1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertation failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 519 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 520 map->m_pblk = ext4_es_pblock(&es) + 521 map->m_lblk - es.es_lblk; 522 map->m_flags |= ext4_es_is_written(&es) ? 523 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 524 retval = es.es_len - (map->m_lblk - es.es_lblk); 525 if (retval > map->m_len) 526 retval = map->m_len; 527 map->m_len = retval; 528 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 529 retval = 0; 530 } else { 531 BUG_ON(1); 532 } 533 #ifdef ES_AGGRESSIVE_TEST 534 ext4_map_blocks_es_recheck(handle, inode, map, 535 &orig_map, flags); 536 #endif 537 goto found; 538 } 539 540 /* 541 * Try to see if we can get the block without requesting a new 542 * file system block. 543 */ 544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 545 down_read((&EXT4_I(inode)->i_data_sem)); 546 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 547 retval = ext4_ext_map_blocks(handle, inode, map, flags & 548 EXT4_GET_BLOCKS_KEEP_SIZE); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, flags & 551 EXT4_GET_BLOCKS_KEEP_SIZE); 552 } 553 if (retval > 0) { 554 int ret; 555 unsigned long long status; 556 557 #ifdef ES_AGGRESSIVE_TEST 558 if (retval != map->m_len) { 559 printk("ES len assertation failed for inode: %lu " 560 "retval %d != map->m_len %d " 561 "in %s (lookup)\n", inode->i_ino, retval, 562 map->m_len, __func__); 563 } 564 #endif 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 int ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 return retval; 600 601 /* 602 * Here we clear m_flags because after allocating an new extent, 603 * it will be set again. 604 */ 605 map->m_flags &= ~EXT4_MAP_FLAGS; 606 607 /* 608 * New blocks allocate and/or writing to uninitialized extent 609 * will possibly result in updating i_data, so we take 610 * the write lock of i_data_sem, and call get_blocks() 611 * with create == 1 flag. 612 */ 613 down_write((&EXT4_I(inode)->i_data_sem)); 614 615 /* 616 * if the caller is from delayed allocation writeout path 617 * we have already reserved fs blocks for allocation 618 * let the underlying get_block() function know to 619 * avoid double accounting 620 */ 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 623 /* 624 * We need to check for EXT4 here because migrate 625 * could have changed the inode type in between 626 */ 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 628 retval = ext4_ext_map_blocks(handle, inode, map, flags); 629 } else { 630 retval = ext4_ind_map_blocks(handle, inode, map, flags); 631 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 633 /* 634 * We allocated new blocks which will result in 635 * i_data's format changing. Force the migrate 636 * to fail by clearing migrate flags 637 */ 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 639 } 640 641 /* 642 * Update reserved blocks/metadata blocks after successful 643 * block allocation which had been deferred till now. We don't 644 * support fallocate for non extent files. So we can update 645 * reserve space here. 646 */ 647 if ((retval > 0) && 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 649 ext4_da_update_reserve_space(inode, retval, 1); 650 } 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 653 654 if (retval > 0) { 655 int ret; 656 unsigned long long status; 657 658 #ifdef ES_AGGRESSIVE_TEST 659 if (retval != map->m_len) { 660 printk("ES len assertation failed for inode: %lu " 661 "retval %d != map->m_len %d " 662 "in %s (allocation)\n", inode->i_ino, retval, 663 map->m_len, __func__); 664 } 665 #endif 666 667 /* 668 * If the extent has been zeroed out, we don't need to update 669 * extent status tree. 670 */ 671 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 672 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 673 if (ext4_es_is_written(&es)) 674 goto has_zeroout; 675 } 676 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 677 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 678 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 679 ext4_find_delalloc_range(inode, map->m_lblk, 680 map->m_lblk + map->m_len - 1)) 681 status |= EXTENT_STATUS_DELAYED; 682 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 683 map->m_pblk, status); 684 if (ret < 0) 685 retval = ret; 686 } 687 688 has_zeroout: 689 up_write((&EXT4_I(inode)->i_data_sem)); 690 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 691 int ret = check_block_validity(inode, map); 692 if (ret != 0) 693 return ret; 694 } 695 return retval; 696 } 697 698 /* Maximum number of blocks we map for direct IO at once. */ 699 #define DIO_MAX_BLOCKS 4096 700 701 static int _ext4_get_block(struct inode *inode, sector_t iblock, 702 struct buffer_head *bh, int flags) 703 { 704 handle_t *handle = ext4_journal_current_handle(); 705 struct ext4_map_blocks map; 706 int ret = 0, started = 0; 707 int dio_credits; 708 709 if (ext4_has_inline_data(inode)) 710 return -ERANGE; 711 712 map.m_lblk = iblock; 713 map.m_len = bh->b_size >> inode->i_blkbits; 714 715 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 716 /* Direct IO write... */ 717 if (map.m_len > DIO_MAX_BLOCKS) 718 map.m_len = DIO_MAX_BLOCKS; 719 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 720 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 721 dio_credits); 722 if (IS_ERR(handle)) { 723 ret = PTR_ERR(handle); 724 return ret; 725 } 726 started = 1; 727 } 728 729 ret = ext4_map_blocks(handle, inode, &map, flags); 730 if (ret > 0) { 731 map_bh(bh, inode->i_sb, map.m_pblk); 732 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 733 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 734 ret = 0; 735 } 736 if (started) 737 ext4_journal_stop(handle); 738 return ret; 739 } 740 741 int ext4_get_block(struct inode *inode, sector_t iblock, 742 struct buffer_head *bh, int create) 743 { 744 return _ext4_get_block(inode, iblock, bh, 745 create ? EXT4_GET_BLOCKS_CREATE : 0); 746 } 747 748 /* 749 * `handle' can be NULL if create is zero 750 */ 751 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 752 ext4_lblk_t block, int create, int *errp) 753 { 754 struct ext4_map_blocks map; 755 struct buffer_head *bh; 756 int fatal = 0, err; 757 758 J_ASSERT(handle != NULL || create == 0); 759 760 map.m_lblk = block; 761 map.m_len = 1; 762 err = ext4_map_blocks(handle, inode, &map, 763 create ? EXT4_GET_BLOCKS_CREATE : 0); 764 765 /* ensure we send some value back into *errp */ 766 *errp = 0; 767 768 if (create && err == 0) 769 err = -ENOSPC; /* should never happen */ 770 if (err < 0) 771 *errp = err; 772 if (err <= 0) 773 return NULL; 774 775 bh = sb_getblk(inode->i_sb, map.m_pblk); 776 if (unlikely(!bh)) { 777 *errp = -ENOMEM; 778 return NULL; 779 } 780 if (map.m_flags & EXT4_MAP_NEW) { 781 J_ASSERT(create != 0); 782 J_ASSERT(handle != NULL); 783 784 /* 785 * Now that we do not always journal data, we should 786 * keep in mind whether this should always journal the 787 * new buffer as metadata. For now, regular file 788 * writes use ext4_get_block instead, so it's not a 789 * problem. 790 */ 791 lock_buffer(bh); 792 BUFFER_TRACE(bh, "call get_create_access"); 793 fatal = ext4_journal_get_create_access(handle, bh); 794 if (!fatal && !buffer_uptodate(bh)) { 795 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 796 set_buffer_uptodate(bh); 797 } 798 unlock_buffer(bh); 799 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 800 err = ext4_handle_dirty_metadata(handle, inode, bh); 801 if (!fatal) 802 fatal = err; 803 } else { 804 BUFFER_TRACE(bh, "not a new buffer"); 805 } 806 if (fatal) { 807 *errp = fatal; 808 brelse(bh); 809 bh = NULL; 810 } 811 return bh; 812 } 813 814 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 815 ext4_lblk_t block, int create, int *err) 816 { 817 struct buffer_head *bh; 818 819 bh = ext4_getblk(handle, inode, block, create, err); 820 if (!bh) 821 return bh; 822 if (buffer_uptodate(bh)) 823 return bh; 824 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 825 wait_on_buffer(bh); 826 if (buffer_uptodate(bh)) 827 return bh; 828 put_bh(bh); 829 *err = -EIO; 830 return NULL; 831 } 832 833 int ext4_walk_page_buffers(handle_t *handle, 834 struct buffer_head *head, 835 unsigned from, 836 unsigned to, 837 int *partial, 838 int (*fn)(handle_t *handle, 839 struct buffer_head *bh)) 840 { 841 struct buffer_head *bh; 842 unsigned block_start, block_end; 843 unsigned blocksize = head->b_size; 844 int err, ret = 0; 845 struct buffer_head *next; 846 847 for (bh = head, block_start = 0; 848 ret == 0 && (bh != head || !block_start); 849 block_start = block_end, bh = next) { 850 next = bh->b_this_page; 851 block_end = block_start + blocksize; 852 if (block_end <= from || block_start >= to) { 853 if (partial && !buffer_uptodate(bh)) 854 *partial = 1; 855 continue; 856 } 857 err = (*fn)(handle, bh); 858 if (!ret) 859 ret = err; 860 } 861 return ret; 862 } 863 864 /* 865 * To preserve ordering, it is essential that the hole instantiation and 866 * the data write be encapsulated in a single transaction. We cannot 867 * close off a transaction and start a new one between the ext4_get_block() 868 * and the commit_write(). So doing the jbd2_journal_start at the start of 869 * prepare_write() is the right place. 870 * 871 * Also, this function can nest inside ext4_writepage(). In that case, we 872 * *know* that ext4_writepage() has generated enough buffer credits to do the 873 * whole page. So we won't block on the journal in that case, which is good, 874 * because the caller may be PF_MEMALLOC. 875 * 876 * By accident, ext4 can be reentered when a transaction is open via 877 * quota file writes. If we were to commit the transaction while thus 878 * reentered, there can be a deadlock - we would be holding a quota 879 * lock, and the commit would never complete if another thread had a 880 * transaction open and was blocking on the quota lock - a ranking 881 * violation. 882 * 883 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 884 * will _not_ run commit under these circumstances because handle->h_ref 885 * is elevated. We'll still have enough credits for the tiny quotafile 886 * write. 887 */ 888 int do_journal_get_write_access(handle_t *handle, 889 struct buffer_head *bh) 890 { 891 int dirty = buffer_dirty(bh); 892 int ret; 893 894 if (!buffer_mapped(bh) || buffer_freed(bh)) 895 return 0; 896 /* 897 * __block_write_begin() could have dirtied some buffers. Clean 898 * the dirty bit as jbd2_journal_get_write_access() could complain 899 * otherwise about fs integrity issues. Setting of the dirty bit 900 * by __block_write_begin() isn't a real problem here as we clear 901 * the bit before releasing a page lock and thus writeback cannot 902 * ever write the buffer. 903 */ 904 if (dirty) 905 clear_buffer_dirty(bh); 906 ret = ext4_journal_get_write_access(handle, bh); 907 if (!ret && dirty) 908 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 909 return ret; 910 } 911 912 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 913 struct buffer_head *bh_result, int create); 914 static int ext4_write_begin(struct file *file, struct address_space *mapping, 915 loff_t pos, unsigned len, unsigned flags, 916 struct page **pagep, void **fsdata) 917 { 918 struct inode *inode = mapping->host; 919 int ret, needed_blocks; 920 handle_t *handle; 921 int retries = 0; 922 struct page *page; 923 pgoff_t index; 924 unsigned from, to; 925 926 trace_ext4_write_begin(inode, pos, len, flags); 927 /* 928 * Reserve one block more for addition to orphan list in case 929 * we allocate blocks but write fails for some reason 930 */ 931 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 932 index = pos >> PAGE_CACHE_SHIFT; 933 from = pos & (PAGE_CACHE_SIZE - 1); 934 to = from + len; 935 936 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 937 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 938 flags, pagep); 939 if (ret < 0) 940 return ret; 941 if (ret == 1) 942 return 0; 943 } 944 945 /* 946 * grab_cache_page_write_begin() can take a long time if the 947 * system is thrashing due to memory pressure, or if the page 948 * is being written back. So grab it first before we start 949 * the transaction handle. This also allows us to allocate 950 * the page (if needed) without using GFP_NOFS. 951 */ 952 retry_grab: 953 page = grab_cache_page_write_begin(mapping, index, flags); 954 if (!page) 955 return -ENOMEM; 956 unlock_page(page); 957 958 retry_journal: 959 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 960 if (IS_ERR(handle)) { 961 page_cache_release(page); 962 return PTR_ERR(handle); 963 } 964 965 lock_page(page); 966 if (page->mapping != mapping) { 967 /* The page got truncated from under us */ 968 unlock_page(page); 969 page_cache_release(page); 970 ext4_journal_stop(handle); 971 goto retry_grab; 972 } 973 wait_on_page_writeback(page); 974 975 if (ext4_should_dioread_nolock(inode)) 976 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 977 else 978 ret = __block_write_begin(page, pos, len, ext4_get_block); 979 980 if (!ret && ext4_should_journal_data(inode)) { 981 ret = ext4_walk_page_buffers(handle, page_buffers(page), 982 from, to, NULL, 983 do_journal_get_write_access); 984 } 985 986 if (ret) { 987 unlock_page(page); 988 /* 989 * __block_write_begin may have instantiated a few blocks 990 * outside i_size. Trim these off again. Don't need 991 * i_size_read because we hold i_mutex. 992 * 993 * Add inode to orphan list in case we crash before 994 * truncate finishes 995 */ 996 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 997 ext4_orphan_add(handle, inode); 998 999 ext4_journal_stop(handle); 1000 if (pos + len > inode->i_size) { 1001 ext4_truncate_failed_write(inode); 1002 /* 1003 * If truncate failed early the inode might 1004 * still be on the orphan list; we need to 1005 * make sure the inode is removed from the 1006 * orphan list in that case. 1007 */ 1008 if (inode->i_nlink) 1009 ext4_orphan_del(NULL, inode); 1010 } 1011 1012 if (ret == -ENOSPC && 1013 ext4_should_retry_alloc(inode->i_sb, &retries)) 1014 goto retry_journal; 1015 page_cache_release(page); 1016 return ret; 1017 } 1018 *pagep = page; 1019 return ret; 1020 } 1021 1022 /* For write_end() in data=journal mode */ 1023 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1024 { 1025 int ret; 1026 if (!buffer_mapped(bh) || buffer_freed(bh)) 1027 return 0; 1028 set_buffer_uptodate(bh); 1029 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1030 clear_buffer_meta(bh); 1031 clear_buffer_prio(bh); 1032 return ret; 1033 } 1034 1035 /* 1036 * We need to pick up the new inode size which generic_commit_write gave us 1037 * `file' can be NULL - eg, when called from page_symlink(). 1038 * 1039 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1040 * buffers are managed internally. 1041 */ 1042 static int ext4_write_end(struct file *file, 1043 struct address_space *mapping, 1044 loff_t pos, unsigned len, unsigned copied, 1045 struct page *page, void *fsdata) 1046 { 1047 handle_t *handle = ext4_journal_current_handle(); 1048 struct inode *inode = mapping->host; 1049 int ret = 0, ret2; 1050 int i_size_changed = 0; 1051 1052 trace_ext4_write_end(inode, pos, len, copied); 1053 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1054 ret = ext4_jbd2_file_inode(handle, inode); 1055 if (ret) { 1056 unlock_page(page); 1057 page_cache_release(page); 1058 goto errout; 1059 } 1060 } 1061 1062 if (ext4_has_inline_data(inode)) 1063 copied = ext4_write_inline_data_end(inode, pos, len, 1064 copied, page); 1065 else 1066 copied = block_write_end(file, mapping, pos, 1067 len, copied, page, fsdata); 1068 1069 /* 1070 * No need to use i_size_read() here, the i_size 1071 * cannot change under us because we hole i_mutex. 1072 * 1073 * But it's important to update i_size while still holding page lock: 1074 * page writeout could otherwise come in and zero beyond i_size. 1075 */ 1076 if (pos + copied > inode->i_size) { 1077 i_size_write(inode, pos + copied); 1078 i_size_changed = 1; 1079 } 1080 1081 if (pos + copied > EXT4_I(inode)->i_disksize) { 1082 /* We need to mark inode dirty even if 1083 * new_i_size is less that inode->i_size 1084 * but greater than i_disksize. (hint delalloc) 1085 */ 1086 ext4_update_i_disksize(inode, (pos + copied)); 1087 i_size_changed = 1; 1088 } 1089 unlock_page(page); 1090 page_cache_release(page); 1091 1092 /* 1093 * Don't mark the inode dirty under page lock. First, it unnecessarily 1094 * makes the holding time of page lock longer. Second, it forces lock 1095 * ordering of page lock and transaction start for journaling 1096 * filesystems. 