xref: /openbmc/linux/fs/ext4/inode.c (revision 74d553aad7926ed05e05d9d5cff516a7b31375fc)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 		struct inode *inode, struct page *page, loff_t from,
139 		loff_t length, int flags);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		(inode->i_sb->s_blocksize >> 9) : 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_log_start_commit(journal, commit_tid);
214 			jbd2_log_wait_commit(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 		ext4_ioend_shutdown(inode);
219 		goto no_delete;
220 	}
221 
222 	if (!is_bad_inode(inode))
223 		dquot_initialize(inode);
224 
225 	if (ext4_should_order_data(inode))
226 		ext4_begin_ordered_truncate(inode, 0);
227 	truncate_inode_pages(&inode->i_data, 0);
228 	ext4_ioend_shutdown(inode);
229 
230 	if (is_bad_inode(inode))
231 		goto no_delete;
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 		return ext4_ext_calc_metadata_amount(inode, lblock);
330 
331 	return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333 
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339 					int used, int quota_claim)
340 {
341 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 	struct ext4_inode_info *ei = EXT4_I(inode);
343 
344 	spin_lock(&ei->i_block_reservation_lock);
345 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 	if (unlikely(used > ei->i_reserved_data_blocks)) {
347 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 			 "with only %d reserved data blocks",
349 			 __func__, inode->i_ino, used,
350 			 ei->i_reserved_data_blocks);
351 		WARN_ON(1);
352 		used = ei->i_reserved_data_blocks;
353 	}
354 
355 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 			"with only %d reserved metadata blocks "
358 			"(releasing %d blocks with reserved %d data blocks)",
359 			inode->i_ino, ei->i_allocated_meta_blocks,
360 			     ei->i_reserved_meta_blocks, used,
361 			     ei->i_reserved_data_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488 				       struct inode *inode,
489 				       struct ext4_map_blocks *es_map,
490 				       struct ext4_map_blocks *map,
491 				       int flags)
492 {
493 	int retval;
494 
495 	map->m_flags = 0;
496 	/*
497 	 * There is a race window that the result is not the same.
498 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
499 	 * is that we lookup a block mapping in extent status tree with
500 	 * out taking i_data_sem.  So at the time the unwritten extent
501 	 * could be converted.
502 	 */
503 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 		down_read((&EXT4_I(inode)->i_data_sem));
505 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 					     EXT4_GET_BLOCKS_KEEP_SIZE);
508 	} else {
509 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 					     EXT4_GET_BLOCKS_KEEP_SIZE);
511 	}
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		up_read((&EXT4_I(inode)->i_data_sem));
514 	/*
515 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 	 * because it shouldn't be marked in es_map->m_flags.
517 	 */
518 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519 
520 	/*
521 	 * We don't check m_len because extent will be collpased in status
522 	 * tree.  So the m_len might not equal.
523 	 */
524 	if (es_map->m_lblk != map->m_lblk ||
525 	    es_map->m_flags != map->m_flags ||
526 	    es_map->m_pblk != map->m_pblk) {
527 		printk("ES cache assertation failed for inode: %lu "
528 		       "es_cached ex [%d/%d/%llu/%x] != "
529 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
531 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 		       map->m_len, map->m_pblk, map->m_flags,
533 		       retval, flags);
534 	}
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537 
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 		    struct ext4_map_blocks *map, int flags)
562 {
563 	struct extent_status es;
564 	int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566 	struct ext4_map_blocks orig_map;
567 
568 	memcpy(&orig_map, map, sizeof(*map));
569 #endif
570 
571 	map->m_flags = 0;
572 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 		  (unsigned long) map->m_lblk);
575 
576 	/* Lookup extent status tree firstly */
577 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 			map->m_pblk = ext4_es_pblock(&es) +
580 					map->m_lblk - es.es_lblk;
581 			map->m_flags |= ext4_es_is_written(&es) ?
582 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 			retval = es.es_len - (map->m_lblk - es.es_lblk);
584 			if (retval > map->m_len)
585 				retval = map->m_len;
586 			map->m_len = retval;
587 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 			retval = 0;
589 		} else {
590 			BUG_ON(1);
591 		}
592 #ifdef ES_AGGRESSIVE_TEST
593 		ext4_map_blocks_es_recheck(handle, inode, map,
594 					   &orig_map, flags);
595 #endif
596 		goto found;
597 	}
598 
599 	/*
600 	 * Try to see if we can get the block without requesting a new
601 	 * file system block.
602 	 */
603 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 		down_read((&EXT4_I(inode)->i_data_sem));
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 					     EXT4_GET_BLOCKS_KEEP_SIZE);
608 	} else {
609 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 					     EXT4_GET_BLOCKS_KEEP_SIZE);
611 	}
612 	if (retval > 0) {
613 		int ret;
614 		unsigned long long status;
615 
616 #ifdef ES_AGGRESSIVE_TEST
617 		if (retval != map->m_len) {
618 			printk("ES len assertation failed for inode: %lu "
619 			       "retval %d != map->m_len %d "
620 			       "in %s (lookup)\n", inode->i_ino, retval,
621 			       map->m_len, __func__);
622 		}
623 #endif
624 
625 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 		    ext4_find_delalloc_range(inode, map->m_lblk,
629 					     map->m_lblk + map->m_len - 1))
630 			status |= EXTENT_STATUS_DELAYED;
631 		ret = ext4_es_insert_extent(inode, map->m_lblk,
632 					    map->m_len, map->m_pblk, status);
633 		if (ret < 0)
634 			retval = ret;
635 	}
636 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 		up_read((&EXT4_I(inode)->i_data_sem));
638 
639 found:
640 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641 		int ret = check_block_validity(inode, map);
642 		if (ret != 0)
643 			return ret;
644 	}
645 
646 	/* If it is only a block(s) look up */
647 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 		return retval;
649 
650 	/*
651 	 * Returns if the blocks have already allocated
652 	 *
653 	 * Note that if blocks have been preallocated
654 	 * ext4_ext_get_block() returns the create = 0
655 	 * with buffer head unmapped.
656 	 */
657 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 		return retval;
659 
660 	/*
661 	 * Here we clear m_flags because after allocating an new extent,
662 	 * it will be set again.
663 	 */
664 	map->m_flags &= ~EXT4_MAP_FLAGS;
665 
666 	/*
667 	 * New blocks allocate and/or writing to uninitialized extent
668 	 * will possibly result in updating i_data, so we take
669 	 * the write lock of i_data_sem, and call get_blocks()
670 	 * with create == 1 flag.
671 	 */
672 	down_write((&EXT4_I(inode)->i_data_sem));
673 
674 	/*
675 	 * if the caller is from delayed allocation writeout path
676 	 * we have already reserved fs blocks for allocation
677 	 * let the underlying get_block() function know to
678 	 * avoid double accounting
679 	 */
680 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 	/*
683 	 * We need to check for EXT4 here because migrate
684 	 * could have changed the inode type in between
685 	 */
686 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
688 	} else {
689 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
690 
691 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 			/*
693 			 * We allocated new blocks which will result in
694 			 * i_data's format changing.  Force the migrate
695 			 * to fail by clearing migrate flags
696 			 */
697 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698 		}
699 
700 		/*
701 		 * Update reserved blocks/metadata blocks after successful
702 		 * block allocation which had been deferred till now. We don't
703 		 * support fallocate for non extent files. So we can update
704 		 * reserve space here.
705 		 */
706 		if ((retval > 0) &&
707 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 			ext4_da_update_reserve_space(inode, retval, 1);
709 	}
710 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712 
713 	if (retval > 0) {
714 		int ret;
715 		unsigned long long status;
716 
717 #ifdef ES_AGGRESSIVE_TEST
718 		if (retval != map->m_len) {
719 			printk("ES len assertation failed for inode: %lu "
720 			       "retval %d != map->m_len %d "
721 			       "in %s (allocation)\n", inode->i_ino, retval,
722 			       map->m_len, __func__);
723 		}
724 #endif
725 
726 		/*
727 		 * If the extent has been zeroed out, we don't need to update
728 		 * extent status tree.
729 		 */
730 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 			if (ext4_es_is_written(&es))
733 				goto has_zeroout;
734 		}
735 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 		    ext4_find_delalloc_range(inode, map->m_lblk,
739 					     map->m_lblk + map->m_len - 1))
740 			status |= EXTENT_STATUS_DELAYED;
741 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 					    map->m_pblk, status);
743 		if (ret < 0)
744 			retval = ret;
745 	}
746 
747 has_zeroout:
748 	up_write((&EXT4_I(inode)->i_data_sem));
749 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750 		int ret = check_block_validity(inode, map);
751 		if (ret != 0)
752 			return ret;
753 	}
754 	return retval;
755 }
756 
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	handle_t *handle = ext4_journal_current_handle();
764 	struct ext4_map_blocks map;
765 	int ret = 0, started = 0;
766 	int dio_credits;
767 
768 	if (ext4_has_inline_data(inode))
769 		return -ERANGE;
770 
771 	map.m_lblk = iblock;
772 	map.m_len = bh->b_size >> inode->i_blkbits;
773 
774 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775 		/* Direct IO write... */
776 		if (map.m_len > DIO_MAX_BLOCKS)
777 			map.m_len = DIO_MAX_BLOCKS;
778 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 					    dio_credits);
781 		if (IS_ERR(handle)) {
782 			ret = PTR_ERR(handle);
783 			return ret;
784 		}
785 		started = 1;
786 	}
787 
788 	ret = ext4_map_blocks(handle, inode, &map, flags);
789 	if (ret > 0) {
790 		map_bh(bh, inode->i_sb, map.m_pblk);
791 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 		ret = 0;
794 	}
795 	if (started)
796 		ext4_journal_stop(handle);
797 	return ret;
798 }
799 
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801 		   struct buffer_head *bh, int create)
802 {
803 	return _ext4_get_block(inode, iblock, bh,
804 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806 
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811 				ext4_lblk_t block, int create, int *errp)
812 {
813 	struct ext4_map_blocks map;
814 	struct buffer_head *bh;
815 	int fatal = 0, err;
816 
817 	J_ASSERT(handle != NULL || create == 0);
818 
819 	map.m_lblk = block;
820 	map.m_len = 1;
821 	err = ext4_map_blocks(handle, inode, &map,
822 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
823 
824 	/* ensure we send some value back into *errp */
825 	*errp = 0;
826 
827 	if (create && err == 0)
828 		err = -ENOSPC;	/* should never happen */
829 	if (err < 0)
830 		*errp = err;
831 	if (err <= 0)
832 		return NULL;
833 
834 	bh = sb_getblk(inode->i_sb, map.m_pblk);
835 	if (unlikely(!bh)) {
836 		*errp = -ENOMEM;
837 		return NULL;
838 	}
839 	if (map.m_flags & EXT4_MAP_NEW) {
840 		J_ASSERT(create != 0);
841 		J_ASSERT(handle != NULL);
842 
843 		/*
844 		 * Now that we do not always journal data, we should
845 		 * keep in mind whether this should always journal the
846 		 * new buffer as metadata.  For now, regular file
847 		 * writes use ext4_get_block instead, so it's not a
848 		 * problem.
849 		 */
850 		lock_buffer(bh);
851 		BUFFER_TRACE(bh, "call get_create_access");
852 		fatal = ext4_journal_get_create_access(handle, bh);
853 		if (!fatal && !buffer_uptodate(bh)) {
854 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 			set_buffer_uptodate(bh);
856 		}
857 		unlock_buffer(bh);
858 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 		err = ext4_handle_dirty_metadata(handle, inode, bh);
860 		if (!fatal)
861 			fatal = err;
862 	} else {
863 		BUFFER_TRACE(bh, "not a new buffer");
864 	}
865 	if (fatal) {
866 		*errp = fatal;
867 		brelse(bh);
868 		bh = NULL;
869 	}
870 	return bh;
871 }
872 
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 			       ext4_lblk_t block, int create, int *err)
875 {
876 	struct buffer_head *bh;
877 
878 	bh = ext4_getblk(handle, inode, block, create, err);
879 	if (!bh)
880 		return bh;
881 	if (buffer_uptodate(bh))
882 		return bh;
883 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 	wait_on_buffer(bh);
885 	if (buffer_uptodate(bh))
886 		return bh;
887 	put_bh(bh);
888 	*err = -EIO;
889 	return NULL;
890 }
891 
892 int ext4_walk_page_buffers(handle_t *handle,
893 			   struct buffer_head *head,
894 			   unsigned from,
895 			   unsigned to,
896 			   int *partial,
897 			   int (*fn)(handle_t *handle,
898 				     struct buffer_head *bh))
899 {
900 	struct buffer_head *bh;
901 	unsigned block_start, block_end;
902 	unsigned blocksize = head->b_size;
903 	int err, ret = 0;
904 	struct buffer_head *next;
905 
906 	for (bh = head, block_start = 0;
907 	     ret == 0 && (bh != head || !block_start);
908 	     block_start = block_end, bh = next) {
909 		next = bh->b_this_page;
910 		block_end = block_start + blocksize;
911 		if (block_end <= from || block_start >= to) {
912 			if (partial && !buffer_uptodate(bh))
913 				*partial = 1;
914 			continue;
915 		}
916 		err = (*fn)(handle, bh);
917 		if (!ret)
918 			ret = err;
919 	}
920 	return ret;
921 }
922 
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948 				struct buffer_head *bh)
949 {
950 	int dirty = buffer_dirty(bh);
951 	int ret;
952 
953 	if (!buffer_mapped(bh) || buffer_freed(bh))
954 		return 0;
955 	/*
956 	 * __block_write_begin() could have dirtied some buffers. Clean
957 	 * the dirty bit as jbd2_journal_get_write_access() could complain
958 	 * otherwise about fs integrity issues. Setting of the dirty bit
959 	 * by __block_write_begin() isn't a real problem here as we clear
960 	 * the bit before releasing a page lock and thus writeback cannot
961 	 * ever write the buffer.
962 	 */
963 	if (dirty)
964 		clear_buffer_dirty(bh);
965 	ret = ext4_journal_get_write_access(handle, bh);
966 	if (!ret && dirty)
967 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 	return ret;
969 }
970 
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 		   struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 			    loff_t pos, unsigned len, unsigned flags,
975 			    struct page **pagep, void **fsdata)
976 {
977 	struct inode *inode = mapping->host;
978 	int ret, needed_blocks;
979 	handle_t *handle;
980 	int retries = 0;
981 	struct page *page;
982 	pgoff_t index;
983 	unsigned from, to;
984 
985 	trace_ext4_write_begin(inode, pos, len, flags);
986 	/*
987 	 * Reserve one block more for addition to orphan list in case
988 	 * we allocate blocks but write fails for some reason
989 	 */
990 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 	index = pos >> PAGE_CACHE_SHIFT;
992 	from = pos & (PAGE_CACHE_SIZE - 1);
993 	to = from + len;
994 
995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 						    flags, pagep);
998 		if (ret < 0)
999 			return ret;
1000 		if (ret == 1)
1001 			return 0;
1002 	}
1003 
1004 	/*
1005 	 * grab_cache_page_write_begin() can take a long time if the
1006 	 * system is thrashing due to memory pressure, or if the page
1007 	 * is being written back.  So grab it first before we start
1008 	 * the transaction handle.  This also allows us to allocate
1009 	 * the page (if needed) without using GFP_NOFS.
1010 	 */
1011 retry_grab:
1012 	page = grab_cache_page_write_begin(mapping, index, flags);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	unlock_page(page);
1016 
1017 retry_journal:
1018 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 	if (IS_ERR(handle)) {
1020 		page_cache_release(page);
1021 		return PTR_ERR(handle);
1022 	}
1023 
1024 	lock_page(page);
1025 	if (page->mapping != mapping) {
1026 		/* The page got truncated from under us */
1027 		unlock_page(page);
1028 		page_cache_release(page);
1029 		ext4_journal_stop(handle);
1030 		goto retry_grab;
1031 	}
1032 	wait_on_page_writeback(page);
1033 
1034 	if (ext4_should_dioread_nolock(inode))
1035 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036 	else
1037 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1038 
1039 	if (!ret && ext4_should_journal_data(inode)) {
1040 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 					     from, to, NULL,
1042 					     do_journal_get_write_access);
1043 	}
1044 
1045 	if (ret) {
1046 		unlock_page(page);
1047 		/*
1048 		 * __block_write_begin may have instantiated a few blocks
1049 		 * outside i_size.  Trim these off again. Don't need
1050 		 * i_size_read because we hold i_mutex.
1051 		 *
1052 		 * Add inode to orphan list in case we crash before
1053 		 * truncate finishes
1054 		 */
1055 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 			ext4_orphan_add(handle, inode);
1057 
1058 		ext4_journal_stop(handle);
1059 		if (pos + len > inode->i_size) {
1060 			ext4_truncate_failed_write(inode);
1061 			/*
1062 			 * If truncate failed early the inode might
1063 			 * still be on the orphan list; we need to
1064 			 * make sure the inode is removed from the
1065 			 * orphan list in that case.
1066 			 */
1067 			if (inode->i_nlink)
1068 				ext4_orphan_del(NULL, inode);
1069 		}
1070 
1071 		if (ret == -ENOSPC &&
1072 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1073 			goto retry_journal;
1074 		page_cache_release(page);
1075 		return ret;
1076 	}
1077 	*pagep = page;
1078 	return ret;
1079 }
1080 
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084 	if (!buffer_mapped(bh) || buffer_freed(bh))
1085 		return 0;
1086 	set_buffer_uptodate(bh);
1087 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1088 }
1089 
1090 static int ext4_generic_write_end(struct file *file,
1091 				  struct address_space *mapping,
1092 				  loff_t pos, unsigned len, unsigned copied,
1093 				  struct page *page, void *fsdata)
1094 {
1095 	int i_size_changed = 0;
1096 	struct inode *inode = mapping->host;
1097 	handle_t *handle = ext4_journal_current_handle();
1098 
1099 	if (ext4_has_inline_data(inode))
1100 		copied = ext4_write_inline_data_end(inode, pos, len,
1101 						    copied, page);
1102 	else
1103 		copied = block_write_end(file, mapping, pos,
1104 					 len, copied, page, fsdata);
1105 
1106 	/*
1107 	 * No need to use i_size_read() here, the i_size
1108 	 * cannot change under us because we hold i_mutex.
1109 	 *
1110 	 * But it's important to update i_size while still holding page lock:
1111 	 * page writeout could otherwise come in and zero beyond i_size.
