xref: /openbmc/linux/fs/ext4/inode.c (revision 76c47183224c86e4011048b80f0e2d0d166f01c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 		    inode->i_data.nrpages) {
205 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 
208 			jbd2_complete_transaction(journal, commit_tid);
209 			filemap_write_and_wait(&inode->i_data);
210 		}
211 		truncate_inode_pages_final(&inode->i_data);
212 
213 		goto no_delete;
214 	}
215 
216 	if (is_bad_inode(inode))
217 		goto no_delete;
218 	dquot_initialize(inode);
219 
220 	if (ext4_should_order_data(inode))
221 		ext4_begin_ordered_truncate(inode, 0);
222 	truncate_inode_pages_final(&inode->i_data);
223 
224 	/*
225 	 * For inodes with journalled data, transaction commit could have
226 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 	 * flag but we still need to remove the inode from the writeback lists.
228 	 */
229 	if (!list_empty_careful(&inode->i_io_list)) {
230 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 		inode_io_list_del(inode);
232 	}
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it. When we are in a running transaction though,
237 	 * we are already protected against freezing and we cannot grab further
238 	 * protection due to lock ordering constraints.
239 	 */
240 	if (!ext4_journal_current_handle()) {
241 		sb_start_intwrite(inode->i_sb);
242 		freeze_protected = true;
243 	}
244 
245 	if (!IS_NOQUOTA(inode))
246 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247 
248 	/*
249 	 * Block bitmap, group descriptor, and inode are accounted in both
250 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 	 */
252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 	if (IS_ERR(handle)) {
255 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 		/*
257 		 * If we're going to skip the normal cleanup, we still need to
258 		 * make sure that the in-core orphan linked list is properly
259 		 * cleaned up.
260 		 */
261 		ext4_orphan_del(NULL, inode);
262 		if (freeze_protected)
263 			sb_end_intwrite(inode->i_sb);
264 		goto no_delete;
265 	}
266 
267 	if (IS_SYNC(inode))
268 		ext4_handle_sync(handle);
269 
270 	/*
271 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 	 * special handling of symlinks here because i_size is used to
273 	 * determine whether ext4_inode_info->i_data contains symlink data or
274 	 * block mappings. Setting i_size to 0 will remove its fast symlink
275 	 * status. Erase i_data so that it becomes a valid empty block map.
276 	 */
277 	if (ext4_inode_is_fast_symlink(inode))
278 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 	inode->i_size = 0;
280 	err = ext4_mark_inode_dirty(handle, inode);
281 	if (err) {
282 		ext4_warning(inode->i_sb,
283 			     "couldn't mark inode dirty (err %d)", err);
284 		goto stop_handle;
285 	}
286 	if (inode->i_blocks) {
287 		err = ext4_truncate(inode);
288 		if (err) {
289 			ext4_error_err(inode->i_sb, -err,
290 				       "couldn't truncate inode %lu (err %d)",
291 				       inode->i_ino, err);
292 			goto stop_handle;
293 		}
294 	}
295 
296 	/* Remove xattr references. */
297 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 				      extra_credits);
299 	if (err) {
300 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 		ext4_journal_stop(handle);
303 		ext4_orphan_del(NULL, inode);
304 		if (freeze_protected)
305 			sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	if (freeze_protected)
335 		sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
342 }
343 
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347 	return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350 
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356 					int used, int quota_claim)
357 {
358 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 
361 	spin_lock(&ei->i_block_reservation_lock);
362 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 	if (unlikely(used > ei->i_reserved_data_blocks)) {
364 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 			 "with only %d reserved data blocks",
366 			 __func__, inode->i_ino, used,
367 			 ei->i_reserved_data_blocks);
368 		WARN_ON(1);
369 		used = ei->i_reserved_data_blocks;
370 	}
371 
372 	/* Update per-inode reservations */
373 	ei->i_reserved_data_blocks -= used;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 
376 	spin_unlock(&ei->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    !inode_is_open_for_write(inode))
397 		ext4_discard_preallocations(inode, 0);
398 }
399 
400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (ext4_has_feature_journal(inode->i_sb) &&
405 	    (inode->i_ino ==
406 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 		return 0;
408 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 		ext4_error_inode(inode, func, line, map->m_pblk,
410 				 "lblock %lu mapped to illegal pblock %llu "
411 				 "(length %d)", (unsigned long) map->m_lblk,
412 				 map->m_pblk, map->m_len);
413 		return -EFSCORRUPTED;
414 	}
415 	return 0;
416 }
417 
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 		       ext4_lblk_t len)
420 {
421 	int ret;
422 
423 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 
426 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 	if (ret > 0)
428 		ret = 0;
429 
430 	return ret;
431 }
432 
433 #define check_block_validity(inode, map)	\
434 	__check_block_validity((inode), __func__, __LINE__, (map))
435 
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 				       struct inode *inode,
439 				       struct ext4_map_blocks *es_map,
440 				       struct ext4_map_blocks *map,
441 				       int flags)
442 {
443 	int retval;
444 
445 	map->m_flags = 0;
446 	/*
447 	 * There is a race window that the result is not the same.
448 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
449 	 * is that we lookup a block mapping in extent status tree with
450 	 * out taking i_data_sem.  So at the time the unwritten extent
451 	 * could be converted.
452 	 */
453 	down_read(&EXT4_I(inode)->i_data_sem);
454 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 	}
459 	up_read((&EXT4_I(inode)->i_data_sem));
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 	int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 	struct ext4_map_blocks orig_map;
509 
510 	memcpy(&orig_map, map, sizeof(*map));
511 #endif
512 
513 	map->m_flags = 0;
514 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 		  flags, map->m_len, (unsigned long) map->m_lblk);
516 
517 	/*
518 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 	 */
520 	if (unlikely(map->m_len > INT_MAX))
521 		map->m_len = INT_MAX;
522 
523 	/* We can handle the block number less than EXT_MAX_BLOCKS */
524 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 		return -EFSCORRUPTED;
526 
527 	/* Lookup extent status tree firstly */
528 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 			map->m_pblk = ext4_es_pblock(&es) +
532 					map->m_lblk - es.es_lblk;
533 			map->m_flags |= ext4_es_is_written(&es) ?
534 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 			retval = es.es_len - (map->m_lblk - es.es_lblk);
536 			if (retval > map->m_len)
537 				retval = map->m_len;
538 			map->m_len = retval;
539 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 			map->m_pblk = 0;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 			retval = 0;
546 		} else {
547 			BUG();
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	down_read(&EXT4_I(inode)->i_data_sem);
561 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 	} else {
564 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    !(status & EXTENT_STATUS_WRITTEN) &&
581 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 				       map->m_lblk + map->m_len - 1))
583 			status |= EXTENT_STATUS_DELAYED;
584 		ret = ext4_es_insert_extent(inode, map->m_lblk,
585 					    map->m_len, map->m_pblk, status);
586 		if (ret < 0)
587 			retval = ret;
588 	}
589 	up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to unwritten extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_block()
628 	 * with create == 1 flag.
629 	 */
630 	down_write(&EXT4_I(inode)->i_data_sem);
631 
632 	/*
633 	 * We need to check for EXT4 here because migrate
634 	 * could have changed the inode type in between
635 	 */
636 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 	} else {
639 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 
641 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 			/*
643 			 * We allocated new blocks which will result in
644 			 * i_data's format changing.  Force the migrate
645 			 * to fail by clearing migrate flags
646 			 */
647 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648 		}
649 
650 		/*
651 		 * Update reserved blocks/metadata blocks after successful
652 		 * block allocation which had been deferred till now. We don't
653 		 * support fallocate for non extent files. So we can update
654 		 * reserve space here.
655 		 */
656 		if ((retval > 0) &&
657 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 			ext4_da_update_reserve_space(inode, retval, 1);
659 	}
660 
661 	if (retval > 0) {
662 		unsigned int status;
663 
664 		if (unlikely(retval != map->m_len)) {
665 			ext4_warning(inode->i_sb,
666 				     "ES len assertion failed for inode "
667 				     "%lu: retval %d != map->m_len %d",
668 				     inode->i_ino, retval, map->m_len);
669 			WARN_ON(1);
670 		}
671 
672 		/*
673 		 * We have to zeroout blocks before inserting them into extent
674 		 * status tree. Otherwise someone could look them up there and
675 		 * use them before they are really zeroed. We also have to
676 		 * unmap metadata before zeroing as otherwise writeback can
677 		 * overwrite zeros with stale data from block device.
678 		 */
679 		if (flags & EXT4_GET_BLOCKS_ZERO &&
680 		    map->m_flags & EXT4_MAP_MAPPED &&
681 		    map->m_flags & EXT4_MAP_NEW) {
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 				       map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			loff_t start_byte =
732 				(loff_t)map->m_lblk << inode->i_blkbits;
733 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 
735 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 				ret = ext4_jbd2_inode_add_wait(handle, inode,
737 						start_byte, length);
738 			else
739 				ret = ext4_jbd2_inode_add_write(handle, inode,
740 						start_byte, length);
741 			if (ret)
742 				return ret;
743 		}
744 		ext4_fc_track_range(handle, inode, map->m_lblk,
745 			    map->m_lblk + map->m_len - 1);
746 	}
747 
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	do {
775 		old_state = READ_ONCE(bh->b_state);
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(
778 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780 
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 			   struct buffer_head *bh, int flags)
783 {
784 	struct ext4_map_blocks map;
785 	int ret = 0;
786 
787 	if (ext4_has_inline_data(inode))
788 		return -ERANGE;
789 
790 	map.m_lblk = iblock;
791 	map.m_len = bh->b_size >> inode->i_blkbits;
792 
793 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 			      flags);
795 	if (ret > 0) {
796 		map_bh(bh, inode->i_sb, map.m_pblk);
797 		ext4_update_bh_state(bh, map.m_flags);
798 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 		ret = 0;
800 	} else if (ret == 0) {
801 		/* hole case, need to fill in bh->b_size */
802 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 	}
804 	return ret;
805 }
806 
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 		   struct buffer_head *bh, int create)
809 {
810 	return _ext4_get_block(inode, iblock, bh,
811 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813 
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 			     struct buffer_head *bh_result, int create)
821 {
822 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 		   inode->i_ino, create);
824 	return _ext4_get_block(inode, iblock, bh_result,
825 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	int err;
841 
842 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 		    || handle != NULL || create == 0);
844 
845 	map.m_lblk = block;
846 	map.m_len = 1;
847 	err = ext4_map_blocks(handle, inode, &map, map_flags);
848 
849 	if (err == 0)
850 		return create ? ERR_PTR(-ENOSPC) : NULL;
851 	if (err < 0)
852 		return ERR_PTR(err);
853 
854 	bh = sb_getblk(inode->i_sb, map.m_pblk);
855 	if (unlikely(!bh))
856 		return ERR_PTR(-ENOMEM);
857 	if (map.m_flags & EXT4_MAP_NEW) {
858 		ASSERT(create != 0);
859 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 			    || (handle != NULL));
861 
862 		/*
863 		 * Now that we do not always journal data, we should
864 		 * keep in mind whether this should always journal the
865 		 * new buffer as metadata.  For now, regular file
866 		 * writes use ext4_get_block instead, so it's not a
867 		 * problem.
868 		 */
869 		lock_buffer(bh);
870 		BUFFER_TRACE(bh, "call get_create_access");
871 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872 						     EXT4_JTR_NONE);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle, struct inode *inode,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, inode, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032 					    EXT4_JTR_NONE);
1033 	if (!ret && dirty)
1034 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035 	return ret;
1036 }
1037 
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 				  get_block_t *get_block)
1041 {
1042 	unsigned from = pos & (PAGE_SIZE - 1);
1043 	unsigned to = from + len;
1044 	struct inode *inode = page->mapping->host;
1045 	unsigned block_start, block_end;
1046 	sector_t block;
1047 	int err = 0;
1048 	unsigned blocksize = inode->i_sb->s_blocksize;
1049 	unsigned bbits;
1050 	struct buffer_head *bh, *head, *wait[2];
1051 	int nr_wait = 0;
1052 	int i;
1053 
1054 	BUG_ON(!PageLocked(page));
1055 	BUG_ON(from > PAGE_SIZE);
1056 	BUG_ON(to > PAGE_SIZE);
1057 	BUG_ON(from > to);
1058 
1059 	if (!page_has_buffers(page))
1060 		create_empty_buffers(page, blocksize, 0);
1061 	head = page_buffers(page);
1062 	bbits = ilog2(blocksize);
1063 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064 
1065 	for (bh = head, block_start = 0; bh != head || !block_start;
1066 	    block++, block_start = block_end, bh = bh->b_this_page) {
1067 		block_end = block_start + blocksize;
1068 		if (block_end <= from || block_start >= to) {
1069 			if (PageUptodate(page)) {
1070 				set_buffer_uptodate(bh);
1071 			}
1072 			continue;
1073 		}
1074 		if (buffer_new(bh))
1075 			clear_buffer_new(bh);
1076 		if (!buffer_mapped(bh)) {
1077 			WARN_ON(bh->b_size != blocksize);
1078 			err = get_block(inode, block, bh, 1);
1079 			if (err)
1080 				break;
1081 			if (buffer_new(bh)) {
1082 				if (PageUptodate(page)) {
1083 					clear_buffer_new(bh);
1084 					set_buffer_uptodate(bh);
1085 					mark_buffer_dirty(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					zero_user_segments(page, to, block_end,
1090 							   block_start, from);
1091 				continue;
1092 			}
1093 		}
1094 		if (PageUptodate(page)) {
1095 			set_buffer_uptodate(bh);
1096 			continue;
1097 		}
1098 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 		    !buffer_unwritten(bh) &&
1100 		    (block_start < from || block_end > to)) {
1101 			ext4_read_bh_lock(bh, 0, false);
1102 			wait[nr_wait++] = bh;
1103 		}
1104 	}
1105 	/*
1106 	 * If we issued read requests, let them complete.
1107 	 */
1108 	for (i = 0; i < nr_wait; i++) {
1109 		wait_on_buffer(wait[i]);
1110 		if (!buffer_uptodate(wait[i]))
1111 			err = -EIO;
1112 	}
1113 	if (unlikely(err)) {
1114 		page_zero_new_buffers(page, from, to);
1115 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 		for (i = 0; i < nr_wait; i++) {
1117 			int err2;
1118 
1119 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 								bh_offset(wait[i]));
1121 			if (err2) {
1122 				clear_buffer_uptodate(wait[i]);
1123 				err = err2;
1124 			}
1125 		}
1126 	}
1127 
1128 	return err;
1129 }
1130 #endif
1131 
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 			    loff_t pos, unsigned len, unsigned flags,
1134 			    struct page **pagep, void **fsdata)
1135 {
1136 	struct inode *inode = mapping->host;
1137 	int ret, needed_blocks;
1138 	handle_t *handle;
1139 	int retries = 0;
1140 	struct page *page;
1141 	pgoff_t index;
1142 	unsigned from, to;
1143 
1144 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 		return -EIO;
1146 
1147 	trace_ext4_write_begin(inode, pos, len, flags);
1148 	/*
1149 	 * Reserve one block more for addition to orphan list in case
1150 	 * we allocate blocks but write fails for some reason
1151 	 */
1152 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 	index = pos >> PAGE_SHIFT;
1154 	from = pos & (PAGE_SIZE - 1);
1155 	to = from + len;
1156 
1157 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 						    flags, pagep);
1160 		if (ret < 0)
1161 			return ret;
1162 		if (ret == 1)
1163 			return 0;
1164 	}
1165 
1166 	/*
1167 	 * grab_cache_page_write_begin() can take a long time if the
1168 	 * system is thrashing due to memory pressure, or if the page
1169 	 * is being written back.  So grab it first before we start
1170 	 * the transaction handle.  This also allows us to allocate
1171 	 * the page (if needed) without using GFP_NOFS.
1172 	 */
1173 retry_grab:
1174 	page = grab_cache_page_write_begin(mapping, index, flags);
1175 	if (!page)
1176 		return -ENOMEM;
1177 	unlock_page(page);
1178 
1179 retry_journal:
1180 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 	if (IS_ERR(handle)) {
1182 		put_page(page);
1183 		return PTR_ERR(handle);
1184 	}
1185 
1186 	lock_page(page);
1187 	if (page->mapping != mapping) {
1188 		/* The page got truncated from under us */
1189 		unlock_page(page);
1190 		put_page(page);
1191 		ext4_journal_stop(handle);
1192 		goto retry_grab;
1193 	}
1194 	/* In case writeback began while the page was unlocked */
1195 	wait_for_stable_page(page);
1196 
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 	if (ext4_should_dioread_nolock(inode))
1199 		ret = ext4_block_write_begin(page, pos, len,
1200 					     ext4_get_block_unwritten);
1201 	else
1202 		ret = ext4_block_write_begin(page, pos, len,
1203 					     ext4_get_block);
1204 #else
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = __block_write_begin(page, pos, len,
1207 					  ext4_get_block_unwritten);
1208 	else
1209 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 	if (!ret && ext4_should_journal_data(inode)) {
1212 		ret = ext4_walk_page_buffers(handle, inode,
1213 					     page_buffers(page), from, to, NULL,
1214 					     do_journal_get_write_access);
1215 	}
1216 
1217 	if (ret) {
1218 		bool extended = (pos + len > inode->i_size) &&
1219 				!ext4_verity_in_progress(inode);
1220 
1221 		unlock_page(page);
1222 		/*
1223 		 * __block_write_begin may have instantiated a few blocks
1224 		 * outside i_size.  Trim these off again. Don't need
1225 		 * i_size_read because we hold i_mutex.
1226 		 *
1227 		 * Add inode to orphan list in case we crash before
1228 		 * truncate finishes
1229 		 */
1230 		if (extended && ext4_can_truncate(inode))
1231 			ext4_orphan_add(handle, inode);
1232 
1233 		ext4_journal_stop(handle);
1234 		if (extended) {
1235 			ext4_truncate_failed_write(inode);
1236 			/*
1237 			 * If truncate failed early the inode might
1238 			 * still be on the orphan list; we need to
1239 			 * make sure the inode is removed from the
1240 			 * orphan list in that case.
1241 			 */
1242 			if (inode->i_nlink)
1243 				ext4_orphan_del(NULL, inode);
1244 		}
1245 
1246 		if (ret == -ENOSPC &&
1247 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1248 			goto retry_journal;
1249 		put_page(page);
1250 		return ret;
1251 	}
1252 	*pagep = page;
1253 	return ret;
1254 }
1255 
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 			struct buffer_head *bh)
1259 {
1260 	int ret;
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 	clear_buffer_meta(bh);
1266 	clear_buffer_prio(bh);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278 			  struct address_space *mapping,
1279 			  loff_t pos, unsigned len, unsigned copied,
1280 			  struct page *page, void *fsdata)
1281 {
1282 	handle_t *handle = ext4_journal_current_handle();
1283 	struct inode *inode = mapping->host;
1284 	loff_t old_size = inode->i_size;
1285 	int ret = 0, ret2;
1286 	int i_size_changed = 0;
1287 	bool verity = ext4_verity_in_progress(inode);
1288 
1289 	trace_ext4_write_end(inode, pos, len, copied);
1290 
1291 	if (ext4_has_inline_data(inode))
1292 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293 
1294 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295 	/*
1296 	 * it's important to update i_size while still holding page lock:
1297 	 * page writeout could otherwise come in and zero beyond i_size.
1298 	 *
1299 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300 	 * blocks are being written past EOF, so skip the i_size update.
1301 	 */
1302 	if (!verity)
1303 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304 	unlock_page(page);
1305 	put_page(page);
1306 
1307 	if (old_size < pos && !verity)
1308 		pagecache_isize_extended(inode, old_size, pos);
1309 	/*
1310 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1311 	 * makes the holding time of page lock longer. Second, it forces lock
1312 	 * ordering of page lock and transaction start for journaling
1313 	 * filesystems.
1314 	 */
1315 	if (i_size_changed)
1316 		ret = ext4_mark_inode_dirty(handle, inode);
1317 
1318 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319 		/* if we have allocated more blocks and copied
1320 		 * less. We will have blocks allocated outside
1321 		 * inode->i_size. So truncate them
1322 		 */
1323 		ext4_orphan_add(handle, inode);
1324 
1325 	ret2 = ext4_journal_stop(handle);
1326 	if (!ret)
1327 		ret = ret2;
1328 
1329 	if (pos + len > inode->i_size && !verity) {
1330 		ext4_truncate_failed_write(inode);
1331 		/*
1332 		 * If truncate failed early the inode might still be
1333 		 * on the orphan list; we need to make sure the inode
1334 		 * is removed from the orphan list in that case.
1335 		 */
1336 		if (inode->i_nlink)
1337 			ext4_orphan_del(NULL, inode);
1338 	}
1339 
1340 	return ret ? ret : copied;
1341 }
1342 
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349 					    struct inode *inode,
1350 					    struct page *page,
1351 					    unsigned from, unsigned to)
1352 {
1353 	unsigned int block_start = 0, block_end;
1354 	struct buffer_head *head, *bh;
1355 
1356 	bh = head = page_buffers(page);
1357 	do {
1358 		block_end = block_start + bh->b_size;
1359 		if (buffer_new(bh)) {
1360 			if (block_end > from && block_start < to) {
1361 				if (!PageUptodate(page)) {
1362 					unsigned start, size;
1363 
1364 					start = max(from, block_start);
1365 					size = min(to, block_end) - start;
1366 
1367 					zero_user(page, start, size);
1368 					write_end_fn(handle, inode, bh);
1369 				}
1370 				clear_buffer_new(bh);
1371 			}
1372 		}
1373 		block_start = block_end;
1374 		bh = bh->b_this_page;
1375 	} while (bh != head);
1376 }
1377 
1378 static int ext4_journalled_write_end(struct file *file,
1379 				     struct address_space *mapping,
1380 				     loff_t pos, unsigned len, unsigned copied,
1381 				     struct page *page, void *fsdata)
1382 {
1383 	handle_t *handle = ext4_journal_current_handle();
1384 	struct inode *inode = mapping->host;
1385 	loff_t old_size = inode->i_size;
1386 	int ret = 0, ret2;
1387 	int partial = 0;
1388 	unsigned from, to;
1389 	int size_changed = 0;
1390 	bool verity = ext4_verity_in_progress(inode);
1391 
1392 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1393 	from = pos & (PAGE_SIZE - 1);
1394 	to = from + len;
1395 
1396 	BUG_ON(!ext4_handle_valid(handle));
1397 
1398 	if (ext4_has_inline_data(inode))
1399 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400 
1401 	if (unlikely(copied < len) && !PageUptodate(page)) {
1402 		copied = 0;
1403 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404 	} else {
1405 		if (unlikely(copied < len))
1406 			ext4_journalled_zero_new_buffers(handle, inode, page,
1407 							 from + copied, to);
1408 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409 					     from, from + copied, &partial,
1410 					     write_end_fn);
1411 		if (!partial)
1412 			SetPageUptodate(page);
1413 	}
1414 	if (!verity)
1415 		size_changed = ext4_update_inode_size(inode, pos + copied);
1416 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418 	unlock_page(page);
1419 	put_page(page);
1420 
1421 	if (old_size < pos && !verity)
1422 		pagecache_isize_extended(inode, old_size, pos);
1423 
1424 	if (size_changed) {
1425 		ret2 = ext4_mark_inode_dirty(handle, inode);
1426 		if (!ret)
1427 			ret = ret2;
1428 	}
1429 
1430 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431 		/* if we have allocated more blocks and copied
1432 		 * less. We will have blocks allocated outside
1433 		 * inode->i_size. So truncate them
1434 		 */
1435 		ext4_orphan_add(handle, inode);
1436 
1437 	ret2 = ext4_journal_stop(handle);
1438 	if (!ret)
1439 		ret = ret2;
1440 	if (pos + len > inode->i_size && !verity) {
1441 		ext4_truncate_failed_write(inode);
1442 		/*
1443 		 * If truncate failed early the inode might still be
1444 		 * on the orphan list; we need to make sure the inode
1445 		 * is removed from the orphan list in that case.
