1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 #define MPAGE_DA_EXTENT_TAIL 0x01 45 46 static inline int ext4_begin_ordered_truncate(struct inode *inode, 47 loff_t new_size) 48 { 49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 50 new_size); 51 } 52 53 static void ext4_invalidatepage(struct page *page, unsigned long offset); 54 55 /* 56 * Test whether an inode is a fast symlink. 57 */ 58 static int ext4_inode_is_fast_symlink(struct inode *inode) 59 { 60 int ea_blocks = EXT4_I(inode)->i_file_acl ? 61 (inode->i_sb->s_blocksize >> 9) : 0; 62 63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 64 } 65 66 /* 67 * The ext4 forget function must perform a revoke if we are freeing data 68 * which has been journaled. Metadata (eg. indirect blocks) must be 69 * revoked in all cases. 70 * 71 * "bh" may be NULL: a metadata block may have been freed from memory 72 * but there may still be a record of it in the journal, and that record 73 * still needs to be revoked. 74 */ 75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 76 struct buffer_head *bh, ext4_fsblk_t blocknr) 77 { 78 int err; 79 80 might_sleep(); 81 82 BUFFER_TRACE(bh, "enter"); 83 84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 85 "data mode %lx\n", 86 bh, is_metadata, inode->i_mode, 87 test_opt(inode->i_sb, DATA_FLAGS)); 88 89 /* Never use the revoke function if we are doing full data 90 * journaling: there is no need to, and a V1 superblock won't 91 * support it. Otherwise, only skip the revoke on un-journaled 92 * data blocks. */ 93 94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 95 (!is_metadata && !ext4_should_journal_data(inode))) { 96 if (bh) { 97 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 98 return ext4_journal_forget(handle, bh); 99 } 100 return 0; 101 } 102 103 /* 104 * data!=journal && (is_metadata || should_journal_data(inode)) 105 */ 106 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 107 err = ext4_journal_revoke(handle, blocknr, bh); 108 if (err) 109 ext4_abort(inode->i_sb, __func__, 110 "error %d when attempting revoke", err); 111 BUFFER_TRACE(bh, "exit"); 112 return err; 113 } 114 115 /* 116 * Work out how many blocks we need to proceed with the next chunk of a 117 * truncate transaction. 118 */ 119 static unsigned long blocks_for_truncate(struct inode *inode) 120 { 121 ext4_lblk_t needed; 122 123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 124 125 /* Give ourselves just enough room to cope with inodes in which 126 * i_blocks is corrupt: we've seen disk corruptions in the past 127 * which resulted in random data in an inode which looked enough 128 * like a regular file for ext4 to try to delete it. Things 129 * will go a bit crazy if that happens, but at least we should 130 * try not to panic the whole kernel. */ 131 if (needed < 2) 132 needed = 2; 133 134 /* But we need to bound the transaction so we don't overflow the 135 * journal. */ 136 if (needed > EXT4_MAX_TRANS_DATA) 137 needed = EXT4_MAX_TRANS_DATA; 138 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 140 } 141 142 /* 143 * Truncate transactions can be complex and absolutely huge. So we need to 144 * be able to restart the transaction at a conventient checkpoint to make 145 * sure we don't overflow the journal. 146 * 147 * start_transaction gets us a new handle for a truncate transaction, 148 * and extend_transaction tries to extend the existing one a bit. If 149 * extend fails, we need to propagate the failure up and restart the 150 * transaction in the top-level truncate loop. --sct 151 */ 152 static handle_t *start_transaction(struct inode *inode) 153 { 154 handle_t *result; 155 156 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 157 if (!IS_ERR(result)) 158 return result; 159 160 ext4_std_error(inode->i_sb, PTR_ERR(result)); 161 return result; 162 } 163 164 /* 165 * Try to extend this transaction for the purposes of truncation. 166 * 167 * Returns 0 if we managed to create more room. If we can't create more 168 * room, and the transaction must be restarted we return 1. 169 */ 170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 171 { 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 173 return 0; 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 175 return 0; 176 return 1; 177 } 178 179 /* 180 * Restart the transaction associated with *handle. This does a commit, 181 * so before we call here everything must be consistently dirtied against 182 * this transaction. 183 */ 184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 185 { 186 jbd_debug(2, "restarting handle %p\n", handle); 187 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 188 } 189 190 /* 191 * Called at the last iput() if i_nlink is zero. 192 */ 193 void ext4_delete_inode(struct inode *inode) 194 { 195 handle_t *handle; 196 int err; 197 198 if (ext4_should_order_data(inode)) 199 ext4_begin_ordered_truncate(inode, 0); 200 truncate_inode_pages(&inode->i_data, 0); 201 202 if (is_bad_inode(inode)) 203 goto no_delete; 204 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 206 if (IS_ERR(handle)) { 207 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 208 /* 209 * If we're going to skip the normal cleanup, we still need to 210 * make sure that the in-core orphan linked list is properly 211 * cleaned up. 212 */ 213 ext4_orphan_del(NULL, inode); 214 goto no_delete; 215 } 216 217 if (IS_SYNC(inode)) 218 handle->h_sync = 1; 219 inode->i_size = 0; 220 err = ext4_mark_inode_dirty(handle, inode); 221 if (err) { 222 ext4_warning(inode->i_sb, __func__, 223 "couldn't mark inode dirty (err %d)", err); 224 goto stop_handle; 225 } 226 if (inode->i_blocks) 227 ext4_truncate(inode); 228 229 /* 230 * ext4_ext_truncate() doesn't reserve any slop when it 231 * restarts journal transactions; therefore there may not be 232 * enough credits left in the handle to remove the inode from 233 * the orphan list and set the dtime field. 234 */ 235 if (handle->h_buffer_credits < 3) { 236 err = ext4_journal_extend(handle, 3); 237 if (err > 0) 238 err = ext4_journal_restart(handle, 3); 239 if (err != 0) { 240 ext4_warning(inode->i_sb, __func__, 241 "couldn't extend journal (err %d)", err); 242 stop_handle: 243 ext4_journal_stop(handle); 244 goto no_delete; 245 } 246 } 247 248 /* 249 * Kill off the orphan record which ext4_truncate created. 250 * AKPM: I think this can be inside the above `if'. 251 * Note that ext4_orphan_del() has to be able to cope with the 252 * deletion of a non-existent orphan - this is because we don't 253 * know if ext4_truncate() actually created an orphan record. 254 * (Well, we could do this if we need to, but heck - it works) 255 */ 256 ext4_orphan_del(handle, inode); 257 EXT4_I(inode)->i_dtime = get_seconds(); 258 259 /* 260 * One subtle ordering requirement: if anything has gone wrong 261 * (transaction abort, IO errors, whatever), then we can still 262 * do these next steps (the fs will already have been marked as 263 * having errors), but we can't free the inode if the mark_dirty 264 * fails. 265 */ 266 if (ext4_mark_inode_dirty(handle, inode)) 267 /* If that failed, just do the required in-core inode clear. */ 268 clear_inode(inode); 269 else 270 ext4_free_inode(handle, inode); 271 ext4_journal_stop(handle); 272 return; 273 no_delete: 274 clear_inode(inode); /* We must guarantee clearing of inode... */ 275 } 276 277 typedef struct { 278 __le32 *p; 279 __le32 key; 280 struct buffer_head *bh; 281 } Indirect; 282 283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 284 { 285 p->key = *(p->p = v); 286 p->bh = bh; 287 } 288 289 /** 290 * ext4_block_to_path - parse the block number into array of offsets 291 * @inode: inode in question (we are only interested in its superblock) 292 * @i_block: block number to be parsed 293 * @offsets: array to store the offsets in 294 * @boundary: set this non-zero if the referred-to block is likely to be 295 * followed (on disk) by an indirect block. 296 * 297 * To store the locations of file's data ext4 uses a data structure common 298 * for UNIX filesystems - tree of pointers anchored in the inode, with 299 * data blocks at leaves and indirect blocks in intermediate nodes. 300 * This function translates the block number into path in that tree - 301 * return value is the path length and @offsets[n] is the offset of 302 * pointer to (n+1)th node in the nth one. If @block is out of range 303 * (negative or too large) warning is printed and zero returned. 304 * 305 * Note: function doesn't find node addresses, so no IO is needed. All 306 * we need to know is the capacity of indirect blocks (taken from the 307 * inode->i_sb). 308 */ 309 310 /* 311 * Portability note: the last comparison (check that we fit into triple 312 * indirect block) is spelled differently, because otherwise on an 313 * architecture with 32-bit longs and 8Kb pages we might get into trouble 314 * if our filesystem had 8Kb blocks. We might use long long, but that would 315 * kill us on x86. Oh, well, at least the sign propagation does not matter - 316 * i_block would have to be negative in the very beginning, so we would not 317 * get there at all. 318 */ 319 320 static int ext4_block_to_path(struct inode *inode, 321 ext4_lblk_t i_block, 322 ext4_lblk_t offsets[4], int *boundary) 323 { 324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 326 const long direct_blocks = EXT4_NDIR_BLOCKS, 327 indirect_blocks = ptrs, 328 double_blocks = (1 << (ptrs_bits * 2)); 329 int n = 0; 330 int final = 0; 331 332 if (i_block < 0) { 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 334 } else if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "ext4_block_to_path", 354 "block %lu > max", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 /** 364 * ext4_get_branch - read the chain of indirect blocks leading to data 365 * @inode: inode in question 366 * @depth: depth of the chain (1 - direct pointer, etc.) 367 * @offsets: offsets of pointers in inode/indirect blocks 368 * @chain: place to store the result 369 * @err: here we store the error value 370 * 371 * Function fills the array of triples <key, p, bh> and returns %NULL 372 * if everything went OK or the pointer to the last filled triple 373 * (incomplete one) otherwise. Upon the return chain[i].key contains 374 * the number of (i+1)-th block in the chain (as it is stored in memory, 375 * i.e. little-endian 32-bit), chain[i].p contains the address of that 376 * number (it points into struct inode for i==0 and into the bh->b_data 377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 378 * block for i>0 and NULL for i==0. In other words, it holds the block 379 * numbers of the chain, addresses they were taken from (and where we can 380 * verify that chain did not change) and buffer_heads hosting these 381 * numbers. 382 * 383 * Function stops when it stumbles upon zero pointer (absent block) 384 * (pointer to last triple returned, *@err == 0) 385 * or when it gets an IO error reading an indirect block 386 * (ditto, *@err == -EIO) 387 * or when it reads all @depth-1 indirect blocks successfully and finds 388 * the whole chain, all way to the data (returns %NULL, *err == 0). 389 * 390 * Need to be called with 391 * down_read(&EXT4_I(inode)->i_data_sem) 392 */ 393 static Indirect *ext4_get_branch(struct inode *inode, int depth, 394 ext4_lblk_t *offsets, 395 Indirect chain[4], int *err) 396 { 397 struct super_block *sb = inode->i_sb; 398 Indirect *p = chain; 399 struct buffer_head *bh; 400 401 *err = 0; 402 /* i_data is not going away, no lock needed */ 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 404 if (!p->key) 405 goto no_block; 406 while (--depth) { 407 bh = sb_bread(sb, le32_to_cpu(p->key)); 408 if (!bh) 409 goto failure; 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 411 /* Reader: end */ 412 if (!p->key) 413 goto no_block; 414 } 415 return NULL; 416 417 failure: 418 *err = -EIO; 419 no_block: 420 return p; 421 } 422 423 /** 424 * ext4_find_near - find a place for allocation with sufficient locality 425 * @inode: owner 426 * @ind: descriptor of indirect block. 427 * 428 * This function returns the preferred place for block allocation. 429 * It is used when heuristic for sequential allocation fails. 430 * Rules are: 431 * + if there is a block to the left of our position - allocate near it. 432 * + if pointer will live in indirect block - allocate near that block. 433 * + if pointer will live in inode - allocate in the same 434 * cylinder group. 435 * 436 * In the latter case we colour the starting block by the callers PID to 437 * prevent it from clashing with concurrent allocations for a different inode 438 * in the same block group. The PID is used here so that functionally related 439 * files will be close-by on-disk. 440 * 441 * Caller must make sure that @ind is valid and will stay that way. 442 */ 443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 444 { 445 struct ext4_inode_info *ei = EXT4_I(inode); 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 447 __le32 *p; 448 ext4_fsblk_t bg_start; 449 ext4_fsblk_t last_block; 450 ext4_grpblk_t colour; 451 452 /* Try to find previous block */ 453 for (p = ind->p - 1; p >= start; p--) { 454 if (*p) 455 return le32_to_cpu(*p); 456 } 457 458 /* No such thing, so let's try location of indirect block */ 459 if (ind->bh) 460 return ind->bh->b_blocknr; 461 462 /* 463 * It is going to be referred to from the inode itself? OK, just put it 464 * into the same cylinder group then. 465 */ 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 468 469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 470 colour = (current->pid % 16) * 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 472 else 473 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 474 return bg_start + colour; 475 } 476 477 /** 478 * ext4_find_goal - find a preferred place for allocation. 479 * @inode: owner 480 * @block: block we want 481 * @partial: pointer to the last triple within a chain 482 * 483 * Normally this function find the preferred place for block allocation, 484 * returns it. 485 */ 486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 487 Indirect *partial) 488 { 489 struct ext4_block_alloc_info *block_i; 490 491 block_i = EXT4_I(inode)->i_block_alloc_info; 492 493 /* 494 * try the heuristic for sequential allocation, 495 * failing that at least try to get decent locality. 496 */ 497 if (block_i && (block == block_i->last_alloc_logical_block + 1) 498 && (block_i->last_alloc_physical_block != 0)) { 499 return block_i->last_alloc_physical_block + 1; 500 } 501 502 return ext4_find_near(inode, partial); 503 } 504 505 /** 506 * ext4_blks_to_allocate: Look up the block map and count the number 507 * of direct blocks need to be allocated for the given branch. 508 * 509 * @branch: chain of indirect blocks 510 * @k: number of blocks need for indirect blocks 511 * @blks: number of data blocks to be mapped. 512 * @blocks_to_boundary: the offset in the indirect block 513 * 514 * return the total number of blocks to be allocate, including the 515 * direct and indirect blocks. 516 */ 517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 518 int blocks_to_boundary) 519 { 520 unsigned long count = 0; 521 522 /* 523 * Simple case, [t,d]Indirect block(s) has not allocated yet 524 * then it's clear blocks on that path have not allocated 525 */ 526 if (k > 0) { 527 /* right now we don't handle cross boundary allocation */ 528 if (blks < blocks_to_boundary + 1) 529 count += blks; 530 else 531 count += blocks_to_boundary + 1; 532 return count; 533 } 534 535 count++; 536 while (count < blks && count <= blocks_to_boundary && 537 le32_to_cpu(*(branch[0].p + count)) == 0) { 538 count++; 539 } 540 return count; 541 } 542 543 /** 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 545 * @indirect_blks: the number of blocks need to allocate for indirect 546 * blocks 547 * 548 * @new_blocks: on return it will store the new block numbers for 549 * the indirect blocks(if needed) and the first direct block, 550 * @blks: on return it will store the total number of allocated 551 * direct blocks 552 */ 553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 554 ext4_lblk_t iblock, ext4_fsblk_t goal, 555 int indirect_blks, int blks, 556 ext4_fsblk_t new_blocks[4], int *err) 557 { 558 int target, i; 559 unsigned long count = 0, blk_allocated = 0; 560 int index = 0; 561 ext4_fsblk_t current_block = 0; 562 int ret = 0; 563 564 /* 565 * Here we try to allocate the requested multiple blocks at once, 566 * on a best-effort basis. 567 * To build a branch, we should allocate blocks for 568 * the indirect blocks(if not allocated yet), and at least 569 * the first direct block of this branch. That's the 570 * minimum number of blocks need to allocate(required) 571 */ 572 /* first we try to allocate the indirect blocks */ 573 target = indirect_blks; 574 while (target > 0) { 575 count = target; 576 /* allocating blocks for indirect blocks and direct blocks */ 577 current_block = ext4_new_meta_blocks(handle, inode, 578 goal, &count, err); 579 if (*err) 580 goto failed_out; 581 582 target -= count; 583 /* allocate blocks for indirect blocks */ 584 while (index < indirect_blks && count) { 585 new_blocks[index++] = current_block++; 586 count--; 587 } 588 if (count > 0) { 589 /* 590 * save the new block number 591 * for the first direct block 592 */ 593 new_blocks[index] = current_block; 594 printk(KERN_INFO "%s returned more blocks than " 595 "requested\n", __func__); 596 WARN_ON(1); 597 break; 598 } 599 } 600 601 target = blks - count ; 602 blk_allocated = count; 603 if (!target) 604 goto allocated; 605 /* Now allocate data blocks */ 606 count = target; 607 /* allocating blocks for data blocks */ 608 current_block = ext4_new_blocks(handle, inode, iblock, 609 goal, &count, err); 610 if (*err && (target == blks)) { 611 /* 612 * if the allocation failed and we didn't allocate 613 * any blocks before 614 */ 615 goto failed_out; 616 } 617 if (!*err) { 618 if (target == blks) { 619 /* 620 * save the new block number 621 * for the first direct block 622 */ 623 new_blocks[index] = current_block; 624 } 625 blk_allocated += count; 626 } 627 allocated: 628 /* total number of blocks allocated for direct blocks */ 629 ret = blk_allocated; 630 *err = 0; 631 return ret; 632 failed_out: 633 for (i = 0; i < index; i++) 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 635 return ret; 636 } 637 638 /** 639 * ext4_alloc_branch - allocate and set up a chain of blocks. 640 * @inode: owner 641 * @indirect_blks: number of allocated indirect blocks 642 * @blks: number of allocated direct blocks 643 * @offsets: offsets (in the blocks) to store the pointers to next. 644 * @branch: place to store the chain in. 645 * 646 * This function allocates blocks, zeroes out all but the last one, 647 * links them into chain and (if we are synchronous) writes them to disk. 648 * In other words, it prepares a branch that can be spliced onto the 649 * inode. It stores the information about that chain in the branch[], in 650 * the same format as ext4_get_branch() would do. We are calling it after 651 * we had read the existing part of chain and partial points to the last 652 * triple of that (one with zero ->key). Upon the exit we have the same 653 * picture as after the successful ext4_get_block(), except that in one 654 * place chain is disconnected - *branch->p is still zero (we did not 655 * set the last link), but branch->key contains the number that should 656 * be placed into *branch->p to fill that gap. 657 * 658 * If allocation fails we free all blocks we've allocated (and forget 659 * their buffer_heads) and return the error value the from failed 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 661 * as described above and return 0. 