xref: /openbmc/linux/fs/ext4/inode.c (revision 6bc6e63fcd7dac9e633ea29f1fddd9580ab28f3f)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43 
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45 
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 					      loff_t new_size)
48 {
49 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 						   new_size);
51 }
52 
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 		(inode->i_sb->s_blocksize >> 9) : 0;
62 
63 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65 
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 			struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78 	int err;
79 
80 	might_sleep();
81 
82 	BUFFER_TRACE(bh, "enter");
83 
84 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 		  "data mode %lx\n",
86 		  bh, is_metadata, inode->i_mode,
87 		  test_opt(inode->i_sb, DATA_FLAGS));
88 
89 	/* Never use the revoke function if we are doing full data
90 	 * journaling: there is no need to, and a V1 superblock won't
91 	 * support it.  Otherwise, only skip the revoke on un-journaled
92 	 * data blocks. */
93 
94 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 	    (!is_metadata && !ext4_should_journal_data(inode))) {
96 		if (bh) {
97 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 			return ext4_journal_forget(handle, bh);
99 		}
100 		return 0;
101 	}
102 
103 	/*
104 	 * data!=journal && (is_metadata || should_journal_data(inode))
105 	 */
106 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 	err = ext4_journal_revoke(handle, blocknr, bh);
108 	if (err)
109 		ext4_abort(inode->i_sb, __func__,
110 			   "error %d when attempting revoke", err);
111 	BUFFER_TRACE(bh, "exit");
112 	return err;
113 }
114 
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121 	ext4_lblk_t needed;
122 
123 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124 
125 	/* Give ourselves just enough room to cope with inodes in which
126 	 * i_blocks is corrupt: we've seen disk corruptions in the past
127 	 * which resulted in random data in an inode which looked enough
128 	 * like a regular file for ext4 to try to delete it.  Things
129 	 * will go a bit crazy if that happens, but at least we should
130 	 * try not to panic the whole kernel. */
131 	if (needed < 2)
132 		needed = 2;
133 
134 	/* But we need to bound the transaction so we don't overflow the
135 	 * journal. */
136 	if (needed > EXT4_MAX_TRANS_DATA)
137 		needed = EXT4_MAX_TRANS_DATA;
138 
139 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141 
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154 	handle_t *result;
155 
156 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 	if (!IS_ERR(result))
158 		return result;
159 
160 	ext4_std_error(inode->i_sb, PTR_ERR(result));
161 	return result;
162 }
163 
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 		return 0;
174 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 		return 0;
176 	return 1;
177 }
178 
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186 	jbd_debug(2, "restarting handle %p\n", handle);
187 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189 
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195 	handle_t *handle;
196 	int err;
197 
198 	if (ext4_should_order_data(inode))
199 		ext4_begin_ordered_truncate(inode, 0);
200 	truncate_inode_pages(&inode->i_data, 0);
201 
202 	if (is_bad_inode(inode))
203 		goto no_delete;
204 
205 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 	if (IS_ERR(handle)) {
207 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
208 		/*
209 		 * If we're going to skip the normal cleanup, we still need to
210 		 * make sure that the in-core orphan linked list is properly
211 		 * cleaned up.
212 		 */
213 		ext4_orphan_del(NULL, inode);
214 		goto no_delete;
215 	}
216 
217 	if (IS_SYNC(inode))
218 		handle->h_sync = 1;
219 	inode->i_size = 0;
220 	err = ext4_mark_inode_dirty(handle, inode);
221 	if (err) {
222 		ext4_warning(inode->i_sb, __func__,
223 			     "couldn't mark inode dirty (err %d)", err);
224 		goto stop_handle;
225 	}
226 	if (inode->i_blocks)
227 		ext4_truncate(inode);
228 
229 	/*
230 	 * ext4_ext_truncate() doesn't reserve any slop when it
231 	 * restarts journal transactions; therefore there may not be
232 	 * enough credits left in the handle to remove the inode from
233 	 * the orphan list and set the dtime field.
234 	 */
235 	if (handle->h_buffer_credits < 3) {
236 		err = ext4_journal_extend(handle, 3);
237 		if (err > 0)
238 			err = ext4_journal_restart(handle, 3);
239 		if (err != 0) {
240 			ext4_warning(inode->i_sb, __func__,
241 				     "couldn't extend journal (err %d)", err);
242 		stop_handle:
243 			ext4_journal_stop(handle);
244 			goto no_delete;
245 		}
246 	}
247 
248 	/*
249 	 * Kill off the orphan record which ext4_truncate created.
250 	 * AKPM: I think this can be inside the above `if'.
251 	 * Note that ext4_orphan_del() has to be able to cope with the
252 	 * deletion of a non-existent orphan - this is because we don't
253 	 * know if ext4_truncate() actually created an orphan record.
254 	 * (Well, we could do this if we need to, but heck - it works)
255 	 */
256 	ext4_orphan_del(handle, inode);
257 	EXT4_I(inode)->i_dtime	= get_seconds();
258 
259 	/*
260 	 * One subtle ordering requirement: if anything has gone wrong
261 	 * (transaction abort, IO errors, whatever), then we can still
262 	 * do these next steps (the fs will already have been marked as
263 	 * having errors), but we can't free the inode if the mark_dirty
264 	 * fails.
265 	 */
266 	if (ext4_mark_inode_dirty(handle, inode))
267 		/* If that failed, just do the required in-core inode clear. */
268 		clear_inode(inode);
269 	else
270 		ext4_free_inode(handle, inode);
271 	ext4_journal_stop(handle);
272 	return;
273 no_delete:
274 	clear_inode(inode);	/* We must guarantee clearing of inode... */
275 }
276 
277 typedef struct {
278 	__le32	*p;
279 	__le32	key;
280 	struct buffer_head *bh;
281 } Indirect;
282 
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285 	p->key = *(p->p = v);
286 	p->bh = bh;
287 }
288 
289 /**
290  *	ext4_block_to_path - parse the block number into array of offsets
291  *	@inode: inode in question (we are only interested in its superblock)
292  *	@i_block: block number to be parsed
293  *	@offsets: array to store the offsets in
294  *	@boundary: set this non-zero if the referred-to block is likely to be
295  *	       followed (on disk) by an indirect block.
296  *
297  *	To store the locations of file's data ext4 uses a data structure common
298  *	for UNIX filesystems - tree of pointers anchored in the inode, with
299  *	data blocks at leaves and indirect blocks in intermediate nodes.
300  *	This function translates the block number into path in that tree -
301  *	return value is the path length and @offsets[n] is the offset of
302  *	pointer to (n+1)th node in the nth one. If @block is out of range
303  *	(negative or too large) warning is printed and zero returned.
304  *
305  *	Note: function doesn't find node addresses, so no IO is needed. All
306  *	we need to know is the capacity of indirect blocks (taken from the
307  *	inode->i_sb).
308  */
309 
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319 
320 static int ext4_block_to_path(struct inode *inode,
321 			ext4_lblk_t i_block,
322 			ext4_lblk_t offsets[4], int *boundary)
323 {
324 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 	const long direct_blocks = EXT4_NDIR_BLOCKS,
327 		indirect_blocks = ptrs,
328 		double_blocks = (1 << (ptrs_bits * 2));
329 	int n = 0;
330 	int final = 0;
331 
332 	if (i_block < 0) {
333 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 	} else if (i_block < direct_blocks) {
335 		offsets[n++] = i_block;
336 		final = direct_blocks;
337 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
338 		offsets[n++] = EXT4_IND_BLOCK;
339 		offsets[n++] = i_block;
340 		final = ptrs;
341 	} else if ((i_block -= indirect_blocks) < double_blocks) {
342 		offsets[n++] = EXT4_DIND_BLOCK;
343 		offsets[n++] = i_block >> ptrs_bits;
344 		offsets[n++] = i_block & (ptrs - 1);
345 		final = ptrs;
346 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 		offsets[n++] = EXT4_TIND_BLOCK;
348 		offsets[n++] = i_block >> (ptrs_bits * 2);
349 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 		offsets[n++] = i_block & (ptrs - 1);
351 		final = ptrs;
352 	} else {
353 		ext4_warning(inode->i_sb, "ext4_block_to_path",
354 				"block %lu > max",
355 				i_block + direct_blocks +
356 				indirect_blocks + double_blocks);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 /**
364  *	ext4_get_branch - read the chain of indirect blocks leading to data
365  *	@inode: inode in question
366  *	@depth: depth of the chain (1 - direct pointer, etc.)
367  *	@offsets: offsets of pointers in inode/indirect blocks
368  *	@chain: place to store the result
369  *	@err: here we store the error value
370  *
371  *	Function fills the array of triples <key, p, bh> and returns %NULL
372  *	if everything went OK or the pointer to the last filled triple
373  *	(incomplete one) otherwise. Upon the return chain[i].key contains
374  *	the number of (i+1)-th block in the chain (as it is stored in memory,
375  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *	number (it points into struct inode for i==0 and into the bh->b_data
377  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *	block for i>0 and NULL for i==0. In other words, it holds the block
379  *	numbers of the chain, addresses they were taken from (and where we can
380  *	verify that chain did not change) and buffer_heads hosting these
381  *	numbers.
382  *
383  *	Function stops when it stumbles upon zero pointer (absent block)
384  *		(pointer to last triple returned, *@err == 0)
385  *	or when it gets an IO error reading an indirect block
386  *		(ditto, *@err == -EIO)
387  *	or when it reads all @depth-1 indirect blocks successfully and finds
388  *	the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 				 ext4_lblk_t  *offsets,
395 				 Indirect chain[4], int *err)
396 {
397 	struct super_block *sb = inode->i_sb;
398 	Indirect *p = chain;
399 	struct buffer_head *bh;
400 
401 	*err = 0;
402 	/* i_data is not going away, no lock needed */
403 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 	if (!p->key)
405 		goto no_block;
406 	while (--depth) {
407 		bh = sb_bread(sb, le32_to_cpu(p->key));
408 		if (!bh)
409 			goto failure;
410 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 		/* Reader: end */
412 		if (!p->key)
413 			goto no_block;
414 	}
415 	return NULL;
416 
417 failure:
418 	*err = -EIO;
419 no_block:
420 	return p;
421 }
422 
423 /**
424  *	ext4_find_near - find a place for allocation with sufficient locality
425  *	@inode: owner
426  *	@ind: descriptor of indirect block.
427  *
428  *	This function returns the preferred place for block allocation.
429  *	It is used when heuristic for sequential allocation fails.
430  *	Rules are:
431  *	  + if there is a block to the left of our position - allocate near it.
432  *	  + if pointer will live in indirect block - allocate near that block.
433  *	  + if pointer will live in inode - allocate in the same
434  *	    cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *	Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445 	struct ext4_inode_info *ei = EXT4_I(inode);
446 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 	__le32 *p;
448 	ext4_fsblk_t bg_start;
449 	ext4_fsblk_t last_block;
450 	ext4_grpblk_t colour;
451 
452 	/* Try to find previous block */
453 	for (p = ind->p - 1; p >= start; p--) {
454 		if (*p)
455 			return le32_to_cpu(*p);
456 	}
457 
458 	/* No such thing, so let's try location of indirect block */
459 	if (ind->bh)
460 		return ind->bh->b_blocknr;
461 
462 	/*
463 	 * It is going to be referred to from the inode itself? OK, just put it
464 	 * into the same cylinder group then.
465 	 */
466 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468 
469 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 		colour = (current->pid % 16) *
471 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 	else
473 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 	return bg_start + colour;
475 }
476 
477 /**
478  *	ext4_find_goal - find a preferred place for allocation.
479  *	@inode: owner
480  *	@block:  block we want
481  *	@partial: pointer to the last triple within a chain
482  *
483  *	Normally this function find the preferred place for block allocation,
484  *	returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 		Indirect *partial)
488 {
489 	struct ext4_block_alloc_info *block_i;
490 
491 	block_i =  EXT4_I(inode)->i_block_alloc_info;
492 
493 	/*
494 	 * try the heuristic for sequential allocation,
495 	 * failing that at least try to get decent locality.
496 	 */
497 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 		&& (block_i->last_alloc_physical_block != 0)) {
499 		return block_i->last_alloc_physical_block + 1;
500 	}
501 
502 	return ext4_find_near(inode, partial);
503 }
504 
505 /**
506  *	ext4_blks_to_allocate: Look up the block map and count the number
507  *	of direct blocks need to be allocated for the given branch.
508  *
509  *	@branch: chain of indirect blocks
510  *	@k: number of blocks need for indirect blocks
511  *	@blks: number of data blocks to be mapped.
512  *	@blocks_to_boundary:  the offset in the indirect block
513  *
514  *	return the total number of blocks to be allocate, including the
515  *	direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 		int blocks_to_boundary)
519 {
520 	unsigned long count = 0;
521 
522 	/*
523 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 	 * then it's clear blocks on that path have not allocated
525 	 */
526 	if (k > 0) {
527 		/* right now we don't handle cross boundary allocation */
528 		if (blks < blocks_to_boundary + 1)
529 			count += blks;
530 		else
531 			count += blocks_to_boundary + 1;
532 		return count;
533 	}
534 
535 	count++;
536 	while (count < blks && count <= blocks_to_boundary &&
537 		le32_to_cpu(*(branch[0].p + count)) == 0) {
538 		count++;
539 	}
540 	return count;
541 }
542 
543 /**
544  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *	@indirect_blks: the number of blocks need to allocate for indirect
546  *			blocks
547  *
548  *	@new_blocks: on return it will store the new block numbers for
549  *	the indirect blocks(if needed) and the first direct block,
550  *	@blks:	on return it will store the total number of allocated
551  *		direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 				ext4_lblk_t iblock, ext4_fsblk_t goal,
555 				int indirect_blks, int blks,
556 				ext4_fsblk_t new_blocks[4], int *err)
557 {
558 	int target, i;
559 	unsigned long count = 0, blk_allocated = 0;
560 	int index = 0;
561 	ext4_fsblk_t current_block = 0;
562 	int ret = 0;
563 
564 	/*
565 	 * Here we try to allocate the requested multiple blocks at once,
566 	 * on a best-effort basis.
567 	 * To build a branch, we should allocate blocks for
568 	 * the indirect blocks(if not allocated yet), and at least
569 	 * the first direct block of this branch.  That's the
570 	 * minimum number of blocks need to allocate(required)
571 	 */
572 	/* first we try to allocate the indirect blocks */
573 	target = indirect_blks;
574 	while (target > 0) {
575 		count = target;
576 		/* allocating blocks for indirect blocks and direct blocks */
577 		current_block = ext4_new_meta_blocks(handle, inode,
578 							goal, &count, err);
579 		if (*err)
580 			goto failed_out;
581 
582 		target -= count;
583 		/* allocate blocks for indirect blocks */
584 		while (index < indirect_blks && count) {
585 			new_blocks[index++] = current_block++;
586 			count--;
587 		}
588 		if (count > 0) {
589 			/*
590 			 * save the new block number
591 			 * for the first direct block
592 			 */
593 			new_blocks[index] = current_block;
594 			printk(KERN_INFO "%s returned more blocks than "
595 						"requested\n", __func__);
596 			WARN_ON(1);
597 			break;
598 		}
599 	}
600 
601 	target = blks - count ;
602 	blk_allocated = count;
603 	if (!target)
604 		goto allocated;
605 	/* Now allocate data blocks */
606 	count = target;
607 	/* allocating blocks for data blocks */
608 	current_block = ext4_new_blocks(handle, inode, iblock,
609 						goal, &count, err);
610 	if (*err && (target == blks)) {
611 		/*
612 		 * if the allocation failed and we didn't allocate
613 		 * any blocks before
614 		 */
615 		goto failed_out;
616 	}
617 	if (!*err) {
618 		if (target == blks) {
619 		/*
620 		 * save the new block number
621 		 * for the first direct block
622 		 */
623 			new_blocks[index] = current_block;
624 		}
625 		blk_allocated += count;
626 	}
627 allocated:
628 	/* total number of blocks allocated for direct blocks */
629 	ret = blk_allocated;
630 	*err = 0;
631 	return ret;
632 failed_out:
633 	for (i = 0; i < index; i++)
634 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 	return ret;
636 }
637 
638 /**
639  *	ext4_alloc_branch - allocate and set up a chain of blocks.
640  *	@inode: owner
641  *	@indirect_blks: number of allocated indirect blocks
642  *	@blks: number of allocated direct blocks
643  *	@offsets: offsets (in the blocks) to store the pointers to next.
644  *	@branch: place to store the chain in.
645  *
646  *	This function allocates blocks, zeroes out all but the last one,
647  *	links them into chain and (if we are synchronous) writes them to disk.
648  *	In other words, it prepares a branch that can be spliced onto the
649  *	inode. It stores the information about that chain in the branch[], in
650  *	the same format as ext4_get_branch() would do. We are calling it after
651  *	we had read the existing part of chain and partial points to the last
652  *	triple of that (one with zero ->key). Upon the exit we have the same
653  *	picture as after the successful ext4_get_block(), except that in one
654  *	place chain is disconnected - *branch->p is still zero (we did not
655  *	set the last link), but branch->key contains the number that should
656  *	be placed into *branch->p to fill that gap.
657  *
658  *	If allocation fails we free all blocks we've allocated (and forget
659  *	their buffer_heads) and return the error value the from failed
660  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *	as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 				ext4_lblk_t iblock, int indirect_blks,
665 				int *blks, ext4_fsblk_t goal,
666 				ext4_lblk_t *offsets, Indirect *branch)
667 {
668 	int blocksize = inode->i_sb->s_blocksize;
669 	int i, n = 0;
670 	int err = 0;
671 	struct buffer_head *bh;
672 	int num;
673 	ext4_fsblk_t new_blocks[4];
674 	ext4_fsblk_t current_block;
675 
676 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 				*blks, new_blocks, &err);
678 	if (err)
679 		return err;
680 
681 	branch[0].key = cpu_to_le32(new_blocks[0]);
682 	/*
683 	 * metadata blocks and data blocks are allocated.
684 	 */
685 	for (n = 1; n <= indirect_blks;  n++) {
686 		/*
687 		 * Get buffer_head for parent block, zero it out
688 		 * and set the pointer to new one, then send
689 		 * parent to disk.
690 		 */
691 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 		branch[n].bh = bh;
693 		lock_buffer(bh);
694 		BUFFER_TRACE(bh, "call get_create_access");
695 		err = ext4_journal_get_create_access(handle, bh);
696 		if (err) {
697 			unlock_buffer(bh);
698 			brelse(bh);
699 			goto failed;
700 		}
701 
702 		memset(bh->b_data, 0, blocksize);
703 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 		branch[n].key = cpu_to_le32(new_blocks[n]);
705 		*branch[n].p = branch[n].key;
706 		if (n == indirect_blks) {
707 			current_block = new_blocks[n];
708 			/*
709 			 * End of chain, update the last new metablock of
710 			 * the chain to point to the new allocated
711 			 * data blocks numbers
712 			 */
713 			for (i=1; i < num; i++)
714 				*(branch[n].p + i) = cpu_to_le32(++current_block);
715 		}
716 		BUFFER_TRACE(bh, "marking uptodate");
717 		set_buffer_uptodate(bh);
718 		unlock_buffer(bh);
719 
720 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 		err = ext4_journal_dirty_metadata(handle, bh);
722 		if (err)
723 			goto failed;
724 	}
725 	*blks = num;
726 	return err;
727 failed:
728 	/* Allocation failed, free what we already allocated */
729 	for (i = 1; i <= n ; i++) {
730 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 		ext4_journal_forget(handle, branch[i].bh);
732 	}
733 	for (i = 0; i < indirect_blks; i++)
734 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735 
736 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737 
738 	return err;
739 }
740 
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *	ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 			ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758 	int i;
759 	int err = 0;
760 	struct ext4_block_alloc_info *block_i;
761 	ext4_fsblk_t current_block;
762 
763 	block_i = EXT4_I(inode)->i_block_alloc_info;
764 	/*
765 	 * If we're splicing into a [td]indirect block (as opposed to the
766 	 * inode) then we need to get write access to the [td]indirect block
767 	 * before the splice.