1097 */ 1098 if (i_size_changed) 1099 ext4_mark_inode_dirty(handle, inode); 1100 1101 if (copied < 0) 1102 ret = copied; 1103 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1104 /* if we have allocated more blocks and copied 1105 * less. We will have blocks allocated outside 1106 * inode->i_size. So truncate them 1107 */ 1108 ext4_orphan_add(handle, inode); 1109 errout: 1110 ret2 = ext4_journal_stop(handle); 1111 if (!ret) 1112 ret = ret2; 1113 1114 if (pos + len > inode->i_size) { 1115 ext4_truncate_failed_write(inode); 1116 /* 1117 * If truncate failed early the inode might still be 1118 * on the orphan list; we need to make sure the inode 1119 * is removed from the orphan list in that case. 1120 */ 1121 if (inode->i_nlink) 1122 ext4_orphan_del(NULL, inode); 1123 } 1124 1125 return ret ? ret : copied; 1126 } 1127 1128 static int ext4_journalled_write_end(struct file *file, 1129 struct address_space *mapping, 1130 loff_t pos, unsigned len, unsigned copied, 1131 struct page *page, void *fsdata) 1132 { 1133 handle_t *handle = ext4_journal_current_handle(); 1134 struct inode *inode = mapping->host; 1135 int ret = 0, ret2; 1136 int partial = 0; 1137 unsigned from, to; 1138 loff_t new_i_size; 1139 1140 trace_ext4_journalled_write_end(inode, pos, len, copied); 1141 from = pos & (PAGE_CACHE_SIZE - 1); 1142 to = from + len; 1143 1144 BUG_ON(!ext4_handle_valid(handle)); 1145 1146 if (ext4_has_inline_data(inode)) 1147 copied = ext4_write_inline_data_end(inode, pos, len, 1148 copied, page); 1149 else { 1150 if (copied < len) { 1151 if (!PageUptodate(page)) 1152 copied = 0; 1153 page_zero_new_buffers(page, from+copied, to); 1154 } 1155 1156 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1157 to, &partial, write_end_fn); 1158 if (!partial) 1159 SetPageUptodate(page); 1160 } 1161 new_i_size = pos + copied; 1162 if (new_i_size > inode->i_size) 1163 i_size_write(inode, pos+copied); 1164 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1165 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1166 if (new_i_size > EXT4_I(inode)->i_disksize) { 1167 ext4_update_i_disksize(inode, new_i_size); 1168 ret2 = ext4_mark_inode_dirty(handle, inode); 1169 if (!ret) 1170 ret = ret2; 1171 } 1172 1173 unlock_page(page); 1174 page_cache_release(page); 1175 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1176 /* if we have allocated more blocks and copied 1177 * less. We will have blocks allocated outside 1178 * inode->i_size. So truncate them 1179 */ 1180 ext4_orphan_add(handle, inode); 1181 1182 ret2 = ext4_journal_stop(handle); 1183 if (!ret) 1184 ret = ret2; 1185 if (pos + len > inode->i_size) { 1186 ext4_truncate_failed_write(inode); 1187 /* 1188 * If truncate failed early the inode might still be 1189 * on the orphan list; we need to make sure the inode 1190 * is removed from the orphan list in that case. 1191 */ 1192 if (inode->i_nlink) 1193 ext4_orphan_del(NULL, inode); 1194 } 1195 1196 return ret ? ret : copied; 1197 } 1198 1199 /* 1200 * Reserve a metadata for a single block located at lblock 1201 */ 1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1203 { 1204 int retries = 0; 1205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1206 struct ext4_inode_info *ei = EXT4_I(inode); 1207 unsigned int md_needed; 1208 ext4_lblk_t save_last_lblock; 1209 int save_len; 1210 1211 /* 1212 * recalculate the amount of metadata blocks to reserve 1213 * in order to allocate nrblocks 1214 * worse case is one extent per block 1215 */ 1216 repeat: 1217 spin_lock(&ei->i_block_reservation_lock); 1218 /* 1219 * ext4_calc_metadata_amount() has side effects, which we have 1220 * to be prepared undo if we fail to claim space. 1221 */ 1222 save_len = ei->i_da_metadata_calc_len; 1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1224 md_needed = EXT4_NUM_B2C(sbi, 1225 ext4_calc_metadata_amount(inode, lblock)); 1226 trace_ext4_da_reserve_space(inode, md_needed); 1227 1228 /* 1229 * We do still charge estimated metadata to the sb though; 1230 * we cannot afford to run out of free blocks. 1231 */ 1232 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1233 ei->i_da_metadata_calc_len = save_len; 1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1235 spin_unlock(&ei->i_block_reservation_lock); 1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1237 cond_resched(); 1238 goto repeat; 1239 } 1240 return -ENOSPC; 1241 } 1242 ei->i_reserved_meta_blocks += md_needed; 1243 spin_unlock(&ei->i_block_reservation_lock); 1244 1245 return 0; /* success */ 1246 } 1247 1248 /* 1249 * Reserve a single cluster located at lblock 1250 */ 1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1252 { 1253 int retries = 0; 1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1255 struct ext4_inode_info *ei = EXT4_I(inode); 1256 unsigned int md_needed; 1257 int ret; 1258 ext4_lblk_t save_last_lblock; 1259 int save_len; 1260 1261 /* 1262 * We will charge metadata quota at writeout time; this saves 1263 * us from metadata over-estimation, though we may go over by 1264 * a small amount in the end. Here we just reserve for data. 1265 */ 1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1267 if (ret) 1268 return ret; 1269 1270 /* 1271 * recalculate the amount of metadata blocks to reserve 1272 * in order to allocate nrblocks 1273 * worse case is one extent per block 1274 */ 1275 repeat: 1276 spin_lock(&ei->i_block_reservation_lock); 1277 /* 1278 * ext4_calc_metadata_amount() has side effects, which we have 1279 * to be prepared undo if we fail to claim space. 1280 */ 1281 save_len = ei->i_da_metadata_calc_len; 1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1283 md_needed = EXT4_NUM_B2C(sbi, 1284 ext4_calc_metadata_amount(inode, lblock)); 1285 trace_ext4_da_reserve_space(inode, md_needed); 1286 1287 /* 1288 * We do still charge estimated metadata to the sb though; 1289 * we cannot afford to run out of free blocks. 1290 */ 1291 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1292 ei->i_da_metadata_calc_len = save_len; 1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1294 spin_unlock(&ei->i_block_reservation_lock); 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1296 cond_resched(); 1297 goto repeat; 1298 } 1299 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1300 return -ENOSPC; 1301 } 1302 ei->i_reserved_data_blocks++; 1303 ei->i_reserved_meta_blocks += md_needed; 1304 spin_unlock(&ei->i_block_reservation_lock); 1305 1306 return 0; /* success */ 1307 } 1308 1309 static void ext4_da_release_space(struct inode *inode, int to_free) 1310 { 1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1312 struct ext4_inode_info *ei = EXT4_I(inode); 1313 1314 if (!to_free) 1315 return; /* Nothing to release, exit */ 1316 1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1318 1319 trace_ext4_da_release_space(inode, to_free); 1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1321 /* 1322 * if there aren't enough reserved blocks, then the 1323 * counter is messed up somewhere. Since this 1324 * function is called from invalidate page, it's 1325 * harmless to return without any action. 1326 */ 1327 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1328 "ino %lu, to_free %d with only %d reserved " 1329 "data blocks", inode->i_ino, to_free, 1330 ei->i_reserved_data_blocks); 1331 WARN_ON(1); 1332 to_free = ei->i_reserved_data_blocks; 1333 } 1334 ei->i_reserved_data_blocks -= to_free; 1335 1336 if (ei->i_reserved_data_blocks == 0) { 1337 /* 1338 * We can release all of the reserved metadata blocks 1339 * only when we have written all of the delayed 1340 * allocation blocks. 1341 * Note that in case of bigalloc, i_reserved_meta_blocks, 1342 * i_reserved_data_blocks, etc. refer to number of clusters. 1343 */ 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1345 ei->i_reserved_meta_blocks); 1346 ei->i_reserved_meta_blocks = 0; 1347 ei->i_da_metadata_calc_len = 0; 1348 } 1349 1350 /* update fs dirty data blocks counter */ 1351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1352 1353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1354 1355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1356 } 1357 1358 static void ext4_da_page_release_reservation(struct page *page, 1359 unsigned int offset, 1360 unsigned int length) 1361 { 1362 int to_release = 0; 1363 struct buffer_head *head, *bh; 1364 unsigned int curr_off = 0; 1365 struct inode *inode = page->mapping->host; 1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1367 unsigned int stop = offset + length; 1368 int num_clusters; 1369 ext4_fsblk_t lblk; 1370 1371 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1372 1373 head = page_buffers(page); 1374 bh = head; 1375 do { 1376 unsigned int next_off = curr_off + bh->b_size; 1377 1378 if (next_off > stop) 1379 break; 1380 1381 if ((offset <= curr_off) && (buffer_delay(bh))) { 1382 to_release++; 1383 clear_buffer_delay(bh); 1384 } 1385 curr_off = next_off; 1386 } while ((bh = bh->b_this_page) != head); 1387 1388 if (to_release) { 1389 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1390 ext4_es_remove_extent(inode, lblk, to_release); 1391 } 1392 1393 /* If we have released all the blocks belonging to a cluster, then we 1394 * need to release the reserved space for that cluster. */ 1395 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1396 while (num_clusters > 0) { 1397 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1398 ((num_clusters - 1) << sbi->s_cluster_bits); 1399 if (sbi->s_cluster_ratio == 1 || 1400 !ext4_find_delalloc_cluster(inode, lblk)) 1401 ext4_da_release_space(inode, 1); 1402 1403 num_clusters--; 1404 } 1405 } 1406 1407 /* 1408 * Delayed allocation stuff 1409 */ 1410 1411 struct mpage_da_data { 1412 struct inode *inode; 1413 struct writeback_control *wbc; 1414 1415 pgoff_t first_page; /* The first page to write */ 1416 pgoff_t next_page; /* Current page to examine */ 1417 pgoff_t last_page; /* Last page to examine */ 1418 /* 1419 * Extent to map - this can be after first_page because that can be 1420 * fully mapped. We somewhat abuse m_flags to store whether the extent 1421 * is delalloc or unwritten. 1422 */ 1423 struct ext4_map_blocks map; 1424 struct ext4_io_submit io_submit; /* IO submission data */ 1425 }; 1426 1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1428 bool invalidate) 1429 { 1430 int nr_pages, i; 1431 pgoff_t index, end; 1432 struct pagevec pvec; 1433 struct inode *inode = mpd->inode; 1434 struct address_space *mapping = inode->i_mapping; 1435 1436 /* This is necessary when next_page == 0. */ 1437 if (mpd->first_page >= mpd->next_page) 1438 return; 1439 1440 index = mpd->first_page; 1441 end = mpd->next_page - 1; 1442 if (invalidate) { 1443 ext4_lblk_t start, last; 1444 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1445 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1446 ext4_es_remove_extent(inode, start, last - start + 1); 1447 } 1448 1449 pagevec_init(&pvec, 0); 1450 while (index <= end) { 1451 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1452 if (nr_pages == 0) 1453 break; 1454 for (i = 0; i < nr_pages; i++) { 1455 struct page *page = pvec.pages[i]; 1456 if (page->index > end) 1457 break; 1458 BUG_ON(!PageLocked(page)); 1459 BUG_ON(PageWriteback(page)); 1460 if (invalidate) { 1461 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1462 ClearPageUptodate(page); 1463 } 1464 unlock_page(page); 1465 } 1466 index = pvec.pages[nr_pages - 1]->index + 1; 1467 pagevec_release(&pvec); 1468 } 1469 } 1470 1471 static void ext4_print_free_blocks(struct inode *inode) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct super_block *sb = inode->i_sb; 1475 struct ext4_inode_info *ei = EXT4_I(inode); 1476 1477 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1478 EXT4_C2B(EXT4_SB(inode->i_sb), 1479 ext4_count_free_clusters(sb))); 1480 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1481 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1482 (long long) EXT4_C2B(EXT4_SB(sb), 1483 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1484 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1485 (long long) EXT4_C2B(EXT4_SB(sb), 1486 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1487 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1488 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1489 ei->i_reserved_data_blocks); 1490 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1491 ei->i_reserved_meta_blocks); 1492 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1493 ei->i_allocated_meta_blocks); 1494 return; 1495 } 1496 1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1498 { 1499 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1500 } 1501 1502 /* 1503 * This function is grabs code from the very beginning of 1504 * ext4_map_blocks, but assumes that the caller is from delayed write 1505 * time. This function looks up the requested blocks and sets the 1506 * buffer delay bit under the protection of i_data_sem. 1507 */ 1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1509 struct ext4_map_blocks *map, 1510 struct buffer_head *bh) 1511 { 1512 struct extent_status es; 1513 int retval; 1514 sector_t invalid_block = ~((sector_t) 0xffff); 1515 #ifdef ES_AGGRESSIVE_TEST 1516 struct ext4_map_blocks orig_map; 1517 1518 memcpy(&orig_map, map, sizeof(*map)); 1519 #endif 1520 1521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1522 invalid_block = ~0; 1523 1524 map->m_flags = 0; 1525 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1526 "logical block %lu\n", inode->i_ino, map->m_len, 1527 (unsigned long) map->m_lblk); 1528 1529 /* Lookup extent status tree firstly */ 1530 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1531 1532 if (ext4_es_is_hole(&es)) { 1533 retval = 0; 1534 down_read((&EXT4_I(inode)->i_data_sem)); 1535 goto add_delayed; 1536 } 1537 1538 /* 1539 * Delayed extent could be allocated by fallocate. 1540 * So we need to check it. 1541 */ 1542 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1543 map_bh(bh, inode->i_sb, invalid_block); 1544 set_buffer_new(bh); 1545 set_buffer_delay(bh); 1546 return 0; 1547 } 1548 1549 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1550 retval = es.es_len - (iblock - es.es_lblk); 1551 if (retval > map->m_len) 1552 retval = map->m_len; 1553 map->m_len = retval; 1554 if (ext4_es_is_written(&es)) 1555 map->m_flags |= EXT4_MAP_MAPPED; 1556 else if (ext4_es_is_unwritten(&es)) 1557 map->m_flags |= EXT4_MAP_UNWRITTEN; 1558 else 1559 BUG_ON(1); 1560 1561 #ifdef ES_AGGRESSIVE_TEST 1562 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1563 #endif 1564 return retval; 1565 } 1566 1567 /* 1568 * Try to see if we can get the block without requesting a new 1569 * file system block. 1570 */ 1571 down_read((&EXT4_I(inode)->i_data_sem)); 1572 if (ext4_has_inline_data(inode)) { 1573 /* 1574 * We will soon create blocks for this page, and let 1575 * us pretend as if the blocks aren't allocated yet. 1576 * In case of clusters, we have to handle the work 1577 * of mapping from cluster so that the reserved space 1578 * is calculated properly. 1579 */ 1580 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1581 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1582 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1583 retval = 0; 1584 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1585 retval = ext4_ext_map_blocks(NULL, inode, map, 1586 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1587 else 1588 retval = ext4_ind_map_blocks(NULL, inode, map, 1589 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1590 1591 add_delayed: 1592 if (retval == 0) { 1593 int ret; 1594 /* 1595 * XXX: __block_prepare_write() unmaps passed block, 1596 * is it OK? 1597 */ 1598 /* 1599 * If the block was allocated from previously allocated cluster, 1600 * then we don't need to reserve it again. However we still need 1601 * to reserve metadata for every block we're going to write. 1602 */ 1603 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1604 ret = ext4_da_reserve_space(inode, iblock); 1605 if (ret) { 1606 /* not enough space to reserve */ 1607 retval = ret; 1608 goto out_unlock; 1609 } 1610 } else { 1611 ret = ext4_da_reserve_metadata(inode, iblock); 1612 if (ret) { 1613 /* not enough space to reserve */ 1614 retval = ret; 1615 goto out_unlock; 1616 } 1617 } 1618 1619 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1620 ~0, EXTENT_STATUS_DELAYED); 1621 if (ret) { 1622 retval = ret; 1623 goto out_unlock; 1624 } 1625 1626 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1627 * and it should not appear on the bh->b_state. 1628 */ 1629 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1630 1631 map_bh(bh, inode->i_sb, invalid_block); 1632 set_buffer_new(bh); 1633 set_buffer_delay(bh); 1634 } else if (retval > 0) { 1635 int ret; 1636 unsigned long long status; 1637 1638 #ifdef ES_AGGRESSIVE_TEST 1639 if (retval != map->m_len) { 1640 printk("ES len assertation failed for inode: %lu " 1641 "retval %d != map->m_len %d " 1642 "in %s (lookup)\n", inode->i_ino, retval, 1643 map->m_len, __func__); 1644 } 1645 #endif 1646 1647 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1648 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1649 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1650 map->m_pblk, status); 1651 if (ret != 0) 1652 retval = ret; 1653 } 1654 1655 out_unlock: 1656 up_read((&EXT4_I(inode)->i_data_sem)); 1657 1658 return retval; 1659 } 1660 1661 /* 1662 * This is a special get_blocks_t callback which is used by 1663 * ext4_da_write_begin(). It will either return mapped block or 1664 * reserve space for a single block. 1665 * 1666 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1667 * We also have b_blocknr = -1 and b_bdev initialized properly 1668 * 1669 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1670 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1671 * initialized properly. 1672 */ 1673 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1674 struct buffer_head *bh, int create) 1675 { 1676 struct ext4_map_blocks map; 1677 int ret = 0; 1678 1679 BUG_ON(create == 0); 1680 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1681 1682 map.m_lblk = iblock; 1683 map.m_len = 1; 1684 1685 /* 1686 * first, we need to know whether the block is allocated already 1687 * preallocated blocks are unmapped but should treated 1688 * the same as allocated blocks. 1689 */ 1690 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1691 if (ret <= 0) 1692 return ret; 1693 1694 map_bh(bh, inode->i_sb, map.m_pblk); 1695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1696 1697 if (buffer_unwritten(bh)) { 1698 /* A delayed write to unwritten bh should be marked 1699 * new and mapped. Mapped ensures that we don't do 1700 * get_block multiple times when we write to the same 1701 * offset and new ensures that we do proper zero out 1702 * for partial write. 