1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 571 map->m_pblk, status); 572 } 573 up_read((&EXT4_I(inode)->i_data_sem)); 574 575 found: 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 /* 595 * If we need to convert extent to unwritten 596 * we continue and do the actual work in 597 * ext4_ext_map_blocks() 598 */ 599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to unwritten extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_block() 612 * with create == 1 flag. 613 */ 614 down_write(&EXT4_I(inode)->i_data_sem); 615 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 } 634 635 if (retval > 0) { 636 unsigned int status; 637 638 if (unlikely(retval != map->m_len)) { 639 ext4_warning(inode->i_sb, 640 "ES len assertion failed for inode " 641 "%lu: retval %d != map->m_len %d", 642 inode->i_ino, retval, map->m_len); 643 WARN_ON(1); 644 } 645 646 /* 647 * We have to zeroout blocks before inserting them into extent 648 * status tree. Otherwise someone could look them up there and 649 * use them before they are really zeroed. We also have to 650 * unmap metadata before zeroing as otherwise writeback can 651 * overwrite zeros with stale data from block device. 652 */ 653 if (flags & EXT4_GET_BLOCKS_ZERO && 654 map->m_flags & EXT4_MAP_MAPPED && 655 map->m_flags & EXT4_MAP_NEW) { 656 ret = ext4_issue_zeroout(inode, map->m_lblk, 657 map->m_pblk, map->m_len); 658 if (ret) { 659 retval = ret; 660 goto out_sem; 661 } 662 } 663 664 /* 665 * If the extent has been zeroed out, we don't need to update 666 * extent status tree. 667 */ 668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 670 if (ext4_es_is_written(&es)) 671 goto out_sem; 672 } 673 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 676 !(status & EXTENT_STATUS_WRITTEN) && 677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 678 map->m_lblk + map->m_len - 1)) 679 status |= EXTENT_STATUS_DELAYED; 680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 681 map->m_pblk, status); 682 } 683 684 out_sem: 685 up_write((&EXT4_I(inode)->i_data_sem)); 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 687 ret = check_block_validity(inode, map); 688 if (ret != 0) 689 return ret; 690 691 /* 692 * Inodes with freshly allocated blocks where contents will be 693 * visible after transaction commit must be on transaction's 694 * ordered data list. 695 */ 696 if (map->m_flags & EXT4_MAP_NEW && 697 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 698 !(flags & EXT4_GET_BLOCKS_ZERO) && 699 !ext4_is_quota_file(inode) && 700 ext4_should_order_data(inode)) { 701 loff_t start_byte = 702 (loff_t)map->m_lblk << inode->i_blkbits; 703 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 704 705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 706 ret = ext4_jbd2_inode_add_wait(handle, inode, 707 start_byte, length); 708 else 709 ret = ext4_jbd2_inode_add_write(handle, inode, 710 start_byte, length); 711 if (ret) 712 return ret; 713 } 714 } 715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 716 map->m_flags & EXT4_MAP_MAPPED)) 717 ext4_fc_track_range(handle, inode, map->m_lblk, 718 map->m_lblk + map->m_len - 1); 719 if (retval < 0) 720 ext_debug(inode, "failed with err %d\n", retval); 721 return retval; 722 } 723 724 /* 725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 726 * we have to be careful as someone else may be manipulating b_state as well. 727 */ 728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 729 { 730 unsigned long old_state; 731 unsigned long new_state; 732 733 flags &= EXT4_MAP_FLAGS; 734 735 /* Dummy buffer_head? Set non-atomically. */ 736 if (!bh->b_page) { 737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 738 return; 739 } 740 /* 741 * Someone else may be modifying b_state. Be careful! This is ugly but 742 * once we get rid of using bh as a container for mapping information 743 * to pass to / from get_block functions, this can go away. 744 */ 745 old_state = READ_ONCE(bh->b_state); 746 do { 747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 749 } 750 751 static int _ext4_get_block(struct inode *inode, sector_t iblock, 752 struct buffer_head *bh, int flags) 753 { 754 struct ext4_map_blocks map; 755 int ret = 0; 756 757 if (ext4_has_inline_data(inode)) 758 return -ERANGE; 759 760 map.m_lblk = iblock; 761 map.m_len = bh->b_size >> inode->i_blkbits; 762 763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 764 flags); 765 if (ret > 0) { 766 map_bh(bh, inode->i_sb, map.m_pblk); 767 ext4_update_bh_state(bh, map.m_flags); 768 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 769 ret = 0; 770 } else if (ret == 0) { 771 /* hole case, need to fill in bh->b_size */ 772 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 773 } 774 return ret; 775 } 776 777 int ext4_get_block(struct inode *inode, sector_t iblock, 778 struct buffer_head *bh, int create) 779 { 780 return _ext4_get_block(inode, iblock, bh, 781 create ? EXT4_GET_BLOCKS_CREATE : 0); 782 } 783 784 /* 785 * Get block function used when preparing for buffered write if we require 786 * creating an unwritten extent if blocks haven't been allocated. The extent 787 * will be converted to written after the IO is complete. 788 */ 789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create) 791 { 792 int ret = 0; 793 794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 795 inode->i_ino, create); 796 ret = _ext4_get_block(inode, iblock, bh_result, 797 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 798 799 /* 800 * If the buffer is marked unwritten, mark it as new to make sure it is 801 * zeroed out correctly in case of partial writes. Otherwise, there is 802 * a chance of stale data getting exposed. 803 */ 804 if (ret == 0 && buffer_unwritten(bh_result)) 805 set_buffer_new(bh_result); 806 807 return ret; 808 } 809 810 /* Maximum number of blocks we map for direct IO at once. */ 811 #define DIO_MAX_BLOCKS 4096 812 813 /* 814 * `handle' can be NULL if create is zero 815 */ 816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 817 ext4_lblk_t block, int map_flags) 818 { 819 struct ext4_map_blocks map; 820 struct buffer_head *bh; 821 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 822 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 823 int err; 824 825 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 826 || handle != NULL || create == 0); 827 ASSERT(create == 0 || !nowait); 828 829 map.m_lblk = block; 830 map.m_len = 1; 831 err = ext4_map_blocks(handle, inode, &map, map_flags); 832 833 if (err == 0) 834 return create ? ERR_PTR(-ENOSPC) : NULL; 835 if (err < 0) 836 return ERR_PTR(err); 837 838 if (nowait) 839 return sb_find_get_block(inode->i_sb, map.m_pblk); 840 841 bh = sb_getblk(inode->i_sb, map.m_pblk); 842 if (unlikely(!bh)) 843 return ERR_PTR(-ENOMEM); 844 if (map.m_flags & EXT4_MAP_NEW) { 845 ASSERT(create != 0); 846 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 847 || (handle != NULL)); 848 849 /* 850 * Now that we do not always journal data, we should 851 * keep in mind whether this should always journal the 852 * new buffer as metadata. For now, regular file 853 * writes use ext4_get_block instead, so it's not a 854 * problem. 855 */ 856 lock_buffer(bh); 857 BUFFER_TRACE(bh, "call get_create_access"); 858 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 859 EXT4_JTR_NONE); 860 if (unlikely(err)) { 861 unlock_buffer(bh); 862 goto errout; 863 } 864 if (!buffer_uptodate(bh)) { 865 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 866 set_buffer_uptodate(bh); 867 } 868 unlock_buffer(bh); 869 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 870 err = ext4_handle_dirty_metadata(handle, inode, bh); 871 if (unlikely(err)) 872 goto errout; 873 } else 874 BUFFER_TRACE(bh, "not a new buffer"); 875 return bh; 876 errout: 877 brelse(bh); 878 return ERR_PTR(err); 879 } 880 881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 882 ext4_lblk_t block, int map_flags) 883 { 884 struct buffer_head *bh; 885 int ret; 886 887 bh = ext4_getblk(handle, inode, block, map_flags); 888 if (IS_ERR(bh)) 889 return bh; 890 if (!bh || ext4_buffer_uptodate(bh)) 891 return bh; 892 893 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 894 if (ret) { 895 put_bh(bh); 896 return ERR_PTR(ret); 897 } 898 return bh; 899 } 900 901 /* Read a contiguous batch of blocks. */ 902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 903 bool wait, struct buffer_head **bhs) 904 { 905 int i, err; 906 907 for (i = 0; i < bh_count; i++) { 908 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 909 if (IS_ERR(bhs[i])) { 910 err = PTR_ERR(bhs[i]); 911 bh_count = i; 912 goto out_brelse; 913 } 914 } 915 916 for (i = 0; i < bh_count; i++) 917 /* Note that NULL bhs[i] is valid because of holes. */ 918 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 919 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 920 921 if (!wait) 922 return 0; 923 924 for (i = 0; i < bh_count; i++) 925 if (bhs[i]) 926 wait_on_buffer(bhs[i]); 927 928 for (i = 0; i < bh_count; i++) { 929 if (bhs[i] && !buffer_uptodate(bhs[i])) { 930 err = -EIO; 931 goto out_brelse; 932 } 933 } 934 return 0; 935 936 out_brelse: 937 for (i = 0; i < bh_count; i++) { 938 brelse(bhs[i]); 939 bhs[i] = NULL; 940 } 941 return err; 942 } 943 944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 945 struct buffer_head *head, 946 unsigned from, 947 unsigned to, 948 int *partial, 949 int (*fn)(handle_t *handle, struct inode *inode, 950 struct buffer_head *bh)) 951 { 952 struct buffer_head *bh; 953 unsigned block_start, block_end; 954 unsigned blocksize = head->b_size; 955 int err, ret = 0; 956 struct buffer_head *next; 957 958 for (bh = head, block_start = 0; 959 ret == 0 && (bh != head || !block_start); 960 block_start = block_end, bh = next) { 961 next = bh->b_this_page; 962 block_end = block_start + blocksize; 963 if (block_end <= from || block_start >= to) { 964 if (partial && !buffer_uptodate(bh)) 965 *partial = 1; 966 continue; 967 } 968 err = (*fn)(handle, inode, bh); 969 if (!ret) 970 ret = err; 971 } 972 return ret; 973 } 974 975 /* 976 * Helper for handling dirtying of journalled data. We also mark the folio as 977 * dirty so that writeback code knows about this page (and inode) contains 978 * dirty data. ext4_writepages() then commits appropriate transaction to 979 * make data stable. 980 */ 981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 982 { 983 folio_mark_dirty(bh->b_folio); 984 return ext4_handle_dirty_metadata(handle, NULL, bh); 985 } 986 987 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 988 struct buffer_head *bh) 989 { 990 int dirty = buffer_dirty(bh); 991 int ret; 992 993 if (!buffer_mapped(bh) || buffer_freed(bh)) 994 return 0; 995 /* 996 * __block_write_begin() could have dirtied some buffers. Clean 997 * the dirty bit as jbd2_journal_get_write_access() could complain 998 * otherwise about fs integrity issues. Setting of the dirty bit 999 * by __block_write_begin() isn't a real problem here as we clear 1000 * the bit before releasing a page lock and thus writeback cannot 1001 * ever write the buffer. 1002 */ 1003 if (dirty) 1004 clear_buffer_dirty(bh); 1005 BUFFER_TRACE(bh, "get write access"); 1006 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1007 EXT4_JTR_NONE); 1008 if (!ret && dirty) 1009 ret = ext4_dirty_journalled_data(handle, bh); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_FS_ENCRYPTION 1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1015 get_block_t *get_block) 1016 { 1017 unsigned from = pos & (PAGE_SIZE - 1); 1018 unsigned to = from + len; 1019 struct inode *inode = folio->mapping->host; 1020 unsigned block_start, block_end; 1021 sector_t block; 1022 int err = 0; 1023 unsigned blocksize = inode->i_sb->s_blocksize; 1024 unsigned bbits; 1025 struct buffer_head *bh, *head, *wait[2]; 1026 int nr_wait = 0; 1027 int i; 1028 1029 BUG_ON(!folio_test_locked(folio)); 1030 BUG_ON(from > PAGE_SIZE); 1031 BUG_ON(to > PAGE_SIZE); 1032 BUG_ON(from > to); 1033 1034 head = folio_buffers(folio); 1035 if (!head) { 1036 create_empty_buffers(&folio->page, blocksize, 0); 1037 head = folio_buffers(folio); 1038 } 1039 bbits = ilog2(blocksize); 1040 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1041 1042 for (bh = head, block_start = 0; bh != head || !block_start; 1043 block++, block_start = block_end, bh = bh->b_this_page) { 1044 block_end = block_start + blocksize; 1045 if (block_end <= from || block_start >= to) { 1046 if (folio_test_uptodate(folio)) { 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (folio_test_uptodate(folio)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 folio_zero_segments(folio, to, 1067 block_end, 1068 block_start, from); 1069 continue; 1070 } 1071 } 1072 if (folio_test_uptodate(folio)) { 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ext4_read_bh_lock(bh, 0, false); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 folio_zero_new_buffers(folio, from, to); 1093 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1098 blocksize, bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 /* 1111 * To preserve ordering, it is essential that the hole instantiation and 1112 * the data write be encapsulated in a single transaction. We cannot 1113 * close off a transaction and start a new one between the ext4_get_block() 1114 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1115 * ext4_write_begin() is the right place. 1116 */ 1117 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1118 loff_t pos, unsigned len, 1119 struct page **pagep, void **fsdata) 1120 { 1121 struct inode *inode = mapping->host; 1122 int ret, needed_blocks; 1123 handle_t *handle; 1124 int retries = 0; 1125 struct folio *folio; 1126 pgoff_t index; 1127 unsigned from, to; 1128 1129 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1130 return -EIO; 1131 1132 trace_ext4_write_begin(inode, pos, len); 1133 /* 1134 * Reserve one block more for addition to orphan list in case 1135 * we allocate blocks but write fails for some reason 1136 */ 1137 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1138 index = pos >> PAGE_SHIFT; 1139 from = pos & (PAGE_SIZE - 1); 1140 to = from + len; 1141 1142 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1143 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1144 pagep); 1145 if (ret < 0) 1146 return ret; 1147 if (ret == 1) 1148 return 0; 1149 } 1150 1151 /* 1152 * __filemap_get_folio() can take a long time if the 1153 * system is thrashing due to memory pressure, or if the folio 1154 * is being written back. So grab it first before we start 1155 * the transaction handle. This also allows us to allocate 1156 * the folio (if needed) without using GFP_NOFS. 1157 */ 1158 retry_grab: 1159 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1160 mapping_gfp_mask(mapping)); 1161 if (IS_ERR(folio)) 1162 return PTR_ERR(folio); 1163 /* 1164 * The same as page allocation, we prealloc buffer heads before 1165 * starting the handle. 1166 */ 1167 if (!folio_buffers(folio)) 1168 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1169 1170 folio_unlock(folio); 1171 1172 retry_journal: 1173 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1174 if (IS_ERR(handle)) { 1175 folio_put(folio); 1176 return PTR_ERR(handle); 1177 } 1178 1179 folio_lock(folio); 1180 if (folio->mapping != mapping) { 1181 /* The folio got truncated from under us */ 1182 folio_unlock(folio); 1183 folio_put(folio); 1184 ext4_journal_stop(handle); 1185 goto retry_grab; 1186 } 1187 /* In case writeback began while the folio was unlocked */ 1188 folio_wait_stable(folio); 1189 1190 #ifdef CONFIG_FS_ENCRYPTION 1191 if (ext4_should_dioread_nolock(inode)) 1192 ret = ext4_block_write_begin(folio, pos, len, 1193 ext4_get_block_unwritten); 1194 else 1195 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1196 #else 1197 if (ext4_should_dioread_nolock(inode)) 1198 ret = __block_write_begin(&folio->page, pos, len, 1199 ext4_get_block_unwritten); 1200 else 1201 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1202 #endif 1203 if (!ret && ext4_should_journal_data(inode)) { 1204 ret = ext4_walk_page_buffers(handle, inode, 1205 folio_buffers(folio), from, to, 1206 NULL, do_journal_get_write_access); 1207 } 1208 1209 if (ret) { 1210 bool extended = (pos + len > inode->i_size) && 1211 !ext4_verity_in_progress(inode); 1212 1213 folio_unlock(folio); 1214 /* 1215 * __block_write_begin may have instantiated a few blocks 1216 * outside i_size. Trim these off again. Don't need 1217 * i_size_read because we hold i_rwsem. 1218 * 1219 * Add inode to orphan list in case we crash before 1220 * truncate finishes 1221 */ 1222 if (extended && ext4_can_truncate(inode)) 1223 ext4_orphan_add(handle, inode); 1224 1225 ext4_journal_stop(handle); 1226 if (extended) { 1227 ext4_truncate_failed_write(inode); 1228 /* 1229 * If truncate failed early the inode might 1230 * still be on the orphan list; we need to 1231 * make sure the inode is removed from the 1232 * orphan list in that case. 1233 */ 1234 if (inode->i_nlink) 1235 ext4_orphan_del(NULL, inode); 1236 } 1237 1238 if (ret == -ENOSPC && 1239 ext4_should_retry_alloc(inode->i_sb, &retries)) 1240 goto retry_journal; 1241 folio_put(folio); 1242 return ret; 1243 } 1244 *pagep = &folio->page; 1245 return ret; 1246 } 1247 1248 /* For write_end() in data=journal mode */ 1249 static int write_end_fn(handle_t *handle, struct inode *inode, 1250 struct buffer_head *bh) 1251 { 1252 int ret; 1253 if (!buffer_mapped(bh) || buffer_freed(bh)) 1254 return 0; 1255 set_buffer_uptodate(bh); 1256 ret = ext4_dirty_journalled_data(handle, bh); 1257 clear_buffer_meta(bh); 1258 clear_buffer_prio(bh); 1259 return ret; 1260 } 1261 1262 /* 1263 * We need to pick up the new inode size which generic_commit_write gave us 1264 * `file' can be NULL - eg, when called from page_symlink(). 1265 * 1266 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1267 * buffers are managed internally. 1268 */ 1269 static int ext4_write_end(struct file *file, 1270 struct address_space *mapping, 1271 loff_t pos, unsigned len, unsigned copied, 1272 struct page *page, void *fsdata) 1273 { 1274 struct folio *folio = page_folio(page); 1275 handle_t *handle = ext4_journal_current_handle(); 1276 struct inode *inode = mapping->host; 1277 loff_t old_size = inode->i_size; 1278 int ret = 0, ret2; 1279 int i_size_changed = 0; 1280 bool verity = ext4_verity_in_progress(inode); 1281 1282 trace_ext4_write_end(inode, pos, len, copied); 1283 1284 if (ext4_has_inline_data(inode) && 1285 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1286 return ext4_write_inline_data_end(inode, pos, len, copied, 1287 folio); 1288 1289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1290 /* 1291 * it's important to update i_size while still holding folio lock: 1292 * page writeout could otherwise come in and zero beyond i_size. 1293 * 1294 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1295 * blocks are being written past EOF, so skip the i_size update. 1296 */ 1297 if (!verity) 1298 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1299 folio_unlock(folio); 1300 folio_put(folio); 1301 1302 if (old_size < pos && !verity) 1303 pagecache_isize_extended(inode, old_size, pos); 1304 /* 1305 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1306 * makes the holding time of folio lock longer. Second, it forces lock 1307 * ordering of folio lock and transaction start for journaling 1308 * filesystems. 1309 */ 1310 if (i_size_changed) 1311 ret = ext4_mark_inode_dirty(handle, inode); 1312 1313 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1314 /* if we have allocated more blocks and copied 1315 * less. We will have blocks allocated outside 1316 * inode->i_size. So truncate them 1317 */ 1318 ext4_orphan_add(handle, inode); 1319 1320 ret2 = ext4_journal_stop(handle); 1321 if (!ret) 1322 ret = ret2; 1323 1324 if (pos + len > inode->i_size && !verity) { 1325 ext4_truncate_failed_write(inode); 1326 /* 1327 * If truncate failed early the inode might still be 1328 * on the orphan list; we need to make sure the inode 1329 * is removed from the orphan list in that case. 1330 */ 1331 if (inode->i_nlink) 1332 ext4_orphan_del(NULL, inode); 1333 } 1334 1335 return ret ? ret : copied; 1336 } 1337 1338 /* 1339 * This is a private version of folio_zero_new_buffers() which doesn't 1340 * set the buffer to be dirty, since in data=journalled mode we need 1341 * to call ext4_dirty_journalled_data() instead. 