1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 bool freeze_protected = false; 179 180 trace_ext4_evict_inode(inode); 181 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidatepage() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 204 inode->i_data.nrpages) { 205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 207 208 jbd2_complete_transaction(journal, commit_tid); 209 filemap_write_and_wait(&inode->i_data); 210 } 211 truncate_inode_pages_final(&inode->i_data); 212 213 goto no_delete; 214 } 215 216 if (is_bad_inode(inode)) 217 goto no_delete; 218 dquot_initialize(inode); 219 220 if (ext4_should_order_data(inode)) 221 ext4_begin_ordered_truncate(inode, 0); 222 truncate_inode_pages_final(&inode->i_data); 223 224 /* 225 * For inodes with journalled data, transaction commit could have 226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 227 * flag but we still need to remove the inode from the writeback lists. 228 */ 229 if (!list_empty_careful(&inode->i_io_list)) { 230 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 231 inode_io_list_del(inode); 232 } 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it. When we are in a running transaction though, 237 * we are already protected against freezing and we cannot grab further 238 * protection due to lock ordering constraints. 239 */ 240 if (!ext4_journal_current_handle()) { 241 sb_start_intwrite(inode->i_sb); 242 freeze_protected = true; 243 } 244 245 if (!IS_NOQUOTA(inode)) 246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 247 248 /* 249 * Block bitmap, group descriptor, and inode are accounted in both 250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 251 */ 252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 253 ext4_blocks_for_truncate(inode) + extra_credits - 3); 254 if (IS_ERR(handle)) { 255 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 256 /* 257 * If we're going to skip the normal cleanup, we still need to 258 * make sure that the in-core orphan linked list is properly 259 * cleaned up. 260 */ 261 ext4_orphan_del(NULL, inode); 262 if (freeze_protected) 263 sb_end_intwrite(inode->i_sb); 264 goto no_delete; 265 } 266 267 if (IS_SYNC(inode)) 268 ext4_handle_sync(handle); 269 270 /* 271 * Set inode->i_size to 0 before calling ext4_truncate(). We need 272 * special handling of symlinks here because i_size is used to 273 * determine whether ext4_inode_info->i_data contains symlink data or 274 * block mappings. Setting i_size to 0 will remove its fast symlink 275 * status. Erase i_data so that it becomes a valid empty block map. 276 */ 277 if (ext4_inode_is_fast_symlink(inode)) 278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 279 inode->i_size = 0; 280 err = ext4_mark_inode_dirty(handle, inode); 281 if (err) { 282 ext4_warning(inode->i_sb, 283 "couldn't mark inode dirty (err %d)", err); 284 goto stop_handle; 285 } 286 if (inode->i_blocks) { 287 err = ext4_truncate(inode); 288 if (err) { 289 ext4_error_err(inode->i_sb, -err, 290 "couldn't truncate inode %lu (err %d)", 291 inode->i_ino, err); 292 goto stop_handle; 293 } 294 } 295 296 /* Remove xattr references. */ 297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 298 extra_credits); 299 if (err) { 300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 301 stop_handle: 302 ext4_journal_stop(handle); 303 ext4_orphan_del(NULL, inode); 304 if (freeze_protected) 305 sb_end_intwrite(inode->i_sb); 306 ext4_xattr_inode_array_free(ea_inode_array); 307 goto no_delete; 308 } 309 310 /* 311 * Kill off the orphan record which ext4_truncate created. 312 * AKPM: I think this can be inside the above `if'. 313 * Note that ext4_orphan_del() has to be able to cope with the 314 * deletion of a non-existent orphan - this is because we don't 315 * know if ext4_truncate() actually created an orphan record. 316 * (Well, we could do this if we need to, but heck - it works) 317 */ 318 ext4_orphan_del(handle, inode); 319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 320 321 /* 322 * One subtle ordering requirement: if anything has gone wrong 323 * (transaction abort, IO errors, whatever), then we can still 324 * do these next steps (the fs will already have been marked as 325 * having errors), but we can't free the inode if the mark_dirty 326 * fails. 327 */ 328 if (ext4_mark_inode_dirty(handle, inode)) 329 /* If that failed, just do the required in-core inode clear. */ 330 ext4_clear_inode(inode); 331 else 332 ext4_free_inode(handle, inode); 333 ext4_journal_stop(handle); 334 if (freeze_protected) 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 342 } 343 344 #ifdef CONFIG_QUOTA 345 qsize_t *ext4_get_reserved_space(struct inode *inode) 346 { 347 return &EXT4_I(inode)->i_reserved_quota; 348 } 349 #endif 350 351 /* 352 * Called with i_data_sem down, which is important since we can call 353 * ext4_discard_preallocations() from here. 354 */ 355 void ext4_da_update_reserve_space(struct inode *inode, 356 int used, int quota_claim) 357 { 358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 359 struct ext4_inode_info *ei = EXT4_I(inode); 360 361 spin_lock(&ei->i_block_reservation_lock); 362 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 363 if (unlikely(used > ei->i_reserved_data_blocks)) { 364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 365 "with only %d reserved data blocks", 366 __func__, inode->i_ino, used, 367 ei->i_reserved_data_blocks); 368 WARN_ON(1); 369 used = ei->i_reserved_data_blocks; 370 } 371 372 /* Update per-inode reservations */ 373 ei->i_reserved_data_blocks -= used; 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 375 376 spin_unlock(&ei->i_block_reservation_lock); 377 378 /* Update quota subsystem for data blocks */ 379 if (quota_claim) 380 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 381 else { 382 /* 383 * We did fallocate with an offset that is already delayed 384 * allocated. So on delayed allocated writeback we should 385 * not re-claim the quota for fallocated blocks. 386 */ 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 388 } 389 390 /* 391 * If we have done all the pending block allocations and if 392 * there aren't any writers on the inode, we can discard the 393 * inode's preallocations. 394 */ 395 if ((ei->i_reserved_data_blocks == 0) && 396 !inode_is_open_for_write(inode)) 397 ext4_discard_preallocations(inode, 0); 398 } 399 400 static int __check_block_validity(struct inode *inode, const char *func, 401 unsigned int line, 402 struct ext4_map_blocks *map) 403 { 404 if (ext4_has_feature_journal(inode->i_sb) && 405 (inode->i_ino == 406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 407 return 0; 408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 409 ext4_error_inode(inode, func, line, map->m_pblk, 410 "lblock %lu mapped to illegal pblock %llu " 411 "(length %d)", (unsigned long) map->m_lblk, 412 map->m_pblk, map->m_len); 413 return -EFSCORRUPTED; 414 } 415 return 0; 416 } 417 418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 419 ext4_lblk_t len) 420 { 421 int ret; 422 423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 424 return fscrypt_zeroout_range(inode, lblk, pblk, len); 425 426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 427 if (ret > 0) 428 ret = 0; 429 430 return ret; 431 } 432 433 #define check_block_validity(inode, map) \ 434 __check_block_validity((inode), __func__, __LINE__, (map)) 435 436 #ifdef ES_AGGRESSIVE_TEST 437 static void ext4_map_blocks_es_recheck(handle_t *handle, 438 struct inode *inode, 439 struct ext4_map_blocks *es_map, 440 struct ext4_map_blocks *map, 441 int flags) 442 { 443 int retval; 444 445 map->m_flags = 0; 446 /* 447 * There is a race window that the result is not the same. 448 * e.g. xfstests #223 when dioread_nolock enables. The reason 449 * is that we lookup a block mapping in extent status tree with 450 * out taking i_data_sem. So at the time the unwritten extent 451 * could be converted. 452 */ 453 down_read(&EXT4_I(inode)->i_data_sem); 454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 455 retval = ext4_ext_map_blocks(handle, inode, map, 0); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, 0); 458 } 459 up_read((&EXT4_I(inode)->i_data_sem)); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocated. if 492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 493 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 494 * 495 * It returns 0 if plain look up failed (blocks have not been allocated), in 496 * that case, @map is returned as unmapped but we still do fill map->m_len to 497 * indicate the length of a hole starting at map->m_lblk. 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 int ret = 0; 507 #ifdef ES_AGGRESSIVE_TEST 508 struct ext4_map_blocks orig_map; 509 510 memcpy(&orig_map, map, sizeof(*map)); 511 #endif 512 513 map->m_flags = 0; 514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 515 flags, map->m_len, (unsigned long) map->m_lblk); 516 517 /* 518 * ext4_map_blocks returns an int, and m_len is an unsigned int 519 */ 520 if (unlikely(map->m_len > INT_MAX)) 521 map->m_len = INT_MAX; 522 523 /* We can handle the block number less than EXT_MAX_BLOCKS */ 524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 525 return -EFSCORRUPTED; 526 527 /* Lookup extent status tree firstly */ 528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 531 map->m_pblk = ext4_es_pblock(&es) + 532 map->m_lblk - es.es_lblk; 533 map->m_flags |= ext4_es_is_written(&es) ? 534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 535 retval = es.es_len - (map->m_lblk - es.es_lblk); 536 if (retval > map->m_len) 537 retval = map->m_len; 538 map->m_len = retval; 539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 540 map->m_pblk = 0; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 retval = 0; 546 } else { 547 BUG(); 548 } 549 #ifdef ES_AGGRESSIVE_TEST 550 ext4_map_blocks_es_recheck(handle, inode, map, 551 &orig_map, flags); 552 #endif 553 goto found; 554 } 555 556 /* 557 * Try to see if we can get the block without requesting a new 558 * file system block. 559 */ 560 down_read(&EXT4_I(inode)->i_data_sem); 561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 562 retval = ext4_ext_map_blocks(handle, inode, map, 0); 563 } else { 564 retval = ext4_ind_map_blocks(handle, inode, map, 0); 565 } 566 if (retval > 0) { 567 unsigned int status; 568 569 if (unlikely(retval != map->m_len)) { 570 ext4_warning(inode->i_sb, 571 "ES len assertion failed for inode " 572 "%lu: retval %d != map->m_len %d", 573 inode->i_ino, retval, map->m_len); 574 WARN_ON(1); 575 } 576 577 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 580 !(status & EXTENT_STATUS_WRITTEN) && 581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 582 map->m_lblk + map->m_len - 1)) 583 status |= EXTENT_STATUS_DELAYED; 584 ret = ext4_es_insert_extent(inode, map->m_lblk, 585 map->m_len, map->m_pblk, status); 586 if (ret < 0) 587 retval = ret; 588 } 589 up_read((&EXT4_I(inode)->i_data_sem)); 590 591 found: 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 593 ret = check_block_validity(inode, map); 594 if (ret != 0) 595 return ret; 596 } 597 598 /* If it is only a block(s) look up */ 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 600 return retval; 601 602 /* 603 * Returns if the blocks have already allocated 604 * 605 * Note that if blocks have been preallocated 606 * ext4_ext_get_block() returns the create = 0 607 * with buffer head unmapped. 608 */ 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 610 /* 611 * If we need to convert extent to unwritten 612 * we continue and do the actual work in 613 * ext4_ext_map_blocks() 614 */ 615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 616 return retval; 617 618 /* 619 * Here we clear m_flags because after allocating an new extent, 620 * it will be set again. 621 */ 622 map->m_flags &= ~EXT4_MAP_FLAGS; 623 624 /* 625 * New blocks allocate and/or writing to unwritten extent 626 * will possibly result in updating i_data, so we take 627 * the write lock of i_data_sem, and call get_block() 628 * with create == 1 flag. 629 */ 630 down_write(&EXT4_I(inode)->i_data_sem); 631 632 /* 633 * We need to check for EXT4 here because migrate 634 * could have changed the inode type in between 635 */ 636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 637 retval = ext4_ext_map_blocks(handle, inode, map, flags); 638 } else { 639 retval = ext4_ind_map_blocks(handle, inode, map, flags); 640 641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 642 /* 643 * We allocated new blocks which will result in 644 * i_data's format changing. Force the migrate 645 * to fail by clearing migrate flags 646 */ 647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 648 } 649 650 /* 651 * Update reserved blocks/metadata blocks after successful 652 * block allocation which had been deferred till now. We don't 653 * support fallocate for non extent files. So we can update 654 * reserve space here. 655 */ 656 if ((retval > 0) && 657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 658 ext4_da_update_reserve_space(inode, retval, 1); 659 } 660 661 if (retval > 0) { 662 unsigned int status; 663 664 if (unlikely(retval != map->m_len)) { 665 ext4_warning(inode->i_sb, 666 "ES len assertion failed for inode " 667 "%lu: retval %d != map->m_len %d", 668 inode->i_ino, retval, map->m_len); 669 WARN_ON(1); 670 } 671 672 /* 673 * We have to zeroout blocks before inserting them into extent 674 * status tree. Otherwise someone could look them up there and 675 * use them before they are really zeroed. We also have to 676 * unmap metadata before zeroing as otherwise writeback can 677 * overwrite zeros with stale data from block device. 678 */ 679 if (flags & EXT4_GET_BLOCKS_ZERO && 680 map->m_flags & EXT4_MAP_MAPPED && 681 map->m_flags & EXT4_MAP_NEW) { 682 ret = ext4_issue_zeroout(inode, map->m_lblk, 683 map->m_pblk, map->m_len); 684 if (ret) { 685 retval = ret; 686 goto out_sem; 687 } 688 } 689 690 /* 691 * If the extent has been zeroed out, we don't need to update 692 * extent status tree. 693 */ 694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 696 if (ext4_es_is_written(&es)) 697 goto out_sem; 698 } 699 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 702 !(status & EXTENT_STATUS_WRITTEN) && 703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 704 map->m_lblk + map->m_len - 1)) 705 status |= EXTENT_STATUS_DELAYED; 706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 707 map->m_pblk, status); 708 if (ret < 0) { 709 retval = ret; 710 goto out_sem; 711 } 712 } 713 714 out_sem: 715 up_write((&EXT4_I(inode)->i_data_sem)); 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 717 ret = check_block_validity(inode, map); 718 if (ret != 0) 719 return ret; 720 721 /* 722 * Inodes with freshly allocated blocks where contents will be 723 * visible after transaction commit must be on transaction's 724 * ordered data list. 725 */ 726 if (map->m_flags & EXT4_MAP_NEW && 727 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 728 !(flags & EXT4_GET_BLOCKS_ZERO) && 729 !ext4_is_quota_file(inode) && 730 ext4_should_order_data(inode)) { 731 loff_t start_byte = 732 (loff_t)map->m_lblk << inode->i_blkbits; 733 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 734 735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 736 ret = ext4_jbd2_inode_add_wait(handle, inode, 737 start_byte, length); 738 else 739 ret = ext4_jbd2_inode_add_write(handle, inode, 740 start_byte, length); 741 if (ret) 742 return ret; 743 } 744 ext4_fc_track_range(handle, inode, map->m_lblk, 745 map->m_lblk + map->m_len - 1); 746 } 747 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 do { 775 old_state = READ_ONCE(bh->b_state); 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely( 778 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 779 } 780 781 static int _ext4_get_block(struct inode *inode, sector_t iblock, 782 struct buffer_head *bh, int flags) 783 { 784 struct ext4_map_blocks map; 785 int ret = 0; 786 787 if (ext4_has_inline_data(inode)) 788 return -ERANGE; 789 790 map.m_lblk = iblock; 791 map.m_len = bh->b_size >> inode->i_blkbits; 792 793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 794 flags); 795 if (ret > 0) { 796 map_bh(bh, inode->i_sb, map.m_pblk); 797 ext4_update_bh_state(bh, map.m_flags); 798 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 799 ret = 0; 800 } else if (ret == 0) { 801 /* hole case, need to fill in bh->b_size */ 802 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 803 } 804 return ret; 805 } 806 807 int ext4_get_block(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh, int create) 809 { 810 return _ext4_get_block(inode, iblock, bh, 811 create ? EXT4_GET_BLOCKS_CREATE : 0); 812 } 813 814 /* 815 * Get block function used when preparing for buffered write if we require 816 * creating an unwritten extent if blocks haven't been allocated. The extent 817 * will be converted to written after the IO is complete. 818 */ 819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 820 struct buffer_head *bh_result, int create) 821 { 822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 823 inode->i_ino, create); 824 return _ext4_get_block(inode, iblock, bh_result, 825 EXT4_GET_BLOCKS_IO_CREATE_EXT); 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 int err; 841 842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 843 || handle != NULL || create == 0); 844 845 map.m_lblk = block; 846 map.m_len = 1; 847 err = ext4_map_blocks(handle, inode, &map, map_flags); 848 849 if (err == 0) 850 return create ? ERR_PTR(-ENOSPC) : NULL; 851 if (err < 0) 852 return ERR_PTR(err); 853 854 bh = sb_getblk(inode->i_sb, map.m_pblk); 855 if (unlikely(!bh)) 856 return ERR_PTR(-ENOMEM); 857 if (map.m_flags & EXT4_MAP_NEW) { 858 ASSERT(create != 0); 859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 860 || (handle != NULL)); 861 862 /* 863 * Now that we do not always journal data, we should 864 * keep in mind whether this should always journal the 865 * new buffer as metadata. For now, regular file 866 * writes use ext4_get_block instead, so it's not a 867 * problem. 868 */ 869 lock_buffer(bh); 870 BUFFER_TRACE(bh, "call get_create_access"); 871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 872 EXT4_JTR_NONE); 873 if (unlikely(err)) { 874 unlock_buffer(bh); 875 goto errout; 876 } 877 if (!buffer_uptodate(bh)) { 878 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 879 set_buffer_uptodate(bh); 880 } 881 unlock_buffer(bh); 882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 883 err = ext4_handle_dirty_metadata(handle, inode, bh); 884 if (unlikely(err)) 885 goto errout; 886 } else 887 BUFFER_TRACE(bh, "not a new buffer"); 888 return bh; 889 errout: 890 brelse(bh); 891 return ERR_PTR(err); 892 } 893 894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 895 ext4_lblk_t block, int map_flags) 896 { 897 struct buffer_head *bh; 898 int ret; 899 900 bh = ext4_getblk(handle, inode, block, map_flags); 901 if (IS_ERR(bh)) 902 return bh; 903 if (!bh || ext4_buffer_uptodate(bh)) 904 return bh; 905 906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 907 if (ret) { 908 put_bh(bh); 909 return ERR_PTR(ret); 910 } 911 return bh; 912 } 913 914 /* Read a contiguous batch of blocks. */ 915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 916 bool wait, struct buffer_head **bhs) 917 { 918 int i, err; 919 920 for (i = 0; i < bh_count; i++) { 921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 922 if (IS_ERR(bhs[i])) { 923 err = PTR_ERR(bhs[i]); 924 bh_count = i; 925 goto out_brelse; 926 } 927 } 928 929 for (i = 0; i < bh_count; i++) 930 /* Note that NULL bhs[i] is valid because of holes. */ 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 933 934 if (!wait) 935 return 0; 936 937 for (i = 0; i < bh_count; i++) 938 if (bhs[i]) 939 wait_on_buffer(bhs[i]); 940 941 for (i = 0; i < bh_count; i++) { 942 if (bhs[i] && !buffer_uptodate(bhs[i])) { 943 err = -EIO; 944 goto out_brelse; 945 } 946 } 947 return 0; 948 949 out_brelse: 950 for (i = 0; i < bh_count; i++) { 951 brelse(bhs[i]); 952 bhs[i] = NULL; 953 } 954 return err; 955 } 956 957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 958 struct buffer_head *head, 959 unsigned from, 960 unsigned to, 961 int *partial, 962 int (*fn)(handle_t *handle, struct inode *inode, 963 struct buffer_head *bh)) 964 { 965 struct buffer_head *bh; 966 unsigned block_start, block_end; 967 unsigned blocksize = head->b_size; 968 int err, ret = 0; 969 struct buffer_head *next; 970 971 for (bh = head, block_start = 0; 972 ret == 0 && (bh != head || !block_start); 973 block_start = block_end, bh = next) { 974 next = bh->b_this_page; 975 block_end = block_start + blocksize; 976 if (block_end <= from || block_start >= to) { 977 if (partial && !buffer_uptodate(bh)) 978 *partial = 1; 979 continue; 980 } 981 err = (*fn)(handle, inode, bh); 982 if (!ret) 983 ret = err; 984 } 985 return ret; 986 } 987 988 /* 989 * To preserve ordering, it is essential that the hole instantiation and 990 * the data write be encapsulated in a single transaction. We cannot 991 * close off a transaction and start a new one between the ext4_get_block() 992 * and the commit_write(). So doing the jbd2_journal_start at the start of 993 * prepare_write() is the right place. 994 * 995 * Also, this function can nest inside ext4_writepage(). In that case, we 996 * *know* that ext4_writepage() has generated enough buffer credits to do the 997 * whole page. So we won't block on the journal in that case, which is good, 998 * because the caller may be PF_MEMALLOC. 999 * 1000 * By accident, ext4 can be reentered when a transaction is open via 1001 * quota file writes. If we were to commit the transaction while thus 1002 * reentered, there can be a deadlock - we would be holding a quota 1003 * lock, and the commit would never complete if another thread had a 1004 * transaction open and was blocking on the quota lock - a ranking 1005 * violation. 1006 * 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1008 * will _not_ run commit under these circumstances because handle->h_ref 1009 * is elevated. We'll still have enough credits for the tiny quotafile 1010 * write. 1011 */ 1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1013 struct buffer_head *bh) 1014 { 1015 int dirty = buffer_dirty(bh); 1016 int ret; 1017 1018 if (!buffer_mapped(bh) || buffer_freed(bh)) 1019 return 0; 1020 /* 1021 * __block_write_begin() could have dirtied some buffers. Clean 1022 * the dirty bit as jbd2_journal_get_write_access() could complain 1023 * otherwise about fs integrity issues. Setting of the dirty bit 1024 * by __block_write_begin() isn't a real problem here as we clear 1025 * the bit before releasing a page lock and thus writeback cannot 1026 * ever write the buffer. 