xref: /openbmc/linux/fs/ext4/inode.c (revision 5dc23bdd5f846ef868e82f789dfd9b13093f9ba6)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 				       struct inode *inode,
430 				       struct ext4_map_blocks *es_map,
431 				       struct ext4_map_blocks *map,
432 				       int flags)
433 {
434 	int retval;
435 
436 	map->m_flags = 0;
437 	/*
438 	 * There is a race window that the result is not the same.
439 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
440 	 * is that we lookup a block mapping in extent status tree with
441 	 * out taking i_data_sem.  So at the time the unwritten extent
442 	 * could be converted.
443 	 */
444 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 		down_read((&EXT4_I(inode)->i_data_sem));
446 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 					     EXT4_GET_BLOCKS_KEEP_SIZE);
449 	} else {
450 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	}
453 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 		up_read((&EXT4_I(inode)->i_data_sem));
455 	/*
456 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 	 * because it shouldn't be marked in es_map->m_flags.
458 	 */
459 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertation failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 		  (unsigned long) map->m_lblk);
516 
517 	/* Lookup extent status tree firstly */
518 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520 			map->m_pblk = ext4_es_pblock(&es) +
521 					map->m_lblk - es.es_lblk;
522 			map->m_flags |= ext4_es_is_written(&es) ?
523 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524 			retval = es.es_len - (map->m_lblk - es.es_lblk);
525 			if (retval > map->m_len)
526 				retval = map->m_len;
527 			map->m_len = retval;
528 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529 			retval = 0;
530 		} else {
531 			BUG_ON(1);
532 		}
533 #ifdef ES_AGGRESSIVE_TEST
534 		ext4_map_blocks_es_recheck(handle, inode, map,
535 					   &orig_map, flags);
536 #endif
537 		goto found;
538 	}
539 
540 	/*
541 	 * Try to see if we can get the block without requesting a new
542 	 * file system block.
543 	 */
544 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 		down_read((&EXT4_I(inode)->i_data_sem));
546 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
547 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
548 					     EXT4_GET_BLOCKS_KEEP_SIZE);
549 	} else {
550 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
551 					     EXT4_GET_BLOCKS_KEEP_SIZE);
552 	}
553 	if (retval > 0) {
554 		int ret;
555 		unsigned long long status;
556 
557 #ifdef ES_AGGRESSIVE_TEST
558 		if (retval != map->m_len) {
559 			printk("ES len assertation failed for inode: %lu "
560 			       "retval %d != map->m_len %d "
561 			       "in %s (lookup)\n", inode->i_ino, retval,
562 			       map->m_len, __func__);
563 		}
564 #endif
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 		up_read((&EXT4_I(inode)->i_data_sem));
579 
580 found:
581 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 		int ret = check_block_validity(inode, map);
583 		if (ret != 0)
584 			return ret;
585 	}
586 
587 	/* If it is only a block(s) look up */
588 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 		return retval;
590 
591 	/*
592 	 * Returns if the blocks have already allocated
593 	 *
594 	 * Note that if blocks have been preallocated
595 	 * ext4_ext_get_block() returns the create = 0
596 	 * with buffer head unmapped.
597 	 */
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 		return retval;
600 
601 	/*
602 	 * Here we clear m_flags because after allocating an new extent,
603 	 * it will be set again.
604 	 */
605 	map->m_flags &= ~EXT4_MAP_FLAGS;
606 
607 	/*
608 	 * New blocks allocate and/or writing to uninitialized extent
609 	 * will possibly result in updating i_data, so we take
610 	 * the write lock of i_data_sem, and call get_blocks()
611 	 * with create == 1 flag.
612 	 */
613 	down_write((&EXT4_I(inode)->i_data_sem));
614 
615 	/*
616 	 * if the caller is from delayed allocation writeout path
617 	 * we have already reserved fs blocks for allocation
618 	 * let the underlying get_block() function know to
619 	 * avoid double accounting
620 	 */
621 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 	/*
624 	 * We need to check for EXT4 here because migrate
625 	 * could have changed the inode type in between
626 	 */
627 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 	} else {
630 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
631 
632 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 			/*
634 			 * We allocated new blocks which will result in
635 			 * i_data's format changing.  Force the migrate
636 			 * to fail by clearing migrate flags
637 			 */
638 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 		}
640 
641 		/*
642 		 * Update reserved blocks/metadata blocks after successful
643 		 * block allocation which had been deferred till now. We don't
644 		 * support fallocate for non extent files. So we can update
645 		 * reserve space here.
646 		 */
647 		if ((retval > 0) &&
648 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 			ext4_da_update_reserve_space(inode, retval, 1);
650 	}
651 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653 
654 	if (retval > 0) {
655 		int ret;
656 		unsigned long long status;
657 
658 #ifdef ES_AGGRESSIVE_TEST
659 		if (retval != map->m_len) {
660 			printk("ES len assertation failed for inode: %lu "
661 			       "retval %d != map->m_len %d "
662 			       "in %s (allocation)\n", inode->i_ino, retval,
663 			       map->m_len, __func__);
664 		}
665 #endif
666 
667 		/*
668 		 * If the extent has been zeroed out, we don't need to update
669 		 * extent status tree.
670 		 */
671 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
672 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
673 			if (ext4_es_is_written(&es))
674 				goto has_zeroout;
675 		}
676 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
677 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
678 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
679 		    ext4_find_delalloc_range(inode, map->m_lblk,
680 					     map->m_lblk + map->m_len - 1))
681 			status |= EXTENT_STATUS_DELAYED;
682 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683 					    map->m_pblk, status);
684 		if (ret < 0)
685 			retval = ret;
686 	}
687 
688 has_zeroout:
689 	up_write((&EXT4_I(inode)->i_data_sem));
690 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
691 		int ret = check_block_validity(inode, map);
692 		if (ret != 0)
693 			return ret;
694 	}
695 	return retval;
696 }
697 
698 /* Maximum number of blocks we map for direct IO at once. */
699 #define DIO_MAX_BLOCKS 4096
700 
701 static int _ext4_get_block(struct inode *inode, sector_t iblock,
702 			   struct buffer_head *bh, int flags)
703 {
704 	handle_t *handle = ext4_journal_current_handle();
705 	struct ext4_map_blocks map;
706 	int ret = 0, started = 0;
707 	int dio_credits;
708 
709 	if (ext4_has_inline_data(inode))
710 		return -ERANGE;
711 
712 	map.m_lblk = iblock;
713 	map.m_len = bh->b_size >> inode->i_blkbits;
714 
715 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
716 		/* Direct IO write... */
717 		if (map.m_len > DIO_MAX_BLOCKS)
718 			map.m_len = DIO_MAX_BLOCKS;
719 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
720 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
721 					    dio_credits);
722 		if (IS_ERR(handle)) {
723 			ret = PTR_ERR(handle);
724 			return ret;
725 		}
726 		started = 1;
727 	}
728 
729 	ret = ext4_map_blocks(handle, inode, &map, flags);
730 	if (ret > 0) {
731 		map_bh(bh, inode->i_sb, map.m_pblk);
732 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
733 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
734 		ret = 0;
735 	}
736 	if (started)
737 		ext4_journal_stop(handle);
738 	return ret;
739 }
740 
741 int ext4_get_block(struct inode *inode, sector_t iblock,
742 		   struct buffer_head *bh, int create)
743 {
744 	return _ext4_get_block(inode, iblock, bh,
745 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
746 }
747 
748 /*
749  * `handle' can be NULL if create is zero
750  */
751 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
752 				ext4_lblk_t block, int create, int *errp)
753 {
754 	struct ext4_map_blocks map;
755 	struct buffer_head *bh;
756 	int fatal = 0, err;
757 
758 	J_ASSERT(handle != NULL || create == 0);
759 
760 	map.m_lblk = block;
761 	map.m_len = 1;
762 	err = ext4_map_blocks(handle, inode, &map,
763 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
764 
765 	/* ensure we send some value back into *errp */
766 	*errp = 0;
767 
768 	if (create && err == 0)
769 		err = -ENOSPC;	/* should never happen */
770 	if (err < 0)
771 		*errp = err;
772 	if (err <= 0)
773 		return NULL;
774 
775 	bh = sb_getblk(inode->i_sb, map.m_pblk);
776 	if (unlikely(!bh)) {
777 		*errp = -ENOMEM;
778 		return NULL;
779 	}
780 	if (map.m_flags & EXT4_MAP_NEW) {
781 		J_ASSERT(create != 0);
782 		J_ASSERT(handle != NULL);
783 
784 		/*
785 		 * Now that we do not always journal data, we should
786 		 * keep in mind whether this should always journal the
787 		 * new buffer as metadata.  For now, regular file
788 		 * writes use ext4_get_block instead, so it's not a
789 		 * problem.
790 		 */
791 		lock_buffer(bh);
792 		BUFFER_TRACE(bh, "call get_create_access");
793 		fatal = ext4_journal_get_create_access(handle, bh);
794 		if (!fatal && !buffer_uptodate(bh)) {
795 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
796 			set_buffer_uptodate(bh);
797 		}
798 		unlock_buffer(bh);
799 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
800 		err = ext4_handle_dirty_metadata(handle, inode, bh);
801 		if (!fatal)
802 			fatal = err;
803 	} else {
804 		BUFFER_TRACE(bh, "not a new buffer");
805 	}
806 	if (fatal) {
807 		*errp = fatal;
808 		brelse(bh);
809 		bh = NULL;
810 	}
811 	return bh;
812 }
813 
814 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
815 			       ext4_lblk_t block, int create, int *err)
816 {
817 	struct buffer_head *bh;
818 
819 	bh = ext4_getblk(handle, inode, block, create, err);
820 	if (!bh)
821 		return bh;
822 	if (buffer_uptodate(bh))
823 		return bh;
824 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
825 	wait_on_buffer(bh);
826 	if (buffer_uptodate(bh))
827 		return bh;
828 	put_bh(bh);
829 	*err = -EIO;
830 	return NULL;
831 }
832 
833 int ext4_walk_page_buffers(handle_t *handle,
834 			   struct buffer_head *head,
835 			   unsigned from,
836 			   unsigned to,
837 			   int *partial,
838 			   int (*fn)(handle_t *handle,
839 				     struct buffer_head *bh))
840 {
841 	struct buffer_head *bh;
842 	unsigned block_start, block_end;
843 	unsigned blocksize = head->b_size;
844 	int err, ret = 0;
845 	struct buffer_head *next;
846 
847 	for (bh = head, block_start = 0;
848 	     ret == 0 && (bh != head || !block_start);
849 	     block_start = block_end, bh = next) {
850 		next = bh->b_this_page;
851 		block_end = block_start + blocksize;
852 		if (block_end <= from || block_start >= to) {
853 			if (partial && !buffer_uptodate(bh))
854 				*partial = 1;
855 			continue;
856 		}
857 		err = (*fn)(handle, bh);
858 		if (!ret)
859 			ret = err;
860 	}
861 	return ret;
862 }
863 
864 /*
865  * To preserve ordering, it is essential that the hole instantiation and
866  * the data write be encapsulated in a single transaction.  We cannot
867  * close off a transaction and start a new one between the ext4_get_block()
868  * and the commit_write().  So doing the jbd2_journal_start at the start of
869  * prepare_write() is the right place.
870  *
871  * Also, this function can nest inside ext4_writepage().  In that case, we
872  * *know* that ext4_writepage() has generated enough buffer credits to do the
873  * whole page.  So we won't block on the journal in that case, which is good,
874  * because the caller may be PF_MEMALLOC.
875  *
876  * By accident, ext4 can be reentered when a transaction is open via
877  * quota file writes.  If we were to commit the transaction while thus
878  * reentered, there can be a deadlock - we would be holding a quota
879  * lock, and the commit would never complete if another thread had a
880  * transaction open and was blocking on the quota lock - a ranking
881  * violation.
882  *
883  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
884  * will _not_ run commit under these circumstances because handle->h_ref
885  * is elevated.  We'll still have enough credits for the tiny quotafile
886  * write.
887  */
888 int do_journal_get_write_access(handle_t *handle,
889 				struct buffer_head *bh)
890 {
891 	int dirty = buffer_dirty(bh);
892 	int ret;
893 
894 	if (!buffer_mapped(bh) || buffer_freed(bh))
895 		return 0;
896 	/*
897 	 * __block_write_begin() could have dirtied some buffers. Clean
898 	 * the dirty bit as jbd2_journal_get_write_access() could complain
899 	 * otherwise about fs integrity issues. Setting of the dirty bit
900 	 * by __block_write_begin() isn't a real problem here as we clear
901 	 * the bit before releasing a page lock and thus writeback cannot
902 	 * ever write the buffer.
903 	 */
904 	if (dirty)
905 		clear_buffer_dirty(bh);
906 	ret = ext4_journal_get_write_access(handle, bh);
907 	if (!ret && dirty)
908 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
909 	return ret;
910 }
911 
912 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
913 		   struct buffer_head *bh_result, int create);
914 static int ext4_write_begin(struct file *file, struct address_space *mapping,
915 			    loff_t pos, unsigned len, unsigned flags,
916 			    struct page **pagep, void **fsdata)
917 {
918 	struct inode *inode = mapping->host;
919 	int ret, needed_blocks;
920 	handle_t *handle;
921 	int retries = 0;
922 	struct page *page;
923 	pgoff_t index;
924 	unsigned from, to;
925 
926 	trace_ext4_write_begin(inode, pos, len, flags);
927 	/*
928 	 * Reserve one block more for addition to orphan list in case
929 	 * we allocate blocks but write fails for some reason
930 	 */
931 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
932 	index = pos >> PAGE_CACHE_SHIFT;
933 	from = pos & (PAGE_CACHE_SIZE - 1);
934 	to = from + len;
935 
936 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
937 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
938 						    flags, pagep);
939 		if (ret < 0)
940 			return ret;
941 		if (ret == 1)
942 			return 0;
943 	}
944 
945 	/*
946 	 * grab_cache_page_write_begin() can take a long time if the
947 	 * system is thrashing due to memory pressure, or if the page
948 	 * is being written back.  So grab it first before we start
949 	 * the transaction handle.  This also allows us to allocate
950 	 * the page (if needed) without using GFP_NOFS.
951 	 */
952 retry_grab:
953 	page = grab_cache_page_write_begin(mapping, index, flags);
954 	if (!page)
955 		return -ENOMEM;
956 	unlock_page(page);
957 
958 retry_journal:
959 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
960 	if (IS_ERR(handle)) {
961 		page_cache_release(page);
962 		return PTR_ERR(handle);
963 	}
964 
965 	lock_page(page);
966 	if (page->mapping != mapping) {
967 		/* The page got truncated from under us */
968 		unlock_page(page);
969 		page_cache_release(page);
970 		ext4_journal_stop(handle);
971 		goto retry_grab;
972 	}
973 	wait_on_page_writeback(page);
974 
975 	if (ext4_should_dioread_nolock(inode))
976 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
977 	else
978 		ret = __block_write_begin(page, pos, len, ext4_get_block);
979 
980 	if (!ret && ext4_should_journal_data(inode)) {
981 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
982 					     from, to, NULL,
983 					     do_journal_get_write_access);
984 	}
985 
986 	if (ret) {
987 		unlock_page(page);
988 		/*
989 		 * __block_write_begin may have instantiated a few blocks
990 		 * outside i_size.  Trim these off again. Don't need
991 		 * i_size_read because we hold i_mutex.
992 		 *
993 		 * Add inode to orphan list in case we crash before
994 		 * truncate finishes
995 		 */
996 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
997 			ext4_orphan_add(handle, inode);
998 
999 		ext4_journal_stop(handle);
1000 		if (pos + len > inode->i_size) {
1001 			ext4_truncate_failed_write(inode);
1002 			/*
1003 			 * If truncate failed early the inode might
1004 			 * still be on the orphan list; we need to
1005 			 * make sure the inode is removed from the
1006 			 * orphan list in that case.
1007 			 */
1008 			if (inode->i_nlink)
1009 				ext4_orphan_del(NULL, inode);
1010 		}
1011 
1012 		if (ret == -ENOSPC &&
1013 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1014 			goto retry_journal;
1015 		page_cache_release(page);
1016 		return ret;
1017 	}
1018 	*pagep = page;
1019 	return ret;
1020 }
1021 
1022 /* For write_end() in data=journal mode */
1023 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1024 {
1025 	int ret;
1026 	if (!buffer_mapped(bh) || buffer_freed(bh))
1027 		return 0;
1028 	set_buffer_uptodate(bh);
1029 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1030 	clear_buffer_meta(bh);
1031 	clear_buffer_prio(bh);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * We need to pick up the new inode size which generic_commit_write gave us
1037  * `file' can be NULL - eg, when called from page_symlink().
1038  *
1039  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1040  * buffers are managed internally.
1041  */
1042 static int ext4_write_end(struct file *file,
1043 			  struct address_space *mapping,
1044 			  loff_t pos, unsigned len, unsigned copied,
1045 			  struct page *page, void *fsdata)
1046 {
1047 	handle_t *handle = ext4_journal_current_handle();
1048 	struct inode *inode = mapping->host;
1049 	int ret = 0, ret2;
1050 	int i_size_changed = 0;
1051 
1052 	trace_ext4_write_end(inode, pos, len, copied);
1053 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1054 		ret = ext4_jbd2_file_inode(handle, inode);
1055 		if (ret) {
1056 			unlock_page(page);
1057 			page_cache_release(page);
1058 			goto errout;
1059 		}
1060 	}
1061 
1062 	if (ext4_has_inline_data(inode))
1063 		copied = ext4_write_inline_data_end(inode, pos, len,
1064 						    copied, page);
1065 	else
1066 		copied = block_write_end(file, mapping, pos,
1067 					 len, copied, page, fsdata);
1068 
1069 	/*
1070 	 * No need to use i_size_read() here, the i_size
1071 	 * cannot change under us because we hole i_mutex.
1072 	 *
1073 	 * But it's important to update i_size while still holding page lock:
1074 	 * page writeout could otherwise come in and zero beyond i_size.
