1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 138 struct inode *inode, struct page *page, loff_t from, 139 loff_t length, int flags); 140 141 /* 142 * Test whether an inode is a fast symlink. 143 */ 144 static int ext4_inode_is_fast_symlink(struct inode *inode) 145 { 146 int ea_blocks = EXT4_I(inode)->i_file_acl ? 147 (inode->i_sb->s_blocksize >> 9) : 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_log_start_commit(journal, commit_tid); 214 jbd2_log_wait_commit(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 ext4_ioend_shutdown(inode); 219 goto no_delete; 220 } 221 222 if (!is_bad_inode(inode)) 223 dquot_initialize(inode); 224 225 if (ext4_should_order_data(inode)) 226 ext4_begin_ordered_truncate(inode, 0); 227 truncate_inode_pages(&inode->i_data, 0); 228 ext4_ioend_shutdown(inode); 229 230 if (is_bad_inode(inode)) 231 goto no_delete; 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Calculate the number of metadata blocks need to reserve 324 * to allocate a block located at @lblock 325 */ 326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 327 { 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 329 return ext4_ext_calc_metadata_amount(inode, lblock); 330 331 return ext4_ind_calc_metadata_amount(inode, lblock); 332 } 333 334 /* 335 * Called with i_data_sem down, which is important since we can call 336 * ext4_discard_preallocations() from here. 337 */ 338 void ext4_da_update_reserve_space(struct inode *inode, 339 int used, int quota_claim) 340 { 341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 342 struct ext4_inode_info *ei = EXT4_I(inode); 343 344 spin_lock(&ei->i_block_reservation_lock); 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 346 if (unlikely(used > ei->i_reserved_data_blocks)) { 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 348 "with only %d reserved data blocks", 349 __func__, inode->i_ino, used, 350 ei->i_reserved_data_blocks); 351 WARN_ON(1); 352 used = ei->i_reserved_data_blocks; 353 } 354 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 356 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 357 "with only %d reserved metadata blocks " 358 "(releasing %d blocks with reserved %d data blocks)", 359 inode->i_ino, ei->i_allocated_meta_blocks, 360 ei->i_reserved_meta_blocks, used, 361 ei->i_reserved_data_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 #ifdef ES_AGGRESSIVE_TEST 487 static void ext4_map_blocks_es_recheck(handle_t *handle, 488 struct inode *inode, 489 struct ext4_map_blocks *es_map, 490 struct ext4_map_blocks *map, 491 int flags) 492 { 493 int retval; 494 495 map->m_flags = 0; 496 /* 497 * There is a race window that the result is not the same. 498 * e.g. xfstests #223 when dioread_nolock enables. The reason 499 * is that we lookup a block mapping in extent status tree with 500 * out taking i_data_sem. So at the time the unwritten extent 501 * could be converted. 502 */ 503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 504 down_read((&EXT4_I(inode)->i_data_sem)); 505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 506 retval = ext4_ext_map_blocks(handle, inode, map, flags & 507 EXT4_GET_BLOCKS_KEEP_SIZE); 508 } else { 509 retval = ext4_ind_map_blocks(handle, inode, map, flags & 510 EXT4_GET_BLOCKS_KEEP_SIZE); 511 } 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 513 up_read((&EXT4_I(inode)->i_data_sem)); 514 /* 515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 516 * because it shouldn't be marked in es_map->m_flags. 517 */ 518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 519 520 /* 521 * We don't check m_len because extent will be collpased in status 522 * tree. So the m_len might not equal. 523 */ 524 if (es_map->m_lblk != map->m_lblk || 525 es_map->m_flags != map->m_flags || 526 es_map->m_pblk != map->m_pblk) { 527 printk("ES cache assertation failed for inode: %lu " 528 "es_cached ex [%d/%d/%llu/%x] != " 529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 530 inode->i_ino, es_map->m_lblk, es_map->m_len, 531 es_map->m_pblk, es_map->m_flags, map->m_lblk, 532 map->m_len, map->m_pblk, map->m_flags, 533 retval, flags); 534 } 535 } 536 #endif /* ES_AGGRESSIVE_TEST */ 537 538 /* 539 * The ext4_map_blocks() function tries to look up the requested blocks, 540 * and returns if the blocks are already mapped. 541 * 542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 543 * and store the allocated blocks in the result buffer head and mark it 544 * mapped. 545 * 546 * If file type is extents based, it will call ext4_ext_map_blocks(), 547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 548 * based files 549 * 550 * On success, it returns the number of blocks being mapped or allocate. 551 * if create==0 and the blocks are pre-allocated and uninitialized block, 552 * the result buffer head is unmapped. If the create ==1, it will make sure 553 * the buffer head is mapped. 554 * 555 * It returns 0 if plain look up failed (blocks have not been allocated), in 556 * that case, buffer head is unmapped 557 * 558 * It returns the error in case of allocation failure. 559 */ 560 int ext4_map_blocks(handle_t *handle, struct inode *inode, 561 struct ext4_map_blocks *map, int flags) 562 { 563 struct extent_status es; 564 int retval; 565 #ifdef ES_AGGRESSIVE_TEST 566 struct ext4_map_blocks orig_map; 567 568 memcpy(&orig_map, map, sizeof(*map)); 569 #endif 570 571 map->m_flags = 0; 572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 573 "logical block %lu\n", inode->i_ino, flags, map->m_len, 574 (unsigned long) map->m_lblk); 575 576 /* Lookup extent status tree firstly */ 577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 579 map->m_pblk = ext4_es_pblock(&es) + 580 map->m_lblk - es.es_lblk; 581 map->m_flags |= ext4_es_is_written(&es) ? 582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 583 retval = es.es_len - (map->m_lblk - es.es_lblk); 584 if (retval > map->m_len) 585 retval = map->m_len; 586 map->m_len = retval; 587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 588 retval = 0; 589 } else { 590 BUG_ON(1); 591 } 592 #ifdef ES_AGGRESSIVE_TEST 593 ext4_map_blocks_es_recheck(handle, inode, map, 594 &orig_map, flags); 595 #endif 596 goto found; 597 } 598 599 /* 600 * Try to see if we can get the block without requesting a new 601 * file system block. 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 604 down_read((&EXT4_I(inode)->i_data_sem)); 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags & 607 EXT4_GET_BLOCKS_KEEP_SIZE); 608 } else { 609 retval = ext4_ind_map_blocks(handle, inode, map, flags & 610 EXT4_GET_BLOCKS_KEEP_SIZE); 611 } 612 if (retval > 0) { 613 int ret; 614 unsigned long long status; 615 616 #ifdef ES_AGGRESSIVE_TEST 617 if (retval != map->m_len) { 618 printk("ES len assertation failed for inode: %lu " 619 "retval %d != map->m_len %d " 620 "in %s (lookup)\n", inode->i_ino, retval, 621 map->m_len, __func__); 622 } 623 #endif 624 625 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 628 ext4_find_delalloc_range(inode, map->m_lblk, 629 map->m_lblk + map->m_len - 1)) 630 status |= EXTENT_STATUS_DELAYED; 631 ret = ext4_es_insert_extent(inode, map->m_lblk, 632 map->m_len, map->m_pblk, status); 633 if (ret < 0) 634 retval = ret; 635 } 636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 637 up_read((&EXT4_I(inode)->i_data_sem)); 638 639 found: 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 641 int ret = check_block_validity(inode, map); 642 if (ret != 0) 643 return ret; 644 } 645 646 /* If it is only a block(s) look up */ 647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 648 return retval; 649 650 /* 651 * Returns if the blocks have already allocated 652 * 653 * Note that if blocks have been preallocated 654 * ext4_ext_get_block() returns the create = 0 655 * with buffer head unmapped. 656 */ 657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 658 return retval; 659 660 /* 661 * Here we clear m_flags because after allocating an new extent, 662 * it will be set again. 663 */ 664 map->m_flags &= ~EXT4_MAP_FLAGS; 665 666 /* 667 * New blocks allocate and/or writing to uninitialized extent 668 * will possibly result in updating i_data, so we take 669 * the write lock of i_data_sem, and call get_blocks() 670 * with create == 1 flag. 671 */ 672 down_write((&EXT4_I(inode)->i_data_sem)); 673 674 /* 675 * if the caller is from delayed allocation writeout path 676 * we have already reserved fs blocks for allocation 677 * let the underlying get_block() function know to 678 * avoid double accounting 679 */ 680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 682 /* 683 * We need to check for EXT4 here because migrate 684 * could have changed the inode type in between 685 */ 686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 687 retval = ext4_ext_map_blocks(handle, inode, map, flags); 688 } else { 689 retval = ext4_ind_map_blocks(handle, inode, map, flags); 690 691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 692 /* 693 * We allocated new blocks which will result in 694 * i_data's format changing. Force the migrate 695 * to fail by clearing migrate flags 696 */ 697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 698 } 699 700 /* 701 * Update reserved blocks/metadata blocks after successful 702 * block allocation which had been deferred till now. We don't 703 * support fallocate for non extent files. So we can update 704 * reserve space here. 705 */ 706 if ((retval > 0) && 707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 708 ext4_da_update_reserve_space(inode, retval, 1); 709 } 710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 712 713 if (retval > 0) { 714 int ret; 715 unsigned long long status; 716 717 #ifdef ES_AGGRESSIVE_TEST 718 if (retval != map->m_len) { 719 printk("ES len assertation failed for inode: %lu " 720 "retval %d != map->m_len %d " 721 "in %s (allocation)\n", inode->i_ino, retval, 722 map->m_len, __func__); 723 } 724 #endif 725 726 /* 727 * If the extent has been zeroed out, we don't need to update 728 * extent status tree. 729 */ 730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 732 if (ext4_es_is_written(&es)) 733 goto has_zeroout; 734 } 735 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 738 ext4_find_delalloc_range(inode, map->m_lblk, 739 map->m_lblk + map->m_len - 1)) 740 status |= EXTENT_STATUS_DELAYED; 741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 742 map->m_pblk, status); 743 if (ret < 0) 744 retval = ret; 745 } 746 747 has_zeroout: 748 up_write((&EXT4_I(inode)->i_data_sem)); 749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 750 int ret = check_block_validity(inode, map); 751 if (ret != 0) 752 return ret; 753 } 754 return retval; 755 } 756 757 /* Maximum number of blocks we map for direct IO at once. */ 758 #define DIO_MAX_BLOCKS 4096 759 760 static int _ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int flags) 762 { 763 handle_t *handle = ext4_journal_current_handle(); 764 struct ext4_map_blocks map; 765 int ret = 0, started = 0; 766 int dio_credits; 767 768 if (ext4_has_inline_data(inode)) 769 return -ERANGE; 770 771 map.m_lblk = iblock; 772 map.m_len = bh->b_size >> inode->i_blkbits; 773 774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 775 /* Direct IO write... */ 776 if (map.m_len > DIO_MAX_BLOCKS) 777 map.m_len = DIO_MAX_BLOCKS; 778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 780 dio_credits); 781 if (IS_ERR(handle)) { 782 ret = PTR_ERR(handle); 783 return ret; 784 } 785 started = 1; 786 } 787 788 ret = ext4_map_blocks(handle, inode, &map, flags); 789 if (ret > 0) { 790 map_bh(bh, inode->i_sb, map.m_pblk); 791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 ret = 0; 794 } 795 if (started) 796 ext4_journal_stop(handle); 797 return ret; 798 } 799 800 int ext4_get_block(struct inode *inode, sector_t iblock, 801 struct buffer_head *bh, int create) 802 { 803 return _ext4_get_block(inode, iblock, bh, 804 create ? EXT4_GET_BLOCKS_CREATE : 0); 805 } 806 807 /* 808 * `handle' can be NULL if create is zero 809 */ 810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 811 ext4_lblk_t block, int create, int *errp) 812 { 813 struct ext4_map_blocks map; 814 struct buffer_head *bh; 815 int fatal = 0, err; 816 817 J_ASSERT(handle != NULL || create == 0); 818 819 map.m_lblk = block; 820 map.m_len = 1; 821 err = ext4_map_blocks(handle, inode, &map, 822 create ? EXT4_GET_BLOCKS_CREATE : 0); 823 824 /* ensure we send some value back into *errp */ 825 *errp = 0; 826 827 if (create && err == 0) 828 err = -ENOSPC; /* should never happen */ 829 if (err < 0) 830 *errp = err; 831 if (err <= 0) 832 return NULL; 833 834 bh = sb_getblk(inode->i_sb, map.m_pblk); 835 if (unlikely(!bh)) { 836 *errp = -ENOMEM; 837 return NULL; 838 } 839 if (map.m_flags & EXT4_MAP_NEW) { 840 J_ASSERT(create != 0); 841 J_ASSERT(handle != NULL); 842 843 /* 844 * Now that we do not always journal data, we should 845 * keep in mind whether this should always journal the 846 * new buffer as metadata. For now, regular file 847 * writes use ext4_get_block instead, so it's not a 848 * problem. 849 */ 850 lock_buffer(bh); 851 BUFFER_TRACE(bh, "call get_create_access"); 852 fatal = ext4_journal_get_create_access(handle, bh); 853 if (!fatal && !buffer_uptodate(bh)) { 854 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 855 set_buffer_uptodate(bh); 856 } 857 unlock_buffer(bh); 858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 859 err = ext4_handle_dirty_metadata(handle, inode, bh); 860 if (!fatal) 861 fatal = err; 862 } else { 863 BUFFER_TRACE(bh, "not a new buffer"); 864 } 865 if (fatal) { 866 *errp = fatal; 867 brelse(bh); 868 bh = NULL; 869 } 870 return bh; 871 } 872 873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 874 ext4_lblk_t block, int create, int *err) 875 { 876 struct buffer_head *bh; 877 878 bh = ext4_getblk(handle, inode, block, create, err); 879 if (!bh) 880 return bh; 881 if (buffer_uptodate(bh)) 882 return bh; 883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 884 wait_on_buffer(bh); 885 if (buffer_uptodate(bh)) 886 return bh; 887 put_bh(bh); 888 *err = -EIO; 889 return NULL; 890 } 891 892 int ext4_walk_page_buffers(handle_t *handle, 893 struct buffer_head *head, 894 unsigned from, 895 unsigned to, 896 int *partial, 897 int (*fn)(handle_t *handle, 898 struct buffer_head *bh)) 899 { 900 struct buffer_head *bh; 901 unsigned block_start, block_end; 902 unsigned blocksize = head->b_size; 903 int err, ret = 0; 904 struct buffer_head *next; 905 906 for (bh = head, block_start = 0; 907 ret == 0 && (bh != head || !block_start); 908 block_start = block_end, bh = next) { 909 next = bh->b_this_page; 910 block_end = block_start + blocksize; 911 if (block_end <= from || block_start >= to) { 912 if (partial && !buffer_uptodate(bh)) 913 *partial = 1; 914 continue; 915 } 916 err = (*fn)(handle, bh); 917 if (!ret) 918 ret = err; 919 } 920 return ret; 921 } 922 923 /* 924 * To preserve ordering, it is essential that the hole instantiation and 925 * the data write be encapsulated in a single transaction. We cannot 926 * close off a transaction and start a new one between the ext4_get_block() 927 * and the commit_write(). So doing the jbd2_journal_start at the start of 928 * prepare_write() is the right place. 929 * 930 * Also, this function can nest inside ext4_writepage(). In that case, we 931 * *know* that ext4_writepage() has generated enough buffer credits to do the 932 * whole page. So we won't block on the journal in that case, which is good, 933 * because the caller may be PF_MEMALLOC. 934 * 935 * By accident, ext4 can be reentered when a transaction is open via 936 * quota file writes. If we were to commit the transaction while thus 937 * reentered, there can be a deadlock - we would be holding a quota 938 * lock, and the commit would never complete if another thread had a 939 * transaction open and was blocking on the quota lock - a ranking 940 * violation. 941 * 942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 943 * will _not_ run commit under these circumstances because handle->h_ref 944 * is elevated. We'll still have enough credits for the tiny quotafile 945 * write. 946 */ 947 int do_journal_get_write_access(handle_t *handle, 948 struct buffer_head *bh) 949 { 950 int dirty = buffer_dirty(bh); 951 int ret; 952 953 if (!buffer_mapped(bh) || buffer_freed(bh)) 954 return 0; 955 /* 956 * __block_write_begin() could have dirtied some buffers. Clean 957 * the dirty bit as jbd2_journal_get_write_access() could complain 958 * otherwise about fs integrity issues. Setting of the dirty bit 959 * by __block_write_begin() isn't a real problem here as we clear 960 * the bit before releasing a page lock and thus writeback cannot 961 * ever write the buffer. 962 */ 963 if (dirty) 964 clear_buffer_dirty(bh); 965 ret = ext4_journal_get_write_access(handle, bh); 966 if (!ret && dirty) 967 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 968 return ret; 969 } 970 971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 972 struct buffer_head *bh_result, int create); 973 static int ext4_write_begin(struct file *file, struct address_space *mapping, 974 loff_t pos, unsigned len, unsigned flags, 975 struct page **pagep, void **fsdata) 976 { 977 struct inode *inode = mapping->host; 978 int ret, needed_blocks; 979 handle_t *handle; 980 int retries = 0; 981 struct page *page; 982 pgoff_t index; 983 unsigned from, to; 984 985 trace_ext4_write_begin(inode, pos, len, flags); 986 /* 987 * Reserve one block more for addition to orphan list in case 988 * we allocate blocks but write fails for some reason 989 */ 990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 991 index = pos >> PAGE_CACHE_SHIFT; 992 from = pos & (PAGE_CACHE_SIZE - 1); 993 to = from + len; 994 995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 997 flags, pagep); 998 if (ret < 0) 999 return ret; 1000 if (ret == 1) 1001 return 0; 1002 } 1003 1004 /* 1005 * grab_cache_page_write_begin() can take a long time if the 1006 * system is thrashing due to memory pressure, or if the page 1007 * is being written back. So grab it first before we start 1008 * the transaction handle. This also allows us to allocate 1009 * the page (if needed) without using GFP_NOFS. 1010 */ 1011 retry_grab: 1012 page = grab_cache_page_write_begin(mapping, index, flags); 1013 if (!page) 1014 return -ENOMEM; 1015 unlock_page(page); 1016 1017 retry_journal: 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1019 if (IS_ERR(handle)) { 1020 page_cache_release(page); 1021 return PTR_ERR(handle); 1022 } 1023 1024 lock_page(page); 1025 if (page->mapping != mapping) { 1026 /* The page got truncated from under us */ 1027 unlock_page(page); 1028 page_cache_release(page); 1029 ext4_journal_stop(handle); 1030 goto retry_grab; 1031 } 1032 wait_on_page_writeback(page); 1033 1034 if (ext4_should_dioread_nolock(inode)) 1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1036 else 1037 ret = __block_write_begin(page, pos, len, ext4_get_block); 1038 1039 if (!ret && ext4_should_journal_data(inode)) { 1040 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1041 from, to, NULL, 1042 do_journal_get_write_access); 1043 } 1044 1045 if (ret) { 1046 unlock_page(page); 1047 /* 1048 * __block_write_begin may have instantiated a few blocks 1049 * outside i_size. Trim these off again. Don't need 1050 * i_size_read because we hold i_mutex. 