662 */ 663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 664 ext4_lblk_t iblock, int indirect_blks, 665 int *blks, ext4_fsblk_t goal, 666 ext4_lblk_t *offsets, Indirect *branch) 667 { 668 int blocksize = inode->i_sb->s_blocksize; 669 int i, n = 0; 670 int err = 0; 671 struct buffer_head *bh; 672 int num; 673 ext4_fsblk_t new_blocks[4]; 674 ext4_fsblk_t current_block; 675 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 677 *blks, new_blocks, &err); 678 if (err) 679 return err; 680 681 branch[0].key = cpu_to_le32(new_blocks[0]); 682 /* 683 * metadata blocks and data blocks are allocated. 684 */ 685 for (n = 1; n <= indirect_blks; n++) { 686 /* 687 * Get buffer_head for parent block, zero it out 688 * and set the pointer to new one, then send 689 * parent to disk. 690 */ 691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 692 branch[n].bh = bh; 693 lock_buffer(bh); 694 BUFFER_TRACE(bh, "call get_create_access"); 695 err = ext4_journal_get_create_access(handle, bh); 696 if (err) { 697 unlock_buffer(bh); 698 brelse(bh); 699 goto failed; 700 } 701 702 memset(bh->b_data, 0, blocksize); 703 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 704 branch[n].key = cpu_to_le32(new_blocks[n]); 705 *branch[n].p = branch[n].key; 706 if (n == indirect_blks) { 707 current_block = new_blocks[n]; 708 /* 709 * End of chain, update the last new metablock of 710 * the chain to point to the new allocated 711 * data blocks numbers 712 */ 713 for (i=1; i < num; i++) 714 *(branch[n].p + i) = cpu_to_le32(++current_block); 715 } 716 BUFFER_TRACE(bh, "marking uptodate"); 717 set_buffer_uptodate(bh); 718 unlock_buffer(bh); 719 720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 721 err = ext4_journal_dirty_metadata(handle, bh); 722 if (err) 723 goto failed; 724 } 725 *blks = num; 726 return err; 727 failed: 728 /* Allocation failed, free what we already allocated */ 729 for (i = 1; i <= n ; i++) { 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 731 ext4_journal_forget(handle, branch[i].bh); 732 } 733 for (i = 0; i < indirect_blks; i++) 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 735 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 737 738 return err; 739 } 740 741 /** 742 * ext4_splice_branch - splice the allocated branch onto inode. 743 * @inode: owner 744 * @block: (logical) number of block we are adding 745 * @chain: chain of indirect blocks (with a missing link - see 746 * ext4_alloc_branch) 747 * @where: location of missing link 748 * @num: number of indirect blocks we are adding 749 * @blks: number of direct blocks we are adding 750 * 751 * This function fills the missing link and does all housekeeping needed in 752 * inode (->i_blocks, etc.). In case of success we end up with the full 753 * chain to new block and return 0. 754 */ 755 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 756 ext4_lblk_t block, Indirect *where, int num, int blks) 757 { 758 int i; 759 int err = 0; 760 struct ext4_block_alloc_info *block_i; 761 ext4_fsblk_t current_block; 762 763 block_i = EXT4_I(inode)->i_block_alloc_info; 764 /* 765 * If we're splicing into a [td]indirect block (as opposed to the 766 * inode) then we need to get write access to the [td]indirect block 767 * before the splice. 768 */ 769 if (where->bh) { 770 BUFFER_TRACE(where->bh, "get_write_access"); 771 err = ext4_journal_get_write_access(handle, where->bh); 772 if (err) 773 goto err_out; 774 } 775 /* That's it */ 776 777 *where->p = where->key; 778 779 /* 780 * Update the host buffer_head or inode to point to more just allocated 781 * direct blocks blocks 782 */ 783 if (num == 0 && blks > 1) { 784 current_block = le32_to_cpu(where->key) + 1; 785 for (i = 1; i < blks; i++) 786 *(where->p + i) = cpu_to_le32(current_block++); 787 } 788 789 /* 790 * update the most recently allocated logical & physical block 791 * in i_block_alloc_info, to assist find the proper goal block for next 792 * allocation 793 */ 794 if (block_i) { 795 block_i->last_alloc_logical_block = block + blks - 1; 796 block_i->last_alloc_physical_block = 797 le32_to_cpu(where[num].key) + blks - 1; 798 } 799 800 /* We are done with atomic stuff, now do the rest of housekeeping */ 801 802 inode->i_ctime = ext4_current_time(inode); 803 ext4_mark_inode_dirty(handle, inode); 804 805 /* had we spliced it onto indirect block? */ 806 if (where->bh) { 807 /* 808 * If we spliced it onto an indirect block, we haven't 809 * altered the inode. Note however that if it is being spliced 810 * onto an indirect block at the very end of the file (the 811 * file is growing) then we *will* alter the inode to reflect 812 * the new i_size. But that is not done here - it is done in 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 814 */ 815 jbd_debug(5, "splicing indirect only\n"); 816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 817 err = ext4_journal_dirty_metadata(handle, where->bh); 818 if (err) 819 goto err_out; 820 } else { 821 /* 822 * OK, we spliced it into the inode itself on a direct block. 823 * Inode was dirtied above. 824 */ 825 jbd_debug(5, "splicing direct\n"); 826 } 827 return err; 828 829 err_out: 830 for (i = 1; i <= num; i++) { 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 832 ext4_journal_forget(handle, where[i].bh); 833 ext4_free_blocks(handle, inode, 834 le32_to_cpu(where[i-1].key), 1, 0); 835 } 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 837 838 return err; 839 } 840 841 /* 842 * Allocation strategy is simple: if we have to allocate something, we will 843 * have to go the whole way to leaf. So let's do it before attaching anything 844 * to tree, set linkage between the newborn blocks, write them if sync is 845 * required, recheck the path, free and repeat if check fails, otherwise 846 * set the last missing link (that will protect us from any truncate-generated 847 * removals - all blocks on the path are immune now) and possibly force the 848 * write on the parent block. 849 * That has a nice additional property: no special recovery from the failed 850 * allocations is needed - we simply release blocks and do not touch anything 851 * reachable from inode. 852 * 853 * `handle' can be NULL if create == 0. 854 * 855 * return > 0, # of blocks mapped or allocated. 856 * return = 0, if plain lookup failed. 857 * return < 0, error case. 858 * 859 * 860 * Need to be called with 861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 863 */ 864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 865 ext4_lblk_t iblock, unsigned long maxblocks, 866 struct buffer_head *bh_result, 867 int create, int extend_disksize) 868 { 869 int err = -EIO; 870 ext4_lblk_t offsets[4]; 871 Indirect chain[4]; 872 Indirect *partial; 873 ext4_fsblk_t goal; 874 int indirect_blks; 875 int blocks_to_boundary = 0; 876 int depth; 877 struct ext4_inode_info *ei = EXT4_I(inode); 878 int count = 0; 879 ext4_fsblk_t first_block = 0; 880 loff_t disksize; 881 882 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 884 J_ASSERT(handle != NULL || create == 0); 885 depth = ext4_block_to_path(inode, iblock, offsets, 886 &blocks_to_boundary); 887 888 if (depth == 0) 889 goto out; 890 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 892 893 /* Simplest case - block found, no allocation needed */ 894 if (!partial) { 895 first_block = le32_to_cpu(chain[depth - 1].key); 896 clear_buffer_new(bh_result); 897 count++; 898 /*map more blocks*/ 899 while (count < maxblocks && count <= blocks_to_boundary) { 900 ext4_fsblk_t blk; 901 902 blk = le32_to_cpu(*(chain[depth-1].p + count)); 903 904 if (blk == first_block + count) 905 count++; 906 else 907 break; 908 } 909 goto got_it; 910 } 911 912 /* Next simple case - plain lookup or failed read of indirect block */ 913 if (!create || err == -EIO) 914 goto cleanup; 915 916 /* 917 * Okay, we need to do block allocation. Lazily initialize the block 918 * allocation info here if necessary 919 */ 920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 921 ext4_init_block_alloc_info(inode); 922 923 goal = ext4_find_goal(inode, iblock, partial); 924 925 /* the number of blocks need to allocate for [d,t]indirect blocks */ 926 indirect_blks = (chain + depth) - partial - 1; 927 928 /* 929 * Next look up the indirect map to count the totoal number of 930 * direct blocks to allocate for this branch. 931 */ 932 count = ext4_blks_to_allocate(partial, indirect_blks, 933 maxblocks, blocks_to_boundary); 934 /* 935 * Block out ext4_truncate while we alter the tree 936 */ 937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 938 &count, goal, 939 offsets + (partial - chain), partial); 940 941 /* 942 * The ext4_splice_branch call will free and forget any buffers 943 * on the new chain if there is a failure, but that risks using 944 * up transaction credits, especially for bitmaps where the 945 * credits cannot be returned. Can we handle this somehow? We 946 * may need to return -EAGAIN upwards in the worst case. --sct 947 */ 948 if (!err) 949 err = ext4_splice_branch(handle, inode, iblock, 950 partial, indirect_blks, count); 951 /* 952 * i_disksize growing is protected by i_data_sem. Don't forget to 953 * protect it if you're about to implement concurrent 954 * ext4_get_block() -bzzz 955 */ 956 if (!err && extend_disksize) { 957 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 958 if (disksize > i_size_read(inode)) 959 disksize = i_size_read(inode); 960 if (disksize > ei->i_disksize) 961 ei->i_disksize = disksize; 962 } 963 if (err) 964 goto cleanup; 965 966 set_buffer_new(bh_result); 967 got_it: 968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 969 if (count > blocks_to_boundary) 970 set_buffer_boundary(bh_result); 971 err = count; 972 /* Clean up and exit */ 973 partial = chain + depth - 1; /* the whole chain */ 974 cleanup: 975 while (partial > chain) { 976 BUFFER_TRACE(partial->bh, "call brelse"); 977 brelse(partial->bh); 978 partial--; 979 } 980 BUFFER_TRACE(bh_result, "returned"); 981 out: 982 return err; 983 } 984 985 /* 986 * Calculate the number of metadata blocks need to reserve 987 * to allocate @blocks for non extent file based file 988 */ 989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 990 { 991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 992 int ind_blks, dind_blks, tind_blks; 993 994 /* number of new indirect blocks needed */ 995 ind_blks = (blocks + icap - 1) / icap; 996 997 dind_blks = (ind_blks + icap - 1) / icap; 998 999 tind_blks = 1; 1000 1001 return ind_blks + dind_blks + tind_blks; 1002 } 1003 1004 /* 1005 * Calculate the number of metadata blocks need to reserve 1006 * to allocate given number of blocks 1007 */ 1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1009 { 1010 if (!blocks) 1011 return 0; 1012 1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1014 return ext4_ext_calc_metadata_amount(inode, blocks); 1015 1016 return ext4_indirect_calc_metadata_amount(inode, blocks); 1017 } 1018 1019 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1022 int total, mdb, mdb_free; 1023 1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1025 /* recalculate the number of metablocks still need to be reserved */ 1026 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1027 mdb = ext4_calc_metadata_amount(inode, total); 1028 1029 /* figure out how many metablocks to release */ 1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1032 1033 if (mdb_free) { 1034 /* Account for allocated meta_blocks */ 1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1036 1037 /* update fs dirty blocks counter */ 1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1039 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1041 } 1042 1043 /* update per-inode reservations */ 1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1045 EXT4_I(inode)->i_reserved_data_blocks -= used; 1046 1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1048 } 1049 1050 /* 1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1052 * and returns if the blocks are already mapped. 1053 * 1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1055 * and store the allocated blocks in the result buffer head and mark it 1056 * mapped. 1057 * 1058 * If file type is extents based, it will call ext4_ext_get_blocks(), 1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1060 * based files 1061 * 1062 * On success, it returns the number of blocks being mapped or allocate. 1063 * if create==0 and the blocks are pre-allocated and uninitialized block, 1064 * the result buffer head is unmapped. If the create ==1, it will make sure 1065 * the buffer head is mapped. 1066 * 1067 * It returns 0 if plain look up failed (blocks have not been allocated), in 1068 * that casem, buffer head is unmapped 1069 * 1070 * It returns the error in case of allocation failure. 1071 */ 1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1073 unsigned long max_blocks, struct buffer_head *bh, 1074 int create, int extend_disksize, int flag) 1075 { 1076 int retval; 1077 1078 clear_buffer_mapped(bh); 1079 1080 /* 1081 * Try to see if we can get the block without requesting 1082 * for new file system block. 1083 */ 1084 down_read((&EXT4_I(inode)->i_data_sem)); 1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1087 bh, 0, 0); 1088 } else { 1089 retval = ext4_get_blocks_handle(handle, 1090 inode, block, max_blocks, bh, 0, 0); 1091 } 1092 up_read((&EXT4_I(inode)->i_data_sem)); 1093 1094 /* If it is only a block(s) look up */ 1095 if (!create) 1096 return retval; 1097 1098 /* 1099 * Returns if the blocks have already allocated 1100 * 1101 * Note that if blocks have been preallocated 1102 * ext4_ext_get_block() returns th create = 0 1103 * with buffer head unmapped. 1104 */ 1105 if (retval > 0 && buffer_mapped(bh)) 1106 return retval; 1107 1108 /* 1109 * New blocks allocate and/or writing to uninitialized extent 1110 * will possibly result in updating i_data, so we take 1111 * the write lock of i_data_sem, and call get_blocks() 1112 * with create == 1 flag. 1113 */ 1114 down_write((&EXT4_I(inode)->i_data_sem)); 1115 1116 /* 1117 * if the caller is from delayed allocation writeout path 1118 * we have already reserved fs blocks for allocation 1119 * let the underlying get_block() function know to 1120 * avoid double accounting 1121 */ 1122 if (flag) 1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1124 /* 1125 * We need to check for EXT4 here because migrate 1126 * could have changed the inode type in between 1127 */ 1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1130 bh, create, extend_disksize); 1131 } else { 1132 retval = ext4_get_blocks_handle(handle, inode, block, 1133 max_blocks, bh, create, extend_disksize); 1134 1135 if (retval > 0 && buffer_new(bh)) { 1136 /* 1137 * We allocated new blocks which will result in 1138 * i_data's format changing. Force the migrate 1139 * to fail by clearing migrate flags 1140 */ 1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1142 ~EXT4_EXT_MIGRATE; 1143 } 1144 } 1145 1146 if (flag) { 1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1148 /* 1149 * Update reserved blocks/metadata blocks 1150 * after successful block allocation 1151 * which were deferred till now 1152 */ 1153 if ((retval > 0) && buffer_delay(bh)) 1154 ext4_da_update_reserve_space(inode, retval); 1155 } 1156 1157 up_write((&EXT4_I(inode)->i_data_sem)); 1158 return retval; 1159 } 1160 1161 /* Maximum number of blocks we map for direct IO at once. */ 1162 #define DIO_MAX_BLOCKS 4096 1163 1164 static int ext4_get_block(struct inode *inode, sector_t iblock, 1165 struct buffer_head *bh_result, int create) 1166 { 1167 handle_t *handle = ext4_journal_current_handle(); 1168 int ret = 0, started = 0; 1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1170 int dio_credits; 1171 1172 if (create && !handle) { 1173 /* Direct IO write... */ 1174 if (max_blocks > DIO_MAX_BLOCKS) 1175 max_blocks = DIO_MAX_BLOCKS; 1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1177 handle = ext4_journal_start(inode, dio_credits); 1178 if (IS_ERR(handle)) { 1179 ret = PTR_ERR(handle); 1180 goto out; 1181 } 1182 started = 1; 1183 } 1184 1185 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1186 max_blocks, bh_result, create, 0, 0); 1187 if (ret > 0) { 1188 bh_result->b_size = (ret << inode->i_blkbits); 1189 ret = 0; 1190 } 1191 if (started) 1192 ext4_journal_stop(handle); 1193 out: 1194 return ret; 1195 } 1196 1197 /* 1198 * `handle' can be NULL if create is zero 1199 */ 1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1201 ext4_lblk_t block, int create, int *errp) 1202 { 1203 struct buffer_head dummy; 1204 int fatal = 0, err; 1205 1206 J_ASSERT(handle != NULL || create == 0); 1207 1208 dummy.b_state = 0; 1209 dummy.b_blocknr = -1000; 1210 buffer_trace_init(&dummy.b_history); 1211 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1212 &dummy, create, 1, 0); 1213 /* 1214 * ext4_get_blocks_handle() returns number of blocks 1215 * mapped. 0 in case of a HOLE. 1216 */ 1217 if (err > 0) { 1218 if (err > 1) 1219 WARN_ON(1); 1220 err = 0; 1221 } 1222 *errp = err; 1223 if (!err && buffer_mapped(&dummy)) { 1224 struct buffer_head *bh; 1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1226 if (!bh) { 1227 *errp = -EIO; 1228 goto err; 1229 } 1230 if (buffer_new(&dummy)) { 1231 J_ASSERT(create != 0); 1232 J_ASSERT(handle != NULL); 1233 1234 /* 1235 * Now that we do not always journal data, we should 1236 * keep in mind whether this should always journal the 1237 * new buffer as metadata. For now, regular file 1238 * writes use ext4_get_block instead, so it's not a 1239 * problem. 