1075 	 */
1076 	if (pos + copied > inode->i_size) {
1077 		i_size_write(inode, pos + copied);
1078 		i_size_changed = 1;
1079 	}
1080 
1081 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1082 		/* We need to mark inode dirty even if
1083 		 * new_i_size is less that inode->i_size
1084 		 * but greater than i_disksize. (hint delalloc)
1085 		 */
1086 		ext4_update_i_disksize(inode, (pos + copied));
1087 		i_size_changed = 1;
1088 	}
1089 	unlock_page(page);
1090 	page_cache_release(page);
1091 
1092 	/*
1093 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1094 	 * makes the holding time of page lock longer. Second, it forces lock
1095 	 * ordering of page lock and transaction start for journaling
1096 	 * filesystems.
1097 	 */
1098 	if (i_size_changed)
1099 		ext4_mark_inode_dirty(handle, inode);
1100 
1101 	if (copied < 0)
1102 		ret = copied;
1103 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1104 		/* if we have allocated more blocks and copied
1105 		 * less. We will have blocks allocated outside
1106 		 * inode->i_size. So truncate them
1107 		 */
1108 		ext4_orphan_add(handle, inode);
1109 errout:
1110 	ret2 = ext4_journal_stop(handle);
1111 	if (!ret)
1112 		ret = ret2;
1113 
1114 	if (pos + len > inode->i_size) {
1115 		ext4_truncate_failed_write(inode);
1116 		/*
1117 		 * If truncate failed early the inode might still be
1118 		 * on the orphan list; we need to make sure the inode
1119 		 * is removed from the orphan list in that case.
1120 		 */
1121 		if (inode->i_nlink)
1122 			ext4_orphan_del(NULL, inode);
1123 	}
1124 
1125 	return ret ? ret : copied;
1126 }
1127 
1128 static int ext4_journalled_write_end(struct file *file,
1129 				     struct address_space *mapping,
1130 				     loff_t pos, unsigned len, unsigned copied,
1131 				     struct page *page, void *fsdata)
1132 {
1133 	handle_t *handle = ext4_journal_current_handle();
1134 	struct inode *inode = mapping->host;
1135 	int ret = 0, ret2;
1136 	int partial = 0;
1137 	unsigned from, to;
1138 	loff_t new_i_size;
1139 
1140 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1141 	from = pos & (PAGE_CACHE_SIZE - 1);
1142 	to = from + len;
1143 
1144 	BUG_ON(!ext4_handle_valid(handle));
1145 
1146 	if (ext4_has_inline_data(inode))
1147 		copied = ext4_write_inline_data_end(inode, pos, len,
1148 						    copied, page);
1149 	else {
1150 		if (copied < len) {
1151 			if (!PageUptodate(page))
1152 				copied = 0;
1153 			page_zero_new_buffers(page, from+copied, to);
1154 		}
1155 
1156 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157 					     to, &partial, write_end_fn);
1158 		if (!partial)
1159 			SetPageUptodate(page);
1160 	}
1161 	new_i_size = pos + copied;
1162 	if (new_i_size > inode->i_size)
1163 		i_size_write(inode, pos+copied);
1164 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1165 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1166 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1167 		ext4_update_i_disksize(inode, new_i_size);
1168 		ret2 = ext4_mark_inode_dirty(handle, inode);
1169 		if (!ret)
1170 			ret = ret2;
1171 	}
1172 
1173 	unlock_page(page);
1174 	page_cache_release(page);
1175 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176 		/* if we have allocated more blocks and copied
1177 		 * less. We will have blocks allocated outside
1178 		 * inode->i_size. So truncate them
1179 		 */
1180 		ext4_orphan_add(handle, inode);
1181 
1182 	ret2 = ext4_journal_stop(handle);
1183 	if (!ret)
1184 		ret = ret2;
1185 	if (pos + len > inode->i_size) {
1186 		ext4_truncate_failed_write(inode);
1187 		/*
1188 		 * If truncate failed early the inode might still be
1189 		 * on the orphan list; we need to make sure the inode
1190 		 * is removed from the orphan list in that case.
1191 		 */
1192 		if (inode->i_nlink)
1193 			ext4_orphan_del(NULL, inode);
1194 	}
1195 
1196 	return ret ? ret : copied;
1197 }
1198 
1199 /*
1200  * Reserve a metadata for a single block located at lblock
1201  */
1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203 {
1204 	int retries = 0;
1205 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206 	struct ext4_inode_info *ei = EXT4_I(inode);
1207 	unsigned int md_needed;
1208 	ext4_lblk_t save_last_lblock;
1209 	int save_len;
1210 
1211 	/*
1212 	 * recalculate the amount of metadata blocks to reserve
1213 	 * in order to allocate nrblocks
1214 	 * worse case is one extent per block
1215 	 */
1216 repeat:
1217 	spin_lock(&ei->i_block_reservation_lock);
1218 	/*
1219 	 * ext4_calc_metadata_amount() has side effects, which we have
1220 	 * to be prepared undo if we fail to claim space.
1221 	 */
1222 	save_len = ei->i_da_metadata_calc_len;
1223 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 	md_needed = EXT4_NUM_B2C(sbi,
1225 				 ext4_calc_metadata_amount(inode, lblock));
1226 	trace_ext4_da_reserve_space(inode, md_needed);
1227 
1228 	/*
1229 	 * We do still charge estimated metadata to the sb though;
1230 	 * we cannot afford to run out of free blocks.
1231 	 */
1232 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233 		ei->i_da_metadata_calc_len = save_len;
1234 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 		spin_unlock(&ei->i_block_reservation_lock);
1236 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237 			cond_resched();
1238 			goto repeat;
1239 		}
1240 		return -ENOSPC;
1241 	}
1242 	ei->i_reserved_meta_blocks += md_needed;
1243 	spin_unlock(&ei->i_block_reservation_lock);
1244 
1245 	return 0;       /* success */
1246 }
1247 
1248 /*
1249  * Reserve a single cluster located at lblock
1250  */
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1252 {
1253 	int retries = 0;
1254 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255 	struct ext4_inode_info *ei = EXT4_I(inode);
1256 	unsigned int md_needed;
1257 	int ret;
1258 	ext4_lblk_t save_last_lblock;
1259 	int save_len;
1260 
1261 	/*
1262 	 * We will charge metadata quota at writeout time; this saves
1263 	 * us from metadata over-estimation, though we may go over by
1264 	 * a small amount in the end.  Here we just reserve for data.
1265 	 */
1266 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267 	if (ret)
1268 		return ret;
1269 
1270 	/*
1271 	 * recalculate the amount of metadata blocks to reserve
1272 	 * in order to allocate nrblocks
1273 	 * worse case is one extent per block
1274 	 */
1275 repeat:
1276 	spin_lock(&ei->i_block_reservation_lock);
1277 	/*
1278 	 * ext4_calc_metadata_amount() has side effects, which we have
1279 	 * to be prepared undo if we fail to claim space.
1280 	 */
1281 	save_len = ei->i_da_metadata_calc_len;
1282 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283 	md_needed = EXT4_NUM_B2C(sbi,
1284 				 ext4_calc_metadata_amount(inode, lblock));
1285 	trace_ext4_da_reserve_space(inode, md_needed);
1286 
1287 	/*
1288 	 * We do still charge estimated metadata to the sb though;
1289 	 * we cannot afford to run out of free blocks.
1290 	 */
1291 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1292 		ei->i_da_metadata_calc_len = save_len;
1293 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 		spin_unlock(&ei->i_block_reservation_lock);
1295 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296 			cond_resched();
1297 			goto repeat;
1298 		}
1299 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1300 		return -ENOSPC;
1301 	}
1302 	ei->i_reserved_data_blocks++;
1303 	ei->i_reserved_meta_blocks += md_needed;
1304 	spin_unlock(&ei->i_block_reservation_lock);
1305 
1306 	return 0;       /* success */
1307 }
1308 
1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1310 {
1311 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312 	struct ext4_inode_info *ei = EXT4_I(inode);
1313 
1314 	if (!to_free)
1315 		return;		/* Nothing to release, exit */
1316 
1317 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1318 
1319 	trace_ext4_da_release_space(inode, to_free);
1320 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1321 		/*
1322 		 * if there aren't enough reserved blocks, then the
1323 		 * counter is messed up somewhere.  Since this
1324 		 * function is called from invalidate page, it's
1325 		 * harmless to return without any action.
1326 		 */
1327 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328 			 "ino %lu, to_free %d with only %d reserved "
1329 			 "data blocks", inode->i_ino, to_free,
1330 			 ei->i_reserved_data_blocks);
1331 		WARN_ON(1);
1332 		to_free = ei->i_reserved_data_blocks;
1333 	}
1334 	ei->i_reserved_data_blocks -= to_free;
1335 
1336 	if (ei->i_reserved_data_blocks == 0) {
1337 		/*
1338 		 * We can release all of the reserved metadata blocks
1339 		 * only when we have written all of the delayed
1340 		 * allocation blocks.
1341 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1342 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1343 		 */
1344 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1345 				   ei->i_reserved_meta_blocks);
1346 		ei->i_reserved_meta_blocks = 0;
1347 		ei->i_da_metadata_calc_len = 0;
1348 	}
1349 
1350 	/* update fs dirty data blocks counter */
1351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1352 
1353 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1354 
1355 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1356 }
1357 
1358 static void ext4_da_page_release_reservation(struct page *page,
1359 					     unsigned int offset,
1360 					     unsigned int length)
1361 {
1362 	int to_release = 0;
1363 	struct buffer_head *head, *bh;
1364 	unsigned int curr_off = 0;
1365 	struct inode *inode = page->mapping->host;
1366 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 	unsigned int stop = offset + length;
1368 	int num_clusters;
1369 	ext4_fsblk_t lblk;
1370 
1371 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372 
1373 	head = page_buffers(page);
1374 	bh = head;
1375 	do {
1376 		unsigned int next_off = curr_off + bh->b_size;
1377 
1378 		if (next_off > stop)
1379 			break;
1380 
1381 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1382 			to_release++;
1383 			clear_buffer_delay(bh);
1384 		}
1385 		curr_off = next_off;
1386 	} while ((bh = bh->b_this_page) != head);
1387 
1388 	if (to_release) {
1389 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390 		ext4_es_remove_extent(inode, lblk, to_release);
1391 	}
1392 
1393 	/* If we have released all the blocks belonging to a cluster, then we
1394 	 * need to release the reserved space for that cluster. */
1395 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396 	while (num_clusters > 0) {
1397 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398 			((num_clusters - 1) << sbi->s_cluster_bits);
1399 		if (sbi->s_cluster_ratio == 1 ||
1400 		    !ext4_find_delalloc_cluster(inode, lblk))
1401 			ext4_da_release_space(inode, 1);
1402 
1403 		num_clusters--;
1404 	}
1405 }
1406 
1407 /*
1408  * Delayed allocation stuff
1409  */
1410 
1411 struct mpage_da_data {
1412 	struct inode *inode;
1413 	struct writeback_control *wbc;
1414 
1415 	pgoff_t first_page;	/* The first page to write */
1416 	pgoff_t next_page;	/* Current page to examine */
1417 	pgoff_t last_page;	/* Last page to examine */
1418 	/*
1419 	 * Extent to map - this can be after first_page because that can be
1420 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1421 	 * is delalloc or unwritten.
1422 	 */
1423 	struct ext4_map_blocks map;
1424 	struct ext4_io_submit io_submit;	/* IO submission data */
1425 };
1426 
1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428 				       bool invalidate)
1429 {
1430 	int nr_pages, i;
1431 	pgoff_t index, end;
1432 	struct pagevec pvec;
1433 	struct inode *inode = mpd->inode;
1434 	struct address_space *mapping = inode->i_mapping;
1435 
1436 	/* This is necessary when next_page == 0. */
1437 	if (mpd->first_page >= mpd->next_page)
1438 		return;
1439 
1440 	index = mpd->first_page;
1441 	end   = mpd->next_page - 1;
1442 	if (invalidate) {
1443 		ext4_lblk_t start, last;
1444 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 		ext4_es_remove_extent(inode, start, last - start + 1);
1447 	}
1448 
1449 	pagevec_init(&pvec, 0);
1450 	while (index <= end) {
1451 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452 		if (nr_pages == 0)
1453 			break;
1454 		for (i = 0; i < nr_pages; i++) {
1455 			struct page *page = pvec.pages[i];
1456 			if (page->index > end)
1457 				break;
1458 			BUG_ON(!PageLocked(page));
1459 			BUG_ON(PageWriteback(page));
1460 			if (invalidate) {
1461 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462 				ClearPageUptodate(page);
1463 			}
1464 			unlock_page(page);
1465 		}
1466 		index = pvec.pages[nr_pages - 1]->index + 1;
1467 		pagevec_release(&pvec);
1468 	}
1469 }
1470 
1471 static void ext4_print_free_blocks(struct inode *inode)
1472 {
1473 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 	struct super_block *sb = inode->i_sb;
1475 	struct ext4_inode_info *ei = EXT4_I(inode);
1476 
1477 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1478 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1479 			ext4_count_free_clusters(sb)));
1480 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1482 	       (long long) EXT4_C2B(EXT4_SB(sb),
1483 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1484 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1485 	       (long long) EXT4_C2B(EXT4_SB(sb),
1486 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1487 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1489 		 ei->i_reserved_data_blocks);
1490 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1491 	       ei->i_reserved_meta_blocks);
1492 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493 	       ei->i_allocated_meta_blocks);
1494 	return;
1495 }
1496 
1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1498 {
1499 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1500 }
1501 
1502 /*
1503  * This function is grabs code from the very beginning of
1504  * ext4_map_blocks, but assumes that the caller is from delayed write
1505  * time. This function looks up the requested blocks and sets the
1506  * buffer delay bit under the protection of i_data_sem.
1507  */
1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509 			      struct ext4_map_blocks *map,
1510 			      struct buffer_head *bh)
1511 {
1512 	struct extent_status es;
1513 	int retval;
1514 	sector_t invalid_block = ~((sector_t) 0xffff);
1515 #ifdef ES_AGGRESSIVE_TEST
1516 	struct ext4_map_blocks orig_map;
1517 
1518 	memcpy(&orig_map, map, sizeof(*map));
1519 #endif
1520 
1521 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522 		invalid_block = ~0;
1523 
1524 	map->m_flags = 0;
1525 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526 		  "logical block %lu\n", inode->i_ino, map->m_len,
1527 		  (unsigned long) map->m_lblk);
1528 
1529 	/* Lookup extent status tree firstly */
1530 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531 
1532 		if (ext4_es_is_hole(&es)) {
1533 			retval = 0;
1534 			down_read((&EXT4_I(inode)->i_data_sem));
1535 			goto add_delayed;
1536 		}
1537 
1538 		/*
1539 		 * Delayed extent could be allocated by fallocate.
1540 		 * So we need to check it.
1541 		 */
1542 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543 			map_bh(bh, inode->i_sb, invalid_block);
1544 			set_buffer_new(bh);
1545 			set_buffer_delay(bh);
1546 			return 0;
1547 		}
1548 
1549 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550 		retval = es.es_len - (iblock - es.es_lblk);
1551 		if (retval > map->m_len)
1552 			retval = map->m_len;
1553 		map->m_len = retval;
1554 		if (ext4_es_is_written(&es))
1555 			map->m_flags |= EXT4_MAP_MAPPED;
1556 		else if (ext4_es_is_unwritten(&es))
1557 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1558 		else
1559 			BUG_ON(1);
1560 
1561 #ifdef ES_AGGRESSIVE_TEST
1562 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563 #endif
1564 		return retval;
1565 	}
1566 
1567 	/*
1568 	 * Try to see if we can get the block without requesting a new
1569 	 * file system block.
1570 	 */
1571 	down_read((&EXT4_I(inode)->i_data_sem));
1572 	if (ext4_has_inline_data(inode)) {
1573 		/*
1574 		 * We will soon create blocks for this page, and let
1575 		 * us pretend as if the blocks aren't allocated yet.
1576 		 * In case of clusters, we have to handle the work
1577 		 * of mapping from cluster so that the reserved space
1578 		 * is calculated properly.
1579 		 */
1580 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1582 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583 		retval = 0;
1584 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1585 		retval = ext4_ext_map_blocks(NULL, inode, map,
1586 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1587 	else
1588 		retval = ext4_ind_map_blocks(NULL, inode, map,
1589 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1590 
1591 add_delayed:
1592 	if (retval == 0) {
1593 		int ret;
1594 		/*
1595 		 * XXX: __block_prepare_write() unmaps passed block,
1596 		 * is it OK?
1597 		 */
1598 		/*
1599 		 * If the block was allocated from previously allocated cluster,
1600 		 * then we don't need to reserve it again. However we still need
1601 		 * to reserve metadata for every block we're going to write.
1602 		 */
1603 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1604 			ret = ext4_da_reserve_space(inode, iblock);
1605 			if (ret) {
1606 				/* not enough space to reserve */
1607 				retval = ret;
1608 				goto out_unlock;
1609 			}
1610 		} else {
1611 			ret = ext4_da_reserve_metadata(inode, iblock);
1612 			if (ret) {
1613 				/* not enough space to reserve */
1614 				retval = ret;
1615 				goto out_unlock;
1616 			}
1617 		}
1618 
1619 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620 					    ~0, EXTENT_STATUS_DELAYED);
1621 		if (ret) {
1622 			retval = ret;
1623 			goto out_unlock;
1624 		}
1625 
1626 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627 		 * and it should not appear on the bh->b_state.