1446 		 */
1447 		if (inode->i_nlink)
1448 			ext4_orphan_del(NULL, inode);
1449 	}
1450 
1451 	return ret ? ret : copied;
1452 }
1453 
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460 	struct ext4_inode_info *ei = EXT4_I(inode);
1461 	int ret;
1462 
1463 	/*
1464 	 * We will charge metadata quota at writeout time; this saves
1465 	 * us from metadata over-estimation, though we may go over by
1466 	 * a small amount in the end.  Here we just reserve for data.
1467 	 */
1468 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469 	if (ret)
1470 		return ret;
1471 
1472 	spin_lock(&ei->i_block_reservation_lock);
1473 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474 		spin_unlock(&ei->i_block_reservation_lock);
1475 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476 		return -ENOSPC;
1477 	}
1478 	ei->i_reserved_data_blocks++;
1479 	trace_ext4_da_reserve_space(inode);
1480 	spin_unlock(&ei->i_block_reservation_lock);
1481 
1482 	return 0;       /* success */
1483 }
1484 
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 
1490 	if (!to_free)
1491 		return;		/* Nothing to release, exit */
1492 
1493 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494 
1495 	trace_ext4_da_release_space(inode, to_free);
1496 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497 		/*
1498 		 * if there aren't enough reserved blocks, then the
1499 		 * counter is messed up somewhere.  Since this
1500 		 * function is called from invalidate page, it's
1501 		 * harmless to return without any action.
1502 		 */
1503 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504 			 "ino %lu, to_free %d with only %d reserved "
1505 			 "data blocks", inode->i_ino, to_free,
1506 			 ei->i_reserved_data_blocks);
1507 		WARN_ON(1);
1508 		to_free = ei->i_reserved_data_blocks;
1509 	}
1510 	ei->i_reserved_data_blocks -= to_free;
1511 
1512 	/* update fs dirty data blocks counter */
1513 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514 
1515 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516 
1517 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519 
1520 /*
1521  * Delayed allocation stuff
1522  */
1523 
1524 struct mpage_da_data {
1525 	struct inode *inode;
1526 	struct writeback_control *wbc;
1527 
1528 	pgoff_t first_page;	/* The first page to write */
1529 	pgoff_t next_page;	/* Current page to examine */
1530 	pgoff_t last_page;	/* Last page to examine */
1531 	/*
1532 	 * Extent to map - this can be after first_page because that can be
1533 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1534 	 * is delalloc or unwritten.
1535 	 */
1536 	struct ext4_map_blocks map;
1537 	struct ext4_io_submit io_submit;	/* IO submission data */
1538 	unsigned int do_map:1;
1539 	unsigned int scanned_until_end:1;
1540 };
1541 
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543 				       bool invalidate)
1544 {
1545 	int nr_pages, i;
1546 	pgoff_t index, end;
1547 	struct pagevec pvec;
1548 	struct inode *inode = mpd->inode;
1549 	struct address_space *mapping = inode->i_mapping;
1550 
1551 	/* This is necessary when next_page == 0. */
1552 	if (mpd->first_page >= mpd->next_page)
1553 		return;
1554 
1555 	mpd->scanned_until_end = 0;
1556 	index = mpd->first_page;
1557 	end   = mpd->next_page - 1;
1558 	if (invalidate) {
1559 		ext4_lblk_t start, last;
1560 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1562 		ext4_es_remove_extent(inode, start, last - start + 1);
1563 	}
1564 
1565 	pagevec_init(&pvec);
1566 	while (index <= end) {
1567 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568 		if (nr_pages == 0)
1569 			break;
1570 		for (i = 0; i < nr_pages; i++) {
1571 			struct page *page = pvec.pages[i];
1572 
1573 			BUG_ON(!PageLocked(page));
1574 			BUG_ON(PageWriteback(page));
1575 			if (invalidate) {
1576 				if (page_mapped(page))
1577 					clear_page_dirty_for_io(page);
1578 				block_invalidatepage(page, 0, PAGE_SIZE);
1579 				ClearPageUptodate(page);
1580 			}
1581 			unlock_page(page);
1582 		}
1583 		pagevec_release(&pvec);
1584 	}
1585 }
1586 
1587 static void ext4_print_free_blocks(struct inode *inode)
1588 {
1589 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590 	struct super_block *sb = inode->i_sb;
1591 	struct ext4_inode_info *ei = EXT4_I(inode);
1592 
1593 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1595 			ext4_count_free_clusters(sb)));
1596 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598 	       (long long) EXT4_C2B(EXT4_SB(sb),
1599 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601 	       (long long) EXT4_C2B(EXT4_SB(sb),
1602 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605 		 ei->i_reserved_data_blocks);
1606 	return;
1607 }
1608 
1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1610 				      struct buffer_head *bh)
1611 {
1612 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1613 }
1614 
1615 /*
1616  * ext4_insert_delayed_block - adds a delayed block to the extents status
1617  *                             tree, incrementing the reserved cluster/block
1618  *                             count or making a pending reservation
1619  *                             where needed
1620  *
1621  * @inode - file containing the newly added block
1622  * @lblk - logical block to be added
1623  *
1624  * Returns 0 on success, negative error code on failure.
1625  */
1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1627 {
1628 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 	int ret;
1630 	bool allocated = false;
1631 	bool reserved = false;
1632 
1633 	/*
1634 	 * If the cluster containing lblk is shared with a delayed,
1635 	 * written, or unwritten extent in a bigalloc file system, it's
1636 	 * already been accounted for and does not need to be reserved.
1637 	 * A pending reservation must be made for the cluster if it's
1638 	 * shared with a written or unwritten extent and doesn't already
1639 	 * have one.  Written and unwritten extents can be purged from the
1640 	 * extents status tree if the system is under memory pressure, so
1641 	 * it's necessary to examine the extent tree if a search of the
1642 	 * extents status tree doesn't get a match.
1643 	 */
1644 	if (sbi->s_cluster_ratio == 1) {
1645 		ret = ext4_da_reserve_space(inode);
1646 		if (ret != 0)   /* ENOSPC */
1647 			goto errout;
1648 		reserved = true;
1649 	} else {   /* bigalloc */
1650 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1651 			if (!ext4_es_scan_clu(inode,
1652 					      &ext4_es_is_mapped, lblk)) {
1653 				ret = ext4_clu_mapped(inode,
1654 						      EXT4_B2C(sbi, lblk));
1655 				if (ret < 0)
1656 					goto errout;
1657 				if (ret == 0) {
1658 					ret = ext4_da_reserve_space(inode);
1659 					if (ret != 0)   /* ENOSPC */
1660 						goto errout;
1661 					reserved = true;
1662 				} else {
1663 					allocated = true;
1664 				}
1665 			} else {
1666 				allocated = true;
1667 			}
1668 		}
1669 	}
1670 
1671 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1672 	if (ret && reserved)
1673 		ext4_da_release_space(inode, 1);
1674 
1675 errout:
1676 	return ret;
1677 }
1678 
1679 /*
1680  * This function is grabs code from the very beginning of
1681  * ext4_map_blocks, but assumes that the caller is from delayed write
1682  * time. This function looks up the requested blocks and sets the
1683  * buffer delay bit under the protection of i_data_sem.
1684  */
1685 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1686 			      struct ext4_map_blocks *map,
1687 			      struct buffer_head *bh)
1688 {
1689 	struct extent_status es;
1690 	int retval;
1691 	sector_t invalid_block = ~((sector_t) 0xffff);
1692 #ifdef ES_AGGRESSIVE_TEST
1693 	struct ext4_map_blocks orig_map;
1694 
1695 	memcpy(&orig_map, map, sizeof(*map));
1696 #endif
1697 
1698 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1699 		invalid_block = ~0;
1700 
1701 	map->m_flags = 0;
1702 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1703 		  (unsigned long) map->m_lblk);
1704 
1705 	/* Lookup extent status tree firstly */
1706 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1707 		if (ext4_es_is_hole(&es)) {
1708 			retval = 0;
1709 			down_read(&EXT4_I(inode)->i_data_sem);
1710 			goto add_delayed;
1711 		}
1712 
1713 		/*
1714 		 * the buffer head associated with a delayed and not unwritten
1715 		 * block found in the extent status cache must contain an
1716 		 * invalid block number and have its BH_New and BH_Delay bits
1717 		 * set, reflecting the state assigned when the block was
1718 		 * initially delayed allocated
1719 		 */
1720 		if (ext4_es_is_delonly(&es)) {
1721 			BUG_ON(bh->b_blocknr != invalid_block);
1722 			BUG_ON(!buffer_new(bh));
1723 			BUG_ON(!buffer_delay(bh));
1724 			return 0;
1725 		}
1726 
1727 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1728 		retval = es.es_len - (iblock - es.es_lblk);
1729 		if (retval > map->m_len)
1730 			retval = map->m_len;
1731 		map->m_len = retval;
1732 		if (ext4_es_is_written(&es))
1733 			map->m_flags |= EXT4_MAP_MAPPED;
1734 		else if (ext4_es_is_unwritten(&es))
1735 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1736 		else
1737 			BUG();
1738 
1739 #ifdef ES_AGGRESSIVE_TEST
1740 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1741 #endif
1742 		return retval;
1743 	}
1744 
1745 	/*
1746 	 * Try to see if we can get the block without requesting a new
1747 	 * file system block.
1748 	 */
1749 	down_read(&EXT4_I(inode)->i_data_sem);
1750 	if (ext4_has_inline_data(inode))
1751 		retval = 0;
1752 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1753 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1754 	else
1755 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1756 
1757 add_delayed:
1758 	if (retval == 0) {
1759 		int ret;
1760 
1761 		/*
1762 		 * XXX: __block_prepare_write() unmaps passed block,
1763 		 * is it OK?
1764 		 */
1765 
1766 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1767 		if (ret != 0) {
1768 			retval = ret;
1769 			goto out_unlock;
1770 		}
1771 
1772 		map_bh(bh, inode->i_sb, invalid_block);
1773 		set_buffer_new(bh);
1774 		set_buffer_delay(bh);
1775 	} else if (retval > 0) {
1776 		int ret;
1777 		unsigned int status;
1778 
1779 		if (unlikely(retval != map->m_len)) {
1780 			ext4_warning(inode->i_sb,
1781 				     "ES len assertion failed for inode "
1782 				     "%lu: retval %d != map->m_len %d",
1783 				     inode->i_ino, retval, map->m_len);
1784 			WARN_ON(1);
1785 		}
1786 
1787 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1788 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1789 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1790 					    map->m_pblk, status);
1791 		if (ret != 0)
1792 			retval = ret;
1793 	}
1794 
1795 out_unlock:
1796 	up_read((&EXT4_I(inode)->i_data_sem));
1797 
1798 	return retval;
1799 }
1800 
1801 /*
1802  * This is a special get_block_t callback which is used by
1803  * ext4_da_write_begin().  It will either return mapped block or
1804  * reserve space for a single block.
1805  *
1806  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1807  * We also have b_blocknr = -1 and b_bdev initialized properly
1808  *
1809  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1810  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1811  * initialized properly.
1812  */
1813 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1814 			   struct buffer_head *bh, int create)
1815 {
1816 	struct ext4_map_blocks map;
1817 	int ret = 0;
1818 
1819 	BUG_ON(create == 0);
1820 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1821 
1822 	map.m_lblk = iblock;
1823 	map.m_len = 1;
1824 
1825 	/*
1826 	 * first, we need to know whether the block is allocated already
1827 	 * preallocated blocks are unmapped but should treated
1828 	 * the same as allocated blocks.
1829 	 */
1830 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1831 	if (ret <= 0)
1832 		return ret;
1833 
1834 	map_bh(bh, inode->i_sb, map.m_pblk);
1835 	ext4_update_bh_state(bh, map.m_flags);
1836 
1837 	if (buffer_unwritten(bh)) {
1838 		/* A delayed write to unwritten bh should be marked
1839 		 * new and mapped.  Mapped ensures that we don't do
1840 		 * get_block multiple times when we write to the same
1841 		 * offset and new ensures that we do proper zero out
1842 		 * for partial write.
1843 		 */
1844 		set_buffer_new(bh);
1845 		set_buffer_mapped(bh);
1846 	}
1847 	return 0;
1848 }
1849 
1850 static int bget_one(handle_t *handle, struct inode *inode,
1851 		    struct buffer_head *bh)
1852 {
1853 	get_bh(bh);
1854 	return 0;
1855 }
1856 
1857 static int bput_one(handle_t *handle, struct inode *inode,
1858 		    struct buffer_head *bh)
1859 {
1860 	put_bh(bh);
1861 	return 0;
1862 }
1863 
1864 static int __ext4_journalled_writepage(struct page *page,
1865 				       unsigned int len)
1866 {
1867 	struct address_space *mapping = page->mapping;
1868 	struct inode *inode = mapping->host;
1869 	struct buffer_head *page_bufs = NULL;
1870 	handle_t *handle = NULL;
1871 	int ret = 0, err = 0;
1872 	int inline_data = ext4_has_inline_data(inode);
1873 	struct buffer_head *inode_bh = NULL;
1874 
1875 	ClearPageChecked(page);
1876 
1877 	if (inline_data) {
1878 		BUG_ON(page->index != 0);
1879 		BUG_ON(len > ext4_get_max_inline_size(inode));
1880 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1881 		if (inode_bh == NULL)
1882 			goto out;
1883 	} else {
1884 		page_bufs = page_buffers(page);
1885 		if (!page_bufs) {
1886 			BUG();
1887 			goto out;
1888 		}
1889 		ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1890 				       NULL, bget_one);
1891 	}
1892 	/*
1893 	 * We need to release the page lock before we start the
1894 	 * journal, so grab a reference so the page won't disappear
1895 	 * out from under us.
1896 	 */
1897 	get_page(page);
1898 	unlock_page(page);
1899 
1900 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1901 				    ext4_writepage_trans_blocks(inode));
1902 	if (IS_ERR(handle)) {
1903 		ret = PTR_ERR(handle);
1904 		put_page(page);
1905 		goto out_no_pagelock;
1906 	}
1907 	BUG_ON(!ext4_handle_valid(handle));
1908 
1909 	lock_page(page);
1910 	put_page(page);
1911 	if (page->mapping != mapping) {
1912 		/* The page got truncated from under us */
1913 		ext4_journal_stop(handle);
1914 		ret = 0;
1915 		goto out;
1916 	}
1917 
1918 	if (inline_data) {
1919 		ret = ext4_mark_inode_dirty(handle, inode);
1920 	} else {
1921 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922 					     NULL, do_journal_get_write_access);
1923 
1924 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1925 					     NULL, write_end_fn);
1926 	}
1927 	if (ret == 0)
1928 		ret = err;
1929 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1930 	if (ret == 0)
1931 		ret = err;
1932 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1933 	err = ext4_journal_stop(handle);
1934 	if (!ret)
1935 		ret = err;
1936 
1937 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1938 out:
1939 	unlock_page(page);
1940 out_no_pagelock:
1941 	if (!inline_data && page_bufs)
1942 		ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1943 				       NULL, bput_one);
1944 	brelse(inode_bh);
1945 	return ret;
1946 }
1947 
1948 /*
1949  * Note that we don't need to start a transaction unless we're journaling data
1950  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1951  * need to file the inode to the transaction's list in ordered mode because if
1952  * we are writing back data added by write(), the inode is already there and if
1953  * we are writing back data modified via mmap(), no one guarantees in which
1954  * transaction the data will hit the disk. In case we are journaling data, we
1955  * cannot start transaction directly because transaction start ranks above page
1956  * lock so we have to do some magic.
1957  *
1958  * This function can get called via...
1959  *   - ext4_writepages after taking page lock (have journal handle)
1960  *   - journal_submit_inode_data_buffers (no journal handle)
1961  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1962  *   - grab_page_cache when doing write_begin (have journal handle)
1963  *
1964  * We don't do any block allocation in this function. If we have page with
1965  * multiple blocks we need to write those buffer_heads that are mapped. This
1966  * is important for mmaped based write. So if we do with blocksize 1K
1967  * truncate(f, 1024);
1968  * a = mmap(f, 0, 4096);
1969  * a[0] = 'a';
1970  * truncate(f, 4096);
1971  * we have in the page first buffer_head mapped via page_mkwrite call back
1972  * but other buffer_heads would be unmapped but dirty (dirty done via the
1973  * do_wp_page). So writepage should write the first block. If we modify
1974  * the mmap area beyond 1024 we will again get a page_fault and the
1975  * page_mkwrite callback will do the block allocation and mark the
1976  * buffer_heads mapped.
1977  *
1978  * We redirty the page if we have any buffer_heads that is either delay or
1979  * unwritten in the page.
1980  *
1981  * We can get recursively called as show below.
1982  *
1983  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1984  *		ext4_writepage()
1985  *
1986  * But since we don't do any block allocation we should not deadlock.
1987  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1988  */
1989 static int ext4_writepage(struct page *page,
1990 			  struct writeback_control *wbc)
1991 {
1992 	int ret = 0;
1993 	loff_t size;
1994 	unsigned int len;
1995 	struct buffer_head *page_bufs = NULL;
1996 	struct inode *inode = page->mapping->host;
1997 	struct ext4_io_submit io_submit;
1998 	bool keep_towrite = false;
1999 
2000 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2001 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2002 		unlock_page(page);
2003 		return -EIO;
2004 	}
2005 
2006 	trace_ext4_writepage(page);
2007 	size = i_size_read(inode);
2008 	if (page->index == size >> PAGE_SHIFT &&
2009 	    !ext4_verity_in_progress(inode))
2010 		len = size & ~PAGE_MASK;
2011 	else
2012 		len = PAGE_SIZE;
2013 
2014 	page_bufs = page_buffers(page);
2015 	/*
2016 	 * We cannot do block allocation or other extent handling in this
2017 	 * function. If there are buffers needing that, we have to redirty
2018 	 * the page. But we may reach here when we do a journal commit via
2019 	 * journal_submit_inode_data_buffers() and in that case we must write
2020 	 * allocated buffers to achieve data=ordered mode guarantees.
2021 	 *
2022 	 * Also, if there is only one buffer per page (the fs block
2023 	 * size == the page size), if one buffer needs block
2024 	 * allocation or needs to modify the extent tree to clear the
2025 	 * unwritten flag, we know that the page can't be written at
2026 	 * all, so we might as well refuse the write immediately.
2027 	 * Unfortunately if the block size != page size, we can't as
2028 	 * easily detect this case using ext4_walk_page_buffers(), but
2029 	 * for the extremely common case, this is an optimization that
2030 	 * skips a useless round trip through ext4_bio_write_page().
2031 	 */
2032 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2033 				   ext4_bh_delay_or_unwritten)) {
2034 		redirty_page_for_writepage(wbc, page);
2035 		if ((current->flags & PF_MEMALLOC) ||
2036 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2037 			/*
2038 			 * For memory cleaning there's no point in writing only
2039 			 * some buffers. So just bail out. Warn if we came here
2040 			 * from direct reclaim.
2041 			 */
2042 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2043 							== PF_MEMALLOC);
2044 			unlock_page(page);
2045 			return 0;
2046 		}
2047 		keep_towrite = true;
2048 	}
2049 
2050 	if (PageChecked(page) && ext4_should_journal_data(inode))
2051 		/*
2052 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2053 		 * doesn't seem much point in redirtying the page here.
2054 		 */
2055 		return __ext4_journalled_writepage(page, len);
2056 
2057 	ext4_io_submit_init(&io_submit, wbc);
2058 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2059 	if (!io_submit.io_end) {
2060 		redirty_page_for_writepage(wbc, page);
2061 		unlock_page(page);
2062 		return -ENOMEM;
2063 	}
2064 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2065 	ext4_io_submit(&io_submit);
2066 	/* Drop io_end reference we got from init */
2067 	ext4_put_io_end_defer(io_submit.io_end);
2068 	return ret;
2069 }
2070 
2071 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2072 {
2073 	int len;
2074 	loff_t size;
2075 	int err;
2076 
2077 	BUG_ON(page->index != mpd->first_page);
2078 	clear_page_dirty_for_io(page);
2079 	/*
2080 	 * We have to be very careful here!  Nothing protects writeback path
2081 	 * against i_size changes and the page can be writeably mapped into
2082 	 * page tables. So an application can be growing i_size and writing
2083 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2084 	 * write-protects our page in page tables and the page cannot get
2085 	 * written to again until we release page lock. So only after
2086 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2087 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2088 	 * on the barrier provided by TestClearPageDirty in
2089 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2090 	 * after page tables are updated.
