page is frequently dirtied
2473 			 * through a pin.
2474 			 */
2475 			if (!mpd->can_map) {
2476 				err = mpage_submit_folio(mpd, folio);
2477 				if (err < 0)
2478 					goto out;
2479 				/* Pending dirtying of journalled data? */
2480 				if (folio_test_checked(folio)) {
2481 					err = mpage_journal_page_buffers(handle,
2482 						mpd, folio);
2483 					if (err < 0)
2484 						goto out;
2485 					mpd->journalled_more_data = 1;
2486 				}
2487 				mpage_folio_done(mpd, folio);
2488 			} else {
2489 				/* Add all dirty buffers to mpd */
2490 				lblk = ((ext4_lblk_t)folio->index) <<
2491 					(PAGE_SHIFT - blkbits);
2492 				head = folio_buffers(folio);
2493 				err = mpage_process_page_bufs(mpd, head, head,
2494 						lblk);
2495 				if (err <= 0)
2496 					goto out;
2497 				err = 0;
2498 			}
2499 		}
2500 		folio_batch_release(&fbatch);
2501 		cond_resched();
2502 	}
2503 	mpd->scanned_until_end = 1;
2504 	if (handle)
2505 		ext4_journal_stop(handle);
2506 	return 0;
2507 out:
2508 	folio_batch_release(&fbatch);
2509 	if (handle)
2510 		ext4_journal_stop(handle);
2511 	return err;
2512 }
2513 
2514 static int ext4_do_writepages(struct mpage_da_data *mpd)
2515 {
2516 	struct writeback_control *wbc = mpd->wbc;
2517 	pgoff_t	writeback_index = 0;
2518 	long nr_to_write = wbc->nr_to_write;
2519 	int range_whole = 0;
2520 	int cycled = 1;
2521 	handle_t *handle = NULL;
2522 	struct inode *inode = mpd->inode;
2523 	struct address_space *mapping = inode->i_mapping;
2524 	int needed_blocks, rsv_blocks = 0, ret = 0;
2525 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2526 	struct blk_plug plug;
2527 	bool give_up_on_write = false;
2528 
2529 	trace_ext4_writepages(inode, wbc);
2530 
2531 	/*
2532 	 * No pages to write? This is mainly a kludge to avoid starting
2533 	 * a transaction for special inodes like journal inode on last iput()
2534 	 * because that could violate lock ordering on umount
2535 	 */
2536 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2537 		goto out_writepages;
2538 
2539 	/*
2540 	 * If the filesystem has aborted, it is read-only, so return
2541 	 * right away instead of dumping stack traces later on that
2542 	 * will obscure the real source of the problem.  We test
2543 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2544 	 * the latter could be true if the filesystem is mounted
2545 	 * read-only, and in that case, ext4_writepages should
2546 	 * *never* be called, so if that ever happens, we would want
2547 	 * the stack trace.
2548 	 */
2549 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2550 		ret = -EROFS;
2551 		goto out_writepages;
2552 	}
2553 
2554 	/*
2555 	 * If we have inline data and arrive here, it means that
2556 	 * we will soon create the block for the 1st page, so
2557 	 * we'd better clear the inline data here.
2558 	 */
2559 	if (ext4_has_inline_data(inode)) {
2560 		/* Just inode will be modified... */
2561 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2562 		if (IS_ERR(handle)) {
2563 			ret = PTR_ERR(handle);
2564 			goto out_writepages;
2565 		}
2566 		BUG_ON(ext4_test_inode_state(inode,
2567 				EXT4_STATE_MAY_INLINE_DATA));
2568 		ext4_destroy_inline_data(handle, inode);
2569 		ext4_journal_stop(handle);
2570 	}
2571 
2572 	/*
2573 	 * data=journal mode does not do delalloc so we just need to writeout /
2574 	 * journal already mapped buffers. On the other hand we need to commit
2575 	 * transaction to make data stable. We expect all the data to be
2576 	 * already in the journal (the only exception are DMA pinned pages
2577 	 * dirtied behind our back) so we commit transaction here and run the
2578 	 * writeback loop to checkpoint them. The checkpointing is not actually
2579 	 * necessary to make data persistent *but* quite a few places (extent
2580 	 * shifting operations, fsverity, ...) depend on being able to drop
2581 	 * pagecache pages after calling filemap_write_and_wait() and for that
2582 	 * checkpointing needs to happen.
2583 	 */
2584 	if (ext4_should_journal_data(inode)) {
2585 		mpd->can_map = 0;
2586 		if (wbc->sync_mode == WB_SYNC_ALL)
2587 			ext4_fc_commit(sbi->s_journal,
2588 				       EXT4_I(inode)->i_datasync_tid);
2589 	}
2590 	mpd->journalled_more_data = 0;
2591 
2592 	if (ext4_should_dioread_nolock(inode)) {
2593 		/*
2594 		 * We may need to convert up to one extent per block in
2595 		 * the page and we may dirty the inode.
2596 		 */
2597 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2598 						PAGE_SIZE >> inode->i_blkbits);
2599 	}
2600 
2601 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2602 		range_whole = 1;
2603 
2604 	if (wbc->range_cyclic) {
2605 		writeback_index = mapping->writeback_index;
2606 		if (writeback_index)
2607 			cycled = 0;
2608 		mpd->first_page = writeback_index;
2609 		mpd->last_page = -1;
2610 	} else {
2611 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2612 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2613 	}
2614 
2615 	ext4_io_submit_init(&mpd->io_submit, wbc);
2616 retry:
2617 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2618 		tag_pages_for_writeback(mapping, mpd->first_page,
2619 					mpd->last_page);
2620 	blk_start_plug(&plug);
2621 
2622 	/*
2623 	 * First writeback pages that don't need mapping - we can avoid
2624 	 * starting a transaction unnecessarily and also avoid being blocked
2625 	 * in the block layer on device congestion while having transaction
2626 	 * started.
2627 	 */
2628 	mpd->do_map = 0;
2629 	mpd->scanned_until_end = 0;
2630 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2631 	if (!mpd->io_submit.io_end) {
2632 		ret = -ENOMEM;
2633 		goto unplug;
2634 	}
2635 	ret = mpage_prepare_extent_to_map(mpd);
2636 	/* Unlock pages we didn't use */
2637 	mpage_release_unused_pages(mpd, false);
2638 	/* Submit prepared bio */
2639 	ext4_io_submit(&mpd->io_submit);
2640 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2641 	mpd->io_submit.io_end = NULL;
2642 	if (ret < 0)
2643 		goto unplug;
2644 
2645 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2646 		/* For each extent of pages we use new io_end */
2647 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2648 		if (!mpd->io_submit.io_end) {
2649 			ret = -ENOMEM;
2650 			break;
2651 		}
2652 
2653 		WARN_ON_ONCE(!mpd->can_map);
2654 		/*
2655 		 * We have two constraints: We find one extent to map and we
2656 		 * must always write out whole page (makes a difference when
2657 		 * blocksize < pagesize) so that we don't block on IO when we
2658 		 * try to write out the rest of the page. Journalled mode is
2659 		 * not supported by delalloc.
2660 		 */
2661 		BUG_ON(ext4_should_journal_data(inode));
2662 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2663 
2664 		/* start a new transaction */
2665 		handle = ext4_journal_start_with_reserve(inode,
2666 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2667 		if (IS_ERR(handle)) {
2668 			ret = PTR_ERR(handle);
2669 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2670 			       "%ld pages, ino %lu; err %d", __func__,
2671 				wbc->nr_to_write, inode->i_ino, ret);
2672 			/* Release allocated io_end */
2673 			ext4_put_io_end(mpd->io_submit.io_end);
2674 			mpd->io_submit.io_end = NULL;
2675 			break;
2676 		}
2677 		mpd->do_map = 1;
2678 
2679 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2680 		ret = mpage_prepare_extent_to_map(mpd);
2681 		if (!ret && mpd->map.m_len)
2682 			ret = mpage_map_and_submit_extent(handle, mpd,
2683 					&give_up_on_write);
2684 		/*
2685 		 * Caution: If the handle is synchronous,
2686 		 * ext4_journal_stop() can wait for transaction commit
2687 		 * to finish which may depend on writeback of pages to
2688 		 * complete or on page lock to be released.  In that
2689 		 * case, we have to wait until after we have
2690 		 * submitted all the IO, released page locks we hold,
2691 		 * and dropped io_end reference (for extent conversion
2692 		 * to be able to complete) before stopping the handle.
2693 		 */
2694 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2695 			ext4_journal_stop(handle);
2696 			handle = NULL;
2697 			mpd->do_map = 0;
2698 		}
2699 		/* Unlock pages we didn't use */
2700 		mpage_release_unused_pages(mpd, give_up_on_write);
2701 		/* Submit prepared bio */
2702 		ext4_io_submit(&mpd->io_submit);
2703 
2704 		/*
2705 		 * Drop our io_end reference we got from init. We have
2706 		 * to be careful and use deferred io_end finishing if
2707 		 * we are still holding the transaction as we can
2708 		 * release the last reference to io_end which may end
2709 		 * up doing unwritten extent conversion.
2710 		 */
2711 		if (handle) {
2712 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2713 			ext4_journal_stop(handle);
2714 		} else
2715 			ext4_put_io_end(mpd->io_submit.io_end);
2716 		mpd->io_submit.io_end = NULL;
2717 
2718 		if (ret == -ENOSPC && sbi->s_journal) {
2719 			/*
2720 			 * Commit the transaction which would
2721 			 * free blocks released in the transaction
2722 			 * and try again
2723 			 */
2724 			jbd2_journal_force_commit_nested(sbi->s_journal);
2725 			ret = 0;
2726 			continue;
2727 		}
2728 		/* Fatal error - ENOMEM, EIO... */
2729 		if (ret)
2730 			break;
2731 	}
2732 unplug:
2733 	blk_finish_plug(&plug);
2734 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2735 		cycled = 1;
2736 		mpd->last_page = writeback_index - 1;
2737 		mpd->first_page = 0;
2738 		goto retry;
2739 	}
2740 
2741 	/* Update index */
2742 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2743 		/*
2744 		 * Set the writeback_index so that range_cyclic
2745 		 * mode will write it back later
2746 		 */
2747 		mapping->writeback_index = mpd->first_page;
2748 
2749 out_writepages:
2750 	trace_ext4_writepages_result(inode, wbc, ret,
2751 				     nr_to_write - wbc->nr_to_write);
2752 	return ret;
2753 }
2754 
2755 static int ext4_writepages(struct address_space *mapping,
2756 			   struct writeback_control *wbc)
2757 {
2758 	struct super_block *sb = mapping->host->i_sb;
2759 	struct mpage_da_data mpd = {
2760 		.inode = mapping->host,
2761 		.wbc = wbc,
2762 		.can_map = 1,
2763 	};
2764 	int ret;
2765 	int alloc_ctx;
2766 
2767 	if (unlikely(ext4_forced_shutdown(sb)))
2768 		return -EIO;
2769 
2770 	alloc_ctx = ext4_writepages_down_read(sb);
2771 	ret = ext4_do_writepages(&mpd);
2772 	/*
2773 	 * For data=journal writeback we could have come across pages marked
2774 	 * for delayed dirtying (PageChecked) which were just added to the
2775 	 * running transaction. Try once more to get them to stable storage.
2776 	 */
2777 	if (!ret && mpd.journalled_more_data)
2778 		ret = ext4_do_writepages(&mpd);
2779 	ext4_writepages_up_read(sb, alloc_ctx);
2780 
2781 	return ret;
2782 }
2783 
2784 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2785 {
2786 	struct writeback_control wbc = {
2787 		.sync_mode = WB_SYNC_ALL,
2788 		.nr_to_write = LONG_MAX,
2789 		.range_start = jinode->i_dirty_start,
2790 		.range_end = jinode->i_dirty_end,
2791 	};
2792 	struct mpage_da_data mpd = {
2793 		.inode = jinode->i_vfs_inode,
2794 		.wbc = &wbc,
2795 		.can_map = 0,
2796 	};
2797 	return ext4_do_writepages(&mpd);
2798 }
2799 
2800 static int ext4_dax_writepages(struct address_space *mapping,
2801 			       struct writeback_control *wbc)
2802 {
2803 	int ret;
2804 	long nr_to_write = wbc->nr_to_write;
2805 	struct inode *inode = mapping->host;
2806 	int alloc_ctx;
2807 
2808 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2809 		return -EIO;
2810 
2811 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2812 	trace_ext4_writepages(inode, wbc);
2813 
2814 	ret = dax_writeback_mapping_range(mapping,
2815 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2816 	trace_ext4_writepages_result(inode, wbc, ret,
2817 				     nr_to_write - wbc->nr_to_write);
2818 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2819 	return ret;
2820 }
2821 
2822 static int ext4_nonda_switch(struct super_block *sb)
2823 {
2824 	s64 free_clusters, dirty_clusters;
2825 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2826 
2827 	/*
2828 	 * switch to non delalloc mode if we are running low
2829 	 * on free block. The free block accounting via percpu
2830 	 * counters can get slightly wrong with percpu_counter_batch getting
2831 	 * accumulated on each CPU without updating global counters
2832 	 * Delalloc need an accurate free block accounting. So switch
2833 	 * to non delalloc when we are near to error range.
2834 	 */
2835 	free_clusters =
2836 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2837 	dirty_clusters =
2838 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2839 	/*
2840 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2841 	 */
2842 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2843 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2844 
2845 	if (2 * free_clusters < 3 * dirty_clusters ||
2846 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2847 		/*
2848 		 * free block count is less than 150% of dirty blocks
2849 		 * or free blocks is less than watermark
2850 		 */
2851 		return 1;
2852 	}
2853 	return 0;
2854 }
2855 
2856 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2857 			       loff_t pos, unsigned len,
2858 			       struct page **pagep, void **fsdata)
2859 {
2860 	int ret, retries = 0;
2861 	struct folio *folio;
2862 	pgoff_t index;
2863 	struct inode *inode = mapping->host;
2864 
2865 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2866 		return -EIO;
2867 
2868 	index = pos >> PAGE_SHIFT;
2869 
2870 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2871 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2872 		return ext4_write_begin(file, mapping, pos,
2873 					len, pagep, fsdata);
2874 	}
2875 	*fsdata = (void *)0;
2876 	trace_ext4_da_write_begin(inode, pos, len);
2877 
2878 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2879 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2880 						      pagep, fsdata);
2881 		if (ret < 0)
2882 			return ret;
2883 		if (ret == 1)
2884 			return 0;
2885 	}
2886 
2887 retry:
2888 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2889 			mapping_gfp_mask(mapping));
2890 	if (IS_ERR(folio))
2891 		return PTR_ERR(folio);
2892 
2893 #ifdef CONFIG_FS_ENCRYPTION
2894 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2895 #else
2896 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2897 #endif
2898 	if (ret < 0) {
2899 		folio_unlock(folio);
2900 		folio_put(folio);
2901 		/*
2902 		 * block_write_begin may have instantiated a few blocks
2903 		 * outside i_size.  Trim these off again. Don't need
2904 		 * i_size_read because we hold inode lock.