1240 */ 1241 lock_buffer(bh); 1242 BUFFER_TRACE(bh, "call get_create_access"); 1243 fatal = ext4_journal_get_create_access(handle, bh); 1244 if (!fatal && !buffer_uptodate(bh)) { 1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1246 set_buffer_uptodate(bh); 1247 } 1248 unlock_buffer(bh); 1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1250 err = ext4_journal_dirty_metadata(handle, bh); 1251 if (!fatal) 1252 fatal = err; 1253 } else { 1254 BUFFER_TRACE(bh, "not a new buffer"); 1255 } 1256 if (fatal) { 1257 *errp = fatal; 1258 brelse(bh); 1259 bh = NULL; 1260 } 1261 return bh; 1262 } 1263 err: 1264 return NULL; 1265 } 1266 1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1268 ext4_lblk_t block, int create, int *err) 1269 { 1270 struct buffer_head *bh; 1271 1272 bh = ext4_getblk(handle, inode, block, create, err); 1273 if (!bh) 1274 return bh; 1275 if (buffer_uptodate(bh)) 1276 return bh; 1277 ll_rw_block(READ_META, 1, &bh); 1278 wait_on_buffer(bh); 1279 if (buffer_uptodate(bh)) 1280 return bh; 1281 put_bh(bh); 1282 *err = -EIO; 1283 return NULL; 1284 } 1285 1286 static int walk_page_buffers(handle_t *handle, 1287 struct buffer_head *head, 1288 unsigned from, 1289 unsigned to, 1290 int *partial, 1291 int (*fn)(handle_t *handle, 1292 struct buffer_head *bh)) 1293 { 1294 struct buffer_head *bh; 1295 unsigned block_start, block_end; 1296 unsigned blocksize = head->b_size; 1297 int err, ret = 0; 1298 struct buffer_head *next; 1299 1300 for (bh = head, block_start = 0; 1301 ret == 0 && (bh != head || !block_start); 1302 block_start = block_end, bh = next) 1303 { 1304 next = bh->b_this_page; 1305 block_end = block_start + blocksize; 1306 if (block_end <= from || block_start >= to) { 1307 if (partial && !buffer_uptodate(bh)) 1308 *partial = 1; 1309 continue; 1310 } 1311 err = (*fn)(handle, bh); 1312 if (!ret) 1313 ret = err; 1314 } 1315 return ret; 1316 } 1317 1318 /* 1319 * To preserve ordering, it is essential that the hole instantiation and 1320 * the data write be encapsulated in a single transaction. We cannot 1321 * close off a transaction and start a new one between the ext4_get_block() 1322 * and the commit_write(). So doing the jbd2_journal_start at the start of 1323 * prepare_write() is the right place. 1324 * 1325 * Also, this function can nest inside ext4_writepage() -> 1326 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1327 * has generated enough buffer credits to do the whole page. So we won't 1328 * block on the journal in that case, which is good, because the caller may 1329 * be PF_MEMALLOC. 1330 * 1331 * By accident, ext4 can be reentered when a transaction is open via 1332 * quota file writes. If we were to commit the transaction while thus 1333 * reentered, there can be a deadlock - we would be holding a quota 1334 * lock, and the commit would never complete if another thread had a 1335 * transaction open and was blocking on the quota lock - a ranking 1336 * violation. 1337 * 1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1339 * will _not_ run commit under these circumstances because handle->h_ref 1340 * is elevated. We'll still have enough credits for the tiny quotafile 1341 * write. 1342 */ 1343 static int do_journal_get_write_access(handle_t *handle, 1344 struct buffer_head *bh) 1345 { 1346 if (!buffer_mapped(bh) || buffer_freed(bh)) 1347 return 0; 1348 return ext4_journal_get_write_access(handle, bh); 1349 } 1350 1351 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1352 loff_t pos, unsigned len, unsigned flags, 1353 struct page **pagep, void **fsdata) 1354 { 1355 struct inode *inode = mapping->host; 1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1357 handle_t *handle; 1358 int retries = 0; 1359 struct page *page; 1360 pgoff_t index; 1361 unsigned from, to; 1362 1363 index = pos >> PAGE_CACHE_SHIFT; 1364 from = pos & (PAGE_CACHE_SIZE - 1); 1365 to = from + len; 1366 1367 retry: 1368 handle = ext4_journal_start(inode, needed_blocks); 1369 if (IS_ERR(handle)) { 1370 ret = PTR_ERR(handle); 1371 goto out; 1372 } 1373 1374 page = __grab_cache_page(mapping, index); 1375 if (!page) { 1376 ext4_journal_stop(handle); 1377 ret = -ENOMEM; 1378 goto out; 1379 } 1380 *pagep = page; 1381 1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1383 ext4_get_block); 1384 1385 if (!ret && ext4_should_journal_data(inode)) { 1386 ret = walk_page_buffers(handle, page_buffers(page), 1387 from, to, NULL, do_journal_get_write_access); 1388 } 1389 1390 if (ret) { 1391 unlock_page(page); 1392 ext4_journal_stop(handle); 1393 page_cache_release(page); 1394 } 1395 1396 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1397 goto retry; 1398 out: 1399 return ret; 1400 } 1401 1402 /* For write_end() in data=journal mode */ 1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1404 { 1405 if (!buffer_mapped(bh) || buffer_freed(bh)) 1406 return 0; 1407 set_buffer_uptodate(bh); 1408 return ext4_journal_dirty_metadata(handle, bh); 1409 } 1410 1411 /* 1412 * We need to pick up the new inode size which generic_commit_write gave us 1413 * `file' can be NULL - eg, when called from page_symlink(). 1414 * 1415 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1416 * buffers are managed internally. 1417 */ 1418 static int ext4_ordered_write_end(struct file *file, 1419 struct address_space *mapping, 1420 loff_t pos, unsigned len, unsigned copied, 1421 struct page *page, void *fsdata) 1422 { 1423 handle_t *handle = ext4_journal_current_handle(); 1424 struct inode *inode = mapping->host; 1425 int ret = 0, ret2; 1426 1427 ret = ext4_jbd2_file_inode(handle, inode); 1428 1429 if (ret == 0) { 1430 /* 1431 * generic_write_end() will run mark_inode_dirty() if i_size 1432 * changes. So let's piggyback the i_disksize mark_inode_dirty 1433 * into that. 1434 */ 1435 loff_t new_i_size; 1436 1437 new_i_size = pos + copied; 1438 if (new_i_size > EXT4_I(inode)->i_disksize) 1439 EXT4_I(inode)->i_disksize = new_i_size; 1440 ret2 = generic_write_end(file, mapping, pos, len, copied, 1441 page, fsdata); 1442 copied = ret2; 1443 if (ret2 < 0) 1444 ret = ret2; 1445 } 1446 ret2 = ext4_journal_stop(handle); 1447 if (!ret) 1448 ret = ret2; 1449 1450 return ret ? ret : copied; 1451 } 1452 1453 static int ext4_writeback_write_end(struct file *file, 1454 struct address_space *mapping, 1455 loff_t pos, unsigned len, unsigned copied, 1456 struct page *page, void *fsdata) 1457 { 1458 handle_t *handle = ext4_journal_current_handle(); 1459 struct inode *inode = mapping->host; 1460 int ret = 0, ret2; 1461 loff_t new_i_size; 1462 1463 new_i_size = pos + copied; 1464 if (new_i_size > EXT4_I(inode)->i_disksize) 1465 EXT4_I(inode)->i_disksize = new_i_size; 1466 1467 ret2 = generic_write_end(file, mapping, pos, len, copied, 1468 page, fsdata); 1469 copied = ret2; 1470 if (ret2 < 0) 1471 ret = ret2; 1472 1473 ret2 = ext4_journal_stop(handle); 1474 if (!ret) 1475 ret = ret2; 1476 1477 return ret ? ret : copied; 1478 } 1479 1480 static int ext4_journalled_write_end(struct file *file, 1481 struct address_space *mapping, 1482 loff_t pos, unsigned len, unsigned copied, 1483 struct page *page, void *fsdata) 1484 { 1485 handle_t *handle = ext4_journal_current_handle(); 1486 struct inode *inode = mapping->host; 1487 int ret = 0, ret2; 1488 int partial = 0; 1489 unsigned from, to; 1490 1491 from = pos & (PAGE_CACHE_SIZE - 1); 1492 to = from + len; 1493 1494 if (copied < len) { 1495 if (!PageUptodate(page)) 1496 copied = 0; 1497 page_zero_new_buffers(page, from+copied, to); 1498 } 1499 1500 ret = walk_page_buffers(handle, page_buffers(page), from, 1501 to, &partial, write_end_fn); 1502 if (!partial) 1503 SetPageUptodate(page); 1504 if (pos+copied > inode->i_size) 1505 i_size_write(inode, pos+copied); 1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1507 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1508 EXT4_I(inode)->i_disksize = inode->i_size; 1509 ret2 = ext4_mark_inode_dirty(handle, inode); 1510 if (!ret) 1511 ret = ret2; 1512 } 1513 1514 unlock_page(page); 1515 ret2 = ext4_journal_stop(handle); 1516 if (!ret) 1517 ret = ret2; 1518 page_cache_release(page); 1519 1520 return ret ? ret : copied; 1521 } 1522 1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1524 { 1525 int retries = 0; 1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1527 unsigned long md_needed, mdblocks, total = 0; 1528 1529 /* 1530 * recalculate the amount of metadata blocks to reserve 1531 * in order to allocate nrblocks 1532 * worse case is one extent per block 1533 */ 1534 repeat: 1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1537 mdblocks = ext4_calc_metadata_amount(inode, total); 1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1539 1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1541 total = md_needed + nrblocks; 1542 1543 if (ext4_claim_free_blocks(sbi, total)) { 1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1546 yield(); 1547 goto repeat; 1548 } 1549 return -ENOSPC; 1550 } 1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1553 1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1555 return 0; /* success */ 1556 } 1557 1558 static void ext4_da_release_space(struct inode *inode, int to_free) 1559 { 1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1561 int total, mdb, mdb_free, release; 1562 1563 if (!to_free) 1564 return; /* Nothing to release, exit */ 1565 1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1567 1568 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1569 /* 1570 * if there is no reserved blocks, but we try to free some 1571 * then the counter is messed up somewhere. 1572 * but since this function is called from invalidate 1573 * page, it's harmless to return without any action 1574 */ 1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1576 "blocks for inode %lu, but there is no reserved " 1577 "data blocks\n", to_free, inode->i_ino); 1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1579 return; 1580 } 1581 1582 /* recalculate the number of metablocks still need to be reserved */ 1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1584 mdb = ext4_calc_metadata_amount(inode, total); 1585 1586 /* figure out how many metablocks to release */ 1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1589 1590 release = to_free + mdb_free; 1591 1592 /* update fs dirty blocks counter for truncate case */ 1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1594 1595 /* update per-inode reservations */ 1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1598 1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1602 } 1603 1604 static void ext4_da_page_release_reservation(struct page *page, 1605 unsigned long offset) 1606 { 1607 int to_release = 0; 1608 struct buffer_head *head, *bh; 1609 unsigned int curr_off = 0; 1610 1611 head = page_buffers(page); 1612 bh = head; 1613 do { 1614 unsigned int next_off = curr_off + bh->b_size; 1615 1616 if ((offset <= curr_off) && (buffer_delay(bh))) { 1617 to_release++; 1618 clear_buffer_delay(bh); 1619 } 1620 curr_off = next_off; 1621 } while ((bh = bh->b_this_page) != head); 1622 ext4_da_release_space(page->mapping->host, to_release); 1623 } 1624 1625 /* 1626 * Delayed allocation stuff 1627 */ 1628 1629 struct mpage_da_data { 1630 struct inode *inode; 1631 struct buffer_head lbh; /* extent of blocks */ 1632 unsigned long first_page, next_page; /* extent of pages */ 1633 get_block_t *get_block; 1634 struct writeback_control *wbc; 1635 int io_done; 1636 long pages_written; 1637 }; 1638 1639 /* 1640 * mpage_da_submit_io - walks through extent of pages and try to write 1641 * them with writepage() call back 1642 * 1643 * @mpd->inode: inode 1644 * @mpd->first_page: first page of the extent 1645 * @mpd->next_page: page after the last page of the extent 1646 * @mpd->get_block: the filesystem's block mapper function 1647 * 1648 * By the time mpage_da_submit_io() is called we expect all blocks 1649 * to be allocated. this may be wrong if allocation failed. 1650 * 1651 * As pages are already locked by write_cache_pages(), we can't use it 1652 */ 1653 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1654 { 1655 struct address_space *mapping = mpd->inode->i_mapping; 1656 int ret = 0, err, nr_pages, i; 1657 unsigned long index, end; 1658 struct pagevec pvec; 1659 1660 BUG_ON(mpd->next_page <= mpd->first_page); 1661 pagevec_init(&pvec, 0); 1662 index = mpd->first_page; 1663 end = mpd->next_page - 1; 1664 1665 while (index <= end) { 1666 /* XXX: optimize tail */ 1667 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1668 if (nr_pages == 0) 1669 break; 1670 for (i = 0; i < nr_pages; i++) { 1671 struct page *page = pvec.pages[i]; 1672 1673 index = page->index; 1674 if (index > end) 1675 break; 1676 index++; 1677 1678 err = mapping->a_ops->writepage(page, mpd->wbc); 1679 if (!err) 1680 mpd->pages_written++; 1681 /* 1682 * In error case, we have to continue because 1683 * remaining pages are still locked 1684 * XXX: unlock and re-dirty them? 1685 */ 1686 if (ret == 0) 1687 ret = err; 1688 } 1689 pagevec_release(&pvec); 1690 } 1691 return ret; 1692 } 1693 1694 /* 1695 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1696 * 1697 * @mpd->inode - inode to walk through 1698 * @exbh->b_blocknr - first block on a disk 1699 * @exbh->b_size - amount of space in bytes 1700 * @logical - first logical block to start assignment with 1701 * 1702 * the function goes through all passed space and put actual disk 1703 * block numbers into buffer heads, dropping BH_Delay 1704 */ 1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1706 struct buffer_head *exbh) 1707 { 1708 struct inode *inode = mpd->inode; 1709 struct address_space *mapping = inode->i_mapping; 1710 int blocks = exbh->b_size >> inode->i_blkbits; 1711 sector_t pblock = exbh->b_blocknr, cur_logical; 1712 struct buffer_head *head, *bh; 1713 pgoff_t index, end; 1714 struct pagevec pvec; 1715 int nr_pages, i; 1716 1717 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1718 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1719 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1720 1721 pagevec_init(&pvec, 0); 1722 1723 while (index <= end) { 1724 /* XXX: optimize tail */ 1725 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1726 if (nr_pages == 0) 1727 break; 1728 for (i = 0; i < nr_pages; i++) { 1729 struct page *page = pvec.pages[i]; 1730 1731 index = page->index; 1732 if (index > end) 1733 break; 1734 index++; 1735 1736 BUG_ON(!PageLocked(page)); 1737 BUG_ON(PageWriteback(page)); 1738 BUG_ON(!page_has_buffers(page)); 1739 1740 bh = page_buffers(page); 1741 head = bh; 1742 1743 /* skip blocks out of the range */ 1744 do { 1745 if (cur_logical >= logical) 1746 break; 1747 cur_logical++; 1748 } while ((bh = bh->b_this_page) != head); 1749 1750 do { 1751 if (cur_logical >= logical + blocks) 1752 break; 1753 if (buffer_delay(bh)) { 1754 bh->b_blocknr = pblock; 1755 clear_buffer_delay(bh); 1756 bh->b_bdev = inode->i_sb->s_bdev; 1757 } else if (buffer_unwritten(bh)) { 1758 bh->b_blocknr = pblock; 1759 clear_buffer_unwritten(bh); 1760 set_buffer_mapped(bh); 1761 set_buffer_new(bh); 1762 bh->b_bdev = inode->i_sb->s_bdev; 1763 } else if (buffer_mapped(bh)) 1764 BUG_ON(bh->b_blocknr != pblock); 1765 1766 cur_logical++; 1767 pblock++; 1768 } while ((bh = bh->b_this_page) != head); 1769 } 1770 pagevec_release(&pvec); 1771 } 1772 } 1773 1774 1775 /* 1776 * __unmap_underlying_blocks - just a helper function to unmap 1777 * set of blocks described by @bh 1778 */ 1779 static inline void __unmap_underlying_blocks(struct inode *inode, 1780 struct buffer_head *bh) 1781 { 1782 struct block_device *bdev = inode->i_sb->s_bdev; 1783 int blocks, i; 1784 1785 blocks = bh->b_size >> inode->i_blkbits; 1786 for (i = 0; i < blocks; i++) 1787 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1788 } 1789 1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1791 sector_t logical, long blk_cnt) 1792 { 1793 int nr_pages, i; 1794 pgoff_t index, end; 1795 struct pagevec pvec; 1796 struct inode *inode = mpd->inode; 1797 struct address_space *mapping = inode->i_mapping; 1798 1799 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1800 end = (logical + blk_cnt - 1) >> 1801 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1802 while (index <= end) { 1803 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1804 if (nr_pages == 0) 1805 break; 1806 for (i = 0; i < nr_pages; i++) { 1807 struct page *page = pvec.pages[i]; 1808 index = page->index; 1809 if (index > end) 1810 break; 1811 index++; 1812 1813 BUG_ON(!PageLocked(page)); 1814 BUG_ON(PageWriteback(page)); 1815 block_invalidatepage(page, 0); 1816 ClearPageUptodate(page); 1817 unlock_page(page); 1818 } 1819 } 1820 return; 1821 } 1822 1823 /* 1824 * mpage_da_map_blocks - go through given space 1825 * 1826 * @mpd->lbh - bh describing space 1827 * @mpd->get_block - the filesystem's block mapper function 1828 * 1829 * The function skips space we know is already mapped to disk blocks. 1830 * 1831 */ 1832 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 1833 { 1834 int err = 0; 1835 struct buffer_head new; 1836 struct buffer_head *lbh = &mpd->lbh; 1837 sector_t next = lbh->b_blocknr; 1838 1839 /* 1840 * We consider only non-mapped and non-allocated blocks 1841 */ 1842 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1843 return 0; 1844 new.b_state = lbh->b_state; 1845 new.b_blocknr = 0; 1846 new.b_size = lbh->b_size; 1847 /* 1848 * If we didn't accumulate anything 1849 * to write simply return 1850 */ 1851 if (!new.b_size) 1852 return 0; 1853 err = mpd->get_block(mpd->inode, next, &new, 1); 1854 if (err) { 1855 1856 /* If get block returns with error 1857 * we simply return. Later writepage 1858 * will redirty the page and writepages 1859 * will find the dirty page again 1860 */ 1861 if (err == -EAGAIN) 1862 return 0; 1863 /* 1864 * get block failure will cause us 1865 * to loop in writepages. Because 1866 * a_ops->writepage won't be able to 1867 * make progress. The page will be redirtied 1868 * by writepage and writepages will again 1869 * try to write the same. 1870 */ 1871 printk(KERN_EMERG "%s block allocation failed for inode %lu " 1872 "at logical offset %llu with max blocks " 1873 "%zd with error %d\n", 1874 __func__, mpd->inode->i_ino, 1875 (unsigned long long)next, 1876 lbh->b_size >> mpd->inode->i_blkbits, err); 1877 printk(KERN_EMERG "This should not happen.!! " 1878 "Data will be lost\n"); 1879 if (err == -ENOSPC) { 1880 printk(KERN_CRIT "Total free blocks count %lld\n", 1881 ext4_count_free_blocks(mpd->inode->i_sb)); 1882 } 1883 /* invlaidate all the pages */ 1884 ext4_da_block_invalidatepages(mpd, next, 1885 lbh->b_size >> mpd->inode->i_blkbits); 1886 return err; 1887 } 1888 BUG_ON(new.b_size == 0); 1889 1890 if (buffer_new(&new)) 1891 __unmap_underlying_blocks(mpd->inode, &new); 1892 1893 /* 1894 * If blocks are delayed marked, we need to 1895 * put actual blocknr and drop delayed bit 1896 */ 1897 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1898 mpage_put_bnr_to_bhs(mpd, next, &new); 1899 1900 return 0; 1901 } 1902 1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1904 (1 << BH_Delay) | (1 << BH_Unwritten)) 1905 1906 /* 1907 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1908 * 1909 * @mpd->lbh - extent of blocks 1910 * @logical - logical number of the block in the file 1911 * @bh - bh of the block (used to access block's state) 1912 * 1913 * the function is used to collect contig. blocks in same state 1914 */ 1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1916 sector_t logical, struct buffer_head *bh) 1917 { 1918 sector_t next; 1919 size_t b_size = bh->b_size; 1920 struct buffer_head *lbh = &mpd->lbh; 1921 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1922 1923 /* check if thereserved journal credits might overflow */ 1924 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1925 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1926 /* 1927 * With non-extent format we are limited by the journal 1928 * credit available. Total credit needed to insert 1929 * nrblocks contiguous blocks is dependent on the 1930 * nrblocks. So limit nrblocks. 