2091 	 */
2092 	size = i_size_read(mpd->inode);
2093 	if (page->index == size >> PAGE_SHIFT &&
2094 	    !ext4_verity_in_progress(mpd->inode))
2095 		len = size & ~PAGE_MASK;
2096 	else
2097 		len = PAGE_SIZE;
2098 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2099 	if (!err)
2100 		mpd->wbc->nr_to_write--;
2101 	mpd->first_page++;
2102 
2103 	return err;
2104 }
2105 
2106 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2107 
2108 /*
2109  * mballoc gives us at most this number of blocks...
2110  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2111  * The rest of mballoc seems to handle chunks up to full group size.
2112  */
2113 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2114 
2115 /*
2116  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2117  *
2118  * @mpd - extent of blocks
2119  * @lblk - logical number of the block in the file
2120  * @bh - buffer head we want to add to the extent
2121  *
2122  * The function is used to collect contig. blocks in the same state. If the
2123  * buffer doesn't require mapping for writeback and we haven't started the
2124  * extent of buffers to map yet, the function returns 'true' immediately - the
2125  * caller can write the buffer right away. Otherwise the function returns true
2126  * if the block has been added to the extent, false if the block couldn't be
2127  * added.
2128  */
2129 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2130 				   struct buffer_head *bh)
2131 {
2132 	struct ext4_map_blocks *map = &mpd->map;
2133 
2134 	/* Buffer that doesn't need mapping for writeback? */
2135 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2136 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2137 		/* So far no extent to map => we write the buffer right away */
2138 		if (map->m_len == 0)
2139 			return true;
2140 		return false;
2141 	}
2142 
2143 	/* First block in the extent? */
2144 	if (map->m_len == 0) {
2145 		/* We cannot map unless handle is started... */
2146 		if (!mpd->do_map)
2147 			return false;
2148 		map->m_lblk = lblk;
2149 		map->m_len = 1;
2150 		map->m_flags = bh->b_state & BH_FLAGS;
2151 		return true;
2152 	}
2153 
2154 	/* Don't go larger than mballoc is willing to allocate */
2155 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2156 		return false;
2157 
2158 	/* Can we merge the block to our big extent? */
2159 	if (lblk == map->m_lblk + map->m_len &&
2160 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2161 		map->m_len++;
2162 		return true;
2163 	}
2164 	return false;
2165 }
2166 
2167 /*
2168  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2169  *
2170  * @mpd - extent of blocks for mapping
2171  * @head - the first buffer in the page
2172  * @bh - buffer we should start processing from
2173  * @lblk - logical number of the block in the file corresponding to @bh
2174  *
2175  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2176  * the page for IO if all buffers in this page were mapped and there's no
2177  * accumulated extent of buffers to map or add buffers in the page to the
2178  * extent of buffers to map. The function returns 1 if the caller can continue
2179  * by processing the next page, 0 if it should stop adding buffers to the
2180  * extent to map because we cannot extend it anymore. It can also return value
2181  * < 0 in case of error during IO submission.
2182  */
2183 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2184 				   struct buffer_head *head,
2185 				   struct buffer_head *bh,
2186 				   ext4_lblk_t lblk)
2187 {
2188 	struct inode *inode = mpd->inode;
2189 	int err;
2190 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2191 							>> inode->i_blkbits;
2192 
2193 	if (ext4_verity_in_progress(inode))
2194 		blocks = EXT_MAX_BLOCKS;
2195 
2196 	do {
2197 		BUG_ON(buffer_locked(bh));
2198 
2199 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2200 			/* Found extent to map? */
2201 			if (mpd->map.m_len)
2202 				return 0;
2203 			/* Buffer needs mapping and handle is not started? */
2204 			if (!mpd->do_map)
2205 				return 0;
2206 			/* Everything mapped so far and we hit EOF */
2207 			break;
2208 		}
2209 	} while (lblk++, (bh = bh->b_this_page) != head);
2210 	/* So far everything mapped? Submit the page for IO. */
2211 	if (mpd->map.m_len == 0) {
2212 		err = mpage_submit_page(mpd, head->b_page);
2213 		if (err < 0)
2214 			return err;
2215 	}
2216 	if (lblk >= blocks) {
2217 		mpd->scanned_until_end = 1;
2218 		return 0;
2219 	}
2220 	return 1;
2221 }
2222 
2223 /*
2224  * mpage_process_page - update page buffers corresponding to changed extent and
2225  *		       may submit fully mapped page for IO
2226  *
2227  * @mpd		- description of extent to map, on return next extent to map
2228  * @m_lblk	- logical block mapping.
2229  * @m_pblk	- corresponding physical mapping.
2230  * @map_bh	- determines on return whether this page requires any further
2231  *		  mapping or not.
2232  * Scan given page buffers corresponding to changed extent and update buffer
2233  * state according to new extent state.
2234  * We map delalloc buffers to their physical location, clear unwritten bits.
2235  * If the given page is not fully mapped, we update @map to the next extent in
2236  * the given page that needs mapping & return @map_bh as true.
2237  */
2238 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2239 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2240 			      bool *map_bh)
2241 {
2242 	struct buffer_head *head, *bh;
2243 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2244 	ext4_lblk_t lblk = *m_lblk;
2245 	ext4_fsblk_t pblock = *m_pblk;
2246 	int err = 0;
2247 	int blkbits = mpd->inode->i_blkbits;
2248 	ssize_t io_end_size = 0;
2249 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2250 
2251 	bh = head = page_buffers(page);
2252 	do {
2253 		if (lblk < mpd->map.m_lblk)
2254 			continue;
2255 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2256 			/*
2257 			 * Buffer after end of mapped extent.
2258 			 * Find next buffer in the page to map.
2259 			 */
2260 			mpd->map.m_len = 0;
2261 			mpd->map.m_flags = 0;
2262 			io_end_vec->size += io_end_size;
2263 			io_end_size = 0;
2264 
2265 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2266 			if (err > 0)
2267 				err = 0;
2268 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2269 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2270 				if (IS_ERR(io_end_vec)) {
2271 					err = PTR_ERR(io_end_vec);
2272 					goto out;
2273 				}
2274 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2275 			}
2276 			*map_bh = true;
2277 			goto out;
2278 		}
2279 		if (buffer_delay(bh)) {
2280 			clear_buffer_delay(bh);
2281 			bh->b_blocknr = pblock++;
2282 		}
2283 		clear_buffer_unwritten(bh);
2284 		io_end_size += (1 << blkbits);
2285 	} while (lblk++, (bh = bh->b_this_page) != head);
2286 
2287 	io_end_vec->size += io_end_size;
2288 	io_end_size = 0;
2289 	*map_bh = false;
2290 out:
2291 	*m_lblk = lblk;
2292 	*m_pblk = pblock;
2293 	return err;
2294 }
2295 
2296 /*
2297  * mpage_map_buffers - update buffers corresponding to changed extent and
2298  *		       submit fully mapped pages for IO
2299  *
2300  * @mpd - description of extent to map, on return next extent to map
2301  *
2302  * Scan buffers corresponding to changed extent (we expect corresponding pages
2303  * to be already locked) and update buffer state according to new extent state.
2304  * We map delalloc buffers to their physical location, clear unwritten bits,
2305  * and mark buffers as uninit when we perform writes to unwritten extents
2306  * and do extent conversion after IO is finished. If the last page is not fully
2307  * mapped, we update @map to the next extent in the last page that needs
2308  * mapping. Otherwise we submit the page for IO.
2309  */
2310 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2311 {
2312 	struct pagevec pvec;
2313 	int nr_pages, i;
2314 	struct inode *inode = mpd->inode;
2315 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2316 	pgoff_t start, end;
2317 	ext4_lblk_t lblk;
2318 	ext4_fsblk_t pblock;
2319 	int err;
2320 	bool map_bh = false;
2321 
2322 	start = mpd->map.m_lblk >> bpp_bits;
2323 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2324 	lblk = start << bpp_bits;
2325 	pblock = mpd->map.m_pblk;
2326 
2327 	pagevec_init(&pvec);
2328 	while (start <= end) {
2329 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2330 						&start, end);
2331 		if (nr_pages == 0)
2332 			break;
2333 		for (i = 0; i < nr_pages; i++) {
2334 			struct page *page = pvec.pages[i];
2335 
2336 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2337 						 &map_bh);
2338 			/*
2339 			 * If map_bh is true, means page may require further bh
2340 			 * mapping, or maybe the page was submitted for IO.
2341 			 * So we return to call further extent mapping.
2342 			 */
2343 			if (err < 0 || map_bh)
2344 				goto out;
2345 			/* Page fully mapped - let IO run! */
2346 			err = mpage_submit_page(mpd, page);
2347 			if (err < 0)
2348 				goto out;
2349 		}
2350 		pagevec_release(&pvec);
2351 	}
2352 	/* Extent fully mapped and matches with page boundary. We are done. */
2353 	mpd->map.m_len = 0;
2354 	mpd->map.m_flags = 0;
2355 	return 0;
2356 out:
2357 	pagevec_release(&pvec);
2358 	return err;
2359 }
2360 
2361 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2362 {
2363 	struct inode *inode = mpd->inode;
2364 	struct ext4_map_blocks *map = &mpd->map;
2365 	int get_blocks_flags;
2366 	int err, dioread_nolock;
2367 
2368 	trace_ext4_da_write_pages_extent(inode, map);
2369 	/*
2370 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2371 	 * to convert an unwritten extent to be initialized (in the case
2372 	 * where we have written into one or more preallocated blocks).  It is
2373 	 * possible that we're going to need more metadata blocks than
2374 	 * previously reserved. However we must not fail because we're in
2375 	 * writeback and there is nothing we can do about it so it might result
2376 	 * in data loss.  So use reserved blocks to allocate metadata if
2377 	 * possible.
2378 	 *
2379 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2380 	 * the blocks in question are delalloc blocks.  This indicates
2381 	 * that the blocks and quotas has already been checked when
2382 	 * the data was copied into the page cache.
2383 	 */
2384 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2385 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2386 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2387 	dioread_nolock = ext4_should_dioread_nolock(inode);
2388 	if (dioread_nolock)
2389 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2390 	if (map->m_flags & BIT(BH_Delay))
2391 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2392 
2393 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2394 	if (err < 0)
2395 		return err;
2396 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2397 		if (!mpd->io_submit.io_end->handle &&
2398 		    ext4_handle_valid(handle)) {
2399 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2400 			handle->h_rsv_handle = NULL;
2401 		}
2402 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2403 	}
2404 
2405 	BUG_ON(map->m_len == 0);
2406 	return 0;
2407 }
2408 
2409 /*
2410  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2411  *				 mpd->len and submit pages underlying it for IO
2412  *
2413  * @handle - handle for journal operations
2414  * @mpd - extent to map
2415  * @give_up_on_write - we set this to true iff there is a fatal error and there
2416  *                     is no hope of writing the data. The caller should discard
2417  *                     dirty pages to avoid infinite loops.
2418  *
2419  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2420  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2421  * them to initialized or split the described range from larger unwritten
2422  * extent. Note that we need not map all the described range since allocation
2423  * can return less blocks or the range is covered by more unwritten extents. We
2424  * cannot map more because we are limited by reserved transaction credits. On
2425  * the other hand we always make sure that the last touched page is fully
2426  * mapped so that it can be written out (and thus forward progress is
2427  * guaranteed). After mapping we submit all mapped pages for IO.
2428  */
2429 static int mpage_map_and_submit_extent(handle_t *handle,
2430 				       struct mpage_da_data *mpd,
2431 				       bool *give_up_on_write)
2432 {
2433 	struct inode *inode = mpd->inode;
2434 	struct ext4_map_blocks *map = &mpd->map;
2435 	int err;
2436 	loff_t disksize;
2437 	int progress = 0;
2438 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2439 	struct ext4_io_end_vec *io_end_vec;
2440 
2441 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2442 	if (IS_ERR(io_end_vec))
2443 		return PTR_ERR(io_end_vec);
2444 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2445 	do {
2446 		err = mpage_map_one_extent(handle, mpd);
2447 		if (err < 0) {
2448 			struct super_block *sb = inode->i_sb;
2449 
2450 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2451 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2452 				goto invalidate_dirty_pages;
2453 			/*
2454 			 * Let the uper layers retry transient errors.
2455 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2456 			 * is non-zero, a commit should free up blocks.
2457 			 */
2458 			if ((err == -ENOMEM) ||
2459 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2460 				if (progress)
2461 					goto update_disksize;
2462 				return err;
2463 			}
2464 			ext4_msg(sb, KERN_CRIT,
2465 				 "Delayed block allocation failed for "
2466 				 "inode %lu at logical offset %llu with"
2467 				 " max blocks %u with error %d",
2468 				 inode->i_ino,
2469 				 (unsigned long long)map->m_lblk,
2470 				 (unsigned)map->m_len, -err);
2471 			ext4_msg(sb, KERN_CRIT,
2472 				 "This should not happen!! Data will "
2473 				 "be lost\n");
2474 			if (err == -ENOSPC)
2475 				ext4_print_free_blocks(inode);
2476 		invalidate_dirty_pages:
2477 			*give_up_on_write = true;
2478 			return err;
2479 		}
2480 		progress = 1;
2481 		/*
2482 		 * Update buffer state, submit mapped pages, and get us new
2483 		 * extent to map
2484 		 */
2485 		err = mpage_map_and_submit_buffers(mpd);
2486 		if (err < 0)
2487 			goto update_disksize;
2488 	} while (map->m_len);
2489 
2490 update_disksize:
2491 	/*
2492 	 * Update on-disk size after IO is submitted.  Races with
2493 	 * truncate are avoided by checking i_size under i_data_sem.
2494 	 */
2495 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2496 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2497 		int err2;
2498 		loff_t i_size;
2499 
2500 		down_write(&EXT4_I(inode)->i_data_sem);
2501 		i_size = i_size_read(inode);
2502 		if (disksize > i_size)
2503 			disksize = i_size;
2504 		if (disksize > EXT4_I(inode)->i_disksize)
2505 			EXT4_I(inode)->i_disksize = disksize;
2506 		up_write(&EXT4_I(inode)->i_data_sem);
2507 		err2 = ext4_mark_inode_dirty(handle, inode);
2508 		if (err2) {
2509 			ext4_error_err(inode->i_sb, -err2,
2510 				       "Failed to mark inode %lu dirty",
2511 				       inode->i_ino);
2512 		}
2513 		if (!err)
2514 			err = err2;
2515 	}
2516 	return err;
2517 }
2518 
2519 /*
2520  * Calculate the total number of credits to reserve for one writepages
2521  * iteration. This is called from ext4_writepages(). We map an extent of
2522  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2523  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2524  * bpp - 1 blocks in bpp different extents.
2525  */
2526 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2527 {
2528 	int bpp = ext4_journal_blocks_per_page(inode);
2529 
2530 	return ext4_meta_trans_blocks(inode,
2531 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2532 }
2533 
2534 /*
2535  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2536  * 				 and underlying extent to map
2537  *
2538  * @mpd - where to look for pages
2539  *
2540  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2541  * IO immediately. When we find a page which isn't mapped we start accumulating
2542  * extent of buffers underlying these pages that needs mapping (formed by
2543  * either delayed or unwritten buffers). We also lock the pages containing
2544  * these buffers. The extent found is returned in @mpd structure (starting at
2545  * mpd->lblk with length mpd->len blocks).
2546  *
2547  * Note that this function can attach bios to one io_end structure which are
2548  * neither logically nor physically contiguous. Although it may seem as an
2549  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2550  * case as we need to track IO to all buffers underlying a page in one io_end.
2551  */
2552 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2553 {
2554 	struct address_space *mapping = mpd->inode->i_mapping;
2555 	struct pagevec pvec;
2556 	unsigned int nr_pages;
2557 	long left = mpd->wbc->nr_to_write;
2558 	pgoff_t index = mpd->first_page;
2559 	pgoff_t end = mpd->last_page;
2560 	xa_mark_t tag;
2561 	int i, err = 0;
2562 	int blkbits = mpd->inode->i_blkbits;
2563 	ext4_lblk_t lblk;
2564 	struct buffer_head *head;
2565 
2566 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2567 		tag = PAGECACHE_TAG_TOWRITE;
2568 	else
2569 		tag = PAGECACHE_TAG_DIRTY;
2570 
2571 	pagevec_init(&pvec);
2572 	mpd->map.m_len = 0;
2573 	mpd->next_page = index;
2574 	while (index <= end) {
2575 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2576 				tag);
2577 		if (nr_pages == 0)
2578 			break;
2579 
2580 		for (i = 0; i < nr_pages; i++) {
2581 			struct page *page = pvec.pages[i];
2582 
2583 			/*
2584 			 * Accumulated enough dirty pages? This doesn't apply
2585 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2586 			 * keep going because someone may be concurrently
2587 			 * dirtying pages, and we might have synced a lot of
2588 			 * newly appeared dirty pages, but have not synced all
2589 			 * of the old dirty pages.
2590 			 */
2591 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2592 				goto out;
2593 
2594 			/* If we can't merge this page, we are done. */
2595 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2596 				goto out;
2597 
2598 			lock_page(page);
2599 			/*
2600 			 * If the page is no longer dirty, or its mapping no
2601 			 * longer corresponds to inode we are writing (which
2602 			 * means it has been truncated or invalidated), or the
2603 			 * page is already under writeback and we are not doing
2604 			 * a data integrity writeback, skip the page
2605 			 */
2606 			if (!PageDirty(page) ||
2607 			    (PageWriteback(page) &&
2608 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2609 			    unlikely(page->mapping != mapping)) {
2610 				unlock_page(page);
2611 				continue;
2612 			}
2613 
2614 			wait_on_page_writeback(page);
2615 			BUG_ON(PageWriteback(page));
2616 
2617 			if (mpd->map.m_len == 0)
2618 				mpd->first_page = page->index;
2619 			mpd->next_page = page->index + 1;
2620 			/* Add all dirty buffers to mpd */
2621 			lblk = ((ext4_lblk_t)page->index) <<
2622 				(PAGE_SHIFT - blkbits);
2623 			head = page_buffers(page);
2624 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2625 			if (err <= 0)
2626 				goto out;
2627 			err = 0;
2628 			left--;
2629 		}
2630 		pagevec_release(&pvec);
2631 		cond_resched();
2632 	}
2633 	mpd->scanned_until_end = 1;
2634 	return 0;
2635 out:
2636 	pagevec_release(&pvec);
2637 	return err;
2638 }
2639 
2640 static int ext4_writepages(struct address_space *mapping,
2641 			   struct writeback_control *wbc)
2642 {
2643 	pgoff_t	writeback_index = 0;
2644 	long nr_to_write = wbc->nr_to_write;
2645 	int range_whole = 0;
2646 	int cycled = 1;
2647 	handle_t *handle = NULL;
2648 	struct mpage_da_data mpd;
2649 	struct inode *inode = mapping->host;
2650 	int needed_blocks, rsv_blocks = 0, ret = 0;
2651 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2652 	struct blk_plug plug;
2653 	bool give_up_on_write = false;
2654 
2655 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2656 		return -EIO;
2657 
2658 	percpu_down_read(&sbi->s_writepages_rwsem);
2659 	trace_ext4_writepages(inode, wbc);
2660 
2661 	/*
2662 	 * No pages to write? This is mainly a kludge to avoid starting
2663 	 * a transaction for special inodes like journal inode on last iput()
2664 	 * because that could violate lock ordering on umount
2665 	 */
2666 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2667 		goto out_writepages;
2668 
2669 	if (ext4_should_journal_data(inode)) {
2670 		ret = generic_writepages(mapping, wbc);
2671 		goto out_writepages;
2672 	}
2673 
2674 	/*
2675 	 * If the filesystem has aborted, it is read-only, so return
2676 	 * right away instead of dumping stack traces later on that
2677 	 * will obscure the real source of the problem.  We test
2678 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2679 	 * the latter could be true if the filesystem is mounted
2680 	 * read-only, and in that case, ext4_writepages should
2681 	 * *never* be called, so if that ever happens, we would want
2682 	 * the stack trace.
2683 	 */
2684 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2685 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2686 		ret = -EROFS;
2687 		goto out_writepages;
2688 	}
2689 
2690 	/*
2691 	 * If we have inline data and arrive here, it means that
2692 	 * we will soon create the block for the 1st page, so
2693 	 * we'd better clear the inline data here.
2694 	 */
2695 	if (ext4_has_inline_data(inode)) {
2696 		/* Just inode will be modified... */
2697 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2698 		if (IS_ERR(handle)) {
2699 			ret = PTR_ERR(handle);
2700 			goto out_writepages;
2701 		}
2702 		BUG_ON(ext4_test_inode_state(inode,
2703 				EXT4_STATE_MAY_INLINE_DATA));
2704 		ext4_destroy_inline_data(handle, inode);
2705 		ext4_journal_stop(handle);
2706 	}
2707 
2708 	if (ext4_should_dioread_nolock(inode)) {
2709 		/*
2710 		 * We may need to convert up to one extent per block in
2711 		 * the page and we may dirty the inode.
2712 		 */
2713 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2714 						PAGE_SIZE >> inode->i_blkbits);
2715 	}
2716 
2717 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2718 		range_whole = 1;
2719 
2720 	if (wbc->range_cyclic) {
2721 		writeback_index = mapping->writeback_index;
2722 		if (writeback_index)
2723 			cycled = 0;
2724 		mpd.first_page = writeback_index;
2725 		mpd.last_page = -1;
2726 	} else {
2727 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2728 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2729 	}
2730 
2731 	mpd.inode = inode;
2732 	mpd.wbc = wbc;
2733 	ext4_io_submit_init(&mpd.io_submit, wbc);
2734 retry:
2735 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2736 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2737 	blk_start_plug(&plug);
2738 
2739 	/*
2740 	 * First writeback pages that don't need mapping - we can avoid
2741 	 * starting a transaction unnecessarily and also avoid being blocked
2742 	 * in the block layer on device congestion while having transaction
2743 	 * started.
2744 	 */
2745 	mpd.do_map = 0;
2746 	mpd.scanned_until_end = 0;
2747 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2748 	if (!mpd.io_submit.io_end) {
2749 		ret = -ENOMEM;
2750 		goto unplug;
2751 	}
2752 	ret = mpage_prepare_extent_to_map(&mpd);
2753 	/* Unlock pages we didn't use */
2754 	mpage_release_unused_pages(&mpd, false);
2755 	/* Submit prepared bio */
2756 	ext4_io_submit(&mpd.io_submit);
2757 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2758 	mpd.io_submit.io_end = NULL;
2759 	if (ret < 0)
2760 		goto unplug;
2761 
2762 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2763 		/* For each extent of pages we use new io_end */
2764 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2765 		if (!mpd.io_submit.io_end) {
2766 			ret = -ENOMEM;
2767 			break;
2768 		}
2769 
2770 		/*
2771 		 * We have two constraints: We find one extent to map and we
2772 		 * must always write out whole page (makes a difference when
2773 		 * blocksize < pagesize) so that we don't block on IO when we
2774 		 * try to write out the rest of the page. Journalled mode is
2775 		 * not supported by delalloc.