768 	 */
769 	if (where->bh) {
770 		BUFFER_TRACE(where->bh, "get_write_access");
771 		err = ext4_journal_get_write_access(handle, where->bh);
772 		if (err)
773 			goto err_out;
774 	}
775 	/* That's it */
776 
777 	*where->p = where->key;
778 
779 	/*
780 	 * Update the host buffer_head or inode to point to more just allocated
781 	 * direct blocks blocks
782 	 */
783 	if (num == 0 && blks > 1) {
784 		current_block = le32_to_cpu(where->key) + 1;
785 		for (i = 1; i < blks; i++)
786 			*(where->p + i) = cpu_to_le32(current_block++);
787 	}
788 
789 	/*
790 	 * update the most recently allocated logical & physical block
791 	 * in i_block_alloc_info, to assist find the proper goal block for next
792 	 * allocation
793 	 */
794 	if (block_i) {
795 		block_i->last_alloc_logical_block = block + blks - 1;
796 		block_i->last_alloc_physical_block =
797 				le32_to_cpu(where[num].key) + blks - 1;
798 	}
799 
800 	/* We are done with atomic stuff, now do the rest of housekeeping */
801 
802 	inode->i_ctime = ext4_current_time(inode);
803 	ext4_mark_inode_dirty(handle, inode);
804 
805 	/* had we spliced it onto indirect block? */
806 	if (where->bh) {
807 		/*
808 		 * If we spliced it onto an indirect block, we haven't
809 		 * altered the inode.  Note however that if it is being spliced
810 		 * onto an indirect block at the very end of the file (the
811 		 * file is growing) then we *will* alter the inode to reflect
812 		 * the new i_size.  But that is not done here - it is done in
813 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814 		 */
815 		jbd_debug(5, "splicing indirect only\n");
816 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 		err = ext4_journal_dirty_metadata(handle, where->bh);
818 		if (err)
819 			goto err_out;
820 	} else {
821 		/*
822 		 * OK, we spliced it into the inode itself on a direct block.
823 		 * Inode was dirtied above.
824 		 */
825 		jbd_debug(5, "splicing direct\n");
826 	}
827 	return err;
828 
829 err_out:
830 	for (i = 1; i <= num; i++) {
831 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 		ext4_journal_forget(handle, where[i].bh);
833 		ext4_free_blocks(handle, inode,
834 					le32_to_cpu(where[i-1].key), 1, 0);
835 	}
836 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837 
838 	return err;
839 }
840 
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 		ext4_lblk_t iblock, unsigned long maxblocks,
866 		struct buffer_head *bh_result,
867 		int create, int extend_disksize)
868 {
869 	int err = -EIO;
870 	ext4_lblk_t offsets[4];
871 	Indirect chain[4];
872 	Indirect *partial;
873 	ext4_fsblk_t goal;
874 	int indirect_blks;
875 	int blocks_to_boundary = 0;
876 	int depth;
877 	struct ext4_inode_info *ei = EXT4_I(inode);
878 	int count = 0;
879 	ext4_fsblk_t first_block = 0;
880 	loff_t disksize;
881 
882 
883 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 	J_ASSERT(handle != NULL || create == 0);
885 	depth = ext4_block_to_path(inode, iblock, offsets,
886 					&blocks_to_boundary);
887 
888 	if (depth == 0)
889 		goto out;
890 
891 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892 
893 	/* Simplest case - block found, no allocation needed */
894 	if (!partial) {
895 		first_block = le32_to_cpu(chain[depth - 1].key);
896 		clear_buffer_new(bh_result);
897 		count++;
898 		/*map more blocks*/
899 		while (count < maxblocks && count <= blocks_to_boundary) {
900 			ext4_fsblk_t blk;
901 
902 			blk = le32_to_cpu(*(chain[depth-1].p + count));
903 
904 			if (blk == first_block + count)
905 				count++;
906 			else
907 				break;
908 		}
909 		goto got_it;
910 	}
911 
912 	/* Next simple case - plain lookup or failed read of indirect block */
913 	if (!create || err == -EIO)
914 		goto cleanup;
915 
916 	/*
917 	 * Okay, we need to do block allocation.  Lazily initialize the block
918 	 * allocation info here if necessary
919 	*/
920 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 		ext4_init_block_alloc_info(inode);
922 
923 	goal = ext4_find_goal(inode, iblock, partial);
924 
925 	/* the number of blocks need to allocate for [d,t]indirect blocks */
926 	indirect_blks = (chain + depth) - partial - 1;
927 
928 	/*
929 	 * Next look up the indirect map to count the totoal number of
930 	 * direct blocks to allocate for this branch.
931 	 */
932 	count = ext4_blks_to_allocate(partial, indirect_blks,
933 					maxblocks, blocks_to_boundary);
934 	/*
935 	 * Block out ext4_truncate while we alter the tree
936 	 */
937 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 					&count, goal,
939 					offsets + (partial - chain), partial);
940 
941 	/*
942 	 * The ext4_splice_branch call will free and forget any buffers
943 	 * on the new chain if there is a failure, but that risks using
944 	 * up transaction credits, especially for bitmaps where the
945 	 * credits cannot be returned.  Can we handle this somehow?  We
946 	 * may need to return -EAGAIN upwards in the worst case.  --sct
947 	 */
948 	if (!err)
949 		err = ext4_splice_branch(handle, inode, iblock,
950 					partial, indirect_blks, count);
951 	/*
952 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
953 	 * protect it if you're about to implement concurrent
954 	 * ext4_get_block() -bzzz
955 	*/
956 	if (!err && extend_disksize) {
957 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 		if (disksize > i_size_read(inode))
959 			disksize = i_size_read(inode);
960 		if (disksize > ei->i_disksize)
961 			ei->i_disksize = disksize;
962 	}
963 	if (err)
964 		goto cleanup;
965 
966 	set_buffer_new(bh_result);
967 got_it:
968 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 	if (count > blocks_to_boundary)
970 		set_buffer_boundary(bh_result);
971 	err = count;
972 	/* Clean up and exit */
973 	partial = chain + depth - 1;	/* the whole chain */
974 cleanup:
975 	while (partial > chain) {
976 		BUFFER_TRACE(partial->bh, "call brelse");
977 		brelse(partial->bh);
978 		partial--;
979 	}
980 	BUFFER_TRACE(bh_result, "returned");
981 out:
982 	return err;
983 }
984 
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 	int ind_blks, dind_blks, tind_blks;
993 
994 	/* number of new indirect blocks needed */
995 	ind_blks = (blocks + icap - 1) / icap;
996 
997 	dind_blks = (ind_blks + icap - 1) / icap;
998 
999 	tind_blks = 1;
1000 
1001 	return ind_blks + dind_blks + tind_blks;
1002 }
1003 
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010 	if (!blocks)
1011 		return 0;
1012 
1013 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 		return ext4_ext_calc_metadata_amount(inode, blocks);
1015 
1016 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018 
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 	int total, mdb, mdb_free;
1023 
1024 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 	/* recalculate the number of metablocks still need to be reserved */
1026 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 	mdb = ext4_calc_metadata_amount(inode, total);
1028 
1029 	/* figure out how many metablocks to release */
1030 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032 
1033 	if (mdb_free) {
1034 		/* Account for allocated meta_blocks */
1035 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036 
1037 		/* update fs dirty blocks counter */
1038 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041 	}
1042 
1043 	/* update per-inode reservations */
1044 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1046 
1047 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049 
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 			unsigned long max_blocks, struct buffer_head *bh,
1074 			int create, int extend_disksize, int flag)
1075 {
1076 	int retval;
1077 
1078 	clear_buffer_mapped(bh);
1079 
1080 	/*
1081 	 * Try to see if we can get  the block without requesting
1082 	 * for new file system block.
1083 	 */
1084 	down_read((&EXT4_I(inode)->i_data_sem));
1085 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 				bh, 0, 0);
1088 	} else {
1089 		retval = ext4_get_blocks_handle(handle,
1090 				inode, block, max_blocks, bh, 0, 0);
1091 	}
1092 	up_read((&EXT4_I(inode)->i_data_sem));
1093 
1094 	/* If it is only a block(s) look up */
1095 	if (!create)
1096 		return retval;
1097 
1098 	/*
1099 	 * Returns if the blocks have already allocated
1100 	 *
1101 	 * Note that if blocks have been preallocated
1102 	 * ext4_ext_get_block() returns th create = 0
1103 	 * with buffer head unmapped.
1104 	 */
1105 	if (retval > 0 && buffer_mapped(bh))
1106 		return retval;
1107 
1108 	/*
1109 	 * New blocks allocate and/or writing to uninitialized extent
1110 	 * will possibly result in updating i_data, so we take
1111 	 * the write lock of i_data_sem, and call get_blocks()
1112 	 * with create == 1 flag.
1113 	 */
1114 	down_write((&EXT4_I(inode)->i_data_sem));
1115 
1116 	/*
1117 	 * if the caller is from delayed allocation writeout path
1118 	 * we have already reserved fs blocks for allocation
1119 	 * let the underlying get_block() function know to
1120 	 * avoid double accounting
1121 	 */
1122 	if (flag)
1123 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124 	/*
1125 	 * We need to check for EXT4 here because migrate
1126 	 * could have changed the inode type in between
1127 	 */
1128 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 				bh, create, extend_disksize);
1131 	} else {
1132 		retval = ext4_get_blocks_handle(handle, inode, block,
1133 				max_blocks, bh, create, extend_disksize);
1134 
1135 		if (retval > 0 && buffer_new(bh)) {
1136 			/*
1137 			 * We allocated new blocks which will result in
1138 			 * i_data's format changing.  Force the migrate
1139 			 * to fail by clearing migrate flags
1140 			 */
1141 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 							~EXT4_EXT_MIGRATE;
1143 		}
1144 	}
1145 
1146 	if (flag) {
1147 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148 		/*
1149 		 * Update reserved blocks/metadata blocks
1150 		 * after successful block allocation
1151 		 * which were deferred till now
1152 		 */
1153 		if ((retval > 0) && buffer_delay(bh))
1154 			ext4_da_update_reserve_space(inode, retval);
1155 	}
1156 
1157 	up_write((&EXT4_I(inode)->i_data_sem));
1158 	return retval;
1159 }
1160 
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163 
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165 			struct buffer_head *bh_result, int create)
1166 {
1167 	handle_t *handle = ext4_journal_current_handle();
1168 	int ret = 0, started = 0;
1169 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170 	int dio_credits;
1171 
1172 	if (create && !handle) {
1173 		/* Direct IO write... */
1174 		if (max_blocks > DIO_MAX_BLOCKS)
1175 			max_blocks = DIO_MAX_BLOCKS;
1176 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 		handle = ext4_journal_start(inode, dio_credits);
1178 		if (IS_ERR(handle)) {
1179 			ret = PTR_ERR(handle);
1180 			goto out;
1181 		}
1182 		started = 1;
1183 	}
1184 
1185 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186 					max_blocks, bh_result, create, 0, 0);
1187 	if (ret > 0) {
1188 		bh_result->b_size = (ret << inode->i_blkbits);
1189 		ret = 0;
1190 	}
1191 	if (started)
1192 		ext4_journal_stop(handle);
1193 out:
1194 	return ret;
1195 }
1196 
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201 				ext4_lblk_t block, int create, int *errp)
1202 {
1203 	struct buffer_head dummy;
1204 	int fatal = 0, err;
1205 
1206 	J_ASSERT(handle != NULL || create == 0);
1207 
1208 	dummy.b_state = 0;
1209 	dummy.b_blocknr = -1000;
1210 	buffer_trace_init(&dummy.b_history);
1211 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212 					&dummy, create, 1, 0);
1213 	/*
1214 	 * ext4_get_blocks_handle() returns number of blocks
1215 	 * mapped. 0 in case of a HOLE.
1216 	 */
1217 	if (err > 0) {
1218 		if (err > 1)
1219 			WARN_ON(1);
1220 		err = 0;
1221 	}
1222 	*errp = err;
1223 	if (!err && buffer_mapped(&dummy)) {
1224 		struct buffer_head *bh;
1225 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 		if (!bh) {
1227 			*errp = -EIO;
1228 			goto err;
1229 		}
1230 		if (buffer_new(&dummy)) {
1231 			J_ASSERT(create != 0);
1232 			J_ASSERT(handle != NULL);
1233 
1234 			/*
1235 			 * Now that we do not always journal data, we should
1236 			 * keep in mind whether this should always journal the
1237 			 * new buffer as metadata.  For now, regular file
1238 			 * writes use ext4_get_block instead, so it's not a
1239 			 * problem.
1240 			 */
1241 			lock_buffer(bh);
1242 			BUFFER_TRACE(bh, "call get_create_access");
1243 			fatal = ext4_journal_get_create_access(handle, bh);
1244 			if (!fatal && !buffer_uptodate(bh)) {
1245 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246 				set_buffer_uptodate(bh);
1247 			}
1248 			unlock_buffer(bh);
1249 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 			err = ext4_journal_dirty_metadata(handle, bh);
1251 			if (!fatal)
1252 				fatal = err;
1253 		} else {
1254 			BUFFER_TRACE(bh, "not a new buffer");
1255 		}
1256 		if (fatal) {
1257 			*errp = fatal;
1258 			brelse(bh);
1259 			bh = NULL;
1260 		}
1261 		return bh;
1262 	}
1263 err:
1264 	return NULL;
1265 }
1266 
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268 			       ext4_lblk_t block, int create, int *err)
1269 {
1270 	struct buffer_head *bh;
1271 
1272 	bh = ext4_getblk(handle, inode, block, create, err);
1273 	if (!bh)
1274 		return bh;
1275 	if (buffer_uptodate(bh))
1276 		return bh;
1277 	ll_rw_block(READ_META, 1, &bh);
1278 	wait_on_buffer(bh);
1279 	if (buffer_uptodate(bh))
1280 		return bh;
1281 	put_bh(bh);
1282 	*err = -EIO;
1283 	return NULL;
1284 }
1285 
1286 static int walk_page_buffers(handle_t *handle,
1287 			     struct buffer_head *head,
1288 			     unsigned from,
1289 			     unsigned to,
1290 			     int *partial,
1291 			     int (*fn)(handle_t *handle,
1292 				       struct buffer_head *bh))
1293 {
1294 	struct buffer_head *bh;
1295 	unsigned block_start, block_end;
1296 	unsigned blocksize = head->b_size;
1297 	int err, ret = 0;
1298 	struct buffer_head *next;
1299 
1300 	for (bh = head, block_start = 0;
1301 	     ret == 0 && (bh != head || !block_start);
1302 	     block_start = block_end, bh = next)
1303 	{
1304 		next = bh->b_this_page;
1305 		block_end = block_start + blocksize;
1306 		if (block_end <= from || block_start >= to) {
1307 			if (partial && !buffer_uptodate(bh))
1308 				*partial = 1;
1309 			continue;
1310 		}
1311 		err = (*fn)(handle, bh);
1312 		if (!ret)
1313 			ret = err;
1314 	}
1315 	return ret;
1316 }
1317 
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344 					struct buffer_head *bh)
1345 {
1346 	if (!buffer_mapped(bh) || buffer_freed(bh))
1347 		return 0;
1348 	return ext4_journal_get_write_access(handle, bh);
1349 }
1350 
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 				loff_t pos, unsigned len, unsigned flags,
1353 				struct page **pagep, void **fsdata)
1354 {
1355 	struct inode *inode = mapping->host;
1356 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357 	handle_t *handle;
1358 	int retries = 0;
1359 	struct page *page;
1360  	pgoff_t index;
1361 	unsigned from, to;
1362 
1363  	index = pos >> PAGE_CACHE_SHIFT;
1364 	from = pos & (PAGE_CACHE_SIZE - 1);
1365 	to = from + len;
1366 
1367 retry:
1368 	handle = ext4_journal_start(inode, needed_blocks);
1369 	if (IS_ERR(handle)) {
1370 		ret = PTR_ERR(handle);
1371 		goto out;
1372 	}
1373 
1374 	page = __grab_cache_page(mapping, index);
1375 	if (!page) {
1376 		ext4_journal_stop(handle);
1377 		ret = -ENOMEM;
1378 		goto out;
1379 	}
1380 	*pagep = page;
1381 
1382 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 							ext4_get_block);
1384 
1385 	if (!ret && ext4_should_journal_data(inode)) {
1386 		ret = walk_page_buffers(handle, page_buffers(page),
1387 				from, to, NULL, do_journal_get_write_access);
1388 	}
1389 
1390 	if (ret) {
1391 		unlock_page(page);
1392 		ext4_journal_stop(handle);
1393 		page_cache_release(page);
1394 	}
1395 
1396 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397 		goto retry;
1398 out:
1399 	return ret;
1400 }
1401 
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 {
1405 	if (!buffer_mapped(bh) || buffer_freed(bh))
1406 		return 0;
1407 	set_buffer_uptodate(bh);
1408 	return ext4_journal_dirty_metadata(handle, bh);
1409 }
1410 
1411 /*
1412  * We need to pick up the new inode size which generic_commit_write gave us
1413  * `file' can be NULL - eg, when called from page_symlink().
1414  *
1415  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1416  * buffers are managed internally.
1417  */
1418 static int ext4_ordered_write_end(struct file *file,
1419 				struct address_space *mapping,
1420 				loff_t pos, unsigned len, unsigned copied,
1421 				struct page *page, void *fsdata)
1422 {
1423 	handle_t *handle = ext4_journal_current_handle();
1424 	struct inode *inode = mapping->host;
1425 	int ret = 0, ret2;
1426 
1427 	ret = ext4_jbd2_file_inode(handle, inode);
1428 
1429 	if (ret == 0) {
1430 		/*
1431 		 * generic_write_end() will run mark_inode_dirty() if i_size
1432 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1433 		 * into that.