1112 	 */
1113 	if (pos + copied > inode->i_size) {
1114 		i_size_write(inode, pos + copied);
1115 		i_size_changed = 1;
1116 	}
1117 
1118 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1119 		/* We need to mark inode dirty even if
1120 		 * new_i_size is less that inode->i_size
1121 		 * bu greater than i_disksize.(hint delalloc)
1122 		 */
1123 		ext4_update_i_disksize(inode, (pos + copied));
1124 		i_size_changed = 1;
1125 	}
1126 	unlock_page(page);
1127 	page_cache_release(page);
1128 
1129 	/*
1130 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1131 	 * makes the holding time of page lock longer. Second, it forces lock
1132 	 * ordering of page lock and transaction start for journaling
1133 	 * filesystems.
1134 	 */
1135 	if (i_size_changed)
1136 		ext4_mark_inode_dirty(handle, inode);
1137 
1138 	return copied;
1139 }
1140 
1141 /*
1142  * We need to pick up the new inode size which generic_commit_write gave us
1143  * `file' can be NULL - eg, when called from page_symlink().
1144  *
1145  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1146  * buffers are managed internally.
1147  */
1148 static int ext4_write_end(struct file *file,
1149 			  struct address_space *mapping,
1150 			  loff_t pos, unsigned len, unsigned copied,
1151 			  struct page *page, void *fsdata)
1152 {
1153 	handle_t *handle = ext4_journal_current_handle();
1154 	struct inode *inode = mapping->host;
1155 	int ret = 0, ret2;
1156 
1157 	trace_ext4_write_end(inode, pos, len, copied);
1158 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1159 		ret = ext4_jbd2_file_inode(handle, inode);
1160 		if (ret) {
1161 			unlock_page(page);
1162 			page_cache_release(page);
1163 			goto errout;
1164 		}
1165 	}
1166 
1167 	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1168 					page, fsdata);
1169 	if (copied < 0)
1170 		ret = copied;
1171 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1172 		/* if we have allocated more blocks and copied
1173 		 * less. We will have blocks allocated outside
1174 		 * inode->i_size. So truncate them
1175 		 */
1176 		ext4_orphan_add(handle, inode);
1177 errout:
1178 	ret2 = ext4_journal_stop(handle);
1179 	if (!ret)
1180 		ret = ret2;
1181 
1182 	if (pos + len > inode->i_size) {
1183 		ext4_truncate_failed_write(inode);
1184 		/*
1185 		 * If truncate failed early the inode might still be
1186 		 * on the orphan list; we need to make sure the inode
1187 		 * is removed from the orphan list in that case.
1188 		 */
1189 		if (inode->i_nlink)
1190 			ext4_orphan_del(NULL, inode);
1191 	}
1192 
1193 	return ret ? ret : copied;
1194 }
1195 
1196 static int ext4_journalled_write_end(struct file *file,
1197 				     struct address_space *mapping,
1198 				     loff_t pos, unsigned len, unsigned copied,
1199 				     struct page *page, void *fsdata)
1200 {
1201 	handle_t *handle = ext4_journal_current_handle();
1202 	struct inode *inode = mapping->host;
1203 	int ret = 0, ret2;
1204 	int partial = 0;
1205 	unsigned from, to;
1206 	loff_t new_i_size;
1207 
1208 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1209 	from = pos & (PAGE_CACHE_SIZE - 1);
1210 	to = from + len;
1211 
1212 	BUG_ON(!ext4_handle_valid(handle));
1213 
1214 	if (ext4_has_inline_data(inode))
1215 		copied = ext4_write_inline_data_end(inode, pos, len,
1216 						    copied, page);
1217 	else {
1218 		if (copied < len) {
1219 			if (!PageUptodate(page))
1220 				copied = 0;
1221 			page_zero_new_buffers(page, from+copied, to);
1222 		}
1223 
1224 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1225 					     to, &partial, write_end_fn);
1226 		if (!partial)
1227 			SetPageUptodate(page);
1228 	}
1229 	new_i_size = pos + copied;
1230 	if (new_i_size > inode->i_size)
1231 		i_size_write(inode, pos+copied);
1232 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1233 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1234 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1235 		ext4_update_i_disksize(inode, new_i_size);
1236 		ret2 = ext4_mark_inode_dirty(handle, inode);
1237 		if (!ret)
1238 			ret = ret2;
1239 	}
1240 
1241 	unlock_page(page);
1242 	page_cache_release(page);
1243 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1244 		/* if we have allocated more blocks and copied
1245 		 * less. We will have blocks allocated outside
1246 		 * inode->i_size. So truncate them
1247 		 */
1248 		ext4_orphan_add(handle, inode);
1249 
1250 	ret2 = ext4_journal_stop(handle);
1251 	if (!ret)
1252 		ret = ret2;
1253 	if (pos + len > inode->i_size) {
1254 		ext4_truncate_failed_write(inode);
1255 		/*
1256 		 * If truncate failed early the inode might still be
1257 		 * on the orphan list; we need to make sure the inode
1258 		 * is removed from the orphan list in that case.
1259 		 */
1260 		if (inode->i_nlink)
1261 			ext4_orphan_del(NULL, inode);
1262 	}
1263 
1264 	return ret ? ret : copied;
1265 }
1266 
1267 /*
1268  * Reserve a metadata for a single block located at lblock
1269  */
1270 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1271 {
1272 	int retries = 0;
1273 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1274 	struct ext4_inode_info *ei = EXT4_I(inode);
1275 	unsigned int md_needed;
1276 	ext4_lblk_t save_last_lblock;
1277 	int save_len;
1278 
1279 	/*
1280 	 * recalculate the amount of metadata blocks to reserve
1281 	 * in order to allocate nrblocks
1282 	 * worse case is one extent per block
1283 	 */
1284 repeat:
1285 	spin_lock(&ei->i_block_reservation_lock);
1286 	/*
1287 	 * ext4_calc_metadata_amount() has side effects, which we have
1288 	 * to be prepared undo if we fail to claim space.
1289 	 */
1290 	save_len = ei->i_da_metadata_calc_len;
1291 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1292 	md_needed = EXT4_NUM_B2C(sbi,
1293 				 ext4_calc_metadata_amount(inode, lblock));
1294 	trace_ext4_da_reserve_space(inode, md_needed);
1295 
1296 	/*
1297 	 * We do still charge estimated metadata to the sb though;
1298 	 * we cannot afford to run out of free blocks.
1299 	 */
1300 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1301 		ei->i_da_metadata_calc_len = save_len;
1302 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1303 		spin_unlock(&ei->i_block_reservation_lock);
1304 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1305 			cond_resched();
1306 			goto repeat;
1307 		}
1308 		return -ENOSPC;
1309 	}
1310 	ei->i_reserved_meta_blocks += md_needed;
1311 	spin_unlock(&ei->i_block_reservation_lock);
1312 
1313 	return 0;       /* success */
1314 }
1315 
1316 /*
1317  * Reserve a single cluster located at lblock
1318  */
1319 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1320 {
1321 	int retries = 0;
1322 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323 	struct ext4_inode_info *ei = EXT4_I(inode);
1324 	unsigned int md_needed;
1325 	int ret;
1326 	ext4_lblk_t save_last_lblock;
1327 	int save_len;
1328 
1329 	/*
1330 	 * We will charge metadata quota at writeout time; this saves
1331 	 * us from metadata over-estimation, though we may go over by
1332 	 * a small amount in the end.  Here we just reserve for data.
1333 	 */
1334 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1335 	if (ret)
1336 		return ret;
1337 
1338 	/*
1339 	 * recalculate the amount of metadata blocks to reserve
1340 	 * in order to allocate nrblocks
1341 	 * worse case is one extent per block
1342 	 */
1343 repeat:
1344 	spin_lock(&ei->i_block_reservation_lock);
1345 	/*
1346 	 * ext4_calc_metadata_amount() has side effects, which we have
1347 	 * to be prepared undo if we fail to claim space.
1348 	 */
1349 	save_len = ei->i_da_metadata_calc_len;
1350 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1351 	md_needed = EXT4_NUM_B2C(sbi,
1352 				 ext4_calc_metadata_amount(inode, lblock));
1353 	trace_ext4_da_reserve_space(inode, md_needed);
1354 
1355 	/*
1356 	 * We do still charge estimated metadata to the sb though;
1357 	 * we cannot afford to run out of free blocks.
1358 	 */
1359 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1360 		ei->i_da_metadata_calc_len = save_len;
1361 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1362 		spin_unlock(&ei->i_block_reservation_lock);
1363 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1364 			cond_resched();
1365 			goto repeat;
1366 		}
1367 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1368 		return -ENOSPC;
1369 	}
1370 	ei->i_reserved_data_blocks++;
1371 	ei->i_reserved_meta_blocks += md_needed;
1372 	spin_unlock(&ei->i_block_reservation_lock);
1373 
1374 	return 0;       /* success */
1375 }
1376 
1377 static void ext4_da_release_space(struct inode *inode, int to_free)
1378 {
1379 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380 	struct ext4_inode_info *ei = EXT4_I(inode);
1381 
1382 	if (!to_free)
1383 		return;		/* Nothing to release, exit */
1384 
1385 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1386 
1387 	trace_ext4_da_release_space(inode, to_free);
1388 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1389 		/*
1390 		 * if there aren't enough reserved blocks, then the
1391 		 * counter is messed up somewhere.  Since this
1392 		 * function is called from invalidate page, it's
1393 		 * harmless to return without any action.
1394 		 */
1395 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1396 			 "ino %lu, to_free %d with only %d reserved "
1397 			 "data blocks", inode->i_ino, to_free,
1398 			 ei->i_reserved_data_blocks);
1399 		WARN_ON(1);
1400 		to_free = ei->i_reserved_data_blocks;
1401 	}
1402 	ei->i_reserved_data_blocks -= to_free;
1403 
1404 	if (ei->i_reserved_data_blocks == 0) {
1405 		/*
1406 		 * We can release all of the reserved metadata blocks
1407 		 * only when we have written all of the delayed
1408 		 * allocation blocks.
1409 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1410 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1411 		 */
1412 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1413 				   ei->i_reserved_meta_blocks);
1414 		ei->i_reserved_meta_blocks = 0;
1415 		ei->i_da_metadata_calc_len = 0;
1416 	}
1417 
1418 	/* update fs dirty data blocks counter */
1419 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1420 
1421 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1422 
1423 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1424 }
1425 
1426 static void ext4_da_page_release_reservation(struct page *page,
1427 					     unsigned long offset)
1428 {
1429 	int to_release = 0;
1430 	struct buffer_head *head, *bh;
1431 	unsigned int curr_off = 0;
1432 	struct inode *inode = page->mapping->host;
1433 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1434 	int num_clusters;
1435 	ext4_fsblk_t lblk;
1436 
1437 	head = page_buffers(page);
1438 	bh = head;
1439 	do {
1440 		unsigned int next_off = curr_off + bh->b_size;
1441 
1442 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1443 			to_release++;
1444 			clear_buffer_delay(bh);
1445 		}
1446 		curr_off = next_off;
1447 	} while ((bh = bh->b_this_page) != head);
1448 
1449 	if (to_release) {
1450 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 		ext4_es_remove_extent(inode, lblk, to_release);
1452 	}
1453 
1454 	/* If we have released all the blocks belonging to a cluster, then we
1455 	 * need to release the reserved space for that cluster. */
1456 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1457 	while (num_clusters > 0) {
1458 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1459 			((num_clusters - 1) << sbi->s_cluster_bits);
1460 		if (sbi->s_cluster_ratio == 1 ||
1461 		    !ext4_find_delalloc_cluster(inode, lblk))
1462 			ext4_da_release_space(inode, 1);
1463 
1464 		num_clusters--;
1465 	}
1466 }
1467 
1468 /*
1469  * Delayed allocation stuff
1470  */
1471 
1472 /*
1473  * mpage_da_submit_io - walks through extent of pages and try to write
1474  * them with writepage() call back
1475  *
1476  * @mpd->inode: inode
1477  * @mpd->first_page: first page of the extent
1478  * @mpd->next_page: page after the last page of the extent
1479  *
1480  * By the time mpage_da_submit_io() is called we expect all blocks
1481  * to be allocated. this may be wrong if allocation failed.
1482  *
1483  * As pages are already locked by write_cache_pages(), we can't use it
1484  */
1485 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1486 			      struct ext4_map_blocks *map)
1487 {
1488 	struct pagevec pvec;
1489 	unsigned long index, end;
1490 	int ret = 0, err, nr_pages, i;
1491 	struct inode *inode = mpd->inode;
1492 	struct address_space *mapping = inode->i_mapping;
1493 	loff_t size = i_size_read(inode);
1494 	unsigned int len, block_start;
1495 	struct buffer_head *bh, *page_bufs = NULL;
1496 	sector_t pblock = 0, cur_logical = 0;
1497 	struct ext4_io_submit io_submit;
1498 
1499 	BUG_ON(mpd->next_page <= mpd->first_page);
1500 	memset(&io_submit, 0, sizeof(io_submit));
1501 	/*
1502 	 * We need to start from the first_page to the next_page - 1
1503 	 * to make sure we also write the mapped dirty buffer_heads.
1504 	 * If we look at mpd->b_blocknr we would only be looking
1505 	 * at the currently mapped buffer_heads.
1506 	 */
1507 	index = mpd->first_page;
1508 	end = mpd->next_page - 1;
1509 
1510 	pagevec_init(&pvec, 0);
1511 	while (index <= end) {
1512 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1513 		if (nr_pages == 0)
1514 			break;
1515 		for (i = 0; i < nr_pages; i++) {
1516 			int skip_page = 0;
1517 			struct page *page = pvec.pages[i];
1518 
1519 			index = page->index;
1520 			if (index > end)
1521 				break;
1522 
1523 			if (index == size >> PAGE_CACHE_SHIFT)
1524 				len = size & ~PAGE_CACHE_MASK;
1525 			else
1526 				len = PAGE_CACHE_SIZE;
1527 			if (map) {
1528 				cur_logical = index << (PAGE_CACHE_SHIFT -
1529 							inode->i_blkbits);
1530 				pblock = map->m_pblk + (cur_logical -
1531 							map->m_lblk);
1532 			}
1533 			index++;
1534 
1535 			BUG_ON(!PageLocked(page));
1536 			BUG_ON(PageWriteback(page));
1537 
1538 			bh = page_bufs = page_buffers(page);
1539 			block_start = 0;
1540 			do {
1541 				if (map && (cur_logical >= map->m_lblk) &&
1542 				    (cur_logical <= (map->m_lblk +
1543 						     (map->m_len - 1)))) {
1544 					if (buffer_delay(bh)) {
1545 						clear_buffer_delay(bh);
1546 						bh->b_blocknr = pblock;
1547 					}
1548 					if (buffer_unwritten(bh) ||
1549 					    buffer_mapped(bh))
1550 						BUG_ON(bh->b_blocknr != pblock);
1551 					if (map->m_flags & EXT4_MAP_UNINIT)
1552 						set_buffer_uninit(bh);
1553 					clear_buffer_unwritten(bh);
1554 				}
1555 
1556 				/*
1557 				 * skip page if block allocation undone and
1558 				 * block is dirty
1559 				 */
1560 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1561 					skip_page = 1;
1562 				bh = bh->b_this_page;
1563 				block_start += bh->b_size;
1564 				cur_logical++;
1565 				pblock++;
1566 			} while (bh != page_bufs);
1567 
1568 			if (skip_page) {
1569 				unlock_page(page);
1570 				continue;
1571 			}
1572 
1573 			clear_page_dirty_for_io(page);
1574 			err = ext4_bio_write_page(&io_submit, page, len,
1575 						  mpd->wbc);
1576 			if (!err)
1577 				mpd->pages_written++;
1578 			/*
1579 			 * In error case, we have to continue because
1580 			 * remaining pages are still locked
1581 			 */
1582 			if (ret == 0)
1583 				ret = err;
1584 		}
1585 		pagevec_release(&pvec);
1586 	}
1587 	ext4_io_submit(&io_submit);
1588 	return ret;
1589 }
1590 
1591 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1592 {
1593 	int nr_pages, i;
1594 	pgoff_t index, end;
1595 	struct pagevec pvec;
1596 	struct inode *inode = mpd->inode;
1597 	struct address_space *mapping = inode->i_mapping;
1598 	ext4_lblk_t start, last;
1599 
1600 	index = mpd->first_page;
1601 	end   = mpd->next_page - 1;
1602 
1603 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1604 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1605 	ext4_es_remove_extent(inode, start, last - start + 1);
1606 
1607 	pagevec_init(&pvec, 0);
1608 	while (index <= end) {
1609 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1610 		if (nr_pages == 0)
1611 			break;
1612 		for (i = 0; i < nr_pages; i++) {
1613 			struct page *page = pvec.pages[i];
1614 			if (page->index > end)
1615 				break;
1616 			BUG_ON(!PageLocked(page));
1617 			BUG_ON(PageWriteback(page));
1618 			block_invalidatepage(page, 0);
1619 			ClearPageUptodate(page);
1620 			unlock_page(page);
1621 		}
1622 		index = pvec.pages[nr_pages - 1]->index + 1;
1623 		pagevec_release(&pvec);
1624 	}
1625 	return;
1626 }
1627 
1628 static void ext4_print_free_blocks(struct inode *inode)
1629 {
1630 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631 	struct super_block *sb = inode->i_sb;
1632 
1633 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1635 			ext4_count_free_clusters(inode->i_sb)));
1636 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1637 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1639 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1642 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1644 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1645 		 EXT4_I(inode)->i_reserved_data_blocks);
1646 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1647 	       EXT4_I(inode)->i_reserved_meta_blocks);
1648 	return;
1649 }
1650 
1651 /*
1652  * mpage_da_map_and_submit - go through given space, map them
1653  *       if necessary, and then submit them for I/O
1654  *
1655  * @mpd - bh describing space
1656  *
1657  * The function skips space we know is already mapped to disk blocks.
1658  *
1659  */
1660 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1661 {
1662 	int err, blks, get_blocks_flags;
1663 	struct ext4_map_blocks map, *mapp = NULL;
1664 	sector_t next = mpd->b_blocknr;
1665 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1666 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1667 	handle_t *handle = NULL;
1668 
1669 	/*
1670 	 * If the blocks are mapped already, or we couldn't accumulate
1671 	 * any blocks, then proceed immediately to the submission stage.
1672 	 */
1673 	if ((mpd->b_size == 0) ||
1674 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1675 	     !(mpd->b_state & (1 << BH_Delay)) &&
1676 	     !(mpd->b_state & (1 << BH_Unwritten))))
1677 		goto submit_io;
1678 
1679 	handle = ext4_journal_current_handle();
1680 	BUG_ON(!handle);
1681 
1682 	/*
1683 	 * Call ext4_map_blocks() to allocate any delayed allocation
1684 	 * blocks, or to convert an uninitialized extent to be
1685 	 * initialized (in the case where we have written into
1686 	 * one or more preallocated blocks).