1703 */ 1704 set_buffer_new(bh); 1705 set_buffer_mapped(bh); 1706 } 1707 return 0; 1708 } 1709 1710 static int bget_one(handle_t *handle, struct buffer_head *bh) 1711 { 1712 get_bh(bh); 1713 return 0; 1714 } 1715 1716 static int bput_one(handle_t *handle, struct buffer_head *bh) 1717 { 1718 put_bh(bh); 1719 return 0; 1720 } 1721 1722 static int __ext4_journalled_writepage(struct page *page, 1723 unsigned int len) 1724 { 1725 struct address_space *mapping = page->mapping; 1726 struct inode *inode = mapping->host; 1727 struct buffer_head *page_bufs = NULL; 1728 handle_t *handle = NULL; 1729 int ret = 0, err = 0; 1730 int inline_data = ext4_has_inline_data(inode); 1731 struct buffer_head *inode_bh = NULL; 1732 1733 ClearPageChecked(page); 1734 1735 if (inline_data) { 1736 BUG_ON(page->index != 0); 1737 BUG_ON(len > ext4_get_max_inline_size(inode)); 1738 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1739 if (inode_bh == NULL) 1740 goto out; 1741 } else { 1742 page_bufs = page_buffers(page); 1743 if (!page_bufs) { 1744 BUG(); 1745 goto out; 1746 } 1747 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1748 NULL, bget_one); 1749 } 1750 /* As soon as we unlock the page, it can go away, but we have 1751 * references to buffers so we are safe */ 1752 unlock_page(page); 1753 1754 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1755 ext4_writepage_trans_blocks(inode)); 1756 if (IS_ERR(handle)) { 1757 ret = PTR_ERR(handle); 1758 goto out; 1759 } 1760 1761 BUG_ON(!ext4_handle_valid(handle)); 1762 1763 if (inline_data) { 1764 ret = ext4_journal_get_write_access(handle, inode_bh); 1765 1766 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1767 1768 } else { 1769 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1770 do_journal_get_write_access); 1771 1772 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1773 write_end_fn); 1774 } 1775 if (ret == 0) 1776 ret = err; 1777 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1778 err = ext4_journal_stop(handle); 1779 if (!ret) 1780 ret = err; 1781 1782 if (!ext4_has_inline_data(inode)) 1783 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1784 NULL, bput_one); 1785 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1786 out: 1787 brelse(inode_bh); 1788 return ret; 1789 } 1790 1791 /* 1792 * Note that we don't need to start a transaction unless we're journaling data 1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1794 * need to file the inode to the transaction's list in ordered mode because if 1795 * we are writing back data added by write(), the inode is already there and if 1796 * we are writing back data modified via mmap(), no one guarantees in which 1797 * transaction the data will hit the disk. In case we are journaling data, we 1798 * cannot start transaction directly because transaction start ranks above page 1799 * lock so we have to do some magic. 1800 * 1801 * This function can get called via... 1802 * - ext4_da_writepages after taking page lock (have journal handle) 1803 * - journal_submit_inode_data_buffers (no journal handle) 1804 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1805 * - grab_page_cache when doing write_begin (have journal handle) 1806 * 1807 * We don't do any block allocation in this function. If we have page with 1808 * multiple blocks we need to write those buffer_heads that are mapped. This 1809 * is important for mmaped based write. So if we do with blocksize 1K 1810 * truncate(f, 1024); 1811 * a = mmap(f, 0, 4096); 1812 * a[0] = 'a'; 1813 * truncate(f, 4096); 1814 * we have in the page first buffer_head mapped via page_mkwrite call back 1815 * but other buffer_heads would be unmapped but dirty (dirty done via the 1816 * do_wp_page). So writepage should write the first block. If we modify 1817 * the mmap area beyond 1024 we will again get a page_fault and the 1818 * page_mkwrite callback will do the block allocation and mark the 1819 * buffer_heads mapped. 1820 * 1821 * We redirty the page if we have any buffer_heads that is either delay or 1822 * unwritten in the page. 1823 * 1824 * We can get recursively called as show below. 1825 * 1826 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1827 * ext4_writepage() 1828 * 1829 * But since we don't do any block allocation we should not deadlock. 1830 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1831 */ 1832 static int ext4_writepage(struct page *page, 1833 struct writeback_control *wbc) 1834 { 1835 int ret = 0; 1836 loff_t size; 1837 unsigned int len; 1838 struct buffer_head *page_bufs = NULL; 1839 struct inode *inode = page->mapping->host; 1840 struct ext4_io_submit io_submit; 1841 1842 trace_ext4_writepage(page); 1843 size = i_size_read(inode); 1844 if (page->index == size >> PAGE_CACHE_SHIFT) 1845 len = size & ~PAGE_CACHE_MASK; 1846 else 1847 len = PAGE_CACHE_SIZE; 1848 1849 page_bufs = page_buffers(page); 1850 /* 1851 * We cannot do block allocation or other extent handling in this 1852 * function. If there are buffers needing that, we have to redirty 1853 * the page. But we may reach here when we do a journal commit via 1854 * journal_submit_inode_data_buffers() and in that case we must write 1855 * allocated buffers to achieve data=ordered mode guarantees. 1856 */ 1857 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1858 ext4_bh_delay_or_unwritten)) { 1859 redirty_page_for_writepage(wbc, page); 1860 if (current->flags & PF_MEMALLOC) { 1861 /* 1862 * For memory cleaning there's no point in writing only 1863 * some buffers. So just bail out. Warn if we came here 1864 * from direct reclaim. 1865 */ 1866 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1867 == PF_MEMALLOC); 1868 unlock_page(page); 1869 return 0; 1870 } 1871 } 1872 1873 if (PageChecked(page) && ext4_should_journal_data(inode)) 1874 /* 1875 * It's mmapped pagecache. Add buffers and journal it. There 1876 * doesn't seem much point in redirtying the page here. 1877 */ 1878 return __ext4_journalled_writepage(page, len); 1879 1880 ext4_io_submit_init(&io_submit, wbc); 1881 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1882 if (!io_submit.io_end) { 1883 redirty_page_for_writepage(wbc, page); 1884 unlock_page(page); 1885 return -ENOMEM; 1886 } 1887 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1888 ext4_io_submit(&io_submit); 1889 /* Drop io_end reference we got from init */ 1890 ext4_put_io_end_defer(io_submit.io_end); 1891 return ret; 1892 } 1893 1894 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1895 1896 /* 1897 * mballoc gives us at most this number of blocks... 1898 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1899 * The rest of mballoc seems to handle chunks upto full group size. 1900 */ 1901 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1902 1903 /* 1904 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1905 * 1906 * @mpd - extent of blocks 1907 * @lblk - logical number of the block in the file 1908 * @b_state - b_state of the buffer head added 1909 * 1910 * the function is used to collect contig. blocks in same state 1911 */ 1912 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1913 unsigned long b_state) 1914 { 1915 struct ext4_map_blocks *map = &mpd->map; 1916 1917 /* Don't go larger than mballoc is willing to allocate */ 1918 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1919 return 0; 1920 1921 /* First block in the extent? */ 1922 if (map->m_len == 0) { 1923 map->m_lblk = lblk; 1924 map->m_len = 1; 1925 map->m_flags = b_state & BH_FLAGS; 1926 return 1; 1927 } 1928 1929 /* Can we merge the block to our big extent? */ 1930 if (lblk == map->m_lblk + map->m_len && 1931 (b_state & BH_FLAGS) == map->m_flags) { 1932 map->m_len++; 1933 return 1; 1934 } 1935 return 0; 1936 } 1937 1938 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd, 1939 struct buffer_head *head, 1940 struct buffer_head *bh, 1941 ext4_lblk_t lblk) 1942 { 1943 struct inode *inode = mpd->inode; 1944 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1945 >> inode->i_blkbits; 1946 1947 do { 1948 BUG_ON(buffer_locked(bh)); 1949 1950 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1951 (!buffer_delay(bh) && !buffer_unwritten(bh)) || 1952 lblk >= blocks) { 1953 /* Found extent to map? */ 1954 if (mpd->map.m_len) 1955 return false; 1956 if (lblk >= blocks) 1957 return true; 1958 continue; 1959 } 1960 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state)) 1961 return false; 1962 } while (lblk++, (bh = bh->b_this_page) != head); 1963 return true; 1964 } 1965 1966 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1967 { 1968 int len; 1969 loff_t size = i_size_read(mpd->inode); 1970 int err; 1971 1972 BUG_ON(page->index != mpd->first_page); 1973 if (page->index == size >> PAGE_CACHE_SHIFT) 1974 len = size & ~PAGE_CACHE_MASK; 1975 else 1976 len = PAGE_CACHE_SIZE; 1977 clear_page_dirty_for_io(page); 1978 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1979 if (!err) 1980 mpd->wbc->nr_to_write--; 1981 mpd->first_page++; 1982 1983 return err; 1984 } 1985 1986 /* 1987 * mpage_map_buffers - update buffers corresponding to changed extent and 1988 * submit fully mapped pages for IO 1989 * 1990 * @mpd - description of extent to map, on return next extent to map 1991 * 1992 * Scan buffers corresponding to changed extent (we expect corresponding pages 1993 * to be already locked) and update buffer state according to new extent state. 1994 * We map delalloc buffers to their physical location, clear unwritten bits, 1995 * and mark buffers as uninit when we perform writes to uninitialized extents 1996 * and do extent conversion after IO is finished. If the last page is not fully 1997 * mapped, we update @map to the next extent in the last page that needs 1998 * mapping. Otherwise we submit the page for IO. 1999 */ 2000 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2001 { 2002 struct pagevec pvec; 2003 int nr_pages, i; 2004 struct inode *inode = mpd->inode; 2005 struct buffer_head *head, *bh; 2006 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2007 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2008 >> inode->i_blkbits; 2009 pgoff_t start, end; 2010 ext4_lblk_t lblk; 2011 sector_t pblock; 2012 int err; 2013 2014 start = mpd->map.m_lblk >> bpp_bits; 2015 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2016 lblk = start << bpp_bits; 2017 pblock = mpd->map.m_pblk; 2018 2019 pagevec_init(&pvec, 0); 2020 while (start <= end) { 2021 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2022 PAGEVEC_SIZE); 2023 if (nr_pages == 0) 2024 break; 2025 for (i = 0; i < nr_pages; i++) { 2026 struct page *page = pvec.pages[i]; 2027 2028 if (page->index > end) 2029 break; 2030 /* Upto 'end' pages must be contiguous */ 2031 BUG_ON(page->index != start); 2032 bh = head = page_buffers(page); 2033 do { 2034 if (lblk < mpd->map.m_lblk) 2035 continue; 2036 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2037 /* 2038 * Buffer after end of mapped extent. 2039 * Find next buffer in the page to map. 2040 */ 2041 mpd->map.m_len = 0; 2042 mpd->map.m_flags = 0; 2043 add_page_bufs_to_extent(mpd, head, bh, 2044 lblk); 2045 pagevec_release(&pvec); 2046 return 0; 2047 } 2048 if (buffer_delay(bh)) { 2049 clear_buffer_delay(bh); 2050 bh->b_blocknr = pblock++; 2051 } 2052 clear_buffer_unwritten(bh); 2053 } while (++lblk < blocks && 2054 (bh = bh->b_this_page) != head); 2055 2056 /* 2057 * FIXME: This is going to break if dioread_nolock 2058 * supports blocksize < pagesize as we will try to 2059 * convert potentially unmapped parts of inode. 2060 */ 2061 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2062 /* Page fully mapped - let IO run! */ 2063 err = mpage_submit_page(mpd, page); 2064 if (err < 0) { 2065 pagevec_release(&pvec); 2066 return err; 2067 } 2068 start++; 2069 } 2070 pagevec_release(&pvec); 2071 } 2072 /* Extent fully mapped and matches with page boundary. We are done. */ 2073 mpd->map.m_len = 0; 2074 mpd->map.m_flags = 0; 2075 return 0; 2076 } 2077 2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2079 { 2080 struct inode *inode = mpd->inode; 2081 struct ext4_map_blocks *map = &mpd->map; 2082 int get_blocks_flags; 2083 int err; 2084 2085 trace_ext4_da_write_pages_extent(inode, map); 2086 /* 2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2088 * to convert an uninitialized extent to be initialized (in the case 2089 * where we have written into one or more preallocated blocks). It is 2090 * possible that we're going to need more metadata blocks than 2091 * previously reserved. However we must not fail because we're in 2092 * writeback and there is nothing we can do about it so it might result 2093 * in data loss. So use reserved blocks to allocate metadata if 2094 * possible. 2095 * 2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2097 * in question are delalloc blocks. This affects functions in many 2098 * different parts of the allocation call path. This flag exists 2099 * primarily because we don't want to change *many* call functions, so 2100 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2101 * once the inode's allocation semaphore is taken. 2102 */ 2103 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2104 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2105 if (ext4_should_dioread_nolock(inode)) 2106 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2107 if (map->m_flags & (1 << BH_Delay)) 2108 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2109 2110 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2111 if (err < 0) 2112 return err; 2113 if (map->m_flags & EXT4_MAP_UNINIT) { 2114 if (!mpd->io_submit.io_end->handle && 2115 ext4_handle_valid(handle)) { 2116 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2117 handle->h_rsv_handle = NULL; 2118 } 2119 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2120 } 2121 2122 BUG_ON(map->m_len == 0); 2123 if (map->m_flags & EXT4_MAP_NEW) { 2124 struct block_device *bdev = inode->i_sb->s_bdev; 2125 int i; 2126 2127 for (i = 0; i < map->m_len; i++) 2128 unmap_underlying_metadata(bdev, map->m_pblk + i); 2129 } 2130 return 0; 2131 } 2132 2133 /* 2134 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2135 * mpd->len and submit pages underlying it for IO 2136 * 2137 * @handle - handle for journal operations 2138 * @mpd - extent to map 2139 * 2140 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2141 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2142 * them to initialized or split the described range from larger unwritten 2143 * extent. Note that we need not map all the described range since allocation 2144 * can return less blocks or the range is covered by more unwritten extents. We 2145 * cannot map more because we are limited by reserved transaction credits. On 2146 * the other hand we always make sure that the last touched page is fully 2147 * mapped so that it can be written out (and thus forward progress is 2148 * guaranteed). After mapping we submit all mapped pages for IO. 2149 */ 2150 static int mpage_map_and_submit_extent(handle_t *handle, 2151 struct mpage_da_data *mpd) 2152 { 2153 struct inode *inode = mpd->inode; 2154 struct ext4_map_blocks *map = &mpd->map; 2155 int err; 2156 loff_t disksize; 2157 2158 mpd->io_submit.io_end->offset = 2159 ((loff_t)map->m_lblk) << inode->i_blkbits; 2160 while (map->m_len) { 2161 err = mpage_map_one_extent(handle, mpd); 2162 if (err < 0) { 2163 struct super_block *sb = inode->i_sb; 2164 2165 /* 2166 * Need to commit transaction to free blocks. Let upper 2167 * layers sort it out. 2168 */ 2169 if (err == -ENOSPC && ext4_count_free_clusters(sb)) 2170 return -ENOSPC; 2171 2172 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2173 ext4_msg(sb, KERN_CRIT, 2174 "Delayed block allocation failed for " 2175 "inode %lu at logical offset %llu with" 2176 " max blocks %u with error %d", 2177 inode->i_ino, 2178 (unsigned long long)map->m_lblk, 2179 (unsigned)map->m_len, err); 2180 ext4_msg(sb, KERN_CRIT, 2181 "This should not happen!! Data will " 2182 "be lost\n"); 2183 if (err == -ENOSPC) 2184 ext4_print_free_blocks(inode); 2185 } 2186 /* invalidate all the pages */ 2187 mpage_release_unused_pages(mpd, true); 2188 return err; 2189 } 2190 /* 2191 * Update buffer state, submit mapped pages, and get us new 2192 * extent to map 2193 */ 2194 err = mpage_map_and_submit_buffers(mpd); 2195 if (err < 0) 2196 return err; 2197 } 2198 2199 /* Update on-disk size after IO is submitted */ 2200 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2201 if (disksize > i_size_read(inode)) 2202 disksize = i_size_read(inode); 2203 if (disksize > EXT4_I(inode)->i_disksize) { 2204 int err2; 2205 2206 ext4_update_i_disksize(inode, disksize); 2207 err2 = ext4_mark_inode_dirty(handle, inode); 2208 if (err2) 2209 ext4_error(inode->i_sb, 2210 "Failed to mark inode %lu dirty", 2211 inode->i_ino); 2212 if (!err) 2213 err = err2; 2214 } 2215 return err; 2216 } 2217 2218 /* 2219 * Calculate the total number of credits to reserve for one writepages 2220 * iteration. This is called from ext4_da_writepages(). We map an extent of 2221 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2222 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2223 * bpp - 1 blocks in bpp different extents. 2224 */ 2225 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2226 { 2227 int bpp = ext4_journal_blocks_per_page(inode); 2228 2229 return ext4_meta_trans_blocks(inode, 2230 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2231 } 2232 2233 /* 2234 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2235 * and underlying extent to map 2236 * 2237 * @mpd - where to look for pages 2238 * 2239 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2240 * IO immediately. When we find a page which isn't mapped we start accumulating 2241 * extent of buffers underlying these pages that needs mapping (formed by 2242 * either delayed or unwritten buffers). We also lock the pages containing 2243 * these buffers. The extent found is returned in @mpd structure (starting at 2244 * mpd->lblk with length mpd->len blocks). 