2905 		 */
2906 		if (pos + len > inode->i_size)
2907 			ext4_truncate_failed_write(inode);
2908 
2909 		if (ret == -ENOSPC &&
2910 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2911 			goto retry;
2912 		return ret;
2913 	}
2914 
2915 	*pagep = &folio->page;
2916 	return ret;
2917 }
2918 
2919 /*
2920  * Check if we should update i_disksize
2921  * when write to the end of file but not require block allocation
2922  */
2923 static int ext4_da_should_update_i_disksize(struct folio *folio,
2924 					    unsigned long offset)
2925 {
2926 	struct buffer_head *bh;
2927 	struct inode *inode = folio->mapping->host;
2928 	unsigned int idx;
2929 	int i;
2930 
2931 	bh = folio_buffers(folio);
2932 	idx = offset >> inode->i_blkbits;
2933 
2934 	for (i = 0; i < idx; i++)
2935 		bh = bh->b_this_page;
2936 
2937 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2938 		return 0;
2939 	return 1;
2940 }
2941 
2942 static int ext4_da_do_write_end(struct address_space *mapping,
2943 			loff_t pos, unsigned len, unsigned copied,
2944 			struct page *page)
2945 {
2946 	struct inode *inode = mapping->host;
2947 	loff_t old_size = inode->i_size;
2948 	bool disksize_changed = false;
2949 	loff_t new_i_size;
2950 
2951 	/*
2952 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2953 	 * flag, which all that's needed to trigger page writeback.
2954 	 */
2955 	copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL);
2956 	new_i_size = pos + copied;
2957 
2958 	/*
2959 	 * It's important to update i_size while still holding page lock,
2960 	 * because page writeout could otherwise come in and zero beyond
2961 	 * i_size.
2962 	 *
2963 	 * Since we are holding inode lock, we are sure i_disksize <=
2964 	 * i_size. We also know that if i_disksize < i_size, there are
2965 	 * delalloc writes pending in the range up to i_size. If the end of
2966 	 * the current write is <= i_size, there's no need to touch
2967 	 * i_disksize since writeback will push i_disksize up to i_size
2968 	 * eventually. If the end of the current write is > i_size and
2969 	 * inside an allocated block which ext4_da_should_update_i_disksize()
2970 	 * checked, we need to update i_disksize here as certain
2971 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2972 	 */
2973 	if (new_i_size > inode->i_size) {
2974 		unsigned long end;
2975 
2976 		i_size_write(inode, new_i_size);
2977 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2978 		if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) {
2979 			ext4_update_i_disksize(inode, new_i_size);
2980 			disksize_changed = true;
2981 		}
2982 	}
2983 
2984 	unlock_page(page);
2985 	put_page(page);
2986 
2987 	if (old_size < pos)
2988 		pagecache_isize_extended(inode, old_size, pos);
2989 
2990 	if (disksize_changed) {
2991 		handle_t *handle;
2992 
2993 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2994 		if (IS_ERR(handle))
2995 			return PTR_ERR(handle);
2996 		ext4_mark_inode_dirty(handle, inode);
2997 		ext4_journal_stop(handle);
2998 	}
2999 
3000 	return copied;
3001 }
3002 
3003 static int ext4_da_write_end(struct file *file,
3004 			     struct address_space *mapping,
3005 			     loff_t pos, unsigned len, unsigned copied,
3006 			     struct page *page, void *fsdata)
3007 {
3008 	struct inode *inode = mapping->host;
3009 	int write_mode = (int)(unsigned long)fsdata;
3010 	struct folio *folio = page_folio(page);
3011 
3012 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3013 		return ext4_write_end(file, mapping, pos,
3014 				      len, copied, &folio->page, fsdata);
3015 
3016 	trace_ext4_da_write_end(inode, pos, len, copied);
3017 
3018 	if (write_mode != CONVERT_INLINE_DATA &&
3019 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3020 	    ext4_has_inline_data(inode))
3021 		return ext4_write_inline_data_end(inode, pos, len, copied,
3022 						  folio);
3023 
3024 	if (unlikely(copied < len) && !PageUptodate(page))
3025 		copied = 0;
3026 
3027 	return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page);
3028 }
3029 
3030 /*
3031  * Force all delayed allocation blocks to be allocated for a given inode.
3032  */
3033 int ext4_alloc_da_blocks(struct inode *inode)
3034 {
3035 	trace_ext4_alloc_da_blocks(inode);
3036 
3037 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3038 		return 0;
3039 
3040 	/*
3041 	 * We do something simple for now.  The filemap_flush() will
3042 	 * also start triggering a write of the data blocks, which is
3043 	 * not strictly speaking necessary (and for users of
3044 	 * laptop_mode, not even desirable).  However, to do otherwise
3045 	 * would require replicating code paths in:
3046 	 *
3047 	 * ext4_writepages() ->
3048 	 *    write_cache_pages() ---> (via passed in callback function)
3049 	 *        __mpage_da_writepage() -->
3050 	 *           mpage_add_bh_to_extent()
3051 	 *           mpage_da_map_blocks()
3052 	 *
3053 	 * The problem is that write_cache_pages(), located in
3054 	 * mm/page-writeback.c, marks pages clean in preparation for
3055 	 * doing I/O, which is not desirable if we're not planning on
3056 	 * doing I/O at all.
3057 	 *
3058 	 * We could call write_cache_pages(), and then redirty all of
3059 	 * the pages by calling redirty_page_for_writepage() but that
3060 	 * would be ugly in the extreme.  So instead we would need to
3061 	 * replicate parts of the code in the above functions,
3062 	 * simplifying them because we wouldn't actually intend to
3063 	 * write out the pages, but rather only collect contiguous
3064 	 * logical block extents, call the multi-block allocator, and
3065 	 * then update the buffer heads with the block allocations.
3066 	 *
3067 	 * For now, though, we'll cheat by calling filemap_flush(),
3068 	 * which will map the blocks, and start the I/O, but not
3069 	 * actually wait for the I/O to complete.
3070 	 */
3071 	return filemap_flush(inode->i_mapping);
3072 }
3073 
3074 /*
3075  * bmap() is special.  It gets used by applications such as lilo and by
3076  * the swapper to find the on-disk block of a specific piece of data.
3077  *
3078  * Naturally, this is dangerous if the block concerned is still in the
3079  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3080  * filesystem and enables swap, then they may get a nasty shock when the
3081  * data getting swapped to that swapfile suddenly gets overwritten by
3082  * the original zero's written out previously to the journal and
3083  * awaiting writeback in the kernel's buffer cache.
3084  *
3085  * So, if we see any bmap calls here on a modified, data-journaled file,
3086  * take extra steps to flush any blocks which might be in the cache.
3087  */
3088 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3089 {
3090 	struct inode *inode = mapping->host;
3091 	sector_t ret = 0;
3092 
3093 	inode_lock_shared(inode);
3094 	/*
3095 	 * We can get here for an inline file via the FIBMAP ioctl
3096 	 */
3097 	if (ext4_has_inline_data(inode))
3098 		goto out;
3099 
3100 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3101 	    (test_opt(inode->i_sb, DELALLOC) ||
3102 	     ext4_should_journal_data(inode))) {
3103 		/*
3104 		 * With delalloc or journalled data we want to sync the file so
3105 		 * that we can make sure we allocate blocks for file and data
3106 		 * is in place for the user to see it
3107 		 */
3108 		filemap_write_and_wait(mapping);
3109 	}
3110 
3111 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3112 
3113 out:
3114 	inode_unlock_shared(inode);
3115 	return ret;
3116 }
3117 
3118 static int ext4_read_folio(struct file *file, struct folio *folio)
3119 {
3120 	int ret = -EAGAIN;
3121 	struct inode *inode = folio->mapping->host;
3122 
3123 	trace_ext4_read_folio(inode, folio);
3124 
3125 	if (ext4_has_inline_data(inode))
3126 		ret = ext4_readpage_inline(inode, folio);
3127 
3128 	if (ret == -EAGAIN)
3129 		return ext4_mpage_readpages(inode, NULL, folio);
3130 
3131 	return ret;
3132 }
3133 
3134 static void ext4_readahead(struct readahead_control *rac)
3135 {
3136 	struct inode *inode = rac->mapping->host;
3137 
3138 	/* If the file has inline data, no need to do readahead. */
3139 	if (ext4_has_inline_data(inode))
3140 		return;
3141 
3142 	ext4_mpage_readpages(inode, rac, NULL);
3143 }
3144 
3145 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3146 				size_t length)
3147 {
3148 	trace_ext4_invalidate_folio(folio, offset, length);
3149 
3150 	/* No journalling happens on data buffers when this function is used */
3151 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3152 
3153 	block_invalidate_folio(folio, offset, length);
3154 }
3155 
3156 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3157 					    size_t offset, size_t length)
3158 {
3159 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3160 
3161 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3162 
3163 	/*
3164 	 * If it's a full truncate we just forget about the pending dirtying
3165 	 */
3166 	if (offset == 0 && length == folio_size(folio))
3167 		folio_clear_checked(folio);
3168 
3169 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3170 }
3171 
3172 /* Wrapper for aops... */
3173 static void ext4_journalled_invalidate_folio(struct folio *folio,
3174 					   size_t offset,
3175 					   size_t length)
3176 {
3177 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3178 }
3179 
3180 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3181 {
3182 	struct inode *inode = folio->mapping->host;
3183 	journal_t *journal = EXT4_JOURNAL(inode);
3184 
3185 	trace_ext4_release_folio(inode, folio);
3186 
3187 	/* Page has dirty journalled data -> cannot release */
3188 	if (folio_test_checked(folio))
3189 		return false;
3190 	if (journal)
3191 		return jbd2_journal_try_to_free_buffers(journal, folio);
3192 	else
3193 		return try_to_free_buffers(folio);
3194 }
3195 
3196 static bool ext4_inode_datasync_dirty(struct inode *inode)
3197 {
3198 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3199 
3200 	if (journal) {
3201 		if (jbd2_transaction_committed(journal,
3202 			EXT4_I(inode)->i_datasync_tid))
3203 			return false;
3204 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3205 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3206 		return true;
3207 	}
3208 
3209 	/* Any metadata buffers to write? */
3210 	if (!list_empty(&inode->i_mapping->private_list))
3211 		return true;
3212 	return inode->i_state & I_DIRTY_DATASYNC;
3213 }
3214 
3215 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3216 			   struct ext4_map_blocks *map, loff_t offset,
3217 			   loff_t length, unsigned int flags)
3218 {
3219 	u8 blkbits = inode->i_blkbits;
3220 
3221 	/*
3222 	 * Writes that span EOF might trigger an I/O size update on completion,
3223 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3224 	 * there is no other metadata changes being made or are pending.
3225 	 */
3226 	iomap->flags = 0;
3227 	if (ext4_inode_datasync_dirty(inode) ||
3228 	    offset + length > i_size_read(inode))
3229 		iomap->flags |= IOMAP_F_DIRTY;
3230 
3231 	if (map->m_flags & EXT4_MAP_NEW)
3232 		iomap->flags |= IOMAP_F_NEW;
3233 
3234 	if (flags & IOMAP_DAX)
3235 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3236 	else
3237 		iomap->bdev = inode->i_sb->s_bdev;
3238 	iomap->offset = (u64) map->m_lblk << blkbits;
3239 	iomap->length = (u64) map->m_len << blkbits;
3240 
3241 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3242 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3243 		iomap->flags |= IOMAP_F_MERGED;
3244 
3245 	/*
3246 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3247 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3248 	 * set. In order for any allocated unwritten extents to be converted
3249 	 * into written extents correctly within the ->end_io() handler, we
3250 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3251 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3252 	 * been set first.
3253 	 */
3254 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3255 		iomap->type = IOMAP_UNWRITTEN;
3256 		iomap->addr = (u64) map->m_pblk << blkbits;
3257 		if (flags & IOMAP_DAX)
3258 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3259 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3260 		iomap->type = IOMAP_MAPPED;
3261 		iomap->addr = (u64) map->m_pblk << blkbits;
3262 		if (flags & IOMAP_DAX)
3263 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3264 	} else {
3265 		iomap->type = IOMAP_HOLE;
3266 		iomap->addr = IOMAP_NULL_ADDR;
3267 	}
3268 }
3269 
3270 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3271 			    unsigned int flags)
3272 {
3273 	handle_t *handle;
3274 	u8 blkbits = inode->i_blkbits;
3275 	int ret, dio_credits, m_flags = 0, retries = 0;
3276 
3277 	/*
3278 	 * Trim the mapping request to the maximum value that we can map at
3279 	 * once for direct I/O.
3280 	 */
3281 	if (map->m_len > DIO_MAX_BLOCKS)
3282 		map->m_len = DIO_MAX_BLOCKS;
3283 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3284 
3285 retry:
3286 	/*
3287 	 * Either we allocate blocks and then don't get an unwritten extent, so
3288 	 * in that case we have reserved enough credits. Or, the blocks are
3289 	 * already allocated and unwritten. In that case, the extent conversion
3290 	 * fits into the credits as well.
3291 	 */
3292 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3293 	if (IS_ERR(handle))
3294 		return PTR_ERR(handle);
3295 
3296 	/*
3297 	 * DAX and direct I/O are the only two operations that are currently
3298 	 * supported with IOMAP_WRITE.
3299 	 */
3300 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3301 	if (flags & IOMAP_DAX)
3302 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3303 	/*
3304 	 * We use i_size instead of i_disksize here because delalloc writeback
3305 	 * can complete at any point during the I/O and subsequently push the
3306 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3307 	 * happening and thus expose allocated blocks to direct I/O reads.
3308 	 */
3309 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3310 		m_flags = EXT4_GET_BLOCKS_CREATE;
3311 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3312 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3313 
3314 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3315 
3316 	/*
3317 	 * We cannot fill holes in indirect tree based inodes as that could
3318 	 * expose stale data in the case of a crash. Use the magic error code
3319 	 * to fallback to buffered I/O.
3320 	 */
3321 	if (!m_flags && !ret)
3322 		ret = -ENOTBLK;
3323 
3324 	ext4_journal_stop(handle);
3325 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3326 		goto retry;
3327 
3328 	return ret;
3329 }
3330 
3331 
3332 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3333 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3334 {
3335 	int ret;
3336 	struct ext4_map_blocks map;
3337 	u8 blkbits = inode->i_blkbits;
3338 
3339 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3340 		return -EINVAL;
3341 
3342 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3343 		return -ERANGE;
3344 
3345 	/*
3346 	 * Calculate the first and last logical blocks respectively.
3347 	 */
3348 	map.m_lblk = offset >> blkbits;
3349 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3350 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3351 
3352 	if (flags & IOMAP_WRITE) {
3353 		/*
3354 		 * We check here if the blocks are already allocated, then we
3355 		 * don't need to start a journal txn and we can directly return
3356 		 * the mapping information. This could boost performance
3357 		 * especially in multi-threaded overwrite requests.
3358 		 */
3359 		if (offset + length <= i_size_read(inode)) {
3360 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3361 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3362 				goto out;
3363 		}
3364 		ret = ext4_iomap_alloc(inode, &map, flags);
3365 	} else {
3366 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3367 	}
3368 
3369 	if (ret < 0)
3370 		return ret;
3371 out:
3372 	/*
3373 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3374 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3375 	 * limiting the length of the mapping returned.
3376 	 */
3377 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3378 
3379 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3380 
3381 	return 0;
3382 }
3383 
3384 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3385 		loff_t length, unsigned flags, struct iomap *iomap,
3386 		struct iomap *srcmap)
3387 {
3388 	int ret;
3389 
3390 	/*
3391 	 * Even for writes we don't need to allocate blocks, so just pretend
3392 	 * we are reading to save overhead of starting a transaction.