1051 * 1052 * Add inode to orphan list in case we crash before 1053 * truncate finishes 1054 */ 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1056 ext4_orphan_add(handle, inode); 1057 1058 ext4_journal_stop(handle); 1059 if (pos + len > inode->i_size) { 1060 ext4_truncate_failed_write(inode); 1061 /* 1062 * If truncate failed early the inode might 1063 * still be on the orphan list; we need to 1064 * make sure the inode is removed from the 1065 * orphan list in that case. 1066 */ 1067 if (inode->i_nlink) 1068 ext4_orphan_del(NULL, inode); 1069 } 1070 1071 if (ret == -ENOSPC && 1072 ext4_should_retry_alloc(inode->i_sb, &retries)) 1073 goto retry_journal; 1074 page_cache_release(page); 1075 return ret; 1076 } 1077 *pagep = page; 1078 return ret; 1079 } 1080 1081 /* For write_end() in data=journal mode */ 1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1083 { 1084 if (!buffer_mapped(bh) || buffer_freed(bh)) 1085 return 0; 1086 set_buffer_uptodate(bh); 1087 return ext4_handle_dirty_metadata(handle, NULL, bh); 1088 } 1089 1090 static int ext4_generic_write_end(struct file *file, 1091 struct address_space *mapping, 1092 loff_t pos, unsigned len, unsigned copied, 1093 struct page *page, void *fsdata) 1094 { 1095 int i_size_changed = 0; 1096 struct inode *inode = mapping->host; 1097 handle_t *handle = ext4_journal_current_handle(); 1098 1099 if (ext4_has_inline_data(inode)) 1100 copied = ext4_write_inline_data_end(inode, pos, len, 1101 copied, page); 1102 else 1103 copied = block_write_end(file, mapping, pos, 1104 len, copied, page, fsdata); 1105 1106 /* 1107 * No need to use i_size_read() here, the i_size 1108 * cannot change under us because we hold i_mutex. 1109 * 1110 * But it's important to update i_size while still holding page lock: 1111 * page writeout could otherwise come in and zero beyond i_size. 1112 */ 1113 if (pos + copied > inode->i_size) { 1114 i_size_write(inode, pos + copied); 1115 i_size_changed = 1; 1116 } 1117 1118 if (pos + copied > EXT4_I(inode)->i_disksize) { 1119 /* We need to mark inode dirty even if 1120 * new_i_size is less that inode->i_size 1121 * bu greater than i_disksize.(hint delalloc) 1122 */ 1123 ext4_update_i_disksize(inode, (pos + copied)); 1124 i_size_changed = 1; 1125 } 1126 unlock_page(page); 1127 page_cache_release(page); 1128 1129 /* 1130 * Don't mark the inode dirty under page lock. First, it unnecessarily 1131 * makes the holding time of page lock longer. Second, it forces lock 1132 * ordering of page lock and transaction start for journaling 1133 * filesystems. 1134 */ 1135 if (i_size_changed) 1136 ext4_mark_inode_dirty(handle, inode); 1137 1138 return copied; 1139 } 1140 1141 /* 1142 * We need to pick up the new inode size which generic_commit_write gave us 1143 * `file' can be NULL - eg, when called from page_symlink(). 1144 * 1145 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1146 * buffers are managed internally. 1147 */ 1148 static int ext4_write_end(struct file *file, 1149 struct address_space *mapping, 1150 loff_t pos, unsigned len, unsigned copied, 1151 struct page *page, void *fsdata) 1152 { 1153 handle_t *handle = ext4_journal_current_handle(); 1154 struct inode *inode = mapping->host; 1155 int ret = 0, ret2; 1156 1157 trace_ext4_write_end(inode, pos, len, copied); 1158 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1159 ret = ext4_jbd2_file_inode(handle, inode); 1160 if (ret) { 1161 unlock_page(page); 1162 page_cache_release(page); 1163 goto errout; 1164 } 1165 } 1166 1167 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1168 page, fsdata); 1169 if (copied < 0) 1170 ret = copied; 1171 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1172 /* if we have allocated more blocks and copied 1173 * less. We will have blocks allocated outside 1174 * inode->i_size. So truncate them 1175 */ 1176 ext4_orphan_add(handle, inode); 1177 errout: 1178 ret2 = ext4_journal_stop(handle); 1179 if (!ret) 1180 ret = ret2; 1181 1182 if (pos + len > inode->i_size) { 1183 ext4_truncate_failed_write(inode); 1184 /* 1185 * If truncate failed early the inode might still be 1186 * on the orphan list; we need to make sure the inode 1187 * is removed from the orphan list in that case. 1188 */ 1189 if (inode->i_nlink) 1190 ext4_orphan_del(NULL, inode); 1191 } 1192 1193 return ret ? ret : copied; 1194 } 1195 1196 static int ext4_journalled_write_end(struct file *file, 1197 struct address_space *mapping, 1198 loff_t pos, unsigned len, unsigned copied, 1199 struct page *page, void *fsdata) 1200 { 1201 handle_t *handle = ext4_journal_current_handle(); 1202 struct inode *inode = mapping->host; 1203 int ret = 0, ret2; 1204 int partial = 0; 1205 unsigned from, to; 1206 loff_t new_i_size; 1207 1208 trace_ext4_journalled_write_end(inode, pos, len, copied); 1209 from = pos & (PAGE_CACHE_SIZE - 1); 1210 to = from + len; 1211 1212 BUG_ON(!ext4_handle_valid(handle)); 1213 1214 if (ext4_has_inline_data(inode)) 1215 copied = ext4_write_inline_data_end(inode, pos, len, 1216 copied, page); 1217 else { 1218 if (copied < len) { 1219 if (!PageUptodate(page)) 1220 copied = 0; 1221 page_zero_new_buffers(page, from+copied, to); 1222 } 1223 1224 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1225 to, &partial, write_end_fn); 1226 if (!partial) 1227 SetPageUptodate(page); 1228 } 1229 new_i_size = pos + copied; 1230 if (new_i_size > inode->i_size) 1231 i_size_write(inode, pos+copied); 1232 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1233 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1234 if (new_i_size > EXT4_I(inode)->i_disksize) { 1235 ext4_update_i_disksize(inode, new_i_size); 1236 ret2 = ext4_mark_inode_dirty(handle, inode); 1237 if (!ret) 1238 ret = ret2; 1239 } 1240 1241 unlock_page(page); 1242 page_cache_release(page); 1243 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1244 /* if we have allocated more blocks and copied 1245 * less. We will have blocks allocated outside 1246 * inode->i_size. So truncate them 1247 */ 1248 ext4_orphan_add(handle, inode); 1249 1250 ret2 = ext4_journal_stop(handle); 1251 if (!ret) 1252 ret = ret2; 1253 if (pos + len > inode->i_size) { 1254 ext4_truncate_failed_write(inode); 1255 /* 1256 * If truncate failed early the inode might still be 1257 * on the orphan list; we need to make sure the inode 1258 * is removed from the orphan list in that case. 1259 */ 1260 if (inode->i_nlink) 1261 ext4_orphan_del(NULL, inode); 1262 } 1263 1264 return ret ? ret : copied; 1265 } 1266 1267 /* 1268 * Reserve a metadata for a single block located at lblock 1269 */ 1270 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1271 { 1272 int retries = 0; 1273 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1274 struct ext4_inode_info *ei = EXT4_I(inode); 1275 unsigned int md_needed; 1276 ext4_lblk_t save_last_lblock; 1277 int save_len; 1278 1279 /* 1280 * recalculate the amount of metadata blocks to reserve 1281 * in order to allocate nrblocks 1282 * worse case is one extent per block 1283 */ 1284 repeat: 1285 spin_lock(&ei->i_block_reservation_lock); 1286 /* 1287 * ext4_calc_metadata_amount() has side effects, which we have 1288 * to be prepared undo if we fail to claim space. 1289 */ 1290 save_len = ei->i_da_metadata_calc_len; 1291 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1292 md_needed = EXT4_NUM_B2C(sbi, 1293 ext4_calc_metadata_amount(inode, lblock)); 1294 trace_ext4_da_reserve_space(inode, md_needed); 1295 1296 /* 1297 * We do still charge estimated metadata to the sb though; 1298 * we cannot afford to run out of free blocks. 1299 */ 1300 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1301 ei->i_da_metadata_calc_len = save_len; 1302 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1303 spin_unlock(&ei->i_block_reservation_lock); 1304 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1305 cond_resched(); 1306 goto repeat; 1307 } 1308 return -ENOSPC; 1309 } 1310 ei->i_reserved_meta_blocks += md_needed; 1311 spin_unlock(&ei->i_block_reservation_lock); 1312 1313 return 0; /* success */ 1314 } 1315 1316 /* 1317 * Reserve a single cluster located at lblock 1318 */ 1319 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1320 { 1321 int retries = 0; 1322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1323 struct ext4_inode_info *ei = EXT4_I(inode); 1324 unsigned int md_needed; 1325 int ret; 1326 ext4_lblk_t save_last_lblock; 1327 int save_len; 1328 1329 /* 1330 * We will charge metadata quota at writeout time; this saves 1331 * us from metadata over-estimation, though we may go over by 1332 * a small amount in the end. Here we just reserve for data. 1333 */ 1334 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1335 if (ret) 1336 return ret; 1337 1338 /* 1339 * recalculate the amount of metadata blocks to reserve 1340 * in order to allocate nrblocks 1341 * worse case is one extent per block 1342 */ 1343 repeat: 1344 spin_lock(&ei->i_block_reservation_lock); 1345 /* 1346 * ext4_calc_metadata_amount() has side effects, which we have 1347 * to be prepared undo if we fail to claim space. 1348 */ 1349 save_len = ei->i_da_metadata_calc_len; 1350 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1351 md_needed = EXT4_NUM_B2C(sbi, 1352 ext4_calc_metadata_amount(inode, lblock)); 1353 trace_ext4_da_reserve_space(inode, md_needed); 1354 1355 /* 1356 * We do still charge estimated metadata to the sb though; 1357 * we cannot afford to run out of free blocks. 1358 */ 1359 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1360 ei->i_da_metadata_calc_len = save_len; 1361 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1362 spin_unlock(&ei->i_block_reservation_lock); 1363 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1364 cond_resched(); 1365 goto repeat; 1366 } 1367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1368 return -ENOSPC; 1369 } 1370 ei->i_reserved_data_blocks++; 1371 ei->i_reserved_meta_blocks += md_needed; 1372 spin_unlock(&ei->i_block_reservation_lock); 1373 1374 return 0; /* success */ 1375 } 1376 1377 static void ext4_da_release_space(struct inode *inode, int to_free) 1378 { 1379 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1380 struct ext4_inode_info *ei = EXT4_I(inode); 1381 1382 if (!to_free) 1383 return; /* Nothing to release, exit */ 1384 1385 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1386 1387 trace_ext4_da_release_space(inode, to_free); 1388 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1389 /* 1390 * if there aren't enough reserved blocks, then the 1391 * counter is messed up somewhere. Since this 1392 * function is called from invalidate page, it's 1393 * harmless to return without any action. 1394 */ 1395 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1396 "ino %lu, to_free %d with only %d reserved " 1397 "data blocks", inode->i_ino, to_free, 1398 ei->i_reserved_data_blocks); 1399 WARN_ON(1); 1400 to_free = ei->i_reserved_data_blocks; 1401 } 1402 ei->i_reserved_data_blocks -= to_free; 1403 1404 if (ei->i_reserved_data_blocks == 0) { 1405 /* 1406 * We can release all of the reserved metadata blocks 1407 * only when we have written all of the delayed 1408 * allocation blocks. 1409 * Note that in case of bigalloc, i_reserved_meta_blocks, 1410 * i_reserved_data_blocks, etc. refer to number of clusters. 1411 */ 1412 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1413 ei->i_reserved_meta_blocks); 1414 ei->i_reserved_meta_blocks = 0; 1415 ei->i_da_metadata_calc_len = 0; 1416 } 1417 1418 /* update fs dirty data blocks counter */ 1419 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1420 1421 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1422 1423 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1424 } 1425 1426 static void ext4_da_page_release_reservation(struct page *page, 1427 unsigned long offset) 1428 { 1429 int to_release = 0; 1430 struct buffer_head *head, *bh; 1431 unsigned int curr_off = 0; 1432 struct inode *inode = page->mapping->host; 1433 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1434 int num_clusters; 1435 ext4_fsblk_t lblk; 1436 1437 head = page_buffers(page); 1438 bh = head; 1439 do { 1440 unsigned int next_off = curr_off + bh->b_size; 1441 1442 if ((offset <= curr_off) && (buffer_delay(bh))) { 1443 to_release++; 1444 clear_buffer_delay(bh); 1445 } 1446 curr_off = next_off; 1447 } while ((bh = bh->b_this_page) != head); 1448 1449 if (to_release) { 1450 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1451 ext4_es_remove_extent(inode, lblk, to_release); 1452 } 1453 1454 /* If we have released all the blocks belonging to a cluster, then we 1455 * need to release the reserved space for that cluster. */ 1456 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1457 while (num_clusters > 0) { 1458 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1459 ((num_clusters - 1) << sbi->s_cluster_bits); 1460 if (sbi->s_cluster_ratio == 1 || 1461 !ext4_find_delalloc_cluster(inode, lblk)) 1462 ext4_da_release_space(inode, 1); 1463 1464 num_clusters--; 1465 } 1466 } 1467 1468 /* 1469 * Delayed allocation stuff 1470 */ 1471 1472 /* 1473 * mpage_da_submit_io - walks through extent of pages and try to write 1474 * them with writepage() call back 1475 * 1476 * @mpd->inode: inode 1477 * @mpd->first_page: first page of the extent 1478 * @mpd->next_page: page after the last page of the extent 1479 * 1480 * By the time mpage_da_submit_io() is called we expect all blocks 1481 * to be allocated. this may be wrong if allocation failed. 1482 * 1483 * As pages are already locked by write_cache_pages(), we can't use it 1484 */ 1485 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1486 struct ext4_map_blocks *map) 1487 { 1488 struct pagevec pvec; 1489 unsigned long index, end; 1490 int ret = 0, err, nr_pages, i; 1491 struct inode *inode = mpd->inode; 1492 struct address_space *mapping = inode->i_mapping; 1493 loff_t size = i_size_read(inode); 1494 unsigned int len, block_start; 1495 struct buffer_head *bh, *page_bufs = NULL; 1496 sector_t pblock = 0, cur_logical = 0; 1497 struct ext4_io_submit io_submit; 1498 1499 BUG_ON(mpd->next_page <= mpd->first_page); 1500 memset(&io_submit, 0, sizeof(io_submit)); 1501 /* 1502 * We need to start from the first_page to the next_page - 1 1503 * to make sure we also write the mapped dirty buffer_heads. 1504 * If we look at mpd->b_blocknr we would only be looking 1505 * at the currently mapped buffer_heads. 1506 */ 1507 index = mpd->first_page; 1508 end = mpd->next_page - 1; 1509 1510 pagevec_init(&pvec, 0); 1511 while (index <= end) { 1512 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1513 if (nr_pages == 0) 1514 break; 1515 for (i = 0; i < nr_pages; i++) { 1516 int skip_page = 0; 1517 struct page *page = pvec.pages[i]; 1518 1519 index = page->index; 1520 if (index > end) 1521 break; 1522 1523 if (index == size >> PAGE_CACHE_SHIFT) 1524 len = size & ~PAGE_CACHE_MASK; 1525 else 1526 len = PAGE_CACHE_SIZE; 1527 if (map) { 1528 cur_logical = index << (PAGE_CACHE_SHIFT - 1529 inode->i_blkbits); 1530 pblock = map->m_pblk + (cur_logical - 1531 map->m_lblk); 1532 } 1533 index++; 1534 1535 BUG_ON(!PageLocked(page)); 1536 BUG_ON(PageWriteback(page)); 1537 1538 bh = page_bufs = page_buffers(page); 1539 block_start = 0; 1540 do { 1541 if (map && (cur_logical >= map->m_lblk) && 1542 (cur_logical <= (map->m_lblk + 1543 (map->m_len - 1)))) { 1544 if (buffer_delay(bh)) { 1545 clear_buffer_delay(bh); 1546 bh->b_blocknr = pblock; 1547 } 1548 if (buffer_unwritten(bh) || 1549 buffer_mapped(bh)) 1550 BUG_ON(bh->b_blocknr != pblock); 1551 if (map->m_flags & EXT4_MAP_UNINIT) 1552 set_buffer_uninit(bh); 1553 clear_buffer_unwritten(bh); 1554 } 1555 1556 /* 1557 * skip page if block allocation undone and 1558 * block is dirty 1559 */ 1560 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1561 skip_page = 1; 1562 bh = bh->b_this_page; 1563 block_start += bh->b_size; 1564 cur_logical++; 1565 pblock++; 1566 } while (bh != page_bufs); 1567 1568 if (skip_page) { 1569 unlock_page(page); 1570 continue; 1571 } 1572 1573 clear_page_dirty_for_io(page); 1574 err = ext4_bio_write_page(&io_submit, page, len, 1575 mpd->wbc); 1576 if (!err) 1577 mpd->pages_written++; 1578 /* 1579 * In error case, we have to continue because 1580 * remaining pages are still locked 1581 */ 1582 if (ret == 0) 1583 ret = err; 1584 } 1585 pagevec_release(&pvec); 1586 } 1587 ext4_io_submit(&io_submit); 1588 return ret; 1589 } 1590 1591 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1592 { 1593 int nr_pages, i; 1594 pgoff_t index, end; 1595 struct pagevec pvec; 1596 struct inode *inode = mpd->inode; 1597 struct address_space *mapping = inode->i_mapping; 1598 ext4_lblk_t start, last; 1599 1600 index = mpd->first_page; 1601 end = mpd->next_page - 1; 1602 1603 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1604 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1605 ext4_es_remove_extent(inode, start, last - start + 1); 1606 1607 pagevec_init(&pvec, 0); 1608 while (index <= end) { 1609 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1610 if (nr_pages == 0) 1611 break; 1612 for (i = 0; i < nr_pages; i++) { 1613 struct page *page = pvec.pages[i]; 1614 if (page->index > end) 1615 break; 1616 BUG_ON(!PageLocked(page)); 1617 BUG_ON(PageWriteback(page)); 1618 block_invalidatepage(page, 0); 1619 ClearPageUptodate(page); 1620 unlock_page(page); 1621 } 1622 index = pvec.pages[nr_pages - 1]->index + 1; 1623 pagevec_release(&pvec); 1624 } 1625 return; 1626 } 1627 1628 static void ext4_print_free_blocks(struct inode *inode) 1629 { 1630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1631 struct super_block *sb = inode->i_sb; 1632 1633 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1634 EXT4_C2B(EXT4_SB(inode->i_sb), 1635 ext4_count_free_clusters(inode->i_sb))); 1636 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1637 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1638 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1639 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1640 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1641 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1642 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1643 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1644 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1645 EXT4_I(inode)->i_reserved_data_blocks); 1646 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1647 EXT4_I(inode)->i_reserved_meta_blocks); 1648 return; 1649 } 1650 1651 /* 1652 * mpage_da_map_and_submit - go through given space, map them 1653 * if necessary, and then submit them for I/O 1654 * 1655 * @mpd - bh describing space 1656 * 1657 * The function skips space we know is already mapped to disk blocks. 