1434 		 */
1435 		loff_t new_i_size;
1436 
1437 		new_i_size = pos + copied;
1438 		if (new_i_size > EXT4_I(inode)->i_disksize)
1439 			EXT4_I(inode)->i_disksize = new_i_size;
1440 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1441 							page, fsdata);
1442 		copied = ret2;
1443 		if (ret2 < 0)
1444 			ret = ret2;
1445 	}
1446 	ret2 = ext4_journal_stop(handle);
1447 	if (!ret)
1448 		ret = ret2;
1449 
1450 	return ret ? ret : copied;
1451 }
1452 
1453 static int ext4_writeback_write_end(struct file *file,
1454 				struct address_space *mapping,
1455 				loff_t pos, unsigned len, unsigned copied,
1456 				struct page *page, void *fsdata)
1457 {
1458 	handle_t *handle = ext4_journal_current_handle();
1459 	struct inode *inode = mapping->host;
1460 	int ret = 0, ret2;
1461 	loff_t new_i_size;
1462 
1463 	new_i_size = pos + copied;
1464 	if (new_i_size > EXT4_I(inode)->i_disksize)
1465 		EXT4_I(inode)->i_disksize = new_i_size;
1466 
1467 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1468 							page, fsdata);
1469 	copied = ret2;
1470 	if (ret2 < 0)
1471 		ret = ret2;
1472 
1473 	ret2 = ext4_journal_stop(handle);
1474 	if (!ret)
1475 		ret = ret2;
1476 
1477 	return ret ? ret : copied;
1478 }
1479 
1480 static int ext4_journalled_write_end(struct file *file,
1481 				struct address_space *mapping,
1482 				loff_t pos, unsigned len, unsigned copied,
1483 				struct page *page, void *fsdata)
1484 {
1485 	handle_t *handle = ext4_journal_current_handle();
1486 	struct inode *inode = mapping->host;
1487 	int ret = 0, ret2;
1488 	int partial = 0;
1489 	unsigned from, to;
1490 
1491 	from = pos & (PAGE_CACHE_SIZE - 1);
1492 	to = from + len;
1493 
1494 	if (copied < len) {
1495 		if (!PageUptodate(page))
1496 			copied = 0;
1497 		page_zero_new_buffers(page, from+copied, to);
1498 	}
1499 
1500 	ret = walk_page_buffers(handle, page_buffers(page), from,
1501 				to, &partial, write_end_fn);
1502 	if (!partial)
1503 		SetPageUptodate(page);
1504 	if (pos+copied > inode->i_size)
1505 		i_size_write(inode, pos+copied);
1506 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508 		EXT4_I(inode)->i_disksize = inode->i_size;
1509 		ret2 = ext4_mark_inode_dirty(handle, inode);
1510 		if (!ret)
1511 			ret = ret2;
1512 	}
1513 
1514 	unlock_page(page);
1515 	ret2 = ext4_journal_stop(handle);
1516 	if (!ret)
1517 		ret = ret2;
1518 	page_cache_release(page);
1519 
1520 	return ret ? ret : copied;
1521 }
1522 
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525 	int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528 
1529 	/*
1530 	 * recalculate the amount of metadata blocks to reserve
1531 	 * in order to allocate nrblocks
1532 	 * worse case is one extent per block
1533 	 */
1534 repeat:
1535 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 	mdblocks = ext4_calc_metadata_amount(inode, total);
1538 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539 
1540 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 	total = md_needed + nrblocks;
1542 
1543 	if (ext4_claim_free_blocks(sbi, total)) {
1544 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 			yield();
1547 			goto repeat;
1548 		}
1549 		return -ENOSPC;
1550 	}
1551 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553 
1554 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 	return 0;       /* success */
1556 }
1557 
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 	int total, mdb, mdb_free, release;
1562 
1563 	if (!to_free)
1564 		return;		/* Nothing to release, exit */
1565 
1566 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567 
1568 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569 		/*
1570 		 * if there is no reserved blocks, but we try to free some
1571 		 * then the counter is messed up somewhere.
1572 		 * but since this function is called from invalidate
1573 		 * page, it's harmless to return without any action
1574 		 */
1575 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 			    "blocks for inode %lu, but there is no reserved "
1577 			    "data blocks\n", to_free, inode->i_ino);
1578 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 		return;
1580 	}
1581 
1582 	/* recalculate the number of metablocks still need to be reserved */
1583 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 	mdb = ext4_calc_metadata_amount(inode, total);
1585 
1586 	/* figure out how many metablocks to release */
1587 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589 
1590 	release = to_free + mdb_free;
1591 
1592 	/* update fs dirty blocks counter for truncate case */
1593 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594 
1595 	/* update per-inode reservations */
1596 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598 
1599 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603 
1604 static void ext4_da_page_release_reservation(struct page *page,
1605 						unsigned long offset)
1606 {
1607 	int to_release = 0;
1608 	struct buffer_head *head, *bh;
1609 	unsigned int curr_off = 0;
1610 
1611 	head = page_buffers(page);
1612 	bh = head;
1613 	do {
1614 		unsigned int next_off = curr_off + bh->b_size;
1615 
1616 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 			to_release++;
1618 			clear_buffer_delay(bh);
1619 		}
1620 		curr_off = next_off;
1621 	} while ((bh = bh->b_this_page) != head);
1622 	ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624 
1625 /*
1626  * Delayed allocation stuff
1627  */
1628 
1629 struct mpage_da_data {
1630 	struct inode *inode;
1631 	struct buffer_head lbh;			/* extent of blocks */
1632 	unsigned long first_page, next_page;	/* extent of pages */
1633 	get_block_t *get_block;
1634 	struct writeback_control *wbc;
1635 	int io_done;
1636 	long pages_written;
1637 };
1638 
1639 /*
1640  * mpage_da_submit_io - walks through extent of pages and try to write
1641  * them with writepage() call back
1642  *
1643  * @mpd->inode: inode
1644  * @mpd->first_page: first page of the extent
1645  * @mpd->next_page: page after the last page of the extent
1646  * @mpd->get_block: the filesystem's block mapper function
1647  *
1648  * By the time mpage_da_submit_io() is called we expect all blocks
1649  * to be allocated. this may be wrong if allocation failed.
1650  *
1651  * As pages are already locked by write_cache_pages(), we can't use it
1652  */
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654 {
1655 	struct address_space *mapping = mpd->inode->i_mapping;
1656 	int ret = 0, err, nr_pages, i;
1657 	unsigned long index, end;
1658 	struct pagevec pvec;
1659 
1660 	BUG_ON(mpd->next_page <= mpd->first_page);
1661 	pagevec_init(&pvec, 0);
1662 	index = mpd->first_page;
1663 	end = mpd->next_page - 1;
1664 
1665 	while (index <= end) {
1666 		/* XXX: optimize tail */
1667 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668 		if (nr_pages == 0)
1669 			break;
1670 		for (i = 0; i < nr_pages; i++) {
1671 			struct page *page = pvec.pages[i];
1672 
1673 			index = page->index;
1674 			if (index > end)
1675 				break;
1676 			index++;
1677 
1678 			err = mapping->a_ops->writepage(page, mpd->wbc);
1679 			if (!err)
1680 				mpd->pages_written++;
1681 			/*
1682 			 * In error case, we have to continue because
1683 			 * remaining pages are still locked
1684 			 * XXX: unlock and re-dirty them?
1685 			 */
1686 			if (ret == 0)
1687 				ret = err;
1688 		}
1689 		pagevec_release(&pvec);
1690 	}
1691 	return ret;
1692 }
1693 
1694 /*
1695  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1696  *
1697  * @mpd->inode - inode to walk through
1698  * @exbh->b_blocknr - first block on a disk
1699  * @exbh->b_size - amount of space in bytes
1700  * @logical - first logical block to start assignment with
1701  *
1702  * the function goes through all passed space and put actual disk
1703  * block numbers into buffer heads, dropping BH_Delay
1704  */
1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706 				 struct buffer_head *exbh)
1707 {
1708 	struct inode *inode = mpd->inode;
1709 	struct address_space *mapping = inode->i_mapping;
1710 	int blocks = exbh->b_size >> inode->i_blkbits;
1711 	sector_t pblock = exbh->b_blocknr, cur_logical;
1712 	struct buffer_head *head, *bh;
1713 	pgoff_t index, end;
1714 	struct pagevec pvec;
1715 	int nr_pages, i;
1716 
1717 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720 
1721 	pagevec_init(&pvec, 0);
1722 
1723 	while (index <= end) {
1724 		/* XXX: optimize tail */
1725 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726 		if (nr_pages == 0)
1727 			break;
1728 		for (i = 0; i < nr_pages; i++) {
1729 			struct page *page = pvec.pages[i];
1730 
1731 			index = page->index;
1732 			if (index > end)
1733 				break;
1734 			index++;
1735 
1736 			BUG_ON(!PageLocked(page));
1737 			BUG_ON(PageWriteback(page));
1738 			BUG_ON(!page_has_buffers(page));
1739 
1740 			bh = page_buffers(page);
1741 			head = bh;
1742 
1743 			/* skip blocks out of the range */
1744 			do {
1745 				if (cur_logical >= logical)
1746 					break;
1747 				cur_logical++;
1748 			} while ((bh = bh->b_this_page) != head);
1749 
1750 			do {
1751 				if (cur_logical >= logical + blocks)
1752 					break;
1753 				if (buffer_delay(bh)) {
1754 					bh->b_blocknr = pblock;
1755 					clear_buffer_delay(bh);
1756 					bh->b_bdev = inode->i_sb->s_bdev;
1757 				} else if (buffer_unwritten(bh)) {
1758 					bh->b_blocknr = pblock;
1759 					clear_buffer_unwritten(bh);
1760 					set_buffer_mapped(bh);
1761 					set_buffer_new(bh);
1762 					bh->b_bdev = inode->i_sb->s_bdev;
1763 				} else if (buffer_mapped(bh))
1764 					BUG_ON(bh->b_blocknr != pblock);
1765 
1766 				cur_logical++;
1767 				pblock++;
1768 			} while ((bh = bh->b_this_page) != head);
1769 		}
1770 		pagevec_release(&pvec);
1771 	}
1772 }
1773 
1774 
1775 /*
1776  * __unmap_underlying_blocks - just a helper function to unmap
1777  * set of blocks described by @bh
1778  */
1779 static inline void __unmap_underlying_blocks(struct inode *inode,
1780 					     struct buffer_head *bh)
1781 {
1782 	struct block_device *bdev = inode->i_sb->s_bdev;
1783 	int blocks, i;
1784 
1785 	blocks = bh->b_size >> inode->i_blkbits;
1786 	for (i = 0; i < blocks; i++)
1787 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1788 }
1789 
1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791 					sector_t logical, long blk_cnt)
1792 {
1793 	int nr_pages, i;
1794 	pgoff_t index, end;
1795 	struct pagevec pvec;
1796 	struct inode *inode = mpd->inode;
1797 	struct address_space *mapping = inode->i_mapping;
1798 
1799 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800 	end   = (logical + blk_cnt - 1) >>
1801 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1802 	while (index <= end) {
1803 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804 		if (nr_pages == 0)
1805 			break;
1806 		for (i = 0; i < nr_pages; i++) {
1807 			struct page *page = pvec.pages[i];
1808 			index = page->index;
1809 			if (index > end)
1810 				break;
1811 			index++;
1812 
1813 			BUG_ON(!PageLocked(page));
1814 			BUG_ON(PageWriteback(page));
1815 			block_invalidatepage(page, 0);
1816 			ClearPageUptodate(page);
1817 			unlock_page(page);
1818 		}
1819 	}
1820 	return;
1821 }
1822 
1823 /*
1824  * mpage_da_map_blocks - go through given space
1825  *
1826  * @mpd->lbh - bh describing space
1827  * @mpd->get_block - the filesystem's block mapper function
1828  *
1829  * The function skips space we know is already mapped to disk blocks.
1830  *
1831  */
1832 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1833 {
1834 	int err = 0;
1835 	struct buffer_head new;
1836 	struct buffer_head *lbh = &mpd->lbh;
1837 	sector_t next = lbh->b_blocknr;
1838 
1839 	/*
1840 	 * We consider only non-mapped and non-allocated blocks
1841 	 */
1842 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1843 		return 0;
1844 	new.b_state = lbh->b_state;
1845 	new.b_blocknr = 0;
1846 	new.b_size = lbh->b_size;
1847 	/*
1848 	 * If we didn't accumulate anything
1849 	 * to write simply return
1850 	 */
1851 	if (!new.b_size)
1852 		return 0;
1853 	err = mpd->get_block(mpd->inode, next, &new, 1);
1854 	if (err) {
1855 
1856 		/* If get block returns with error
1857 		 * we simply return. Later writepage
1858 		 * will redirty the page and writepages
1859 		 * will find the dirty page again
1860 		 */
1861 		if (err == -EAGAIN)
1862 			return 0;
1863 		/*
1864 		 * get block failure will cause us
1865 		 * to loop in writepages. Because
1866 		 * a_ops->writepage won't be able to
1867 		 * make progress. The page will be redirtied
1868 		 * by writepage and writepages will again
1869 		 * try to write the same.
1870 		 */
1871 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872 				  "at logical offset %llu with max blocks "
1873 				  "%zd with error %d\n",
1874 				  __func__, mpd->inode->i_ino,
1875 				  (unsigned long long)next,
1876 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1877 		printk(KERN_EMERG "This should not happen.!! "
1878 					"Data will be lost\n");
1879 		if (err == -ENOSPC) {
1880 			printk(KERN_CRIT "Total free blocks count %lld\n",
1881 				ext4_count_free_blocks(mpd->inode->i_sb));
1882 		}
1883 		/* invlaidate all the pages */
1884 		ext4_da_block_invalidatepages(mpd, next,
1885 				lbh->b_size >> mpd->inode->i_blkbits);
1886 		return err;
1887 	}
1888 	BUG_ON(new.b_size == 0);
1889 
1890 	if (buffer_new(&new))
1891 		__unmap_underlying_blocks(mpd->inode, &new);
1892 
1893 	/*
1894 	 * If blocks are delayed marked, we need to
1895 	 * put actual blocknr and drop delayed bit
1896 	 */
1897 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898 		mpage_put_bnr_to_bhs(mpd, next, &new);
1899 
1900 	return 0;
1901 }
1902 
1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904 		(1 << BH_Delay) | (1 << BH_Unwritten))
1905 
1906 /*
1907  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1908  *
1909  * @mpd->lbh - extent of blocks
1910  * @logical - logical number of the block in the file
1911  * @bh - bh of the block (used to access block's state)
1912  *
1913  * the function is used to collect contig. blocks in same state
1914  */
1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916 				   sector_t logical, struct buffer_head *bh)
1917 {
1918 	sector_t next;
1919 	size_t b_size = bh->b_size;
1920 	struct buffer_head *lbh = &mpd->lbh;
1921 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1922 
1923 	/* check if thereserved journal credits might overflow */
1924 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1926 			/*
1927 			 * With non-extent format we are limited by the journal
1928 			 * credit available.  Total credit needed to insert
1929 			 * nrblocks contiguous blocks is dependent on the
1930 			 * nrblocks.  So limit nrblocks.
1931 			 */
1932 			goto flush_it;
1933 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934 				EXT4_MAX_TRANS_DATA) {
1935 			/*
1936 			 * Adding the new buffer_head would make it cross the
1937 			 * allowed limit for which we have journal credit
1938 			 * reserved. So limit the new bh->b_size
1939 			 */
1940 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941 						mpd->inode->i_blkbits;
1942 			/* we will do mpage_da_submit_io in the next loop */
1943 		}
1944 	}
1945 	/*
1946 	 * First block in the extent
1947 	 */
1948 	if (lbh->b_size == 0) {
1949 		lbh->b_blocknr = logical;
1950 		lbh->b_size = b_size;
1951 		lbh->b_state = bh->b_state & BH_FLAGS;
1952 		return;
1953 	}
1954 
1955 	next = lbh->b_blocknr + nrblocks;
1956 	/*
1957 	 * Can we merge the block to our big extent?
1958 	 */
1959 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1960 		lbh->b_size += b_size;
1961 		return;
1962 	}
1963 
1964 flush_it:
1965 	/*
1966 	 * We couldn't merge the block to our extent, so we
1967 	 * need to flush current  extent and start new one
1968 	 */
1969 	if (mpage_da_map_blocks(mpd) == 0)
1970 		mpage_da_submit_io(mpd);
1971 	mpd->io_done = 1;
1972 	return;
1973 }
1974 
1975 /*
1976  * __mpage_da_writepage - finds extent of pages and blocks
1977  *
1978  * @page: page to consider
1979  * @wbc: not used, we just follow rules
1980  * @data: context
1981  *
1982  * The function finds extents of pages and scan them for all blocks.
1983  */
1984 static int __mpage_da_writepage(struct page *page,
1985 				struct writeback_control *wbc, void *data)
1986 {
1987 	struct mpage_da_data *mpd = data;
1988 	struct inode *inode = mpd->inode;
1989 	struct buffer_head *bh, *head, fake;
1990 	sector_t logical;
1991 
1992 	if (mpd->io_done) {
1993 		/*
1994 		 * Rest of the page in the page_vec
1995 		 * redirty then and skip then. We will
1996 		 * try to to write them again after
1997 		 * starting a new transaction
1998 		 */
1999 		redirty_page_for_writepage(wbc, page);
2000 		unlock_page(page);
2001 		return MPAGE_DA_EXTENT_TAIL;
2002 	}
2003 	/*
2004 	 * Can we merge this page to current extent?
2005 	 */
2006 	if (mpd->next_page != page->index) {
2007 		/*
2008 		 * Nope, we can't. So, we map non-allocated blocks
2009 		 * and start IO on them using writepage()
2010 		 */
2011 		if (mpd->next_page != mpd->first_page) {
2012 			if (mpage_da_map_blocks(mpd) == 0)
2013 				mpage_da_submit_io(mpd);
2014 			/*
2015 			 * skip rest of the page in the page_vec
2016 			 */
2017 			mpd->io_done = 1;
2018 			redirty_page_for_writepage(wbc, page);
2019 			unlock_page(page);
2020 			return MPAGE_DA_EXTENT_TAIL;
2021 		}
2022 
2023 		/*
2024 		 * Start next extent of pages ...
2025 		 */
2026 		mpd->first_page = page->index;
2027 
2028 		/*
2029 		 * ... and blocks
2030 		 */
2031 		mpd->lbh.b_size = 0;
2032 		mpd->lbh.b_state = 0;
2033 		mpd->lbh.b_blocknr = 0;
2034 	}
2035 
2036 	mpd->next_page = page->index + 1;
2037 	logical = (sector_t) page->index <<
2038 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039 
2040 	if (!page_has_buffers(page)) {
2041 		/*
2042 		 * There is no attached buffer heads yet (mmap?)
2043 		 * we treat the page asfull of dirty blocks
2044 		 */
2045 		bh = &fake;
2046 		bh->b_size = PAGE_CACHE_SIZE;
2047 		bh->b_state = 0;
2048 		set_buffer_dirty(bh);
2049 		set_buffer_uptodate(bh);
2050 		mpage_add_bh_to_extent(mpd, logical, bh);
2051 		if (mpd->io_done)
2052 			return MPAGE_DA_EXTENT_TAIL;
2053 	} else {
2054 		/*
2055 		 * Page with regular buffer heads, just add all dirty ones
2056 		 */
2057 		head = page_buffers(page);
2058 		bh = head;
2059 		do {
2060 			BUG_ON(buffer_locked(bh));
2061 			if (buffer_dirty(bh) &&
2062 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2063 				mpage_add_bh_to_extent(mpd, logical, bh);
2064 				if (mpd->io_done)
2065 					return MPAGE_DA_EXTENT_TAIL;
2066 			}
2067 			logical++;
2068 		} while ((bh = bh->b_this_page) != head);
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /*
2075  * mpage_da_writepages - walk the list of dirty pages of the given
2076  * address space, allocates non-allocated blocks, maps newly-allocated
2077  * blocks to existing bhs and issue IO them
2078  *
2079  * @mapping: address space structure to write
2080  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081  * @get_block: the filesystem's block mapper function.