3393 	 */
3394 	flags &= ~IOMAP_WRITE;
3395 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3396 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3397 	return ret;
3398 }
3399 
3400 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3401 			  ssize_t written, unsigned flags, struct iomap *iomap)
3402 {
3403 	/*
3404 	 * Check to see whether an error occurred while writing out the data to
3405 	 * the allocated blocks. If so, return the magic error code so that we
3406 	 * fallback to buffered I/O and attempt to complete the remainder of
3407 	 * the I/O. Any blocks that may have been allocated in preparation for
3408 	 * the direct I/O will be reused during buffered I/O.
3409 	 */
3410 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3411 		return -ENOTBLK;
3412 
3413 	return 0;
3414 }
3415 
3416 const struct iomap_ops ext4_iomap_ops = {
3417 	.iomap_begin		= ext4_iomap_begin,
3418 	.iomap_end		= ext4_iomap_end,
3419 };
3420 
3421 const struct iomap_ops ext4_iomap_overwrite_ops = {
3422 	.iomap_begin		= ext4_iomap_overwrite_begin,
3423 	.iomap_end		= ext4_iomap_end,
3424 };
3425 
3426 static bool ext4_iomap_is_delalloc(struct inode *inode,
3427 				   struct ext4_map_blocks *map)
3428 {
3429 	struct extent_status es;
3430 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3431 
3432 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3433 				  map->m_lblk, end, &es);
3434 
3435 	if (!es.es_len || es.es_lblk > end)
3436 		return false;
3437 
3438 	if (es.es_lblk > map->m_lblk) {
3439 		map->m_len = es.es_lblk - map->m_lblk;
3440 		return false;
3441 	}
3442 
3443 	offset = map->m_lblk - es.es_lblk;
3444 	map->m_len = es.es_len - offset;
3445 
3446 	return true;
3447 }
3448 
3449 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3450 				   loff_t length, unsigned int flags,
3451 				   struct iomap *iomap, struct iomap *srcmap)
3452 {
3453 	int ret;
3454 	bool delalloc = false;
3455 	struct ext4_map_blocks map;
3456 	u8 blkbits = inode->i_blkbits;
3457 
3458 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3459 		return -EINVAL;
3460 
3461 	if (ext4_has_inline_data(inode)) {
3462 		ret = ext4_inline_data_iomap(inode, iomap);
3463 		if (ret != -EAGAIN) {
3464 			if (ret == 0 && offset >= iomap->length)
3465 				ret = -ENOENT;
3466 			return ret;
3467 		}
3468 	}
3469 
3470 	/*
3471 	 * Calculate the first and last logical block respectively.
3472 	 */
3473 	map.m_lblk = offset >> blkbits;
3474 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3475 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3476 
3477 	/*
3478 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3479 	 * So handle it here itself instead of querying ext4_map_blocks().
3480 	 * Since ext4_map_blocks() will warn about it and will return
3481 	 * -EIO error.
3482 	 */
3483 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3484 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3485 
3486 		if (offset >= sbi->s_bitmap_maxbytes) {
3487 			map.m_flags = 0;
3488 			goto set_iomap;
3489 		}
3490 	}
3491 
3492 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3493 	if (ret < 0)
3494 		return ret;
3495 	if (ret == 0)
3496 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3497 
3498 set_iomap:
3499 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3500 	if (delalloc && iomap->type == IOMAP_HOLE)
3501 		iomap->type = IOMAP_DELALLOC;
3502 
3503 	return 0;
3504 }
3505 
3506 const struct iomap_ops ext4_iomap_report_ops = {
3507 	.iomap_begin = ext4_iomap_begin_report,
3508 };
3509 
3510 /*
3511  * For data=journal mode, folio should be marked dirty only when it was
3512  * writeably mapped. When that happens, it was already attached to the
3513  * transaction and marked as jbddirty (we take care of this in
3514  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3515  * so we should have nothing to do here, except for the case when someone
3516  * had the page pinned and dirtied the page through this pin (e.g. by doing
3517  * direct IO to it). In that case we'd need to attach buffers here to the
3518  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3519  * folio and leave attached buffers clean, because the buffers' dirty state is
3520  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3521  * the journalling code will explode.  So what we do is to mark the folio
3522  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3523  * to the transaction appropriately.
3524  */
3525 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3526 		struct folio *folio)
3527 {
3528 	WARN_ON_ONCE(!folio_buffers(folio));
3529 	if (folio_maybe_dma_pinned(folio))
3530 		folio_set_checked(folio);
3531 	return filemap_dirty_folio(mapping, folio);
3532 }
3533 
3534 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3535 {
3536 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3537 	WARN_ON_ONCE(!folio_buffers(folio));
3538 	return block_dirty_folio(mapping, folio);
3539 }
3540 
3541 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3542 				    struct file *file, sector_t *span)
3543 {
3544 	return iomap_swapfile_activate(sis, file, span,
3545 				       &ext4_iomap_report_ops);
3546 }
3547 
3548 static const struct address_space_operations ext4_aops = {
3549 	.read_folio		= ext4_read_folio,
3550 	.readahead		= ext4_readahead,
3551 	.writepages		= ext4_writepages,
3552 	.write_begin		= ext4_write_begin,
3553 	.write_end		= ext4_write_end,
3554 	.dirty_folio		= ext4_dirty_folio,
3555 	.bmap			= ext4_bmap,
3556 	.invalidate_folio	= ext4_invalidate_folio,
3557 	.release_folio		= ext4_release_folio,
3558 	.direct_IO		= noop_direct_IO,
3559 	.migrate_folio		= buffer_migrate_folio,
3560 	.is_partially_uptodate  = block_is_partially_uptodate,
3561 	.error_remove_page	= generic_error_remove_page,
3562 	.swap_activate		= ext4_iomap_swap_activate,
3563 };
3564 
3565 static const struct address_space_operations ext4_journalled_aops = {
3566 	.read_folio		= ext4_read_folio,
3567 	.readahead		= ext4_readahead,
3568 	.writepages		= ext4_writepages,
3569 	.write_begin		= ext4_write_begin,
3570 	.write_end		= ext4_journalled_write_end,
3571 	.dirty_folio		= ext4_journalled_dirty_folio,
3572 	.bmap			= ext4_bmap,
3573 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3574 	.release_folio		= ext4_release_folio,
3575 	.direct_IO		= noop_direct_IO,
3576 	.migrate_folio		= buffer_migrate_folio_norefs,
3577 	.is_partially_uptodate  = block_is_partially_uptodate,
3578 	.error_remove_page	= generic_error_remove_page,
3579 	.swap_activate		= ext4_iomap_swap_activate,
3580 };
3581 
3582 static const struct address_space_operations ext4_da_aops = {
3583 	.read_folio		= ext4_read_folio,
3584 	.readahead		= ext4_readahead,
3585 	.writepages		= ext4_writepages,
3586 	.write_begin		= ext4_da_write_begin,
3587 	.write_end		= ext4_da_write_end,
3588 	.dirty_folio		= ext4_dirty_folio,
3589 	.bmap			= ext4_bmap,
3590 	.invalidate_folio	= ext4_invalidate_folio,
3591 	.release_folio		= ext4_release_folio,
3592 	.direct_IO		= noop_direct_IO,
3593 	.migrate_folio		= buffer_migrate_folio,
3594 	.is_partially_uptodate  = block_is_partially_uptodate,
3595 	.error_remove_page	= generic_error_remove_page,
3596 	.swap_activate		= ext4_iomap_swap_activate,
3597 };
3598 
3599 static const struct address_space_operations ext4_dax_aops = {
3600 	.writepages		= ext4_dax_writepages,
3601 	.direct_IO		= noop_direct_IO,
3602 	.dirty_folio		= noop_dirty_folio,
3603 	.bmap			= ext4_bmap,
3604 	.swap_activate		= ext4_iomap_swap_activate,
3605 };
3606 
3607 void ext4_set_aops(struct inode *inode)
3608 {
3609 	switch (ext4_inode_journal_mode(inode)) {
3610 	case EXT4_INODE_ORDERED_DATA_MODE:
3611 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3612 		break;
3613 	case EXT4_INODE_JOURNAL_DATA_MODE:
3614 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3615 		return;
3616 	default:
3617 		BUG();
3618 	}
3619 	if (IS_DAX(inode))
3620 		inode->i_mapping->a_ops = &ext4_dax_aops;
3621 	else if (test_opt(inode->i_sb, DELALLOC))
3622 		inode->i_mapping->a_ops = &ext4_da_aops;
3623 	else
3624 		inode->i_mapping->a_ops = &ext4_aops;
3625 }
3626 
3627 static int __ext4_block_zero_page_range(handle_t *handle,
3628 		struct address_space *mapping, loff_t from, loff_t length)
3629 {
3630 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3631 	unsigned offset = from & (PAGE_SIZE-1);
3632 	unsigned blocksize, pos;
3633 	ext4_lblk_t iblock;
3634 	struct inode *inode = mapping->host;
3635 	struct buffer_head *bh;
3636 	struct folio *folio;
3637 	int err = 0;
3638 
3639 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3640 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3641 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3642 	if (IS_ERR(folio))
3643 		return PTR_ERR(folio);
3644 
3645 	blocksize = inode->i_sb->s_blocksize;
3646 
3647 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3648 
3649 	bh = folio_buffers(folio);
3650 	if (!bh) {
3651 		create_empty_buffers(&folio->page, blocksize, 0);
3652 		bh = folio_buffers(folio);
3653 	}
3654 
3655 	/* Find the buffer that contains "offset" */
3656 	pos = blocksize;
3657 	while (offset >= pos) {
3658 		bh = bh->b_this_page;
3659 		iblock++;
3660 		pos += blocksize;
3661 	}
3662 	if (buffer_freed(bh)) {
3663 		BUFFER_TRACE(bh, "freed: skip");
3664 		goto unlock;
3665 	}
3666 	if (!buffer_mapped(bh)) {
3667 		BUFFER_TRACE(bh, "unmapped");
3668 		ext4_get_block(inode, iblock, bh, 0);
3669 		/* unmapped? It's a hole - nothing to do */
3670 		if (!buffer_mapped(bh)) {
3671 			BUFFER_TRACE(bh, "still unmapped");
3672 			goto unlock;
3673 		}
3674 	}
3675 
3676 	/* Ok, it's mapped. Make sure it's up-to-date */
3677 	if (folio_test_uptodate(folio))
3678 		set_buffer_uptodate(bh);
3679 
3680 	if (!buffer_uptodate(bh)) {
3681 		err = ext4_read_bh_lock(bh, 0, true);
3682 		if (err)
3683 			goto unlock;
3684 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3685 			/* We expect the key to be set. */
3686 			BUG_ON(!fscrypt_has_encryption_key(inode));
3687 			err = fscrypt_decrypt_pagecache_blocks(folio,
3688 							       blocksize,
3689 							       bh_offset(bh));
3690 			if (err) {
3691 				clear_buffer_uptodate(bh);
3692 				goto unlock;
3693 			}
3694 		}
3695 	}
3696 	if (ext4_should_journal_data(inode)) {
3697 		BUFFER_TRACE(bh, "get write access");
3698 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3699 						    EXT4_JTR_NONE);
3700 		if (err)
3701 			goto unlock;
3702 	}
3703 	folio_zero_range(folio, offset, length);
3704 	BUFFER_TRACE(bh, "zeroed end of block");
3705 
3706 	if (ext4_should_journal_data(inode)) {
3707 		err = ext4_dirty_journalled_data(handle, bh);
3708 	} else {
3709 		err = 0;
3710 		mark_buffer_dirty(bh);
3711 		if (ext4_should_order_data(inode))
3712 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3713 					length);
3714 	}
3715 
3716 unlock:
3717 	folio_unlock(folio);
3718 	folio_put(folio);
3719 	return err;
3720 }
3721 
3722 /*
3723  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3724  * starting from file offset 'from'.  The range to be zero'd must
3725  * be contained with in one block.  If the specified range exceeds
3726  * the end of the block it will be shortened to end of the block
3727  * that corresponds to 'from'
3728  */
3729 static int ext4_block_zero_page_range(handle_t *handle,
3730 		struct address_space *mapping, loff_t from, loff_t length)
3731 {
3732 	struct inode *inode = mapping->host;
3733 	unsigned offset = from & (PAGE_SIZE-1);
3734 	unsigned blocksize = inode->i_sb->s_blocksize;
3735 	unsigned max = blocksize - (offset & (blocksize - 1));
3736 
3737 	/*
3738 	 * correct length if it does not fall between
3739 	 * 'from' and the end of the block
3740 	 */
3741 	if (length > max || length < 0)
3742 		length = max;
3743 
3744 	if (IS_DAX(inode)) {
3745 		return dax_zero_range(inode, from, length, NULL,
3746 				      &ext4_iomap_ops);
3747 	}
3748 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3749 }
3750 
3751 /*
3752  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3753  * up to the end of the block which corresponds to `from'.
3754  * This required during truncate. We need to physically zero the tail end
3755  * of that block so it doesn't yield old data if the file is later grown.
3756  */
3757 static int ext4_block_truncate_page(handle_t *handle,
3758 		struct address_space *mapping, loff_t from)
3759 {
3760 	unsigned offset = from & (PAGE_SIZE-1);
3761 	unsigned length;
3762 	unsigned blocksize;
3763 	struct inode *inode = mapping->host;
3764 
3765 	/* If we are processing an encrypted inode during orphan list handling */
3766 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3767 		return 0;
3768 
3769 	blocksize = inode->i_sb->s_blocksize;
3770 	length = blocksize - (offset & (blocksize - 1));
3771 
3772 	return ext4_block_zero_page_range(handle, mapping, from, length);
3773 }
3774 
3775 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3776 			     loff_t lstart, loff_t length)
3777 {
3778 	struct super_block *sb = inode->i_sb;
3779 	struct address_space *mapping = inode->i_mapping;
3780 	unsigned partial_start, partial_end;
3781 	ext4_fsblk_t start, end;
3782 	loff_t byte_end = (lstart + length - 1);
3783 	int err = 0;
3784 
3785 	partial_start = lstart & (sb->s_blocksize - 1);
3786 	partial_end = byte_end & (sb->s_blocksize - 1);
3787 
3788 	start = lstart >> sb->s_blocksize_bits;
3789 	end = byte_end >> sb->s_blocksize_bits;
3790 
3791 	/* Handle partial zero within the single block */
3792 	if (start == end &&
3793 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3794 		err = ext4_block_zero_page_range(handle, mapping,
3795 						 lstart, length);
3796 		return err;
3797 	}
3798 	/* Handle partial zero out on the start of the range */
3799 	if (partial_start) {
3800 		err = ext4_block_zero_page_range(handle, mapping,
3801 						 lstart, sb->s_blocksize);
3802 		if (err)
3803 			return err;
3804 	}
3805 	/* Handle partial zero out on the end of the range */
3806 	if (partial_end != sb->s_blocksize - 1)
3807 		err = ext4_block_zero_page_range(handle, mapping,
3808 						 byte_end - partial_end,
3809 						 partial_end + 1);
3810 	return err;
3811 }
3812 
3813 int ext4_can_truncate(struct inode *inode)
3814 {
3815 	if (S_ISREG(inode->i_mode))
3816 		return 1;
3817 	if (S_ISDIR(inode->i_mode))
3818 		return 1;
3819 	if (S_ISLNK(inode->i_mode))
3820 		return !ext4_inode_is_fast_symlink(inode);
3821 	return 0;
3822 }
3823 
3824 /*
3825  * We have to make sure i_disksize gets properly updated before we truncate
3826  * page cache due to hole punching or zero range. Otherwise i_disksize update
3827  * can get lost as it may have been postponed to submission of writeback but
3828  * that will never happen after we truncate page cache.