1658 * 1659 */ 1660 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1661 { 1662 int err, blks, get_blocks_flags; 1663 struct ext4_map_blocks map, *mapp = NULL; 1664 sector_t next = mpd->b_blocknr; 1665 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1666 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1667 handle_t *handle = NULL; 1668 1669 /* 1670 * If the blocks are mapped already, or we couldn't accumulate 1671 * any blocks, then proceed immediately to the submission stage. 1672 */ 1673 if ((mpd->b_size == 0) || 1674 ((mpd->b_state & (1 << BH_Mapped)) && 1675 !(mpd->b_state & (1 << BH_Delay)) && 1676 !(mpd->b_state & (1 << BH_Unwritten)))) 1677 goto submit_io; 1678 1679 handle = ext4_journal_current_handle(); 1680 BUG_ON(!handle); 1681 1682 /* 1683 * Call ext4_map_blocks() to allocate any delayed allocation 1684 * blocks, or to convert an uninitialized extent to be 1685 * initialized (in the case where we have written into 1686 * one or more preallocated blocks). 1687 * 1688 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1689 * indicate that we are on the delayed allocation path. This 1690 * affects functions in many different parts of the allocation 1691 * call path. This flag exists primarily because we don't 1692 * want to change *many* call functions, so ext4_map_blocks() 1693 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1694 * inode's allocation semaphore is taken. 1695 * 1696 * If the blocks in questions were delalloc blocks, set 1697 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1698 * variables are updated after the blocks have been allocated. 1699 */ 1700 map.m_lblk = next; 1701 map.m_len = max_blocks; 1702 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1703 if (ext4_should_dioread_nolock(mpd->inode)) 1704 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1705 if (mpd->b_state & (1 << BH_Delay)) 1706 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1707 1708 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1709 if (blks < 0) { 1710 struct super_block *sb = mpd->inode->i_sb; 1711 1712 err = blks; 1713 /* 1714 * If get block returns EAGAIN or ENOSPC and there 1715 * appears to be free blocks we will just let 1716 * mpage_da_submit_io() unlock all of the pages. 1717 */ 1718 if (err == -EAGAIN) 1719 goto submit_io; 1720 1721 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1722 mpd->retval = err; 1723 goto submit_io; 1724 } 1725 1726 /* 1727 * get block failure will cause us to loop in 1728 * writepages, because a_ops->writepage won't be able 1729 * to make progress. The page will be redirtied by 1730 * writepage and writepages will again try to write 1731 * the same. 1732 */ 1733 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1734 ext4_msg(sb, KERN_CRIT, 1735 "delayed block allocation failed for inode %lu " 1736 "at logical offset %llu with max blocks %zd " 1737 "with error %d", mpd->inode->i_ino, 1738 (unsigned long long) next, 1739 mpd->b_size >> mpd->inode->i_blkbits, err); 1740 ext4_msg(sb, KERN_CRIT, 1741 "This should not happen!! Data will be lost"); 1742 if (err == -ENOSPC) 1743 ext4_print_free_blocks(mpd->inode); 1744 } 1745 /* invalidate all the pages */ 1746 ext4_da_block_invalidatepages(mpd); 1747 1748 /* Mark this page range as having been completed */ 1749 mpd->io_done = 1; 1750 return; 1751 } 1752 BUG_ON(blks == 0); 1753 1754 mapp = ↦ 1755 if (map.m_flags & EXT4_MAP_NEW) { 1756 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1757 int i; 1758 1759 for (i = 0; i < map.m_len; i++) 1760 unmap_underlying_metadata(bdev, map.m_pblk + i); 1761 } 1762 1763 /* 1764 * Update on-disk size along with block allocation. 1765 */ 1766 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1767 if (disksize > i_size_read(mpd->inode)) 1768 disksize = i_size_read(mpd->inode); 1769 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1770 ext4_update_i_disksize(mpd->inode, disksize); 1771 err = ext4_mark_inode_dirty(handle, mpd->inode); 1772 if (err) 1773 ext4_error(mpd->inode->i_sb, 1774 "Failed to mark inode %lu dirty", 1775 mpd->inode->i_ino); 1776 } 1777 1778 submit_io: 1779 mpage_da_submit_io(mpd, mapp); 1780 mpd->io_done = 1; 1781 } 1782 1783 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1784 (1 << BH_Delay) | (1 << BH_Unwritten)) 1785 1786 /* 1787 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1788 * 1789 * @mpd->lbh - extent of blocks 1790 * @logical - logical number of the block in the file 1791 * @b_state - b_state of the buffer head added 1792 * 1793 * the function is used to collect contig. blocks in same state 1794 */ 1795 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical, 1796 unsigned long b_state) 1797 { 1798 sector_t next; 1799 int blkbits = mpd->inode->i_blkbits; 1800 int nrblocks = mpd->b_size >> blkbits; 1801 1802 /* 1803 * XXX Don't go larger than mballoc is willing to allocate 1804 * This is a stopgap solution. We eventually need to fold 1805 * mpage_da_submit_io() into this function and then call 1806 * ext4_map_blocks() multiple times in a loop 1807 */ 1808 if (nrblocks >= (8*1024*1024 >> blkbits)) 1809 goto flush_it; 1810 1811 /* check if the reserved journal credits might overflow */ 1812 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) { 1813 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1814 /* 1815 * With non-extent format we are limited by the journal 1816 * credit available. Total credit needed to insert 1817 * nrblocks contiguous blocks is dependent on the 1818 * nrblocks. So limit nrblocks. 1819 */ 1820 goto flush_it; 1821 } 1822 } 1823 /* 1824 * First block in the extent 1825 */ 1826 if (mpd->b_size == 0) { 1827 mpd->b_blocknr = logical; 1828 mpd->b_size = 1 << blkbits; 1829 mpd->b_state = b_state & BH_FLAGS; 1830 return; 1831 } 1832 1833 next = mpd->b_blocknr + nrblocks; 1834 /* 1835 * Can we merge the block to our big extent? 1836 */ 1837 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1838 mpd->b_size += 1 << blkbits; 1839 return; 1840 } 1841 1842 flush_it: 1843 /* 1844 * We couldn't merge the block to our extent, so we 1845 * need to flush current extent and start new one 1846 */ 1847 mpage_da_map_and_submit(mpd); 1848 return; 1849 } 1850 1851 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1852 { 1853 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1854 } 1855 1856 /* 1857 * This function is grabs code from the very beginning of 1858 * ext4_map_blocks, but assumes that the caller is from delayed write 1859 * time. This function looks up the requested blocks and sets the 1860 * buffer delay bit under the protection of i_data_sem. 1861 */ 1862 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1863 struct ext4_map_blocks *map, 1864 struct buffer_head *bh) 1865 { 1866 struct extent_status es; 1867 int retval; 1868 sector_t invalid_block = ~((sector_t) 0xffff); 1869 #ifdef ES_AGGRESSIVE_TEST 1870 struct ext4_map_blocks orig_map; 1871 1872 memcpy(&orig_map, map, sizeof(*map)); 1873 #endif 1874 1875 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1876 invalid_block = ~0; 1877 1878 map->m_flags = 0; 1879 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1880 "logical block %lu\n", inode->i_ino, map->m_len, 1881 (unsigned long) map->m_lblk); 1882 1883 /* Lookup extent status tree firstly */ 1884 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1885 1886 if (ext4_es_is_hole(&es)) { 1887 retval = 0; 1888 down_read((&EXT4_I(inode)->i_data_sem)); 1889 goto add_delayed; 1890 } 1891 1892 /* 1893 * Delayed extent could be allocated by fallocate. 1894 * So we need to check it. 1895 */ 1896 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1897 map_bh(bh, inode->i_sb, invalid_block); 1898 set_buffer_new(bh); 1899 set_buffer_delay(bh); 1900 return 0; 1901 } 1902 1903 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1904 retval = es.es_len - (iblock - es.es_lblk); 1905 if (retval > map->m_len) 1906 retval = map->m_len; 1907 map->m_len = retval; 1908 if (ext4_es_is_written(&es)) 1909 map->m_flags |= EXT4_MAP_MAPPED; 1910 else if (ext4_es_is_unwritten(&es)) 1911 map->m_flags |= EXT4_MAP_UNWRITTEN; 1912 else 1913 BUG_ON(1); 1914 1915 #ifdef ES_AGGRESSIVE_TEST 1916 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1917 #endif 1918 return retval; 1919 } 1920 1921 /* 1922 * Try to see if we can get the block without requesting a new 1923 * file system block. 1924 */ 1925 down_read((&EXT4_I(inode)->i_data_sem)); 1926 if (ext4_has_inline_data(inode)) { 1927 /* 1928 * We will soon create blocks for this page, and let 1929 * us pretend as if the blocks aren't allocated yet. 1930 * In case of clusters, we have to handle the work 1931 * of mapping from cluster so that the reserved space 1932 * is calculated properly. 1933 */ 1934 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1935 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1936 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1937 retval = 0; 1938 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1939 retval = ext4_ext_map_blocks(NULL, inode, map, 1940 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1941 else 1942 retval = ext4_ind_map_blocks(NULL, inode, map, 1943 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1944 1945 add_delayed: 1946 if (retval == 0) { 1947 int ret; 1948 /* 1949 * XXX: __block_prepare_write() unmaps passed block, 1950 * is it OK? 1951 */ 1952 /* 1953 * If the block was allocated from previously allocated cluster, 1954 * then we don't need to reserve it again. However we still need 1955 * to reserve metadata for every block we're going to write. 1956 */ 1957 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1958 ret = ext4_da_reserve_space(inode, iblock); 1959 if (ret) { 1960 /* not enough space to reserve */ 1961 retval = ret; 1962 goto out_unlock; 1963 } 1964 } else { 1965 ret = ext4_da_reserve_metadata(inode, iblock); 1966 if (ret) { 1967 /* not enough space to reserve */ 1968 retval = ret; 1969 goto out_unlock; 1970 } 1971 } 1972 1973 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1974 ~0, EXTENT_STATUS_DELAYED); 1975 if (ret) { 1976 retval = ret; 1977 goto out_unlock; 1978 } 1979 1980 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1981 * and it should not appear on the bh->b_state. 1982 */ 1983 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1984 1985 map_bh(bh, inode->i_sb, invalid_block); 1986 set_buffer_new(bh); 1987 set_buffer_delay(bh); 1988 } else if (retval > 0) { 1989 int ret; 1990 unsigned long long status; 1991 1992 #ifdef ES_AGGRESSIVE_TEST 1993 if (retval != map->m_len) { 1994 printk("ES len assertation failed for inode: %lu " 1995 "retval %d != map->m_len %d " 1996 "in %s (lookup)\n", inode->i_ino, retval, 1997 map->m_len, __func__); 1998 } 1999 #endif 2000 2001 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 2002 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 2003 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2004 map->m_pblk, status); 2005 if (ret != 0) 2006 retval = ret; 2007 } 2008 2009 out_unlock: 2010 up_read((&EXT4_I(inode)->i_data_sem)); 2011 2012 return retval; 2013 } 2014 2015 /* 2016 * This is a special get_blocks_t callback which is used by 2017 * ext4_da_write_begin(). It will either return mapped block or 2018 * reserve space for a single block. 2019 * 2020 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2021 * We also have b_blocknr = -1 and b_bdev initialized properly 2022 * 2023 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2024 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2025 * initialized properly. 2026 */ 2027 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2028 struct buffer_head *bh, int create) 2029 { 2030 struct ext4_map_blocks map; 2031 int ret = 0; 2032 2033 BUG_ON(create == 0); 2034 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2035 2036 map.m_lblk = iblock; 2037 map.m_len = 1; 2038 2039 /* 2040 * first, we need to know whether the block is allocated already 2041 * preallocated blocks are unmapped but should treated 2042 * the same as allocated blocks. 2043 */ 2044 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2045 if (ret <= 0) 2046 return ret; 2047 2048 map_bh(bh, inode->i_sb, map.m_pblk); 2049 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2050 2051 if (buffer_unwritten(bh)) { 2052 /* A delayed write to unwritten bh should be marked 2053 * new and mapped. Mapped ensures that we don't do 2054 * get_block multiple times when we write to the same 2055 * offset and new ensures that we do proper zero out 2056 * for partial write. 2057 */ 2058 set_buffer_new(bh); 2059 set_buffer_mapped(bh); 2060 } 2061 return 0; 2062 } 2063 2064 static int bget_one(handle_t *handle, struct buffer_head *bh) 2065 { 2066 get_bh(bh); 2067 return 0; 2068 } 2069 2070 static int bput_one(handle_t *handle, struct buffer_head *bh) 2071 { 2072 put_bh(bh); 2073 return 0; 2074 } 2075 2076 static int __ext4_journalled_writepage(struct page *page, 2077 unsigned int len) 2078 { 2079 struct address_space *mapping = page->mapping; 2080 struct inode *inode = mapping->host; 2081 struct buffer_head *page_bufs = NULL; 2082 handle_t *handle = NULL; 2083 int ret = 0, err = 0; 2084 int inline_data = ext4_has_inline_data(inode); 2085 struct buffer_head *inode_bh = NULL; 2086 2087 ClearPageChecked(page); 2088 2089 if (inline_data) { 2090 BUG_ON(page->index != 0); 2091 BUG_ON(len > ext4_get_max_inline_size(inode)); 2092 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2093 if (inode_bh == NULL) 2094 goto out; 2095 } else { 2096 page_bufs = page_buffers(page); 2097 if (!page_bufs) { 2098 BUG(); 2099 goto out; 2100 } 2101 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2102 NULL, bget_one); 2103 } 2104 /* As soon as we unlock the page, it can go away, but we have 2105 * references to buffers so we are safe */ 2106 unlock_page(page); 2107 2108 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2109 ext4_writepage_trans_blocks(inode)); 2110 if (IS_ERR(handle)) { 2111 ret = PTR_ERR(handle); 2112 goto out; 2113 } 2114 2115 BUG_ON(!ext4_handle_valid(handle)); 2116 2117 if (inline_data) { 2118 ret = ext4_journal_get_write_access(handle, inode_bh); 2119 2120 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2121 2122 } else { 2123 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2124 do_journal_get_write_access); 2125 2126 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2127 write_end_fn); 2128 } 2129 if (ret == 0) 2130 ret = err; 2131 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2132 err = ext4_journal_stop(handle); 2133 if (!ret) 2134 ret = err; 2135 2136 if (!ext4_has_inline_data(inode)) 2137 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2138 NULL, bput_one); 2139 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2140 out: 2141 brelse(inode_bh); 2142 return ret; 2143 } 2144 2145 /* 2146 * Note that we don't need to start a transaction unless we're journaling data 2147 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2148 * need to file the inode to the transaction's list in ordered mode because if 2149 * we are writing back data added by write(), the inode is already there and if 2150 * we are writing back data modified via mmap(), no one guarantees in which 2151 * transaction the data will hit the disk. In case we are journaling data, we 2152 * cannot start transaction directly because transaction start ranks above page 2153 * lock so we have to do some magic. 2154 * 2155 * This function can get called via... 2156 * - ext4_da_writepages after taking page lock (have journal handle) 2157 * - journal_submit_inode_data_buffers (no journal handle) 2158 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2159 * - grab_page_cache when doing write_begin (have journal handle) 2160 * 2161 * We don't do any block allocation in this function. If we have page with 2162 * multiple blocks we need to write those buffer_heads that are mapped. This 2163 * is important for mmaped based write. So if we do with blocksize 1K 2164 * truncate(f, 1024); 2165 * a = mmap(f, 0, 4096); 2166 * a[0] = 'a'; 2167 * truncate(f, 4096); 2168 * we have in the page first buffer_head mapped via page_mkwrite call back 2169 * but other buffer_heads would be unmapped but dirty (dirty done via the 2170 * do_wp_page). So writepage should write the first block. If we modify 2171 * the mmap area beyond 1024 we will again get a page_fault and the 2172 * page_mkwrite callback will do the block allocation and mark the 2173 * buffer_heads mapped. 2174 * 2175 * We redirty the page if we have any buffer_heads that is either delay or 2176 * unwritten in the page. 2177 * 2178 * We can get recursively called as show below. 2179 * 2180 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2181 * ext4_writepage() 2182 * 2183 * But since we don't do any block allocation we should not deadlock. 