2776 		 */
2777 		BUG_ON(ext4_should_journal_data(inode));
2778 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2779 
2780 		/* start a new transaction */
2781 		handle = ext4_journal_start_with_reserve(inode,
2782 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2783 		if (IS_ERR(handle)) {
2784 			ret = PTR_ERR(handle);
2785 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2786 			       "%ld pages, ino %lu; err %d", __func__,
2787 				wbc->nr_to_write, inode->i_ino, ret);
2788 			/* Release allocated io_end */
2789 			ext4_put_io_end(mpd.io_submit.io_end);
2790 			mpd.io_submit.io_end = NULL;
2791 			break;
2792 		}
2793 		mpd.do_map = 1;
2794 
2795 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2796 		ret = mpage_prepare_extent_to_map(&mpd);
2797 		if (!ret && mpd.map.m_len)
2798 			ret = mpage_map_and_submit_extent(handle, &mpd,
2799 					&give_up_on_write);
2800 		/*
2801 		 * Caution: If the handle is synchronous,
2802 		 * ext4_journal_stop() can wait for transaction commit
2803 		 * to finish which may depend on writeback of pages to
2804 		 * complete or on page lock to be released.  In that
2805 		 * case, we have to wait until after we have
2806 		 * submitted all the IO, released page locks we hold,
2807 		 * and dropped io_end reference (for extent conversion
2808 		 * to be able to complete) before stopping the handle.
2809 		 */
2810 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2811 			ext4_journal_stop(handle);
2812 			handle = NULL;
2813 			mpd.do_map = 0;
2814 		}
2815 		/* Unlock pages we didn't use */
2816 		mpage_release_unused_pages(&mpd, give_up_on_write);
2817 		/* Submit prepared bio */
2818 		ext4_io_submit(&mpd.io_submit);
2819 
2820 		/*
2821 		 * Drop our io_end reference we got from init. We have
2822 		 * to be careful and use deferred io_end finishing if
2823 		 * we are still holding the transaction as we can
2824 		 * release the last reference to io_end which may end
2825 		 * up doing unwritten extent conversion.
2826 		 */
2827 		if (handle) {
2828 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2829 			ext4_journal_stop(handle);
2830 		} else
2831 			ext4_put_io_end(mpd.io_submit.io_end);
2832 		mpd.io_submit.io_end = NULL;
2833 
2834 		if (ret == -ENOSPC && sbi->s_journal) {
2835 			/*
2836 			 * Commit the transaction which would
2837 			 * free blocks released in the transaction
2838 			 * and try again
2839 			 */
2840 			jbd2_journal_force_commit_nested(sbi->s_journal);
2841 			ret = 0;
2842 			continue;
2843 		}
2844 		/* Fatal error - ENOMEM, EIO... */
2845 		if (ret)
2846 			break;
2847 	}
2848 unplug:
2849 	blk_finish_plug(&plug);
2850 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2851 		cycled = 1;
2852 		mpd.last_page = writeback_index - 1;
2853 		mpd.first_page = 0;
2854 		goto retry;
2855 	}
2856 
2857 	/* Update index */
2858 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2859 		/*
2860 		 * Set the writeback_index so that range_cyclic
2861 		 * mode will write it back later
2862 		 */
2863 		mapping->writeback_index = mpd.first_page;
2864 
2865 out_writepages:
2866 	trace_ext4_writepages_result(inode, wbc, ret,
2867 				     nr_to_write - wbc->nr_to_write);
2868 	percpu_up_read(&sbi->s_writepages_rwsem);
2869 	return ret;
2870 }
2871 
2872 static int ext4_dax_writepages(struct address_space *mapping,
2873 			       struct writeback_control *wbc)
2874 {
2875 	int ret;
2876 	long nr_to_write = wbc->nr_to_write;
2877 	struct inode *inode = mapping->host;
2878 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2879 
2880 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2881 		return -EIO;
2882 
2883 	percpu_down_read(&sbi->s_writepages_rwsem);
2884 	trace_ext4_writepages(inode, wbc);
2885 
2886 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2887 	trace_ext4_writepages_result(inode, wbc, ret,
2888 				     nr_to_write - wbc->nr_to_write);
2889 	percpu_up_read(&sbi->s_writepages_rwsem);
2890 	return ret;
2891 }
2892 
2893 static int ext4_nonda_switch(struct super_block *sb)
2894 {
2895 	s64 free_clusters, dirty_clusters;
2896 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2897 
2898 	/*
2899 	 * switch to non delalloc mode if we are running low
2900 	 * on free block. The free block accounting via percpu
2901 	 * counters can get slightly wrong with percpu_counter_batch getting
2902 	 * accumulated on each CPU without updating global counters
2903 	 * Delalloc need an accurate free block accounting. So switch
2904 	 * to non delalloc when we are near to error range.
2905 	 */
2906 	free_clusters =
2907 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2908 	dirty_clusters =
2909 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2910 	/*
2911 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2912 	 */
2913 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2914 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2915 
2916 	if (2 * free_clusters < 3 * dirty_clusters ||
2917 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2918 		/*
2919 		 * free block count is less than 150% of dirty blocks
2920 		 * or free blocks is less than watermark
2921 		 */
2922 		return 1;
2923 	}
2924 	return 0;
2925 }
2926 
2927 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2928 			       loff_t pos, unsigned len, unsigned flags,
2929 			       struct page **pagep, void **fsdata)
2930 {
2931 	int ret, retries = 0;
2932 	struct page *page;
2933 	pgoff_t index;
2934 	struct inode *inode = mapping->host;
2935 
2936 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2937 		return -EIO;
2938 
2939 	index = pos >> PAGE_SHIFT;
2940 
2941 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2942 	    ext4_verity_in_progress(inode)) {
2943 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2944 		return ext4_write_begin(file, mapping, pos,
2945 					len, flags, pagep, fsdata);
2946 	}
2947 	*fsdata = (void *)0;
2948 	trace_ext4_da_write_begin(inode, pos, len, flags);
2949 
2950 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2951 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2952 						      pos, len, flags,
2953 						      pagep, fsdata);
2954 		if (ret < 0)
2955 			return ret;
2956 		if (ret == 1)
2957 			return 0;
2958 	}
2959 
2960 retry:
2961 	page = grab_cache_page_write_begin(mapping, index, flags);
2962 	if (!page)
2963 		return -ENOMEM;
2964 
2965 	/* In case writeback began while the page was unlocked */
2966 	wait_for_stable_page(page);
2967 
2968 #ifdef CONFIG_FS_ENCRYPTION
2969 	ret = ext4_block_write_begin(page, pos, len,
2970 				     ext4_da_get_block_prep);
2971 #else
2972 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2973 #endif
2974 	if (ret < 0) {
2975 		unlock_page(page);
2976 		put_page(page);
2977 		/*
2978 		 * block_write_begin may have instantiated a few blocks
2979 		 * outside i_size.  Trim these off again. Don't need
2980 		 * i_size_read because we hold inode lock.
2981 		 */
2982 		if (pos + len > inode->i_size)
2983 			ext4_truncate_failed_write(inode);
2984 
2985 		if (ret == -ENOSPC &&
2986 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2987 			goto retry;
2988 		return ret;
2989 	}
2990 
2991 	*pagep = page;
2992 	return ret;
2993 }
2994 
2995 /*
2996  * Check if we should update i_disksize
2997  * when write to the end of file but not require block allocation
2998  */
2999 static int ext4_da_should_update_i_disksize(struct page *page,
3000 					    unsigned long offset)
3001 {
3002 	struct buffer_head *bh;
3003 	struct inode *inode = page->mapping->host;
3004 	unsigned int idx;
3005 	int i;
3006 
3007 	bh = page_buffers(page);
3008 	idx = offset >> inode->i_blkbits;
3009 
3010 	for (i = 0; i < idx; i++)
3011 		bh = bh->b_this_page;
3012 
3013 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3014 		return 0;
3015 	return 1;
3016 }
3017 
3018 static int ext4_da_write_end(struct file *file,
3019 			     struct address_space *mapping,
3020 			     loff_t pos, unsigned len, unsigned copied,
3021 			     struct page *page, void *fsdata)
3022 {
3023 	struct inode *inode = mapping->host;
3024 	loff_t new_i_size;
3025 	unsigned long start, end;
3026 	int write_mode = (int)(unsigned long)fsdata;
3027 
3028 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3029 		return ext4_write_end(file, mapping, pos,
3030 				      len, copied, page, fsdata);
3031 
3032 	trace_ext4_da_write_end(inode, pos, len, copied);
3033 
3034 	if (write_mode != CONVERT_INLINE_DATA &&
3035 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3036 	    ext4_has_inline_data(inode))
3037 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3038 
3039 	start = pos & (PAGE_SIZE - 1);
3040 	end = start + copied - 1;
3041 
3042 	/*
3043 	 * Since we are holding inode lock, we are sure i_disksize <=
3044 	 * i_size. We also know that if i_disksize < i_size, there are
3045 	 * delalloc writes pending in the range upto i_size. If the end of
3046 	 * the current write is <= i_size, there's no need to touch
3047 	 * i_disksize since writeback will push i_disksize upto i_size
3048 	 * eventually. If the end of the current write is > i_size and
3049 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3050 	 * check), we need to update i_disksize here as neither
3051 	 * ext4_writepage() nor certain ext4_writepages() paths not
3052 	 * allocating blocks update i_disksize.
3053 	 *
3054 	 * Note that we defer inode dirtying to generic_write_end() /
3055 	 * ext4_da_write_inline_data_end().
3056 	 */
3057 	new_i_size = pos + copied;
3058 	if (copied && new_i_size > inode->i_size &&
3059 	    ext4_da_should_update_i_disksize(page, end))
3060 		ext4_update_i_disksize(inode, new_i_size);
3061 
3062 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3063 }
3064 
3065 /*
3066  * Force all delayed allocation blocks to be allocated for a given inode.
3067  */
3068 int ext4_alloc_da_blocks(struct inode *inode)
3069 {
3070 	trace_ext4_alloc_da_blocks(inode);
3071 
3072 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3073 		return 0;
3074 
3075 	/*
3076 	 * We do something simple for now.  The filemap_flush() will
3077 	 * also start triggering a write of the data blocks, which is
3078 	 * not strictly speaking necessary (and for users of
3079 	 * laptop_mode, not even desirable).  However, to do otherwise
3080 	 * would require replicating code paths in:
3081 	 *
3082 	 * ext4_writepages() ->
3083 	 *    write_cache_pages() ---> (via passed in callback function)
3084 	 *        __mpage_da_writepage() -->
3085 	 *           mpage_add_bh_to_extent()
3086 	 *           mpage_da_map_blocks()
3087 	 *
3088 	 * The problem is that write_cache_pages(), located in
3089 	 * mm/page-writeback.c, marks pages clean in preparation for
3090 	 * doing I/O, which is not desirable if we're not planning on
3091 	 * doing I/O at all.
3092 	 *
3093 	 * We could call write_cache_pages(), and then redirty all of
3094 	 * the pages by calling redirty_page_for_writepage() but that
3095 	 * would be ugly in the extreme.  So instead we would need to
3096 	 * replicate parts of the code in the above functions,
3097 	 * simplifying them because we wouldn't actually intend to
3098 	 * write out the pages, but rather only collect contiguous
3099 	 * logical block extents, call the multi-block allocator, and
3100 	 * then update the buffer heads with the block allocations.
3101 	 *
3102 	 * For now, though, we'll cheat by calling filemap_flush(),
3103 	 * which will map the blocks, and start the I/O, but not
3104 	 * actually wait for the I/O to complete.
3105 	 */
3106 	return filemap_flush(inode->i_mapping);
3107 }
3108 
3109 /*
3110  * bmap() is special.  It gets used by applications such as lilo and by
3111  * the swapper to find the on-disk block of a specific piece of data.
3112  *
3113  * Naturally, this is dangerous if the block concerned is still in the
3114  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3115  * filesystem and enables swap, then they may get a nasty shock when the
3116  * data getting swapped to that swapfile suddenly gets overwritten by
3117  * the original zero's written out previously to the journal and
3118  * awaiting writeback in the kernel's buffer cache.
3119  *
3120  * So, if we see any bmap calls here on a modified, data-journaled file,
3121  * take extra steps to flush any blocks which might be in the cache.
3122  */
3123 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3124 {
3125 	struct inode *inode = mapping->host;
3126 	journal_t *journal;
3127 	int err;
3128 
3129 	/*
3130 	 * We can get here for an inline file via the FIBMAP ioctl
3131 	 */
3132 	if (ext4_has_inline_data(inode))
3133 		return 0;
3134 
3135 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3136 			test_opt(inode->i_sb, DELALLOC)) {
3137 		/*
3138 		 * With delalloc we want to sync the file
3139 		 * so that we can make sure we allocate
3140 		 * blocks for file
3141 		 */
3142 		filemap_write_and_wait(mapping);
3143 	}
3144 
3145 	if (EXT4_JOURNAL(inode) &&
3146 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3147 		/*
3148 		 * This is a REALLY heavyweight approach, but the use of
3149 		 * bmap on dirty files is expected to be extremely rare:
3150 		 * only if we run lilo or swapon on a freshly made file
3151 		 * do we expect this to happen.
3152 		 *
3153 		 * (bmap requires CAP_SYS_RAWIO so this does not
3154 		 * represent an unprivileged user DOS attack --- we'd be
3155 		 * in trouble if mortal users could trigger this path at
3156 		 * will.)
3157 		 *
3158 		 * NB. EXT4_STATE_JDATA is not set on files other than
3159 		 * regular files.  If somebody wants to bmap a directory
3160 		 * or symlink and gets confused because the buffer
3161 		 * hasn't yet been flushed to disk, they deserve
3162 		 * everything they get.
3163 		 */
3164 
3165 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3166 		journal = EXT4_JOURNAL(inode);
3167 		jbd2_journal_lock_updates(journal);
3168 		err = jbd2_journal_flush(journal, 0);
3169 		jbd2_journal_unlock_updates(journal);
3170 
3171 		if (err)
3172 			return 0;
3173 	}
3174 
3175 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3176 }
3177 
3178 static int ext4_readpage(struct file *file, struct page *page)
3179 {
3180 	int ret = -EAGAIN;
3181 	struct inode *inode = page->mapping->host;
3182 
3183 	trace_ext4_readpage(page);
3184 
3185 	if (ext4_has_inline_data(inode))
3186 		ret = ext4_readpage_inline(inode, page);
3187 
3188 	if (ret == -EAGAIN)
3189 		return ext4_mpage_readpages(inode, NULL, page);
3190 
3191 	return ret;
3192 }
3193 
3194 static void ext4_readahead(struct readahead_control *rac)
3195 {
3196 	struct inode *inode = rac->mapping->host;
3197 
3198 	/* If the file has inline data, no need to do readahead. */
3199 	if (ext4_has_inline_data(inode))
3200 		return;
3201 
3202 	ext4_mpage_readpages(inode, rac, NULL);
3203 }
3204 
3205 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3206 				unsigned int length)
3207 {
3208 	trace_ext4_invalidatepage(page, offset, length);
3209 
3210 	/* No journalling happens on data buffers when this function is used */
3211 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3212 
3213 	block_invalidatepage(page, offset, length);
3214 }
3215 
3216 static int __ext4_journalled_invalidatepage(struct page *page,
3217 					    unsigned int offset,
3218 					    unsigned int length)
3219 {
3220 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3221 
3222 	trace_ext4_journalled_invalidatepage(page, offset, length);
3223 
3224 	/*
3225 	 * If it's a full truncate we just forget about the pending dirtying
3226 	 */
3227 	if (offset == 0 && length == PAGE_SIZE)
3228 		ClearPageChecked(page);
3229 
3230 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3231 }
3232 
3233 /* Wrapper for aops... */
3234 static void ext4_journalled_invalidatepage(struct page *page,
3235 					   unsigned int offset,
3236 					   unsigned int length)
3237 {
3238 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3239 }
3240 
3241 static int ext4_releasepage(struct page *page, gfp_t wait)
3242 {
3243 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3244 
3245 	trace_ext4_releasepage(page);
3246 
3247 	/* Page has dirty journalled data -> cannot release */
3248 	if (PageChecked(page))
3249 		return 0;
3250 	if (journal)
3251 		return jbd2_journal_try_to_free_buffers(journal, page);
3252 	else
3253 		return try_to_free_buffers(page);
3254 }
3255 
3256 static bool ext4_inode_datasync_dirty(struct inode *inode)
3257 {
3258 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3259 
3260 	if (journal) {
3261 		if (jbd2_transaction_committed(journal,
3262 			EXT4_I(inode)->i_datasync_tid))
3263 			return false;
3264 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3265 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3266 		return true;
3267 	}
3268 
3269 	/* Any metadata buffers to write? */
3270 	if (!list_empty(&inode->i_mapping->private_list))
3271 		return true;
3272 	return inode->i_state & I_DIRTY_DATASYNC;
3273 }
3274 
3275 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3276 			   struct ext4_map_blocks *map, loff_t offset,
3277 			   loff_t length)
3278 {
3279 	u8 blkbits = inode->i_blkbits;
3280 
3281 	/*
3282 	 * Writes that span EOF might trigger an I/O size update on completion,
3283 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3284 	 * there is no other metadata changes being made or are pending.
3285 	 */
3286 	iomap->flags = 0;
3287 	if (ext4_inode_datasync_dirty(inode) ||
3288 	    offset + length > i_size_read(inode))
3289 		iomap->flags |= IOMAP_F_DIRTY;
3290 
3291 	if (map->m_flags & EXT4_MAP_NEW)
3292 		iomap->flags |= IOMAP_F_NEW;
3293 
3294 	iomap->bdev = inode->i_sb->s_bdev;
3295 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3296 	iomap->offset = (u64) map->m_lblk << blkbits;
3297 	iomap->length = (u64) map->m_len << blkbits;
3298 
3299 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3300 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3301 		iomap->flags |= IOMAP_F_MERGED;
3302 
3303 	/*
3304 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3305 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3306 	 * set. In order for any allocated unwritten extents to be converted
3307 	 * into written extents correctly within the ->end_io() handler, we
3308 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3309 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3310 	 * been set first.
3311 	 */
3312 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3313 		iomap->type = IOMAP_UNWRITTEN;
3314 		iomap->addr = (u64) map->m_pblk << blkbits;
3315 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3316 		iomap->type = IOMAP_MAPPED;
3317 		iomap->addr = (u64) map->m_pblk << blkbits;
3318 	} else {
3319 		iomap->type = IOMAP_HOLE;
3320 		iomap->addr = IOMAP_NULL_ADDR;
3321 	}
3322 }
3323 
3324 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3325 			    unsigned int flags)
3326 {
3327 	handle_t *handle;
3328 	u8 blkbits = inode->i_blkbits;
3329 	int ret, dio_credits, m_flags = 0, retries = 0;
3330 
3331 	/*
3332 	 * Trim the mapping request to the maximum value that we can map at
3333 	 * once for direct I/O.
3334 	 */
3335 	if (map->m_len > DIO_MAX_BLOCKS)
3336 		map->m_len = DIO_MAX_BLOCKS;
3337 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3338 
3339 retry:
3340 	/*
3341 	 * Either we allocate blocks and then don't get an unwritten extent, so
3342 	 * in that case we have reserved enough credits. Or, the blocks are
3343 	 * already allocated and unwritten. In that case, the extent conversion
3344 	 * fits into the credits as well.
3345 	 */
3346 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3347 	if (IS_ERR(handle))
3348 		return PTR_ERR(handle);
3349 
3350 	/*
3351 	 * DAX and direct I/O are the only two operations that are currently
3352 	 * supported with IOMAP_WRITE.
3353 	 */
3354 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3355 	if (IS_DAX(inode))
3356 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3357 	/*
3358 	 * We use i_size instead of i_disksize here because delalloc writeback
3359 	 * can complete at any point during the I/O and subsequently push the
3360 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3361 	 * happening and thus expose allocated blocks to direct I/O reads.
3362 	 */
3363 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3364 		m_flags = EXT4_GET_BLOCKS_CREATE;
3365 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3366 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3367 
3368 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3369 
3370 	/*
3371 	 * We cannot fill holes in indirect tree based inodes as that could
3372 	 * expose stale data in the case of a crash. Use the magic error code
3373 	 * to fallback to buffered I/O.
3374 	 */
3375 	if (!m_flags && !ret)
3376 		ret = -ENOTBLK;
3377 
3378 	ext4_journal_stop(handle);
3379 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3380 		goto retry;
3381 
3382 	return ret;
3383 }
3384 
3385 
3386 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3387 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3388 {
3389 	int ret;
3390 	struct ext4_map_blocks map;
3391 	u8 blkbits = inode->i_blkbits;
3392 
3393 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3394 		return -EINVAL;
3395 
3396 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3397 		return -ERANGE;
3398 
3399 	/*
3400 	 * Calculate the first and last logical blocks respectively.
3401 	 */
3402 	map.m_lblk = offset >> blkbits;
3403 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3404 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3405 
3406 	if (flags & IOMAP_WRITE) {
3407 		/*
3408 		 * We check here if the blocks are already allocated, then we
3409 		 * don't need to start a journal txn and we can directly return
3410 		 * the mapping information. This could boost performance
3411 		 * especially in multi-threaded overwrite requests.
3412 		 */
3413 		if (offset + length <= i_size_read(inode)) {
3414 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3415 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3416 				goto out;
3417 		}
3418 		ret = ext4_iomap_alloc(inode, &map, flags);
3419 	} else {
3420 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3421 	}
3422 
3423 	if (ret < 0)
3424 		return ret;
3425 out:
3426 	ext4_set_iomap(inode, iomap, &map, offset, length);
3427 
3428 	return 0;
3429 }
3430 
3431 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3432 		loff_t length, unsigned flags, struct iomap *iomap,
3433 		struct iomap *srcmap)
3434 {
3435 	int ret;
3436 
3437 	/*
3438 	 * Even for writes we don't need to allocate blocks, so just pretend
3439 	 * we are reading to save overhead of starting a transaction.