1027 */ 1028 if (dirty) 1029 clear_buffer_dirty(bh); 1030 BUFFER_TRACE(bh, "get write access"); 1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1032 EXT4_JTR_NONE); 1033 if (!ret && dirty) 1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1035 return ret; 1036 } 1037 1038 #ifdef CONFIG_FS_ENCRYPTION 1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1040 get_block_t *get_block) 1041 { 1042 unsigned from = pos & (PAGE_SIZE - 1); 1043 unsigned to = from + len; 1044 struct inode *inode = page->mapping->host; 1045 unsigned block_start, block_end; 1046 sector_t block; 1047 int err = 0; 1048 unsigned blocksize = inode->i_sb->s_blocksize; 1049 unsigned bbits; 1050 struct buffer_head *bh, *head, *wait[2]; 1051 int nr_wait = 0; 1052 int i; 1053 1054 BUG_ON(!PageLocked(page)); 1055 BUG_ON(from > PAGE_SIZE); 1056 BUG_ON(to > PAGE_SIZE); 1057 BUG_ON(from > to); 1058 1059 if (!page_has_buffers(page)) 1060 create_empty_buffers(page, blocksize, 0); 1061 head = page_buffers(page); 1062 bbits = ilog2(blocksize); 1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1064 1065 for (bh = head, block_start = 0; bh != head || !block_start; 1066 block++, block_start = block_end, bh = bh->b_this_page) { 1067 block_end = block_start + blocksize; 1068 if (block_end <= from || block_start >= to) { 1069 if (PageUptodate(page)) { 1070 set_buffer_uptodate(bh); 1071 } 1072 continue; 1073 } 1074 if (buffer_new(bh)) 1075 clear_buffer_new(bh); 1076 if (!buffer_mapped(bh)) { 1077 WARN_ON(bh->b_size != blocksize); 1078 err = get_block(inode, block, bh, 1); 1079 if (err) 1080 break; 1081 if (buffer_new(bh)) { 1082 if (PageUptodate(page)) { 1083 clear_buffer_new(bh); 1084 set_buffer_uptodate(bh); 1085 mark_buffer_dirty(bh); 1086 continue; 1087 } 1088 if (block_end > to || block_start < from) 1089 zero_user_segments(page, to, block_end, 1090 block_start, from); 1091 continue; 1092 } 1093 } 1094 if (PageUptodate(page)) { 1095 set_buffer_uptodate(bh); 1096 continue; 1097 } 1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1099 !buffer_unwritten(bh) && 1100 (block_start < from || block_end > to)) { 1101 ext4_read_bh_lock(bh, 0, false); 1102 wait[nr_wait++] = bh; 1103 } 1104 } 1105 /* 1106 * If we issued read requests, let them complete. 1107 */ 1108 for (i = 0; i < nr_wait; i++) { 1109 wait_on_buffer(wait[i]); 1110 if (!buffer_uptodate(wait[i])) 1111 err = -EIO; 1112 } 1113 if (unlikely(err)) { 1114 page_zero_new_buffers(page, from, to); 1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1116 for (i = 0; i < nr_wait; i++) { 1117 int err2; 1118 1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1120 bh_offset(wait[i])); 1121 if (err2) { 1122 clear_buffer_uptodate(wait[i]); 1123 err = err2; 1124 } 1125 } 1126 } 1127 1128 return err; 1129 } 1130 #endif 1131 1132 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1133 loff_t pos, unsigned len, unsigned flags, 1134 struct page **pagep, void **fsdata) 1135 { 1136 struct inode *inode = mapping->host; 1137 int ret, needed_blocks; 1138 handle_t *handle; 1139 int retries = 0; 1140 struct page *page; 1141 pgoff_t index; 1142 unsigned from, to; 1143 1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1145 return -EIO; 1146 1147 trace_ext4_write_begin(inode, pos, len, flags); 1148 /* 1149 * Reserve one block more for addition to orphan list in case 1150 * we allocate blocks but write fails for some reason 1151 */ 1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1153 index = pos >> PAGE_SHIFT; 1154 from = pos & (PAGE_SIZE - 1); 1155 to = from + len; 1156 1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1159 flags, pagep); 1160 if (ret < 0) 1161 return ret; 1162 if (ret == 1) 1163 return 0; 1164 } 1165 1166 /* 1167 * grab_cache_page_write_begin() can take a long time if the 1168 * system is thrashing due to memory pressure, or if the page 1169 * is being written back. So grab it first before we start 1170 * the transaction handle. This also allows us to allocate 1171 * the page (if needed) without using GFP_NOFS. 1172 */ 1173 retry_grab: 1174 page = grab_cache_page_write_begin(mapping, index, flags); 1175 if (!page) 1176 return -ENOMEM; 1177 unlock_page(page); 1178 1179 retry_journal: 1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1181 if (IS_ERR(handle)) { 1182 put_page(page); 1183 return PTR_ERR(handle); 1184 } 1185 1186 lock_page(page); 1187 if (page->mapping != mapping) { 1188 /* The page got truncated from under us */ 1189 unlock_page(page); 1190 put_page(page); 1191 ext4_journal_stop(handle); 1192 goto retry_grab; 1193 } 1194 /* In case writeback began while the page was unlocked */ 1195 wait_for_stable_page(page); 1196 1197 #ifdef CONFIG_FS_ENCRYPTION 1198 if (ext4_should_dioread_nolock(inode)) 1199 ret = ext4_block_write_begin(page, pos, len, 1200 ext4_get_block_unwritten); 1201 else 1202 ret = ext4_block_write_begin(page, pos, len, 1203 ext4_get_block); 1204 #else 1205 if (ext4_should_dioread_nolock(inode)) 1206 ret = __block_write_begin(page, pos, len, 1207 ext4_get_block_unwritten); 1208 else 1209 ret = __block_write_begin(page, pos, len, ext4_get_block); 1210 #endif 1211 if (!ret && ext4_should_journal_data(inode)) { 1212 ret = ext4_walk_page_buffers(handle, inode, 1213 page_buffers(page), from, to, NULL, 1214 do_journal_get_write_access); 1215 } 1216 1217 if (ret) { 1218 bool extended = (pos + len > inode->i_size) && 1219 !ext4_verity_in_progress(inode); 1220 1221 unlock_page(page); 1222 /* 1223 * __block_write_begin may have instantiated a few blocks 1224 * outside i_size. Trim these off again. Don't need 1225 * i_size_read because we hold i_mutex. 1226 * 1227 * Add inode to orphan list in case we crash before 1228 * truncate finishes 1229 */ 1230 if (extended && ext4_can_truncate(inode)) 1231 ext4_orphan_add(handle, inode); 1232 1233 ext4_journal_stop(handle); 1234 if (extended) { 1235 ext4_truncate_failed_write(inode); 1236 /* 1237 * If truncate failed early the inode might 1238 * still be on the orphan list; we need to 1239 * make sure the inode is removed from the 1240 * orphan list in that case. 1241 */ 1242 if (inode->i_nlink) 1243 ext4_orphan_del(NULL, inode); 1244 } 1245 1246 if (ret == -ENOSPC && 1247 ext4_should_retry_alloc(inode->i_sb, &retries)) 1248 goto retry_journal; 1249 put_page(page); 1250 return ret; 1251 } 1252 *pagep = page; 1253 return ret; 1254 } 1255 1256 /* For write_end() in data=journal mode */ 1257 static int write_end_fn(handle_t *handle, struct inode *inode, 1258 struct buffer_head *bh) 1259 { 1260 int ret; 1261 if (!buffer_mapped(bh) || buffer_freed(bh)) 1262 return 0; 1263 set_buffer_uptodate(bh); 1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1265 clear_buffer_meta(bh); 1266 clear_buffer_prio(bh); 1267 return ret; 1268 } 1269 1270 /* 1271 * We need to pick up the new inode size which generic_commit_write gave us 1272 * `file' can be NULL - eg, when called from page_symlink(). 1273 * 1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1275 * buffers are managed internally. 1276 */ 1277 static int ext4_write_end(struct file *file, 1278 struct address_space *mapping, 1279 loff_t pos, unsigned len, unsigned copied, 1280 struct page *page, void *fsdata) 1281 { 1282 handle_t *handle = ext4_journal_current_handle(); 1283 struct inode *inode = mapping->host; 1284 loff_t old_size = inode->i_size; 1285 int ret = 0, ret2; 1286 int i_size_changed = 0; 1287 bool verity = ext4_verity_in_progress(inode); 1288 1289 trace_ext4_write_end(inode, pos, len, copied); 1290 1291 if (ext4_has_inline_data(inode)) 1292 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1293 1294 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1295 /* 1296 * it's important to update i_size while still holding page lock: 1297 * page writeout could otherwise come in and zero beyond i_size. 1298 * 1299 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1300 * blocks are being written past EOF, so skip the i_size update. 1301 */ 1302 if (!verity) 1303 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1304 unlock_page(page); 1305 put_page(page); 1306 1307 if (old_size < pos && !verity) 1308 pagecache_isize_extended(inode, old_size, pos); 1309 /* 1310 * Don't mark the inode dirty under page lock. First, it unnecessarily 1311 * makes the holding time of page lock longer. Second, it forces lock 1312 * ordering of page lock and transaction start for journaling 1313 * filesystems. 1314 */ 1315 if (i_size_changed) 1316 ret = ext4_mark_inode_dirty(handle, inode); 1317 1318 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1319 /* if we have allocated more blocks and copied 1320 * less. We will have blocks allocated outside 1321 * inode->i_size. So truncate them 1322 */ 1323 ext4_orphan_add(handle, inode); 1324 1325 ret2 = ext4_journal_stop(handle); 1326 if (!ret) 1327 ret = ret2; 1328 1329 if (pos + len > inode->i_size && !verity) { 1330 ext4_truncate_failed_write(inode); 1331 /* 1332 * If truncate failed early the inode might still be 1333 * on the orphan list; we need to make sure the inode 1334 * is removed from the orphan list in that case. 1335 */ 1336 if (inode->i_nlink) 1337 ext4_orphan_del(NULL, inode); 1338 } 1339 1340 return ret ? ret : copied; 1341 } 1342 1343 /* 1344 * This is a private version of page_zero_new_buffers() which doesn't 1345 * set the buffer to be dirty, since in data=journalled mode we need 1346 * to call ext4_handle_dirty_metadata() instead. 1347 */ 1348 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1349 struct inode *inode, 1350 struct page *page, 1351 unsigned from, unsigned to) 1352 { 1353 unsigned int block_start = 0, block_end; 1354 struct buffer_head *head, *bh; 1355 1356 bh = head = page_buffers(page); 1357 do { 1358 block_end = block_start + bh->b_size; 1359 if (buffer_new(bh)) { 1360 if (block_end > from && block_start < to) { 1361 if (!PageUptodate(page)) { 1362 unsigned start, size; 1363 1364 start = max(from, block_start); 1365 size = min(to, block_end) - start; 1366 1367 zero_user(page, start, size); 1368 write_end_fn(handle, inode, bh); 1369 } 1370 clear_buffer_new(bh); 1371 } 1372 } 1373 block_start = block_end; 1374 bh = bh->b_this_page; 1375 } while (bh != head); 1376 } 1377 1378 static int ext4_journalled_write_end(struct file *file, 1379 struct address_space *mapping, 1380 loff_t pos, unsigned len, unsigned copied, 1381 struct page *page, void *fsdata) 1382 { 1383 handle_t *handle = ext4_journal_current_handle(); 1384 struct inode *inode = mapping->host; 1385 loff_t old_size = inode->i_size; 1386 int ret = 0, ret2; 1387 int partial = 0; 1388 unsigned from, to; 1389 int size_changed = 0; 1390 bool verity = ext4_verity_in_progress(inode); 1391 1392 trace_ext4_journalled_write_end(inode, pos, len, copied); 1393 from = pos & (PAGE_SIZE - 1); 1394 to = from + len; 1395 1396 BUG_ON(!ext4_handle_valid(handle)); 1397 1398 if (ext4_has_inline_data(inode)) 1399 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1400 1401 if (unlikely(copied < len) && !PageUptodate(page)) { 1402 copied = 0; 1403 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1404 } else { 1405 if (unlikely(copied < len)) 1406 ext4_journalled_zero_new_buffers(handle, inode, page, 1407 from + copied, to); 1408 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1409 from, from + copied, &partial, 1410 write_end_fn); 1411 if (!partial) 1412 SetPageUptodate(page); 1413 } 1414 if (!verity) 1415 size_changed = ext4_update_inode_size(inode, pos + copied); 1416 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1418 unlock_page(page); 1419 put_page(page); 1420 1421 if (old_size < pos && !verity) 1422 pagecache_isize_extended(inode, old_size, pos); 1423 1424 if (size_changed) { 1425 ret2 = ext4_mark_inode_dirty(handle, inode); 1426 if (!ret) 1427 ret = ret2; 1428 } 1429 1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1431 /* if we have allocated more blocks and copied 1432 * less. We will have blocks allocated outside 1433 * inode->i_size. So truncate them 1434 */ 1435 ext4_orphan_add(handle, inode); 1436 1437 ret2 = ext4_journal_stop(handle); 1438 if (!ret) 1439 ret = ret2; 1440 if (pos + len > inode->i_size && !verity) { 1441 ext4_truncate_failed_write(inode); 1442 /* 1443 * If truncate failed early the inode might still be 1444 * on the orphan list; we need to make sure the inode 1445 * is removed from the orphan list in that case. 1446 */ 1447 if (inode->i_nlink) 1448 ext4_orphan_del(NULL, inode); 1449 } 1450 1451 return ret ? ret : copied; 1452 } 1453 1454 /* 1455 * Reserve space for a single cluster 1456 */ 1457 static int ext4_da_reserve_space(struct inode *inode) 1458 { 1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1460 struct ext4_inode_info *ei = EXT4_I(inode); 1461 int ret; 1462 1463 /* 1464 * We will charge metadata quota at writeout time; this saves 1465 * us from metadata over-estimation, though we may go over by 1466 * a small amount in the end. Here we just reserve for data. 1467 */ 1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1469 if (ret) 1470 return ret; 1471 1472 spin_lock(&ei->i_block_reservation_lock); 1473 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1474 spin_unlock(&ei->i_block_reservation_lock); 1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1476 return -ENOSPC; 1477 } 1478 ei->i_reserved_data_blocks++; 1479 trace_ext4_da_reserve_space(inode); 1480 spin_unlock(&ei->i_block_reservation_lock); 1481 1482 return 0; /* success */ 1483 } 1484 1485 void ext4_da_release_space(struct inode *inode, int to_free) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 if (!to_free) 1491 return; /* Nothing to release, exit */ 1492 1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1494 1495 trace_ext4_da_release_space(inode, to_free); 1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1497 /* 1498 * if there aren't enough reserved blocks, then the 1499 * counter is messed up somewhere. Since this 1500 * function is called from invalidate page, it's 1501 * harmless to return without any action. 1502 */ 1503 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1504 "ino %lu, to_free %d with only %d reserved " 1505 "data blocks", inode->i_ino, to_free, 1506 ei->i_reserved_data_blocks); 1507 WARN_ON(1); 1508 to_free = ei->i_reserved_data_blocks; 1509 } 1510 ei->i_reserved_data_blocks -= to_free; 1511 1512 /* update fs dirty data blocks counter */ 1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1514 1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1516 1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1518 } 1519 1520 /* 1521 * Delayed allocation stuff 1522 */ 1523 1524 struct mpage_da_data { 1525 struct inode *inode; 1526 struct writeback_control *wbc; 1527 1528 pgoff_t first_page; /* The first page to write */ 1529 pgoff_t next_page; /* Current page to examine */ 1530 pgoff_t last_page; /* Last page to examine */ 1531 /* 1532 * Extent to map - this can be after first_page because that can be 1533 * fully mapped. We somewhat abuse m_flags to store whether the extent 1534 * is delalloc or unwritten. 1535 */ 1536 struct ext4_map_blocks map; 1537 struct ext4_io_submit io_submit; /* IO submission data */ 1538 unsigned int do_map:1; 1539 unsigned int scanned_until_end:1; 1540 }; 1541 1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1543 bool invalidate) 1544 { 1545 int nr_pages, i; 1546 pgoff_t index, end; 1547 struct pagevec pvec; 1548 struct inode *inode = mpd->inode; 1549 struct address_space *mapping = inode->i_mapping; 1550 1551 /* This is necessary when next_page == 0. */ 1552 if (mpd->first_page >= mpd->next_page) 1553 return; 1554 1555 mpd->scanned_until_end = 0; 1556 index = mpd->first_page; 1557 end = mpd->next_page - 1; 1558 if (invalidate) { 1559 ext4_lblk_t start, last; 1560 start = index << (PAGE_SHIFT - inode->i_blkbits); 1561 last = end << (PAGE_SHIFT - inode->i_blkbits); 1562 ext4_es_remove_extent(inode, start, last - start + 1); 1563 } 1564 1565 pagevec_init(&pvec); 1566 while (index <= end) { 1567 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1568 if (nr_pages == 0) 1569 break; 1570 for (i = 0; i < nr_pages; i++) { 1571 struct page *page = pvec.pages[i]; 1572 1573 BUG_ON(!PageLocked(page)); 1574 BUG_ON(PageWriteback(page)); 1575 if (invalidate) { 1576 if (page_mapped(page)) 1577 clear_page_dirty_for_io(page); 1578 block_invalidatepage(page, 0, PAGE_SIZE); 1579 ClearPageUptodate(page); 1580 } 1581 unlock_page(page); 1582 } 1583 pagevec_release(&pvec); 1584 } 1585 } 1586 1587 static void ext4_print_free_blocks(struct inode *inode) 1588 { 1589 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1590 struct super_block *sb = inode->i_sb; 1591 struct ext4_inode_info *ei = EXT4_I(inode); 1592 1593 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1594 EXT4_C2B(EXT4_SB(inode->i_sb), 1595 ext4_count_free_clusters(sb))); 1596 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1597 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1598 (long long) EXT4_C2B(EXT4_SB(sb), 1599 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1600 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1601 (long long) EXT4_C2B(EXT4_SB(sb), 1602 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1603 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1604 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1605 ei->i_reserved_data_blocks); 1606 return; 1607 } 1608 1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1610 struct buffer_head *bh) 1611 { 1612 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1613 } 1614 1615 /* 1616 * ext4_insert_delayed_block - adds a delayed block to the extents status 1617 * tree, incrementing the reserved cluster/block 1618 * count or making a pending reservation 1619 * where needed 1620 * 1621 * @inode - file containing the newly added block 1622 * @lblk - logical block to be added 1623 * 1624 * Returns 0 on success, negative error code on failure. 1625 */ 1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1627 { 1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1629 int ret; 1630 bool allocated = false; 1631 bool reserved = false; 1632 1633 /* 1634 * If the cluster containing lblk is shared with a delayed, 1635 * written, or unwritten extent in a bigalloc file system, it's 1636 * already been accounted for and does not need to be reserved. 1637 * A pending reservation must be made for the cluster if it's 1638 * shared with a written or unwritten extent and doesn't already 1639 * have one. Written and unwritten extents can be purged from the 1640 * extents status tree if the system is under memory pressure, so 1641 * it's necessary to examine the extent tree if a search of the 1642 * extents status tree doesn't get a match. 1643 */ 1644 if (sbi->s_cluster_ratio == 1) { 1645 ret = ext4_da_reserve_space(inode); 1646 if (ret != 0) /* ENOSPC */ 1647 goto errout; 1648 reserved = true; 1649 } else { /* bigalloc */ 1650 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1651 if (!ext4_es_scan_clu(inode, 1652 &ext4_es_is_mapped, lblk)) { 1653 ret = ext4_clu_mapped(inode, 1654 EXT4_B2C(sbi, lblk)); 1655 if (ret < 0) 1656 goto errout; 1657 if (ret == 0) { 1658 ret = ext4_da_reserve_space(inode); 1659 if (ret != 0) /* ENOSPC */ 1660 goto errout; 1661 reserved = true; 1662 } else { 1663 allocated = true; 1664 } 1665 } else { 1666 allocated = true; 1667 } 1668 } 1669 } 1670 1671 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1672 if (ret && reserved) 1673 ext4_da_release_space(inode, 1); 1674 1675 errout: 1676 return ret; 1677 } 1678 1679 /* 1680 * This function is grabs code from the very beginning of 1681 * ext4_map_blocks, but assumes that the caller is from delayed write 1682 * time. This function looks up the requested blocks and sets the 1683 * buffer delay bit under the protection of i_data_sem. 1684 */ 1685 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1686 struct ext4_map_blocks *map, 1687 struct buffer_head *bh) 1688 { 1689 struct extent_status es; 1690 int retval; 1691 sector_t invalid_block = ~((sector_t) 0xffff); 1692 #ifdef ES_AGGRESSIVE_TEST 1693 struct ext4_map_blocks orig_map; 1694 1695 memcpy(&orig_map, map, sizeof(*map)); 1696 #endif 1697 1698 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1699 invalid_block = ~0; 1700 1701 map->m_flags = 0; 1702 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1703 (unsigned long) map->m_lblk); 1704 1705 /* Lookup extent status tree firstly */ 1706 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1707 if (ext4_es_is_hole(&es)) { 1708 retval = 0; 1709 down_read(&EXT4_I(inode)->i_data_sem); 1710 goto add_delayed; 1711 } 1712 1713 /* 1714 * the buffer head associated with a delayed and not unwritten 1715 * block found in the extent status cache must contain an 1716 * invalid block number and have its BH_New and BH_Delay bits 1717 * set, reflecting the state assigned when the block was 1718 * initially delayed allocated 1719 */ 1720 if (ext4_es_is_delonly(&es)) { 1721 BUG_ON(bh->b_blocknr != invalid_block); 1722 BUG_ON(!buffer_new(bh)); 1723 BUG_ON(!buffer_delay(bh)); 1724 return 0; 1725 } 1726 1727 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1728 retval = es.es_len - (iblock - es.es_lblk); 1729 if (retval > map->m_len) 1730 retval = map->m_len; 1731 map->m_len = retval; 1732 if (ext4_es_is_written(&es)) 1733 map->m_flags |= EXT4_MAP_MAPPED; 1734 else if (ext4_es_is_unwritten(&es)) 1735 map->m_flags |= EXT4_MAP_UNWRITTEN; 1736 else 1737 BUG(); 1738 1739 #ifdef ES_AGGRESSIVE_TEST 1740 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1741 #endif 1742 return retval; 1743 } 1744 1745 /* 1746 * Try to see if we can get the block without requesting a new 1747 * file system block. 1748 */ 1749 down_read(&EXT4_I(inode)->i_data_sem); 1750 if (ext4_has_inline_data(inode)) 1751 retval = 0; 1752 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1753 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1754 else 1755 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1756 1757 add_delayed: 1758 if (retval == 0) { 1759 int ret; 1760 1761 /* 1762 * XXX: __block_prepare_write() unmaps passed block, 1763 * is it OK? 1764 */ 1765 1766 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1767 if (ret != 0) { 1768 retval = ret; 1769 goto out_unlock; 1770 } 1771 1772 map_bh(bh, inode->i_sb, invalid_block); 1773 set_buffer_new(bh); 1774 set_buffer_delay(bh); 1775 } else if (retval > 0) { 1776 int ret; 1777 unsigned int status; 1778 1779 if (unlikely(retval != map->m_len)) { 1780 ext4_warning(inode->i_sb, 1781 "ES len assertion failed for inode " 1782 "%lu: retval %d != map->m_len %d", 1783 inode->i_ino, retval, map->m_len); 1784 WARN_ON(1); 1785 } 1786 1787 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1788 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1789 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1790 map->m_pblk, status); 1791 if (ret != 0) 1792 retval = ret; 1793 } 1794 1795 out_unlock: 1796 up_read((&EXT4_I(inode)->i_data_sem)); 1797 1798 return retval; 1799 } 1800 1801 /* 1802 * This is a special get_block_t callback which is used by 1803 * ext4_da_write_begin(). It will either return mapped block or 1804 * reserve space for a single block. 1805 * 1806 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1807 * We also have b_blocknr = -1 and b_bdev initialized properly 1808 * 1809 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1810 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1811 * initialized properly. 1812 */ 1813 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1814 struct buffer_head *bh, int create) 1815 { 1816 struct ext4_map_blocks map; 1817 int ret = 0; 1818 1819 BUG_ON(create == 0); 1820 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1821 1822 map.m_lblk = iblock; 1823 map.m_len = 1; 1824 1825 /* 1826 * first, we need to know whether the block is allocated already 1827 * preallocated blocks are unmapped but should treated 1828 * the same as allocated blocks. 