1931 */ 1932 goto flush_it; 1933 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1934 EXT4_MAX_TRANS_DATA) { 1935 /* 1936 * Adding the new buffer_head would make it cross the 1937 * allowed limit for which we have journal credit 1938 * reserved. So limit the new bh->b_size 1939 */ 1940 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1941 mpd->inode->i_blkbits; 1942 /* we will do mpage_da_submit_io in the next loop */ 1943 } 1944 } 1945 /* 1946 * First block in the extent 1947 */ 1948 if (lbh->b_size == 0) { 1949 lbh->b_blocknr = logical; 1950 lbh->b_size = b_size; 1951 lbh->b_state = bh->b_state & BH_FLAGS; 1952 return; 1953 } 1954 1955 next = lbh->b_blocknr + nrblocks; 1956 /* 1957 * Can we merge the block to our big extent? 1958 */ 1959 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1960 lbh->b_size += b_size; 1961 return; 1962 } 1963 1964 flush_it: 1965 /* 1966 * We couldn't merge the block to our extent, so we 1967 * need to flush current extent and start new one 1968 */ 1969 if (mpage_da_map_blocks(mpd) == 0) 1970 mpage_da_submit_io(mpd); 1971 mpd->io_done = 1; 1972 return; 1973 } 1974 1975 /* 1976 * __mpage_da_writepage - finds extent of pages and blocks 1977 * 1978 * @page: page to consider 1979 * @wbc: not used, we just follow rules 1980 * @data: context 1981 * 1982 * The function finds extents of pages and scan them for all blocks. 1983 */ 1984 static int __mpage_da_writepage(struct page *page, 1985 struct writeback_control *wbc, void *data) 1986 { 1987 struct mpage_da_data *mpd = data; 1988 struct inode *inode = mpd->inode; 1989 struct buffer_head *bh, *head, fake; 1990 sector_t logical; 1991 1992 if (mpd->io_done) { 1993 /* 1994 * Rest of the page in the page_vec 1995 * redirty then and skip then. We will 1996 * try to to write them again after 1997 * starting a new transaction 1998 */ 1999 redirty_page_for_writepage(wbc, page); 2000 unlock_page(page); 2001 return MPAGE_DA_EXTENT_TAIL; 2002 } 2003 /* 2004 * Can we merge this page to current extent? 2005 */ 2006 if (mpd->next_page != page->index) { 2007 /* 2008 * Nope, we can't. So, we map non-allocated blocks 2009 * and start IO on them using writepage() 2010 */ 2011 if (mpd->next_page != mpd->first_page) { 2012 if (mpage_da_map_blocks(mpd) == 0) 2013 mpage_da_submit_io(mpd); 2014 /* 2015 * skip rest of the page in the page_vec 2016 */ 2017 mpd->io_done = 1; 2018 redirty_page_for_writepage(wbc, page); 2019 unlock_page(page); 2020 return MPAGE_DA_EXTENT_TAIL; 2021 } 2022 2023 /* 2024 * Start next extent of pages ... 2025 */ 2026 mpd->first_page = page->index; 2027 2028 /* 2029 * ... and blocks 2030 */ 2031 mpd->lbh.b_size = 0; 2032 mpd->lbh.b_state = 0; 2033 mpd->lbh.b_blocknr = 0; 2034 } 2035 2036 mpd->next_page = page->index + 1; 2037 logical = (sector_t) page->index << 2038 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2039 2040 if (!page_has_buffers(page)) { 2041 /* 2042 * There is no attached buffer heads yet (mmap?) 2043 * we treat the page asfull of dirty blocks 2044 */ 2045 bh = &fake; 2046 bh->b_size = PAGE_CACHE_SIZE; 2047 bh->b_state = 0; 2048 set_buffer_dirty(bh); 2049 set_buffer_uptodate(bh); 2050 mpage_add_bh_to_extent(mpd, logical, bh); 2051 if (mpd->io_done) 2052 return MPAGE_DA_EXTENT_TAIL; 2053 } else { 2054 /* 2055 * Page with regular buffer heads, just add all dirty ones 2056 */ 2057 head = page_buffers(page); 2058 bh = head; 2059 do { 2060 BUG_ON(buffer_locked(bh)); 2061 if (buffer_dirty(bh) && 2062 (!buffer_mapped(bh) || buffer_delay(bh))) { 2063 mpage_add_bh_to_extent(mpd, logical, bh); 2064 if (mpd->io_done) 2065 return MPAGE_DA_EXTENT_TAIL; 2066 } 2067 logical++; 2068 } while ((bh = bh->b_this_page) != head); 2069 } 2070 2071 return 0; 2072 } 2073 2074 /* 2075 * mpage_da_writepages - walk the list of dirty pages of the given 2076 * address space, allocates non-allocated blocks, maps newly-allocated 2077 * blocks to existing bhs and issue IO them 2078 * 2079 * @mapping: address space structure to write 2080 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2081 * @get_block: the filesystem's block mapper function. 2082 * 2083 * This is a library function, which implements the writepages() 2084 * address_space_operation. 2085 */ 2086 static int mpage_da_writepages(struct address_space *mapping, 2087 struct writeback_control *wbc, 2088 get_block_t get_block) 2089 { 2090 struct mpage_da_data mpd; 2091 long to_write; 2092 int ret; 2093 2094 if (!get_block) 2095 return generic_writepages(mapping, wbc); 2096 2097 mpd.wbc = wbc; 2098 mpd.inode = mapping->host; 2099 mpd.lbh.b_size = 0; 2100 mpd.lbh.b_state = 0; 2101 mpd.lbh.b_blocknr = 0; 2102 mpd.first_page = 0; 2103 mpd.next_page = 0; 2104 mpd.get_block = get_block; 2105 mpd.io_done = 0; 2106 mpd.pages_written = 0; 2107 2108 to_write = wbc->nr_to_write; 2109 2110 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd); 2111 2112 /* 2113 * Handle last extent of pages 2114 */ 2115 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2116 if (mpage_da_map_blocks(&mpd) == 0) 2117 mpage_da_submit_io(&mpd); 2118 } 2119 2120 wbc->nr_to_write = to_write - mpd.pages_written; 2121 return ret; 2122 } 2123 2124 /* 2125 * this is a special callback for ->write_begin() only 2126 * it's intention is to return mapped block or reserve space 2127 */ 2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2129 struct buffer_head *bh_result, int create) 2130 { 2131 int ret = 0; 2132 2133 BUG_ON(create == 0); 2134 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2135 2136 /* 2137 * first, we need to know whether the block is allocated already 2138 * preallocated blocks are unmapped but should treated 2139 * the same as allocated blocks. 2140 */ 2141 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2142 if ((ret == 0) && !buffer_delay(bh_result)) { 2143 /* the block isn't (pre)allocated yet, let's reserve space */ 2144 /* 2145 * XXX: __block_prepare_write() unmaps passed block, 2146 * is it OK? 2147 */ 2148 ret = ext4_da_reserve_space(inode, 1); 2149 if (ret) 2150 /* not enough space to reserve */ 2151 return ret; 2152 2153 map_bh(bh_result, inode->i_sb, 0); 2154 set_buffer_new(bh_result); 2155 set_buffer_delay(bh_result); 2156 } else if (ret > 0) { 2157 bh_result->b_size = (ret << inode->i_blkbits); 2158 ret = 0; 2159 } 2160 2161 return ret; 2162 } 2163 #define EXT4_DELALLOC_RSVED 1 2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2165 struct buffer_head *bh_result, int create) 2166 { 2167 int ret; 2168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2169 loff_t disksize = EXT4_I(inode)->i_disksize; 2170 handle_t *handle = NULL; 2171 2172 handle = ext4_journal_current_handle(); 2173 if (!handle) { 2174 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2175 bh_result, 0, 0, 0); 2176 BUG_ON(!ret); 2177 } else { 2178 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2179 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2180 } 2181 2182 if (ret > 0) { 2183 bh_result->b_size = (ret << inode->i_blkbits); 2184 2185 /* 2186 * Update on-disk size along with block allocation 2187 * we don't use 'extend_disksize' as size may change 2188 * within already allocated block -bzzz 2189 */ 2190 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2191 if (disksize > i_size_read(inode)) 2192 disksize = i_size_read(inode); 2193 if (disksize > EXT4_I(inode)->i_disksize) { 2194 /* 2195 * XXX: replace with spinlock if seen contended -bzzz 2196 */ 2197 down_write(&EXT4_I(inode)->i_data_sem); 2198 if (disksize > EXT4_I(inode)->i_disksize) 2199 EXT4_I(inode)->i_disksize = disksize; 2200 up_write(&EXT4_I(inode)->i_data_sem); 2201 2202 if (EXT4_I(inode)->i_disksize == disksize) { 2203 ret = ext4_mark_inode_dirty(handle, inode); 2204 return ret; 2205 } 2206 } 2207 ret = 0; 2208 } 2209 return ret; 2210 } 2211 2212 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2213 { 2214 /* 2215 * unmapped buffer is possible for holes. 2216 * delay buffer is possible with delayed allocation 2217 */ 2218 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2219 } 2220 2221 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2222 struct buffer_head *bh_result, int create) 2223 { 2224 int ret = 0; 2225 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2226 2227 /* 2228 * we don't want to do block allocation in writepage 2229 * so call get_block_wrap with create = 0 2230 */ 2231 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2232 bh_result, 0, 0, 0); 2233 if (ret > 0) { 2234 bh_result->b_size = (ret << inode->i_blkbits); 2235 ret = 0; 2236 } 2237 return ret; 2238 } 2239 2240 /* 2241 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2242 * get called via journal_submit_inode_data_buffers (no journal handle) 2243 * get called via shrink_page_list via pdflush (no journal handle) 2244 * or grab_page_cache when doing write_begin (have journal handle) 2245 */ 2246 static int ext4_da_writepage(struct page *page, 2247 struct writeback_control *wbc) 2248 { 2249 int ret = 0; 2250 loff_t size; 2251 unsigned long len; 2252 struct buffer_head *page_bufs; 2253 struct inode *inode = page->mapping->host; 2254 2255 size = i_size_read(inode); 2256 if (page->index == size >> PAGE_CACHE_SHIFT) 2257 len = size & ~PAGE_CACHE_MASK; 2258 else 2259 len = PAGE_CACHE_SIZE; 2260 2261 if (page_has_buffers(page)) { 2262 page_bufs = page_buffers(page); 2263 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2264 ext4_bh_unmapped_or_delay)) { 2265 /* 2266 * We don't want to do block allocation 2267 * So redirty the page and return 2268 * We may reach here when we do a journal commit 2269 * via journal_submit_inode_data_buffers. 2270 * If we don't have mapping block we just ignore 2271 * them. We can also reach here via shrink_page_list 2272 */ 2273 redirty_page_for_writepage(wbc, page); 2274 unlock_page(page); 2275 return 0; 2276 } 2277 } else { 2278 /* 2279 * The test for page_has_buffers() is subtle: 2280 * We know the page is dirty but it lost buffers. That means 2281 * that at some moment in time after write_begin()/write_end() 2282 * has been called all buffers have been clean and thus they 2283 * must have been written at least once. So they are all 2284 * mapped and we can happily proceed with mapping them 2285 * and writing the page. 2286 * 2287 * Try to initialize the buffer_heads and check whether 2288 * all are mapped and non delay. We don't want to 2289 * do block allocation here. 2290 */ 2291 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2292 ext4_normal_get_block_write); 2293 if (!ret) { 2294 page_bufs = page_buffers(page); 2295 /* check whether all are mapped and non delay */ 2296 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2297 ext4_bh_unmapped_or_delay)) { 2298 redirty_page_for_writepage(wbc, page); 2299 unlock_page(page); 2300 return 0; 2301 } 2302 } else { 2303 /* 2304 * We can't do block allocation here 2305 * so just redity the page and unlock 2306 * and return 2307 */ 2308 redirty_page_for_writepage(wbc, page); 2309 unlock_page(page); 2310 return 0; 2311 } 2312 } 2313 2314 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2315 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2316 else 2317 ret = block_write_full_page(page, 2318 ext4_normal_get_block_write, 2319 wbc); 2320 2321 return ret; 2322 } 2323 2324 /* 2325 * This is called via ext4_da_writepages() to 2326 * calulate the total number of credits to reserve to fit 2327 * a single extent allocation into a single transaction, 2328 * ext4_da_writpeages() will loop calling this before 2329 * the block allocation. 2330 */ 2331 2332 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2333 { 2334 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2335 2336 /* 2337 * With non-extent format the journal credit needed to 2338 * insert nrblocks contiguous block is dependent on 2339 * number of contiguous block. So we will limit 2340 * number of contiguous block to a sane value 2341 */ 2342 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2343 (max_blocks > EXT4_MAX_TRANS_DATA)) 2344 max_blocks = EXT4_MAX_TRANS_DATA; 2345 2346 return ext4_chunk_trans_blocks(inode, max_blocks); 2347 } 2348 2349 static int ext4_da_writepages(struct address_space *mapping, 2350 struct writeback_control *wbc) 2351 { 2352 handle_t *handle = NULL; 2353 loff_t range_start = 0; 2354 struct inode *inode = mapping->host; 2355 int needed_blocks, ret = 0, nr_to_writebump = 0; 2356 long to_write, pages_skipped = 0; 2357 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2358 2359 /* 2360 * No pages to write? This is mainly a kludge to avoid starting 2361 * a transaction for special inodes like journal inode on last iput() 2362 * because that could violate lock ordering on umount 2363 */ 2364 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2365 return 0; 2366 /* 2367 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2368 * This make sure small files blocks are allocated in 2369 * single attempt. This ensure that small files 2370 * get less fragmented. 2371 */ 2372 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2373 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2374 wbc->nr_to_write = sbi->s_mb_stream_request; 2375 } 2376 2377 if (!wbc->range_cyclic) 2378 /* 2379 * If range_cyclic is not set force range_cont 2380 * and save the old writeback_index 2381 */ 2382 wbc->range_cont = 1; 2383 2384 range_start = wbc->range_start; 2385 pages_skipped = wbc->pages_skipped; 2386 2387 restart_loop: 2388 to_write = wbc->nr_to_write; 2389 while (!ret && to_write > 0) { 2390 2391 /* 2392 * we insert one extent at a time. So we need 2393 * credit needed for single extent allocation. 2394 * journalled mode is currently not supported 2395 * by delalloc 2396 */ 2397 BUG_ON(ext4_should_journal_data(inode)); 2398 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2399 2400 /* start a new transaction*/ 2401 handle = ext4_journal_start(inode, needed_blocks); 2402 if (IS_ERR(handle)) { 2403 ret = PTR_ERR(handle); 2404 printk(KERN_EMERG "%s: jbd2_start: " 2405 "%ld pages, ino %lu; err %d\n", __func__, 2406 wbc->nr_to_write, inode->i_ino, ret); 2407 dump_stack(); 2408 goto out_writepages; 2409 } 2410 if (ext4_should_order_data(inode)) { 2411 /* 2412 * With ordered mode we need to add 2413 * the inode to the journal handl 2414 * when we do block allocation. 2415 */ 2416 ret = ext4_jbd2_file_inode(handle, inode); 2417 if (ret) { 2418 ext4_journal_stop(handle); 2419 goto out_writepages; 2420 } 2421 } 2422 2423 to_write -= wbc->nr_to_write; 2424 ret = mpage_da_writepages(mapping, wbc, 2425 ext4_da_get_block_write); 2426 ext4_journal_stop(handle); 2427 if (ret == MPAGE_DA_EXTENT_TAIL) { 2428 /* 2429 * got one extent now try with 2430 * rest of the pages 2431 */ 2432 to_write += wbc->nr_to_write; 2433 ret = 0; 2434 } else if (wbc->nr_to_write) { 2435 /* 2436 * There is no more writeout needed 2437 * or we requested for a noblocking writeout 2438 * and we found the device congested 2439 */ 2440 to_write += wbc->nr_to_write; 2441 break; 2442 } 2443 wbc->nr_to_write = to_write; 2444 } 2445 2446 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) { 2447 /* We skipped pages in this loop */ 2448 wbc->range_start = range_start; 2449 wbc->nr_to_write = to_write + 2450 wbc->pages_skipped - pages_skipped; 2451 wbc->pages_skipped = pages_skipped; 2452 goto restart_loop; 2453 } 2454 2455 out_writepages: 2456 wbc->nr_to_write = to_write - nr_to_writebump; 2457 wbc->range_start = range_start; 2458 return ret; 2459 } 2460 2461 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2462 loff_t pos, unsigned len, unsigned flags, 2463 struct page **pagep, void **fsdata) 2464 { 2465 int ret, retries = 0; 2466 struct page *page; 2467 pgoff_t index; 2468 unsigned from, to; 2469 struct inode *inode = mapping->host; 2470 handle_t *handle; 2471 2472 index = pos >> PAGE_CACHE_SHIFT; 2473 from = pos & (PAGE_CACHE_SIZE - 1); 2474 to = from + len; 2475 retry: 2476 /* 2477 * With delayed allocation, we don't log the i_disksize update 2478 * if there is delayed block allocation. But we still need 2479 * to journalling the i_disksize update if writes to the end 2480 * of file which has an already mapped buffer. 2481 */ 2482 handle = ext4_journal_start(inode, 1); 2483 if (IS_ERR(handle)) { 2484 ret = PTR_ERR(handle); 2485 goto out; 2486 } 2487 2488 page = __grab_cache_page(mapping, index); 2489 if (!page) { 2490 ext4_journal_stop(handle); 2491 ret = -ENOMEM; 2492 goto out; 2493 } 2494 *pagep = page; 2495 2496 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2497 ext4_da_get_block_prep); 2498 if (ret < 0) { 2499 unlock_page(page); 2500 ext4_journal_stop(handle); 2501 page_cache_release(page); 2502 } 2503 2504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2505 goto retry; 2506 out: 2507 return ret; 2508 } 2509 2510 /* 2511 * Check if we should update i_disksize 2512 * when write to the end of file but not require block allocation 2513 */ 2514 static int ext4_da_should_update_i_disksize(struct page *page, 2515 unsigned long offset) 2516 { 2517 struct buffer_head *bh; 2518 struct inode *inode = page->mapping->host; 2519 unsigned int idx; 2520 int i; 2521 2522 bh = page_buffers(page); 2523 idx = offset >> inode->i_blkbits; 2524 2525 for (i = 0; i < idx; i++) 2526 bh = bh->b_this_page; 2527 2528 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2529 return 0; 2530 return 1; 2531 } 2532 2533 static int ext4_da_write_end(struct file *file, 2534 struct address_space *mapping, 2535 loff_t pos, unsigned len, unsigned copied, 2536 struct page *page, void *fsdata) 2537 { 2538 struct inode *inode = mapping->host; 2539 int ret = 0, ret2; 2540 handle_t *handle = ext4_journal_current_handle(); 2541 loff_t new_i_size; 2542 unsigned long start, end; 2543 2544 start = pos & (PAGE_CACHE_SIZE - 1); 2545 end = start + copied - 1; 2546 2547 /* 2548 * generic_write_end() will run mark_inode_dirty() if i_size 2549 * changes. So let's piggyback the i_disksize mark_inode_dirty 2550 * into that. 2551 */ 2552 2553 new_i_size = pos + copied; 2554 if (new_i_size > EXT4_I(inode)->i_disksize) { 2555 if (ext4_da_should_update_i_disksize(page, end)) { 2556 down_write(&EXT4_I(inode)->i_data_sem); 2557 if (new_i_size > EXT4_I(inode)->i_disksize) { 2558 /* 2559 * Updating i_disksize when extending file 2560 * without needing block allocation 2561 */ 2562 if (ext4_should_order_data(inode)) 2563 ret = ext4_jbd2_file_inode(handle, 2564 inode); 2565 2566 EXT4_I(inode)->i_disksize = new_i_size; 2567 } 2568 up_write(&EXT4_I(inode)->i_data_sem); 2569 } 2570 } 2571 ret2 = generic_write_end(file, mapping, pos, len, copied, 2572 page, fsdata); 2573 copied = ret2; 2574 if (ret2 < 0) 2575 ret = ret2; 2576 ret2 = ext4_journal_stop(handle); 2577 if (!ret) 2578 ret = ret2; 2579 2580 return ret ? ret : copied; 2581 } 2582 2583 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2584 { 2585 /* 2586 * Drop reserved blocks 2587 */ 2588 BUG_ON(!PageLocked(page)); 2589 if (!page_has_buffers(page)) 2590 goto out; 2591 2592 ext4_da_page_release_reservation(page, offset); 2593 2594 out: 2595 ext4_invalidatepage(page, offset); 2596 2597 return; 2598 } 2599 2600 2601 /* 2602 * bmap() is special. It gets used by applications such as lilo and by 2603 * the swapper to find the on-disk block of a specific piece of data. 2604 * 2605 * Naturally, this is dangerous if the block concerned is still in the 2606 * journal. If somebody makes a swapfile on an ext4 data-journaling 2607 * filesystem and enables swap, then they may get a nasty shock when the 2608 * data getting swapped to that swapfile suddenly gets overwritten by 2609 * the original zero's written out previously to the journal and 2610 * awaiting writeback in the kernel's buffer cache. 