2245 * 2246 * Note that this function can attach bios to one io_end structure which are 2247 * neither logically nor physically contiguous. Although it may seem as an 2248 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2249 * case as we need to track IO to all buffers underlying a page in one io_end. 2250 */ 2251 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2252 { 2253 struct address_space *mapping = mpd->inode->i_mapping; 2254 struct pagevec pvec; 2255 unsigned int nr_pages; 2256 pgoff_t index = mpd->first_page; 2257 pgoff_t end = mpd->last_page; 2258 int tag; 2259 int i, err = 0; 2260 int blkbits = mpd->inode->i_blkbits; 2261 ext4_lblk_t lblk; 2262 struct buffer_head *head; 2263 2264 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2265 tag = PAGECACHE_TAG_TOWRITE; 2266 else 2267 tag = PAGECACHE_TAG_DIRTY; 2268 2269 pagevec_init(&pvec, 0); 2270 mpd->map.m_len = 0; 2271 mpd->next_page = index; 2272 while (index <= end) { 2273 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2274 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2275 if (nr_pages == 0) 2276 goto out; 2277 2278 for (i = 0; i < nr_pages; i++) { 2279 struct page *page = pvec.pages[i]; 2280 2281 /* 2282 * At this point, the page may be truncated or 2283 * invalidated (changing page->mapping to NULL), or 2284 * even swizzled back from swapper_space to tmpfs file 2285 * mapping. However, page->index will not change 2286 * because we have a reference on the page. 2287 */ 2288 if (page->index > end) 2289 goto out; 2290 2291 /* If we can't merge this page, we are done. */ 2292 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2293 goto out; 2294 2295 lock_page(page); 2296 /* 2297 * If the page is no longer dirty, or its mapping no 2298 * longer corresponds to inode we are writing (which 2299 * means it has been truncated or invalidated), or the 2300 * page is already under writeback and we are not doing 2301 * a data integrity writeback, skip the page 2302 */ 2303 if (!PageDirty(page) || 2304 (PageWriteback(page) && 2305 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2306 unlikely(page->mapping != mapping)) { 2307 unlock_page(page); 2308 continue; 2309 } 2310 2311 wait_on_page_writeback(page); 2312 BUG_ON(PageWriteback(page)); 2313 2314 if (mpd->map.m_len == 0) 2315 mpd->first_page = page->index; 2316 mpd->next_page = page->index + 1; 2317 /* Add all dirty buffers to mpd */ 2318 lblk = ((ext4_lblk_t)page->index) << 2319 (PAGE_CACHE_SHIFT - blkbits); 2320 head = page_buffers(page); 2321 if (!add_page_bufs_to_extent(mpd, head, head, lblk)) 2322 goto out; 2323 /* So far everything mapped? Submit the page for IO. */ 2324 if (mpd->map.m_len == 0) { 2325 err = mpage_submit_page(mpd, page); 2326 if (err < 0) 2327 goto out; 2328 } 2329 2330 /* 2331 * Accumulated enough dirty pages? This doesn't apply 2332 * to WB_SYNC_ALL mode. For integrity sync we have to 2333 * keep going because someone may be concurrently 2334 * dirtying pages, and we might have synced a lot of 2335 * newly appeared dirty pages, but have not synced all 2336 * of the old dirty pages. 2337 */ 2338 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2339 mpd->next_page - mpd->first_page >= 2340 mpd->wbc->nr_to_write) 2341 goto out; 2342 } 2343 pagevec_release(&pvec); 2344 cond_resched(); 2345 } 2346 return 0; 2347 out: 2348 pagevec_release(&pvec); 2349 return err; 2350 } 2351 2352 static int ext4_da_writepages(struct address_space *mapping, 2353 struct writeback_control *wbc) 2354 { 2355 pgoff_t writeback_index = 0; 2356 long nr_to_write = wbc->nr_to_write; 2357 int range_whole = 0; 2358 int cycled = 1; 2359 handle_t *handle = NULL; 2360 struct mpage_da_data mpd; 2361 struct inode *inode = mapping->host; 2362 int needed_blocks, rsv_blocks = 0, ret = 0; 2363 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2364 bool done; 2365 struct blk_plug plug; 2366 2367 trace_ext4_da_writepages(inode, wbc); 2368 2369 /* 2370 * No pages to write? This is mainly a kludge to avoid starting 2371 * a transaction for special inodes like journal inode on last iput() 2372 * because that could violate lock ordering on umount 2373 */ 2374 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2375 return 0; 2376 2377 /* 2378 * If the filesystem has aborted, it is read-only, so return 2379 * right away instead of dumping stack traces later on that 2380 * will obscure the real source of the problem. We test 2381 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2382 * the latter could be true if the filesystem is mounted 2383 * read-only, and in that case, ext4_da_writepages should 2384 * *never* be called, so if that ever happens, we would want 2385 * the stack trace. 2386 */ 2387 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2388 return -EROFS; 2389 2390 if (ext4_should_dioread_nolock(inode)) { 2391 /* 2392 * We may need to convert upto one extent per block in 2393 * the page and we may dirty the inode. 2394 */ 2395 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2396 } 2397 2398 /* 2399 * If we have inline data and arrive here, it means that 2400 * we will soon create the block for the 1st page, so 2401 * we'd better clear the inline data here. 2402 */ 2403 if (ext4_has_inline_data(inode)) { 2404 /* Just inode will be modified... */ 2405 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2406 if (IS_ERR(handle)) { 2407 ret = PTR_ERR(handle); 2408 goto out_writepages; 2409 } 2410 BUG_ON(ext4_test_inode_state(inode, 2411 EXT4_STATE_MAY_INLINE_DATA)); 2412 ext4_destroy_inline_data(handle, inode); 2413 ext4_journal_stop(handle); 2414 } 2415 2416 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2417 range_whole = 1; 2418 2419 if (wbc->range_cyclic) { 2420 writeback_index = mapping->writeback_index; 2421 if (writeback_index) 2422 cycled = 0; 2423 mpd.first_page = writeback_index; 2424 mpd.last_page = -1; 2425 } else { 2426 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2427 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2428 } 2429 2430 mpd.inode = inode; 2431 mpd.wbc = wbc; 2432 ext4_io_submit_init(&mpd.io_submit, wbc); 2433 retry: 2434 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2435 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2436 done = false; 2437 blk_start_plug(&plug); 2438 while (!done && mpd.first_page <= mpd.last_page) { 2439 /* For each extent of pages we use new io_end */ 2440 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2441 if (!mpd.io_submit.io_end) { 2442 ret = -ENOMEM; 2443 break; 2444 } 2445 2446 /* 2447 * We have two constraints: We find one extent to map and we 2448 * must always write out whole page (makes a difference when 2449 * blocksize < pagesize) so that we don't block on IO when we 2450 * try to write out the rest of the page. Journalled mode is 2451 * not supported by delalloc. 2452 */ 2453 BUG_ON(ext4_should_journal_data(inode)); 2454 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2455 2456 /* start a new transaction */ 2457 handle = ext4_journal_start_with_reserve(inode, 2458 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2459 if (IS_ERR(handle)) { 2460 ret = PTR_ERR(handle); 2461 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2462 "%ld pages, ino %lu; err %d", __func__, 2463 wbc->nr_to_write, inode->i_ino, ret); 2464 /* Release allocated io_end */ 2465 ext4_put_io_end(mpd.io_submit.io_end); 2466 break; 2467 } 2468 2469 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2470 ret = mpage_prepare_extent_to_map(&mpd); 2471 if (!ret) { 2472 if (mpd.map.m_len) 2473 ret = mpage_map_and_submit_extent(handle, &mpd); 2474 else { 2475 /* 2476 * We scanned the whole range (or exhausted 2477 * nr_to_write), submitted what was mapped and 2478 * didn't find anything needing mapping. We are 2479 * done. 2480 */ 2481 done = true; 2482 } 2483 } 2484 ext4_journal_stop(handle); 2485 /* Submit prepared bio */ 2486 ext4_io_submit(&mpd.io_submit); 2487 /* Unlock pages we didn't use */ 2488 mpage_release_unused_pages(&mpd, false); 2489 /* Drop our io_end reference we got from init */ 2490 ext4_put_io_end(mpd.io_submit.io_end); 2491 2492 if (ret == -ENOSPC && sbi->s_journal) { 2493 /* 2494 * Commit the transaction which would 2495 * free blocks released in the transaction 2496 * and try again 2497 */ 2498 jbd2_journal_force_commit_nested(sbi->s_journal); 2499 ret = 0; 2500 continue; 2501 } 2502 /* Fatal error - ENOMEM, EIO... */ 2503 if (ret) 2504 break; 2505 } 2506 blk_finish_plug(&plug); 2507 if (!ret && !cycled) { 2508 cycled = 1; 2509 mpd.last_page = writeback_index - 1; 2510 mpd.first_page = 0; 2511 goto retry; 2512 } 2513 2514 /* Update index */ 2515 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2516 /* 2517 * Set the writeback_index so that range_cyclic 2518 * mode will write it back later 2519 */ 2520 mapping->writeback_index = mpd.first_page; 2521 2522 out_writepages: 2523 trace_ext4_da_writepages_result(inode, wbc, ret, 2524 nr_to_write - wbc->nr_to_write); 2525 return ret; 2526 } 2527 2528 static int ext4_nonda_switch(struct super_block *sb) 2529 { 2530 s64 free_clusters, dirty_clusters; 2531 struct ext4_sb_info *sbi = EXT4_SB(sb); 2532 2533 /* 2534 * switch to non delalloc mode if we are running low 2535 * on free block. The free block accounting via percpu 2536 * counters can get slightly wrong with percpu_counter_batch getting 2537 * accumulated on each CPU without updating global counters 2538 * Delalloc need an accurate free block accounting. So switch 2539 * to non delalloc when we are near to error range. 2540 */ 2541 free_clusters = 2542 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2543 dirty_clusters = 2544 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2545 /* 2546 * Start pushing delalloc when 1/2 of free blocks are dirty. 2547 */ 2548 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2549 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2550 2551 if (2 * free_clusters < 3 * dirty_clusters || 2552 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2553 /* 2554 * free block count is less than 150% of dirty blocks 2555 * or free blocks is less than watermark 2556 */ 2557 return 1; 2558 } 2559 return 0; 2560 } 2561 2562 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2563 loff_t pos, unsigned len, unsigned flags, 2564 struct page **pagep, void **fsdata) 2565 { 2566 int ret, retries = 0; 2567 struct page *page; 2568 pgoff_t index; 2569 struct inode *inode = mapping->host; 2570 handle_t *handle; 2571 2572 index = pos >> PAGE_CACHE_SHIFT; 2573 2574 if (ext4_nonda_switch(inode->i_sb)) { 2575 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2576 return ext4_write_begin(file, mapping, pos, 2577 len, flags, pagep, fsdata); 2578 } 2579 *fsdata = (void *)0; 2580 trace_ext4_da_write_begin(inode, pos, len, flags); 2581 2582 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2583 ret = ext4_da_write_inline_data_begin(mapping, inode, 2584 pos, len, flags, 2585 pagep, fsdata); 2586 if (ret < 0) 2587 return ret; 2588 if (ret == 1) 2589 return 0; 2590 } 2591 2592 /* 2593 * grab_cache_page_write_begin() can take a long time if the 2594 * system is thrashing due to memory pressure, or if the page 2595 * is being written back. So grab it first before we start 2596 * the transaction handle. This also allows us to allocate 2597 * the page (if needed) without using GFP_NOFS. 2598 */ 2599 retry_grab: 2600 page = grab_cache_page_write_begin(mapping, index, flags); 2601 if (!page) 2602 return -ENOMEM; 2603 unlock_page(page); 2604 2605 /* 2606 * With delayed allocation, we don't log the i_disksize update 2607 * if there is delayed block allocation. But we still need 2608 * to journalling the i_disksize update if writes to the end 2609 * of file which has an already mapped buffer. 2610 */ 2611 retry_journal: 2612 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2613 if (IS_ERR(handle)) { 2614 page_cache_release(page); 2615 return PTR_ERR(handle); 2616 } 2617 2618 lock_page(page); 2619 if (page->mapping != mapping) { 2620 /* The page got truncated from under us */ 2621 unlock_page(page); 2622 page_cache_release(page); 2623 ext4_journal_stop(handle); 2624 goto retry_grab; 2625 } 2626 /* In case writeback began while the page was unlocked */ 2627 wait_on_page_writeback(page); 2628 2629 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2630 if (ret < 0) { 2631 unlock_page(page); 2632 ext4_journal_stop(handle); 2633 /* 2634 * block_write_begin may have instantiated a few blocks 2635 * outside i_size. Trim these off again. Don't need 2636 * i_size_read because we hold i_mutex. 2637 */ 2638 if (pos + len > inode->i_size) 2639 ext4_truncate_failed_write(inode); 2640 2641 if (ret == -ENOSPC && 2642 ext4_should_retry_alloc(inode->i_sb, &retries)) 2643 goto retry_journal; 2644 2645 page_cache_release(page); 2646 return ret; 2647 } 2648 2649 *pagep = page; 2650 return ret; 2651 } 2652 2653 /* 2654 * Check if we should update i_disksize 2655 * when write to the end of file but not require block allocation 2656 */ 2657 static int ext4_da_should_update_i_disksize(struct page *page, 2658 unsigned long offset) 2659 { 2660 struct buffer_head *bh; 2661 struct inode *inode = page->mapping->host; 2662 unsigned int idx; 2663 int i; 2664 2665 bh = page_buffers(page); 2666 idx = offset >> inode->i_blkbits; 2667 2668 for (i = 0; i < idx; i++) 2669 bh = bh->b_this_page; 2670 2671 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2672 return 0; 2673 return 1; 2674 } 2675 2676 static int ext4_da_write_end(struct file *file, 2677 struct address_space *mapping, 2678 loff_t pos, unsigned len, unsigned copied, 2679 struct page *page, void *fsdata) 2680 { 2681 struct inode *inode = mapping->host; 2682 int ret = 0, ret2; 2683 handle_t *handle = ext4_journal_current_handle(); 2684 loff_t new_i_size; 2685 unsigned long start, end; 2686 int write_mode = (int)(unsigned long)fsdata; 2687 2688 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2689 return ext4_write_end(file, mapping, pos, 2690 len, copied, page, fsdata); 2691 2692 trace_ext4_da_write_end(inode, pos, len, copied); 2693 start = pos & (PAGE_CACHE_SIZE - 1); 2694 end = start + copied - 1; 2695 2696 /* 2697 * generic_write_end() will run mark_inode_dirty() if i_size 2698 * changes. So let's piggyback the i_disksize mark_inode_dirty 2699 * into that. 2700 */ 2701 new_i_size = pos + copied; 2702 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2703 if (ext4_has_inline_data(inode) || 2704 ext4_da_should_update_i_disksize(page, end)) { 2705 down_write(&EXT4_I(inode)->i_data_sem); 2706 if (new_i_size > EXT4_I(inode)->i_disksize) 2707 EXT4_I(inode)->i_disksize = new_i_size; 2708 up_write(&EXT4_I(inode)->i_data_sem); 2709 /* We need to mark inode dirty even if 2710 * new_i_size is less that inode->i_size 2711 * bu greater than i_disksize.(hint delalloc) 2712 */ 2713 ext4_mark_inode_dirty(handle, inode); 2714 } 2715 } 2716 2717 if (write_mode != CONVERT_INLINE_DATA && 2718 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2719 ext4_has_inline_data(inode)) 2720 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2721 page); 2722 else 2723 ret2 = generic_write_end(file, mapping, pos, len, copied, 2724 page, fsdata); 2725 2726 copied = ret2; 2727 if (ret2 < 0) 2728 ret = ret2; 2729 ret2 = ext4_journal_stop(handle); 2730 if (!ret) 2731 ret = ret2; 2732 2733 return ret ? ret : copied; 2734 } 2735 2736 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2737 unsigned int length) 2738 { 2739 /* 2740 * Drop reserved blocks 2741 */ 2742 BUG_ON(!PageLocked(page)); 2743 if (!page_has_buffers(page)) 2744 goto out; 2745 2746 ext4_da_page_release_reservation(page, offset, length); 2747 2748 out: 2749 ext4_invalidatepage(page, offset, length); 2750 2751 return; 2752 } 2753 2754 /* 2755 * Force all delayed allocation blocks to be allocated for a given inode. 2756 */ 2757 int ext4_alloc_da_blocks(struct inode *inode) 2758 { 2759 trace_ext4_alloc_da_blocks(inode); 2760 2761 if (!EXT4_I(inode)->i_reserved_data_blocks && 2762 !EXT4_I(inode)->i_reserved_meta_blocks) 2763 return 0; 2764 2765 /* 2766 * We do something simple for now. The filemap_flush() will 2767 * also start triggering a write of the data blocks, which is 2768 * not strictly speaking necessary (and for users of 2769 * laptop_mode, not even desirable). However, to do otherwise 2770 * would require replicating code paths in: 2771 * 2772 * ext4_da_writepages() -> 2773 * write_cache_pages() ---> (via passed in callback function) 2774 * __mpage_da_writepage() --> 2775 * mpage_add_bh_to_extent() 2776 * mpage_da_map_blocks() 2777 * 2778 * The problem is that write_cache_pages(), located in 2779 * mm/page-writeback.c, marks pages clean in preparation for 2780 * doing I/O, which is not desirable if we're not planning on 2781 * doing I/O at all. 2782 * 2783 * We could call write_cache_pages(), and then redirty all of 2784 * the pages by calling redirty_page_for_writepage() but that 2785 * would be ugly in the extreme. So instead we would need to 2786 * replicate parts of the code in the above functions, 2787 * simplifying them because we wouldn't actually intend to 2788 * write out the pages, but rather only collect contiguous 2789 * logical block extents, call the multi-block allocator, and 2790 * then update the buffer heads with the block allocations. 2791 * 2792 * For now, though, we'll cheat by calling filemap_flush(), 2793 * which will map the blocks, and start the I/O, but not 2794 * actually wait for the I/O to complete. 2795 */ 2796 return filemap_flush(inode->i_mapping); 2797 } 2798 2799 /* 2800 * bmap() is special. It gets used by applications such as lilo and by 2801 * the swapper to find the on-disk block of a specific piece of data. 2802 * 2803 * Naturally, this is dangerous if the block concerned is still in the 2804 * journal. If somebody makes a swapfile on an ext4 data-journaling 2805 * filesystem and enables swap, then they may get a nasty shock when the 2806 * data getting swapped to that swapfile suddenly gets overwritten by 2807 * the original zero's written out previously to the journal and 2808 * awaiting writeback in the kernel's buffer cache. 2809 * 2810 * So, if we see any bmap calls here on a modified, data-journaled file, 2811 * take extra steps to flush any blocks which might be in the cache. 2812 */ 2813 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2814 { 2815 struct inode *inode = mapping->host; 2816 journal_t *journal; 2817 int err; 2818 2819 /* 2820 * We can get here for an inline file via the FIBMAP ioctl 2821 */ 2822 if (ext4_has_inline_data(inode)) 2823 return 0; 2824 2825 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2826 test_opt(inode->i_sb, DELALLOC)) { 2827 /* 2828 * With delalloc we want to sync the file 2829 * so that we can make sure we allocate 2830 * blocks for file 2831 */ 2832 filemap_write_and_wait(mapping); 2833 } 2834 2835 if (EXT4_JOURNAL(inode) && 2836 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2837 /* 2838 * This is a REALLY heavyweight approach, but the use of 2839 * bmap on dirty files is expected to be extremely rare: 2840 * only if we run lilo or swapon on a freshly made file 2841 * do we expect this to happen. 