2184 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2185 */ 2186 static int ext4_writepage(struct page *page, 2187 struct writeback_control *wbc) 2188 { 2189 int ret = 0; 2190 loff_t size; 2191 unsigned int len; 2192 struct buffer_head *page_bufs = NULL; 2193 struct inode *inode = page->mapping->host; 2194 struct ext4_io_submit io_submit; 2195 2196 trace_ext4_writepage(page); 2197 size = i_size_read(inode); 2198 if (page->index == size >> PAGE_CACHE_SHIFT) 2199 len = size & ~PAGE_CACHE_MASK; 2200 else 2201 len = PAGE_CACHE_SIZE; 2202 2203 page_bufs = page_buffers(page); 2204 /* 2205 * We cannot do block allocation or other extent handling in this 2206 * function. If there are buffers needing that, we have to redirty 2207 * the page. But we may reach here when we do a journal commit via 2208 * journal_submit_inode_data_buffers() and in that case we must write 2209 * allocated buffers to achieve data=ordered mode guarantees. 2210 */ 2211 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2212 ext4_bh_delay_or_unwritten)) { 2213 redirty_page_for_writepage(wbc, page); 2214 if (current->flags & PF_MEMALLOC) { 2215 /* 2216 * For memory cleaning there's no point in writing only 2217 * some buffers. So just bail out. Warn if we came here 2218 * from direct reclaim. 2219 */ 2220 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2221 == PF_MEMALLOC); 2222 unlock_page(page); 2223 return 0; 2224 } 2225 } 2226 2227 if (PageChecked(page) && ext4_should_journal_data(inode)) 2228 /* 2229 * It's mmapped pagecache. Add buffers and journal it. There 2230 * doesn't seem much point in redirtying the page here. 2231 */ 2232 return __ext4_journalled_writepage(page, len); 2233 2234 memset(&io_submit, 0, sizeof(io_submit)); 2235 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 2236 ext4_io_submit(&io_submit); 2237 return ret; 2238 } 2239 2240 /* 2241 * This is called via ext4_da_writepages() to 2242 * calculate the total number of credits to reserve to fit 2243 * a single extent allocation into a single transaction, 2244 * ext4_da_writpeages() will loop calling this before 2245 * the block allocation. 2246 */ 2247 2248 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2249 { 2250 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2251 2252 /* 2253 * With non-extent format the journal credit needed to 2254 * insert nrblocks contiguous block is dependent on 2255 * number of contiguous block. So we will limit 2256 * number of contiguous block to a sane value 2257 */ 2258 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2259 (max_blocks > EXT4_MAX_TRANS_DATA)) 2260 max_blocks = EXT4_MAX_TRANS_DATA; 2261 2262 return ext4_chunk_trans_blocks(inode, max_blocks); 2263 } 2264 2265 /* 2266 * write_cache_pages_da - walk the list of dirty pages of the given 2267 * address space and accumulate pages that need writing, and call 2268 * mpage_da_map_and_submit to map a single contiguous memory region 2269 * and then write them. 2270 */ 2271 static int write_cache_pages_da(handle_t *handle, 2272 struct address_space *mapping, 2273 struct writeback_control *wbc, 2274 struct mpage_da_data *mpd, 2275 pgoff_t *done_index) 2276 { 2277 struct buffer_head *bh, *head; 2278 struct inode *inode = mapping->host; 2279 struct pagevec pvec; 2280 unsigned int nr_pages; 2281 sector_t logical; 2282 pgoff_t index, end; 2283 long nr_to_write = wbc->nr_to_write; 2284 int i, tag, ret = 0; 2285 2286 memset(mpd, 0, sizeof(struct mpage_da_data)); 2287 mpd->wbc = wbc; 2288 mpd->inode = inode; 2289 pagevec_init(&pvec, 0); 2290 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2291 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2292 2293 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2294 tag = PAGECACHE_TAG_TOWRITE; 2295 else 2296 tag = PAGECACHE_TAG_DIRTY; 2297 2298 *done_index = index; 2299 while (index <= end) { 2300 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2301 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2302 if (nr_pages == 0) 2303 return 0; 2304 2305 for (i = 0; i < nr_pages; i++) { 2306 struct page *page = pvec.pages[i]; 2307 2308 /* 2309 * At this point, the page may be truncated or 2310 * invalidated (changing page->mapping to NULL), or 2311 * even swizzled back from swapper_space to tmpfs file 2312 * mapping. However, page->index will not change 2313 * because we have a reference on the page. 2314 */ 2315 if (page->index > end) 2316 goto out; 2317 2318 *done_index = page->index + 1; 2319 2320 /* 2321 * If we can't merge this page, and we have 2322 * accumulated an contiguous region, write it 2323 */ 2324 if ((mpd->next_page != page->index) && 2325 (mpd->next_page != mpd->first_page)) { 2326 mpage_da_map_and_submit(mpd); 2327 goto ret_extent_tail; 2328 } 2329 2330 lock_page(page); 2331 2332 /* 2333 * If the page is no longer dirty, or its 2334 * mapping no longer corresponds to inode we 2335 * are writing (which means it has been 2336 * truncated or invalidated), or the page is 2337 * already under writeback and we are not 2338 * doing a data integrity writeback, skip the page 2339 */ 2340 if (!PageDirty(page) || 2341 (PageWriteback(page) && 2342 (wbc->sync_mode == WB_SYNC_NONE)) || 2343 unlikely(page->mapping != mapping)) { 2344 unlock_page(page); 2345 continue; 2346 } 2347 2348 wait_on_page_writeback(page); 2349 BUG_ON(PageWriteback(page)); 2350 2351 /* 2352 * If we have inline data and arrive here, it means that 2353 * we will soon create the block for the 1st page, so 2354 * we'd better clear the inline data here. 2355 */ 2356 if (ext4_has_inline_data(inode)) { 2357 BUG_ON(ext4_test_inode_state(inode, 2358 EXT4_STATE_MAY_INLINE_DATA)); 2359 ext4_destroy_inline_data(handle, inode); 2360 } 2361 2362 if (mpd->next_page != page->index) 2363 mpd->first_page = page->index; 2364 mpd->next_page = page->index + 1; 2365 logical = (sector_t) page->index << 2366 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2367 2368 /* Add all dirty buffers to mpd */ 2369 head = page_buffers(page); 2370 bh = head; 2371 do { 2372 BUG_ON(buffer_locked(bh)); 2373 /* 2374 * We need to try to allocate unmapped blocks 2375 * in the same page. Otherwise we won't make 2376 * progress with the page in ext4_writepage 2377 */ 2378 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2379 mpage_add_bh_to_extent(mpd, logical, 2380 bh->b_state); 2381 if (mpd->io_done) 2382 goto ret_extent_tail; 2383 } else if (buffer_dirty(bh) && 2384 buffer_mapped(bh)) { 2385 /* 2386 * mapped dirty buffer. We need to 2387 * update the b_state because we look 2388 * at b_state in mpage_da_map_blocks. 2389 * We don't update b_size because if we 2390 * find an unmapped buffer_head later 2391 * we need to use the b_state flag of 2392 * that buffer_head. 2393 */ 2394 if (mpd->b_size == 0) 2395 mpd->b_state = 2396 bh->b_state & BH_FLAGS; 2397 } 2398 logical++; 2399 } while ((bh = bh->b_this_page) != head); 2400 2401 if (nr_to_write > 0) { 2402 nr_to_write--; 2403 if (nr_to_write == 0 && 2404 wbc->sync_mode == WB_SYNC_NONE) 2405 /* 2406 * We stop writing back only if we are 2407 * not doing integrity sync. In case of 2408 * integrity sync we have to keep going 2409 * because someone may be concurrently 2410 * dirtying pages, and we might have 2411 * synced a lot of newly appeared dirty 2412 * pages, but have not synced all of the 2413 * old dirty pages. 2414 */ 2415 goto out; 2416 } 2417 } 2418 pagevec_release(&pvec); 2419 cond_resched(); 2420 } 2421 return 0; 2422 ret_extent_tail: 2423 ret = MPAGE_DA_EXTENT_TAIL; 2424 out: 2425 pagevec_release(&pvec); 2426 cond_resched(); 2427 return ret; 2428 } 2429 2430 2431 static int ext4_da_writepages(struct address_space *mapping, 2432 struct writeback_control *wbc) 2433 { 2434 pgoff_t index; 2435 int range_whole = 0; 2436 handle_t *handle = NULL; 2437 struct mpage_da_data mpd; 2438 struct inode *inode = mapping->host; 2439 int pages_written = 0; 2440 unsigned int max_pages; 2441 int range_cyclic, cycled = 1, io_done = 0; 2442 int needed_blocks, ret = 0; 2443 long desired_nr_to_write, nr_to_writebump = 0; 2444 loff_t range_start = wbc->range_start; 2445 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2446 pgoff_t done_index = 0; 2447 pgoff_t end; 2448 struct blk_plug plug; 2449 2450 trace_ext4_da_writepages(inode, wbc); 2451 2452 /* 2453 * No pages to write? This is mainly a kludge to avoid starting 2454 * a transaction for special inodes like journal inode on last iput() 2455 * because that could violate lock ordering on umount 2456 */ 2457 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2458 return 0; 2459 2460 /* 2461 * If the filesystem has aborted, it is read-only, so return 2462 * right away instead of dumping stack traces later on that 2463 * will obscure the real source of the problem. We test 2464 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2465 * the latter could be true if the filesystem is mounted 2466 * read-only, and in that case, ext4_da_writepages should 2467 * *never* be called, so if that ever happens, we would want 2468 * the stack trace. 2469 */ 2470 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2471 return -EROFS; 2472 2473 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2474 range_whole = 1; 2475 2476 range_cyclic = wbc->range_cyclic; 2477 if (wbc->range_cyclic) { 2478 index = mapping->writeback_index; 2479 if (index) 2480 cycled = 0; 2481 wbc->range_start = index << PAGE_CACHE_SHIFT; 2482 wbc->range_end = LLONG_MAX; 2483 wbc->range_cyclic = 0; 2484 end = -1; 2485 } else { 2486 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2487 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2488 } 2489 2490 /* 2491 * This works around two forms of stupidity. The first is in 2492 * the writeback code, which caps the maximum number of pages 2493 * written to be 1024 pages. This is wrong on multiple 2494 * levels; different architectues have a different page size, 2495 * which changes the maximum amount of data which gets 2496 * written. Secondly, 4 megabytes is way too small. XFS 2497 * forces this value to be 16 megabytes by multiplying 2498 * nr_to_write parameter by four, and then relies on its 2499 * allocator to allocate larger extents to make them 2500 * contiguous. Unfortunately this brings us to the second 2501 * stupidity, which is that ext4's mballoc code only allocates 2502 * at most 2048 blocks. So we force contiguous writes up to 2503 * the number of dirty blocks in the inode, or 2504 * sbi->max_writeback_mb_bump whichever is smaller. 2505 */ 2506 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2507 if (!range_cyclic && range_whole) { 2508 if (wbc->nr_to_write == LONG_MAX) 2509 desired_nr_to_write = wbc->nr_to_write; 2510 else 2511 desired_nr_to_write = wbc->nr_to_write * 8; 2512 } else 2513 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2514 max_pages); 2515 if (desired_nr_to_write > max_pages) 2516 desired_nr_to_write = max_pages; 2517 2518 if (wbc->nr_to_write < desired_nr_to_write) { 2519 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2520 wbc->nr_to_write = desired_nr_to_write; 2521 } 2522 2523 retry: 2524 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2525 tag_pages_for_writeback(mapping, index, end); 2526 2527 blk_start_plug(&plug); 2528 while (!ret && wbc->nr_to_write > 0) { 2529 2530 /* 2531 * we insert one extent at a time. So we need 2532 * credit needed for single extent allocation. 2533 * journalled mode is currently not supported 2534 * by delalloc 2535 */ 2536 BUG_ON(ext4_should_journal_data(inode)); 2537 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2538 2539 /* start a new transaction*/ 2540 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2541 needed_blocks); 2542 if (IS_ERR(handle)) { 2543 ret = PTR_ERR(handle); 2544 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2545 "%ld pages, ino %lu; err %d", __func__, 2546 wbc->nr_to_write, inode->i_ino, ret); 2547 blk_finish_plug(&plug); 2548 goto out_writepages; 2549 } 2550 2551 /* 2552 * Now call write_cache_pages_da() to find the next 2553 * contiguous region of logical blocks that need 2554 * blocks to be allocated by ext4 and submit them. 2555 */ 2556 ret = write_cache_pages_da(handle, mapping, 2557 wbc, &mpd, &done_index); 2558 /* 2559 * If we have a contiguous extent of pages and we 2560 * haven't done the I/O yet, map the blocks and submit 2561 * them for I/O. 2562 */ 2563 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2564 mpage_da_map_and_submit(&mpd); 2565 ret = MPAGE_DA_EXTENT_TAIL; 2566 } 2567 trace_ext4_da_write_pages(inode, &mpd); 2568 wbc->nr_to_write -= mpd.pages_written; 2569 2570 ext4_journal_stop(handle); 2571 2572 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2573 /* commit the transaction which would 2574 * free blocks released in the transaction 2575 * and try again 2576 */ 2577 jbd2_journal_force_commit_nested(sbi->s_journal); 2578 ret = 0; 2579 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2580 /* 2581 * Got one extent now try with rest of the pages. 2582 * If mpd.retval is set -EIO, journal is aborted. 2583 * So we don't need to write any more. 2584 */ 2585 pages_written += mpd.pages_written; 2586 ret = mpd.retval; 2587 io_done = 1; 2588 } else if (wbc->nr_to_write) 2589 /* 2590 * There is no more writeout needed 2591 * or we requested for a noblocking writeout 2592 * and we found the device congested 2593 */ 2594 break; 2595 } 2596 blk_finish_plug(&plug); 2597 if (!io_done && !cycled) { 2598 cycled = 1; 2599 index = 0; 2600 wbc->range_start = index << PAGE_CACHE_SHIFT; 2601 wbc->range_end = mapping->writeback_index - 1; 2602 goto retry; 2603 } 2604 2605 /* Update index */ 2606 wbc->range_cyclic = range_cyclic; 2607 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2608 /* 2609 * set the writeback_index so that range_cyclic 2610 * mode will write it back later 2611 */ 2612 mapping->writeback_index = done_index; 2613 2614 out_writepages: 2615 wbc->nr_to_write -= nr_to_writebump; 2616 wbc->range_start = range_start; 2617 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2618 return ret; 2619 } 2620 2621 static int ext4_nonda_switch(struct super_block *sb) 2622 { 2623 s64 free_blocks, dirty_blocks; 2624 struct ext4_sb_info *sbi = EXT4_SB(sb); 2625 2626 /* 2627 * switch to non delalloc mode if we are running low 2628 * on free block. The free block accounting via percpu 2629 * counters can get slightly wrong with percpu_counter_batch getting 2630 * accumulated on each CPU without updating global counters 2631 * Delalloc need an accurate free block accounting. So switch 2632 * to non delalloc when we are near to error range. 2633 */ 2634 free_blocks = EXT4_C2B(sbi, 2635 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2636 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2637 /* 2638 * Start pushing delalloc when 1/2 of free blocks are dirty. 2639 */ 2640 if (dirty_blocks && (free_blocks < 2 * dirty_blocks)) 2641 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2642 2643 if (2 * free_blocks < 3 * dirty_blocks || 2644 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2645 /* 2646 * free block count is less than 150% of dirty blocks 2647 * or free blocks is less than watermark 2648 */ 2649 return 1; 2650 } 2651 return 0; 2652 } 2653 2654 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2655 loff_t pos, unsigned len, unsigned flags, 2656 struct page **pagep, void **fsdata) 2657 { 2658 int ret, retries = 0; 2659 struct page *page; 2660 pgoff_t index; 2661 struct inode *inode = mapping->host; 2662 handle_t *handle; 2663 2664 index = pos >> PAGE_CACHE_SHIFT; 2665 2666 if (ext4_nonda_switch(inode->i_sb)) { 2667 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2668 return ext4_write_begin(file, mapping, pos, 2669 len, flags, pagep, fsdata); 2670 } 2671 *fsdata = (void *)0; 2672 trace_ext4_da_write_begin(inode, pos, len, flags); 2673 2674 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2675 ret = ext4_da_write_inline_data_begin(mapping, inode, 2676 pos, len, flags, 2677 pagep, fsdata); 2678 if (ret < 0) 2679 return ret; 2680 if (ret == 1) 2681 return 0; 2682 } 2683 2684 /* 2685 * grab_cache_page_write_begin() can take a long time if the 2686 * system is thrashing due to memory pressure, or if the page 2687 * is being written back. So grab it first before we start 2688 * the transaction handle. This also allows us to allocate 2689 * the page (if needed) without using GFP_NOFS. 2690 */ 2691 retry_grab: 2692 page = grab_cache_page_write_begin(mapping, index, flags); 2693 if (!page) 2694 return -ENOMEM; 2695 unlock_page(page); 2696 2697 /* 2698 * With delayed allocation, we don't log the i_disksize update 2699 * if there is delayed block allocation. But we still need 2700 * to journalling the i_disksize update if writes to the end 2701 * of file which has an already mapped buffer. 2702 */ 2703 retry_journal: 2704 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2705 if (IS_ERR(handle)) { 2706 page_cache_release(page); 2707 return PTR_ERR(handle); 2708 } 2709 2710 lock_page(page); 2711 if (page->mapping != mapping) { 2712 /* The page got truncated from under us */ 2713 unlock_page(page); 2714 page_cache_release(page); 2715 ext4_journal_stop(handle); 2716 goto retry_grab; 2717 } 2718 /* In case writeback began while the page was unlocked */ 2719 wait_on_page_writeback(page); 2720 2721 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2722 if (ret < 0) { 2723 unlock_page(page); 2724 ext4_journal_stop(handle); 2725 /* 2726 * block_write_begin may have instantiated a few blocks 2727 * outside i_size. Trim these off again. Don't need 2728 * i_size_read because we hold i_mutex. 