1829 */ 1830 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1831 if (ret <= 0) 1832 return ret; 1833 1834 map_bh(bh, inode->i_sb, map.m_pblk); 1835 ext4_update_bh_state(bh, map.m_flags); 1836 1837 if (buffer_unwritten(bh)) { 1838 /* A delayed write to unwritten bh should be marked 1839 * new and mapped. Mapped ensures that we don't do 1840 * get_block multiple times when we write to the same 1841 * offset and new ensures that we do proper zero out 1842 * for partial write. 1843 */ 1844 set_buffer_new(bh); 1845 set_buffer_mapped(bh); 1846 } 1847 return 0; 1848 } 1849 1850 static int bget_one(handle_t *handle, struct inode *inode, 1851 struct buffer_head *bh) 1852 { 1853 get_bh(bh); 1854 return 0; 1855 } 1856 1857 static int bput_one(handle_t *handle, struct inode *inode, 1858 struct buffer_head *bh) 1859 { 1860 put_bh(bh); 1861 return 0; 1862 } 1863 1864 static int __ext4_journalled_writepage(struct page *page, 1865 unsigned int len) 1866 { 1867 struct address_space *mapping = page->mapping; 1868 struct inode *inode = mapping->host; 1869 struct buffer_head *page_bufs = NULL; 1870 handle_t *handle = NULL; 1871 int ret = 0, err = 0; 1872 int inline_data = ext4_has_inline_data(inode); 1873 struct buffer_head *inode_bh = NULL; 1874 1875 ClearPageChecked(page); 1876 1877 if (inline_data) { 1878 BUG_ON(page->index != 0); 1879 BUG_ON(len > ext4_get_max_inline_size(inode)); 1880 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1881 if (inode_bh == NULL) 1882 goto out; 1883 } else { 1884 page_bufs = page_buffers(page); 1885 if (!page_bufs) { 1886 BUG(); 1887 goto out; 1888 } 1889 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1890 NULL, bget_one); 1891 } 1892 /* 1893 * We need to release the page lock before we start the 1894 * journal, so grab a reference so the page won't disappear 1895 * out from under us. 1896 */ 1897 get_page(page); 1898 unlock_page(page); 1899 1900 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1901 ext4_writepage_trans_blocks(inode)); 1902 if (IS_ERR(handle)) { 1903 ret = PTR_ERR(handle); 1904 put_page(page); 1905 goto out_no_pagelock; 1906 } 1907 BUG_ON(!ext4_handle_valid(handle)); 1908 1909 lock_page(page); 1910 put_page(page); 1911 if (page->mapping != mapping) { 1912 /* The page got truncated from under us */ 1913 ext4_journal_stop(handle); 1914 ret = 0; 1915 goto out; 1916 } 1917 1918 if (inline_data) { 1919 ret = ext4_mark_inode_dirty(handle, inode); 1920 } else { 1921 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1922 NULL, do_journal_get_write_access); 1923 1924 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1925 NULL, write_end_fn); 1926 } 1927 if (ret == 0) 1928 ret = err; 1929 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1930 if (ret == 0) 1931 ret = err; 1932 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1933 err = ext4_journal_stop(handle); 1934 if (!ret) 1935 ret = err; 1936 1937 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1938 out: 1939 unlock_page(page); 1940 out_no_pagelock: 1941 if (!inline_data && page_bufs) 1942 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, 1943 NULL, bput_one); 1944 brelse(inode_bh); 1945 return ret; 1946 } 1947 1948 /* 1949 * Note that we don't need to start a transaction unless we're journaling data 1950 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1951 * need to file the inode to the transaction's list in ordered mode because if 1952 * we are writing back data added by write(), the inode is already there and if 1953 * we are writing back data modified via mmap(), no one guarantees in which 1954 * transaction the data will hit the disk. In case we are journaling data, we 1955 * cannot start transaction directly because transaction start ranks above page 1956 * lock so we have to do some magic. 1957 * 1958 * This function can get called via... 1959 * - ext4_writepages after taking page lock (have journal handle) 1960 * - journal_submit_inode_data_buffers (no journal handle) 1961 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1962 * - grab_page_cache when doing write_begin (have journal handle) 1963 * 1964 * We don't do any block allocation in this function. If we have page with 1965 * multiple blocks we need to write those buffer_heads that are mapped. This 1966 * is important for mmaped based write. So if we do with blocksize 1K 1967 * truncate(f, 1024); 1968 * a = mmap(f, 0, 4096); 1969 * a[0] = 'a'; 1970 * truncate(f, 4096); 1971 * we have in the page first buffer_head mapped via page_mkwrite call back 1972 * but other buffer_heads would be unmapped but dirty (dirty done via the 1973 * do_wp_page). So writepage should write the first block. If we modify 1974 * the mmap area beyond 1024 we will again get a page_fault and the 1975 * page_mkwrite callback will do the block allocation and mark the 1976 * buffer_heads mapped. 1977 * 1978 * We redirty the page if we have any buffer_heads that is either delay or 1979 * unwritten in the page. 1980 * 1981 * We can get recursively called as show below. 1982 * 1983 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1984 * ext4_writepage() 1985 * 1986 * But since we don't do any block allocation we should not deadlock. 1987 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1988 */ 1989 static int ext4_writepage(struct page *page, 1990 struct writeback_control *wbc) 1991 { 1992 int ret = 0; 1993 loff_t size; 1994 unsigned int len; 1995 struct buffer_head *page_bufs = NULL; 1996 struct inode *inode = page->mapping->host; 1997 struct ext4_io_submit io_submit; 1998 bool keep_towrite = false; 1999 2000 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2001 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 2002 unlock_page(page); 2003 return -EIO; 2004 } 2005 2006 trace_ext4_writepage(page); 2007 size = i_size_read(inode); 2008 if (page->index == size >> PAGE_SHIFT && 2009 !ext4_verity_in_progress(inode)) 2010 len = size & ~PAGE_MASK; 2011 else 2012 len = PAGE_SIZE; 2013 2014 page_bufs = page_buffers(page); 2015 /* 2016 * We cannot do block allocation or other extent handling in this 2017 * function. If there are buffers needing that, we have to redirty 2018 * the page. But we may reach here when we do a journal commit via 2019 * journal_submit_inode_data_buffers() and in that case we must write 2020 * allocated buffers to achieve data=ordered mode guarantees. 2021 * 2022 * Also, if there is only one buffer per page (the fs block 2023 * size == the page size), if one buffer needs block 2024 * allocation or needs to modify the extent tree to clear the 2025 * unwritten flag, we know that the page can't be written at 2026 * all, so we might as well refuse the write immediately. 2027 * Unfortunately if the block size != page size, we can't as 2028 * easily detect this case using ext4_walk_page_buffers(), but 2029 * for the extremely common case, this is an optimization that 2030 * skips a useless round trip through ext4_bio_write_page(). 2031 */ 2032 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2033 ext4_bh_delay_or_unwritten)) { 2034 redirty_page_for_writepage(wbc, page); 2035 if ((current->flags & PF_MEMALLOC) || 2036 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2037 /* 2038 * For memory cleaning there's no point in writing only 2039 * some buffers. So just bail out. Warn if we came here 2040 * from direct reclaim. 2041 */ 2042 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2043 == PF_MEMALLOC); 2044 unlock_page(page); 2045 return 0; 2046 } 2047 keep_towrite = true; 2048 } 2049 2050 if (PageChecked(page) && ext4_should_journal_data(inode)) 2051 /* 2052 * It's mmapped pagecache. Add buffers and journal it. There 2053 * doesn't seem much point in redirtying the page here. 2054 */ 2055 return __ext4_journalled_writepage(page, len); 2056 2057 ext4_io_submit_init(&io_submit, wbc); 2058 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2059 if (!io_submit.io_end) { 2060 redirty_page_for_writepage(wbc, page); 2061 unlock_page(page); 2062 return -ENOMEM; 2063 } 2064 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2065 ext4_io_submit(&io_submit); 2066 /* Drop io_end reference we got from init */ 2067 ext4_put_io_end_defer(io_submit.io_end); 2068 return ret; 2069 } 2070 2071 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2072 { 2073 int len; 2074 loff_t size; 2075 int err; 2076 2077 BUG_ON(page->index != mpd->first_page); 2078 clear_page_dirty_for_io(page); 2079 /* 2080 * We have to be very careful here! Nothing protects writeback path 2081 * against i_size changes and the page can be writeably mapped into 2082 * page tables. So an application can be growing i_size and writing 2083 * data through mmap while writeback runs. clear_page_dirty_for_io() 2084 * write-protects our page in page tables and the page cannot get 2085 * written to again until we release page lock. So only after 2086 * clear_page_dirty_for_io() we are safe to sample i_size for 2087 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2088 * on the barrier provided by TestClearPageDirty in 2089 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2090 * after page tables are updated. 2091 */ 2092 size = i_size_read(mpd->inode); 2093 if (page->index == size >> PAGE_SHIFT && 2094 !ext4_verity_in_progress(mpd->inode)) 2095 len = size & ~PAGE_MASK; 2096 else 2097 len = PAGE_SIZE; 2098 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2099 if (!err) 2100 mpd->wbc->nr_to_write--; 2101 mpd->first_page++; 2102 2103 return err; 2104 } 2105 2106 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2107 2108 /* 2109 * mballoc gives us at most this number of blocks... 2110 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2111 * The rest of mballoc seems to handle chunks up to full group size. 2112 */ 2113 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2114 2115 /* 2116 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2117 * 2118 * @mpd - extent of blocks 2119 * @lblk - logical number of the block in the file 2120 * @bh - buffer head we want to add to the extent 2121 * 2122 * The function is used to collect contig. blocks in the same state. If the 2123 * buffer doesn't require mapping for writeback and we haven't started the 2124 * extent of buffers to map yet, the function returns 'true' immediately - the 2125 * caller can write the buffer right away. Otherwise the function returns true 2126 * if the block has been added to the extent, false if the block couldn't be 2127 * added. 2128 */ 2129 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2130 struct buffer_head *bh) 2131 { 2132 struct ext4_map_blocks *map = &mpd->map; 2133 2134 /* Buffer that doesn't need mapping for writeback? */ 2135 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2136 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2137 /* So far no extent to map => we write the buffer right away */ 2138 if (map->m_len == 0) 2139 return true; 2140 return false; 2141 } 2142 2143 /* First block in the extent? */ 2144 if (map->m_len == 0) { 2145 /* We cannot map unless handle is started... */ 2146 if (!mpd->do_map) 2147 return false; 2148 map->m_lblk = lblk; 2149 map->m_len = 1; 2150 map->m_flags = bh->b_state & BH_FLAGS; 2151 return true; 2152 } 2153 2154 /* Don't go larger than mballoc is willing to allocate */ 2155 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2156 return false; 2157 2158 /* Can we merge the block to our big extent? */ 2159 if (lblk == map->m_lblk + map->m_len && 2160 (bh->b_state & BH_FLAGS) == map->m_flags) { 2161 map->m_len++; 2162 return true; 2163 } 2164 return false; 2165 } 2166 2167 /* 2168 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2169 * 2170 * @mpd - extent of blocks for mapping 2171 * @head - the first buffer in the page 2172 * @bh - buffer we should start processing from 2173 * @lblk - logical number of the block in the file corresponding to @bh 2174 * 2175 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2176 * the page for IO if all buffers in this page were mapped and there's no 2177 * accumulated extent of buffers to map or add buffers in the page to the 2178 * extent of buffers to map. The function returns 1 if the caller can continue 2179 * by processing the next page, 0 if it should stop adding buffers to the 2180 * extent to map because we cannot extend it anymore. It can also return value 2181 * < 0 in case of error during IO submission. 2182 */ 2183 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2184 struct buffer_head *head, 2185 struct buffer_head *bh, 2186 ext4_lblk_t lblk) 2187 { 2188 struct inode *inode = mpd->inode; 2189 int err; 2190 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2191 >> inode->i_blkbits; 2192 2193 if (ext4_verity_in_progress(inode)) 2194 blocks = EXT_MAX_BLOCKS; 2195 2196 do { 2197 BUG_ON(buffer_locked(bh)); 2198 2199 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2200 /* Found extent to map? */ 2201 if (mpd->map.m_len) 2202 return 0; 2203 /* Buffer needs mapping and handle is not started? */ 2204 if (!mpd->do_map) 2205 return 0; 2206 /* Everything mapped so far and we hit EOF */ 2207 break; 2208 } 2209 } while (lblk++, (bh = bh->b_this_page) != head); 2210 /* So far everything mapped? Submit the page for IO. */ 2211 if (mpd->map.m_len == 0) { 2212 err = mpage_submit_page(mpd, head->b_page); 2213 if (err < 0) 2214 return err; 2215 } 2216 if (lblk >= blocks) { 2217 mpd->scanned_until_end = 1; 2218 return 0; 2219 } 2220 return 1; 2221 } 2222 2223 /* 2224 * mpage_process_page - update page buffers corresponding to changed extent and 2225 * may submit fully mapped page for IO 2226 * 2227 * @mpd - description of extent to map, on return next extent to map 2228 * @m_lblk - logical block mapping. 2229 * @m_pblk - corresponding physical mapping. 2230 * @map_bh - determines on return whether this page requires any further 2231 * mapping or not. 2232 * Scan given page buffers corresponding to changed extent and update buffer 2233 * state according to new extent state. 2234 * We map delalloc buffers to their physical location, clear unwritten bits. 2235 * If the given page is not fully mapped, we update @map to the next extent in 2236 * the given page that needs mapping & return @map_bh as true. 2237 */ 2238 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2239 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2240 bool *map_bh) 2241 { 2242 struct buffer_head *head, *bh; 2243 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2244 ext4_lblk_t lblk = *m_lblk; 2245 ext4_fsblk_t pblock = *m_pblk; 2246 int err = 0; 2247 int blkbits = mpd->inode->i_blkbits; 2248 ssize_t io_end_size = 0; 2249 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2250 2251 bh = head = page_buffers(page); 2252 do { 2253 if (lblk < mpd->map.m_lblk) 2254 continue; 2255 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2256 /* 2257 * Buffer after end of mapped extent. 2258 * Find next buffer in the page to map. 2259 */ 2260 mpd->map.m_len = 0; 2261 mpd->map.m_flags = 0; 2262 io_end_vec->size += io_end_size; 2263 io_end_size = 0; 2264 2265 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2266 if (err > 0) 2267 err = 0; 2268 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2269 io_end_vec = ext4_alloc_io_end_vec(io_end); 2270 if (IS_ERR(io_end_vec)) { 2271 err = PTR_ERR(io_end_vec); 2272 goto out; 2273 } 2274 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2275 } 2276 *map_bh = true; 2277 goto out; 2278 } 2279 if (buffer_delay(bh)) { 2280 clear_buffer_delay(bh); 2281 bh->b_blocknr = pblock++; 2282 } 2283 clear_buffer_unwritten(bh); 2284 io_end_size += (1 << blkbits); 2285 } while (lblk++, (bh = bh->b_this_page) != head); 2286 2287 io_end_vec->size += io_end_size; 2288 io_end_size = 0; 2289 *map_bh = false; 2290 out: 2291 *m_lblk = lblk; 2292 *m_pblk = pblock; 2293 return err; 2294 } 2295 2296 /* 2297 * mpage_map_buffers - update buffers corresponding to changed extent and 2298 * submit fully mapped pages for IO 2299 * 2300 * @mpd - description of extent to map, on return next extent to map 2301 * 2302 * Scan buffers corresponding to changed extent (we expect corresponding pages 2303 * to be already locked) and update buffer state according to new extent state. 2304 * We map delalloc buffers to their physical location, clear unwritten bits, 2305 * and mark buffers as uninit when we perform writes to unwritten extents 2306 * and do extent conversion after IO is finished. If the last page is not fully 2307 * mapped, we update @map to the next extent in the last page that needs 2308 * mapping. Otherwise we submit the page for IO. 2309 */ 2310 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2311 { 2312 struct pagevec pvec; 2313 int nr_pages, i; 2314 struct inode *inode = mpd->inode; 2315 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2316 pgoff_t start, end; 2317 ext4_lblk_t lblk; 2318 ext4_fsblk_t pblock; 2319 int err; 2320 bool map_bh = false; 2321 2322 start = mpd->map.m_lblk >> bpp_bits; 2323 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2324 lblk = start << bpp_bits; 2325 pblock = mpd->map.m_pblk; 2326 2327 pagevec_init(&pvec); 2328 while (start <= end) { 2329 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2330 &start, end); 2331 if (nr_pages == 0) 2332 break; 2333 for (i = 0; i < nr_pages; i++) { 2334 struct page *page = pvec.pages[i]; 2335 2336 err = mpage_process_page(mpd, page, &lblk, &pblock, 2337 &map_bh); 2338 /* 2339 * If map_bh is true, means page may require further bh 2340 * mapping, or maybe the page was submitted for IO. 2341 * So we return to call further extent mapping. 2342 */ 2343 if (err < 0 || map_bh) 2344 goto out; 2345 /* Page fully mapped - let IO run! */ 2346 err = mpage_submit_page(mpd, page); 2347 if (err < 0) 2348 goto out; 2349 } 2350 pagevec_release(&pvec); 2351 } 2352 /* Extent fully mapped and matches with page boundary. We are done. */ 2353 mpd->map.m_len = 0; 2354 mpd->map.m_flags = 0; 2355 return 0; 2356 out: 2357 pagevec_release(&pvec); 2358 return err; 2359 } 2360 2361 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2362 { 2363 struct inode *inode = mpd->inode; 2364 struct ext4_map_blocks *map = &mpd->map; 2365 int get_blocks_flags; 2366 int err, dioread_nolock; 2367 2368 trace_ext4_da_write_pages_extent(inode, map); 2369 /* 2370 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2371 * to convert an unwritten extent to be initialized (in the case 2372 * where we have written into one or more preallocated blocks). It is 2373 * possible that we're going to need more metadata blocks than 2374 * previously reserved. However we must not fail because we're in 2375 * writeback and there is nothing we can do about it so it might result 2376 * in data loss. So use reserved blocks to allocate metadata if 2377 * possible. 2378 * 2379 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2380 * the blocks in question are delalloc blocks. This indicates 2381 * that the blocks and quotas has already been checked when 2382 * the data was copied into the page cache. 2383 */ 2384 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2385 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2386 EXT4_GET_BLOCKS_IO_SUBMIT; 2387 dioread_nolock = ext4_should_dioread_nolock(inode); 2388 if (dioread_nolock) 2389 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2390 if (map->m_flags & BIT(BH_Delay)) 2391 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2392 2393 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2394 if (err < 0) 2395 return err; 2396 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2397 if (!mpd->io_submit.io_end->handle && 2398 ext4_handle_valid(handle)) { 2399 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2400 handle->h_rsv_handle = NULL; 2401 } 2402 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2403 } 2404 2405 BUG_ON(map->m_len == 0); 2406 return 0; 2407 } 2408 2409 /* 2410 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2411 * mpd->len and submit pages underlying it for IO 2412 * 2413 * @handle - handle for journal operations 2414 * @mpd - extent to map 2415 * @give_up_on_write - we set this to true iff there is a fatal error and there 2416 * is no hope of writing the data. The caller should discard 2417 * dirty pages to avoid infinite loops. 2418 * 2419 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2420 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2421 * them to initialized or split the described range from larger unwritten 2422 * extent. Note that we need not map all the described range since allocation 2423 * can return less blocks or the range is covered by more unwritten extents. We 2424 * cannot map more because we are limited by reserved transaction credits. On 2425 * the other hand we always make sure that the last touched page is fully 2426 * mapped so that it can be written out (and thus forward progress is 2427 * guaranteed). After mapping we submit all mapped pages for IO. 2428 */ 2429 static int mpage_map_and_submit_extent(handle_t *handle, 2430 struct mpage_da_data *mpd, 2431 bool *give_up_on_write) 2432 { 2433 struct inode *inode = mpd->inode; 2434 struct ext4_map_blocks *map = &mpd->map; 2435 int err; 2436 loff_t disksize; 2437 int progress = 0; 2438 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2439 struct ext4_io_end_vec *io_end_vec; 2440 2441 io_end_vec = ext4_alloc_io_end_vec(io_end); 2442 if (IS_ERR(io_end_vec)) 2443 return PTR_ERR(io_end_vec); 2444 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2445 do { 2446 err = mpage_map_one_extent(handle, mpd); 2447 if (err < 0) { 2448 struct super_block *sb = inode->i_sb; 2449 2450 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2451 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2452 goto invalidate_dirty_pages; 2453 /* 2454 * Let the uper layers retry transient errors. 2455 * In the case of ENOSPC, if ext4_count_free_blocks() 2456 * is non-zero, a commit should free up blocks. 2457 */ 2458 if ((err == -ENOMEM) || 2459 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2460 if (progress) 2461 goto update_disksize; 2462 return err; 2463 } 2464 ext4_msg(sb, KERN_CRIT, 2465 "Delayed block allocation failed for " 2466 "inode %lu at logical offset %llu with" 2467 " max blocks %u with error %d", 2468 inode->i_ino, 2469 (unsigned long long)map->m_lblk, 2470 (unsigned)map->m_len, -err); 2471 ext4_msg(sb, KERN_CRIT, 2472 "This should not happen!! Data will " 2473 "be lost\n"); 2474 if (err == -ENOSPC) 2475 ext4_print_free_blocks(inode); 2476 invalidate_dirty_pages: 2477 *give_up_on_write = true; 2478 return err; 2479 } 2480 progress = 1; 2481 /* 2482 * Update buffer state, submit mapped pages, and get us new 2483 * extent to map 2484 */ 2485 err = mpage_map_and_submit_buffers(mpd); 2486 if (err < 0) 2487 goto update_disksize; 2488 } while (map->m_len); 2489 2490 update_disksize: 2491 /* 2492 * Update on-disk size after IO is submitted. Races with 2493 * truncate are avoided by checking i_size under i_data_sem. 2494 */ 2495 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2496 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2497 int err2; 2498 loff_t i_size; 2499 2500 down_write(&EXT4_I(inode)->i_data_sem); 2501 i_size = i_size_read(inode); 2502 if (disksize > i_size) 2503 disksize = i_size; 2504 if (disksize > EXT4_I(inode)->i_disksize) 2505 EXT4_I(inode)->i_disksize = disksize; 2506 up_write(&EXT4_I(inode)->i_data_sem); 2507 err2 = ext4_mark_inode_dirty(handle, inode); 2508 if (err2) { 2509 ext4_error_err(inode->i_sb, -err2, 2510 "Failed to mark inode %lu dirty", 2511 inode->i_ino); 2512 } 2513 if (!err) 2514 err = err2; 2515 } 2516 return err; 2517 } 2518 2519 /* 2520 * Calculate the total number of credits to reserve for one writepages 2521 * iteration. This is called from ext4_writepages(). We map an extent of 2522 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2523 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2524 * bpp - 1 blocks in bpp different extents. 