1628 		 */
1629 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630 
1631 		map_bh(bh, inode->i_sb, invalid_block);
1632 		set_buffer_new(bh);
1633 		set_buffer_delay(bh);
1634 	} else if (retval > 0) {
1635 		int ret;
1636 		unsigned long long status;
1637 
1638 #ifdef ES_AGGRESSIVE_TEST
1639 		if (retval != map->m_len) {
1640 			printk("ES len assertation failed for inode: %lu "
1641 			       "retval %d != map->m_len %d "
1642 			       "in %s (lookup)\n", inode->i_ino, retval,
1643 			       map->m_len, __func__);
1644 		}
1645 #endif
1646 
1647 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1648 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1649 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1650 					    map->m_pblk, status);
1651 		if (ret != 0)
1652 			retval = ret;
1653 	}
1654 
1655 out_unlock:
1656 	up_read((&EXT4_I(inode)->i_data_sem));
1657 
1658 	return retval;
1659 }
1660 
1661 /*
1662  * This is a special get_blocks_t callback which is used by
1663  * ext4_da_write_begin().  It will either return mapped block or
1664  * reserve space for a single block.
1665  *
1666  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1667  * We also have b_blocknr = -1 and b_bdev initialized properly
1668  *
1669  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1670  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1671  * initialized properly.
1672  */
1673 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1674 			   struct buffer_head *bh, int create)
1675 {
1676 	struct ext4_map_blocks map;
1677 	int ret = 0;
1678 
1679 	BUG_ON(create == 0);
1680 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1681 
1682 	map.m_lblk = iblock;
1683 	map.m_len = 1;
1684 
1685 	/*
1686 	 * first, we need to know whether the block is allocated already
1687 	 * preallocated blocks are unmapped but should treated
1688 	 * the same as allocated blocks.
1689 	 */
1690 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1691 	if (ret <= 0)
1692 		return ret;
1693 
1694 	map_bh(bh, inode->i_sb, map.m_pblk);
1695 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1696 
1697 	if (buffer_unwritten(bh)) {
1698 		/* A delayed write to unwritten bh should be marked
1699 		 * new and mapped.  Mapped ensures that we don't do
1700 		 * get_block multiple times when we write to the same
1701 		 * offset and new ensures that we do proper zero out
1702 		 * for partial write.
1703 		 */
1704 		set_buffer_new(bh);
1705 		set_buffer_mapped(bh);
1706 	}
1707 	return 0;
1708 }
1709 
1710 static int bget_one(handle_t *handle, struct buffer_head *bh)
1711 {
1712 	get_bh(bh);
1713 	return 0;
1714 }
1715 
1716 static int bput_one(handle_t *handle, struct buffer_head *bh)
1717 {
1718 	put_bh(bh);
1719 	return 0;
1720 }
1721 
1722 static int __ext4_journalled_writepage(struct page *page,
1723 				       unsigned int len)
1724 {
1725 	struct address_space *mapping = page->mapping;
1726 	struct inode *inode = mapping->host;
1727 	struct buffer_head *page_bufs = NULL;
1728 	handle_t *handle = NULL;
1729 	int ret = 0, err = 0;
1730 	int inline_data = ext4_has_inline_data(inode);
1731 	struct buffer_head *inode_bh = NULL;
1732 
1733 	ClearPageChecked(page);
1734 
1735 	if (inline_data) {
1736 		BUG_ON(page->index != 0);
1737 		BUG_ON(len > ext4_get_max_inline_size(inode));
1738 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1739 		if (inode_bh == NULL)
1740 			goto out;
1741 	} else {
1742 		page_bufs = page_buffers(page);
1743 		if (!page_bufs) {
1744 			BUG();
1745 			goto out;
1746 		}
1747 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1748 				       NULL, bget_one);
1749 	}
1750 	/* As soon as we unlock the page, it can go away, but we have
1751 	 * references to buffers so we are safe */
1752 	unlock_page(page);
1753 
1754 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1755 				    ext4_writepage_trans_blocks(inode));
1756 	if (IS_ERR(handle)) {
1757 		ret = PTR_ERR(handle);
1758 		goto out;
1759 	}
1760 
1761 	BUG_ON(!ext4_handle_valid(handle));
1762 
1763 	if (inline_data) {
1764 		ret = ext4_journal_get_write_access(handle, inode_bh);
1765 
1766 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1767 
1768 	} else {
1769 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770 					     do_journal_get_write_access);
1771 
1772 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773 					     write_end_fn);
1774 	}
1775 	if (ret == 0)
1776 		ret = err;
1777 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1778 	err = ext4_journal_stop(handle);
1779 	if (!ret)
1780 		ret = err;
1781 
1782 	if (!ext4_has_inline_data(inode))
1783 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784 				       NULL, bput_one);
1785 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1786 out:
1787 	brelse(inode_bh);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Note that we don't need to start a transaction unless we're journaling data
1793  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794  * need to file the inode to the transaction's list in ordered mode because if
1795  * we are writing back data added by write(), the inode is already there and if
1796  * we are writing back data modified via mmap(), no one guarantees in which
1797  * transaction the data will hit the disk. In case we are journaling data, we
1798  * cannot start transaction directly because transaction start ranks above page
1799  * lock so we have to do some magic.
1800  *
1801  * This function can get called via...
1802  *   - ext4_da_writepages after taking page lock (have journal handle)
1803  *   - journal_submit_inode_data_buffers (no journal handle)
1804  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805  *   - grab_page_cache when doing write_begin (have journal handle)
1806  *
1807  * We don't do any block allocation in this function. If we have page with
1808  * multiple blocks we need to write those buffer_heads that are mapped. This
1809  * is important for mmaped based write. So if we do with blocksize 1K
1810  * truncate(f, 1024);
1811  * a = mmap(f, 0, 4096);
1812  * a[0] = 'a';
1813  * truncate(f, 4096);
1814  * we have in the page first buffer_head mapped via page_mkwrite call back
1815  * but other buffer_heads would be unmapped but dirty (dirty done via the
1816  * do_wp_page). So writepage should write the first block. If we modify
1817  * the mmap area beyond 1024 we will again get a page_fault and the
1818  * page_mkwrite callback will do the block allocation and mark the
1819  * buffer_heads mapped.
1820  *
1821  * We redirty the page if we have any buffer_heads that is either delay or
1822  * unwritten in the page.
1823  *
1824  * We can get recursively called as show below.
1825  *
1826  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827  *		ext4_writepage()
1828  *
1829  * But since we don't do any block allocation we should not deadlock.
1830  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831  */
1832 static int ext4_writepage(struct page *page,
1833 			  struct writeback_control *wbc)
1834 {
1835 	int ret = 0;
1836 	loff_t size;
1837 	unsigned int len;
1838 	struct buffer_head *page_bufs = NULL;
1839 	struct inode *inode = page->mapping->host;
1840 	struct ext4_io_submit io_submit;
1841 
1842 	trace_ext4_writepage(page);
1843 	size = i_size_read(inode);
1844 	if (page->index == size >> PAGE_CACHE_SHIFT)
1845 		len = size & ~PAGE_CACHE_MASK;
1846 	else
1847 		len = PAGE_CACHE_SIZE;
1848 
1849 	page_bufs = page_buffers(page);
1850 	/*
1851 	 * We cannot do block allocation or other extent handling in this
1852 	 * function. If there are buffers needing that, we have to redirty
1853 	 * the page. But we may reach here when we do a journal commit via
1854 	 * journal_submit_inode_data_buffers() and in that case we must write
1855 	 * allocated buffers to achieve data=ordered mode guarantees.
1856 	 */
1857 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1858 				   ext4_bh_delay_or_unwritten)) {
1859 		redirty_page_for_writepage(wbc, page);
1860 		if (current->flags & PF_MEMALLOC) {
1861 			/*
1862 			 * For memory cleaning there's no point in writing only
1863 			 * some buffers. So just bail out. Warn if we came here
1864 			 * from direct reclaim.
1865 			 */
1866 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1867 							== PF_MEMALLOC);
1868 			unlock_page(page);
1869 			return 0;
1870 		}
1871 	}
1872 
1873 	if (PageChecked(page) && ext4_should_journal_data(inode))
1874 		/*
1875 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1876 		 * doesn't seem much point in redirtying the page here.
1877 		 */
1878 		return __ext4_journalled_writepage(page, len);
1879 
1880 	ext4_io_submit_init(&io_submit, wbc);
1881 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1882 	if (!io_submit.io_end) {
1883 		redirty_page_for_writepage(wbc, page);
1884 		unlock_page(page);
1885 		return -ENOMEM;
1886 	}
1887 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1888 	ext4_io_submit(&io_submit);
1889 	/* Drop io_end reference we got from init */
1890 	ext4_put_io_end_defer(io_submit.io_end);
1891 	return ret;
1892 }
1893 
1894 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1895 
1896 /*
1897  * mballoc gives us at most this number of blocks...
1898  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1899  * The rest of mballoc seems to handle chunks upto full group size.
1900  */
1901 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1902 
1903 /*
1904  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1905  *
1906  * @mpd - extent of blocks
1907  * @lblk - logical number of the block in the file
1908  * @b_state - b_state of the buffer head added
1909  *
1910  * the function is used to collect contig. blocks in same state
1911  */
1912 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1913 				  unsigned long b_state)
1914 {
1915 	struct ext4_map_blocks *map = &mpd->map;
1916 
1917 	/* Don't go larger than mballoc is willing to allocate */
1918 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1919 		return 0;
1920 
1921 	/* First block in the extent? */
1922 	if (map->m_len == 0) {
1923 		map->m_lblk = lblk;
1924 		map->m_len = 1;
1925 		map->m_flags = b_state & BH_FLAGS;
1926 		return 1;
1927 	}
1928 
1929 	/* Can we merge the block to our big extent? */
1930 	if (lblk == map->m_lblk + map->m_len &&
1931 	    (b_state & BH_FLAGS) == map->m_flags) {
1932 		map->m_len++;
1933 		return 1;
1934 	}
1935 	return 0;
1936 }
1937 
1938 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1939 				    struct buffer_head *head,
1940 				    struct buffer_head *bh,
1941 				    ext4_lblk_t lblk)
1942 {
1943 	struct inode *inode = mpd->inode;
1944 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1945 							>> inode->i_blkbits;
1946 
1947 	do {
1948 		BUG_ON(buffer_locked(bh));
1949 
1950 		if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1951 		    (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1952 		    lblk >= blocks) {
1953 			/* Found extent to map? */
1954 			if (mpd->map.m_len)
1955 				return false;
1956 			if (lblk >= blocks)
1957 				return true;
1958 			continue;
1959 		}
1960 		if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1961 			return false;
1962 	} while (lblk++, (bh = bh->b_this_page) != head);
1963 	return true;
1964 }
1965 
1966 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1967 {
1968 	int len;
1969 	loff_t size = i_size_read(mpd->inode);
1970 	int err;
1971 
1972 	BUG_ON(page->index != mpd->first_page);
1973 	if (page->index == size >> PAGE_CACHE_SHIFT)
1974 		len = size & ~PAGE_CACHE_MASK;
1975 	else
1976 		len = PAGE_CACHE_SIZE;
1977 	clear_page_dirty_for_io(page);
1978 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1979 	if (!err)
1980 		mpd->wbc->nr_to_write--;
1981 	mpd->first_page++;
1982 
1983 	return err;
1984 }
1985 
1986 /*
1987  * mpage_map_buffers - update buffers corresponding to changed extent and
1988  *		       submit fully mapped pages for IO
1989  *
1990  * @mpd - description of extent to map, on return next extent to map
1991  *
1992  * Scan buffers corresponding to changed extent (we expect corresponding pages
1993  * to be already locked) and update buffer state according to new extent state.
1994  * We map delalloc buffers to their physical location, clear unwritten bits,
1995  * and mark buffers as uninit when we perform writes to uninitialized extents
1996  * and do extent conversion after IO is finished. If the last page is not fully
1997  * mapped, we update @map to the next extent in the last page that needs
1998  * mapping. Otherwise we submit the page for IO.
1999  */
2000 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2001 {
2002 	struct pagevec pvec;
2003 	int nr_pages, i;
2004 	struct inode *inode = mpd->inode;
2005 	struct buffer_head *head, *bh;
2006 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2007 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2008 							>> inode->i_blkbits;
2009 	pgoff_t start, end;
2010 	ext4_lblk_t lblk;
2011 	sector_t pblock;
2012 	int err;
2013 
2014 	start = mpd->map.m_lblk >> bpp_bits;
2015 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2016 	lblk = start << bpp_bits;
2017 	pblock = mpd->map.m_pblk;
2018 
2019 	pagevec_init(&pvec, 0);
2020 	while (start <= end) {
2021 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2022 					  PAGEVEC_SIZE);
2023 		if (nr_pages == 0)
2024 			break;
2025 		for (i = 0; i < nr_pages; i++) {
2026 			struct page *page = pvec.pages[i];
2027 
2028 			if (page->index > end)
2029 				break;
2030 			/* Upto 'end' pages must be contiguous */
2031 			BUG_ON(page->index != start);
2032 			bh = head = page_buffers(page);
2033 			do {
2034 				if (lblk < mpd->map.m_lblk)
2035 					continue;
2036 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2037 					/*
2038 					 * Buffer after end of mapped extent.
2039 					 * Find next buffer in the page to map.
2040 					 */
2041 					mpd->map.m_len = 0;
2042 					mpd->map.m_flags = 0;
2043 					add_page_bufs_to_extent(mpd, head, bh,
2044 								lblk);
2045 					pagevec_release(&pvec);
2046 					return 0;
2047 				}
2048 				if (buffer_delay(bh)) {
2049 					clear_buffer_delay(bh);
2050 					bh->b_blocknr = pblock++;
2051 				}
2052 				clear_buffer_unwritten(bh);
2053 			} while (++lblk < blocks &&
2054 				 (bh = bh->b_this_page) != head);
2055 
2056 			/*
2057 			 * FIXME: This is going to break if dioread_nolock
2058 			 * supports blocksize < pagesize as we will try to
2059 			 * convert potentially unmapped parts of inode.
2060 			 */
2061 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062 			/* Page fully mapped - let IO run! */
2063 			err = mpage_submit_page(mpd, page);
2064 			if (err < 0) {
2065 				pagevec_release(&pvec);
2066 				return err;
2067 			}
2068 			start++;
2069 		}
2070 		pagevec_release(&pvec);
2071 	}
2072 	/* Extent fully mapped and matches with page boundary. We are done. */
2073 	mpd->map.m_len = 0;
2074 	mpd->map.m_flags = 0;
2075 	return 0;
2076 }
2077 
2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079 {
2080 	struct inode *inode = mpd->inode;
2081 	struct ext4_map_blocks *map = &mpd->map;
2082 	int get_blocks_flags;
2083 	int err;
2084 
2085 	trace_ext4_da_write_pages_extent(inode, map);
2086 	/*
2087 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 	 * to convert an uninitialized extent to be initialized (in the case
2089 	 * where we have written into one or more preallocated blocks).  It is
2090 	 * possible that we're going to need more metadata blocks than
2091 	 * previously reserved. However we must not fail because we're in
2092 	 * writeback and there is nothing we can do about it so it might result
2093 	 * in data loss.  So use reserved blocks to allocate metadata if
2094 	 * possible.
2095 	 *
2096 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2097 	 * in question are delalloc blocks.  This affects functions in many
2098 	 * different parts of the allocation call path.  This flag exists
2099 	 * primarily because we don't want to change *many* call functions, so
2100 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2101 	 * once the inode's allocation semaphore is taken.
2102 	 */
2103 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2104 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2105 	if (ext4_should_dioread_nolock(inode))
2106 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107 	if (map->m_flags & (1 << BH_Delay))
2108 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109 
2110 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2111 	if (err < 0)
2112 		return err;
2113 	if (map->m_flags & EXT4_MAP_UNINIT) {
2114 		if (!mpd->io_submit.io_end->handle &&
2115 		    ext4_handle_valid(handle)) {
2116 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2117 			handle->h_rsv_handle = NULL;
2118 		}
2119 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2120 	}
2121 
2122 	BUG_ON(map->m_len == 0);
2123 	if (map->m_flags & EXT4_MAP_NEW) {
2124 		struct block_device *bdev = inode->i_sb->s_bdev;
2125 		int i;
2126 
2127 		for (i = 0; i < map->m_len; i++)
2128 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2129 	}
2130 	return 0;
2131 }
2132 
2133 /*
2134  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2135  *				 mpd->len and submit pages underlying it for IO
2136  *
2137  * @handle - handle for journal operations
2138  * @mpd - extent to map
2139  *
2140  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2141  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2142  * them to initialized or split the described range from larger unwritten
2143  * extent. Note that we need not map all the described range since allocation
2144  * can return less blocks or the range is covered by more unwritten extents. We
2145  * cannot map more because we are limited by reserved transaction credits. On
2146  * the other hand we always make sure that the last touched page is fully
2147  * mapped so that it can be written out (and thus forward progress is
2148  * guaranteed). After mapping we submit all mapped pages for IO.
2149  */
2150 static int mpage_map_and_submit_extent(handle_t *handle,
2151 				       struct mpage_da_data *mpd)
2152 {
2153 	struct inode *inode = mpd->inode;
2154 	struct ext4_map_blocks *map = &mpd->map;
2155 	int err;
2156 	loff_t disksize;
2157 
2158 	mpd->io_submit.io_end->offset =
2159 				((loff_t)map->m_lblk) << inode->i_blkbits;
2160 	while (map->m_len) {
2161 		err = mpage_map_one_extent(handle, mpd);
2162 		if (err < 0) {
2163 			struct super_block *sb = inode->i_sb;
2164 
2165 			/*
2166 			 * Need to commit transaction to free blocks. Let upper
2167 			 * layers sort it out.