1687 	 *
1688 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1689 	 * indicate that we are on the delayed allocation path.  This
1690 	 * affects functions in many different parts of the allocation
1691 	 * call path.  This flag exists primarily because we don't
1692 	 * want to change *many* call functions, so ext4_map_blocks()
1693 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1694 	 * inode's allocation semaphore is taken.
1695 	 *
1696 	 * If the blocks in questions were delalloc blocks, set
1697 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1698 	 * variables are updated after the blocks have been allocated.
1699 	 */
1700 	map.m_lblk = next;
1701 	map.m_len = max_blocks;
1702 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1703 	if (ext4_should_dioread_nolock(mpd->inode))
1704 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1705 	if (mpd->b_state & (1 << BH_Delay))
1706 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1707 
1708 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1709 	if (blks < 0) {
1710 		struct super_block *sb = mpd->inode->i_sb;
1711 
1712 		err = blks;
1713 		/*
1714 		 * If get block returns EAGAIN or ENOSPC and there
1715 		 * appears to be free blocks we will just let
1716 		 * mpage_da_submit_io() unlock all of the pages.
1717 		 */
1718 		if (err == -EAGAIN)
1719 			goto submit_io;
1720 
1721 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1722 			mpd->retval = err;
1723 			goto submit_io;
1724 		}
1725 
1726 		/*
1727 		 * get block failure will cause us to loop in
1728 		 * writepages, because a_ops->writepage won't be able
1729 		 * to make progress. The page will be redirtied by
1730 		 * writepage and writepages will again try to write
1731 		 * the same.
1732 		 */
1733 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1734 			ext4_msg(sb, KERN_CRIT,
1735 				 "delayed block allocation failed for inode %lu "
1736 				 "at logical offset %llu with max blocks %zd "
1737 				 "with error %d", mpd->inode->i_ino,
1738 				 (unsigned long long) next,
1739 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1740 			ext4_msg(sb, KERN_CRIT,
1741 				"This should not happen!! Data will be lost");
1742 			if (err == -ENOSPC)
1743 				ext4_print_free_blocks(mpd->inode);
1744 		}
1745 		/* invalidate all the pages */
1746 		ext4_da_block_invalidatepages(mpd);
1747 
1748 		/* Mark this page range as having been completed */
1749 		mpd->io_done = 1;
1750 		return;
1751 	}
1752 	BUG_ON(blks == 0);
1753 
1754 	mapp = &map;
1755 	if (map.m_flags & EXT4_MAP_NEW) {
1756 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1757 		int i;
1758 
1759 		for (i = 0; i < map.m_len; i++)
1760 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1761 	}
1762 
1763 	/*
1764 	 * Update on-disk size along with block allocation.
1765 	 */
1766 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1767 	if (disksize > i_size_read(mpd->inode))
1768 		disksize = i_size_read(mpd->inode);
1769 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1770 		ext4_update_i_disksize(mpd->inode, disksize);
1771 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1772 		if (err)
1773 			ext4_error(mpd->inode->i_sb,
1774 				   "Failed to mark inode %lu dirty",
1775 				   mpd->inode->i_ino);
1776 	}
1777 
1778 submit_io:
1779 	mpage_da_submit_io(mpd, mapp);
1780 	mpd->io_done = 1;
1781 }
1782 
1783 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1784 		(1 << BH_Delay) | (1 << BH_Unwritten))
1785 
1786 /*
1787  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1788  *
1789  * @mpd->lbh - extent of blocks
1790  * @logical - logical number of the block in the file
1791  * @b_state - b_state of the buffer head added
1792  *
1793  * the function is used to collect contig. blocks in same state
1794  */
1795 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1796 				   unsigned long b_state)
1797 {
1798 	sector_t next;
1799 	int blkbits = mpd->inode->i_blkbits;
1800 	int nrblocks = mpd->b_size >> blkbits;
1801 
1802 	/*
1803 	 * XXX Don't go larger than mballoc is willing to allocate
1804 	 * This is a stopgap solution.  We eventually need to fold
1805 	 * mpage_da_submit_io() into this function and then call
1806 	 * ext4_map_blocks() multiple times in a loop
1807 	 */
1808 	if (nrblocks >= (8*1024*1024 >> blkbits))
1809 		goto flush_it;
1810 
1811 	/* check if the reserved journal credits might overflow */
1812 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1813 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1814 			/*
1815 			 * With non-extent format we are limited by the journal
1816 			 * credit available.  Total credit needed to insert
1817 			 * nrblocks contiguous blocks is dependent on the
1818 			 * nrblocks.  So limit nrblocks.
1819 			 */
1820 			goto flush_it;
1821 		}
1822 	}
1823 	/*
1824 	 * First block in the extent
1825 	 */
1826 	if (mpd->b_size == 0) {
1827 		mpd->b_blocknr = logical;
1828 		mpd->b_size = 1 << blkbits;
1829 		mpd->b_state = b_state & BH_FLAGS;
1830 		return;
1831 	}
1832 
1833 	next = mpd->b_blocknr + nrblocks;
1834 	/*
1835 	 * Can we merge the block to our big extent?
1836 	 */
1837 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1838 		mpd->b_size += 1 << blkbits;
1839 		return;
1840 	}
1841 
1842 flush_it:
1843 	/*
1844 	 * We couldn't merge the block to our extent, so we
1845 	 * need to flush current  extent and start new one
1846 	 */
1847 	mpage_da_map_and_submit(mpd);
1848 	return;
1849 }
1850 
1851 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1852 {
1853 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1854 }
1855 
1856 /*
1857  * This function is grabs code from the very beginning of
1858  * ext4_map_blocks, but assumes that the caller is from delayed write
1859  * time. This function looks up the requested blocks and sets the
1860  * buffer delay bit under the protection of i_data_sem.
1861  */
1862 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1863 			      struct ext4_map_blocks *map,
1864 			      struct buffer_head *bh)
1865 {
1866 	struct extent_status es;
1867 	int retval;
1868 	sector_t invalid_block = ~((sector_t) 0xffff);
1869 #ifdef ES_AGGRESSIVE_TEST
1870 	struct ext4_map_blocks orig_map;
1871 
1872 	memcpy(&orig_map, map, sizeof(*map));
1873 #endif
1874 
1875 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1876 		invalid_block = ~0;
1877 
1878 	map->m_flags = 0;
1879 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1880 		  "logical block %lu\n", inode->i_ino, map->m_len,
1881 		  (unsigned long) map->m_lblk);
1882 
1883 	/* Lookup extent status tree firstly */
1884 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1885 
1886 		if (ext4_es_is_hole(&es)) {
1887 			retval = 0;
1888 			down_read((&EXT4_I(inode)->i_data_sem));
1889 			goto add_delayed;
1890 		}
1891 
1892 		/*
1893 		 * Delayed extent could be allocated by fallocate.
1894 		 * So we need to check it.
1895 		 */
1896 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1897 			map_bh(bh, inode->i_sb, invalid_block);
1898 			set_buffer_new(bh);
1899 			set_buffer_delay(bh);
1900 			return 0;
1901 		}
1902 
1903 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1904 		retval = es.es_len - (iblock - es.es_lblk);
1905 		if (retval > map->m_len)
1906 			retval = map->m_len;
1907 		map->m_len = retval;
1908 		if (ext4_es_is_written(&es))
1909 			map->m_flags |= EXT4_MAP_MAPPED;
1910 		else if (ext4_es_is_unwritten(&es))
1911 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1912 		else
1913 			BUG_ON(1);
1914 
1915 #ifdef ES_AGGRESSIVE_TEST
1916 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1917 #endif
1918 		return retval;
1919 	}
1920 
1921 	/*
1922 	 * Try to see if we can get the block without requesting a new
1923 	 * file system block.
1924 	 */
1925 	down_read((&EXT4_I(inode)->i_data_sem));
1926 	if (ext4_has_inline_data(inode)) {
1927 		/*
1928 		 * We will soon create blocks for this page, and let
1929 		 * us pretend as if the blocks aren't allocated yet.
1930 		 * In case of clusters, we have to handle the work
1931 		 * of mapping from cluster so that the reserved space
1932 		 * is calculated properly.
1933 		 */
1934 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1935 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1936 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1937 		retval = 0;
1938 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1939 		retval = ext4_ext_map_blocks(NULL, inode, map,
1940 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1941 	else
1942 		retval = ext4_ind_map_blocks(NULL, inode, map,
1943 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1944 
1945 add_delayed:
1946 	if (retval == 0) {
1947 		int ret;
1948 		/*
1949 		 * XXX: __block_prepare_write() unmaps passed block,
1950 		 * is it OK?
1951 		 */
1952 		/*
1953 		 * If the block was allocated from previously allocated cluster,
1954 		 * then we don't need to reserve it again. However we still need
1955 		 * to reserve metadata for every block we're going to write.
1956 		 */
1957 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1958 			ret = ext4_da_reserve_space(inode, iblock);
1959 			if (ret) {
1960 				/* not enough space to reserve */
1961 				retval = ret;
1962 				goto out_unlock;
1963 			}
1964 		} else {
1965 			ret = ext4_da_reserve_metadata(inode, iblock);
1966 			if (ret) {
1967 				/* not enough space to reserve */
1968 				retval = ret;
1969 				goto out_unlock;
1970 			}
1971 		}
1972 
1973 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1974 					    ~0, EXTENT_STATUS_DELAYED);
1975 		if (ret) {
1976 			retval = ret;
1977 			goto out_unlock;
1978 		}
1979 
1980 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1981 		 * and it should not appear on the bh->b_state.
1982 		 */
1983 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1984 
1985 		map_bh(bh, inode->i_sb, invalid_block);
1986 		set_buffer_new(bh);
1987 		set_buffer_delay(bh);
1988 	} else if (retval > 0) {
1989 		int ret;
1990 		unsigned long long status;
1991 
1992 #ifdef ES_AGGRESSIVE_TEST
1993 		if (retval != map->m_len) {
1994 			printk("ES len assertation failed for inode: %lu "
1995 			       "retval %d != map->m_len %d "
1996 			       "in %s (lookup)\n", inode->i_ino, retval,
1997 			       map->m_len, __func__);
1998 		}
1999 #endif
2000 
2001 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2002 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2003 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2004 					    map->m_pblk, status);
2005 		if (ret != 0)
2006 			retval = ret;
2007 	}
2008 
2009 out_unlock:
2010 	up_read((&EXT4_I(inode)->i_data_sem));
2011 
2012 	return retval;
2013 }
2014 
2015 /*
2016  * This is a special get_blocks_t callback which is used by
2017  * ext4_da_write_begin().  It will either return mapped block or
2018  * reserve space for a single block.
2019  *
2020  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2021  * We also have b_blocknr = -1 and b_bdev initialized properly
2022  *
2023  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2024  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2025  * initialized properly.
2026  */
2027 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2028 			   struct buffer_head *bh, int create)
2029 {
2030 	struct ext4_map_blocks map;
2031 	int ret = 0;
2032 
2033 	BUG_ON(create == 0);
2034 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2035 
2036 	map.m_lblk = iblock;
2037 	map.m_len = 1;
2038 
2039 	/*
2040 	 * first, we need to know whether the block is allocated already
2041 	 * preallocated blocks are unmapped but should treated
2042 	 * the same as allocated blocks.
2043 	 */
2044 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2045 	if (ret <= 0)
2046 		return ret;
2047 
2048 	map_bh(bh, inode->i_sb, map.m_pblk);
2049 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2050 
2051 	if (buffer_unwritten(bh)) {
2052 		/* A delayed write to unwritten bh should be marked
2053 		 * new and mapped.  Mapped ensures that we don't do
2054 		 * get_block multiple times when we write to the same
2055 		 * offset and new ensures that we do proper zero out
2056 		 * for partial write.
2057 		 */
2058 		set_buffer_new(bh);
2059 		set_buffer_mapped(bh);
2060 	}
2061 	return 0;
2062 }
2063 
2064 static int bget_one(handle_t *handle, struct buffer_head *bh)
2065 {
2066 	get_bh(bh);
2067 	return 0;
2068 }
2069 
2070 static int bput_one(handle_t *handle, struct buffer_head *bh)
2071 {
2072 	put_bh(bh);
2073 	return 0;
2074 }
2075 
2076 static int __ext4_journalled_writepage(struct page *page,
2077 				       unsigned int len)
2078 {
2079 	struct address_space *mapping = page->mapping;
2080 	struct inode *inode = mapping->host;
2081 	struct buffer_head *page_bufs = NULL;
2082 	handle_t *handle = NULL;
2083 	int ret = 0, err = 0;
2084 	int inline_data = ext4_has_inline_data(inode);
2085 	struct buffer_head *inode_bh = NULL;
2086 
2087 	ClearPageChecked(page);
2088 
2089 	if (inline_data) {
2090 		BUG_ON(page->index != 0);
2091 		BUG_ON(len > ext4_get_max_inline_size(inode));
2092 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2093 		if (inode_bh == NULL)
2094 			goto out;
2095 	} else {
2096 		page_bufs = page_buffers(page);
2097 		if (!page_bufs) {
2098 			BUG();
2099 			goto out;
2100 		}
2101 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2102 				       NULL, bget_one);
2103 	}
2104 	/* As soon as we unlock the page, it can go away, but we have
2105 	 * references to buffers so we are safe */
2106 	unlock_page(page);
2107 
2108 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2109 				    ext4_writepage_trans_blocks(inode));
2110 	if (IS_ERR(handle)) {
2111 		ret = PTR_ERR(handle);
2112 		goto out;
2113 	}
2114 
2115 	BUG_ON(!ext4_handle_valid(handle));
2116 
2117 	if (inline_data) {
2118 		ret = ext4_journal_get_write_access(handle, inode_bh);
2119 
2120 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2121 
2122 	} else {
2123 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2124 					     do_journal_get_write_access);
2125 
2126 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2127 					     write_end_fn);
2128 	}
2129 	if (ret == 0)
2130 		ret = err;
2131 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2132 	err = ext4_journal_stop(handle);
2133 	if (!ret)
2134 		ret = err;
2135 
2136 	if (!ext4_has_inline_data(inode))
2137 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2138 				       NULL, bput_one);
2139 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2140 out:
2141 	brelse(inode_bh);
2142 	return ret;
2143 }
2144 
2145 /*
2146  * Note that we don't need to start a transaction unless we're journaling data
2147  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2148  * need to file the inode to the transaction's list in ordered mode because if
2149  * we are writing back data added by write(), the inode is already there and if
2150  * we are writing back data modified via mmap(), no one guarantees in which
2151  * transaction the data will hit the disk. In case we are journaling data, we
2152  * cannot start transaction directly because transaction start ranks above page
2153  * lock so we have to do some magic.
2154  *
2155  * This function can get called via...
2156  *   - ext4_da_writepages after taking page lock (have journal handle)
2157  *   - journal_submit_inode_data_buffers (no journal handle)
2158  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2159  *   - grab_page_cache when doing write_begin (have journal handle)
2160  *
2161  * We don't do any block allocation in this function. If we have page with
2162  * multiple blocks we need to write those buffer_heads that are mapped. This
2163  * is important for mmaped based write. So if we do with blocksize 1K
2164  * truncate(f, 1024);
2165  * a = mmap(f, 0, 4096);
2166  * a[0] = 'a';
2167  * truncate(f, 4096);
2168  * we have in the page first buffer_head mapped via page_mkwrite call back
2169  * but other buffer_heads would be unmapped but dirty (dirty done via the
2170  * do_wp_page). So writepage should write the first block. If we modify
2171  * the mmap area beyond 1024 we will again get a page_fault and the
2172  * page_mkwrite callback will do the block allocation and mark the
2173  * buffer_heads mapped.
2174  *
2175  * We redirty the page if we have any buffer_heads that is either delay or
2176  * unwritten in the page.
2177  *
2178  * We can get recursively called as show below.
2179  *
2180  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2181  *		ext4_writepage()
2182  *
2183  * But since we don't do any block allocation we should not deadlock.
2184  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2185  */
2186 static int ext4_writepage(struct page *page,
2187 			  struct writeback_control *wbc)
2188 {
2189 	int ret = 0;
2190 	loff_t size;
2191 	unsigned int len;
2192 	struct buffer_head *page_bufs = NULL;
2193 	struct inode *inode = page->mapping->host;
2194 	struct ext4_io_submit io_submit;
2195 
2196 	trace_ext4_writepage(page);
2197 	size = i_size_read(inode);
2198 	if (page->index == size >> PAGE_CACHE_SHIFT)
2199 		len = size & ~PAGE_CACHE_MASK;
2200 	else
2201 		len = PAGE_CACHE_SIZE;
2202 
2203 	page_bufs = page_buffers(page);
2204 	/*
2205 	 * We cannot do block allocation or other extent handling in this
2206 	 * function. If there are buffers needing that, we have to redirty
2207 	 * the page. But we may reach here when we do a journal commit via
2208 	 * journal_submit_inode_data_buffers() and in that case we must write
2209 	 * allocated buffers to achieve data=ordered mode guarantees.
2210 	 */
2211 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2212 				   ext4_bh_delay_or_unwritten)) {
2213 		redirty_page_for_writepage(wbc, page);
2214 		if (current->flags & PF_MEMALLOC) {
2215 			/*
2216 			 * For memory cleaning there's no point in writing only
2217 			 * some buffers. So just bail out. Warn if we came here
2218 			 * from direct reclaim.
2219 			 */
2220 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2221 							== PF_MEMALLOC);
2222 			unlock_page(page);
2223 			return 0;
2224 		}
2225 	}
2226 
2227 	if (PageChecked(page) && ext4_should_journal_data(inode))
2228 		/*
2229 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2230 		 * doesn't seem much point in redirtying the page here.
2231 		 */
2232 		return __ext4_journalled_writepage(page, len);
2233 
2234 	memset(&io_submit, 0, sizeof(io_submit));
2235 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2236 	ext4_io_submit(&io_submit);
2237 	return ret;
2238 }
2239 
2240 /*
2241  * This is called via ext4_da_writepages() to
2242  * calculate the total number of credits to reserve to fit
2243  * a single extent allocation into a single transaction,
2244  * ext4_da_writpeages() will loop calling this before
2245  * the block allocation.