1342 */ 1343 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1344 struct inode *inode, 1345 struct folio *folio, 1346 unsigned from, unsigned to) 1347 { 1348 unsigned int block_start = 0, block_end; 1349 struct buffer_head *head, *bh; 1350 1351 bh = head = folio_buffers(folio); 1352 do { 1353 block_end = block_start + bh->b_size; 1354 if (buffer_new(bh)) { 1355 if (block_end > from && block_start < to) { 1356 if (!folio_test_uptodate(folio)) { 1357 unsigned start, size; 1358 1359 start = max(from, block_start); 1360 size = min(to, block_end) - start; 1361 1362 folio_zero_range(folio, start, size); 1363 write_end_fn(handle, inode, bh); 1364 } 1365 clear_buffer_new(bh); 1366 } 1367 } 1368 block_start = block_end; 1369 bh = bh->b_this_page; 1370 } while (bh != head); 1371 } 1372 1373 static int ext4_journalled_write_end(struct file *file, 1374 struct address_space *mapping, 1375 loff_t pos, unsigned len, unsigned copied, 1376 struct page *page, void *fsdata) 1377 { 1378 struct folio *folio = page_folio(page); 1379 handle_t *handle = ext4_journal_current_handle(); 1380 struct inode *inode = mapping->host; 1381 loff_t old_size = inode->i_size; 1382 int ret = 0, ret2; 1383 int partial = 0; 1384 unsigned from, to; 1385 int size_changed = 0; 1386 bool verity = ext4_verity_in_progress(inode); 1387 1388 trace_ext4_journalled_write_end(inode, pos, len, copied); 1389 from = pos & (PAGE_SIZE - 1); 1390 to = from + len; 1391 1392 BUG_ON(!ext4_handle_valid(handle)); 1393 1394 if (ext4_has_inline_data(inode)) 1395 return ext4_write_inline_data_end(inode, pos, len, copied, 1396 folio); 1397 1398 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1399 copied = 0; 1400 ext4_journalled_zero_new_buffers(handle, inode, folio, 1401 from, to); 1402 } else { 1403 if (unlikely(copied < len)) 1404 ext4_journalled_zero_new_buffers(handle, inode, folio, 1405 from + copied, to); 1406 ret = ext4_walk_page_buffers(handle, inode, 1407 folio_buffers(folio), 1408 from, from + copied, &partial, 1409 write_end_fn); 1410 if (!partial) 1411 folio_mark_uptodate(folio); 1412 } 1413 if (!verity) 1414 size_changed = ext4_update_inode_size(inode, pos + copied); 1415 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1416 folio_unlock(folio); 1417 folio_put(folio); 1418 1419 if (old_size < pos && !verity) 1420 pagecache_isize_extended(inode, old_size, pos); 1421 1422 if (size_changed) { 1423 ret2 = ext4_mark_inode_dirty(handle, inode); 1424 if (!ret) 1425 ret = ret2; 1426 } 1427 1428 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1429 /* if we have allocated more blocks and copied 1430 * less. We will have blocks allocated outside 1431 * inode->i_size. So truncate them 1432 */ 1433 ext4_orphan_add(handle, inode); 1434 1435 ret2 = ext4_journal_stop(handle); 1436 if (!ret) 1437 ret = ret2; 1438 if (pos + len > inode->i_size && !verity) { 1439 ext4_truncate_failed_write(inode); 1440 /* 1441 * If truncate failed early the inode might still be 1442 * on the orphan list; we need to make sure the inode 1443 * is removed from the orphan list in that case. 1444 */ 1445 if (inode->i_nlink) 1446 ext4_orphan_del(NULL, inode); 1447 } 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 /* 1453 * Reserve space for a single cluster 1454 */ 1455 static int ext4_da_reserve_space(struct inode *inode) 1456 { 1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 int ret; 1460 1461 /* 1462 * We will charge metadata quota at writeout time; this saves 1463 * us from metadata over-estimation, though we may go over by 1464 * a small amount in the end. Here we just reserve for data. 1465 */ 1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1467 if (ret) 1468 return ret; 1469 1470 spin_lock(&ei->i_block_reservation_lock); 1471 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1474 return -ENOSPC; 1475 } 1476 ei->i_reserved_data_blocks++; 1477 trace_ext4_da_reserve_space(inode); 1478 spin_unlock(&ei->i_block_reservation_lock); 1479 1480 return 0; /* success */ 1481 } 1482 1483 void ext4_da_release_space(struct inode *inode, int to_free) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1486 struct ext4_inode_info *ei = EXT4_I(inode); 1487 1488 if (!to_free) 1489 return; /* Nothing to release, exit */ 1490 1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1492 1493 trace_ext4_da_release_space(inode, to_free); 1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1495 /* 1496 * if there aren't enough reserved blocks, then the 1497 * counter is messed up somewhere. Since this 1498 * function is called from invalidate page, it's 1499 * harmless to return without any action. 1500 */ 1501 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1502 "ino %lu, to_free %d with only %d reserved " 1503 "data blocks", inode->i_ino, to_free, 1504 ei->i_reserved_data_blocks); 1505 WARN_ON(1); 1506 to_free = ei->i_reserved_data_blocks; 1507 } 1508 ei->i_reserved_data_blocks -= to_free; 1509 1510 /* update fs dirty data blocks counter */ 1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1512 1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1516 } 1517 1518 /* 1519 * Delayed allocation stuff 1520 */ 1521 1522 struct mpage_da_data { 1523 /* These are input fields for ext4_do_writepages() */ 1524 struct inode *inode; 1525 struct writeback_control *wbc; 1526 unsigned int can_map:1; /* Can writepages call map blocks? */ 1527 1528 /* These are internal state of ext4_do_writepages() */ 1529 pgoff_t first_page; /* The first page to write */ 1530 pgoff_t next_page; /* Current page to examine */ 1531 pgoff_t last_page; /* Last page to examine */ 1532 /* 1533 * Extent to map - this can be after first_page because that can be 1534 * fully mapped. We somewhat abuse m_flags to store whether the extent 1535 * is delalloc or unwritten. 1536 */ 1537 struct ext4_map_blocks map; 1538 struct ext4_io_submit io_submit; /* IO submission data */ 1539 unsigned int do_map:1; 1540 unsigned int scanned_until_end:1; 1541 unsigned int journalled_more_data:1; 1542 }; 1543 1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1545 bool invalidate) 1546 { 1547 unsigned nr, i; 1548 pgoff_t index, end; 1549 struct folio_batch fbatch; 1550 struct inode *inode = mpd->inode; 1551 struct address_space *mapping = inode->i_mapping; 1552 1553 /* This is necessary when next_page == 0. */ 1554 if (mpd->first_page >= mpd->next_page) 1555 return; 1556 1557 mpd->scanned_until_end = 0; 1558 index = mpd->first_page; 1559 end = mpd->next_page - 1; 1560 if (invalidate) { 1561 ext4_lblk_t start, last; 1562 start = index << (PAGE_SHIFT - inode->i_blkbits); 1563 last = end << (PAGE_SHIFT - inode->i_blkbits); 1564 1565 /* 1566 * avoid racing with extent status tree scans made by 1567 * ext4_insert_delayed_block() 1568 */ 1569 down_write(&EXT4_I(inode)->i_data_sem); 1570 ext4_es_remove_extent(inode, start, last - start + 1); 1571 up_write(&EXT4_I(inode)->i_data_sem); 1572 } 1573 1574 folio_batch_init(&fbatch); 1575 while (index <= end) { 1576 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1577 if (nr == 0) 1578 break; 1579 for (i = 0; i < nr; i++) { 1580 struct folio *folio = fbatch.folios[i]; 1581 1582 if (folio->index < mpd->first_page) 1583 continue; 1584 if (folio_next_index(folio) - 1 > end) 1585 continue; 1586 BUG_ON(!folio_test_locked(folio)); 1587 BUG_ON(folio_test_writeback(folio)); 1588 if (invalidate) { 1589 if (folio_mapped(folio)) 1590 folio_clear_dirty_for_io(folio); 1591 block_invalidate_folio(folio, 0, 1592 folio_size(folio)); 1593 folio_clear_uptodate(folio); 1594 } 1595 folio_unlock(folio); 1596 } 1597 folio_batch_release(&fbatch); 1598 } 1599 } 1600 1601 static void ext4_print_free_blocks(struct inode *inode) 1602 { 1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1604 struct super_block *sb = inode->i_sb; 1605 struct ext4_inode_info *ei = EXT4_I(inode); 1606 1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1608 EXT4_C2B(EXT4_SB(inode->i_sb), 1609 ext4_count_free_clusters(sb))); 1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1612 (long long) EXT4_C2B(EXT4_SB(sb), 1613 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1615 (long long) EXT4_C2B(EXT4_SB(sb), 1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1617 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1619 ei->i_reserved_data_blocks); 1620 return; 1621 } 1622 1623 /* 1624 * ext4_insert_delayed_block - adds a delayed block to the extents status 1625 * tree, incrementing the reserved cluster/block 1626 * count or making a pending reservation 1627 * where needed 1628 * 1629 * @inode - file containing the newly added block 1630 * @lblk - logical block to be added 1631 * 1632 * Returns 0 on success, negative error code on failure. 1633 */ 1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1635 { 1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1637 int ret; 1638 bool allocated = false; 1639 1640 /* 1641 * If the cluster containing lblk is shared with a delayed, 1642 * written, or unwritten extent in a bigalloc file system, it's 1643 * already been accounted for and does not need to be reserved. 1644 * A pending reservation must be made for the cluster if it's 1645 * shared with a written or unwritten extent and doesn't already 1646 * have one. Written and unwritten extents can be purged from the 1647 * extents status tree if the system is under memory pressure, so 1648 * it's necessary to examine the extent tree if a search of the 1649 * extents status tree doesn't get a match. 1650 */ 1651 if (sbi->s_cluster_ratio == 1) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { /* bigalloc */ 1656 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1657 if (!ext4_es_scan_clu(inode, 1658 &ext4_es_is_mapped, lblk)) { 1659 ret = ext4_clu_mapped(inode, 1660 EXT4_B2C(sbi, lblk)); 1661 if (ret < 0) 1662 return ret; 1663 if (ret == 0) { 1664 ret = ext4_da_reserve_space(inode); 1665 if (ret != 0) /* ENOSPC */ 1666 return ret; 1667 } else { 1668 allocated = true; 1669 } 1670 } else { 1671 allocated = true; 1672 } 1673 } 1674 } 1675 1676 ext4_es_insert_delayed_block(inode, lblk, allocated); 1677 return 0; 1678 } 1679 1680 /* 1681 * This function is grabs code from the very beginning of 1682 * ext4_map_blocks, but assumes that the caller is from delayed write 1683 * time. This function looks up the requested blocks and sets the 1684 * buffer delay bit under the protection of i_data_sem. 1685 */ 1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1687 struct ext4_map_blocks *map, 1688 struct buffer_head *bh) 1689 { 1690 struct extent_status es; 1691 int retval; 1692 sector_t invalid_block = ~((sector_t) 0xffff); 1693 #ifdef ES_AGGRESSIVE_TEST 1694 struct ext4_map_blocks orig_map; 1695 1696 memcpy(&orig_map, map, sizeof(*map)); 1697 #endif 1698 1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1700 invalid_block = ~0; 1701 1702 map->m_flags = 0; 1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1704 (unsigned long) map->m_lblk); 1705 1706 /* Lookup extent status tree firstly */ 1707 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1708 if (ext4_es_is_hole(&es)) { 1709 down_read(&EXT4_I(inode)->i_data_sem); 1710 goto add_delayed; 1711 } 1712 1713 /* 1714 * Delayed extent could be allocated by fallocate. 1715 * So we need to check it. 1716 */ 1717 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1718 map_bh(bh, inode->i_sb, invalid_block); 1719 set_buffer_new(bh); 1720 set_buffer_delay(bh); 1721 return 0; 1722 } 1723 1724 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1725 retval = es.es_len - (iblock - es.es_lblk); 1726 if (retval > map->m_len) 1727 retval = map->m_len; 1728 map->m_len = retval; 1729 if (ext4_es_is_written(&es)) 1730 map->m_flags |= EXT4_MAP_MAPPED; 1731 else if (ext4_es_is_unwritten(&es)) 1732 map->m_flags |= EXT4_MAP_UNWRITTEN; 1733 else 1734 BUG(); 1735 1736 #ifdef ES_AGGRESSIVE_TEST 1737 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1738 #endif 1739 return retval; 1740 } 1741 1742 /* 1743 * Try to see if we can get the block without requesting a new 1744 * file system block. 1745 */ 1746 down_read(&EXT4_I(inode)->i_data_sem); 1747 if (ext4_has_inline_data(inode)) 1748 retval = 0; 1749 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1750 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1751 else 1752 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1753 if (retval < 0) 1754 goto out_unlock; 1755 if (retval > 0) { 1756 unsigned int status; 1757 1758 if (unlikely(retval != map->m_len)) { 1759 ext4_warning(inode->i_sb, 1760 "ES len assertion failed for inode " 1761 "%lu: retval %d != map->m_len %d", 1762 inode->i_ino, retval, map->m_len); 1763 WARN_ON(1); 1764 } 1765 1766 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1767 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1768 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1769 map->m_pblk, status); 1770 goto out_unlock; 1771 } 1772 1773 add_delayed: 1774 /* 1775 * XXX: __block_prepare_write() unmaps passed block, 1776 * is it OK? 1777 */ 1778 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1779 if (retval) 1780 goto out_unlock; 1781 1782 map_bh(bh, inode->i_sb, invalid_block); 1783 set_buffer_new(bh); 1784 set_buffer_delay(bh); 1785 1786 out_unlock: 1787 up_read((&EXT4_I(inode)->i_data_sem)); 1788 return retval; 1789 } 1790 1791 /* 1792 * This is a special get_block_t callback which is used by 1793 * ext4_da_write_begin(). It will either return mapped block or 1794 * reserve space for a single block. 1795 * 1796 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1797 * We also have b_blocknr = -1 and b_bdev initialized properly 1798 * 1799 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1800 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1801 * initialized properly. 1802 */ 1803 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1804 struct buffer_head *bh, int create) 1805 { 1806 struct ext4_map_blocks map; 1807 int ret = 0; 1808 1809 BUG_ON(create == 0); 1810 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1811 1812 map.m_lblk = iblock; 1813 map.m_len = 1; 1814 1815 /* 1816 * first, we need to know whether the block is allocated already 1817 * preallocated blocks are unmapped but should treated 1818 * the same as allocated blocks. 1819 */ 1820 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1821 if (ret <= 0) 1822 return ret; 1823 1824 map_bh(bh, inode->i_sb, map.m_pblk); 1825 ext4_update_bh_state(bh, map.m_flags); 1826 1827 if (buffer_unwritten(bh)) { 1828 /* A delayed write to unwritten bh should be marked 1829 * new and mapped. Mapped ensures that we don't do 1830 * get_block multiple times when we write to the same 1831 * offset and new ensures that we do proper zero out 1832 * for partial write. 1833 */ 1834 set_buffer_new(bh); 1835 set_buffer_mapped(bh); 1836 } 1837 return 0; 1838 } 1839 1840 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1841 { 1842 mpd->first_page += folio_nr_pages(folio); 1843 folio_unlock(folio); 1844 } 1845 1846 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1847 { 1848 size_t len; 1849 loff_t size; 1850 int err; 1851 1852 BUG_ON(folio->index != mpd->first_page); 1853 folio_clear_dirty_for_io(folio); 1854 /* 1855 * We have to be very careful here! Nothing protects writeback path 1856 * against i_size changes and the page can be writeably mapped into 1857 * page tables. So an application can be growing i_size and writing 1858 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1859 * write-protects our page in page tables and the page cannot get 1860 * written to again until we release folio lock. So only after 1861 * folio_clear_dirty_for_io() we are safe to sample i_size for 1862 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1863 * on the barrier provided by folio_test_clear_dirty() in 1864 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1865 * after page tables are updated. 1866 */ 1867 size = i_size_read(mpd->inode); 1868 len = folio_size(folio); 1869 if (folio_pos(folio) + len > size && 1870 !ext4_verity_in_progress(mpd->inode)) 1871 len = size & ~PAGE_MASK; 1872 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1873 if (!err) 1874 mpd->wbc->nr_to_write--; 1875 1876 return err; 1877 } 1878 1879 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1880 1881 /* 1882 * mballoc gives us at most this number of blocks... 1883 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1884 * The rest of mballoc seems to handle chunks up to full group size. 1885 */ 1886 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1887 1888 /* 1889 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1890 * 1891 * @mpd - extent of blocks 1892 * @lblk - logical number of the block in the file 1893 * @bh - buffer head we want to add to the extent 1894 * 1895 * The function is used to collect contig. blocks in the same state. If the 1896 * buffer doesn't require mapping for writeback and we haven't started the 1897 * extent of buffers to map yet, the function returns 'true' immediately - the 1898 * caller can write the buffer right away. Otherwise the function returns true 1899 * if the block has been added to the extent, false if the block couldn't be 1900 * added. 1901 */ 1902 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1903 struct buffer_head *bh) 1904 { 1905 struct ext4_map_blocks *map = &mpd->map; 1906 1907 /* Buffer that doesn't need mapping for writeback? */ 1908 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1909 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1910 /* So far no extent to map => we write the buffer right away */ 1911 if (map->m_len == 0) 1912 return true; 1913 return false; 1914 } 1915 1916 /* First block in the extent? */ 1917 if (map->m_len == 0) { 1918 /* We cannot map unless handle is started... */ 1919 if (!mpd->do_map) 1920 return false; 1921 map->m_lblk = lblk; 1922 map->m_len = 1; 1923 map->m_flags = bh->b_state & BH_FLAGS; 1924 return true; 1925 } 1926 1927 /* Don't go larger than mballoc is willing to allocate */ 1928 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1929 return false; 1930 1931 /* Can we merge the block to our big extent? */ 1932 if (lblk == map->m_lblk + map->m_len && 1933 (bh->b_state & BH_FLAGS) == map->m_flags) { 1934 map->m_len++; 1935 return true; 1936 } 1937 return false; 1938 } 1939 1940 /* 1941 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1942 * 1943 * @mpd - extent of blocks for mapping 1944 * @head - the first buffer in the page 1945 * @bh - buffer we should start processing from 1946 * @lblk - logical number of the block in the file corresponding to @bh 1947 * 1948 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1949 * the page for IO if all buffers in this page were mapped and there's no 1950 * accumulated extent of buffers to map or add buffers in the page to the 1951 * extent of buffers to map. The function returns 1 if the caller can continue 1952 * by processing the next page, 0 if it should stop adding buffers to the 1953 * extent to map because we cannot extend it anymore. It can also return value 1954 * < 0 in case of error during IO submission. 1955 */ 1956 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1957 struct buffer_head *head, 1958 struct buffer_head *bh, 1959 ext4_lblk_t lblk) 1960 { 1961 struct inode *inode = mpd->inode; 1962 int err; 1963 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1964 >> inode->i_blkbits; 1965 1966 if (ext4_verity_in_progress(inode)) 1967 blocks = EXT_MAX_BLOCKS; 1968 1969 do { 1970 BUG_ON(buffer_locked(bh)); 1971 1972 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1973 /* Found extent to map? */ 1974 if (mpd->map.m_len) 1975 return 0; 1976 /* Buffer needs mapping and handle is not started? */ 1977 if (!mpd->do_map) 1978 return 0; 1979 /* Everything mapped so far and we hit EOF */ 1980 break; 1981 } 1982 } while (lblk++, (bh = bh->b_this_page) != head); 1983 /* So far everything mapped? Submit the page for IO. */ 1984 if (mpd->map.m_len == 0) { 1985 err = mpage_submit_folio(mpd, head->b_folio); 1986 if (err < 0) 1987 return err; 1988 mpage_folio_done(mpd, head->b_folio); 1989 } 1990 if (lblk >= blocks) { 1991 mpd->scanned_until_end = 1; 1992 return 0; 1993 } 1994 return 1; 1995 } 1996 1997 /* 1998 * mpage_process_folio - update folio buffers corresponding to changed extent 1999 * and may submit fully mapped page for IO 2000 * @mpd: description of extent to map, on return next extent to map 2001 * @folio: Contains these buffers. 2002 * @m_lblk: logical block mapping. 2003 * @m_pblk: corresponding physical mapping. 2004 * @map_bh: determines on return whether this page requires any further 2005 * mapping or not. 2006 * 2007 * Scan given folio buffers corresponding to changed extent and update buffer 2008 * state according to new extent state. 2009 * We map delalloc buffers to their physical location, clear unwritten bits. 2010 * If the given folio is not fully mapped, we update @mpd to the next extent in 2011 * the given folio that needs mapping & return @map_bh as true. 2012 */ 2013 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2014 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2015 bool *map_bh) 2016 { 2017 struct buffer_head *head, *bh; 2018 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2019 ext4_lblk_t lblk = *m_lblk; 2020 ext4_fsblk_t pblock = *m_pblk; 2021 int err = 0; 2022 int blkbits = mpd->inode->i_blkbits; 2023 ssize_t io_end_size = 0; 2024 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2025 2026 bh = head = folio_buffers(folio); 2027 do { 2028 if (lblk < mpd->map.m_lblk) 2029 continue; 2030 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2031 /* 2032 * Buffer after end of mapped extent. 2033 * Find next buffer in the folio to map. 2034 */ 2035 mpd->map.m_len = 0; 2036 mpd->map.m_flags = 0; 2037 io_end_vec->size += io_end_size; 2038 2039 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2040 if (err > 0) 2041 err = 0; 2042 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2043 io_end_vec = ext4_alloc_io_end_vec(io_end); 2044 if (IS_ERR(io_end_vec)) { 2045 err = PTR_ERR(io_end_vec); 2046 goto out; 2047 } 2048 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2049 } 2050 *map_bh = true; 2051 goto out; 2052 } 2053 if (buffer_delay(bh)) { 2054 clear_buffer_delay(bh); 2055 bh->b_blocknr = pblock++; 2056 } 2057 clear_buffer_unwritten(bh); 2058 io_end_size += (1 << blkbits); 2059 } while (lblk++, (bh = bh->b_this_page) != head); 2060 2061 io_end_vec->size += io_end_size; 2062 *map_bh = false; 2063 out: 2064 *m_lblk = lblk; 2065 *m_pblk = pblock; 2066 return err; 2067 } 2068 2069 /* 2070 * mpage_map_buffers - update buffers corresponding to changed extent and 2071 * submit fully mapped pages for IO 2072 * 2073 * @mpd - description of extent to map, on return next extent to map 2074 * 2075 * Scan buffers corresponding to changed extent (we expect corresponding pages 2076 * to be already locked) and update buffer state according to new extent state. 