2168 			 */
2169 			if (err == -ENOSPC && ext4_count_free_clusters(sb))
2170 				return -ENOSPC;
2171 
2172 			if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2173 				ext4_msg(sb, KERN_CRIT,
2174 					 "Delayed block allocation failed for "
2175 					 "inode %lu at logical offset %llu with"
2176 					 " max blocks %u with error %d",
2177 					 inode->i_ino,
2178 					 (unsigned long long)map->m_lblk,
2179 					 (unsigned)map->m_len, err);
2180 				ext4_msg(sb, KERN_CRIT,
2181 					 "This should not happen!! Data will "
2182 					 "be lost\n");
2183 				if (err == -ENOSPC)
2184 					ext4_print_free_blocks(inode);
2185 			}
2186 			/* invalidate all the pages */
2187 			mpage_release_unused_pages(mpd, true);
2188 			return err;
2189 		}
2190 		/*
2191 		 * Update buffer state, submit mapped pages, and get us new
2192 		 * extent to map
2193 		 */
2194 		err = mpage_map_and_submit_buffers(mpd);
2195 		if (err < 0)
2196 			return err;
2197 	}
2198 
2199 	/* Update on-disk size after IO is submitted */
2200 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2201 	if (disksize > i_size_read(inode))
2202 		disksize = i_size_read(inode);
2203 	if (disksize > EXT4_I(inode)->i_disksize) {
2204 		int err2;
2205 
2206 		ext4_update_i_disksize(inode, disksize);
2207 		err2 = ext4_mark_inode_dirty(handle, inode);
2208 		if (err2)
2209 			ext4_error(inode->i_sb,
2210 				   "Failed to mark inode %lu dirty",
2211 				   inode->i_ino);
2212 		if (!err)
2213 			err = err2;
2214 	}
2215 	return err;
2216 }
2217 
2218 /*
2219  * Calculate the total number of credits to reserve for one writepages
2220  * iteration. This is called from ext4_da_writepages(). We map an extent of
2221  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2222  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2223  * bpp - 1 blocks in bpp different extents.
2224  */
2225 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2226 {
2227 	int bpp = ext4_journal_blocks_per_page(inode);
2228 
2229 	return ext4_meta_trans_blocks(inode,
2230 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2231 }
2232 
2233 /*
2234  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2235  * 				 and underlying extent to map
2236  *
2237  * @mpd - where to look for pages
2238  *
2239  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2240  * IO immediately. When we find a page which isn't mapped we start accumulating
2241  * extent of buffers underlying these pages that needs mapping (formed by
2242  * either delayed or unwritten buffers). We also lock the pages containing
2243  * these buffers. The extent found is returned in @mpd structure (starting at
2244  * mpd->lblk with length mpd->len blocks).
2245  *
2246  * Note that this function can attach bios to one io_end structure which are
2247  * neither logically nor physically contiguous. Although it may seem as an
2248  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2249  * case as we need to track IO to all buffers underlying a page in one io_end.
2250  */
2251 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2252 {
2253 	struct address_space *mapping = mpd->inode->i_mapping;
2254 	struct pagevec pvec;
2255 	unsigned int nr_pages;
2256 	pgoff_t index = mpd->first_page;
2257 	pgoff_t end = mpd->last_page;
2258 	int tag;
2259 	int i, err = 0;
2260 	int blkbits = mpd->inode->i_blkbits;
2261 	ext4_lblk_t lblk;
2262 	struct buffer_head *head;
2263 
2264 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2265 		tag = PAGECACHE_TAG_TOWRITE;
2266 	else
2267 		tag = PAGECACHE_TAG_DIRTY;
2268 
2269 	pagevec_init(&pvec, 0);
2270 	mpd->map.m_len = 0;
2271 	mpd->next_page = index;
2272 	while (index <= end) {
2273 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2274 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2275 		if (nr_pages == 0)
2276 			goto out;
2277 
2278 		for (i = 0; i < nr_pages; i++) {
2279 			struct page *page = pvec.pages[i];
2280 
2281 			/*
2282 			 * At this point, the page may be truncated or
2283 			 * invalidated (changing page->mapping to NULL), or
2284 			 * even swizzled back from swapper_space to tmpfs file
2285 			 * mapping. However, page->index will not change
2286 			 * because we have a reference on the page.
2287 			 */
2288 			if (page->index > end)
2289 				goto out;
2290 
2291 			/* If we can't merge this page, we are done. */
2292 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2293 				goto out;
2294 
2295 			lock_page(page);
2296 			/*
2297 			 * If the page is no longer dirty, or its mapping no
2298 			 * longer corresponds to inode we are writing (which
2299 			 * means it has been truncated or invalidated), or the
2300 			 * page is already under writeback and we are not doing
2301 			 * a data integrity writeback, skip the page
2302 			 */
2303 			if (!PageDirty(page) ||
2304 			    (PageWriteback(page) &&
2305 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2306 			    unlikely(page->mapping != mapping)) {
2307 				unlock_page(page);
2308 				continue;
2309 			}
2310 
2311 			wait_on_page_writeback(page);
2312 			BUG_ON(PageWriteback(page));
2313 
2314 			if (mpd->map.m_len == 0)
2315 				mpd->first_page = page->index;
2316 			mpd->next_page = page->index + 1;
2317 			/* Add all dirty buffers to mpd */
2318 			lblk = ((ext4_lblk_t)page->index) <<
2319 				(PAGE_CACHE_SHIFT - blkbits);
2320 			head = page_buffers(page);
2321 			if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2322 				goto out;
2323 			/* So far everything mapped? Submit the page for IO. */
2324 			if (mpd->map.m_len == 0) {
2325 				err = mpage_submit_page(mpd, page);
2326 				if (err < 0)
2327 					goto out;
2328 			}
2329 
2330 			/*
2331 			 * Accumulated enough dirty pages? This doesn't apply
2332 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2333 			 * keep going because someone may be concurrently
2334 			 * dirtying pages, and we might have synced a lot of
2335 			 * newly appeared dirty pages, but have not synced all
2336 			 * of the old dirty pages.
2337 			 */
2338 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2339 			    mpd->next_page - mpd->first_page >=
2340 							mpd->wbc->nr_to_write)
2341 				goto out;
2342 		}
2343 		pagevec_release(&pvec);
2344 		cond_resched();
2345 	}
2346 	return 0;
2347 out:
2348 	pagevec_release(&pvec);
2349 	return err;
2350 }
2351 
2352 static int ext4_da_writepages(struct address_space *mapping,
2353 			      struct writeback_control *wbc)
2354 {
2355 	pgoff_t	writeback_index = 0;
2356 	long nr_to_write = wbc->nr_to_write;
2357 	int range_whole = 0;
2358 	int cycled = 1;
2359 	handle_t *handle = NULL;
2360 	struct mpage_da_data mpd;
2361 	struct inode *inode = mapping->host;
2362 	int needed_blocks, rsv_blocks = 0, ret = 0;
2363 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2364 	bool done;
2365 	struct blk_plug plug;
2366 
2367 	trace_ext4_da_writepages(inode, wbc);
2368 
2369 	/*
2370 	 * No pages to write? This is mainly a kludge to avoid starting
2371 	 * a transaction for special inodes like journal inode on last iput()
2372 	 * because that could violate lock ordering on umount
2373 	 */
2374 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2375 		return 0;
2376 
2377 	/*
2378 	 * If the filesystem has aborted, it is read-only, so return
2379 	 * right away instead of dumping stack traces later on that
2380 	 * will obscure the real source of the problem.  We test
2381 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2382 	 * the latter could be true if the filesystem is mounted
2383 	 * read-only, and in that case, ext4_da_writepages should
2384 	 * *never* be called, so if that ever happens, we would want
2385 	 * the stack trace.
2386 	 */
2387 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2388 		return -EROFS;
2389 
2390 	if (ext4_should_dioread_nolock(inode)) {
2391 		/*
2392 		 * We may need to convert upto one extent per block in
2393 		 * the page and we may dirty the inode.
2394 		 */
2395 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2396 	}
2397 
2398 	/*
2399 	 * If we have inline data and arrive here, it means that
2400 	 * we will soon create the block for the 1st page, so
2401 	 * we'd better clear the inline data here.
2402 	 */
2403 	if (ext4_has_inline_data(inode)) {
2404 		/* Just inode will be modified... */
2405 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2406 		if (IS_ERR(handle)) {
2407 			ret = PTR_ERR(handle);
2408 			goto out_writepages;
2409 		}
2410 		BUG_ON(ext4_test_inode_state(inode,
2411 				EXT4_STATE_MAY_INLINE_DATA));
2412 		ext4_destroy_inline_data(handle, inode);
2413 		ext4_journal_stop(handle);
2414 	}
2415 
2416 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2417 		range_whole = 1;
2418 
2419 	if (wbc->range_cyclic) {
2420 		writeback_index = mapping->writeback_index;
2421 		if (writeback_index)
2422 			cycled = 0;
2423 		mpd.first_page = writeback_index;
2424 		mpd.last_page = -1;
2425 	} else {
2426 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2427 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2428 	}
2429 
2430 	mpd.inode = inode;
2431 	mpd.wbc = wbc;
2432 	ext4_io_submit_init(&mpd.io_submit, wbc);
2433 retry:
2434 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2435 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2436 	done = false;
2437 	blk_start_plug(&plug);
2438 	while (!done && mpd.first_page <= mpd.last_page) {
2439 		/* For each extent of pages we use new io_end */
2440 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2441 		if (!mpd.io_submit.io_end) {
2442 			ret = -ENOMEM;
2443 			break;
2444 		}
2445 
2446 		/*
2447 		 * We have two constraints: We find one extent to map and we
2448 		 * must always write out whole page (makes a difference when
2449 		 * blocksize < pagesize) so that we don't block on IO when we
2450 		 * try to write out the rest of the page. Journalled mode is
2451 		 * not supported by delalloc.
2452 		 */
2453 		BUG_ON(ext4_should_journal_data(inode));
2454 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2455 
2456 		/* start a new transaction */
2457 		handle = ext4_journal_start_with_reserve(inode,
2458 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2459 		if (IS_ERR(handle)) {
2460 			ret = PTR_ERR(handle);
2461 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2462 			       "%ld pages, ino %lu; err %d", __func__,
2463 				wbc->nr_to_write, inode->i_ino, ret);
2464 			/* Release allocated io_end */
2465 			ext4_put_io_end(mpd.io_submit.io_end);
2466 			break;
2467 		}
2468 
2469 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2470 		ret = mpage_prepare_extent_to_map(&mpd);
2471 		if (!ret) {
2472 			if (mpd.map.m_len)
2473 				ret = mpage_map_and_submit_extent(handle, &mpd);
2474 			else {
2475 				/*
2476 				 * We scanned the whole range (or exhausted
2477 				 * nr_to_write), submitted what was mapped and
2478 				 * didn't find anything needing mapping. We are
2479 				 * done.
2480 				 */
2481 				done = true;
2482 			}
2483 		}
2484 		ext4_journal_stop(handle);
2485 		/* Submit prepared bio */
2486 		ext4_io_submit(&mpd.io_submit);
2487 		/* Unlock pages we didn't use */
2488 		mpage_release_unused_pages(&mpd, false);
2489 		/* Drop our io_end reference we got from init */
2490 		ext4_put_io_end(mpd.io_submit.io_end);
2491 
2492 		if (ret == -ENOSPC && sbi->s_journal) {
2493 			/*
2494 			 * Commit the transaction which would
2495 			 * free blocks released in the transaction
2496 			 * and try again
2497 			 */
2498 			jbd2_journal_force_commit_nested(sbi->s_journal);
2499 			ret = 0;
2500 			continue;
2501 		}
2502 		/* Fatal error - ENOMEM, EIO... */
2503 		if (ret)
2504 			break;
2505 	}
2506 	blk_finish_plug(&plug);
2507 	if (!ret && !cycled) {
2508 		cycled = 1;
2509 		mpd.last_page = writeback_index - 1;
2510 		mpd.first_page = 0;
2511 		goto retry;
2512 	}
2513 
2514 	/* Update index */
2515 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2516 		/*
2517 		 * Set the writeback_index so that range_cyclic
2518 		 * mode will write it back later
2519 		 */
2520 		mapping->writeback_index = mpd.first_page;
2521 
2522 out_writepages:
2523 	trace_ext4_da_writepages_result(inode, wbc, ret,
2524 					nr_to_write - wbc->nr_to_write);
2525 	return ret;
2526 }
2527 
2528 static int ext4_nonda_switch(struct super_block *sb)
2529 {
2530 	s64 free_clusters, dirty_clusters;
2531 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2532 
2533 	/*
2534 	 * switch to non delalloc mode if we are running low
2535 	 * on free block. The free block accounting via percpu
2536 	 * counters can get slightly wrong with percpu_counter_batch getting
2537 	 * accumulated on each CPU without updating global counters
2538 	 * Delalloc need an accurate free block accounting. So switch
2539 	 * to non delalloc when we are near to error range.
2540 	 */
2541 	free_clusters =
2542 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2543 	dirty_clusters =
2544 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2545 	/*
2546 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2547 	 */
2548 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2549 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2550 
2551 	if (2 * free_clusters < 3 * dirty_clusters ||
2552 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2553 		/*
2554 		 * free block count is less than 150% of dirty blocks
2555 		 * or free blocks is less than watermark
2556 		 */
2557 		return 1;
2558 	}
2559 	return 0;
2560 }
2561 
2562 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2563 			       loff_t pos, unsigned len, unsigned flags,
2564 			       struct page **pagep, void **fsdata)
2565 {
2566 	int ret, retries = 0;
2567 	struct page *page;
2568 	pgoff_t index;
2569 	struct inode *inode = mapping->host;
2570 	handle_t *handle;
2571 
2572 	index = pos >> PAGE_CACHE_SHIFT;
2573 
2574 	if (ext4_nonda_switch(inode->i_sb)) {
2575 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2576 		return ext4_write_begin(file, mapping, pos,
2577 					len, flags, pagep, fsdata);
2578 	}
2579 	*fsdata = (void *)0;
2580 	trace_ext4_da_write_begin(inode, pos, len, flags);
2581 
2582 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2583 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2584 						      pos, len, flags,
2585 						      pagep, fsdata);
2586 		if (ret < 0)
2587 			return ret;
2588 		if (ret == 1)
2589 			return 0;
2590 	}
2591 
2592 	/*
2593 	 * grab_cache_page_write_begin() can take a long time if the
2594 	 * system is thrashing due to memory pressure, or if the page
2595 	 * is being written back.  So grab it first before we start
2596 	 * the transaction handle.  This also allows us to allocate
2597 	 * the page (if needed) without using GFP_NOFS.
2598 	 */
2599 retry_grab:
2600 	page = grab_cache_page_write_begin(mapping, index, flags);
2601 	if (!page)
2602 		return -ENOMEM;
2603 	unlock_page(page);
2604 
2605 	/*
2606 	 * With delayed allocation, we don't log the i_disksize update
2607 	 * if there is delayed block allocation. But we still need
2608 	 * to journalling the i_disksize update if writes to the end
2609 	 * of file which has an already mapped buffer.
2610 	 */
2611 retry_journal:
2612 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2613 	if (IS_ERR(handle)) {
2614 		page_cache_release(page);
2615 		return PTR_ERR(handle);
2616 	}
2617 
2618 	lock_page(page);
2619 	if (page->mapping != mapping) {
2620 		/* The page got truncated from under us */
2621 		unlock_page(page);
2622 		page_cache_release(page);
2623 		ext4_journal_stop(handle);
2624 		goto retry_grab;
2625 	}
2626 	/* In case writeback began while the page was unlocked */
2627 	wait_on_page_writeback(page);
2628 
2629 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2630 	if (ret < 0) {
2631 		unlock_page(page);
2632 		ext4_journal_stop(handle);
2633 		/*
2634 		 * block_write_begin may have instantiated a few blocks
2635 		 * outside i_size.  Trim these off again. Don't need
2636 		 * i_size_read because we hold i_mutex.
2637 		 */
2638 		if (pos + len > inode->i_size)
2639 			ext4_truncate_failed_write(inode);
2640 
2641 		if (ret == -ENOSPC &&
2642 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2643 			goto retry_journal;
2644 
2645 		page_cache_release(page);
2646 		return ret;
2647 	}
2648 
2649 	*pagep = page;
2650 	return ret;
2651 }
2652 
2653 /*
2654  * Check if we should update i_disksize
2655  * when write to the end of file but not require block allocation
2656  */
2657 static int ext4_da_should_update_i_disksize(struct page *page,
2658 					    unsigned long offset)
2659 {
2660 	struct buffer_head *bh;
2661 	struct inode *inode = page->mapping->host;
2662 	unsigned int idx;
2663 	int i;
2664 
2665 	bh = page_buffers(page);
2666 	idx = offset >> inode->i_blkbits;
2667 
2668 	for (i = 0; i < idx; i++)
2669 		bh = bh->b_this_page;
2670 
2671 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2672 		return 0;
2673 	return 1;
2674 }
2675 
2676 static int ext4_da_write_end(struct file *file,
2677 			     struct address_space *mapping,
2678 			     loff_t pos, unsigned len, unsigned copied,
2679 			     struct page *page, void *fsdata)
2680 {
2681 	struct inode *inode = mapping->host;
2682 	int ret = 0, ret2;
2683 	handle_t *handle = ext4_journal_current_handle();
2684 	loff_t new_i_size;
2685 	unsigned long start, end;
2686 	int write_mode = (int)(unsigned long)fsdata;
2687 
2688 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2689 		return ext4_write_end(file, mapping, pos,
2690 				      len, copied, page, fsdata);
2691 
2692 	trace_ext4_da_write_end(inode, pos, len, copied);
2693 	start = pos & (PAGE_CACHE_SIZE - 1);
2694 	end = start + copied - 1;
2695 
2696 	/*
2697 	 * generic_write_end() will run mark_inode_dirty() if i_size
2698 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2699 	 * into that.