2082  *
2083  * This is a library function, which implements the writepages()
2084  * address_space_operation.
2085  */
2086 static int mpage_da_writepages(struct address_space *mapping,
2087 			       struct writeback_control *wbc,
2088 			       get_block_t get_block)
2089 {
2090 	struct mpage_da_data mpd;
2091 	long to_write;
2092 	int ret;
2093 
2094 	if (!get_block)
2095 		return generic_writepages(mapping, wbc);
2096 
2097 	mpd.wbc = wbc;
2098 	mpd.inode = mapping->host;
2099 	mpd.lbh.b_size = 0;
2100 	mpd.lbh.b_state = 0;
2101 	mpd.lbh.b_blocknr = 0;
2102 	mpd.first_page = 0;
2103 	mpd.next_page = 0;
2104 	mpd.get_block = get_block;
2105 	mpd.io_done = 0;
2106 	mpd.pages_written = 0;
2107 
2108 	to_write = wbc->nr_to_write;
2109 
2110 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2111 
2112 	/*
2113 	 * Handle last extent of pages
2114 	 */
2115 	if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2116 		if (mpage_da_map_blocks(&mpd) == 0)
2117 			mpage_da_submit_io(&mpd);
2118 	}
2119 
2120 	wbc->nr_to_write = to_write - mpd.pages_written;
2121 	return ret;
2122 }
2123 
2124 /*
2125  * this is a special callback for ->write_begin() only
2126  * it's intention is to return mapped block or reserve space
2127  */
2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129 				  struct buffer_head *bh_result, int create)
2130 {
2131 	int ret = 0;
2132 
2133 	BUG_ON(create == 0);
2134 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2135 
2136 	/*
2137 	 * first, we need to know whether the block is allocated already
2138 	 * preallocated blocks are unmapped but should treated
2139 	 * the same as allocated blocks.
2140 	 */
2141 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2142 	if ((ret == 0) && !buffer_delay(bh_result)) {
2143 		/* the block isn't (pre)allocated yet, let's reserve space */
2144 		/*
2145 		 * XXX: __block_prepare_write() unmaps passed block,
2146 		 * is it OK?
2147 		 */
2148 		ret = ext4_da_reserve_space(inode, 1);
2149 		if (ret)
2150 			/* not enough space to reserve */
2151 			return ret;
2152 
2153 		map_bh(bh_result, inode->i_sb, 0);
2154 		set_buffer_new(bh_result);
2155 		set_buffer_delay(bh_result);
2156 	} else if (ret > 0) {
2157 		bh_result->b_size = (ret << inode->i_blkbits);
2158 		ret = 0;
2159 	}
2160 
2161 	return ret;
2162 }
2163 #define		EXT4_DELALLOC_RSVED	1
2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165 				   struct buffer_head *bh_result, int create)
2166 {
2167 	int ret;
2168 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169 	loff_t disksize = EXT4_I(inode)->i_disksize;
2170 	handle_t *handle = NULL;
2171 
2172 	handle = ext4_journal_current_handle();
2173 	if (!handle) {
2174 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175 				   bh_result, 0, 0, 0);
2176 		BUG_ON(!ret);
2177 	} else {
2178 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2179 				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
2180 	}
2181 
2182 	if (ret > 0) {
2183 		bh_result->b_size = (ret << inode->i_blkbits);
2184 
2185 		/*
2186 		 * Update on-disk size along with block allocation
2187 		 * we don't use 'extend_disksize' as size may change
2188 		 * within already allocated block -bzzz
2189 		 */
2190 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2191 		if (disksize > i_size_read(inode))
2192 			disksize = i_size_read(inode);
2193 		if (disksize > EXT4_I(inode)->i_disksize) {
2194 			/*
2195 			 * XXX: replace with spinlock if seen contended -bzzz
2196 			 */
2197 			down_write(&EXT4_I(inode)->i_data_sem);
2198 			if (disksize > EXT4_I(inode)->i_disksize)
2199 				EXT4_I(inode)->i_disksize = disksize;
2200 			up_write(&EXT4_I(inode)->i_data_sem);
2201 
2202 			if (EXT4_I(inode)->i_disksize == disksize) {
2203 				ret = ext4_mark_inode_dirty(handle, inode);
2204 				return ret;
2205 			}
2206 		}
2207 		ret = 0;
2208 	}
2209 	return ret;
2210 }
2211 
2212 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2213 {
2214 	/*
2215 	 * unmapped buffer is possible for holes.
2216 	 * delay buffer is possible with delayed allocation
2217 	 */
2218 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2219 }
2220 
2221 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2222 				   struct buffer_head *bh_result, int create)
2223 {
2224 	int ret = 0;
2225 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2226 
2227 	/*
2228 	 * we don't want to do block allocation in writepage
2229 	 * so call get_block_wrap with create = 0
2230 	 */
2231 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2232 				   bh_result, 0, 0, 0);
2233 	if (ret > 0) {
2234 		bh_result->b_size = (ret << inode->i_blkbits);
2235 		ret = 0;
2236 	}
2237 	return ret;
2238 }
2239 
2240 /*
2241  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2242  * get called via journal_submit_inode_data_buffers (no journal handle)
2243  * get called via shrink_page_list via pdflush (no journal handle)
2244  * or grab_page_cache when doing write_begin (have journal handle)
2245  */
2246 static int ext4_da_writepage(struct page *page,
2247 				struct writeback_control *wbc)
2248 {
2249 	int ret = 0;
2250 	loff_t size;
2251 	unsigned long len;
2252 	struct buffer_head *page_bufs;
2253 	struct inode *inode = page->mapping->host;
2254 
2255 	size = i_size_read(inode);
2256 	if (page->index == size >> PAGE_CACHE_SHIFT)
2257 		len = size & ~PAGE_CACHE_MASK;
2258 	else
2259 		len = PAGE_CACHE_SIZE;
2260 
2261 	if (page_has_buffers(page)) {
2262 		page_bufs = page_buffers(page);
2263 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2264 					ext4_bh_unmapped_or_delay)) {
2265 			/*
2266 			 * We don't want to do  block allocation
2267 			 * So redirty the page and return
2268 			 * We may reach here when we do a journal commit
2269 			 * via journal_submit_inode_data_buffers.
2270 			 * If we don't have mapping block we just ignore
2271 			 * them. We can also reach here via shrink_page_list
2272 			 */
2273 			redirty_page_for_writepage(wbc, page);
2274 			unlock_page(page);
2275 			return 0;
2276 		}
2277 	} else {
2278 		/*
2279 		 * The test for page_has_buffers() is subtle:
2280 		 * We know the page is dirty but it lost buffers. That means
2281 		 * that at some moment in time after write_begin()/write_end()
2282 		 * has been called all buffers have been clean and thus they
2283 		 * must have been written at least once. So they are all
2284 		 * mapped and we can happily proceed with mapping them
2285 		 * and writing the page.
2286 		 *
2287 		 * Try to initialize the buffer_heads and check whether
2288 		 * all are mapped and non delay. We don't want to
2289 		 * do block allocation here.
2290 		 */
2291 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2292 						ext4_normal_get_block_write);
2293 		if (!ret) {
2294 			page_bufs = page_buffers(page);
2295 			/* check whether all are mapped and non delay */
2296 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2297 						ext4_bh_unmapped_or_delay)) {
2298 				redirty_page_for_writepage(wbc, page);
2299 				unlock_page(page);
2300 				return 0;
2301 			}
2302 		} else {
2303 			/*
2304 			 * We can't do block allocation here
2305 			 * so just redity the page and unlock
2306 			 * and return
2307 			 */
2308 			redirty_page_for_writepage(wbc, page);
2309 			unlock_page(page);
2310 			return 0;
2311 		}
2312 	}
2313 
2314 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2315 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2316 	else
2317 		ret = block_write_full_page(page,
2318 						ext4_normal_get_block_write,
2319 						wbc);
2320 
2321 	return ret;
2322 }
2323 
2324 /*
2325  * This is called via ext4_da_writepages() to
2326  * calulate the total number of credits to reserve to fit
2327  * a single extent allocation into a single transaction,
2328  * ext4_da_writpeages() will loop calling this before
2329  * the block allocation.
2330  */
2331 
2332 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2333 {
2334 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2335 
2336 	/*
2337 	 * With non-extent format the journal credit needed to
2338 	 * insert nrblocks contiguous block is dependent on
2339 	 * number of contiguous block. So we will limit
2340 	 * number of contiguous block to a sane value
2341 	 */
2342 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2343 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2344 		max_blocks = EXT4_MAX_TRANS_DATA;
2345 
2346 	return ext4_chunk_trans_blocks(inode, max_blocks);
2347 }
2348 
2349 static int ext4_da_writepages(struct address_space *mapping,
2350 			      struct writeback_control *wbc)
2351 {
2352 	handle_t *handle = NULL;
2353 	loff_t range_start = 0;
2354 	struct inode *inode = mapping->host;
2355 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2356 	long to_write, pages_skipped = 0;
2357 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2358 
2359 	/*
2360 	 * No pages to write? This is mainly a kludge to avoid starting
2361 	 * a transaction for special inodes like journal inode on last iput()
2362 	 * because that could violate lock ordering on umount
2363 	 */
2364 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2365 		return 0;
2366 	/*
2367 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2368 	 * This make sure small files blocks are allocated in
2369 	 * single attempt. This ensure that small files
2370 	 * get less fragmented.
2371 	 */
2372 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2373 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2374 		wbc->nr_to_write = sbi->s_mb_stream_request;
2375 	}
2376 
2377 	if (!wbc->range_cyclic)
2378 		/*
2379 		 * If range_cyclic is not set force range_cont
2380 		 * and save the old writeback_index
2381 		 */
2382 		wbc->range_cont = 1;
2383 
2384 	range_start =  wbc->range_start;
2385 	pages_skipped = wbc->pages_skipped;
2386 
2387 restart_loop:
2388 	to_write = wbc->nr_to_write;
2389 	while (!ret && to_write > 0) {
2390 
2391 		/*
2392 		 * we  insert one extent at a time. So we need
2393 		 * credit needed for single extent allocation.
2394 		 * journalled mode is currently not supported
2395 		 * by delalloc
2396 		 */
2397 		BUG_ON(ext4_should_journal_data(inode));
2398 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2399 
2400 		/* start a new transaction*/
2401 		handle = ext4_journal_start(inode, needed_blocks);
2402 		if (IS_ERR(handle)) {
2403 			ret = PTR_ERR(handle);
2404 			printk(KERN_EMERG "%s: jbd2_start: "
2405 			       "%ld pages, ino %lu; err %d\n", __func__,
2406 				wbc->nr_to_write, inode->i_ino, ret);
2407 			dump_stack();
2408 			goto out_writepages;
2409 		}
2410 		if (ext4_should_order_data(inode)) {
2411 			/*
2412 			 * With ordered mode we need to add
2413 			 * the inode to the journal handl
2414 			 * when we do block allocation.
2415 			 */
2416 			ret = ext4_jbd2_file_inode(handle, inode);
2417 			if (ret) {
2418 				ext4_journal_stop(handle);
2419 				goto out_writepages;
2420 			}
2421 		}
2422 
2423 		to_write -= wbc->nr_to_write;
2424 		ret = mpage_da_writepages(mapping, wbc,
2425 					  ext4_da_get_block_write);
2426 		ext4_journal_stop(handle);
2427 		if (ret == MPAGE_DA_EXTENT_TAIL) {
2428 			/*
2429 			 * got one extent now try with
2430 			 * rest of the pages
2431 			 */
2432 			to_write += wbc->nr_to_write;
2433 			ret = 0;
2434 		} else if (wbc->nr_to_write) {
2435 			/*
2436 			 * There is no more writeout needed
2437 			 * or we requested for a noblocking writeout
2438 			 * and we found the device congested
2439 			 */
2440 			to_write += wbc->nr_to_write;
2441 			break;
2442 		}
2443 		wbc->nr_to_write = to_write;
2444 	}
2445 
2446 	if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2447 		/* We skipped pages in this loop */
2448 		wbc->range_start = range_start;
2449 		wbc->nr_to_write = to_write +
2450 				wbc->pages_skipped - pages_skipped;
2451 		wbc->pages_skipped = pages_skipped;
2452 		goto restart_loop;
2453 	}
2454 
2455 out_writepages:
2456 	wbc->nr_to_write = to_write - nr_to_writebump;
2457 	wbc->range_start = range_start;
2458 	return ret;
2459 }
2460 
2461 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2462 				loff_t pos, unsigned len, unsigned flags,
2463 				struct page **pagep, void **fsdata)
2464 {
2465 	int ret, retries = 0;
2466 	struct page *page;
2467 	pgoff_t index;
2468 	unsigned from, to;
2469 	struct inode *inode = mapping->host;
2470 	handle_t *handle;
2471 
2472 	index = pos >> PAGE_CACHE_SHIFT;
2473 	from = pos & (PAGE_CACHE_SIZE - 1);
2474 	to = from + len;
2475 retry:
2476 	/*
2477 	 * With delayed allocation, we don't log the i_disksize update
2478 	 * if there is delayed block allocation. But we still need
2479 	 * to journalling the i_disksize update if writes to the end
2480 	 * of file which has an already mapped buffer.
2481 	 */
2482 	handle = ext4_journal_start(inode, 1);
2483 	if (IS_ERR(handle)) {
2484 		ret = PTR_ERR(handle);
2485 		goto out;
2486 	}
2487 
2488 	page = __grab_cache_page(mapping, index);
2489 	if (!page) {
2490 		ext4_journal_stop(handle);
2491 		ret = -ENOMEM;
2492 		goto out;
2493 	}
2494 	*pagep = page;
2495 
2496 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2497 							ext4_da_get_block_prep);
2498 	if (ret < 0) {
2499 		unlock_page(page);
2500 		ext4_journal_stop(handle);
2501 		page_cache_release(page);
2502 	}
2503 
2504 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2505 		goto retry;
2506 out:
2507 	return ret;
2508 }
2509 
2510 /*
2511  * Check if we should update i_disksize
2512  * when write to the end of file but not require block allocation
2513  */
2514 static int ext4_da_should_update_i_disksize(struct page *page,
2515 					 unsigned long offset)
2516 {
2517 	struct buffer_head *bh;
2518 	struct inode *inode = page->mapping->host;
2519 	unsigned int idx;
2520 	int i;
2521 
2522 	bh = page_buffers(page);
2523 	idx = offset >> inode->i_blkbits;
2524 
2525 	for (i = 0; i < idx; i++)
2526 		bh = bh->b_this_page;
2527 
2528 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2529 		return 0;
2530 	return 1;
2531 }
2532 
2533 static int ext4_da_write_end(struct file *file,
2534 				struct address_space *mapping,
2535 				loff_t pos, unsigned len, unsigned copied,
2536 				struct page *page, void *fsdata)
2537 {
2538 	struct inode *inode = mapping->host;
2539 	int ret = 0, ret2;
2540 	handle_t *handle = ext4_journal_current_handle();
2541 	loff_t new_i_size;
2542 	unsigned long start, end;
2543 
2544 	start = pos & (PAGE_CACHE_SIZE - 1);
2545 	end = start + copied - 1;
2546 
2547 	/*
2548 	 * generic_write_end() will run mark_inode_dirty() if i_size
2549 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2550 	 * into that.
2551 	 */
2552 
2553 	new_i_size = pos + copied;
2554 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2555 		if (ext4_da_should_update_i_disksize(page, end)) {
2556 			down_write(&EXT4_I(inode)->i_data_sem);
2557 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2558 				/*
2559 				 * Updating i_disksize when extending file
2560 				 * without needing block allocation
2561 				 */
2562 				if (ext4_should_order_data(inode))
2563 					ret = ext4_jbd2_file_inode(handle,
2564 								   inode);
2565 
2566 				EXT4_I(inode)->i_disksize = new_i_size;
2567 			}
2568 			up_write(&EXT4_I(inode)->i_data_sem);
2569 		}
2570 	}
2571 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2572 							page, fsdata);
2573 	copied = ret2;
2574 	if (ret2 < 0)
2575 		ret = ret2;
2576 	ret2 = ext4_journal_stop(handle);
2577 	if (!ret)
2578 		ret = ret2;
2579 
2580 	return ret ? ret : copied;
2581 }
2582 
2583 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2584 {
2585 	/*
2586 	 * Drop reserved blocks
2587 	 */
2588 	BUG_ON(!PageLocked(page));
2589 	if (!page_has_buffers(page))
2590 		goto out;
2591 
2592 	ext4_da_page_release_reservation(page, offset);
2593 
2594 out:
2595 	ext4_invalidatepage(page, offset);
2596 
2597 	return;
2598 }
2599 
2600 
2601 /*
2602  * bmap() is special.  It gets used by applications such as lilo and by
2603  * the swapper to find the on-disk block of a specific piece of data.
2604  *
2605  * Naturally, this is dangerous if the block concerned is still in the
2606  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2607  * filesystem and enables swap, then they may get a nasty shock when the
2608  * data getting swapped to that swapfile suddenly gets overwritten by
2609  * the original zero's written out previously to the journal and
2610  * awaiting writeback in the kernel's buffer cache.
2611  *
2612  * So, if we see any bmap calls here on a modified, data-journaled file,
2613  * take extra steps to flush any blocks which might be in the cache.
2614  */
2615 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2616 {
2617 	struct inode *inode = mapping->host;
2618 	journal_t *journal;
2619 	int err;
2620 
2621 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2622 			test_opt(inode->i_sb, DELALLOC)) {
2623 		/*
2624 		 * With delalloc we want to sync the file
2625 		 * so that we can make sure we allocate
2626 		 * blocks for file
2627 		 */
2628 		filemap_write_and_wait(mapping);
2629 	}
2630 
2631 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2632 		/*
2633 		 * This is a REALLY heavyweight approach, but the use of
2634 		 * bmap on dirty files is expected to be extremely rare:
2635 		 * only if we run lilo or swapon on a freshly made file
2636 		 * do we expect this to happen.
2637 		 *
2638 		 * (bmap requires CAP_SYS_RAWIO so this does not
2639 		 * represent an unprivileged user DOS attack --- we'd be
2640 		 * in trouble if mortal users could trigger this path at
2641 		 * will.)
2642 		 *
2643 		 * NB. EXT4_STATE_JDATA is not set on files other than
2644 		 * regular files.  If somebody wants to bmap a directory
2645 		 * or symlink and gets confused because the buffer
2646 		 * hasn't yet been flushed to disk, they deserve
2647 		 * everything they get.