2246  */
2247 
2248 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2249 {
2250 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2251 
2252 	/*
2253 	 * With non-extent format the journal credit needed to
2254 	 * insert nrblocks contiguous block is dependent on
2255 	 * number of contiguous block. So we will limit
2256 	 * number of contiguous block to a sane value
2257 	 */
2258 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2259 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2260 		max_blocks = EXT4_MAX_TRANS_DATA;
2261 
2262 	return ext4_chunk_trans_blocks(inode, max_blocks);
2263 }
2264 
2265 /*
2266  * write_cache_pages_da - walk the list of dirty pages of the given
2267  * address space and accumulate pages that need writing, and call
2268  * mpage_da_map_and_submit to map a single contiguous memory region
2269  * and then write them.
2270  */
2271 static int write_cache_pages_da(handle_t *handle,
2272 				struct address_space *mapping,
2273 				struct writeback_control *wbc,
2274 				struct mpage_da_data *mpd,
2275 				pgoff_t *done_index)
2276 {
2277 	struct buffer_head	*bh, *head;
2278 	struct inode		*inode = mapping->host;
2279 	struct pagevec		pvec;
2280 	unsigned int		nr_pages;
2281 	sector_t		logical;
2282 	pgoff_t			index, end;
2283 	long			nr_to_write = wbc->nr_to_write;
2284 	int			i, tag, ret = 0;
2285 
2286 	memset(mpd, 0, sizeof(struct mpage_da_data));
2287 	mpd->wbc = wbc;
2288 	mpd->inode = inode;
2289 	pagevec_init(&pvec, 0);
2290 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2291 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2292 
2293 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2294 		tag = PAGECACHE_TAG_TOWRITE;
2295 	else
2296 		tag = PAGECACHE_TAG_DIRTY;
2297 
2298 	*done_index = index;
2299 	while (index <= end) {
2300 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2301 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2302 		if (nr_pages == 0)
2303 			return 0;
2304 
2305 		for (i = 0; i < nr_pages; i++) {
2306 			struct page *page = pvec.pages[i];
2307 
2308 			/*
2309 			 * At this point, the page may be truncated or
2310 			 * invalidated (changing page->mapping to NULL), or
2311 			 * even swizzled back from swapper_space to tmpfs file
2312 			 * mapping. However, page->index will not change
2313 			 * because we have a reference on the page.
2314 			 */
2315 			if (page->index > end)
2316 				goto out;
2317 
2318 			*done_index = page->index + 1;
2319 
2320 			/*
2321 			 * If we can't merge this page, and we have
2322 			 * accumulated an contiguous region, write it
2323 			 */
2324 			if ((mpd->next_page != page->index) &&
2325 			    (mpd->next_page != mpd->first_page)) {
2326 				mpage_da_map_and_submit(mpd);
2327 				goto ret_extent_tail;
2328 			}
2329 
2330 			lock_page(page);
2331 
2332 			/*
2333 			 * If the page is no longer dirty, or its
2334 			 * mapping no longer corresponds to inode we
2335 			 * are writing (which means it has been
2336 			 * truncated or invalidated), or the page is
2337 			 * already under writeback and we are not
2338 			 * doing a data integrity writeback, skip the page
2339 			 */
2340 			if (!PageDirty(page) ||
2341 			    (PageWriteback(page) &&
2342 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2343 			    unlikely(page->mapping != mapping)) {
2344 				unlock_page(page);
2345 				continue;
2346 			}
2347 
2348 			wait_on_page_writeback(page);
2349 			BUG_ON(PageWriteback(page));
2350 
2351 			/*
2352 			 * If we have inline data and arrive here, it means that
2353 			 * we will soon create the block for the 1st page, so
2354 			 * we'd better clear the inline data here.
2355 			 */
2356 			if (ext4_has_inline_data(inode)) {
2357 				BUG_ON(ext4_test_inode_state(inode,
2358 						EXT4_STATE_MAY_INLINE_DATA));
2359 				ext4_destroy_inline_data(handle, inode);
2360 			}
2361 
2362 			if (mpd->next_page != page->index)
2363 				mpd->first_page = page->index;
2364 			mpd->next_page = page->index + 1;
2365 			logical = (sector_t) page->index <<
2366 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2367 
2368 			/* Add all dirty buffers to mpd */
2369 			head = page_buffers(page);
2370 			bh = head;
2371 			do {
2372 				BUG_ON(buffer_locked(bh));
2373 				/*
2374 				 * We need to try to allocate unmapped blocks
2375 				 * in the same page.  Otherwise we won't make
2376 				 * progress with the page in ext4_writepage
2377 				 */
2378 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2379 					mpage_add_bh_to_extent(mpd, logical,
2380 							       bh->b_state);
2381 					if (mpd->io_done)
2382 						goto ret_extent_tail;
2383 				} else if (buffer_dirty(bh) &&
2384 					   buffer_mapped(bh)) {
2385 					/*
2386 					 * mapped dirty buffer. We need to
2387 					 * update the b_state because we look
2388 					 * at b_state in mpage_da_map_blocks.
2389 					 * We don't update b_size because if we
2390 					 * find an unmapped buffer_head later
2391 					 * we need to use the b_state flag of
2392 					 * that buffer_head.
2393 					 */
2394 					if (mpd->b_size == 0)
2395 						mpd->b_state =
2396 							bh->b_state & BH_FLAGS;
2397 				}
2398 				logical++;
2399 			} while ((bh = bh->b_this_page) != head);
2400 
2401 			if (nr_to_write > 0) {
2402 				nr_to_write--;
2403 				if (nr_to_write == 0 &&
2404 				    wbc->sync_mode == WB_SYNC_NONE)
2405 					/*
2406 					 * We stop writing back only if we are
2407 					 * not doing integrity sync. In case of
2408 					 * integrity sync we have to keep going
2409 					 * because someone may be concurrently
2410 					 * dirtying pages, and we might have
2411 					 * synced a lot of newly appeared dirty
2412 					 * pages, but have not synced all of the
2413 					 * old dirty pages.
2414 					 */
2415 					goto out;
2416 			}
2417 		}
2418 		pagevec_release(&pvec);
2419 		cond_resched();
2420 	}
2421 	return 0;
2422 ret_extent_tail:
2423 	ret = MPAGE_DA_EXTENT_TAIL;
2424 out:
2425 	pagevec_release(&pvec);
2426 	cond_resched();
2427 	return ret;
2428 }
2429 
2430 
2431 static int ext4_da_writepages(struct address_space *mapping,
2432 			      struct writeback_control *wbc)
2433 {
2434 	pgoff_t	index;
2435 	int range_whole = 0;
2436 	handle_t *handle = NULL;
2437 	struct mpage_da_data mpd;
2438 	struct inode *inode = mapping->host;
2439 	int pages_written = 0;
2440 	unsigned int max_pages;
2441 	int range_cyclic, cycled = 1, io_done = 0;
2442 	int needed_blocks, ret = 0;
2443 	long desired_nr_to_write, nr_to_writebump = 0;
2444 	loff_t range_start = wbc->range_start;
2445 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2446 	pgoff_t done_index = 0;
2447 	pgoff_t end;
2448 	struct blk_plug plug;
2449 
2450 	trace_ext4_da_writepages(inode, wbc);
2451 
2452 	/*
2453 	 * No pages to write? This is mainly a kludge to avoid starting
2454 	 * a transaction for special inodes like journal inode on last iput()
2455 	 * because that could violate lock ordering on umount
2456 	 */
2457 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2458 		return 0;
2459 
2460 	/*
2461 	 * If the filesystem has aborted, it is read-only, so return
2462 	 * right away instead of dumping stack traces later on that
2463 	 * will obscure the real source of the problem.  We test
2464 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2465 	 * the latter could be true if the filesystem is mounted
2466 	 * read-only, and in that case, ext4_da_writepages should
2467 	 * *never* be called, so if that ever happens, we would want
2468 	 * the stack trace.
2469 	 */
2470 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2471 		return -EROFS;
2472 
2473 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2474 		range_whole = 1;
2475 
2476 	range_cyclic = wbc->range_cyclic;
2477 	if (wbc->range_cyclic) {
2478 		index = mapping->writeback_index;
2479 		if (index)
2480 			cycled = 0;
2481 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2482 		wbc->range_end  = LLONG_MAX;
2483 		wbc->range_cyclic = 0;
2484 		end = -1;
2485 	} else {
2486 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2487 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2488 	}
2489 
2490 	/*
2491 	 * This works around two forms of stupidity.  The first is in
2492 	 * the writeback code, which caps the maximum number of pages
2493 	 * written to be 1024 pages.  This is wrong on multiple
2494 	 * levels; different architectues have a different page size,
2495 	 * which changes the maximum amount of data which gets
2496 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2497 	 * forces this value to be 16 megabytes by multiplying
2498 	 * nr_to_write parameter by four, and then relies on its
2499 	 * allocator to allocate larger extents to make them
2500 	 * contiguous.  Unfortunately this brings us to the second
2501 	 * stupidity, which is that ext4's mballoc code only allocates
2502 	 * at most 2048 blocks.  So we force contiguous writes up to
2503 	 * the number of dirty blocks in the inode, or
2504 	 * sbi->max_writeback_mb_bump whichever is smaller.
2505 	 */
2506 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2507 	if (!range_cyclic && range_whole) {
2508 		if (wbc->nr_to_write == LONG_MAX)
2509 			desired_nr_to_write = wbc->nr_to_write;
2510 		else
2511 			desired_nr_to_write = wbc->nr_to_write * 8;
2512 	} else
2513 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2514 							   max_pages);
2515 	if (desired_nr_to_write > max_pages)
2516 		desired_nr_to_write = max_pages;
2517 
2518 	if (wbc->nr_to_write < desired_nr_to_write) {
2519 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2520 		wbc->nr_to_write = desired_nr_to_write;
2521 	}
2522 
2523 retry:
2524 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2525 		tag_pages_for_writeback(mapping, index, end);
2526 
2527 	blk_start_plug(&plug);
2528 	while (!ret && wbc->nr_to_write > 0) {
2529 
2530 		/*
2531 		 * we  insert one extent at a time. So we need
2532 		 * credit needed for single extent allocation.
2533 		 * journalled mode is currently not supported
2534 		 * by delalloc
2535 		 */
2536 		BUG_ON(ext4_should_journal_data(inode));
2537 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2538 
2539 		/* start a new transaction*/
2540 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2541 					    needed_blocks);
2542 		if (IS_ERR(handle)) {
2543 			ret = PTR_ERR(handle);
2544 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2545 			       "%ld pages, ino %lu; err %d", __func__,
2546 				wbc->nr_to_write, inode->i_ino, ret);
2547 			blk_finish_plug(&plug);
2548 			goto out_writepages;
2549 		}
2550 
2551 		/*
2552 		 * Now call write_cache_pages_da() to find the next
2553 		 * contiguous region of logical blocks that need
2554 		 * blocks to be allocated by ext4 and submit them.
2555 		 */
2556 		ret = write_cache_pages_da(handle, mapping,
2557 					   wbc, &mpd, &done_index);
2558 		/*
2559 		 * If we have a contiguous extent of pages and we
2560 		 * haven't done the I/O yet, map the blocks and submit
2561 		 * them for I/O.
2562 		 */
2563 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2564 			mpage_da_map_and_submit(&mpd);
2565 			ret = MPAGE_DA_EXTENT_TAIL;
2566 		}
2567 		trace_ext4_da_write_pages(inode, &mpd);
2568 		wbc->nr_to_write -= mpd.pages_written;
2569 
2570 		ext4_journal_stop(handle);
2571 
2572 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2573 			/* commit the transaction which would
2574 			 * free blocks released in the transaction
2575 			 * and try again
2576 			 */
2577 			jbd2_journal_force_commit_nested(sbi->s_journal);
2578 			ret = 0;
2579 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2580 			/*
2581 			 * Got one extent now try with rest of the pages.
2582 			 * If mpd.retval is set -EIO, journal is aborted.
2583 			 * So we don't need to write any more.
2584 			 */
2585 			pages_written += mpd.pages_written;
2586 			ret = mpd.retval;
2587 			io_done = 1;
2588 		} else if (wbc->nr_to_write)
2589 			/*
2590 			 * There is no more writeout needed
2591 			 * or we requested for a noblocking writeout
2592 			 * and we found the device congested
2593 			 */
2594 			break;
2595 	}
2596 	blk_finish_plug(&plug);
2597 	if (!io_done && !cycled) {
2598 		cycled = 1;
2599 		index = 0;
2600 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2601 		wbc->range_end  = mapping->writeback_index - 1;
2602 		goto retry;
2603 	}
2604 
2605 	/* Update index */
2606 	wbc->range_cyclic = range_cyclic;
2607 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2608 		/*
2609 		 * set the writeback_index so that range_cyclic
2610 		 * mode will write it back later
2611 		 */
2612 		mapping->writeback_index = done_index;
2613 
2614 out_writepages:
2615 	wbc->nr_to_write -= nr_to_writebump;
2616 	wbc->range_start = range_start;
2617 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2618 	return ret;
2619 }
2620 
2621 static int ext4_nonda_switch(struct super_block *sb)
2622 {
2623 	s64 free_blocks, dirty_blocks;
2624 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2625 
2626 	/*
2627 	 * switch to non delalloc mode if we are running low
2628 	 * on free block. The free block accounting via percpu
2629 	 * counters can get slightly wrong with percpu_counter_batch getting
2630 	 * accumulated on each CPU without updating global counters
2631 	 * Delalloc need an accurate free block accounting. So switch
2632 	 * to non delalloc when we are near to error range.
2633 	 */
2634 	free_blocks  = EXT4_C2B(sbi,
2635 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2636 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2637 	/*
2638 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2639 	 */
2640 	if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2641 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2642 
2643 	if (2 * free_blocks < 3 * dirty_blocks ||
2644 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2645 		/*
2646 		 * free block count is less than 150% of dirty blocks
2647 		 * or free blocks is less than watermark
2648 		 */
2649 		return 1;
2650 	}
2651 	return 0;
2652 }
2653 
2654 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2655 			       loff_t pos, unsigned len, unsigned flags,
2656 			       struct page **pagep, void **fsdata)
2657 {
2658 	int ret, retries = 0;
2659 	struct page *page;
2660 	pgoff_t index;
2661 	struct inode *inode = mapping->host;
2662 	handle_t *handle;
2663 
2664 	index = pos >> PAGE_CACHE_SHIFT;
2665 
2666 	if (ext4_nonda_switch(inode->i_sb)) {
2667 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2668 		return ext4_write_begin(file, mapping, pos,
2669 					len, flags, pagep, fsdata);
2670 	}
2671 	*fsdata = (void *)0;
2672 	trace_ext4_da_write_begin(inode, pos, len, flags);
2673 
2674 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2675 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2676 						      pos, len, flags,
2677 						      pagep, fsdata);
2678 		if (ret < 0)
2679 			return ret;
2680 		if (ret == 1)
2681 			return 0;
2682 	}
2683 
2684 	/*
2685 	 * grab_cache_page_write_begin() can take a long time if the
2686 	 * system is thrashing due to memory pressure, or if the page
2687 	 * is being written back.  So grab it first before we start
2688 	 * the transaction handle.  This also allows us to allocate
2689 	 * the page (if needed) without using GFP_NOFS.
2690 	 */
2691 retry_grab:
2692 	page = grab_cache_page_write_begin(mapping, index, flags);
2693 	if (!page)
2694 		return -ENOMEM;
2695 	unlock_page(page);
2696 
2697 	/*
2698 	 * With delayed allocation, we don't log the i_disksize update
2699 	 * if there is delayed block allocation. But we still need
2700 	 * to journalling the i_disksize update if writes to the end
2701 	 * of file which has an already mapped buffer.
2702 	 */
2703 retry_journal:
2704 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2705 	if (IS_ERR(handle)) {
2706 		page_cache_release(page);
2707 		return PTR_ERR(handle);
2708 	}
2709 
2710 	lock_page(page);
2711 	if (page->mapping != mapping) {
2712 		/* The page got truncated from under us */
2713 		unlock_page(page);
2714 		page_cache_release(page);
2715 		ext4_journal_stop(handle);
2716 		goto retry_grab;
2717 	}
2718 	/* In case writeback began while the page was unlocked */
2719 	wait_on_page_writeback(page);
2720 
2721 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2722 	if (ret < 0) {
2723 		unlock_page(page);
2724 		ext4_journal_stop(handle);
2725 		/*
2726 		 * block_write_begin may have instantiated a few blocks
2727 		 * outside i_size.  Trim these off again. Don't need
2728 		 * i_size_read because we hold i_mutex.
2729 		 */
2730 		if (pos + len > inode->i_size)
2731 			ext4_truncate_failed_write(inode);
2732 
2733 		if (ret == -ENOSPC &&
2734 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2735 			goto retry_journal;
2736 
2737 		page_cache_release(page);
2738 		return ret;
2739 	}
2740 
2741 	*pagep = page;
2742 	return ret;
2743 }
2744 
2745 /*
2746  * Check if we should update i_disksize
2747  * when write to the end of file but not require block allocation
2748  */
2749 static int ext4_da_should_update_i_disksize(struct page *page,
2750 					    unsigned long offset)
2751 {
2752 	struct buffer_head *bh;
2753 	struct inode *inode = page->mapping->host;
2754 	unsigned int idx;
2755 	int i;
2756 
2757 	bh = page_buffers(page);
2758 	idx = offset >> inode->i_blkbits;
2759 
2760 	for (i = 0; i < idx; i++)
2761 		bh = bh->b_this_page;
2762 
2763 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2764 		return 0;
2765 	return 1;
2766 }
2767 
2768 static int ext4_da_write_end(struct file *file,
2769 			     struct address_space *mapping,
2770 			     loff_t pos, unsigned len, unsigned copied,
2771 			     struct page *page, void *fsdata)
2772 {
2773 	struct inode *inode = mapping->host;
2774 	int ret = 0, ret2;
2775 	handle_t *handle = ext4_journal_current_handle();
2776 	loff_t new_i_size;
2777 	unsigned long start, end;
2778 	int write_mode = (int)(unsigned long)fsdata;
2779 
2780 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2781 		return ext4_write_end(file, mapping, pos,
2782 				      len, copied, page, fsdata);
2783 
2784 	trace_ext4_da_write_end(inode, pos, len, copied);
2785 	start = pos & (PAGE_CACHE_SIZE - 1);
2786 	end = start + copied - 1;
2787 
2788 	/*
2789 	 * generic_write_end() will run mark_inode_dirty() if i_size
2790 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2791 	 * into that.