2729 */ 2730 if (pos + len > inode->i_size) 2731 ext4_truncate_failed_write(inode); 2732 2733 if (ret == -ENOSPC && 2734 ext4_should_retry_alloc(inode->i_sb, &retries)) 2735 goto retry_journal; 2736 2737 page_cache_release(page); 2738 return ret; 2739 } 2740 2741 *pagep = page; 2742 return ret; 2743 } 2744 2745 /* 2746 * Check if we should update i_disksize 2747 * when write to the end of file but not require block allocation 2748 */ 2749 static int ext4_da_should_update_i_disksize(struct page *page, 2750 unsigned long offset) 2751 { 2752 struct buffer_head *bh; 2753 struct inode *inode = page->mapping->host; 2754 unsigned int idx; 2755 int i; 2756 2757 bh = page_buffers(page); 2758 idx = offset >> inode->i_blkbits; 2759 2760 for (i = 0; i < idx; i++) 2761 bh = bh->b_this_page; 2762 2763 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2764 return 0; 2765 return 1; 2766 } 2767 2768 static int ext4_da_write_end(struct file *file, 2769 struct address_space *mapping, 2770 loff_t pos, unsigned len, unsigned copied, 2771 struct page *page, void *fsdata) 2772 { 2773 struct inode *inode = mapping->host; 2774 int ret = 0, ret2; 2775 handle_t *handle = ext4_journal_current_handle(); 2776 loff_t new_i_size; 2777 unsigned long start, end; 2778 int write_mode = (int)(unsigned long)fsdata; 2779 2780 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2781 return ext4_write_end(file, mapping, pos, 2782 len, copied, page, fsdata); 2783 2784 trace_ext4_da_write_end(inode, pos, len, copied); 2785 start = pos & (PAGE_CACHE_SIZE - 1); 2786 end = start + copied - 1; 2787 2788 /* 2789 * generic_write_end() will run mark_inode_dirty() if i_size 2790 * changes. So let's piggyback the i_disksize mark_inode_dirty 2791 * into that. 2792 */ 2793 new_i_size = pos + copied; 2794 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2795 if (ext4_has_inline_data(inode) || 2796 ext4_da_should_update_i_disksize(page, end)) { 2797 down_write(&EXT4_I(inode)->i_data_sem); 2798 if (new_i_size > EXT4_I(inode)->i_disksize) 2799 EXT4_I(inode)->i_disksize = new_i_size; 2800 up_write(&EXT4_I(inode)->i_data_sem); 2801 /* We need to mark inode dirty even if 2802 * new_i_size is less that inode->i_size 2803 * bu greater than i_disksize.(hint delalloc) 2804 */ 2805 ext4_mark_inode_dirty(handle, inode); 2806 } 2807 } 2808 2809 if (write_mode != CONVERT_INLINE_DATA && 2810 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2811 ext4_has_inline_data(inode)) 2812 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2813 page); 2814 else 2815 ret2 = generic_write_end(file, mapping, pos, len, copied, 2816 page, fsdata); 2817 2818 copied = ret2; 2819 if (ret2 < 0) 2820 ret = ret2; 2821 ret2 = ext4_journal_stop(handle); 2822 if (!ret) 2823 ret = ret2; 2824 2825 return ret ? ret : copied; 2826 } 2827 2828 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2829 { 2830 /* 2831 * Drop reserved blocks 2832 */ 2833 BUG_ON(!PageLocked(page)); 2834 if (!page_has_buffers(page)) 2835 goto out; 2836 2837 ext4_da_page_release_reservation(page, offset); 2838 2839 out: 2840 ext4_invalidatepage(page, offset); 2841 2842 return; 2843 } 2844 2845 /* 2846 * Force all delayed allocation blocks to be allocated for a given inode. 2847 */ 2848 int ext4_alloc_da_blocks(struct inode *inode) 2849 { 2850 trace_ext4_alloc_da_blocks(inode); 2851 2852 if (!EXT4_I(inode)->i_reserved_data_blocks && 2853 !EXT4_I(inode)->i_reserved_meta_blocks) 2854 return 0; 2855 2856 /* 2857 * We do something simple for now. The filemap_flush() will 2858 * also start triggering a write of the data blocks, which is 2859 * not strictly speaking necessary (and for users of 2860 * laptop_mode, not even desirable). However, to do otherwise 2861 * would require replicating code paths in: 2862 * 2863 * ext4_da_writepages() -> 2864 * write_cache_pages() ---> (via passed in callback function) 2865 * __mpage_da_writepage() --> 2866 * mpage_add_bh_to_extent() 2867 * mpage_da_map_blocks() 2868 * 2869 * The problem is that write_cache_pages(), located in 2870 * mm/page-writeback.c, marks pages clean in preparation for 2871 * doing I/O, which is not desirable if we're not planning on 2872 * doing I/O at all. 2873 * 2874 * We could call write_cache_pages(), and then redirty all of 2875 * the pages by calling redirty_page_for_writepage() but that 2876 * would be ugly in the extreme. So instead we would need to 2877 * replicate parts of the code in the above functions, 2878 * simplifying them because we wouldn't actually intend to 2879 * write out the pages, but rather only collect contiguous 2880 * logical block extents, call the multi-block allocator, and 2881 * then update the buffer heads with the block allocations. 2882 * 2883 * For now, though, we'll cheat by calling filemap_flush(), 2884 * which will map the blocks, and start the I/O, but not 2885 * actually wait for the I/O to complete. 2886 */ 2887 return filemap_flush(inode->i_mapping); 2888 } 2889 2890 /* 2891 * bmap() is special. It gets used by applications such as lilo and by 2892 * the swapper to find the on-disk block of a specific piece of data. 2893 * 2894 * Naturally, this is dangerous if the block concerned is still in the 2895 * journal. If somebody makes a swapfile on an ext4 data-journaling 2896 * filesystem and enables swap, then they may get a nasty shock when the 2897 * data getting swapped to that swapfile suddenly gets overwritten by 2898 * the original zero's written out previously to the journal and 2899 * awaiting writeback in the kernel's buffer cache. 2900 * 2901 * So, if we see any bmap calls here on a modified, data-journaled file, 2902 * take extra steps to flush any blocks which might be in the cache. 2903 */ 2904 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2905 { 2906 struct inode *inode = mapping->host; 2907 journal_t *journal; 2908 int err; 2909 2910 /* 2911 * We can get here for an inline file via the FIBMAP ioctl 2912 */ 2913 if (ext4_has_inline_data(inode)) 2914 return 0; 2915 2916 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2917 test_opt(inode->i_sb, DELALLOC)) { 2918 /* 2919 * With delalloc we want to sync the file 2920 * so that we can make sure we allocate 2921 * blocks for file 2922 */ 2923 filemap_write_and_wait(mapping); 2924 } 2925 2926 if (EXT4_JOURNAL(inode) && 2927 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2928 /* 2929 * This is a REALLY heavyweight approach, but the use of 2930 * bmap on dirty files is expected to be extremely rare: 2931 * only if we run lilo or swapon on a freshly made file 2932 * do we expect this to happen. 2933 * 2934 * (bmap requires CAP_SYS_RAWIO so this does not 2935 * represent an unprivileged user DOS attack --- we'd be 2936 * in trouble if mortal users could trigger this path at 2937 * will.) 2938 * 2939 * NB. EXT4_STATE_JDATA is not set on files other than 2940 * regular files. If somebody wants to bmap a directory 2941 * or symlink and gets confused because the buffer 2942 * hasn't yet been flushed to disk, they deserve 2943 * everything they get. 2944 */ 2945 2946 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2947 journal = EXT4_JOURNAL(inode); 2948 jbd2_journal_lock_updates(journal); 2949 err = jbd2_journal_flush(journal); 2950 jbd2_journal_unlock_updates(journal); 2951 2952 if (err) 2953 return 0; 2954 } 2955 2956 return generic_block_bmap(mapping, block, ext4_get_block); 2957 } 2958 2959 static int ext4_readpage(struct file *file, struct page *page) 2960 { 2961 int ret = -EAGAIN; 2962 struct inode *inode = page->mapping->host; 2963 2964 trace_ext4_readpage(page); 2965 2966 if (ext4_has_inline_data(inode)) 2967 ret = ext4_readpage_inline(inode, page); 2968 2969 if (ret == -EAGAIN) 2970 return mpage_readpage(page, ext4_get_block); 2971 2972 return ret; 2973 } 2974 2975 static int 2976 ext4_readpages(struct file *file, struct address_space *mapping, 2977 struct list_head *pages, unsigned nr_pages) 2978 { 2979 struct inode *inode = mapping->host; 2980 2981 /* If the file has inline data, no need to do readpages. */ 2982 if (ext4_has_inline_data(inode)) 2983 return 0; 2984 2985 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2986 } 2987 2988 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2989 { 2990 trace_ext4_invalidatepage(page, offset); 2991 2992 /* No journalling happens on data buffers when this function is used */ 2993 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2994 2995 block_invalidatepage(page, offset); 2996 } 2997 2998 static int __ext4_journalled_invalidatepage(struct page *page, 2999 unsigned long offset) 3000 { 3001 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3002 3003 trace_ext4_journalled_invalidatepage(page, offset); 3004 3005 /* 3006 * If it's a full truncate we just forget about the pending dirtying 3007 */ 3008 if (offset == 0) 3009 ClearPageChecked(page); 3010 3011 return jbd2_journal_invalidatepage(journal, page, offset); 3012 } 3013 3014 /* Wrapper for aops... */ 3015 static void ext4_journalled_invalidatepage(struct page *page, 3016 unsigned long offset) 3017 { 3018 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0); 3019 } 3020 3021 static int ext4_releasepage(struct page *page, gfp_t wait) 3022 { 3023 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3024 3025 trace_ext4_releasepage(page); 3026 3027 /* Page has dirty journalled data -> cannot release */ 3028 if (PageChecked(page)) 3029 return 0; 3030 if (journal) 3031 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3032 else 3033 return try_to_free_buffers(page); 3034 } 3035 3036 /* 3037 * ext4_get_block used when preparing for a DIO write or buffer write. 3038 * We allocate an uinitialized extent if blocks haven't been allocated. 3039 * The extent will be converted to initialized after the IO is complete. 3040 */ 3041 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3042 struct buffer_head *bh_result, int create) 3043 { 3044 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3045 inode->i_ino, create); 3046 return _ext4_get_block(inode, iblock, bh_result, 3047 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3048 } 3049 3050 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3051 struct buffer_head *bh_result, int create) 3052 { 3053 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3054 inode->i_ino, create); 3055 return _ext4_get_block(inode, iblock, bh_result, 3056 EXT4_GET_BLOCKS_NO_LOCK); 3057 } 3058 3059 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3060 ssize_t size, void *private, int ret, 3061 bool is_async) 3062 { 3063 struct inode *inode = file_inode(iocb->ki_filp); 3064 ext4_io_end_t *io_end = iocb->private; 3065 3066 /* if not async direct IO or dio with 0 bytes write, just return */ 3067 if (!io_end || !size) 3068 goto out; 3069 3070 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3071 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3072 iocb->private, io_end->inode->i_ino, iocb, offset, 3073 size); 3074 3075 iocb->private = NULL; 3076 3077 /* if not aio dio with unwritten extents, just free io and return */ 3078 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3079 ext4_free_io_end(io_end); 3080 out: 3081 inode_dio_done(inode); 3082 if (is_async) 3083 aio_complete(iocb, ret, 0); 3084 return; 3085 } 3086 3087 io_end->offset = offset; 3088 io_end->size = size; 3089 if (is_async) { 3090 io_end->iocb = iocb; 3091 io_end->result = ret; 3092 } 3093 3094 ext4_add_complete_io(io_end); 3095 } 3096 3097 /* 3098 * For ext4 extent files, ext4 will do direct-io write to holes, 3099 * preallocated extents, and those write extend the file, no need to 3100 * fall back to buffered IO. 3101 * 3102 * For holes, we fallocate those blocks, mark them as uninitialized 3103 * If those blocks were preallocated, we mark sure they are split, but 3104 * still keep the range to write as uninitialized. 3105 * 3106 * The unwritten extents will be converted to written when DIO is completed. 3107 * For async direct IO, since the IO may still pending when return, we 3108 * set up an end_io call back function, which will do the conversion 3109 * when async direct IO completed. 3110 * 3111 * If the O_DIRECT write will extend the file then add this inode to the 3112 * orphan list. So recovery will truncate it back to the original size 3113 * if the machine crashes during the write. 3114 * 3115 */ 3116 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3117 const struct iovec *iov, loff_t offset, 3118 unsigned long nr_segs) 3119 { 3120 struct file *file = iocb->ki_filp; 3121 struct inode *inode = file->f_mapping->host; 3122 ssize_t ret; 3123 size_t count = iov_length(iov, nr_segs); 3124 int overwrite = 0; 3125 get_block_t *get_block_func = NULL; 3126 int dio_flags = 0; 3127 loff_t final_size = offset + count; 3128 3129 /* Use the old path for reads and writes beyond i_size. */ 3130 if (rw != WRITE || final_size > inode->i_size) 3131 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3132 3133 BUG_ON(iocb->private == NULL); 3134 3135 /* If we do a overwrite dio, i_mutex locking can be released */ 3136 overwrite = *((int *)iocb->private); 3137 3138 if (overwrite) { 3139 atomic_inc(&inode->i_dio_count); 3140 down_read(&EXT4_I(inode)->i_data_sem); 3141 mutex_unlock(&inode->i_mutex); 3142 } 3143 3144 /* 3145 * We could direct write to holes and fallocate. 3146 * 3147 * Allocated blocks to fill the hole are marked as 3148 * uninitialized to prevent parallel buffered read to expose 3149 * the stale data before DIO complete the data IO. 3150 * 3151 * As to previously fallocated extents, ext4 get_block will 3152 * just simply mark the buffer mapped but still keep the 3153 * extents uninitialized. 3154 * 3155 * For non AIO case, we will convert those unwritten extents 3156 * to written after return back from blockdev_direct_IO. 3157 * 3158 * For async DIO, the conversion needs to be deferred when the 3159 * IO is completed. The ext4 end_io callback function will be 3160 * called to take care of the conversion work. Here for async 3161 * case, we allocate an io_end structure to hook to the iocb. 3162 */ 3163 iocb->private = NULL; 3164 ext4_inode_aio_set(inode, NULL); 3165 if (!is_sync_kiocb(iocb)) { 3166 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS); 3167 if (!io_end) { 3168 ret = -ENOMEM; 3169 goto retake_lock; 3170 } 3171 io_end->flag |= EXT4_IO_END_DIRECT; 3172 iocb->private = io_end; 3173 /* 3174 * we save the io structure for current async direct 3175 * IO, so that later ext4_map_blocks() could flag the 3176 * io structure whether there is a unwritten extents 3177 * needs to be converted when IO is completed. 3178 */ 3179 ext4_inode_aio_set(inode, io_end); 3180 } 3181 3182 if (overwrite) { 3183 get_block_func = ext4_get_block_write_nolock; 3184 } else { 3185 get_block_func = ext4_get_block_write; 3186 dio_flags = DIO_LOCKING; 3187 } 3188 ret = __blockdev_direct_IO(rw, iocb, inode, 3189 inode->i_sb->s_bdev, iov, 3190 offset, nr_segs, 3191 get_block_func, 3192 ext4_end_io_dio, 3193 NULL, 3194 dio_flags); 3195 3196 if (iocb->private) 3197 ext4_inode_aio_set(inode, NULL); 3198 /* 3199 * The io_end structure takes a reference to the inode, that 3200 * structure needs to be destroyed and the reference to the 3201 * inode need to be dropped, when IO is complete, even with 0 3202 * byte write, or failed. 3203 * 3204 * In the successful AIO DIO case, the io_end structure will 3205 * be destroyed and the reference to the inode will be dropped 3206 * after the end_io call back function is called. 3207 * 3208 * In the case there is 0 byte write, or error case, since VFS 3209 * direct IO won't invoke the end_io call back function, we 3210 * need to free the end_io structure here. 3211 */ 3212 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3213 ext4_free_io_end(iocb->private); 3214 iocb->private = NULL; 3215 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3216 EXT4_STATE_DIO_UNWRITTEN)) { 3217 int err; 3218 /* 3219 * for non AIO case, since the IO is already 3220 * completed, we could do the conversion right here 3221 */ 3222 err = ext4_convert_unwritten_extents(inode, 3223 offset, ret); 3224 if (err < 0) 3225 ret = err; 3226 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3227 } 3228 3229 retake_lock: 3230 /* take i_mutex locking again if we do a ovewrite dio */ 3231 if (overwrite) { 3232 inode_dio_done(inode); 3233 up_read(&EXT4_I(inode)->i_data_sem); 3234 mutex_lock(&inode->i_mutex); 3235 } 3236 3237 return ret; 3238 } 3239 3240 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3241 const struct iovec *iov, loff_t offset, 3242 unsigned long nr_segs) 3243 { 3244 struct file *file = iocb->ki_filp; 3245 struct inode *inode = file->f_mapping->host; 3246 ssize_t ret; 3247 3248 /* 3249 * If we are doing data journalling we don't support O_DIRECT 3250 */ 3251 if (ext4_should_journal_data(inode)) 3252 return 0; 3253 3254 /* Let buffer I/O handle the inline data case. */ 3255 if (ext4_has_inline_data(inode)) 3256 return 0; 3257 3258 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3259 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3260 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3261 else 3262 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3263 trace_ext4_direct_IO_exit(inode, offset, 3264 iov_length(iov, nr_segs), rw, ret); 3265 return ret; 3266 } 3267 3268 /* 3269 * Pages can be marked dirty completely asynchronously from ext4's journalling 3270 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3271 * much here because ->set_page_dirty is called under VFS locks. The page is 3272 * not necessarily locked. 3273 * 3274 * We cannot just dirty the page and leave attached buffers clean, because the 3275 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3276 * or jbddirty because all the journalling code will explode. 3277 * 3278 * So what we do is to mark the page "pending dirty" and next time writepage 3279 * is called, propagate that into the buffers appropriately. 3280 */ 3281 static int ext4_journalled_set_page_dirty(struct page *page) 3282 { 3283 SetPageChecked(page); 3284 return __set_page_dirty_nobuffers(page); 3285 } 3286 3287 static const struct address_space_operations ext4_aops = { 3288 .readpage = ext4_readpage, 3289 .readpages = ext4_readpages, 3290 .writepage = ext4_writepage, 3291 .write_begin = ext4_write_begin, 3292 .write_end = ext4_write_end, 3293 .bmap = ext4_bmap, 3294 .invalidatepage = ext4_invalidatepage, 3295 .releasepage = ext4_releasepage, 3296 .direct_IO = ext4_direct_IO, 3297 .migratepage = buffer_migrate_page, 3298 .is_partially_uptodate = block_is_partially_uptodate, 3299 .error_remove_page = generic_error_remove_page, 3300 }; 3301 3302 static const struct address_space_operations ext4_journalled_aops = { 3303 .readpage = ext4_readpage, 3304 .readpages = ext4_readpages, 3305 .writepage = ext4_writepage, 3306 .write_begin = ext4_write_begin, 3307 .write_end = ext4_journalled_write_end, 3308 .set_page_dirty = ext4_journalled_set_page_dirty, 3309 .bmap = ext4_bmap, 3310 .invalidatepage = ext4_journalled_invalidatepage, 3311 .releasepage = ext4_releasepage, 3312 .direct_IO = ext4_direct_IO, 3313 .is_partially_uptodate = block_is_partially_uptodate, 3314 .error_remove_page = generic_error_remove_page, 3315 }; 3316 3317 static const struct address_space_operations ext4_da_aops = { 3318 .readpage = ext4_readpage, 3319 .readpages = ext4_readpages, 3320 .writepage = ext4_writepage, 3321 .writepages = ext4_da_writepages, 3322 .write_begin = ext4_da_write_begin, 3323 .write_end = ext4_da_write_end, 3324 .bmap = ext4_bmap, 3325 .invalidatepage = ext4_da_invalidatepage, 3326 .releasepage = ext4_releasepage, 3327 .direct_IO = ext4_direct_IO, 3328 .migratepage = buffer_migrate_page, 3329 .is_partially_uptodate = block_is_partially_uptodate, 3330 .error_remove_page = generic_error_remove_page, 3331 }; 3332 3333 void ext4_set_aops(struct inode *inode) 3334 { 3335 switch (ext4_inode_journal_mode(inode)) { 3336 case EXT4_INODE_ORDERED_DATA_MODE: 3337 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3338 break; 3339 case EXT4_INODE_WRITEBACK_DATA_MODE: 3340 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3341 break; 3342 case EXT4_INODE_JOURNAL_DATA_MODE: 3343 inode->i_mapping->a_ops = &ext4_journalled_aops; 3344 return; 3345 default: 3346 BUG(); 3347 } 3348 if (test_opt(inode->i_sb, DELALLOC)) 3349 inode->i_mapping->a_ops = &ext4_da_aops; 3350 else 3351 inode->i_mapping->a_ops = &ext4_aops; 3352 } 3353 3354 3355 /* 3356 * ext4_discard_partial_page_buffers() 3357 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3358 * This function finds and locks the page containing the offset 3359 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3360 * Calling functions that already have the page locked should call 3361 * ext4_discard_partial_page_buffers_no_lock directly. 