2077 * We map delalloc buffers to their physical location, clear unwritten bits, 2078 * and mark buffers as uninit when we perform writes to unwritten extents 2079 * and do extent conversion after IO is finished. If the last page is not fully 2080 * mapped, we update @map to the next extent in the last page that needs 2081 * mapping. Otherwise we submit the page for IO. 2082 */ 2083 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2084 { 2085 struct folio_batch fbatch; 2086 unsigned nr, i; 2087 struct inode *inode = mpd->inode; 2088 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2089 pgoff_t start, end; 2090 ext4_lblk_t lblk; 2091 ext4_fsblk_t pblock; 2092 int err; 2093 bool map_bh = false; 2094 2095 start = mpd->map.m_lblk >> bpp_bits; 2096 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2097 lblk = start << bpp_bits; 2098 pblock = mpd->map.m_pblk; 2099 2100 folio_batch_init(&fbatch); 2101 while (start <= end) { 2102 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2103 if (nr == 0) 2104 break; 2105 for (i = 0; i < nr; i++) { 2106 struct folio *folio = fbatch.folios[i]; 2107 2108 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2109 &map_bh); 2110 /* 2111 * If map_bh is true, means page may require further bh 2112 * mapping, or maybe the page was submitted for IO. 2113 * So we return to call further extent mapping. 2114 */ 2115 if (err < 0 || map_bh) 2116 goto out; 2117 /* Page fully mapped - let IO run! */ 2118 err = mpage_submit_folio(mpd, folio); 2119 if (err < 0) 2120 goto out; 2121 mpage_folio_done(mpd, folio); 2122 } 2123 folio_batch_release(&fbatch); 2124 } 2125 /* Extent fully mapped and matches with page boundary. We are done. */ 2126 mpd->map.m_len = 0; 2127 mpd->map.m_flags = 0; 2128 return 0; 2129 out: 2130 folio_batch_release(&fbatch); 2131 return err; 2132 } 2133 2134 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2135 { 2136 struct inode *inode = mpd->inode; 2137 struct ext4_map_blocks *map = &mpd->map; 2138 int get_blocks_flags; 2139 int err, dioread_nolock; 2140 2141 trace_ext4_da_write_pages_extent(inode, map); 2142 /* 2143 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2144 * to convert an unwritten extent to be initialized (in the case 2145 * where we have written into one or more preallocated blocks). It is 2146 * possible that we're going to need more metadata blocks than 2147 * previously reserved. However we must not fail because we're in 2148 * writeback and there is nothing we can do about it so it might result 2149 * in data loss. So use reserved blocks to allocate metadata if 2150 * possible. 2151 * 2152 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2153 * the blocks in question are delalloc blocks. This indicates 2154 * that the blocks and quotas has already been checked when 2155 * the data was copied into the page cache. 2156 */ 2157 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2158 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2159 EXT4_GET_BLOCKS_IO_SUBMIT; 2160 dioread_nolock = ext4_should_dioread_nolock(inode); 2161 if (dioread_nolock) 2162 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2163 if (map->m_flags & BIT(BH_Delay)) 2164 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2165 2166 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2167 if (err < 0) 2168 return err; 2169 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2170 if (!mpd->io_submit.io_end->handle && 2171 ext4_handle_valid(handle)) { 2172 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2173 handle->h_rsv_handle = NULL; 2174 } 2175 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2176 } 2177 2178 BUG_ON(map->m_len == 0); 2179 return 0; 2180 } 2181 2182 /* 2183 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2184 * mpd->len and submit pages underlying it for IO 2185 * 2186 * @handle - handle for journal operations 2187 * @mpd - extent to map 2188 * @give_up_on_write - we set this to true iff there is a fatal error and there 2189 * is no hope of writing the data. The caller should discard 2190 * dirty pages to avoid infinite loops. 2191 * 2192 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2193 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2194 * them to initialized or split the described range from larger unwritten 2195 * extent. Note that we need not map all the described range since allocation 2196 * can return less blocks or the range is covered by more unwritten extents. We 2197 * cannot map more because we are limited by reserved transaction credits. On 2198 * the other hand we always make sure that the last touched page is fully 2199 * mapped so that it can be written out (and thus forward progress is 2200 * guaranteed). After mapping we submit all mapped pages for IO. 2201 */ 2202 static int mpage_map_and_submit_extent(handle_t *handle, 2203 struct mpage_da_data *mpd, 2204 bool *give_up_on_write) 2205 { 2206 struct inode *inode = mpd->inode; 2207 struct ext4_map_blocks *map = &mpd->map; 2208 int err; 2209 loff_t disksize; 2210 int progress = 0; 2211 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2212 struct ext4_io_end_vec *io_end_vec; 2213 2214 io_end_vec = ext4_alloc_io_end_vec(io_end); 2215 if (IS_ERR(io_end_vec)) 2216 return PTR_ERR(io_end_vec); 2217 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2218 do { 2219 err = mpage_map_one_extent(handle, mpd); 2220 if (err < 0) { 2221 struct super_block *sb = inode->i_sb; 2222 2223 if (ext4_forced_shutdown(sb)) 2224 goto invalidate_dirty_pages; 2225 /* 2226 * Let the uper layers retry transient errors. 2227 * In the case of ENOSPC, if ext4_count_free_blocks() 2228 * is non-zero, a commit should free up blocks. 2229 */ 2230 if ((err == -ENOMEM) || 2231 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2232 if (progress) 2233 goto update_disksize; 2234 return err; 2235 } 2236 ext4_msg(sb, KERN_CRIT, 2237 "Delayed block allocation failed for " 2238 "inode %lu at logical offset %llu with" 2239 " max blocks %u with error %d", 2240 inode->i_ino, 2241 (unsigned long long)map->m_lblk, 2242 (unsigned)map->m_len, -err); 2243 ext4_msg(sb, KERN_CRIT, 2244 "This should not happen!! Data will " 2245 "be lost\n"); 2246 if (err == -ENOSPC) 2247 ext4_print_free_blocks(inode); 2248 invalidate_dirty_pages: 2249 *give_up_on_write = true; 2250 return err; 2251 } 2252 progress = 1; 2253 /* 2254 * Update buffer state, submit mapped pages, and get us new 2255 * extent to map 2256 */ 2257 err = mpage_map_and_submit_buffers(mpd); 2258 if (err < 0) 2259 goto update_disksize; 2260 } while (map->m_len); 2261 2262 update_disksize: 2263 /* 2264 * Update on-disk size after IO is submitted. Races with 2265 * truncate are avoided by checking i_size under i_data_sem. 2266 */ 2267 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2268 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2269 int err2; 2270 loff_t i_size; 2271 2272 down_write(&EXT4_I(inode)->i_data_sem); 2273 i_size = i_size_read(inode); 2274 if (disksize > i_size) 2275 disksize = i_size; 2276 if (disksize > EXT4_I(inode)->i_disksize) 2277 EXT4_I(inode)->i_disksize = disksize; 2278 up_write(&EXT4_I(inode)->i_data_sem); 2279 err2 = ext4_mark_inode_dirty(handle, inode); 2280 if (err2) { 2281 ext4_error_err(inode->i_sb, -err2, 2282 "Failed to mark inode %lu dirty", 2283 inode->i_ino); 2284 } 2285 if (!err) 2286 err = err2; 2287 } 2288 return err; 2289 } 2290 2291 /* 2292 * Calculate the total number of credits to reserve for one writepages 2293 * iteration. This is called from ext4_writepages(). We map an extent of 2294 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2295 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2296 * bpp - 1 blocks in bpp different extents. 2297 */ 2298 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2299 { 2300 int bpp = ext4_journal_blocks_per_page(inode); 2301 2302 return ext4_meta_trans_blocks(inode, 2303 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2304 } 2305 2306 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2307 size_t len) 2308 { 2309 struct buffer_head *page_bufs = folio_buffers(folio); 2310 struct inode *inode = folio->mapping->host; 2311 int ret, err; 2312 2313 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2314 NULL, do_journal_get_write_access); 2315 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2316 NULL, write_end_fn); 2317 if (ret == 0) 2318 ret = err; 2319 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2320 if (ret == 0) 2321 ret = err; 2322 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2323 2324 return ret; 2325 } 2326 2327 static int mpage_journal_page_buffers(handle_t *handle, 2328 struct mpage_da_data *mpd, 2329 struct folio *folio) 2330 { 2331 struct inode *inode = mpd->inode; 2332 loff_t size = i_size_read(inode); 2333 size_t len = folio_size(folio); 2334 2335 folio_clear_checked(folio); 2336 mpd->wbc->nr_to_write--; 2337 2338 if (folio_pos(folio) + len > size && 2339 !ext4_verity_in_progress(inode)) 2340 len = size & (len - 1); 2341 2342 return ext4_journal_folio_buffers(handle, folio, len); 2343 } 2344 2345 /* 2346 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2347 * needing mapping, submit mapped pages 2348 * 2349 * @mpd - where to look for pages 2350 * 2351 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2352 * IO immediately. If we cannot map blocks, we submit just already mapped 2353 * buffers in the page for IO and keep page dirty. When we can map blocks and 2354 * we find a page which isn't mapped we start accumulating extent of buffers 2355 * underlying these pages that needs mapping (formed by either delayed or 2356 * unwritten buffers). We also lock the pages containing these buffers. The 2357 * extent found is returned in @mpd structure (starting at mpd->lblk with 2358 * length mpd->len blocks). 2359 * 2360 * Note that this function can attach bios to one io_end structure which are 2361 * neither logically nor physically contiguous. Although it may seem as an 2362 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2363 * case as we need to track IO to all buffers underlying a page in one io_end. 2364 */ 2365 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2366 { 2367 struct address_space *mapping = mpd->inode->i_mapping; 2368 struct folio_batch fbatch; 2369 unsigned int nr_folios; 2370 pgoff_t index = mpd->first_page; 2371 pgoff_t end = mpd->last_page; 2372 xa_mark_t tag; 2373 int i, err = 0; 2374 int blkbits = mpd->inode->i_blkbits; 2375 ext4_lblk_t lblk; 2376 struct buffer_head *head; 2377 handle_t *handle = NULL; 2378 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2379 2380 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2381 tag = PAGECACHE_TAG_TOWRITE; 2382 else 2383 tag = PAGECACHE_TAG_DIRTY; 2384 2385 mpd->map.m_len = 0; 2386 mpd->next_page = index; 2387 if (ext4_should_journal_data(mpd->inode)) { 2388 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2389 bpp); 2390 if (IS_ERR(handle)) 2391 return PTR_ERR(handle); 2392 } 2393 folio_batch_init(&fbatch); 2394 while (index <= end) { 2395 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2396 tag, &fbatch); 2397 if (nr_folios == 0) 2398 break; 2399 2400 for (i = 0; i < nr_folios; i++) { 2401 struct folio *folio = fbatch.folios[i]; 2402 2403 /* 2404 * Accumulated enough dirty pages? This doesn't apply 2405 * to WB_SYNC_ALL mode. For integrity sync we have to 2406 * keep going because someone may be concurrently 2407 * dirtying pages, and we might have synced a lot of 2408 * newly appeared dirty pages, but have not synced all 2409 * of the old dirty pages. 2410 */ 2411 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2412 mpd->wbc->nr_to_write <= 2413 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2414 goto out; 2415 2416 /* If we can't merge this page, we are done. */ 2417 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2418 goto out; 2419 2420 if (handle) { 2421 err = ext4_journal_ensure_credits(handle, bpp, 2422 0); 2423 if (err < 0) 2424 goto out; 2425 } 2426 2427 folio_lock(folio); 2428 /* 2429 * If the page is no longer dirty, or its mapping no 2430 * longer corresponds to inode we are writing (which 2431 * means it has been truncated or invalidated), or the 2432 * page is already under writeback and we are not doing 2433 * a data integrity writeback, skip the page 2434 */ 2435 if (!folio_test_dirty(folio) || 2436 (folio_test_writeback(folio) && 2437 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2438 unlikely(folio->mapping != mapping)) { 2439 folio_unlock(folio); 2440 continue; 2441 } 2442 2443 folio_wait_writeback(folio); 2444 BUG_ON(folio_test_writeback(folio)); 2445 2446 /* 2447 * Should never happen but for buggy code in 2448 * other subsystems that call 2449 * set_page_dirty() without properly warning 2450 * the file system first. See [1] for more 2451 * information. 2452 * 2453 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2454 */ 2455 if (!folio_buffers(folio)) { 2456 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2457 folio_clear_dirty(folio); 2458 folio_unlock(folio); 2459 continue; 2460 } 2461 2462 if (mpd->map.m_len == 0) 2463 mpd->first_page = folio->index; 2464 mpd->next_page = folio_next_index(folio); 2465 /* 2466 * Writeout when we cannot modify metadata is simple. 2467 * Just submit the page. For data=journal mode we 2468 * first handle writeout of the page for checkpoint and 2469 * only after that handle delayed page dirtying. This 2470 * makes sure current data is checkpointed to the final 2471 * location before possibly journalling it again which 2472 * is desirable when the page is frequently dirtied 2473 * through a pin. 2474 */ 2475 if (!mpd->can_map) { 2476 err = mpage_submit_folio(mpd, folio); 2477 if (err < 0) 2478 goto out; 2479 /* Pending dirtying of journalled data? */ 2480 if (folio_test_checked(folio)) { 2481 err = mpage_journal_page_buffers(handle, 2482 mpd, folio); 2483 if (err < 0) 2484 goto out; 2485 mpd->journalled_more_data = 1; 2486 } 2487 mpage_folio_done(mpd, folio); 2488 } else { 2489 /* Add all dirty buffers to mpd */ 2490 lblk = ((ext4_lblk_t)folio->index) << 2491 (PAGE_SHIFT - blkbits); 2492 head = folio_buffers(folio); 2493 err = mpage_process_page_bufs(mpd, head, head, 2494 lblk); 2495 if (err <= 0) 2496 goto out; 2497 err = 0; 2498 } 2499 } 2500 folio_batch_release(&fbatch); 2501 cond_resched(); 2502 } 2503 mpd->scanned_until_end = 1; 2504 if (handle) 2505 ext4_journal_stop(handle); 2506 return 0; 2507 out: 2508 folio_batch_release(&fbatch); 2509 if (handle) 2510 ext4_journal_stop(handle); 2511 return err; 2512 } 2513 2514 static int ext4_do_writepages(struct mpage_da_data *mpd) 2515 { 2516 struct writeback_control *wbc = mpd->wbc; 2517 pgoff_t writeback_index = 0; 2518 long nr_to_write = wbc->nr_to_write; 2519 int range_whole = 0; 2520 int cycled = 1; 2521 handle_t *handle = NULL; 2522 struct inode *inode = mpd->inode; 2523 struct address_space *mapping = inode->i_mapping; 2524 int needed_blocks, rsv_blocks = 0, ret = 0; 2525 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2526 struct blk_plug plug; 2527 bool give_up_on_write = false; 2528 2529 trace_ext4_writepages(inode, wbc); 2530 2531 /* 2532 * No pages to write? This is mainly a kludge to avoid starting 2533 * a transaction for special inodes like journal inode on last iput() 2534 * because that could violate lock ordering on umount 2535 */ 2536 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2537 goto out_writepages; 2538 2539 /* 2540 * If the filesystem has aborted, it is read-only, so return 2541 * right away instead of dumping stack traces later on that 2542 * will obscure the real source of the problem. We test 2543 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2544 * the latter could be true if the filesystem is mounted 2545 * read-only, and in that case, ext4_writepages should 2546 * *never* be called, so if that ever happens, we would want 2547 * the stack trace. 2548 */ 2549 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2550 ret = -EROFS; 2551 goto out_writepages; 2552 } 2553 2554 /* 2555 * If we have inline data and arrive here, it means that 2556 * we will soon create the block for the 1st page, so 2557 * we'd better clear the inline data here. 2558 */ 2559 if (ext4_has_inline_data(inode)) { 2560 /* Just inode will be modified... */ 2561 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2562 if (IS_ERR(handle)) { 2563 ret = PTR_ERR(handle); 2564 goto out_writepages; 2565 } 2566 BUG_ON(ext4_test_inode_state(inode, 2567 EXT4_STATE_MAY_INLINE_DATA)); 2568 ext4_destroy_inline_data(handle, inode); 2569 ext4_journal_stop(handle); 2570 } 2571 2572 /* 2573 * data=journal mode does not do delalloc so we just need to writeout / 2574 * journal already mapped buffers. On the other hand we need to commit 2575 * transaction to make data stable. We expect all the data to be 2576 * already in the journal (the only exception are DMA pinned pages 2577 * dirtied behind our back) so we commit transaction here and run the 2578 * writeback loop to checkpoint them. The checkpointing is not actually 2579 * necessary to make data persistent *but* quite a few places (extent 2580 * shifting operations, fsverity, ...) depend on being able to drop 2581 * pagecache pages after calling filemap_write_and_wait() and for that 2582 * checkpointing needs to happen. 2583 */ 2584 if (ext4_should_journal_data(inode)) { 2585 mpd->can_map = 0; 2586 if (wbc->sync_mode == WB_SYNC_ALL) 2587 ext4_fc_commit(sbi->s_journal, 2588 EXT4_I(inode)->i_datasync_tid); 2589 } 2590 mpd->journalled_more_data = 0; 2591 2592 if (ext4_should_dioread_nolock(inode)) { 2593 /* 2594 * We may need to convert up to one extent per block in 2595 * the page and we may dirty the inode. 2596 */ 2597 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2598 PAGE_SIZE >> inode->i_blkbits); 2599 } 2600 2601 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2602 range_whole = 1; 2603 2604 if (wbc->range_cyclic) { 2605 writeback_index = mapping->writeback_index; 2606 if (writeback_index) 2607 cycled = 0; 2608 mpd->first_page = writeback_index; 2609 mpd->last_page = -1; 2610 } else { 2611 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2612 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2613 } 2614 2615 ext4_io_submit_init(&mpd->io_submit, wbc); 2616 retry: 2617 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2618 tag_pages_for_writeback(mapping, mpd->first_page, 2619 mpd->last_page); 2620 blk_start_plug(&plug); 2621 2622 /* 2623 * First writeback pages that don't need mapping - we can avoid 2624 * starting a transaction unnecessarily and also avoid being blocked 2625 * in the block layer on device congestion while having transaction 2626 * started. 2627 */ 2628 mpd->do_map = 0; 2629 mpd->scanned_until_end = 0; 2630 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2631 if (!mpd->io_submit.io_end) { 2632 ret = -ENOMEM; 2633 goto unplug; 2634 } 2635 ret = mpage_prepare_extent_to_map(mpd); 2636 /* Unlock pages we didn't use */ 2637 mpage_release_unused_pages(mpd, false); 2638 /* Submit prepared bio */ 2639 ext4_io_submit(&mpd->io_submit); 2640 ext4_put_io_end_defer(mpd->io_submit.io_end); 2641 mpd->io_submit.io_end = NULL; 2642 if (ret < 0) 2643 goto unplug; 2644 2645 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2646 /* For each extent of pages we use new io_end */ 2647 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2648 if (!mpd->io_submit.io_end) { 2649 ret = -ENOMEM; 2650 break; 2651 } 2652 2653 WARN_ON_ONCE(!mpd->can_map); 2654 /* 2655 * We have two constraints: We find one extent to map and we 2656 * must always write out whole page (makes a difference when 2657 * blocksize < pagesize) so that we don't block on IO when we 2658 * try to write out the rest of the page. Journalled mode is 2659 * not supported by delalloc. 2660 */ 2661 BUG_ON(ext4_should_journal_data(inode)); 2662 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2663 2664 /* start a new transaction */ 2665 handle = ext4_journal_start_with_reserve(inode, 2666 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2667 if (IS_ERR(handle)) { 2668 ret = PTR_ERR(handle); 2669 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2670 "%ld pages, ino %lu; err %d", __func__, 2671 wbc->nr_to_write, inode->i_ino, ret); 2672 /* Release allocated io_end */ 2673 ext4_put_io_end(mpd->io_submit.io_end); 2674 mpd->io_submit.io_end = NULL; 2675 break; 2676 } 2677 mpd->do_map = 1; 2678 2679 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2680 ret = mpage_prepare_extent_to_map(mpd); 2681 if (!ret && mpd->map.m_len) 2682 ret = mpage_map_and_submit_extent(handle, mpd, 2683 &give_up_on_write); 2684 /* 2685 * Caution: If the handle is synchronous, 2686 * ext4_journal_stop() can wait for transaction commit 2687 * to finish which may depend on writeback of pages to 2688 * complete or on page lock to be released. In that 2689 * case, we have to wait until after we have 2690 * submitted all the IO, released page locks we hold, 2691 * and dropped io_end reference (for extent conversion 2692 * to be able to complete) before stopping the handle. 2693 */ 2694 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2695 ext4_journal_stop(handle); 2696 handle = NULL; 2697 mpd->do_map = 0; 2698 } 2699 /* Unlock pages we didn't use */ 2700 mpage_release_unused_pages(mpd, give_up_on_write); 2701 /* Submit prepared bio */ 2702 ext4_io_submit(&mpd->io_submit); 2703 2704 /* 2705 * Drop our io_end reference we got from init. We have 2706 * to be careful and use deferred io_end finishing if 2707 * we are still holding the transaction as we can 2708 * release the last reference to io_end which may end 2709 * up doing unwritten extent conversion. 