2842 * 2843 * (bmap requires CAP_SYS_RAWIO so this does not 2844 * represent an unprivileged user DOS attack --- we'd be 2845 * in trouble if mortal users could trigger this path at 2846 * will.) 2847 * 2848 * NB. EXT4_STATE_JDATA is not set on files other than 2849 * regular files. If somebody wants to bmap a directory 2850 * or symlink and gets confused because the buffer 2851 * hasn't yet been flushed to disk, they deserve 2852 * everything they get. 2853 */ 2854 2855 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2856 journal = EXT4_JOURNAL(inode); 2857 jbd2_journal_lock_updates(journal); 2858 err = jbd2_journal_flush(journal); 2859 jbd2_journal_unlock_updates(journal); 2860 2861 if (err) 2862 return 0; 2863 } 2864 2865 return generic_block_bmap(mapping, block, ext4_get_block); 2866 } 2867 2868 static int ext4_readpage(struct file *file, struct page *page) 2869 { 2870 int ret = -EAGAIN; 2871 struct inode *inode = page->mapping->host; 2872 2873 trace_ext4_readpage(page); 2874 2875 if (ext4_has_inline_data(inode)) 2876 ret = ext4_readpage_inline(inode, page); 2877 2878 if (ret == -EAGAIN) 2879 return mpage_readpage(page, ext4_get_block); 2880 2881 return ret; 2882 } 2883 2884 static int 2885 ext4_readpages(struct file *file, struct address_space *mapping, 2886 struct list_head *pages, unsigned nr_pages) 2887 { 2888 struct inode *inode = mapping->host; 2889 2890 /* If the file has inline data, no need to do readpages. */ 2891 if (ext4_has_inline_data(inode)) 2892 return 0; 2893 2894 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2895 } 2896 2897 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2898 unsigned int length) 2899 { 2900 trace_ext4_invalidatepage(page, offset, length); 2901 2902 /* No journalling happens on data buffers when this function is used */ 2903 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2904 2905 block_invalidatepage(page, offset, length); 2906 } 2907 2908 static int __ext4_journalled_invalidatepage(struct page *page, 2909 unsigned int offset, 2910 unsigned int length) 2911 { 2912 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2913 2914 trace_ext4_journalled_invalidatepage(page, offset, length); 2915 2916 /* 2917 * If it's a full truncate we just forget about the pending dirtying 2918 */ 2919 if (offset == 0 && length == PAGE_CACHE_SIZE) 2920 ClearPageChecked(page); 2921 2922 return jbd2_journal_invalidatepage(journal, page, offset, length); 2923 } 2924 2925 /* Wrapper for aops... */ 2926 static void ext4_journalled_invalidatepage(struct page *page, 2927 unsigned int offset, 2928 unsigned int length) 2929 { 2930 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2931 } 2932 2933 static int ext4_releasepage(struct page *page, gfp_t wait) 2934 { 2935 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2936 2937 trace_ext4_releasepage(page); 2938 2939 /* Page has dirty journalled data -> cannot release */ 2940 if (PageChecked(page)) 2941 return 0; 2942 if (journal) 2943 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2944 else 2945 return try_to_free_buffers(page); 2946 } 2947 2948 /* 2949 * ext4_get_block used when preparing for a DIO write or buffer write. 2950 * We allocate an uinitialized extent if blocks haven't been allocated. 2951 * The extent will be converted to initialized after the IO is complete. 2952 */ 2953 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2954 struct buffer_head *bh_result, int create) 2955 { 2956 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2957 inode->i_ino, create); 2958 return _ext4_get_block(inode, iblock, bh_result, 2959 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2960 } 2961 2962 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2963 struct buffer_head *bh_result, int create) 2964 { 2965 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2966 inode->i_ino, create); 2967 return _ext4_get_block(inode, iblock, bh_result, 2968 EXT4_GET_BLOCKS_NO_LOCK); 2969 } 2970 2971 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2972 ssize_t size, void *private, int ret, 2973 bool is_async) 2974 { 2975 struct inode *inode = file_inode(iocb->ki_filp); 2976 ext4_io_end_t *io_end = iocb->private; 2977 2978 /* if not async direct IO just return */ 2979 if (!io_end) { 2980 inode_dio_done(inode); 2981 if (is_async) 2982 aio_complete(iocb, ret, 0); 2983 return; 2984 } 2985 2986 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2987 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2988 iocb->private, io_end->inode->i_ino, iocb, offset, 2989 size); 2990 2991 iocb->private = NULL; 2992 io_end->offset = offset; 2993 io_end->size = size; 2994 if (is_async) { 2995 io_end->iocb = iocb; 2996 io_end->result = ret; 2997 } 2998 ext4_put_io_end_defer(io_end); 2999 } 3000 3001 /* 3002 * For ext4 extent files, ext4 will do direct-io write to holes, 3003 * preallocated extents, and those write extend the file, no need to 3004 * fall back to buffered IO. 3005 * 3006 * For holes, we fallocate those blocks, mark them as uninitialized 3007 * If those blocks were preallocated, we mark sure they are split, but 3008 * still keep the range to write as uninitialized. 3009 * 3010 * The unwritten extents will be converted to written when DIO is completed. 3011 * For async direct IO, since the IO may still pending when return, we 3012 * set up an end_io call back function, which will do the conversion 3013 * when async direct IO completed. 3014 * 3015 * If the O_DIRECT write will extend the file then add this inode to the 3016 * orphan list. So recovery will truncate it back to the original size 3017 * if the machine crashes during the write. 3018 * 3019 */ 3020 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3021 const struct iovec *iov, loff_t offset, 3022 unsigned long nr_segs) 3023 { 3024 struct file *file = iocb->ki_filp; 3025 struct inode *inode = file->f_mapping->host; 3026 ssize_t ret; 3027 size_t count = iov_length(iov, nr_segs); 3028 int overwrite = 0; 3029 get_block_t *get_block_func = NULL; 3030 int dio_flags = 0; 3031 loff_t final_size = offset + count; 3032 ext4_io_end_t *io_end = NULL; 3033 3034 /* Use the old path for reads and writes beyond i_size. */ 3035 if (rw != WRITE || final_size > inode->i_size) 3036 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3037 3038 BUG_ON(iocb->private == NULL); 3039 3040 /* 3041 * Make all waiters for direct IO properly wait also for extent 3042 * conversion. This also disallows race between truncate() and 3043 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3044 */ 3045 if (rw == WRITE) 3046 atomic_inc(&inode->i_dio_count); 3047 3048 /* If we do a overwrite dio, i_mutex locking can be released */ 3049 overwrite = *((int *)iocb->private); 3050 3051 if (overwrite) { 3052 down_read(&EXT4_I(inode)->i_data_sem); 3053 mutex_unlock(&inode->i_mutex); 3054 } 3055 3056 /* 3057 * We could direct write to holes and fallocate. 3058 * 3059 * Allocated blocks to fill the hole are marked as 3060 * uninitialized to prevent parallel buffered read to expose 3061 * the stale data before DIO complete the data IO. 3062 * 3063 * As to previously fallocated extents, ext4 get_block will 3064 * just simply mark the buffer mapped but still keep the 3065 * extents uninitialized. 3066 * 3067 * For non AIO case, we will convert those unwritten extents 3068 * to written after return back from blockdev_direct_IO. 3069 * 3070 * For async DIO, the conversion needs to be deferred when the 3071 * IO is completed. The ext4 end_io callback function will be 3072 * called to take care of the conversion work. Here for async 3073 * case, we allocate an io_end structure to hook to the iocb. 3074 */ 3075 iocb->private = NULL; 3076 ext4_inode_aio_set(inode, NULL); 3077 if (!is_sync_kiocb(iocb)) { 3078 io_end = ext4_init_io_end(inode, GFP_NOFS); 3079 if (!io_end) { 3080 ret = -ENOMEM; 3081 goto retake_lock; 3082 } 3083 io_end->flag |= EXT4_IO_END_DIRECT; 3084 /* 3085 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3086 */ 3087 iocb->private = ext4_get_io_end(io_end); 3088 /* 3089 * we save the io structure for current async direct 3090 * IO, so that later ext4_map_blocks() could flag the 3091 * io structure whether there is a unwritten extents 3092 * needs to be converted when IO is completed. 3093 */ 3094 ext4_inode_aio_set(inode, io_end); 3095 } 3096 3097 if (overwrite) { 3098 get_block_func = ext4_get_block_write_nolock; 3099 } else { 3100 get_block_func = ext4_get_block_write; 3101 dio_flags = DIO_LOCKING; 3102 } 3103 ret = __blockdev_direct_IO(rw, iocb, inode, 3104 inode->i_sb->s_bdev, iov, 3105 offset, nr_segs, 3106 get_block_func, 3107 ext4_end_io_dio, 3108 NULL, 3109 dio_flags); 3110 3111 /* 3112 * Put our reference to io_end. This can free the io_end structure e.g. 3113 * in sync IO case or in case of error. It can even perform extent 3114 * conversion if all bios we submitted finished before we got here. 3115 * Note that in that case iocb->private can be already set to NULL 3116 * here. 3117 */ 3118 if (io_end) { 3119 ext4_inode_aio_set(inode, NULL); 3120 ext4_put_io_end(io_end); 3121 /* 3122 * When no IO was submitted ext4_end_io_dio() was not 3123 * called so we have to put iocb's reference. 3124 */ 3125 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3126 WARN_ON(iocb->private != io_end); 3127 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3128 WARN_ON(io_end->iocb); 3129 /* 3130 * Generic code already did inode_dio_done() so we 3131 * have to clear EXT4_IO_END_DIRECT to not do it for 3132 * the second time. 3133 */ 3134 io_end->flag = 0; 3135 ext4_put_io_end(io_end); 3136 iocb->private = NULL; 3137 } 3138 } 3139 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3140 EXT4_STATE_DIO_UNWRITTEN)) { 3141 int err; 3142 /* 3143 * for non AIO case, since the IO is already 3144 * completed, we could do the conversion right here 3145 */ 3146 err = ext4_convert_unwritten_extents(NULL, inode, 3147 offset, ret); 3148 if (err < 0) 3149 ret = err; 3150 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3151 } 3152 3153 retake_lock: 3154 if (rw == WRITE) 3155 inode_dio_done(inode); 3156 /* take i_mutex locking again if we do a ovewrite dio */ 3157 if (overwrite) { 3158 up_read(&EXT4_I(inode)->i_data_sem); 3159 mutex_lock(&inode->i_mutex); 3160 } 3161 3162 return ret; 3163 } 3164 3165 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3166 const struct iovec *iov, loff_t offset, 3167 unsigned long nr_segs) 3168 { 3169 struct file *file = iocb->ki_filp; 3170 struct inode *inode = file->f_mapping->host; 3171 ssize_t ret; 3172 3173 /* 3174 * If we are doing data journalling we don't support O_DIRECT 3175 */ 3176 if (ext4_should_journal_data(inode)) 3177 return 0; 3178 3179 /* Let buffer I/O handle the inline data case. */ 3180 if (ext4_has_inline_data(inode)) 3181 return 0; 3182 3183 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3184 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3185 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3186 else 3187 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3188 trace_ext4_direct_IO_exit(inode, offset, 3189 iov_length(iov, nr_segs), rw, ret); 3190 return ret; 3191 } 3192 3193 /* 3194 * Pages can be marked dirty completely asynchronously from ext4's journalling 3195 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3196 * much here because ->set_page_dirty is called under VFS locks. The page is 3197 * not necessarily locked. 3198 * 3199 * We cannot just dirty the page and leave attached buffers clean, because the 3200 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3201 * or jbddirty because all the journalling code will explode. 3202 * 3203 * So what we do is to mark the page "pending dirty" and next time writepage 3204 * is called, propagate that into the buffers appropriately. 3205 */ 3206 static int ext4_journalled_set_page_dirty(struct page *page) 3207 { 3208 SetPageChecked(page); 3209 return __set_page_dirty_nobuffers(page); 3210 } 3211 3212 static const struct address_space_operations ext4_aops = { 3213 .readpage = ext4_readpage, 3214 .readpages = ext4_readpages, 3215 .writepage = ext4_writepage, 3216 .write_begin = ext4_write_begin, 3217 .write_end = ext4_write_end, 3218 .bmap = ext4_bmap, 3219 .invalidatepage = ext4_invalidatepage, 3220 .releasepage = ext4_releasepage, 3221 .direct_IO = ext4_direct_IO, 3222 .migratepage = buffer_migrate_page, 3223 .is_partially_uptodate = block_is_partially_uptodate, 3224 .error_remove_page = generic_error_remove_page, 3225 }; 3226 3227 static const struct address_space_operations ext4_journalled_aops = { 3228 .readpage = ext4_readpage, 3229 .readpages = ext4_readpages, 3230 .writepage = ext4_writepage, 3231 .write_begin = ext4_write_begin, 3232 .write_end = ext4_journalled_write_end, 3233 .set_page_dirty = ext4_journalled_set_page_dirty, 3234 .bmap = ext4_bmap, 3235 .invalidatepage = ext4_journalled_invalidatepage, 3236 .releasepage = ext4_releasepage, 3237 .direct_IO = ext4_direct_IO, 3238 .is_partially_uptodate = block_is_partially_uptodate, 3239 .error_remove_page = generic_error_remove_page, 3240 }; 3241 3242 static const struct address_space_operations ext4_da_aops = { 3243 .readpage = ext4_readpage, 3244 .readpages = ext4_readpages, 3245 .writepage = ext4_writepage, 3246 .writepages = ext4_da_writepages, 3247 .write_begin = ext4_da_write_begin, 3248 .write_end = ext4_da_write_end, 3249 .bmap = ext4_bmap, 3250 .invalidatepage = ext4_da_invalidatepage, 3251 .releasepage = ext4_releasepage, 3252 .direct_IO = ext4_direct_IO, 3253 .migratepage = buffer_migrate_page, 3254 .is_partially_uptodate = block_is_partially_uptodate, 3255 .error_remove_page = generic_error_remove_page, 3256 }; 3257 3258 void ext4_set_aops(struct inode *inode) 3259 { 3260 switch (ext4_inode_journal_mode(inode)) { 3261 case EXT4_INODE_ORDERED_DATA_MODE: 3262 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3263 break; 3264 case EXT4_INODE_WRITEBACK_DATA_MODE: 3265 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3266 break; 3267 case EXT4_INODE_JOURNAL_DATA_MODE: 3268 inode->i_mapping->a_ops = &ext4_journalled_aops; 3269 return; 3270 default: 3271 BUG(); 3272 } 3273 if (test_opt(inode->i_sb, DELALLOC)) 3274 inode->i_mapping->a_ops = &ext4_da_aops; 3275 else 3276 inode->i_mapping->a_ops = &ext4_aops; 3277 } 3278 3279 /* 3280 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3281 * up to the end of the block which corresponds to `from'. 3282 * This required during truncate. We need to physically zero the tail end 3283 * of that block so it doesn't yield old data if the file is later grown. 3284 */ 3285 int ext4_block_truncate_page(handle_t *handle, 3286 struct address_space *mapping, loff_t from) 3287 { 3288 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3289 unsigned length; 3290 unsigned blocksize; 3291 struct inode *inode = mapping->host; 3292 3293 blocksize = inode->i_sb->s_blocksize; 3294 length = blocksize - (offset & (blocksize - 1)); 3295 3296 return ext4_block_zero_page_range(handle, mapping, from, length); 3297 } 3298 3299 /* 3300 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3301 * starting from file offset 'from'. The range to be zero'd must 3302 * be contained with in one block. If the specified range exceeds 3303 * the end of the block it will be shortened to end of the block 3304 * that cooresponds to 'from' 3305 */ 3306 int ext4_block_zero_page_range(handle_t *handle, 3307 struct address_space *mapping, loff_t from, loff_t length) 3308 { 3309 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3310 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3311 unsigned blocksize, max, pos; 3312 ext4_lblk_t iblock; 3313 struct inode *inode = mapping->host; 3314 struct buffer_head *bh; 3315 struct page *page; 3316 int err = 0; 3317 3318 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3319 mapping_gfp_mask(mapping) & ~__GFP_FS); 3320 if (!page) 3321 return -ENOMEM; 3322 3323 blocksize = inode->i_sb->s_blocksize; 3324 max = blocksize - (offset & (blocksize - 1)); 3325 3326 /* 3327 * correct length if it does not fall between 3328 * 'from' and the end of the block 3329 */ 3330 if (length > max || length < 0) 3331 length = max; 3332 3333 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3334 3335 if (!page_has_buffers(page)) 3336 create_empty_buffers(page, blocksize, 0); 3337 3338 /* Find the buffer that contains "offset" */ 3339 bh = page_buffers(page); 3340 pos = blocksize; 3341 while (offset >= pos) { 3342 bh = bh->b_this_page; 3343 iblock++; 3344 pos += blocksize; 3345 } 3346 3347 err = 0; 3348 if (buffer_freed(bh)) { 3349 BUFFER_TRACE(bh, "freed: skip"); 3350 goto unlock; 3351 } 3352 3353 if (!buffer_mapped(bh)) { 3354 BUFFER_TRACE(bh, "unmapped"); 3355 ext4_get_block(inode, iblock, bh, 0); 3356 /* unmapped? It's a hole - nothing to do */ 3357 if (!buffer_mapped(bh)) { 3358 BUFFER_TRACE(bh, "still unmapped"); 3359 goto unlock; 3360 } 3361 } 3362 3363 /* Ok, it's mapped. Make sure it's up-to-date */ 3364 if (PageUptodate(page)) 3365 set_buffer_uptodate(bh); 3366 3367 if (!buffer_uptodate(bh)) { 3368 err = -EIO; 3369 ll_rw_block(READ, 1, &bh); 3370 wait_on_buffer(bh); 3371 /* Uhhuh. Read error. Complain and punt. */ 3372 if (!buffer_uptodate(bh)) 3373 goto unlock; 3374 } 3375 3376 if (ext4_should_journal_data(inode)) { 3377 BUFFER_TRACE(bh, "get write access"); 3378 err = ext4_journal_get_write_access(handle, bh); 3379 if (err) 3380 goto unlock; 3381 } 3382 3383 zero_user(page, offset, length); 3384 3385 BUFFER_TRACE(bh, "zeroed end of block"); 3386 3387 err = 0; 3388 if (ext4_should_journal_data(inode)) { 3389 err = ext4_handle_dirty_metadata(handle, inode, bh); 3390 } else { 3391 mark_buffer_dirty(bh); 3392 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3393 err = ext4_jbd2_file_inode(handle, inode); 3394 } 3395 3396 unlock: 3397 unlock_page(page); 3398 page_cache_release(page); 3399 return err; 3400 } 3401 3402 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3403 loff_t lstart, loff_t length) 3404 { 3405 struct super_block *sb = inode->i_sb; 3406 struct address_space *mapping = inode->i_mapping; 3407 unsigned partial = lstart & (sb->s_blocksize - 1); 3408 ext4_fsblk_t start, end; 3409 loff_t byte_end = (lstart + length - 1); 3410 int err = 0; 3411 3412 start = lstart >> sb->s_blocksize_bits; 3413 end = byte_end >> sb->s_blocksize_bits; 3414 3415 /* Handle partial zero within the single block */ 3416 if (start == end) { 3417 err = ext4_block_zero_page_range(handle, mapping, 3418 lstart, length); 3419 return err; 3420 } 3421 /* Handle partial zero out on the start of the range */ 3422 if (partial) { 3423 err = ext4_block_zero_page_range(handle, mapping, 3424 lstart, sb->s_blocksize); 3425 if (err) 3426 return err; 3427 } 3428 /* Handle partial zero out on the end of the range */ 3429 partial = byte_end & (sb->s_blocksize - 1); 3430 if (partial != sb->s_blocksize - 1) 3431 err = ext4_block_zero_page_range(handle, mapping, 3432 byte_end - partial, 3433 partial + 1); 3434 return err; 3435 } 3436 3437 int ext4_can_truncate(struct inode *inode) 3438 { 3439 if (S_ISREG(inode->i_mode)) 3440 return 1; 3441 if (S_ISDIR(inode->i_mode)) 3442 return 1; 3443 if (S_ISLNK(inode->i_mode)) 3444 return !ext4_inode_is_fast_symlink(inode); 3445 return 0; 3446 } 3447 3448 /* 3449 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3450 * associated with the given offset and length 3451 * 3452 * @inode: File inode 3453 * @offset: The offset where the hole will begin 3454 * @len: The length of the hole 3455 * 3456 * Returns: 0 on success or negative on failure 3457 */ 3458 3459 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3460 { 3461 struct inode *inode = file_inode(file); 3462 struct super_block *sb = inode->i_sb; 3463 ext4_lblk_t first_block, stop_block; 3464 struct address_space *mapping = inode->i_mapping; 3465 loff_t first_block_offset, last_block_offset; 3466 handle_t *handle; 3467 unsigned int credits; 3468 int ret = 0; 3469 3470 if (!S_ISREG(inode->i_mode)) 3471 return -EOPNOTSUPP; 3472 3473 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3474 /* TODO: Add support for bigalloc file systems */ 3475 return -EOPNOTSUPP; 3476 } 3477 3478 trace_ext4_punch_hole(inode, offset, length); 3479 3480 /* 3481 * Write out all dirty pages to avoid race conditions 3482 * Then release them. 3483 */ 3484 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3485 ret = filemap_write_and_wait_range(mapping, offset, 3486 offset + length - 1); 3487 if (ret) 3488 return ret; 3489 } 3490 3491 mutex_lock(&inode->i_mutex); 3492 /* It's not possible punch hole on append only file */ 3493 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3494 ret = -EPERM; 3495 goto out_mutex; 3496 } 3497 if (IS_SWAPFILE(inode)) { 3498 ret = -ETXTBSY; 3499 goto out_mutex; 3500 } 3501 3502 /* No need to punch hole beyond i_size */ 3503 if (offset >= inode->i_size) 3504 goto out_mutex; 3505 3506 /* 3507 * If the hole extends beyond i_size, set the hole 3508 * to end after the page that contains i_size 3509 */ 3510 if (offset + length > inode->i_size) { 3511 length = inode->i_size + 3512 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3513 offset; 3514 } 3515 3516 first_block_offset = round_up(offset, sb->s_blocksize); 3517 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3518 3519 /* Now release the pages and zero block aligned part of pages*/ 3520 if (last_block_offset > first_block_offset) 3521 truncate_pagecache_range(inode, first_block_offset, 3522 last_block_offset); 3523 3524 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3525 ext4_inode_block_unlocked_dio(inode); 3526 inode_dio_wait(inode); 3527 3528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3529 credits = ext4_writepage_trans_blocks(inode); 3530 else 3531 credits = ext4_blocks_for_truncate(inode); 3532 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3533 if (IS_ERR(handle)) { 3534 ret = PTR_ERR(handle); 3535 ext4_std_error(sb, ret); 3536 goto out_dio; 3537 } 3538 3539 ret = ext4_zero_partial_blocks(handle, inode, offset, 3540 length); 3541 if (ret) 3542 goto out_stop; 3543 3544 first_block = (offset + sb->s_blocksize - 1) >> 3545 EXT4_BLOCK_SIZE_BITS(sb); 3546 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3547 3548 /* If there are no blocks to remove, return now */ 3549 if (first_block >= stop_block) 3550 goto out_stop; 3551 3552 down_write(&EXT4_I(inode)->i_data_sem); 3553 ext4_discard_preallocations(inode); 3554 3555 ret = ext4_es_remove_extent(inode, first_block, 3556 stop_block - first_block); 3557 if (ret) { 3558 up_write(&EXT4_I(inode)->i_data_sem); 3559 goto out_stop; 3560 } 3561 3562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3563 ret = ext4_ext_remove_space(inode, first_block, 3564 stop_block - 1); 3565 else 3566 ret = ext4_free_hole_blocks(handle, inode, first_block, 3567 stop_block); 3568 3569 ext4_discard_preallocations(inode); 3570 up_write(&EXT4_I(inode)->i_data_sem); 3571 if (IS_SYNC(inode)) 3572 ext4_handle_sync(handle); 3573 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3574 ext4_mark_inode_dirty(handle, inode); 3575 out_stop: 3576 ext4_journal_stop(handle); 3577 out_dio: 3578 ext4_inode_resume_unlocked_dio(inode); 3579 out_mutex: 3580 mutex_unlock(&inode->i_mutex); 3581 return ret; 3582 } 3583 3584 /* 3585 * ext4_truncate() 3586 * 3587 * We block out ext4_get_block() block instantiations across the entire 3588 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3589 * simultaneously on behalf of the same inode. 3590 * 3591 * As we work through the truncate and commit bits of it to the journal there 3592 * is one core, guiding principle: the file's tree must always be consistent on 3593 * disk. We must be able to restart the truncate after a crash. 3594 * 3595 * The file's tree may be transiently inconsistent in memory (although it 3596 * probably isn't), but whenever we close off and commit a journal transaction, 3597 * the contents of (the filesystem + the journal) must be consistent and 3598 * restartable. It's pretty simple, really: bottom up, right to left (although 3599 * left-to-right works OK too). 3600 * 3601 * Note that at recovery time, journal replay occurs *before* the restart of 3602 * truncate against the orphan inode list. 3603 * 3604 * The committed inode has the new, desired i_size (which is the same as 3605 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3606 * that this inode's truncate did not complete and it will again call 3607 * ext4_truncate() to have another go. So there will be instantiated blocks 3608 * to the right of the truncation point in a crashed ext4 filesystem. But 3609 * that's fine - as long as they are linked from the inode, the post-crash 3610 * ext4_truncate() run will find them and release them. 3611 */ 3612 void ext4_truncate(struct inode *inode) 3613 { 3614 struct ext4_inode_info *ei = EXT4_I(inode); 3615 unsigned int credits; 3616 handle_t *handle; 3617 struct address_space *mapping = inode->i_mapping; 3618 3619 /* 3620 * There is a possibility that we're either freeing the inode 3621 * or it completely new indode. In those cases we might not 3622 * have i_mutex locked because it's not necessary. 3623 */ 3624 if (!(inode->i_state & (I_NEW|I_FREEING))) 3625 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3626 trace_ext4_truncate_enter(inode); 3627 3628 if (!ext4_can_truncate(inode)) 3629 return; 3630 3631 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3632 3633 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3634 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3635 3636 if (ext4_has_inline_data(inode)) { 3637 int has_inline = 1; 3638 3639 ext4_inline_data_truncate(inode, &has_inline); 3640 if (has_inline) 3641 return; 3642 } 3643 3644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3645 credits = ext4_writepage_trans_blocks(inode); 3646 else 3647 credits = ext4_blocks_for_truncate(inode); 3648 3649 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3650 if (IS_ERR(handle)) { 3651 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3652 return; 3653 } 3654 3655 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3656 ext4_block_truncate_page(handle, mapping, inode->i_size); 3657 3658 /* 3659 * We add the inode to the orphan list, so that if this 3660 * truncate spans multiple transactions, and we crash, we will 3661 * resume the truncate when the filesystem recovers. It also 3662 * marks the inode dirty, to catch the new size. 3663 * 3664 * Implication: the file must always be in a sane, consistent 3665 * truncatable state while each transaction commits. 3666 */ 3667 if (ext4_orphan_add(handle, inode)) 3668 goto out_stop; 3669 3670 down_write(&EXT4_I(inode)->i_data_sem); 3671 3672 ext4_discard_preallocations(inode); 3673 3674 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3675 ext4_ext_truncate(handle, inode); 3676 else 3677 ext4_ind_truncate(handle, inode); 3678 3679 up_write(&ei->i_data_sem); 3680 3681 if (IS_SYNC(inode)) 3682 ext4_handle_sync(handle); 3683 3684 out_stop: 3685 /* 3686 * If this was a simple ftruncate() and the file will remain alive, 3687 * then we need to clear up the orphan record which we created above. 3688 * However, if this was a real unlink then we were called by 3689 * ext4_delete_inode(), and we allow that function to clean up the 3690 * orphan info for us. 3691 */ 3692 if (inode->i_nlink) 3693 ext4_orphan_del(handle, inode); 3694 3695 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3696 ext4_mark_inode_dirty(handle, inode); 3697 ext4_journal_stop(handle); 3698 3699 trace_ext4_truncate_exit(inode); 3700 } 3701 3702 /* 3703 * ext4_get_inode_loc returns with an extra refcount against the inode's 3704 * underlying buffer_head on success. If 'in_mem' is true, we have all 3705 * data in memory that is needed to recreate the on-disk version of this 3706 * inode. 3707 */ 3708 static int __ext4_get_inode_loc(struct inode *inode, 3709 struct ext4_iloc *iloc, int in_mem) 3710 { 3711 struct ext4_group_desc *gdp; 3712 struct buffer_head *bh; 3713 struct super_block *sb = inode->i_sb; 3714 ext4_fsblk_t block; 3715 int inodes_per_block, inode_offset; 3716 3717 iloc->bh = NULL; 3718 if (!ext4_valid_inum(sb, inode->i_ino)) 3719 return -EIO; 3720 3721 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3722 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3723 if (!gdp) 3724 return -EIO; 3725 3726 /* 3727 * Figure out the offset within the block group inode table 3728 */ 3729 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3730 inode_offset = ((inode->i_ino - 1) % 3731 EXT4_INODES_PER_GROUP(sb)); 3732 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3733 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3734 3735 bh = sb_getblk(sb, block); 3736 if (unlikely(!bh)) 3737 return -ENOMEM; 3738 if (!buffer_uptodate(bh)) { 3739 lock_buffer(bh); 3740 3741 /* 3742 * If the buffer has the write error flag, we have failed 3743 * to write out another inode in the same block. In this 3744 * case, we don't have to read the block because we may 3745 * read the old inode data successfully. 3746 */ 3747 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3748 set_buffer_uptodate(bh); 3749 3750 if (buffer_uptodate(bh)) { 3751 /* someone brought it uptodate while we waited */ 3752 unlock_buffer(bh); 3753 goto has_buffer; 3754 } 3755 3756 /* 3757 * If we have all information of the inode in memory and this 3758 * is the only valid inode in the block, we need not read the 3759 * block. 3760 */ 3761 if (in_mem) { 3762 struct buffer_head *bitmap_bh; 3763 int i, start; 3764 3765 start = inode_offset & ~(inodes_per_block - 1); 3766 3767 /* Is the inode bitmap in cache? */ 3768 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3769 if (unlikely(!bitmap_bh)) 3770 goto make_io; 3771 3772 /* 3773 * If the inode bitmap isn't in cache then the 3774 * optimisation may end up performing two reads instead 3775 * of one, so skip it. 3776 */ 3777 if (!buffer_uptodate(bitmap_bh)) { 3778 brelse(bitmap_bh); 3779 goto make_io; 3780 } 3781 for (i = start; i < start + inodes_per_block; i++) { 3782 if (i == inode_offset) 3783 continue; 3784 if (ext4_test_bit(i, bitmap_bh->b_data)) 3785 break; 3786 } 3787 brelse(bitmap_bh); 3788 if (i == start + inodes_per_block) { 3789 /* all other inodes are free, so skip I/O */ 3790 memset(bh->b_data, 0, bh->b_size); 3791 set_buffer_uptodate(bh); 3792 unlock_buffer(bh); 3793 goto has_buffer; 3794 } 3795 } 3796 3797 make_io: 3798 /* 3799 * If we need to do any I/O, try to pre-readahead extra 3800 * blocks from the inode table. 3801 */ 3802 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3803 ext4_fsblk_t b, end, table; 3804 unsigned num; 3805 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3806 3807 table = ext4_inode_table(sb, gdp); 3808 /* s_inode_readahead_blks is always a power of 2 */ 3809 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3810 if (table > b) 3811 b = table; 3812 end = b + ra_blks; 3813 num = EXT4_INODES_PER_GROUP(sb); 3814 if (ext4_has_group_desc_csum(sb)) 3815 num -= ext4_itable_unused_count(sb, gdp); 3816 table += num / inodes_per_block; 3817 if (end > table) 3818 end = table; 3819 while (b <= end) 3820 sb_breadahead(sb, b++); 3821 } 3822 3823 /* 3824 * There are other valid inodes in the buffer, this inode 3825 * has in-inode xattrs, or we don't have this inode in memory. 3826 * Read the block from disk. 3827 */ 3828 trace_ext4_load_inode(inode); 3829 get_bh(bh); 3830 bh->b_end_io = end_buffer_read_sync; 3831 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3832 wait_on_buffer(bh); 3833 if (!buffer_uptodate(bh)) { 3834 EXT4_ERROR_INODE_BLOCK(inode, block, 3835 "unable to read itable block"); 3836 brelse(bh); 3837 return -EIO; 3838 } 3839 } 3840 has_buffer: 3841 iloc->bh = bh; 3842 return 0; 3843 } 3844 3845 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3846 { 3847 /* We have all inode data except xattrs in memory here. */ 3848 return __ext4_get_inode_loc(inode, iloc, 3849 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3850 } 3851 3852 void ext4_set_inode_flags(struct inode *inode) 3853 { 3854 unsigned int flags = EXT4_I(inode)->i_flags; 3855 3856 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3857 if (flags & EXT4_SYNC_FL) 3858 inode->i_flags |= S_SYNC; 3859 if (flags & EXT4_APPEND_FL) 3860 inode->i_flags |= S_APPEND; 3861 if (flags & EXT4_IMMUTABLE_FL) 3862 inode->i_flags |= S_IMMUTABLE; 3863 if (flags & EXT4_NOATIME_FL) 3864 inode->i_flags |= S_NOATIME; 3865 if (flags & EXT4_DIRSYNC_FL) 3866 inode->i_flags |= S_DIRSYNC; 3867 } 3868 3869 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3870 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3871 { 3872 unsigned int vfs_fl; 3873 unsigned long old_fl, new_fl; 3874 3875 do { 3876 vfs_fl = ei->vfs_inode.i_flags; 3877 old_fl = ei->i_flags; 3878 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3879 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3880 EXT4_DIRSYNC_FL); 3881 if (vfs_fl & S_SYNC) 3882 new_fl |= EXT4_SYNC_FL; 3883 if (vfs_fl & S_APPEND) 3884 new_fl |= EXT4_APPEND_FL; 3885 if (vfs_fl & S_IMMUTABLE) 3886 new_fl |= EXT4_IMMUTABLE_FL; 3887 if (vfs_fl & S_NOATIME) 3888 new_fl |= EXT4_NOATIME_FL; 3889 if (vfs_fl & S_DIRSYNC) 3890 new_fl |= EXT4_DIRSYNC_FL; 3891 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3892 } 3893 3894 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3895 struct ext4_inode_info *ei) 3896 { 3897 blkcnt_t i_blocks ; 3898 struct inode *inode = &(ei->vfs_inode); 3899 struct super_block *sb = inode->i_sb; 3900 3901 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3902 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3903 /* we are using combined 48 bit field */ 3904 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3905 le32_to_cpu(raw_inode->i_blocks_lo); 3906 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3907 /* i_blocks represent file system block size */ 3908 return i_blocks << (inode->i_blkbits - 9); 3909 } else { 3910 return i_blocks; 3911 } 3912 } else { 3913 return le32_to_cpu(raw_inode->i_blocks_lo); 3914 } 3915 } 3916 3917 static inline void ext4_iget_extra_inode(struct inode *inode, 3918 struct ext4_inode *raw_inode, 3919 struct ext4_inode_info *ei) 3920 { 3921 __le32 *magic = (void *)raw_inode + 3922 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3923 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3924 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3925 ext4_find_inline_data_nolock(inode); 3926 } else 3927 EXT4_I(inode)->i_inline_off = 0; 3928 } 3929 3930 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3931 { 3932 struct ext4_iloc iloc; 3933 struct ext4_inode *raw_inode; 3934 struct ext4_inode_info *ei; 3935 struct inode *inode; 3936 journal_t *journal = EXT4_SB(sb)->s_journal; 3937 long ret; 3938 int block; 3939 uid_t i_uid; 3940 gid_t i_gid; 3941 3942 inode = iget_locked(sb, ino); 3943 if (!inode) 3944 return ERR_PTR(-ENOMEM); 3945 if (!(inode->i_state & I_NEW)) 3946 return inode; 3947 3948 ei = EXT4_I(inode); 3949 iloc.bh = NULL; 3950 3951 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3952 if (ret < 0) 3953 goto bad_inode; 3954 raw_inode = ext4_raw_inode(&iloc); 3955 3956 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3957 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3958 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3959 EXT4_INODE_SIZE(inode->i_sb)) { 3960 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3961 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3962 EXT4_INODE_SIZE(inode->i_sb)); 3963 ret = -EIO; 3964 goto bad_inode; 3965 } 3966 } else 3967 ei->i_extra_isize = 0; 3968 3969 /* Precompute checksum seed for inode metadata */ 3970 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3971 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3972 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3973 __u32 csum; 3974 __le32 inum = cpu_to_le32(inode->i_ino); 3975 __le32 gen = raw_inode->i_generation; 3976 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3977 sizeof(inum)); 3978 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3979 sizeof(gen)); 3980 } 3981 3982 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3983 EXT4_ERROR_INODE(inode, "checksum invalid"); 3984 ret = -EIO; 3985 goto bad_inode; 3986 } 3987 3988 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3989 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3990 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3991 if (!