3440 	 */
3441 	flags &= ~IOMAP_WRITE;
3442 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3443 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3444 	return ret;
3445 }
3446 
3447 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3448 			  ssize_t written, unsigned flags, struct iomap *iomap)
3449 {
3450 	/*
3451 	 * Check to see whether an error occurred while writing out the data to
3452 	 * the allocated blocks. If so, return the magic error code so that we
3453 	 * fallback to buffered I/O and attempt to complete the remainder of
3454 	 * the I/O. Any blocks that may have been allocated in preparation for
3455 	 * the direct I/O will be reused during buffered I/O.
3456 	 */
3457 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3458 		return -ENOTBLK;
3459 
3460 	return 0;
3461 }
3462 
3463 const struct iomap_ops ext4_iomap_ops = {
3464 	.iomap_begin		= ext4_iomap_begin,
3465 	.iomap_end		= ext4_iomap_end,
3466 };
3467 
3468 const struct iomap_ops ext4_iomap_overwrite_ops = {
3469 	.iomap_begin		= ext4_iomap_overwrite_begin,
3470 	.iomap_end		= ext4_iomap_end,
3471 };
3472 
3473 static bool ext4_iomap_is_delalloc(struct inode *inode,
3474 				   struct ext4_map_blocks *map)
3475 {
3476 	struct extent_status es;
3477 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3478 
3479 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3480 				  map->m_lblk, end, &es);
3481 
3482 	if (!es.es_len || es.es_lblk > end)
3483 		return false;
3484 
3485 	if (es.es_lblk > map->m_lblk) {
3486 		map->m_len = es.es_lblk - map->m_lblk;
3487 		return false;
3488 	}
3489 
3490 	offset = map->m_lblk - es.es_lblk;
3491 	map->m_len = es.es_len - offset;
3492 
3493 	return true;
3494 }
3495 
3496 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3497 				   loff_t length, unsigned int flags,
3498 				   struct iomap *iomap, struct iomap *srcmap)
3499 {
3500 	int ret;
3501 	bool delalloc = false;
3502 	struct ext4_map_blocks map;
3503 	u8 blkbits = inode->i_blkbits;
3504 
3505 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3506 		return -EINVAL;
3507 
3508 	if (ext4_has_inline_data(inode)) {
3509 		ret = ext4_inline_data_iomap(inode, iomap);
3510 		if (ret != -EAGAIN) {
3511 			if (ret == 0 && offset >= iomap->length)
3512 				ret = -ENOENT;
3513 			return ret;
3514 		}
3515 	}
3516 
3517 	/*
3518 	 * Calculate the first and last logical block respectively.
3519 	 */
3520 	map.m_lblk = offset >> blkbits;
3521 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3522 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3523 
3524 	/*
3525 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3526 	 * So handle it here itself instead of querying ext4_map_blocks().
3527 	 * Since ext4_map_blocks() will warn about it and will return
3528 	 * -EIO error.
3529 	 */
3530 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3531 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3532 
3533 		if (offset >= sbi->s_bitmap_maxbytes) {
3534 			map.m_flags = 0;
3535 			goto set_iomap;
3536 		}
3537 	}
3538 
3539 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3540 	if (ret < 0)
3541 		return ret;
3542 	if (ret == 0)
3543 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3544 
3545 set_iomap:
3546 	ext4_set_iomap(inode, iomap, &map, offset, length);
3547 	if (delalloc && iomap->type == IOMAP_HOLE)
3548 		iomap->type = IOMAP_DELALLOC;
3549 
3550 	return 0;
3551 }
3552 
3553 const struct iomap_ops ext4_iomap_report_ops = {
3554 	.iomap_begin = ext4_iomap_begin_report,
3555 };
3556 
3557 /*
3558  * Pages can be marked dirty completely asynchronously from ext4's journalling
3559  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3560  * much here because ->set_page_dirty is called under VFS locks.  The page is
3561  * not necessarily locked.
3562  *
3563  * We cannot just dirty the page and leave attached buffers clean, because the
3564  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3565  * or jbddirty because all the journalling code will explode.
3566  *
3567  * So what we do is to mark the page "pending dirty" and next time writepage
3568  * is called, propagate that into the buffers appropriately.
3569  */
3570 static int ext4_journalled_set_page_dirty(struct page *page)
3571 {
3572 	SetPageChecked(page);
3573 	return __set_page_dirty_nobuffers(page);
3574 }
3575 
3576 static int ext4_set_page_dirty(struct page *page)
3577 {
3578 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3579 	WARN_ON_ONCE(!page_has_buffers(page));
3580 	return __set_page_dirty_buffers(page);
3581 }
3582 
3583 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3584 				    struct file *file, sector_t *span)
3585 {
3586 	return iomap_swapfile_activate(sis, file, span,
3587 				       &ext4_iomap_report_ops);
3588 }
3589 
3590 static const struct address_space_operations ext4_aops = {
3591 	.readpage		= ext4_readpage,
3592 	.readahead		= ext4_readahead,
3593 	.writepage		= ext4_writepage,
3594 	.writepages		= ext4_writepages,
3595 	.write_begin		= ext4_write_begin,
3596 	.write_end		= ext4_write_end,
3597 	.set_page_dirty		= ext4_set_page_dirty,
3598 	.bmap			= ext4_bmap,
3599 	.invalidatepage		= ext4_invalidatepage,
3600 	.releasepage		= ext4_releasepage,
3601 	.direct_IO		= noop_direct_IO,
3602 	.migratepage		= buffer_migrate_page,
3603 	.is_partially_uptodate  = block_is_partially_uptodate,
3604 	.error_remove_page	= generic_error_remove_page,
3605 	.swap_activate		= ext4_iomap_swap_activate,
3606 };
3607 
3608 static const struct address_space_operations ext4_journalled_aops = {
3609 	.readpage		= ext4_readpage,
3610 	.readahead		= ext4_readahead,
3611 	.writepage		= ext4_writepage,
3612 	.writepages		= ext4_writepages,
3613 	.write_begin		= ext4_write_begin,
3614 	.write_end		= ext4_journalled_write_end,
3615 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3616 	.bmap			= ext4_bmap,
3617 	.invalidatepage		= ext4_journalled_invalidatepage,
3618 	.releasepage		= ext4_releasepage,
3619 	.direct_IO		= noop_direct_IO,
3620 	.is_partially_uptodate  = block_is_partially_uptodate,
3621 	.error_remove_page	= generic_error_remove_page,
3622 	.swap_activate		= ext4_iomap_swap_activate,
3623 };
3624 
3625 static const struct address_space_operations ext4_da_aops = {
3626 	.readpage		= ext4_readpage,
3627 	.readahead		= ext4_readahead,
3628 	.writepage		= ext4_writepage,
3629 	.writepages		= ext4_writepages,
3630 	.write_begin		= ext4_da_write_begin,
3631 	.write_end		= ext4_da_write_end,
3632 	.set_page_dirty		= ext4_set_page_dirty,
3633 	.bmap			= ext4_bmap,
3634 	.invalidatepage		= ext4_invalidatepage,
3635 	.releasepage		= ext4_releasepage,
3636 	.direct_IO		= noop_direct_IO,
3637 	.migratepage		= buffer_migrate_page,
3638 	.is_partially_uptodate  = block_is_partially_uptodate,
3639 	.error_remove_page	= generic_error_remove_page,
3640 	.swap_activate		= ext4_iomap_swap_activate,
3641 };
3642 
3643 static const struct address_space_operations ext4_dax_aops = {
3644 	.writepages		= ext4_dax_writepages,
3645 	.direct_IO		= noop_direct_IO,
3646 	.set_page_dirty		= __set_page_dirty_no_writeback,
3647 	.bmap			= ext4_bmap,
3648 	.invalidatepage		= noop_invalidatepage,
3649 	.swap_activate		= ext4_iomap_swap_activate,
3650 };
3651 
3652 void ext4_set_aops(struct inode *inode)
3653 {
3654 	switch (ext4_inode_journal_mode(inode)) {
3655 	case EXT4_INODE_ORDERED_DATA_MODE:
3656 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3657 		break;
3658 	case EXT4_INODE_JOURNAL_DATA_MODE:
3659 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3660 		return;
3661 	default:
3662 		BUG();
3663 	}
3664 	if (IS_DAX(inode))
3665 		inode->i_mapping->a_ops = &ext4_dax_aops;
3666 	else if (test_opt(inode->i_sb, DELALLOC))
3667 		inode->i_mapping->a_ops = &ext4_da_aops;
3668 	else
3669 		inode->i_mapping->a_ops = &ext4_aops;
3670 }
3671 
3672 static int __ext4_block_zero_page_range(handle_t *handle,
3673 		struct address_space *mapping, loff_t from, loff_t length)
3674 {
3675 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3676 	unsigned offset = from & (PAGE_SIZE-1);
3677 	unsigned blocksize, pos;
3678 	ext4_lblk_t iblock;
3679 	struct inode *inode = mapping->host;
3680 	struct buffer_head *bh;
3681 	struct page *page;
3682 	int err = 0;
3683 
3684 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3685 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3686 	if (!page)
3687 		return -ENOMEM;
3688 
3689 	blocksize = inode->i_sb->s_blocksize;
3690 
3691 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3692 
3693 	if (!page_has_buffers(page))
3694 		create_empty_buffers(page, blocksize, 0);
3695 
3696 	/* Find the buffer that contains "offset" */
3697 	bh = page_buffers(page);
3698 	pos = blocksize;
3699 	while (offset >= pos) {
3700 		bh = bh->b_this_page;
3701 		iblock++;
3702 		pos += blocksize;
3703 	}
3704 	if (buffer_freed(bh)) {
3705 		BUFFER_TRACE(bh, "freed: skip");
3706 		goto unlock;
3707 	}
3708 	if (!buffer_mapped(bh)) {
3709 		BUFFER_TRACE(bh, "unmapped");
3710 		ext4_get_block(inode, iblock, bh, 0);
3711 		/* unmapped? It's a hole - nothing to do */
3712 		if (!buffer_mapped(bh)) {
3713 			BUFFER_TRACE(bh, "still unmapped");
3714 			goto unlock;
3715 		}
3716 	}
3717 
3718 	/* Ok, it's mapped. Make sure it's up-to-date */
3719 	if (PageUptodate(page))
3720 		set_buffer_uptodate(bh);
3721 
3722 	if (!buffer_uptodate(bh)) {
3723 		err = ext4_read_bh_lock(bh, 0, true);
3724 		if (err)
3725 			goto unlock;
3726 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3727 			/* We expect the key to be set. */
3728 			BUG_ON(!fscrypt_has_encryption_key(inode));
3729 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3730 							       bh_offset(bh));
3731 			if (err) {
3732 				clear_buffer_uptodate(bh);
3733 				goto unlock;
3734 			}
3735 		}
3736 	}
3737 	if (ext4_should_journal_data(inode)) {
3738 		BUFFER_TRACE(bh, "get write access");
3739 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3740 						    EXT4_JTR_NONE);
3741 		if (err)
3742 			goto unlock;
3743 	}
3744 	zero_user(page, offset, length);
3745 	BUFFER_TRACE(bh, "zeroed end of block");
3746 
3747 	if (ext4_should_journal_data(inode)) {
3748 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3749 	} else {
3750 		err = 0;
3751 		mark_buffer_dirty(bh);
3752 		if (ext4_should_order_data(inode))
3753 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3754 					length);
3755 	}
3756 
3757 unlock:
3758 	unlock_page(page);
3759 	put_page(page);
3760 	return err;
3761 }
3762 
3763 /*
3764  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3765  * starting from file offset 'from'.  The range to be zero'd must
3766  * be contained with in one block.  If the specified range exceeds
3767  * the end of the block it will be shortened to end of the block
3768  * that corresponds to 'from'
3769  */
3770 static int ext4_block_zero_page_range(handle_t *handle,
3771 		struct address_space *mapping, loff_t from, loff_t length)
3772 {
3773 	struct inode *inode = mapping->host;
3774 	unsigned offset = from & (PAGE_SIZE-1);
3775 	unsigned blocksize = inode->i_sb->s_blocksize;
3776 	unsigned max = blocksize - (offset & (blocksize - 1));
3777 
3778 	/*
3779 	 * correct length if it does not fall between
3780 	 * 'from' and the end of the block
3781 	 */
3782 	if (length > max || length < 0)
3783 		length = max;
3784 
3785 	if (IS_DAX(inode)) {
3786 		return iomap_zero_range(inode, from, length, NULL,
3787 					&ext4_iomap_ops);
3788 	}
3789 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3790 }
3791 
3792 /*
3793  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3794  * up to the end of the block which corresponds to `from'.
3795  * This required during truncate. We need to physically zero the tail end
3796  * of that block so it doesn't yield old data if the file is later grown.
3797  */
3798 static int ext4_block_truncate_page(handle_t *handle,
3799 		struct address_space *mapping, loff_t from)
3800 {
3801 	unsigned offset = from & (PAGE_SIZE-1);
3802 	unsigned length;
3803 	unsigned blocksize;
3804 	struct inode *inode = mapping->host;
3805 
3806 	/* If we are processing an encrypted inode during orphan list handling */
3807 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3808 		return 0;
3809 
3810 	blocksize = inode->i_sb->s_blocksize;
3811 	length = blocksize - (offset & (blocksize - 1));
3812 
3813 	return ext4_block_zero_page_range(handle, mapping, from, length);
3814 }
3815 
3816 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3817 			     loff_t lstart, loff_t length)
3818 {
3819 	struct super_block *sb = inode->i_sb;
3820 	struct address_space *mapping = inode->i_mapping;
3821 	unsigned partial_start, partial_end;
3822 	ext4_fsblk_t start, end;
3823 	loff_t byte_end = (lstart + length - 1);
3824 	int err = 0;
3825 
3826 	partial_start = lstart & (sb->s_blocksize - 1);
3827 	partial_end = byte_end & (sb->s_blocksize - 1);
3828 
3829 	start = lstart >> sb->s_blocksize_bits;
3830 	end = byte_end >> sb->s_blocksize_bits;
3831 
3832 	/* Handle partial zero within the single block */
3833 	if (start == end &&
3834 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3835 		err = ext4_block_zero_page_range(handle, mapping,
3836 						 lstart, length);
3837 		return err;
3838 	}
3839 	/* Handle partial zero out on the start of the range */
3840 	if (partial_start) {
3841 		err = ext4_block_zero_page_range(handle, mapping,
3842 						 lstart, sb->s_blocksize);
3843 		if (err)
3844 			return err;
3845 	}
3846 	/* Handle partial zero out on the end of the range */
3847 	if (partial_end != sb->s_blocksize - 1)
3848 		err = ext4_block_zero_page_range(handle, mapping,
3849 						 byte_end - partial_end,
3850 						 partial_end + 1);
3851 	return err;
3852 }
3853 
3854 int ext4_can_truncate(struct inode *inode)
3855 {
3856 	if (S_ISREG(inode->i_mode))
3857 		return 1;
3858 	if (S_ISDIR(inode->i_mode))
3859 		return 1;
3860 	if (S_ISLNK(inode->i_mode))
3861 		return !ext4_inode_is_fast_symlink(inode);
3862 	return 0;
3863 }
3864 
3865 /*
3866  * We have to make sure i_disksize gets properly updated before we truncate
3867  * page cache due to hole punching or zero range. Otherwise i_disksize update
3868  * can get lost as it may have been postponed to submission of writeback but
3869  * that will never happen after we truncate page cache.
3870  */
3871 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3872 				      loff_t len)
3873 {
3874 	handle_t *handle;
3875 	int ret;
3876 
3877 	loff_t size = i_size_read(inode);
3878 
3879 	WARN_ON(!inode_is_locked(inode));
3880 	if (offset > size || offset + len < size)
3881 		return 0;
3882 
3883 	if (EXT4_I(inode)->i_disksize >= size)
3884 		return 0;
3885 
3886 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3887 	if (IS_ERR(handle))
3888 		return PTR_ERR(handle);
3889 	ext4_update_i_disksize(inode, size);
3890 	ret = ext4_mark_inode_dirty(handle, inode);
3891 	ext4_journal_stop(handle);
3892 
3893 	return ret;
3894 }
3895 
3896 static void ext4_wait_dax_page(struct inode *inode)
3897 {
3898 	filemap_invalidate_unlock(inode->i_mapping);
3899 	schedule();
3900 	filemap_invalidate_lock(inode->i_mapping);
3901 }
3902 
3903 int ext4_break_layouts(struct inode *inode)
3904 {
3905 	struct page *page;
3906 	int error;
3907 
3908 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3909 		return -EINVAL;
3910 
3911 	do {
3912 		page = dax_layout_busy_page(inode->i_mapping);
3913 		if (!page)
3914 			return 0;
3915 
3916 		error = ___wait_var_event(&page->_refcount,
3917 				atomic_read(&page->_refcount) == 1,
3918 				TASK_INTERRUPTIBLE, 0, 0,
3919 				ext4_wait_dax_page(inode));
3920 	} while (error == 0);
3921 
3922 	return error;
3923 }
3924 
3925 /*
3926  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3927  * associated with the given offset and length
3928  *
3929  * @inode:  File inode
3930  * @offset: The offset where the hole will begin
3931  * @len:    The length of the hole
3932  *
3933  * Returns: 0 on success or negative on failure
3934  */
3935 
3936 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3937 {
3938 	struct super_block *sb = inode->i_sb;
3939 	ext4_lblk_t first_block, stop_block;
3940 	struct address_space *mapping = inode->i_mapping;
3941 	loff_t first_block_offset, last_block_offset;
3942 	handle_t *handle;
3943 	unsigned int credits;
3944 	int ret = 0, ret2 = 0;
3945 
3946 	trace_ext4_punch_hole(inode, offset, length, 0);
3947 
3948 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3949 	if (ext4_has_inline_data(inode)) {
3950 		filemap_invalidate_lock(mapping);
3951 		ret = ext4_convert_inline_data(inode);
3952 		filemap_invalidate_unlock(mapping);
3953 		if (ret)
3954 			return ret;
3955 	}
3956 
3957 	/*
3958 	 * Write out all dirty pages to avoid race conditions
3959 	 * Then release them.
3960 	 */
3961 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3962 		ret = filemap_write_and_wait_range(mapping, offset,
3963 						   offset + length - 1);
3964 		if (ret)
3965 			return ret;
3966 	}
3967 
3968 	inode_lock(inode);
3969 
3970 	/* No need to punch hole beyond i_size */
3971 	if (offset >= inode->i_size)
3972 		goto out_mutex;
3973 
3974 	/*
3975 	 * If the hole extends beyond i_size, set the hole
3976 	 * to end after the page that contains i_size
3977 	 */
3978 	if (offset + length > inode->i_size) {
3979 		length = inode->i_size +
3980 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3981 		   offset;
3982 	}
3983 
3984 	if (offset & (sb->s_blocksize - 1) ||
3985 	    (offset + length) & (sb->s_blocksize - 1)) {
3986 		/*
3987 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3988 		 * partial block
3989 		 */
3990 		ret = ext4_inode_attach_jinode(inode);
3991 		if (ret < 0)
3992 			goto out_mutex;
3993 
3994 	}
3995 
3996 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3997 	inode_dio_wait(inode);
3998 
3999 	/*
4000 	 * Prevent page faults from reinstantiating pages we have released from
4001 	 * page cache.
4002 	 */
4003 	filemap_invalidate_lock(mapping);
4004 
4005 	ret = ext4_break_layouts(inode);
4006 	if (ret)
4007 		goto out_dio;
4008 
4009 	first_block_offset = round_up(offset, sb->s_blocksize);
4010 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4011 
4012 	/* Now release the pages and zero block aligned part of pages*/
4013 	if (last_block_offset > first_block_offset) {
4014 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4015 		if (ret)
4016 			goto out_dio;
4017 		truncate_pagecache_range(inode, first_block_offset,
4018 					 last_block_offset);
4019 	}
4020 
4021 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4022 		credits = ext4_writepage_trans_blocks(inode);
4023 	else
4024 		credits = ext4_blocks_for_truncate(inode);
4025 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4026 	if (IS_ERR(handle)) {
4027 		ret = PTR_ERR(handle);
4028 		ext4_std_error(sb, ret);
4029 		goto out_dio;
4030 	}
4031 
4032 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4033 				       length);
4034 	if (ret)
4035 		goto out_stop;
4036 
4037 	first_block = (offset + sb->s_blocksize - 1) >>
4038 		EXT4_BLOCK_SIZE_BITS(sb);
4039 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4040 
4041 	/* If there are blocks to remove, do it */
4042 	if (stop_block > first_block) {
4043 
4044 		down_write(&EXT4_I(inode)->i_data_sem);
4045 		ext4_discard_preallocations(inode, 0);
4046 
4047 		ret = ext4_es_remove_extent(inode, first_block,
4048 					    stop_block - first_block);
4049 		if (ret) {
4050 			up_write(&EXT4_I(inode)->i_data_sem);
4051 			goto out_stop;
4052 		}
4053 
4054 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4055 			ret = ext4_ext_remove_space(inode, first_block,
4056 						    stop_block - 1);
4057 		else
4058 			ret = ext4_ind_remove_space(handle, inode, first_block,
4059 						    stop_block);
4060 
4061 		up_write(&EXT4_I(inode)->i_data_sem);
4062 	}
4063 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4064 	if (IS_SYNC(inode))
4065 		ext4_handle_sync(handle);
4066 
4067 	inode->i_mtime = inode->i_ctime = current_time(inode);
4068 	ret2 = ext4_mark_inode_dirty(handle, inode);
4069 	if (unlikely(ret2))
4070 		ret = ret2;
4071 	if (ret >= 0)
4072 		ext4_update_inode_fsync_trans(handle, inode, 1);
4073 out_stop:
4074 	ext4_journal_stop(handle);
4075 out_dio:
4076 	filemap_invalidate_unlock(mapping);
4077 out_mutex:
4078 	inode_unlock(inode);
4079 	return ret;
4080 }
4081 
4082 int ext4_inode_attach_jinode(struct inode *inode)
4083 {
4084 	struct ext4_inode_info *ei = EXT4_I(inode);
4085 	struct jbd2_inode *jinode;
4086 
4087 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4088 		return 0;
4089 
4090 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4091 	spin_lock(&inode->i_lock);
4092 	if (!ei->jinode) {
4093 		if (!jinode) {
4094 			spin_unlock(&inode->i_lock);
4095 			return -ENOMEM;
4096 		}
4097 		ei->jinode = jinode;
4098 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4099 		jinode = NULL;
4100 	}
4101 	spin_unlock(&inode->i_lock);
4102 	if (unlikely(jinode != NULL))
4103 		jbd2_free_inode(jinode);
4104 	return 0;
4105 }
4106 
4107 /*
4108  * ext4_truncate()
4109  *
4110  * We block out ext4_get_block() block instantiations across the entire
4111  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4112  * simultaneously on behalf of the same inode.