2525 */ 2526 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2527 { 2528 int bpp = ext4_journal_blocks_per_page(inode); 2529 2530 return ext4_meta_trans_blocks(inode, 2531 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2532 } 2533 2534 /* 2535 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2536 * and underlying extent to map 2537 * 2538 * @mpd - where to look for pages 2539 * 2540 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2541 * IO immediately. When we find a page which isn't mapped we start accumulating 2542 * extent of buffers underlying these pages that needs mapping (formed by 2543 * either delayed or unwritten buffers). We also lock the pages containing 2544 * these buffers. The extent found is returned in @mpd structure (starting at 2545 * mpd->lblk with length mpd->len blocks). 2546 * 2547 * Note that this function can attach bios to one io_end structure which are 2548 * neither logically nor physically contiguous. Although it may seem as an 2549 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2550 * case as we need to track IO to all buffers underlying a page in one io_end. 2551 */ 2552 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2553 { 2554 struct address_space *mapping = mpd->inode->i_mapping; 2555 struct pagevec pvec; 2556 unsigned int nr_pages; 2557 long left = mpd->wbc->nr_to_write; 2558 pgoff_t index = mpd->first_page; 2559 pgoff_t end = mpd->last_page; 2560 xa_mark_t tag; 2561 int i, err = 0; 2562 int blkbits = mpd->inode->i_blkbits; 2563 ext4_lblk_t lblk; 2564 struct buffer_head *head; 2565 2566 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2567 tag = PAGECACHE_TAG_TOWRITE; 2568 else 2569 tag = PAGECACHE_TAG_DIRTY; 2570 2571 pagevec_init(&pvec); 2572 mpd->map.m_len = 0; 2573 mpd->next_page = index; 2574 while (index <= end) { 2575 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2576 tag); 2577 if (nr_pages == 0) 2578 break; 2579 2580 for (i = 0; i < nr_pages; i++) { 2581 struct page *page = pvec.pages[i]; 2582 2583 /* 2584 * Accumulated enough dirty pages? This doesn't apply 2585 * to WB_SYNC_ALL mode. For integrity sync we have to 2586 * keep going because someone may be concurrently 2587 * dirtying pages, and we might have synced a lot of 2588 * newly appeared dirty pages, but have not synced all 2589 * of the old dirty pages. 2590 */ 2591 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2592 goto out; 2593 2594 /* If we can't merge this page, we are done. */ 2595 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2596 goto out; 2597 2598 lock_page(page); 2599 /* 2600 * If the page is no longer dirty, or its mapping no 2601 * longer corresponds to inode we are writing (which 2602 * means it has been truncated or invalidated), or the 2603 * page is already under writeback and we are not doing 2604 * a data integrity writeback, skip the page 2605 */ 2606 if (!PageDirty(page) || 2607 (PageWriteback(page) && 2608 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2609 unlikely(page->mapping != mapping)) { 2610 unlock_page(page); 2611 continue; 2612 } 2613 2614 wait_on_page_writeback(page); 2615 BUG_ON(PageWriteback(page)); 2616 2617 if (mpd->map.m_len == 0) 2618 mpd->first_page = page->index; 2619 mpd->next_page = page->index + 1; 2620 /* Add all dirty buffers to mpd */ 2621 lblk = ((ext4_lblk_t)page->index) << 2622 (PAGE_SHIFT - blkbits); 2623 head = page_buffers(page); 2624 err = mpage_process_page_bufs(mpd, head, head, lblk); 2625 if (err <= 0) 2626 goto out; 2627 err = 0; 2628 left--; 2629 } 2630 pagevec_release(&pvec); 2631 cond_resched(); 2632 } 2633 mpd->scanned_until_end = 1; 2634 return 0; 2635 out: 2636 pagevec_release(&pvec); 2637 return err; 2638 } 2639 2640 static int ext4_writepages(struct address_space *mapping, 2641 struct writeback_control *wbc) 2642 { 2643 pgoff_t writeback_index = 0; 2644 long nr_to_write = wbc->nr_to_write; 2645 int range_whole = 0; 2646 int cycled = 1; 2647 handle_t *handle = NULL; 2648 struct mpage_da_data mpd; 2649 struct inode *inode = mapping->host; 2650 int needed_blocks, rsv_blocks = 0, ret = 0; 2651 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2652 struct blk_plug plug; 2653 bool give_up_on_write = false; 2654 2655 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2656 return -EIO; 2657 2658 percpu_down_read(&sbi->s_writepages_rwsem); 2659 trace_ext4_writepages(inode, wbc); 2660 2661 /* 2662 * No pages to write? This is mainly a kludge to avoid starting 2663 * a transaction for special inodes like journal inode on last iput() 2664 * because that could violate lock ordering on umount 2665 */ 2666 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2667 goto out_writepages; 2668 2669 if (ext4_should_journal_data(inode)) { 2670 ret = generic_writepages(mapping, wbc); 2671 goto out_writepages; 2672 } 2673 2674 /* 2675 * If the filesystem has aborted, it is read-only, so return 2676 * right away instead of dumping stack traces later on that 2677 * will obscure the real source of the problem. We test 2678 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2679 * the latter could be true if the filesystem is mounted 2680 * read-only, and in that case, ext4_writepages should 2681 * *never* be called, so if that ever happens, we would want 2682 * the stack trace. 2683 */ 2684 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2685 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2686 ret = -EROFS; 2687 goto out_writepages; 2688 } 2689 2690 /* 2691 * If we have inline data and arrive here, it means that 2692 * we will soon create the block for the 1st page, so 2693 * we'd better clear the inline data here. 2694 */ 2695 if (ext4_has_inline_data(inode)) { 2696 /* Just inode will be modified... */ 2697 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2698 if (IS_ERR(handle)) { 2699 ret = PTR_ERR(handle); 2700 goto out_writepages; 2701 } 2702 BUG_ON(ext4_test_inode_state(inode, 2703 EXT4_STATE_MAY_INLINE_DATA)); 2704 ext4_destroy_inline_data(handle, inode); 2705 ext4_journal_stop(handle); 2706 } 2707 2708 if (ext4_should_dioread_nolock(inode)) { 2709 /* 2710 * We may need to convert up to one extent per block in 2711 * the page and we may dirty the inode. 2712 */ 2713 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2714 PAGE_SIZE >> inode->i_blkbits); 2715 } 2716 2717 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2718 range_whole = 1; 2719 2720 if (wbc->range_cyclic) { 2721 writeback_index = mapping->writeback_index; 2722 if (writeback_index) 2723 cycled = 0; 2724 mpd.first_page = writeback_index; 2725 mpd.last_page = -1; 2726 } else { 2727 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2728 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2729 } 2730 2731 mpd.inode = inode; 2732 mpd.wbc = wbc; 2733 ext4_io_submit_init(&mpd.io_submit, wbc); 2734 retry: 2735 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2736 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2737 blk_start_plug(&plug); 2738 2739 /* 2740 * First writeback pages that don't need mapping - we can avoid 2741 * starting a transaction unnecessarily and also avoid being blocked 2742 * in the block layer on device congestion while having transaction 2743 * started. 2744 */ 2745 mpd.do_map = 0; 2746 mpd.scanned_until_end = 0; 2747 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2748 if (!mpd.io_submit.io_end) { 2749 ret = -ENOMEM; 2750 goto unplug; 2751 } 2752 ret = mpage_prepare_extent_to_map(&mpd); 2753 /* Unlock pages we didn't use */ 2754 mpage_release_unused_pages(&mpd, false); 2755 /* Submit prepared bio */ 2756 ext4_io_submit(&mpd.io_submit); 2757 ext4_put_io_end_defer(mpd.io_submit.io_end); 2758 mpd.io_submit.io_end = NULL; 2759 if (ret < 0) 2760 goto unplug; 2761 2762 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2763 /* For each extent of pages we use new io_end */ 2764 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2765 if (!mpd.io_submit.io_end) { 2766 ret = -ENOMEM; 2767 break; 2768 } 2769 2770 /* 2771 * We have two constraints: We find one extent to map and we 2772 * must always write out whole page (makes a difference when 2773 * blocksize < pagesize) so that we don't block on IO when we 2774 * try to write out the rest of the page. Journalled mode is 2775 * not supported by delalloc. 2776 */ 2777 BUG_ON(ext4_should_journal_data(inode)); 2778 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2779 2780 /* start a new transaction */ 2781 handle = ext4_journal_start_with_reserve(inode, 2782 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2783 if (IS_ERR(handle)) { 2784 ret = PTR_ERR(handle); 2785 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2786 "%ld pages, ino %lu; err %d", __func__, 2787 wbc->nr_to_write, inode->i_ino, ret); 2788 /* Release allocated io_end */ 2789 ext4_put_io_end(mpd.io_submit.io_end); 2790 mpd.io_submit.io_end = NULL; 2791 break; 2792 } 2793 mpd.do_map = 1; 2794 2795 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2796 ret = mpage_prepare_extent_to_map(&mpd); 2797 if (!ret && mpd.map.m_len) 2798 ret = mpage_map_and_submit_extent(handle, &mpd, 2799 &give_up_on_write); 2800 /* 2801 * Caution: If the handle is synchronous, 2802 * ext4_journal_stop() can wait for transaction commit 2803 * to finish which may depend on writeback of pages to 2804 * complete or on page lock to be released. In that 2805 * case, we have to wait until after we have 2806 * submitted all the IO, released page locks we hold, 2807 * and dropped io_end reference (for extent conversion 2808 * to be able to complete) before stopping the handle. 2809 */ 2810 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2811 ext4_journal_stop(handle); 2812 handle = NULL; 2813 mpd.do_map = 0; 2814 } 2815 /* Unlock pages we didn't use */ 2816 mpage_release_unused_pages(&mpd, give_up_on_write); 2817 /* Submit prepared bio */ 2818 ext4_io_submit(&mpd.io_submit); 2819 2820 /* 2821 * Drop our io_end reference we got from init. We have 2822 * to be careful and use deferred io_end finishing if 2823 * we are still holding the transaction as we can 2824 * release the last reference to io_end which may end 2825 * up doing unwritten extent conversion. 2826 */ 2827 if (handle) { 2828 ext4_put_io_end_defer(mpd.io_submit.io_end); 2829 ext4_journal_stop(handle); 2830 } else 2831 ext4_put_io_end(mpd.io_submit.io_end); 2832 mpd.io_submit.io_end = NULL; 2833 2834 if (ret == -ENOSPC && sbi->s_journal) { 2835 /* 2836 * Commit the transaction which would 2837 * free blocks released in the transaction 2838 * and try again 2839 */ 2840 jbd2_journal_force_commit_nested(sbi->s_journal); 2841 ret = 0; 2842 continue; 2843 } 2844 /* Fatal error - ENOMEM, EIO... */ 2845 if (ret) 2846 break; 2847 } 2848 unplug: 2849 blk_finish_plug(&plug); 2850 if (!ret && !cycled && wbc->nr_to_write > 0) { 2851 cycled = 1; 2852 mpd.last_page = writeback_index - 1; 2853 mpd.first_page = 0; 2854 goto retry; 2855 } 2856 2857 /* Update index */ 2858 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2859 /* 2860 * Set the writeback_index so that range_cyclic 2861 * mode will write it back later 2862 */ 2863 mapping->writeback_index = mpd.first_page; 2864 2865 out_writepages: 2866 trace_ext4_writepages_result(inode, wbc, ret, 2867 nr_to_write - wbc->nr_to_write); 2868 percpu_up_read(&sbi->s_writepages_rwsem); 2869 return ret; 2870 } 2871 2872 static int ext4_dax_writepages(struct address_space *mapping, 2873 struct writeback_control *wbc) 2874 { 2875 int ret; 2876 long nr_to_write = wbc->nr_to_write; 2877 struct inode *inode = mapping->host; 2878 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2879 2880 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2881 return -EIO; 2882 2883 percpu_down_read(&sbi->s_writepages_rwsem); 2884 trace_ext4_writepages(inode, wbc); 2885 2886 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2887 trace_ext4_writepages_result(inode, wbc, ret, 2888 nr_to_write - wbc->nr_to_write); 2889 percpu_up_read(&sbi->s_writepages_rwsem); 2890 return ret; 2891 } 2892 2893 static int ext4_nonda_switch(struct super_block *sb) 2894 { 2895 s64 free_clusters, dirty_clusters; 2896 struct ext4_sb_info *sbi = EXT4_SB(sb); 2897 2898 /* 2899 * switch to non delalloc mode if we are running low 2900 * on free block. The free block accounting via percpu 2901 * counters can get slightly wrong with percpu_counter_batch getting 2902 * accumulated on each CPU without updating global counters 2903 * Delalloc need an accurate free block accounting. So switch 2904 * to non delalloc when we are near to error range. 2905 */ 2906 free_clusters = 2907 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2908 dirty_clusters = 2909 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2910 /* 2911 * Start pushing delalloc when 1/2 of free blocks are dirty. 2912 */ 2913 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2914 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2915 2916 if (2 * free_clusters < 3 * dirty_clusters || 2917 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2918 /* 2919 * free block count is less than 150% of dirty blocks 2920 * or free blocks is less than watermark 2921 */ 2922 return 1; 2923 } 2924 return 0; 2925 } 2926 2927 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2928 loff_t pos, unsigned len, unsigned flags, 2929 struct page **pagep, void **fsdata) 2930 { 2931 int ret, retries = 0; 2932 struct page *page; 2933 pgoff_t index; 2934 struct inode *inode = mapping->host; 2935 2936 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2937 return -EIO; 2938 2939 index = pos >> PAGE_SHIFT; 2940 2941 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2942 ext4_verity_in_progress(inode)) { 2943 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2944 return ext4_write_begin(file, mapping, pos, 2945 len, flags, pagep, fsdata); 2946 } 2947 *fsdata = (void *)0; 2948 trace_ext4_da_write_begin(inode, pos, len, flags); 2949 2950 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2951 ret = ext4_da_write_inline_data_begin(mapping, inode, 2952 pos, len, flags, 2953 pagep, fsdata); 2954 if (ret < 0) 2955 return ret; 2956 if (ret == 1) 2957 return 0; 2958 } 2959 2960 retry: 2961 page = grab_cache_page_write_begin(mapping, index, flags); 2962 if (!page) 2963 return -ENOMEM; 2964 2965 /* In case writeback began while the page was unlocked */ 2966 wait_for_stable_page(page); 2967 2968 #ifdef CONFIG_FS_ENCRYPTION 2969 ret = ext4_block_write_begin(page, pos, len, 2970 ext4_da_get_block_prep); 2971 #else 2972 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2973 #endif 2974 if (ret < 0) { 2975 unlock_page(page); 2976 put_page(page); 2977 /* 2978 * block_write_begin may have instantiated a few blocks 2979 * outside i_size. Trim these off again. Don't need 2980 * i_size_read because we hold inode lock. 2981 */ 2982 if (pos + len > inode->i_size) 2983 ext4_truncate_failed_write(inode); 2984 2985 if (ret == -ENOSPC && 2986 ext4_should_retry_alloc(inode->i_sb, &retries)) 2987 goto retry; 2988 return ret; 2989 } 2990 2991 *pagep = page; 2992 return ret; 2993 } 2994 2995 /* 2996 * Check if we should update i_disksize 2997 * when write to the end of file but not require block allocation 2998 */ 2999 static int ext4_da_should_update_i_disksize(struct page *page, 3000 unsigned long offset) 3001 { 3002 struct buffer_head *bh; 3003 struct inode *inode = page->mapping->host; 3004 unsigned int idx; 3005 int i; 3006 3007 bh = page_buffers(page); 3008 idx = offset >> inode->i_blkbits; 3009 3010 for (i = 0; i < idx; i++) 3011 bh = bh->b_this_page; 3012 3013 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3014 return 0; 3015 return 1; 3016 } 3017 3018 static int ext4_da_write_end(struct file *file, 3019 struct address_space *mapping, 3020 loff_t pos, unsigned len, unsigned copied, 3021 struct page *page, void *fsdata) 3022 { 3023 struct inode *inode = mapping->host; 3024 loff_t new_i_size; 3025 unsigned long start, end; 3026 int write_mode = (int)(unsigned long)fsdata; 3027 3028 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3029 return ext4_write_end(file, mapping, pos, 3030 len, copied, page, fsdata); 3031 3032 trace_ext4_da_write_end(inode, pos, len, copied); 3033 3034 if (write_mode != CONVERT_INLINE_DATA && 3035 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3036 ext4_has_inline_data(inode)) 3037 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3038 3039 start = pos & (PAGE_SIZE - 1); 3040 end = start + copied - 1; 3041 3042 /* 3043 * Since we are holding inode lock, we are sure i_disksize <= 3044 * i_size. We also know that if i_disksize < i_size, there are 3045 * delalloc writes pending in the range upto i_size. If the end of 3046 * the current write is <= i_size, there's no need to touch 3047 * i_disksize since writeback will push i_disksize upto i_size 3048 * eventually. If the end of the current write is > i_size and 3049 * inside an allocated block (ext4_da_should_update_i_disksize() 3050 * check), we need to update i_disksize here as neither 3051 * ext4_writepage() nor certain ext4_writepages() paths not 3052 * allocating blocks update i_disksize. 3053 * 3054 * Note that we defer inode dirtying to generic_write_end() / 3055 * ext4_da_write_inline_data_end(). 3056 */ 3057 new_i_size = pos + copied; 3058 if (copied && new_i_size > inode->i_size && 3059 ext4_da_should_update_i_disksize(page, end)) 3060 ext4_update_i_disksize(inode, new_i_size); 3061 3062 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3063 } 3064 3065 /* 3066 * Force all delayed allocation blocks to be allocated for a given inode. 3067 */ 3068 int ext4_alloc_da_blocks(struct inode *inode) 3069 { 3070 trace_ext4_alloc_da_blocks(inode); 3071 3072 if (!EXT4_I(inode)->i_reserved_data_blocks) 3073 return 0; 3074 3075 /* 3076 * We do something simple for now. The filemap_flush() will 3077 * also start triggering a write of the data blocks, which is 3078 * not strictly speaking necessary (and for users of 3079 * laptop_mode, not even desirable). However, to do otherwise 3080 * would require replicating code paths in: 3081 * 3082 * ext4_writepages() -> 3083 * write_cache_pages() ---> (via passed in callback function) 3084 * __mpage_da_writepage() --> 3085 * mpage_add_bh_to_extent() 3086 * mpage_da_map_blocks() 3087 * 3088 * The problem is that write_cache_pages(), located in 3089 * mm/page-writeback.c, marks pages clean in preparation for 3090 * doing I/O, which is not desirable if we're not planning on 3091 * doing I/O at all. 3092 * 3093 * We could call write_cache_pages(), and then redirty all of 3094 * the pages by calling redirty_page_for_writepage() but that 3095 * would be ugly in the extreme. So instead we would need to 3096 * replicate parts of the code in the above functions, 3097 * simplifying them because we wouldn't actually intend to 3098 * write out the pages, but rather only collect contiguous 3099 * logical block extents, call the multi-block allocator, and 3100 * then update the buffer heads with the block allocations. 3101 * 3102 * For now, though, we'll cheat by calling filemap_flush(), 3103 * which will map the blocks, and start the I/O, but not 3104 * actually wait for the I/O to complete. 3105 */ 3106 return filemap_flush(inode->i_mapping); 3107 } 3108 3109 /* 3110 * bmap() is special. It gets used by applications such as lilo and by 3111 * the swapper to find the on-disk block of a specific piece of data. 3112 * 3113 * Naturally, this is dangerous if the block concerned is still in the 3114 * journal. If somebody makes a swapfile on an ext4 data-journaling 3115 * filesystem and enables swap, then they may get a nasty shock when the 3116 * data getting swapped to that swapfile suddenly gets overwritten by 3117 * the original zero's written out previously to the journal and 3118 * awaiting writeback in the kernel's buffer cache. 3119 * 3120 * So, if we see any bmap calls here on a modified, data-journaled file, 3121 * take extra steps to flush any blocks which might be in the cache. 3122 */ 3123 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3124 { 3125 struct inode *inode = mapping->host; 3126 journal_t *journal; 3127 int err; 3128 3129 /* 3130 * We can get here for an inline file via the FIBMAP ioctl 3131 */ 3132 if (ext4_has_inline_data(inode)) 3133 return 0; 3134 3135 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3136 test_opt(inode->i_sb, DELALLOC)) { 3137 /* 3138 * With delalloc we want to sync the file 3139 * so that we can make sure we allocate 3140 * blocks for file 3141 */ 3142 filemap_write_and_wait(mapping); 3143 } 3144 3145 if (EXT4_JOURNAL(inode) && 3146 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3147 /* 3148 * This is a REALLY heavyweight approach, but the use of 3149 * bmap on dirty files is expected to be extremely rare: 3150 * only if we run lilo or swapon on a freshly made file 3151 * do we expect this to happen. 