(test_opt(inode->i_sb, NO_UID32))) { 3992 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3993 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3994 } 3995 i_uid_write(inode, i_uid); 3996 i_gid_write(inode, i_gid); 3997 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3998 3999 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4000 ei->i_inline_off = 0; 4001 ei->i_dir_start_lookup = 0; 4002 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4003 /* We now have enough fields to check if the inode was active or not. 4004 * This is needed because nfsd might try to access dead inodes 4005 * the test is that same one that e2fsck uses 4006 * NeilBrown 1999oct15 4007 */ 4008 if (inode->i_nlink == 0) { 4009 if ((inode->i_mode == 0 || 4010 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4011 ino != EXT4_BOOT_LOADER_INO) { 4012 /* this inode is deleted */ 4013 ret = -ESTALE; 4014 goto bad_inode; 4015 } 4016 /* The only unlinked inodes we let through here have 4017 * valid i_mode and are being read by the orphan 4018 * recovery code: that's fine, we're about to complete 4019 * the process of deleting those. 4020 * OR it is the EXT4_BOOT_LOADER_INO which is 4021 * not initialized on a new filesystem. */ 4022 } 4023 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4024 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4025 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4026 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4027 ei->i_file_acl |= 4028 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4029 inode->i_size = ext4_isize(raw_inode); 4030 ei->i_disksize = inode->i_size; 4031 #ifdef CONFIG_QUOTA 4032 ei->i_reserved_quota = 0; 4033 #endif 4034 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4035 ei->i_block_group = iloc.block_group; 4036 ei->i_last_alloc_group = ~0; 4037 /* 4038 * NOTE! The in-memory inode i_data array is in little-endian order 4039 * even on big-endian machines: we do NOT byteswap the block numbers! 4040 */ 4041 for (block = 0; block < EXT4_N_BLOCKS; block++) 4042 ei->i_data[block] = raw_inode->i_block[block]; 4043 INIT_LIST_HEAD(&ei->i_orphan); 4044 4045 /* 4046 * Set transaction id's of transactions that have to be committed 4047 * to finish f[data]sync. We set them to currently running transaction 4048 * as we cannot be sure that the inode or some of its metadata isn't 4049 * part of the transaction - the inode could have been reclaimed and 4050 * now it is reread from disk. 4051 */ 4052 if (journal) { 4053 transaction_t *transaction; 4054 tid_t tid; 4055 4056 read_lock(&journal->j_state_lock); 4057 if (journal->j_running_transaction) 4058 transaction = journal->j_running_transaction; 4059 else 4060 transaction = journal->j_committing_transaction; 4061 if (transaction) 4062 tid = transaction->t_tid; 4063 else 4064 tid = journal->j_commit_sequence; 4065 read_unlock(&journal->j_state_lock); 4066 ei->i_sync_tid = tid; 4067 ei->i_datasync_tid = tid; 4068 } 4069 4070 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4071 if (ei->i_extra_isize == 0) { 4072 /* The extra space is currently unused. Use it. */ 4073 ei->i_extra_isize = sizeof(struct ext4_inode) - 4074 EXT4_GOOD_OLD_INODE_SIZE; 4075 } else { 4076 ext4_iget_extra_inode(inode, raw_inode, ei); 4077 } 4078 } 4079 4080 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4081 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4082 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4083 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4084 4085 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4086 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4087 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4088 inode->i_version |= 4089 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4090 } 4091 4092 ret = 0; 4093 if (ei->i_file_acl && 4094 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4095 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4096 ei->i_file_acl); 4097 ret = -EIO; 4098 goto bad_inode; 4099 } else if (!ext4_has_inline_data(inode)) { 4100 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4101 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4102 (S_ISLNK(inode->i_mode) && 4103 !ext4_inode_is_fast_symlink(inode)))) 4104 /* Validate extent which is part of inode */ 4105 ret = ext4_ext_check_inode(inode); 4106 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4107 (S_ISLNK(inode->i_mode) && 4108 !ext4_inode_is_fast_symlink(inode))) { 4109 /* Validate block references which are part of inode */ 4110 ret = ext4_ind_check_inode(inode); 4111 } 4112 } 4113 if (ret) 4114 goto bad_inode; 4115 4116 if (S_ISREG(inode->i_mode)) { 4117 inode->i_op = &ext4_file_inode_operations; 4118 inode->i_fop = &ext4_file_operations; 4119 ext4_set_aops(inode); 4120 } else if (S_ISDIR(inode->i_mode)) { 4121 inode->i_op = &ext4_dir_inode_operations; 4122 inode->i_fop = &ext4_dir_operations; 4123 } else if (S_ISLNK(inode->i_mode)) { 4124 if (ext4_inode_is_fast_symlink(inode)) { 4125 inode->i_op = &ext4_fast_symlink_inode_operations; 4126 nd_terminate_link(ei->i_data, inode->i_size, 4127 sizeof(ei->i_data) - 1); 4128 } else { 4129 inode->i_op = &ext4_symlink_inode_operations; 4130 ext4_set_aops(inode); 4131 } 4132 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4133 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4134 inode->i_op = &ext4_special_inode_operations; 4135 if (raw_inode->i_block[0]) 4136 init_special_inode(inode, inode->i_mode, 4137 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4138 else 4139 init_special_inode(inode, inode->i_mode, 4140 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4141 } else if (ino == EXT4_BOOT_LOADER_INO) { 4142 make_bad_inode(inode); 4143 } else { 4144 ret = -EIO; 4145 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4146 goto bad_inode; 4147 } 4148 brelse(iloc.bh); 4149 ext4_set_inode_flags(inode); 4150 unlock_new_inode(inode); 4151 return inode; 4152 4153 bad_inode: 4154 brelse(iloc.bh); 4155 iget_failed(inode); 4156 return ERR_PTR(ret); 4157 } 4158 4159 static int ext4_inode_blocks_set(handle_t *handle, 4160 struct ext4_inode *raw_inode, 4161 struct ext4_inode_info *ei) 4162 { 4163 struct inode *inode = &(ei->vfs_inode); 4164 u64 i_blocks = inode->i_blocks; 4165 struct super_block *sb = inode->i_sb; 4166 4167 if (i_blocks <= ~0U) { 4168 /* 4169 * i_blocks can be represented in a 32 bit variable 4170 * as multiple of 512 bytes 4171 */ 4172 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4173 raw_inode->i_blocks_high = 0; 4174 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4175 return 0; 4176 } 4177 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4178 return -EFBIG; 4179 4180 if (i_blocks <= 0xffffffffffffULL) { 4181 /* 4182 * i_blocks can be represented in a 48 bit variable 4183 * as multiple of 512 bytes 4184 */ 4185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4186 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4187 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4188 } else { 4189 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4190 /* i_block is stored in file system block size */ 4191 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4193 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4194 } 4195 return 0; 4196 } 4197 4198 /* 4199 * Post the struct inode info into an on-disk inode location in the 4200 * buffer-cache. This gobbles the caller's reference to the 4201 * buffer_head in the inode location struct. 4202 * 4203 * The caller must have write access to iloc->bh. 4204 */ 4205 static int ext4_do_update_inode(handle_t *handle, 4206 struct inode *inode, 4207 struct ext4_iloc *iloc) 4208 { 4209 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4210 struct ext4_inode_info *ei = EXT4_I(inode); 4211 struct buffer_head *bh = iloc->bh; 4212 int err = 0, rc, block; 4213 int need_datasync = 0; 4214 uid_t i_uid; 4215 gid_t i_gid; 4216 4217 /* For fields not not tracking in the in-memory inode, 4218 * initialise them to zero for new inodes. */ 4219 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4220 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4221 4222 ext4_get_inode_flags(ei); 4223 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4224 i_uid = i_uid_read(inode); 4225 i_gid = i_gid_read(inode); 4226 if (!(test_opt(inode->i_sb, NO_UID32))) { 4227 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4228 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4229 /* 4230 * Fix up interoperability with old kernels. Otherwise, old inodes get 4231 * re-used with the upper 16 bits of the uid/gid intact 4232 */ 4233 if (!ei->i_dtime) { 4234 raw_inode->i_uid_high = 4235 cpu_to_le16(high_16_bits(i_uid)); 4236 raw_inode->i_gid_high = 4237 cpu_to_le16(high_16_bits(i_gid)); 4238 } else { 4239 raw_inode->i_uid_high = 0; 4240 raw_inode->i_gid_high = 0; 4241 } 4242 } else { 4243 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4244 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4245 raw_inode->i_uid_high = 0; 4246 raw_inode->i_gid_high = 0; 4247 } 4248 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4249 4250 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4251 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4252 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4253 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4254 4255 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4256 goto out_brelse; 4257 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4258 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4259 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4260 cpu_to_le32(EXT4_OS_HURD)) 4261 raw_inode->i_file_acl_high = 4262 cpu_to_le16(ei->i_file_acl >> 32); 4263 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4264 if (ei->i_disksize != ext4_isize(raw_inode)) { 4265 ext4_isize_set(raw_inode, ei->i_disksize); 4266 need_datasync = 1; 4267 } 4268 if (ei->i_disksize > 0x7fffffffULL) { 4269 struct super_block *sb = inode->i_sb; 4270 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4271 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4272 EXT4_SB(sb)->s_es->s_rev_level == 4273 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4274 /* If this is the first large file 4275 * created, add a flag to the superblock. 4276 */ 4277 err = ext4_journal_get_write_access(handle, 4278 EXT4_SB(sb)->s_sbh); 4279 if (err) 4280 goto out_brelse; 4281 ext4_update_dynamic_rev(sb); 4282 EXT4_SET_RO_COMPAT_FEATURE(sb, 4283 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4284 ext4_handle_sync(handle); 4285 err = ext4_handle_dirty_super(handle, sb); 4286 } 4287 } 4288 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4289 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4290 if (old_valid_dev(inode->i_rdev)) { 4291 raw_inode->i_block[0] = 4292 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4293 raw_inode->i_block[1] = 0; 4294 } else { 4295 raw_inode->i_block[0] = 0; 4296 raw_inode->i_block[1] = 4297 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4298 raw_inode->i_block[2] = 0; 4299 } 4300 } else if (!ext4_has_inline_data(inode)) { 4301 for (block = 0; block < EXT4_N_BLOCKS; block++) 4302 raw_inode->i_block[block] = ei->i_data[block]; 4303 } 4304 4305 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4306 if (ei->i_extra_isize) { 4307 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4308 raw_inode->i_version_hi = 4309 cpu_to_le32(inode->i_version >> 32); 4310 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4311 } 4312 4313 ext4_inode_csum_set(inode, raw_inode, ei); 4314 4315 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4316 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4317 if (!err) 4318 err = rc; 4319 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4320 4321 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4322 out_brelse: 4323 brelse(bh); 4324 ext4_std_error(inode->i_sb, err); 4325 return err; 4326 } 4327 4328 /* 4329 * ext4_write_inode() 4330 * 4331 * We are called from a few places: 4332 * 4333 * - Within generic_file_write() for O_SYNC files. 4334 * Here, there will be no transaction running. We wait for any running 4335 * transaction to commit. 4336 * 4337 * - Within sys_sync(), kupdate and such. 4338 * We wait on commit, if tol to. 4339 * 4340 * - Within prune_icache() (PF_MEMALLOC == true) 4341 * Here we simply return. We can't afford to block kswapd on the 4342 * journal commit. 4343 * 4344 * In all cases it is actually safe for us to return without doing anything, 4345 * because the inode has been copied into a raw inode buffer in 4346 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4347 * knfsd. 4348 * 4349 * Note that we are absolutely dependent upon all inode dirtiers doing the 4350 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4351 * which we are interested. 4352 * 4353 * It would be a bug for them to not do this. The code: 4354 * 4355 * mark_inode_dirty(inode) 4356 * stuff(); 4357 * inode->i_size = expr; 4358 * 4359 * is in error because a kswapd-driven write_inode() could occur while 4360 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4361 * will no longer be on the superblock's dirty inode list. 4362 */ 4363 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4364 { 4365 int err; 4366 4367 if (current->flags & PF_MEMALLOC) 4368 return 0; 4369 4370 if (EXT4_SB(inode->i_sb)->s_journal) { 4371 if (ext4_journal_current_handle()) { 4372 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4373 dump_stack(); 4374 return -EIO; 4375 } 4376 4377 if (wbc->sync_mode != WB_SYNC_ALL) 4378 return 0; 4379 4380 err = ext4_force_commit(inode->i_sb); 4381 } else { 4382 struct ext4_iloc iloc; 4383 4384 err = __ext4_get_inode_loc(inode, &iloc, 0); 4385 if (err) 4386 return err; 4387 if (wbc->sync_mode == WB_SYNC_ALL) 4388 sync_dirty_buffer(iloc.bh); 4389 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4390 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4391 "IO error syncing inode"); 4392 err = -EIO; 4393 } 4394 brelse(iloc.bh); 4395 } 4396 return err; 4397 } 4398 4399 /* 4400 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4401 * buffers that are attached to a page stradding i_size and are undergoing 4402 * commit. In that case we have to wait for commit to finish and try again. 4403 */ 4404 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4405 { 4406 struct page *page; 4407 unsigned offset; 4408 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4409 tid_t commit_tid = 0; 4410 int ret; 4411 4412 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4413 /* 4414 * All buffers in the last page remain valid? Then there's nothing to 4415 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4416 * blocksize case 4417 */ 4418 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4419 return; 4420 while (1) { 4421 page = find_lock_page(inode->i_mapping, 4422 inode->i_size >> PAGE_CACHE_SHIFT); 4423 if (!page) 4424 return; 4425 ret = __ext4_journalled_invalidatepage(page, offset, 4426 PAGE_CACHE_SIZE - offset); 4427 unlock_page(page); 4428 page_cache_release(page); 4429 if (ret != -EBUSY) 4430 return; 4431 commit_tid = 0; 4432 read_lock(&journal->j_state_lock); 4433 if (journal->j_committing_transaction) 4434 commit_tid = journal->j_committing_transaction->t_tid; 4435 read_unlock(&journal->j_state_lock); 4436 if (commit_tid) 4437 jbd2_log_wait_commit(journal, commit_tid); 4438 } 4439 } 4440 4441 /* 4442 * ext4_setattr() 4443 * 4444 * Called from notify_change. 4445 * 4446 * We want to trap VFS attempts to truncate the file as soon as 4447 * possible. In particular, we want to make sure that when the VFS 4448 * shrinks i_size, we put the inode on the orphan list and modify 4449 * i_disksize immediately, so that during the subsequent flushing of 4450 * dirty pages and freeing of disk blocks, we can guarantee that any 4451 * commit will leave the blocks being flushed in an unused state on 4452 * disk. (On recovery, the inode will get truncated and the blocks will 4453 * be freed, so we have a strong guarantee that no future commit will 4454 * leave these blocks visible to the user.) 4455 * 4456 * Another thing we have to assure is that if we are in ordered mode 4457 * and inode is still attached to the committing transaction, we must 4458 * we start writeout of all the dirty pages which are being truncated. 4459 * This way we are sure that all the data written in the previous 4460 * transaction are already on disk (truncate waits for pages under 4461 * writeback). 