4113  *
4114  * As we work through the truncate and commit bits of it to the journal there
4115  * is one core, guiding principle: the file's tree must always be consistent on
4116  * disk.  We must be able to restart the truncate after a crash.
4117  *
4118  * The file's tree may be transiently inconsistent in memory (although it
4119  * probably isn't), but whenever we close off and commit a journal transaction,
4120  * the contents of (the filesystem + the journal) must be consistent and
4121  * restartable.  It's pretty simple, really: bottom up, right to left (although
4122  * left-to-right works OK too).
4123  *
4124  * Note that at recovery time, journal replay occurs *before* the restart of
4125  * truncate against the orphan inode list.
4126  *
4127  * The committed inode has the new, desired i_size (which is the same as
4128  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4129  * that this inode's truncate did not complete and it will again call
4130  * ext4_truncate() to have another go.  So there will be instantiated blocks
4131  * to the right of the truncation point in a crashed ext4 filesystem.  But
4132  * that's fine - as long as they are linked from the inode, the post-crash
4133  * ext4_truncate() run will find them and release them.
4134  */
4135 int ext4_truncate(struct inode *inode)
4136 {
4137 	struct ext4_inode_info *ei = EXT4_I(inode);
4138 	unsigned int credits;
4139 	int err = 0, err2;
4140 	handle_t *handle;
4141 	struct address_space *mapping = inode->i_mapping;
4142 
4143 	/*
4144 	 * There is a possibility that we're either freeing the inode
4145 	 * or it's a completely new inode. In those cases we might not
4146 	 * have i_mutex locked because it's not necessary.
4147 	 */
4148 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4149 		WARN_ON(!inode_is_locked(inode));
4150 	trace_ext4_truncate_enter(inode);
4151 
4152 	if (!ext4_can_truncate(inode))
4153 		goto out_trace;
4154 
4155 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4156 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4157 
4158 	if (ext4_has_inline_data(inode)) {
4159 		int has_inline = 1;
4160 
4161 		err = ext4_inline_data_truncate(inode, &has_inline);
4162 		if (err || has_inline)
4163 			goto out_trace;
4164 	}
4165 
4166 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4167 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4168 		if (ext4_inode_attach_jinode(inode) < 0)
4169 			goto out_trace;
4170 	}
4171 
4172 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4173 		credits = ext4_writepage_trans_blocks(inode);
4174 	else
4175 		credits = ext4_blocks_for_truncate(inode);
4176 
4177 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4178 	if (IS_ERR(handle)) {
4179 		err = PTR_ERR(handle);
4180 		goto out_trace;
4181 	}
4182 
4183 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4184 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4185 
4186 	/*
4187 	 * We add the inode to the orphan list, so that if this
4188 	 * truncate spans multiple transactions, and we crash, we will
4189 	 * resume the truncate when the filesystem recovers.  It also
4190 	 * marks the inode dirty, to catch the new size.
4191 	 *
4192 	 * Implication: the file must always be in a sane, consistent
4193 	 * truncatable state while each transaction commits.
4194 	 */
4195 	err = ext4_orphan_add(handle, inode);
4196 	if (err)
4197 		goto out_stop;
4198 
4199 	down_write(&EXT4_I(inode)->i_data_sem);
4200 
4201 	ext4_discard_preallocations(inode, 0);
4202 
4203 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4204 		err = ext4_ext_truncate(handle, inode);
4205 	else
4206 		ext4_ind_truncate(handle, inode);
4207 
4208 	up_write(&ei->i_data_sem);
4209 	if (err)
4210 		goto out_stop;
4211 
4212 	if (IS_SYNC(inode))
4213 		ext4_handle_sync(handle);
4214 
4215 out_stop:
4216 	/*
4217 	 * If this was a simple ftruncate() and the file will remain alive,
4218 	 * then we need to clear up the orphan record which we created above.
4219 	 * However, if this was a real unlink then we were called by
4220 	 * ext4_evict_inode(), and we allow that function to clean up the
4221 	 * orphan info for us.
4222 	 */
4223 	if (inode->i_nlink)
4224 		ext4_orphan_del(handle, inode);
4225 
4226 	inode->i_mtime = inode->i_ctime = current_time(inode);
4227 	err2 = ext4_mark_inode_dirty(handle, inode);
4228 	if (unlikely(err2 && !err))
4229 		err = err2;
4230 	ext4_journal_stop(handle);
4231 
4232 out_trace:
4233 	trace_ext4_truncate_exit(inode);
4234 	return err;
4235 }
4236 
4237 /*
4238  * ext4_get_inode_loc returns with an extra refcount against the inode's
4239  * underlying buffer_head on success. If 'in_mem' is true, we have all
4240  * data in memory that is needed to recreate the on-disk version of this
4241  * inode.
4242  */
4243 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4244 				struct ext4_iloc *iloc, int in_mem,
4245 				ext4_fsblk_t *ret_block)
4246 {
4247 	struct ext4_group_desc	*gdp;
4248 	struct buffer_head	*bh;
4249 	ext4_fsblk_t		block;
4250 	struct blk_plug		plug;
4251 	int			inodes_per_block, inode_offset;
4252 
4253 	iloc->bh = NULL;
4254 	if (ino < EXT4_ROOT_INO ||
4255 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4256 		return -EFSCORRUPTED;
4257 
4258 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4259 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4260 	if (!gdp)
4261 		return -EIO;
4262 
4263 	/*
4264 	 * Figure out the offset within the block group inode table
4265 	 */
4266 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4267 	inode_offset = ((ino - 1) %
4268 			EXT4_INODES_PER_GROUP(sb));
4269 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4270 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4271 
4272 	bh = sb_getblk(sb, block);
4273 	if (unlikely(!bh))
4274 		return -ENOMEM;
4275 	if (ext4_buffer_uptodate(bh))
4276 		goto has_buffer;
4277 
4278 	lock_buffer(bh);
4279 	if (ext4_buffer_uptodate(bh)) {
4280 		/* Someone brought it uptodate while we waited */
4281 		unlock_buffer(bh);
4282 		goto has_buffer;
4283 	}
4284 
4285 	/*
4286 	 * If we have all information of the inode in memory and this
4287 	 * is the only valid inode in the block, we need not read the
4288 	 * block.
4289 	 */
4290 	if (in_mem) {
4291 		struct buffer_head *bitmap_bh;
4292 		int i, start;
4293 
4294 		start = inode_offset & ~(inodes_per_block - 1);
4295 
4296 		/* Is the inode bitmap in cache? */
4297 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4298 		if (unlikely(!bitmap_bh))
4299 			goto make_io;
4300 
4301 		/*
4302 		 * If the inode bitmap isn't in cache then the
4303 		 * optimisation may end up performing two reads instead
4304 		 * of one, so skip it.
4305 		 */
4306 		if (!buffer_uptodate(bitmap_bh)) {
4307 			brelse(bitmap_bh);
4308 			goto make_io;
4309 		}
4310 		for (i = start; i < start + inodes_per_block; i++) {
4311 			if (i == inode_offset)
4312 				continue;
4313 			if (ext4_test_bit(i, bitmap_bh->b_data))
4314 				break;
4315 		}
4316 		brelse(bitmap_bh);
4317 		if (i == start + inodes_per_block) {
4318 			/* all other inodes are free, so skip I/O */
4319 			memset(bh->b_data, 0, bh->b_size);
4320 			set_buffer_uptodate(bh);
4321 			unlock_buffer(bh);
4322 			goto has_buffer;
4323 		}
4324 	}
4325 
4326 make_io:
4327 	/*
4328 	 * If we need to do any I/O, try to pre-readahead extra
4329 	 * blocks from the inode table.
4330 	 */
4331 	blk_start_plug(&plug);
4332 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4333 		ext4_fsblk_t b, end, table;
4334 		unsigned num;
4335 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4336 
4337 		table = ext4_inode_table(sb, gdp);
4338 		/* s_inode_readahead_blks is always a power of 2 */
4339 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4340 		if (table > b)
4341 			b = table;
4342 		end = b + ra_blks;
4343 		num = EXT4_INODES_PER_GROUP(sb);
4344 		if (ext4_has_group_desc_csum(sb))
4345 			num -= ext4_itable_unused_count(sb, gdp);
4346 		table += num / inodes_per_block;
4347 		if (end > table)
4348 			end = table;
4349 		while (b <= end)
4350 			ext4_sb_breadahead_unmovable(sb, b++);
4351 	}
4352 
4353 	/*
4354 	 * There are other valid inodes in the buffer, this inode
4355 	 * has in-inode xattrs, or we don't have this inode in memory.
4356 	 * Read the block from disk.
4357 	 */
4358 	trace_ext4_load_inode(sb, ino);
4359 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4360 	blk_finish_plug(&plug);
4361 	wait_on_buffer(bh);
4362 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4363 	if (!buffer_uptodate(bh)) {
4364 		if (ret_block)
4365 			*ret_block = block;
4366 		brelse(bh);
4367 		return -EIO;
4368 	}
4369 has_buffer:
4370 	iloc->bh = bh;
4371 	return 0;
4372 }
4373 
4374 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4375 					struct ext4_iloc *iloc)
4376 {
4377 	ext4_fsblk_t err_blk;
4378 	int ret;
4379 
4380 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4381 					&err_blk);
4382 
4383 	if (ret == -EIO)
4384 		ext4_error_inode_block(inode, err_blk, EIO,
4385 					"unable to read itable block");
4386 
4387 	return ret;
4388 }
4389 
4390 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4391 {
4392 	ext4_fsblk_t err_blk;
4393 	int ret;
4394 
4395 	/* We have all inode data except xattrs in memory here. */
4396 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4397 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4398 
4399 	if (ret == -EIO)
4400 		ext4_error_inode_block(inode, err_blk, EIO,
4401 					"unable to read itable block");
4402 
4403 	return ret;
4404 }
4405 
4406 
4407 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4408 			  struct ext4_iloc *iloc)
4409 {
4410 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4411 }
4412 
4413 static bool ext4_should_enable_dax(struct inode *inode)
4414 {
4415 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4416 
4417 	if (test_opt2(inode->i_sb, DAX_NEVER))
4418 		return false;
4419 	if (!S_ISREG(inode->i_mode))
4420 		return false;
4421 	if (ext4_should_journal_data(inode))
4422 		return false;
4423 	if (ext4_has_inline_data(inode))
4424 		return false;
4425 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4426 		return false;
4427 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4428 		return false;
4429 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4430 		return false;
4431 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4432 		return true;
4433 
4434 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4435 }
4436 
4437 void ext4_set_inode_flags(struct inode *inode, bool init)
4438 {
4439 	unsigned int flags = EXT4_I(inode)->i_flags;
4440 	unsigned int new_fl = 0;
4441 
4442 	WARN_ON_ONCE(IS_DAX(inode) && init);
4443 
4444 	if (flags & EXT4_SYNC_FL)
4445 		new_fl |= S_SYNC;
4446 	if (flags & EXT4_APPEND_FL)
4447 		new_fl |= S_APPEND;
4448 	if (flags & EXT4_IMMUTABLE_FL)
4449 		new_fl |= S_IMMUTABLE;
4450 	if (flags & EXT4_NOATIME_FL)
4451 		new_fl |= S_NOATIME;
4452 	if (flags & EXT4_DIRSYNC_FL)
4453 		new_fl |= S_DIRSYNC;
4454 
4455 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4456 	 * here if already set. */
4457 	new_fl |= (inode->i_flags & S_DAX);
4458 	if (init && ext4_should_enable_dax(inode))
4459 		new_fl |= S_DAX;
4460 
4461 	if (flags & EXT4_ENCRYPT_FL)
4462 		new_fl |= S_ENCRYPTED;
4463 	if (flags & EXT4_CASEFOLD_FL)
4464 		new_fl |= S_CASEFOLD;
4465 	if (flags & EXT4_VERITY_FL)
4466 		new_fl |= S_VERITY;
4467 	inode_set_flags(inode, new_fl,
4468 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4469 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4470 }
4471 
4472 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4473 				  struct ext4_inode_info *ei)
4474 {
4475 	blkcnt_t i_blocks ;
4476 	struct inode *inode = &(ei->vfs_inode);
4477 	struct super_block *sb = inode->i_sb;
4478 
4479 	if (ext4_has_feature_huge_file(sb)) {
4480 		/* we are using combined 48 bit field */
4481 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4482 					le32_to_cpu(raw_inode->i_blocks_lo);
4483 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4484 			/* i_blocks represent file system block size */
4485 			return i_blocks  << (inode->i_blkbits - 9);
4486 		} else {
4487 			return i_blocks;
4488 		}
4489 	} else {
4490 		return le32_to_cpu(raw_inode->i_blocks_lo);
4491 	}
4492 }
4493 
4494 static inline int ext4_iget_extra_inode(struct inode *inode,
4495 					 struct ext4_inode *raw_inode,
4496 					 struct ext4_inode_info *ei)
4497 {
4498 	__le32 *magic = (void *)raw_inode +
4499 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4500 
4501 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4502 	    EXT4_INODE_SIZE(inode->i_sb) &&
4503 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4504 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4505 		return ext4_find_inline_data_nolock(inode);
4506 	} else
4507 		EXT4_I(inode)->i_inline_off = 0;
4508 	return 0;
4509 }
4510 
4511 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4512 {
4513 	if (!ext4_has_feature_project(inode->i_sb))
4514 		return -EOPNOTSUPP;
4515 	*projid = EXT4_I(inode)->i_projid;
4516 	return 0;
4517 }
4518 
4519 /*
4520  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4521  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4522  * set.
4523  */
4524 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4525 {
4526 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527 		inode_set_iversion_raw(inode, val);
4528 	else
4529 		inode_set_iversion_queried(inode, val);
4530 }
4531 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4532 {
4533 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4534 		return inode_peek_iversion_raw(inode);
4535 	else
4536 		return inode_peek_iversion(inode);
4537 }
4538 
4539 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4540 			  ext4_iget_flags flags, const char *function,
4541 			  unsigned int line)
4542 {
4543 	struct ext4_iloc iloc;
4544 	struct ext4_inode *raw_inode;
4545 	struct ext4_inode_info *ei;
4546 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4547 	struct inode *inode;
4548 	journal_t *journal = EXT4_SB(sb)->s_journal;
4549 	long ret;
4550 	loff_t size;
4551 	int block;
4552 	uid_t i_uid;
4553 	gid_t i_gid;
4554 	projid_t i_projid;
4555 
4556 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4557 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4558 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4559 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4560 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4561 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4562 	    (ino < EXT4_ROOT_INO) ||
4563 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4564 		if (flags & EXT4_IGET_HANDLE)
4565 			return ERR_PTR(-ESTALE);
4566 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4567 			     "inode #%lu: comm %s: iget: illegal inode #",
4568 			     ino, current->comm);
4569 		return ERR_PTR(-EFSCORRUPTED);
4570 	}
4571 
4572 	inode = iget_locked(sb, ino);
4573 	if (!inode)
4574 		return ERR_PTR(-ENOMEM);
4575 	if (!(inode->i_state & I_NEW))
4576 		return inode;
4577 
4578 	ei = EXT4_I(inode);
4579 	iloc.bh = NULL;
4580 
4581 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4582 	if (ret < 0)
4583 		goto bad_inode;
4584 	raw_inode = ext4_raw_inode(&iloc);
4585 
4586 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4587 		ext4_error_inode(inode, function, line, 0,
4588 				 "iget: root inode unallocated");
4589 		ret = -EFSCORRUPTED;
4590 		goto bad_inode;
4591 	}
4592 
4593 	if ((flags & EXT4_IGET_HANDLE) &&
4594 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4595 		ret = -ESTALE;
4596 		goto bad_inode;
4597 	}
4598 
4599 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4600 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4601 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4602 			EXT4_INODE_SIZE(inode->i_sb) ||
4603 		    (ei->i_extra_isize & 3)) {
4604 			ext4_error_inode(inode, function, line, 0,
4605 					 "iget: bad extra_isize %u "
4606 					 "(inode size %u)",
4607 					 ei->i_extra_isize,
4608 					 EXT4_INODE_SIZE(inode->i_sb));
4609 			ret = -EFSCORRUPTED;
4610 			goto bad_inode;
4611 		}
4612 	} else
4613 		ei->i_extra_isize = 0;
4614 
4615 	/* Precompute checksum seed for inode metadata */
4616 	if (ext4_has_metadata_csum(sb)) {
4617 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4618 		__u32 csum;
4619 		__le32 inum = cpu_to_le32(inode->i_ino);
4620 		__le32 gen = raw_inode->i_generation;
4621 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4622 				   sizeof(inum));
4623 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4624 					      sizeof(gen));
4625 	}
4626 
4627 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4628 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4629 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4630 		ext4_error_inode_err(inode, function, line, 0,
4631 				EFSBADCRC, "iget: checksum invalid");
4632 		ret = -EFSBADCRC;
4633 		goto bad_inode;
4634 	}
4635 
4636 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4637 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4638 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4639 	if (ext4_has_feature_project(sb) &&
4640 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4641 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4642 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4643 	else
4644 		i_projid = EXT4_DEF_PROJID;
4645 
4646 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4647 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4648 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4649 	}
4650 	i_uid_write(inode, i_uid);
4651 	i_gid_write(inode, i_gid);
4652 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4653 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4654 
4655 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4656 	ei->i_inline_off = 0;
4657 	ei->i_dir_start_lookup = 0;
4658 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4659 	/* We now have enough fields to check if the inode was active or not.
4660 	 * This is needed because nfsd might try to access dead inodes
4661 	 * the test is that same one that e2fsck uses
4662 	 * NeilBrown 1999oct15
4663 	 */
4664 	if (inode->i_nlink == 0) {
4665 		if ((inode->i_mode == 0 ||
4666 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4667 		    ino != EXT4_BOOT_LOADER_INO) {
4668 			/* this inode is deleted */
4669 			ret = -ESTALE;
4670 			goto bad_inode;
4671 		}
4672 		/* The only unlinked inodes we let through here have
4673 		 * valid i_mode and are being read by the orphan
4674 		 * recovery code: that's fine, we're about to complete
4675 		 * the process of deleting those.
4676 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4677 		 * not initialized on a new filesystem. */
4678 	}
4679 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4680 	ext4_set_inode_flags(inode, true);
4681 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4682 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4683 	if (ext4_has_feature_64bit(sb))
4684 		ei->i_file_acl |=
4685 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4686 	inode->i_size = ext4_isize(sb, raw_inode);
4687 	if ((size = i_size_read(inode)) < 0) {
4688 		ext4_error_inode(inode, function, line, 0,
4689 				 "iget: bad i_size value: %lld", size);
4690 		ret = -EFSCORRUPTED;
4691 		goto bad_inode;
4692 	}
4693 	/*
4694 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4695 	 * we'd normally treat htree data as empty space. But with metadata
4696 	 * checksumming that corrupts checksums so forbid that.
4697 	 */
4698 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4699 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4700 		ext4_error_inode(inode, function, line, 0,
4701 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4702 		ret = -EFSCORRUPTED;
4703 		goto bad_inode;
4704 	}
4705 	ei->i_disksize = inode->i_size;
4706 #ifdef CONFIG_QUOTA
4707 	ei->i_reserved_quota = 0;
4708 #endif
4709 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4710 	ei->i_block_group = iloc.block_group;
4711 	ei->i_last_alloc_group = ~0;
4712 	/*
4713 	 * NOTE! The in-memory inode i_data array is in little-endian order
4714 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4715 	 */
4716 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4717 		ei->i_data[block] = raw_inode->i_block[block];
4718 	INIT_LIST_HEAD(&ei->i_orphan);
4719 	ext4_fc_init_inode(&ei->vfs_inode);
4720 
4721 	/*
4722 	 * Set transaction id's of transactions that have to be committed
4723 	 * to finish f[data]sync. We set them to currently running transaction
4724 	 * as we cannot be sure that the inode or some of its metadata isn't
4725 	 * part of the transaction - the inode could have been reclaimed and
4726 	 * now it is reread from disk.