2648 		 */
2649 
2650 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2651 		journal = EXT4_JOURNAL(inode);
2652 		jbd2_journal_lock_updates(journal);
2653 		err = jbd2_journal_flush(journal);
2654 		jbd2_journal_unlock_updates(journal);
2655 
2656 		if (err)
2657 			return 0;
2658 	}
2659 
2660 	return generic_block_bmap(mapping, block, ext4_get_block);
2661 }
2662 
2663 static int bget_one(handle_t *handle, struct buffer_head *bh)
2664 {
2665 	get_bh(bh);
2666 	return 0;
2667 }
2668 
2669 static int bput_one(handle_t *handle, struct buffer_head *bh)
2670 {
2671 	put_bh(bh);
2672 	return 0;
2673 }
2674 
2675 /*
2676  * Note that we don't need to start a transaction unless we're journaling data
2677  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2678  * need to file the inode to the transaction's list in ordered mode because if
2679  * we are writing back data added by write(), the inode is already there and if
2680  * we are writing back data modified via mmap(), noone guarantees in which
2681  * transaction the data will hit the disk. In case we are journaling data, we
2682  * cannot start transaction directly because transaction start ranks above page
2683  * lock so we have to do some magic.
2684  *
2685  * In all journaling modes block_write_full_page() will start the I/O.
2686  *
2687  * Problem:
2688  *
2689  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2690  *		ext4_writepage()
2691  *
2692  * Similar for:
2693  *
2694  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2695  *
2696  * Same applies to ext4_get_block().  We will deadlock on various things like
2697  * lock_journal and i_data_sem
2698  *
2699  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2700  * allocations fail.
2701  *
2702  * 16May01: If we're reentered then journal_current_handle() will be
2703  *	    non-zero. We simply *return*.
2704  *
2705  * 1 July 2001: @@@ FIXME:
2706  *   In journalled data mode, a data buffer may be metadata against the
2707  *   current transaction.  But the same file is part of a shared mapping
2708  *   and someone does a writepage() on it.
2709  *
2710  *   We will move the buffer onto the async_data list, but *after* it has
2711  *   been dirtied. So there's a small window where we have dirty data on
2712  *   BJ_Metadata.
2713  *
2714  *   Note that this only applies to the last partial page in the file.  The
2715  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2716  *   broken code anyway: it's wrong for msync()).
2717  *
2718  *   It's a rare case: affects the final partial page, for journalled data
2719  *   where the file is subject to bith write() and writepage() in the same
2720  *   transction.  To fix it we'll need a custom block_write_full_page().
2721  *   We'll probably need that anyway for journalling writepage() output.
2722  *
2723  * We don't honour synchronous mounts for writepage().  That would be
2724  * disastrous.  Any write() or metadata operation will sync the fs for
2725  * us.
2726  *
2727  */
2728 static int __ext4_normal_writepage(struct page *page,
2729 				struct writeback_control *wbc)
2730 {
2731 	struct inode *inode = page->mapping->host;
2732 
2733 	if (test_opt(inode->i_sb, NOBH))
2734 		return nobh_writepage(page,
2735 					ext4_normal_get_block_write, wbc);
2736 	else
2737 		return block_write_full_page(page,
2738 						ext4_normal_get_block_write,
2739 						wbc);
2740 }
2741 
2742 static int ext4_normal_writepage(struct page *page,
2743 				struct writeback_control *wbc)
2744 {
2745 	struct inode *inode = page->mapping->host;
2746 	loff_t size = i_size_read(inode);
2747 	loff_t len;
2748 
2749 	J_ASSERT(PageLocked(page));
2750 	if (page->index == size >> PAGE_CACHE_SHIFT)
2751 		len = size & ~PAGE_CACHE_MASK;
2752 	else
2753 		len = PAGE_CACHE_SIZE;
2754 
2755 	if (page_has_buffers(page)) {
2756 		/* if page has buffers it should all be mapped
2757 		 * and allocated. If there are not buffers attached
2758 		 * to the page we know the page is dirty but it lost
2759 		 * buffers. That means that at some moment in time
2760 		 * after write_begin() / write_end() has been called
2761 		 * all buffers have been clean and thus they must have been
2762 		 * written at least once. So they are all mapped and we can
2763 		 * happily proceed with mapping them and writing the page.
2764 		 */
2765 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2766 					ext4_bh_unmapped_or_delay));
2767 	}
2768 
2769 	if (!ext4_journal_current_handle())
2770 		return __ext4_normal_writepage(page, wbc);
2771 
2772 	redirty_page_for_writepage(wbc, page);
2773 	unlock_page(page);
2774 	return 0;
2775 }
2776 
2777 static int __ext4_journalled_writepage(struct page *page,
2778 				struct writeback_control *wbc)
2779 {
2780 	struct address_space *mapping = page->mapping;
2781 	struct inode *inode = mapping->host;
2782 	struct buffer_head *page_bufs;
2783 	handle_t *handle = NULL;
2784 	int ret = 0;
2785 	int err;
2786 
2787 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2788 					ext4_normal_get_block_write);
2789 	if (ret != 0)
2790 		goto out_unlock;
2791 
2792 	page_bufs = page_buffers(page);
2793 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2794 								bget_one);
2795 	/* As soon as we unlock the page, it can go away, but we have
2796 	 * references to buffers so we are safe */
2797 	unlock_page(page);
2798 
2799 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2800 	if (IS_ERR(handle)) {
2801 		ret = PTR_ERR(handle);
2802 		goto out;
2803 	}
2804 
2805 	ret = walk_page_buffers(handle, page_bufs, 0,
2806 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2807 
2808 	err = walk_page_buffers(handle, page_bufs, 0,
2809 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2810 	if (ret == 0)
2811 		ret = err;
2812 	err = ext4_journal_stop(handle);
2813 	if (!ret)
2814 		ret = err;
2815 
2816 	walk_page_buffers(handle, page_bufs, 0,
2817 				PAGE_CACHE_SIZE, NULL, bput_one);
2818 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2819 	goto out;
2820 
2821 out_unlock:
2822 	unlock_page(page);
2823 out:
2824 	return ret;
2825 }
2826 
2827 static int ext4_journalled_writepage(struct page *page,
2828 				struct writeback_control *wbc)
2829 {
2830 	struct inode *inode = page->mapping->host;
2831 	loff_t size = i_size_read(inode);
2832 	loff_t len;
2833 
2834 	J_ASSERT(PageLocked(page));
2835 	if (page->index == size >> PAGE_CACHE_SHIFT)
2836 		len = size & ~PAGE_CACHE_MASK;
2837 	else
2838 		len = PAGE_CACHE_SIZE;
2839 
2840 	if (page_has_buffers(page)) {
2841 		/* if page has buffers it should all be mapped
2842 		 * and allocated. If there are not buffers attached
2843 		 * to the page we know the page is dirty but it lost
2844 		 * buffers. That means that at some moment in time
2845 		 * after write_begin() / write_end() has been called
2846 		 * all buffers have been clean and thus they must have been
2847 		 * written at least once. So they are all mapped and we can
2848 		 * happily proceed with mapping them and writing the page.
2849 		 */
2850 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2851 					ext4_bh_unmapped_or_delay));
2852 	}
2853 
2854 	if (ext4_journal_current_handle())
2855 		goto no_write;
2856 
2857 	if (PageChecked(page)) {
2858 		/*
2859 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2860 		 * doesn't seem much point in redirtying the page here.
2861 		 */
2862 		ClearPageChecked(page);
2863 		return __ext4_journalled_writepage(page, wbc);
2864 	} else {
2865 		/*
2866 		 * It may be a page full of checkpoint-mode buffers.  We don't
2867 		 * really know unless we go poke around in the buffer_heads.
2868 		 * But block_write_full_page will do the right thing.
2869 		 */
2870 		return block_write_full_page(page,
2871 						ext4_normal_get_block_write,
2872 						wbc);
2873 	}
2874 no_write:
2875 	redirty_page_for_writepage(wbc, page);
2876 	unlock_page(page);
2877 	return 0;
2878 }
2879 
2880 static int ext4_readpage(struct file *file, struct page *page)
2881 {
2882 	return mpage_readpage(page, ext4_get_block);
2883 }
2884 
2885 static int
2886 ext4_readpages(struct file *file, struct address_space *mapping,
2887 		struct list_head *pages, unsigned nr_pages)
2888 {
2889 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2890 }
2891 
2892 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2893 {
2894 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2895 
2896 	/*
2897 	 * If it's a full truncate we just forget about the pending dirtying
2898 	 */
2899 	if (offset == 0)
2900 		ClearPageChecked(page);
2901 
2902 	jbd2_journal_invalidatepage(journal, page, offset);
2903 }
2904 
2905 static int ext4_releasepage(struct page *page, gfp_t wait)
2906 {
2907 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2908 
2909 	WARN_ON(PageChecked(page));
2910 	if (!page_has_buffers(page))
2911 		return 0;
2912 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2913 }
2914 
2915 /*
2916  * If the O_DIRECT write will extend the file then add this inode to the
2917  * orphan list.  So recovery will truncate it back to the original size
2918  * if the machine crashes during the write.
2919  *
2920  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2921  * crashes then stale disk data _may_ be exposed inside the file. But current
2922  * VFS code falls back into buffered path in that case so we are safe.
2923  */
2924 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2925 			const struct iovec *iov, loff_t offset,
2926 			unsigned long nr_segs)
2927 {
2928 	struct file *file = iocb->ki_filp;
2929 	struct inode *inode = file->f_mapping->host;
2930 	struct ext4_inode_info *ei = EXT4_I(inode);
2931 	handle_t *handle;
2932 	ssize_t ret;
2933 	int orphan = 0;
2934 	size_t count = iov_length(iov, nr_segs);
2935 
2936 	if (rw == WRITE) {
2937 		loff_t final_size = offset + count;
2938 
2939 		if (final_size > inode->i_size) {
2940 			/* Credits for sb + inode write */
2941 			handle = ext4_journal_start(inode, 2);
2942 			if (IS_ERR(handle)) {
2943 				ret = PTR_ERR(handle);
2944 				goto out;
2945 			}
2946 			ret = ext4_orphan_add(handle, inode);
2947 			if (ret) {
2948 				ext4_journal_stop(handle);
2949 				goto out;
2950 			}
2951 			orphan = 1;
2952 			ei->i_disksize = inode->i_size;
2953 			ext4_journal_stop(handle);
2954 		}
2955 	}
2956 
2957 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2958 				 offset, nr_segs,
2959 				 ext4_get_block, NULL);
2960 
2961 	if (orphan) {
2962 		int err;
2963 
2964 		/* Credits for sb + inode write */
2965 		handle = ext4_journal_start(inode, 2);
2966 		if (IS_ERR(handle)) {
2967 			/* This is really bad luck. We've written the data
2968 			 * but cannot extend i_size. Bail out and pretend
2969 			 * the write failed... */
2970 			ret = PTR_ERR(handle);
2971 			goto out;
2972 		}
2973 		if (inode->i_nlink)
2974 			ext4_orphan_del(handle, inode);
2975 		if (ret > 0) {
2976 			loff_t end = offset + ret;
2977 			if (end > inode->i_size) {
2978 				ei->i_disksize = end;
2979 				i_size_write(inode, end);
2980 				/*
2981 				 * We're going to return a positive `ret'
2982 				 * here due to non-zero-length I/O, so there's
2983 				 * no way of reporting error returns from
2984 				 * ext4_mark_inode_dirty() to userspace.  So
2985 				 * ignore it.
2986 				 */
2987 				ext4_mark_inode_dirty(handle, inode);
2988 			}
2989 		}
2990 		err = ext4_journal_stop(handle);
2991 		if (ret == 0)
2992 			ret = err;
2993 	}
2994 out:
2995 	return ret;
2996 }
2997 
2998 /*
2999  * Pages can be marked dirty completely asynchronously from ext4's journalling
3000  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3001  * much here because ->set_page_dirty is called under VFS locks.  The page is
3002  * not necessarily locked.
3003  *
3004  * We cannot just dirty the page and leave attached buffers clean, because the
3005  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3006  * or jbddirty because all the journalling code will explode.
3007  *
3008  * So what we do is to mark the page "pending dirty" and next time writepage
3009  * is called, propagate that into the buffers appropriately.
3010  */
3011 static int ext4_journalled_set_page_dirty(struct page *page)
3012 {
3013 	SetPageChecked(page);
3014 	return __set_page_dirty_nobuffers(page);
3015 }
3016 
3017 static const struct address_space_operations ext4_ordered_aops = {
3018 	.readpage		= ext4_readpage,
3019 	.readpages		= ext4_readpages,
3020 	.writepage		= ext4_normal_writepage,
3021 	.sync_page		= block_sync_page,
3022 	.write_begin		= ext4_write_begin,
3023 	.write_end		= ext4_ordered_write_end,
3024 	.bmap			= ext4_bmap,
3025 	.invalidatepage		= ext4_invalidatepage,
3026 	.releasepage		= ext4_releasepage,
3027 	.direct_IO		= ext4_direct_IO,
3028 	.migratepage		= buffer_migrate_page,
3029 	.is_partially_uptodate  = block_is_partially_uptodate,
3030 };
3031 
3032 static const struct address_space_operations ext4_writeback_aops = {
3033 	.readpage		= ext4_readpage,
3034 	.readpages		= ext4_readpages,
3035 	.writepage		= ext4_normal_writepage,
3036 	.sync_page		= block_sync_page,
3037 	.write_begin		= ext4_write_begin,
3038 	.write_end		= ext4_writeback_write_end,
3039 	.bmap			= ext4_bmap,
3040 	.invalidatepage		= ext4_invalidatepage,
3041 	.releasepage		= ext4_releasepage,
3042 	.direct_IO		= ext4_direct_IO,
3043 	.migratepage		= buffer_migrate_page,
3044 	.is_partially_uptodate  = block_is_partially_uptodate,
3045 };
3046 
3047 static const struct address_space_operations ext4_journalled_aops = {
3048 	.readpage		= ext4_readpage,
3049 	.readpages		= ext4_readpages,
3050 	.writepage		= ext4_journalled_writepage,
3051 	.sync_page		= block_sync_page,
3052 	.write_begin		= ext4_write_begin,
3053 	.write_end		= ext4_journalled_write_end,
3054 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3055 	.bmap			= ext4_bmap,
3056 	.invalidatepage		= ext4_invalidatepage,
3057 	.releasepage		= ext4_releasepage,
3058 	.is_partially_uptodate  = block_is_partially_uptodate,
3059 };
3060 
3061 static const struct address_space_operations ext4_da_aops = {
3062 	.readpage		= ext4_readpage,
3063 	.readpages		= ext4_readpages,
3064 	.writepage		= ext4_da_writepage,
3065 	.writepages		= ext4_da_writepages,
3066 	.sync_page		= block_sync_page,
3067 	.write_begin		= ext4_da_write_begin,
3068 	.write_end		= ext4_da_write_end,
3069 	.bmap			= ext4_bmap,
3070 	.invalidatepage		= ext4_da_invalidatepage,
3071 	.releasepage		= ext4_releasepage,
3072 	.direct_IO		= ext4_direct_IO,
3073 	.migratepage		= buffer_migrate_page,
3074 	.is_partially_uptodate  = block_is_partially_uptodate,
3075 };
3076 
3077 void ext4_set_aops(struct inode *inode)
3078 {
3079 	if (ext4_should_order_data(inode) &&
3080 		test_opt(inode->i_sb, DELALLOC))
3081 		inode->i_mapping->a_ops = &ext4_da_aops;
3082 	else if (ext4_should_order_data(inode))
3083 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3084 	else if (ext4_should_writeback_data(inode) &&
3085 		 test_opt(inode->i_sb, DELALLOC))
3086 		inode->i_mapping->a_ops = &ext4_da_aops;
3087 	else if (ext4_should_writeback_data(inode))
3088 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3089 	else
3090 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3091 }
3092 
3093 /*
3094  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3095  * up to the end of the block which corresponds to `from'.
3096  * This required during truncate. We need to physically zero the tail end
3097  * of that block so it doesn't yield old data if the file is later grown.
3098  */
3099 int ext4_block_truncate_page(handle_t *handle,
3100 		struct address_space *mapping, loff_t from)
3101 {
3102 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3103 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3104 	unsigned blocksize, length, pos;
3105 	ext4_lblk_t iblock;
3106 	struct inode *inode = mapping->host;
3107 	struct buffer_head *bh;
3108 	struct page *page;
3109 	int err = 0;
3110 
3111 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3112 	if (!page)
3113 		return -EINVAL;
3114 
3115 	blocksize = inode->i_sb->s_blocksize;
3116 	length = blocksize - (offset & (blocksize - 1));
3117 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3118 
3119 	/*
3120 	 * For "nobh" option,  we can only work if we don't need to
3121 	 * read-in the page - otherwise we create buffers to do the IO.
3122 	 */
3123 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3124 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3125 		zero_user(page, offset, length);
3126 		set_page_dirty(page);
3127 		goto unlock;
3128 	}
3129 
3130 	if (!page_has_buffers(page))
3131 		create_empty_buffers(page, blocksize, 0);
3132 
3133 	/* Find the buffer that contains "offset" */
3134 	bh = page_buffers(page);
3135 	pos = blocksize;
3136 	while (offset >= pos) {
3137 		bh = bh->b_this_page;
3138 		iblock++;
3139 		pos += blocksize;
3140 	}
3141 
3142 	err = 0;
3143 	if (buffer_freed(bh)) {
3144 		BUFFER_TRACE(bh, "freed: skip");
3145 		goto unlock;
3146 	}
3147 
3148 	if (!buffer_mapped(bh)) {
3149 		BUFFER_TRACE(bh, "unmapped");
3150 		ext4_get_block(inode, iblock, bh, 0);
3151 		/* unmapped? It's a hole - nothing to do */
3152 		if (!buffer_mapped(bh)) {
3153 			BUFFER_TRACE(bh, "still unmapped");
3154 			goto unlock;
3155 		}
3156 	}
3157 
3158 	/* Ok, it's mapped. Make sure it's up-to-date */
3159 	if (PageUptodate(page))
3160 		set_buffer_uptodate(bh);
3161 
3162 	if (!buffer_uptodate(bh)) {
3163 		err = -EIO;
3164 		ll_rw_block(READ, 1, &bh);
3165 		wait_on_buffer(bh);
3166 		/* Uhhuh. Read error. Complain and punt. */
3167 		if (!buffer_uptodate(bh))
3168 			goto unlock;
3169 	}
3170 
3171 	if (ext4_should_journal_data(inode)) {
3172 		BUFFER_TRACE(bh, "get write access");
3173 		err = ext4_journal_get_write_access(handle, bh);
3174 		if (err)
3175 			goto unlock;
3176 	}
3177 
3178 	zero_user(page, offset, length);
3179 
3180 	BUFFER_TRACE(bh, "zeroed end of block");
3181 
3182 	err = 0;
3183 	if (ext4_should_journal_data(inode)) {
3184 		err = ext4_journal_dirty_metadata(handle, bh);
3185 	} else {
3186 		if (ext4_should_order_data(inode))
3187 			err = ext4_jbd2_file_inode(handle, inode);
3188 		mark_buffer_dirty(bh);
3189 	}
3190 
3191 unlock:
3192 	unlock_page(page);
3193 	page_cache_release(page);
3194 	return err;
3195 }
3196 
3197 /*
3198  * Probably it should be a library function... search for first non-zero word
3199  * or memcmp with zero_page, whatever is better for particular architecture.
3200  * Linus?
3201  */
3202 static inline int all_zeroes(__le32 *p, __le32 *q)
3203 {
3204 	while (p < q)
3205 		if (*p++)
3206 			return 0;
3207 	return 1;
3208 }
3209 
3210 /**
3211  *	ext4_find_shared - find the indirect blocks for partial truncation.