3829  */
3830 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3831 				      loff_t len)
3832 {
3833 	handle_t *handle;
3834 	int ret;
3835 
3836 	loff_t size = i_size_read(inode);
3837 
3838 	WARN_ON(!inode_is_locked(inode));
3839 	if (offset > size || offset + len < size)
3840 		return 0;
3841 
3842 	if (EXT4_I(inode)->i_disksize >= size)
3843 		return 0;
3844 
3845 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3846 	if (IS_ERR(handle))
3847 		return PTR_ERR(handle);
3848 	ext4_update_i_disksize(inode, size);
3849 	ret = ext4_mark_inode_dirty(handle, inode);
3850 	ext4_journal_stop(handle);
3851 
3852 	return ret;
3853 }
3854 
3855 static void ext4_wait_dax_page(struct inode *inode)
3856 {
3857 	filemap_invalidate_unlock(inode->i_mapping);
3858 	schedule();
3859 	filemap_invalidate_lock(inode->i_mapping);
3860 }
3861 
3862 int ext4_break_layouts(struct inode *inode)
3863 {
3864 	struct page *page;
3865 	int error;
3866 
3867 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3868 		return -EINVAL;
3869 
3870 	do {
3871 		page = dax_layout_busy_page(inode->i_mapping);
3872 		if (!page)
3873 			return 0;
3874 
3875 		error = ___wait_var_event(&page->_refcount,
3876 				atomic_read(&page->_refcount) == 1,
3877 				TASK_INTERRUPTIBLE, 0, 0,
3878 				ext4_wait_dax_page(inode));
3879 	} while (error == 0);
3880 
3881 	return error;
3882 }
3883 
3884 /*
3885  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3886  * associated with the given offset and length
3887  *
3888  * @inode:  File inode
3889  * @offset: The offset where the hole will begin
3890  * @len:    The length of the hole
3891  *
3892  * Returns: 0 on success or negative on failure
3893  */
3894 
3895 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3896 {
3897 	struct inode *inode = file_inode(file);
3898 	struct super_block *sb = inode->i_sb;
3899 	ext4_lblk_t first_block, stop_block;
3900 	struct address_space *mapping = inode->i_mapping;
3901 	loff_t first_block_offset, last_block_offset, max_length;
3902 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3903 	handle_t *handle;
3904 	unsigned int credits;
3905 	int ret = 0, ret2 = 0;
3906 
3907 	trace_ext4_punch_hole(inode, offset, length, 0);
3908 
3909 	/*
3910 	 * Write out all dirty pages to avoid race conditions
3911 	 * Then release them.
3912 	 */
3913 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3914 		ret = filemap_write_and_wait_range(mapping, offset,
3915 						   offset + length - 1);
3916 		if (ret)
3917 			return ret;
3918 	}
3919 
3920 	inode_lock(inode);
3921 
3922 	/* No need to punch hole beyond i_size */
3923 	if (offset >= inode->i_size)
3924 		goto out_mutex;
3925 
3926 	/*
3927 	 * If the hole extends beyond i_size, set the hole
3928 	 * to end after the page that contains i_size
3929 	 */
3930 	if (offset + length > inode->i_size) {
3931 		length = inode->i_size +
3932 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3933 		   offset;
3934 	}
3935 
3936 	/*
3937 	 * For punch hole the length + offset needs to be within one block
3938 	 * before last range. Adjust the length if it goes beyond that limit.
3939 	 */
3940 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3941 	if (offset + length > max_length)
3942 		length = max_length - offset;
3943 
3944 	if (offset & (sb->s_blocksize - 1) ||
3945 	    (offset + length) & (sb->s_blocksize - 1)) {
3946 		/*
3947 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3948 		 * partial block
3949 		 */
3950 		ret = ext4_inode_attach_jinode(inode);
3951 		if (ret < 0)
3952 			goto out_mutex;
3953 
3954 	}
3955 
3956 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3957 	inode_dio_wait(inode);
3958 
3959 	ret = file_modified(file);
3960 	if (ret)
3961 		goto out_mutex;
3962 
3963 	/*
3964 	 * Prevent page faults from reinstantiating pages we have released from
3965 	 * page cache.
3966 	 */
3967 	filemap_invalidate_lock(mapping);
3968 
3969 	ret = ext4_break_layouts(inode);
3970 	if (ret)
3971 		goto out_dio;
3972 
3973 	first_block_offset = round_up(offset, sb->s_blocksize);
3974 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3975 
3976 	/* Now release the pages and zero block aligned part of pages*/
3977 	if (last_block_offset > first_block_offset) {
3978 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3979 		if (ret)
3980 			goto out_dio;
3981 		truncate_pagecache_range(inode, first_block_offset,
3982 					 last_block_offset);
3983 	}
3984 
3985 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3986 		credits = ext4_writepage_trans_blocks(inode);
3987 	else
3988 		credits = ext4_blocks_for_truncate(inode);
3989 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3990 	if (IS_ERR(handle)) {
3991 		ret = PTR_ERR(handle);
3992 		ext4_std_error(sb, ret);
3993 		goto out_dio;
3994 	}
3995 
3996 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3997 				       length);
3998 	if (ret)
3999 		goto out_stop;
4000 
4001 	first_block = (offset + sb->s_blocksize - 1) >>
4002 		EXT4_BLOCK_SIZE_BITS(sb);
4003 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4004 
4005 	/* If there are blocks to remove, do it */
4006 	if (stop_block > first_block) {
4007 
4008 		down_write(&EXT4_I(inode)->i_data_sem);
4009 		ext4_discard_preallocations(inode, 0);
4010 
4011 		ext4_es_remove_extent(inode, first_block,
4012 				      stop_block - first_block);
4013 
4014 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4015 			ret = ext4_ext_remove_space(inode, first_block,
4016 						    stop_block - 1);
4017 		else
4018 			ret = ext4_ind_remove_space(handle, inode, first_block,
4019 						    stop_block);
4020 
4021 		up_write(&EXT4_I(inode)->i_data_sem);
4022 	}
4023 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4024 	if (IS_SYNC(inode))
4025 		ext4_handle_sync(handle);
4026 
4027 	inode->i_mtime = inode_set_ctime_current(inode);
4028 	ret2 = ext4_mark_inode_dirty(handle, inode);
4029 	if (unlikely(ret2))
4030 		ret = ret2;
4031 	if (ret >= 0)
4032 		ext4_update_inode_fsync_trans(handle, inode, 1);
4033 out_stop:
4034 	ext4_journal_stop(handle);
4035 out_dio:
4036 	filemap_invalidate_unlock(mapping);
4037 out_mutex:
4038 	inode_unlock(inode);
4039 	return ret;
4040 }
4041 
4042 int ext4_inode_attach_jinode(struct inode *inode)
4043 {
4044 	struct ext4_inode_info *ei = EXT4_I(inode);
4045 	struct jbd2_inode *jinode;
4046 
4047 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4048 		return 0;
4049 
4050 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4051 	spin_lock(&inode->i_lock);
4052 	if (!ei->jinode) {
4053 		if (!jinode) {
4054 			spin_unlock(&inode->i_lock);
4055 			return -ENOMEM;
4056 		}
4057 		ei->jinode = jinode;
4058 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4059 		jinode = NULL;
4060 	}
4061 	spin_unlock(&inode->i_lock);
4062 	if (unlikely(jinode != NULL))
4063 		jbd2_free_inode(jinode);
4064 	return 0;
4065 }
4066 
4067 /*
4068  * ext4_truncate()
4069  *
4070  * We block out ext4_get_block() block instantiations across the entire
4071  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4072  * simultaneously on behalf of the same inode.
4073  *
4074  * As we work through the truncate and commit bits of it to the journal there
4075  * is one core, guiding principle: the file's tree must always be consistent on
4076  * disk.  We must be able to restart the truncate after a crash.
4077  *
4078  * The file's tree may be transiently inconsistent in memory (although it
4079  * probably isn't), but whenever we close off and commit a journal transaction,
4080  * the contents of (the filesystem + the journal) must be consistent and
4081  * restartable.  It's pretty simple, really: bottom up, right to left (although
4082  * left-to-right works OK too).
4083  *
4084  * Note that at recovery time, journal replay occurs *before* the restart of
4085  * truncate against the orphan inode list.
4086  *
4087  * The committed inode has the new, desired i_size (which is the same as
4088  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4089  * that this inode's truncate did not complete and it will again call
4090  * ext4_truncate() to have another go.  So there will be instantiated blocks
4091  * to the right of the truncation point in a crashed ext4 filesystem.  But
4092  * that's fine - as long as they are linked from the inode, the post-crash
4093  * ext4_truncate() run will find them and release them.
4094  */
4095 int ext4_truncate(struct inode *inode)
4096 {
4097 	struct ext4_inode_info *ei = EXT4_I(inode);
4098 	unsigned int credits;
4099 	int err = 0, err2;
4100 	handle_t *handle;
4101 	struct address_space *mapping = inode->i_mapping;
4102 
4103 	/*
4104 	 * There is a possibility that we're either freeing the inode
4105 	 * or it's a completely new inode. In those cases we might not
4106 	 * have i_rwsem locked because it's not necessary.
4107 	 */
4108 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4109 		WARN_ON(!inode_is_locked(inode));
4110 	trace_ext4_truncate_enter(inode);
4111 
4112 	if (!ext4_can_truncate(inode))
4113 		goto out_trace;
4114 
4115 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4116 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4117 
4118 	if (ext4_has_inline_data(inode)) {
4119 		int has_inline = 1;
4120 
4121 		err = ext4_inline_data_truncate(inode, &has_inline);
4122 		if (err || has_inline)
4123 			goto out_trace;
4124 	}
4125 
4126 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4127 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4128 		err = ext4_inode_attach_jinode(inode);
4129 		if (err)
4130 			goto out_trace;
4131 	}
4132 
4133 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4134 		credits = ext4_writepage_trans_blocks(inode);
4135 	else
4136 		credits = ext4_blocks_for_truncate(inode);
4137 
4138 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4139 	if (IS_ERR(handle)) {
4140 		err = PTR_ERR(handle);
4141 		goto out_trace;
4142 	}
4143 
4144 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4145 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4146 
4147 	/*
4148 	 * We add the inode to the orphan list, so that if this
4149 	 * truncate spans multiple transactions, and we crash, we will
4150 	 * resume the truncate when the filesystem recovers.  It also
4151 	 * marks the inode dirty, to catch the new size.
4152 	 *
4153 	 * Implication: the file must always be in a sane, consistent
4154 	 * truncatable state while each transaction commits.
4155 	 */
4156 	err = ext4_orphan_add(handle, inode);
4157 	if (err)
4158 		goto out_stop;
4159 
4160 	down_write(&EXT4_I(inode)->i_data_sem);
4161 
4162 	ext4_discard_preallocations(inode, 0);
4163 
4164 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4165 		err = ext4_ext_truncate(handle, inode);
4166 	else
4167 		ext4_ind_truncate(handle, inode);
4168 
4169 	up_write(&ei->i_data_sem);
4170 	if (err)
4171 		goto out_stop;
4172 
4173 	if (IS_SYNC(inode))
4174 		ext4_handle_sync(handle);
4175 
4176 out_stop:
4177 	/*
4178 	 * If this was a simple ftruncate() and the file will remain alive,
4179 	 * then we need to clear up the orphan record which we created above.
4180 	 * However, if this was a real unlink then we were called by
4181 	 * ext4_evict_inode(), and we allow that function to clean up the
4182 	 * orphan info for us.
4183 	 */
4184 	if (inode->i_nlink)
4185 		ext4_orphan_del(handle, inode);
4186 
4187 	inode->i_mtime = inode_set_ctime_current(inode);
4188 	err2 = ext4_mark_inode_dirty(handle, inode);
4189 	if (unlikely(err2 && !err))
4190 		err = err2;
4191 	ext4_journal_stop(handle);
4192 
4193 out_trace:
4194 	trace_ext4_truncate_exit(inode);
4195 	return err;
4196 }
4197 
4198 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4199 {
4200 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4201 		return inode_peek_iversion_raw(inode);
4202 	else
4203 		return inode_peek_iversion(inode);
4204 }
4205 
4206 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4207 				 struct ext4_inode_info *ei)
4208 {
4209 	struct inode *inode = &(ei->vfs_inode);
4210 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4211 	struct super_block *sb = inode->i_sb;
4212 
4213 	if (i_blocks <= ~0U) {
4214 		/*
4215 		 * i_blocks can be represented in a 32 bit variable
4216 		 * as multiple of 512 bytes
4217 		 */
4218 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219 		raw_inode->i_blocks_high = 0;
4220 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4221 		return 0;
4222 	}
4223 
4224 	/*
4225 	 * This should never happen since sb->s_maxbytes should not have
4226 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4227 	 * feature in ext4_fill_super().
4228 	 */
4229 	if (!ext4_has_feature_huge_file(sb))
4230 		return -EFSCORRUPTED;
4231 
4232 	if (i_blocks <= 0xffffffffffffULL) {
4233 		/*
4234 		 * i_blocks can be represented in a 48 bit variable
4235 		 * as multiple of 512 bytes
4236 		 */
4237 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4238 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4239 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4240 	} else {
4241 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4242 		/* i_block is stored in file system block size */
4243 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4244 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4245 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4246 	}
4247 	return 0;
4248 }
4249 
4250 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4251 {
4252 	struct ext4_inode_info *ei = EXT4_I(inode);
4253 	uid_t i_uid;
4254 	gid_t i_gid;
4255 	projid_t i_projid;
4256 	int block;
4257 	int err;
4258 
4259 	err = ext4_inode_blocks_set(raw_inode, ei);
4260 
4261 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4262 	i_uid = i_uid_read(inode);
4263 	i_gid = i_gid_read(inode);
4264 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4265 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4266 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4267 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4268 		/*
4269 		 * Fix up interoperability with old kernels. Otherwise,
4270 		 * old inodes get re-used with the upper 16 bits of the
4271 		 * uid/gid intact.