2611 * 2612 * So, if we see any bmap calls here on a modified, data-journaled file, 2613 * take extra steps to flush any blocks which might be in the cache. 2614 */ 2615 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2616 { 2617 struct inode *inode = mapping->host; 2618 journal_t *journal; 2619 int err; 2620 2621 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2622 test_opt(inode->i_sb, DELALLOC)) { 2623 /* 2624 * With delalloc we want to sync the file 2625 * so that we can make sure we allocate 2626 * blocks for file 2627 */ 2628 filemap_write_and_wait(mapping); 2629 } 2630 2631 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2632 /* 2633 * This is a REALLY heavyweight approach, but the use of 2634 * bmap on dirty files is expected to be extremely rare: 2635 * only if we run lilo or swapon on a freshly made file 2636 * do we expect this to happen. 2637 * 2638 * (bmap requires CAP_SYS_RAWIO so this does not 2639 * represent an unprivileged user DOS attack --- we'd be 2640 * in trouble if mortal users could trigger this path at 2641 * will.) 2642 * 2643 * NB. EXT4_STATE_JDATA is not set on files other than 2644 * regular files. If somebody wants to bmap a directory 2645 * or symlink and gets confused because the buffer 2646 * hasn't yet been flushed to disk, they deserve 2647 * everything they get. 2648 */ 2649 2650 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2651 journal = EXT4_JOURNAL(inode); 2652 jbd2_journal_lock_updates(journal); 2653 err = jbd2_journal_flush(journal); 2654 jbd2_journal_unlock_updates(journal); 2655 2656 if (err) 2657 return 0; 2658 } 2659 2660 return generic_block_bmap(mapping, block, ext4_get_block); 2661 } 2662 2663 static int bget_one(handle_t *handle, struct buffer_head *bh) 2664 { 2665 get_bh(bh); 2666 return 0; 2667 } 2668 2669 static int bput_one(handle_t *handle, struct buffer_head *bh) 2670 { 2671 put_bh(bh); 2672 return 0; 2673 } 2674 2675 /* 2676 * Note that we don't need to start a transaction unless we're journaling data 2677 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2678 * need to file the inode to the transaction's list in ordered mode because if 2679 * we are writing back data added by write(), the inode is already there and if 2680 * we are writing back data modified via mmap(), noone guarantees in which 2681 * transaction the data will hit the disk. In case we are journaling data, we 2682 * cannot start transaction directly because transaction start ranks above page 2683 * lock so we have to do some magic. 2684 * 2685 * In all journaling modes block_write_full_page() will start the I/O. 2686 * 2687 * Problem: 2688 * 2689 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2690 * ext4_writepage() 2691 * 2692 * Similar for: 2693 * 2694 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2695 * 2696 * Same applies to ext4_get_block(). We will deadlock on various things like 2697 * lock_journal and i_data_sem 2698 * 2699 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2700 * allocations fail. 2701 * 2702 * 16May01: If we're reentered then journal_current_handle() will be 2703 * non-zero. We simply *return*. 2704 * 2705 * 1 July 2001: @@@ FIXME: 2706 * In journalled data mode, a data buffer may be metadata against the 2707 * current transaction. But the same file is part of a shared mapping 2708 * and someone does a writepage() on it. 2709 * 2710 * We will move the buffer onto the async_data list, but *after* it has 2711 * been dirtied. So there's a small window where we have dirty data on 2712 * BJ_Metadata. 2713 * 2714 * Note that this only applies to the last partial page in the file. The 2715 * bit which block_write_full_page() uses prepare/commit for. (That's 2716 * broken code anyway: it's wrong for msync()). 2717 * 2718 * It's a rare case: affects the final partial page, for journalled data 2719 * where the file is subject to bith write() and writepage() in the same 2720 * transction. To fix it we'll need a custom block_write_full_page(). 2721 * We'll probably need that anyway for journalling writepage() output. 2722 * 2723 * We don't honour synchronous mounts for writepage(). That would be 2724 * disastrous. Any write() or metadata operation will sync the fs for 2725 * us. 2726 * 2727 */ 2728 static int __ext4_normal_writepage(struct page *page, 2729 struct writeback_control *wbc) 2730 { 2731 struct inode *inode = page->mapping->host; 2732 2733 if (test_opt(inode->i_sb, NOBH)) 2734 return nobh_writepage(page, 2735 ext4_normal_get_block_write, wbc); 2736 else 2737 return block_write_full_page(page, 2738 ext4_normal_get_block_write, 2739 wbc); 2740 } 2741 2742 static int ext4_normal_writepage(struct page *page, 2743 struct writeback_control *wbc) 2744 { 2745 struct inode *inode = page->mapping->host; 2746 loff_t size = i_size_read(inode); 2747 loff_t len; 2748 2749 J_ASSERT(PageLocked(page)); 2750 if (page->index == size >> PAGE_CACHE_SHIFT) 2751 len = size & ~PAGE_CACHE_MASK; 2752 else 2753 len = PAGE_CACHE_SIZE; 2754 2755 if (page_has_buffers(page)) { 2756 /* if page has buffers it should all be mapped 2757 * and allocated. If there are not buffers attached 2758 * to the page we know the page is dirty but it lost 2759 * buffers. That means that at some moment in time 2760 * after write_begin() / write_end() has been called 2761 * all buffers have been clean and thus they must have been 2762 * written at least once. So they are all mapped and we can 2763 * happily proceed with mapping them and writing the page. 2764 */ 2765 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2766 ext4_bh_unmapped_or_delay)); 2767 } 2768 2769 if (!ext4_journal_current_handle()) 2770 return __ext4_normal_writepage(page, wbc); 2771 2772 redirty_page_for_writepage(wbc, page); 2773 unlock_page(page); 2774 return 0; 2775 } 2776 2777 static int __ext4_journalled_writepage(struct page *page, 2778 struct writeback_control *wbc) 2779 { 2780 struct address_space *mapping = page->mapping; 2781 struct inode *inode = mapping->host; 2782 struct buffer_head *page_bufs; 2783 handle_t *handle = NULL; 2784 int ret = 0; 2785 int err; 2786 2787 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2788 ext4_normal_get_block_write); 2789 if (ret != 0) 2790 goto out_unlock; 2791 2792 page_bufs = page_buffers(page); 2793 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2794 bget_one); 2795 /* As soon as we unlock the page, it can go away, but we have 2796 * references to buffers so we are safe */ 2797 unlock_page(page); 2798 2799 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2800 if (IS_ERR(handle)) { 2801 ret = PTR_ERR(handle); 2802 goto out; 2803 } 2804 2805 ret = walk_page_buffers(handle, page_bufs, 0, 2806 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2807 2808 err = walk_page_buffers(handle, page_bufs, 0, 2809 PAGE_CACHE_SIZE, NULL, write_end_fn); 2810 if (ret == 0) 2811 ret = err; 2812 err = ext4_journal_stop(handle); 2813 if (!ret) 2814 ret = err; 2815 2816 walk_page_buffers(handle, page_bufs, 0, 2817 PAGE_CACHE_SIZE, NULL, bput_one); 2818 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2819 goto out; 2820 2821 out_unlock: 2822 unlock_page(page); 2823 out: 2824 return ret; 2825 } 2826 2827 static int ext4_journalled_writepage(struct page *page, 2828 struct writeback_control *wbc) 2829 { 2830 struct inode *inode = page->mapping->host; 2831 loff_t size = i_size_read(inode); 2832 loff_t len; 2833 2834 J_ASSERT(PageLocked(page)); 2835 if (page->index == size >> PAGE_CACHE_SHIFT) 2836 len = size & ~PAGE_CACHE_MASK; 2837 else 2838 len = PAGE_CACHE_SIZE; 2839 2840 if (page_has_buffers(page)) { 2841 /* if page has buffers it should all be mapped 2842 * and allocated. If there are not buffers attached 2843 * to the page we know the page is dirty but it lost 2844 * buffers. That means that at some moment in time 2845 * after write_begin() / write_end() has been called 2846 * all buffers have been clean and thus they must have been 2847 * written at least once. So they are all mapped and we can 2848 * happily proceed with mapping them and writing the page. 2849 */ 2850 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2851 ext4_bh_unmapped_or_delay)); 2852 } 2853 2854 if (ext4_journal_current_handle()) 2855 goto no_write; 2856 2857 if (PageChecked(page)) { 2858 /* 2859 * It's mmapped pagecache. Add buffers and journal it. There 2860 * doesn't seem much point in redirtying the page here. 2861 */ 2862 ClearPageChecked(page); 2863 return __ext4_journalled_writepage(page, wbc); 2864 } else { 2865 /* 2866 * It may be a page full of checkpoint-mode buffers. We don't 2867 * really know unless we go poke around in the buffer_heads. 2868 * But block_write_full_page will do the right thing. 2869 */ 2870 return block_write_full_page(page, 2871 ext4_normal_get_block_write, 2872 wbc); 2873 } 2874 no_write: 2875 redirty_page_for_writepage(wbc, page); 2876 unlock_page(page); 2877 return 0; 2878 } 2879 2880 static int ext4_readpage(struct file *file, struct page *page) 2881 { 2882 return mpage_readpage(page, ext4_get_block); 2883 } 2884 2885 static int 2886 ext4_readpages(struct file *file, struct address_space *mapping, 2887 struct list_head *pages, unsigned nr_pages) 2888 { 2889 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2890 } 2891 2892 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2893 { 2894 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2895 2896 /* 2897 * If it's a full truncate we just forget about the pending dirtying 2898 */ 2899 if (offset == 0) 2900 ClearPageChecked(page); 2901 2902 jbd2_journal_invalidatepage(journal, page, offset); 2903 } 2904 2905 static int ext4_releasepage(struct page *page, gfp_t wait) 2906 { 2907 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2908 2909 WARN_ON(PageChecked(page)); 2910 if (!page_has_buffers(page)) 2911 return 0; 2912 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2913 } 2914 2915 /* 2916 * If the O_DIRECT write will extend the file then add this inode to the 2917 * orphan list. So recovery will truncate it back to the original size 2918 * if the machine crashes during the write. 2919 * 2920 * If the O_DIRECT write is intantiating holes inside i_size and the machine 2921 * crashes then stale disk data _may_ be exposed inside the file. But current 2922 * VFS code falls back into buffered path in that case so we are safe. 2923 */ 2924 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2925 const struct iovec *iov, loff_t offset, 2926 unsigned long nr_segs) 2927 { 2928 struct file *file = iocb->ki_filp; 2929 struct inode *inode = file->f_mapping->host; 2930 struct ext4_inode_info *ei = EXT4_I(inode); 2931 handle_t *handle; 2932 ssize_t ret; 2933 int orphan = 0; 2934 size_t count = iov_length(iov, nr_segs); 2935 2936 if (rw == WRITE) { 2937 loff_t final_size = offset + count; 2938 2939 if (final_size > inode->i_size) { 2940 /* Credits for sb + inode write */ 2941 handle = ext4_journal_start(inode, 2); 2942 if (IS_ERR(handle)) { 2943 ret = PTR_ERR(handle); 2944 goto out; 2945 } 2946 ret = ext4_orphan_add(handle, inode); 2947 if (ret) { 2948 ext4_journal_stop(handle); 2949 goto out; 2950 } 2951 orphan = 1; 2952 ei->i_disksize = inode->i_size; 2953 ext4_journal_stop(handle); 2954 } 2955 } 2956 2957 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2958 offset, nr_segs, 2959 ext4_get_block, NULL); 2960 2961 if (orphan) { 2962 int err; 2963 2964 /* Credits for sb + inode write */ 2965 handle = ext4_journal_start(inode, 2); 2966 if (IS_ERR(handle)) { 2967 /* This is really bad luck. We've written the data 2968 * but cannot extend i_size. Bail out and pretend 2969 * the write failed... */ 2970 ret = PTR_ERR(handle); 2971 goto out; 2972 } 2973 if (inode->i_nlink) 2974 ext4_orphan_del(handle, inode); 2975 if (ret > 0) { 2976 loff_t end = offset + ret; 2977 if (end > inode->i_size) { 2978 ei->i_disksize = end; 2979 i_size_write(inode, end); 2980 /* 2981 * We're going to return a positive `ret' 2982 * here due to non-zero-length I/O, so there's 2983 * no way of reporting error returns from 2984 * ext4_mark_inode_dirty() to userspace. So 2985 * ignore it. 2986 */ 2987 ext4_mark_inode_dirty(handle, inode); 2988 } 2989 } 2990 err = ext4_journal_stop(handle); 2991 if (ret == 0) 2992 ret = err; 2993 } 2994 out: 2995 return ret; 2996 } 2997 2998 /* 2999 * Pages can be marked dirty completely asynchronously from ext4's journalling 3000 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3001 * much here because ->set_page_dirty is called under VFS locks. The page is 3002 * not necessarily locked. 3003 * 3004 * We cannot just dirty the page and leave attached buffers clean, because the 3005 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3006 * or jbddirty because all the journalling code will explode. 3007 * 3008 * So what we do is to mark the page "pending dirty" and next time writepage 3009 * is called, propagate that into the buffers appropriately. 3010 */ 3011 static int ext4_journalled_set_page_dirty(struct page *page) 3012 { 3013 SetPageChecked(page); 3014 return __set_page_dirty_nobuffers(page); 3015 } 3016 3017 static const struct address_space_operations ext4_ordered_aops = { 3018 .readpage = ext4_readpage, 3019 .readpages = ext4_readpages, 3020 .writepage = ext4_normal_writepage, 3021 .sync_page = block_sync_page, 3022 .write_begin = ext4_write_begin, 3023 .write_end = ext4_ordered_write_end, 3024 .bmap = ext4_bmap, 3025 .invalidatepage = ext4_invalidatepage, 3026 .releasepage = ext4_releasepage, 3027 .direct_IO = ext4_direct_IO, 3028 .migratepage = buffer_migrate_page, 3029 .is_partially_uptodate = block_is_partially_uptodate, 3030 }; 3031 3032 static const struct address_space_operations ext4_writeback_aops = { 3033 .readpage = ext4_readpage, 3034 .readpages = ext4_readpages, 3035 .writepage = ext4_normal_writepage, 3036 .sync_page = block_sync_page, 3037 .write_begin = ext4_write_begin, 3038 .write_end = ext4_writeback_write_end, 3039 .bmap = ext4_bmap, 3040 .invalidatepage = ext4_invalidatepage, 3041 .releasepage = ext4_releasepage, 3042 .direct_IO = ext4_direct_IO, 3043 .migratepage = buffer_migrate_page, 3044 .is_partially_uptodate = block_is_partially_uptodate, 3045 }; 3046 3047 static const struct address_space_operations ext4_journalled_aops = { 3048 .readpage = ext4_readpage, 3049 .readpages = ext4_readpages, 3050 .writepage = ext4_journalled_writepage, 3051 .sync_page = block_sync_page, 3052 .write_begin = ext4_write_begin, 3053 .write_end = ext4_journalled_write_end, 3054 .set_page_dirty = ext4_journalled_set_page_dirty, 3055 .bmap = ext4_bmap, 3056 .invalidatepage = ext4_invalidatepage, 3057 .releasepage = ext4_releasepage, 3058 .is_partially_uptodate = block_is_partially_uptodate, 3059 }; 3060 3061 static const struct address_space_operations ext4_da_aops = { 3062 .readpage = ext4_readpage, 3063 .readpages = ext4_readpages, 3064 .writepage = ext4_da_writepage, 3065 .writepages = ext4_da_writepages, 3066 .sync_page = block_sync_page, 3067 .write_begin = ext4_da_write_begin, 3068 .write_end = ext4_da_write_end, 3069 .bmap = ext4_bmap, 3070 .invalidatepage = ext4_da_invalidatepage, 3071 .releasepage = ext4_releasepage, 3072 .direct_IO = ext4_direct_IO, 3073 .migratepage = buffer_migrate_page, 3074 .is_partially_uptodate = block_is_partially_uptodate, 3075 }; 3076 3077 void ext4_set_aops(struct inode *inode) 3078 { 3079 if (ext4_should_order_data(inode) && 3080 test_opt(inode->i_sb, DELALLOC)) 3081 inode->i_mapping->a_ops = &ext4_da_aops; 3082 else if (ext4_should_order_data(inode)) 3083 inode->i_mapping->a_ops = &ext4_ordered_aops; 3084 else if (ext4_should_writeback_data(inode) && 3085 test_opt(inode->i_sb, DELALLOC)) 3086 inode->i_mapping->a_ops = &ext4_da_aops; 3087 else if (ext4_should_writeback_data(inode)) 3088 inode->i_mapping->a_ops = &ext4_writeback_aops; 3089 else 3090 inode->i_mapping->a_ops = &ext4_journalled_aops; 3091 } 3092 3093 /* 3094 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3095 * up to the end of the block which corresponds to `from'. 3096 * This required during truncate. We need to physically zero the tail end 3097 * of that block so it doesn't yield old data if the file is later grown. 3098 */ 3099 int ext4_block_truncate_page(handle_t *handle, 3100 struct address_space *mapping, loff_t from) 3101 { 3102 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3103 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3104 unsigned blocksize, length, pos; 3105 ext4_lblk_t iblock; 3106 struct inode *inode = mapping->host; 3107 struct buffer_head *bh; 3108 struct page *page; 3109 int err = 0; 3110 3111 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3112 if (!page) 3113 return -EINVAL; 3114 3115 blocksize = inode->i_sb->s_blocksize; 3116 length = blocksize - (offset & (blocksize - 1)); 3117 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3118 3119 /* 3120 * For "nobh" option, we can only work if we don't need to 3121 * read-in the page - otherwise we create buffers to do the IO. 3122 */ 3123 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3124 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3125 zero_user(page, offset, length); 3126 set_page_dirty(page); 3127 goto unlock; 3128 } 3129 3130 if (!page_has_buffers(page)) 3131 create_empty_buffers(page, blocksize, 0); 3132 3133 /* Find the buffer that contains "offset" */ 3134 bh = page_buffers(page); 3135 pos = blocksize; 3136 while (offset >= pos) { 3137 bh = bh->b_this_page; 3138 iblock++; 3139 pos += blocksize; 3140 } 3141 3142 err = 0; 3143 if (buffer_freed(bh)) { 3144 BUFFER_TRACE(bh, "freed: skip"); 3145 goto unlock; 3146 } 3147 3148 if (!buffer_mapped(bh)) { 3149 BUFFER_TRACE(bh, "unmapped"); 3150 ext4_get_block(inode, iblock, bh, 0); 3151 /* unmapped? It's a hole - nothing to do */ 3152 if (!buffer_mapped(bh)) { 3153 BUFFER_TRACE(bh, "still unmapped"); 3154 goto unlock; 3155 } 3156 } 3157 3158 /* Ok, it's mapped. Make sure it's up-to-date */ 3159 if (PageUptodate(page)) 3160 set_buffer_uptodate(bh); 3161 3162 if (!buffer_uptodate(bh)) { 3163 err = -EIO; 3164 ll_rw_block(READ, 1, &bh); 3165 wait_on_buffer(bh); 3166 /* Uhhuh. Read error. Complain and punt. */ 3167 if (!buffer_uptodate(bh)) 3168 goto unlock; 3169 } 3170 3171 if (ext4_should_journal_data(inode)) { 3172 BUFFER_TRACE(bh, "get write access"); 3173 err = ext4_journal_get_write_access(handle, bh); 3174 if (err) 3175 goto unlock; 3176 } 3177 3178 zero_user(page, offset, length); 3179 3180 BUFFER_TRACE(bh, "zeroed end of block"); 3181 3182 err = 0; 3183 if (ext4_should_journal_data(inode)) { 3184 err = ext4_journal_dirty_metadata(handle, bh); 3185 } else { 3186 if (ext4_should_order_data(inode)) 3187 err = ext4_jbd2_file_inode(handle, inode); 3188 mark_buffer_dirty(bh); 3189 } 3190 3191 unlock: 3192 unlock_page(page); 3193 page_cache_release(page); 3194 return err; 3195 } 3196 3197 /* 3198 * Probably it should be a library function... search for first non-zero word 3199 * or memcmp with zero_page, whatever is better for particular architecture. 