3212  *	@inode:	  inode in question
3213  *	@depth:	  depth of the affected branch
3214  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3215  *	@chain:	  place to store the pointers to partial indirect blocks
3216  *	@top:	  place to the (detached) top of branch
3217  *
3218  *	This is a helper function used by ext4_truncate().
3219  *
3220  *	When we do truncate() we may have to clean the ends of several
3221  *	indirect blocks but leave the blocks themselves alive. Block is
3222  *	partially truncated if some data below the new i_size is refered
3223  *	from it (and it is on the path to the first completely truncated
3224  *	data block, indeed).  We have to free the top of that path along
3225  *	with everything to the right of the path. Since no allocation
3226  *	past the truncation point is possible until ext4_truncate()
3227  *	finishes, we may safely do the latter, but top of branch may
3228  *	require special attention - pageout below the truncation point
3229  *	might try to populate it.
3230  *
3231  *	We atomically detach the top of branch from the tree, store the
3232  *	block number of its root in *@top, pointers to buffer_heads of
3233  *	partially truncated blocks - in @chain[].bh and pointers to
3234  *	their last elements that should not be removed - in
3235  *	@chain[].p. Return value is the pointer to last filled element
3236  *	of @chain.
3237  *
3238  *	The work left to caller to do the actual freeing of subtrees:
3239  *		a) free the subtree starting from *@top
3240  *		b) free the subtrees whose roots are stored in
3241  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3242  *		c) free the subtrees growing from the inode past the @chain[0].
3243  *			(no partially truncated stuff there).  */
3244 
3245 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3246 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3247 {
3248 	Indirect *partial, *p;
3249 	int k, err;
3250 
3251 	*top = 0;
3252 	/* Make k index the deepest non-null offest + 1 */
3253 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3254 		;
3255 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3256 	/* Writer: pointers */
3257 	if (!partial)
3258 		partial = chain + k-1;
3259 	/*
3260 	 * If the branch acquired continuation since we've looked at it -
3261 	 * fine, it should all survive and (new) top doesn't belong to us.
3262 	 */
3263 	if (!partial->key && *partial->p)
3264 		/* Writer: end */
3265 		goto no_top;
3266 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3267 		;
3268 	/*
3269 	 * OK, we've found the last block that must survive. The rest of our
3270 	 * branch should be detached before unlocking. However, if that rest
3271 	 * of branch is all ours and does not grow immediately from the inode
3272 	 * it's easier to cheat and just decrement partial->p.
3273 	 */
3274 	if (p == chain + k - 1 && p > chain) {
3275 		p->p--;
3276 	} else {
3277 		*top = *p->p;
3278 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3279 #if 0
3280 		*p->p = 0;
3281 #endif
3282 	}
3283 	/* Writer: end */
3284 
3285 	while (partial > p) {
3286 		brelse(partial->bh);
3287 		partial--;
3288 	}
3289 no_top:
3290 	return partial;
3291 }
3292 
3293 /*
3294  * Zero a number of block pointers in either an inode or an indirect block.
3295  * If we restart the transaction we must again get write access to the
3296  * indirect block for further modification.
3297  *
3298  * We release `count' blocks on disk, but (last - first) may be greater
3299  * than `count' because there can be holes in there.
3300  */
3301 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3302 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3303 		unsigned long count, __le32 *first, __le32 *last)
3304 {
3305 	__le32 *p;
3306 	if (try_to_extend_transaction(handle, inode)) {
3307 		if (bh) {
3308 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3309 			ext4_journal_dirty_metadata(handle, bh);
3310 		}
3311 		ext4_mark_inode_dirty(handle, inode);
3312 		ext4_journal_test_restart(handle, inode);
3313 		if (bh) {
3314 			BUFFER_TRACE(bh, "retaking write access");
3315 			ext4_journal_get_write_access(handle, bh);
3316 		}
3317 	}
3318 
3319 	/*
3320 	 * Any buffers which are on the journal will be in memory. We find
3321 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3322 	 * on them.  We've already detached each block from the file, so
3323 	 * bforget() in jbd2_journal_forget() should be safe.
3324 	 *
3325 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3326 	 */
3327 	for (p = first; p < last; p++) {
3328 		u32 nr = le32_to_cpu(*p);
3329 		if (nr) {
3330 			struct buffer_head *tbh;
3331 
3332 			*p = 0;
3333 			tbh = sb_find_get_block(inode->i_sb, nr);
3334 			ext4_forget(handle, 0, inode, tbh, nr);
3335 		}
3336 	}
3337 
3338 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3339 }
3340 
3341 /**
3342  * ext4_free_data - free a list of data blocks
3343  * @handle:	handle for this transaction
3344  * @inode:	inode we are dealing with
3345  * @this_bh:	indirect buffer_head which contains *@first and *@last
3346  * @first:	array of block numbers
3347  * @last:	points immediately past the end of array
3348  *
3349  * We are freeing all blocks refered from that array (numbers are stored as
3350  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3351  *
3352  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3353  * blocks are contiguous then releasing them at one time will only affect one
3354  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3355  * actually use a lot of journal space.
3356  *
3357  * @this_bh will be %NULL if @first and @last point into the inode's direct
3358  * block pointers.
3359  */
3360 static void ext4_free_data(handle_t *handle, struct inode *inode,
3361 			   struct buffer_head *this_bh,
3362 			   __le32 *first, __le32 *last)
3363 {
3364 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3365 	unsigned long count = 0;	    /* Number of blocks in the run */
3366 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3367 					       corresponding to
3368 					       block_to_free */
3369 	ext4_fsblk_t nr;		    /* Current block # */
3370 	__le32 *p;			    /* Pointer into inode/ind
3371 					       for current block */
3372 	int err;
3373 
3374 	if (this_bh) {				/* For indirect block */
3375 		BUFFER_TRACE(this_bh, "get_write_access");
3376 		err = ext4_journal_get_write_access(handle, this_bh);
3377 		/* Important: if we can't update the indirect pointers
3378 		 * to the blocks, we can't free them. */
3379 		if (err)
3380 			return;
3381 	}
3382 
3383 	for (p = first; p < last; p++) {
3384 		nr = le32_to_cpu(*p);
3385 		if (nr) {
3386 			/* accumulate blocks to free if they're contiguous */
3387 			if (count == 0) {
3388 				block_to_free = nr;
3389 				block_to_free_p = p;
3390 				count = 1;
3391 			} else if (nr == block_to_free + count) {
3392 				count++;
3393 			} else {
3394 				ext4_clear_blocks(handle, inode, this_bh,
3395 						  block_to_free,
3396 						  count, block_to_free_p, p);
3397 				block_to_free = nr;
3398 				block_to_free_p = p;
3399 				count = 1;
3400 			}
3401 		}
3402 	}
3403 
3404 	if (count > 0)
3405 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3406 				  count, block_to_free_p, p);
3407 
3408 	if (this_bh) {
3409 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3410 
3411 		/*
3412 		 * The buffer head should have an attached journal head at this
3413 		 * point. However, if the data is corrupted and an indirect
3414 		 * block pointed to itself, it would have been detached when
3415 		 * the block was cleared. Check for this instead of OOPSing.
3416 		 */
3417 		if (bh2jh(this_bh))
3418 			ext4_journal_dirty_metadata(handle, this_bh);
3419 		else
3420 			ext4_error(inode->i_sb, __func__,
3421 				   "circular indirect block detected, "
3422 				   "inode=%lu, block=%llu",
3423 				   inode->i_ino,
3424 				   (unsigned long long) this_bh->b_blocknr);
3425 	}
3426 }
3427 
3428 /**
3429  *	ext4_free_branches - free an array of branches
3430  *	@handle: JBD handle for this transaction
3431  *	@inode:	inode we are dealing with
3432  *	@parent_bh: the buffer_head which contains *@first and *@last
3433  *	@first:	array of block numbers
3434  *	@last:	pointer immediately past the end of array
3435  *	@depth:	depth of the branches to free
3436  *
3437  *	We are freeing all blocks refered from these branches (numbers are
3438  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3439  *	appropriately.
3440  */
3441 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3442 			       struct buffer_head *parent_bh,
3443 			       __le32 *first, __le32 *last, int depth)
3444 {
3445 	ext4_fsblk_t nr;
3446 	__le32 *p;
3447 
3448 	if (is_handle_aborted(handle))
3449 		return;
3450 
3451 	if (depth--) {
3452 		struct buffer_head *bh;
3453 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3454 		p = last;
3455 		while (--p >= first) {
3456 			nr = le32_to_cpu(*p);
3457 			if (!nr)
3458 				continue;		/* A hole */
3459 
3460 			/* Go read the buffer for the next level down */
3461 			bh = sb_bread(inode->i_sb, nr);
3462 
3463 			/*
3464 			 * A read failure? Report error and clear slot
3465 			 * (should be rare).
3466 			 */
3467 			if (!bh) {
3468 				ext4_error(inode->i_sb, "ext4_free_branches",
3469 					   "Read failure, inode=%lu, block=%llu",
3470 					   inode->i_ino, nr);
3471 				continue;
3472 			}
3473 
3474 			/* This zaps the entire block.  Bottom up. */
3475 			BUFFER_TRACE(bh, "free child branches");
3476 			ext4_free_branches(handle, inode, bh,
3477 					(__le32 *) bh->b_data,
3478 					(__le32 *) bh->b_data + addr_per_block,
3479 					depth);
3480 
3481 			/*
3482 			 * We've probably journalled the indirect block several
3483 			 * times during the truncate.  But it's no longer
3484 			 * needed and we now drop it from the transaction via
3485 			 * jbd2_journal_revoke().
3486 			 *
3487 			 * That's easy if it's exclusively part of this
3488 			 * transaction.  But if it's part of the committing
3489 			 * transaction then jbd2_journal_forget() will simply
3490 			 * brelse() it.  That means that if the underlying
3491 			 * block is reallocated in ext4_get_block(),
3492 			 * unmap_underlying_metadata() will find this block
3493 			 * and will try to get rid of it.  damn, damn.
3494 			 *
3495 			 * If this block has already been committed to the
3496 			 * journal, a revoke record will be written.  And
3497 			 * revoke records must be emitted *before* clearing
3498 			 * this block's bit in the bitmaps.
3499 			 */
3500 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3501 
3502 			/*
3503 			 * Everything below this this pointer has been
3504 			 * released.  Now let this top-of-subtree go.
3505 			 *
3506 			 * We want the freeing of this indirect block to be
3507 			 * atomic in the journal with the updating of the
3508 			 * bitmap block which owns it.  So make some room in
3509 			 * the journal.
3510 			 *
3511 			 * We zero the parent pointer *after* freeing its
3512 			 * pointee in the bitmaps, so if extend_transaction()
3513 			 * for some reason fails to put the bitmap changes and
3514 			 * the release into the same transaction, recovery
3515 			 * will merely complain about releasing a free block,
3516 			 * rather than leaking blocks.
3517 			 */
3518 			if (is_handle_aborted(handle))
3519 				return;
3520 			if (try_to_extend_transaction(handle, inode)) {
3521 				ext4_mark_inode_dirty(handle, inode);
3522 				ext4_journal_test_restart(handle, inode);
3523 			}
3524 
3525 			ext4_free_blocks(handle, inode, nr, 1, 1);
3526 
3527 			if (parent_bh) {
3528 				/*
3529 				 * The block which we have just freed is
3530 				 * pointed to by an indirect block: journal it
3531 				 */
3532 				BUFFER_TRACE(parent_bh, "get_write_access");
3533 				if (!ext4_journal_get_write_access(handle,
3534 								   parent_bh)){
3535 					*p = 0;
3536 					BUFFER_TRACE(parent_bh,
3537 					"call ext4_journal_dirty_metadata");
3538 					ext4_journal_dirty_metadata(handle,
3539 								    parent_bh);
3540 				}
3541 			}
3542 		}
3543 	} else {
3544 		/* We have reached the bottom of the tree. */
3545 		BUFFER_TRACE(parent_bh, "free data blocks");
3546 		ext4_free_data(handle, inode, parent_bh, first, last);
3547 	}
3548 }
3549 
3550 int ext4_can_truncate(struct inode *inode)
3551 {
3552 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3553 		return 0;
3554 	if (S_ISREG(inode->i_mode))
3555 		return 1;
3556 	if (S_ISDIR(inode->i_mode))
3557 		return 1;
3558 	if (S_ISLNK(inode->i_mode))
3559 		return !ext4_inode_is_fast_symlink(inode);
3560 	return 0;
3561 }
3562 
3563 /*
3564  * ext4_truncate()
3565  *
3566  * We block out ext4_get_block() block instantiations across the entire
3567  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3568  * simultaneously on behalf of the same inode.
3569  *
3570  * As we work through the truncate and commmit bits of it to the journal there
3571  * is one core, guiding principle: the file's tree must always be consistent on
3572  * disk.  We must be able to restart the truncate after a crash.
3573  *
3574  * The file's tree may be transiently inconsistent in memory (although it
3575  * probably isn't), but whenever we close off and commit a journal transaction,
3576  * the contents of (the filesystem + the journal) must be consistent and
3577  * restartable.  It's pretty simple, really: bottom up, right to left (although
3578  * left-to-right works OK too).
3579  *
3580  * Note that at recovery time, journal replay occurs *before* the restart of
3581  * truncate against the orphan inode list.
3582  *
3583  * The committed inode has the new, desired i_size (which is the same as
3584  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3585  * that this inode's truncate did not complete and it will again call
3586  * ext4_truncate() to have another go.  So there will be instantiated blocks
3587  * to the right of the truncation point in a crashed ext4 filesystem.  But
3588  * that's fine - as long as they are linked from the inode, the post-crash
3589  * ext4_truncate() run will find them and release them.
3590  */
3591 void ext4_truncate(struct inode *inode)
3592 {
3593 	handle_t *handle;
3594 	struct ext4_inode_info *ei = EXT4_I(inode);
3595 	__le32 *i_data = ei->i_data;
3596 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3597 	struct address_space *mapping = inode->i_mapping;
3598 	ext4_lblk_t offsets[4];
3599 	Indirect chain[4];
3600 	Indirect *partial;
3601 	__le32 nr = 0;
3602 	int n;
3603 	ext4_lblk_t last_block;
3604 	unsigned blocksize = inode->i_sb->s_blocksize;
3605 
3606 	if (!ext4_can_truncate(inode))
3607 		return;
3608 
3609 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3610 		ext4_ext_truncate(inode);
3611 		return;
3612 	}
3613 
3614 	handle = start_transaction(inode);
3615 	if (IS_ERR(handle))
3616 		return;		/* AKPM: return what? */
3617 
3618 	last_block = (inode->i_size + blocksize-1)
3619 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3620 
3621 	if (inode->i_size & (blocksize - 1))
3622 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3623 			goto out_stop;
3624 
3625 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3626 	if (n == 0)
3627 		goto out_stop;	/* error */
3628 
3629 	/*
3630 	 * OK.  This truncate is going to happen.  We add the inode to the
3631 	 * orphan list, so that if this truncate spans multiple transactions,
3632 	 * and we crash, we will resume the truncate when the filesystem
3633 	 * recovers.  It also marks the inode dirty, to catch the new size.
3634 	 *
3635 	 * Implication: the file must always be in a sane, consistent
3636 	 * truncatable state while each transaction commits.
3637 	 */
3638 	if (ext4_orphan_add(handle, inode))
3639 		goto out_stop;
3640 
3641 	/*
3642 	 * From here we block out all ext4_get_block() callers who want to
3643 	 * modify the block allocation tree.
3644 	 */
3645 	down_write(&ei->i_data_sem);
3646 
3647 	ext4_discard_reservation(inode);
3648 
3649 	/*
3650 	 * The orphan list entry will now protect us from any crash which
3651 	 * occurs before the truncate completes, so it is now safe to propagate
3652 	 * the new, shorter inode size (held for now in i_size) into the
3653 	 * on-disk inode. We do this via i_disksize, which is the value which
3654 	 * ext4 *really* writes onto the disk inode.
3655 	 */
3656 	ei->i_disksize = inode->i_size;
3657 
3658 	if (n == 1) {		/* direct blocks */
3659 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3660 			       i_data + EXT4_NDIR_BLOCKS);
3661 		goto do_indirects;
3662 	}
3663 
3664 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3665 	/* Kill the top of shared branch (not detached) */
3666 	if (nr) {
3667 		if (partial == chain) {
3668 			/* Shared branch grows from the inode */
3669 			ext4_free_branches(handle, inode, NULL,
3670 					   &nr, &nr+1, (chain+n-1) - partial);
3671 			*partial->p = 0;
3672 			/*
3673 			 * We mark the inode dirty prior to restart,
3674 			 * and prior to stop.  No need for it here.
3675 			 */
3676 		} else {
3677 			/* Shared branch grows from an indirect block */
3678 			BUFFER_TRACE(partial->bh, "get_write_access");
3679 			ext4_free_branches(handle, inode, partial->bh,
3680 					partial->p,
3681 					partial->p+1, (chain+n-1) - partial);
3682 		}
3683 	}
3684 	/* Clear the ends of indirect blocks on the shared branch */
3685 	while (partial > chain) {
3686 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3687 				   (__le32*)partial->bh->b_data+addr_per_block,
3688 				   (chain+n-1) - partial);
3689 		BUFFER_TRACE(partial->bh, "call brelse");
3690 		brelse (partial->bh);
3691 		partial--;
3692 	}
3693 do_indirects:
3694 	/* Kill the remaining (whole) subtrees */
3695 	switch (offsets[0]) {
3696 	default:
3697 		nr = i_data[EXT4_IND_BLOCK];
3698 		if (nr) {
3699 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3700 			i_data[EXT4_IND_BLOCK] = 0;
3701 		}
3702 	case EXT4_IND_BLOCK:
3703 		nr = i_data[EXT4_DIND_BLOCK];
3704 		if (nr) {
3705 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3706 			i_data[EXT4_DIND_BLOCK] = 0;
3707 		}
3708 	case EXT4_DIND_BLOCK:
3709 		nr = i_data[EXT4_TIND_BLOCK];
3710 		if (nr) {
3711 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3712 			i_data[EXT4_TIND_BLOCK] = 0;
3713 		}
3714 	case EXT4_TIND_BLOCK:
3715 		;
3716 	}
3717 
3718 	up_write(&ei->i_data_sem);
3719 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3720 	ext4_mark_inode_dirty(handle, inode);
3721 
3722 	/*
3723 	 * In a multi-transaction truncate, we only make the final transaction
3724 	 * synchronous
3725 	 */
3726 	if (IS_SYNC(inode))
3727 		handle->h_sync = 1;
3728 out_stop:
3729 	/*
3730 	 * If this was a simple ftruncate(), and the file will remain alive
3731 	 * then we need to clear up the orphan record which we created above.
3732 	 * However, if this was a real unlink then we were called by
3733 	 * ext4_delete_inode(), and we allow that function to clean up the
3734 	 * orphan info for us.