4272 		 */
4273 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4274 			raw_inode->i_uid_high = 0;
4275 			raw_inode->i_gid_high = 0;
4276 		} else {
4277 			raw_inode->i_uid_high =
4278 				cpu_to_le16(high_16_bits(i_uid));
4279 			raw_inode->i_gid_high =
4280 				cpu_to_le16(high_16_bits(i_gid));
4281 		}
4282 	} else {
4283 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4284 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4285 		raw_inode->i_uid_high = 0;
4286 		raw_inode->i_gid_high = 0;
4287 	}
4288 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4289 
4290 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4291 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4292 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4293 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4294 
4295 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4296 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4297 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4298 		raw_inode->i_file_acl_high =
4299 			cpu_to_le16(ei->i_file_acl >> 32);
4300 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4301 	ext4_isize_set(raw_inode, ei->i_disksize);
4302 
4303 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4304 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4305 		if (old_valid_dev(inode->i_rdev)) {
4306 			raw_inode->i_block[0] =
4307 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4308 			raw_inode->i_block[1] = 0;
4309 		} else {
4310 			raw_inode->i_block[0] = 0;
4311 			raw_inode->i_block[1] =
4312 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4313 			raw_inode->i_block[2] = 0;
4314 		}
4315 	} else if (!ext4_has_inline_data(inode)) {
4316 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4317 			raw_inode->i_block[block] = ei->i_data[block];
4318 	}
4319 
4320 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4321 		u64 ivers = ext4_inode_peek_iversion(inode);
4322 
4323 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4324 		if (ei->i_extra_isize) {
4325 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4326 				raw_inode->i_version_hi =
4327 					cpu_to_le32(ivers >> 32);
4328 			raw_inode->i_extra_isize =
4329 				cpu_to_le16(ei->i_extra_isize);
4330 		}
4331 	}
4332 
4333 	if (i_projid != EXT4_DEF_PROJID &&
4334 	    !ext4_has_feature_project(inode->i_sb))
4335 		err = err ?: -EFSCORRUPTED;
4336 
4337 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4338 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4339 		raw_inode->i_projid = cpu_to_le32(i_projid);
4340 
4341 	ext4_inode_csum_set(inode, raw_inode, ei);
4342 	return err;
4343 }
4344 
4345 /*
4346  * ext4_get_inode_loc returns with an extra refcount against the inode's
4347  * underlying buffer_head on success. If we pass 'inode' and it does not
4348  * have in-inode xattr, we have all inode data in memory that is needed
4349  * to recreate the on-disk version of this inode.
4350  */
4351 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4352 				struct inode *inode, struct ext4_iloc *iloc,
4353 				ext4_fsblk_t *ret_block)
4354 {
4355 	struct ext4_group_desc	*gdp;
4356 	struct buffer_head	*bh;
4357 	ext4_fsblk_t		block;
4358 	struct blk_plug		plug;
4359 	int			inodes_per_block, inode_offset;
4360 
4361 	iloc->bh = NULL;
4362 	if (ino < EXT4_ROOT_INO ||
4363 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4364 		return -EFSCORRUPTED;
4365 
4366 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4367 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4368 	if (!gdp)
4369 		return -EIO;
4370 
4371 	/*
4372 	 * Figure out the offset within the block group inode table
4373 	 */
4374 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4375 	inode_offset = ((ino - 1) %
4376 			EXT4_INODES_PER_GROUP(sb));
4377 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4378 
4379 	block = ext4_inode_table(sb, gdp);
4380 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4381 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4382 		ext4_error(sb, "Invalid inode table block %llu in "
4383 			   "block_group %u", block, iloc->block_group);
4384 		return -EFSCORRUPTED;
4385 	}
4386 	block += (inode_offset / inodes_per_block);
4387 
4388 	bh = sb_getblk(sb, block);
4389 	if (unlikely(!bh))
4390 		return -ENOMEM;
4391 	if (ext4_buffer_uptodate(bh))
4392 		goto has_buffer;
4393 
4394 	lock_buffer(bh);
4395 	if (ext4_buffer_uptodate(bh)) {
4396 		/* Someone brought it uptodate while we waited */
4397 		unlock_buffer(bh);
4398 		goto has_buffer;
4399 	}
4400 
4401 	/*
4402 	 * If we have all information of the inode in memory and this
4403 	 * is the only valid inode in the block, we need not read the
4404 	 * block.
4405 	 */
4406 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4407 		struct buffer_head *bitmap_bh;
4408 		int i, start;
4409 
4410 		start = inode_offset & ~(inodes_per_block - 1);
4411 
4412 		/* Is the inode bitmap in cache? */
4413 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4414 		if (unlikely(!bitmap_bh))
4415 			goto make_io;
4416 
4417 		/*
4418 		 * If the inode bitmap isn't in cache then the
4419 		 * optimisation may end up performing two reads instead
4420 		 * of one, so skip it.
4421 		 */
4422 		if (!buffer_uptodate(bitmap_bh)) {
4423 			brelse(bitmap_bh);
4424 			goto make_io;
4425 		}
4426 		for (i = start; i < start + inodes_per_block; i++) {
4427 			if (i == inode_offset)
4428 				continue;
4429 			if (ext4_test_bit(i, bitmap_bh->b_data))
4430 				break;
4431 		}
4432 		brelse(bitmap_bh);
4433 		if (i == start + inodes_per_block) {
4434 			struct ext4_inode *raw_inode =
4435 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4436 
4437 			/* all other inodes are free, so skip I/O */
4438 			memset(bh->b_data, 0, bh->b_size);
4439 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4440 				ext4_fill_raw_inode(inode, raw_inode);
4441 			set_buffer_uptodate(bh);
4442 			unlock_buffer(bh);
4443 			goto has_buffer;
4444 		}
4445 	}
4446 
4447 make_io:
4448 	/*
4449 	 * If we need to do any I/O, try to pre-readahead extra
4450 	 * blocks from the inode table.
4451 	 */
4452 	blk_start_plug(&plug);
4453 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4454 		ext4_fsblk_t b, end, table;
4455 		unsigned num;
4456 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4457 
4458 		table = ext4_inode_table(sb, gdp);
4459 		/* s_inode_readahead_blks is always a power of 2 */
4460 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4461 		if (table > b)
4462 			b = table;
4463 		end = b + ra_blks;
4464 		num = EXT4_INODES_PER_GROUP(sb);
4465 		if (ext4_has_group_desc_csum(sb))
4466 			num -= ext4_itable_unused_count(sb, gdp);
4467 		table += num / inodes_per_block;
4468 		if (end > table)
4469 			end = table;
4470 		while (b <= end)
4471 			ext4_sb_breadahead_unmovable(sb, b++);
4472 	}
4473 
4474 	/*
4475 	 * There are other valid inodes in the buffer, this inode
4476 	 * has in-inode xattrs, or we don't have this inode in memory.
4477 	 * Read the block from disk.
4478 	 */
4479 	trace_ext4_load_inode(sb, ino);
4480 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4481 	blk_finish_plug(&plug);
4482 	wait_on_buffer(bh);
4483 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4484 	if (!buffer_uptodate(bh)) {
4485 		if (ret_block)
4486 			*ret_block = block;
4487 		brelse(bh);
4488 		return -EIO;
4489 	}
4490 has_buffer:
4491 	iloc->bh = bh;
4492 	return 0;
4493 }
4494 
4495 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4496 					struct ext4_iloc *iloc)
4497 {
4498 	ext4_fsblk_t err_blk = 0;
4499 	int ret;
4500 
4501 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4502 					&err_blk);
4503 
4504 	if (ret == -EIO)
4505 		ext4_error_inode_block(inode, err_blk, EIO,
4506 					"unable to read itable block");
4507 
4508 	return ret;
4509 }
4510 
4511 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4512 {
4513 	ext4_fsblk_t err_blk = 0;
4514 	int ret;
4515 
4516 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4517 					&err_blk);
4518 
4519 	if (ret == -EIO)
4520 		ext4_error_inode_block(inode, err_blk, EIO,
4521 					"unable to read itable block");
4522 
4523 	return ret;
4524 }
4525 
4526 
4527 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4528 			  struct ext4_iloc *iloc)
4529 {
4530 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4531 }
4532 
4533 static bool ext4_should_enable_dax(struct inode *inode)
4534 {
4535 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4536 
4537 	if (test_opt2(inode->i_sb, DAX_NEVER))
4538 		return false;
4539 	if (!S_ISREG(inode->i_mode))
4540 		return false;
4541 	if (ext4_should_journal_data(inode))
4542 		return false;
4543 	if (ext4_has_inline_data(inode))
4544 		return false;
4545 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4546 		return false;
4547 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4548 		return false;
4549 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4550 		return false;
4551 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4552 		return true;
4553 
4554 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4555 }
4556 
4557 void ext4_set_inode_flags(struct inode *inode, bool init)
4558 {
4559 	unsigned int flags = EXT4_I(inode)->i_flags;
4560 	unsigned int new_fl = 0;
4561 
4562 	WARN_ON_ONCE(IS_DAX(inode) && init);
4563 
4564 	if (flags & EXT4_SYNC_FL)
4565 		new_fl |= S_SYNC;
4566 	if (flags & EXT4_APPEND_FL)
4567 		new_fl |= S_APPEND;
4568 	if (flags & EXT4_IMMUTABLE_FL)
4569 		new_fl |= S_IMMUTABLE;
4570 	if (flags & EXT4_NOATIME_FL)
4571 		new_fl |= S_NOATIME;
4572 	if (flags & EXT4_DIRSYNC_FL)
4573 		new_fl |= S_DIRSYNC;
4574 
4575 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4576 	 * here if already set. */
4577 	new_fl |= (inode->i_flags & S_DAX);
4578 	if (init && ext4_should_enable_dax(inode))
4579 		new_fl |= S_DAX;
4580 
4581 	if (flags & EXT4_ENCRYPT_FL)
4582 		new_fl |= S_ENCRYPTED;
4583 	if (flags & EXT4_CASEFOLD_FL)
4584 		new_fl |= S_CASEFOLD;
4585 	if (flags & EXT4_VERITY_FL)
4586 		new_fl |= S_VERITY;
4587 	inode_set_flags(inode, new_fl,
4588 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4589 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4590 }
4591 
4592 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4593 				  struct ext4_inode_info *ei)
4594 {
4595 	blkcnt_t i_blocks ;
4596 	struct inode *inode = &(ei->vfs_inode);
4597 	struct super_block *sb = inode->i_sb;
4598 
4599 	if (ext4_has_feature_huge_file(sb)) {
4600 		/* we are using combined 48 bit field */
4601 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4602 					le32_to_cpu(raw_inode->i_blocks_lo);
4603 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4604 			/* i_blocks represent file system block size */
4605 			return i_blocks  << (inode->i_blkbits - 9);
4606 		} else {
4607 			return i_blocks;
4608 		}
4609 	} else {
4610 		return le32_to_cpu(raw_inode->i_blocks_lo);
4611 	}
4612 }
4613 
4614 static inline int ext4_iget_extra_inode(struct inode *inode,
4615 					 struct ext4_inode *raw_inode,
4616 					 struct ext4_inode_info *ei)
4617 {
4618 	__le32 *magic = (void *)raw_inode +
4619 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4620 
4621 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4622 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4623 		int err;
4624 
4625 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4626 		err = ext4_find_inline_data_nolock(inode);
4627 		if (!err && ext4_has_inline_data(inode))
4628 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4629 		return err;
4630 	} else
4631 		EXT4_I(inode)->i_inline_off = 0;
4632 	return 0;
4633 }
4634 
4635 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4636 {
4637 	if (!ext4_has_feature_project(inode->i_sb))
4638 		return -EOPNOTSUPP;
4639 	*projid = EXT4_I(inode)->i_projid;
4640 	return 0;
4641 }
4642 
4643 /*
4644  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4645  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4646  * set.
4647  */
4648 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4649 {
4650 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4651 		inode_set_iversion_raw(inode, val);
4652 	else
4653 		inode_set_iversion_queried(inode, val);
4654 }
4655 
4656 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4657 
4658 {
4659 	if (flags & EXT4_IGET_EA_INODE) {
4660 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4661 			return "missing EA_INODE flag";
4662 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4663 		    EXT4_I(inode)->i_file_acl)
4664 			return "ea_inode with extended attributes";
4665 	} else {
4666 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4667 			return "unexpected EA_INODE flag";
4668 	}
4669 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4670 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4671 	return NULL;
4672 }
4673 
4674 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4675 			  ext4_iget_flags flags, const char *function,
4676 			  unsigned int line)
4677 {
4678 	struct ext4_iloc iloc;
4679 	struct ext4_inode *raw_inode;
4680 	struct ext4_inode_info *ei;
4681 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4682 	struct inode *inode;
4683 	const char *err_str;
4684 	journal_t *journal = EXT4_SB(sb)->s_journal;
4685 	long ret;
4686 	loff_t size;
4687 	int block;
4688 	uid_t i_uid;
4689 	gid_t i_gid;
4690 	projid_t i_projid;
4691 
4692 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4693 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4694 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4695 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4696 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4697 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4698 	    (ino < EXT4_ROOT_INO) ||
4699 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4700 		if (flags & EXT4_IGET_HANDLE)
4701 			return ERR_PTR(-ESTALE);
4702 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4703 			     "inode #%lu: comm %s: iget: illegal inode #",
4704 			     ino, current->comm);
4705 		return ERR_PTR(-EFSCORRUPTED);
4706 	}
4707 
4708 	inode = iget_locked(sb, ino);
4709 	if (!inode)
4710 		return ERR_PTR(-ENOMEM);
4711 	if (!(inode->i_state & I_NEW)) {
4712 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4713 			ext4_error_inode(inode, function, line, 0, err_str);
4714 			iput(inode);
4715 			return ERR_PTR(-EFSCORRUPTED);
4716 		}
4717 		return inode;
4718 	}
4719 
4720 	ei = EXT4_I(inode);
4721 	iloc.bh = NULL;
4722 
4723 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4724 	if (ret < 0)
4725 		goto bad_inode;
4726 	raw_inode = ext4_raw_inode(&iloc);
4727 
4728 	if ((flags & EXT4_IGET_HANDLE) &&
4729 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4730 		ret = -ESTALE;
4731 		goto bad_inode;
4732 	}
4733 
4734 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4735 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4736 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4737 			EXT4_INODE_SIZE(inode->i_sb) ||
4738 		    (ei->i_extra_isize & 3)) {
4739 			ext4_error_inode(inode, function, line, 0,
4740 					 "iget: bad extra_isize %u "
4741 					 "(inode size %u)",
4742 					 ei->i_extra_isize,
4743 					 EXT4_INODE_SIZE(inode->i_sb));
4744 			ret = -EFSCORRUPTED;
4745 			goto bad_inode;
4746 		}
4747 	} else
4748 		ei->i_extra_isize = 0;
4749 
4750 	/* Precompute checksum seed for inode metadata */
4751 	if (ext4_has_metadata_csum(sb)) {
4752 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4753 		__u32 csum;
4754 		__le32 inum = cpu_to_le32(inode->i_ino);
4755 		__le32 gen = raw_inode->i_generation;
4756 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4757 				   sizeof(inum));
4758 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4759 					      sizeof(gen));
4760 	}
4761 
4762 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4763 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4764 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4765 		ext4_error_inode_err(inode, function, line, 0,
4766 				EFSBADCRC, "iget: checksum invalid");
4767 		ret = -EFSBADCRC;
4768 		goto bad_inode;
4769 	}
4770 
4771 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4772 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4773 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4774 	if (ext4_has_feature_project(sb) &&
4775 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4776 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4777 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4778 	else
4779 		i_projid = EXT4_DEF_PROJID;
4780 
4781 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4782 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4783 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4784 	}
4785 	i_uid_write(inode, i_uid);
4786 	i_gid_write(inode, i_gid);
4787 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4788 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4789 
4790 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4791 	ei->i_inline_off = 0;
4792 	ei->i_dir_start_lookup = 0;
4793 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4794 	/* We now have enough fields to check if the inode was active or not.