2700 	 */
2701 	new_i_size = pos + copied;
2702 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2703 		if (ext4_has_inline_data(inode) ||
2704 		    ext4_da_should_update_i_disksize(page, end)) {
2705 			down_write(&EXT4_I(inode)->i_data_sem);
2706 			if (new_i_size > EXT4_I(inode)->i_disksize)
2707 				EXT4_I(inode)->i_disksize = new_i_size;
2708 			up_write(&EXT4_I(inode)->i_data_sem);
2709 			/* We need to mark inode dirty even if
2710 			 * new_i_size is less that inode->i_size
2711 			 * bu greater than i_disksize.(hint delalloc)
2712 			 */
2713 			ext4_mark_inode_dirty(handle, inode);
2714 		}
2715 	}
2716 
2717 	if (write_mode != CONVERT_INLINE_DATA &&
2718 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2719 	    ext4_has_inline_data(inode))
2720 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2721 						     page);
2722 	else
2723 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2724 							page, fsdata);
2725 
2726 	copied = ret2;
2727 	if (ret2 < 0)
2728 		ret = ret2;
2729 	ret2 = ext4_journal_stop(handle);
2730 	if (!ret)
2731 		ret = ret2;
2732 
2733 	return ret ? ret : copied;
2734 }
2735 
2736 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2737 				   unsigned int length)
2738 {
2739 	/*
2740 	 * Drop reserved blocks
2741 	 */
2742 	BUG_ON(!PageLocked(page));
2743 	if (!page_has_buffers(page))
2744 		goto out;
2745 
2746 	ext4_da_page_release_reservation(page, offset, length);
2747 
2748 out:
2749 	ext4_invalidatepage(page, offset, length);
2750 
2751 	return;
2752 }
2753 
2754 /*
2755  * Force all delayed allocation blocks to be allocated for a given inode.
2756  */
2757 int ext4_alloc_da_blocks(struct inode *inode)
2758 {
2759 	trace_ext4_alloc_da_blocks(inode);
2760 
2761 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2762 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2763 		return 0;
2764 
2765 	/*
2766 	 * We do something simple for now.  The filemap_flush() will
2767 	 * also start triggering a write of the data blocks, which is
2768 	 * not strictly speaking necessary (and for users of
2769 	 * laptop_mode, not even desirable).  However, to do otherwise
2770 	 * would require replicating code paths in:
2771 	 *
2772 	 * ext4_da_writepages() ->
2773 	 *    write_cache_pages() ---> (via passed in callback function)
2774 	 *        __mpage_da_writepage() -->
2775 	 *           mpage_add_bh_to_extent()
2776 	 *           mpage_da_map_blocks()
2777 	 *
2778 	 * The problem is that write_cache_pages(), located in
2779 	 * mm/page-writeback.c, marks pages clean in preparation for
2780 	 * doing I/O, which is not desirable if we're not planning on
2781 	 * doing I/O at all.
2782 	 *
2783 	 * We could call write_cache_pages(), and then redirty all of
2784 	 * the pages by calling redirty_page_for_writepage() but that
2785 	 * would be ugly in the extreme.  So instead we would need to
2786 	 * replicate parts of the code in the above functions,
2787 	 * simplifying them because we wouldn't actually intend to
2788 	 * write out the pages, but rather only collect contiguous
2789 	 * logical block extents, call the multi-block allocator, and
2790 	 * then update the buffer heads with the block allocations.
2791 	 *
2792 	 * For now, though, we'll cheat by calling filemap_flush(),
2793 	 * which will map the blocks, and start the I/O, but not
2794 	 * actually wait for the I/O to complete.
2795 	 */
2796 	return filemap_flush(inode->i_mapping);
2797 }
2798 
2799 /*
2800  * bmap() is special.  It gets used by applications such as lilo and by
2801  * the swapper to find the on-disk block of a specific piece of data.
2802  *
2803  * Naturally, this is dangerous if the block concerned is still in the
2804  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2805  * filesystem and enables swap, then they may get a nasty shock when the
2806  * data getting swapped to that swapfile suddenly gets overwritten by
2807  * the original zero's written out previously to the journal and
2808  * awaiting writeback in the kernel's buffer cache.
2809  *
2810  * So, if we see any bmap calls here on a modified, data-journaled file,
2811  * take extra steps to flush any blocks which might be in the cache.
2812  */
2813 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2814 {
2815 	struct inode *inode = mapping->host;
2816 	journal_t *journal;
2817 	int err;
2818 
2819 	/*
2820 	 * We can get here for an inline file via the FIBMAP ioctl
2821 	 */
2822 	if (ext4_has_inline_data(inode))
2823 		return 0;
2824 
2825 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2826 			test_opt(inode->i_sb, DELALLOC)) {
2827 		/*
2828 		 * With delalloc we want to sync the file
2829 		 * so that we can make sure we allocate
2830 		 * blocks for file
2831 		 */
2832 		filemap_write_and_wait(mapping);
2833 	}
2834 
2835 	if (EXT4_JOURNAL(inode) &&
2836 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2837 		/*
2838 		 * This is a REALLY heavyweight approach, but the use of
2839 		 * bmap on dirty files is expected to be extremely rare:
2840 		 * only if we run lilo or swapon on a freshly made file
2841 		 * do we expect this to happen.
2842 		 *
2843 		 * (bmap requires CAP_SYS_RAWIO so this does not
2844 		 * represent an unprivileged user DOS attack --- we'd be
2845 		 * in trouble if mortal users could trigger this path at
2846 		 * will.)
2847 		 *
2848 		 * NB. EXT4_STATE_JDATA is not set on files other than
2849 		 * regular files.  If somebody wants to bmap a directory
2850 		 * or symlink and gets confused because the buffer
2851 		 * hasn't yet been flushed to disk, they deserve
2852 		 * everything they get.
2853 		 */
2854 
2855 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2856 		journal = EXT4_JOURNAL(inode);
2857 		jbd2_journal_lock_updates(journal);
2858 		err = jbd2_journal_flush(journal);
2859 		jbd2_journal_unlock_updates(journal);
2860 
2861 		if (err)
2862 			return 0;
2863 	}
2864 
2865 	return generic_block_bmap(mapping, block, ext4_get_block);
2866 }
2867 
2868 static int ext4_readpage(struct file *file, struct page *page)
2869 {
2870 	int ret = -EAGAIN;
2871 	struct inode *inode = page->mapping->host;
2872 
2873 	trace_ext4_readpage(page);
2874 
2875 	if (ext4_has_inline_data(inode))
2876 		ret = ext4_readpage_inline(inode, page);
2877 
2878 	if (ret == -EAGAIN)
2879 		return mpage_readpage(page, ext4_get_block);
2880 
2881 	return ret;
2882 }
2883 
2884 static int
2885 ext4_readpages(struct file *file, struct address_space *mapping,
2886 		struct list_head *pages, unsigned nr_pages)
2887 {
2888 	struct inode *inode = mapping->host;
2889 
2890 	/* If the file has inline data, no need to do readpages. */
2891 	if (ext4_has_inline_data(inode))
2892 		return 0;
2893 
2894 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2895 }
2896 
2897 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2898 				unsigned int length)
2899 {
2900 	trace_ext4_invalidatepage(page, offset, length);
2901 
2902 	/* No journalling happens on data buffers when this function is used */
2903 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2904 
2905 	block_invalidatepage(page, offset, length);
2906 }
2907 
2908 static int __ext4_journalled_invalidatepage(struct page *page,
2909 					    unsigned int offset,
2910 					    unsigned int length)
2911 {
2912 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2913 
2914 	trace_ext4_journalled_invalidatepage(page, offset, length);
2915 
2916 	/*
2917 	 * If it's a full truncate we just forget about the pending dirtying
2918 	 */
2919 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2920 		ClearPageChecked(page);
2921 
2922 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2923 }
2924 
2925 /* Wrapper for aops... */
2926 static void ext4_journalled_invalidatepage(struct page *page,
2927 					   unsigned int offset,
2928 					   unsigned int length)
2929 {
2930 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2931 }
2932 
2933 static int ext4_releasepage(struct page *page, gfp_t wait)
2934 {
2935 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2936 
2937 	trace_ext4_releasepage(page);
2938 
2939 	/* Page has dirty journalled data -> cannot release */
2940 	if (PageChecked(page))
2941 		return 0;
2942 	if (journal)
2943 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2944 	else
2945 		return try_to_free_buffers(page);
2946 }
2947 
2948 /*
2949  * ext4_get_block used when preparing for a DIO write or buffer write.
2950  * We allocate an uinitialized extent if blocks haven't been allocated.
2951  * The extent will be converted to initialized after the IO is complete.
2952  */
2953 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2954 		   struct buffer_head *bh_result, int create)
2955 {
2956 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2957 		   inode->i_ino, create);
2958 	return _ext4_get_block(inode, iblock, bh_result,
2959 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2960 }
2961 
2962 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2963 		   struct buffer_head *bh_result, int create)
2964 {
2965 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2966 		   inode->i_ino, create);
2967 	return _ext4_get_block(inode, iblock, bh_result,
2968 			       EXT4_GET_BLOCKS_NO_LOCK);
2969 }
2970 
2971 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2972 			    ssize_t size, void *private, int ret,
2973 			    bool is_async)
2974 {
2975 	struct inode *inode = file_inode(iocb->ki_filp);
2976         ext4_io_end_t *io_end = iocb->private;
2977 
2978 	/* if not async direct IO just return */
2979 	if (!io_end) {
2980 		inode_dio_done(inode);
2981 		if (is_async)
2982 			aio_complete(iocb, ret, 0);
2983 		return;
2984 	}
2985 
2986 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2987 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2988  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2989 		  size);
2990 
2991 	iocb->private = NULL;
2992 	io_end->offset = offset;
2993 	io_end->size = size;
2994 	if (is_async) {
2995 		io_end->iocb = iocb;
2996 		io_end->result = ret;
2997 	}
2998 	ext4_put_io_end_defer(io_end);
2999 }
3000 
3001 /*
3002  * For ext4 extent files, ext4 will do direct-io write to holes,
3003  * preallocated extents, and those write extend the file, no need to
3004  * fall back to buffered IO.
3005  *
3006  * For holes, we fallocate those blocks, mark them as uninitialized
3007  * If those blocks were preallocated, we mark sure they are split, but
3008  * still keep the range to write as uninitialized.
3009  *
3010  * The unwritten extents will be converted to written when DIO is completed.
3011  * For async direct IO, since the IO may still pending when return, we
3012  * set up an end_io call back function, which will do the conversion
3013  * when async direct IO completed.
3014  *
3015  * If the O_DIRECT write will extend the file then add this inode to the
3016  * orphan list.  So recovery will truncate it back to the original size
3017  * if the machine crashes during the write.
3018  *
3019  */
3020 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3021 			      const struct iovec *iov, loff_t offset,
3022 			      unsigned long nr_segs)
3023 {
3024 	struct file *file = iocb->ki_filp;
3025 	struct inode *inode = file->f_mapping->host;
3026 	ssize_t ret;
3027 	size_t count = iov_length(iov, nr_segs);
3028 	int overwrite = 0;
3029 	get_block_t *get_block_func = NULL;
3030 	int dio_flags = 0;
3031 	loff_t final_size = offset + count;
3032 	ext4_io_end_t *io_end = NULL;
3033 
3034 	/* Use the old path for reads and writes beyond i_size. */
3035 	if (rw != WRITE || final_size > inode->i_size)
3036 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3037 
3038 	BUG_ON(iocb->private == NULL);
3039 
3040 	/*
3041 	 * Make all waiters for direct IO properly wait also for extent
3042 	 * conversion. This also disallows race between truncate() and
3043 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3044 	 */
3045 	if (rw == WRITE)
3046 		atomic_inc(&inode->i_dio_count);
3047 
3048 	/* If we do a overwrite dio, i_mutex locking can be released */
3049 	overwrite = *((int *)iocb->private);
3050 
3051 	if (overwrite) {
3052 		down_read(&EXT4_I(inode)->i_data_sem);
3053 		mutex_unlock(&inode->i_mutex);
3054 	}
3055 
3056 	/*
3057 	 * We could direct write to holes and fallocate.
3058 	 *
3059 	 * Allocated blocks to fill the hole are marked as
3060 	 * uninitialized to prevent parallel buffered read to expose
3061 	 * the stale data before DIO complete the data IO.
3062 	 *
3063 	 * As to previously fallocated extents, ext4 get_block will
3064 	 * just simply mark the buffer mapped but still keep the
3065 	 * extents uninitialized.
3066 	 *
3067 	 * For non AIO case, we will convert those unwritten extents
3068 	 * to written after return back from blockdev_direct_IO.
3069 	 *
3070 	 * For async DIO, the conversion needs to be deferred when the
3071 	 * IO is completed. The ext4 end_io callback function will be
3072 	 * called to take care of the conversion work.  Here for async
3073 	 * case, we allocate an io_end structure to hook to the iocb.
3074 	 */
3075 	iocb->private = NULL;
3076 	ext4_inode_aio_set(inode, NULL);
3077 	if (!is_sync_kiocb(iocb)) {
3078 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3079 		if (!io_end) {
3080 			ret = -ENOMEM;
3081 			goto retake_lock;
3082 		}
3083 		io_end->flag |= EXT4_IO_END_DIRECT;
3084 		/*
3085 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3086 		 */
3087 		iocb->private = ext4_get_io_end(io_end);
3088 		/*
3089 		 * we save the io structure for current async direct
3090 		 * IO, so that later ext4_map_blocks() could flag the
3091 		 * io structure whether there is a unwritten extents
3092 		 * needs to be converted when IO is completed.
3093 		 */
3094 		ext4_inode_aio_set(inode, io_end);
3095 	}
3096 
3097 	if (overwrite) {
3098 		get_block_func = ext4_get_block_write_nolock;
3099 	} else {
3100 		get_block_func = ext4_get_block_write;
3101 		dio_flags = DIO_LOCKING;
3102 	}
3103 	ret = __blockdev_direct_IO(rw, iocb, inode,
3104 				   inode->i_sb->s_bdev, iov,
3105 				   offset, nr_segs,
3106 				   get_block_func,
3107 				   ext4_end_io_dio,
3108 				   NULL,
3109 				   dio_flags);
3110 
3111 	/*
3112 	 * Put our reference to io_end. This can free the io_end structure e.g.
3113 	 * in sync IO case or in case of error. It can even perform extent
3114 	 * conversion if all bios we submitted finished before we got here.
3115 	 * Note that in that case iocb->private can be already set to NULL
3116 	 * here.
3117 	 */
3118 	if (io_end) {
3119 		ext4_inode_aio_set(inode, NULL);
3120 		ext4_put_io_end(io_end);
3121 		/*
3122 		 * When no IO was submitted ext4_end_io_dio() was not
3123 		 * called so we have to put iocb's reference.
3124 		 */
3125 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3126 			WARN_ON(iocb->private != io_end);
3127 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3128 			WARN_ON(io_end->iocb);
3129 			/*
3130 			 * Generic code already did inode_dio_done() so we
3131 			 * have to clear EXT4_IO_END_DIRECT to not do it for
3132 			 * the second time.
3133 			 */
3134 			io_end->flag = 0;
3135 			ext4_put_io_end(io_end);
3136 			iocb->private = NULL;
3137 		}
3138 	}
3139 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3140 						EXT4_STATE_DIO_UNWRITTEN)) {
3141 		int err;
3142 		/*
3143 		 * for non AIO case, since the IO is already
3144 		 * completed, we could do the conversion right here
3145 		 */
3146 		err = ext4_convert_unwritten_extents(NULL, inode,
3147 						     offset, ret);
3148 		if (err < 0)
3149 			ret = err;
3150 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3151 	}
3152 
3153 retake_lock:
3154 	if (rw == WRITE)
3155 		inode_dio_done(inode);
3156 	/* take i_mutex locking again if we do a ovewrite dio */
3157 	if (overwrite) {
3158 		up_read(&EXT4_I(inode)->i_data_sem);
3159 		mutex_lock(&inode->i_mutex);
3160 	}
3161 
3162 	return ret;
3163 }
3164 
3165 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3166 			      const struct iovec *iov, loff_t offset,
3167 			      unsigned long nr_segs)
3168 {
3169 	struct file *file = iocb->ki_filp;
3170 	struct inode *inode = file->f_mapping->host;
3171 	ssize_t ret;
3172 
3173 	/*
3174 	 * If we are doing data journalling we don't support O_DIRECT
3175 	 */
3176 	if (ext4_should_journal_data(inode))
3177 		return 0;
3178 
3179 	/* Let buffer I/O handle the inline data case. */
3180 	if (ext4_has_inline_data(inode))
3181 		return 0;
3182 
3183 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3184 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3185 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3186 	else
3187 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3188 	trace_ext4_direct_IO_exit(inode, offset,
3189 				iov_length(iov, nr_segs), rw, ret);
3190 	return ret;
3191 }
3192 
3193 /*
3194  * Pages can be marked dirty completely asynchronously from ext4's journalling
3195  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3196  * much here because ->set_page_dirty is called under VFS locks.  The page is
3197  * not necessarily locked.
3198  *
3199  * We cannot just dirty the page and leave attached buffers clean, because the
3200  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3201  * or jbddirty because all the journalling code will explode.
3202  *
3203  * So what we do is to mark the page "pending dirty" and next time writepage
3204  * is called, propagate that into the buffers appropriately.