3152 * 3153 * (bmap requires CAP_SYS_RAWIO so this does not 3154 * represent an unprivileged user DOS attack --- we'd be 3155 * in trouble if mortal users could trigger this path at 3156 * will.) 3157 * 3158 * NB. EXT4_STATE_JDATA is not set on files other than 3159 * regular files. If somebody wants to bmap a directory 3160 * or symlink and gets confused because the buffer 3161 * hasn't yet been flushed to disk, they deserve 3162 * everything they get. 3163 */ 3164 3165 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3166 journal = EXT4_JOURNAL(inode); 3167 jbd2_journal_lock_updates(journal); 3168 err = jbd2_journal_flush(journal, 0); 3169 jbd2_journal_unlock_updates(journal); 3170 3171 if (err) 3172 return 0; 3173 } 3174 3175 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3176 } 3177 3178 static int ext4_readpage(struct file *file, struct page *page) 3179 { 3180 int ret = -EAGAIN; 3181 struct inode *inode = page->mapping->host; 3182 3183 trace_ext4_readpage(page); 3184 3185 if (ext4_has_inline_data(inode)) 3186 ret = ext4_readpage_inline(inode, page); 3187 3188 if (ret == -EAGAIN) 3189 return ext4_mpage_readpages(inode, NULL, page); 3190 3191 return ret; 3192 } 3193 3194 static void ext4_readahead(struct readahead_control *rac) 3195 { 3196 struct inode *inode = rac->mapping->host; 3197 3198 /* If the file has inline data, no need to do readahead. */ 3199 if (ext4_has_inline_data(inode)) 3200 return; 3201 3202 ext4_mpage_readpages(inode, rac, NULL); 3203 } 3204 3205 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3206 unsigned int length) 3207 { 3208 trace_ext4_invalidatepage(page, offset, length); 3209 3210 /* No journalling happens on data buffers when this function is used */ 3211 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3212 3213 block_invalidatepage(page, offset, length); 3214 } 3215 3216 static int __ext4_journalled_invalidatepage(struct page *page, 3217 unsigned int offset, 3218 unsigned int length) 3219 { 3220 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3221 3222 trace_ext4_journalled_invalidatepage(page, offset, length); 3223 3224 /* 3225 * If it's a full truncate we just forget about the pending dirtying 3226 */ 3227 if (offset == 0 && length == PAGE_SIZE) 3228 ClearPageChecked(page); 3229 3230 return jbd2_journal_invalidatepage(journal, page, offset, length); 3231 } 3232 3233 /* Wrapper for aops... */ 3234 static void ext4_journalled_invalidatepage(struct page *page, 3235 unsigned int offset, 3236 unsigned int length) 3237 { 3238 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3239 } 3240 3241 static int ext4_releasepage(struct page *page, gfp_t wait) 3242 { 3243 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3244 3245 trace_ext4_releasepage(page); 3246 3247 /* Page has dirty journalled data -> cannot release */ 3248 if (PageChecked(page)) 3249 return 0; 3250 if (journal) 3251 return jbd2_journal_try_to_free_buffers(journal, page); 3252 else 3253 return try_to_free_buffers(page); 3254 } 3255 3256 static bool ext4_inode_datasync_dirty(struct inode *inode) 3257 { 3258 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3259 3260 if (journal) { 3261 if (jbd2_transaction_committed(journal, 3262 EXT4_I(inode)->i_datasync_tid)) 3263 return false; 3264 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3265 return !list_empty(&EXT4_I(inode)->i_fc_list); 3266 return true; 3267 } 3268 3269 /* Any metadata buffers to write? */ 3270 if (!list_empty(&inode->i_mapping->private_list)) 3271 return true; 3272 return inode->i_state & I_DIRTY_DATASYNC; 3273 } 3274 3275 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3276 struct ext4_map_blocks *map, loff_t offset, 3277 loff_t length) 3278 { 3279 u8 blkbits = inode->i_blkbits; 3280 3281 /* 3282 * Writes that span EOF might trigger an I/O size update on completion, 3283 * so consider them to be dirty for the purpose of O_DSYNC, even if 3284 * there is no other metadata changes being made or are pending. 3285 */ 3286 iomap->flags = 0; 3287 if (ext4_inode_datasync_dirty(inode) || 3288 offset + length > i_size_read(inode)) 3289 iomap->flags |= IOMAP_F_DIRTY; 3290 3291 if (map->m_flags & EXT4_MAP_NEW) 3292 iomap->flags |= IOMAP_F_NEW; 3293 3294 iomap->bdev = inode->i_sb->s_bdev; 3295 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3296 iomap->offset = (u64) map->m_lblk << blkbits; 3297 iomap->length = (u64) map->m_len << blkbits; 3298 3299 if ((map->m_flags & EXT4_MAP_MAPPED) && 3300 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3301 iomap->flags |= IOMAP_F_MERGED; 3302 3303 /* 3304 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3305 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3306 * set. In order for any allocated unwritten extents to be converted 3307 * into written extents correctly within the ->end_io() handler, we 3308 * need to ensure that the iomap->type is set appropriately. Hence, the 3309 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3310 * been set first. 3311 */ 3312 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3313 iomap->type = IOMAP_UNWRITTEN; 3314 iomap->addr = (u64) map->m_pblk << blkbits; 3315 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3316 iomap->type = IOMAP_MAPPED; 3317 iomap->addr = (u64) map->m_pblk << blkbits; 3318 } else { 3319 iomap->type = IOMAP_HOLE; 3320 iomap->addr = IOMAP_NULL_ADDR; 3321 } 3322 } 3323 3324 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3325 unsigned int flags) 3326 { 3327 handle_t *handle; 3328 u8 blkbits = inode->i_blkbits; 3329 int ret, dio_credits, m_flags = 0, retries = 0; 3330 3331 /* 3332 * Trim the mapping request to the maximum value that we can map at 3333 * once for direct I/O. 3334 */ 3335 if (map->m_len > DIO_MAX_BLOCKS) 3336 map->m_len = DIO_MAX_BLOCKS; 3337 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3338 3339 retry: 3340 /* 3341 * Either we allocate blocks and then don't get an unwritten extent, so 3342 * in that case we have reserved enough credits. Or, the blocks are 3343 * already allocated and unwritten. In that case, the extent conversion 3344 * fits into the credits as well. 3345 */ 3346 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3347 if (IS_ERR(handle)) 3348 return PTR_ERR(handle); 3349 3350 /* 3351 * DAX and direct I/O are the only two operations that are currently 3352 * supported with IOMAP_WRITE. 3353 */ 3354 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3355 if (IS_DAX(inode)) 3356 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3357 /* 3358 * We use i_size instead of i_disksize here because delalloc writeback 3359 * can complete at any point during the I/O and subsequently push the 3360 * i_disksize out to i_size. This could be beyond where direct I/O is 3361 * happening and thus expose allocated blocks to direct I/O reads. 3362 */ 3363 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3364 m_flags = EXT4_GET_BLOCKS_CREATE; 3365 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3366 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3367 3368 ret = ext4_map_blocks(handle, inode, map, m_flags); 3369 3370 /* 3371 * We cannot fill holes in indirect tree based inodes as that could 3372 * expose stale data in the case of a crash. Use the magic error code 3373 * to fallback to buffered I/O. 3374 */ 3375 if (!m_flags && !ret) 3376 ret = -ENOTBLK; 3377 3378 ext4_journal_stop(handle); 3379 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3380 goto retry; 3381 3382 return ret; 3383 } 3384 3385 3386 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3387 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3388 { 3389 int ret; 3390 struct ext4_map_blocks map; 3391 u8 blkbits = inode->i_blkbits; 3392 3393 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3394 return -EINVAL; 3395 3396 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3397 return -ERANGE; 3398 3399 /* 3400 * Calculate the first and last logical blocks respectively. 3401 */ 3402 map.m_lblk = offset >> blkbits; 3403 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3404 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3405 3406 if (flags & IOMAP_WRITE) { 3407 /* 3408 * We check here if the blocks are already allocated, then we 3409 * don't need to start a journal txn and we can directly return 3410 * the mapping information. This could boost performance 3411 * especially in multi-threaded overwrite requests. 3412 */ 3413 if (offset + length <= i_size_read(inode)) { 3414 ret = ext4_map_blocks(NULL, inode, &map, 0); 3415 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3416 goto out; 3417 } 3418 ret = ext4_iomap_alloc(inode, &map, flags); 3419 } else { 3420 ret = ext4_map_blocks(NULL, inode, &map, 0); 3421 } 3422 3423 if (ret < 0) 3424 return ret; 3425 out: 3426 ext4_set_iomap(inode, iomap, &map, offset, length); 3427 3428 return 0; 3429 } 3430 3431 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3432 loff_t length, unsigned flags, struct iomap *iomap, 3433 struct iomap *srcmap) 3434 { 3435 int ret; 3436 3437 /* 3438 * Even for writes we don't need to allocate blocks, so just pretend 3439 * we are reading to save overhead of starting a transaction. 3440 */ 3441 flags &= ~IOMAP_WRITE; 3442 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3443 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3444 return ret; 3445 } 3446 3447 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3448 ssize_t written, unsigned flags, struct iomap *iomap) 3449 { 3450 /* 3451 * Check to see whether an error occurred while writing out the data to 3452 * the allocated blocks. If so, return the magic error code so that we 3453 * fallback to buffered I/O and attempt to complete the remainder of 3454 * the I/O. Any blocks that may have been allocated in preparation for 3455 * the direct I/O will be reused during buffered I/O. 3456 */ 3457 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3458 return -ENOTBLK; 3459 3460 return 0; 3461 } 3462 3463 const struct iomap_ops ext4_iomap_ops = { 3464 .iomap_begin = ext4_iomap_begin, 3465 .iomap_end = ext4_iomap_end, 3466 }; 3467 3468 const struct iomap_ops ext4_iomap_overwrite_ops = { 3469 .iomap_begin = ext4_iomap_overwrite_begin, 3470 .iomap_end = ext4_iomap_end, 3471 }; 3472 3473 static bool ext4_iomap_is_delalloc(struct inode *inode, 3474 struct ext4_map_blocks *map) 3475 { 3476 struct extent_status es; 3477 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3478 3479 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3480 map->m_lblk, end, &es); 3481 3482 if (!es.es_len || es.es_lblk > end) 3483 return false; 3484 3485 if (es.es_lblk > map->m_lblk) { 3486 map->m_len = es.es_lblk - map->m_lblk; 3487 return false; 3488 } 3489 3490 offset = map->m_lblk - es.es_lblk; 3491 map->m_len = es.es_len - offset; 3492 3493 return true; 3494 } 3495 3496 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3497 loff_t length, unsigned int flags, 3498 struct iomap *iomap, struct iomap *srcmap) 3499 { 3500 int ret; 3501 bool delalloc = false; 3502 struct ext4_map_blocks map; 3503 u8 blkbits = inode->i_blkbits; 3504 3505 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3506 return -EINVAL; 3507 3508 if (ext4_has_inline_data(inode)) { 3509 ret = ext4_inline_data_iomap(inode, iomap); 3510 if (ret != -EAGAIN) { 3511 if (ret == 0 && offset >= iomap->length) 3512 ret = -ENOENT; 3513 return ret; 3514 } 3515 } 3516 3517 /* 3518 * Calculate the first and last logical block respectively. 3519 */ 3520 map.m_lblk = offset >> blkbits; 3521 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3522 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3523 3524 /* 3525 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3526 * So handle it here itself instead of querying ext4_map_blocks(). 3527 * Since ext4_map_blocks() will warn about it and will return 3528 * -EIO error. 3529 */ 3530 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3531 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3532 3533 if (offset >= sbi->s_bitmap_maxbytes) { 3534 map.m_flags = 0; 3535 goto set_iomap; 3536 } 3537 } 3538 3539 ret = ext4_map_blocks(NULL, inode, &map, 0); 3540 if (ret < 0) 3541 return ret; 3542 if (ret == 0) 3543 delalloc = ext4_iomap_is_delalloc(inode, &map); 3544 3545 set_iomap: 3546 ext4_set_iomap(inode, iomap, &map, offset, length); 3547 if (delalloc && iomap->type == IOMAP_HOLE) 3548 iomap->type = IOMAP_DELALLOC; 3549 3550 return 0; 3551 } 3552 3553 const struct iomap_ops ext4_iomap_report_ops = { 3554 .iomap_begin = ext4_iomap_begin_report, 3555 }; 3556 3557 /* 3558 * Pages can be marked dirty completely asynchronously from ext4's journalling 3559 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3560 * much here because ->set_page_dirty is called under VFS locks. The page is 3561 * not necessarily locked. 3562 * 3563 * We cannot just dirty the page and leave attached buffers clean, because the 3564 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3565 * or jbddirty because all the journalling code will explode. 3566 * 3567 * So what we do is to mark the page "pending dirty" and next time writepage 3568 * is called, propagate that into the buffers appropriately. 3569 */ 3570 static int ext4_journalled_set_page_dirty(struct page *page) 3571 { 3572 SetPageChecked(page); 3573 return __set_page_dirty_nobuffers(page); 3574 } 3575 3576 static int ext4_set_page_dirty(struct page *page) 3577 { 3578 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3579 WARN_ON_ONCE(!page_has_buffers(page)); 3580 return __set_page_dirty_buffers(page); 3581 } 3582 3583 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3584 struct file *file, sector_t *span) 3585 { 3586 return iomap_swapfile_activate(sis, file, span, 3587 &ext4_iomap_report_ops); 3588 } 3589 3590 static const struct address_space_operations ext4_aops = { 3591 .readpage = ext4_readpage, 3592 .readahead = ext4_readahead, 3593 .writepage = ext4_writepage, 3594 .writepages = ext4_writepages, 3595 .write_begin = ext4_write_begin, 3596 .write_end = ext4_write_end, 3597 .set_page_dirty = ext4_set_page_dirty, 3598 .bmap = ext4_bmap, 3599 .invalidatepage = ext4_invalidatepage, 3600 .releasepage = ext4_releasepage, 3601 .direct_IO = noop_direct_IO, 3602 .migratepage = buffer_migrate_page, 3603 .is_partially_uptodate = block_is_partially_uptodate, 3604 .error_remove_page = generic_error_remove_page, 3605 .swap_activate = ext4_iomap_swap_activate, 3606 }; 3607 3608 static const struct address_space_operations ext4_journalled_aops = { 3609 .readpage = ext4_readpage, 3610 .readahead = ext4_readahead, 3611 .writepage = ext4_writepage, 3612 .writepages = ext4_writepages, 3613 .write_begin = ext4_write_begin, 3614 .write_end = ext4_journalled_write_end, 3615 .set_page_dirty = ext4_journalled_set_page_dirty, 3616 .bmap = ext4_bmap, 3617 .invalidatepage = ext4_journalled_invalidatepage, 3618 .releasepage = ext4_releasepage, 3619 .direct_IO = noop_direct_IO, 3620 .is_partially_uptodate = block_is_partially_uptodate, 3621 .error_remove_page = generic_error_remove_page, 3622 .swap_activate = ext4_iomap_swap_activate, 3623 }; 3624 3625 static const struct address_space_operations ext4_da_aops = { 3626 .readpage = ext4_readpage, 3627 .readahead = ext4_readahead, 3628 .writepage = ext4_writepage, 3629 .writepages = ext4_writepages, 3630 .write_begin = ext4_da_write_begin, 3631 .write_end = ext4_da_write_end, 3632 .set_page_dirty = ext4_set_page_dirty, 3633 .bmap = ext4_bmap, 3634 .invalidatepage = ext4_invalidatepage, 3635 .releasepage = ext4_releasepage, 3636 .direct_IO = noop_direct_IO, 3637 .migratepage = buffer_migrate_page, 3638 .is_partially_uptodate = block_is_partially_uptodate, 3639 .error_remove_page = generic_error_remove_page, 3640 .swap_activate = ext4_iomap_swap_activate, 3641 }; 3642 3643 static const struct address_space_operations ext4_dax_aops = { 3644 .writepages = ext4_dax_writepages, 3645 .direct_IO = noop_direct_IO, 3646 .set_page_dirty = __set_page_dirty_no_writeback, 3647 .bmap = ext4_bmap, 3648 .invalidatepage = noop_invalidatepage, 3649 .swap_activate = ext4_iomap_swap_activate, 3650 }; 3651 3652 void ext4_set_aops(struct inode *inode) 3653 { 3654 switch (ext4_inode_journal_mode(inode)) { 3655 case EXT4_INODE_ORDERED_DATA_MODE: 3656 case EXT4_INODE_WRITEBACK_DATA_MODE: 3657 break; 3658 case EXT4_INODE_JOURNAL_DATA_MODE: 3659 inode->i_mapping->a_ops = &ext4_journalled_aops; 3660 return; 3661 default: 3662 BUG(); 3663 } 3664 if (IS_DAX(inode)) 3665 inode->i_mapping->a_ops = &ext4_dax_aops; 3666 else if (test_opt(inode->i_sb, DELALLOC)) 3667 inode->i_mapping->a_ops = &ext4_da_aops; 3668 else 3669 inode->i_mapping->a_ops = &ext4_aops; 3670 } 3671 3672 static int __ext4_block_zero_page_range(handle_t *handle, 3673 struct address_space *mapping, loff_t from, loff_t length) 3674 { 3675 ext4_fsblk_t index = from >> PAGE_SHIFT; 3676 unsigned offset = from & (PAGE_SIZE-1); 3677 unsigned blocksize, pos; 3678 ext4_lblk_t iblock; 3679 struct inode *inode = mapping->host; 3680 struct buffer_head *bh; 3681 struct page *page; 3682 int err = 0; 3683 3684 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3685 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3686 if (!page) 3687 return -ENOMEM; 3688 3689 blocksize = inode->i_sb->s_blocksize; 3690 3691 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3692 3693 if (!page_has_buffers(page)) 3694 create_empty_buffers(page, blocksize, 0); 3695 3696 /* Find the buffer that contains "offset" */ 3697 bh = page_buffers(page); 3698 pos = blocksize; 3699 while (offset >= pos) { 3700 bh = bh->b_this_page; 3701 iblock++; 3702 pos += blocksize; 3703 } 3704 if (buffer_freed(bh)) { 3705 BUFFER_TRACE(bh, "freed: skip"); 3706 goto unlock; 3707 } 3708 if (!buffer_mapped(bh)) { 3709 BUFFER_TRACE(bh, "unmapped"); 3710 ext4_get_block(inode, iblock, bh, 0); 3711 /* unmapped? It's a hole - nothing to do */ 3712 if (!buffer_mapped(bh)) { 3713 BUFFER_TRACE(bh, "still unmapped"); 3714 goto unlock; 3715 } 3716 } 3717 3718 /* Ok, it's mapped. Make sure it's up-to-date */ 3719 if (PageUptodate(page)) 3720 set_buffer_uptodate(bh); 3721 3722 if (!buffer_uptodate(bh)) { 3723 err = ext4_read_bh_lock(bh, 0, true); 3724 if (err) 3725 goto unlock; 3726 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3727 /* We expect the key to be set. */ 3728 BUG_ON(!fscrypt_has_encryption_key(inode)); 3729 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3730 bh_offset(bh)); 3731 if (err) { 3732 clear_buffer_uptodate(bh); 3733 goto unlock; 3734 } 3735 } 3736 } 3737 if (ext4_should_journal_data(inode)) { 3738 BUFFER_TRACE(bh, "get write access"); 3739 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3740 EXT4_JTR_NONE); 3741 if (err) 3742 goto unlock; 3743 } 3744 zero_user(page, offset, length); 3745 BUFFER_TRACE(bh, "zeroed end of block"); 3746 3747 if (ext4_should_journal_data(inode)) { 3748 err = ext4_handle_dirty_metadata(handle, inode, bh); 3749 } else { 3750 err = 0; 3751 mark_buffer_dirty(bh); 3752 if (ext4_should_order_data(inode)) 3753 err = ext4_jbd2_inode_add_write(handle, inode, from, 3754 length); 3755 } 3756 3757 unlock: 3758 unlock_page(page); 3759 put_page(page); 3760 return err; 3761 } 3762 3763 /* 3764 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3765 * starting from file offset 'from'. The range to be zero'd must 3766 * be contained with in one block. If the specified range exceeds 3767 * the end of the block it will be shortened to end of the block 3768 * that corresponds to 'from' 3769 */ 3770 static int ext4_block_zero_page_range(handle_t *handle, 3771 struct address_space *mapping, loff_t from, loff_t length) 3772 { 3773 struct inode *inode = mapping->host; 3774 unsigned offset = from & (PAGE_SIZE-1); 3775 unsigned blocksize = inode->i_sb->s_blocksize; 3776 unsigned max = blocksize - (offset & (blocksize - 1)); 3777 3778 /* 3779 * correct length if it does not fall between 3780 * 'from' and the end of the block 3781 */ 3782 if (length > max || length < 0) 3783 length = max; 3784 3785 if (IS_DAX(inode)) { 3786 return iomap_zero_range(inode, from, length, NULL, 3787 &ext4_iomap_ops); 3788 } 3789 return __ext4_block_zero_page_range(handle, mapping, from, length); 3790 } 3791 3792 /* 3793 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3794 * up to the end of the block which corresponds to `from'. 3795 * This required during truncate. We need to physically zero the tail end 3796 * of that block so it doesn't yield old data if the file is later grown. 3797 */ 3798 static int ext4_block_truncate_page(handle_t *handle, 3799 struct address_space *mapping, loff_t from) 3800 { 3801 unsigned offset = from & (PAGE_SIZE-1); 3802 unsigned length; 3803 unsigned blocksize; 3804 struct inode *inode = mapping->host; 3805 3806 /* If we are processing an encrypted inode during orphan list handling */ 3807 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3808 return 0; 3809 3810 blocksize = inode->i_sb->s_blocksize; 3811 length = blocksize - (offset & (blocksize - 1)); 3812 3813 return ext4_block_zero_page_range(handle, mapping, from, length); 3814 } 3815 3816 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3817 loff_t lstart, loff_t length) 3818 { 3819 struct super_block *sb = inode->i_sb; 3820 struct address_space *mapping = inode->i_mapping; 3821 unsigned partial_start, partial_end; 3822 ext4_fsblk_t start, end; 3823 loff_t byte_end = (lstart + length - 1); 3824 int err = 0; 3825 3826 partial_start = lstart & (sb->s_blocksize - 1); 3827 partial_end = byte_end & (sb->s_blocksize - 1); 3828 3829 start = lstart >> sb->s_blocksize_bits; 3830 end = byte_end >> sb->s_blocksize_bits; 3831 3832 /* Handle partial zero within the single block */ 3833 if (start == end && 3834 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3835 err = ext4_block_zero_page_range(handle, mapping, 3836 lstart, length); 3837 return err; 3838 } 3839 /* Handle partial zero out on the start of the range */ 3840 if (partial_start) { 3841 err = ext4_block_zero_page_range(handle, mapping, 3842 lstart, sb->s_blocksize); 3843 if (err) 3844 return err; 3845 } 3846 /* Handle partial zero out on the end of the range */ 3847 if (partial_end != sb->s_blocksize - 1) 3848 err = ext4_block_zero_page_range(handle, mapping, 3849 byte_end - partial_end, 3850 partial_end + 1); 3851 return err; 3852 } 3853 3854 int ext4_can_truncate(struct inode *inode) 3855 { 3856 if (S_ISREG(inode->i_mode)) 3857 return 1; 3858 if (S_ISDIR(inode->i_mode)) 3859 return 1; 3860 if (S_ISLNK(inode->i_mode)) 3861 return !ext4_inode_is_fast_symlink(inode); 3862 return 0; 3863 } 3864 3865 /* 3866 * We have to make sure i_disksize gets properly updated before we truncate 3867 * page cache due to hole punching or zero range. Otherwise i_disksize update 3868 * can get lost as it may have been postponed to submission of writeback but 3869 * that will never happen after we truncate page cache. 3870 */ 3871 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3872 loff_t len) 3873 { 3874 handle_t *handle; 3875 int ret; 3876 3877 loff_t size = i_size_read(inode); 3878 3879 WARN_ON(!inode_is_locked(inode)); 3880 if (offset > size || offset + len < size) 3881 return 0; 3882 3883 if (EXT4_I(inode)->i_disksize >= size) 3884 return 0; 3885 3886 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3887 if (IS_ERR(handle)) 3888 return PTR_ERR(handle); 3889 ext4_update_i_disksize(inode, size); 3890 ret = ext4_mark_inode_dirty(handle, inode); 3891 ext4_journal_stop(handle); 3892 3893 return ret; 3894 } 3895 3896 static void ext4_wait_dax_page(struct inode *inode) 3897 { 3898 filemap_invalidate_unlock(inode->i_mapping); 3899 schedule(); 3900 filemap_invalidate_lock(inode->i_mapping); 3901 } 3902 3903 int ext4_break_layouts(struct inode *inode) 3904 { 3905 struct page *page; 3906 int error; 3907 3908 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3909 return -EINVAL; 3910 3911 do { 3912 page = dax_layout_busy_page(inode->i_mapping); 3913 if (!page) 3914 return 0; 3915 3916 error = ___wait_var_event(&page->_refcount, 3917 atomic_read(&page->_refcount) == 1, 3918 TASK_INTERRUPTIBLE, 0, 0, 3919 ext4_wait_dax_page(inode)); 3920 } while (error == 0); 3921 3922 return error; 3923 } 3924 3925 /* 3926 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3927 * associated with the given offset and length 3928 * 3929 * @inode: File inode 3930 * @offset: The offset where the hole will begin 3931 * @len: The length of the hole 3932 * 3933 * Returns: 0 on success or negative on failure 3934 */ 3935 3936 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3937 { 3938 struct super_block *sb = inode->i_sb; 3939 ext4_lblk_t first_block, stop_block; 3940 struct address_space *mapping = inode->i_mapping; 3941 loff_t first_block_offset, last_block_offset; 3942 handle_t *handle; 3943 unsigned int credits; 3944 int ret = 0, ret2 = 0; 3945 3946 trace_ext4_punch_hole(inode, offset, length, 0); 3947 3948 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3949 if (ext4_has_inline_data(inode)) { 3950 filemap_invalidate_lock(mapping); 3951 ret = ext4_convert_inline_data(inode); 3952 filemap_invalidate_unlock(mapping); 3953 if (ret) 3954 return ret; 3955 } 3956 3957 /* 3958 * Write out all dirty pages to avoid race conditions 3959 * Then release them. 3960 */ 3961 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3962 ret = filemap_write_and_wait_range(mapping, offset, 3963 offset + length - 1); 3964 if (ret) 3965 return ret; 3966 } 3967 3968 inode_lock(inode); 3969 3970 /* No need to punch hole beyond i_size */ 3971 if (offset >= inode->i_size) 3972 goto out_mutex; 3973 3974 /* 3975 * If the hole extends beyond i_size, set the hole 3976 * to end after the page that contains i_size 3977 */ 3978 if (offset + length > inode->i_size) { 3979 length = inode->i_size + 3980 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3981 offset; 3982 } 3983 3984 if (offset & (sb->s_blocksize - 1) || 3985 (offset + length) & (sb->s_blocksize - 1)) { 3986 /* 3987 * Attach jinode to inode for jbd2 if we do any zeroing of 3988 * partial block 3989 */ 3990 ret = ext4_inode_attach_jinode(inode); 3991 if (ret < 0) 3992 goto out_mutex; 3993 3994 } 3995 3996 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3997 inode_dio_wait(inode); 3998 3999 /* 4000 * Prevent page faults from reinstantiating pages we have released from 4001 * page cache. 