4795 	 * This is needed because nfsd might try to access dead inodes
4796 	 * the test is that same one that e2fsck uses
4797 	 * NeilBrown 1999oct15
4798 	 */
4799 	if (inode->i_nlink == 0) {
4800 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4801 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4802 		    ino != EXT4_BOOT_LOADER_INO) {
4803 			/* this inode is deleted or unallocated */
4804 			if (flags & EXT4_IGET_SPECIAL) {
4805 				ext4_error_inode(inode, function, line, 0,
4806 						 "iget: special inode unallocated");
4807 				ret = -EFSCORRUPTED;
4808 			} else
4809 				ret = -ESTALE;
4810 			goto bad_inode;
4811 		}
4812 		/* The only unlinked inodes we let through here have
4813 		 * valid i_mode and are being read by the orphan
4814 		 * recovery code: that's fine, we're about to complete
4815 		 * the process of deleting those.
4816 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4817 		 * not initialized on a new filesystem. */
4818 	}
4819 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4820 	ext4_set_inode_flags(inode, true);
4821 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4822 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4823 	if (ext4_has_feature_64bit(sb))
4824 		ei->i_file_acl |=
4825 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4826 	inode->i_size = ext4_isize(sb, raw_inode);
4827 	if ((size = i_size_read(inode)) < 0) {
4828 		ext4_error_inode(inode, function, line, 0,
4829 				 "iget: bad i_size value: %lld", size);
4830 		ret = -EFSCORRUPTED;
4831 		goto bad_inode;
4832 	}
4833 	/*
4834 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4835 	 * we'd normally treat htree data as empty space. But with metadata
4836 	 * checksumming that corrupts checksums so forbid that.
4837 	 */
4838 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4839 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4840 		ext4_error_inode(inode, function, line, 0,
4841 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4842 		ret = -EFSCORRUPTED;
4843 		goto bad_inode;
4844 	}
4845 	ei->i_disksize = inode->i_size;
4846 #ifdef CONFIG_QUOTA
4847 	ei->i_reserved_quota = 0;
4848 #endif
4849 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4850 	ei->i_block_group = iloc.block_group;
4851 	ei->i_last_alloc_group = ~0;
4852 	/*
4853 	 * NOTE! The in-memory inode i_data array is in little-endian order
4854 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4855 	 */
4856 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4857 		ei->i_data[block] = raw_inode->i_block[block];
4858 	INIT_LIST_HEAD(&ei->i_orphan);
4859 	ext4_fc_init_inode(&ei->vfs_inode);
4860 
4861 	/*
4862 	 * Set transaction id's of transactions that have to be committed
4863 	 * to finish f[data]sync. We set them to currently running transaction
4864 	 * as we cannot be sure that the inode or some of its metadata isn't
4865 	 * part of the transaction - the inode could have been reclaimed and
4866 	 * now it is reread from disk.
4867 	 */
4868 	if (journal) {
4869 		transaction_t *transaction;
4870 		tid_t tid;
4871 
4872 		read_lock(&journal->j_state_lock);
4873 		if (journal->j_running_transaction)
4874 			transaction = journal->j_running_transaction;
4875 		else
4876 			transaction = journal->j_committing_transaction;
4877 		if (transaction)
4878 			tid = transaction->t_tid;
4879 		else
4880 			tid = journal->j_commit_sequence;
4881 		read_unlock(&journal->j_state_lock);
4882 		ei->i_sync_tid = tid;
4883 		ei->i_datasync_tid = tid;
4884 	}
4885 
4886 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4887 		if (ei->i_extra_isize == 0) {
4888 			/* The extra space is currently unused. Use it. */
4889 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4890 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4891 					    EXT4_GOOD_OLD_INODE_SIZE;
4892 		} else {
4893 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4894 			if (ret)
4895 				goto bad_inode;
4896 		}
4897 	}
4898 
4899 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4900 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4901 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4902 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4903 
4904 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4905 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4906 
4907 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4908 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4909 				ivers |=
4910 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4911 		}
4912 		ext4_inode_set_iversion_queried(inode, ivers);
4913 	}
4914 
4915 	ret = 0;
4916 	if (ei->i_file_acl &&
4917 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4918 		ext4_error_inode(inode, function, line, 0,
4919 				 "iget: bad extended attribute block %llu",
4920 				 ei->i_file_acl);
4921 		ret = -EFSCORRUPTED;
4922 		goto bad_inode;
4923 	} else if (!ext4_has_inline_data(inode)) {
4924 		/* validate the block references in the inode */
4925 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4926 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4927 			(S_ISLNK(inode->i_mode) &&
4928 			!ext4_inode_is_fast_symlink(inode)))) {
4929 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4930 				ret = ext4_ext_check_inode(inode);
4931 			else
4932 				ret = ext4_ind_check_inode(inode);
4933 		}
4934 	}
4935 	if (ret)
4936 		goto bad_inode;
4937 
4938 	if (S_ISREG(inode->i_mode)) {
4939 		inode->i_op = &ext4_file_inode_operations;
4940 		inode->i_fop = &ext4_file_operations;
4941 		ext4_set_aops(inode);
4942 	} else if (S_ISDIR(inode->i_mode)) {
4943 		inode->i_op = &ext4_dir_inode_operations;
4944 		inode->i_fop = &ext4_dir_operations;
4945 	} else if (S_ISLNK(inode->i_mode)) {
4946 		/* VFS does not allow setting these so must be corruption */
4947 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4948 			ext4_error_inode(inode, function, line, 0,
4949 					 "iget: immutable or append flags "
4950 					 "not allowed on symlinks");
4951 			ret = -EFSCORRUPTED;
4952 			goto bad_inode;
4953 		}
4954 		if (IS_ENCRYPTED(inode)) {
4955 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4956 		} else if (ext4_inode_is_fast_symlink(inode)) {
4957 			inode->i_link = (char *)ei->i_data;
4958 			inode->i_op = &ext4_fast_symlink_inode_operations;
4959 			nd_terminate_link(ei->i_data, inode->i_size,
4960 				sizeof(ei->i_data) - 1);
4961 		} else {
4962 			inode->i_op = &ext4_symlink_inode_operations;
4963 		}
4964 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4965 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4966 		inode->i_op = &ext4_special_inode_operations;
4967 		if (raw_inode->i_block[0])
4968 			init_special_inode(inode, inode->i_mode,
4969 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4970 		else
4971 			init_special_inode(inode, inode->i_mode,
4972 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4973 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4974 		make_bad_inode(inode);
4975 	} else {
4976 		ret = -EFSCORRUPTED;
4977 		ext4_error_inode(inode, function, line, 0,
4978 				 "iget: bogus i_mode (%o)", inode->i_mode);
4979 		goto bad_inode;
4980 	}
4981 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4982 		ext4_error_inode(inode, function, line, 0,
4983 				 "casefold flag without casefold feature");
4984 		ret = -EFSCORRUPTED;
4985 		goto bad_inode;
4986 	}
4987 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4988 		ext4_error_inode(inode, function, line, 0, err_str);
4989 		ret = -EFSCORRUPTED;
4990 		goto bad_inode;
4991 	}
4992 
4993 	brelse(iloc.bh);
4994 	unlock_new_inode(inode);
4995 	return inode;
4996 
4997 bad_inode:
4998 	brelse(iloc.bh);
4999 	iget_failed(inode);
5000 	return ERR_PTR(ret);
5001 }
5002 
5003 static void __ext4_update_other_inode_time(struct super_block *sb,
5004 					   unsigned long orig_ino,
5005 					   unsigned long ino,
5006 					   struct ext4_inode *raw_inode)
5007 {
5008 	struct inode *inode;
5009 
5010 	inode = find_inode_by_ino_rcu(sb, ino);
5011 	if (!inode)
5012 		return;
5013 
5014 	if (!inode_is_dirtytime_only(inode))
5015 		return;
5016 
5017 	spin_lock(&inode->i_lock);
5018 	if (inode_is_dirtytime_only(inode)) {
5019 		struct ext4_inode_info	*ei = EXT4_I(inode);
5020 
5021 		inode->i_state &= ~I_DIRTY_TIME;
5022 		spin_unlock(&inode->i_lock);
5023 
5024 		spin_lock(&ei->i_raw_lock);
5025 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5026 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5027 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5028 		ext4_inode_csum_set(inode, raw_inode, ei);
5029 		spin_unlock(&ei->i_raw_lock);
5030 		trace_ext4_other_inode_update_time(inode, orig_ino);
5031 		return;
5032 	}
5033 	spin_unlock(&inode->i_lock);
5034 }
5035 
5036 /*
5037  * Opportunistically update the other time fields for other inodes in
5038  * the same inode table block.
5039  */
5040 static void ext4_update_other_inodes_time(struct super_block *sb,
5041 					  unsigned long orig_ino, char *buf)
5042 {
5043 	unsigned long ino;
5044 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5045 	int inode_size = EXT4_INODE_SIZE(sb);
5046 
5047 	/*
5048 	 * Calculate the first inode in the inode table block.  Inode
5049 	 * numbers are one-based.  That is, the first inode in a block
5050 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5051 	 */
5052 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5053 	rcu_read_lock();
5054 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5055 		if (ino == orig_ino)
5056 			continue;
5057 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5058 					       (struct ext4_inode *)buf);
5059 	}
5060 	rcu_read_unlock();
5061 }
5062 
5063 /*
5064  * Post the struct inode info into an on-disk inode location in the
5065  * buffer-cache.  This gobbles the caller's reference to the
5066  * buffer_head in the inode location struct.
5067  *
5068  * The caller must have write access to iloc->bh.
5069  */
5070 static int ext4_do_update_inode(handle_t *handle,
5071 				struct inode *inode,
5072 				struct ext4_iloc *iloc)
5073 {
5074 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5075 	struct ext4_inode_info *ei = EXT4_I(inode);
5076 	struct buffer_head *bh = iloc->bh;
5077 	struct super_block *sb = inode->i_sb;
5078 	int err;
5079 	int need_datasync = 0, set_large_file = 0;
5080 
5081 	spin_lock(&ei->i_raw_lock);
5082 
5083 	/*
5084 	 * For fields not tracked in the in-memory inode, initialise them
5085 	 * to zero for new inodes.
5086 	 */
5087 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5088 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5089 
5090 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5091 		need_datasync = 1;
5092 	if (ei->i_disksize > 0x7fffffffULL) {
5093 		if (!ext4_has_feature_large_file(sb) ||
5094 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5095 			set_large_file = 1;
5096 	}
5097 
5098 	err = ext4_fill_raw_inode(inode, raw_inode);
5099 	spin_unlock(&ei->i_raw_lock);
5100 	if (err) {
5101 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5102 		goto out_brelse;
5103 	}
5104 
5105 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5106 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5107 					      bh->b_data);
5108 
5109 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5110 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5111 	if (err)
5112 		goto out_error;
5113 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5114 	if (set_large_file) {
5115 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5116 		err = ext4_journal_get_write_access(handle, sb,
5117 						    EXT4_SB(sb)->s_sbh,
5118 						    EXT4_JTR_NONE);
5119 		if (err)
5120 			goto out_error;
5121 		lock_buffer(EXT4_SB(sb)->s_sbh);
5122 		ext4_set_feature_large_file(sb);
5123 		ext4_superblock_csum_set(sb);
5124 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5125 		ext4_handle_sync(handle);
5126 		err = ext4_handle_dirty_metadata(handle, NULL,
5127 						 EXT4_SB(sb)->s_sbh);
5128 	}
5129 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5130 out_error:
5131 	ext4_std_error(inode->i_sb, err);
5132 out_brelse:
5133 	brelse(bh);
5134 	return err;
5135 }
5136 
5137 /*
5138  * ext4_write_inode()
5139  *
5140  * We are called from a few places:
5141  *
5142  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5143  *   Here, there will be no transaction running. We wait for any running
5144  *   transaction to commit.
5145  *
5146  * - Within flush work (sys_sync(), kupdate and such).
5147  *   We wait on commit, if told to.
5148  *
5149  * - Within iput_final() -> write_inode_now()
5150  *   We wait on commit, if told to.
5151  *
5152  * In all cases it is actually safe for us to return without doing anything,
5153  * because the inode has been copied into a raw inode buffer in
5154  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5155  * writeback.
5156  *
5157  * Note that we are absolutely dependent upon all inode dirtiers doing the
5158  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5159  * which we are interested.
5160  *
5161  * It would be a bug for them to not do this.  The code:
5162  *
5163  *	mark_inode_dirty(inode)
5164  *	stuff();
5165  *	inode->i_size = expr;
5166  *
5167  * is in error because write_inode() could occur while `stuff()' is running,
5168  * and the new i_size will be lost.  Plus the inode will no longer be on the
5169  * superblock's dirty inode list.
5170  */
5171 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5172 {
5173 	int err;
5174 
5175 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5176 		return 0;
5177 
5178 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5179 		return -EIO;
5180 
5181 	if (EXT4_SB(inode->i_sb)->s_journal) {
5182 		if (ext4_journal_current_handle()) {
5183 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5184 			dump_stack();
5185 			return -EIO;
5186 		}
5187 
5188 		/*
5189 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5190 		 * ext4_sync_fs() will force the commit after everything is
5191 		 * written.
5192 		 */
5193 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5194 			return 0;
5195 
5196 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5197 						EXT4_I(inode)->i_sync_tid);
5198 	} else {
5199 		struct ext4_iloc iloc;
5200 
5201 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5202 		if (err)
5203 			return err;
5204 		/*
5205 		 * sync(2) will flush the whole buffer cache. No need to do
5206 		 * it here separately for each inode.
5207 		 */
5208 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5209 			sync_dirty_buffer(iloc.bh);
5210 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5211 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5212 					       "IO error syncing inode");
5213 			err = -EIO;
5214 		}
5215 		brelse(iloc.bh);
5216 	}
5217 	return err;
5218 }
5219 
5220 /*
5221  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5222  * buffers that are attached to a folio straddling i_size and are undergoing
5223  * commit. In that case we have to wait for commit to finish and try again.
5224  */
5225 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5226 {
5227 	unsigned offset;
5228 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5229 	tid_t commit_tid = 0;
5230 	int ret;
5231 
5232 	offset = inode->i_size & (PAGE_SIZE - 1);
5233 	/*
5234 	 * If the folio is fully truncated, we don't need to wait for any commit
5235 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5236 	 * strip all buffers from the folio but keep the folio dirty which can then
5237 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5238 	 * buffers). Also we don't need to wait for any commit if all buffers in
5239 	 * the folio remain valid. This is most beneficial for the common case of
5240 	 * blocksize == PAGESIZE.
5241 	 */
5242 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5243 		return;
5244 	while (1) {
5245 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5246 				      inode->i_size >> PAGE_SHIFT);
5247 		if (IS_ERR(folio))
5248 			return;
5249 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5250 						folio_size(folio) - offset);
5251 		folio_unlock(folio);
5252 		folio_put(folio);
5253 		if (ret != -EBUSY)
5254 			return;
5255 		commit_tid = 0;
5256 		read_lock(&journal->j_state_lock);
5257 		if (journal->j_committing_transaction)
5258 			commit_tid = journal->j_committing_transaction->t_tid;
5259 		read_unlock(&journal->j_state_lock);
5260 		if (commit_tid)
5261 			jbd2_log_wait_commit(journal, commit_tid);
5262 	}
5263 }
5264 
5265 /*
5266  * ext4_setattr()
5267  *
5268  * Called from notify_change.