3735 	 */
3736 	if (inode->i_nlink)
3737 		ext4_orphan_del(handle, inode);
3738 
3739 	ext4_journal_stop(handle);
3740 }
3741 
3742 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3743 		unsigned long ino, struct ext4_iloc *iloc)
3744 {
3745 	ext4_group_t block_group;
3746 	unsigned long offset;
3747 	ext4_fsblk_t block;
3748 	struct ext4_group_desc *gdp;
3749 
3750 	if (!ext4_valid_inum(sb, ino)) {
3751 		/*
3752 		 * This error is already checked for in namei.c unless we are
3753 		 * looking at an NFS filehandle, in which case no error
3754 		 * report is needed
3755 		 */
3756 		return 0;
3757 	}
3758 
3759 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3760 	gdp = ext4_get_group_desc(sb, block_group, NULL);
3761 	if (!gdp)
3762 		return 0;
3763 
3764 	/*
3765 	 * Figure out the offset within the block group inode table
3766 	 */
3767 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3768 		EXT4_INODE_SIZE(sb);
3769 	block = ext4_inode_table(sb, gdp) +
3770 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3771 
3772 	iloc->block_group = block_group;
3773 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3774 	return block;
3775 }
3776 
3777 /*
3778  * ext4_get_inode_loc returns with an extra refcount against the inode's
3779  * underlying buffer_head on success. If 'in_mem' is true, we have all
3780  * data in memory that is needed to recreate the on-disk version of this
3781  * inode.
3782  */
3783 static int __ext4_get_inode_loc(struct inode *inode,
3784 				struct ext4_iloc *iloc, int in_mem)
3785 {
3786 	ext4_fsblk_t block;
3787 	struct buffer_head *bh;
3788 
3789 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3790 	if (!block)
3791 		return -EIO;
3792 
3793 	bh = sb_getblk(inode->i_sb, block);
3794 	if (!bh) {
3795 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3796 				"unable to read inode block - "
3797 				"inode=%lu, block=%llu",
3798 				 inode->i_ino, block);
3799 		return -EIO;
3800 	}
3801 	if (!buffer_uptodate(bh)) {
3802 		lock_buffer(bh);
3803 
3804 		/*
3805 		 * If the buffer has the write error flag, we have failed
3806 		 * to write out another inode in the same block.  In this
3807 		 * case, we don't have to read the block because we may
3808 		 * read the old inode data successfully.
3809 		 */
3810 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3811 			set_buffer_uptodate(bh);
3812 
3813 		if (buffer_uptodate(bh)) {
3814 			/* someone brought it uptodate while we waited */
3815 			unlock_buffer(bh);
3816 			goto has_buffer;
3817 		}
3818 
3819 		/*
3820 		 * If we have all information of the inode in memory and this
3821 		 * is the only valid inode in the block, we need not read the
3822 		 * block.
3823 		 */
3824 		if (in_mem) {
3825 			struct buffer_head *bitmap_bh;
3826 			struct ext4_group_desc *desc;
3827 			int inodes_per_buffer;
3828 			int inode_offset, i;
3829 			ext4_group_t block_group;
3830 			int start;
3831 
3832 			block_group = (inode->i_ino - 1) /
3833 					EXT4_INODES_PER_GROUP(inode->i_sb);
3834 			inodes_per_buffer = bh->b_size /
3835 				EXT4_INODE_SIZE(inode->i_sb);
3836 			inode_offset = ((inode->i_ino - 1) %
3837 					EXT4_INODES_PER_GROUP(inode->i_sb));
3838 			start = inode_offset & ~(inodes_per_buffer - 1);
3839 
3840 			/* Is the inode bitmap in cache? */
3841 			desc = ext4_get_group_desc(inode->i_sb,
3842 						block_group, NULL);
3843 			if (!desc)
3844 				goto make_io;
3845 
3846 			bitmap_bh = sb_getblk(inode->i_sb,
3847 				ext4_inode_bitmap(inode->i_sb, desc));
3848 			if (!bitmap_bh)
3849 				goto make_io;
3850 
3851 			/*
3852 			 * If the inode bitmap isn't in cache then the
3853 			 * optimisation may end up performing two reads instead
3854 			 * of one, so skip it.
3855 			 */
3856 			if (!buffer_uptodate(bitmap_bh)) {
3857 				brelse(bitmap_bh);
3858 				goto make_io;
3859 			}
3860 			for (i = start; i < start + inodes_per_buffer; i++) {
3861 				if (i == inode_offset)
3862 					continue;
3863 				if (ext4_test_bit(i, bitmap_bh->b_data))
3864 					break;
3865 			}
3866 			brelse(bitmap_bh);
3867 			if (i == start + inodes_per_buffer) {
3868 				/* all other inodes are free, so skip I/O */
3869 				memset(bh->b_data, 0, bh->b_size);
3870 				set_buffer_uptodate(bh);
3871 				unlock_buffer(bh);
3872 				goto has_buffer;
3873 			}
3874 		}
3875 
3876 make_io:
3877 		/*
3878 		 * There are other valid inodes in the buffer, this inode
3879 		 * has in-inode xattrs, or we don't have this inode in memory.
3880 		 * Read the block from disk.
3881 		 */
3882 		get_bh(bh);
3883 		bh->b_end_io = end_buffer_read_sync;
3884 		submit_bh(READ_META, bh);
3885 		wait_on_buffer(bh);
3886 		if (!buffer_uptodate(bh)) {
3887 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3888 					"unable to read inode block - "
3889 					"inode=%lu, block=%llu",
3890 					inode->i_ino, block);
3891 			brelse(bh);
3892 			return -EIO;
3893 		}
3894 	}
3895 has_buffer:
3896 	iloc->bh = bh;
3897 	return 0;
3898 }
3899 
3900 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3901 {
3902 	/* We have all inode data except xattrs in memory here. */
3903 	return __ext4_get_inode_loc(inode, iloc,
3904 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3905 }
3906 
3907 void ext4_set_inode_flags(struct inode *inode)
3908 {
3909 	unsigned int flags = EXT4_I(inode)->i_flags;
3910 
3911 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3912 	if (flags & EXT4_SYNC_FL)
3913 		inode->i_flags |= S_SYNC;
3914 	if (flags & EXT4_APPEND_FL)
3915 		inode->i_flags |= S_APPEND;
3916 	if (flags & EXT4_IMMUTABLE_FL)
3917 		inode->i_flags |= S_IMMUTABLE;
3918 	if (flags & EXT4_NOATIME_FL)
3919 		inode->i_flags |= S_NOATIME;
3920 	if (flags & EXT4_DIRSYNC_FL)
3921 		inode->i_flags |= S_DIRSYNC;
3922 }
3923 
3924 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3925 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3926 {
3927 	unsigned int flags = ei->vfs_inode.i_flags;
3928 
3929 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3930 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3931 	if (flags & S_SYNC)
3932 		ei->i_flags |= EXT4_SYNC_FL;
3933 	if (flags & S_APPEND)
3934 		ei->i_flags |= EXT4_APPEND_FL;
3935 	if (flags & S_IMMUTABLE)
3936 		ei->i_flags |= EXT4_IMMUTABLE_FL;
3937 	if (flags & S_NOATIME)
3938 		ei->i_flags |= EXT4_NOATIME_FL;
3939 	if (flags & S_DIRSYNC)
3940 		ei->i_flags |= EXT4_DIRSYNC_FL;
3941 }
3942 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3943 					struct ext4_inode_info *ei)
3944 {
3945 	blkcnt_t i_blocks ;
3946 	struct inode *inode = &(ei->vfs_inode);
3947 	struct super_block *sb = inode->i_sb;
3948 
3949 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3950 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3951 		/* we are using combined 48 bit field */
3952 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3953 					le32_to_cpu(raw_inode->i_blocks_lo);
3954 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3955 			/* i_blocks represent file system block size */
3956 			return i_blocks  << (inode->i_blkbits - 9);
3957 		} else {
3958 			return i_blocks;
3959 		}
3960 	} else {
3961 		return le32_to_cpu(raw_inode->i_blocks_lo);
3962 	}
3963 }
3964 
3965 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3966 {
3967 	struct ext4_iloc iloc;
3968 	struct ext4_inode *raw_inode;
3969 	struct ext4_inode_info *ei;
3970 	struct buffer_head *bh;
3971 	struct inode *inode;
3972 	long ret;
3973 	int block;
3974 
3975 	inode = iget_locked(sb, ino);
3976 	if (!inode)
3977 		return ERR_PTR(-ENOMEM);
3978 	if (!(inode->i_state & I_NEW))
3979 		return inode;
3980 
3981 	ei = EXT4_I(inode);
3982 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3983 	ei->i_acl = EXT4_ACL_NOT_CACHED;
3984 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3985 #endif
3986 	ei->i_block_alloc_info = NULL;
3987 
3988 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3989 	if (ret < 0)
3990 		goto bad_inode;
3991 	bh = iloc.bh;
3992 	raw_inode = ext4_raw_inode(&iloc);
3993 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3994 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3995 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3996 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3997 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3998 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3999 	}
4000 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4001 
4002 	ei->i_state = 0;
4003 	ei->i_dir_start_lookup = 0;
4004 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4005 	/* We now have enough fields to check if the inode was active or not.
4006 	 * This is needed because nfsd might try to access dead inodes
4007 	 * the test is that same one that e2fsck uses
4008 	 * NeilBrown 1999oct15
4009 	 */
4010 	if (inode->i_nlink == 0) {
4011 		if (inode->i_mode == 0 ||
4012 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4013 			/* this inode is deleted */
4014 			brelse(bh);
4015 			ret = -ESTALE;
4016 			goto bad_inode;
4017 		}
4018 		/* The only unlinked inodes we let through here have
4019 		 * valid i_mode and are being read by the orphan
4020 		 * recovery code: that's fine, we're about to complete
4021 		 * the process of deleting those. */
4022 	}
4023 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4024 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4025 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4026 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4027 	    cpu_to_le32(EXT4_OS_HURD)) {
4028 		ei->i_file_acl |=
4029 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4030 	}
4031 	inode->i_size = ext4_isize(raw_inode);
4032 	ei->i_disksize = inode->i_size;
4033 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4034 	ei->i_block_group = iloc.block_group;
4035 	/*
4036 	 * NOTE! The in-memory inode i_data array is in little-endian order
4037 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4038 	 */
4039 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4040 		ei->i_data[block] = raw_inode->i_block[block];
4041 	INIT_LIST_HEAD(&ei->i_orphan);
4042 
4043 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4045 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4046 		    EXT4_INODE_SIZE(inode->i_sb)) {
4047 			brelse(bh);
4048 			ret = -EIO;
4049 			goto bad_inode;
4050 		}
4051 		if (ei->i_extra_isize == 0) {
4052 			/* The extra space is currently unused. Use it. */
4053 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4054 					    EXT4_GOOD_OLD_INODE_SIZE;
4055 		} else {
4056 			__le32 *magic = (void *)raw_inode +
4057 					EXT4_GOOD_OLD_INODE_SIZE +
4058 					ei->i_extra_isize;
4059 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4060 				 ei->i_state |= EXT4_STATE_XATTR;
4061 		}
4062 	} else
4063 		ei->i_extra_isize = 0;
4064 
4065 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4066 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4067 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4068 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4069 
4070 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4071 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4072 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4073 			inode->i_version |=
4074 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4075 	}
4076 
4077 	if (S_ISREG(inode->i_mode)) {
4078 		inode->i_op = &ext4_file_inode_operations;
4079 		inode->i_fop = &ext4_file_operations;
4080 		ext4_set_aops(inode);
4081 	} else if (S_ISDIR(inode->i_mode)) {
4082 		inode->i_op = &ext4_dir_inode_operations;
4083 		inode->i_fop = &ext4_dir_operations;
4084 	} else if (S_ISLNK(inode->i_mode)) {
4085 		if (ext4_inode_is_fast_symlink(inode))
4086 			inode->i_op = &ext4_fast_symlink_inode_operations;
4087 		else {
4088 			inode->i_op = &ext4_symlink_inode_operations;
4089 			ext4_set_aops(inode);
4090 		}
4091 	} else {
4092 		inode->i_op = &ext4_special_inode_operations;
4093 		if (raw_inode->i_block[0])
4094 			init_special_inode(inode, inode->i_mode,
4095 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4096 		else
4097 			init_special_inode(inode, inode->i_mode,
4098 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4099 	}
4100 	brelse(iloc.bh);
4101 	ext4_set_inode_flags(inode);
4102 	unlock_new_inode(inode);
4103 	return inode;
4104 
4105 bad_inode:
4106 	iget_failed(inode);
4107 	return ERR_PTR(ret);
4108 }
4109 
4110 static int ext4_inode_blocks_set(handle_t *handle,
4111 				struct ext4_inode *raw_inode,
4112 				struct ext4_inode_info *ei)
4113 {
4114 	struct inode *inode = &(ei->vfs_inode);
4115 	u64 i_blocks = inode->i_blocks;
4116 	struct super_block *sb = inode->i_sb;
4117 	int err = 0;
4118 
4119 	if (i_blocks <= ~0U) {
4120 		/*
4121 		 * i_blocks can be represnted in a 32 bit variable
4122 		 * as multiple of 512 bytes
4123 		 */
4124 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4125 		raw_inode->i_blocks_high = 0;
4126 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4127 	} else if (i_blocks <= 0xffffffffffffULL) {
4128 		/*
4129 		 * i_blocks can be represented in a 48 bit variable
4130 		 * as multiple of 512 bytes
4131 		 */
4132 		err = ext4_update_rocompat_feature(handle, sb,
4133 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4134 		if (err)
4135 			goto  err_out;
4136 		/* i_block is stored in the split  48 bit fields */
4137 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4138 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4139 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4140 	} else {
4141 		/*
4142 		 * i_blocks should be represented in a 48 bit variable
4143 		 * as multiple of  file system block size
4144 		 */
4145 		err = ext4_update_rocompat_feature(handle, sb,
4146 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4147 		if (err)
4148 			goto  err_out;
4149 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4150 		/* i_block is stored in file system block size */
4151 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4152 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4153 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4154 	}
4155 err_out:
4156 	return err;
4157 }
4158 
4159 /*
4160  * Post the struct inode info into an on-disk inode location in the
4161  * buffer-cache.  This gobbles the caller's reference to the
4162  * buffer_head in the inode location struct.
4163  *
4164  * The caller must have write access to iloc->bh.
4165  */
4166 static int ext4_do_update_inode(handle_t *handle,
4167 				struct inode *inode,
4168 				struct ext4_iloc *iloc)
4169 {
4170 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4171 	struct ext4_inode_info *ei = EXT4_I(inode);
4172 	struct buffer_head *bh = iloc->bh;
4173 	int err = 0, rc, block;
4174 
4175 	/* For fields not not tracking in the in-memory inode,
4176 	 * initialise them to zero for new inodes. */
4177 	if (ei->i_state & EXT4_STATE_NEW)
4178 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4179 
4180 	ext4_get_inode_flags(ei);
4181 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4182 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4183 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4184 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4185 /*
4186  * Fix up interoperability with old kernels. Otherwise, old inodes get
4187  * re-used with the upper 16 bits of the uid/gid intact
4188  */
4189 		if (!ei->i_dtime) {
4190 			raw_inode->i_uid_high =
4191 				cpu_to_le16(high_16_bits(inode->i_uid));
4192 			raw_inode->i_gid_high =
4193 				cpu_to_le16(high_16_bits(inode->i_gid));
4194 		} else {
4195 			raw_inode->i_uid_high = 0;
4196 			raw_inode->i_gid_high = 0;
4197 		}
4198 	} else {
4199 		raw_inode->i_uid_low =
4200 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4201 		raw_inode->i_gid_low =
4202 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4203 		raw_inode->i_uid_high = 0;
4204 		raw_inode->i_gid_high = 0;
4205 	}
4206 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4207 
4208 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4209 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4210 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4211 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4212 
4213 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4214 		goto out_brelse;
4215 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4216 	/* clear the migrate flag in the raw_inode */
4217 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4218 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4219 	    cpu_to_le32(EXT4_OS_HURD))
4220 		raw_inode->i_file_acl_high =
4221 			cpu_to_le16(ei->i_file_acl >> 32);
4222 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4223 	ext4_isize_set(raw_inode, ei->i_disksize);
4224 	if (ei->i_disksize > 0x7fffffffULL) {
4225 		struct super_block *sb = inode->i_sb;
4226 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4227 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4228 				EXT4_SB(sb)->s_es->s_rev_level ==
4229 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4230 			/* If this is the first large file
4231 			 * created, add a flag to the superblock.
4232 			 */
4233 			err = ext4_journal_get_write_access(handle,
4234 					EXT4_SB(sb)->s_sbh);
4235 			if (err)
4236 				goto out_brelse;
4237 			ext4_update_dynamic_rev(sb);
4238 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4239 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4240 			sb->s_dirt = 1;
4241 			handle->h_sync = 1;
4242 			err = ext4_journal_dirty_metadata(handle,
4243 					EXT4_SB(sb)->s_sbh);
4244 		}
4245 	}
4246 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4247 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4248 		if (old_valid_dev(inode->i_rdev)) {
4249 			raw_inode->i_block[0] =
4250 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4251 			raw_inode->i_block[1] = 0;
4252 		} else {
4253 			raw_inode->i_block[0] = 0;
4254 			raw_inode->i_block[1] =
4255 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4256 			raw_inode->i_block[2] = 0;
4257 		}
4258 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4259 		raw_inode->i_block[block] = ei->i_data[block];
4260 
4261 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4262 	if (ei->i_extra_isize) {
4263 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4264 			raw_inode->i_version_hi =
4265 			cpu_to_le32(inode->i_version >> 32);
4266 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4267 	}
4268 
4269 
4270 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4271 	rc = ext4_journal_dirty_metadata(handle, bh);
4272 	if (!err)
4273 		err = rc;
4274 	ei->i_state &= ~EXT4_STATE_NEW;
4275 
4276 out_brelse:
4277 	brelse(bh);
4278 	ext4_std_error(inode->i_sb, err);
4279 	return err;
4280 }
4281 
4282 /*
4283  * ext4_write_inode()
4284  *
4285  * We are called from a few places:
4286  *
4287  * - Within generic_file_write() for O_SYNC files.
4288  *   Here, there will be no transaction running. We wait for any running
4289  *   trasnaction to commit.
4290  *
4291  * - Within sys_sync(), kupdate and such.
4292  *   We wait on commit, if tol to.
4293  *
4294  * - Within prune_icache() (PF_MEMALLOC == true)
4295  *   Here we simply return.  We can't afford to block kswapd on the
4296  *   journal commit.
4297  *
4298  * In all cases it is actually safe for us to return without doing anything,
4299  * because the inode has been copied into a raw inode buffer in
4300  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4301  * knfsd.
4302  *
4303  * Note that we are absolutely dependent upon all inode dirtiers doing the
4304  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4305  * which we are interested.
4306  *
4307  * It would be a bug for them to not do this.  The code:
4308  *
4309  *	mark_inode_dirty(inode)
4310  *	stuff();
4311  *	inode->i_size = expr;
4312  *
4313  * is in error because a kswapd-driven write_inode() could occur while
4314  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4315  * will no longer be on the superblock's dirty inode list.
4316  */
4317 int ext4_write_inode(struct inode *inode, int wait)
4318 {
4319 	if (current->flags & PF_MEMALLOC)
4320 		return 0;
4321 
4322 	if (ext4_journal_current_handle()) {
4323 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4324 		dump_stack();
4325 		return -EIO;
4326 	}
4327 
4328 	if (!wait)
4329 		return 0;
4330 
4331 	return ext4_force_commit(inode->i_sb);
4332 }
4333 
4334 /*
4335  * ext4_setattr()
4336  *
4337  * Called from notify_change.