4002 */ 4003 filemap_invalidate_lock(mapping); 4004 4005 ret = ext4_break_layouts(inode); 4006 if (ret) 4007 goto out_dio; 4008 4009 first_block_offset = round_up(offset, sb->s_blocksize); 4010 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4011 4012 /* Now release the pages and zero block aligned part of pages*/ 4013 if (last_block_offset > first_block_offset) { 4014 ret = ext4_update_disksize_before_punch(inode, offset, length); 4015 if (ret) 4016 goto out_dio; 4017 truncate_pagecache_range(inode, first_block_offset, 4018 last_block_offset); 4019 } 4020 4021 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4022 credits = ext4_writepage_trans_blocks(inode); 4023 else 4024 credits = ext4_blocks_for_truncate(inode); 4025 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4026 if (IS_ERR(handle)) { 4027 ret = PTR_ERR(handle); 4028 ext4_std_error(sb, ret); 4029 goto out_dio; 4030 } 4031 4032 ret = ext4_zero_partial_blocks(handle, inode, offset, 4033 length); 4034 if (ret) 4035 goto out_stop; 4036 4037 first_block = (offset + sb->s_blocksize - 1) >> 4038 EXT4_BLOCK_SIZE_BITS(sb); 4039 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4040 4041 /* If there are blocks to remove, do it */ 4042 if (stop_block > first_block) { 4043 4044 down_write(&EXT4_I(inode)->i_data_sem); 4045 ext4_discard_preallocations(inode, 0); 4046 4047 ret = ext4_es_remove_extent(inode, first_block, 4048 stop_block - first_block); 4049 if (ret) { 4050 up_write(&EXT4_I(inode)->i_data_sem); 4051 goto out_stop; 4052 } 4053 4054 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4055 ret = ext4_ext_remove_space(inode, first_block, 4056 stop_block - 1); 4057 else 4058 ret = ext4_ind_remove_space(handle, inode, first_block, 4059 stop_block); 4060 4061 up_write(&EXT4_I(inode)->i_data_sem); 4062 } 4063 ext4_fc_track_range(handle, inode, first_block, stop_block); 4064 if (IS_SYNC(inode)) 4065 ext4_handle_sync(handle); 4066 4067 inode->i_mtime = inode->i_ctime = current_time(inode); 4068 ret2 = ext4_mark_inode_dirty(handle, inode); 4069 if (unlikely(ret2)) 4070 ret = ret2; 4071 if (ret >= 0) 4072 ext4_update_inode_fsync_trans(handle, inode, 1); 4073 out_stop: 4074 ext4_journal_stop(handle); 4075 out_dio: 4076 filemap_invalidate_unlock(mapping); 4077 out_mutex: 4078 inode_unlock(inode); 4079 return ret; 4080 } 4081 4082 int ext4_inode_attach_jinode(struct inode *inode) 4083 { 4084 struct ext4_inode_info *ei = EXT4_I(inode); 4085 struct jbd2_inode *jinode; 4086 4087 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4088 return 0; 4089 4090 jinode = jbd2_alloc_inode(GFP_KERNEL); 4091 spin_lock(&inode->i_lock); 4092 if (!ei->jinode) { 4093 if (!jinode) { 4094 spin_unlock(&inode->i_lock); 4095 return -ENOMEM; 4096 } 4097 ei->jinode = jinode; 4098 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4099 jinode = NULL; 4100 } 4101 spin_unlock(&inode->i_lock); 4102 if (unlikely(jinode != NULL)) 4103 jbd2_free_inode(jinode); 4104 return 0; 4105 } 4106 4107 /* 4108 * ext4_truncate() 4109 * 4110 * We block out ext4_get_block() block instantiations across the entire 4111 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4112 * simultaneously on behalf of the same inode. 4113 * 4114 * As we work through the truncate and commit bits of it to the journal there 4115 * is one core, guiding principle: the file's tree must always be consistent on 4116 * disk. We must be able to restart the truncate after a crash. 4117 * 4118 * The file's tree may be transiently inconsistent in memory (although it 4119 * probably isn't), but whenever we close off and commit a journal transaction, 4120 * the contents of (the filesystem + the journal) must be consistent and 4121 * restartable. It's pretty simple, really: bottom up, right to left (although 4122 * left-to-right works OK too). 4123 * 4124 * Note that at recovery time, journal replay occurs *before* the restart of 4125 * truncate against the orphan inode list. 4126 * 4127 * The committed inode has the new, desired i_size (which is the same as 4128 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4129 * that this inode's truncate did not complete and it will again call 4130 * ext4_truncate() to have another go. So there will be instantiated blocks 4131 * to the right of the truncation point in a crashed ext4 filesystem. But 4132 * that's fine - as long as they are linked from the inode, the post-crash 4133 * ext4_truncate() run will find them and release them. 4134 */ 4135 int ext4_truncate(struct inode *inode) 4136 { 4137 struct ext4_inode_info *ei = EXT4_I(inode); 4138 unsigned int credits; 4139 int err = 0, err2; 4140 handle_t *handle; 4141 struct address_space *mapping = inode->i_mapping; 4142 4143 /* 4144 * There is a possibility that we're either freeing the inode 4145 * or it's a completely new inode. In those cases we might not 4146 * have i_mutex locked because it's not necessary. 4147 */ 4148 if (!(inode->i_state & (I_NEW|I_FREEING))) 4149 WARN_ON(!inode_is_locked(inode)); 4150 trace_ext4_truncate_enter(inode); 4151 4152 if (!ext4_can_truncate(inode)) 4153 goto out_trace; 4154 4155 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4156 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4157 4158 if (ext4_has_inline_data(inode)) { 4159 int has_inline = 1; 4160 4161 err = ext4_inline_data_truncate(inode, &has_inline); 4162 if (err || has_inline) 4163 goto out_trace; 4164 } 4165 4166 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4167 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4168 if (ext4_inode_attach_jinode(inode) < 0) 4169 goto out_trace; 4170 } 4171 4172 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4173 credits = ext4_writepage_trans_blocks(inode); 4174 else 4175 credits = ext4_blocks_for_truncate(inode); 4176 4177 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4178 if (IS_ERR(handle)) { 4179 err = PTR_ERR(handle); 4180 goto out_trace; 4181 } 4182 4183 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4184 ext4_block_truncate_page(handle, mapping, inode->i_size); 4185 4186 /* 4187 * We add the inode to the orphan list, so that if this 4188 * truncate spans multiple transactions, and we crash, we will 4189 * resume the truncate when the filesystem recovers. It also 4190 * marks the inode dirty, to catch the new size. 4191 * 4192 * Implication: the file must always be in a sane, consistent 4193 * truncatable state while each transaction commits. 4194 */ 4195 err = ext4_orphan_add(handle, inode); 4196 if (err) 4197 goto out_stop; 4198 4199 down_write(&EXT4_I(inode)->i_data_sem); 4200 4201 ext4_discard_preallocations(inode, 0); 4202 4203 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4204 err = ext4_ext_truncate(handle, inode); 4205 else 4206 ext4_ind_truncate(handle, inode); 4207 4208 up_write(&ei->i_data_sem); 4209 if (err) 4210 goto out_stop; 4211 4212 if (IS_SYNC(inode)) 4213 ext4_handle_sync(handle); 4214 4215 out_stop: 4216 /* 4217 * If this was a simple ftruncate() and the file will remain alive, 4218 * then we need to clear up the orphan record which we created above. 4219 * However, if this was a real unlink then we were called by 4220 * ext4_evict_inode(), and we allow that function to clean up the 4221 * orphan info for us. 4222 */ 4223 if (inode->i_nlink) 4224 ext4_orphan_del(handle, inode); 4225 4226 inode->i_mtime = inode->i_ctime = current_time(inode); 4227 err2 = ext4_mark_inode_dirty(handle, inode); 4228 if (unlikely(err2 && !err)) 4229 err = err2; 4230 ext4_journal_stop(handle); 4231 4232 out_trace: 4233 trace_ext4_truncate_exit(inode); 4234 return err; 4235 } 4236 4237 /* 4238 * ext4_get_inode_loc returns with an extra refcount against the inode's 4239 * underlying buffer_head on success. If 'in_mem' is true, we have all 4240 * data in memory that is needed to recreate the on-disk version of this 4241 * inode. 4242 */ 4243 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4244 struct ext4_iloc *iloc, int in_mem, 4245 ext4_fsblk_t *ret_block) 4246 { 4247 struct ext4_group_desc *gdp; 4248 struct buffer_head *bh; 4249 ext4_fsblk_t block; 4250 struct blk_plug plug; 4251 int inodes_per_block, inode_offset; 4252 4253 iloc->bh = NULL; 4254 if (ino < EXT4_ROOT_INO || 4255 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4256 return -EFSCORRUPTED; 4257 4258 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4259 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4260 if (!gdp) 4261 return -EIO; 4262 4263 /* 4264 * Figure out the offset within the block group inode table 4265 */ 4266 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4267 inode_offset = ((ino - 1) % 4268 EXT4_INODES_PER_GROUP(sb)); 4269 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4270 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4271 4272 bh = sb_getblk(sb, block); 4273 if (unlikely(!bh)) 4274 return -ENOMEM; 4275 if (ext4_buffer_uptodate(bh)) 4276 goto has_buffer; 4277 4278 lock_buffer(bh); 4279 if (ext4_buffer_uptodate(bh)) { 4280 /* Someone brought it uptodate while we waited */ 4281 unlock_buffer(bh); 4282 goto has_buffer; 4283 } 4284 4285 /* 4286 * If we have all information of the inode in memory and this 4287 * is the only valid inode in the block, we need not read the 4288 * block. 4289 */ 4290 if (in_mem) { 4291 struct buffer_head *bitmap_bh; 4292 int i, start; 4293 4294 start = inode_offset & ~(inodes_per_block - 1); 4295 4296 /* Is the inode bitmap in cache? */ 4297 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4298 if (unlikely(!bitmap_bh)) 4299 goto make_io; 4300 4301 /* 4302 * If the inode bitmap isn't in cache then the 4303 * optimisation may end up performing two reads instead 4304 * of one, so skip it. 4305 */ 4306 if (!buffer_uptodate(bitmap_bh)) { 4307 brelse(bitmap_bh); 4308 goto make_io; 4309 } 4310 for (i = start; i < start + inodes_per_block; i++) { 4311 if (i == inode_offset) 4312 continue; 4313 if (ext4_test_bit(i, bitmap_bh->b_data)) 4314 break; 4315 } 4316 brelse(bitmap_bh); 4317 if (i == start + inodes_per_block) { 4318 /* all other inodes are free, so skip I/O */ 4319 memset(bh->b_data, 0, bh->b_size); 4320 set_buffer_uptodate(bh); 4321 unlock_buffer(bh); 4322 goto has_buffer; 4323 } 4324 } 4325 4326 make_io: 4327 /* 4328 * If we need to do any I/O, try to pre-readahead extra 4329 * blocks from the inode table. 4330 */ 4331 blk_start_plug(&plug); 4332 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4333 ext4_fsblk_t b, end, table; 4334 unsigned num; 4335 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4336 4337 table = ext4_inode_table(sb, gdp); 4338 /* s_inode_readahead_blks is always a power of 2 */ 4339 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4340 if (table > b) 4341 b = table; 4342 end = b + ra_blks; 4343 num = EXT4_INODES_PER_GROUP(sb); 4344 if (ext4_has_group_desc_csum(sb)) 4345 num -= ext4_itable_unused_count(sb, gdp); 4346 table += num / inodes_per_block; 4347 if (end > table) 4348 end = table; 4349 while (b <= end) 4350 ext4_sb_breadahead_unmovable(sb, b++); 4351 } 4352 4353 /* 4354 * There are other valid inodes in the buffer, this inode 4355 * has in-inode xattrs, or we don't have this inode in memory. 4356 * Read the block from disk. 4357 */ 4358 trace_ext4_load_inode(sb, ino); 4359 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4360 blk_finish_plug(&plug); 4361 wait_on_buffer(bh); 4362 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4363 if (!buffer_uptodate(bh)) { 4364 if (ret_block) 4365 *ret_block = block; 4366 brelse(bh); 4367 return -EIO; 4368 } 4369 has_buffer: 4370 iloc->bh = bh; 4371 return 0; 4372 } 4373 4374 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4375 struct ext4_iloc *iloc) 4376 { 4377 ext4_fsblk_t err_blk; 4378 int ret; 4379 4380 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4381 &err_blk); 4382 4383 if (ret == -EIO) 4384 ext4_error_inode_block(inode, err_blk, EIO, 4385 "unable to read itable block"); 4386 4387 return ret; 4388 } 4389 4390 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4391 { 4392 ext4_fsblk_t err_blk; 4393 int ret; 4394 4395 /* We have all inode data except xattrs in memory here. */ 4396 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4397 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4398 4399 if (ret == -EIO) 4400 ext4_error_inode_block(inode, err_blk, EIO, 4401 "unable to read itable block"); 4402 4403 return ret; 4404 } 4405 4406 4407 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4408 struct ext4_iloc *iloc) 4409 { 4410 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4411 } 4412 4413 static bool ext4_should_enable_dax(struct inode *inode) 4414 { 4415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4416 4417 if (test_opt2(inode->i_sb, DAX_NEVER)) 4418 return false; 4419 if (!S_ISREG(inode->i_mode)) 4420 return false; 4421 if (ext4_should_journal_data(inode)) 4422 return false; 4423 if (ext4_has_inline_data(inode)) 4424 return false; 4425 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4426 return false; 4427 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4428 return false; 4429 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4430 return false; 4431 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4432 return true; 4433 4434 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4435 } 4436 4437 void ext4_set_inode_flags(struct inode *inode, bool init) 4438 { 4439 unsigned int flags = EXT4_I(inode)->i_flags; 4440 unsigned int new_fl = 0; 4441 4442 WARN_ON_ONCE(IS_DAX(inode) && init); 4443 4444 if (flags & EXT4_SYNC_FL) 4445 new_fl |= S_SYNC; 4446 if (flags & EXT4_APPEND_FL) 4447 new_fl |= S_APPEND; 4448 if (flags & EXT4_IMMUTABLE_FL) 4449 new_fl |= S_IMMUTABLE; 4450 if (flags & EXT4_NOATIME_FL) 4451 new_fl |= S_NOATIME; 4452 if (flags & EXT4_DIRSYNC_FL) 4453 new_fl |= S_DIRSYNC; 4454 4455 /* Because of the way inode_set_flags() works we must preserve S_DAX 4456 * here if already set. */ 4457 new_fl |= (inode->i_flags & S_DAX); 4458 if (init && ext4_should_enable_dax(inode)) 4459 new_fl |= S_DAX; 4460 4461 if (flags & EXT4_ENCRYPT_FL) 4462 new_fl |= S_ENCRYPTED; 4463 if (flags & EXT4_CASEFOLD_FL) 4464 new_fl |= S_CASEFOLD; 4465 if (flags & EXT4_VERITY_FL) 4466 new_fl |= S_VERITY; 4467 inode_set_flags(inode, new_fl, 4468 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4469 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4470 } 4471 4472 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4473 struct ext4_inode_info *ei) 4474 { 4475 blkcnt_t i_blocks ; 4476 struct inode *inode = &(ei->vfs_inode); 4477 struct super_block *sb = inode->i_sb; 4478 4479 if (ext4_has_feature_huge_file(sb)) { 4480 /* we are using combined 48 bit field */ 4481 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4482 le32_to_cpu(raw_inode->i_blocks_lo); 4483 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4484 /* i_blocks represent file system block size */ 4485 return i_blocks << (inode->i_blkbits - 9); 4486 } else { 4487 return i_blocks; 4488 } 4489 } else { 4490 return le32_to_cpu(raw_inode->i_blocks_lo); 4491 } 4492 } 4493 4494 static inline int ext4_iget_extra_inode(struct inode *inode, 4495 struct ext4_inode *raw_inode, 4496 struct ext4_inode_info *ei) 4497 { 4498 __le32 *magic = (void *)raw_inode + 4499 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4500 4501 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4502 EXT4_INODE_SIZE(inode->i_sb) && 4503 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4504 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4505 return ext4_find_inline_data_nolock(inode); 4506 } else 4507 EXT4_I(inode)->i_inline_off = 0; 4508 return 0; 4509 } 4510 4511 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4512 { 4513 if (!ext4_has_feature_project(inode->i_sb)) 4514 return -EOPNOTSUPP; 4515 *projid = EXT4_I(inode)->i_projid; 4516 return 0; 4517 } 4518 4519 /* 4520 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4521 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4522 * set. 4523 */ 4524 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4525 { 4526 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4527 inode_set_iversion_raw(inode, val); 4528 else 4529 inode_set_iversion_queried(inode, val); 4530 } 4531 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4532 { 4533 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4534 return inode_peek_iversion_raw(inode); 4535 else 4536 return inode_peek_iversion(inode); 4537 } 4538 4539 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4540 ext4_iget_flags flags, const char *function, 4541 unsigned int line) 4542 { 4543 struct ext4_iloc iloc; 4544 struct ext4_inode *raw_inode; 4545 struct ext4_inode_info *ei; 4546 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4547 struct inode *inode; 4548 journal_t *journal = EXT4_SB(sb)->s_journal; 4549 long ret; 4550 loff_t size; 4551 int block; 4552 uid_t i_uid; 4553 gid_t i_gid; 4554 projid_t i_projid; 4555 4556 if ((!(flags & EXT4_IGET_SPECIAL) && 4557 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4558 ino == le32_to_cpu(es->s_usr_quota_inum) || 4559 ino == le32_to_cpu(es->s_grp_quota_inum) || 4560 ino == le32_to_cpu(es->s_prj_quota_inum) || 4561 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4562 (ino < EXT4_ROOT_INO) || 4563 (ino > le32_to_cpu(es->s_inodes_count))) { 4564 if (flags & EXT4_IGET_HANDLE) 4565 return ERR_PTR(-ESTALE); 4566 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4567 "inode #%lu: comm %s: iget: illegal inode #", 4568 ino, current->comm); 4569 return ERR_PTR(-EFSCORRUPTED); 4570 } 4571 4572 inode = iget_locked(sb, ino); 4573 if (!inode) 4574 return ERR_PTR(-ENOMEM); 4575 if (!(inode->i_state & I_NEW)) 4576 return inode; 4577 4578 ei = EXT4_I(inode); 4579 iloc.bh = NULL; 4580 4581 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4582 if (ret < 0) 4583 goto bad_inode; 4584 raw_inode = ext4_raw_inode(&iloc); 4585 4586 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4587 ext4_error_inode(inode, function, line, 0, 4588 "iget: root inode unallocated"); 4589 ret = -EFSCORRUPTED; 4590 goto bad_inode; 4591 } 4592 4593 if ((flags & EXT4_IGET_HANDLE) && 4594 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4595 ret = -ESTALE; 4596 goto bad_inode; 4597 } 4598 4599 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4600 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4601 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4602 EXT4_INODE_SIZE(inode->i_sb) || 4603 (ei->i_extra_isize & 3)) { 4604 ext4_error_inode(inode, function, line, 0, 4605 "iget: bad extra_isize %u " 4606 "(inode size %u)", 4607 ei->i_extra_isize, 4608 EXT4_INODE_SIZE(inode->i_sb)); 4609 ret = -EFSCORRUPTED; 4610 goto bad_inode; 4611 } 4612 } else 4613 ei->i_extra_isize = 0; 4614 4615 /* Precompute checksum seed for inode metadata */ 4616 if (ext4_has_metadata_csum(sb)) { 4617 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4618 __u32 csum; 4619 __le32 inum = cpu_to_le32(inode->i_ino); 4620 __le32 gen = raw_inode->i_generation; 4621 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4622 sizeof(inum)); 4623 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4624 sizeof(gen)); 4625 } 4626 4627 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4628 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4629 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4630 ext4_error_inode_err(inode, function, line, 0, 4631 EFSBADCRC, "iget: checksum invalid"); 4632 ret = -EFSBADCRC; 4633 goto bad_inode; 4634 } 4635 4636 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4637 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4638 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4639 if (ext4_has_feature_project(sb) && 4640 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4641 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4642 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4643 else 4644 i_projid = EXT4_DEF_PROJID; 4645 4646 if (!(test_opt(inode->i_sb, NO_UID32))) { 4647 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4648 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4649 } 4650 i_uid_write(inode, i_uid); 4651 i_gid_write(inode, i_gid); 4652 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4653 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4654 4655 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4656 ei->i_inline_off = 0; 4657 ei->i_dir_start_lookup = 0; 4658 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4659 /* We now have enough fields to check if the inode was active or not. 4660 * This is needed because nfsd might try to access dead inodes 4661 * the test is that same one that e2fsck uses 4662 * NeilBrown 1999oct15 4663 */ 4664 if (inode->i_nlink == 0) { 4665 if ((inode->i_mode == 0 || 4666 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4667 ino != EXT4_BOOT_LOADER_INO) { 4668 /* this inode is deleted */ 4669 ret = -ESTALE; 4670 goto bad_inode; 4671 } 4672 /* The only unlinked inodes we let through here have 4673 * valid i_mode and are being read by the orphan 4674 * recovery code: that's fine, we're about to complete 4675 * the process of deleting those. 4676 * OR it is the EXT4_BOOT_LOADER_INO which is 4677 * not initialized on a new filesystem. */ 4678 } 4679 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4680 ext4_set_inode_flags(inode, true); 4681 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4682 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4683 if (ext4_has_feature_64bit(sb)) 4684 ei->i_file_acl |= 4685 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4686 inode->i_size = ext4_isize(sb, raw_inode); 4687 if ((size = i_size_read(inode)) < 0) { 4688 ext4_error_inode(inode, function, line, 0, 4689 "iget: bad i_size value: %lld", size); 4690 ret = -EFSCORRUPTED; 4691 goto bad_inode; 4692 } 4693 /* 4694 * If dir_index is not enabled but there's dir with INDEX flag set, 4695 * we'd normally treat htree data as empty space. But with metadata 4696 * checksumming that corrupts checksums so forbid that. 4697 */ 4698 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4699 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4700 ext4_error_inode(inode, function, line, 0, 4701 "iget: Dir with htree data on filesystem without dir_index feature."); 4702 ret = -EFSCORRUPTED; 4703 goto bad_inode; 4704 } 4705 ei->i_disksize = inode->i_size; 4706 #ifdef CONFIG_QUOTA 4707 ei->i_reserved_quota = 0; 4708 #endif 4709 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4710 ei->i_block_group = iloc.block_group; 4711 ei->i_last_alloc_group = ~0; 4712 /* 4713 * NOTE! The in-memory inode i_data array is in little-endian order 4714 * even on big-endian machines: we do NOT byteswap the block numbers! 