3200 * Linus? 3201 */ 3202 static inline int all_zeroes(__le32 *p, __le32 *q) 3203 { 3204 while (p < q) 3205 if (*p++) 3206 return 0; 3207 return 1; 3208 } 3209 3210 /** 3211 * ext4_find_shared - find the indirect blocks for partial truncation. 3212 * @inode: inode in question 3213 * @depth: depth of the affected branch 3214 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3215 * @chain: place to store the pointers to partial indirect blocks 3216 * @top: place to the (detached) top of branch 3217 * 3218 * This is a helper function used by ext4_truncate(). 3219 * 3220 * When we do truncate() we may have to clean the ends of several 3221 * indirect blocks but leave the blocks themselves alive. Block is 3222 * partially truncated if some data below the new i_size is refered 3223 * from it (and it is on the path to the first completely truncated 3224 * data block, indeed). We have to free the top of that path along 3225 * with everything to the right of the path. Since no allocation 3226 * past the truncation point is possible until ext4_truncate() 3227 * finishes, we may safely do the latter, but top of branch may 3228 * require special attention - pageout below the truncation point 3229 * might try to populate it. 3230 * 3231 * We atomically detach the top of branch from the tree, store the 3232 * block number of its root in *@top, pointers to buffer_heads of 3233 * partially truncated blocks - in @chain[].bh and pointers to 3234 * their last elements that should not be removed - in 3235 * @chain[].p. Return value is the pointer to last filled element 3236 * of @chain. 3237 * 3238 * The work left to caller to do the actual freeing of subtrees: 3239 * a) free the subtree starting from *@top 3240 * b) free the subtrees whose roots are stored in 3241 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3242 * c) free the subtrees growing from the inode past the @chain[0]. 3243 * (no partially truncated stuff there). */ 3244 3245 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3246 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3247 { 3248 Indirect *partial, *p; 3249 int k, err; 3250 3251 *top = 0; 3252 /* Make k index the deepest non-null offest + 1 */ 3253 for (k = depth; k > 1 && !offsets[k-1]; k--) 3254 ; 3255 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3256 /* Writer: pointers */ 3257 if (!partial) 3258 partial = chain + k-1; 3259 /* 3260 * If the branch acquired continuation since we've looked at it - 3261 * fine, it should all survive and (new) top doesn't belong to us. 3262 */ 3263 if (!partial->key && *partial->p) 3264 /* Writer: end */ 3265 goto no_top; 3266 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3267 ; 3268 /* 3269 * OK, we've found the last block that must survive. The rest of our 3270 * branch should be detached before unlocking. However, if that rest 3271 * of branch is all ours and does not grow immediately from the inode 3272 * it's easier to cheat and just decrement partial->p. 3273 */ 3274 if (p == chain + k - 1 && p > chain) { 3275 p->p--; 3276 } else { 3277 *top = *p->p; 3278 /* Nope, don't do this in ext4. Must leave the tree intact */ 3279 #if 0 3280 *p->p = 0; 3281 #endif 3282 } 3283 /* Writer: end */ 3284 3285 while (partial > p) { 3286 brelse(partial->bh); 3287 partial--; 3288 } 3289 no_top: 3290 return partial; 3291 } 3292 3293 /* 3294 * Zero a number of block pointers in either an inode or an indirect block. 3295 * If we restart the transaction we must again get write access to the 3296 * indirect block for further modification. 3297 * 3298 * We release `count' blocks on disk, but (last - first) may be greater 3299 * than `count' because there can be holes in there. 3300 */ 3301 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3302 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3303 unsigned long count, __le32 *first, __le32 *last) 3304 { 3305 __le32 *p; 3306 if (try_to_extend_transaction(handle, inode)) { 3307 if (bh) { 3308 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3309 ext4_journal_dirty_metadata(handle, bh); 3310 } 3311 ext4_mark_inode_dirty(handle, inode); 3312 ext4_journal_test_restart(handle, inode); 3313 if (bh) { 3314 BUFFER_TRACE(bh, "retaking write access"); 3315 ext4_journal_get_write_access(handle, bh); 3316 } 3317 } 3318 3319 /* 3320 * Any buffers which are on the journal will be in memory. We find 3321 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3322 * on them. We've already detached each block from the file, so 3323 * bforget() in jbd2_journal_forget() should be safe. 3324 * 3325 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3326 */ 3327 for (p = first; p < last; p++) { 3328 u32 nr = le32_to_cpu(*p); 3329 if (nr) { 3330 struct buffer_head *tbh; 3331 3332 *p = 0; 3333 tbh = sb_find_get_block(inode->i_sb, nr); 3334 ext4_forget(handle, 0, inode, tbh, nr); 3335 } 3336 } 3337 3338 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3339 } 3340 3341 /** 3342 * ext4_free_data - free a list of data blocks 3343 * @handle: handle for this transaction 3344 * @inode: inode we are dealing with 3345 * @this_bh: indirect buffer_head which contains *@first and *@last 3346 * @first: array of block numbers 3347 * @last: points immediately past the end of array 3348 * 3349 * We are freeing all blocks refered from that array (numbers are stored as 3350 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3351 * 3352 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3353 * blocks are contiguous then releasing them at one time will only affect one 3354 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3355 * actually use a lot of journal space. 3356 * 3357 * @this_bh will be %NULL if @first and @last point into the inode's direct 3358 * block pointers. 3359 */ 3360 static void ext4_free_data(handle_t *handle, struct inode *inode, 3361 struct buffer_head *this_bh, 3362 __le32 *first, __le32 *last) 3363 { 3364 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3365 unsigned long count = 0; /* Number of blocks in the run */ 3366 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3367 corresponding to 3368 block_to_free */ 3369 ext4_fsblk_t nr; /* Current block # */ 3370 __le32 *p; /* Pointer into inode/ind 3371 for current block */ 3372 int err; 3373 3374 if (this_bh) { /* For indirect block */ 3375 BUFFER_TRACE(this_bh, "get_write_access"); 3376 err = ext4_journal_get_write_access(handle, this_bh); 3377 /* Important: if we can't update the indirect pointers 3378 * to the blocks, we can't free them. */ 3379 if (err) 3380 return; 3381 } 3382 3383 for (p = first; p < last; p++) { 3384 nr = le32_to_cpu(*p); 3385 if (nr) { 3386 /* accumulate blocks to free if they're contiguous */ 3387 if (count == 0) { 3388 block_to_free = nr; 3389 block_to_free_p = p; 3390 count = 1; 3391 } else if (nr == block_to_free + count) { 3392 count++; 3393 } else { 3394 ext4_clear_blocks(handle, inode, this_bh, 3395 block_to_free, 3396 count, block_to_free_p, p); 3397 block_to_free = nr; 3398 block_to_free_p = p; 3399 count = 1; 3400 } 3401 } 3402 } 3403 3404 if (count > 0) 3405 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3406 count, block_to_free_p, p); 3407 3408 if (this_bh) { 3409 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3410 3411 /* 3412 * The buffer head should have an attached journal head at this 3413 * point. However, if the data is corrupted and an indirect 3414 * block pointed to itself, it would have been detached when 3415 * the block was cleared. Check for this instead of OOPSing. 3416 */ 3417 if (bh2jh(this_bh)) 3418 ext4_journal_dirty_metadata(handle, this_bh); 3419 else 3420 ext4_error(inode->i_sb, __func__, 3421 "circular indirect block detected, " 3422 "inode=%lu, block=%llu", 3423 inode->i_ino, 3424 (unsigned long long) this_bh->b_blocknr); 3425 } 3426 } 3427 3428 /** 3429 * ext4_free_branches - free an array of branches 3430 * @handle: JBD handle for this transaction 3431 * @inode: inode we are dealing with 3432 * @parent_bh: the buffer_head which contains *@first and *@last 3433 * @first: array of block numbers 3434 * @last: pointer immediately past the end of array 3435 * @depth: depth of the branches to free 3436 * 3437 * We are freeing all blocks refered from these branches (numbers are 3438 * stored as little-endian 32-bit) and updating @inode->i_blocks 3439 * appropriately. 3440 */ 3441 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3442 struct buffer_head *parent_bh, 3443 __le32 *first, __le32 *last, int depth) 3444 { 3445 ext4_fsblk_t nr; 3446 __le32 *p; 3447 3448 if (is_handle_aborted(handle)) 3449 return; 3450 3451 if (depth--) { 3452 struct buffer_head *bh; 3453 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3454 p = last; 3455 while (--p >= first) { 3456 nr = le32_to_cpu(*p); 3457 if (!nr) 3458 continue; /* A hole */ 3459 3460 /* Go read the buffer for the next level down */ 3461 bh = sb_bread(inode->i_sb, nr); 3462 3463 /* 3464 * A read failure? Report error and clear slot 3465 * (should be rare). 3466 */ 3467 if (!bh) { 3468 ext4_error(inode->i_sb, "ext4_free_branches", 3469 "Read failure, inode=%lu, block=%llu", 3470 inode->i_ino, nr); 3471 continue; 3472 } 3473 3474 /* This zaps the entire block. Bottom up. */ 3475 BUFFER_TRACE(bh, "free child branches"); 3476 ext4_free_branches(handle, inode, bh, 3477 (__le32 *) bh->b_data, 3478 (__le32 *) bh->b_data + addr_per_block, 3479 depth); 3480 3481 /* 3482 * We've probably journalled the indirect block several 3483 * times during the truncate. But it's no longer 3484 * needed and we now drop it from the transaction via 3485 * jbd2_journal_revoke(). 3486 * 3487 * That's easy if it's exclusively part of this 3488 * transaction. But if it's part of the committing 3489 * transaction then jbd2_journal_forget() will simply 3490 * brelse() it. That means that if the underlying 3491 * block is reallocated in ext4_get_block(), 3492 * unmap_underlying_metadata() will find this block 3493 * and will try to get rid of it. damn, damn. 3494 * 3495 * If this block has already been committed to the 3496 * journal, a revoke record will be written. And 3497 * revoke records must be emitted *before* clearing 3498 * this block's bit in the bitmaps. 3499 */ 3500 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3501 3502 /* 3503 * Everything below this this pointer has been 3504 * released. Now let this top-of-subtree go. 3505 * 3506 * We want the freeing of this indirect block to be 3507 * atomic in the journal with the updating of the 3508 * bitmap block which owns it. So make some room in 3509 * the journal. 3510 * 3511 * We zero the parent pointer *after* freeing its 3512 * pointee in the bitmaps, so if extend_transaction() 3513 * for some reason fails to put the bitmap changes and 3514 * the release into the same transaction, recovery 3515 * will merely complain about releasing a free block, 3516 * rather than leaking blocks. 3517 */ 3518 if (is_handle_aborted(handle)) 3519 return; 3520 if (try_to_extend_transaction(handle, inode)) { 3521 ext4_mark_inode_dirty(handle, inode); 3522 ext4_journal_test_restart(handle, inode); 3523 } 3524 3525 ext4_free_blocks(handle, inode, nr, 1, 1); 3526 3527 if (parent_bh) { 3528 /* 3529 * The block which we have just freed is 3530 * pointed to by an indirect block: journal it 3531 */ 3532 BUFFER_TRACE(parent_bh, "get_write_access"); 3533 if (!ext4_journal_get_write_access(handle, 3534 parent_bh)){ 3535 *p = 0; 3536 BUFFER_TRACE(parent_bh, 3537 "call ext4_journal_dirty_metadata"); 3538 ext4_journal_dirty_metadata(handle, 3539 parent_bh); 3540 } 3541 } 3542 } 3543 } else { 3544 /* We have reached the bottom of the tree. */ 3545 BUFFER_TRACE(parent_bh, "free data blocks"); 3546 ext4_free_data(handle, inode, parent_bh, first, last); 3547 } 3548 } 3549 3550 int ext4_can_truncate(struct inode *inode) 3551 { 3552 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3553 return 0; 3554 if (S_ISREG(inode->i_mode)) 3555 return 1; 3556 if (S_ISDIR(inode->i_mode)) 3557 return 1; 3558 if (S_ISLNK(inode->i_mode)) 3559 return !ext4_inode_is_fast_symlink(inode); 3560 return 0; 3561 } 3562 3563 /* 3564 * ext4_truncate() 3565 * 3566 * We block out ext4_get_block() block instantiations across the entire 3567 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3568 * simultaneously on behalf of the same inode. 3569 * 3570 * As we work through the truncate and commmit bits of it to the journal there 3571 * is one core, guiding principle: the file's tree must always be consistent on 3572 * disk. We must be able to restart the truncate after a crash. 3573 * 3574 * The file's tree may be transiently inconsistent in memory (although it 3575 * probably isn't), but whenever we close off and commit a journal transaction, 3576 * the contents of (the filesystem + the journal) must be consistent and 3577 * restartable. It's pretty simple, really: bottom up, right to left (although 3578 * left-to-right works OK too). 3579 * 3580 * Note that at recovery time, journal replay occurs *before* the restart of 3581 * truncate against the orphan inode list. 3582 * 3583 * The committed inode has the new, desired i_size (which is the same as 3584 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3585 * that this inode's truncate did not complete and it will again call 3586 * ext4_truncate() to have another go. So there will be instantiated blocks 3587 * to the right of the truncation point in a crashed ext4 filesystem. But 3588 * that's fine - as long as they are linked from the inode, the post-crash 3589 * ext4_truncate() run will find them and release them. 3590 */ 3591 void ext4_truncate(struct inode *inode) 3592 { 3593 handle_t *handle; 3594 struct ext4_inode_info *ei = EXT4_I(inode); 3595 __le32 *i_data = ei->i_data; 3596 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3597 struct address_space *mapping = inode->i_mapping; 3598 ext4_lblk_t offsets[4]; 3599 Indirect chain[4]; 3600 Indirect *partial; 3601 __le32 nr = 0; 3602 int n; 3603 ext4_lblk_t last_block; 3604 unsigned blocksize = inode->i_sb->s_blocksize; 3605 3606 if (!ext4_can_truncate(inode)) 3607 return; 3608 3609 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3610 ext4_ext_truncate(inode); 3611 return; 3612 } 3613 3614 handle = start_transaction(inode); 3615 if (IS_ERR(handle)) 3616 return; /* AKPM: return what? */ 3617 3618 last_block = (inode->i_size + blocksize-1) 3619 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3620 3621 if (inode->i_size & (blocksize - 1)) 3622 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3623 goto out_stop; 3624 3625 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3626 if (n == 0) 3627 goto out_stop; /* error */ 3628 3629 /* 3630 * OK. This truncate is going to happen. We add the inode to the 3631 * orphan list, so that if this truncate spans multiple transactions, 3632 * and we crash, we will resume the truncate when the filesystem 3633 * recovers. It also marks the inode dirty, to catch the new size. 3634 * 3635 * Implication: the file must always be in a sane, consistent 3636 * truncatable state while each transaction commits. 3637 */ 3638 if (ext4_orphan_add(handle, inode)) 3639 goto out_stop; 3640 3641 /* 3642 * From here we block out all ext4_get_block() callers who want to 3643 * modify the block allocation tree. 3644 */ 3645 down_write(&ei->i_data_sem); 3646 3647 ext4_discard_reservation(inode); 3648 3649 /* 3650 * The orphan list entry will now protect us from any crash which 3651 * occurs before the truncate completes, so it is now safe to propagate 3652 * the new, shorter inode size (held for now in i_size) into the 3653 * on-disk inode. We do this via i_disksize, which is the value which 3654 * ext4 *really* writes onto the disk inode. 3655 */ 3656 ei->i_disksize = inode->i_size; 3657 3658 if (n == 1) { /* direct blocks */ 3659 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3660 i_data + EXT4_NDIR_BLOCKS); 3661 goto do_indirects; 3662 } 3663 3664 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3665 /* Kill the top of shared branch (not detached) */ 3666 if (nr) { 3667 if (partial == chain) { 3668 /* Shared branch grows from the inode */ 3669 ext4_free_branches(handle, inode, NULL, 3670 &nr, &nr+1, (chain+n-1) - partial); 3671 *partial->p = 0; 3672 /* 3673 * We mark the inode dirty prior to restart, 3674 * and prior to stop. No need for it here. 3675 */ 3676 } else { 3677 /* Shared branch grows from an indirect block */ 3678 BUFFER_TRACE(partial->bh, "get_write_access"); 3679 ext4_free_branches(handle, inode, partial->bh, 3680 partial->p, 3681 partial->p+1, (chain+n-1) - partial); 3682 } 3683 } 3684 /* Clear the ends of indirect blocks on the shared branch */ 3685 while (partial > chain) { 3686 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3687 (__le32*)partial->bh->b_data+addr_per_block, 3688 (chain+n-1) - partial); 3689 BUFFER_TRACE(partial->bh, "call brelse"); 3690 brelse (partial->bh); 3691 partial--; 3692 } 3693 do_indirects: 3694 /* Kill the remaining (whole) subtrees */ 3695 switch (offsets[0]) { 3696 default: 3697 nr = i_data[EXT4_IND_BLOCK]; 3698 if (nr) { 3699 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3700 i_data[EXT4_IND_BLOCK] = 0; 3701 } 3702 case EXT4_IND_BLOCK: 3703 nr = i_data[EXT4_DIND_BLOCK]; 3704 if (nr) { 3705 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3706 i_data[EXT4_DIND_BLOCK] = 0; 3707 } 3708 case EXT4_DIND_BLOCK: 3709 nr = i_data[EXT4_TIND_BLOCK]; 3710 if (nr) { 3711 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3712 i_data[EXT4_TIND_BLOCK] = 0; 3713 } 3714 case EXT4_TIND_BLOCK: 3715 ; 3716 } 3717 3718 up_write(&ei->i_data_sem); 3719 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3720 ext4_mark_inode_dirty(handle, inode); 3721 3722 /* 3723 * In a multi-transaction truncate, we only make the final transaction 3724 * synchronous 3725 */ 3726 if (IS_SYNC(inode)) 3727 handle->h_sync = 1; 3728 out_stop: 3729 /* 3730 * If this was a simple ftruncate(), and the file will remain alive 3731 * then we need to clear up the orphan record which we created above. 