2792 	 */
2793 	new_i_size = pos + copied;
2794 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2795 		if (ext4_has_inline_data(inode) ||
2796 		    ext4_da_should_update_i_disksize(page, end)) {
2797 			down_write(&EXT4_I(inode)->i_data_sem);
2798 			if (new_i_size > EXT4_I(inode)->i_disksize)
2799 				EXT4_I(inode)->i_disksize = new_i_size;
2800 			up_write(&EXT4_I(inode)->i_data_sem);
2801 			/* We need to mark inode dirty even if
2802 			 * new_i_size is less that inode->i_size
2803 			 * bu greater than i_disksize.(hint delalloc)
2804 			 */
2805 			ext4_mark_inode_dirty(handle, inode);
2806 		}
2807 	}
2808 
2809 	if (write_mode != CONVERT_INLINE_DATA &&
2810 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2811 	    ext4_has_inline_data(inode))
2812 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2813 						     page);
2814 	else
2815 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2816 							page, fsdata);
2817 
2818 	copied = ret2;
2819 	if (ret2 < 0)
2820 		ret = ret2;
2821 	ret2 = ext4_journal_stop(handle);
2822 	if (!ret)
2823 		ret = ret2;
2824 
2825 	return ret ? ret : copied;
2826 }
2827 
2828 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2829 {
2830 	/*
2831 	 * Drop reserved blocks
2832 	 */
2833 	BUG_ON(!PageLocked(page));
2834 	if (!page_has_buffers(page))
2835 		goto out;
2836 
2837 	ext4_da_page_release_reservation(page, offset);
2838 
2839 out:
2840 	ext4_invalidatepage(page, offset);
2841 
2842 	return;
2843 }
2844 
2845 /*
2846  * Force all delayed allocation blocks to be allocated for a given inode.
2847  */
2848 int ext4_alloc_da_blocks(struct inode *inode)
2849 {
2850 	trace_ext4_alloc_da_blocks(inode);
2851 
2852 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2853 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2854 		return 0;
2855 
2856 	/*
2857 	 * We do something simple for now.  The filemap_flush() will
2858 	 * also start triggering a write of the data blocks, which is
2859 	 * not strictly speaking necessary (and for users of
2860 	 * laptop_mode, not even desirable).  However, to do otherwise
2861 	 * would require replicating code paths in:
2862 	 *
2863 	 * ext4_da_writepages() ->
2864 	 *    write_cache_pages() ---> (via passed in callback function)
2865 	 *        __mpage_da_writepage() -->
2866 	 *           mpage_add_bh_to_extent()
2867 	 *           mpage_da_map_blocks()
2868 	 *
2869 	 * The problem is that write_cache_pages(), located in
2870 	 * mm/page-writeback.c, marks pages clean in preparation for
2871 	 * doing I/O, which is not desirable if we're not planning on
2872 	 * doing I/O at all.
2873 	 *
2874 	 * We could call write_cache_pages(), and then redirty all of
2875 	 * the pages by calling redirty_page_for_writepage() but that
2876 	 * would be ugly in the extreme.  So instead we would need to
2877 	 * replicate parts of the code in the above functions,
2878 	 * simplifying them because we wouldn't actually intend to
2879 	 * write out the pages, but rather only collect contiguous
2880 	 * logical block extents, call the multi-block allocator, and
2881 	 * then update the buffer heads with the block allocations.
2882 	 *
2883 	 * For now, though, we'll cheat by calling filemap_flush(),
2884 	 * which will map the blocks, and start the I/O, but not
2885 	 * actually wait for the I/O to complete.
2886 	 */
2887 	return filemap_flush(inode->i_mapping);
2888 }
2889 
2890 /*
2891  * bmap() is special.  It gets used by applications such as lilo and by
2892  * the swapper to find the on-disk block of a specific piece of data.
2893  *
2894  * Naturally, this is dangerous if the block concerned is still in the
2895  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2896  * filesystem and enables swap, then they may get a nasty shock when the
2897  * data getting swapped to that swapfile suddenly gets overwritten by
2898  * the original zero's written out previously to the journal and
2899  * awaiting writeback in the kernel's buffer cache.
2900  *
2901  * So, if we see any bmap calls here on a modified, data-journaled file,
2902  * take extra steps to flush any blocks which might be in the cache.
2903  */
2904 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2905 {
2906 	struct inode *inode = mapping->host;
2907 	journal_t *journal;
2908 	int err;
2909 
2910 	/*
2911 	 * We can get here for an inline file via the FIBMAP ioctl
2912 	 */
2913 	if (ext4_has_inline_data(inode))
2914 		return 0;
2915 
2916 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2917 			test_opt(inode->i_sb, DELALLOC)) {
2918 		/*
2919 		 * With delalloc we want to sync the file
2920 		 * so that we can make sure we allocate
2921 		 * blocks for file
2922 		 */
2923 		filemap_write_and_wait(mapping);
2924 	}
2925 
2926 	if (EXT4_JOURNAL(inode) &&
2927 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2928 		/*
2929 		 * This is a REALLY heavyweight approach, but the use of
2930 		 * bmap on dirty files is expected to be extremely rare:
2931 		 * only if we run lilo or swapon on a freshly made file
2932 		 * do we expect this to happen.
2933 		 *
2934 		 * (bmap requires CAP_SYS_RAWIO so this does not
2935 		 * represent an unprivileged user DOS attack --- we'd be
2936 		 * in trouble if mortal users could trigger this path at
2937 		 * will.)
2938 		 *
2939 		 * NB. EXT4_STATE_JDATA is not set on files other than
2940 		 * regular files.  If somebody wants to bmap a directory
2941 		 * or symlink and gets confused because the buffer
2942 		 * hasn't yet been flushed to disk, they deserve
2943 		 * everything they get.
2944 		 */
2945 
2946 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2947 		journal = EXT4_JOURNAL(inode);
2948 		jbd2_journal_lock_updates(journal);
2949 		err = jbd2_journal_flush(journal);
2950 		jbd2_journal_unlock_updates(journal);
2951 
2952 		if (err)
2953 			return 0;
2954 	}
2955 
2956 	return generic_block_bmap(mapping, block, ext4_get_block);
2957 }
2958 
2959 static int ext4_readpage(struct file *file, struct page *page)
2960 {
2961 	int ret = -EAGAIN;
2962 	struct inode *inode = page->mapping->host;
2963 
2964 	trace_ext4_readpage(page);
2965 
2966 	if (ext4_has_inline_data(inode))
2967 		ret = ext4_readpage_inline(inode, page);
2968 
2969 	if (ret == -EAGAIN)
2970 		return mpage_readpage(page, ext4_get_block);
2971 
2972 	return ret;
2973 }
2974 
2975 static int
2976 ext4_readpages(struct file *file, struct address_space *mapping,
2977 		struct list_head *pages, unsigned nr_pages)
2978 {
2979 	struct inode *inode = mapping->host;
2980 
2981 	/* If the file has inline data, no need to do readpages. */
2982 	if (ext4_has_inline_data(inode))
2983 		return 0;
2984 
2985 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2986 }
2987 
2988 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2989 {
2990 	trace_ext4_invalidatepage(page, offset);
2991 
2992 	/* No journalling happens on data buffers when this function is used */
2993 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2994 
2995 	block_invalidatepage(page, offset);
2996 }
2997 
2998 static int __ext4_journalled_invalidatepage(struct page *page,
2999 					    unsigned long offset)
3000 {
3001 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3002 
3003 	trace_ext4_journalled_invalidatepage(page, offset);
3004 
3005 	/*
3006 	 * If it's a full truncate we just forget about the pending dirtying
3007 	 */
3008 	if (offset == 0)
3009 		ClearPageChecked(page);
3010 
3011 	return jbd2_journal_invalidatepage(journal, page, offset);
3012 }
3013 
3014 /* Wrapper for aops... */
3015 static void ext4_journalled_invalidatepage(struct page *page,
3016 					   unsigned long offset)
3017 {
3018 	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3019 }
3020 
3021 static int ext4_releasepage(struct page *page, gfp_t wait)
3022 {
3023 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3024 
3025 	trace_ext4_releasepage(page);
3026 
3027 	/* Page has dirty journalled data -> cannot release */
3028 	if (PageChecked(page))
3029 		return 0;
3030 	if (journal)
3031 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3032 	else
3033 		return try_to_free_buffers(page);
3034 }
3035 
3036 /*
3037  * ext4_get_block used when preparing for a DIO write or buffer write.
3038  * We allocate an uinitialized extent if blocks haven't been allocated.
3039  * The extent will be converted to initialized after the IO is complete.
3040  */
3041 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3042 		   struct buffer_head *bh_result, int create)
3043 {
3044 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3045 		   inode->i_ino, create);
3046 	return _ext4_get_block(inode, iblock, bh_result,
3047 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3048 }
3049 
3050 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3051 		   struct buffer_head *bh_result, int create)
3052 {
3053 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3054 		   inode->i_ino, create);
3055 	return _ext4_get_block(inode, iblock, bh_result,
3056 			       EXT4_GET_BLOCKS_NO_LOCK);
3057 }
3058 
3059 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3060 			    ssize_t size, void *private, int ret,
3061 			    bool is_async)
3062 {
3063 	struct inode *inode = file_inode(iocb->ki_filp);
3064         ext4_io_end_t *io_end = iocb->private;
3065 
3066 	/* if not async direct IO or dio with 0 bytes write, just return */
3067 	if (!io_end || !size)
3068 		goto out;
3069 
3070 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3071 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3072  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3073 		  size);
3074 
3075 	iocb->private = NULL;
3076 
3077 	/* if not aio dio with unwritten extents, just free io and return */
3078 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3079 		ext4_free_io_end(io_end);
3080 out:
3081 		inode_dio_done(inode);
3082 		if (is_async)
3083 			aio_complete(iocb, ret, 0);
3084 		return;
3085 	}
3086 
3087 	io_end->offset = offset;
3088 	io_end->size = size;
3089 	if (is_async) {
3090 		io_end->iocb = iocb;
3091 		io_end->result = ret;
3092 	}
3093 
3094 	ext4_add_complete_io(io_end);
3095 }
3096 
3097 /*
3098  * For ext4 extent files, ext4 will do direct-io write to holes,
3099  * preallocated extents, and those write extend the file, no need to
3100  * fall back to buffered IO.
3101  *
3102  * For holes, we fallocate those blocks, mark them as uninitialized
3103  * If those blocks were preallocated, we mark sure they are split, but
3104  * still keep the range to write as uninitialized.
3105  *
3106  * The unwritten extents will be converted to written when DIO is completed.
3107  * For async direct IO, since the IO may still pending when return, we
3108  * set up an end_io call back function, which will do the conversion
3109  * when async direct IO completed.
3110  *
3111  * If the O_DIRECT write will extend the file then add this inode to the
3112  * orphan list.  So recovery will truncate it back to the original size
3113  * if the machine crashes during the write.
3114  *
3115  */
3116 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3117 			      const struct iovec *iov, loff_t offset,
3118 			      unsigned long nr_segs)
3119 {
3120 	struct file *file = iocb->ki_filp;
3121 	struct inode *inode = file->f_mapping->host;
3122 	ssize_t ret;
3123 	size_t count = iov_length(iov, nr_segs);
3124 	int overwrite = 0;
3125 	get_block_t *get_block_func = NULL;
3126 	int dio_flags = 0;
3127 	loff_t final_size = offset + count;
3128 
3129 	/* Use the old path for reads and writes beyond i_size. */
3130 	if (rw != WRITE || final_size > inode->i_size)
3131 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3132 
3133 	BUG_ON(iocb->private == NULL);
3134 
3135 	/* If we do a overwrite dio, i_mutex locking can be released */
3136 	overwrite = *((int *)iocb->private);
3137 
3138 	if (overwrite) {
3139 		atomic_inc(&inode->i_dio_count);
3140 		down_read(&EXT4_I(inode)->i_data_sem);
3141 		mutex_unlock(&inode->i_mutex);
3142 	}
3143 
3144 	/*
3145 	 * We could direct write to holes and fallocate.
3146 	 *
3147 	 * Allocated blocks to fill the hole are marked as
3148 	 * uninitialized to prevent parallel buffered read to expose
3149 	 * the stale data before DIO complete the data IO.
3150 	 *
3151 	 * As to previously fallocated extents, ext4 get_block will
3152 	 * just simply mark the buffer mapped but still keep the
3153 	 * extents uninitialized.
3154 	 *
3155 	 * For non AIO case, we will convert those unwritten extents
3156 	 * to written after return back from blockdev_direct_IO.
3157 	 *
3158 	 * For async DIO, the conversion needs to be deferred when the
3159 	 * IO is completed. The ext4 end_io callback function will be
3160 	 * called to take care of the conversion work.  Here for async
3161 	 * case, we allocate an io_end structure to hook to the iocb.
3162 	 */
3163 	iocb->private = NULL;
3164 	ext4_inode_aio_set(inode, NULL);
3165 	if (!is_sync_kiocb(iocb)) {
3166 		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3167 		if (!io_end) {
3168 			ret = -ENOMEM;
3169 			goto retake_lock;
3170 		}
3171 		io_end->flag |= EXT4_IO_END_DIRECT;
3172 		iocb->private = io_end;
3173 		/*
3174 		 * we save the io structure for current async direct
3175 		 * IO, so that later ext4_map_blocks() could flag the
3176 		 * io structure whether there is a unwritten extents
3177 		 * needs to be converted when IO is completed.
3178 		 */
3179 		ext4_inode_aio_set(inode, io_end);
3180 	}
3181 
3182 	if (overwrite) {
3183 		get_block_func = ext4_get_block_write_nolock;
3184 	} else {
3185 		get_block_func = ext4_get_block_write;
3186 		dio_flags = DIO_LOCKING;
3187 	}
3188 	ret = __blockdev_direct_IO(rw, iocb, inode,
3189 				   inode->i_sb->s_bdev, iov,
3190 				   offset, nr_segs,
3191 				   get_block_func,
3192 				   ext4_end_io_dio,
3193 				   NULL,
3194 				   dio_flags);
3195 
3196 	if (iocb->private)
3197 		ext4_inode_aio_set(inode, NULL);
3198 	/*
3199 	 * The io_end structure takes a reference to the inode, that
3200 	 * structure needs to be destroyed and the reference to the
3201 	 * inode need to be dropped, when IO is complete, even with 0
3202 	 * byte write, or failed.
3203 	 *
3204 	 * In the successful AIO DIO case, the io_end structure will
3205 	 * be destroyed and the reference to the inode will be dropped
3206 	 * after the end_io call back function is called.
3207 	 *
3208 	 * In the case there is 0 byte write, or error case, since VFS
3209 	 * direct IO won't invoke the end_io call back function, we
3210 	 * need to free the end_io structure here.
3211 	 */
3212 	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3213 		ext4_free_io_end(iocb->private);
3214 		iocb->private = NULL;
3215 	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3216 						EXT4_STATE_DIO_UNWRITTEN)) {
3217 		int err;
3218 		/*
3219 		 * for non AIO case, since the IO is already
3220 		 * completed, we could do the conversion right here
3221 		 */
3222 		err = ext4_convert_unwritten_extents(inode,
3223 						     offset, ret);
3224 		if (err < 0)
3225 			ret = err;
3226 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3227 	}
3228 
3229 retake_lock:
3230 	/* take i_mutex locking again if we do a ovewrite dio */
3231 	if (overwrite) {
3232 		inode_dio_done(inode);
3233 		up_read(&EXT4_I(inode)->i_data_sem);
3234 		mutex_lock(&inode->i_mutex);
3235 	}
3236 
3237 	return ret;
3238 }
3239 
3240 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3241 			      const struct iovec *iov, loff_t offset,
3242 			      unsigned long nr_segs)
3243 {
3244 	struct file *file = iocb->ki_filp;
3245 	struct inode *inode = file->f_mapping->host;
3246 	ssize_t ret;
3247 
3248 	/*
3249 	 * If we are doing data journalling we don't support O_DIRECT
3250 	 */
3251 	if (ext4_should_journal_data(inode))
3252 		return 0;
3253 
3254 	/* Let buffer I/O handle the inline data case. */
3255 	if (ext4_has_inline_data(inode))
3256 		return 0;
3257 
3258 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3259 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3260 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3261 	else
3262 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3263 	trace_ext4_direct_IO_exit(inode, offset,
3264 				iov_length(iov, nr_segs), rw, ret);
3265 	return ret;
3266 }
3267 
3268 /*
3269  * Pages can be marked dirty completely asynchronously from ext4's journalling
3270  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3271  * much here because ->set_page_dirty is called under VFS locks.  The page is
3272  * not necessarily locked.
3273  *
3274  * We cannot just dirty the page and leave attached buffers clean, because the
3275  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3276  * or jbddirty because all the journalling code will explode.
3277  *
3278  * So what we do is to mark the page "pending dirty" and next time writepage
3279  * is called, propagate that into the buffers appropriately.
3280  */
3281 static int ext4_journalled_set_page_dirty(struct page *page)
3282 {
3283 	SetPageChecked(page);
3284 	return __set_page_dirty_nobuffers(page);
3285 }
3286 
3287 static const struct address_space_operations ext4_aops = {
3288 	.readpage		= ext4_readpage,
3289 	.readpages		= ext4_readpages,
3290 	.writepage		= ext4_writepage,
3291 	.write_begin		= ext4_write_begin,
3292 	.write_end		= ext4_write_end,
3293 	.bmap			= ext4_bmap,
3294 	.invalidatepage		= ext4_invalidatepage,
3295 	.releasepage		= ext4_releasepage,
3296 	.direct_IO		= ext4_direct_IO,
3297 	.migratepage		= buffer_migrate_page,
3298 	.is_partially_uptodate  = block_is_partially_uptodate,
3299 	.error_remove_page	= generic_error_remove_page,
3300 };
3301 
3302 static const struct address_space_operations ext4_journalled_aops = {
3303 	.readpage		= ext4_readpage,
3304 	.readpages		= ext4_readpages,
3305 	.writepage		= ext4_writepage,
3306 	.write_begin		= ext4_write_begin,
3307 	.write_end		= ext4_journalled_write_end,
3308 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3309 	.bmap			= ext4_bmap,
3310 	.invalidatepage		= ext4_journalled_invalidatepage,
3311 	.releasepage		= ext4_releasepage,
3312 	.direct_IO		= ext4_direct_IO,
3313 	.is_partially_uptodate  = block_is_partially_uptodate,
3314 	.error_remove_page	= generic_error_remove_page,
3315 };
3316 
3317 static const struct address_space_operations ext4_da_aops = {
3318 	.readpage		= ext4_readpage,
3319 	.readpages		= ext4_readpages,
3320 	.writepage		= ext4_writepage,
3321 	.writepages		= ext4_da_writepages,
3322 	.write_begin		= ext4_da_write_begin,
3323 	.write_end		= ext4_da_write_end,
3324 	.bmap			= ext4_bmap,
3325 	.invalidatepage		= ext4_da_invalidatepage,
3326 	.releasepage		= ext4_releasepage,
3327 	.direct_IO		= ext4_direct_IO,
3328 	.migratepage		= buffer_migrate_page,
3329 	.is_partially_uptodate  = block_is_partially_uptodate,
3330 	.error_remove_page	= generic_error_remove_page,
3331 };
3332 
3333 void ext4_set_aops(struct inode *inode)
3334 {
3335 	switch (ext4_inode_journal_mode(inode)) {
3336 	case EXT4_INODE_ORDERED_DATA_MODE:
3337 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3338 		break;
3339 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3340 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3341 		break;
3342 	case EXT4_INODE_JOURNAL_DATA_MODE:
3343 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3344 		return;
3345 	default:
3346 		BUG();
3347 	}
3348 	if (test_opt(inode->i_sb, DELALLOC))
3349 		inode->i_mapping->a_ops = &ext4_da_aops;
3350 	else
3351 		inode->i_mapping->a_ops = &ext4_aops;
3352 }
3353 
3354 
3355 /*
3356  * ext4_discard_partial_page_buffers()
3357  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3358  * This function finds and locks the page containing the offset
3359  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3360  * Calling functions that already have the page locked should call
3361  * ext4_discard_partial_page_buffers_no_lock directly.