4715 */ 4716 for (block = 0; block < EXT4_N_BLOCKS; block++) 4717 ei->i_data[block] = raw_inode->i_block[block]; 4718 INIT_LIST_HEAD(&ei->i_orphan); 4719 ext4_fc_init_inode(&ei->vfs_inode); 4720 4721 /* 4722 * Set transaction id's of transactions that have to be committed 4723 * to finish f[data]sync. We set them to currently running transaction 4724 * as we cannot be sure that the inode or some of its metadata isn't 4725 * part of the transaction - the inode could have been reclaimed and 4726 * now it is reread from disk. 4727 */ 4728 if (journal) { 4729 transaction_t *transaction; 4730 tid_t tid; 4731 4732 read_lock(&journal->j_state_lock); 4733 if (journal->j_running_transaction) 4734 transaction = journal->j_running_transaction; 4735 else 4736 transaction = journal->j_committing_transaction; 4737 if (transaction) 4738 tid = transaction->t_tid; 4739 else 4740 tid = journal->j_commit_sequence; 4741 read_unlock(&journal->j_state_lock); 4742 ei->i_sync_tid = tid; 4743 ei->i_datasync_tid = tid; 4744 } 4745 4746 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4747 if (ei->i_extra_isize == 0) { 4748 /* The extra space is currently unused. Use it. */ 4749 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4750 ei->i_extra_isize = sizeof(struct ext4_inode) - 4751 EXT4_GOOD_OLD_INODE_SIZE; 4752 } else { 4753 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4754 if (ret) 4755 goto bad_inode; 4756 } 4757 } 4758 4759 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4760 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4761 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4762 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4763 4764 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4765 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4766 4767 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4768 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4769 ivers |= 4770 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4771 } 4772 ext4_inode_set_iversion_queried(inode, ivers); 4773 } 4774 4775 ret = 0; 4776 if (ei->i_file_acl && 4777 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4778 ext4_error_inode(inode, function, line, 0, 4779 "iget: bad extended attribute block %llu", 4780 ei->i_file_acl); 4781 ret = -EFSCORRUPTED; 4782 goto bad_inode; 4783 } else if (!ext4_has_inline_data(inode)) { 4784 /* validate the block references in the inode */ 4785 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4786 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4787 (S_ISLNK(inode->i_mode) && 4788 !ext4_inode_is_fast_symlink(inode)))) { 4789 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4790 ret = ext4_ext_check_inode(inode); 4791 else 4792 ret = ext4_ind_check_inode(inode); 4793 } 4794 } 4795 if (ret) 4796 goto bad_inode; 4797 4798 if (S_ISREG(inode->i_mode)) { 4799 inode->i_op = &ext4_file_inode_operations; 4800 inode->i_fop = &ext4_file_operations; 4801 ext4_set_aops(inode); 4802 } else if (S_ISDIR(inode->i_mode)) { 4803 inode->i_op = &ext4_dir_inode_operations; 4804 inode->i_fop = &ext4_dir_operations; 4805 } else if (S_ISLNK(inode->i_mode)) { 4806 /* VFS does not allow setting these so must be corruption */ 4807 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4808 ext4_error_inode(inode, function, line, 0, 4809 "iget: immutable or append flags " 4810 "not allowed on symlinks"); 4811 ret = -EFSCORRUPTED; 4812 goto bad_inode; 4813 } 4814 if (IS_ENCRYPTED(inode)) { 4815 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4816 ext4_set_aops(inode); 4817 } else if (ext4_inode_is_fast_symlink(inode)) { 4818 inode->i_link = (char *)ei->i_data; 4819 inode->i_op = &ext4_fast_symlink_inode_operations; 4820 nd_terminate_link(ei->i_data, inode->i_size, 4821 sizeof(ei->i_data) - 1); 4822 } else { 4823 inode->i_op = &ext4_symlink_inode_operations; 4824 ext4_set_aops(inode); 4825 } 4826 inode_nohighmem(inode); 4827 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4828 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4829 inode->i_op = &ext4_special_inode_operations; 4830 if (raw_inode->i_block[0]) 4831 init_special_inode(inode, inode->i_mode, 4832 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4833 else 4834 init_special_inode(inode, inode->i_mode, 4835 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4836 } else if (ino == EXT4_BOOT_LOADER_INO) { 4837 make_bad_inode(inode); 4838 } else { 4839 ret = -EFSCORRUPTED; 4840 ext4_error_inode(inode, function, line, 0, 4841 "iget: bogus i_mode (%o)", inode->i_mode); 4842 goto bad_inode; 4843 } 4844 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4845 ext4_error_inode(inode, function, line, 0, 4846 "casefold flag without casefold feature"); 4847 brelse(iloc.bh); 4848 4849 unlock_new_inode(inode); 4850 return inode; 4851 4852 bad_inode: 4853 brelse(iloc.bh); 4854 iget_failed(inode); 4855 return ERR_PTR(ret); 4856 } 4857 4858 static int ext4_inode_blocks_set(handle_t *handle, 4859 struct ext4_inode *raw_inode, 4860 struct ext4_inode_info *ei) 4861 { 4862 struct inode *inode = &(ei->vfs_inode); 4863 u64 i_blocks = READ_ONCE(inode->i_blocks); 4864 struct super_block *sb = inode->i_sb; 4865 4866 if (i_blocks <= ~0U) { 4867 /* 4868 * i_blocks can be represented in a 32 bit variable 4869 * as multiple of 512 bytes 4870 */ 4871 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4872 raw_inode->i_blocks_high = 0; 4873 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4874 return 0; 4875 } 4876 4877 /* 4878 * This should never happen since sb->s_maxbytes should not have 4879 * allowed this, sb->s_maxbytes was set according to the huge_file 4880 * feature in ext4_fill_super(). 4881 */ 4882 if (!ext4_has_feature_huge_file(sb)) 4883 return -EFSCORRUPTED; 4884 4885 if (i_blocks <= 0xffffffffffffULL) { 4886 /* 4887 * i_blocks can be represented in a 48 bit variable 4888 * as multiple of 512 bytes 4889 */ 4890 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4891 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4892 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4893 } else { 4894 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4895 /* i_block is stored in file system block size */ 4896 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4897 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4898 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4899 } 4900 return 0; 4901 } 4902 4903 static void __ext4_update_other_inode_time(struct super_block *sb, 4904 unsigned long orig_ino, 4905 unsigned long ino, 4906 struct ext4_inode *raw_inode) 4907 { 4908 struct inode *inode; 4909 4910 inode = find_inode_by_ino_rcu(sb, ino); 4911 if (!inode) 4912 return; 4913 4914 if (!inode_is_dirtytime_only(inode)) 4915 return; 4916 4917 spin_lock(&inode->i_lock); 4918 if (inode_is_dirtytime_only(inode)) { 4919 struct ext4_inode_info *ei = EXT4_I(inode); 4920 4921 inode->i_state &= ~I_DIRTY_TIME; 4922 spin_unlock(&inode->i_lock); 4923 4924 spin_lock(&ei->i_raw_lock); 4925 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4926 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4927 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4928 ext4_inode_csum_set(inode, raw_inode, ei); 4929 spin_unlock(&ei->i_raw_lock); 4930 trace_ext4_other_inode_update_time(inode, orig_ino); 4931 return; 4932 } 4933 spin_unlock(&inode->i_lock); 4934 } 4935 4936 /* 4937 * Opportunistically update the other time fields for other inodes in 4938 * the same inode table block. 4939 */ 4940 static void ext4_update_other_inodes_time(struct super_block *sb, 4941 unsigned long orig_ino, char *buf) 4942 { 4943 unsigned long ino; 4944 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4945 int inode_size = EXT4_INODE_SIZE(sb); 4946 4947 /* 4948 * Calculate the first inode in the inode table block. Inode 4949 * numbers are one-based. That is, the first inode in a block 4950 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4951 */ 4952 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4953 rcu_read_lock(); 4954 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4955 if (ino == orig_ino) 4956 continue; 4957 __ext4_update_other_inode_time(sb, orig_ino, ino, 4958 (struct ext4_inode *)buf); 4959 } 4960 rcu_read_unlock(); 4961 } 4962 4963 /* 4964 * Post the struct inode info into an on-disk inode location in the 4965 * buffer-cache. This gobbles the caller's reference to the 4966 * buffer_head in the inode location struct. 4967 * 4968 * The caller must have write access to iloc->bh. 4969 */ 4970 static int ext4_do_update_inode(handle_t *handle, 4971 struct inode *inode, 4972 struct ext4_iloc *iloc) 4973 { 4974 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4975 struct ext4_inode_info *ei = EXT4_I(inode); 4976 struct buffer_head *bh = iloc->bh; 4977 struct super_block *sb = inode->i_sb; 4978 int err = 0, block; 4979 int need_datasync = 0, set_large_file = 0; 4980 uid_t i_uid; 4981 gid_t i_gid; 4982 projid_t i_projid; 4983 4984 spin_lock(&ei->i_raw_lock); 4985 4986 /* 4987 * For fields not tracked in the in-memory inode, initialise them 4988 * to zero for new inodes. 4989 */ 4990 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4991 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4992 4993 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4994 4995 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4996 i_uid = i_uid_read(inode); 4997 i_gid = i_gid_read(inode); 4998 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4999 if (!(test_opt(inode->i_sb, NO_UID32))) { 5000 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5001 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5002 /* 5003 * Fix up interoperability with old kernels. Otherwise, 5004 * old inodes get re-used with the upper 16 bits of the 5005 * uid/gid intact. 5006 */ 5007 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5008 raw_inode->i_uid_high = 0; 5009 raw_inode->i_gid_high = 0; 5010 } else { 5011 raw_inode->i_uid_high = 5012 cpu_to_le16(high_16_bits(i_uid)); 5013 raw_inode->i_gid_high = 5014 cpu_to_le16(high_16_bits(i_gid)); 5015 } 5016 } else { 5017 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5018 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5019 raw_inode->i_uid_high = 0; 5020 raw_inode->i_gid_high = 0; 5021 } 5022 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5023 5024 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5025 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5026 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5027 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5028 5029 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5030 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5031 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5032 raw_inode->i_file_acl_high = 5033 cpu_to_le16(ei->i_file_acl >> 32); 5034 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5035 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5036 ext4_isize_set(raw_inode, ei->i_disksize); 5037 need_datasync = 1; 5038 } 5039 if (ei->i_disksize > 0x7fffffffULL) { 5040 if (!ext4_has_feature_large_file(sb) || 5041 EXT4_SB(sb)->s_es->s_rev_level == 5042 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5043 set_large_file = 1; 5044 } 5045 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5046 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5047 if (old_valid_dev(inode->i_rdev)) { 5048 raw_inode->i_block[0] = 5049 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5050 raw_inode->i_block[1] = 0; 5051 } else { 5052 raw_inode->i_block[0] = 0; 5053 raw_inode->i_block[1] = 5054 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5055 raw_inode->i_block[2] = 0; 5056 } 5057 } else if (!ext4_has_inline_data(inode)) { 5058 for (block = 0; block < EXT4_N_BLOCKS; block++) 5059 raw_inode->i_block[block] = ei->i_data[block]; 5060 } 5061 5062 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5063 u64 ivers = ext4_inode_peek_iversion(inode); 5064 5065 raw_inode->i_disk_version = cpu_to_le32(ivers); 5066 if (ei->i_extra_isize) { 5067 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5068 raw_inode->i_version_hi = 5069 cpu_to_le32(ivers >> 32); 5070 raw_inode->i_extra_isize = 5071 cpu_to_le16(ei->i_extra_isize); 5072 } 5073 } 5074 5075 if (i_projid != EXT4_DEF_PROJID && 5076 !ext4_has_feature_project(inode->i_sb)) 5077 err = err ?: -EFSCORRUPTED; 5078 5079 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5080 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5081 raw_inode->i_projid = cpu_to_le32(i_projid); 5082 5083 ext4_inode_csum_set(inode, raw_inode, ei); 5084 spin_unlock(&ei->i_raw_lock); 5085 if (err) { 5086 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5087 goto out_brelse; 5088 } 5089 5090 if (inode->i_sb->s_flags & SB_LAZYTIME) 5091 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5092 bh->b_data); 5093 5094 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5095 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5096 if (err) 5097 goto out_error; 5098 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5099 if (set_large_file) { 5100 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5101 err = ext4_journal_get_write_access(handle, sb, 5102 EXT4_SB(sb)->s_sbh, 5103 EXT4_JTR_NONE); 5104 if (err) 5105 goto out_error; 5106 lock_buffer(EXT4_SB(sb)->s_sbh); 5107 ext4_set_feature_large_file(sb); 5108 ext4_superblock_csum_set(sb); 5109 unlock_buffer(EXT4_SB(sb)->s_sbh); 5110 ext4_handle_sync(handle); 5111 err = ext4_handle_dirty_metadata(handle, NULL, 5112 EXT4_SB(sb)->s_sbh); 5113 } 5114 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5115 out_error: 5116 ext4_std_error(inode->i_sb, err); 5117 out_brelse: 5118 brelse(bh); 5119 return err; 5120 } 5121 5122 /* 5123 * ext4_write_inode() 5124 * 5125 * We are called from a few places: 5126 * 5127 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5128 * Here, there will be no transaction running. We wait for any running 5129 * transaction to commit. 5130 * 5131 * - Within flush work (sys_sync(), kupdate and such). 5132 * We wait on commit, if told to. 5133 * 5134 * - Within iput_final() -> write_inode_now() 5135 * We wait on commit, if told to. 5136 * 5137 * In all cases it is actually safe for us to return without doing anything, 5138 * because the inode has been copied into a raw inode buffer in 5139 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5140 * writeback. 5141 * 5142 * Note that we are absolutely dependent upon all inode dirtiers doing the 5143 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5144 * which we are interested. 5145 * 5146 * It would be a bug for them to not do this. The code: 5147 * 5148 * mark_inode_dirty(inode) 5149 * stuff(); 5150 * inode->i_size = expr; 5151 * 5152 * is in error because write_inode() could occur while `stuff()' is running, 5153 * and the new i_size will be lost. Plus the inode will no longer be on the 5154 * superblock's dirty inode list. 5155 */ 5156 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5157 { 5158 int err; 5159 5160 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5161 sb_rdonly(inode->i_sb)) 5162 return 0; 5163 5164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5165 return -EIO; 5166 5167 if (EXT4_SB(inode->i_sb)->s_journal) { 5168 if (ext4_journal_current_handle()) { 5169 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5170 dump_stack(); 5171 return -EIO; 5172 } 5173 5174 /* 5175 * No need to force transaction in WB_SYNC_NONE mode. Also 5176 * ext4_sync_fs() will force the commit after everything is 5177 * written. 5178 */ 5179 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5180 return 0; 5181 5182 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5183 EXT4_I(inode)->i_sync_tid); 5184 } else { 5185 struct ext4_iloc iloc; 5186 5187 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5188 if (err) 5189 return err; 5190 /* 5191 * sync(2) will flush the whole buffer cache. No need to do 5192 * it here separately for each inode. 5193 */ 5194 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5195 sync_dirty_buffer(iloc.bh); 5196 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5197 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5198 "IO error syncing inode"); 5199 err = -EIO; 5200 } 5201 brelse(iloc.bh); 5202 } 5203 return err; 5204 } 5205 5206 /* 5207 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5208 * buffers that are attached to a page stradding i_size and are undergoing 5209 * commit. In that case we have to wait for commit to finish and try again. 5210 */ 5211 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5212 { 5213 struct page *page; 5214 unsigned offset; 5215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5216 tid_t commit_tid = 0; 5217 int ret; 5218 5219 offset = inode->i_size & (PAGE_SIZE - 1); 5220 /* 5221 * If the page is fully truncated, we don't need to wait for any commit 5222 * (and we even should not as __ext4_journalled_invalidatepage() may 5223 * strip all buffers from the page but keep the page dirty which can then 5224 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5225 * buffers). Also we don't need to wait for any commit if all buffers in 5226 * the page remain valid. This is most beneficial for the common case of 5227 * blocksize == PAGESIZE. 5228 */ 5229 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5230 return; 5231 while (1) { 5232 page = find_lock_page(inode->i_mapping, 5233 inode->i_size >> PAGE_SHIFT); 5234 if (!page) 5235 return; 5236 ret = __ext4_journalled_invalidatepage(page, offset, 5237 PAGE_SIZE - offset); 5238 unlock_page(page); 5239 put_page(page); 5240 if (ret != -EBUSY) 5241 return; 5242 commit_tid = 0; 5243 read_lock(&journal->j_state_lock); 5244 if (journal->j_committing_transaction) 5245 commit_tid = journal->j_committing_transaction->t_tid; 5246 read_unlock(&journal->j_state_lock); 5247 if (commit_tid) 5248 jbd2_log_wait_commit(journal, commit_tid); 5249 } 5250 } 5251 5252 /* 5253 * ext4_setattr() 5254 * 5255 * Called from notify_change. 5256 * 5257 * We want to trap VFS attempts to truncate the file as soon as 5258 * possible. In particular, we want to make sure that when the VFS 5259 * shrinks i_size, we put the inode on the orphan list and modify 5260 * i_disksize immediately, so that during the subsequent flushing of 5261 * dirty pages and freeing of disk blocks, we can guarantee that any 5262 * commit will leave the blocks being flushed in an unused state on 5263 * disk. (On recovery, the inode will get truncated and the blocks will 5264 * be freed, so we have a strong guarantee that no future commit will 5265 * leave these blocks visible to the user.) 5266 * 5267 * Another thing we have to assure is that if we are in ordered mode 5268 * and inode is still attached to the committing transaction, we must 5269 * we start writeout of all the dirty pages which are being truncated. 5270 * This way we are sure that all the data written in the previous 5271 * transaction are already on disk (truncate waits for pages under 5272 * writeback). 5273 * 5274 * Called with inode->i_mutex down. 5275 */ 5276 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5277 struct iattr *attr) 5278 { 5279 struct inode *inode = d_inode(dentry); 5280 int error, rc = 0; 5281 int orphan = 0; 5282 const unsigned int ia_valid = attr->ia_valid; 5283 5284 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5285 return -EIO; 5286 5287 if (unlikely(IS_IMMUTABLE(inode))) 5288 return -EPERM; 5289 5290 if (unlikely(IS_APPEND(inode) && 5291 (ia_valid & (ATTR_MODE | ATTR_UID | 5292 ATTR_GID | ATTR_TIMES_SET)))) 5293 return -EPERM; 5294 5295 error = setattr_prepare(mnt_userns, dentry, attr); 5296 if (error) 5297 return error; 5298 5299 error = fscrypt_prepare_setattr(dentry, attr); 5300 if (error) 5301 return error; 5302 5303 error = fsverity_prepare_setattr(dentry, attr); 5304 if (error) 5305 return error; 5306 5307 if (is_quota_modification(inode, attr)) { 5308 error = dquot_initialize(inode); 5309 if (error) 5310 return error; 5311 } 5312 ext4_fc_start_update(inode); 5313 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5314 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5315 handle_t *handle; 5316 5317 /* (user+group)*(old+new) structure, inode write (sb, 5318 * inode block, ? - but truncate inode update has it) */ 5319 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5320 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5321 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5322 if (IS_ERR(handle)) { 5323 error = PTR_ERR(handle); 5324 goto err_out; 5325 } 5326 5327 /* dquot_transfer() calls back ext4_get_inode_usage() which 5328 * counts xattr inode references. 5329 */ 5330 down_read(&EXT4_I(inode)->xattr_sem); 5331 error = dquot_transfer(inode, attr); 5332 up_read(&EXT4_I(inode)->xattr_sem); 5333 5334 if (error) { 5335 ext4_journal_stop(handle); 5336 ext4_fc_stop_update(inode); 5337 return error; 5338 } 5339 /* Update corresponding info in inode so that everything is in 5340 * one transaction */ 5341 if (attr->ia_valid & ATTR_UID) 5342 inode->i_uid = attr->ia_uid; 5343 if (attr->ia_valid & ATTR_GID) 5344 inode->i_gid = attr->ia_gid; 5345 error = ext4_mark_inode_dirty(handle, inode); 5346 ext4_journal_stop(handle); 5347 if (unlikely(error)) { 5348 ext4_fc_stop_update(inode); 5349 return error; 5350 } 5351 } 5352 5353 if (attr->ia_valid & ATTR_SIZE) { 5354 handle_t *handle; 5355 loff_t oldsize = inode->i_size; 5356 int shrink = (attr->ia_size < inode->i_size); 5357 5358 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5360 5361 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5362 ext4_fc_stop_update(inode); 5363 return -EFBIG; 5364 } 5365 } 5366 if (!S_ISREG(inode->i_mode)) { 5367 ext4_fc_stop_update(inode); 5368 return -EINVAL; 5369 } 5370 5371 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5372 inode_inc_iversion(inode); 5373 5374 if (shrink) { 5375 if (ext4_should_order_data(inode)) { 5376 error = ext4_begin_ordered_truncate(inode, 5377 attr->ia_size); 5378 if (error) 5379 goto err_out; 5380 } 5381 /* 5382 * Blocks are going to be removed from the inode. Wait 5383 * for dio in flight. 