2710 */ 2711 if (handle) { 2712 ext4_put_io_end_defer(mpd->io_submit.io_end); 2713 ext4_journal_stop(handle); 2714 } else 2715 ext4_put_io_end(mpd->io_submit.io_end); 2716 mpd->io_submit.io_end = NULL; 2717 2718 if (ret == -ENOSPC && sbi->s_journal) { 2719 /* 2720 * Commit the transaction which would 2721 * free blocks released in the transaction 2722 * and try again 2723 */ 2724 jbd2_journal_force_commit_nested(sbi->s_journal); 2725 ret = 0; 2726 continue; 2727 } 2728 /* Fatal error - ENOMEM, EIO... */ 2729 if (ret) 2730 break; 2731 } 2732 unplug: 2733 blk_finish_plug(&plug); 2734 if (!ret && !cycled && wbc->nr_to_write > 0) { 2735 cycled = 1; 2736 mpd->last_page = writeback_index - 1; 2737 mpd->first_page = 0; 2738 goto retry; 2739 } 2740 2741 /* Update index */ 2742 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2743 /* 2744 * Set the writeback_index so that range_cyclic 2745 * mode will write it back later 2746 */ 2747 mapping->writeback_index = mpd->first_page; 2748 2749 out_writepages: 2750 trace_ext4_writepages_result(inode, wbc, ret, 2751 nr_to_write - wbc->nr_to_write); 2752 return ret; 2753 } 2754 2755 static int ext4_writepages(struct address_space *mapping, 2756 struct writeback_control *wbc) 2757 { 2758 struct super_block *sb = mapping->host->i_sb; 2759 struct mpage_da_data mpd = { 2760 .inode = mapping->host, 2761 .wbc = wbc, 2762 .can_map = 1, 2763 }; 2764 int ret; 2765 int alloc_ctx; 2766 2767 if (unlikely(ext4_forced_shutdown(sb))) 2768 return -EIO; 2769 2770 alloc_ctx = ext4_writepages_down_read(sb); 2771 ret = ext4_do_writepages(&mpd); 2772 /* 2773 * For data=journal writeback we could have come across pages marked 2774 * for delayed dirtying (PageChecked) which were just added to the 2775 * running transaction. Try once more to get them to stable storage. 2776 */ 2777 if (!ret && mpd.journalled_more_data) 2778 ret = ext4_do_writepages(&mpd); 2779 ext4_writepages_up_read(sb, alloc_ctx); 2780 2781 return ret; 2782 } 2783 2784 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2785 { 2786 struct writeback_control wbc = { 2787 .sync_mode = WB_SYNC_ALL, 2788 .nr_to_write = LONG_MAX, 2789 .range_start = jinode->i_dirty_start, 2790 .range_end = jinode->i_dirty_end, 2791 }; 2792 struct mpage_da_data mpd = { 2793 .inode = jinode->i_vfs_inode, 2794 .wbc = &wbc, 2795 .can_map = 0, 2796 }; 2797 return ext4_do_writepages(&mpd); 2798 } 2799 2800 static int ext4_dax_writepages(struct address_space *mapping, 2801 struct writeback_control *wbc) 2802 { 2803 int ret; 2804 long nr_to_write = wbc->nr_to_write; 2805 struct inode *inode = mapping->host; 2806 int alloc_ctx; 2807 2808 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2809 return -EIO; 2810 2811 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2812 trace_ext4_writepages(inode, wbc); 2813 2814 ret = dax_writeback_mapping_range(mapping, 2815 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2816 trace_ext4_writepages_result(inode, wbc, ret, 2817 nr_to_write - wbc->nr_to_write); 2818 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2819 return ret; 2820 } 2821 2822 static int ext4_nonda_switch(struct super_block *sb) 2823 { 2824 s64 free_clusters, dirty_clusters; 2825 struct ext4_sb_info *sbi = EXT4_SB(sb); 2826 2827 /* 2828 * switch to non delalloc mode if we are running low 2829 * on free block. The free block accounting via percpu 2830 * counters can get slightly wrong with percpu_counter_batch getting 2831 * accumulated on each CPU without updating global counters 2832 * Delalloc need an accurate free block accounting. So switch 2833 * to non delalloc when we are near to error range. 2834 */ 2835 free_clusters = 2836 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2837 dirty_clusters = 2838 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2839 /* 2840 * Start pushing delalloc when 1/2 of free blocks are dirty. 2841 */ 2842 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2843 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2844 2845 if (2 * free_clusters < 3 * dirty_clusters || 2846 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2847 /* 2848 * free block count is less than 150% of dirty blocks 2849 * or free blocks is less than watermark 2850 */ 2851 return 1; 2852 } 2853 return 0; 2854 } 2855 2856 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2857 loff_t pos, unsigned len, 2858 struct page **pagep, void **fsdata) 2859 { 2860 int ret, retries = 0; 2861 struct folio *folio; 2862 pgoff_t index; 2863 struct inode *inode = mapping->host; 2864 2865 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2866 return -EIO; 2867 2868 index = pos >> PAGE_SHIFT; 2869 2870 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2871 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2872 return ext4_write_begin(file, mapping, pos, 2873 len, pagep, fsdata); 2874 } 2875 *fsdata = (void *)0; 2876 trace_ext4_da_write_begin(inode, pos, len); 2877 2878 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2879 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2880 pagep, fsdata); 2881 if (ret < 0) 2882 return ret; 2883 if (ret == 1) 2884 return 0; 2885 } 2886 2887 retry: 2888 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2889 mapping_gfp_mask(mapping)); 2890 if (IS_ERR(folio)) 2891 return PTR_ERR(folio); 2892 2893 #ifdef CONFIG_FS_ENCRYPTION 2894 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2895 #else 2896 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2897 #endif 2898 if (ret < 0) { 2899 folio_unlock(folio); 2900 folio_put(folio); 2901 /* 2902 * block_write_begin may have instantiated a few blocks 2903 * outside i_size. Trim these off again. Don't need 2904 * i_size_read because we hold inode lock. 2905 */ 2906 if (pos + len > inode->i_size) 2907 ext4_truncate_failed_write(inode); 2908 2909 if (ret == -ENOSPC && 2910 ext4_should_retry_alloc(inode->i_sb, &retries)) 2911 goto retry; 2912 return ret; 2913 } 2914 2915 *pagep = &folio->page; 2916 return ret; 2917 } 2918 2919 /* 2920 * Check if we should update i_disksize 2921 * when write to the end of file but not require block allocation 2922 */ 2923 static int ext4_da_should_update_i_disksize(struct folio *folio, 2924 unsigned long offset) 2925 { 2926 struct buffer_head *bh; 2927 struct inode *inode = folio->mapping->host; 2928 unsigned int idx; 2929 int i; 2930 2931 bh = folio_buffers(folio); 2932 idx = offset >> inode->i_blkbits; 2933 2934 for (i = 0; i < idx; i++) 2935 bh = bh->b_this_page; 2936 2937 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2938 return 0; 2939 return 1; 2940 } 2941 2942 static int ext4_da_do_write_end(struct address_space *mapping, 2943 loff_t pos, unsigned len, unsigned copied, 2944 struct page *page) 2945 { 2946 struct inode *inode = mapping->host; 2947 loff_t old_size = inode->i_size; 2948 bool disksize_changed = false; 2949 loff_t new_i_size; 2950 2951 /* 2952 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2953 * flag, which all that's needed to trigger page writeback. 2954 */ 2955 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL); 2956 new_i_size = pos + copied; 2957 2958 /* 2959 * It's important to update i_size while still holding page lock, 2960 * because page writeout could otherwise come in and zero beyond 2961 * i_size. 2962 * 2963 * Since we are holding inode lock, we are sure i_disksize <= 2964 * i_size. We also know that if i_disksize < i_size, there are 2965 * delalloc writes pending in the range up to i_size. If the end of 2966 * the current write is <= i_size, there's no need to touch 2967 * i_disksize since writeback will push i_disksize up to i_size 2968 * eventually. If the end of the current write is > i_size and 2969 * inside an allocated block which ext4_da_should_update_i_disksize() 2970 * checked, we need to update i_disksize here as certain 2971 * ext4_writepages() paths not allocating blocks and update i_disksize. 2972 */ 2973 if (new_i_size > inode->i_size) { 2974 unsigned long end; 2975 2976 i_size_write(inode, new_i_size); 2977 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2978 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) { 2979 ext4_update_i_disksize(inode, new_i_size); 2980 disksize_changed = true; 2981 } 2982 } 2983 2984 unlock_page(page); 2985 put_page(page); 2986 2987 if (old_size < pos) 2988 pagecache_isize_extended(inode, old_size, pos); 2989 2990 if (disksize_changed) { 2991 handle_t *handle; 2992 2993 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 2994 if (IS_ERR(handle)) 2995 return PTR_ERR(handle); 2996 ext4_mark_inode_dirty(handle, inode); 2997 ext4_journal_stop(handle); 2998 } 2999 3000 return copied; 3001 } 3002 3003 static int ext4_da_write_end(struct file *file, 3004 struct address_space *mapping, 3005 loff_t pos, unsigned len, unsigned copied, 3006 struct page *page, void *fsdata) 3007 { 3008 struct inode *inode = mapping->host; 3009 int write_mode = (int)(unsigned long)fsdata; 3010 struct folio *folio = page_folio(page); 3011 3012 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3013 return ext4_write_end(file, mapping, pos, 3014 len, copied, &folio->page, fsdata); 3015 3016 trace_ext4_da_write_end(inode, pos, len, copied); 3017 3018 if (write_mode != CONVERT_INLINE_DATA && 3019 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3020 ext4_has_inline_data(inode)) 3021 return ext4_write_inline_data_end(inode, pos, len, copied, 3022 folio); 3023 3024 if (unlikely(copied < len) && !PageUptodate(page)) 3025 copied = 0; 3026 3027 return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page); 3028 } 3029 3030 /* 3031 * Force all delayed allocation blocks to be allocated for a given inode. 3032 */ 3033 int ext4_alloc_da_blocks(struct inode *inode) 3034 { 3035 trace_ext4_alloc_da_blocks(inode); 3036 3037 if (!EXT4_I(inode)->i_reserved_data_blocks) 3038 return 0; 3039 3040 /* 3041 * We do something simple for now. The filemap_flush() will 3042 * also start triggering a write of the data blocks, which is 3043 * not strictly speaking necessary (and for users of 3044 * laptop_mode, not even desirable). However, to do otherwise 3045 * would require replicating code paths in: 3046 * 3047 * ext4_writepages() -> 3048 * write_cache_pages() ---> (via passed in callback function) 3049 * __mpage_da_writepage() --> 3050 * mpage_add_bh_to_extent() 3051 * mpage_da_map_blocks() 3052 * 3053 * The problem is that write_cache_pages(), located in 3054 * mm/page-writeback.c, marks pages clean in preparation for 3055 * doing I/O, which is not desirable if we're not planning on 3056 * doing I/O at all. 3057 * 3058 * We could call write_cache_pages(), and then redirty all of 3059 * the pages by calling redirty_page_for_writepage() but that 3060 * would be ugly in the extreme. So instead we would need to 3061 * replicate parts of the code in the above functions, 3062 * simplifying them because we wouldn't actually intend to 3063 * write out the pages, but rather only collect contiguous 3064 * logical block extents, call the multi-block allocator, and 3065 * then update the buffer heads with the block allocations. 3066 * 3067 * For now, though, we'll cheat by calling filemap_flush(), 3068 * which will map the blocks, and start the I/O, but not 3069 * actually wait for the I/O to complete. 3070 */ 3071 return filemap_flush(inode->i_mapping); 3072 } 3073 3074 /* 3075 * bmap() is special. It gets used by applications such as lilo and by 3076 * the swapper to find the on-disk block of a specific piece of data. 3077 * 3078 * Naturally, this is dangerous if the block concerned is still in the 3079 * journal. If somebody makes a swapfile on an ext4 data-journaling 3080 * filesystem and enables swap, then they may get a nasty shock when the 3081 * data getting swapped to that swapfile suddenly gets overwritten by 3082 * the original zero's written out previously to the journal and 3083 * awaiting writeback in the kernel's buffer cache. 3084 * 3085 * So, if we see any bmap calls here on a modified, data-journaled file, 3086 * take extra steps to flush any blocks which might be in the cache. 3087 */ 3088 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3089 { 3090 struct inode *inode = mapping->host; 3091 sector_t ret = 0; 3092 3093 inode_lock_shared(inode); 3094 /* 3095 * We can get here for an inline file via the FIBMAP ioctl 3096 */ 3097 if (ext4_has_inline_data(inode)) 3098 goto out; 3099 3100 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3101 (test_opt(inode->i_sb, DELALLOC) || 3102 ext4_should_journal_data(inode))) { 3103 /* 3104 * With delalloc or journalled data we want to sync the file so 3105 * that we can make sure we allocate blocks for file and data 3106 * is in place for the user to see it 3107 */ 3108 filemap_write_and_wait(mapping); 3109 } 3110 3111 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3112 3113 out: 3114 inode_unlock_shared(inode); 3115 return ret; 3116 } 3117 3118 static int ext4_read_folio(struct file *file, struct folio *folio) 3119 { 3120 int ret = -EAGAIN; 3121 struct inode *inode = folio->mapping->host; 3122 3123 trace_ext4_read_folio(inode, folio); 3124 3125 if (ext4_has_inline_data(inode)) 3126 ret = ext4_readpage_inline(inode, folio); 3127 3128 if (ret == -EAGAIN) 3129 return ext4_mpage_readpages(inode, NULL, folio); 3130 3131 return ret; 3132 } 3133 3134 static void ext4_readahead(struct readahead_control *rac) 3135 { 3136 struct inode *inode = rac->mapping->host; 3137 3138 /* If the file has inline data, no need to do readahead. */ 3139 if (ext4_has_inline_data(inode)) 3140 return; 3141 3142 ext4_mpage_readpages(inode, rac, NULL); 3143 } 3144 3145 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3146 size_t length) 3147 { 3148 trace_ext4_invalidate_folio(folio, offset, length); 3149 3150 /* No journalling happens on data buffers when this function is used */ 3151 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3152 3153 block_invalidate_folio(folio, offset, length); 3154 } 3155 3156 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3157 size_t offset, size_t length) 3158 { 3159 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3160 3161 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3162 3163 /* 3164 * If it's a full truncate we just forget about the pending dirtying 3165 */ 3166 if (offset == 0 && length == folio_size(folio)) 3167 folio_clear_checked(folio); 3168 3169 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3170 } 3171 3172 /* Wrapper for aops... */ 3173 static void ext4_journalled_invalidate_folio(struct folio *folio, 3174 size_t offset, 3175 size_t length) 3176 { 3177 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3178 } 3179 3180 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3181 { 3182 struct inode *inode = folio->mapping->host; 3183 journal_t *journal = EXT4_JOURNAL(inode); 3184 3185 trace_ext4_release_folio(inode, folio); 3186 3187 /* Page has dirty journalled data -> cannot release */ 3188 if (folio_test_checked(folio)) 3189 return false; 3190 if (journal) 3191 return jbd2_journal_try_to_free_buffers(journal, folio); 3192 else 3193 return try_to_free_buffers(folio); 3194 } 3195 3196 static bool ext4_inode_datasync_dirty(struct inode *inode) 3197 { 3198 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3199 3200 if (journal) { 3201 if (jbd2_transaction_committed(journal, 3202 EXT4_I(inode)->i_datasync_tid)) 3203 return false; 3204 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3205 return !list_empty(&EXT4_I(inode)->i_fc_list); 3206 return true; 3207 } 3208 3209 /* Any metadata buffers to write? */ 3210 if (!list_empty(&inode->i_mapping->private_list)) 3211 return true; 3212 return inode->i_state & I_DIRTY_DATASYNC; 3213 } 3214 3215 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3216 struct ext4_map_blocks *map, loff_t offset, 3217 loff_t length, unsigned int flags) 3218 { 3219 u8 blkbits = inode->i_blkbits; 3220 3221 /* 3222 * Writes that span EOF might trigger an I/O size update on completion, 3223 * so consider them to be dirty for the purpose of O_DSYNC, even if 3224 * there is no other metadata changes being made or are pending. 3225 */ 3226 iomap->flags = 0; 3227 if (ext4_inode_datasync_dirty(inode) || 3228 offset + length > i_size_read(inode)) 3229 iomap->flags |= IOMAP_F_DIRTY; 3230 3231 if (map->m_flags & EXT4_MAP_NEW) 3232 iomap->flags |= IOMAP_F_NEW; 3233 3234 if (flags & IOMAP_DAX) 3235 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3236 else 3237 iomap->bdev = inode->i_sb->s_bdev; 3238 iomap->offset = (u64) map->m_lblk << blkbits; 3239 iomap->length = (u64) map->m_len << blkbits; 3240 3241 if ((map->m_flags & EXT4_MAP_MAPPED) && 3242 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3243 iomap->flags |= IOMAP_F_MERGED; 3244 3245 /* 3246 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3247 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3248 * set. In order for any allocated unwritten extents to be converted 3249 * into written extents correctly within the ->end_io() handler, we 3250 * need to ensure that the iomap->type is set appropriately. Hence, the 3251 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3252 * been set first. 3253 */ 3254 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3255 iomap->type = IOMAP_UNWRITTEN; 3256 iomap->addr = (u64) map->m_pblk << blkbits; 3257 if (flags & IOMAP_DAX) 3258 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3259 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3260 iomap->type = IOMAP_MAPPED; 3261 iomap->addr = (u64) map->m_pblk << blkbits; 3262 if (flags & IOMAP_DAX) 3263 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3264 } else { 3265 iomap->type = IOMAP_HOLE; 3266 iomap->addr = IOMAP_NULL_ADDR; 3267 } 3268 } 3269 3270 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3271 unsigned int flags) 3272 { 3273 handle_t *handle; 3274 u8 blkbits = inode->i_blkbits; 3275 int ret, dio_credits, m_flags = 0, retries = 0; 3276 3277 /* 3278 * Trim the mapping request to the maximum value that we can map at 3279 * once for direct I/O. 3280 */ 3281 if (map->m_len > DIO_MAX_BLOCKS) 3282 map->m_len = DIO_MAX_BLOCKS; 3283 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3284 3285 retry: 3286 /* 3287 * Either we allocate blocks and then don't get an unwritten extent, so 3288 * in that case we have reserved enough credits. Or, the blocks are 3289 * already allocated and unwritten. In that case, the extent conversion 3290 * fits into the credits as well. 3291 */ 3292 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3293 if (IS_ERR(handle)) 3294 return PTR_ERR(handle); 3295 3296 /* 3297 * DAX and direct I/O are the only two operations that are currently 3298 * supported with IOMAP_WRITE. 3299 */ 3300 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3301 if (flags & IOMAP_DAX) 3302 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3303 /* 3304 * We use i_size instead of i_disksize here because delalloc writeback 3305 * can complete at any point during the I/O and subsequently push the 3306 * i_disksize out to i_size. This could be beyond where direct I/O is 3307 * happening and thus expose allocated blocks to direct I/O reads. 3308 */ 3309 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3310 m_flags = EXT4_GET_BLOCKS_CREATE; 3311 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3312 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3313 3314 ret = ext4_map_blocks(handle, inode, map, m_flags); 3315 3316 /* 3317 * We cannot fill holes in indirect tree based inodes as that could 3318 * expose stale data in the case of a crash. Use the magic error code 3319 * to fallback to buffered I/O. 3320 */ 3321 if (!m_flags && !ret) 3322 ret = -ENOTBLK; 3323 3324 ext4_journal_stop(handle); 3325 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3326 goto retry; 3327 3328 return ret; 3329 } 3330 3331 3332 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3333 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3334 { 3335 int ret; 3336 struct ext4_map_blocks map; 3337 u8 blkbits = inode->i_blkbits; 3338 3339 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3340 return -EINVAL; 3341 3342 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3343 return -ERANGE; 3344 3345 /* 3346 * Calculate the first and last logical blocks respectively. 3347 */ 3348 map.m_lblk = offset >> blkbits; 3349 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3350 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3351 3352 if (flags & IOMAP_WRITE) { 3353 /* 3354 * We check here if the blocks are already allocated, then we 3355 * don't need to start a journal txn and we can directly return 3356 * the mapping information. This could boost performance 3357 * especially in multi-threaded overwrite requests. 3358 */ 3359 if (offset + length <= i_size_read(inode)) { 3360 ret = ext4_map_blocks(NULL, inode, &map, 0); 3361 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3362 goto out; 3363 } 3364 ret = ext4_iomap_alloc(inode, &map, flags); 3365 } else { 3366 ret = ext4_map_blocks(NULL, inode, &map, 0); 3367 } 3368 3369 if (ret < 0) 3370 return ret; 3371 out: 3372 /* 3373 * When inline encryption is enabled, sometimes I/O to an encrypted file 3374 * has to be broken up to guarantee DUN contiguity. Handle this by 3375 * limiting the length of the mapping returned. 3376 */ 3377 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3378 3379 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3380 3381 return 0; 3382 } 3383 3384 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3385 loff_t length, unsigned flags, struct iomap *iomap, 3386 struct iomap *srcmap) 3387 { 3388 int ret; 3389 3390 /* 3391 * Even for writes we don't need to allocate blocks, so just pretend 3392 * we are reading to save overhead of starting a transaction. 