4462 * 4463 * Called with inode->i_mutex down. 4464 */ 4465 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4466 { 4467 struct inode *inode = dentry->d_inode; 4468 int error, rc = 0; 4469 int orphan = 0; 4470 const unsigned int ia_valid = attr->ia_valid; 4471 4472 error = inode_change_ok(inode, attr); 4473 if (error) 4474 return error; 4475 4476 if (is_quota_modification(inode, attr)) 4477 dquot_initialize(inode); 4478 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4479 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4480 handle_t *handle; 4481 4482 /* (user+group)*(old+new) structure, inode write (sb, 4483 * inode block, ? - but truncate inode update has it) */ 4484 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4485 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4486 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4487 if (IS_ERR(handle)) { 4488 error = PTR_ERR(handle); 4489 goto err_out; 4490 } 4491 error = dquot_transfer(inode, attr); 4492 if (error) { 4493 ext4_journal_stop(handle); 4494 return error; 4495 } 4496 /* Update corresponding info in inode so that everything is in 4497 * one transaction */ 4498 if (attr->ia_valid & ATTR_UID) 4499 inode->i_uid = attr->ia_uid; 4500 if (attr->ia_valid & ATTR_GID) 4501 inode->i_gid = attr->ia_gid; 4502 error = ext4_mark_inode_dirty(handle, inode); 4503 ext4_journal_stop(handle); 4504 } 4505 4506 if (attr->ia_valid & ATTR_SIZE) { 4507 4508 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4510 4511 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4512 return -EFBIG; 4513 } 4514 } 4515 4516 if (S_ISREG(inode->i_mode) && 4517 attr->ia_valid & ATTR_SIZE && 4518 (attr->ia_size < inode->i_size)) { 4519 handle_t *handle; 4520 4521 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4522 if (IS_ERR(handle)) { 4523 error = PTR_ERR(handle); 4524 goto err_out; 4525 } 4526 if (ext4_handle_valid(handle)) { 4527 error = ext4_orphan_add(handle, inode); 4528 orphan = 1; 4529 } 4530 EXT4_I(inode)->i_disksize = attr->ia_size; 4531 rc = ext4_mark_inode_dirty(handle, inode); 4532 if (!error) 4533 error = rc; 4534 ext4_journal_stop(handle); 4535 4536 if (ext4_should_order_data(inode)) { 4537 error = ext4_begin_ordered_truncate(inode, 4538 attr->ia_size); 4539 if (error) { 4540 /* Do as much error cleanup as possible */ 4541 handle = ext4_journal_start(inode, 4542 EXT4_HT_INODE, 3); 4543 if (IS_ERR(handle)) { 4544 ext4_orphan_del(NULL, inode); 4545 goto err_out; 4546 } 4547 ext4_orphan_del(handle, inode); 4548 orphan = 0; 4549 ext4_journal_stop(handle); 4550 goto err_out; 4551 } 4552 } 4553 } 4554 4555 if (attr->ia_valid & ATTR_SIZE) { 4556 if (attr->ia_size != inode->i_size) { 4557 loff_t oldsize = inode->i_size; 4558 4559 i_size_write(inode, attr->ia_size); 4560 /* 4561 * Blocks are going to be removed from the inode. Wait 4562 * for dio in flight. Temporarily disable 4563 * dioread_nolock to prevent livelock. 4564 */ 4565 if (orphan) { 4566 if (!ext4_should_journal_data(inode)) { 4567 ext4_inode_block_unlocked_dio(inode); 4568 inode_dio_wait(inode); 4569 ext4_inode_resume_unlocked_dio(inode); 4570 } else 4571 ext4_wait_for_tail_page_commit(inode); 4572 } 4573 /* 4574 * Truncate pagecache after we've waited for commit 4575 * in data=journal mode to make pages freeable. 4576 */ 4577 truncate_pagecache(inode, oldsize, inode->i_size); 4578 } 4579 ext4_truncate(inode); 4580 } 4581 4582 if (!rc) { 4583 setattr_copy(inode, attr); 4584 mark_inode_dirty(inode); 4585 } 4586 4587 /* 4588 * If the call to ext4_truncate failed to get a transaction handle at 4589 * all, we need to clean up the in-core orphan list manually. 4590 */ 4591 if (orphan && inode->i_nlink) 4592 ext4_orphan_del(NULL, inode); 4593 4594 if (!rc && (ia_valid & ATTR_MODE)) 4595 rc = ext4_acl_chmod(inode); 4596 4597 err_out: 4598 ext4_std_error(inode->i_sb, error); 4599 if (!error) 4600 error = rc; 4601 return error; 4602 } 4603 4604 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4605 struct kstat *stat) 4606 { 4607 struct inode *inode; 4608 unsigned long long delalloc_blocks; 4609 4610 inode = dentry->d_inode; 4611 generic_fillattr(inode, stat); 4612 4613 /* 4614 * We can't update i_blocks if the block allocation is delayed 4615 * otherwise in the case of system crash before the real block 4616 * allocation is done, we will have i_blocks inconsistent with 4617 * on-disk file blocks. 4618 * We always keep i_blocks updated together with real 4619 * allocation. But to not confuse with user, stat 4620 * will return the blocks that include the delayed allocation 4621 * blocks for this file. 4622 */ 4623 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4624 EXT4_I(inode)->i_reserved_data_blocks); 4625 4626 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9); 4627 return 0; 4628 } 4629 4630 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4631 int pextents) 4632 { 4633 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4634 return ext4_ind_trans_blocks(inode, lblocks); 4635 return ext4_ext_index_trans_blocks(inode, pextents); 4636 } 4637 4638 /* 4639 * Account for index blocks, block groups bitmaps and block group 4640 * descriptor blocks if modify datablocks and index blocks 4641 * worse case, the indexs blocks spread over different block groups 4642 * 4643 * If datablocks are discontiguous, they are possible to spread over 4644 * different block groups too. If they are contiguous, with flexbg, 4645 * they could still across block group boundary. 4646 * 4647 * Also account for superblock, inode, quota and xattr blocks 4648 */ 4649 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4650 int pextents) 4651 { 4652 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4653 int gdpblocks; 4654 int idxblocks; 4655 int ret = 0; 4656 4657 /* 4658 * How many index blocks need to touch to map @lblocks logical blocks 4659 * to @pextents physical extents? 4660 */ 4661 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4662 4663 ret = idxblocks; 4664 4665 /* 4666 * Now let's see how many group bitmaps and group descriptors need 4667 * to account 4668 */ 4669 groups = idxblocks + pextents; 4670 gdpblocks = groups; 4671 if (groups > ngroups) 4672 groups = ngroups; 4673 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4674 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4675 4676 /* bitmaps and block group descriptor blocks */ 4677 ret += groups + gdpblocks; 4678 4679 /* Blocks for super block, inode, quota and xattr blocks */ 4680 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4681 4682 return ret; 4683 } 4684 4685 /* 4686 * Calculate the total number of credits to reserve to fit 4687 * the modification of a single pages into a single transaction, 4688 * which may include multiple chunks of block allocations. 4689 * 4690 * This could be called via ext4_write_begin() 4691 * 4692 * We need to consider the worse case, when 4693 * one new block per extent. 4694 */ 4695 int ext4_writepage_trans_blocks(struct inode *inode) 4696 { 4697 int bpp = ext4_journal_blocks_per_page(inode); 4698 int ret; 4699 4700 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4701 4702 /* Account for data blocks for journalled mode */ 4703 if (ext4_should_journal_data(inode)) 4704 ret += bpp; 4705 return ret; 4706 } 4707 4708 /* 4709 * Calculate the journal credits for a chunk of data modification. 4710 * 4711 * This is called from DIO, fallocate or whoever calling 4712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4713 * 4714 * journal buffers for data blocks are not included here, as DIO 4715 * and fallocate do no need to journal data buffers. 4716 */ 4717 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4718 { 4719 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4720 } 4721 4722 /* 4723 * The caller must have previously called ext4_reserve_inode_write(). 4724 * Give this, we know that the caller already has write access to iloc->bh. 4725 */ 4726 int ext4_mark_iloc_dirty(handle_t *handle, 4727 struct inode *inode, struct ext4_iloc *iloc) 4728 { 4729 int err = 0; 4730 4731 if (IS_I_VERSION(inode)) 4732 inode_inc_iversion(inode); 4733 4734 /* the do_update_inode consumes one bh->b_count */ 4735 get_bh(iloc->bh); 4736 4737 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4738 err = ext4_do_update_inode(handle, inode, iloc); 4739 put_bh(iloc->bh); 4740 return err; 4741 } 4742 4743 /* 4744 * On success, We end up with an outstanding reference count against 4745 * iloc->bh. This _must_ be cleaned up later. 4746 */ 4747 4748 int 4749 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4750 struct ext4_iloc *iloc) 4751 { 4752 int err; 4753 4754 err = ext4_get_inode_loc(inode, iloc); 4755 if (!err) { 4756 BUFFER_TRACE(iloc->bh, "get_write_access"); 4757 err = ext4_journal_get_write_access(handle, iloc->bh); 4758 if (err) { 4759 brelse(iloc->bh); 4760 iloc->bh = NULL; 4761 } 4762 } 4763 ext4_std_error(inode->i_sb, err); 4764 return err; 4765 } 4766 4767 /* 4768 * Expand an inode by new_extra_isize bytes. 4769 * Returns 0 on success or negative error number on failure. 4770 */ 4771 static int ext4_expand_extra_isize(struct inode *inode, 4772 unsigned int new_extra_isize, 4773 struct ext4_iloc iloc, 4774 handle_t *handle) 4775 { 4776 struct ext4_inode *raw_inode; 4777 struct ext4_xattr_ibody_header *header; 4778 4779 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4780 return 0; 4781 4782 raw_inode = ext4_raw_inode(&iloc); 4783 4784 header = IHDR(inode, raw_inode); 4785 4786 /* No extended attributes present */ 4787 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4788 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4789 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4790 new_extra_isize); 4791 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4792 return 0; 4793 } 4794 4795 /* try to expand with EAs present */ 4796 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4797 raw_inode, handle); 4798 } 4799 4800 /* 4801 * What we do here is to mark the in-core inode as clean with respect to inode 4802 * dirtiness (it may still be data-dirty). 4803 * This means that the in-core inode may be reaped by prune_icache 4804 * without having to perform any I/O. This is a very good thing, 4805 * because *any* task may call prune_icache - even ones which 4806 * have a transaction open against a different journal. 4807 * 4808 * Is this cheating? Not really. Sure, we haven't written the 4809 * inode out, but prune_icache isn't a user-visible syncing function. 4810 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4811 * we start and wait on commits. 4812 */ 4813 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4814 { 4815 struct ext4_iloc iloc; 4816 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4817 static unsigned int mnt_count; 4818 int err, ret; 4819 4820 might_sleep(); 4821 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4822 err = ext4_reserve_inode_write(handle, inode, &iloc); 4823 if (ext4_handle_valid(handle) && 4824 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4825 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4826 /* 4827 * We need extra buffer credits since we may write into EA block 4828 * with this same handle. If journal_extend fails, then it will 4829 * only result in a minor loss of functionality for that inode. 4830 * If this is felt to be critical, then e2fsck should be run to 4831 * force a large enough s_min_extra_isize. 4832 */ 4833 if ((jbd2_journal_extend(handle, 4834 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4835 ret = ext4_expand_extra_isize(inode, 4836 sbi->s_want_extra_isize, 4837 iloc, handle); 4838 if (ret) { 4839 ext4_set_inode_state(inode, 4840 EXT4_STATE_NO_EXPAND); 4841 if (mnt_count != 4842 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4843 ext4_warning(inode->i_sb, 4844 "Unable to expand inode %lu. Delete" 4845 " some EAs or run e2fsck.", 4846 inode->i_ino); 4847 mnt_count = 4848 le16_to_cpu(sbi->s_es->s_mnt_count); 4849 } 4850 } 4851 } 4852 } 4853 if (!err) 4854 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4855 return err; 4856 } 4857 4858 /* 4859 * ext4_dirty_inode() is called from __mark_inode_dirty() 4860 * 4861 * We're really interested in the case where a file is being extended. 4862 * i_size has been changed by generic_commit_write() and we thus need 4863 * to include the updated inode in the current transaction. 4864 * 4865 * Also, dquot_alloc_block() will always dirty the inode when blocks 4866 * are allocated to the file. 4867 * 4868 * If the inode is marked synchronous, we don't honour that here - doing 4869 * so would cause a commit on atime updates, which we don't bother doing. 4870 * We handle synchronous inodes at the highest possible level. 4871 */ 4872 void ext4_dirty_inode(struct inode *inode, int flags) 4873 { 4874 handle_t *handle; 4875 4876 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4877 if (IS_ERR(handle)) 4878 goto out; 4879 4880 ext4_mark_inode_dirty(handle, inode); 4881 4882 ext4_journal_stop(handle); 4883 out: 4884 return; 4885 } 4886 4887 #if 0 4888 /* 4889 * Bind an inode's backing buffer_head into this transaction, to prevent 4890 * it from being flushed to disk early. Unlike 4891 * ext4_reserve_inode_write, this leaves behind no bh reference and 4892 * returns no iloc structure, so the caller needs to repeat the iloc 4893 * lookup to mark the inode dirty later. 4894 */ 4895 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4896 { 4897 struct ext4_iloc iloc; 4898 4899 int err = 0; 4900 if (handle) { 4901 err = ext4_get_inode_loc(inode, &iloc); 4902 if (!err) { 4903 BUFFER_TRACE(iloc.bh, "get_write_access"); 4904 err = jbd2_journal_get_write_access(handle, iloc.bh); 4905 if (!err) 4906 err = ext4_handle_dirty_metadata(handle, 4907 NULL, 4908 iloc.bh); 4909 brelse(iloc.bh); 4910 } 4911 } 4912 ext4_std_error(inode->i_sb, err); 4913 return err; 4914 } 4915 #endif 4916 4917 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4918 { 4919 journal_t *journal; 4920 handle_t *handle; 4921 int err; 4922 4923 /* 4924 * We have to be very careful here: changing a data block's 4925 * journaling status dynamically is dangerous. If we write a 4926 * data block to the journal, change the status and then delete 4927 * that block, we risk forgetting to revoke the old log record 4928 * from the journal and so a subsequent replay can corrupt data. 4929 * So, first we make sure that the journal is empty and that 4930 * nobody is changing anything. 4931 */ 4932 4933 journal = EXT4_JOURNAL(inode); 4934 if (!journal) 4935 return 0; 4936 if (is_journal_aborted(journal)) 4937 return -EROFS; 4938 /* We have to allocate physical blocks for delalloc blocks 4939 * before flushing journal. otherwise delalloc blocks can not 4940 * be allocated any more. even more truncate on delalloc blocks 4941 * could trigger BUG by flushing delalloc blocks in journal. 4942 * There is no delalloc block in non-journal data mode. 4943 */ 4944 if (val && test_opt(inode->i_sb, DELALLOC)) { 4945 err = ext4_alloc_da_blocks(inode); 4946 if (err < 0) 4947 return err; 4948 } 4949 4950 /* Wait for all existing dio workers */ 4951 ext4_inode_block_unlocked_dio(inode); 4952 inode_dio_wait(inode); 4953 4954 jbd2_journal_lock_updates(journal); 4955 4956 /* 4957 * OK, there are no updates running now, and all cached data is 4958 * synced to disk. We are now in a completely consistent state 4959 * which doesn't have anything in the journal, and we know that 4960 * no filesystem updates are running, so it is safe to modify 4961 * the inode's in-core data-journaling state flag now. 4962 */ 4963 4964 if (val) 4965 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4966 else { 4967 jbd2_journal_flush(journal); 4968 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4969 } 4970 ext4_set_aops(inode); 4971 4972 jbd2_journal_unlock_updates(journal); 4973 ext4_inode_resume_unlocked_dio(inode); 4974 4975 /* Finally we can mark the inode as dirty. */ 4976 4977 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4978 if (IS_ERR(handle)) 4979 return PTR_ERR(handle); 4980 4981 err = ext4_mark_inode_dirty(handle, inode); 4982 ext4_handle_sync(handle); 4983 ext4_journal_stop(handle); 4984 ext4_std_error(inode->i_sb, err); 4985 4986 return err; 4987 } 4988 4989 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4990 { 4991 return !buffer_mapped(bh); 4992 } 4993 4994 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4995 { 4996 struct page *page = vmf->page; 4997 loff_t size; 4998 unsigned long len; 4999 int ret; 5000 struct file *file = vma->vm_file; 5001 struct inode *inode = file_inode(file); 5002 struct address_space *mapping = inode->i_mapping; 5003 handle_t *handle; 5004 get_block_t *get_block; 5005 int retries = 0; 5006 5007 sb_start_pagefault(inode->i_sb); 5008 file_update_time(vma->vm_file); 5009 /* Delalloc case is easy... */ 5010 if (test_opt(inode->i_sb, DELALLOC) && 5011 !ext4_should_journal_data(inode) && 5012 !ext4_nonda_switch(inode->i_sb)) { 5013 do { 5014 ret = __block_page_mkwrite(vma, vmf, 5015 ext4_da_get_block_prep); 5016 } while (ret == -ENOSPC && 5017 ext4_should_retry_alloc(inode->i_sb, &retries)); 5018 goto out_ret; 5019 } 5020 5021 lock_page(page); 5022 size = i_size_read(inode); 5023 /* Page got truncated from under us? */ 5024 if (page->mapping != mapping || page_offset(page) > size) { 5025 unlock_page(page); 5026 ret = VM_FAULT_NOPAGE; 5027 goto out; 5028 } 5029 5030 if (page->index == size >> PAGE_CACHE_SHIFT) 5031 len = size & ~PAGE_CACHE_MASK; 5032 else 5033 len = PAGE_CACHE_SIZE; 5034 /* 5035 * Return if we have all the buffers mapped. This avoids the need to do 5036 * journal_start/journal_stop which can block and take a long time 5037 */ 5038 if (page_has_buffers(page)) { 5039 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5040 0, len, NULL, 5041 ext4_bh_unmapped)) { 5042 /* Wait so that we don't change page under IO */ 5043 wait_for_stable_page(page); 5044 ret = VM_FAULT_LOCKED; 5045 goto out; 5046 } 5047 } 5048 unlock_page(page); 5049 /* OK, we need to fill the hole... */ 5050 if (ext4_should_dioread_nolock(inode)) 5051 get_block = ext4_get_block_write; 5052 else 5053 get_block = ext4_get_block; 5054 retry_alloc: 5055 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5056 ext4_writepage_trans_blocks(inode)); 5057 if (IS_ERR(handle)) { 5058 ret = VM_FAULT_SIGBUS; 5059 goto out; 5060 } 5061 ret = __block_page_mkwrite(vma, vmf, get_block); 5062 if (!ret && ext4_should_journal_data(inode)) { 5063 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5064 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5065 unlock_page(page); 5066 ret = VM_FAULT_SIGBUS; 5067 ext4_journal_stop(handle); 5068 goto out; 5069 } 5070 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5071 } 5072 ext4_journal_stop(handle); 5073 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5074 goto retry_alloc; 5075 out_ret: 5076 ret = block_page_mkwrite_return(ret); 5077 out: 5078 sb_end_pagefault(inode->i_sb); 5079 return ret; 5080 } 5081