3362 */ 3363 int ext4_discard_partial_page_buffers(handle_t *handle, 3364 struct address_space *mapping, loff_t from, 3365 loff_t length, int flags) 3366 { 3367 struct inode *inode = mapping->host; 3368 struct page *page; 3369 int err = 0; 3370 3371 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3372 mapping_gfp_mask(mapping) & ~__GFP_FS); 3373 if (!page) 3374 return -ENOMEM; 3375 3376 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3377 from, length, flags); 3378 3379 unlock_page(page); 3380 page_cache_release(page); 3381 return err; 3382 } 3383 3384 /* 3385 * ext4_discard_partial_page_buffers_no_lock() 3386 * Zeros a page range of length 'length' starting from offset 'from'. 3387 * Buffer heads that correspond to the block aligned regions of the 3388 * zeroed range will be unmapped. Unblock aligned regions 3389 * will have the corresponding buffer head mapped if needed so that 3390 * that region of the page can be updated with the partial zero out. 3391 * 3392 * This function assumes that the page has already been locked. The 3393 * The range to be discarded must be contained with in the given page. 3394 * If the specified range exceeds the end of the page it will be shortened 3395 * to the end of the page that corresponds to 'from'. This function is 3396 * appropriate for updating a page and it buffer heads to be unmapped and 3397 * zeroed for blocks that have been either released, or are going to be 3398 * released. 3399 * 3400 * handle: The journal handle 3401 * inode: The files inode 3402 * page: A locked page that contains the offset "from" 3403 * from: The starting byte offset (from the beginning of the file) 3404 * to begin discarding 3405 * len: The length of bytes to discard 3406 * flags: Optional flags that may be used: 3407 * 3408 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3409 * Only zero the regions of the page whose buffer heads 3410 * have already been unmapped. This flag is appropriate 3411 * for updating the contents of a page whose blocks may 3412 * have already been released, and we only want to zero 3413 * out the regions that correspond to those released blocks. 3414 * 3415 * Returns zero on success or negative on failure. 3416 */ 3417 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3418 struct inode *inode, struct page *page, loff_t from, 3419 loff_t length, int flags) 3420 { 3421 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3422 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3423 unsigned int blocksize, max, pos; 3424 ext4_lblk_t iblock; 3425 struct buffer_head *bh; 3426 int err = 0; 3427 3428 blocksize = inode->i_sb->s_blocksize; 3429 max = PAGE_CACHE_SIZE - offset; 3430 3431 if (index != page->index) 3432 return -EINVAL; 3433 3434 /* 3435 * correct length if it does not fall between 3436 * 'from' and the end of the page 3437 */ 3438 if (length > max || length < 0) 3439 length = max; 3440 3441 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3442 3443 if (!page_has_buffers(page)) 3444 create_empty_buffers(page, blocksize, 0); 3445 3446 /* Find the buffer that contains "offset" */ 3447 bh = page_buffers(page); 3448 pos = blocksize; 3449 while (offset >= pos) { 3450 bh = bh->b_this_page; 3451 iblock++; 3452 pos += blocksize; 3453 } 3454 3455 pos = offset; 3456 while (pos < offset + length) { 3457 unsigned int end_of_block, range_to_discard; 3458 3459 err = 0; 3460 3461 /* The length of space left to zero and unmap */ 3462 range_to_discard = offset + length - pos; 3463 3464 /* The length of space until the end of the block */ 3465 end_of_block = blocksize - (pos & (blocksize-1)); 3466 3467 /* 3468 * Do not unmap or zero past end of block 3469 * for this buffer head 3470 */ 3471 if (range_to_discard > end_of_block) 3472 range_to_discard = end_of_block; 3473 3474 3475 /* 3476 * Skip this buffer head if we are only zeroing unampped 3477 * regions of the page 3478 */ 3479 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3480 buffer_mapped(bh)) 3481 goto next; 3482 3483 /* If the range is block aligned, unmap */ 3484 if (range_to_discard == blocksize) { 3485 clear_buffer_dirty(bh); 3486 bh->b_bdev = NULL; 3487 clear_buffer_mapped(bh); 3488 clear_buffer_req(bh); 3489 clear_buffer_new(bh); 3490 clear_buffer_delay(bh); 3491 clear_buffer_unwritten(bh); 3492 clear_buffer_uptodate(bh); 3493 zero_user(page, pos, range_to_discard); 3494 BUFFER_TRACE(bh, "Buffer discarded"); 3495 goto next; 3496 } 3497 3498 /* 3499 * If this block is not completely contained in the range 3500 * to be discarded, then it is not going to be released. Because 3501 * we need to keep this block, we need to make sure this part 3502 * of the page is uptodate before we modify it by writeing 3503 * partial zeros on it. 3504 */ 3505 if (!buffer_mapped(bh)) { 3506 /* 3507 * Buffer head must be mapped before we can read 3508 * from the block 3509 */ 3510 BUFFER_TRACE(bh, "unmapped"); 3511 ext4_get_block(inode, iblock, bh, 0); 3512 /* unmapped? It's a hole - nothing to do */ 3513 if (!buffer_mapped(bh)) { 3514 BUFFER_TRACE(bh, "still unmapped"); 3515 goto next; 3516 } 3517 } 3518 3519 /* Ok, it's mapped. Make sure it's up-to-date */ 3520 if (PageUptodate(page)) 3521 set_buffer_uptodate(bh); 3522 3523 if (!buffer_uptodate(bh)) { 3524 err = -EIO; 3525 ll_rw_block(READ, 1, &bh); 3526 wait_on_buffer(bh); 3527 /* Uhhuh. Read error. Complain and punt.*/ 3528 if (!buffer_uptodate(bh)) 3529 goto next; 3530 } 3531 3532 if (ext4_should_journal_data(inode)) { 3533 BUFFER_TRACE(bh, "get write access"); 3534 err = ext4_journal_get_write_access(handle, bh); 3535 if (err) 3536 goto next; 3537 } 3538 3539 zero_user(page, pos, range_to_discard); 3540 3541 err = 0; 3542 if (ext4_should_journal_data(inode)) { 3543 err = ext4_handle_dirty_metadata(handle, inode, bh); 3544 } else 3545 mark_buffer_dirty(bh); 3546 3547 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3548 next: 3549 bh = bh->b_this_page; 3550 iblock++; 3551 pos += range_to_discard; 3552 } 3553 3554 return err; 3555 } 3556 3557 int ext4_can_truncate(struct inode *inode) 3558 { 3559 if (S_ISREG(inode->i_mode)) 3560 return 1; 3561 if (S_ISDIR(inode->i_mode)) 3562 return 1; 3563 if (S_ISLNK(inode->i_mode)) 3564 return !ext4_inode_is_fast_symlink(inode); 3565 return 0; 3566 } 3567 3568 /* 3569 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3570 * associated with the given offset and length 3571 * 3572 * @inode: File inode 3573 * @offset: The offset where the hole will begin 3574 * @len: The length of the hole 3575 * 3576 * Returns: 0 on success or negative on failure 3577 */ 3578 3579 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3580 { 3581 struct inode *inode = file_inode(file); 3582 if (!S_ISREG(inode->i_mode)) 3583 return -EOPNOTSUPP; 3584 3585 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3586 return ext4_ind_punch_hole(file, offset, length); 3587 3588 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3589 /* TODO: Add support for bigalloc file systems */ 3590 return -EOPNOTSUPP; 3591 } 3592 3593 trace_ext4_punch_hole(inode, offset, length); 3594 3595 return ext4_ext_punch_hole(file, offset, length); 3596 } 3597 3598 /* 3599 * ext4_truncate() 3600 * 3601 * We block out ext4_get_block() block instantiations across the entire 3602 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3603 * simultaneously on behalf of the same inode. 3604 * 3605 * As we work through the truncate and commit bits of it to the journal there 3606 * is one core, guiding principle: the file's tree must always be consistent on 3607 * disk. We must be able to restart the truncate after a crash. 3608 * 3609 * The file's tree may be transiently inconsistent in memory (although it 3610 * probably isn't), but whenever we close off and commit a journal transaction, 3611 * the contents of (the filesystem + the journal) must be consistent and 3612 * restartable. It's pretty simple, really: bottom up, right to left (although 3613 * left-to-right works OK too). 3614 * 3615 * Note that at recovery time, journal replay occurs *before* the restart of 3616 * truncate against the orphan inode list. 3617 * 3618 * The committed inode has the new, desired i_size (which is the same as 3619 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3620 * that this inode's truncate did not complete and it will again call 3621 * ext4_truncate() to have another go. So there will be instantiated blocks 3622 * to the right of the truncation point in a crashed ext4 filesystem. But 3623 * that's fine - as long as they are linked from the inode, the post-crash 3624 * ext4_truncate() run will find them and release them. 3625 */ 3626 void ext4_truncate(struct inode *inode) 3627 { 3628 trace_ext4_truncate_enter(inode); 3629 3630 if (!ext4_can_truncate(inode)) 3631 return; 3632 3633 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3634 3635 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3636 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3637 3638 if (ext4_has_inline_data(inode)) { 3639 int has_inline = 1; 3640 3641 ext4_inline_data_truncate(inode, &has_inline); 3642 if (has_inline) 3643 return; 3644 } 3645 3646 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3647 ext4_ext_truncate(inode); 3648 else 3649 ext4_ind_truncate(inode); 3650 3651 trace_ext4_truncate_exit(inode); 3652 } 3653 3654 /* 3655 * ext4_get_inode_loc returns with an extra refcount against the inode's 3656 * underlying buffer_head on success. If 'in_mem' is true, we have all 3657 * data in memory that is needed to recreate the on-disk version of this 3658 * inode. 3659 */ 3660 static int __ext4_get_inode_loc(struct inode *inode, 3661 struct ext4_iloc *iloc, int in_mem) 3662 { 3663 struct ext4_group_desc *gdp; 3664 struct buffer_head *bh; 3665 struct super_block *sb = inode->i_sb; 3666 ext4_fsblk_t block; 3667 int inodes_per_block, inode_offset; 3668 3669 iloc->bh = NULL; 3670 if (!ext4_valid_inum(sb, inode->i_ino)) 3671 return -EIO; 3672 3673 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3674 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3675 if (!gdp) 3676 return -EIO; 3677 3678 /* 3679 * Figure out the offset within the block group inode table 3680 */ 3681 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3682 inode_offset = ((inode->i_ino - 1) % 3683 EXT4_INODES_PER_GROUP(sb)); 3684 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3685 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3686 3687 bh = sb_getblk(sb, block); 3688 if (unlikely(!bh)) 3689 return -ENOMEM; 3690 if (!buffer_uptodate(bh)) { 3691 lock_buffer(bh); 3692 3693 /* 3694 * If the buffer has the write error flag, we have failed 3695 * to write out another inode in the same block. In this 3696 * case, we don't have to read the block because we may 3697 * read the old inode data successfully. 3698 */ 3699 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3700 set_buffer_uptodate(bh); 3701 3702 if (buffer_uptodate(bh)) { 3703 /* someone brought it uptodate while we waited */ 3704 unlock_buffer(bh); 3705 goto has_buffer; 3706 } 3707 3708 /* 3709 * If we have all information of the inode in memory and this 3710 * is the only valid inode in the block, we need not read the 3711 * block. 3712 */ 3713 if (in_mem) { 3714 struct buffer_head *bitmap_bh; 3715 int i, start; 3716 3717 start = inode_offset & ~(inodes_per_block - 1); 3718 3719 /* Is the inode bitmap in cache? */ 3720 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3721 if (unlikely(!bitmap_bh)) 3722 goto make_io; 3723 3724 /* 3725 * If the inode bitmap isn't in cache then the 3726 * optimisation may end up performing two reads instead 3727 * of one, so skip it. 3728 */ 3729 if (!buffer_uptodate(bitmap_bh)) { 3730 brelse(bitmap_bh); 3731 goto make_io; 3732 } 3733 for (i = start; i < start + inodes_per_block; i++) { 3734 if (i == inode_offset) 3735 continue; 3736 if (ext4_test_bit(i, bitmap_bh->b_data)) 3737 break; 3738 } 3739 brelse(bitmap_bh); 3740 if (i == start + inodes_per_block) { 3741 /* all other inodes are free, so skip I/O */ 3742 memset(bh->b_data, 0, bh->b_size); 3743 set_buffer_uptodate(bh); 3744 unlock_buffer(bh); 3745 goto has_buffer; 3746 } 3747 } 3748 3749 make_io: 3750 /* 3751 * If we need to do any I/O, try to pre-readahead extra 3752 * blocks from the inode table. 3753 */ 3754 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3755 ext4_fsblk_t b, end, table; 3756 unsigned num; 3757 3758 table = ext4_inode_table(sb, gdp); 3759 /* s_inode_readahead_blks is always a power of 2 */ 3760 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3761 if (table > b) 3762 b = table; 3763 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3764 num = EXT4_INODES_PER_GROUP(sb); 3765 if (ext4_has_group_desc_csum(sb)) 3766 num -= ext4_itable_unused_count(sb, gdp); 3767 table += num / inodes_per_block; 3768 if (end > table) 3769 end = table; 3770 while (b <= end) 3771 sb_breadahead(sb, b++); 3772 } 3773 3774 /* 3775 * There are other valid inodes in the buffer, this inode 3776 * has in-inode xattrs, or we don't have this inode in memory. 3777 * Read the block from disk. 3778 */ 3779 trace_ext4_load_inode(inode); 3780 get_bh(bh); 3781 bh->b_end_io = end_buffer_read_sync; 3782 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3783 wait_on_buffer(bh); 3784 if (!buffer_uptodate(bh)) { 3785 EXT4_ERROR_INODE_BLOCK(inode, block, 3786 "unable to read itable block"); 3787 brelse(bh); 3788 return -EIO; 3789 } 3790 } 3791 has_buffer: 3792 iloc->bh = bh; 3793 return 0; 3794 } 3795 3796 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3797 { 3798 /* We have all inode data except xattrs in memory here. */ 3799 return __ext4_get_inode_loc(inode, iloc, 3800 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3801 } 3802 3803 void ext4_set_inode_flags(struct inode *inode) 3804 { 3805 unsigned int flags = EXT4_I(inode)->i_flags; 3806 3807 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3808 if (flags & EXT4_SYNC_FL) 3809 inode->i_flags |= S_SYNC; 3810 if (flags & EXT4_APPEND_FL) 3811 inode->i_flags |= S_APPEND; 3812 if (flags & EXT4_IMMUTABLE_FL) 3813 inode->i_flags |= S_IMMUTABLE; 3814 if (flags & EXT4_NOATIME_FL) 3815 inode->i_flags |= S_NOATIME; 3816 if (flags & EXT4_DIRSYNC_FL) 3817 inode->i_flags |= S_DIRSYNC; 3818 } 3819 3820 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3821 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3822 { 3823 unsigned int vfs_fl; 3824 unsigned long old_fl, new_fl; 3825 3826 do { 3827 vfs_fl = ei->vfs_inode.i_flags; 3828 old_fl = ei->i_flags; 3829 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3830 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3831 EXT4_DIRSYNC_FL); 3832 if (vfs_fl & S_SYNC) 3833 new_fl |= EXT4_SYNC_FL; 3834 if (vfs_fl & S_APPEND) 3835 new_fl |= EXT4_APPEND_FL; 3836 if (vfs_fl & S_IMMUTABLE) 3837 new_fl |= EXT4_IMMUTABLE_FL; 3838 if (vfs_fl & S_NOATIME) 3839 new_fl |= EXT4_NOATIME_FL; 3840 if (vfs_fl & S_DIRSYNC) 3841 new_fl |= EXT4_DIRSYNC_FL; 3842 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3843 } 3844 3845 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3846 struct ext4_inode_info *ei) 3847 { 3848 blkcnt_t i_blocks ; 3849 struct inode *inode = &(ei->vfs_inode); 3850 struct super_block *sb = inode->i_sb; 3851 3852 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3853 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3854 /* we are using combined 48 bit field */ 3855 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3856 le32_to_cpu(raw_inode->i_blocks_lo); 3857 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3858 /* i_blocks represent file system block size */ 3859 return i_blocks << (inode->i_blkbits - 9); 3860 } else { 3861 return i_blocks; 3862 } 3863 } else { 3864 return le32_to_cpu(raw_inode->i_blocks_lo); 3865 } 3866 } 3867 3868 static inline void ext4_iget_extra_inode(struct inode *inode, 3869 struct ext4_inode *raw_inode, 3870 struct ext4_inode_info *ei) 3871 { 3872 __le32 *magic = (void *)raw_inode + 3873 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3874 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3875 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3876 ext4_find_inline_data_nolock(inode); 3877 } else 3878 EXT4_I(inode)->i_inline_off = 0; 3879 } 3880 3881 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3882 { 3883 struct ext4_iloc iloc; 3884 struct ext4_inode *raw_inode; 3885 struct ext4_inode_info *ei; 3886 struct inode *inode; 3887 journal_t *journal = EXT4_SB(sb)->s_journal; 3888 long ret; 3889 int block; 3890 uid_t i_uid; 3891 gid_t i_gid; 3892 3893 inode = iget_locked(sb, ino); 3894 if (!inode) 3895 return ERR_PTR(-ENOMEM); 3896 if (!