3393 */ 3394 flags &= ~IOMAP_WRITE; 3395 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3396 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3397 return ret; 3398 } 3399 3400 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3401 ssize_t written, unsigned flags, struct iomap *iomap) 3402 { 3403 /* 3404 * Check to see whether an error occurred while writing out the data to 3405 * the allocated blocks. If so, return the magic error code so that we 3406 * fallback to buffered I/O and attempt to complete the remainder of 3407 * the I/O. Any blocks that may have been allocated in preparation for 3408 * the direct I/O will be reused during buffered I/O. 3409 */ 3410 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3411 return -ENOTBLK; 3412 3413 return 0; 3414 } 3415 3416 const struct iomap_ops ext4_iomap_ops = { 3417 .iomap_begin = ext4_iomap_begin, 3418 .iomap_end = ext4_iomap_end, 3419 }; 3420 3421 const struct iomap_ops ext4_iomap_overwrite_ops = { 3422 .iomap_begin = ext4_iomap_overwrite_begin, 3423 .iomap_end = ext4_iomap_end, 3424 }; 3425 3426 static bool ext4_iomap_is_delalloc(struct inode *inode, 3427 struct ext4_map_blocks *map) 3428 { 3429 struct extent_status es; 3430 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3431 3432 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3433 map->m_lblk, end, &es); 3434 3435 if (!es.es_len || es.es_lblk > end) 3436 return false; 3437 3438 if (es.es_lblk > map->m_lblk) { 3439 map->m_len = es.es_lblk - map->m_lblk; 3440 return false; 3441 } 3442 3443 offset = map->m_lblk - es.es_lblk; 3444 map->m_len = es.es_len - offset; 3445 3446 return true; 3447 } 3448 3449 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3450 loff_t length, unsigned int flags, 3451 struct iomap *iomap, struct iomap *srcmap) 3452 { 3453 int ret; 3454 bool delalloc = false; 3455 struct ext4_map_blocks map; 3456 u8 blkbits = inode->i_blkbits; 3457 3458 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3459 return -EINVAL; 3460 3461 if (ext4_has_inline_data(inode)) { 3462 ret = ext4_inline_data_iomap(inode, iomap); 3463 if (ret != -EAGAIN) { 3464 if (ret == 0 && offset >= iomap->length) 3465 ret = -ENOENT; 3466 return ret; 3467 } 3468 } 3469 3470 /* 3471 * Calculate the first and last logical block respectively. 3472 */ 3473 map.m_lblk = offset >> blkbits; 3474 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3475 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3476 3477 /* 3478 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3479 * So handle it here itself instead of querying ext4_map_blocks(). 3480 * Since ext4_map_blocks() will warn about it and will return 3481 * -EIO error. 3482 */ 3483 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3484 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3485 3486 if (offset >= sbi->s_bitmap_maxbytes) { 3487 map.m_flags = 0; 3488 goto set_iomap; 3489 } 3490 } 3491 3492 ret = ext4_map_blocks(NULL, inode, &map, 0); 3493 if (ret < 0) 3494 return ret; 3495 if (ret == 0) 3496 delalloc = ext4_iomap_is_delalloc(inode, &map); 3497 3498 set_iomap: 3499 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3500 if (delalloc && iomap->type == IOMAP_HOLE) 3501 iomap->type = IOMAP_DELALLOC; 3502 3503 return 0; 3504 } 3505 3506 const struct iomap_ops ext4_iomap_report_ops = { 3507 .iomap_begin = ext4_iomap_begin_report, 3508 }; 3509 3510 /* 3511 * For data=journal mode, folio should be marked dirty only when it was 3512 * writeably mapped. When that happens, it was already attached to the 3513 * transaction and marked as jbddirty (we take care of this in 3514 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3515 * so we should have nothing to do here, except for the case when someone 3516 * had the page pinned and dirtied the page through this pin (e.g. by doing 3517 * direct IO to it). In that case we'd need to attach buffers here to the 3518 * transaction but we cannot due to lock ordering. We cannot just dirty the 3519 * folio and leave attached buffers clean, because the buffers' dirty state is 3520 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3521 * the journalling code will explode. So what we do is to mark the folio 3522 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3523 * to the transaction appropriately. 3524 */ 3525 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3526 struct folio *folio) 3527 { 3528 WARN_ON_ONCE(!folio_buffers(folio)); 3529 if (folio_maybe_dma_pinned(folio)) 3530 folio_set_checked(folio); 3531 return filemap_dirty_folio(mapping, folio); 3532 } 3533 3534 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3535 { 3536 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3537 WARN_ON_ONCE(!folio_buffers(folio)); 3538 return block_dirty_folio(mapping, folio); 3539 } 3540 3541 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3542 struct file *file, sector_t *span) 3543 { 3544 return iomap_swapfile_activate(sis, file, span, 3545 &ext4_iomap_report_ops); 3546 } 3547 3548 static const struct address_space_operations ext4_aops = { 3549 .read_folio = ext4_read_folio, 3550 .readahead = ext4_readahead, 3551 .writepages = ext4_writepages, 3552 .write_begin = ext4_write_begin, 3553 .write_end = ext4_write_end, 3554 .dirty_folio = ext4_dirty_folio, 3555 .bmap = ext4_bmap, 3556 .invalidate_folio = ext4_invalidate_folio, 3557 .release_folio = ext4_release_folio, 3558 .direct_IO = noop_direct_IO, 3559 .migrate_folio = buffer_migrate_folio, 3560 .is_partially_uptodate = block_is_partially_uptodate, 3561 .error_remove_page = generic_error_remove_page, 3562 .swap_activate = ext4_iomap_swap_activate, 3563 }; 3564 3565 static const struct address_space_operations ext4_journalled_aops = { 3566 .read_folio = ext4_read_folio, 3567 .readahead = ext4_readahead, 3568 .writepages = ext4_writepages, 3569 .write_begin = ext4_write_begin, 3570 .write_end = ext4_journalled_write_end, 3571 .dirty_folio = ext4_journalled_dirty_folio, 3572 .bmap = ext4_bmap, 3573 .invalidate_folio = ext4_journalled_invalidate_folio, 3574 .release_folio = ext4_release_folio, 3575 .direct_IO = noop_direct_IO, 3576 .migrate_folio = buffer_migrate_folio_norefs, 3577 .is_partially_uptodate = block_is_partially_uptodate, 3578 .error_remove_page = generic_error_remove_page, 3579 .swap_activate = ext4_iomap_swap_activate, 3580 }; 3581 3582 static const struct address_space_operations ext4_da_aops = { 3583 .read_folio = ext4_read_folio, 3584 .readahead = ext4_readahead, 3585 .writepages = ext4_writepages, 3586 .write_begin = ext4_da_write_begin, 3587 .write_end = ext4_da_write_end, 3588 .dirty_folio = ext4_dirty_folio, 3589 .bmap = ext4_bmap, 3590 .invalidate_folio = ext4_invalidate_folio, 3591 .release_folio = ext4_release_folio, 3592 .direct_IO = noop_direct_IO, 3593 .migrate_folio = buffer_migrate_folio, 3594 .is_partially_uptodate = block_is_partially_uptodate, 3595 .error_remove_page = generic_error_remove_page, 3596 .swap_activate = ext4_iomap_swap_activate, 3597 }; 3598 3599 static const struct address_space_operations ext4_dax_aops = { 3600 .writepages = ext4_dax_writepages, 3601 .direct_IO = noop_direct_IO, 3602 .dirty_folio = noop_dirty_folio, 3603 .bmap = ext4_bmap, 3604 .swap_activate = ext4_iomap_swap_activate, 3605 }; 3606 3607 void ext4_set_aops(struct inode *inode) 3608 { 3609 switch (ext4_inode_journal_mode(inode)) { 3610 case EXT4_INODE_ORDERED_DATA_MODE: 3611 case EXT4_INODE_WRITEBACK_DATA_MODE: 3612 break; 3613 case EXT4_INODE_JOURNAL_DATA_MODE: 3614 inode->i_mapping->a_ops = &ext4_journalled_aops; 3615 return; 3616 default: 3617 BUG(); 3618 } 3619 if (IS_DAX(inode)) 3620 inode->i_mapping->a_ops = &ext4_dax_aops; 3621 else if (test_opt(inode->i_sb, DELALLOC)) 3622 inode->i_mapping->a_ops = &ext4_da_aops; 3623 else 3624 inode->i_mapping->a_ops = &ext4_aops; 3625 } 3626 3627 static int __ext4_block_zero_page_range(handle_t *handle, 3628 struct address_space *mapping, loff_t from, loff_t length) 3629 { 3630 ext4_fsblk_t index = from >> PAGE_SHIFT; 3631 unsigned offset = from & (PAGE_SIZE-1); 3632 unsigned blocksize, pos; 3633 ext4_lblk_t iblock; 3634 struct inode *inode = mapping->host; 3635 struct buffer_head *bh; 3636 struct folio *folio; 3637 int err = 0; 3638 3639 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3640 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3641 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3642 if (IS_ERR(folio)) 3643 return PTR_ERR(folio); 3644 3645 blocksize = inode->i_sb->s_blocksize; 3646 3647 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3648 3649 bh = folio_buffers(folio); 3650 if (!bh) { 3651 create_empty_buffers(&folio->page, blocksize, 0); 3652 bh = folio_buffers(folio); 3653 } 3654 3655 /* Find the buffer that contains "offset" */ 3656 pos = blocksize; 3657 while (offset >= pos) { 3658 bh = bh->b_this_page; 3659 iblock++; 3660 pos += blocksize; 3661 } 3662 if (buffer_freed(bh)) { 3663 BUFFER_TRACE(bh, "freed: skip"); 3664 goto unlock; 3665 } 3666 if (!buffer_mapped(bh)) { 3667 BUFFER_TRACE(bh, "unmapped"); 3668 ext4_get_block(inode, iblock, bh, 0); 3669 /* unmapped? It's a hole - nothing to do */ 3670 if (!buffer_mapped(bh)) { 3671 BUFFER_TRACE(bh, "still unmapped"); 3672 goto unlock; 3673 } 3674 } 3675 3676 /* Ok, it's mapped. Make sure it's up-to-date */ 3677 if (folio_test_uptodate(folio)) 3678 set_buffer_uptodate(bh); 3679 3680 if (!buffer_uptodate(bh)) { 3681 err = ext4_read_bh_lock(bh, 0, true); 3682 if (err) 3683 goto unlock; 3684 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3685 /* We expect the key to be set. */ 3686 BUG_ON(!fscrypt_has_encryption_key(inode)); 3687 err = fscrypt_decrypt_pagecache_blocks(folio, 3688 blocksize, 3689 bh_offset(bh)); 3690 if (err) { 3691 clear_buffer_uptodate(bh); 3692 goto unlock; 3693 } 3694 } 3695 } 3696 if (ext4_should_journal_data(inode)) { 3697 BUFFER_TRACE(bh, "get write access"); 3698 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3699 EXT4_JTR_NONE); 3700 if (err) 3701 goto unlock; 3702 } 3703 folio_zero_range(folio, offset, length); 3704 BUFFER_TRACE(bh, "zeroed end of block"); 3705 3706 if (ext4_should_journal_data(inode)) { 3707 err = ext4_dirty_journalled_data(handle, bh); 3708 } else { 3709 err = 0; 3710 mark_buffer_dirty(bh); 3711 if (ext4_should_order_data(inode)) 3712 err = ext4_jbd2_inode_add_write(handle, inode, from, 3713 length); 3714 } 3715 3716 unlock: 3717 folio_unlock(folio); 3718 folio_put(folio); 3719 return err; 3720 } 3721 3722 /* 3723 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3724 * starting from file offset 'from'. The range to be zero'd must 3725 * be contained with in one block. If the specified range exceeds 3726 * the end of the block it will be shortened to end of the block 3727 * that corresponds to 'from' 3728 */ 3729 static int ext4_block_zero_page_range(handle_t *handle, 3730 struct address_space *mapping, loff_t from, loff_t length) 3731 { 3732 struct inode *inode = mapping->host; 3733 unsigned offset = from & (PAGE_SIZE-1); 3734 unsigned blocksize = inode->i_sb->s_blocksize; 3735 unsigned max = blocksize - (offset & (blocksize - 1)); 3736 3737 /* 3738 * correct length if it does not fall between 3739 * 'from' and the end of the block 3740 */ 3741 if (length > max || length < 0) 3742 length = max; 3743 3744 if (IS_DAX(inode)) { 3745 return dax_zero_range(inode, from, length, NULL, 3746 &ext4_iomap_ops); 3747 } 3748 return __ext4_block_zero_page_range(handle, mapping, from, length); 3749 } 3750 3751 /* 3752 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3753 * up to the end of the block which corresponds to `from'. 3754 * This required during truncate. We need to physically zero the tail end 3755 * of that block so it doesn't yield old data if the file is later grown. 3756 */ 3757 static int ext4_block_truncate_page(handle_t *handle, 3758 struct address_space *mapping, loff_t from) 3759 { 3760 unsigned offset = from & (PAGE_SIZE-1); 3761 unsigned length; 3762 unsigned blocksize; 3763 struct inode *inode = mapping->host; 3764 3765 /* If we are processing an encrypted inode during orphan list handling */ 3766 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3767 return 0; 3768 3769 blocksize = inode->i_sb->s_blocksize; 3770 length = blocksize - (offset & (blocksize - 1)); 3771 3772 return ext4_block_zero_page_range(handle, mapping, from, length); 3773 } 3774 3775 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3776 loff_t lstart, loff_t length) 3777 { 3778 struct super_block *sb = inode->i_sb; 3779 struct address_space *mapping = inode->i_mapping; 3780 unsigned partial_start, partial_end; 3781 ext4_fsblk_t start, end; 3782 loff_t byte_end = (lstart + length - 1); 3783 int err = 0; 3784 3785 partial_start = lstart & (sb->s_blocksize - 1); 3786 partial_end = byte_end & (sb->s_blocksize - 1); 3787 3788 start = lstart >> sb->s_blocksize_bits; 3789 end = byte_end >> sb->s_blocksize_bits; 3790 3791 /* Handle partial zero within the single block */ 3792 if (start == end && 3793 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3794 err = ext4_block_zero_page_range(handle, mapping, 3795 lstart, length); 3796 return err; 3797 } 3798 /* Handle partial zero out on the start of the range */ 3799 if (partial_start) { 3800 err = ext4_block_zero_page_range(handle, mapping, 3801 lstart, sb->s_blocksize); 3802 if (err) 3803 return err; 3804 } 3805 /* Handle partial zero out on the end of the range */ 3806 if (partial_end != sb->s_blocksize - 1) 3807 err = ext4_block_zero_page_range(handle, mapping, 3808 byte_end - partial_end, 3809 partial_end + 1); 3810 return err; 3811 } 3812 3813 int ext4_can_truncate(struct inode *inode) 3814 { 3815 if (S_ISREG(inode->i_mode)) 3816 return 1; 3817 if (S_ISDIR(inode->i_mode)) 3818 return 1; 3819 if (S_ISLNK(inode->i_mode)) 3820 return !ext4_inode_is_fast_symlink(inode); 3821 return 0; 3822 } 3823 3824 /* 3825 * We have to make sure i_disksize gets properly updated before we truncate 3826 * page cache due to hole punching or zero range. Otherwise i_disksize update 3827 * can get lost as it may have been postponed to submission of writeback but 3828 * that will never happen after we truncate page cache. 3829 */ 3830 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3831 loff_t len) 3832 { 3833 handle_t *handle; 3834 int ret; 3835 3836 loff_t size = i_size_read(inode); 3837 3838 WARN_ON(!inode_is_locked(inode)); 3839 if (offset > size || offset + len < size) 3840 return 0; 3841 3842 if (EXT4_I(inode)->i_disksize >= size) 3843 return 0; 3844 3845 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3846 if (IS_ERR(handle)) 3847 return PTR_ERR(handle); 3848 ext4_update_i_disksize(inode, size); 3849 ret = ext4_mark_inode_dirty(handle, inode); 3850 ext4_journal_stop(handle); 3851 3852 return ret; 3853 } 3854 3855 static void ext4_wait_dax_page(struct inode *inode) 3856 { 3857 filemap_invalidate_unlock(inode->i_mapping); 3858 schedule(); 3859 filemap_invalidate_lock(inode->i_mapping); 3860 } 3861 3862 int ext4_break_layouts(struct inode *inode) 3863 { 3864 struct page *page; 3865 int error; 3866 3867 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3868 return -EINVAL; 3869 3870 do { 3871 page = dax_layout_busy_page(inode->i_mapping); 3872 if (!page) 3873 return 0; 3874 3875 error = ___wait_var_event(&page->_refcount, 3876 atomic_read(&page->_refcount) == 1, 3877 TASK_INTERRUPTIBLE, 0, 0, 3878 ext4_wait_dax_page(inode)); 3879 } while (error == 0); 3880 3881 return error; 3882 } 3883 3884 /* 3885 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3886 * associated with the given offset and length 3887 * 3888 * @inode: File inode 3889 * @offset: The offset where the hole will begin 3890 * @len: The length of the hole 3891 * 3892 * Returns: 0 on success or negative on failure 3893 */ 3894 3895 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3896 { 3897 struct inode *inode = file_inode(file); 3898 struct super_block *sb = inode->i_sb; 3899 ext4_lblk_t first_block, stop_block; 3900 struct address_space *mapping = inode->i_mapping; 3901 loff_t first_block_offset, last_block_offset, max_length; 3902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3903 handle_t *handle; 3904 unsigned int credits; 3905 int ret = 0, ret2 = 0; 3906 3907 trace_ext4_punch_hole(inode, offset, length, 0); 3908 3909 /* 3910 * Write out all dirty pages to avoid race conditions 3911 * Then release them. 3912 */ 3913 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3914 ret = filemap_write_and_wait_range(mapping, offset, 3915 offset + length - 1); 3916 if (ret) 3917 return ret; 3918 } 3919 3920 inode_lock(inode); 3921 3922 /* No need to punch hole beyond i_size */ 3923 if (offset >= inode->i_size) 3924 goto out_mutex; 3925 3926 /* 3927 * If the hole extends beyond i_size, set the hole 3928 * to end after the page that contains i_size 3929 */ 3930 if (offset + length > inode->i_size) { 3931 length = inode->i_size + 3932 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3933 offset; 3934 } 3935 3936 /* 3937 * For punch hole the length + offset needs to be within one block 3938 * before last range. Adjust the length if it goes beyond that limit. 3939 */ 3940 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3941 if (offset + length > max_length) 3942 length = max_length - offset; 3943 3944 if (offset & (sb->s_blocksize - 1) || 3945 (offset + length) & (sb->s_blocksize - 1)) { 3946 /* 3947 * Attach jinode to inode for jbd2 if we do any zeroing of 3948 * partial block 3949 */ 3950 ret = ext4_inode_attach_jinode(inode); 3951 if (ret < 0) 3952 goto out_mutex; 3953 3954 } 3955 3956 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3957 inode_dio_wait(inode); 3958 3959 ret = file_modified(file); 3960 if (ret) 3961 goto out_mutex; 3962 3963 /* 3964 * Prevent page faults from reinstantiating pages we have released from 3965 * page cache. 3966 */ 3967 filemap_invalidate_lock(mapping); 3968 3969 ret = ext4_break_layouts(inode); 3970 if (ret) 3971 goto out_dio; 3972 3973 first_block_offset = round_up(offset, sb->s_blocksize); 3974 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3975 3976 /* Now release the pages and zero block aligned part of pages*/ 3977 if (last_block_offset > first_block_offset) { 3978 ret = ext4_update_disksize_before_punch(inode, offset, length); 3979 if (ret) 3980 goto out_dio; 3981 truncate_pagecache_range(inode, first_block_offset, 3982 last_block_offset); 3983 } 3984 3985 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3986 credits = ext4_writepage_trans_blocks(inode); 3987 else 3988 credits = ext4_blocks_for_truncate(inode); 3989 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3990 if (IS_ERR(handle)) { 3991 ret = PTR_ERR(handle); 3992 ext4_std_error(sb, ret); 3993 goto out_dio; 3994 } 3995 3996 ret = ext4_zero_partial_blocks(handle, inode, offset, 3997 length); 3998 if (ret) 3999 goto out_stop; 4000 4001 first_block = (offset + sb->s_blocksize - 1) >> 4002 EXT4_BLOCK_SIZE_BITS(sb); 4003 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4004 4005 /* If there are blocks to remove, do it */ 4006 if (stop_block > first_block) { 4007 4008 down_write(&EXT4_I(inode)->i_data_sem); 4009 ext4_discard_preallocations(inode, 0); 4010 4011 ext4_es_remove_extent(inode, first_block, 4012 stop_block - first_block); 4013 4014 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4015 ret = ext4_ext_remove_space(inode, first_block, 4016 stop_block - 1); 4017 else 4018 ret = ext4_ind_remove_space(handle, inode, first_block, 4019 stop_block); 4020 4021 up_write(&EXT4_I(inode)->i_data_sem); 4022 } 4023 ext4_fc_track_range(handle, inode, first_block, stop_block); 4024 if (IS_SYNC(inode)) 4025 ext4_handle_sync(handle); 4026 4027 inode->i_mtime = inode_set_ctime_current(inode); 4028 ret2 = ext4_mark_inode_dirty(handle, inode); 4029 if (unlikely(ret2)) 4030 ret = ret2; 4031 if (ret >= 0) 4032 ext4_update_inode_fsync_trans(handle, inode, 1); 4033 out_stop: 4034 ext4_journal_stop(handle); 4035 out_dio: 4036 filemap_invalidate_unlock(mapping); 4037 out_mutex: 4038 inode_unlock(inode); 4039 return ret; 4040 } 4041 4042 int ext4_inode_attach_jinode(struct inode *inode) 4043 { 4044 struct ext4_inode_info *ei = EXT4_I(inode); 4045 struct jbd2_inode *jinode; 4046 4047 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4048 return 0; 4049 4050 jinode = jbd2_alloc_inode(GFP_KERNEL); 4051 spin_lock(&inode->i_lock); 4052 if (!ei->jinode) { 4053 if (!jinode) { 4054 spin_unlock(&inode->i_lock); 4055 return -ENOMEM; 4056 } 4057 ei->jinode = jinode; 4058 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4059 jinode = NULL; 4060 } 4061 spin_unlock(&inode->i_lock); 4062 if (unlikely(jinode != NULL)) 4063 jbd2_free_inode(jinode); 4064 return 0; 4065 } 4066 4067 /* 4068 * ext4_truncate() 4069 * 4070 * We block out ext4_get_block() block instantiations across the entire 4071 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4072 * simultaneously on behalf of the same inode. 4073 * 4074 * As we work through the truncate and commit bits of it to the journal there 4075 * is one core, guiding principle: the file's tree must always be consistent on 4076 * disk. We must be able to restart the truncate after a crash. 4077 * 4078 * The file's tree may be transiently inconsistent in memory (although it 4079 * probably isn't), but whenever we close off and commit a journal transaction, 4080 * the contents of (the filesystem + the journal) must be consistent and 4081 * restartable. It's pretty simple, really: bottom up, right to left (although 4082 * left-to-right works OK too). 4083 * 4084 * Note that at recovery time, journal replay occurs *before* the restart of 4085 * truncate against the orphan inode list. 4086 * 4087 * The committed inode has the new, desired i_size (which is the same as 4088 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4089 * that this inode's truncate did not complete and it will again call 4090 * ext4_truncate() to have another go. So there will be instantiated blocks 4091 * to the right of the truncation point in a crashed ext4 filesystem. But 4092 * that's fine - as long as they are linked from the inode, the post-crash 4093 * ext4_truncate() run will find them and release them. 4094 */ 4095 int ext4_truncate(struct inode *inode) 4096 { 4097 struct ext4_inode_info *ei = EXT4_I(inode); 4098 unsigned int credits; 4099 int err = 0, err2; 4100 handle_t *handle; 4101 struct address_space *mapping = inode->i_mapping; 4102 4103 /* 4104 * There is a possibility that we're either freeing the inode 4105 * or it's a completely new inode. In those cases we might not 4106 * have i_rwsem locked because it's not necessary. 4107 */ 4108 if (!