3732 * However, if this was a real unlink then we were called by 3733 * ext4_delete_inode(), and we allow that function to clean up the 3734 * orphan info for us. 3735 */ 3736 if (inode->i_nlink) 3737 ext4_orphan_del(handle, inode); 3738 3739 ext4_journal_stop(handle); 3740 } 3741 3742 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 3743 unsigned long ino, struct ext4_iloc *iloc) 3744 { 3745 ext4_group_t block_group; 3746 unsigned long offset; 3747 ext4_fsblk_t block; 3748 struct ext4_group_desc *gdp; 3749 3750 if (!ext4_valid_inum(sb, ino)) { 3751 /* 3752 * This error is already checked for in namei.c unless we are 3753 * looking at an NFS filehandle, in which case no error 3754 * report is needed 3755 */ 3756 return 0; 3757 } 3758 3759 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 3760 gdp = ext4_get_group_desc(sb, block_group, NULL); 3761 if (!gdp) 3762 return 0; 3763 3764 /* 3765 * Figure out the offset within the block group inode table 3766 */ 3767 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 3768 EXT4_INODE_SIZE(sb); 3769 block = ext4_inode_table(sb, gdp) + 3770 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 3771 3772 iloc->block_group = block_group; 3773 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 3774 return block; 3775 } 3776 3777 /* 3778 * ext4_get_inode_loc returns with an extra refcount against the inode's 3779 * underlying buffer_head on success. If 'in_mem' is true, we have all 3780 * data in memory that is needed to recreate the on-disk version of this 3781 * inode. 3782 */ 3783 static int __ext4_get_inode_loc(struct inode *inode, 3784 struct ext4_iloc *iloc, int in_mem) 3785 { 3786 ext4_fsblk_t block; 3787 struct buffer_head *bh; 3788 3789 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 3790 if (!block) 3791 return -EIO; 3792 3793 bh = sb_getblk(inode->i_sb, block); 3794 if (!bh) { 3795 ext4_error (inode->i_sb, "ext4_get_inode_loc", 3796 "unable to read inode block - " 3797 "inode=%lu, block=%llu", 3798 inode->i_ino, block); 3799 return -EIO; 3800 } 3801 if (!buffer_uptodate(bh)) { 3802 lock_buffer(bh); 3803 3804 /* 3805 * If the buffer has the write error flag, we have failed 3806 * to write out another inode in the same block. In this 3807 * case, we don't have to read the block because we may 3808 * read the old inode data successfully. 3809 */ 3810 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3811 set_buffer_uptodate(bh); 3812 3813 if (buffer_uptodate(bh)) { 3814 /* someone brought it uptodate while we waited */ 3815 unlock_buffer(bh); 3816 goto has_buffer; 3817 } 3818 3819 /* 3820 * If we have all information of the inode in memory and this 3821 * is the only valid inode in the block, we need not read the 3822 * block. 3823 */ 3824 if (in_mem) { 3825 struct buffer_head *bitmap_bh; 3826 struct ext4_group_desc *desc; 3827 int inodes_per_buffer; 3828 int inode_offset, i; 3829 ext4_group_t block_group; 3830 int start; 3831 3832 block_group = (inode->i_ino - 1) / 3833 EXT4_INODES_PER_GROUP(inode->i_sb); 3834 inodes_per_buffer = bh->b_size / 3835 EXT4_INODE_SIZE(inode->i_sb); 3836 inode_offset = ((inode->i_ino - 1) % 3837 EXT4_INODES_PER_GROUP(inode->i_sb)); 3838 start = inode_offset & ~(inodes_per_buffer - 1); 3839 3840 /* Is the inode bitmap in cache? */ 3841 desc = ext4_get_group_desc(inode->i_sb, 3842 block_group, NULL); 3843 if (!desc) 3844 goto make_io; 3845 3846 bitmap_bh = sb_getblk(inode->i_sb, 3847 ext4_inode_bitmap(inode->i_sb, desc)); 3848 if (!bitmap_bh) 3849 goto make_io; 3850 3851 /* 3852 * If the inode bitmap isn't in cache then the 3853 * optimisation may end up performing two reads instead 3854 * of one, so skip it. 3855 */ 3856 if (!buffer_uptodate(bitmap_bh)) { 3857 brelse(bitmap_bh); 3858 goto make_io; 3859 } 3860 for (i = start; i < start + inodes_per_buffer; i++) { 3861 if (i == inode_offset) 3862 continue; 3863 if (ext4_test_bit(i, bitmap_bh->b_data)) 3864 break; 3865 } 3866 brelse(bitmap_bh); 3867 if (i == start + inodes_per_buffer) { 3868 /* all other inodes are free, so skip I/O */ 3869 memset(bh->b_data, 0, bh->b_size); 3870 set_buffer_uptodate(bh); 3871 unlock_buffer(bh); 3872 goto has_buffer; 3873 } 3874 } 3875 3876 make_io: 3877 /* 3878 * There are other valid inodes in the buffer, this inode 3879 * has in-inode xattrs, or we don't have this inode in memory. 3880 * Read the block from disk. 3881 */ 3882 get_bh(bh); 3883 bh->b_end_io = end_buffer_read_sync; 3884 submit_bh(READ_META, bh); 3885 wait_on_buffer(bh); 3886 if (!buffer_uptodate(bh)) { 3887 ext4_error(inode->i_sb, "ext4_get_inode_loc", 3888 "unable to read inode block - " 3889 "inode=%lu, block=%llu", 3890 inode->i_ino, block); 3891 brelse(bh); 3892 return -EIO; 3893 } 3894 } 3895 has_buffer: 3896 iloc->bh = bh; 3897 return 0; 3898 } 3899 3900 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3901 { 3902 /* We have all inode data except xattrs in memory here. */ 3903 return __ext4_get_inode_loc(inode, iloc, 3904 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3905 } 3906 3907 void ext4_set_inode_flags(struct inode *inode) 3908 { 3909 unsigned int flags = EXT4_I(inode)->i_flags; 3910 3911 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3912 if (flags & EXT4_SYNC_FL) 3913 inode->i_flags |= S_SYNC; 3914 if (flags & EXT4_APPEND_FL) 3915 inode->i_flags |= S_APPEND; 3916 if (flags & EXT4_IMMUTABLE_FL) 3917 inode->i_flags |= S_IMMUTABLE; 3918 if (flags & EXT4_NOATIME_FL) 3919 inode->i_flags |= S_NOATIME; 3920 if (flags & EXT4_DIRSYNC_FL) 3921 inode->i_flags |= S_DIRSYNC; 3922 } 3923 3924 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3925 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3926 { 3927 unsigned int flags = ei->vfs_inode.i_flags; 3928 3929 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3930 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 3931 if (flags & S_SYNC) 3932 ei->i_flags |= EXT4_SYNC_FL; 3933 if (flags & S_APPEND) 3934 ei->i_flags |= EXT4_APPEND_FL; 3935 if (flags & S_IMMUTABLE) 3936 ei->i_flags |= EXT4_IMMUTABLE_FL; 3937 if (flags & S_NOATIME) 3938 ei->i_flags |= EXT4_NOATIME_FL; 3939 if (flags & S_DIRSYNC) 3940 ei->i_flags |= EXT4_DIRSYNC_FL; 3941 } 3942 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3943 struct ext4_inode_info *ei) 3944 { 3945 blkcnt_t i_blocks ; 3946 struct inode *inode = &(ei->vfs_inode); 3947 struct super_block *sb = inode->i_sb; 3948 3949 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3950 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3951 /* we are using combined 48 bit field */ 3952 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3953 le32_to_cpu(raw_inode->i_blocks_lo); 3954 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 3955 /* i_blocks represent file system block size */ 3956 return i_blocks << (inode->i_blkbits - 9); 3957 } else { 3958 return i_blocks; 3959 } 3960 } else { 3961 return le32_to_cpu(raw_inode->i_blocks_lo); 3962 } 3963 } 3964 3965 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3966 { 3967 struct ext4_iloc iloc; 3968 struct ext4_inode *raw_inode; 3969 struct ext4_inode_info *ei; 3970 struct buffer_head *bh; 3971 struct inode *inode; 3972 long ret; 3973 int block; 3974 3975 inode = iget_locked(sb, ino); 3976 if (!inode) 3977 return ERR_PTR(-ENOMEM); 3978 if (!(inode->i_state & I_NEW)) 3979 return inode; 3980 3981 ei = EXT4_I(inode); 3982 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 3983 ei->i_acl = EXT4_ACL_NOT_CACHED; 3984 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 3985 #endif 3986 ei->i_block_alloc_info = NULL; 3987 3988 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3989 if (ret < 0) 3990 goto bad_inode; 3991 bh = iloc.bh; 3992 raw_inode = ext4_raw_inode(&iloc); 3993 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3994 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3995 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3996 if (!(test_opt(inode->i_sb, NO_UID32))) { 3997 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3998 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3999 } 4000 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4001 4002 ei->i_state = 0; 4003 ei->i_dir_start_lookup = 0; 4004 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4005 /* We now have enough fields to check if the inode was active or not. 4006 * This is needed because nfsd might try to access dead inodes 4007 * the test is that same one that e2fsck uses 4008 * NeilBrown 1999oct15 4009 */ 4010 if (inode->i_nlink == 0) { 4011 if (inode->i_mode == 0 || 4012 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4013 /* this inode is deleted */ 4014 brelse(bh); 4015 ret = -ESTALE; 4016 goto bad_inode; 4017 } 4018 /* The only unlinked inodes we let through here have 4019 * valid i_mode and are being read by the orphan 4020 * recovery code: that's fine, we're about to complete 4021 * the process of deleting those. */ 4022 } 4023 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4024 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4025 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4026 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4027 cpu_to_le32(EXT4_OS_HURD)) { 4028 ei->i_file_acl |= 4029 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4030 } 4031 inode->i_size = ext4_isize(raw_inode); 4032 ei->i_disksize = inode->i_size; 4033 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4034 ei->i_block_group = iloc.block_group; 4035 /* 4036 * NOTE! The in-memory inode i_data array is in little-endian order 4037 * even on big-endian machines: we do NOT byteswap the block numbers! 4038 */ 4039 for (block = 0; block < EXT4_N_BLOCKS; block++) 4040 ei->i_data[block] = raw_inode->i_block[block]; 4041 INIT_LIST_HEAD(&ei->i_orphan); 4042 4043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4044 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4045 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4046 EXT4_INODE_SIZE(inode->i_sb)) { 4047 brelse(bh); 4048 ret = -EIO; 4049 goto bad_inode; 4050 } 4051 if (ei->i_extra_isize == 0) { 4052 /* The extra space is currently unused. Use it. */ 4053 ei->i_extra_isize = sizeof(struct ext4_inode) - 4054 EXT4_GOOD_OLD_INODE_SIZE; 4055 } else { 4056 __le32 *magic = (void *)raw_inode + 4057 EXT4_GOOD_OLD_INODE_SIZE + 4058 ei->i_extra_isize; 4059 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4060 ei->i_state |= EXT4_STATE_XATTR; 4061 } 4062 } else 4063 ei->i_extra_isize = 0; 4064 4065 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4066 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4067 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4068 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4069 4070 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4071 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4072 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4073 inode->i_version |= 4074 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4075 } 4076 4077 if (S_ISREG(inode->i_mode)) { 4078 inode->i_op = &ext4_file_inode_operations; 4079 inode->i_fop = &ext4_file_operations; 4080 ext4_set_aops(inode); 4081 } else if (S_ISDIR(inode->i_mode)) { 4082 inode->i_op = &ext4_dir_inode_operations; 4083 inode->i_fop = &ext4_dir_operations; 4084 } else if (S_ISLNK(inode->i_mode)) { 4085 if (ext4_inode_is_fast_symlink(inode)) 4086 inode->i_op = &ext4_fast_symlink_inode_operations; 4087 else { 4088 inode->i_op = &ext4_symlink_inode_operations; 4089 ext4_set_aops(inode); 4090 } 4091 } else { 4092 inode->i_op = &ext4_special_inode_operations; 4093 if (raw_inode->i_block[0]) 4094 init_special_inode(inode, inode->i_mode, 4095 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4096 else 4097 init_special_inode(inode, inode->i_mode, 4098 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4099 } 4100 brelse(iloc.bh); 4101 ext4_set_inode_flags(inode); 4102 unlock_new_inode(inode); 4103 return inode; 4104 4105 bad_inode: 4106 iget_failed(inode); 4107 return ERR_PTR(ret); 4108 } 4109 4110 static int ext4_inode_blocks_set(handle_t *handle, 4111 struct ext4_inode *raw_inode, 4112 struct ext4_inode_info *ei) 4113 { 4114 struct inode *inode = &(ei->vfs_inode); 4115 u64 i_blocks = inode->i_blocks; 4116 struct super_block *sb = inode->i_sb; 4117 int err = 0; 4118 4119 if (i_blocks <= ~0U) { 4120 /* 4121 * i_blocks can be represnted in a 32 bit variable 4122 * as multiple of 512 bytes 4123 */ 4124 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4125 raw_inode->i_blocks_high = 0; 4126 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4127 } else if (i_blocks <= 0xffffffffffffULL) { 4128 /* 4129 * i_blocks can be represented in a 48 bit variable 4130 * as multiple of 512 bytes 4131 */ 4132 err = ext4_update_rocompat_feature(handle, sb, 4133 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4134 if (err) 4135 goto err_out; 4136 /* i_block is stored in the split 48 bit fields */ 4137 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4138 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4139 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4140 } else { 4141 /* 4142 * i_blocks should be represented in a 48 bit variable 4143 * as multiple of file system block size 4144 */ 4145 err = ext4_update_rocompat_feature(handle, sb, 4146 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4147 if (err) 4148 goto err_out; 4149 ei->i_flags |= EXT4_HUGE_FILE_FL; 4150 /* i_block is stored in file system block size */ 4151 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4152 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4153 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4154 } 4155 err_out: 4156 return err; 4157 } 4158 4159 /* 4160 * Post the struct inode info into an on-disk inode location in the 4161 * buffer-cache. This gobbles the caller's reference to the 4162 * buffer_head in the inode location struct. 4163 * 4164 * The caller must have write access to iloc->bh. 4165 */ 4166 static int ext4_do_update_inode(handle_t *handle, 4167 struct inode *inode, 4168 struct ext4_iloc *iloc) 4169 { 4170 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4171 struct ext4_inode_info *ei = EXT4_I(inode); 4172 struct buffer_head *bh = iloc->bh; 4173 int err = 0, rc, block; 4174 4175 /* For fields not not tracking in the in-memory inode, 4176 * initialise them to zero for new inodes. */ 4177 if (ei->i_state & EXT4_STATE_NEW) 4178 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4179 4180 ext4_get_inode_flags(ei); 4181 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4182 if (!(test_opt(inode->i_sb, NO_UID32))) { 4183 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4184 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4185 /* 4186 * Fix up interoperability with old kernels. Otherwise, old inodes get 4187 * re-used with the upper 16 bits of the uid/gid intact 4188 */ 4189 if (!ei->i_dtime) { 4190 raw_inode->i_uid_high = 4191 cpu_to_le16(high_16_bits(inode->i_uid)); 4192 raw_inode->i_gid_high = 4193 cpu_to_le16(high_16_bits(inode->i_gid)); 4194 } else { 4195 raw_inode->i_uid_high = 0; 4196 raw_inode->i_gid_high = 0; 4197 } 4198 } else { 4199 raw_inode->i_uid_low = 4200 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4201 raw_inode->i_gid_low = 4202 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4203 raw_inode->i_uid_high = 0; 4204 raw_inode->i_gid_high = 0; 4205 } 4206 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4207 4208 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4209 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4210 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4211 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4212 4213 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4214 goto out_brelse; 4215 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4216 /* clear the migrate flag in the raw_inode */ 4217 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4218 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4219 cpu_to_le32(EXT4_OS_HURD)) 4220 raw_inode->i_file_acl_high = 4221 cpu_to_le16(ei->i_file_acl >> 32); 4222 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4223 ext4_isize_set(raw_inode, ei->i_disksize); 4224 if (ei->i_disksize > 0x7fffffffULL) { 4225 struct super_block *sb = inode->i_sb; 4226 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4227 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4228 EXT4_SB(sb)->s_es->s_rev_level == 4229 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4230 /* If this is the first large file 4231 * created, add a flag to the superblock. 4232 */ 4233 err = ext4_journal_get_write_access(handle, 4234 EXT4_SB(sb)->s_sbh); 4235 if (err) 4236 goto out_brelse; 4237 ext4_update_dynamic_rev(sb); 4238 EXT4_SET_RO_COMPAT_FEATURE(sb, 4239 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4240 sb->s_dirt = 1; 4241 handle->h_sync = 1; 4242 err = ext4_journal_dirty_metadata(handle, 4243 EXT4_SB(sb)->s_sbh); 4244 } 4245 } 4246 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4247 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4248 if (old_valid_dev(inode->i_rdev)) { 4249 raw_inode->i_block[0] = 4250 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4251 raw_inode->i_block[1] = 0; 4252 } else { 4253 raw_inode->i_block[0] = 0; 4254 raw_inode->i_block[1] = 4255 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4256 raw_inode->i_block[2] = 0; 4257 } 4258 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4259 raw_inode->i_block[block] = ei->i_data[block]; 4260 4261 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4262 if (ei->i_extra_isize) { 4263 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4264 raw_inode->i_version_hi = 4265 cpu_to_le32(inode->i_version >> 32); 4266 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4267 } 4268 4269 4270 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4271 rc = ext4_journal_dirty_metadata(handle, bh); 4272 if (!err) 4273 err = rc; 4274 ei->i_state &= ~EXT4_STATE_NEW; 4275 4276 out_brelse: 4277 brelse(bh); 4278 ext4_std_error(inode->i_sb, err); 4279 return err; 4280 } 4281 4282 /* 4283 * ext4_write_inode() 4284 * 4285 * We are called from a few places: 4286 * 4287 * - Within generic_file_write() for O_SYNC files. 4288 * Here, there will be no transaction running. We wait for any running 4289 * trasnaction to commit. 4290 * 4291 * - Within sys_sync(), kupdate and such. 4292 * We wait on commit, if tol to. 4293 * 4294 * - Within prune_icache() (PF_MEMALLOC == true) 4295 * Here we simply return. We can't afford to block kswapd on the 4296 * journal commit. 4297 * 4298 * In all cases it is actually safe for us to return without doing anything, 4299 * because the inode has been copied into a raw inode buffer in 4300 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4301 * knfsd. 4302 * 4303 * Note that we are absolutely dependent upon all inode dirtiers doing the 4304 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4305 * which we are interested. 4306 * 4307 * It would be a bug for them to not do this. The code: 4308 * 4309 * mark_inode_dirty(inode) 4310 * stuff(); 4311 * inode->i_size = expr; 4312 * 4313 * is in error because a kswapd-driven write_inode() could occur while 4314 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4315 * will no longer be on the superblock's dirty inode list. 4316 */ 4317 int ext4_write_inode(struct inode *inode, int wait) 4318 { 4319 if (current->flags & PF_MEMALLOC) 4320 return 0; 4321 4322 if (ext4_journal_current_handle()) { 4323 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4324 dump_stack(); 4325 return -EIO; 4326 } 4327 4328 if (!wait) 4329 return 0; 4330 4331 return ext4_force_commit(inode->i_sb); 4332 } 4333 4334 /* 4335 * ext4_setattr() 4336 * 4337 * Called from notify_change. 