(inode->i_state & I_NEW)) 3897 return inode; 3898 3899 ei = EXT4_I(inode); 3900 iloc.bh = NULL; 3901 3902 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3903 if (ret < 0) 3904 goto bad_inode; 3905 raw_inode = ext4_raw_inode(&iloc); 3906 3907 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3908 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3909 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3910 EXT4_INODE_SIZE(inode->i_sb)) { 3911 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3912 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3913 EXT4_INODE_SIZE(inode->i_sb)); 3914 ret = -EIO; 3915 goto bad_inode; 3916 } 3917 } else 3918 ei->i_extra_isize = 0; 3919 3920 /* Precompute checksum seed for inode metadata */ 3921 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3922 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3923 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3924 __u32 csum; 3925 __le32 inum = cpu_to_le32(inode->i_ino); 3926 __le32 gen = raw_inode->i_generation; 3927 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3928 sizeof(inum)); 3929 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3930 sizeof(gen)); 3931 } 3932 3933 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3934 EXT4_ERROR_INODE(inode, "checksum invalid"); 3935 ret = -EIO; 3936 goto bad_inode; 3937 } 3938 3939 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3940 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3941 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3942 if (!(test_opt(inode->i_sb, NO_UID32))) { 3943 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3944 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3945 } 3946 i_uid_write(inode, i_uid); 3947 i_gid_write(inode, i_gid); 3948 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3949 3950 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3951 ei->i_inline_off = 0; 3952 ei->i_dir_start_lookup = 0; 3953 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3954 /* We now have enough fields to check if the inode was active or not. 3955 * This is needed because nfsd might try to access dead inodes 3956 * the test is that same one that e2fsck uses 3957 * NeilBrown 1999oct15 3958 */ 3959 if (inode->i_nlink == 0) { 3960 if (inode->i_mode == 0 || 3961 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3962 /* this inode is deleted */ 3963 ret = -ESTALE; 3964 goto bad_inode; 3965 } 3966 /* The only unlinked inodes we let through here have 3967 * valid i_mode and are being read by the orphan 3968 * recovery code: that's fine, we're about to complete 3969 * the process of deleting those. */ 3970 } 3971 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3972 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3973 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3974 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3975 ei->i_file_acl |= 3976 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3977 inode->i_size = ext4_isize(raw_inode); 3978 ei->i_disksize = inode->i_size; 3979 #ifdef CONFIG_QUOTA 3980 ei->i_reserved_quota = 0; 3981 #endif 3982 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3983 ei->i_block_group = iloc.block_group; 3984 ei->i_last_alloc_group = ~0; 3985 /* 3986 * NOTE! The in-memory inode i_data array is in little-endian order 3987 * even on big-endian machines: we do NOT byteswap the block numbers! 3988 */ 3989 for (block = 0; block < EXT4_N_BLOCKS; block++) 3990 ei->i_data[block] = raw_inode->i_block[block]; 3991 INIT_LIST_HEAD(&ei->i_orphan); 3992 3993 /* 3994 * Set transaction id's of transactions that have to be committed 3995 * to finish f[data]sync. We set them to currently running transaction 3996 * as we cannot be sure that the inode or some of its metadata isn't 3997 * part of the transaction - the inode could have been reclaimed and 3998 * now it is reread from disk. 3999 */ 4000 if (journal) { 4001 transaction_t *transaction; 4002 tid_t tid; 4003 4004 read_lock(&journal->j_state_lock); 4005 if (journal->j_running_transaction) 4006 transaction = journal->j_running_transaction; 4007 else 4008 transaction = journal->j_committing_transaction; 4009 if (transaction) 4010 tid = transaction->t_tid; 4011 else 4012 tid = journal->j_commit_sequence; 4013 read_unlock(&journal->j_state_lock); 4014 ei->i_sync_tid = tid; 4015 ei->i_datasync_tid = tid; 4016 } 4017 4018 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4019 if (ei->i_extra_isize == 0) { 4020 /* The extra space is currently unused. Use it. */ 4021 ei->i_extra_isize = sizeof(struct ext4_inode) - 4022 EXT4_GOOD_OLD_INODE_SIZE; 4023 } else { 4024 ext4_iget_extra_inode(inode, raw_inode, ei); 4025 } 4026 } 4027 4028 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4029 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4030 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4031 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4032 4033 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4034 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4035 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4036 inode->i_version |= 4037 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4038 } 4039 4040 ret = 0; 4041 if (ei->i_file_acl && 4042 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4043 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4044 ei->i_file_acl); 4045 ret = -EIO; 4046 goto bad_inode; 4047 } else if (!ext4_has_inline_data(inode)) { 4048 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4049 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4050 (S_ISLNK(inode->i_mode) && 4051 !ext4_inode_is_fast_symlink(inode)))) 4052 /* Validate extent which is part of inode */ 4053 ret = ext4_ext_check_inode(inode); 4054 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4055 (S_ISLNK(inode->i_mode) && 4056 !ext4_inode_is_fast_symlink(inode))) { 4057 /* Validate block references which are part of inode */ 4058 ret = ext4_ind_check_inode(inode); 4059 } 4060 } 4061 if (ret) 4062 goto bad_inode; 4063 4064 if (S_ISREG(inode->i_mode)) { 4065 inode->i_op = &ext4_file_inode_operations; 4066 inode->i_fop = &ext4_file_operations; 4067 ext4_set_aops(inode); 4068 } else if (S_ISDIR(inode->i_mode)) { 4069 inode->i_op = &ext4_dir_inode_operations; 4070 inode->i_fop = &ext4_dir_operations; 4071 } else if (S_ISLNK(inode->i_mode)) { 4072 if (ext4_inode_is_fast_symlink(inode)) { 4073 inode->i_op = &ext4_fast_symlink_inode_operations; 4074 nd_terminate_link(ei->i_data, inode->i_size, 4075 sizeof(ei->i_data) - 1); 4076 } else { 4077 inode->i_op = &ext4_symlink_inode_operations; 4078 ext4_set_aops(inode); 4079 } 4080 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4081 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4082 inode->i_op = &ext4_special_inode_operations; 4083 if (raw_inode->i_block[0]) 4084 init_special_inode(inode, inode->i_mode, 4085 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4086 else 4087 init_special_inode(inode, inode->i_mode, 4088 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4089 } else { 4090 ret = -EIO; 4091 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4092 goto bad_inode; 4093 } 4094 brelse(iloc.bh); 4095 ext4_set_inode_flags(inode); 4096 unlock_new_inode(inode); 4097 return inode; 4098 4099 bad_inode: 4100 brelse(iloc.bh); 4101 iget_failed(inode); 4102 return ERR_PTR(ret); 4103 } 4104 4105 static int ext4_inode_blocks_set(handle_t *handle, 4106 struct ext4_inode *raw_inode, 4107 struct ext4_inode_info *ei) 4108 { 4109 struct inode *inode = &(ei->vfs_inode); 4110 u64 i_blocks = inode->i_blocks; 4111 struct super_block *sb = inode->i_sb; 4112 4113 if (i_blocks <= ~0U) { 4114 /* 4115 * i_blocks can be represented in a 32 bit variable 4116 * as multiple of 512 bytes 4117 */ 4118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4119 raw_inode->i_blocks_high = 0; 4120 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4121 return 0; 4122 } 4123 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4124 return -EFBIG; 4125 4126 if (i_blocks <= 0xffffffffffffULL) { 4127 /* 4128 * i_blocks can be represented in a 48 bit variable 4129 * as multiple of 512 bytes 4130 */ 4131 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4132 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4133 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4134 } else { 4135 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4136 /* i_block is stored in file system block size */ 4137 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4138 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4139 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4140 } 4141 return 0; 4142 } 4143 4144 /* 4145 * Post the struct inode info into an on-disk inode location in the 4146 * buffer-cache. This gobbles the caller's reference to the 4147 * buffer_head in the inode location struct. 4148 * 4149 * The caller must have write access to iloc->bh. 4150 */ 4151 static int ext4_do_update_inode(handle_t *handle, 4152 struct inode *inode, 4153 struct ext4_iloc *iloc) 4154 { 4155 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4156 struct ext4_inode_info *ei = EXT4_I(inode); 4157 struct buffer_head *bh = iloc->bh; 4158 int err = 0, rc, block; 4159 int need_datasync = 0; 4160 uid_t i_uid; 4161 gid_t i_gid; 4162 4163 /* For fields not not tracking in the in-memory inode, 4164 * initialise them to zero for new inodes. */ 4165 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4166 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4167 4168 ext4_get_inode_flags(ei); 4169 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4170 i_uid = i_uid_read(inode); 4171 i_gid = i_gid_read(inode); 4172 if (!(test_opt(inode->i_sb, NO_UID32))) { 4173 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4174 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4175 /* 4176 * Fix up interoperability with old kernels. Otherwise, old inodes get 4177 * re-used with the upper 16 bits of the uid/gid intact 4178 */ 4179 if (!ei->i_dtime) { 4180 raw_inode->i_uid_high = 4181 cpu_to_le16(high_16_bits(i_uid)); 4182 raw_inode->i_gid_high = 4183 cpu_to_le16(high_16_bits(i_gid)); 4184 } else { 4185 raw_inode->i_uid_high = 0; 4186 raw_inode->i_gid_high = 0; 4187 } 4188 } else { 4189 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4190 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4191 raw_inode->i_uid_high = 0; 4192 raw_inode->i_gid_high = 0; 4193 } 4194 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4195 4196 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4197 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4198 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4199 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4200 4201 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4202 goto out_brelse; 4203 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4204 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4205 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4206 cpu_to_le32(EXT4_OS_HURD)) 4207 raw_inode->i_file_acl_high = 4208 cpu_to_le16(ei->i_file_acl >> 32); 4209 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4210 if (ei->i_disksize != ext4_isize(raw_inode)) { 4211 ext4_isize_set(raw_inode, ei->i_disksize); 4212 need_datasync = 1; 4213 } 4214 if (ei->i_disksize > 0x7fffffffULL) { 4215 struct super_block *sb = inode->i_sb; 4216 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4217 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4218 EXT4_SB(sb)->s_es->s_rev_level == 4219 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4220 /* If this is the first large file 4221 * created, add a flag to the superblock. 4222 */ 4223 err = ext4_journal_get_write_access(handle, 4224 EXT4_SB(sb)->s_sbh); 4225 if (err) 4226 goto out_brelse; 4227 ext4_update_dynamic_rev(sb); 4228 EXT4_SET_RO_COMPAT_FEATURE(sb, 4229 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4230 ext4_handle_sync(handle); 4231 err = ext4_handle_dirty_super(handle, sb); 4232 } 4233 } 4234 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4235 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4236 if (old_valid_dev(inode->i_rdev)) { 4237 raw_inode->i_block[0] = 4238 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4239 raw_inode->i_block[1] = 0; 4240 } else { 4241 raw_inode->i_block[0] = 0; 4242 raw_inode->i_block[1] = 4243 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4244 raw_inode->i_block[2] = 0; 4245 } 4246 } else if (!ext4_has_inline_data(inode)) { 4247 for (block = 0; block < EXT4_N_BLOCKS; block++) 4248 raw_inode->i_block[block] = ei->i_data[block]; 4249 } 4250 4251 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4252 if (ei->i_extra_isize) { 4253 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4254 raw_inode->i_version_hi = 4255 cpu_to_le32(inode->i_version >> 32); 4256 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4257 } 4258 4259 ext4_inode_csum_set(inode, raw_inode, ei); 4260 4261 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4262 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4263 if (!err) 4264 err = rc; 4265 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4266 4267 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4268 out_brelse: 4269 brelse(bh); 4270 ext4_std_error(inode->i_sb, err); 4271 return err; 4272 } 4273 4274 /* 4275 * ext4_write_inode() 4276 * 4277 * We are called from a few places: 4278 * 4279 * - Within generic_file_write() for O_SYNC files. 4280 * Here, there will be no transaction running. We wait for any running 4281 * transaction to commit. 4282 * 4283 * - Within sys_sync(), kupdate and such. 4284 * We wait on commit, if tol to. 4285 * 4286 * - Within prune_icache() (PF_MEMALLOC == true) 4287 * Here we simply return. We can't afford to block kswapd on the 4288 * journal commit. 4289 * 4290 * In all cases it is actually safe for us to return without doing anything, 4291 * because the inode has been copied into a raw inode buffer in 4292 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4293 * knfsd. 4294 * 4295 * Note that we are absolutely dependent upon all inode dirtiers doing the 4296 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4297 * which we are interested. 4298 * 4299 * It would be a bug for them to not do this. The code: 4300 * 4301 * mark_inode_dirty(inode) 4302 * stuff(); 4303 * inode->i_size = expr; 4304 * 4305 * is in error because a kswapd-driven write_inode() could occur while 4306 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4307 * will no longer be on the superblock's dirty inode list. 4308 */ 4309 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4310 { 4311 int err; 4312 4313 if (current->flags & PF_MEMALLOC) 4314 return 0; 4315 4316 if (EXT4_SB(inode->i_sb)->s_journal) { 4317 if (ext4_journal_current_handle()) { 4318 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4319 dump_stack(); 4320 return -EIO; 4321 } 4322 4323 if (wbc->sync_mode != WB_SYNC_ALL) 4324 return 0; 4325 4326 err = ext4_force_commit(inode->i_sb); 4327 } else { 4328 struct ext4_iloc iloc; 4329 4330 err = __ext4_get_inode_loc(inode, &iloc, 0); 4331 if (err) 4332 return err; 4333 if (wbc->sync_mode == WB_SYNC_ALL) 4334 sync_dirty_buffer(iloc.bh); 4335 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4336 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4337 "IO error syncing inode"); 4338 err = -EIO; 4339 } 4340 brelse(iloc.bh); 4341 } 4342 return err; 4343 } 4344 4345 /* 4346 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4347 * buffers that are attached to a page stradding i_size and are undergoing 4348 * commit. In that case we have to wait for commit to finish and try again. 4349 */ 4350 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4351 { 4352 struct page *page; 4353 unsigned offset; 4354 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4355 tid_t commit_tid = 0; 4356 int ret; 4357 4358 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4359 /* 4360 * All buffers in the last page remain valid? Then there's nothing to 4361 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4362 * blocksize case 4363 */ 4364 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4365 return; 4366 while (1) { 4367 page = find_lock_page(inode->i_mapping, 4368 inode->i_size >> PAGE_CACHE_SHIFT); 4369 if (!page) 4370 return; 4371 ret = __ext4_journalled_invalidatepage(page, offset); 4372 unlock_page(page); 4373 page_cache_release(page); 4374 if (ret != -EBUSY) 4375 return; 4376 commit_tid = 0; 4377 read_lock(&journal->j_state_lock); 4378 if (journal->j_committing_transaction) 4379 commit_tid = journal->j_committing_transaction->t_tid; 4380 read_unlock(&journal->j_state_lock); 4381 if (commit_tid) 4382 jbd2_log_wait_commit(journal, commit_tid); 4383 } 4384 } 4385 4386 /* 4387 * ext4_setattr() 4388 * 4389 * Called from notify_change. 4390 * 4391 * We want to trap VFS attempts to truncate the file as soon as 4392 * possible. In particular, we want to make sure that when the VFS 4393 * shrinks i_size, we put the inode on the orphan list and modify 4394 * i_disksize immediately, so that during the subsequent flushing of 4395 * dirty pages and freeing of disk blocks, we can guarantee that any 4396 * commit will leave the blocks being flushed in an unused state on 4397 * disk. (On recovery, the inode will get truncated and the blocks will 4398 * be freed, so we have a strong guarantee that no future commit will 4399 * leave these blocks visible to the user.) 4400 * 4401 * Another thing we have to assure is that if we are in ordered mode 4402 * and inode is still attached to the committing transaction, we must 4403 * we start writeout of all the dirty pages which are being truncated. 4404 * This way we are sure that all the data written in the previous 4405 * transaction are already on disk (truncate waits for pages under 4406 * writeback). 