5384 */ 5385 inode_dio_wait(inode); 5386 } 5387 5388 filemap_invalidate_lock(inode->i_mapping); 5389 5390 rc = ext4_break_layouts(inode); 5391 if (rc) { 5392 filemap_invalidate_unlock(inode->i_mapping); 5393 goto err_out; 5394 } 5395 5396 if (attr->ia_size != inode->i_size) { 5397 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5398 if (IS_ERR(handle)) { 5399 error = PTR_ERR(handle); 5400 goto out_mmap_sem; 5401 } 5402 if (ext4_handle_valid(handle) && shrink) { 5403 error = ext4_orphan_add(handle, inode); 5404 orphan = 1; 5405 } 5406 /* 5407 * Update c/mtime on truncate up, ext4_truncate() will 5408 * update c/mtime in shrink case below 5409 */ 5410 if (!shrink) { 5411 inode->i_mtime = current_time(inode); 5412 inode->i_ctime = inode->i_mtime; 5413 } 5414 5415 if (shrink) 5416 ext4_fc_track_range(handle, inode, 5417 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5418 inode->i_sb->s_blocksize_bits, 5419 (oldsize > 0 ? oldsize - 1 : 0) >> 5420 inode->i_sb->s_blocksize_bits); 5421 else 5422 ext4_fc_track_range( 5423 handle, inode, 5424 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5425 inode->i_sb->s_blocksize_bits, 5426 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5427 inode->i_sb->s_blocksize_bits); 5428 5429 down_write(&EXT4_I(inode)->i_data_sem); 5430 EXT4_I(inode)->i_disksize = attr->ia_size; 5431 rc = ext4_mark_inode_dirty(handle, inode); 5432 if (!error) 5433 error = rc; 5434 /* 5435 * We have to update i_size under i_data_sem together 5436 * with i_disksize to avoid races with writeback code 5437 * running ext4_wb_update_i_disksize(). 5438 */ 5439 if (!error) 5440 i_size_write(inode, attr->ia_size); 5441 up_write(&EXT4_I(inode)->i_data_sem); 5442 ext4_journal_stop(handle); 5443 if (error) 5444 goto out_mmap_sem; 5445 if (!shrink) { 5446 pagecache_isize_extended(inode, oldsize, 5447 inode->i_size); 5448 } else if (ext4_should_journal_data(inode)) { 5449 ext4_wait_for_tail_page_commit(inode); 5450 } 5451 } 5452 5453 /* 5454 * Truncate pagecache after we've waited for commit 5455 * in data=journal mode to make pages freeable. 5456 */ 5457 truncate_pagecache(inode, inode->i_size); 5458 /* 5459 * Call ext4_truncate() even if i_size didn't change to 5460 * truncate possible preallocated blocks. 5461 */ 5462 if (attr->ia_size <= oldsize) { 5463 rc = ext4_truncate(inode); 5464 if (rc) 5465 error = rc; 5466 } 5467 out_mmap_sem: 5468 filemap_invalidate_unlock(inode->i_mapping); 5469 } 5470 5471 if (!error) { 5472 setattr_copy(mnt_userns, inode, attr); 5473 mark_inode_dirty(inode); 5474 } 5475 5476 /* 5477 * If the call to ext4_truncate failed to get a transaction handle at 5478 * all, we need to clean up the in-core orphan list manually. 5479 */ 5480 if (orphan && inode->i_nlink) 5481 ext4_orphan_del(NULL, inode); 5482 5483 if (!error && (ia_valid & ATTR_MODE)) 5484 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5485 5486 err_out: 5487 if (error) 5488 ext4_std_error(inode->i_sb, error); 5489 if (!error) 5490 error = rc; 5491 ext4_fc_stop_update(inode); 5492 return error; 5493 } 5494 5495 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5496 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5497 { 5498 struct inode *inode = d_inode(path->dentry); 5499 struct ext4_inode *raw_inode; 5500 struct ext4_inode_info *ei = EXT4_I(inode); 5501 unsigned int flags; 5502 5503 if ((request_mask & STATX_BTIME) && 5504 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5505 stat->result_mask |= STATX_BTIME; 5506 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5507 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5508 } 5509 5510 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5511 if (flags & EXT4_APPEND_FL) 5512 stat->attributes |= STATX_ATTR_APPEND; 5513 if (flags & EXT4_COMPR_FL) 5514 stat->attributes |= STATX_ATTR_COMPRESSED; 5515 if (flags & EXT4_ENCRYPT_FL) 5516 stat->attributes |= STATX_ATTR_ENCRYPTED; 5517 if (flags & EXT4_IMMUTABLE_FL) 5518 stat->attributes |= STATX_ATTR_IMMUTABLE; 5519 if (flags & EXT4_NODUMP_FL) 5520 stat->attributes |= STATX_ATTR_NODUMP; 5521 if (flags & EXT4_VERITY_FL) 5522 stat->attributes |= STATX_ATTR_VERITY; 5523 5524 stat->attributes_mask |= (STATX_ATTR_APPEND | 5525 STATX_ATTR_COMPRESSED | 5526 STATX_ATTR_ENCRYPTED | 5527 STATX_ATTR_IMMUTABLE | 5528 STATX_ATTR_NODUMP | 5529 STATX_ATTR_VERITY); 5530 5531 generic_fillattr(mnt_userns, inode, stat); 5532 return 0; 5533 } 5534 5535 int ext4_file_getattr(struct user_namespace *mnt_userns, 5536 const struct path *path, struct kstat *stat, 5537 u32 request_mask, unsigned int query_flags) 5538 { 5539 struct inode *inode = d_inode(path->dentry); 5540 u64 delalloc_blocks; 5541 5542 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5543 5544 /* 5545 * If there is inline data in the inode, the inode will normally not 5546 * have data blocks allocated (it may have an external xattr block). 5547 * Report at least one sector for such files, so tools like tar, rsync, 5548 * others don't incorrectly think the file is completely sparse. 5549 */ 5550 if (unlikely(ext4_has_inline_data(inode))) 5551 stat->blocks += (stat->size + 511) >> 9; 5552 5553 /* 5554 * We can't update i_blocks if the block allocation is delayed 5555 * otherwise in the case of system crash before the real block 5556 * allocation is done, we will have i_blocks inconsistent with 5557 * on-disk file blocks. 5558 * We always keep i_blocks updated together with real 5559 * allocation. But to not confuse with user, stat 5560 * will return the blocks that include the delayed allocation 5561 * blocks for this file. 5562 */ 5563 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5564 EXT4_I(inode)->i_reserved_data_blocks); 5565 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5566 return 0; 5567 } 5568 5569 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5570 int pextents) 5571 { 5572 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5573 return ext4_ind_trans_blocks(inode, lblocks); 5574 return ext4_ext_index_trans_blocks(inode, pextents); 5575 } 5576 5577 /* 5578 * Account for index blocks, block groups bitmaps and block group 5579 * descriptor blocks if modify datablocks and index blocks 5580 * worse case, the indexs blocks spread over different block groups 5581 * 5582 * If datablocks are discontiguous, they are possible to spread over 5583 * different block groups too. If they are contiguous, with flexbg, 5584 * they could still across block group boundary. 5585 * 5586 * Also account for superblock, inode, quota and xattr blocks 5587 */ 5588 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5589 int pextents) 5590 { 5591 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5592 int gdpblocks; 5593 int idxblocks; 5594 int ret = 0; 5595 5596 /* 5597 * How many index blocks need to touch to map @lblocks logical blocks 5598 * to @pextents physical extents? 5599 */ 5600 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5601 5602 ret = idxblocks; 5603 5604 /* 5605 * Now let's see how many group bitmaps and group descriptors need 5606 * to account 5607 */ 5608 groups = idxblocks + pextents; 5609 gdpblocks = groups; 5610 if (groups > ngroups) 5611 groups = ngroups; 5612 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5613 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5614 5615 /* bitmaps and block group descriptor blocks */ 5616 ret += groups + gdpblocks; 5617 5618 /* Blocks for super block, inode, quota and xattr blocks */ 5619 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5620 5621 return ret; 5622 } 5623 5624 /* 5625 * Calculate the total number of credits to reserve to fit 5626 * the modification of a single pages into a single transaction, 5627 * which may include multiple chunks of block allocations. 5628 * 5629 * This could be called via ext4_write_begin() 5630 * 5631 * We need to consider the worse case, when 5632 * one new block per extent. 5633 */ 5634 int ext4_writepage_trans_blocks(struct inode *inode) 5635 { 5636 int bpp = ext4_journal_blocks_per_page(inode); 5637 int ret; 5638 5639 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5640 5641 /* Account for data blocks for journalled mode */ 5642 if (ext4_should_journal_data(inode)) 5643 ret += bpp; 5644 return ret; 5645 } 5646 5647 /* 5648 * Calculate the journal credits for a chunk of data modification. 5649 * 5650 * This is called from DIO, fallocate or whoever calling 5651 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5652 * 5653 * journal buffers for data blocks are not included here, as DIO 5654 * and fallocate do no need to journal data buffers. 5655 */ 5656 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5657 { 5658 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5659 } 5660 5661 /* 5662 * The caller must have previously called ext4_reserve_inode_write(). 5663 * Give this, we know that the caller already has write access to iloc->bh. 5664 */ 5665 int ext4_mark_iloc_dirty(handle_t *handle, 5666 struct inode *inode, struct ext4_iloc *iloc) 5667 { 5668 int err = 0; 5669 5670 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5671 put_bh(iloc->bh); 5672 return -EIO; 5673 } 5674 ext4_fc_track_inode(handle, inode); 5675 5676 if (IS_I_VERSION(inode)) 5677 inode_inc_iversion(inode); 5678 5679 /* the do_update_inode consumes one bh->b_count */ 5680 get_bh(iloc->bh); 5681 5682 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5683 err = ext4_do_update_inode(handle, inode, iloc); 5684 put_bh(iloc->bh); 5685 return err; 5686 } 5687 5688 /* 5689 * On success, We end up with an outstanding reference count against 5690 * iloc->bh. This _must_ be cleaned up later. 5691 */ 5692 5693 int 5694 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5695 struct ext4_iloc *iloc) 5696 { 5697 int err; 5698 5699 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5700 return -EIO; 5701 5702 err = ext4_get_inode_loc(inode, iloc); 5703 if (!err) { 5704 BUFFER_TRACE(iloc->bh, "get_write_access"); 5705 err = ext4_journal_get_write_access(handle, inode->i_sb, 5706 iloc->bh, EXT4_JTR_NONE); 5707 if (err) { 5708 brelse(iloc->bh); 5709 iloc->bh = NULL; 5710 } 5711 } 5712 ext4_std_error(inode->i_sb, err); 5713 return err; 5714 } 5715 5716 static int __ext4_expand_extra_isize(struct inode *inode, 5717 unsigned int new_extra_isize, 5718 struct ext4_iloc *iloc, 5719 handle_t *handle, int *no_expand) 5720 { 5721 struct ext4_inode *raw_inode; 5722 struct ext4_xattr_ibody_header *header; 5723 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5724 struct ext4_inode_info *ei = EXT4_I(inode); 5725 int error; 5726 5727 /* this was checked at iget time, but double check for good measure */ 5728 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5729 (ei->i_extra_isize & 3)) { 5730 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5731 ei->i_extra_isize, 5732 EXT4_INODE_SIZE(inode->i_sb)); 5733 return -EFSCORRUPTED; 5734 } 5735 if ((new_extra_isize < ei->i_extra_isize) || 5736 (new_extra_isize < 4) || 5737 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5738 return -EINVAL; /* Should never happen */ 5739 5740 raw_inode = ext4_raw_inode(iloc); 5741 5742 header = IHDR(inode, raw_inode); 5743 5744 /* No extended attributes present */ 5745 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5746 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5747 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5748 EXT4_I(inode)->i_extra_isize, 0, 5749 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5750 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5751 return 0; 5752 } 5753 5754 /* try to expand with EAs present */ 5755 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5756 raw_inode, handle); 5757 if (error) { 5758 /* 5759 * Inode size expansion failed; don't try again 5760 */ 5761 *no_expand = 1; 5762 } 5763 5764 return error; 5765 } 5766 5767 /* 5768 * Expand an inode by new_extra_isize bytes. 5769 * Returns 0 on success or negative error number on failure. 5770 */ 5771 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5772 unsigned int new_extra_isize, 5773 struct ext4_iloc iloc, 5774 handle_t *handle) 5775 { 5776 int no_expand; 5777 int error; 5778 5779 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5780 return -EOVERFLOW; 5781 5782 /* 5783 * In nojournal mode, we can immediately attempt to expand 5784 * the inode. When journaled, we first need to obtain extra 5785 * buffer credits since we may write into the EA block 5786 * with this same handle. If journal_extend fails, then it will 5787 * only result in a minor loss of functionality for that inode. 5788 * If this is felt to be critical, then e2fsck should be run to 5789 * force a large enough s_min_extra_isize. 5790 */ 5791 if (ext4_journal_extend(handle, 5792 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5793 return -ENOSPC; 5794 5795 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5796 return -EBUSY; 5797 5798 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5799 handle, &no_expand); 5800 ext4_write_unlock_xattr(inode, &no_expand); 5801 5802 return error; 5803 } 5804 5805 int ext4_expand_extra_isize(struct inode *inode, 5806 unsigned int new_extra_isize, 5807 struct ext4_iloc *iloc) 5808 { 5809 handle_t *handle; 5810 int no_expand; 5811 int error, rc; 5812 5813 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5814 brelse(iloc->bh); 5815 return -EOVERFLOW; 5816 } 5817 5818 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5819 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5820 if (IS_ERR(handle)) { 5821 error = PTR_ERR(handle); 5822 brelse(iloc->bh); 5823 return error; 5824 } 5825 5826 ext4_write_lock_xattr(inode, &no_expand); 5827 5828 BUFFER_TRACE(iloc->bh, "get_write_access"); 5829 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5830 EXT4_JTR_NONE); 5831 if (error) { 5832 brelse(iloc->bh); 5833 goto out_unlock; 5834 } 5835 5836 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5837 handle, &no_expand); 5838 5839 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5840 if (!error) 5841 error = rc; 5842 5843 out_unlock: 5844 ext4_write_unlock_xattr(inode, &no_expand); 5845 ext4_journal_stop(handle); 5846 return error; 5847 } 5848 5849 /* 5850 * What we do here is to mark the in-core inode as clean with respect to inode 5851 * dirtiness (it may still be data-dirty). 5852 * This means that the in-core inode may be reaped by prune_icache 5853 * without having to perform any I/O. This is a very good thing, 5854 * because *any* task may call prune_icache - even ones which 5855 * have a transaction open against a different journal. 5856 * 5857 * Is this cheating? Not really. Sure, we haven't written the 5858 * inode out, but prune_icache isn't a user-visible syncing function. 5859 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5860 * we start and wait on commits. 5861 */ 5862 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5863 const char *func, unsigned int line) 5864 { 5865 struct ext4_iloc iloc; 5866 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5867 int err; 5868 5869 might_sleep(); 5870 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5871 err = ext4_reserve_inode_write(handle, inode, &iloc); 5872 if (err) 5873 goto out; 5874 5875 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5876 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5877 iloc, handle); 5878 5879 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5880 out: 5881 if (unlikely(err)) 5882 ext4_error_inode_err(inode, func, line, 0, err, 5883 "mark_inode_dirty error"); 5884 return err; 5885 } 5886 5887 /* 5888 * ext4_dirty_inode() is called from __mark_inode_dirty() 5889 * 5890 * We're really interested in the case where a file is being extended. 5891 * i_size has been changed by generic_commit_write() and we thus need 5892 * to include the updated inode in the current transaction. 5893 * 5894 * Also, dquot_alloc_block() will always dirty the inode when blocks 5895 * are allocated to the file. 5896 * 5897 * If the inode is marked synchronous, we don't honour that here - doing 5898 * so would cause a commit on atime updates, which we don't bother doing. 5899 * We handle synchronous inodes at the highest possible level. 5900 */ 5901 void ext4_dirty_inode(struct inode *inode, int flags) 5902 { 5903 handle_t *handle; 5904 5905 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5906 if (IS_ERR(handle)) 5907 return; 5908 ext4_mark_inode_dirty(handle, inode); 5909 ext4_journal_stop(handle); 5910 } 5911 5912 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5913 { 5914 journal_t *journal; 5915 handle_t *handle; 5916 int err; 5917 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5918 5919 /* 5920 * We have to be very careful here: changing a data block's 5921 * journaling status dynamically is dangerous. If we write a 5922 * data block to the journal, change the status and then delete 5923 * that block, we risk forgetting to revoke the old log record 5924 * from the journal and so a subsequent replay can corrupt data. 5925 * So, first we make sure that the journal is empty and that 5926 * nobody is changing anything. 5927 */ 5928 5929 journal = EXT4_JOURNAL(inode); 5930 if (!journal) 5931 return 0; 5932 if (is_journal_aborted(journal)) 5933 return -EROFS; 5934 5935 /* Wait for all existing dio workers */ 5936 inode_dio_wait(inode); 5937 5938 /* 5939 * Before flushing the journal and switching inode's aops, we have 5940 * to flush all dirty data the inode has. There can be outstanding 5941 * delayed allocations, there can be unwritten extents created by 5942 * fallocate or buffered writes in dioread_nolock mode covered by 5943 * dirty data which can be converted only after flushing the dirty 5944 * data (and journalled aops don't know how to handle these cases). 5945 */ 5946 if (val) { 5947 filemap_invalidate_lock(inode->i_mapping); 5948 err = filemap_write_and_wait(inode->i_mapping); 5949 if (err < 0) { 5950 filemap_invalidate_unlock(inode->i_mapping); 5951 return err; 5952 } 5953 } 5954 5955 percpu_down_write(&sbi->s_writepages_rwsem); 5956 jbd2_journal_lock_updates(journal); 5957 5958 /* 5959 * OK, there are no updates running now, and all cached data is 5960 * synced to disk. We are now in a completely consistent state 5961 * which doesn't have anything in the journal, and we know that 5962 * no filesystem updates are running, so it is safe to modify 5963 * the inode's in-core data-journaling state flag now. 5964 */ 5965 5966 if (val) 5967 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5968 else { 5969 err = jbd2_journal_flush(journal, 0); 5970 if (err < 0) { 5971 jbd2_journal_unlock_updates(journal); 5972 percpu_up_write(&sbi->s_writepages_rwsem); 5973 return err; 5974 } 5975 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5976 } 5977 ext4_set_aops(inode); 5978 5979 jbd2_journal_unlock_updates(journal); 5980 percpu_up_write(&sbi->s_writepages_rwsem); 5981 5982 if (val) 5983 filemap_invalidate_unlock(inode->i_mapping); 5984 5985 /* Finally we can mark the inode as dirty. */ 5986 5987 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5988 if (IS_ERR(handle)) 5989 return PTR_ERR(handle); 5990 5991 ext4_fc_mark_ineligible(inode->i_sb, 5992 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 5993 err = ext4_mark_inode_dirty(handle, inode); 5994 ext4_handle_sync(handle); 5995 ext4_journal_stop(handle); 5996 ext4_std_error(inode->i_sb, err); 5997 5998 return err; 5999 } 6000 6001 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6002 struct buffer_head *bh) 6003 { 6004 return !buffer_mapped(bh); 6005 } 6006 6007 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6008 { 6009 struct vm_area_struct *vma = vmf->vma; 6010 struct page *page = vmf->page; 6011 loff_t size; 6012 unsigned long len; 6013 int err; 6014 vm_fault_t ret; 6015 struct file *file = vma->vm_file; 6016 struct inode *inode = file_inode(file); 6017 struct address_space *mapping = inode->i_mapping; 6018 handle_t *handle; 6019 get_block_t *get_block; 6020 int retries = 0; 6021 6022 if (unlikely(IS_IMMUTABLE(inode))) 6023 return VM_FAULT_SIGBUS; 6024 6025 sb_start_pagefault(inode->i_sb); 6026 file_update_time(vma->vm_file); 6027 6028 filemap_invalidate_lock_shared(mapping); 6029 6030 err = ext4_convert_inline_data(inode); 6031 if (err) 6032 goto out_ret; 6033 6034 /* 6035 * On data journalling we skip straight to the transaction handle: 6036 * there's no delalloc; page truncated will be checked later; the 6037 * early return w/ all buffers mapped (calculates size/len) can't 6038 * be used; and there's no dioread_nolock, so only ext4_get_block. 6039 */ 6040 if (ext4_should_journal_data(inode)) 6041 goto retry_alloc; 6042 6043 /* Delalloc case is easy... */ 6044 if (test_opt(inode->i_sb, DELALLOC) && 6045 !ext4_nonda_switch(inode->i_sb)) { 6046 do { 6047 err = block_page_mkwrite(vma, vmf, 6048 ext4_da_get_block_prep); 6049 } while (err == -ENOSPC && 6050 ext4_should_retry_alloc(inode->i_sb, &retries)); 6051 goto out_ret; 6052 } 6053 6054 lock_page(page); 6055 size = i_size_read(inode); 6056 /* Page got truncated from under us? */ 6057 if (page->mapping != mapping || page_offset(page) > size) { 6058 unlock_page(page); 6059 ret = VM_FAULT_NOPAGE; 6060 goto out; 6061 } 6062 6063 if (page->index == size >> PAGE_SHIFT) 6064 len = size & ~PAGE_MASK; 6065 else 6066 len = PAGE_SIZE; 6067 /* 6068 * Return if we have all the buffers mapped. This avoids the need to do 6069 * journal_start/journal_stop which can block and take a long time 6070 * 6071 * This cannot be done for data journalling, as we have to add the 6072 * inode to the transaction's list to writeprotect pages on commit. 6073 */ 6074 if (page_has_buffers(page)) { 6075 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6076 0, len, NULL, 6077 ext4_bh_unmapped)) { 6078 /* Wait so that we don't change page under IO */ 6079 wait_for_stable_page(page); 6080 ret = VM_FAULT_LOCKED; 6081 goto out; 6082 } 6083 } 6084 unlock_page(page); 6085 /* OK, we need to fill the hole... */ 6086 if (ext4_should_dioread_nolock(inode)) 6087 get_block = ext4_get_block_unwritten; 6088 else 6089 get_block = ext4_get_block; 6090 retry_alloc: 6091 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6092 ext4_writepage_trans_blocks(inode)); 6093 if (IS_ERR(handle)) { 6094 ret = VM_FAULT_SIGBUS; 6095 goto out; 6096 } 6097 /* 6098 * Data journalling can't use block_page_mkwrite() because it 6099 * will set_buffer_dirty() before do_journal_get_write_access() 6100 * thus might hit warning messages for dirty metadata buffers. 6101 */ 6102 if (!ext4_should_journal_data(inode)) { 6103 err = block_page_mkwrite(vma, vmf, get_block); 6104 } else { 6105 lock_page(page); 6106 size = i_size_read(inode); 6107 /* Page got truncated from under us? */ 6108 if (page->mapping != mapping || page_offset(page) > size) { 6109 ret = VM_FAULT_NOPAGE; 6110 goto out_error; 6111 } 6112 6113 if (page->index == size >> PAGE_SHIFT) 6114 len = size & ~PAGE_MASK; 6115 else 6116 len = PAGE_SIZE; 6117 6118 err = __block_write_begin(page, 0, len, ext4_get_block); 6119 if (!err) { 6120 ret = VM_FAULT_SIGBUS; 6121 if (ext4_walk_page_buffers(handle, inode, 6122 page_buffers(page), 0, len, NULL, 6123 do_journal_get_write_access)) 6124 goto out_error; 6125 if (ext4_walk_page_buffers(handle, inode, 6126 page_buffers(page), 0, len, NULL, 6127 write_end_fn)) 6128 goto out_error; 6129 if (ext4_jbd2_inode_add_write(handle, inode, 6130 page_offset(page), len)) 6131 goto out_error; 6132 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6133 } else { 6134 unlock_page(page); 6135 } 6136 } 6137 ext4_journal_stop(handle); 6138 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6139 goto retry_alloc; 6140 out_ret: 6141 ret = block_page_mkwrite_return(err); 6142 out: 6143 filemap_invalidate_unlock_shared(mapping); 6144 sb_end_pagefault(inode->i_sb); 6145 return ret; 6146 out_error: 6147 unlock_page(page); 6148 ext4_journal_stop(handle); 6149 goto out; 6150 } 6151