4338  *
4339  * We want to trap VFS attempts to truncate the file as soon as
4340  * possible.  In particular, we want to make sure that when the VFS
4341  * shrinks i_size, we put the inode on the orphan list and modify
4342  * i_disksize immediately, so that during the subsequent flushing of
4343  * dirty pages and freeing of disk blocks, we can guarantee that any
4344  * commit will leave the blocks being flushed in an unused state on
4345  * disk.  (On recovery, the inode will get truncated and the blocks will
4346  * be freed, so we have a strong guarantee that no future commit will
4347  * leave these blocks visible to the user.)
4348  *
4349  * Another thing we have to assure is that if we are in ordered mode
4350  * and inode is still attached to the committing transaction, we must
4351  * we start writeout of all the dirty pages which are being truncated.
4352  * This way we are sure that all the data written in the previous
4353  * transaction are already on disk (truncate waits for pages under
4354  * writeback).
4355  *
4356  * Called with inode->i_mutex down.
4357  */
4358 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4359 {
4360 	struct inode *inode = dentry->d_inode;
4361 	int error, rc = 0;
4362 	const unsigned int ia_valid = attr->ia_valid;
4363 
4364 	error = inode_change_ok(inode, attr);
4365 	if (error)
4366 		return error;
4367 
4368 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4369 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4370 		handle_t *handle;
4371 
4372 		/* (user+group)*(old+new) structure, inode write (sb,
4373 		 * inode block, ? - but truncate inode update has it) */
4374 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4375 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4376 		if (IS_ERR(handle)) {
4377 			error = PTR_ERR(handle);
4378 			goto err_out;
4379 		}
4380 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4381 		if (error) {
4382 			ext4_journal_stop(handle);
4383 			return error;
4384 		}
4385 		/* Update corresponding info in inode so that everything is in
4386 		 * one transaction */
4387 		if (attr->ia_valid & ATTR_UID)
4388 			inode->i_uid = attr->ia_uid;
4389 		if (attr->ia_valid & ATTR_GID)
4390 			inode->i_gid = attr->ia_gid;
4391 		error = ext4_mark_inode_dirty(handle, inode);
4392 		ext4_journal_stop(handle);
4393 	}
4394 
4395 	if (attr->ia_valid & ATTR_SIZE) {
4396 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4397 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4398 
4399 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4400 				error = -EFBIG;
4401 				goto err_out;
4402 			}
4403 		}
4404 	}
4405 
4406 	if (S_ISREG(inode->i_mode) &&
4407 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4408 		handle_t *handle;
4409 
4410 		handle = ext4_journal_start(inode, 3);
4411 		if (IS_ERR(handle)) {
4412 			error = PTR_ERR(handle);
4413 			goto err_out;
4414 		}
4415 
4416 		error = ext4_orphan_add(handle, inode);
4417 		EXT4_I(inode)->i_disksize = attr->ia_size;
4418 		rc = ext4_mark_inode_dirty(handle, inode);
4419 		if (!error)
4420 			error = rc;
4421 		ext4_journal_stop(handle);
4422 
4423 		if (ext4_should_order_data(inode)) {
4424 			error = ext4_begin_ordered_truncate(inode,
4425 							    attr->ia_size);
4426 			if (error) {
4427 				/* Do as much error cleanup as possible */
4428 				handle = ext4_journal_start(inode, 3);
4429 				if (IS_ERR(handle)) {
4430 					ext4_orphan_del(NULL, inode);
4431 					goto err_out;
4432 				}
4433 				ext4_orphan_del(handle, inode);
4434 				ext4_journal_stop(handle);
4435 				goto err_out;
4436 			}
4437 		}
4438 	}
4439 
4440 	rc = inode_setattr(inode, attr);
4441 
4442 	/* If inode_setattr's call to ext4_truncate failed to get a
4443 	 * transaction handle at all, we need to clean up the in-core
4444 	 * orphan list manually. */
4445 	if (inode->i_nlink)
4446 		ext4_orphan_del(NULL, inode);
4447 
4448 	if (!rc && (ia_valid & ATTR_MODE))
4449 		rc = ext4_acl_chmod(inode);
4450 
4451 err_out:
4452 	ext4_std_error(inode->i_sb, error);
4453 	if (!error)
4454 		error = rc;
4455 	return error;
4456 }
4457 
4458 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4459 		 struct kstat *stat)
4460 {
4461 	struct inode *inode;
4462 	unsigned long delalloc_blocks;
4463 
4464 	inode = dentry->d_inode;
4465 	generic_fillattr(inode, stat);
4466 
4467 	/*
4468 	 * We can't update i_blocks if the block allocation is delayed
4469 	 * otherwise in the case of system crash before the real block
4470 	 * allocation is done, we will have i_blocks inconsistent with
4471 	 * on-disk file blocks.
4472 	 * We always keep i_blocks updated together with real
4473 	 * allocation. But to not confuse with user, stat
4474 	 * will return the blocks that include the delayed allocation
4475 	 * blocks for this file.
4476 	 */
4477 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4478 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4479 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4480 
4481 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4482 	return 0;
4483 }
4484 
4485 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4486 				      int chunk)
4487 {
4488 	int indirects;
4489 
4490 	/* if nrblocks are contiguous */
4491 	if (chunk) {
4492 		/*
4493 		 * With N contiguous data blocks, it need at most
4494 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4495 		 * 2 dindirect blocks
4496 		 * 1 tindirect block
4497 		 */
4498 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4499 		return indirects + 3;
4500 	}
4501 	/*
4502 	 * if nrblocks are not contiguous, worse case, each block touch
4503 	 * a indirect block, and each indirect block touch a double indirect
4504 	 * block, plus a triple indirect block
4505 	 */
4506 	indirects = nrblocks * 2 + 1;
4507 	return indirects;
4508 }
4509 
4510 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4511 {
4512 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4513 		return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4514 	return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4515 }
4516 /*
4517  * Account for index blocks, block groups bitmaps and block group
4518  * descriptor blocks if modify datablocks and index blocks
4519  * worse case, the indexs blocks spread over different block groups
4520  *
4521  * If datablocks are discontiguous, they are possible to spread over
4522  * different block groups too. If they are contiugous, with flexbg,
4523  * they could still across block group boundary.
4524  *
4525  * Also account for superblock, inode, quota and xattr blocks
4526  */
4527 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4528 {
4529 	int groups, gdpblocks;
4530 	int idxblocks;
4531 	int ret = 0;
4532 
4533 	/*
4534 	 * How many index blocks need to touch to modify nrblocks?
4535 	 * The "Chunk" flag indicating whether the nrblocks is
4536 	 * physically contiguous on disk
4537 	 *
4538 	 * For Direct IO and fallocate, they calls get_block to allocate
4539 	 * one single extent at a time, so they could set the "Chunk" flag
4540 	 */
4541 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4542 
4543 	ret = idxblocks;
4544 
4545 	/*
4546 	 * Now let's see how many group bitmaps and group descriptors need
4547 	 * to account
4548 	 */
4549 	groups = idxblocks;
4550 	if (chunk)
4551 		groups += 1;
4552 	else
4553 		groups += nrblocks;
4554 
4555 	gdpblocks = groups;
4556 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4557 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4558 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4559 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4560 
4561 	/* bitmaps and block group descriptor blocks */
4562 	ret += groups + gdpblocks;
4563 
4564 	/* Blocks for super block, inode, quota and xattr blocks */
4565 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4566 
4567 	return ret;
4568 }
4569 
4570 /*
4571  * Calulate the total number of credits to reserve to fit
4572  * the modification of a single pages into a single transaction,
4573  * which may include multiple chunks of block allocations.
4574  *
4575  * This could be called via ext4_write_begin()
4576  *
4577  * We need to consider the worse case, when
4578  * one new block per extent.
4579  */
4580 int ext4_writepage_trans_blocks(struct inode *inode)
4581 {
4582 	int bpp = ext4_journal_blocks_per_page(inode);
4583 	int ret;
4584 
4585 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4586 
4587 	/* Account for data blocks for journalled mode */
4588 	if (ext4_should_journal_data(inode))
4589 		ret += bpp;
4590 	return ret;
4591 }
4592 
4593 /*
4594  * Calculate the journal credits for a chunk of data modification.
4595  *
4596  * This is called from DIO, fallocate or whoever calling
4597  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4598  *
4599  * journal buffers for data blocks are not included here, as DIO
4600  * and fallocate do no need to journal data buffers.
4601  */
4602 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4603 {
4604 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4605 }
4606 
4607 /*
4608  * The caller must have previously called ext4_reserve_inode_write().
4609  * Give this, we know that the caller already has write access to iloc->bh.
4610  */
4611 int ext4_mark_iloc_dirty(handle_t *handle,
4612 		struct inode *inode, struct ext4_iloc *iloc)
4613 {
4614 	int err = 0;
4615 
4616 	if (test_opt(inode->i_sb, I_VERSION))
4617 		inode_inc_iversion(inode);
4618 
4619 	/* the do_update_inode consumes one bh->b_count */
4620 	get_bh(iloc->bh);
4621 
4622 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4623 	err = ext4_do_update_inode(handle, inode, iloc);
4624 	put_bh(iloc->bh);
4625 	return err;
4626 }
4627 
4628 /*
4629  * On success, We end up with an outstanding reference count against
4630  * iloc->bh.  This _must_ be cleaned up later.
4631  */
4632 
4633 int
4634 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4635 			 struct ext4_iloc *iloc)
4636 {
4637 	int err = 0;
4638 	if (handle) {
4639 		err = ext4_get_inode_loc(inode, iloc);
4640 		if (!err) {
4641 			BUFFER_TRACE(iloc->bh, "get_write_access");
4642 			err = ext4_journal_get_write_access(handle, iloc->bh);
4643 			if (err) {
4644 				brelse(iloc->bh);
4645 				iloc->bh = NULL;
4646 			}
4647 		}
4648 	}
4649 	ext4_std_error(inode->i_sb, err);
4650 	return err;
4651 }
4652 
4653 /*
4654  * Expand an inode by new_extra_isize bytes.
4655  * Returns 0 on success or negative error number on failure.
4656  */
4657 static int ext4_expand_extra_isize(struct inode *inode,
4658 				   unsigned int new_extra_isize,
4659 				   struct ext4_iloc iloc,
4660 				   handle_t *handle)
4661 {
4662 	struct ext4_inode *raw_inode;
4663 	struct ext4_xattr_ibody_header *header;
4664 	struct ext4_xattr_entry *entry;
4665 
4666 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4667 		return 0;
4668 
4669 	raw_inode = ext4_raw_inode(&iloc);
4670 
4671 	header = IHDR(inode, raw_inode);
4672 	entry = IFIRST(header);
4673 
4674 	/* No extended attributes present */
4675 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4676 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4677 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4678 			new_extra_isize);
4679 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4680 		return 0;
4681 	}
4682 
4683 	/* try to expand with EAs present */
4684 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4685 					  raw_inode, handle);
4686 }
4687 
4688 /*
4689  * What we do here is to mark the in-core inode as clean with respect to inode
4690  * dirtiness (it may still be data-dirty).
4691  * This means that the in-core inode may be reaped by prune_icache
4692  * without having to perform any I/O.  This is a very good thing,
4693  * because *any* task may call prune_icache - even ones which
4694  * have a transaction open against a different journal.
4695  *
4696  * Is this cheating?  Not really.  Sure, we haven't written the
4697  * inode out, but prune_icache isn't a user-visible syncing function.
4698  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4699  * we start and wait on commits.
4700  *
4701  * Is this efficient/effective?  Well, we're being nice to the system
4702  * by cleaning up our inodes proactively so they can be reaped
4703  * without I/O.  But we are potentially leaving up to five seconds'
4704  * worth of inodes floating about which prune_icache wants us to
4705  * write out.  One way to fix that would be to get prune_icache()
4706  * to do a write_super() to free up some memory.  It has the desired
4707  * effect.
4708  */
4709 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4710 {
4711 	struct ext4_iloc iloc;
4712 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713 	static unsigned int mnt_count;
4714 	int err, ret;
4715 
4716 	might_sleep();
4717 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4718 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4719 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4720 		/*
4721 		 * We need extra buffer credits since we may write into EA block
4722 		 * with this same handle. If journal_extend fails, then it will
4723 		 * only result in a minor loss of functionality for that inode.
4724 		 * If this is felt to be critical, then e2fsck should be run to
4725 		 * force a large enough s_min_extra_isize.
4726 		 */
4727 		if ((jbd2_journal_extend(handle,
4728 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4729 			ret = ext4_expand_extra_isize(inode,
4730 						      sbi->s_want_extra_isize,
4731 						      iloc, handle);
4732 			if (ret) {
4733 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4734 				if (mnt_count !=
4735 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4736 					ext4_warning(inode->i_sb, __func__,
4737 					"Unable to expand inode %lu. Delete"
4738 					" some EAs or run e2fsck.",
4739 					inode->i_ino);
4740 					mnt_count =
4741 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4742 				}
4743 			}
4744 		}
4745 	}
4746 	if (!err)
4747 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4748 	return err;
4749 }
4750 
4751 /*
4752  * ext4_dirty_inode() is called from __mark_inode_dirty()
4753  *
4754  * We're really interested in the case where a file is being extended.
4755  * i_size has been changed by generic_commit_write() and we thus need
4756  * to include the updated inode in the current transaction.
4757  *
4758  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4759  * are allocated to the file.
4760  *
4761  * If the inode is marked synchronous, we don't honour that here - doing
4762  * so would cause a commit on atime updates, which we don't bother doing.
4763  * We handle synchronous inodes at the highest possible level.
4764  */
4765 void ext4_dirty_inode(struct inode *inode)
4766 {
4767 	handle_t *current_handle = ext4_journal_current_handle();
4768 	handle_t *handle;
4769 
4770 	handle = ext4_journal_start(inode, 2);
4771 	if (IS_ERR(handle))
4772 		goto out;
4773 	if (current_handle &&
4774 		current_handle->h_transaction != handle->h_transaction) {
4775 		/* This task has a transaction open against a different fs */
4776 		printk(KERN_EMERG "%s: transactions do not match!\n",
4777 		       __func__);
4778 	} else {
4779 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4780 				current_handle);
4781 		ext4_mark_inode_dirty(handle, inode);
4782 	}
4783 	ext4_journal_stop(handle);
4784 out:
4785 	return;
4786 }
4787 
4788 #if 0
4789 /*
4790  * Bind an inode's backing buffer_head into this transaction, to prevent
4791  * it from being flushed to disk early.  Unlike
4792  * ext4_reserve_inode_write, this leaves behind no bh reference and
4793  * returns no iloc structure, so the caller needs to repeat the iloc
4794  * lookup to mark the inode dirty later.
4795  */
4796 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4797 {
4798 	struct ext4_iloc iloc;
4799 
4800 	int err = 0;
4801 	if (handle) {
4802 		err = ext4_get_inode_loc(inode, &iloc);
4803 		if (!err) {
4804 			BUFFER_TRACE(iloc.bh, "get_write_access");
4805 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4806 			if (!err)
4807 				err = ext4_journal_dirty_metadata(handle,
4808 								  iloc.bh);
4809 			brelse(iloc.bh);
4810 		}
4811 	}
4812 	ext4_std_error(inode->i_sb, err);
4813 	return err;
4814 }
4815 #endif
4816 
4817 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4818 {
4819 	journal_t *journal;
4820 	handle_t *handle;
4821 	int err;
4822 
4823 	/*
4824 	 * We have to be very careful here: changing a data block's
4825 	 * journaling status dynamically is dangerous.  If we write a
4826 	 * data block to the journal, change the status and then delete
4827 	 * that block, we risk forgetting to revoke the old log record
4828 	 * from the journal and so a subsequent replay can corrupt data.
4829 	 * So, first we make sure that the journal is empty and that
4830 	 * nobody is changing anything.
4831 	 */
4832 
4833 	journal = EXT4_JOURNAL(inode);
4834 	if (is_journal_aborted(journal))
4835 		return -EROFS;
4836 
4837 	jbd2_journal_lock_updates(journal);
4838 	jbd2_journal_flush(journal);
4839 
4840 	/*
4841 	 * OK, there are no updates running now, and all cached data is
4842 	 * synced to disk.  We are now in a completely consistent state
4843 	 * which doesn't have anything in the journal, and we know that
4844 	 * no filesystem updates are running, so it is safe to modify
4845 	 * the inode's in-core data-journaling state flag now.
4846 	 */
4847 
4848 	if (val)
4849 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4850 	else
4851 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4852 	ext4_set_aops(inode);
4853 
4854 	jbd2_journal_unlock_updates(journal);
4855 
4856 	/* Finally we can mark the inode as dirty. */
4857 
4858 	handle = ext4_journal_start(inode, 1);
4859 	if (IS_ERR(handle))
4860 		return PTR_ERR(handle);
4861 
4862 	err = ext4_mark_inode_dirty(handle, inode);
4863 	handle->h_sync = 1;
4864 	ext4_journal_stop(handle);
4865 	ext4_std_error(inode->i_sb, err);
4866 
4867 	return err;
4868 }
4869 
4870 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4871 {
4872 	return !buffer_mapped(bh);
4873 }
4874 
4875 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4876 {
4877 	loff_t size;
4878 	unsigned long len;
4879 	int ret = -EINVAL;
4880 	struct file *file = vma->vm_file;
4881 	struct inode *inode = file->f_path.dentry->d_inode;
4882 	struct address_space *mapping = inode->i_mapping;
4883 
4884 	/*
4885 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4886 	 * get i_mutex because we are already holding mmap_sem.
4887 	 */
4888 	down_read(&inode->i_alloc_sem);
4889 	size = i_size_read(inode);
4890 	if (page->mapping != mapping || size <= page_offset(page)
4891 	    || !PageUptodate(page)) {
4892 		/* page got truncated from under us? */
4893 		goto out_unlock;
4894 	}
4895 	ret = 0;
4896 	if (PageMappedToDisk(page))
4897 		goto out_unlock;
4898 
4899 	if (page->index == size >> PAGE_CACHE_SHIFT)
4900 		len = size & ~PAGE_CACHE_MASK;
4901 	else
4902 		len = PAGE_CACHE_SIZE;
4903 
4904 	if (page_has_buffers(page)) {
4905 		/* return if we have all the buffers mapped */
4906 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4907 				       ext4_bh_unmapped))
4908 			goto out_unlock;
4909 	}
4910 	/*
4911 	 * OK, we need to fill the hole... Do write_begin write_end
4912 	 * to do block allocation/reservation.We are not holding
4913 	 * inode.i__mutex here. That allow * parallel write_begin,
4914 	 * write_end call. lock_page prevent this from happening
4915 	 * on the same page though
4916 	 */
4917 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4918 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4919 	if (ret < 0)
4920 		goto out_unlock;
4921 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4922 			len, len, page, NULL);
4923 	if (ret < 0)
4924 		goto out_unlock;
4925 	ret = 0;
4926 out_unlock:
4927 	up_read(&inode->i_alloc_sem);
4928 	return ret;
4929 }
4930