5269  *
5270  * We want to trap VFS attempts to truncate the file as soon as
5271  * possible.  In particular, we want to make sure that when the VFS
5272  * shrinks i_size, we put the inode on the orphan list and modify
5273  * i_disksize immediately, so that during the subsequent flushing of
5274  * dirty pages and freeing of disk blocks, we can guarantee that any
5275  * commit will leave the blocks being flushed in an unused state on
5276  * disk.  (On recovery, the inode will get truncated and the blocks will
5277  * be freed, so we have a strong guarantee that no future commit will
5278  * leave these blocks visible to the user.)
5279  *
5280  * Another thing we have to assure is that if we are in ordered mode
5281  * and inode is still attached to the committing transaction, we must
5282  * we start writeout of all the dirty pages which are being truncated.
5283  * This way we are sure that all the data written in the previous
5284  * transaction are already on disk (truncate waits for pages under
5285  * writeback).
5286  *
5287  * Called with inode->i_rwsem down.
5288  */
5289 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5290 		 struct iattr *attr)
5291 {
5292 	struct inode *inode = d_inode(dentry);
5293 	int error, rc = 0;
5294 	int orphan = 0;
5295 	const unsigned int ia_valid = attr->ia_valid;
5296 	bool inc_ivers = true;
5297 
5298 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5299 		return -EIO;
5300 
5301 	if (unlikely(IS_IMMUTABLE(inode)))
5302 		return -EPERM;
5303 
5304 	if (unlikely(IS_APPEND(inode) &&
5305 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5306 				  ATTR_GID | ATTR_TIMES_SET))))
5307 		return -EPERM;
5308 
5309 	error = setattr_prepare(idmap, dentry, attr);
5310 	if (error)
5311 		return error;
5312 
5313 	error = fscrypt_prepare_setattr(dentry, attr);
5314 	if (error)
5315 		return error;
5316 
5317 	error = fsverity_prepare_setattr(dentry, attr);
5318 	if (error)
5319 		return error;
5320 
5321 	if (is_quota_modification(idmap, inode, attr)) {
5322 		error = dquot_initialize(inode);
5323 		if (error)
5324 			return error;
5325 	}
5326 
5327 	if (i_uid_needs_update(idmap, attr, inode) ||
5328 	    i_gid_needs_update(idmap, attr, inode)) {
5329 		handle_t *handle;
5330 
5331 		/* (user+group)*(old+new) structure, inode write (sb,
5332 		 * inode block, ? - but truncate inode update has it) */
5333 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5334 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5335 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5336 		if (IS_ERR(handle)) {
5337 			error = PTR_ERR(handle);
5338 			goto err_out;
5339 		}
5340 
5341 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5342 		 * counts xattr inode references.
5343 		 */
5344 		down_read(&EXT4_I(inode)->xattr_sem);
5345 		error = dquot_transfer(idmap, inode, attr);
5346 		up_read(&EXT4_I(inode)->xattr_sem);
5347 
5348 		if (error) {
5349 			ext4_journal_stop(handle);
5350 			return error;
5351 		}
5352 		/* Update corresponding info in inode so that everything is in
5353 		 * one transaction */
5354 		i_uid_update(idmap, attr, inode);
5355 		i_gid_update(idmap, attr, inode);
5356 		error = ext4_mark_inode_dirty(handle, inode);
5357 		ext4_journal_stop(handle);
5358 		if (unlikely(error)) {
5359 			return error;
5360 		}
5361 	}
5362 
5363 	if (attr->ia_valid & ATTR_SIZE) {
5364 		handle_t *handle;
5365 		loff_t oldsize = inode->i_size;
5366 		loff_t old_disksize;
5367 		int shrink = (attr->ia_size < inode->i_size);
5368 
5369 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5370 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5371 
5372 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5373 				return -EFBIG;
5374 			}
5375 		}
5376 		if (!S_ISREG(inode->i_mode)) {
5377 			return -EINVAL;
5378 		}
5379 
5380 		if (attr->ia_size == inode->i_size)
5381 			inc_ivers = false;
5382 
5383 		if (shrink) {
5384 			if (ext4_should_order_data(inode)) {
5385 				error = ext4_begin_ordered_truncate(inode,
5386 							    attr->ia_size);
5387 				if (error)
5388 					goto err_out;
5389 			}
5390 			/*
5391 			 * Blocks are going to be removed from the inode. Wait
5392 			 * for dio in flight.
5393 			 */
5394 			inode_dio_wait(inode);
5395 		}
5396 
5397 		filemap_invalidate_lock(inode->i_mapping);
5398 
5399 		rc = ext4_break_layouts(inode);
5400 		if (rc) {
5401 			filemap_invalidate_unlock(inode->i_mapping);
5402 			goto err_out;
5403 		}
5404 
5405 		if (attr->ia_size != inode->i_size) {
5406 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5407 			if (IS_ERR(handle)) {
5408 				error = PTR_ERR(handle);
5409 				goto out_mmap_sem;
5410 			}
5411 			if (ext4_handle_valid(handle) && shrink) {
5412 				error = ext4_orphan_add(handle, inode);
5413 				orphan = 1;
5414 			}
5415 			/*
5416 			 * Update c/mtime on truncate up, ext4_truncate() will
5417 			 * update c/mtime in shrink case below
5418 			 */
5419 			if (!shrink)
5420 				inode->i_mtime = inode_set_ctime_current(inode);
5421 
5422 			if (shrink)
5423 				ext4_fc_track_range(handle, inode,
5424 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5425 					inode->i_sb->s_blocksize_bits,
5426 					EXT_MAX_BLOCKS - 1);
5427 			else
5428 				ext4_fc_track_range(
5429 					handle, inode,
5430 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5431 					inode->i_sb->s_blocksize_bits,
5432 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5433 					inode->i_sb->s_blocksize_bits);
5434 
5435 			down_write(&EXT4_I(inode)->i_data_sem);
5436 			old_disksize = EXT4_I(inode)->i_disksize;
5437 			EXT4_I(inode)->i_disksize = attr->ia_size;
5438 			rc = ext4_mark_inode_dirty(handle, inode);
5439 			if (!error)
5440 				error = rc;
5441 			/*
5442 			 * We have to update i_size under i_data_sem together
5443 			 * with i_disksize to avoid races with writeback code
5444 			 * running ext4_wb_update_i_disksize().
5445 			 */
5446 			if (!error)
5447 				i_size_write(inode, attr->ia_size);
5448 			else
5449 				EXT4_I(inode)->i_disksize = old_disksize;
5450 			up_write(&EXT4_I(inode)->i_data_sem);
5451 			ext4_journal_stop(handle);
5452 			if (error)
5453 				goto out_mmap_sem;
5454 			if (!shrink) {
5455 				pagecache_isize_extended(inode, oldsize,
5456 							 inode->i_size);
5457 			} else if (ext4_should_journal_data(inode)) {
5458 				ext4_wait_for_tail_page_commit(inode);
5459 			}
5460 		}
5461 
5462 		/*
5463 		 * Truncate pagecache after we've waited for commit
5464 		 * in data=journal mode to make pages freeable.
5465 		 */
5466 		truncate_pagecache(inode, inode->i_size);
5467 		/*
5468 		 * Call ext4_truncate() even if i_size didn't change to
5469 		 * truncate possible preallocated blocks.
5470 		 */
5471 		if (attr->ia_size <= oldsize) {
5472 			rc = ext4_truncate(inode);
5473 			if (rc)
5474 				error = rc;
5475 		}
5476 out_mmap_sem:
5477 		filemap_invalidate_unlock(inode->i_mapping);
5478 	}
5479 
5480 	if (!error) {
5481 		if (inc_ivers)
5482 			inode_inc_iversion(inode);
5483 		setattr_copy(idmap, inode, attr);
5484 		mark_inode_dirty(inode);
5485 	}
5486 
5487 	/*
5488 	 * If the call to ext4_truncate failed to get a transaction handle at
5489 	 * all, we need to clean up the in-core orphan list manually.
5490 	 */
5491 	if (orphan && inode->i_nlink)
5492 		ext4_orphan_del(NULL, inode);
5493 
5494 	if (!error && (ia_valid & ATTR_MODE))
5495 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5496 
5497 err_out:
5498 	if  (error)
5499 		ext4_std_error(inode->i_sb, error);
5500 	if (!error)
5501 		error = rc;
5502 	return error;
5503 }
5504 
5505 u32 ext4_dio_alignment(struct inode *inode)
5506 {
5507 	if (fsverity_active(inode))
5508 		return 0;
5509 	if (ext4_should_journal_data(inode))
5510 		return 0;
5511 	if (ext4_has_inline_data(inode))
5512 		return 0;
5513 	if (IS_ENCRYPTED(inode)) {
5514 		if (!fscrypt_dio_supported(inode))
5515 			return 0;
5516 		return i_blocksize(inode);
5517 	}
5518 	return 1; /* use the iomap defaults */
5519 }
5520 
5521 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5522 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5523 {
5524 	struct inode *inode = d_inode(path->dentry);
5525 	struct ext4_inode *raw_inode;
5526 	struct ext4_inode_info *ei = EXT4_I(inode);
5527 	unsigned int flags;
5528 
5529 	if ((request_mask & STATX_BTIME) &&
5530 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5531 		stat->result_mask |= STATX_BTIME;
5532 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5533 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5534 	}
5535 
5536 	/*
5537 	 * Return the DIO alignment restrictions if requested.  We only return
5538 	 * this information when requested, since on encrypted files it might
5539 	 * take a fair bit of work to get if the file wasn't opened recently.
5540 	 */
5541 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5542 		u32 dio_align = ext4_dio_alignment(inode);
5543 
5544 		stat->result_mask |= STATX_DIOALIGN;
5545 		if (dio_align == 1) {
5546 			struct block_device *bdev = inode->i_sb->s_bdev;
5547 
5548 			/* iomap defaults */
5549 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5550 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5551 		} else {
5552 			stat->dio_mem_align = dio_align;
5553 			stat->dio_offset_align = dio_align;
5554 		}
5555 	}
5556 
5557 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5558 	if (flags & EXT4_APPEND_FL)
5559 		stat->attributes |= STATX_ATTR_APPEND;
5560 	if (flags & EXT4_COMPR_FL)
5561 		stat->attributes |= STATX_ATTR_COMPRESSED;
5562 	if (flags & EXT4_ENCRYPT_FL)
5563 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5564 	if (flags & EXT4_IMMUTABLE_FL)
5565 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5566 	if (flags & EXT4_NODUMP_FL)
5567 		stat->attributes |= STATX_ATTR_NODUMP;
5568 	if (flags & EXT4_VERITY_FL)
5569 		stat->attributes |= STATX_ATTR_VERITY;
5570 
5571 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5572 				  STATX_ATTR_COMPRESSED |
5573 				  STATX_ATTR_ENCRYPTED |
5574 				  STATX_ATTR_IMMUTABLE |
5575 				  STATX_ATTR_NODUMP |
5576 				  STATX_ATTR_VERITY);
5577 
5578 	generic_fillattr(idmap, request_mask, inode, stat);
5579 	return 0;
5580 }
5581 
5582 int ext4_file_getattr(struct mnt_idmap *idmap,
5583 		      const struct path *path, struct kstat *stat,
5584 		      u32 request_mask, unsigned int query_flags)
5585 {
5586 	struct inode *inode = d_inode(path->dentry);
5587 	u64 delalloc_blocks;
5588 
5589 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5590 
5591 	/*
5592 	 * If there is inline data in the inode, the inode will normally not
5593 	 * have data blocks allocated (it may have an external xattr block).
5594 	 * Report at least one sector for such files, so tools like tar, rsync,
5595 	 * others don't incorrectly think the file is completely sparse.
5596 	 */
5597 	if (unlikely(ext4_has_inline_data(inode)))
5598 		stat->blocks += (stat->size + 511) >> 9;
5599 
5600 	/*
5601 	 * We can't update i_blocks if the block allocation is delayed
5602 	 * otherwise in the case of system crash before the real block
5603 	 * allocation is done, we will have i_blocks inconsistent with
5604 	 * on-disk file blocks.
5605 	 * We always keep i_blocks updated together with real
5606 	 * allocation. But to not confuse with user, stat
5607 	 * will return the blocks that include the delayed allocation
5608 	 * blocks for this file.
5609 	 */
5610 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5611 				   EXT4_I(inode)->i_reserved_data_blocks);
5612 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5613 	return 0;
5614 }
5615 
5616 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5617 				   int pextents)
5618 {
5619 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5620 		return ext4_ind_trans_blocks(inode, lblocks);
5621 	return ext4_ext_index_trans_blocks(inode, pextents);
5622 }
5623 
5624 /*
5625  * Account for index blocks, block groups bitmaps and block group
5626  * descriptor blocks if modify datablocks and index blocks
5627  * worse case, the indexs blocks spread over different block groups
5628  *
5629  * If datablocks are discontiguous, they are possible to spread over
5630  * different block groups too. If they are contiguous, with flexbg,
5631  * they could still across block group boundary.
5632  *
5633  * Also account for superblock, inode, quota and xattr blocks
5634  */
5635 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5636 				  int pextents)
5637 {
5638 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5639 	int gdpblocks;
5640 	int idxblocks;
5641 	int ret;
5642 
5643 	/*
5644 	 * How many index blocks need to touch to map @lblocks logical blocks
5645 	 * to @pextents physical extents?
5646 	 */
5647 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5648 
5649 	ret = idxblocks;
5650 
5651 	/*
5652 	 * Now let's see how many group bitmaps and group descriptors need
5653 	 * to account
5654 	 */
5655 	groups = idxblocks + pextents;
5656 	gdpblocks = groups;
5657 	if (groups > ngroups)
5658 		groups = ngroups;
5659 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5660 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5661 
5662 	/* bitmaps and block group descriptor blocks */
5663 	ret += groups + gdpblocks;
5664 
5665 	/* Blocks for super block, inode, quota and xattr blocks */
5666 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5667 
5668 	return ret;
5669 }
5670 
5671 /*
5672  * Calculate the total number of credits to reserve to fit
5673  * the modification of a single pages into a single transaction,
5674  * which may include multiple chunks of block allocations.
5675  *
5676  * This could be called via ext4_write_begin()
5677  *
5678  * We need to consider the worse case, when
5679  * one new block per extent.
5680  */
5681 int ext4_writepage_trans_blocks(struct inode *inode)
5682 {
5683 	int bpp = ext4_journal_blocks_per_page(inode);
5684 	int ret;
5685 
5686 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5687 
5688 	/* Account for data blocks for journalled mode */
5689 	if (ext4_should_journal_data(inode))
5690 		ret += bpp;
5691 	return ret;
5692 }
5693 
5694 /*
5695  * Calculate the journal credits for a chunk of data modification.
5696  *
5697  * This is called from DIO, fallocate or whoever calling
5698  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5699  *
5700  * journal buffers for data blocks are not included here, as DIO
5701  * and fallocate do no need to journal data buffers.
5702  */
5703 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5704 {
5705 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5706 }
5707 
5708 /*
5709  * The caller must have previously called ext4_reserve_inode_write().
5710  * Give this, we know that the caller already has write access to iloc->bh.