(inode->i_state & (I_NEW|I_FREEING))) 4109 WARN_ON(!inode_is_locked(inode)); 4110 trace_ext4_truncate_enter(inode); 4111 4112 if (!ext4_can_truncate(inode)) 4113 goto out_trace; 4114 4115 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4116 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4117 4118 if (ext4_has_inline_data(inode)) { 4119 int has_inline = 1; 4120 4121 err = ext4_inline_data_truncate(inode, &has_inline); 4122 if (err || has_inline) 4123 goto out_trace; 4124 } 4125 4126 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4127 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4128 err = ext4_inode_attach_jinode(inode); 4129 if (err) 4130 goto out_trace; 4131 } 4132 4133 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4134 credits = ext4_writepage_trans_blocks(inode); 4135 else 4136 credits = ext4_blocks_for_truncate(inode); 4137 4138 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4139 if (IS_ERR(handle)) { 4140 err = PTR_ERR(handle); 4141 goto out_trace; 4142 } 4143 4144 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4145 ext4_block_truncate_page(handle, mapping, inode->i_size); 4146 4147 /* 4148 * We add the inode to the orphan list, so that if this 4149 * truncate spans multiple transactions, and we crash, we will 4150 * resume the truncate when the filesystem recovers. It also 4151 * marks the inode dirty, to catch the new size. 4152 * 4153 * Implication: the file must always be in a sane, consistent 4154 * truncatable state while each transaction commits. 4155 */ 4156 err = ext4_orphan_add(handle, inode); 4157 if (err) 4158 goto out_stop; 4159 4160 down_write(&EXT4_I(inode)->i_data_sem); 4161 4162 ext4_discard_preallocations(inode, 0); 4163 4164 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4165 err = ext4_ext_truncate(handle, inode); 4166 else 4167 ext4_ind_truncate(handle, inode); 4168 4169 up_write(&ei->i_data_sem); 4170 if (err) 4171 goto out_stop; 4172 4173 if (IS_SYNC(inode)) 4174 ext4_handle_sync(handle); 4175 4176 out_stop: 4177 /* 4178 * If this was a simple ftruncate() and the file will remain alive, 4179 * then we need to clear up the orphan record which we created above. 4180 * However, if this was a real unlink then we were called by 4181 * ext4_evict_inode(), and we allow that function to clean up the 4182 * orphan info for us. 4183 */ 4184 if (inode->i_nlink) 4185 ext4_orphan_del(handle, inode); 4186 4187 inode->i_mtime = inode_set_ctime_current(inode); 4188 err2 = ext4_mark_inode_dirty(handle, inode); 4189 if (unlikely(err2 && !err)) 4190 err = err2; 4191 ext4_journal_stop(handle); 4192 4193 out_trace: 4194 trace_ext4_truncate_exit(inode); 4195 return err; 4196 } 4197 4198 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4199 { 4200 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4201 return inode_peek_iversion_raw(inode); 4202 else 4203 return inode_peek_iversion(inode); 4204 } 4205 4206 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4207 struct ext4_inode_info *ei) 4208 { 4209 struct inode *inode = &(ei->vfs_inode); 4210 u64 i_blocks = READ_ONCE(inode->i_blocks); 4211 struct super_block *sb = inode->i_sb; 4212 4213 if (i_blocks <= ~0U) { 4214 /* 4215 * i_blocks can be represented in a 32 bit variable 4216 * as multiple of 512 bytes 4217 */ 4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4219 raw_inode->i_blocks_high = 0; 4220 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4221 return 0; 4222 } 4223 4224 /* 4225 * This should never happen since sb->s_maxbytes should not have 4226 * allowed this, sb->s_maxbytes was set according to the huge_file 4227 * feature in ext4_fill_super(). 4228 */ 4229 if (!ext4_has_feature_huge_file(sb)) 4230 return -EFSCORRUPTED; 4231 4232 if (i_blocks <= 0xffffffffffffULL) { 4233 /* 4234 * i_blocks can be represented in a 48 bit variable 4235 * as multiple of 512 bytes 4236 */ 4237 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4238 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4239 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4240 } else { 4241 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4242 /* i_block is stored in file system block size */ 4243 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4244 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4245 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4246 } 4247 return 0; 4248 } 4249 4250 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4251 { 4252 struct ext4_inode_info *ei = EXT4_I(inode); 4253 uid_t i_uid; 4254 gid_t i_gid; 4255 projid_t i_projid; 4256 int block; 4257 int err; 4258 4259 err = ext4_inode_blocks_set(raw_inode, ei); 4260 4261 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4262 i_uid = i_uid_read(inode); 4263 i_gid = i_gid_read(inode); 4264 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4265 if (!(test_opt(inode->i_sb, NO_UID32))) { 4266 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4267 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4268 /* 4269 * Fix up interoperability with old kernels. Otherwise, 4270 * old inodes get re-used with the upper 16 bits of the 4271 * uid/gid intact. 4272 */ 4273 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4274 raw_inode->i_uid_high = 0; 4275 raw_inode->i_gid_high = 0; 4276 } else { 4277 raw_inode->i_uid_high = 4278 cpu_to_le16(high_16_bits(i_uid)); 4279 raw_inode->i_gid_high = 4280 cpu_to_le16(high_16_bits(i_gid)); 4281 } 4282 } else { 4283 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4284 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4285 raw_inode->i_uid_high = 0; 4286 raw_inode->i_gid_high = 0; 4287 } 4288 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4289 4290 EXT4_INODE_SET_CTIME(inode, raw_inode); 4291 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4292 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4293 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4294 4295 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4296 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4297 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4298 raw_inode->i_file_acl_high = 4299 cpu_to_le16(ei->i_file_acl >> 32); 4300 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4301 ext4_isize_set(raw_inode, ei->i_disksize); 4302 4303 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4304 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4305 if (old_valid_dev(inode->i_rdev)) { 4306 raw_inode->i_block[0] = 4307 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4308 raw_inode->i_block[1] = 0; 4309 } else { 4310 raw_inode->i_block[0] = 0; 4311 raw_inode->i_block[1] = 4312 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4313 raw_inode->i_block[2] = 0; 4314 } 4315 } else if (!ext4_has_inline_data(inode)) { 4316 for (block = 0; block < EXT4_N_BLOCKS; block++) 4317 raw_inode->i_block[block] = ei->i_data[block]; 4318 } 4319 4320 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4321 u64 ivers = ext4_inode_peek_iversion(inode); 4322 4323 raw_inode->i_disk_version = cpu_to_le32(ivers); 4324 if (ei->i_extra_isize) { 4325 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4326 raw_inode->i_version_hi = 4327 cpu_to_le32(ivers >> 32); 4328 raw_inode->i_extra_isize = 4329 cpu_to_le16(ei->i_extra_isize); 4330 } 4331 } 4332 4333 if (i_projid != EXT4_DEF_PROJID && 4334 !ext4_has_feature_project(inode->i_sb)) 4335 err = err ?: -EFSCORRUPTED; 4336 4337 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4338 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4339 raw_inode->i_projid = cpu_to_le32(i_projid); 4340 4341 ext4_inode_csum_set(inode, raw_inode, ei); 4342 return err; 4343 } 4344 4345 /* 4346 * ext4_get_inode_loc returns with an extra refcount against the inode's 4347 * underlying buffer_head on success. If we pass 'inode' and it does not 4348 * have in-inode xattr, we have all inode data in memory that is needed 4349 * to recreate the on-disk version of this inode. 4350 */ 4351 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4352 struct inode *inode, struct ext4_iloc *iloc, 4353 ext4_fsblk_t *ret_block) 4354 { 4355 struct ext4_group_desc *gdp; 4356 struct buffer_head *bh; 4357 ext4_fsblk_t block; 4358 struct blk_plug plug; 4359 int inodes_per_block, inode_offset; 4360 4361 iloc->bh = NULL; 4362 if (ino < EXT4_ROOT_INO || 4363 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4364 return -EFSCORRUPTED; 4365 4366 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4367 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4368 if (!gdp) 4369 return -EIO; 4370 4371 /* 4372 * Figure out the offset within the block group inode table 4373 */ 4374 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4375 inode_offset = ((ino - 1) % 4376 EXT4_INODES_PER_GROUP(sb)); 4377 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4378 4379 block = ext4_inode_table(sb, gdp); 4380 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4381 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4382 ext4_error(sb, "Invalid inode table block %llu in " 4383 "block_group %u", block, iloc->block_group); 4384 return -EFSCORRUPTED; 4385 } 4386 block += (inode_offset / inodes_per_block); 4387 4388 bh = sb_getblk(sb, block); 4389 if (unlikely(!bh)) 4390 return -ENOMEM; 4391 if (ext4_buffer_uptodate(bh)) 4392 goto has_buffer; 4393 4394 lock_buffer(bh); 4395 if (ext4_buffer_uptodate(bh)) { 4396 /* Someone brought it uptodate while we waited */ 4397 unlock_buffer(bh); 4398 goto has_buffer; 4399 } 4400 4401 /* 4402 * If we have all information of the inode in memory and this 4403 * is the only valid inode in the block, we need not read the 4404 * block. 4405 */ 4406 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4407 struct buffer_head *bitmap_bh; 4408 int i, start; 4409 4410 start = inode_offset & ~(inodes_per_block - 1); 4411 4412 /* Is the inode bitmap in cache? */ 4413 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4414 if (unlikely(!bitmap_bh)) 4415 goto make_io; 4416 4417 /* 4418 * If the inode bitmap isn't in cache then the 4419 * optimisation may end up performing two reads instead 4420 * of one, so skip it. 4421 */ 4422 if (!buffer_uptodate(bitmap_bh)) { 4423 brelse(bitmap_bh); 4424 goto make_io; 4425 } 4426 for (i = start; i < start + inodes_per_block; i++) { 4427 if (i == inode_offset) 4428 continue; 4429 if (ext4_test_bit(i, bitmap_bh->b_data)) 4430 break; 4431 } 4432 brelse(bitmap_bh); 4433 if (i == start + inodes_per_block) { 4434 struct ext4_inode *raw_inode = 4435 (struct ext4_inode *) (bh->b_data + iloc->offset); 4436 4437 /* all other inodes are free, so skip I/O */ 4438 memset(bh->b_data, 0, bh->b_size); 4439 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4440 ext4_fill_raw_inode(inode, raw_inode); 4441 set_buffer_uptodate(bh); 4442 unlock_buffer(bh); 4443 goto has_buffer; 4444 } 4445 } 4446 4447 make_io: 4448 /* 4449 * If we need to do any I/O, try to pre-readahead extra 4450 * blocks from the inode table. 4451 */ 4452 blk_start_plug(&plug); 4453 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4454 ext4_fsblk_t b, end, table; 4455 unsigned num; 4456 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4457 4458 table = ext4_inode_table(sb, gdp); 4459 /* s_inode_readahead_blks is always a power of 2 */ 4460 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4461 if (table > b) 4462 b = table; 4463 end = b + ra_blks; 4464 num = EXT4_INODES_PER_GROUP(sb); 4465 if (ext4_has_group_desc_csum(sb)) 4466 num -= ext4_itable_unused_count(sb, gdp); 4467 table += num / inodes_per_block; 4468 if (end > table) 4469 end = table; 4470 while (b <= end) 4471 ext4_sb_breadahead_unmovable(sb, b++); 4472 } 4473 4474 /* 4475 * There are other valid inodes in the buffer, this inode 4476 * has in-inode xattrs, or we don't have this inode in memory. 4477 * Read the block from disk. 4478 */ 4479 trace_ext4_load_inode(sb, ino); 4480 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4481 blk_finish_plug(&plug); 4482 wait_on_buffer(bh); 4483 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4484 if (!buffer_uptodate(bh)) { 4485 if (ret_block) 4486 *ret_block = block; 4487 brelse(bh); 4488 return -EIO; 4489 } 4490 has_buffer: 4491 iloc->bh = bh; 4492 return 0; 4493 } 4494 4495 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4496 struct ext4_iloc *iloc) 4497 { 4498 ext4_fsblk_t err_blk = 0; 4499 int ret; 4500 4501 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4502 &err_blk); 4503 4504 if (ret == -EIO) 4505 ext4_error_inode_block(inode, err_blk, EIO, 4506 "unable to read itable block"); 4507 4508 return ret; 4509 } 4510 4511 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4512 { 4513 ext4_fsblk_t err_blk = 0; 4514 int ret; 4515 4516 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4517 &err_blk); 4518 4519 if (ret == -EIO) 4520 ext4_error_inode_block(inode, err_blk, EIO, 4521 "unable to read itable block"); 4522 4523 return ret; 4524 } 4525 4526 4527 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4528 struct ext4_iloc *iloc) 4529 { 4530 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4531 } 4532 4533 static bool ext4_should_enable_dax(struct inode *inode) 4534 { 4535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4536 4537 if (test_opt2(inode->i_sb, DAX_NEVER)) 4538 return false; 4539 if (!S_ISREG(inode->i_mode)) 4540 return false; 4541 if (ext4_should_journal_data(inode)) 4542 return false; 4543 if (ext4_has_inline_data(inode)) 4544 return false; 4545 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4546 return false; 4547 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4548 return false; 4549 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4550 return false; 4551 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4552 return true; 4553 4554 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4555 } 4556 4557 void ext4_set_inode_flags(struct inode *inode, bool init) 4558 { 4559 unsigned int flags = EXT4_I(inode)->i_flags; 4560 unsigned int new_fl = 0; 4561 4562 WARN_ON_ONCE(IS_DAX(inode) && init); 4563 4564 if (flags & EXT4_SYNC_FL) 4565 new_fl |= S_SYNC; 4566 if (flags & EXT4_APPEND_FL) 4567 new_fl |= S_APPEND; 4568 if (flags & EXT4_IMMUTABLE_FL) 4569 new_fl |= S_IMMUTABLE; 4570 if (flags & EXT4_NOATIME_FL) 4571 new_fl |= S_NOATIME; 4572 if (flags & EXT4_DIRSYNC_FL) 4573 new_fl |= S_DIRSYNC; 4574 4575 /* Because of the way inode_set_flags() works we must preserve S_DAX 4576 * here if already set. */ 4577 new_fl |= (inode->i_flags & S_DAX); 4578 if (init && ext4_should_enable_dax(inode)) 4579 new_fl |= S_DAX; 4580 4581 if (flags & EXT4_ENCRYPT_FL) 4582 new_fl |= S_ENCRYPTED; 4583 if (flags & EXT4_CASEFOLD_FL) 4584 new_fl |= S_CASEFOLD; 4585 if (flags & EXT4_VERITY_FL) 4586 new_fl |= S_VERITY; 4587 inode_set_flags(inode, new_fl, 4588 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4589 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4590 } 4591 4592 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4593 struct ext4_inode_info *ei) 4594 { 4595 blkcnt_t i_blocks ; 4596 struct inode *inode = &(ei->vfs_inode); 4597 struct super_block *sb = inode->i_sb; 4598 4599 if (ext4_has_feature_huge_file(sb)) { 4600 /* we are using combined 48 bit field */ 4601 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4602 le32_to_cpu(raw_inode->i_blocks_lo); 4603 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4604 /* i_blocks represent file system block size */ 4605 return i_blocks << (inode->i_blkbits - 9); 4606 } else { 4607 return i_blocks; 4608 } 4609 } else { 4610 return le32_to_cpu(raw_inode->i_blocks_lo); 4611 } 4612 } 4613 4614 static inline int ext4_iget_extra_inode(struct inode *inode, 4615 struct ext4_inode *raw_inode, 4616 struct ext4_inode_info *ei) 4617 { 4618 __le32 *magic = (void *)raw_inode + 4619 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4620 4621 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4622 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4623 int err; 4624 4625 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4626 err = ext4_find_inline_data_nolock(inode); 4627 if (!err && ext4_has_inline_data(inode)) 4628 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4629 return err; 4630 } else 4631 EXT4_I(inode)->i_inline_off = 0; 4632 return 0; 4633 } 4634 4635 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4636 { 4637 if (!ext4_has_feature_project(inode->i_sb)) 4638 return -EOPNOTSUPP; 4639 *projid = EXT4_I(inode)->i_projid; 4640 return 0; 4641 } 4642 4643 /* 4644 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4645 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4646 * set. 4647 */ 4648 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4649 { 4650 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4651 inode_set_iversion_raw(inode, val); 4652 else 4653 inode_set_iversion_queried(inode, val); 4654 } 4655 4656 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4657 4658 { 4659 if (flags & EXT4_IGET_EA_INODE) { 4660 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4661 return "missing EA_INODE flag"; 4662 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4663 EXT4_I(inode)->i_file_acl) 4664 return "ea_inode with extended attributes"; 4665 } else { 4666 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4667 return "unexpected EA_INODE flag"; 4668 } 4669 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4670 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4671 return NULL; 4672 } 4673 4674 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4675 ext4_iget_flags flags, const char *function, 4676 unsigned int line) 4677 { 4678 struct ext4_iloc iloc; 4679 struct ext4_inode *raw_inode; 4680 struct ext4_inode_info *ei; 4681 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4682 struct inode *inode; 4683 const char *err_str; 4684 journal_t *journal = EXT4_SB(sb)->s_journal; 4685 long ret; 4686 loff_t size; 4687 int block; 4688 uid_t i_uid; 4689 gid_t i_gid; 4690 projid_t i_projid; 4691 4692 if ((!(flags & EXT4_IGET_SPECIAL) && 4693 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4694 ino == le32_to_cpu(es->s_usr_quota_inum) || 4695 ino == le32_to_cpu(es->s_grp_quota_inum) || 4696 ino == le32_to_cpu(es->s_prj_quota_inum) || 4697 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4698 (ino < EXT4_ROOT_INO) || 4699 (ino > le32_to_cpu(es->s_inodes_count))) { 4700 if (flags & EXT4_IGET_HANDLE) 4701 return ERR_PTR(-ESTALE); 4702 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4703 "inode #%lu: comm %s: iget: illegal inode #", 4704 ino, current->comm); 4705 return ERR_PTR(-EFSCORRUPTED); 4706 } 4707 4708 inode = iget_locked(sb, ino); 4709 if (!inode) 4710 return ERR_PTR(-ENOMEM); 4711 if (!(inode->i_state & I_NEW)) { 4712 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4713 ext4_error_inode(inode, function, line, 0, err_str); 4714 iput(inode); 4715 return ERR_PTR(-EFSCORRUPTED); 4716 } 4717 return inode; 4718 } 4719 4720 ei = EXT4_I(inode); 4721 iloc.bh = NULL; 4722 4723 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4724 if (ret < 0) 4725 goto bad_inode; 4726 raw_inode = ext4_raw_inode(&iloc); 4727 4728 if ((flags & EXT4_IGET_HANDLE) && 4729 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4730 ret = -ESTALE; 4731 goto bad_inode; 4732 } 4733 4734 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4735 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4736 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4737 EXT4_INODE_SIZE(inode->i_sb) || 4738 (ei->i_extra_isize & 3)) { 4739 ext4_error_inode(inode, function, line, 0, 4740 "iget: bad extra_isize %u " 4741 "(inode size %u)", 4742 ei->i_extra_isize, 4743 EXT4_INODE_SIZE(inode->i_sb)); 4744 ret = -EFSCORRUPTED; 4745 goto bad_inode; 4746 } 4747 } else 4748 ei->i_extra_isize = 0; 4749 4750 /* Precompute checksum seed for inode metadata */ 4751 if (ext4_has_metadata_csum(sb)) { 4752 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4753 __u32 csum; 4754 __le32 inum = cpu_to_le32(inode->i_ino); 4755 __le32 gen = raw_inode->i_generation; 4756 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4757 sizeof(inum)); 4758 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4759 sizeof(gen)); 4760 } 4761 4762 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4763 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4764 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4765 ext4_error_inode_err(inode, function, line, 0, 4766 EFSBADCRC, "iget: checksum invalid"); 4767 ret = -EFSBADCRC; 4768 goto bad_inode; 4769 } 4770 4771 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4772 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4773 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4774 if (ext4_has_feature_project(sb) && 4775 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4776 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4777 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4778 else 4779 i_projid = EXT4_DEF_PROJID; 4780 4781 if (!(test_opt(inode->i_sb, NO_UID32))) { 4782 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4783 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4784 } 4785 i_uid_write(inode, i_uid); 4786 i_gid_write(inode, i_gid); 4787 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4788 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4789 4790 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4791 ei->i_inline_off = 0; 4792 ei->i_dir_start_lookup = 0; 4793 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4794 /* We now have enough fields to check if the inode was active or not. 4795 * This is needed because nfsd might try to access dead inodes 4796 * the test is that same one that e2fsck uses 4797 * NeilBrown 1999oct15 4798 */ 4799 if (inode->i_nlink == 0) { 4800 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4801 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4802 ino != EXT4_BOOT_LOADER_INO) { 4803 /* this inode is deleted or unallocated */ 4804 if (flags & EXT4_IGET_SPECIAL) { 4805 ext4_error_inode(inode, function, line, 0, 4806 "iget: special inode unallocated"); 4807 ret = -EFSCORRUPTED; 4808 } else 4809 ret = -ESTALE; 4810 goto bad_inode; 4811 } 4812 /* The only unlinked inodes we let through here have 4813 * valid i_mode and are being read by the orphan 4814 * recovery code: that's fine, we're about to complete 4815 * the process of deleting those. 