3362  */
3363 int ext4_discard_partial_page_buffers(handle_t *handle,
3364 		struct address_space *mapping, loff_t from,
3365 		loff_t length, int flags)
3366 {
3367 	struct inode *inode = mapping->host;
3368 	struct page *page;
3369 	int err = 0;
3370 
3371 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3372 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3373 	if (!page)
3374 		return -ENOMEM;
3375 
3376 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3377 		from, length, flags);
3378 
3379 	unlock_page(page);
3380 	page_cache_release(page);
3381 	return err;
3382 }
3383 
3384 /*
3385  * ext4_discard_partial_page_buffers_no_lock()
3386  * Zeros a page range of length 'length' starting from offset 'from'.
3387  * Buffer heads that correspond to the block aligned regions of the
3388  * zeroed range will be unmapped.  Unblock aligned regions
3389  * will have the corresponding buffer head mapped if needed so that
3390  * that region of the page can be updated with the partial zero out.
3391  *
3392  * This function assumes that the page has already been  locked.  The
3393  * The range to be discarded must be contained with in the given page.
3394  * If the specified range exceeds the end of the page it will be shortened
3395  * to the end of the page that corresponds to 'from'.  This function is
3396  * appropriate for updating a page and it buffer heads to be unmapped and
3397  * zeroed for blocks that have been either released, or are going to be
3398  * released.
3399  *
3400  * handle: The journal handle
3401  * inode:  The files inode
3402  * page:   A locked page that contains the offset "from"
3403  * from:   The starting byte offset (from the beginning of the file)
3404  *         to begin discarding
3405  * len:    The length of bytes to discard
3406  * flags:  Optional flags that may be used:
3407  *
3408  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3409  *         Only zero the regions of the page whose buffer heads
3410  *         have already been unmapped.  This flag is appropriate
3411  *         for updating the contents of a page whose blocks may
3412  *         have already been released, and we only want to zero
3413  *         out the regions that correspond to those released blocks.
3414  *
3415  * Returns zero on success or negative on failure.
3416  */
3417 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3418 		struct inode *inode, struct page *page, loff_t from,
3419 		loff_t length, int flags)
3420 {
3421 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3422 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3423 	unsigned int blocksize, max, pos;
3424 	ext4_lblk_t iblock;
3425 	struct buffer_head *bh;
3426 	int err = 0;
3427 
3428 	blocksize = inode->i_sb->s_blocksize;
3429 	max = PAGE_CACHE_SIZE - offset;
3430 
3431 	if (index != page->index)
3432 		return -EINVAL;
3433 
3434 	/*
3435 	 * correct length if it does not fall between
3436 	 * 'from' and the end of the page
3437 	 */
3438 	if (length > max || length < 0)
3439 		length = max;
3440 
3441 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3442 
3443 	if (!page_has_buffers(page))
3444 		create_empty_buffers(page, blocksize, 0);
3445 
3446 	/* Find the buffer that contains "offset" */
3447 	bh = page_buffers(page);
3448 	pos = blocksize;
3449 	while (offset >= pos) {
3450 		bh = bh->b_this_page;
3451 		iblock++;
3452 		pos += blocksize;
3453 	}
3454 
3455 	pos = offset;
3456 	while (pos < offset + length) {
3457 		unsigned int end_of_block, range_to_discard;
3458 
3459 		err = 0;
3460 
3461 		/* The length of space left to zero and unmap */
3462 		range_to_discard = offset + length - pos;
3463 
3464 		/* The length of space until the end of the block */
3465 		end_of_block = blocksize - (pos & (blocksize-1));
3466 
3467 		/*
3468 		 * Do not unmap or zero past end of block
3469 		 * for this buffer head
3470 		 */
3471 		if (range_to_discard > end_of_block)
3472 			range_to_discard = end_of_block;
3473 
3474 
3475 		/*
3476 		 * Skip this buffer head if we are only zeroing unampped
3477 		 * regions of the page
3478 		 */
3479 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3480 			buffer_mapped(bh))
3481 				goto next;
3482 
3483 		/* If the range is block aligned, unmap */
3484 		if (range_to_discard == blocksize) {
3485 			clear_buffer_dirty(bh);
3486 			bh->b_bdev = NULL;
3487 			clear_buffer_mapped(bh);
3488 			clear_buffer_req(bh);
3489 			clear_buffer_new(bh);
3490 			clear_buffer_delay(bh);
3491 			clear_buffer_unwritten(bh);
3492 			clear_buffer_uptodate(bh);
3493 			zero_user(page, pos, range_to_discard);
3494 			BUFFER_TRACE(bh, "Buffer discarded");
3495 			goto next;
3496 		}
3497 
3498 		/*
3499 		 * If this block is not completely contained in the range
3500 		 * to be discarded, then it is not going to be released. Because
3501 		 * we need to keep this block, we need to make sure this part
3502 		 * of the page is uptodate before we modify it by writeing
3503 		 * partial zeros on it.
3504 		 */
3505 		if (!buffer_mapped(bh)) {
3506 			/*
3507 			 * Buffer head must be mapped before we can read
3508 			 * from the block
3509 			 */
3510 			BUFFER_TRACE(bh, "unmapped");
3511 			ext4_get_block(inode, iblock, bh, 0);
3512 			/* unmapped? It's a hole - nothing to do */
3513 			if (!buffer_mapped(bh)) {
3514 				BUFFER_TRACE(bh, "still unmapped");
3515 				goto next;
3516 			}
3517 		}
3518 
3519 		/* Ok, it's mapped. Make sure it's up-to-date */
3520 		if (PageUptodate(page))
3521 			set_buffer_uptodate(bh);
3522 
3523 		if (!buffer_uptodate(bh)) {
3524 			err = -EIO;
3525 			ll_rw_block(READ, 1, &bh);
3526 			wait_on_buffer(bh);
3527 			/* Uhhuh. Read error. Complain and punt.*/
3528 			if (!buffer_uptodate(bh))
3529 				goto next;
3530 		}
3531 
3532 		if (ext4_should_journal_data(inode)) {
3533 			BUFFER_TRACE(bh, "get write access");
3534 			err = ext4_journal_get_write_access(handle, bh);
3535 			if (err)
3536 				goto next;
3537 		}
3538 
3539 		zero_user(page, pos, range_to_discard);
3540 
3541 		err = 0;
3542 		if (ext4_should_journal_data(inode)) {
3543 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3544 		} else
3545 			mark_buffer_dirty(bh);
3546 
3547 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3548 next:
3549 		bh = bh->b_this_page;
3550 		iblock++;
3551 		pos += range_to_discard;
3552 	}
3553 
3554 	return err;
3555 }
3556 
3557 int ext4_can_truncate(struct inode *inode)
3558 {
3559 	if (S_ISREG(inode->i_mode))
3560 		return 1;
3561 	if (S_ISDIR(inode->i_mode))
3562 		return 1;
3563 	if (S_ISLNK(inode->i_mode))
3564 		return !ext4_inode_is_fast_symlink(inode);
3565 	return 0;
3566 }
3567 
3568 /*
3569  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3570  * associated with the given offset and length
3571  *
3572  * @inode:  File inode
3573  * @offset: The offset where the hole will begin
3574  * @len:    The length of the hole
3575  *
3576  * Returns: 0 on success or negative on failure
3577  */
3578 
3579 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3580 {
3581 	struct inode *inode = file_inode(file);
3582 	if (!S_ISREG(inode->i_mode))
3583 		return -EOPNOTSUPP;
3584 
3585 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3586 		return ext4_ind_punch_hole(file, offset, length);
3587 
3588 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3589 		/* TODO: Add support for bigalloc file systems */
3590 		return -EOPNOTSUPP;
3591 	}
3592 
3593 	trace_ext4_punch_hole(inode, offset, length);
3594 
3595 	return ext4_ext_punch_hole(file, offset, length);
3596 }
3597 
3598 /*
3599  * ext4_truncate()
3600  *
3601  * We block out ext4_get_block() block instantiations across the entire
3602  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3603  * simultaneously on behalf of the same inode.
3604  *
3605  * As we work through the truncate and commit bits of it to the journal there
3606  * is one core, guiding principle: the file's tree must always be consistent on
3607  * disk.  We must be able to restart the truncate after a crash.
3608  *
3609  * The file's tree may be transiently inconsistent in memory (although it
3610  * probably isn't), but whenever we close off and commit a journal transaction,
3611  * the contents of (the filesystem + the journal) must be consistent and
3612  * restartable.  It's pretty simple, really: bottom up, right to left (although
3613  * left-to-right works OK too).
3614  *
3615  * Note that at recovery time, journal replay occurs *before* the restart of
3616  * truncate against the orphan inode list.
3617  *
3618  * The committed inode has the new, desired i_size (which is the same as
3619  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3620  * that this inode's truncate did not complete and it will again call
3621  * ext4_truncate() to have another go.  So there will be instantiated blocks
3622  * to the right of the truncation point in a crashed ext4 filesystem.  But
3623  * that's fine - as long as they are linked from the inode, the post-crash
3624  * ext4_truncate() run will find them and release them.
3625  */
3626 void ext4_truncate(struct inode *inode)
3627 {
3628 	trace_ext4_truncate_enter(inode);
3629 
3630 	if (!ext4_can_truncate(inode))
3631 		return;
3632 
3633 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3634 
3635 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3636 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3637 
3638 	if (ext4_has_inline_data(inode)) {
3639 		int has_inline = 1;
3640 
3641 		ext4_inline_data_truncate(inode, &has_inline);
3642 		if (has_inline)
3643 			return;
3644 	}
3645 
3646 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3647 		ext4_ext_truncate(inode);
3648 	else
3649 		ext4_ind_truncate(inode);
3650 
3651 	trace_ext4_truncate_exit(inode);
3652 }
3653 
3654 /*
3655  * ext4_get_inode_loc returns with an extra refcount against the inode's
3656  * underlying buffer_head on success. If 'in_mem' is true, we have all
3657  * data in memory that is needed to recreate the on-disk version of this
3658  * inode.
3659  */
3660 static int __ext4_get_inode_loc(struct inode *inode,
3661 				struct ext4_iloc *iloc, int in_mem)
3662 {
3663 	struct ext4_group_desc	*gdp;
3664 	struct buffer_head	*bh;
3665 	struct super_block	*sb = inode->i_sb;
3666 	ext4_fsblk_t		block;
3667 	int			inodes_per_block, inode_offset;
3668 
3669 	iloc->bh = NULL;
3670 	if (!ext4_valid_inum(sb, inode->i_ino))
3671 		return -EIO;
3672 
3673 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3674 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3675 	if (!gdp)
3676 		return -EIO;
3677 
3678 	/*
3679 	 * Figure out the offset within the block group inode table
3680 	 */
3681 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3682 	inode_offset = ((inode->i_ino - 1) %
3683 			EXT4_INODES_PER_GROUP(sb));
3684 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3685 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3686 
3687 	bh = sb_getblk(sb, block);
3688 	if (unlikely(!bh))
3689 		return -ENOMEM;
3690 	if (!buffer_uptodate(bh)) {
3691 		lock_buffer(bh);
3692 
3693 		/*
3694 		 * If the buffer has the write error flag, we have failed
3695 		 * to write out another inode in the same block.  In this
3696 		 * case, we don't have to read the block because we may
3697 		 * read the old inode data successfully.
3698 		 */
3699 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3700 			set_buffer_uptodate(bh);
3701 
3702 		if (buffer_uptodate(bh)) {
3703 			/* someone brought it uptodate while we waited */
3704 			unlock_buffer(bh);
3705 			goto has_buffer;
3706 		}
3707 
3708 		/*
3709 		 * If we have all information of the inode in memory and this
3710 		 * is the only valid inode in the block, we need not read the
3711 		 * block.
3712 		 */
3713 		if (in_mem) {
3714 			struct buffer_head *bitmap_bh;
3715 			int i, start;
3716 
3717 			start = inode_offset & ~(inodes_per_block - 1);
3718 
3719 			/* Is the inode bitmap in cache? */
3720 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3721 			if (unlikely(!bitmap_bh))
3722 				goto make_io;
3723 
3724 			/*
3725 			 * If the inode bitmap isn't in cache then the
3726 			 * optimisation may end up performing two reads instead
3727 			 * of one, so skip it.
3728 			 */
3729 			if (!buffer_uptodate(bitmap_bh)) {
3730 				brelse(bitmap_bh);
3731 				goto make_io;
3732 			}
3733 			for (i = start; i < start + inodes_per_block; i++) {
3734 				if (i == inode_offset)
3735 					continue;
3736 				if (ext4_test_bit(i, bitmap_bh->b_data))
3737 					break;
3738 			}
3739 			brelse(bitmap_bh);
3740 			if (i == start + inodes_per_block) {
3741 				/* all other inodes are free, so skip I/O */
3742 				memset(bh->b_data, 0, bh->b_size);
3743 				set_buffer_uptodate(bh);
3744 				unlock_buffer(bh);
3745 				goto has_buffer;
3746 			}
3747 		}
3748 
3749 make_io:
3750 		/*
3751 		 * If we need to do any I/O, try to pre-readahead extra
3752 		 * blocks from the inode table.
3753 		 */
3754 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3755 			ext4_fsblk_t b, end, table;
3756 			unsigned num;
3757 
3758 			table = ext4_inode_table(sb, gdp);
3759 			/* s_inode_readahead_blks is always a power of 2 */
3760 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3761 			if (table > b)
3762 				b = table;
3763 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3764 			num = EXT4_INODES_PER_GROUP(sb);
3765 			if (ext4_has_group_desc_csum(sb))
3766 				num -= ext4_itable_unused_count(sb, gdp);
3767 			table += num / inodes_per_block;
3768 			if (end > table)
3769 				end = table;
3770 			while (b <= end)
3771 				sb_breadahead(sb, b++);
3772 		}
3773 
3774 		/*
3775 		 * There are other valid inodes in the buffer, this inode
3776 		 * has in-inode xattrs, or we don't have this inode in memory.
3777 		 * Read the block from disk.
3778 		 */
3779 		trace_ext4_load_inode(inode);
3780 		get_bh(bh);
3781 		bh->b_end_io = end_buffer_read_sync;
3782 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3783 		wait_on_buffer(bh);
3784 		if (!buffer_uptodate(bh)) {
3785 			EXT4_ERROR_INODE_BLOCK(inode, block,
3786 					       "unable to read itable block");
3787 			brelse(bh);
3788 			return -EIO;
3789 		}
3790 	}
3791 has_buffer:
3792 	iloc->bh = bh;
3793 	return 0;
3794 }
3795 
3796 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3797 {
3798 	/* We have all inode data except xattrs in memory here. */
3799 	return __ext4_get_inode_loc(inode, iloc,
3800 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3801 }
3802 
3803 void ext4_set_inode_flags(struct inode *inode)
3804 {
3805 	unsigned int flags = EXT4_I(inode)->i_flags;
3806 
3807 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3808 	if (flags & EXT4_SYNC_FL)
3809 		inode->i_flags |= S_SYNC;
3810 	if (flags & EXT4_APPEND_FL)
3811 		inode->i_flags |= S_APPEND;
3812 	if (flags & EXT4_IMMUTABLE_FL)
3813 		inode->i_flags |= S_IMMUTABLE;
3814 	if (flags & EXT4_NOATIME_FL)
3815 		inode->i_flags |= S_NOATIME;
3816 	if (flags & EXT4_DIRSYNC_FL)
3817 		inode->i_flags |= S_DIRSYNC;
3818 }
3819 
3820 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3821 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3822 {
3823 	unsigned int vfs_fl;
3824 	unsigned long old_fl, new_fl;
3825 
3826 	do {
3827 		vfs_fl = ei->vfs_inode.i_flags;
3828 		old_fl = ei->i_flags;
3829 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3830 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3831 				EXT4_DIRSYNC_FL);
3832 		if (vfs_fl & S_SYNC)
3833 			new_fl |= EXT4_SYNC_FL;
3834 		if (vfs_fl & S_APPEND)
3835 			new_fl |= EXT4_APPEND_FL;
3836 		if (vfs_fl & S_IMMUTABLE)
3837 			new_fl |= EXT4_IMMUTABLE_FL;
3838 		if (vfs_fl & S_NOATIME)
3839 			new_fl |= EXT4_NOATIME_FL;
3840 		if (vfs_fl & S_DIRSYNC)
3841 			new_fl |= EXT4_DIRSYNC_FL;
3842 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3843 }
3844 
3845 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3846 				  struct ext4_inode_info *ei)
3847 {
3848 	blkcnt_t i_blocks ;
3849 	struct inode *inode = &(ei->vfs_inode);
3850 	struct super_block *sb = inode->i_sb;
3851 
3852 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3853 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3854 		/* we are using combined 48 bit field */
3855 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3856 					le32_to_cpu(raw_inode->i_blocks_lo);
3857 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3858 			/* i_blocks represent file system block size */
3859 			return i_blocks  << (inode->i_blkbits - 9);
3860 		} else {
3861 			return i_blocks;
3862 		}
3863 	} else {
3864 		return le32_to_cpu(raw_inode->i_blocks_lo);
3865 	}
3866 }
3867 
3868 static inline void ext4_iget_extra_inode(struct inode *inode,
3869 					 struct ext4_inode *raw_inode,
3870 					 struct ext4_inode_info *ei)
3871 {
3872 	__le32 *magic = (void *)raw_inode +
3873 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3874 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3875 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3876 		ext4_find_inline_data_nolock(inode);
3877 	} else
3878 		EXT4_I(inode)->i_inline_off = 0;
3879 }
3880 
3881 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3882 {
3883 	struct ext4_iloc iloc;
3884 	struct ext4_inode *raw_inode;
3885 	struct ext4_inode_info *ei;
3886 	struct inode *inode;
3887 	journal_t *journal = EXT4_SB(sb)->s_journal;
3888 	long ret;
3889 	int block;
3890 	uid_t i_uid;
3891 	gid_t i_gid;
3892 
3893 	inode = iget_locked(sb, ino);
3894 	if (!inode)
3895 		return ERR_PTR(-ENOMEM);
3896 	if (!(inode->i_state & I_NEW))
3897 		return inode;
3898 
3899 	ei = EXT4_I(inode);
3900 	iloc.bh = NULL;
3901 
3902 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3903 	if (ret < 0)
3904 		goto bad_inode;
3905 	raw_inode = ext4_raw_inode(&iloc);
3906 
3907 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3908 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3909 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3910 		    EXT4_INODE_SIZE(inode->i_sb)) {
3911 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3912 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3913 				EXT4_INODE_SIZE(inode->i_sb));
3914 			ret = -EIO;
3915 			goto bad_inode;
3916 		}
3917 	} else
3918 		ei->i_extra_isize = 0;
3919 
3920 	/* Precompute checksum seed for inode metadata */
3921 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3922 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3923 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3924 		__u32 csum;
3925 		__le32 inum = cpu_to_le32(inode->i_ino);
3926 		__le32 gen = raw_inode->i_generation;
3927 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3928 				   sizeof(inum));
3929 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3930 					      sizeof(gen));
3931 	}
3932 
3933 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3934 		EXT4_ERROR_INODE(inode, "checksum invalid");
3935 		ret = -EIO;
3936 		goto bad_inode;
3937 	}
3938 
3939 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3940 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3941 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3942 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3943 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3944 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3945 	}
3946 	i_uid_write(inode, i_uid);
3947 	i_gid_write(inode, i_gid);
3948 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3949 
3950 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3951 	ei->i_inline_off = 0;
3952 	ei->i_dir_start_lookup = 0;
3953 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3954 	/* We now have enough fields to check if the inode was active or not.