3205  */
3206 static int ext4_journalled_set_page_dirty(struct page *page)
3207 {
3208 	SetPageChecked(page);
3209 	return __set_page_dirty_nobuffers(page);
3210 }
3211 
3212 static const struct address_space_operations ext4_aops = {
3213 	.readpage		= ext4_readpage,
3214 	.readpages		= ext4_readpages,
3215 	.writepage		= ext4_writepage,
3216 	.write_begin		= ext4_write_begin,
3217 	.write_end		= ext4_write_end,
3218 	.bmap			= ext4_bmap,
3219 	.invalidatepage		= ext4_invalidatepage,
3220 	.releasepage		= ext4_releasepage,
3221 	.direct_IO		= ext4_direct_IO,
3222 	.migratepage		= buffer_migrate_page,
3223 	.is_partially_uptodate  = block_is_partially_uptodate,
3224 	.error_remove_page	= generic_error_remove_page,
3225 };
3226 
3227 static const struct address_space_operations ext4_journalled_aops = {
3228 	.readpage		= ext4_readpage,
3229 	.readpages		= ext4_readpages,
3230 	.writepage		= ext4_writepage,
3231 	.write_begin		= ext4_write_begin,
3232 	.write_end		= ext4_journalled_write_end,
3233 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3234 	.bmap			= ext4_bmap,
3235 	.invalidatepage		= ext4_journalled_invalidatepage,
3236 	.releasepage		= ext4_releasepage,
3237 	.direct_IO		= ext4_direct_IO,
3238 	.is_partially_uptodate  = block_is_partially_uptodate,
3239 	.error_remove_page	= generic_error_remove_page,
3240 };
3241 
3242 static const struct address_space_operations ext4_da_aops = {
3243 	.readpage		= ext4_readpage,
3244 	.readpages		= ext4_readpages,
3245 	.writepage		= ext4_writepage,
3246 	.writepages		= ext4_da_writepages,
3247 	.write_begin		= ext4_da_write_begin,
3248 	.write_end		= ext4_da_write_end,
3249 	.bmap			= ext4_bmap,
3250 	.invalidatepage		= ext4_da_invalidatepage,
3251 	.releasepage		= ext4_releasepage,
3252 	.direct_IO		= ext4_direct_IO,
3253 	.migratepage		= buffer_migrate_page,
3254 	.is_partially_uptodate  = block_is_partially_uptodate,
3255 	.error_remove_page	= generic_error_remove_page,
3256 };
3257 
3258 void ext4_set_aops(struct inode *inode)
3259 {
3260 	switch (ext4_inode_journal_mode(inode)) {
3261 	case EXT4_INODE_ORDERED_DATA_MODE:
3262 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3263 		break;
3264 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3265 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3266 		break;
3267 	case EXT4_INODE_JOURNAL_DATA_MODE:
3268 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3269 		return;
3270 	default:
3271 		BUG();
3272 	}
3273 	if (test_opt(inode->i_sb, DELALLOC))
3274 		inode->i_mapping->a_ops = &ext4_da_aops;
3275 	else
3276 		inode->i_mapping->a_ops = &ext4_aops;
3277 }
3278 
3279 /*
3280  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3281  * up to the end of the block which corresponds to `from'.
3282  * This required during truncate. We need to physically zero the tail end
3283  * of that block so it doesn't yield old data if the file is later grown.
3284  */
3285 int ext4_block_truncate_page(handle_t *handle,
3286 		struct address_space *mapping, loff_t from)
3287 {
3288 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3289 	unsigned length;
3290 	unsigned blocksize;
3291 	struct inode *inode = mapping->host;
3292 
3293 	blocksize = inode->i_sb->s_blocksize;
3294 	length = blocksize - (offset & (blocksize - 1));
3295 
3296 	return ext4_block_zero_page_range(handle, mapping, from, length);
3297 }
3298 
3299 /*
3300  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3301  * starting from file offset 'from'.  The range to be zero'd must
3302  * be contained with in one block.  If the specified range exceeds
3303  * the end of the block it will be shortened to end of the block
3304  * that cooresponds to 'from'
3305  */
3306 int ext4_block_zero_page_range(handle_t *handle,
3307 		struct address_space *mapping, loff_t from, loff_t length)
3308 {
3309 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3310 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3311 	unsigned blocksize, max, pos;
3312 	ext4_lblk_t iblock;
3313 	struct inode *inode = mapping->host;
3314 	struct buffer_head *bh;
3315 	struct page *page;
3316 	int err = 0;
3317 
3318 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3319 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3320 	if (!page)
3321 		return -ENOMEM;
3322 
3323 	blocksize = inode->i_sb->s_blocksize;
3324 	max = blocksize - (offset & (blocksize - 1));
3325 
3326 	/*
3327 	 * correct length if it does not fall between
3328 	 * 'from' and the end of the block
3329 	 */
3330 	if (length > max || length < 0)
3331 		length = max;
3332 
3333 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3334 
3335 	if (!page_has_buffers(page))
3336 		create_empty_buffers(page, blocksize, 0);
3337 
3338 	/* Find the buffer that contains "offset" */
3339 	bh = page_buffers(page);
3340 	pos = blocksize;
3341 	while (offset >= pos) {
3342 		bh = bh->b_this_page;
3343 		iblock++;
3344 		pos += blocksize;
3345 	}
3346 
3347 	err = 0;
3348 	if (buffer_freed(bh)) {
3349 		BUFFER_TRACE(bh, "freed: skip");
3350 		goto unlock;
3351 	}
3352 
3353 	if (!buffer_mapped(bh)) {
3354 		BUFFER_TRACE(bh, "unmapped");
3355 		ext4_get_block(inode, iblock, bh, 0);
3356 		/* unmapped? It's a hole - nothing to do */
3357 		if (!buffer_mapped(bh)) {
3358 			BUFFER_TRACE(bh, "still unmapped");
3359 			goto unlock;
3360 		}
3361 	}
3362 
3363 	/* Ok, it's mapped. Make sure it's up-to-date */
3364 	if (PageUptodate(page))
3365 		set_buffer_uptodate(bh);
3366 
3367 	if (!buffer_uptodate(bh)) {
3368 		err = -EIO;
3369 		ll_rw_block(READ, 1, &bh);
3370 		wait_on_buffer(bh);
3371 		/* Uhhuh. Read error. Complain and punt. */
3372 		if (!buffer_uptodate(bh))
3373 			goto unlock;
3374 	}
3375 
3376 	if (ext4_should_journal_data(inode)) {
3377 		BUFFER_TRACE(bh, "get write access");
3378 		err = ext4_journal_get_write_access(handle, bh);
3379 		if (err)
3380 			goto unlock;
3381 	}
3382 
3383 	zero_user(page, offset, length);
3384 
3385 	BUFFER_TRACE(bh, "zeroed end of block");
3386 
3387 	err = 0;
3388 	if (ext4_should_journal_data(inode)) {
3389 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3390 	} else {
3391 		mark_buffer_dirty(bh);
3392 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3393 			err = ext4_jbd2_file_inode(handle, inode);
3394 	}
3395 
3396 unlock:
3397 	unlock_page(page);
3398 	page_cache_release(page);
3399 	return err;
3400 }
3401 
3402 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3403 			     loff_t lstart, loff_t length)
3404 {
3405 	struct super_block *sb = inode->i_sb;
3406 	struct address_space *mapping = inode->i_mapping;
3407 	unsigned partial = lstart & (sb->s_blocksize - 1);
3408 	ext4_fsblk_t start, end;
3409 	loff_t byte_end = (lstart + length - 1);
3410 	int err = 0;
3411 
3412 	start = lstart >> sb->s_blocksize_bits;
3413 	end = byte_end >> sb->s_blocksize_bits;
3414 
3415 	/* Handle partial zero within the single block */
3416 	if (start == end) {
3417 		err = ext4_block_zero_page_range(handle, mapping,
3418 						 lstart, length);
3419 		return err;
3420 	}
3421 	/* Handle partial zero out on the start of the range */
3422 	if (partial) {
3423 		err = ext4_block_zero_page_range(handle, mapping,
3424 						 lstart, sb->s_blocksize);
3425 		if (err)
3426 			return err;
3427 	}
3428 	/* Handle partial zero out on the end of the range */
3429 	partial = byte_end & (sb->s_blocksize - 1);
3430 	if (partial != sb->s_blocksize - 1)
3431 		err = ext4_block_zero_page_range(handle, mapping,
3432 						 byte_end - partial,
3433 						 partial + 1);
3434 	return err;
3435 }
3436 
3437 int ext4_can_truncate(struct inode *inode)
3438 {
3439 	if (S_ISREG(inode->i_mode))
3440 		return 1;
3441 	if (S_ISDIR(inode->i_mode))
3442 		return 1;
3443 	if (S_ISLNK(inode->i_mode))
3444 		return !ext4_inode_is_fast_symlink(inode);
3445 	return 0;
3446 }
3447 
3448 /*
3449  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3450  * associated with the given offset and length
3451  *
3452  * @inode:  File inode
3453  * @offset: The offset where the hole will begin
3454  * @len:    The length of the hole
3455  *
3456  * Returns: 0 on success or negative on failure
3457  */
3458 
3459 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3460 {
3461 	struct inode *inode = file_inode(file);
3462 	struct super_block *sb = inode->i_sb;
3463 	ext4_lblk_t first_block, stop_block;
3464 	struct address_space *mapping = inode->i_mapping;
3465 	loff_t first_block_offset, last_block_offset;
3466 	handle_t *handle;
3467 	unsigned int credits;
3468 	int ret = 0;
3469 
3470 	if (!S_ISREG(inode->i_mode))
3471 		return -EOPNOTSUPP;
3472 
3473 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3474 		/* TODO: Add support for bigalloc file systems */
3475 		return -EOPNOTSUPP;
3476 	}
3477 
3478 	trace_ext4_punch_hole(inode, offset, length);
3479 
3480 	/*
3481 	 * Write out all dirty pages to avoid race conditions
3482 	 * Then release them.
3483 	 */
3484 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3485 		ret = filemap_write_and_wait_range(mapping, offset,
3486 						   offset + length - 1);
3487 		if (ret)
3488 			return ret;
3489 	}
3490 
3491 	mutex_lock(&inode->i_mutex);
3492 	/* It's not possible punch hole on append only file */
3493 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3494 		ret = -EPERM;
3495 		goto out_mutex;
3496 	}
3497 	if (IS_SWAPFILE(inode)) {
3498 		ret = -ETXTBSY;
3499 		goto out_mutex;
3500 	}
3501 
3502 	/* No need to punch hole beyond i_size */
3503 	if (offset >= inode->i_size)
3504 		goto out_mutex;
3505 
3506 	/*
3507 	 * If the hole extends beyond i_size, set the hole
3508 	 * to end after the page that contains i_size
3509 	 */
3510 	if (offset + length > inode->i_size) {
3511 		length = inode->i_size +
3512 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3513 		   offset;
3514 	}
3515 
3516 	first_block_offset = round_up(offset, sb->s_blocksize);
3517 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3518 
3519 	/* Now release the pages and zero block aligned part of pages*/
3520 	if (last_block_offset > first_block_offset)
3521 		truncate_pagecache_range(inode, first_block_offset,
3522 					 last_block_offset);
3523 
3524 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3525 	ext4_inode_block_unlocked_dio(inode);
3526 	inode_dio_wait(inode);
3527 
3528 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3529 		credits = ext4_writepage_trans_blocks(inode);
3530 	else
3531 		credits = ext4_blocks_for_truncate(inode);
3532 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3533 	if (IS_ERR(handle)) {
3534 		ret = PTR_ERR(handle);
3535 		ext4_std_error(sb, ret);
3536 		goto out_dio;
3537 	}
3538 
3539 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3540 				       length);
3541 	if (ret)
3542 		goto out_stop;
3543 
3544 	first_block = (offset + sb->s_blocksize - 1) >>
3545 		EXT4_BLOCK_SIZE_BITS(sb);
3546 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3547 
3548 	/* If there are no blocks to remove, return now */
3549 	if (first_block >= stop_block)
3550 		goto out_stop;
3551 
3552 	down_write(&EXT4_I(inode)->i_data_sem);
3553 	ext4_discard_preallocations(inode);
3554 
3555 	ret = ext4_es_remove_extent(inode, first_block,
3556 				    stop_block - first_block);
3557 	if (ret) {
3558 		up_write(&EXT4_I(inode)->i_data_sem);
3559 		goto out_stop;
3560 	}
3561 
3562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3563 		ret = ext4_ext_remove_space(inode, first_block,
3564 					    stop_block - 1);
3565 	else
3566 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3567 					    stop_block);
3568 
3569 	ext4_discard_preallocations(inode);
3570 	up_write(&EXT4_I(inode)->i_data_sem);
3571 	if (IS_SYNC(inode))
3572 		ext4_handle_sync(handle);
3573 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3574 	ext4_mark_inode_dirty(handle, inode);
3575 out_stop:
3576 	ext4_journal_stop(handle);
3577 out_dio:
3578 	ext4_inode_resume_unlocked_dio(inode);
3579 out_mutex:
3580 	mutex_unlock(&inode->i_mutex);
3581 	return ret;
3582 }
3583 
3584 /*
3585  * ext4_truncate()
3586  *
3587  * We block out ext4_get_block() block instantiations across the entire
3588  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3589  * simultaneously on behalf of the same inode.
3590  *
3591  * As we work through the truncate and commit bits of it to the journal there
3592  * is one core, guiding principle: the file's tree must always be consistent on
3593  * disk.  We must be able to restart the truncate after a crash.
3594  *
3595  * The file's tree may be transiently inconsistent in memory (although it
3596  * probably isn't), but whenever we close off and commit a journal transaction,
3597  * the contents of (the filesystem + the journal) must be consistent and
3598  * restartable.  It's pretty simple, really: bottom up, right to left (although
3599  * left-to-right works OK too).
3600  *
3601  * Note that at recovery time, journal replay occurs *before* the restart of
3602  * truncate against the orphan inode list.
3603  *
3604  * The committed inode has the new, desired i_size (which is the same as
3605  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3606  * that this inode's truncate did not complete and it will again call
3607  * ext4_truncate() to have another go.  So there will be instantiated blocks
3608  * to the right of the truncation point in a crashed ext4 filesystem.  But
3609  * that's fine - as long as they are linked from the inode, the post-crash
3610  * ext4_truncate() run will find them and release them.
3611  */
3612 void ext4_truncate(struct inode *inode)
3613 {
3614 	struct ext4_inode_info *ei = EXT4_I(inode);
3615 	unsigned int credits;
3616 	handle_t *handle;
3617 	struct address_space *mapping = inode->i_mapping;
3618 
3619 	/*
3620 	 * There is a possibility that we're either freeing the inode
3621 	 * or it completely new indode. In those cases we might not
3622 	 * have i_mutex locked because it's not necessary.
3623 	 */
3624 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3625 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3626 	trace_ext4_truncate_enter(inode);
3627 
3628 	if (!ext4_can_truncate(inode))
3629 		return;
3630 
3631 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3632 
3633 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3634 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3635 
3636 	if (ext4_has_inline_data(inode)) {
3637 		int has_inline = 1;
3638 
3639 		ext4_inline_data_truncate(inode, &has_inline);
3640 		if (has_inline)
3641 			return;
3642 	}
3643 
3644 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3645 		credits = ext4_writepage_trans_blocks(inode);
3646 	else
3647 		credits = ext4_blocks_for_truncate(inode);
3648 
3649 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3650 	if (IS_ERR(handle)) {
3651 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3652 		return;
3653 	}
3654 
3655 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3656 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3657 
3658 	/*
3659 	 * We add the inode to the orphan list, so that if this
3660 	 * truncate spans multiple transactions, and we crash, we will
3661 	 * resume the truncate when the filesystem recovers.  It also
3662 	 * marks the inode dirty, to catch the new size.
3663 	 *
3664 	 * Implication: the file must always be in a sane, consistent
3665 	 * truncatable state while each transaction commits.
3666 	 */
3667 	if (ext4_orphan_add(handle, inode))
3668 		goto out_stop;
3669 
3670 	down_write(&EXT4_I(inode)->i_data_sem);
3671 
3672 	ext4_discard_preallocations(inode);
3673 
3674 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3675 		ext4_ext_truncate(handle, inode);
3676 	else
3677 		ext4_ind_truncate(handle, inode);
3678 
3679 	up_write(&ei->i_data_sem);
3680 
3681 	if (IS_SYNC(inode))
3682 		ext4_handle_sync(handle);
3683 
3684 out_stop:
3685 	/*
3686 	 * If this was a simple ftruncate() and the file will remain alive,
3687 	 * then we need to clear up the orphan record which we created above.
3688 	 * However, if this was a real unlink then we were called by
3689 	 * ext4_delete_inode(), and we allow that function to clean up the
3690 	 * orphan info for us.
3691 	 */
3692 	if (inode->i_nlink)
3693 		ext4_orphan_del(handle, inode);
3694 
3695 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3696 	ext4_mark_inode_dirty(handle, inode);
3697 	ext4_journal_stop(handle);
3698 
3699 	trace_ext4_truncate_exit(inode);
3700 }
3701 
3702 /*
3703  * ext4_get_inode_loc returns with an extra refcount against the inode's
3704  * underlying buffer_head on success. If 'in_mem' is true, we have all
3705  * data in memory that is needed to recreate the on-disk version of this
3706  * inode.
3707  */
3708 static int __ext4_get_inode_loc(struct inode *inode,
3709 				struct ext4_iloc *iloc, int in_mem)
3710 {
3711 	struct ext4_group_desc	*gdp;
3712 	struct buffer_head	*bh;
3713 	struct super_block	*sb = inode->i_sb;
3714 	ext4_fsblk_t		block;
3715 	int			inodes_per_block, inode_offset;
3716 
3717 	iloc->bh = NULL;
3718 	if (!ext4_valid_inum(sb, inode->i_ino))
3719 		return -EIO;
3720 
3721 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3722 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3723 	if (!gdp)
3724 		return -EIO;
3725 
3726 	/*
3727 	 * Figure out the offset within the block group inode table
3728 	 */
3729 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3730 	inode_offset = ((inode->i_ino - 1) %
3731 			EXT4_INODES_PER_GROUP(sb));
3732 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3733 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3734 
3735 	bh = sb_getblk(sb, block);
3736 	if (unlikely(!bh))
3737 		return -ENOMEM;
3738 	if (!buffer_uptodate(bh)) {
3739 		lock_buffer(bh);
3740 
3741 		/*
3742 		 * If the buffer has the write error flag, we have failed
3743 		 * to write out another inode in the same block.  In this
3744 		 * case, we don't have to read the block because we may
3745 		 * read the old inode data successfully.
3746 		 */
3747 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3748 			set_buffer_uptodate(bh);
3749 
3750 		if (buffer_uptodate(bh)) {
3751 			/* someone brought it uptodate while we waited */
3752 			unlock_buffer(bh);
3753 			goto has_buffer;
3754 		}
3755 
3756 		/*
3757 		 * If we have all information of the inode in memory and this
3758 		 * is the only valid inode in the block, we need not read the
3759 		 * block.