4816 * OR it is the EXT4_BOOT_LOADER_INO which is 4817 * not initialized on a new filesystem. */ 4818 } 4819 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4820 ext4_set_inode_flags(inode, true); 4821 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4822 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4823 if (ext4_has_feature_64bit(sb)) 4824 ei->i_file_acl |= 4825 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4826 inode->i_size = ext4_isize(sb, raw_inode); 4827 if ((size = i_size_read(inode)) < 0) { 4828 ext4_error_inode(inode, function, line, 0, 4829 "iget: bad i_size value: %lld", size); 4830 ret = -EFSCORRUPTED; 4831 goto bad_inode; 4832 } 4833 /* 4834 * If dir_index is not enabled but there's dir with INDEX flag set, 4835 * we'd normally treat htree data as empty space. But with metadata 4836 * checksumming that corrupts checksums so forbid that. 4837 */ 4838 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4839 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4840 ext4_error_inode(inode, function, line, 0, 4841 "iget: Dir with htree data on filesystem without dir_index feature."); 4842 ret = -EFSCORRUPTED; 4843 goto bad_inode; 4844 } 4845 ei->i_disksize = inode->i_size; 4846 #ifdef CONFIG_QUOTA 4847 ei->i_reserved_quota = 0; 4848 #endif 4849 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4850 ei->i_block_group = iloc.block_group; 4851 ei->i_last_alloc_group = ~0; 4852 /* 4853 * NOTE! The in-memory inode i_data array is in little-endian order 4854 * even on big-endian machines: we do NOT byteswap the block numbers! 4855 */ 4856 for (block = 0; block < EXT4_N_BLOCKS; block++) 4857 ei->i_data[block] = raw_inode->i_block[block]; 4858 INIT_LIST_HEAD(&ei->i_orphan); 4859 ext4_fc_init_inode(&ei->vfs_inode); 4860 4861 /* 4862 * Set transaction id's of transactions that have to be committed 4863 * to finish f[data]sync. We set them to currently running transaction 4864 * as we cannot be sure that the inode or some of its metadata isn't 4865 * part of the transaction - the inode could have been reclaimed and 4866 * now it is reread from disk. 4867 */ 4868 if (journal) { 4869 transaction_t *transaction; 4870 tid_t tid; 4871 4872 read_lock(&journal->j_state_lock); 4873 if (journal->j_running_transaction) 4874 transaction = journal->j_running_transaction; 4875 else 4876 transaction = journal->j_committing_transaction; 4877 if (transaction) 4878 tid = transaction->t_tid; 4879 else 4880 tid = journal->j_commit_sequence; 4881 read_unlock(&journal->j_state_lock); 4882 ei->i_sync_tid = tid; 4883 ei->i_datasync_tid = tid; 4884 } 4885 4886 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4887 if (ei->i_extra_isize == 0) { 4888 /* The extra space is currently unused. Use it. */ 4889 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4890 ei->i_extra_isize = sizeof(struct ext4_inode) - 4891 EXT4_GOOD_OLD_INODE_SIZE; 4892 } else { 4893 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4894 if (ret) 4895 goto bad_inode; 4896 } 4897 } 4898 4899 EXT4_INODE_GET_CTIME(inode, raw_inode); 4900 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4901 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4902 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4903 4904 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4905 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4906 4907 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4908 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4909 ivers |= 4910 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4911 } 4912 ext4_inode_set_iversion_queried(inode, ivers); 4913 } 4914 4915 ret = 0; 4916 if (ei->i_file_acl && 4917 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4918 ext4_error_inode(inode, function, line, 0, 4919 "iget: bad extended attribute block %llu", 4920 ei->i_file_acl); 4921 ret = -EFSCORRUPTED; 4922 goto bad_inode; 4923 } else if (!ext4_has_inline_data(inode)) { 4924 /* validate the block references in the inode */ 4925 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4926 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4927 (S_ISLNK(inode->i_mode) && 4928 !ext4_inode_is_fast_symlink(inode)))) { 4929 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4930 ret = ext4_ext_check_inode(inode); 4931 else 4932 ret = ext4_ind_check_inode(inode); 4933 } 4934 } 4935 if (ret) 4936 goto bad_inode; 4937 4938 if (S_ISREG(inode->i_mode)) { 4939 inode->i_op = &ext4_file_inode_operations; 4940 inode->i_fop = &ext4_file_operations; 4941 ext4_set_aops(inode); 4942 } else if (S_ISDIR(inode->i_mode)) { 4943 inode->i_op = &ext4_dir_inode_operations; 4944 inode->i_fop = &ext4_dir_operations; 4945 } else if (S_ISLNK(inode->i_mode)) { 4946 /* VFS does not allow setting these so must be corruption */ 4947 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4948 ext4_error_inode(inode, function, line, 0, 4949 "iget: immutable or append flags " 4950 "not allowed on symlinks"); 4951 ret = -EFSCORRUPTED; 4952 goto bad_inode; 4953 } 4954 if (IS_ENCRYPTED(inode)) { 4955 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4956 } else if (ext4_inode_is_fast_symlink(inode)) { 4957 inode->i_link = (char *)ei->i_data; 4958 inode->i_op = &ext4_fast_symlink_inode_operations; 4959 nd_terminate_link(ei->i_data, inode->i_size, 4960 sizeof(ei->i_data) - 1); 4961 } else { 4962 inode->i_op = &ext4_symlink_inode_operations; 4963 } 4964 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4965 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4966 inode->i_op = &ext4_special_inode_operations; 4967 if (raw_inode->i_block[0]) 4968 init_special_inode(inode, inode->i_mode, 4969 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4970 else 4971 init_special_inode(inode, inode->i_mode, 4972 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4973 } else if (ino == EXT4_BOOT_LOADER_INO) { 4974 make_bad_inode(inode); 4975 } else { 4976 ret = -EFSCORRUPTED; 4977 ext4_error_inode(inode, function, line, 0, 4978 "iget: bogus i_mode (%o)", inode->i_mode); 4979 goto bad_inode; 4980 } 4981 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4982 ext4_error_inode(inode, function, line, 0, 4983 "casefold flag without casefold feature"); 4984 ret = -EFSCORRUPTED; 4985 goto bad_inode; 4986 } 4987 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4988 ext4_error_inode(inode, function, line, 0, err_str); 4989 ret = -EFSCORRUPTED; 4990 goto bad_inode; 4991 } 4992 4993 brelse(iloc.bh); 4994 unlock_new_inode(inode); 4995 return inode; 4996 4997 bad_inode: 4998 brelse(iloc.bh); 4999 iget_failed(inode); 5000 return ERR_PTR(ret); 5001 } 5002 5003 static void __ext4_update_other_inode_time(struct super_block *sb, 5004 unsigned long orig_ino, 5005 unsigned long ino, 5006 struct ext4_inode *raw_inode) 5007 { 5008 struct inode *inode; 5009 5010 inode = find_inode_by_ino_rcu(sb, ino); 5011 if (!inode) 5012 return; 5013 5014 if (!inode_is_dirtytime_only(inode)) 5015 return; 5016 5017 spin_lock(&inode->i_lock); 5018 if (inode_is_dirtytime_only(inode)) { 5019 struct ext4_inode_info *ei = EXT4_I(inode); 5020 5021 inode->i_state &= ~I_DIRTY_TIME; 5022 spin_unlock(&inode->i_lock); 5023 5024 spin_lock(&ei->i_raw_lock); 5025 EXT4_INODE_SET_CTIME(inode, raw_inode); 5026 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5027 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5028 ext4_inode_csum_set(inode, raw_inode, ei); 5029 spin_unlock(&ei->i_raw_lock); 5030 trace_ext4_other_inode_update_time(inode, orig_ino); 5031 return; 5032 } 5033 spin_unlock(&inode->i_lock); 5034 } 5035 5036 /* 5037 * Opportunistically update the other time fields for other inodes in 5038 * the same inode table block. 5039 */ 5040 static void ext4_update_other_inodes_time(struct super_block *sb, 5041 unsigned long orig_ino, char *buf) 5042 { 5043 unsigned long ino; 5044 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5045 int inode_size = EXT4_INODE_SIZE(sb); 5046 5047 /* 5048 * Calculate the first inode in the inode table block. Inode 5049 * numbers are one-based. That is, the first inode in a block 5050 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5051 */ 5052 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5053 rcu_read_lock(); 5054 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5055 if (ino == orig_ino) 5056 continue; 5057 __ext4_update_other_inode_time(sb, orig_ino, ino, 5058 (struct ext4_inode *)buf); 5059 } 5060 rcu_read_unlock(); 5061 } 5062 5063 /* 5064 * Post the struct inode info into an on-disk inode location in the 5065 * buffer-cache. This gobbles the caller's reference to the 5066 * buffer_head in the inode location struct. 5067 * 5068 * The caller must have write access to iloc->bh. 5069 */ 5070 static int ext4_do_update_inode(handle_t *handle, 5071 struct inode *inode, 5072 struct ext4_iloc *iloc) 5073 { 5074 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5075 struct ext4_inode_info *ei = EXT4_I(inode); 5076 struct buffer_head *bh = iloc->bh; 5077 struct super_block *sb = inode->i_sb; 5078 int err; 5079 int need_datasync = 0, set_large_file = 0; 5080 5081 spin_lock(&ei->i_raw_lock); 5082 5083 /* 5084 * For fields not tracked in the in-memory inode, initialise them 5085 * to zero for new inodes. 5086 */ 5087 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5088 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5089 5090 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5091 need_datasync = 1; 5092 if (ei->i_disksize > 0x7fffffffULL) { 5093 if (!ext4_has_feature_large_file(sb) || 5094 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5095 set_large_file = 1; 5096 } 5097 5098 err = ext4_fill_raw_inode(inode, raw_inode); 5099 spin_unlock(&ei->i_raw_lock); 5100 if (err) { 5101 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5102 goto out_brelse; 5103 } 5104 5105 if (inode->i_sb->s_flags & SB_LAZYTIME) 5106 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5107 bh->b_data); 5108 5109 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5110 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5111 if (err) 5112 goto out_error; 5113 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5114 if (set_large_file) { 5115 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5116 err = ext4_journal_get_write_access(handle, sb, 5117 EXT4_SB(sb)->s_sbh, 5118 EXT4_JTR_NONE); 5119 if (err) 5120 goto out_error; 5121 lock_buffer(EXT4_SB(sb)->s_sbh); 5122 ext4_set_feature_large_file(sb); 5123 ext4_superblock_csum_set(sb); 5124 unlock_buffer(EXT4_SB(sb)->s_sbh); 5125 ext4_handle_sync(handle); 5126 err = ext4_handle_dirty_metadata(handle, NULL, 5127 EXT4_SB(sb)->s_sbh); 5128 } 5129 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5130 out_error: 5131 ext4_std_error(inode->i_sb, err); 5132 out_brelse: 5133 brelse(bh); 5134 return err; 5135 } 5136 5137 /* 5138 * ext4_write_inode() 5139 * 5140 * We are called from a few places: 5141 * 5142 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5143 * Here, there will be no transaction running. We wait for any running 5144 * transaction to commit. 5145 * 5146 * - Within flush work (sys_sync(), kupdate and such). 5147 * We wait on commit, if told to. 5148 * 5149 * - Within iput_final() -> write_inode_now() 5150 * We wait on commit, if told to. 5151 * 5152 * In all cases it is actually safe for us to return without doing anything, 5153 * because the inode has been copied into a raw inode buffer in 5154 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5155 * writeback. 5156 * 5157 * Note that we are absolutely dependent upon all inode dirtiers doing the 5158 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5159 * which we are interested. 5160 * 5161 * It would be a bug for them to not do this. The code: 5162 * 5163 * mark_inode_dirty(inode) 5164 * stuff(); 5165 * inode->i_size = expr; 5166 * 5167 * is in error because write_inode() could occur while `stuff()' is running, 5168 * and the new i_size will be lost. Plus the inode will no longer be on the 5169 * superblock's dirty inode list. 5170 */ 5171 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5172 { 5173 int err; 5174 5175 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5176 return 0; 5177 5178 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5179 return -EIO; 5180 5181 if (EXT4_SB(inode->i_sb)->s_journal) { 5182 if (ext4_journal_current_handle()) { 5183 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5184 dump_stack(); 5185 return -EIO; 5186 } 5187 5188 /* 5189 * No need to force transaction in WB_SYNC_NONE mode. Also 5190 * ext4_sync_fs() will force the commit after everything is 5191 * written. 5192 */ 5193 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5194 return 0; 5195 5196 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5197 EXT4_I(inode)->i_sync_tid); 5198 } else { 5199 struct ext4_iloc iloc; 5200 5201 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5202 if (err) 5203 return err; 5204 /* 5205 * sync(2) will flush the whole buffer cache. No need to do 5206 * it here separately for each inode. 5207 */ 5208 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5209 sync_dirty_buffer(iloc.bh); 5210 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5211 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5212 "IO error syncing inode"); 5213 err = -EIO; 5214 } 5215 brelse(iloc.bh); 5216 } 5217 return err; 5218 } 5219 5220 /* 5221 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5222 * buffers that are attached to a folio straddling i_size and are undergoing 5223 * commit. In that case we have to wait for commit to finish and try again. 5224 */ 5225 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5226 { 5227 unsigned offset; 5228 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5229 tid_t commit_tid = 0; 5230 int ret; 5231 5232 offset = inode->i_size & (PAGE_SIZE - 1); 5233 /* 5234 * If the folio is fully truncated, we don't need to wait for any commit 5235 * (and we even should not as __ext4_journalled_invalidate_folio() may 5236 * strip all buffers from the folio but keep the folio dirty which can then 5237 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5238 * buffers). Also we don't need to wait for any commit if all buffers in 5239 * the folio remain valid. This is most beneficial for the common case of 5240 * blocksize == PAGESIZE. 5241 */ 5242 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5243 return; 5244 while (1) { 5245 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5246 inode->i_size >> PAGE_SHIFT); 5247 if (IS_ERR(folio)) 5248 return; 5249 ret = __ext4_journalled_invalidate_folio(folio, offset, 5250 folio_size(folio) - offset); 5251 folio_unlock(folio); 5252 folio_put(folio); 5253 if (ret != -EBUSY) 5254 return; 5255 commit_tid = 0; 5256 read_lock(&journal->j_state_lock); 5257 if (journal->j_committing_transaction) 5258 commit_tid = journal->j_committing_transaction->t_tid; 5259 read_unlock(&journal->j_state_lock); 5260 if (commit_tid) 5261 jbd2_log_wait_commit(journal, commit_tid); 5262 } 5263 } 5264 5265 /* 5266 * ext4_setattr() 5267 * 5268 * Called from notify_change. 5269 * 5270 * We want to trap VFS attempts to truncate the file as soon as 5271 * possible. In particular, we want to make sure that when the VFS 5272 * shrinks i_size, we put the inode on the orphan list and modify 5273 * i_disksize immediately, so that during the subsequent flushing of 5274 * dirty pages and freeing of disk blocks, we can guarantee that any 5275 * commit will leave the blocks being flushed in an unused state on 5276 * disk. (On recovery, the inode will get truncated and the blocks will 5277 * be freed, so we have a strong guarantee that no future commit will 5278 * leave these blocks visible to the user.) 5279 * 5280 * Another thing we have to assure is that if we are in ordered mode 5281 * and inode is still attached to the committing transaction, we must 5282 * we start writeout of all the dirty pages which are being truncated. 5283 * This way we are sure that all the data written in the previous 5284 * transaction are already on disk (truncate waits for pages under 5285 * writeback). 5286 * 5287 * Called with inode->i_rwsem down. 5288 */ 5289 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5290 struct iattr *attr) 5291 { 5292 struct inode *inode = d_inode(dentry); 5293 int error, rc = 0; 5294 int orphan = 0; 5295 const unsigned int ia_valid = attr->ia_valid; 5296 bool inc_ivers = true; 5297 5298 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5299 return -EIO; 5300 5301 if (unlikely(IS_IMMUTABLE(inode))) 5302 return -EPERM; 5303 5304 if (unlikely(IS_APPEND(inode) && 5305 (ia_valid & (ATTR_MODE | ATTR_UID | 5306 ATTR_GID | ATTR_TIMES_SET)))) 5307 return -EPERM; 5308 5309 error = setattr_prepare(idmap, dentry, attr); 5310 if (error) 5311 return error; 5312 5313 error = fscrypt_prepare_setattr(dentry, attr); 5314 if (error) 5315 return error; 5316 5317 error = fsverity_prepare_setattr(dentry, attr); 5318 if (error) 5319 return error; 5320 5321 if (is_quota_modification(idmap, inode, attr)) { 5322 error = dquot_initialize(inode); 5323 if (error) 5324 return error; 5325 } 5326 5327 if (i_uid_needs_update(idmap, attr, inode) || 5328 i_gid_needs_update(idmap, attr, inode)) { 5329 handle_t *handle; 5330 5331 /* (user+group)*(old+new) structure, inode write (sb, 5332 * inode block, ? - but truncate inode update has it) */ 5333 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5334 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5335 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5336 if (IS_ERR(handle)) { 5337 error = PTR_ERR(handle); 5338 goto err_out; 5339 } 5340 5341 /* dquot_transfer() calls back ext4_get_inode_usage() which 5342 * counts xattr inode references. 5343 */ 5344 down_read(&EXT4_I(inode)->xattr_sem); 5345 error = dquot_transfer(idmap, inode, attr); 5346 up_read(&EXT4_I(inode)->xattr_sem); 5347 5348 if (error) { 5349 ext4_journal_stop(handle); 5350 return error; 5351 } 5352 /* Update corresponding info in inode so that everything is in 5353 * one transaction */ 5354 i_uid_update(idmap, attr, inode); 5355 i_gid_update(idmap, attr, inode); 5356 error = ext4_mark_inode_dirty(handle, inode); 5357 ext4_journal_stop(handle); 5358 if (unlikely(error)) { 5359 return error; 5360 } 5361 } 5362 5363 if (attr->ia_valid & ATTR_SIZE) { 5364 handle_t *handle; 5365 loff_t oldsize = inode->i_size; 5366 loff_t old_disksize; 5367 int shrink = (attr->ia_size < inode->i_size); 5368 5369 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5371 5372 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5373 return -EFBIG; 5374 } 5375 } 5376 if (!S_ISREG(inode->i_mode)) { 5377 return -EINVAL; 5378 } 5379 5380 if (attr->ia_size == inode->i_size) 5381 inc_ivers = false; 5382 5383 if (shrink) { 5384 if (ext4_should_order_data(inode)) { 5385 error = ext4_begin_ordered_truncate(inode, 5386 attr->ia_size); 5387 if (error) 5388 goto err_out; 5389 } 5390 /* 5391 * Blocks are going to be removed from the inode. Wait 5392 * for dio in flight. 5393 */ 5394 inode_dio_wait(inode); 5395 } 5396 5397 filemap_invalidate_lock(inode->i_mapping); 5398 5399 rc = ext4_break_layouts(inode); 5400 if (rc) { 5401 filemap_invalidate_unlock(inode->i_mapping); 5402 goto err_out; 5403 } 5404 5405 if (attr->ia_size != inode->i_size) { 5406 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5407 if (IS_ERR(handle)) { 5408 error = PTR_ERR(handle); 5409 goto out_mmap_sem; 5410 } 5411 if (ext4_handle_valid(handle) && shrink) { 5412 error = ext4_orphan_add(handle, inode); 5413 orphan = 1; 5414 } 5415 /* 5416 * Update c/mtime on truncate up, ext4_truncate() will 5417 * update c/mtime in shrink case below 5418 */ 5419 if (!shrink) 5420 inode->i_mtime = inode_set_ctime_current(inode); 5421 5422 if (shrink) 5423 ext4_fc_track_range(handle, inode, 5424 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5425 inode->i_sb->s_blocksize_bits, 5426 EXT_MAX_BLOCKS - 1); 5427 else 5428 ext4_fc_track_range( 5429 handle, inode, 5430 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5431 inode->i_sb->s_blocksize_bits, 5432 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5433 inode->i_sb->s_blocksize_bits); 5434 5435 down_write(&EXT4_I(inode)->i_data_sem); 5436 old_disksize = EXT4_I(inode)->i_disksize; 5437 EXT4_I(inode)->i_disksize = attr->ia_size; 5438 rc = ext4_mark_inode_dirty(handle, inode); 5439 if (!error) 5440 error = rc; 5441 /* 5442 * We have to update i_size under i_data_sem together 5443 * with i_disksize to avoid races with writeback code 5444 * running ext4_wb_update_i_disksize(). 5445 */ 5446 if (!error) 5447 i_size_write(inode, attr->ia_size); 5448 else 5449 EXT4_I(inode)->i_disksize = old_disksize; 5450 up_write(&EXT4_I(inode)->i_data_sem); 5451 ext4_journal_stop(handle); 5452 if (error) 5453 goto out_mmap_sem; 5454 if (!shrink) { 5455 pagecache_isize_extended(inode, oldsize, 5456 inode->i_size); 5457 } else if (ext4_should_journal_data(inode)) { 5458 ext4_wait_for_tail_page_commit(inode); 5459 } 5460 } 5461 5462 /* 5463 * Truncate pagecache after we've waited for commit 5464 * in data=journal mode to make pages freeable. 5465 */ 5466 truncate_pagecache(inode, inode->i_size); 5467 /* 5468 * Call ext4_truncate() even if i_size didn't change to 5469 * truncate possible preallocated blocks. 5470 */ 5471 if (attr->ia_size <= oldsize) { 5472 rc = ext4_truncate(inode); 5473 if (rc) 5474 error = rc; 5475 } 5476 out_mmap_sem: 5477 filemap_invalidate_unlock(inode->i_mapping); 5478 } 5479 5480 if (!error) { 5481 if (inc_ivers) 5482 inode_inc_iversion(inode); 5483 setattr_copy(idmap, inode, attr); 5484 mark_inode_dirty(inode); 5485 } 5486 5487 /* 5488 * If the call to ext4_truncate failed to get a transaction handle at 5489 * all, we need to clean up the in-core orphan list manually. 