4407 * 4408 * Called with inode->i_mutex down. 4409 */ 4410 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4411 { 4412 struct inode *inode = dentry->d_inode; 4413 int error, rc = 0; 4414 int orphan = 0; 4415 const unsigned int ia_valid = attr->ia_valid; 4416 4417 error = inode_change_ok(inode, attr); 4418 if (error) 4419 return error; 4420 4421 if (is_quota_modification(inode, attr)) 4422 dquot_initialize(inode); 4423 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4424 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4425 handle_t *handle; 4426 4427 /* (user+group)*(old+new) structure, inode write (sb, 4428 * inode block, ? - but truncate inode update has it) */ 4429 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4430 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4431 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4432 if (IS_ERR(handle)) { 4433 error = PTR_ERR(handle); 4434 goto err_out; 4435 } 4436 error = dquot_transfer(inode, attr); 4437 if (error) { 4438 ext4_journal_stop(handle); 4439 return error; 4440 } 4441 /* Update corresponding info in inode so that everything is in 4442 * one transaction */ 4443 if (attr->ia_valid & ATTR_UID) 4444 inode->i_uid = attr->ia_uid; 4445 if (attr->ia_valid & ATTR_GID) 4446 inode->i_gid = attr->ia_gid; 4447 error = ext4_mark_inode_dirty(handle, inode); 4448 ext4_journal_stop(handle); 4449 } 4450 4451 if (attr->ia_valid & ATTR_SIZE) { 4452 4453 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4454 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4455 4456 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4457 return -EFBIG; 4458 } 4459 } 4460 4461 if (S_ISREG(inode->i_mode) && 4462 attr->ia_valid & ATTR_SIZE && 4463 (attr->ia_size < inode->i_size)) { 4464 handle_t *handle; 4465 4466 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4467 if (IS_ERR(handle)) { 4468 error = PTR_ERR(handle); 4469 goto err_out; 4470 } 4471 if (ext4_handle_valid(handle)) { 4472 error = ext4_orphan_add(handle, inode); 4473 orphan = 1; 4474 } 4475 EXT4_I(inode)->i_disksize = attr->ia_size; 4476 rc = ext4_mark_inode_dirty(handle, inode); 4477 if (!error) 4478 error = rc; 4479 ext4_journal_stop(handle); 4480 4481 if (ext4_should_order_data(inode)) { 4482 error = ext4_begin_ordered_truncate(inode, 4483 attr->ia_size); 4484 if (error) { 4485 /* Do as much error cleanup as possible */ 4486 handle = ext4_journal_start(inode, 4487 EXT4_HT_INODE, 3); 4488 if (IS_ERR(handle)) { 4489 ext4_orphan_del(NULL, inode); 4490 goto err_out; 4491 } 4492 ext4_orphan_del(handle, inode); 4493 orphan = 0; 4494 ext4_journal_stop(handle); 4495 goto err_out; 4496 } 4497 } 4498 } 4499 4500 if (attr->ia_valid & ATTR_SIZE) { 4501 if (attr->ia_size != inode->i_size) { 4502 loff_t oldsize = inode->i_size; 4503 4504 i_size_write(inode, attr->ia_size); 4505 /* 4506 * Blocks are going to be removed from the inode. Wait 4507 * for dio in flight. Temporarily disable 4508 * dioread_nolock to prevent livelock. 4509 */ 4510 if (orphan) { 4511 if (!ext4_should_journal_data(inode)) { 4512 ext4_inode_block_unlocked_dio(inode); 4513 inode_dio_wait(inode); 4514 ext4_inode_resume_unlocked_dio(inode); 4515 } else 4516 ext4_wait_for_tail_page_commit(inode); 4517 } 4518 /* 4519 * Truncate pagecache after we've waited for commit 4520 * in data=journal mode to make pages freeable. 4521 */ 4522 truncate_pagecache(inode, oldsize, inode->i_size); 4523 } 4524 ext4_truncate(inode); 4525 } 4526 4527 if (!rc) { 4528 setattr_copy(inode, attr); 4529 mark_inode_dirty(inode); 4530 } 4531 4532 /* 4533 * If the call to ext4_truncate failed to get a transaction handle at 4534 * all, we need to clean up the in-core orphan list manually. 4535 */ 4536 if (orphan && inode->i_nlink) 4537 ext4_orphan_del(NULL, inode); 4538 4539 if (!rc && (ia_valid & ATTR_MODE)) 4540 rc = ext4_acl_chmod(inode); 4541 4542 err_out: 4543 ext4_std_error(inode->i_sb, error); 4544 if (!error) 4545 error = rc; 4546 return error; 4547 } 4548 4549 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4550 struct kstat *stat) 4551 { 4552 struct inode *inode; 4553 unsigned long delalloc_blocks; 4554 4555 inode = dentry->d_inode; 4556 generic_fillattr(inode, stat); 4557 4558 /* 4559 * We can't update i_blocks if the block allocation is delayed 4560 * otherwise in the case of system crash before the real block 4561 * allocation is done, we will have i_blocks inconsistent with 4562 * on-disk file blocks. 4563 * We always keep i_blocks updated together with real 4564 * allocation. But to not confuse with user, stat 4565 * will return the blocks that include the delayed allocation 4566 * blocks for this file. 4567 */ 4568 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4569 EXT4_I(inode)->i_reserved_data_blocks); 4570 4571 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4572 return 0; 4573 } 4574 4575 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4576 { 4577 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4578 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4579 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4580 } 4581 4582 /* 4583 * Account for index blocks, block groups bitmaps and block group 4584 * descriptor blocks if modify datablocks and index blocks 4585 * worse case, the indexs blocks spread over different block groups 4586 * 4587 * If datablocks are discontiguous, they are possible to spread over 4588 * different block groups too. If they are contiguous, with flexbg, 4589 * they could still across block group boundary. 4590 * 4591 * Also account for superblock, inode, quota and xattr blocks 4592 */ 4593 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4594 { 4595 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4596 int gdpblocks; 4597 int idxblocks; 4598 int ret = 0; 4599 4600 /* 4601 * How many index blocks need to touch to modify nrblocks? 4602 * The "Chunk" flag indicating whether the nrblocks is 4603 * physically contiguous on disk 4604 * 4605 * For Direct IO and fallocate, they calls get_block to allocate 4606 * one single extent at a time, so they could set the "Chunk" flag 4607 */ 4608 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4609 4610 ret = idxblocks; 4611 4612 /* 4613 * Now let's see how many group bitmaps and group descriptors need 4614 * to account 4615 */ 4616 groups = idxblocks; 4617 if (chunk) 4618 groups += 1; 4619 else 4620 groups += nrblocks; 4621 4622 gdpblocks = groups; 4623 if (groups > ngroups) 4624 groups = ngroups; 4625 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4626 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4627 4628 /* bitmaps and block group descriptor blocks */ 4629 ret += groups + gdpblocks; 4630 4631 /* Blocks for super block, inode, quota and xattr blocks */ 4632 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4633 4634 return ret; 4635 } 4636 4637 /* 4638 * Calculate the total number of credits to reserve to fit 4639 * the modification of a single pages into a single transaction, 4640 * which may include multiple chunks of block allocations. 4641 * 4642 * This could be called via ext4_write_begin() 4643 * 4644 * We need to consider the worse case, when 4645 * one new block per extent. 4646 */ 4647 int ext4_writepage_trans_blocks(struct inode *inode) 4648 { 4649 int bpp = ext4_journal_blocks_per_page(inode); 4650 int ret; 4651 4652 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4653 4654 /* Account for data blocks for journalled mode */ 4655 if (ext4_should_journal_data(inode)) 4656 ret += bpp; 4657 return ret; 4658 } 4659 4660 /* 4661 * Calculate the journal credits for a chunk of data modification. 4662 * 4663 * This is called from DIO, fallocate or whoever calling 4664 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4665 * 4666 * journal buffers for data blocks are not included here, as DIO 4667 * and fallocate do no need to journal data buffers. 4668 */ 4669 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4670 { 4671 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4672 } 4673 4674 /* 4675 * The caller must have previously called ext4_reserve_inode_write(). 4676 * Give this, we know that the caller already has write access to iloc->bh. 4677 */ 4678 int ext4_mark_iloc_dirty(handle_t *handle, 4679 struct inode *inode, struct ext4_iloc *iloc) 4680 { 4681 int err = 0; 4682 4683 if (IS_I_VERSION(inode)) 4684 inode_inc_iversion(inode); 4685 4686 /* the do_update_inode consumes one bh->b_count */ 4687 get_bh(iloc->bh); 4688 4689 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4690 err = ext4_do_update_inode(handle, inode, iloc); 4691 put_bh(iloc->bh); 4692 return err; 4693 } 4694 4695 /* 4696 * On success, We end up with an outstanding reference count against 4697 * iloc->bh. This _must_ be cleaned up later. 4698 */ 4699 4700 int 4701 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4702 struct ext4_iloc *iloc) 4703 { 4704 int err; 4705 4706 err = ext4_get_inode_loc(inode, iloc); 4707 if (!err) { 4708 BUFFER_TRACE(iloc->bh, "get_write_access"); 4709 err = ext4_journal_get_write_access(handle, iloc->bh); 4710 if (err) { 4711 brelse(iloc->bh); 4712 iloc->bh = NULL; 4713 } 4714 } 4715 ext4_std_error(inode->i_sb, err); 4716 return err; 4717 } 4718 4719 /* 4720 * Expand an inode by new_extra_isize bytes. 4721 * Returns 0 on success or negative error number on failure. 4722 */ 4723 static int ext4_expand_extra_isize(struct inode *inode, 4724 unsigned int new_extra_isize, 4725 struct ext4_iloc iloc, 4726 handle_t *handle) 4727 { 4728 struct ext4_inode *raw_inode; 4729 struct ext4_xattr_ibody_header *header; 4730 4731 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4732 return 0; 4733 4734 raw_inode = ext4_raw_inode(&iloc); 4735 4736 header = IHDR(inode, raw_inode); 4737 4738 /* No extended attributes present */ 4739 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4740 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4741 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4742 new_extra_isize); 4743 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4744 return 0; 4745 } 4746 4747 /* try to expand with EAs present */ 4748 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4749 raw_inode, handle); 4750 } 4751 4752 /* 4753 * What we do here is to mark the in-core inode as clean with respect to inode 4754 * dirtiness (it may still be data-dirty). 4755 * This means that the in-core inode may be reaped by prune_icache 4756 * without having to perform any I/O. This is a very good thing, 4757 * because *any* task may call prune_icache - even ones which 4758 * have a transaction open against a different journal. 4759 * 4760 * Is this cheating? Not really. Sure, we haven't written the 4761 * inode out, but prune_icache isn't a user-visible syncing function. 4762 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4763 * we start and wait on commits. 4764 */ 4765 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4766 { 4767 struct ext4_iloc iloc; 4768 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4769 static unsigned int mnt_count; 4770 int err, ret; 4771 4772 might_sleep(); 4773 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4774 err = ext4_reserve_inode_write(handle, inode, &iloc); 4775 if (ext4_handle_valid(handle) && 4776 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4777 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4778 /* 4779 * We need extra buffer credits since we may write into EA block 4780 * with this same handle. If journal_extend fails, then it will 4781 * only result in a minor loss of functionality for that inode. 4782 * If this is felt to be critical, then e2fsck should be run to 4783 * force a large enough s_min_extra_isize. 4784 */ 4785 if ((jbd2_journal_extend(handle, 4786 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4787 ret = ext4_expand_extra_isize(inode, 4788 sbi->s_want_extra_isize, 4789 iloc, handle); 4790 if (ret) { 4791 ext4_set_inode_state(inode, 4792 EXT4_STATE_NO_EXPAND); 4793 if (mnt_count != 4794 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4795 ext4_warning(inode->i_sb, 4796 "Unable to expand inode %lu. Delete" 4797 " some EAs or run e2fsck.", 4798 inode->i_ino); 4799 mnt_count = 4800 le16_to_cpu(sbi->s_es->s_mnt_count); 4801 } 4802 } 4803 } 4804 } 4805 if (!err) 4806 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4807 return err; 4808 } 4809 4810 /* 4811 * ext4_dirty_inode() is called from __mark_inode_dirty() 4812 * 4813 * We're really interested in the case where a file is being extended. 4814 * i_size has been changed by generic_commit_write() and we thus need 4815 * to include the updated inode in the current transaction. 4816 * 4817 * Also, dquot_alloc_block() will always dirty the inode when blocks 4818 * are allocated to the file. 4819 * 4820 * If the inode is marked synchronous, we don't honour that here - doing 4821 * so would cause a commit on atime updates, which we don't bother doing. 4822 * We handle synchronous inodes at the highest possible level. 4823 */ 4824 void ext4_dirty_inode(struct inode *inode, int flags) 4825 { 4826 handle_t *handle; 4827 4828 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4829 if (IS_ERR(handle)) 4830 goto out; 4831 4832 ext4_mark_inode_dirty(handle, inode); 4833 4834 ext4_journal_stop(handle); 4835 out: 4836 return; 4837 } 4838 4839 #if 0 4840 /* 4841 * Bind an inode's backing buffer_head into this transaction, to prevent 4842 * it from being flushed to disk early. Unlike 4843 * ext4_reserve_inode_write, this leaves behind no bh reference and 4844 * returns no iloc structure, so the caller needs to repeat the iloc 4845 * lookup to mark the inode dirty later. 4846 */ 4847 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4848 { 4849 struct ext4_iloc iloc; 4850 4851 int err = 0; 4852 if (handle) { 4853 err = ext4_get_inode_loc(inode, &iloc); 4854 if (!err) { 4855 BUFFER_TRACE(iloc.bh, "get_write_access"); 4856 err = jbd2_journal_get_write_access(handle, iloc.bh); 4857 if (!err) 4858 err = ext4_handle_dirty_metadata(handle, 4859 NULL, 4860 iloc.bh); 4861 brelse(iloc.bh); 4862 } 4863 } 4864 ext4_std_error(inode->i_sb, err); 4865 return err; 4866 } 4867 #endif 4868 4869 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4870 { 4871 journal_t *journal; 4872 handle_t *handle; 4873 int err; 4874 4875 /* 4876 * We have to be very careful here: changing a data block's 4877 * journaling status dynamically is dangerous. If we write a 4878 * data block to the journal, change the status and then delete 4879 * that block, we risk forgetting to revoke the old log record 4880 * from the journal and so a subsequent replay can corrupt data. 4881 * So, first we make sure that the journal is empty and that 4882 * nobody is changing anything. 4883 */ 4884 4885 journal = EXT4_JOURNAL(inode); 4886 if (!journal) 4887 return 0; 4888 if (is_journal_aborted(journal)) 4889 return -EROFS; 4890 /* We have to allocate physical blocks for delalloc blocks 4891 * before flushing journal. otherwise delalloc blocks can not 4892 * be allocated any more. even more truncate on delalloc blocks 4893 * could trigger BUG by flushing delalloc blocks in journal. 4894 * There is no delalloc block in non-journal data mode. 4895 */ 4896 if (val && test_opt(inode->i_sb, DELALLOC)) { 4897 err = ext4_alloc_da_blocks(inode); 4898 if (err < 0) 4899 return err; 4900 } 4901 4902 /* Wait for all existing dio workers */ 4903 ext4_inode_block_unlocked_dio(inode); 4904 inode_dio_wait(inode); 4905 4906 jbd2_journal_lock_updates(journal); 4907 4908 /* 4909 * OK, there are no updates running now, and all cached data is 4910 * synced to disk. We are now in a completely consistent state 4911 * which doesn't have anything in the journal, and we know that 4912 * no filesystem updates are running, so it is safe to modify 4913 * the inode's in-core data-journaling state flag now. 4914 */ 4915 4916 if (val) 4917 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4918 else { 4919 jbd2_journal_flush(journal); 4920 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4921 } 4922 ext4_set_aops(inode); 4923 4924 jbd2_journal_unlock_updates(journal); 4925 ext4_inode_resume_unlocked_dio(inode); 4926 4927 /* Finally we can mark the inode as dirty. */ 4928 4929 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4930 if (IS_ERR(handle)) 4931 return PTR_ERR(handle); 4932 4933 err = ext4_mark_inode_dirty(handle, inode); 4934 ext4_handle_sync(handle); 4935 ext4_journal_stop(handle); 4936 ext4_std_error(inode->i_sb, err); 4937 4938 return err; 4939 } 4940 4941 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4942 { 4943 return !buffer_mapped(bh); 4944 } 4945 4946 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4947 { 4948 struct page *page = vmf->page; 4949 loff_t size; 4950 unsigned long len; 4951 int ret; 4952 struct file *file = vma->vm_file; 4953 struct inode *inode = file_inode(file); 4954 struct address_space *mapping = inode->i_mapping; 4955 handle_t *handle; 4956 get_block_t *get_block; 4957 int retries = 0; 4958 4959 sb_start_pagefault(inode->i_sb); 4960 file_update_time(vma->vm_file); 4961 /* Delalloc case is easy... */ 4962 if (test_opt(inode->i_sb, DELALLOC) && 4963 !ext4_should_journal_data(inode) && 4964 !ext4_nonda_switch(inode->i_sb)) { 4965 do { 4966 ret = __block_page_mkwrite(vma, vmf, 4967 ext4_da_get_block_prep); 4968 } while (ret == -ENOSPC && 4969 ext4_should_retry_alloc(inode->i_sb, &retries)); 4970 goto out_ret; 4971 } 4972 4973 lock_page(page); 4974 size = i_size_read(inode); 4975 /* Page got truncated from under us? */ 4976 if (page->mapping != mapping || page_offset(page) > size) { 4977 unlock_page(page); 4978 ret = VM_FAULT_NOPAGE; 4979 goto out; 4980 } 4981 4982 if (page->index == size >> PAGE_CACHE_SHIFT) 4983 len = size & ~PAGE_CACHE_MASK; 4984 else 4985 len = PAGE_CACHE_SIZE; 4986 /* 4987 * Return if we have all the buffers mapped. This avoids the need to do 4988 * journal_start/journal_stop which can block and take a long time 4989 */ 4990 if (page_has_buffers(page)) { 4991 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 4992 0, len, NULL, 4993 ext4_bh_unmapped)) { 4994 /* Wait so that we don't change page under IO */ 4995 wait_for_stable_page(page); 4996 ret = VM_FAULT_LOCKED; 4997 goto out; 4998 } 4999 } 5000 unlock_page(page); 5001 /* OK, we need to fill the hole... */ 5002 if (ext4_should_dioread_nolock(inode)) 5003 get_block = ext4_get_block_write; 5004 else 5005 get_block = ext4_get_block; 5006 retry_alloc: 5007 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5008 ext4_writepage_trans_blocks(inode)); 5009 if (IS_ERR(handle)) { 5010 ret = VM_FAULT_SIGBUS; 5011 goto out; 5012 } 5013 ret = __block_page_mkwrite(vma, vmf, get_block); 5014 if (!ret && ext4_should_journal_data(inode)) { 5015 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5016 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5017 unlock_page(page); 5018 ret = VM_FAULT_SIGBUS; 5019 ext4_journal_stop(handle); 5020 goto out; 5021 } 5022 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5023 } 5024 ext4_journal_stop(handle); 5025 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5026 goto retry_alloc; 5027 out_ret: 5028 ret = block_page_mkwrite_return(ret); 5029 out: 5030 sb_end_pagefault(inode->i_sb); 5031 return ret; 5032 } 5033