3955 	 * This is needed because nfsd might try to access dead inodes
3956 	 * the test is that same one that e2fsck uses
3957 	 * NeilBrown 1999oct15
3958 	 */
3959 	if (inode->i_nlink == 0) {
3960 		if (inode->i_mode == 0 ||
3961 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3962 			/* this inode is deleted */
3963 			ret = -ESTALE;
3964 			goto bad_inode;
3965 		}
3966 		/* The only unlinked inodes we let through here have
3967 		 * valid i_mode and are being read by the orphan
3968 		 * recovery code: that's fine, we're about to complete
3969 		 * the process of deleting those. */
3970 	}
3971 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3972 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3973 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3974 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3975 		ei->i_file_acl |=
3976 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3977 	inode->i_size = ext4_isize(raw_inode);
3978 	ei->i_disksize = inode->i_size;
3979 #ifdef CONFIG_QUOTA
3980 	ei->i_reserved_quota = 0;
3981 #endif
3982 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3983 	ei->i_block_group = iloc.block_group;
3984 	ei->i_last_alloc_group = ~0;
3985 	/*
3986 	 * NOTE! The in-memory inode i_data array is in little-endian order
3987 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3988 	 */
3989 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3990 		ei->i_data[block] = raw_inode->i_block[block];
3991 	INIT_LIST_HEAD(&ei->i_orphan);
3992 
3993 	/*
3994 	 * Set transaction id's of transactions that have to be committed
3995 	 * to finish f[data]sync. We set them to currently running transaction
3996 	 * as we cannot be sure that the inode or some of its metadata isn't
3997 	 * part of the transaction - the inode could have been reclaimed and
3998 	 * now it is reread from disk.
3999 	 */
4000 	if (journal) {
4001 		transaction_t *transaction;
4002 		tid_t tid;
4003 
4004 		read_lock(&journal->j_state_lock);
4005 		if (journal->j_running_transaction)
4006 			transaction = journal->j_running_transaction;
4007 		else
4008 			transaction = journal->j_committing_transaction;
4009 		if (transaction)
4010 			tid = transaction->t_tid;
4011 		else
4012 			tid = journal->j_commit_sequence;
4013 		read_unlock(&journal->j_state_lock);
4014 		ei->i_sync_tid = tid;
4015 		ei->i_datasync_tid = tid;
4016 	}
4017 
4018 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4019 		if (ei->i_extra_isize == 0) {
4020 			/* The extra space is currently unused. Use it. */
4021 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4022 					    EXT4_GOOD_OLD_INODE_SIZE;
4023 		} else {
4024 			ext4_iget_extra_inode(inode, raw_inode, ei);
4025 		}
4026 	}
4027 
4028 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4029 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4030 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4031 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4032 
4033 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4034 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4035 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4036 			inode->i_version |=
4037 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4038 	}
4039 
4040 	ret = 0;
4041 	if (ei->i_file_acl &&
4042 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4043 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4044 				 ei->i_file_acl);
4045 		ret = -EIO;
4046 		goto bad_inode;
4047 	} else if (!ext4_has_inline_data(inode)) {
4048 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4049 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4050 			    (S_ISLNK(inode->i_mode) &&
4051 			     !ext4_inode_is_fast_symlink(inode))))
4052 				/* Validate extent which is part of inode */
4053 				ret = ext4_ext_check_inode(inode);
4054 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4055 			   (S_ISLNK(inode->i_mode) &&
4056 			    !ext4_inode_is_fast_symlink(inode))) {
4057 			/* Validate block references which are part of inode */
4058 			ret = ext4_ind_check_inode(inode);
4059 		}
4060 	}
4061 	if (ret)
4062 		goto bad_inode;
4063 
4064 	if (S_ISREG(inode->i_mode)) {
4065 		inode->i_op = &ext4_file_inode_operations;
4066 		inode->i_fop = &ext4_file_operations;
4067 		ext4_set_aops(inode);
4068 	} else if (S_ISDIR(inode->i_mode)) {
4069 		inode->i_op = &ext4_dir_inode_operations;
4070 		inode->i_fop = &ext4_dir_operations;
4071 	} else if (S_ISLNK(inode->i_mode)) {
4072 		if (ext4_inode_is_fast_symlink(inode)) {
4073 			inode->i_op = &ext4_fast_symlink_inode_operations;
4074 			nd_terminate_link(ei->i_data, inode->i_size,
4075 				sizeof(ei->i_data) - 1);
4076 		} else {
4077 			inode->i_op = &ext4_symlink_inode_operations;
4078 			ext4_set_aops(inode);
4079 		}
4080 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4081 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4082 		inode->i_op = &ext4_special_inode_operations;
4083 		if (raw_inode->i_block[0])
4084 			init_special_inode(inode, inode->i_mode,
4085 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4086 		else
4087 			init_special_inode(inode, inode->i_mode,
4088 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4089 	} else {
4090 		ret = -EIO;
4091 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4092 		goto bad_inode;
4093 	}
4094 	brelse(iloc.bh);
4095 	ext4_set_inode_flags(inode);
4096 	unlock_new_inode(inode);
4097 	return inode;
4098 
4099 bad_inode:
4100 	brelse(iloc.bh);
4101 	iget_failed(inode);
4102 	return ERR_PTR(ret);
4103 }
4104 
4105 static int ext4_inode_blocks_set(handle_t *handle,
4106 				struct ext4_inode *raw_inode,
4107 				struct ext4_inode_info *ei)
4108 {
4109 	struct inode *inode = &(ei->vfs_inode);
4110 	u64 i_blocks = inode->i_blocks;
4111 	struct super_block *sb = inode->i_sb;
4112 
4113 	if (i_blocks <= ~0U) {
4114 		/*
4115 		 * i_blocks can be represented in a 32 bit variable
4116 		 * as multiple of 512 bytes
4117 		 */
4118 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4119 		raw_inode->i_blocks_high = 0;
4120 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4121 		return 0;
4122 	}
4123 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4124 		return -EFBIG;
4125 
4126 	if (i_blocks <= 0xffffffffffffULL) {
4127 		/*
4128 		 * i_blocks can be represented in a 48 bit variable
4129 		 * as multiple of 512 bytes
4130 		 */
4131 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4132 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4133 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134 	} else {
4135 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4136 		/* i_block is stored in file system block size */
4137 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4138 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4139 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4140 	}
4141 	return 0;
4142 }
4143 
4144 /*
4145  * Post the struct inode info into an on-disk inode location in the
4146  * buffer-cache.  This gobbles the caller's reference to the
4147  * buffer_head in the inode location struct.
4148  *
4149  * The caller must have write access to iloc->bh.
4150  */
4151 static int ext4_do_update_inode(handle_t *handle,
4152 				struct inode *inode,
4153 				struct ext4_iloc *iloc)
4154 {
4155 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4156 	struct ext4_inode_info *ei = EXT4_I(inode);
4157 	struct buffer_head *bh = iloc->bh;
4158 	int err = 0, rc, block;
4159 	int need_datasync = 0;
4160 	uid_t i_uid;
4161 	gid_t i_gid;
4162 
4163 	/* For fields not not tracking in the in-memory inode,
4164 	 * initialise them to zero for new inodes. */
4165 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4166 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4167 
4168 	ext4_get_inode_flags(ei);
4169 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4170 	i_uid = i_uid_read(inode);
4171 	i_gid = i_gid_read(inode);
4172 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4173 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4174 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4175 /*
4176  * Fix up interoperability with old kernels. Otherwise, old inodes get
4177  * re-used with the upper 16 bits of the uid/gid intact
4178  */
4179 		if (!ei->i_dtime) {
4180 			raw_inode->i_uid_high =
4181 				cpu_to_le16(high_16_bits(i_uid));
4182 			raw_inode->i_gid_high =
4183 				cpu_to_le16(high_16_bits(i_gid));
4184 		} else {
4185 			raw_inode->i_uid_high = 0;
4186 			raw_inode->i_gid_high = 0;
4187 		}
4188 	} else {
4189 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4190 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4191 		raw_inode->i_uid_high = 0;
4192 		raw_inode->i_gid_high = 0;
4193 	}
4194 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4195 
4196 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4197 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4198 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4199 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4200 
4201 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4202 		goto out_brelse;
4203 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4204 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4205 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4206 	    cpu_to_le32(EXT4_OS_HURD))
4207 		raw_inode->i_file_acl_high =
4208 			cpu_to_le16(ei->i_file_acl >> 32);
4209 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4210 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4211 		ext4_isize_set(raw_inode, ei->i_disksize);
4212 		need_datasync = 1;
4213 	}
4214 	if (ei->i_disksize > 0x7fffffffULL) {
4215 		struct super_block *sb = inode->i_sb;
4216 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4217 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4218 				EXT4_SB(sb)->s_es->s_rev_level ==
4219 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4220 			/* If this is the first large file
4221 			 * created, add a flag to the superblock.
4222 			 */
4223 			err = ext4_journal_get_write_access(handle,
4224 					EXT4_SB(sb)->s_sbh);
4225 			if (err)
4226 				goto out_brelse;
4227 			ext4_update_dynamic_rev(sb);
4228 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4229 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4230 			ext4_handle_sync(handle);
4231 			err = ext4_handle_dirty_super(handle, sb);
4232 		}
4233 	}
4234 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4235 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4236 		if (old_valid_dev(inode->i_rdev)) {
4237 			raw_inode->i_block[0] =
4238 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4239 			raw_inode->i_block[1] = 0;
4240 		} else {
4241 			raw_inode->i_block[0] = 0;
4242 			raw_inode->i_block[1] =
4243 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4244 			raw_inode->i_block[2] = 0;
4245 		}
4246 	} else if (!ext4_has_inline_data(inode)) {
4247 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4248 			raw_inode->i_block[block] = ei->i_data[block];
4249 	}
4250 
4251 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4252 	if (ei->i_extra_isize) {
4253 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4254 			raw_inode->i_version_hi =
4255 			cpu_to_le32(inode->i_version >> 32);
4256 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4257 	}
4258 
4259 	ext4_inode_csum_set(inode, raw_inode, ei);
4260 
4261 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4262 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4263 	if (!err)
4264 		err = rc;
4265 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4266 
4267 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4268 out_brelse:
4269 	brelse(bh);
4270 	ext4_std_error(inode->i_sb, err);
4271 	return err;
4272 }
4273 
4274 /*
4275  * ext4_write_inode()
4276  *
4277  * We are called from a few places:
4278  *
4279  * - Within generic_file_write() for O_SYNC files.
4280  *   Here, there will be no transaction running. We wait for any running
4281  *   transaction to commit.
4282  *
4283  * - Within sys_sync(), kupdate and such.
4284  *   We wait on commit, if tol to.
4285  *
4286  * - Within prune_icache() (PF_MEMALLOC == true)
4287  *   Here we simply return.  We can't afford to block kswapd on the
4288  *   journal commit.
4289  *
4290  * In all cases it is actually safe for us to return without doing anything,
4291  * because the inode has been copied into a raw inode buffer in
4292  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4293  * knfsd.
4294  *
4295  * Note that we are absolutely dependent upon all inode dirtiers doing the
4296  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4297  * which we are interested.
4298  *
4299  * It would be a bug for them to not do this.  The code:
4300  *
4301  *	mark_inode_dirty(inode)
4302  *	stuff();
4303  *	inode->i_size = expr;
4304  *
4305  * is in error because a kswapd-driven write_inode() could occur while
4306  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4307  * will no longer be on the superblock's dirty inode list.
4308  */
4309 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4310 {
4311 	int err;
4312 
4313 	if (current->flags & PF_MEMALLOC)
4314 		return 0;
4315 
4316 	if (EXT4_SB(inode->i_sb)->s_journal) {
4317 		if (ext4_journal_current_handle()) {
4318 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4319 			dump_stack();
4320 			return -EIO;
4321 		}
4322 
4323 		if (wbc->sync_mode != WB_SYNC_ALL)
4324 			return 0;
4325 
4326 		err = ext4_force_commit(inode->i_sb);
4327 	} else {
4328 		struct ext4_iloc iloc;
4329 
4330 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4331 		if (err)
4332 			return err;
4333 		if (wbc->sync_mode == WB_SYNC_ALL)
4334 			sync_dirty_buffer(iloc.bh);
4335 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4336 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4337 					 "IO error syncing inode");
4338 			err = -EIO;
4339 		}
4340 		brelse(iloc.bh);
4341 	}
4342 	return err;
4343 }
4344 
4345 /*
4346  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4347  * buffers that are attached to a page stradding i_size and are undergoing
4348  * commit. In that case we have to wait for commit to finish and try again.
4349  */
4350 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4351 {
4352 	struct page *page;
4353 	unsigned offset;
4354 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4355 	tid_t commit_tid = 0;
4356 	int ret;
4357 
4358 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4359 	/*
4360 	 * All buffers in the last page remain valid? Then there's nothing to
4361 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4362 	 * blocksize case
4363 	 */
4364 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4365 		return;
4366 	while (1) {
4367 		page = find_lock_page(inode->i_mapping,
4368 				      inode->i_size >> PAGE_CACHE_SHIFT);
4369 		if (!page)
4370 			return;
4371 		ret = __ext4_journalled_invalidatepage(page, offset);
4372 		unlock_page(page);
4373 		page_cache_release(page);
4374 		if (ret != -EBUSY)
4375 			return;
4376 		commit_tid = 0;
4377 		read_lock(&journal->j_state_lock);
4378 		if (journal->j_committing_transaction)
4379 			commit_tid = journal->j_committing_transaction->t_tid;
4380 		read_unlock(&journal->j_state_lock);
4381 		if (commit_tid)
4382 			jbd2_log_wait_commit(journal, commit_tid);
4383 	}
4384 }
4385 
4386 /*
4387  * ext4_setattr()
4388  *
4389  * Called from notify_change.
4390  *
4391  * We want to trap VFS attempts to truncate the file as soon as
4392  * possible.  In particular, we want to make sure that when the VFS
4393  * shrinks i_size, we put the inode on the orphan list and modify
4394  * i_disksize immediately, so that during the subsequent flushing of
4395  * dirty pages and freeing of disk blocks, we can guarantee that any
4396  * commit will leave the blocks being flushed in an unused state on
4397  * disk.  (On recovery, the inode will get truncated and the blocks will
4398  * be freed, so we have a strong guarantee that no future commit will
4399  * leave these blocks visible to the user.)
4400  *
4401  * Another thing we have to assure is that if we are in ordered mode
4402  * and inode is still attached to the committing transaction, we must
4403  * we start writeout of all the dirty pages which are being truncated.
4404  * This way we are sure that all the data written in the previous
4405  * transaction are already on disk (truncate waits for pages under
4406  * writeback).
4407  *
4408  * Called with inode->i_mutex down.