5490 */ 5491 if (orphan && inode->i_nlink) 5492 ext4_orphan_del(NULL, inode); 5493 5494 if (!error && (ia_valid & ATTR_MODE)) 5495 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5496 5497 err_out: 5498 if (error) 5499 ext4_std_error(inode->i_sb, error); 5500 if (!error) 5501 error = rc; 5502 return error; 5503 } 5504 5505 u32 ext4_dio_alignment(struct inode *inode) 5506 { 5507 if (fsverity_active(inode)) 5508 return 0; 5509 if (ext4_should_journal_data(inode)) 5510 return 0; 5511 if (ext4_has_inline_data(inode)) 5512 return 0; 5513 if (IS_ENCRYPTED(inode)) { 5514 if (!fscrypt_dio_supported(inode)) 5515 return 0; 5516 return i_blocksize(inode); 5517 } 5518 return 1; /* use the iomap defaults */ 5519 } 5520 5521 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5522 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5523 { 5524 struct inode *inode = d_inode(path->dentry); 5525 struct ext4_inode *raw_inode; 5526 struct ext4_inode_info *ei = EXT4_I(inode); 5527 unsigned int flags; 5528 5529 if ((request_mask & STATX_BTIME) && 5530 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5531 stat->result_mask |= STATX_BTIME; 5532 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5533 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5534 } 5535 5536 /* 5537 * Return the DIO alignment restrictions if requested. We only return 5538 * this information when requested, since on encrypted files it might 5539 * take a fair bit of work to get if the file wasn't opened recently. 5540 */ 5541 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5542 u32 dio_align = ext4_dio_alignment(inode); 5543 5544 stat->result_mask |= STATX_DIOALIGN; 5545 if (dio_align == 1) { 5546 struct block_device *bdev = inode->i_sb->s_bdev; 5547 5548 /* iomap defaults */ 5549 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5550 stat->dio_offset_align = bdev_logical_block_size(bdev); 5551 } else { 5552 stat->dio_mem_align = dio_align; 5553 stat->dio_offset_align = dio_align; 5554 } 5555 } 5556 5557 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5558 if (flags & EXT4_APPEND_FL) 5559 stat->attributes |= STATX_ATTR_APPEND; 5560 if (flags & EXT4_COMPR_FL) 5561 stat->attributes |= STATX_ATTR_COMPRESSED; 5562 if (flags & EXT4_ENCRYPT_FL) 5563 stat->attributes |= STATX_ATTR_ENCRYPTED; 5564 if (flags & EXT4_IMMUTABLE_FL) 5565 stat->attributes |= STATX_ATTR_IMMUTABLE; 5566 if (flags & EXT4_NODUMP_FL) 5567 stat->attributes |= STATX_ATTR_NODUMP; 5568 if (flags & EXT4_VERITY_FL) 5569 stat->attributes |= STATX_ATTR_VERITY; 5570 5571 stat->attributes_mask |= (STATX_ATTR_APPEND | 5572 STATX_ATTR_COMPRESSED | 5573 STATX_ATTR_ENCRYPTED | 5574 STATX_ATTR_IMMUTABLE | 5575 STATX_ATTR_NODUMP | 5576 STATX_ATTR_VERITY); 5577 5578 generic_fillattr(idmap, request_mask, inode, stat); 5579 return 0; 5580 } 5581 5582 int ext4_file_getattr(struct mnt_idmap *idmap, 5583 const struct path *path, struct kstat *stat, 5584 u32 request_mask, unsigned int query_flags) 5585 { 5586 struct inode *inode = d_inode(path->dentry); 5587 u64 delalloc_blocks; 5588 5589 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5590 5591 /* 5592 * If there is inline data in the inode, the inode will normally not 5593 * have data blocks allocated (it may have an external xattr block). 5594 * Report at least one sector for such files, so tools like tar, rsync, 5595 * others don't incorrectly think the file is completely sparse. 5596 */ 5597 if (unlikely(ext4_has_inline_data(inode))) 5598 stat->blocks += (stat->size + 511) >> 9; 5599 5600 /* 5601 * We can't update i_blocks if the block allocation is delayed 5602 * otherwise in the case of system crash before the real block 5603 * allocation is done, we will have i_blocks inconsistent with 5604 * on-disk file blocks. 5605 * We always keep i_blocks updated together with real 5606 * allocation. But to not confuse with user, stat 5607 * will return the blocks that include the delayed allocation 5608 * blocks for this file. 5609 */ 5610 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5611 EXT4_I(inode)->i_reserved_data_blocks); 5612 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5613 return 0; 5614 } 5615 5616 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5617 int pextents) 5618 { 5619 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5620 return ext4_ind_trans_blocks(inode, lblocks); 5621 return ext4_ext_index_trans_blocks(inode, pextents); 5622 } 5623 5624 /* 5625 * Account for index blocks, block groups bitmaps and block group 5626 * descriptor blocks if modify datablocks and index blocks 5627 * worse case, the indexs blocks spread over different block groups 5628 * 5629 * If datablocks are discontiguous, they are possible to spread over 5630 * different block groups too. If they are contiguous, with flexbg, 5631 * they could still across block group boundary. 5632 * 5633 * Also account for superblock, inode, quota and xattr blocks 5634 */ 5635 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5636 int pextents) 5637 { 5638 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5639 int gdpblocks; 5640 int idxblocks; 5641 int ret; 5642 5643 /* 5644 * How many index blocks need to touch to map @lblocks logical blocks 5645 * to @pextents physical extents? 5646 */ 5647 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5648 5649 ret = idxblocks; 5650 5651 /* 5652 * Now let's see how many group bitmaps and group descriptors need 5653 * to account 5654 */ 5655 groups = idxblocks + pextents; 5656 gdpblocks = groups; 5657 if (groups > ngroups) 5658 groups = ngroups; 5659 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5660 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5661 5662 /* bitmaps and block group descriptor blocks */ 5663 ret += groups + gdpblocks; 5664 5665 /* Blocks for super block, inode, quota and xattr blocks */ 5666 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5667 5668 return ret; 5669 } 5670 5671 /* 5672 * Calculate the total number of credits to reserve to fit 5673 * the modification of a single pages into a single transaction, 5674 * which may include multiple chunks of block allocations. 5675 * 5676 * This could be called via ext4_write_begin() 5677 * 5678 * We need to consider the worse case, when 5679 * one new block per extent. 5680 */ 5681 int ext4_writepage_trans_blocks(struct inode *inode) 5682 { 5683 int bpp = ext4_journal_blocks_per_page(inode); 5684 int ret; 5685 5686 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5687 5688 /* Account for data blocks for journalled mode */ 5689 if (ext4_should_journal_data(inode)) 5690 ret += bpp; 5691 return ret; 5692 } 5693 5694 /* 5695 * Calculate the journal credits for a chunk of data modification. 5696 * 5697 * This is called from DIO, fallocate or whoever calling 5698 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5699 * 5700 * journal buffers for data blocks are not included here, as DIO 5701 * and fallocate do no need to journal data buffers. 5702 */ 5703 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5704 { 5705 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5706 } 5707 5708 /* 5709 * The caller must have previously called ext4_reserve_inode_write(). 5710 * Give this, we know that the caller already has write access to iloc->bh. 5711 */ 5712 int ext4_mark_iloc_dirty(handle_t *handle, 5713 struct inode *inode, struct ext4_iloc *iloc) 5714 { 5715 int err = 0; 5716 5717 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5718 put_bh(iloc->bh); 5719 return -EIO; 5720 } 5721 ext4_fc_track_inode(handle, inode); 5722 5723 /* the do_update_inode consumes one bh->b_count */ 5724 get_bh(iloc->bh); 5725 5726 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5727 err = ext4_do_update_inode(handle, inode, iloc); 5728 put_bh(iloc->bh); 5729 return err; 5730 } 5731 5732 /* 5733 * On success, We end up with an outstanding reference count against 5734 * iloc->bh. This _must_ be cleaned up later. 5735 */ 5736 5737 int 5738 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5739 struct ext4_iloc *iloc) 5740 { 5741 int err; 5742 5743 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5744 return -EIO; 5745 5746 err = ext4_get_inode_loc(inode, iloc); 5747 if (!err) { 5748 BUFFER_TRACE(iloc->bh, "get_write_access"); 5749 err = ext4_journal_get_write_access(handle, inode->i_sb, 5750 iloc->bh, EXT4_JTR_NONE); 5751 if (err) { 5752 brelse(iloc->bh); 5753 iloc->bh = NULL; 5754 } 5755 } 5756 ext4_std_error(inode->i_sb, err); 5757 return err; 5758 } 5759 5760 static int __ext4_expand_extra_isize(struct inode *inode, 5761 unsigned int new_extra_isize, 5762 struct ext4_iloc *iloc, 5763 handle_t *handle, int *no_expand) 5764 { 5765 struct ext4_inode *raw_inode; 5766 struct ext4_xattr_ibody_header *header; 5767 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5768 struct ext4_inode_info *ei = EXT4_I(inode); 5769 int error; 5770 5771 /* this was checked at iget time, but double check for good measure */ 5772 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5773 (ei->i_extra_isize & 3)) { 5774 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5775 ei->i_extra_isize, 5776 EXT4_INODE_SIZE(inode->i_sb)); 5777 return -EFSCORRUPTED; 5778 } 5779 if ((new_extra_isize < ei->i_extra_isize) || 5780 (new_extra_isize < 4) || 5781 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5782 return -EINVAL; /* Should never happen */ 5783 5784 raw_inode = ext4_raw_inode(iloc); 5785 5786 header = IHDR(inode, raw_inode); 5787 5788 /* No extended attributes present */ 5789 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5790 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5791 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5792 EXT4_I(inode)->i_extra_isize, 0, 5793 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5794 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5795 return 0; 5796 } 5797 5798 /* 5799 * We may need to allocate external xattr block so we need quotas 5800 * initialized. Here we can be called with various locks held so we 5801 * cannot affort to initialize quotas ourselves. So just bail. 5802 */ 5803 if (dquot_initialize_needed(inode)) 5804 return -EAGAIN; 5805 5806 /* try to expand with EAs present */ 5807 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5808 raw_inode, handle); 5809 if (error) { 5810 /* 5811 * Inode size expansion failed; don't try again 5812 */ 5813 *no_expand = 1; 5814 } 5815 5816 return error; 5817 } 5818 5819 /* 5820 * Expand an inode by new_extra_isize bytes. 5821 * Returns 0 on success or negative error number on failure. 5822 */ 5823 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5824 unsigned int new_extra_isize, 5825 struct ext4_iloc iloc, 5826 handle_t *handle) 5827 { 5828 int no_expand; 5829 int error; 5830 5831 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5832 return -EOVERFLOW; 5833 5834 /* 5835 * In nojournal mode, we can immediately attempt to expand 5836 * the inode. When journaled, we first need to obtain extra 5837 * buffer credits since we may write into the EA block 5838 * with this same handle. If journal_extend fails, then it will 5839 * only result in a minor loss of functionality for that inode. 5840 * If this is felt to be critical, then e2fsck should be run to 5841 * force a large enough s_min_extra_isize. 5842 */ 5843 if (ext4_journal_extend(handle, 5844 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5845 return -ENOSPC; 5846 5847 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5848 return -EBUSY; 5849 5850 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5851 handle, &no_expand); 5852 ext4_write_unlock_xattr(inode, &no_expand); 5853 5854 return error; 5855 } 5856 5857 int ext4_expand_extra_isize(struct inode *inode, 5858 unsigned int new_extra_isize, 5859 struct ext4_iloc *iloc) 5860 { 5861 handle_t *handle; 5862 int no_expand; 5863 int error, rc; 5864 5865 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5866 brelse(iloc->bh); 5867 return -EOVERFLOW; 5868 } 5869 5870 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5871 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5872 if (IS_ERR(handle)) { 5873 error = PTR_ERR(handle); 5874 brelse(iloc->bh); 5875 return error; 5876 } 5877 5878 ext4_write_lock_xattr(inode, &no_expand); 5879 5880 BUFFER_TRACE(iloc->bh, "get_write_access"); 5881 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5882 EXT4_JTR_NONE); 5883 if (error) { 5884 brelse(iloc->bh); 5885 goto out_unlock; 5886 } 5887 5888 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5889 handle, &no_expand); 5890 5891 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5892 if (!error) 5893 error = rc; 5894 5895 out_unlock: 5896 ext4_write_unlock_xattr(inode, &no_expand); 5897 ext4_journal_stop(handle); 5898 return error; 5899 } 5900 5901 /* 5902 * What we do here is to mark the in-core inode as clean with respect to inode 5903 * dirtiness (it may still be data-dirty). 5904 * This means that the in-core inode may be reaped by prune_icache 5905 * without having to perform any I/O. This is a very good thing, 5906 * because *any* task may call prune_icache - even ones which 5907 * have a transaction open against a different journal. 5908 * 5909 * Is this cheating? Not really. Sure, we haven't written the 5910 * inode out, but prune_icache isn't a user-visible syncing function. 5911 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5912 * we start and wait on commits. 5913 */ 5914 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5915 const char *func, unsigned int line) 5916 { 5917 struct ext4_iloc iloc; 5918 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5919 int err; 5920 5921 might_sleep(); 5922 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5923 err = ext4_reserve_inode_write(handle, inode, &iloc); 5924 if (err) 5925 goto out; 5926 5927 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5928 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5929 iloc, handle); 5930 5931 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5932 out: 5933 if (unlikely(err)) 5934 ext4_error_inode_err(inode, func, line, 0, err, 5935 "mark_inode_dirty error"); 5936 return err; 5937 } 5938 5939 /* 5940 * ext4_dirty_inode() is called from __mark_inode_dirty() 5941 * 5942 * We're really interested in the case where a file is being extended. 5943 * i_size has been changed by generic_commit_write() and we thus need 5944 * to include the updated inode in the current transaction. 5945 * 5946 * Also, dquot_alloc_block() will always dirty the inode when blocks 5947 * are allocated to the file. 5948 * 5949 * If the inode is marked synchronous, we don't honour that here - doing 5950 * so would cause a commit on atime updates, which we don't bother doing. 5951 * We handle synchronous inodes at the highest possible level. 5952 */ 5953 void ext4_dirty_inode(struct inode *inode, int flags) 5954 { 5955 handle_t *handle; 5956 5957 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5958 if (IS_ERR(handle)) 5959 return; 5960 ext4_mark_inode_dirty(handle, inode); 5961 ext4_journal_stop(handle); 5962 } 5963 5964 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5965 { 5966 journal_t *journal; 5967 handle_t *handle; 5968 int err; 5969 int alloc_ctx; 5970 5971 /* 5972 * We have to be very careful here: changing a data block's 5973 * journaling status dynamically is dangerous. If we write a 5974 * data block to the journal, change the status and then delete 5975 * that block, we risk forgetting to revoke the old log record 5976 * from the journal and so a subsequent replay can corrupt data. 5977 * So, first we make sure that the journal is empty and that 5978 * nobody is changing anything. 5979 */ 5980 5981 journal = EXT4_JOURNAL(inode); 5982 if (!journal) 5983 return 0; 5984 if (is_journal_aborted(journal)) 5985 return -EROFS; 5986 5987 /* Wait for all existing dio workers */ 5988 inode_dio_wait(inode); 5989 5990 /* 5991 * Before flushing the journal and switching inode's aops, we have 5992 * to flush all dirty data the inode has. There can be outstanding 5993 * delayed allocations, there can be unwritten extents created by 5994 * fallocate or buffered writes in dioread_nolock mode covered by 5995 * dirty data which can be converted only after flushing the dirty 5996 * data (and journalled aops don't know how to handle these cases). 5997 */ 5998 if (val) { 5999 filemap_invalidate_lock(inode->i_mapping); 6000 err = filemap_write_and_wait(inode->i_mapping); 6001 if (err < 0) { 6002 filemap_invalidate_unlock(inode->i_mapping); 6003 return err; 6004 } 6005 } 6006 6007 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6008 jbd2_journal_lock_updates(journal); 6009 6010 /* 6011 * OK, there are no updates running now, and all cached data is 6012 * synced to disk. We are now in a completely consistent state 6013 * which doesn't have anything in the journal, and we know that 6014 * no filesystem updates are running, so it is safe to modify 6015 * the inode's in-core data-journaling state flag now. 6016 */ 6017 6018 if (val) 6019 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6020 else { 6021 err = jbd2_journal_flush(journal, 0); 6022 if (err < 0) { 6023 jbd2_journal_unlock_updates(journal); 6024 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6025 return err; 6026 } 6027 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6028 } 6029 ext4_set_aops(inode); 6030 6031 jbd2_journal_unlock_updates(journal); 6032 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6033 6034 if (val) 6035 filemap_invalidate_unlock(inode->i_mapping); 6036 6037 /* Finally we can mark the inode as dirty. */ 6038 6039 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6040 if (IS_ERR(handle)) 6041 return PTR_ERR(handle); 6042 6043 ext4_fc_mark_ineligible(inode->i_sb, 6044 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6045 err = ext4_mark_inode_dirty(handle, inode); 6046 ext4_handle_sync(handle); 6047 ext4_journal_stop(handle); 6048 ext4_std_error(inode->i_sb, err); 6049 6050 return err; 6051 } 6052 6053 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6054 struct buffer_head *bh) 6055 { 6056 return !buffer_mapped(bh); 6057 } 6058 6059 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6060 { 6061 struct vm_area_struct *vma = vmf->vma; 6062 struct folio *folio = page_folio(vmf->page); 6063 loff_t size; 6064 unsigned long len; 6065 int err; 6066 vm_fault_t ret; 6067 struct file *file = vma->vm_file; 6068 struct inode *inode = file_inode(file); 6069 struct address_space *mapping = inode->i_mapping; 6070 handle_t *handle; 6071 get_block_t *get_block; 6072 int retries = 0; 6073 6074 if (unlikely(IS_IMMUTABLE(inode))) 6075 return VM_FAULT_SIGBUS; 6076 6077 sb_start_pagefault(inode->i_sb); 6078 file_update_time(vma->vm_file); 6079 6080 filemap_invalidate_lock_shared(mapping); 6081 6082 err = ext4_convert_inline_data(inode); 6083 if (err) 6084 goto out_ret; 6085 6086 /* 6087 * On data journalling we skip straight to the transaction handle: 6088 * there's no delalloc; page truncated will be checked later; the 6089 * early return w/ all buffers mapped (calculates size/len) can't 6090 * be used; and there's no dioread_nolock, so only ext4_get_block. 6091 */ 6092 if (ext4_should_journal_data(inode)) 6093 goto retry_alloc; 6094 6095 /* Delalloc case is easy... */ 6096 if (test_opt(inode->i_sb, DELALLOC) && 6097 !ext4_nonda_switch(inode->i_sb)) { 6098 do { 6099 err = block_page_mkwrite(vma, vmf, 6100 ext4_da_get_block_prep); 6101 } while (err == -ENOSPC && 6102 ext4_should_retry_alloc(inode->i_sb, &retries)); 6103 goto out_ret; 6104 } 6105 6106 folio_lock(folio); 6107 size = i_size_read(inode); 6108 /* Page got truncated from under us? */ 6109 if (folio->mapping != mapping || folio_pos(folio) > size) { 6110 folio_unlock(folio); 6111 ret = VM_FAULT_NOPAGE; 6112 goto out; 6113 } 6114 6115 len = folio_size(folio); 6116 if (folio_pos(folio) + len > size) 6117 len = size - folio_pos(folio); 6118 /* 6119 * Return if we have all the buffers mapped. This avoids the need to do 6120 * journal_start/journal_stop which can block and take a long time 6121 * 6122 * This cannot be done for data journalling, as we have to add the 6123 * inode to the transaction's list to writeprotect pages on commit. 6124 */ 6125 if (folio_buffers(folio)) { 6126 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6127 0, len, NULL, 6128 ext4_bh_unmapped)) { 6129 /* Wait so that we don't change page under IO */ 6130 folio_wait_stable(folio); 6131 ret = VM_FAULT_LOCKED; 6132 goto out; 6133 } 6134 } 6135 folio_unlock(folio); 6136 /* OK, we need to fill the hole... */ 6137 if (ext4_should_dioread_nolock(inode)) 6138 get_block = ext4_get_block_unwritten; 6139 else 6140 get_block = ext4_get_block; 6141 retry_alloc: 6142 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6143 ext4_writepage_trans_blocks(inode)); 6144 if (IS_ERR(handle)) { 6145 ret = VM_FAULT_SIGBUS; 6146 goto out; 6147 } 6148 /* 6149 * Data journalling can't use block_page_mkwrite() because it 6150 * will set_buffer_dirty() before do_journal_get_write_access() 6151 * thus might hit warning messages for dirty metadata buffers. 6152 */ 6153 if (!ext4_should_journal_data(inode)) { 6154 err = block_page_mkwrite(vma, vmf, get_block); 6155 } else { 6156 folio_lock(folio); 6157 size = i_size_read(inode); 6158 /* Page got truncated from under us? */ 6159 if (folio->mapping != mapping || folio_pos(folio) > size) { 6160 ret = VM_FAULT_NOPAGE; 6161 goto out_error; 6162 } 6163 6164 len = folio_size(folio); 6165 if (folio_pos(folio) + len > size) 6166 len = size - folio_pos(folio); 6167 6168 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6169 if (!err) { 6170 ret = VM_FAULT_SIGBUS; 6171 if (ext4_journal_folio_buffers(handle, folio, len)) 6172 goto out_error; 6173 } else { 6174 folio_unlock(folio); 6175 } 6176 } 6177 ext4_journal_stop(handle); 6178 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6179 goto retry_alloc; 6180 out_ret: 6181 ret = vmf_fs_error(err); 6182 out: 6183 filemap_invalidate_unlock_shared(mapping); 6184 sb_end_pagefault(inode->i_sb); 6185 return ret; 6186 out_error: 6187 folio_unlock(folio); 6188 ext4_journal_stop(handle); 6189 goto out; 6190 } 6191