4338 * 4339 * We want to trap VFS attempts to truncate the file as soon as 4340 * possible. In particular, we want to make sure that when the VFS 4341 * shrinks i_size, we put the inode on the orphan list and modify 4342 * i_disksize immediately, so that during the subsequent flushing of 4343 * dirty pages and freeing of disk blocks, we can guarantee that any 4344 * commit will leave the blocks being flushed in an unused state on 4345 * disk. (On recovery, the inode will get truncated and the blocks will 4346 * be freed, so we have a strong guarantee that no future commit will 4347 * leave these blocks visible to the user.) 4348 * 4349 * Another thing we have to assure is that if we are in ordered mode 4350 * and inode is still attached to the committing transaction, we must 4351 * we start writeout of all the dirty pages which are being truncated. 4352 * This way we are sure that all the data written in the previous 4353 * transaction are already on disk (truncate waits for pages under 4354 * writeback). 4355 * 4356 * Called with inode->i_mutex down. 4357 */ 4358 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4359 { 4360 struct inode *inode = dentry->d_inode; 4361 int error, rc = 0; 4362 const unsigned int ia_valid = attr->ia_valid; 4363 4364 error = inode_change_ok(inode, attr); 4365 if (error) 4366 return error; 4367 4368 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4369 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4370 handle_t *handle; 4371 4372 /* (user+group)*(old+new) structure, inode write (sb, 4373 * inode block, ? - but truncate inode update has it) */ 4374 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4375 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4376 if (IS_ERR(handle)) { 4377 error = PTR_ERR(handle); 4378 goto err_out; 4379 } 4380 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4381 if (error) { 4382 ext4_journal_stop(handle); 4383 return error; 4384 } 4385 /* Update corresponding info in inode so that everything is in 4386 * one transaction */ 4387 if (attr->ia_valid & ATTR_UID) 4388 inode->i_uid = attr->ia_uid; 4389 if (attr->ia_valid & ATTR_GID) 4390 inode->i_gid = attr->ia_gid; 4391 error = ext4_mark_inode_dirty(handle, inode); 4392 ext4_journal_stop(handle); 4393 } 4394 4395 if (attr->ia_valid & ATTR_SIZE) { 4396 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4397 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4398 4399 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4400 error = -EFBIG; 4401 goto err_out; 4402 } 4403 } 4404 } 4405 4406 if (S_ISREG(inode->i_mode) && 4407 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4408 handle_t *handle; 4409 4410 handle = ext4_journal_start(inode, 3); 4411 if (IS_ERR(handle)) { 4412 error = PTR_ERR(handle); 4413 goto err_out; 4414 } 4415 4416 error = ext4_orphan_add(handle, inode); 4417 EXT4_I(inode)->i_disksize = attr->ia_size; 4418 rc = ext4_mark_inode_dirty(handle, inode); 4419 if (!error) 4420 error = rc; 4421 ext4_journal_stop(handle); 4422 4423 if (ext4_should_order_data(inode)) { 4424 error = ext4_begin_ordered_truncate(inode, 4425 attr->ia_size); 4426 if (error) { 4427 /* Do as much error cleanup as possible */ 4428 handle = ext4_journal_start(inode, 3); 4429 if (IS_ERR(handle)) { 4430 ext4_orphan_del(NULL, inode); 4431 goto err_out; 4432 } 4433 ext4_orphan_del(handle, inode); 4434 ext4_journal_stop(handle); 4435 goto err_out; 4436 } 4437 } 4438 } 4439 4440 rc = inode_setattr(inode, attr); 4441 4442 /* If inode_setattr's call to ext4_truncate failed to get a 4443 * transaction handle at all, we need to clean up the in-core 4444 * orphan list manually. */ 4445 if (inode->i_nlink) 4446 ext4_orphan_del(NULL, inode); 4447 4448 if (!rc && (ia_valid & ATTR_MODE)) 4449 rc = ext4_acl_chmod(inode); 4450 4451 err_out: 4452 ext4_std_error(inode->i_sb, error); 4453 if (!error) 4454 error = rc; 4455 return error; 4456 } 4457 4458 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4459 struct kstat *stat) 4460 { 4461 struct inode *inode; 4462 unsigned long delalloc_blocks; 4463 4464 inode = dentry->d_inode; 4465 generic_fillattr(inode, stat); 4466 4467 /* 4468 * We can't update i_blocks if the block allocation is delayed 4469 * otherwise in the case of system crash before the real block 4470 * allocation is done, we will have i_blocks inconsistent with 4471 * on-disk file blocks. 4472 * We always keep i_blocks updated together with real 4473 * allocation. But to not confuse with user, stat 4474 * will return the blocks that include the delayed allocation 4475 * blocks for this file. 4476 */ 4477 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4478 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4479 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4480 4481 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4482 return 0; 4483 } 4484 4485 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4486 int chunk) 4487 { 4488 int indirects; 4489 4490 /* if nrblocks are contiguous */ 4491 if (chunk) { 4492 /* 4493 * With N contiguous data blocks, it need at most 4494 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4495 * 2 dindirect blocks 4496 * 1 tindirect block 4497 */ 4498 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4499 return indirects + 3; 4500 } 4501 /* 4502 * if nrblocks are not contiguous, worse case, each block touch 4503 * a indirect block, and each indirect block touch a double indirect 4504 * block, plus a triple indirect block 4505 */ 4506 indirects = nrblocks * 2 + 1; 4507 return indirects; 4508 } 4509 4510 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4511 { 4512 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4513 return ext4_indirect_trans_blocks(inode, nrblocks, 0); 4514 return ext4_ext_index_trans_blocks(inode, nrblocks, 0); 4515 } 4516 /* 4517 * Account for index blocks, block groups bitmaps and block group 4518 * descriptor blocks if modify datablocks and index blocks 4519 * worse case, the indexs blocks spread over different block groups 4520 * 4521 * If datablocks are discontiguous, they are possible to spread over 4522 * different block groups too. If they are contiugous, with flexbg, 4523 * they could still across block group boundary. 4524 * 4525 * Also account for superblock, inode, quota and xattr blocks 4526 */ 4527 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4528 { 4529 int groups, gdpblocks; 4530 int idxblocks; 4531 int ret = 0; 4532 4533 /* 4534 * How many index blocks need to touch to modify nrblocks? 4535 * The "Chunk" flag indicating whether the nrblocks is 4536 * physically contiguous on disk 4537 * 4538 * For Direct IO and fallocate, they calls get_block to allocate 4539 * one single extent at a time, so they could set the "Chunk" flag 4540 */ 4541 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4542 4543 ret = idxblocks; 4544 4545 /* 4546 * Now let's see how many group bitmaps and group descriptors need 4547 * to account 4548 */ 4549 groups = idxblocks; 4550 if (chunk) 4551 groups += 1; 4552 else 4553 groups += nrblocks; 4554 4555 gdpblocks = groups; 4556 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4557 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4558 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4559 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4560 4561 /* bitmaps and block group descriptor blocks */ 4562 ret += groups + gdpblocks; 4563 4564 /* Blocks for super block, inode, quota and xattr blocks */ 4565 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4566 4567 return ret; 4568 } 4569 4570 /* 4571 * Calulate the total number of credits to reserve to fit 4572 * the modification of a single pages into a single transaction, 4573 * which may include multiple chunks of block allocations. 4574 * 4575 * This could be called via ext4_write_begin() 4576 * 4577 * We need to consider the worse case, when 4578 * one new block per extent. 4579 */ 4580 int ext4_writepage_trans_blocks(struct inode *inode) 4581 { 4582 int bpp = ext4_journal_blocks_per_page(inode); 4583 int ret; 4584 4585 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4586 4587 /* Account for data blocks for journalled mode */ 4588 if (ext4_should_journal_data(inode)) 4589 ret += bpp; 4590 return ret; 4591 } 4592 4593 /* 4594 * Calculate the journal credits for a chunk of data modification. 4595 * 4596 * This is called from DIO, fallocate or whoever calling 4597 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4598 * 4599 * journal buffers for data blocks are not included here, as DIO 4600 * and fallocate do no need to journal data buffers. 4601 */ 4602 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4603 { 4604 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4605 } 4606 4607 /* 4608 * The caller must have previously called ext4_reserve_inode_write(). 4609 * Give this, we know that the caller already has write access to iloc->bh. 4610 */ 4611 int ext4_mark_iloc_dirty(handle_t *handle, 4612 struct inode *inode, struct ext4_iloc *iloc) 4613 { 4614 int err = 0; 4615 4616 if (test_opt(inode->i_sb, I_VERSION)) 4617 inode_inc_iversion(inode); 4618 4619 /* the do_update_inode consumes one bh->b_count */ 4620 get_bh(iloc->bh); 4621 4622 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4623 err = ext4_do_update_inode(handle, inode, iloc); 4624 put_bh(iloc->bh); 4625 return err; 4626 } 4627 4628 /* 4629 * On success, We end up with an outstanding reference count against 4630 * iloc->bh. This _must_ be cleaned up later. 4631 */ 4632 4633 int 4634 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4635 struct ext4_iloc *iloc) 4636 { 4637 int err = 0; 4638 if (handle) { 4639 err = ext4_get_inode_loc(inode, iloc); 4640 if (!err) { 4641 BUFFER_TRACE(iloc->bh, "get_write_access"); 4642 err = ext4_journal_get_write_access(handle, iloc->bh); 4643 if (err) { 4644 brelse(iloc->bh); 4645 iloc->bh = NULL; 4646 } 4647 } 4648 } 4649 ext4_std_error(inode->i_sb, err); 4650 return err; 4651 } 4652 4653 /* 4654 * Expand an inode by new_extra_isize bytes. 4655 * Returns 0 on success or negative error number on failure. 4656 */ 4657 static int ext4_expand_extra_isize(struct inode *inode, 4658 unsigned int new_extra_isize, 4659 struct ext4_iloc iloc, 4660 handle_t *handle) 4661 { 4662 struct ext4_inode *raw_inode; 4663 struct ext4_xattr_ibody_header *header; 4664 struct ext4_xattr_entry *entry; 4665 4666 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4667 return 0; 4668 4669 raw_inode = ext4_raw_inode(&iloc); 4670 4671 header = IHDR(inode, raw_inode); 4672 entry = IFIRST(header); 4673 4674 /* No extended attributes present */ 4675 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4676 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4677 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4678 new_extra_isize); 4679 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4680 return 0; 4681 } 4682 4683 /* try to expand with EAs present */ 4684 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4685 raw_inode, handle); 4686 } 4687 4688 /* 4689 * What we do here is to mark the in-core inode as clean with respect to inode 4690 * dirtiness (it may still be data-dirty). 4691 * This means that the in-core inode may be reaped by prune_icache 4692 * without having to perform any I/O. This is a very good thing, 4693 * because *any* task may call prune_icache - even ones which 4694 * have a transaction open against a different journal. 4695 * 4696 * Is this cheating? Not really. Sure, we haven't written the 4697 * inode out, but prune_icache isn't a user-visible syncing function. 4698 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4699 * we start and wait on commits. 4700 * 4701 * Is this efficient/effective? Well, we're being nice to the system 4702 * by cleaning up our inodes proactively so they can be reaped 4703 * without I/O. But we are potentially leaving up to five seconds' 4704 * worth of inodes floating about which prune_icache wants us to 4705 * write out. One way to fix that would be to get prune_icache() 4706 * to do a write_super() to free up some memory. It has the desired 4707 * effect. 4708 */ 4709 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4710 { 4711 struct ext4_iloc iloc; 4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4713 static unsigned int mnt_count; 4714 int err, ret; 4715 4716 might_sleep(); 4717 err = ext4_reserve_inode_write(handle, inode, &iloc); 4718 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4719 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4720 /* 4721 * We need extra buffer credits since we may write into EA block 4722 * with this same handle. If journal_extend fails, then it will 4723 * only result in a minor loss of functionality for that inode. 4724 * If this is felt to be critical, then e2fsck should be run to 4725 * force a large enough s_min_extra_isize. 4726 */ 4727 if ((jbd2_journal_extend(handle, 4728 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4729 ret = ext4_expand_extra_isize(inode, 4730 sbi->s_want_extra_isize, 4731 iloc, handle); 4732 if (ret) { 4733 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4734 if (mnt_count != 4735 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4736 ext4_warning(inode->i_sb, __func__, 4737 "Unable to expand inode %lu. Delete" 4738 " some EAs or run e2fsck.", 4739 inode->i_ino); 4740 mnt_count = 4741 le16_to_cpu(sbi->s_es->s_mnt_count); 4742 } 4743 } 4744 } 4745 } 4746 if (!err) 4747 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4748 return err; 4749 } 4750 4751 /* 4752 * ext4_dirty_inode() is called from __mark_inode_dirty() 4753 * 4754 * We're really interested in the case where a file is being extended. 4755 * i_size has been changed by generic_commit_write() and we thus need 4756 * to include the updated inode in the current transaction. 4757 * 4758 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4759 * are allocated to the file. 4760 * 4761 * If the inode is marked synchronous, we don't honour that here - doing 4762 * so would cause a commit on atime updates, which we don't bother doing. 4763 * We handle synchronous inodes at the highest possible level. 4764 */ 4765 void ext4_dirty_inode(struct inode *inode) 4766 { 4767 handle_t *current_handle = ext4_journal_current_handle(); 4768 handle_t *handle; 4769 4770 handle = ext4_journal_start(inode, 2); 4771 if (IS_ERR(handle)) 4772 goto out; 4773 if (current_handle && 4774 current_handle->h_transaction != handle->h_transaction) { 4775 /* This task has a transaction open against a different fs */ 4776 printk(KERN_EMERG "%s: transactions do not match!\n", 4777 __func__); 4778 } else { 4779 jbd_debug(5, "marking dirty. outer handle=%p\n", 4780 current_handle); 4781 ext4_mark_inode_dirty(handle, inode); 4782 } 4783 ext4_journal_stop(handle); 4784 out: 4785 return; 4786 } 4787 4788 #if 0 4789 /* 4790 * Bind an inode's backing buffer_head into this transaction, to prevent 4791 * it from being flushed to disk early. Unlike 4792 * ext4_reserve_inode_write, this leaves behind no bh reference and 4793 * returns no iloc structure, so the caller needs to repeat the iloc 4794 * lookup to mark the inode dirty later. 4795 */ 4796 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4797 { 4798 struct ext4_iloc iloc; 4799 4800 int err = 0; 4801 if (handle) { 4802 err = ext4_get_inode_loc(inode, &iloc); 4803 if (!err) { 4804 BUFFER_TRACE(iloc.bh, "get_write_access"); 4805 err = jbd2_journal_get_write_access(handle, iloc.bh); 4806 if (!err) 4807 err = ext4_journal_dirty_metadata(handle, 4808 iloc.bh); 4809 brelse(iloc.bh); 4810 } 4811 } 4812 ext4_std_error(inode->i_sb, err); 4813 return err; 4814 } 4815 #endif 4816 4817 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4818 { 4819 journal_t *journal; 4820 handle_t *handle; 4821 int err; 4822 4823 /* 4824 * We have to be very careful here: changing a data block's 4825 * journaling status dynamically is dangerous. If we write a 4826 * data block to the journal, change the status and then delete 4827 * that block, we risk forgetting to revoke the old log record 4828 * from the journal and so a subsequent replay can corrupt data. 4829 * So, first we make sure that the journal is empty and that 4830 * nobody is changing anything. 4831 */ 4832 4833 journal = EXT4_JOURNAL(inode); 4834 if (is_journal_aborted(journal)) 4835 return -EROFS; 4836 4837 jbd2_journal_lock_updates(journal); 4838 jbd2_journal_flush(journal); 4839 4840 /* 4841 * OK, there are no updates running now, and all cached data is 4842 * synced to disk. We are now in a completely consistent state 4843 * which doesn't have anything in the journal, and we know that 4844 * no filesystem updates are running, so it is safe to modify 4845 * the inode's in-core data-journaling state flag now. 4846 */ 4847 4848 if (val) 4849 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4850 else 4851 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4852 ext4_set_aops(inode); 4853 4854 jbd2_journal_unlock_updates(journal); 4855 4856 /* Finally we can mark the inode as dirty. */ 4857 4858 handle = ext4_journal_start(inode, 1); 4859 if (IS_ERR(handle)) 4860 return PTR_ERR(handle); 4861 4862 err = ext4_mark_inode_dirty(handle, inode); 4863 handle->h_sync = 1; 4864 ext4_journal_stop(handle); 4865 ext4_std_error(inode->i_sb, err); 4866 4867 return err; 4868 } 4869 4870 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4871 { 4872 return !buffer_mapped(bh); 4873 } 4874 4875 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4876 { 4877 loff_t size; 4878 unsigned long len; 4879 int ret = -EINVAL; 4880 struct file *file = vma->vm_file; 4881 struct inode *inode = file->f_path.dentry->d_inode; 4882 struct address_space *mapping = inode->i_mapping; 4883 4884 /* 4885 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4886 * get i_mutex because we are already holding mmap_sem. 4887 */ 4888 down_read(&inode->i_alloc_sem); 4889 size = i_size_read(inode); 4890 if (page->mapping != mapping || size <= page_offset(page) 4891 || !PageUptodate(page)) { 4892 /* page got truncated from under us? */ 4893 goto out_unlock; 4894 } 4895 ret = 0; 4896 if (PageMappedToDisk(page)) 4897 goto out_unlock; 4898 4899 if (page->index == size >> PAGE_CACHE_SHIFT) 4900 len = size & ~PAGE_CACHE_MASK; 4901 else 4902 len = PAGE_CACHE_SIZE; 4903 4904 if (page_has_buffers(page)) { 4905 /* return if we have all the buffers mapped */ 4906 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4907 ext4_bh_unmapped)) 4908 goto out_unlock; 4909 } 4910 /* 4911 * OK, we need to fill the hole... Do write_begin write_end 4912 * to do block allocation/reservation.We are not holding 4913 * inode.i__mutex here. That allow * parallel write_begin, 4914 * write_end call. lock_page prevent this from happening 4915 * on the same page though 4916 */ 4917 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4918 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL); 4919 if (ret < 0) 4920 goto out_unlock; 4921 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4922 len, len, page, NULL); 4923 if (ret < 0) 4924 goto out_unlock; 4925 ret = 0; 4926 out_unlock: 4927 up_read(&inode->i_alloc_sem); 4928 return ret; 4929 } 4930