4409  */
4410 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4411 {
4412 	struct inode *inode = dentry->d_inode;
4413 	int error, rc = 0;
4414 	int orphan = 0;
4415 	const unsigned int ia_valid = attr->ia_valid;
4416 
4417 	error = inode_change_ok(inode, attr);
4418 	if (error)
4419 		return error;
4420 
4421 	if (is_quota_modification(inode, attr))
4422 		dquot_initialize(inode);
4423 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4424 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4425 		handle_t *handle;
4426 
4427 		/* (user+group)*(old+new) structure, inode write (sb,
4428 		 * inode block, ? - but truncate inode update has it) */
4429 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4430 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4431 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4432 		if (IS_ERR(handle)) {
4433 			error = PTR_ERR(handle);
4434 			goto err_out;
4435 		}
4436 		error = dquot_transfer(inode, attr);
4437 		if (error) {
4438 			ext4_journal_stop(handle);
4439 			return error;
4440 		}
4441 		/* Update corresponding info in inode so that everything is in
4442 		 * one transaction */
4443 		if (attr->ia_valid & ATTR_UID)
4444 			inode->i_uid = attr->ia_uid;
4445 		if (attr->ia_valid & ATTR_GID)
4446 			inode->i_gid = attr->ia_gid;
4447 		error = ext4_mark_inode_dirty(handle, inode);
4448 		ext4_journal_stop(handle);
4449 	}
4450 
4451 	if (attr->ia_valid & ATTR_SIZE) {
4452 
4453 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4454 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4455 
4456 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4457 				return -EFBIG;
4458 		}
4459 	}
4460 
4461 	if (S_ISREG(inode->i_mode) &&
4462 	    attr->ia_valid & ATTR_SIZE &&
4463 	    (attr->ia_size < inode->i_size)) {
4464 		handle_t *handle;
4465 
4466 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4467 		if (IS_ERR(handle)) {
4468 			error = PTR_ERR(handle);
4469 			goto err_out;
4470 		}
4471 		if (ext4_handle_valid(handle)) {
4472 			error = ext4_orphan_add(handle, inode);
4473 			orphan = 1;
4474 		}
4475 		EXT4_I(inode)->i_disksize = attr->ia_size;
4476 		rc = ext4_mark_inode_dirty(handle, inode);
4477 		if (!error)
4478 			error = rc;
4479 		ext4_journal_stop(handle);
4480 
4481 		if (ext4_should_order_data(inode)) {
4482 			error = ext4_begin_ordered_truncate(inode,
4483 							    attr->ia_size);
4484 			if (error) {
4485 				/* Do as much error cleanup as possible */
4486 				handle = ext4_journal_start(inode,
4487 							    EXT4_HT_INODE, 3);
4488 				if (IS_ERR(handle)) {
4489 					ext4_orphan_del(NULL, inode);
4490 					goto err_out;
4491 				}
4492 				ext4_orphan_del(handle, inode);
4493 				orphan = 0;
4494 				ext4_journal_stop(handle);
4495 				goto err_out;
4496 			}
4497 		}
4498 	}
4499 
4500 	if (attr->ia_valid & ATTR_SIZE) {
4501 		if (attr->ia_size != inode->i_size) {
4502 			loff_t oldsize = inode->i_size;
4503 
4504 			i_size_write(inode, attr->ia_size);
4505 			/*
4506 			 * Blocks are going to be removed from the inode. Wait
4507 			 * for dio in flight.  Temporarily disable
4508 			 * dioread_nolock to prevent livelock.
4509 			 */
4510 			if (orphan) {
4511 				if (!ext4_should_journal_data(inode)) {
4512 					ext4_inode_block_unlocked_dio(inode);
4513 					inode_dio_wait(inode);
4514 					ext4_inode_resume_unlocked_dio(inode);
4515 				} else
4516 					ext4_wait_for_tail_page_commit(inode);
4517 			}
4518 			/*
4519 			 * Truncate pagecache after we've waited for commit
4520 			 * in data=journal mode to make pages freeable.
4521 			 */
4522 			truncate_pagecache(inode, oldsize, inode->i_size);
4523 		}
4524 		ext4_truncate(inode);
4525 	}
4526 
4527 	if (!rc) {
4528 		setattr_copy(inode, attr);
4529 		mark_inode_dirty(inode);
4530 	}
4531 
4532 	/*
4533 	 * If the call to ext4_truncate failed to get a transaction handle at
4534 	 * all, we need to clean up the in-core orphan list manually.
4535 	 */
4536 	if (orphan && inode->i_nlink)
4537 		ext4_orphan_del(NULL, inode);
4538 
4539 	if (!rc && (ia_valid & ATTR_MODE))
4540 		rc = ext4_acl_chmod(inode);
4541 
4542 err_out:
4543 	ext4_std_error(inode->i_sb, error);
4544 	if (!error)
4545 		error = rc;
4546 	return error;
4547 }
4548 
4549 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4550 		 struct kstat *stat)
4551 {
4552 	struct inode *inode;
4553 	unsigned long delalloc_blocks;
4554 
4555 	inode = dentry->d_inode;
4556 	generic_fillattr(inode, stat);
4557 
4558 	/*
4559 	 * We can't update i_blocks if the block allocation is delayed
4560 	 * otherwise in the case of system crash before the real block
4561 	 * allocation is done, we will have i_blocks inconsistent with
4562 	 * on-disk file blocks.
4563 	 * We always keep i_blocks updated together with real
4564 	 * allocation. But to not confuse with user, stat
4565 	 * will return the blocks that include the delayed allocation
4566 	 * blocks for this file.
4567 	 */
4568 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4569 				EXT4_I(inode)->i_reserved_data_blocks);
4570 
4571 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4572 	return 0;
4573 }
4574 
4575 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4576 {
4577 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4578 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4579 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4580 }
4581 
4582 /*
4583  * Account for index blocks, block groups bitmaps and block group
4584  * descriptor blocks if modify datablocks and index blocks
4585  * worse case, the indexs blocks spread over different block groups
4586  *
4587  * If datablocks are discontiguous, they are possible to spread over
4588  * different block groups too. If they are contiguous, with flexbg,
4589  * they could still across block group boundary.
4590  *
4591  * Also account for superblock, inode, quota and xattr blocks
4592  */
4593 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4594 {
4595 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4596 	int gdpblocks;
4597 	int idxblocks;
4598 	int ret = 0;
4599 
4600 	/*
4601 	 * How many index blocks need to touch to modify nrblocks?
4602 	 * The "Chunk" flag indicating whether the nrblocks is
4603 	 * physically contiguous on disk
4604 	 *
4605 	 * For Direct IO and fallocate, they calls get_block to allocate
4606 	 * one single extent at a time, so they could set the "Chunk" flag
4607 	 */
4608 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4609 
4610 	ret = idxblocks;
4611 
4612 	/*
4613 	 * Now let's see how many group bitmaps and group descriptors need
4614 	 * to account
4615 	 */
4616 	groups = idxblocks;
4617 	if (chunk)
4618 		groups += 1;
4619 	else
4620 		groups += nrblocks;
4621 
4622 	gdpblocks = groups;
4623 	if (groups > ngroups)
4624 		groups = ngroups;
4625 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4626 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4627 
4628 	/* bitmaps and block group descriptor blocks */
4629 	ret += groups + gdpblocks;
4630 
4631 	/* Blocks for super block, inode, quota and xattr blocks */
4632 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4633 
4634 	return ret;
4635 }
4636 
4637 /*
4638  * Calculate the total number of credits to reserve to fit
4639  * the modification of a single pages into a single transaction,
4640  * which may include multiple chunks of block allocations.
4641  *
4642  * This could be called via ext4_write_begin()
4643  *
4644  * We need to consider the worse case, when
4645  * one new block per extent.
4646  */
4647 int ext4_writepage_trans_blocks(struct inode *inode)
4648 {
4649 	int bpp = ext4_journal_blocks_per_page(inode);
4650 	int ret;
4651 
4652 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4653 
4654 	/* Account for data blocks for journalled mode */
4655 	if (ext4_should_journal_data(inode))
4656 		ret += bpp;
4657 	return ret;
4658 }
4659 
4660 /*
4661  * Calculate the journal credits for a chunk of data modification.
4662  *
4663  * This is called from DIO, fallocate or whoever calling
4664  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4665  *
4666  * journal buffers for data blocks are not included here, as DIO
4667  * and fallocate do no need to journal data buffers.
4668  */
4669 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4670 {
4671 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4672 }
4673 
4674 /*
4675  * The caller must have previously called ext4_reserve_inode_write().
4676  * Give this, we know that the caller already has write access to iloc->bh.
4677  */
4678 int ext4_mark_iloc_dirty(handle_t *handle,
4679 			 struct inode *inode, struct ext4_iloc *iloc)
4680 {
4681 	int err = 0;
4682 
4683 	if (IS_I_VERSION(inode))
4684 		inode_inc_iversion(inode);
4685 
4686 	/* the do_update_inode consumes one bh->b_count */
4687 	get_bh(iloc->bh);
4688 
4689 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4690 	err = ext4_do_update_inode(handle, inode, iloc);
4691 	put_bh(iloc->bh);
4692 	return err;
4693 }
4694 
4695 /*
4696  * On success, We end up with an outstanding reference count against
4697  * iloc->bh.  This _must_ be cleaned up later.
4698  */
4699 
4700 int
4701 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4702 			 struct ext4_iloc *iloc)
4703 {
4704 	int err;
4705 
4706 	err = ext4_get_inode_loc(inode, iloc);
4707 	if (!err) {
4708 		BUFFER_TRACE(iloc->bh, "get_write_access");
4709 		err = ext4_journal_get_write_access(handle, iloc->bh);
4710 		if (err) {
4711 			brelse(iloc->bh);
4712 			iloc->bh = NULL;
4713 		}
4714 	}
4715 	ext4_std_error(inode->i_sb, err);
4716 	return err;
4717 }
4718 
4719 /*
4720  * Expand an inode by new_extra_isize bytes.
4721  * Returns 0 on success or negative error number on failure.
4722  */
4723 static int ext4_expand_extra_isize(struct inode *inode,
4724 				   unsigned int new_extra_isize,
4725 				   struct ext4_iloc iloc,
4726 				   handle_t *handle)
4727 {
4728 	struct ext4_inode *raw_inode;
4729 	struct ext4_xattr_ibody_header *header;
4730 
4731 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4732 		return 0;
4733 
4734 	raw_inode = ext4_raw_inode(&iloc);
4735 
4736 	header = IHDR(inode, raw_inode);
4737 
4738 	/* No extended attributes present */
4739 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4740 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4741 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4742 			new_extra_isize);
4743 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4744 		return 0;
4745 	}
4746 
4747 	/* try to expand with EAs present */
4748 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4749 					  raw_inode, handle);
4750 }
4751 
4752 /*
4753  * What we do here is to mark the in-core inode as clean with respect to inode
4754  * dirtiness (it may still be data-dirty).
4755  * This means that the in-core inode may be reaped by prune_icache
4756  * without having to perform any I/O.  This is a very good thing,
4757  * because *any* task may call prune_icache - even ones which
4758  * have a transaction open against a different journal.
4759  *
4760  * Is this cheating?  Not really.  Sure, we haven't written the
4761  * inode out, but prune_icache isn't a user-visible syncing function.
4762  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4763  * we start and wait on commits.
4764  */
4765 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4766 {
4767 	struct ext4_iloc iloc;
4768 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4769 	static unsigned int mnt_count;
4770 	int err, ret;
4771 
4772 	might_sleep();
4773 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4774 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4775 	if (ext4_handle_valid(handle) &&
4776 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4777 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4778 		/*
4779 		 * We need extra buffer credits since we may write into EA block
4780 		 * with this same handle. If journal_extend fails, then it will
4781 		 * only result in a minor loss of functionality for that inode.
4782 		 * If this is felt to be critical, then e2fsck should be run to
4783 		 * force a large enough s_min_extra_isize.
4784 		 */
4785 		if ((jbd2_journal_extend(handle,
4786 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4787 			ret = ext4_expand_extra_isize(inode,
4788 						      sbi->s_want_extra_isize,
4789 						      iloc, handle);
4790 			if (ret) {
4791 				ext4_set_inode_state(inode,
4792 						     EXT4_STATE_NO_EXPAND);
4793 				if (mnt_count !=
4794 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4795 					ext4_warning(inode->i_sb,
4796 					"Unable to expand inode %lu. Delete"
4797 					" some EAs or run e2fsck.",
4798 					inode->i_ino);
4799 					mnt_count =
4800 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4801 				}
4802 			}
4803 		}
4804 	}
4805 	if (!err)
4806 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4807 	return err;
4808 }
4809 
4810 /*
4811  * ext4_dirty_inode() is called from __mark_inode_dirty()
4812  *
4813  * We're really interested in the case where a file is being extended.
4814  * i_size has been changed by generic_commit_write() and we thus need
4815  * to include the updated inode in the current transaction.
4816  *
4817  * Also, dquot_alloc_block() will always dirty the inode when blocks
4818  * are allocated to the file.
4819  *
4820  * If the inode is marked synchronous, we don't honour that here - doing
4821  * so would cause a commit on atime updates, which we don't bother doing.
4822  * We handle synchronous inodes at the highest possible level.
4823  */
4824 void ext4_dirty_inode(struct inode *inode, int flags)
4825 {
4826 	handle_t *handle;
4827 
4828 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4829 	if (IS_ERR(handle))
4830 		goto out;
4831 
4832 	ext4_mark_inode_dirty(handle, inode);
4833 
4834 	ext4_journal_stop(handle);
4835 out:
4836 	return;
4837 }
4838 
4839 #if 0
4840 /*
4841  * Bind an inode's backing buffer_head into this transaction, to prevent
4842  * it from being flushed to disk early.  Unlike
4843  * ext4_reserve_inode_write, this leaves behind no bh reference and
4844  * returns no iloc structure, so the caller needs to repeat the iloc
4845  * lookup to mark the inode dirty later.
4846  */
4847 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4848 {
4849 	struct ext4_iloc iloc;
4850 
4851 	int err = 0;
4852 	if (handle) {
4853 		err = ext4_get_inode_loc(inode, &iloc);
4854 		if (!err) {
4855 			BUFFER_TRACE(iloc.bh, "get_write_access");
4856 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4857 			if (!err)
4858 				err = ext4_handle_dirty_metadata(handle,
4859 								 NULL,
4860 								 iloc.bh);
4861 			brelse(iloc.bh);
4862 		}
4863 	}
4864 	ext4_std_error(inode->i_sb, err);
4865 	return err;
4866 }
4867 #endif
4868 
4869 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4870 {
4871 	journal_t *journal;
4872 	handle_t *handle;
4873 	int err;
4874 
4875 	/*
4876 	 * We have to be very careful here: changing a data block's
4877 	 * journaling status dynamically is dangerous.  If we write a
4878 	 * data block to the journal, change the status and then delete
4879 	 * that block, we risk forgetting to revoke the old log record
4880 	 * from the journal and so a subsequent replay can corrupt data.
4881 	 * So, first we make sure that the journal is empty and that
4882 	 * nobody is changing anything.
4883 	 */
4884 
4885 	journal = EXT4_JOURNAL(inode);
4886 	if (!journal)
4887 		return 0;
4888 	if (is_journal_aborted(journal))
4889 		return -EROFS;
4890 	/* We have to allocate physical blocks for delalloc blocks
4891 	 * before flushing journal. otherwise delalloc blocks can not
4892 	 * be allocated any more. even more truncate on delalloc blocks
4893 	 * could trigger BUG by flushing delalloc blocks in journal.
4894 	 * There is no delalloc block in non-journal data mode.
4895 	 */
4896 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4897 		err = ext4_alloc_da_blocks(inode);
4898 		if (err < 0)
4899 			return err;
4900 	}
4901 
4902 	/* Wait for all existing dio workers */
4903 	ext4_inode_block_unlocked_dio(inode);
4904 	inode_dio_wait(inode);
4905 
4906 	jbd2_journal_lock_updates(journal);
4907 
4908 	/*
4909 	 * OK, there are no updates running now, and all cached data is
4910 	 * synced to disk.  We are now in a completely consistent state
4911 	 * which doesn't have anything in the journal, and we know that
4912 	 * no filesystem updates are running, so it is safe to modify
4913 	 * the inode's in-core data-journaling state flag now.
4914 	 */
4915 
4916 	if (val)
4917 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4918 	else {
4919 		jbd2_journal_flush(journal);
4920 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4921 	}
4922 	ext4_set_aops(inode);
4923 
4924 	jbd2_journal_unlock_updates(journal);
4925 	ext4_inode_resume_unlocked_dio(inode);
4926 
4927 	/* Finally we can mark the inode as dirty. */
4928 
4929 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4930 	if (IS_ERR(handle))
4931 		return PTR_ERR(handle);
4932 
4933 	err = ext4_mark_inode_dirty(handle, inode);
4934 	ext4_handle_sync(handle);
4935 	ext4_journal_stop(handle);
4936 	ext4_std_error(inode->i_sb, err);
4937 
4938 	return err;
4939 }
4940 
4941 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4942 {
4943 	return !buffer_mapped(bh);
4944 }
4945 
4946 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4947 {
4948 	struct page *page = vmf->page;
4949 	loff_t size;
4950 	unsigned long len;
4951 	int ret;
4952 	struct file *file = vma->vm_file;
4953 	struct inode *inode = file_inode(file);
4954 	struct address_space *mapping = inode->i_mapping;
4955 	handle_t *handle;
4956 	get_block_t *get_block;
4957 	int retries = 0;
4958 
4959 	sb_start_pagefault(inode->i_sb);
4960 	file_update_time(vma->vm_file);
4961 	/* Delalloc case is easy... */
4962 	if (test_opt(inode->i_sb, DELALLOC) &&
4963 	    !ext4_should_journal_data(inode) &&
4964 	    !ext4_nonda_switch(inode->i_sb)) {
4965 		do {
4966 			ret = __block_page_mkwrite(vma, vmf,
4967 						   ext4_da_get_block_prep);
4968 		} while (ret == -ENOSPC &&
4969 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4970 		goto out_ret;
4971 	}
4972 
4973 	lock_page(page);
4974 	size = i_size_read(inode);
4975 	/* Page got truncated from under us? */
4976 	if (page->mapping != mapping || page_offset(page) > size) {
4977 		unlock_page(page);
4978 		ret = VM_FAULT_NOPAGE;
4979 		goto out;
4980 	}
4981 
4982 	if (page->index == size >> PAGE_CACHE_SHIFT)
4983 		len = size & ~PAGE_CACHE_MASK;
4984 	else
4985 		len = PAGE_CACHE_SIZE;
4986 	/*
4987 	 * Return if we have all the buffers mapped. This avoids the need to do
4988 	 * journal_start/journal_stop which can block and take a long time
4989 	 */
4990 	if (page_has_buffers(page)) {
4991 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4992 					    0, len, NULL,
4993 					    ext4_bh_unmapped)) {
4994 			/* Wait so that we don't change page under IO */
4995 			wait_for_stable_page(page);
4996 			ret = VM_FAULT_LOCKED;
4997 			goto out;
4998 		}
4999 	}
5000 	unlock_page(page);
5001 	/* OK, we need to fill the hole... */
5002 	if (ext4_should_dioread_nolock(inode))
5003 		get_block = ext4_get_block_write;
5004 	else
5005 		get_block = ext4_get_block;
5006 retry_alloc:
5007 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5008 				    ext4_writepage_trans_blocks(inode));
5009 	if (IS_ERR(handle)) {
5010 		ret = VM_FAULT_SIGBUS;
5011 		goto out;
5012 	}
5013 	ret = __block_page_mkwrite(vma, vmf, get_block);
5014 	if (!ret && ext4_should_journal_data(inode)) {
5015 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5016 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5017 			unlock_page(page);
5018 			ret = VM_FAULT_SIGBUS;
5019 			ext4_journal_stop(handle);
5020 			goto out;
5021 		}
5022 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5023 	}
5024 	ext4_journal_stop(handle);
5025 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5026 		goto retry_alloc;
5027 out_ret:
5028 	ret = block_page_mkwrite_return(ret);
5029 out:
5030 	sb_end_pagefault(inode->i_sb);
5031 	return ret;
5032 }
5033