3760 		 */
3761 		if (in_mem) {
3762 			struct buffer_head *bitmap_bh;
3763 			int i, start;
3764 
3765 			start = inode_offset & ~(inodes_per_block - 1);
3766 
3767 			/* Is the inode bitmap in cache? */
3768 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3769 			if (unlikely(!bitmap_bh))
3770 				goto make_io;
3771 
3772 			/*
3773 			 * If the inode bitmap isn't in cache then the
3774 			 * optimisation may end up performing two reads instead
3775 			 * of one, so skip it.
3776 			 */
3777 			if (!buffer_uptodate(bitmap_bh)) {
3778 				brelse(bitmap_bh);
3779 				goto make_io;
3780 			}
3781 			for (i = start; i < start + inodes_per_block; i++) {
3782 				if (i == inode_offset)
3783 					continue;
3784 				if (ext4_test_bit(i, bitmap_bh->b_data))
3785 					break;
3786 			}
3787 			brelse(bitmap_bh);
3788 			if (i == start + inodes_per_block) {
3789 				/* all other inodes are free, so skip I/O */
3790 				memset(bh->b_data, 0, bh->b_size);
3791 				set_buffer_uptodate(bh);
3792 				unlock_buffer(bh);
3793 				goto has_buffer;
3794 			}
3795 		}
3796 
3797 make_io:
3798 		/*
3799 		 * If we need to do any I/O, try to pre-readahead extra
3800 		 * blocks from the inode table.
3801 		 */
3802 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3803 			ext4_fsblk_t b, end, table;
3804 			unsigned num;
3805 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3806 
3807 			table = ext4_inode_table(sb, gdp);
3808 			/* s_inode_readahead_blks is always a power of 2 */
3809 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3810 			if (table > b)
3811 				b = table;
3812 			end = b + ra_blks;
3813 			num = EXT4_INODES_PER_GROUP(sb);
3814 			if (ext4_has_group_desc_csum(sb))
3815 				num -= ext4_itable_unused_count(sb, gdp);
3816 			table += num / inodes_per_block;
3817 			if (end > table)
3818 				end = table;
3819 			while (b <= end)
3820 				sb_breadahead(sb, b++);
3821 		}
3822 
3823 		/*
3824 		 * There are other valid inodes in the buffer, this inode
3825 		 * has in-inode xattrs, or we don't have this inode in memory.
3826 		 * Read the block from disk.
3827 		 */
3828 		trace_ext4_load_inode(inode);
3829 		get_bh(bh);
3830 		bh->b_end_io = end_buffer_read_sync;
3831 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3832 		wait_on_buffer(bh);
3833 		if (!buffer_uptodate(bh)) {
3834 			EXT4_ERROR_INODE_BLOCK(inode, block,
3835 					       "unable to read itable block");
3836 			brelse(bh);
3837 			return -EIO;
3838 		}
3839 	}
3840 has_buffer:
3841 	iloc->bh = bh;
3842 	return 0;
3843 }
3844 
3845 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3846 {
3847 	/* We have all inode data except xattrs in memory here. */
3848 	return __ext4_get_inode_loc(inode, iloc,
3849 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3850 }
3851 
3852 void ext4_set_inode_flags(struct inode *inode)
3853 {
3854 	unsigned int flags = EXT4_I(inode)->i_flags;
3855 
3856 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3857 	if (flags & EXT4_SYNC_FL)
3858 		inode->i_flags |= S_SYNC;
3859 	if (flags & EXT4_APPEND_FL)
3860 		inode->i_flags |= S_APPEND;
3861 	if (flags & EXT4_IMMUTABLE_FL)
3862 		inode->i_flags |= S_IMMUTABLE;
3863 	if (flags & EXT4_NOATIME_FL)
3864 		inode->i_flags |= S_NOATIME;
3865 	if (flags & EXT4_DIRSYNC_FL)
3866 		inode->i_flags |= S_DIRSYNC;
3867 }
3868 
3869 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3870 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3871 {
3872 	unsigned int vfs_fl;
3873 	unsigned long old_fl, new_fl;
3874 
3875 	do {
3876 		vfs_fl = ei->vfs_inode.i_flags;
3877 		old_fl = ei->i_flags;
3878 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3879 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3880 				EXT4_DIRSYNC_FL);
3881 		if (vfs_fl & S_SYNC)
3882 			new_fl |= EXT4_SYNC_FL;
3883 		if (vfs_fl & S_APPEND)
3884 			new_fl |= EXT4_APPEND_FL;
3885 		if (vfs_fl & S_IMMUTABLE)
3886 			new_fl |= EXT4_IMMUTABLE_FL;
3887 		if (vfs_fl & S_NOATIME)
3888 			new_fl |= EXT4_NOATIME_FL;
3889 		if (vfs_fl & S_DIRSYNC)
3890 			new_fl |= EXT4_DIRSYNC_FL;
3891 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3892 }
3893 
3894 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3895 				  struct ext4_inode_info *ei)
3896 {
3897 	blkcnt_t i_blocks ;
3898 	struct inode *inode = &(ei->vfs_inode);
3899 	struct super_block *sb = inode->i_sb;
3900 
3901 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3902 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3903 		/* we are using combined 48 bit field */
3904 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3905 					le32_to_cpu(raw_inode->i_blocks_lo);
3906 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3907 			/* i_blocks represent file system block size */
3908 			return i_blocks  << (inode->i_blkbits - 9);
3909 		} else {
3910 			return i_blocks;
3911 		}
3912 	} else {
3913 		return le32_to_cpu(raw_inode->i_blocks_lo);
3914 	}
3915 }
3916 
3917 static inline void ext4_iget_extra_inode(struct inode *inode,
3918 					 struct ext4_inode *raw_inode,
3919 					 struct ext4_inode_info *ei)
3920 {
3921 	__le32 *magic = (void *)raw_inode +
3922 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3923 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3924 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3925 		ext4_find_inline_data_nolock(inode);
3926 	} else
3927 		EXT4_I(inode)->i_inline_off = 0;
3928 }
3929 
3930 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3931 {
3932 	struct ext4_iloc iloc;
3933 	struct ext4_inode *raw_inode;
3934 	struct ext4_inode_info *ei;
3935 	struct inode *inode;
3936 	journal_t *journal = EXT4_SB(sb)->s_journal;
3937 	long ret;
3938 	int block;
3939 	uid_t i_uid;
3940 	gid_t i_gid;
3941 
3942 	inode = iget_locked(sb, ino);
3943 	if (!inode)
3944 		return ERR_PTR(-ENOMEM);
3945 	if (!(inode->i_state & I_NEW))
3946 		return inode;
3947 
3948 	ei = EXT4_I(inode);
3949 	iloc.bh = NULL;
3950 
3951 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3952 	if (ret < 0)
3953 		goto bad_inode;
3954 	raw_inode = ext4_raw_inode(&iloc);
3955 
3956 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3957 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3958 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3959 		    EXT4_INODE_SIZE(inode->i_sb)) {
3960 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3961 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3962 				EXT4_INODE_SIZE(inode->i_sb));
3963 			ret = -EIO;
3964 			goto bad_inode;
3965 		}
3966 	} else
3967 		ei->i_extra_isize = 0;
3968 
3969 	/* Precompute checksum seed for inode metadata */
3970 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3971 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3972 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3973 		__u32 csum;
3974 		__le32 inum = cpu_to_le32(inode->i_ino);
3975 		__le32 gen = raw_inode->i_generation;
3976 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3977 				   sizeof(inum));
3978 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3979 					      sizeof(gen));
3980 	}
3981 
3982 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3983 		EXT4_ERROR_INODE(inode, "checksum invalid");
3984 		ret = -EIO;
3985 		goto bad_inode;
3986 	}
3987 
3988 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3989 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3990 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3991 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3992 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3993 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3994 	}
3995 	i_uid_write(inode, i_uid);
3996 	i_gid_write(inode, i_gid);
3997 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3998 
3999 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4000 	ei->i_inline_off = 0;
4001 	ei->i_dir_start_lookup = 0;
4002 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4003 	/* We now have enough fields to check if the inode was active or not.
4004 	 * This is needed because nfsd might try to access dead inodes
4005 	 * the test is that same one that e2fsck uses
4006 	 * NeilBrown 1999oct15
4007 	 */
4008 	if (inode->i_nlink == 0) {
4009 		if ((inode->i_mode == 0 ||
4010 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4011 		    ino != EXT4_BOOT_LOADER_INO) {
4012 			/* this inode is deleted */
4013 			ret = -ESTALE;
4014 			goto bad_inode;
4015 		}
4016 		/* The only unlinked inodes we let through here have
4017 		 * valid i_mode and are being read by the orphan
4018 		 * recovery code: that's fine, we're about to complete
4019 		 * the process of deleting those.
4020 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4021 		 * not initialized on a new filesystem. */
4022 	}
4023 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4024 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4025 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4026 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4027 		ei->i_file_acl |=
4028 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4029 	inode->i_size = ext4_isize(raw_inode);
4030 	ei->i_disksize = inode->i_size;
4031 #ifdef CONFIG_QUOTA
4032 	ei->i_reserved_quota = 0;
4033 #endif
4034 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4035 	ei->i_block_group = iloc.block_group;
4036 	ei->i_last_alloc_group = ~0;
4037 	/*
4038 	 * NOTE! The in-memory inode i_data array is in little-endian order
4039 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4040 	 */
4041 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4042 		ei->i_data[block] = raw_inode->i_block[block];
4043 	INIT_LIST_HEAD(&ei->i_orphan);
4044 
4045 	/*
4046 	 * Set transaction id's of transactions that have to be committed
4047 	 * to finish f[data]sync. We set them to currently running transaction
4048 	 * as we cannot be sure that the inode or some of its metadata isn't
4049 	 * part of the transaction - the inode could have been reclaimed and
4050 	 * now it is reread from disk.
4051 	 */
4052 	if (journal) {
4053 		transaction_t *transaction;
4054 		tid_t tid;
4055 
4056 		read_lock(&journal->j_state_lock);
4057 		if (journal->j_running_transaction)
4058 			transaction = journal->j_running_transaction;
4059 		else
4060 			transaction = journal->j_committing_transaction;
4061 		if (transaction)
4062 			tid = transaction->t_tid;
4063 		else
4064 			tid = journal->j_commit_sequence;
4065 		read_unlock(&journal->j_state_lock);
4066 		ei->i_sync_tid = tid;
4067 		ei->i_datasync_tid = tid;
4068 	}
4069 
4070 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4071 		if (ei->i_extra_isize == 0) {
4072 			/* The extra space is currently unused. Use it. */
4073 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4074 					    EXT4_GOOD_OLD_INODE_SIZE;
4075 		} else {
4076 			ext4_iget_extra_inode(inode, raw_inode, ei);
4077 		}
4078 	}
4079 
4080 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4081 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4082 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4083 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4084 
4085 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4086 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4087 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4088 			inode->i_version |=
4089 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4090 	}
4091 
4092 	ret = 0;
4093 	if (ei->i_file_acl &&
4094 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4095 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4096 				 ei->i_file_acl);
4097 		ret = -EIO;
4098 		goto bad_inode;
4099 	} else if (!ext4_has_inline_data(inode)) {
4100 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4101 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4102 			    (S_ISLNK(inode->i_mode) &&
4103 			     !ext4_inode_is_fast_symlink(inode))))
4104 				/* Validate extent which is part of inode */
4105 				ret = ext4_ext_check_inode(inode);
4106 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4107 			   (S_ISLNK(inode->i_mode) &&
4108 			    !ext4_inode_is_fast_symlink(inode))) {
4109 			/* Validate block references which are part of inode */
4110 			ret = ext4_ind_check_inode(inode);
4111 		}
4112 	}
4113 	if (ret)
4114 		goto bad_inode;
4115 
4116 	if (S_ISREG(inode->i_mode)) {
4117 		inode->i_op = &ext4_file_inode_operations;
4118 		inode->i_fop = &ext4_file_operations;
4119 		ext4_set_aops(inode);
4120 	} else if (S_ISDIR(inode->i_mode)) {
4121 		inode->i_op = &ext4_dir_inode_operations;
4122 		inode->i_fop = &ext4_dir_operations;
4123 	} else if (S_ISLNK(inode->i_mode)) {
4124 		if (ext4_inode_is_fast_symlink(inode)) {
4125 			inode->i_op = &ext4_fast_symlink_inode_operations;
4126 			nd_terminate_link(ei->i_data, inode->i_size,
4127 				sizeof(ei->i_data) - 1);
4128 		} else {
4129 			inode->i_op = &ext4_symlink_inode_operations;
4130 			ext4_set_aops(inode);
4131 		}
4132 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4133 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4134 		inode->i_op = &ext4_special_inode_operations;
4135 		if (raw_inode->i_block[0])
4136 			init_special_inode(inode, inode->i_mode,
4137 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4138 		else
4139 			init_special_inode(inode, inode->i_mode,
4140 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4141 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4142 		make_bad_inode(inode);
4143 	} else {
4144 		ret = -EIO;
4145 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4146 		goto bad_inode;
4147 	}
4148 	brelse(iloc.bh);
4149 	ext4_set_inode_flags(inode);
4150 	unlock_new_inode(inode);
4151 	return inode;
4152 
4153 bad_inode:
4154 	brelse(iloc.bh);
4155 	iget_failed(inode);
4156 	return ERR_PTR(ret);
4157 }
4158 
4159 static int ext4_inode_blocks_set(handle_t *handle,
4160 				struct ext4_inode *raw_inode,
4161 				struct ext4_inode_info *ei)
4162 {
4163 	struct inode *inode = &(ei->vfs_inode);
4164 	u64 i_blocks = inode->i_blocks;
4165 	struct super_block *sb = inode->i_sb;
4166 
4167 	if (i_blocks <= ~0U) {
4168 		/*
4169 		 * i_blocks can be represented in a 32 bit variable
4170 		 * as multiple of 512 bytes
4171 		 */
4172 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4173 		raw_inode->i_blocks_high = 0;
4174 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4175 		return 0;
4176 	}
4177 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4178 		return -EFBIG;
4179 
4180 	if (i_blocks <= 0xffffffffffffULL) {
4181 		/*
4182 		 * i_blocks can be represented in a 48 bit variable
4183 		 * as multiple of 512 bytes
4184 		 */
4185 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4186 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4187 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4188 	} else {
4189 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4190 		/* i_block is stored in file system block size */
4191 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4192 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4193 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4194 	}
4195 	return 0;
4196 }
4197 
4198 /*
4199  * Post the struct inode info into an on-disk inode location in the
4200  * buffer-cache.  This gobbles the caller's reference to the
4201  * buffer_head in the inode location struct.
4202  *
4203  * The caller must have write access to iloc->bh.
4204  */
4205 static int ext4_do_update_inode(handle_t *handle,
4206 				struct inode *inode,
4207 				struct ext4_iloc *iloc)
4208 {
4209 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4210 	struct ext4_inode_info *ei = EXT4_I(inode);
4211 	struct buffer_head *bh = iloc->bh;
4212 	int err = 0, rc, block;
4213 	int need_datasync = 0;
4214 	uid_t i_uid;
4215 	gid_t i_gid;
4216 
4217 	/* For fields not not tracking in the in-memory inode,
4218 	 * initialise them to zero for new inodes. */
4219 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4220 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4221 
4222 	ext4_get_inode_flags(ei);
4223 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4224 	i_uid = i_uid_read(inode);
4225 	i_gid = i_gid_read(inode);
4226 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4227 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4228 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4229 /*
4230  * Fix up interoperability with old kernels. Otherwise, old inodes get
4231  * re-used with the upper 16 bits of the uid/gid intact
4232  */
4233 		if (!ei->i_dtime) {
4234 			raw_inode->i_uid_high =
4235 				cpu_to_le16(high_16_bits(i_uid));
4236 			raw_inode->i_gid_high =
4237 				cpu_to_le16(high_16_bits(i_gid));
4238 		} else {
4239 			raw_inode->i_uid_high = 0;
4240 			raw_inode->i_gid_high = 0;
4241 		}
4242 	} else {
4243 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4244 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4245 		raw_inode->i_uid_high = 0;
4246 		raw_inode->i_gid_high = 0;
4247 	}
4248 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4249 
4250 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4251 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4252 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4253 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4254 
4255 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4256 		goto out_brelse;
4257 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4258 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4259 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4260 	    cpu_to_le32(EXT4_OS_HURD))
4261 		raw_inode->i_file_acl_high =
4262 			cpu_to_le16(ei->i_file_acl >> 32);
4263 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4264 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4265 		ext4_isize_set(raw_inode, ei->i_disksize);
4266 		need_datasync = 1;
4267 	}
4268 	if (ei->i_disksize > 0x7fffffffULL) {
4269 		struct super_block *sb = inode->i_sb;
4270 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4271 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4272 				EXT4_SB(sb)->s_es->s_rev_level ==
4273 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4274 			/* If this is the first large file
4275 			 * created, add a flag to the superblock.
4276 			 */
4277 			err = ext4_journal_get_write_access(handle,
4278 					EXT4_SB(sb)->s_sbh);
4279 			if (err)
4280 				goto out_brelse;
4281 			ext4_update_dynamic_rev(sb);
4282 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4283 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4284 			ext4_handle_sync(handle);
4285 			err = ext4_handle_dirty_super(handle, sb);
4286 		}
4287 	}
4288 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4289 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4290 		if (old_valid_dev(inode->i_rdev)) {
4291 			raw_inode->i_block[0] =
4292 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4293 			raw_inode->i_block[1] = 0;
4294 		} else {
4295 			raw_inode->i_block[0] = 0;
4296 			raw_inode->i_block[1] =
4297 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4298 			raw_inode->i_block[2] = 0;
4299 		}
4300 	} else if (!ext4_has_inline_data(inode)) {
4301 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4302 			raw_inode->i_block[block] = ei->i_data[block];
4303 	}
4304 
4305 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4306 	if (ei->i_extra_isize) {
4307 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4308 			raw_inode->i_version_hi =
4309 			cpu_to_le32(inode->i_version >> 32);
4310 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4311 	}
4312 
4313 	ext4_inode_csum_set(inode, raw_inode, ei);
4314 
4315 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4316 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4317 	if (!err)
4318 		err = rc;
4319 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4320 
4321 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4322 out_brelse:
4323 	brelse(bh);
4324 	ext4_std_error(inode->i_sb, err);
4325 	return err;
4326 }
4327 
4328 /*
4329  * ext4_write_inode()
4330  *
4331  * We are called from a few places:
4332  *
4333  * - Within generic_file_write() for O_SYNC files.