5711  */
5712 int ext4_mark_iloc_dirty(handle_t *handle,
5713 			 struct inode *inode, struct ext4_iloc *iloc)
5714 {
5715 	int err = 0;
5716 
5717 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5718 		put_bh(iloc->bh);
5719 		return -EIO;
5720 	}
5721 	ext4_fc_track_inode(handle, inode);
5722 
5723 	/* the do_update_inode consumes one bh->b_count */
5724 	get_bh(iloc->bh);
5725 
5726 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5727 	err = ext4_do_update_inode(handle, inode, iloc);
5728 	put_bh(iloc->bh);
5729 	return err;
5730 }
5731 
5732 /*
5733  * On success, We end up with an outstanding reference count against
5734  * iloc->bh.  This _must_ be cleaned up later.
5735  */
5736 
5737 int
5738 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5739 			 struct ext4_iloc *iloc)
5740 {
5741 	int err;
5742 
5743 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5744 		return -EIO;
5745 
5746 	err = ext4_get_inode_loc(inode, iloc);
5747 	if (!err) {
5748 		BUFFER_TRACE(iloc->bh, "get_write_access");
5749 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5750 						    iloc->bh, EXT4_JTR_NONE);
5751 		if (err) {
5752 			brelse(iloc->bh);
5753 			iloc->bh = NULL;
5754 		}
5755 	}
5756 	ext4_std_error(inode->i_sb, err);
5757 	return err;
5758 }
5759 
5760 static int __ext4_expand_extra_isize(struct inode *inode,
5761 				     unsigned int new_extra_isize,
5762 				     struct ext4_iloc *iloc,
5763 				     handle_t *handle, int *no_expand)
5764 {
5765 	struct ext4_inode *raw_inode;
5766 	struct ext4_xattr_ibody_header *header;
5767 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5768 	struct ext4_inode_info *ei = EXT4_I(inode);
5769 	int error;
5770 
5771 	/* this was checked at iget time, but double check for good measure */
5772 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5773 	    (ei->i_extra_isize & 3)) {
5774 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5775 				 ei->i_extra_isize,
5776 				 EXT4_INODE_SIZE(inode->i_sb));
5777 		return -EFSCORRUPTED;
5778 	}
5779 	if ((new_extra_isize < ei->i_extra_isize) ||
5780 	    (new_extra_isize < 4) ||
5781 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5782 		return -EINVAL;	/* Should never happen */
5783 
5784 	raw_inode = ext4_raw_inode(iloc);
5785 
5786 	header = IHDR(inode, raw_inode);
5787 
5788 	/* No extended attributes present */
5789 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5790 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5791 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5792 		       EXT4_I(inode)->i_extra_isize, 0,
5793 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5794 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5795 		return 0;
5796 	}
5797 
5798 	/*
5799 	 * We may need to allocate external xattr block so we need quotas
5800 	 * initialized. Here we can be called with various locks held so we
5801 	 * cannot affort to initialize quotas ourselves. So just bail.
5802 	 */
5803 	if (dquot_initialize_needed(inode))
5804 		return -EAGAIN;
5805 
5806 	/* try to expand with EAs present */
5807 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5808 					   raw_inode, handle);
5809 	if (error) {
5810 		/*
5811 		 * Inode size expansion failed; don't try again
5812 		 */
5813 		*no_expand = 1;
5814 	}
5815 
5816 	return error;
5817 }
5818 
5819 /*
5820  * Expand an inode by new_extra_isize bytes.
5821  * Returns 0 on success or negative error number on failure.
5822  */
5823 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5824 					  unsigned int new_extra_isize,
5825 					  struct ext4_iloc iloc,
5826 					  handle_t *handle)
5827 {
5828 	int no_expand;
5829 	int error;
5830 
5831 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5832 		return -EOVERFLOW;
5833 
5834 	/*
5835 	 * In nojournal mode, we can immediately attempt to expand
5836 	 * the inode.  When journaled, we first need to obtain extra
5837 	 * buffer credits since we may write into the EA block
5838 	 * with this same handle. If journal_extend fails, then it will
5839 	 * only result in a minor loss of functionality for that inode.
5840 	 * If this is felt to be critical, then e2fsck should be run to
5841 	 * force a large enough s_min_extra_isize.
5842 	 */
5843 	if (ext4_journal_extend(handle,
5844 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5845 		return -ENOSPC;
5846 
5847 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5848 		return -EBUSY;
5849 
5850 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5851 					  handle, &no_expand);
5852 	ext4_write_unlock_xattr(inode, &no_expand);
5853 
5854 	return error;
5855 }
5856 
5857 int ext4_expand_extra_isize(struct inode *inode,
5858 			    unsigned int new_extra_isize,
5859 			    struct ext4_iloc *iloc)
5860 {
5861 	handle_t *handle;
5862 	int no_expand;
5863 	int error, rc;
5864 
5865 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5866 		brelse(iloc->bh);
5867 		return -EOVERFLOW;
5868 	}
5869 
5870 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5871 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5872 	if (IS_ERR(handle)) {
5873 		error = PTR_ERR(handle);
5874 		brelse(iloc->bh);
5875 		return error;
5876 	}
5877 
5878 	ext4_write_lock_xattr(inode, &no_expand);
5879 
5880 	BUFFER_TRACE(iloc->bh, "get_write_access");
5881 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5882 					      EXT4_JTR_NONE);
5883 	if (error) {
5884 		brelse(iloc->bh);
5885 		goto out_unlock;
5886 	}
5887 
5888 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5889 					  handle, &no_expand);
5890 
5891 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5892 	if (!error)
5893 		error = rc;
5894 
5895 out_unlock:
5896 	ext4_write_unlock_xattr(inode, &no_expand);
5897 	ext4_journal_stop(handle);
5898 	return error;
5899 }
5900 
5901 /*
5902  * What we do here is to mark the in-core inode as clean with respect to inode
5903  * dirtiness (it may still be data-dirty).
5904  * This means that the in-core inode may be reaped by prune_icache
5905  * without having to perform any I/O.  This is a very good thing,
5906  * because *any* task may call prune_icache - even ones which
5907  * have a transaction open against a different journal.
5908  *
5909  * Is this cheating?  Not really.  Sure, we haven't written the
5910  * inode out, but prune_icache isn't a user-visible syncing function.
5911  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5912  * we start and wait on commits.
5913  */
5914 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5915 				const char *func, unsigned int line)
5916 {
5917 	struct ext4_iloc iloc;
5918 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5919 	int err;
5920 
5921 	might_sleep();
5922 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5923 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5924 	if (err)
5925 		goto out;
5926 
5927 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5928 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5929 					       iloc, handle);
5930 
5931 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5932 out:
5933 	if (unlikely(err))
5934 		ext4_error_inode_err(inode, func, line, 0, err,
5935 					"mark_inode_dirty error");
5936 	return err;
5937 }
5938 
5939 /*
5940  * ext4_dirty_inode() is called from __mark_inode_dirty()
5941  *
5942  * We're really interested in the case where a file is being extended.
5943  * i_size has been changed by generic_commit_write() and we thus need
5944  * to include the updated inode in the current transaction.
5945  *
5946  * Also, dquot_alloc_block() will always dirty the inode when blocks
5947  * are allocated to the file.
5948  *
5949  * If the inode is marked synchronous, we don't honour that here - doing
5950  * so would cause a commit on atime updates, which we don't bother doing.
5951  * We handle synchronous inodes at the highest possible level.
5952  */
5953 void ext4_dirty_inode(struct inode *inode, int flags)
5954 {
5955 	handle_t *handle;
5956 
5957 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5958 	if (IS_ERR(handle))
5959 		return;
5960 	ext4_mark_inode_dirty(handle, inode);
5961 	ext4_journal_stop(handle);
5962 }
5963 
5964 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5965 {
5966 	journal_t *journal;
5967 	handle_t *handle;
5968 	int err;
5969 	int alloc_ctx;
5970 
5971 	/*
5972 	 * We have to be very careful here: changing a data block's
5973 	 * journaling status dynamically is dangerous.  If we write a
5974 	 * data block to the journal, change the status and then delete
5975 	 * that block, we risk forgetting to revoke the old log record
5976 	 * from the journal and so a subsequent replay can corrupt data.
5977 	 * So, first we make sure that the journal is empty and that
5978 	 * nobody is changing anything.
5979 	 */
5980 
5981 	journal = EXT4_JOURNAL(inode);
5982 	if (!journal)
5983 		return 0;
5984 	if (is_journal_aborted(journal))
5985 		return -EROFS;
5986 
5987 	/* Wait for all existing dio workers */
5988 	inode_dio_wait(inode);
5989 
5990 	/*
5991 	 * Before flushing the journal and switching inode's aops, we have
5992 	 * to flush all dirty data the inode has. There can be outstanding
5993 	 * delayed allocations, there can be unwritten extents created by
5994 	 * fallocate or buffered writes in dioread_nolock mode covered by
5995 	 * dirty data which can be converted only after flushing the dirty
5996 	 * data (and journalled aops don't know how to handle these cases).
5997 	 */
5998 	if (val) {
5999 		filemap_invalidate_lock(inode->i_mapping);
6000 		err = filemap_write_and_wait(inode->i_mapping);
6001 		if (err < 0) {
6002 			filemap_invalidate_unlock(inode->i_mapping);
6003 			return err;
6004 		}
6005 	}
6006 
6007 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6008 	jbd2_journal_lock_updates(journal);
6009 
6010 	/*
6011 	 * OK, there are no updates running now, and all cached data is
6012 	 * synced to disk.  We are now in a completely consistent state
6013 	 * which doesn't have anything in the journal, and we know that
6014 	 * no filesystem updates are running, so it is safe to modify
6015 	 * the inode's in-core data-journaling state flag now.
6016 	 */
6017 
6018 	if (val)
6019 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6020 	else {
6021 		err = jbd2_journal_flush(journal, 0);
6022 		if (err < 0) {
6023 			jbd2_journal_unlock_updates(journal);
6024 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6025 			return err;
6026 		}
6027 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6028 	}
6029 	ext4_set_aops(inode);
6030 
6031 	jbd2_journal_unlock_updates(journal);
6032 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6033 
6034 	if (val)
6035 		filemap_invalidate_unlock(inode->i_mapping);
6036 
6037 	/* Finally we can mark the inode as dirty. */
6038 
6039 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6040 	if (IS_ERR(handle))
6041 		return PTR_ERR(handle);
6042 
6043 	ext4_fc_mark_ineligible(inode->i_sb,
6044 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6045 	err = ext4_mark_inode_dirty(handle, inode);
6046 	ext4_handle_sync(handle);
6047 	ext4_journal_stop(handle);
6048 	ext4_std_error(inode->i_sb, err);
6049 
6050 	return err;
6051 }
6052 
6053 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6054 			    struct buffer_head *bh)
6055 {
6056 	return !buffer_mapped(bh);
6057 }
6058 
6059 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6060 {
6061 	struct vm_area_struct *vma = vmf->vma;
6062 	struct folio *folio = page_folio(vmf->page);
6063 	loff_t size;
6064 	unsigned long len;
6065 	int err;
6066 	vm_fault_t ret;
6067 	struct file *file = vma->vm_file;
6068 	struct inode *inode = file_inode(file);
6069 	struct address_space *mapping = inode->i_mapping;
6070 	handle_t *handle;
6071 	get_block_t *get_block;
6072 	int retries = 0;
6073 
6074 	if (unlikely(IS_IMMUTABLE(inode)))
6075 		return VM_FAULT_SIGBUS;
6076 
6077 	sb_start_pagefault(inode->i_sb);
6078 	file_update_time(vma->vm_file);
6079 
6080 	filemap_invalidate_lock_shared(mapping);
6081 
6082 	err = ext4_convert_inline_data(inode);
6083 	if (err)
6084 		goto out_ret;
6085 
6086 	/*
6087 	 * On data journalling we skip straight to the transaction handle:
6088 	 * there's no delalloc; page truncated will be checked later; the
6089 	 * early return w/ all buffers mapped (calculates size/len) can't
6090 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6091 	 */
6092 	if (ext4_should_journal_data(inode))
6093 		goto retry_alloc;
6094 
6095 	/* Delalloc case is easy... */
6096 	if (test_opt(inode->i_sb, DELALLOC) &&
6097 	    !ext4_nonda_switch(inode->i_sb)) {
6098 		do {
6099 			err = block_page_mkwrite(vma, vmf,
6100 						   ext4_da_get_block_prep);
6101 		} while (err == -ENOSPC &&
6102 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6103 		goto out_ret;
6104 	}
6105 
6106 	folio_lock(folio);
6107 	size = i_size_read(inode);
6108 	/* Page got truncated from under us? */
6109 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6110 		folio_unlock(folio);
6111 		ret = VM_FAULT_NOPAGE;
6112 		goto out;
6113 	}
6114 
6115 	len = folio_size(folio);
6116 	if (folio_pos(folio) + len > size)
6117 		len = size - folio_pos(folio);
6118 	/*
6119 	 * Return if we have all the buffers mapped. This avoids the need to do
6120 	 * journal_start/journal_stop which can block and take a long time
6121 	 *
6122 	 * This cannot be done for data journalling, as we have to add the
6123 	 * inode to the transaction's list to writeprotect pages on commit.
6124 	 */
6125 	if (folio_buffers(folio)) {
6126 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6127 					    0, len, NULL,
6128 					    ext4_bh_unmapped)) {
6129 			/* Wait so that we don't change page under IO */
6130 			folio_wait_stable(folio);
6131 			ret = VM_FAULT_LOCKED;
6132 			goto out;
6133 		}
6134 	}
6135 	folio_unlock(folio);
6136 	/* OK, we need to fill the hole... */
6137 	if (ext4_should_dioread_nolock(inode))
6138 		get_block = ext4_get_block_unwritten;
6139 	else
6140 		get_block = ext4_get_block;
6141 retry_alloc:
6142 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6143 				    ext4_writepage_trans_blocks(inode));
6144 	if (IS_ERR(handle)) {
6145 		ret = VM_FAULT_SIGBUS;
6146 		goto out;
6147 	}
6148 	/*
6149 	 * Data journalling can't use block_page_mkwrite() because it
6150 	 * will set_buffer_dirty() before do_journal_get_write_access()
6151 	 * thus might hit warning messages for dirty metadata buffers.
6152 	 */
6153 	if (!ext4_should_journal_data(inode)) {
6154 		err = block_page_mkwrite(vma, vmf, get_block);
6155 	} else {
6156 		folio_lock(folio);
6157 		size = i_size_read(inode);
6158 		/* Page got truncated from under us? */
6159 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6160 			ret = VM_FAULT_NOPAGE;
6161 			goto out_error;
6162 		}
6163 
6164 		len = folio_size(folio);
6165 		if (folio_pos(folio) + len > size)
6166 			len = size - folio_pos(folio);
6167 
6168 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6169 		if (!err) {
6170 			ret = VM_FAULT_SIGBUS;
6171 			if (ext4_journal_folio_buffers(handle, folio, len))
6172 				goto out_error;
6173 		} else {
6174 			folio_unlock(folio);
6175 		}
6176 	}
6177 	ext4_journal_stop(handle);
6178 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6179 		goto retry_alloc;
6180 out_ret:
6181 	ret = vmf_fs_error(err);
6182 out:
6183 	filemap_invalidate_unlock_shared(mapping);
6184 	sb_end_pagefault(inode->i_sb);
6185 	return ret;
6186 out_error:
6187 	folio_unlock(folio);
6188 	ext4_journal_stop(handle);
6189 	goto out;
6190 }
6191