4727 	 */
4728 	if (journal) {
4729 		transaction_t *transaction;
4730 		tid_t tid;
4731 
4732 		read_lock(&journal->j_state_lock);
4733 		if (journal->j_running_transaction)
4734 			transaction = journal->j_running_transaction;
4735 		else
4736 			transaction = journal->j_committing_transaction;
4737 		if (transaction)
4738 			tid = transaction->t_tid;
4739 		else
4740 			tid = journal->j_commit_sequence;
4741 		read_unlock(&journal->j_state_lock);
4742 		ei->i_sync_tid = tid;
4743 		ei->i_datasync_tid = tid;
4744 	}
4745 
4746 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4747 		if (ei->i_extra_isize == 0) {
4748 			/* The extra space is currently unused. Use it. */
4749 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4750 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4751 					    EXT4_GOOD_OLD_INODE_SIZE;
4752 		} else {
4753 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4754 			if (ret)
4755 				goto bad_inode;
4756 		}
4757 	}
4758 
4759 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4760 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4761 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4762 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4763 
4764 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4765 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4766 
4767 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4768 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4769 				ivers |=
4770 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4771 		}
4772 		ext4_inode_set_iversion_queried(inode, ivers);
4773 	}
4774 
4775 	ret = 0;
4776 	if (ei->i_file_acl &&
4777 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4778 		ext4_error_inode(inode, function, line, 0,
4779 				 "iget: bad extended attribute block %llu",
4780 				 ei->i_file_acl);
4781 		ret = -EFSCORRUPTED;
4782 		goto bad_inode;
4783 	} else if (!ext4_has_inline_data(inode)) {
4784 		/* validate the block references in the inode */
4785 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4786 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4787 			(S_ISLNK(inode->i_mode) &&
4788 			!ext4_inode_is_fast_symlink(inode)))) {
4789 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4790 				ret = ext4_ext_check_inode(inode);
4791 			else
4792 				ret = ext4_ind_check_inode(inode);
4793 		}
4794 	}
4795 	if (ret)
4796 		goto bad_inode;
4797 
4798 	if (S_ISREG(inode->i_mode)) {
4799 		inode->i_op = &ext4_file_inode_operations;
4800 		inode->i_fop = &ext4_file_operations;
4801 		ext4_set_aops(inode);
4802 	} else if (S_ISDIR(inode->i_mode)) {
4803 		inode->i_op = &ext4_dir_inode_operations;
4804 		inode->i_fop = &ext4_dir_operations;
4805 	} else if (S_ISLNK(inode->i_mode)) {
4806 		/* VFS does not allow setting these so must be corruption */
4807 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4808 			ext4_error_inode(inode, function, line, 0,
4809 					 "iget: immutable or append flags "
4810 					 "not allowed on symlinks");
4811 			ret = -EFSCORRUPTED;
4812 			goto bad_inode;
4813 		}
4814 		if (IS_ENCRYPTED(inode)) {
4815 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4816 			ext4_set_aops(inode);
4817 		} else if (ext4_inode_is_fast_symlink(inode)) {
4818 			inode->i_link = (char *)ei->i_data;
4819 			inode->i_op = &ext4_fast_symlink_inode_operations;
4820 			nd_terminate_link(ei->i_data, inode->i_size,
4821 				sizeof(ei->i_data) - 1);
4822 		} else {
4823 			inode->i_op = &ext4_symlink_inode_operations;
4824 			ext4_set_aops(inode);
4825 		}
4826 		inode_nohighmem(inode);
4827 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4828 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4829 		inode->i_op = &ext4_special_inode_operations;
4830 		if (raw_inode->i_block[0])
4831 			init_special_inode(inode, inode->i_mode,
4832 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4833 		else
4834 			init_special_inode(inode, inode->i_mode,
4835 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4836 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4837 		make_bad_inode(inode);
4838 	} else {
4839 		ret = -EFSCORRUPTED;
4840 		ext4_error_inode(inode, function, line, 0,
4841 				 "iget: bogus i_mode (%o)", inode->i_mode);
4842 		goto bad_inode;
4843 	}
4844 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4845 		ext4_error_inode(inode, function, line, 0,
4846 				 "casefold flag without casefold feature");
4847 	brelse(iloc.bh);
4848 
4849 	unlock_new_inode(inode);
4850 	return inode;
4851 
4852 bad_inode:
4853 	brelse(iloc.bh);
4854 	iget_failed(inode);
4855 	return ERR_PTR(ret);
4856 }
4857 
4858 static int ext4_inode_blocks_set(handle_t *handle,
4859 				struct ext4_inode *raw_inode,
4860 				struct ext4_inode_info *ei)
4861 {
4862 	struct inode *inode = &(ei->vfs_inode);
4863 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4864 	struct super_block *sb = inode->i_sb;
4865 
4866 	if (i_blocks <= ~0U) {
4867 		/*
4868 		 * i_blocks can be represented in a 32 bit variable
4869 		 * as multiple of 512 bytes
4870 		 */
4871 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4872 		raw_inode->i_blocks_high = 0;
4873 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874 		return 0;
4875 	}
4876 
4877 	/*
4878 	 * This should never happen since sb->s_maxbytes should not have
4879 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4880 	 * feature in ext4_fill_super().
4881 	 */
4882 	if (!ext4_has_feature_huge_file(sb))
4883 		return -EFSCORRUPTED;
4884 
4885 	if (i_blocks <= 0xffffffffffffULL) {
4886 		/*
4887 		 * i_blocks can be represented in a 48 bit variable
4888 		 * as multiple of 512 bytes
4889 		 */
4890 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4891 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4892 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4893 	} else {
4894 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4895 		/* i_block is stored in file system block size */
4896 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4897 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4898 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4899 	}
4900 	return 0;
4901 }
4902 
4903 static void __ext4_update_other_inode_time(struct super_block *sb,
4904 					   unsigned long orig_ino,
4905 					   unsigned long ino,
4906 					   struct ext4_inode *raw_inode)
4907 {
4908 	struct inode *inode;
4909 
4910 	inode = find_inode_by_ino_rcu(sb, ino);
4911 	if (!inode)
4912 		return;
4913 
4914 	if (!inode_is_dirtytime_only(inode))
4915 		return;
4916 
4917 	spin_lock(&inode->i_lock);
4918 	if (inode_is_dirtytime_only(inode)) {
4919 		struct ext4_inode_info	*ei = EXT4_I(inode);
4920 
4921 		inode->i_state &= ~I_DIRTY_TIME;
4922 		spin_unlock(&inode->i_lock);
4923 
4924 		spin_lock(&ei->i_raw_lock);
4925 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4926 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4927 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4928 		ext4_inode_csum_set(inode, raw_inode, ei);
4929 		spin_unlock(&ei->i_raw_lock);
4930 		trace_ext4_other_inode_update_time(inode, orig_ino);
4931 		return;
4932 	}
4933 	spin_unlock(&inode->i_lock);
4934 }
4935 
4936 /*
4937  * Opportunistically update the other time fields for other inodes in
4938  * the same inode table block.
4939  */
4940 static void ext4_update_other_inodes_time(struct super_block *sb,
4941 					  unsigned long orig_ino, char *buf)
4942 {
4943 	unsigned long ino;
4944 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4945 	int inode_size = EXT4_INODE_SIZE(sb);
4946 
4947 	/*
4948 	 * Calculate the first inode in the inode table block.  Inode
4949 	 * numbers are one-based.  That is, the first inode in a block
4950 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4951 	 */
4952 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4953 	rcu_read_lock();
4954 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4955 		if (ino == orig_ino)
4956 			continue;
4957 		__ext4_update_other_inode_time(sb, orig_ino, ino,
4958 					       (struct ext4_inode *)buf);
4959 	}
4960 	rcu_read_unlock();
4961 }
4962 
4963 /*
4964  * Post the struct inode info into an on-disk inode location in the
4965  * buffer-cache.  This gobbles the caller's reference to the
4966  * buffer_head in the inode location struct.
4967  *
4968  * The caller must have write access to iloc->bh.
4969  */
4970 static int ext4_do_update_inode(handle_t *handle,
4971 				struct inode *inode,
4972 				struct ext4_iloc *iloc)
4973 {
4974 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4975 	struct ext4_inode_info *ei = EXT4_I(inode);
4976 	struct buffer_head *bh = iloc->bh;
4977 	struct super_block *sb = inode->i_sb;
4978 	int err = 0, block;
4979 	int need_datasync = 0, set_large_file = 0;
4980 	uid_t i_uid;
4981 	gid_t i_gid;
4982 	projid_t i_projid;
4983 
4984 	spin_lock(&ei->i_raw_lock);
4985 
4986 	/*
4987 	 * For fields not tracked in the in-memory inode, initialise them
4988 	 * to zero for new inodes.
4989 	 */
4990 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4991 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4992 
4993 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4994 
4995 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4996 	i_uid = i_uid_read(inode);
4997 	i_gid = i_gid_read(inode);
4998 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4999 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5000 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5001 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5002 		/*
5003 		 * Fix up interoperability with old kernels. Otherwise,
5004 		 * old inodes get re-used with the upper 16 bits of the
5005 		 * uid/gid intact.
5006 		 */
5007 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5008 			raw_inode->i_uid_high = 0;
5009 			raw_inode->i_gid_high = 0;
5010 		} else {
5011 			raw_inode->i_uid_high =
5012 				cpu_to_le16(high_16_bits(i_uid));
5013 			raw_inode->i_gid_high =
5014 				cpu_to_le16(high_16_bits(i_gid));
5015 		}
5016 	} else {
5017 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5018 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5019 		raw_inode->i_uid_high = 0;
5020 		raw_inode->i_gid_high = 0;
5021 	}
5022 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5023 
5024 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5025 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5026 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5027 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5028 
5029 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5030 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5031 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5032 		raw_inode->i_file_acl_high =
5033 			cpu_to_le16(ei->i_file_acl >> 32);
5034 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5035 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5036 		ext4_isize_set(raw_inode, ei->i_disksize);
5037 		need_datasync = 1;
5038 	}
5039 	if (ei->i_disksize > 0x7fffffffULL) {
5040 		if (!ext4_has_feature_large_file(sb) ||
5041 				EXT4_SB(sb)->s_es->s_rev_level ==
5042 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5043 			set_large_file = 1;
5044 	}
5045 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5046 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5047 		if (old_valid_dev(inode->i_rdev)) {
5048 			raw_inode->i_block[0] =
5049 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5050 			raw_inode->i_block[1] = 0;
5051 		} else {
5052 			raw_inode->i_block[0] = 0;
5053 			raw_inode->i_block[1] =
5054 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5055 			raw_inode->i_block[2] = 0;
5056 		}
5057 	} else if (!ext4_has_inline_data(inode)) {
5058 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5059 			raw_inode->i_block[block] = ei->i_data[block];
5060 	}
5061 
5062 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5063 		u64 ivers = ext4_inode_peek_iversion(inode);
5064 
5065 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5066 		if (ei->i_extra_isize) {
5067 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5068 				raw_inode->i_version_hi =
5069 					cpu_to_le32(ivers >> 32);
5070 			raw_inode->i_extra_isize =
5071 				cpu_to_le16(ei->i_extra_isize);
5072 		}
5073 	}
5074 
5075 	if (i_projid != EXT4_DEF_PROJID &&
5076 	    !ext4_has_feature_project(inode->i_sb))
5077 		err = err ?: -EFSCORRUPTED;
5078 
5079 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5080 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5081 		raw_inode->i_projid = cpu_to_le32(i_projid);
5082 
5083 	ext4_inode_csum_set(inode, raw_inode, ei);
5084 	spin_unlock(&ei->i_raw_lock);
5085 	if (err) {
5086 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5087 		goto out_brelse;
5088 	}
5089 
5090 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5091 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5092 					      bh->b_data);
5093 
5094 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5095 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5096 	if (err)
5097 		goto out_error;
5098 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5099 	if (set_large_file) {
5100 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5101 		err = ext4_journal_get_write_access(handle, sb,
5102 						    EXT4_SB(sb)->s_sbh,
5103 						    EXT4_JTR_NONE);
5104 		if (err)
5105 			goto out_error;
5106 		lock_buffer(EXT4_SB(sb)->s_sbh);
5107 		ext4_set_feature_large_file(sb);
5108 		ext4_superblock_csum_set(sb);
5109 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5110 		ext4_handle_sync(handle);
5111 		err = ext4_handle_dirty_metadata(handle, NULL,
5112 						 EXT4_SB(sb)->s_sbh);
5113 	}
5114 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5115 out_error:
5116 	ext4_std_error(inode->i_sb, err);
5117 out_brelse:
5118 	brelse(bh);
5119 	return err;
5120 }
5121 
5122 /*
5123  * ext4_write_inode()
5124  *
5125  * We are called from a few places:
5126  *
5127  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5128  *   Here, there will be no transaction running. We wait for any running
5129  *   transaction to commit.
5130  *
5131  * - Within flush work (sys_sync(), kupdate and such).
5132  *   We wait on commit, if told to.
5133  *
5134  * - Within iput_final() -> write_inode_now()
5135  *   We wait on commit, if told to.
5136  *
5137  * In all cases it is actually safe for us to return without doing anything,
5138  * because the inode has been copied into a raw inode buffer in
5139  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5140  * writeback.
5141  *
5142  * Note that we are absolutely dependent upon all inode dirtiers doing the
5143  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5144  * which we are interested.
5145  *
5146  * It would be a bug for them to not do this.  The code:
5147  *
5148  *	mark_inode_dirty(inode)
5149  *	stuff();
5150  *	inode->i_size = expr;
5151  *
5152  * is in error because write_inode() could occur while `stuff()' is running,
5153  * and the new i_size will be lost.  Plus the inode will no longer be on the
5154  * superblock's dirty inode list.
5155  */
5156 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5157 {
5158 	int err;
5159 
5160 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5161 	    sb_rdonly(inode->i_sb))
5162 		return 0;
5163 
5164 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5165 		return -EIO;
5166 
5167 	if (EXT4_SB(inode->i_sb)->s_journal) {
5168 		if (ext4_journal_current_handle()) {
5169 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5170 			dump_stack();
5171 			return -EIO;
5172 		}
5173 
5174 		/*
5175 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5176 		 * ext4_sync_fs() will force the commit after everything is
5177 		 * written.
5178 		 */
5179 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5180 			return 0;
5181 
5182 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5183 						EXT4_I(inode)->i_sync_tid);
5184 	} else {
5185 		struct ext4_iloc iloc;
5186 
5187 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5188 		if (err)
5189 			return err;
5190 		/*
5191 		 * sync(2) will flush the whole buffer cache. No need to do
5192 		 * it here separately for each inode.
5193 		 */
5194 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5195 			sync_dirty_buffer(iloc.bh);
5196 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5197 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5198 					       "IO error syncing inode");
5199 			err = -EIO;
5200 		}
5201 		brelse(iloc.bh);
5202 	}
5203 	return err;
5204 }
5205 
5206 /*
5207  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5208  * buffers that are attached to a page stradding i_size and are undergoing
5209  * commit. In that case we have to wait for commit to finish and try again.
5210  */
5211 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5212 {
5213 	struct page *page;
5214 	unsigned offset;
5215 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5216 	tid_t commit_tid = 0;
5217 	int ret;
5218 
5219 	offset = inode->i_size & (PAGE_SIZE - 1);
5220 	/*
5221 	 * If the page is fully truncated, we don't need to wait for any commit
5222 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5223 	 * strip all buffers from the page but keep the page dirty which can then
5224 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5225 	 * buffers). Also we don't need to wait for any commit if all buffers in
5226 	 * the page remain valid. This is most beneficial for the common case of
5227 	 * blocksize == PAGESIZE.
5228 	 */
5229 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5230 		return;
5231 	while (1) {
5232 		page = find_lock_page(inode->i_mapping,
5233 				      inode->i_size >> PAGE_SHIFT);
5234 		if (!page)
5235 			return;
5236 		ret = __ext4_journalled_invalidatepage(page, offset,
5237 						PAGE_SIZE - offset);
5238 		unlock_page(page);
5239 		put_page(page);
5240 		if (ret != -EBUSY)
5241 			return;
5242 		commit_tid = 0;
5243 		read_lock(&journal->j_state_lock);
5244 		if (journal->j_committing_transaction)
5245 			commit_tid = journal->j_committing_transaction->t_tid;
5246 		read_unlock(&journal->j_state_lock);
5247 		if (commit_tid)
5248 			jbd2_log_wait_commit(journal, commit_tid);
5249 	}
5250 }
5251 
5252 /*
5253  * ext4_setattr()
5254  *
5255  * Called from notify_change.
5256  *
5257  * We want to trap VFS attempts to truncate the file as soon as
5258  * possible.  In particular, we want to make sure that when the VFS
5259  * shrinks i_size, we put the inode on the orphan list and modify
5260  * i_disksize immediately, so that during the subsequent flushing of
5261  * dirty pages and freeing of disk blocks, we can guarantee that any
5262  * commit will leave the blocks being flushed in an unused state on
5263  * disk.  (On recovery, the inode will get truncated and the blocks will
5264  * be freed, so we have a strong guarantee that no future commit will
5265  * leave these blocks visible to the user.)
5266  *
5267  * Another thing we have to assure is that if we are in ordered mode
5268  * and inode is still attached to the committing transaction, we must
5269  * we start writeout of all the dirty pages which are being truncated.
5270  * This way we are sure that all the data written in the previous
5271  * transaction are already on disk (truncate waits for pages under
5272  * writeback).
5273  *
5274  * Called with inode->i_mutex down.
5275  */
5276 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5277 		 struct iattr *attr)
5278 {
5279 	struct inode *inode = d_inode(dentry);
5280 	int error, rc = 0;
5281 	int orphan = 0;
5282 	const unsigned int ia_valid = attr->ia_valid;
5283 
5284 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5285 		return -EIO;
5286 
5287 	if (unlikely(IS_IMMUTABLE(inode)))
5288 		return -EPERM;
5289 
5290 	if (unlikely(IS_APPEND(inode) &&
5291 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5292 				  ATTR_GID | ATTR_TIMES_SET))))
5293 		return -EPERM;
5294 
5295 	error = setattr_prepare(mnt_userns, dentry, attr);
5296 	if (error)
5297 		return error;
5298 
5299 	error = fscrypt_prepare_setattr(dentry, attr);
5300 	if (error)
5301 		return error;
5302 
5303 	error = fsverity_prepare_setattr(dentry, attr);
5304 	if (error)
5305 		return error;
5306 
5307 	if (is_quota_modification(inode, attr)) {
5308 		error = dquot_initialize(inode);
5309 		if (error)
5310 			return error;
5311 	}
5312 	ext4_fc_start_update(inode);
5313 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5314 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5315 		handle_t *handle;
5316 
5317 		/* (user+group)*(old+new) structure, inode write (sb,
5318 		 * inode block, ? - but truncate inode update has it) */
5319 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5320 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5321 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5322 		if (IS_ERR(handle)) {
5323 			error = PTR_ERR(handle);
5324 			goto err_out;
5325 		}
5326 
5327 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5328 		 * counts xattr inode references.
5329 		 */
5330 		down_read(&EXT4_I(inode)->xattr_sem);
5331 		error = dquot_transfer(inode, attr);
5332 		up_read(&EXT4_I(inode)->xattr_sem);
5333 
5334 		if (error) {
5335 			ext4_journal_stop(handle);
5336 			ext4_fc_stop_update(inode);
5337 			return error;
5338 		}
5339 		/* Update corresponding info in inode so that everything is in
5340 		 * one transaction */
5341 		if (attr->ia_valid & ATTR_UID)
5342 			inode->i_uid = attr->ia_uid;
5343 		if (attr->ia_valid & ATTR_GID)
5344 			inode->i_gid = attr->ia_gid;
5345 		error = ext4_mark_inode_dirty(handle, inode);
5346 		ext4_journal_stop(handle);
5347 		if (unlikely(error)) {
5348 			ext4_fc_stop_update(inode);
5349 			return error;
5350 		}
5351 	}
5352 
5353 	if (attr->ia_valid & ATTR_SIZE) {
5354 		handle_t *handle;
5355 		loff_t oldsize = inode->i_size;
5356 		int shrink = (attr->ia_size < inode->i_size);
5357 
5358 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5359 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5360 
5361 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5362 				ext4_fc_stop_update(inode);
5363 				return -EFBIG;
5364 			}
5365 		}
5366 		if (!S_ISREG(inode->i_mode)) {
5367 			ext4_fc_stop_update(inode);
5368 			return -EINVAL;
5369 		}
5370 
5371 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5372 			inode_inc_iversion(inode);
5373 
5374 		if (shrink) {
5375 			if (ext4_should_order_data(inode)) {
5376 				error = ext4_begin_ordered_truncate(inode,
5377 							    attr->ia_size);
5378 				if (error)
5379 					goto err_out;
5380 			}
5381 			/*
5382 			 * Blocks are going to be removed from the inode. Wait
5383 			 * for dio in flight.
5384 			 */
5385 			inode_dio_wait(inode);
5386 		}
5387 
5388 		filemap_invalidate_lock(inode->i_mapping);
5389 
5390 		rc = ext4_break_layouts(inode);
5391 		if (rc) {
5392 			filemap_invalidate_unlock(inode->i_mapping);
5393 			goto err_out;
5394 		}
5395 
5396 		if (attr->ia_size != inode->i_size) {
5397 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5398 			if (IS_ERR(handle)) {
5399 				error = PTR_ERR(handle);
5400 				goto out_mmap_sem;
5401 			}
5402 			if (ext4_handle_valid(handle) && shrink) {
5403 				error = ext4_orphan_add(handle, inode);
5404 				orphan = 1;
5405 			}
5406 			/*
5407 			 * Update c/mtime on truncate up, ext4_truncate() will
5408 			 * update c/mtime in shrink case below
5409 			 */
5410 			if (!shrink) {
5411 				inode->i_mtime = current_time(inode);
5412 				inode->i_ctime = inode->i_mtime;
5413 			}
5414 
5415 			if (shrink)
5416 				ext4_fc_track_range(handle, inode,
5417 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5418 					inode->i_sb->s_blocksize_bits,
5419 					(oldsize > 0 ? oldsize - 1 : 0) >>
5420 					inode->i_sb->s_blocksize_bits);
5421 			else
5422 				ext4_fc_track_range(
5423 					handle, inode,
5424 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5425 					inode->i_sb->s_blocksize_bits,
5426 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5427 					inode->i_sb->s_blocksize_bits);
5428 
5429 			down_write(&EXT4_I(inode)->i_data_sem);
5430 			EXT4_I(inode)->i_disksize = attr->ia_size;
5431 			rc = ext4_mark_inode_dirty(handle, inode);
5432 			if (!error)
5433 				error = rc;
5434 			/*
5435 			 * We have to update i_size under i_data_sem together
5436 			 * with i_disksize to avoid races with writeback code
5437 			 * running ext4_wb_update_i_disksize().
5438 			 */
5439 			if (!error)
5440 				i_size_write(inode, attr->ia_size);
5441 			up_write(&EXT4_I(inode)->i_data_sem);
5442 			ext4_journal_stop(handle);
5443 			if (error)
5444 				goto out_mmap_sem;
5445 			if (!shrink) {
5446 				pagecache_isize_extended(inode, oldsize,
5447 							 inode->i_size);
5448 			} else if (ext4_should_journal_data(inode)) {
5449 				ext4_wait_for_tail_page_commit(inode);
5450 			}
5451 		}
5452 
5453 		/*
5454 		 * Truncate pagecache after we've waited for commit
5455 		 * in data=journal mode to make pages freeable.
5456 		 */
5457 		truncate_pagecache(inode, inode->i_size);
5458 		/*
5459 		 * Call ext4_truncate() even if i_size didn't change to
5460 		 * truncate possible preallocated blocks.
5461 		 */
5462 		if (attr->ia_size <= oldsize) {
5463 			rc = ext4_truncate(inode);
5464 			if (rc)
5465 				error = rc;
5466 		}
5467 out_mmap_sem:
5468 		filemap_invalidate_unlock(inode->i_mapping);
5469 	}
5470 
5471 	if (!error) {
5472 		setattr_copy(mnt_userns, inode, attr);
5473 		mark_inode_dirty(inode);
5474 	}
5475 
5476 	/*
5477 	 * If the call to ext4_truncate failed to get a transaction handle at
5478 	 * all, we need to clean up the in-core orphan list manually.
5479 	 */
5480 	if (orphan && inode->i_nlink)
5481 		ext4_orphan_del(NULL, inode);
5482 
5483 	if (!error && (ia_valid & ATTR_MODE))
5484 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5485 
5486 err_out:
5487 	if  (error)
5488 		ext4_std_error(inode->i_sb, error);
5489 	if (!error)
5490 		error = rc;
5491 	ext4_fc_stop_update(inode);
5492 	return error;
5493 }
5494 
5495 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5496 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5497 {
5498 	struct inode *inode = d_inode(path->dentry);
5499 	struct ext4_inode *raw_inode;
5500 	struct ext4_inode_info *ei = EXT4_I(inode);
5501 	unsigned int flags;
5502 
5503 	if ((request_mask & STATX_BTIME) &&
5504 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5505 		stat->result_mask |= STATX_BTIME;
5506 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5507 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5508 	}
5509 
5510 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5511 	if (flags & EXT4_APPEND_FL)
5512 		stat->attributes |= STATX_ATTR_APPEND;
5513 	if (flags & EXT4_COMPR_FL)
5514 		stat->attributes |= STATX_ATTR_COMPRESSED;
5515 	if (flags & EXT4_ENCRYPT_FL)
5516 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5517 	if (flags & EXT4_IMMUTABLE_FL)
5518 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5519 	if (flags & EXT4_NODUMP_FL)
5520 		stat->attributes |= STATX_ATTR_NODUMP;
5521 	if (flags & EXT4_VERITY_FL)
5522 		stat->attributes |= STATX_ATTR_VERITY;
5523 
5524 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5525 				  STATX_ATTR_COMPRESSED |
5526 				  STATX_ATTR_ENCRYPTED |
5527 				  STATX_ATTR_IMMUTABLE |
5528 				  STATX_ATTR_NODUMP |
5529 				  STATX_ATTR_VERITY);
5530 
5531 	generic_fillattr(mnt_userns, inode, stat);
5532 	return 0;
5533 }
5534 
5535 int ext4_file_getattr(struct user_namespace *mnt_userns,
5536 		      const struct path *path, struct kstat *stat,
5537 		      u32 request_mask, unsigned int query_flags)
5538 {
5539 	struct inode *inode = d_inode(path->dentry);
5540 	u64 delalloc_blocks;
5541 
5542 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5543 
5544 	/*
5545 	 * If there is inline data in the inode, the inode will normally not
5546 	 * have data blocks allocated (it may have an external xattr block).
5547 	 * Report at least one sector for such files, so tools like tar, rsync,
5548 	 * others don't incorrectly think the file is completely sparse.
5549 	 */
5550 	if (unlikely(ext4_has_inline_data(inode)))
5551 		stat->blocks += (stat->size + 511) >> 9;
5552 
5553 	/*
5554 	 * We can't update i_blocks if the block allocation is delayed
5555 	 * otherwise in the case of system crash before the real block
5556 	 * allocation is done, we will have i_blocks inconsistent with
5557 	 * on-disk file blocks.
5558 	 * We always keep i_blocks updated together with real
5559 	 * allocation. But to not confuse with user, stat
5560 	 * will return the blocks that include the delayed allocation
5561 	 * blocks for this file.
5562 	 */
5563 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5564 				   EXT4_I(inode)->i_reserved_data_blocks);
5565 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5566 	return 0;
5567 }
5568 
5569 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5570 				   int pextents)
5571 {
5572 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5573 		return ext4_ind_trans_blocks(inode, lblocks);
5574 	return ext4_ext_index_trans_blocks(inode, pextents);
5575 }
5576 
5577 /*
5578  * Account for index blocks, block groups bitmaps and block group
5579  * descriptor blocks if modify datablocks and index blocks
5580  * worse case, the indexs blocks spread over different block groups
5581  *
5582  * If datablocks are discontiguous, they are possible to spread over
5583  * different block groups too. If they are contiguous, with flexbg,
5584  * they could still across block group boundary.
5585  *
5586  * Also account for superblock, inode, quota and xattr blocks
5587  */
5588 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5589 				  int pextents)
5590 {
5591 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5592 	int gdpblocks;
5593 	int idxblocks;
5594 	int ret = 0;
5595 
5596 	/*
5597 	 * How many index blocks need to touch to map @lblocks logical blocks
5598 	 * to @pextents physical extents?
5599 	 */
5600 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5601 
5602 	ret = idxblocks;
5603 
5604 	/*
5605 	 * Now let's see how many group bitmaps and group descriptors need
5606 	 * to account
5607 	 */
5608 	groups = idxblocks + pextents;
5609 	gdpblocks = groups;
5610 	if (groups > ngroups)
5611 		groups = ngroups;
5612 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5613 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5614 
5615 	/* bitmaps and block group descriptor blocks */
5616 	ret += groups + gdpblocks;
5617 
5618 	/* Blocks for super block, inode, quota and xattr blocks */
5619 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5620 
5621 	return ret;
5622 }
5623 
5624 /*
5625  * Calculate the total number of credits to reserve to fit
5626  * the modification of a single pages into a single transaction,
5627  * which may include multiple chunks of block allocations.
5628  *
5629  * This could be called via ext4_write_begin()
5630  *
5631  * We need to consider the worse case, when
5632  * one new block per extent.
5633  */
5634 int ext4_writepage_trans_blocks(struct inode *inode)
5635 {
5636 	int bpp = ext4_journal_blocks_per_page(inode);
5637 	int ret;
5638 
5639 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5640 
5641 	/* Account for data blocks for journalled mode */
5642 	if (ext4_should_journal_data(inode))
5643 		ret += bpp;
5644 	return ret;
5645 }
5646 
5647 /*
5648  * Calculate the journal credits for a chunk of data modification.
5649  *
5650  * This is called from DIO, fallocate or whoever calling
5651  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5652  *
5653  * journal buffers for data blocks are not included here, as DIO
5654  * and fallocate do no need to journal data buffers.
5655  */
5656 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5657 {
5658 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5659 }
5660 
5661 /*
5662  * The caller must have previously called ext4_reserve_inode_write().
5663  * Give this, we know that the caller already has write access to iloc->bh.
5664  */
5665 int ext4_mark_iloc_dirty(handle_t *handle,
5666 			 struct inode *inode, struct ext4_iloc *iloc)
5667 {
5668 	int err = 0;
5669 
5670 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5671 		put_bh(iloc->bh);
5672 		return -EIO;
5673 	}
5674 	ext4_fc_track_inode(handle, inode);
5675 
5676 	if (IS_I_VERSION(inode))
5677 		inode_inc_iversion(inode);
5678 
5679 	/* the do_update_inode consumes one bh->b_count */
5680 	get_bh(iloc->bh);
5681 
5682 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5683 	err = ext4_do_update_inode(handle, inode, iloc);
5684 	put_bh(iloc->bh);
5685 	return err;
5686 }
5687 
5688 /*
5689  * On success, We end up with an outstanding reference count against
5690  * iloc->bh.  This _must_ be cleaned up later.
5691  */
5692 
5693 int
5694 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5695 			 struct ext4_iloc *iloc)
5696 {
5697 	int err;
5698 
5699 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5700 		return -EIO;
5701 
5702 	err = ext4_get_inode_loc(inode, iloc);
5703 	if (!err) {
5704 		BUFFER_TRACE(iloc->bh, "get_write_access");
5705 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5706 						    iloc->bh, EXT4_JTR_NONE);
5707 		if (err) {
5708 			brelse(iloc->bh);
5709 			iloc->bh = NULL;
5710 		}
5711 	}
5712 	ext4_std_error(inode->i_sb, err);
5713 	return err;
5714 }
5715 
5716 static int __ext4_expand_extra_isize(struct inode *inode,
5717 				     unsigned int new_extra_isize,
5718 				     struct ext4_iloc *iloc,
5719 				     handle_t *handle, int *no_expand)
5720 {
5721 	struct ext4_inode *raw_inode;
5722 	struct ext4_xattr_ibody_header *header;
5723 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5724 	struct ext4_inode_info *ei = EXT4_I(inode);
5725 	int error;
5726 
5727 	/* this was checked at iget time, but double check for good measure */
5728 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5729 	    (ei->i_extra_isize & 3)) {
5730 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5731 				 ei->i_extra_isize,
5732 				 EXT4_INODE_SIZE(inode->i_sb));
5733 		return -EFSCORRUPTED;
5734 	}
5735 	if ((new_extra_isize < ei->i_extra_isize) ||
5736 	    (new_extra_isize < 4) ||
5737 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5738 		return -EINVAL;	/* Should never happen */
5739 
5740 	raw_inode = ext4_raw_inode(iloc);
5741 
5742 	header = IHDR(inode, raw_inode);
5743 
5744 	/* No extended attributes present */
5745 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5746 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5747 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5748 		       EXT4_I(inode)->i_extra_isize, 0,
5749 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5750 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5751 		return 0;
5752 	}
5753 
5754 	/* try to expand with EAs present */
5755 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5756 					   raw_inode, handle);
5757 	if (error) {
5758 		/*
5759 		 * Inode size expansion failed; don't try again
5760 		 */
5761 		*no_expand = 1;
5762 	}
5763 
5764 	return error;
5765 }
5766 
5767 /*
5768  * Expand an inode by new_extra_isize bytes.
5769  * Returns 0 on success or negative error number on failure.
5770  */
5771 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5772 					  unsigned int new_extra_isize,
5773 					  struct ext4_iloc iloc,
5774 					  handle_t *handle)
5775 {
5776 	int no_expand;
5777 	int error;
5778 
5779 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5780 		return -EOVERFLOW;
5781 
5782 	/*
5783 	 * In nojournal mode, we can immediately attempt to expand
5784 	 * the inode.  When journaled, we first need to obtain extra
5785 	 * buffer credits since we may write into the EA block
5786 	 * with this same handle. If journal_extend fails, then it will
5787 	 * only result in a minor loss of functionality for that inode.
5788 	 * If this is felt to be critical, then e2fsck should be run to
5789 	 * force a large enough s_min_extra_isize.
5790 	 */
5791 	if (ext4_journal_extend(handle,
5792 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5793 		return -ENOSPC;
5794 
5795 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5796 		return -EBUSY;
5797 
5798 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5799 					  handle, &no_expand);
5800 	ext4_write_unlock_xattr(inode, &no_expand);
5801 
5802 	return error;
5803 }
5804 
5805 int ext4_expand_extra_isize(struct inode *inode,
5806 			    unsigned int new_extra_isize,
5807 			    struct ext4_iloc *iloc)
5808 {
5809 	handle_t *handle;
5810 	int no_expand;
5811 	int error, rc;
5812 
5813 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5814 		brelse(iloc->bh);
5815 		return -EOVERFLOW;
5816 	}
5817 
5818 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5819 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5820 	if (IS_ERR(handle)) {
5821 		error = PTR_ERR(handle);
5822 		brelse(iloc->bh);
5823 		return error;
5824 	}
5825 
5826 	ext4_write_lock_xattr(inode, &no_expand);
5827 
5828 	BUFFER_TRACE(iloc->bh, "get_write_access");
5829 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5830 					      EXT4_JTR_NONE);
5831 	if (error) {
5832 		brelse(iloc->bh);
5833 		goto out_unlock;
5834 	}
5835 
5836 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5837 					  handle, &no_expand);
5838 
5839 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5840 	if (!error)
5841 		error = rc;
5842 
5843 out_unlock:
5844 	ext4_write_unlock_xattr(inode, &no_expand);
5845 	ext4_journal_stop(handle);
5846 	return error;
5847 }
5848 
5849 /*
5850  * What we do here is to mark the in-core inode as clean with respect to inode
5851  * dirtiness (it may still be data-dirty).
5852  * This means that the in-core inode may be reaped by prune_icache
5853  * without having to perform any I/O.  This is a very good thing,
5854  * because *any* task may call prune_icache - even ones which
5855  * have a transaction open against a different journal.
5856  *
5857  * Is this cheating?  Not really.  Sure, we haven't written the
5858  * inode out, but prune_icache isn't a user-visible syncing function.
5859  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5860  * we start and wait on commits.
5861  */
5862 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5863 				const char *func, unsigned int line)
5864 {
5865 	struct ext4_iloc iloc;
5866 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867 	int err;
5868 
5869 	might_sleep();
5870 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5871 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5872 	if (err)
5873 		goto out;
5874 
5875 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5876 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5877 					       iloc, handle);
5878 
5879 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5880 out:
5881 	if (unlikely(err))
5882 		ext4_error_inode_err(inode, func, line, 0, err,
5883 					"mark_inode_dirty error");
5884 	return err;
5885 }
5886 
5887 /*
5888  * ext4_dirty_inode() is called from __mark_inode_dirty()
5889  *
5890  * We're really interested in the case where a file is being extended.
5891  * i_size has been changed by generic_commit_write() and we thus need
5892  * to include the updated inode in the current transaction.
5893  *
5894  * Also, dquot_alloc_block() will always dirty the inode when blocks
5895  * are allocated to the file.
5896  *
5897  * If the inode is marked synchronous, we don't honour that here - doing
5898  * so would cause a commit on atime updates, which we don't bother doing.
5899  * We handle synchronous inodes at the highest possible level.
5900  */
5901 void ext4_dirty_inode(struct inode *inode, int flags)
5902 {
5903 	handle_t *handle;
5904 
5905 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5906 	if (IS_ERR(handle))
5907 		return;
5908 	ext4_mark_inode_dirty(handle, inode);
5909 	ext4_journal_stop(handle);
5910 }
5911 
5912 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5913 {
5914 	journal_t *journal;
5915 	handle_t *handle;
5916 	int err;
5917 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5918 
5919 	/*
5920 	 * We have to be very careful here: changing a data block's
5921 	 * journaling status dynamically is dangerous.  If we write a
5922 	 * data block to the journal, change the status and then delete
5923 	 * that block, we risk forgetting to revoke the old log record
5924 	 * from the journal and so a subsequent replay can corrupt data.
5925 	 * So, first we make sure that the journal is empty and that
5926 	 * nobody is changing anything.
5927 	 */
5928 
5929 	journal = EXT4_JOURNAL(inode);
5930 	if (!journal)
5931 		return 0;
5932 	if (is_journal_aborted(journal))
5933 		return -EROFS;
5934 
5935 	/* Wait for all existing dio workers */
5936 	inode_dio_wait(inode);
5937 
5938 	/*
5939 	 * Before flushing the journal and switching inode's aops, we have
5940 	 * to flush all dirty data the inode has. There can be outstanding
5941 	 * delayed allocations, there can be unwritten extents created by
5942 	 * fallocate or buffered writes in dioread_nolock mode covered by
5943 	 * dirty data which can be converted only after flushing the dirty
5944 	 * data (and journalled aops don't know how to handle these cases).
5945 	 */
5946 	if (val) {
5947 		filemap_invalidate_lock(inode->i_mapping);
5948 		err = filemap_write_and_wait(inode->i_mapping);
5949 		if (err < 0) {
5950 			filemap_invalidate_unlock(inode->i_mapping);
5951 			return err;
5952 		}
5953 	}
5954 
5955 	percpu_down_write(&sbi->s_writepages_rwsem);
5956 	jbd2_journal_lock_updates(journal);
5957 
5958 	/*
5959 	 * OK, there are no updates running now, and all cached data is
5960 	 * synced to disk.  We are now in a completely consistent state
5961 	 * which doesn't have anything in the journal, and we know that
5962 	 * no filesystem updates are running, so it is safe to modify
5963 	 * the inode's in-core data-journaling state flag now.
5964 	 */
5965 
5966 	if (val)
5967 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5968 	else {
5969 		err = jbd2_journal_flush(journal, 0);
5970 		if (err < 0) {
5971 			jbd2_journal_unlock_updates(journal);
5972 			percpu_up_write(&sbi->s_writepages_rwsem);
5973 			return err;
5974 		}
5975 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5976 	}
5977 	ext4_set_aops(inode);
5978 
5979 	jbd2_journal_unlock_updates(journal);
5980 	percpu_up_write(&sbi->s_writepages_rwsem);
5981 
5982 	if (val)
5983 		filemap_invalidate_unlock(inode->i_mapping);
5984 
5985 	/* Finally we can mark the inode as dirty. */
5986 
5987 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5988 	if (IS_ERR(handle))
5989 		return PTR_ERR(handle);
5990 
5991 	ext4_fc_mark_ineligible(inode->i_sb,
5992 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
5993 	err = ext4_mark_inode_dirty(handle, inode);
5994 	ext4_handle_sync(handle);
5995 	ext4_journal_stop(handle);
5996 	ext4_std_error(inode->i_sb, err);
5997 
5998 	return err;
5999 }
6000 
6001 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6002 			    struct buffer_head *bh)
6003 {
6004 	return !buffer_mapped(bh);
6005 }
6006 
6007 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6008 {
6009 	struct vm_area_struct *vma = vmf->vma;
6010 	struct page *page = vmf->page;
6011 	loff_t size;
6012 	unsigned long len;
6013 	int err;
6014 	vm_fault_t ret;
6015 	struct file *file = vma->vm_file;
6016 	struct inode *inode = file_inode(file);
6017 	struct address_space *mapping = inode->i_mapping;
6018 	handle_t *handle;
6019 	get_block_t *get_block;
6020 	int retries = 0;
6021 
6022 	if (unlikely(IS_IMMUTABLE(inode)))
6023 		return VM_FAULT_SIGBUS;
6024 
6025 	sb_start_pagefault(inode->i_sb);
6026 	file_update_time(vma->vm_file);
6027 
6028 	filemap_invalidate_lock_shared(mapping);
6029 
6030 	err = ext4_convert_inline_data(inode);
6031 	if (err)
6032 		goto out_ret;
6033 
6034 	/*
6035 	 * On data journalling we skip straight to the transaction handle:
6036 	 * there's no delalloc; page truncated will be checked later; the
6037 	 * early return w/ all buffers mapped (calculates size/len) can't
6038 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6039 	 */
6040 	if (ext4_should_journal_data(inode))
6041 		goto retry_alloc;
6042 
6043 	/* Delalloc case is easy... */
6044 	if (test_opt(inode->i_sb, DELALLOC) &&
6045 	    !ext4_nonda_switch(inode->i_sb)) {
6046 		do {
6047 			err = block_page_mkwrite(vma, vmf,
6048 						   ext4_da_get_block_prep);
6049 		} while (err == -ENOSPC &&
6050 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6051 		goto out_ret;
6052 	}
6053 
6054 	lock_page(page);
6055 	size = i_size_read(inode);
6056 	/* Page got truncated from under us? */
6057 	if (page->mapping != mapping || page_offset(page) > size) {
6058 		unlock_page(page);
6059 		ret = VM_FAULT_NOPAGE;
6060 		goto out;
6061 	}
6062 
6063 	if (page->index == size >> PAGE_SHIFT)
6064 		len = size & ~PAGE_MASK;
6065 	else
6066 		len = PAGE_SIZE;
6067 	/*
6068 	 * Return if we have all the buffers mapped. This avoids the need to do
6069 	 * journal_start/journal_stop which can block and take a long time
6070 	 *
6071 	 * This cannot be done for data journalling, as we have to add the
6072 	 * inode to the transaction's list to writeprotect pages on commit.
6073 	 */
6074 	if (page_has_buffers(page)) {
6075 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6076 					    0, len, NULL,
6077 					    ext4_bh_unmapped)) {
6078 			/* Wait so that we don't change page under IO */
6079 			wait_for_stable_page(page);
6080 			ret = VM_FAULT_LOCKED;
6081 			goto out;
6082 		}
6083 	}
6084 	unlock_page(page);
6085 	/* OK, we need to fill the hole... */
6086 	if (ext4_should_dioread_nolock(inode))
6087 		get_block = ext4_get_block_unwritten;
6088 	else
6089 		get_block = ext4_get_block;
6090 retry_alloc:
6091 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6092 				    ext4_writepage_trans_blocks(inode));
6093 	if (IS_ERR(handle)) {
6094 		ret = VM_FAULT_SIGBUS;
6095 		goto out;
6096 	}
6097 	/*
6098 	 * Data journalling can't use block_page_mkwrite() because it
6099 	 * will set_buffer_dirty() before do_journal_get_write_access()
6100 	 * thus might hit warning messages for dirty metadata buffers.
6101 	 */
6102 	if (!ext4_should_journal_data(inode)) {
6103 		err = block_page_mkwrite(vma, vmf, get_block);
6104 	} else {
6105 		lock_page(page);
6106 		size = i_size_read(inode);
6107 		/* Page got truncated from under us? */
6108 		if (page->mapping != mapping || page_offset(page) > size) {
6109 			ret = VM_FAULT_NOPAGE;
6110 			goto out_error;
6111 		}
6112 
6113 		if (page->index == size >> PAGE_SHIFT)
6114 			len = size & ~PAGE_MASK;
6115 		else
6116 			len = PAGE_SIZE;
6117 
6118 		err = __block_write_begin(page, 0, len, ext4_get_block);
6119 		if (!err) {
6120 			ret = VM_FAULT_SIGBUS;
6121 			if (ext4_walk_page_buffers(handle, inode,
6122 					page_buffers(page), 0, len, NULL,
6123 					do_journal_get_write_access))
6124 				goto out_error;
6125 			if (ext4_walk_page_buffers(handle, inode,
6126 					page_buffers(page), 0, len, NULL,
6127 					write_end_fn))
6128 				goto out_error;
6129 			if (ext4_jbd2_inode_add_write(handle, inode,
6130 						      page_offset(page), len))
6131 				goto out_error;
6132 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6133 		} else {
6134 			unlock_page(page);
6135 		}
6136 	}
6137 	ext4_journal_stop(handle);
6138 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6139 		goto retry_alloc;
6140 out_ret:
6141 	ret = block_page_mkwrite_return(err);
6142 out:
6143 	filemap_invalidate_unlock_shared(mapping);
6144 	sb_end_pagefault(inode->i_sb);
6145 	return ret;
6146 out_error:
6147 	unlock_page(page);
6148 	ext4_journal_stop(handle);
6149 	goto out;
6150 }
6151