4334  *   Here, there will be no transaction running. We wait for any running
4335  *   transaction to commit.
4336  *
4337  * - Within sys_sync(), kupdate and such.
4338  *   We wait on commit, if tol to.
4339  *
4340  * - Within prune_icache() (PF_MEMALLOC == true)
4341  *   Here we simply return.  We can't afford to block kswapd on the
4342  *   journal commit.
4343  *
4344  * In all cases it is actually safe for us to return without doing anything,
4345  * because the inode has been copied into a raw inode buffer in
4346  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4347  * knfsd.
4348  *
4349  * Note that we are absolutely dependent upon all inode dirtiers doing the
4350  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4351  * which we are interested.
4352  *
4353  * It would be a bug for them to not do this.  The code:
4354  *
4355  *	mark_inode_dirty(inode)
4356  *	stuff();
4357  *	inode->i_size = expr;
4358  *
4359  * is in error because a kswapd-driven write_inode() could occur while
4360  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4361  * will no longer be on the superblock's dirty inode list.
4362  */
4363 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4364 {
4365 	int err;
4366 
4367 	if (current->flags & PF_MEMALLOC)
4368 		return 0;
4369 
4370 	if (EXT4_SB(inode->i_sb)->s_journal) {
4371 		if (ext4_journal_current_handle()) {
4372 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4373 			dump_stack();
4374 			return -EIO;
4375 		}
4376 
4377 		if (wbc->sync_mode != WB_SYNC_ALL)
4378 			return 0;
4379 
4380 		err = ext4_force_commit(inode->i_sb);
4381 	} else {
4382 		struct ext4_iloc iloc;
4383 
4384 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4385 		if (err)
4386 			return err;
4387 		if (wbc->sync_mode == WB_SYNC_ALL)
4388 			sync_dirty_buffer(iloc.bh);
4389 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4390 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4391 					 "IO error syncing inode");
4392 			err = -EIO;
4393 		}
4394 		brelse(iloc.bh);
4395 	}
4396 	return err;
4397 }
4398 
4399 /*
4400  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4401  * buffers that are attached to a page stradding i_size and are undergoing
4402  * commit. In that case we have to wait for commit to finish and try again.
4403  */
4404 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4405 {
4406 	struct page *page;
4407 	unsigned offset;
4408 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4409 	tid_t commit_tid = 0;
4410 	int ret;
4411 
4412 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4413 	/*
4414 	 * All buffers in the last page remain valid? Then there's nothing to
4415 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4416 	 * blocksize case
4417 	 */
4418 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4419 		return;
4420 	while (1) {
4421 		page = find_lock_page(inode->i_mapping,
4422 				      inode->i_size >> PAGE_CACHE_SHIFT);
4423 		if (!page)
4424 			return;
4425 		ret = __ext4_journalled_invalidatepage(page, offset,
4426 						PAGE_CACHE_SIZE - offset);
4427 		unlock_page(page);
4428 		page_cache_release(page);
4429 		if (ret != -EBUSY)
4430 			return;
4431 		commit_tid = 0;
4432 		read_lock(&journal->j_state_lock);
4433 		if (journal->j_committing_transaction)
4434 			commit_tid = journal->j_committing_transaction->t_tid;
4435 		read_unlock(&journal->j_state_lock);
4436 		if (commit_tid)
4437 			jbd2_log_wait_commit(journal, commit_tid);
4438 	}
4439 }
4440 
4441 /*
4442  * ext4_setattr()
4443  *
4444  * Called from notify_change.
4445  *
4446  * We want to trap VFS attempts to truncate the file as soon as
4447  * possible.  In particular, we want to make sure that when the VFS
4448  * shrinks i_size, we put the inode on the orphan list and modify
4449  * i_disksize immediately, so that during the subsequent flushing of
4450  * dirty pages and freeing of disk blocks, we can guarantee that any
4451  * commit will leave the blocks being flushed in an unused state on
4452  * disk.  (On recovery, the inode will get truncated and the blocks will
4453  * be freed, so we have a strong guarantee that no future commit will
4454  * leave these blocks visible to the user.)
4455  *
4456  * Another thing we have to assure is that if we are in ordered mode
4457  * and inode is still attached to the committing transaction, we must
4458  * we start writeout of all the dirty pages which are being truncated.
4459  * This way we are sure that all the data written in the previous
4460  * transaction are already on disk (truncate waits for pages under
4461  * writeback).
4462  *
4463  * Called with inode->i_mutex down.
4464  */
4465 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4466 {
4467 	struct inode *inode = dentry->d_inode;
4468 	int error, rc = 0;
4469 	int orphan = 0;
4470 	const unsigned int ia_valid = attr->ia_valid;
4471 
4472 	error = inode_change_ok(inode, attr);
4473 	if (error)
4474 		return error;
4475 
4476 	if (is_quota_modification(inode, attr))
4477 		dquot_initialize(inode);
4478 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4479 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4480 		handle_t *handle;
4481 
4482 		/* (user+group)*(old+new) structure, inode write (sb,
4483 		 * inode block, ? - but truncate inode update has it) */
4484 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4485 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4486 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4487 		if (IS_ERR(handle)) {
4488 			error = PTR_ERR(handle);
4489 			goto err_out;
4490 		}
4491 		error = dquot_transfer(inode, attr);
4492 		if (error) {
4493 			ext4_journal_stop(handle);
4494 			return error;
4495 		}
4496 		/* Update corresponding info in inode so that everything is in
4497 		 * one transaction */
4498 		if (attr->ia_valid & ATTR_UID)
4499 			inode->i_uid = attr->ia_uid;
4500 		if (attr->ia_valid & ATTR_GID)
4501 			inode->i_gid = attr->ia_gid;
4502 		error = ext4_mark_inode_dirty(handle, inode);
4503 		ext4_journal_stop(handle);
4504 	}
4505 
4506 	if (attr->ia_valid & ATTR_SIZE) {
4507 
4508 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4509 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4510 
4511 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4512 				return -EFBIG;
4513 		}
4514 	}
4515 
4516 	if (S_ISREG(inode->i_mode) &&
4517 	    attr->ia_valid & ATTR_SIZE &&
4518 	    (attr->ia_size < inode->i_size)) {
4519 		handle_t *handle;
4520 
4521 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4522 		if (IS_ERR(handle)) {
4523 			error = PTR_ERR(handle);
4524 			goto err_out;
4525 		}
4526 		if (ext4_handle_valid(handle)) {
4527 			error = ext4_orphan_add(handle, inode);
4528 			orphan = 1;
4529 		}
4530 		EXT4_I(inode)->i_disksize = attr->ia_size;
4531 		rc = ext4_mark_inode_dirty(handle, inode);
4532 		if (!error)
4533 			error = rc;
4534 		ext4_journal_stop(handle);
4535 
4536 		if (ext4_should_order_data(inode)) {
4537 			error = ext4_begin_ordered_truncate(inode,
4538 							    attr->ia_size);
4539 			if (error) {
4540 				/* Do as much error cleanup as possible */
4541 				handle = ext4_journal_start(inode,
4542 							    EXT4_HT_INODE, 3);
4543 				if (IS_ERR(handle)) {
4544 					ext4_orphan_del(NULL, inode);
4545 					goto err_out;
4546 				}
4547 				ext4_orphan_del(handle, inode);
4548 				orphan = 0;
4549 				ext4_journal_stop(handle);
4550 				goto err_out;
4551 			}
4552 		}
4553 	}
4554 
4555 	if (attr->ia_valid & ATTR_SIZE) {
4556 		if (attr->ia_size != inode->i_size) {
4557 			loff_t oldsize = inode->i_size;
4558 
4559 			i_size_write(inode, attr->ia_size);
4560 			/*
4561 			 * Blocks are going to be removed from the inode. Wait
4562 			 * for dio in flight.  Temporarily disable
4563 			 * dioread_nolock to prevent livelock.
4564 			 */
4565 			if (orphan) {
4566 				if (!ext4_should_journal_data(inode)) {
4567 					ext4_inode_block_unlocked_dio(inode);
4568 					inode_dio_wait(inode);
4569 					ext4_inode_resume_unlocked_dio(inode);
4570 				} else
4571 					ext4_wait_for_tail_page_commit(inode);
4572 			}
4573 			/*
4574 			 * Truncate pagecache after we've waited for commit
4575 			 * in data=journal mode to make pages freeable.
4576 			 */
4577 			truncate_pagecache(inode, oldsize, inode->i_size);
4578 		}
4579 		ext4_truncate(inode);
4580 	}
4581 
4582 	if (!rc) {
4583 		setattr_copy(inode, attr);
4584 		mark_inode_dirty(inode);
4585 	}
4586 
4587 	/*
4588 	 * If the call to ext4_truncate failed to get a transaction handle at
4589 	 * all, we need to clean up the in-core orphan list manually.
4590 	 */
4591 	if (orphan && inode->i_nlink)
4592 		ext4_orphan_del(NULL, inode);
4593 
4594 	if (!rc && (ia_valid & ATTR_MODE))
4595 		rc = ext4_acl_chmod(inode);
4596 
4597 err_out:
4598 	ext4_std_error(inode->i_sb, error);
4599 	if (!error)
4600 		error = rc;
4601 	return error;
4602 }
4603 
4604 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4605 		 struct kstat *stat)
4606 {
4607 	struct inode *inode;
4608 	unsigned long long delalloc_blocks;
4609 
4610 	inode = dentry->d_inode;
4611 	generic_fillattr(inode, stat);
4612 
4613 	/*
4614 	 * We can't update i_blocks if the block allocation is delayed
4615 	 * otherwise in the case of system crash before the real block
4616 	 * allocation is done, we will have i_blocks inconsistent with
4617 	 * on-disk file blocks.
4618 	 * We always keep i_blocks updated together with real
4619 	 * allocation. But to not confuse with user, stat
4620 	 * will return the blocks that include the delayed allocation
4621 	 * blocks for this file.
4622 	 */
4623 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4624 				EXT4_I(inode)->i_reserved_data_blocks);
4625 
4626 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4627 	return 0;
4628 }
4629 
4630 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4631 				   int pextents)
4632 {
4633 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4634 		return ext4_ind_trans_blocks(inode, lblocks);
4635 	return ext4_ext_index_trans_blocks(inode, pextents);
4636 }
4637 
4638 /*
4639  * Account for index blocks, block groups bitmaps and block group
4640  * descriptor blocks if modify datablocks and index blocks
4641  * worse case, the indexs blocks spread over different block groups
4642  *
4643  * If datablocks are discontiguous, they are possible to spread over
4644  * different block groups too. If they are contiguous, with flexbg,
4645  * they could still across block group boundary.
4646  *
4647  * Also account for superblock, inode, quota and xattr blocks
4648  */
4649 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4650 				  int pextents)
4651 {
4652 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4653 	int gdpblocks;
4654 	int idxblocks;
4655 	int ret = 0;
4656 
4657 	/*
4658 	 * How many index blocks need to touch to map @lblocks logical blocks
4659 	 * to @pextents physical extents?
4660 	 */
4661 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4662 
4663 	ret = idxblocks;
4664 
4665 	/*
4666 	 * Now let's see how many group bitmaps and group descriptors need
4667 	 * to account
4668 	 */
4669 	groups = idxblocks + pextents;
4670 	gdpblocks = groups;
4671 	if (groups > ngroups)
4672 		groups = ngroups;
4673 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4674 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4675 
4676 	/* bitmaps and block group descriptor blocks */
4677 	ret += groups + gdpblocks;
4678 
4679 	/* Blocks for super block, inode, quota and xattr blocks */
4680 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4681 
4682 	return ret;
4683 }
4684 
4685 /*
4686  * Calculate the total number of credits to reserve to fit
4687  * the modification of a single pages into a single transaction,
4688  * which may include multiple chunks of block allocations.
4689  *
4690  * This could be called via ext4_write_begin()
4691  *
4692  * We need to consider the worse case, when
4693  * one new block per extent.
4694  */
4695 int ext4_writepage_trans_blocks(struct inode *inode)
4696 {
4697 	int bpp = ext4_journal_blocks_per_page(inode);
4698 	int ret;
4699 
4700 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4701 
4702 	/* Account for data blocks for journalled mode */
4703 	if (ext4_should_journal_data(inode))
4704 		ret += bpp;
4705 	return ret;
4706 }
4707 
4708 /*
4709  * Calculate the journal credits for a chunk of data modification.
4710  *
4711  * This is called from DIO, fallocate or whoever calling
4712  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4713  *
4714  * journal buffers for data blocks are not included here, as DIO
4715  * and fallocate do no need to journal data buffers.
4716  */
4717 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4718 {
4719 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4720 }
4721 
4722 /*
4723  * The caller must have previously called ext4_reserve_inode_write().
4724  * Give this, we know that the caller already has write access to iloc->bh.
4725  */
4726 int ext4_mark_iloc_dirty(handle_t *handle,
4727 			 struct inode *inode, struct ext4_iloc *iloc)
4728 {
4729 	int err = 0;
4730 
4731 	if (IS_I_VERSION(inode))
4732 		inode_inc_iversion(inode);
4733 
4734 	/* the do_update_inode consumes one bh->b_count */
4735 	get_bh(iloc->bh);
4736 
4737 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4738 	err = ext4_do_update_inode(handle, inode, iloc);
4739 	put_bh(iloc->bh);
4740 	return err;
4741 }
4742 
4743 /*
4744  * On success, We end up with an outstanding reference count against
4745  * iloc->bh.  This _must_ be cleaned up later.
4746  */
4747 
4748 int
4749 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4750 			 struct ext4_iloc *iloc)
4751 {
4752 	int err;
4753 
4754 	err = ext4_get_inode_loc(inode, iloc);
4755 	if (!err) {
4756 		BUFFER_TRACE(iloc->bh, "get_write_access");
4757 		err = ext4_journal_get_write_access(handle, iloc->bh);
4758 		if (err) {
4759 			brelse(iloc->bh);
4760 			iloc->bh = NULL;
4761 		}
4762 	}
4763 	ext4_std_error(inode->i_sb, err);
4764 	return err;
4765 }
4766 
4767 /*
4768  * Expand an inode by new_extra_isize bytes.
4769  * Returns 0 on success or negative error number on failure.
4770  */
4771 static int ext4_expand_extra_isize(struct inode *inode,
4772 				   unsigned int new_extra_isize,
4773 				   struct ext4_iloc iloc,
4774 				   handle_t *handle)
4775 {
4776 	struct ext4_inode *raw_inode;
4777 	struct ext4_xattr_ibody_header *header;
4778 
4779 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4780 		return 0;
4781 
4782 	raw_inode = ext4_raw_inode(&iloc);
4783 
4784 	header = IHDR(inode, raw_inode);
4785 
4786 	/* No extended attributes present */
4787 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4788 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4789 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4790 			new_extra_isize);
4791 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4792 		return 0;
4793 	}
4794 
4795 	/* try to expand with EAs present */
4796 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4797 					  raw_inode, handle);
4798 }
4799 
4800 /*
4801  * What we do here is to mark the in-core inode as clean with respect to inode
4802  * dirtiness (it may still be data-dirty).
4803  * This means that the in-core inode may be reaped by prune_icache
4804  * without having to perform any I/O.  This is a very good thing,
4805  * because *any* task may call prune_icache - even ones which
4806  * have a transaction open against a different journal.
4807  *
4808  * Is this cheating?  Not really.  Sure, we haven't written the
4809  * inode out, but prune_icache isn't a user-visible syncing function.
4810  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4811  * we start and wait on commits.
4812  */
4813 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4814 {
4815 	struct ext4_iloc iloc;
4816 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4817 	static unsigned int mnt_count;
4818 	int err, ret;
4819 
4820 	might_sleep();
4821 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4822 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4823 	if (ext4_handle_valid(handle) &&
4824 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4825 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4826 		/*
4827 		 * We need extra buffer credits since we may write into EA block
4828 		 * with this same handle. If journal_extend fails, then it will
4829 		 * only result in a minor loss of functionality for that inode.
4830 		 * If this is felt to be critical, then e2fsck should be run to
4831 		 * force a large enough s_min_extra_isize.
4832 		 */
4833 		if ((jbd2_journal_extend(handle,
4834 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4835 			ret = ext4_expand_extra_isize(inode,
4836 						      sbi->s_want_extra_isize,
4837 						      iloc, handle);
4838 			if (ret) {
4839 				ext4_set_inode_state(inode,
4840 						     EXT4_STATE_NO_EXPAND);
4841 				if (mnt_count !=
4842 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4843 					ext4_warning(inode->i_sb,
4844 					"Unable to expand inode %lu. Delete"
4845 					" some EAs or run e2fsck.",
4846 					inode->i_ino);
4847 					mnt_count =
4848 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4849 				}
4850 			}
4851 		}
4852 	}
4853 	if (!err)
4854 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4855 	return err;
4856 }
4857 
4858 /*
4859  * ext4_dirty_inode() is called from __mark_inode_dirty()
4860  *
4861  * We're really interested in the case where a file is being extended.
4862  * i_size has been changed by generic_commit_write() and we thus need
4863  * to include the updated inode in the current transaction.
4864  *
4865  * Also, dquot_alloc_block() will always dirty the inode when blocks
4866  * are allocated to the file.
4867  *
4868  * If the inode is marked synchronous, we don't honour that here - doing
4869  * so would cause a commit on atime updates, which we don't bother doing.
4870  * We handle synchronous inodes at the highest possible level.
4871  */
4872 void ext4_dirty_inode(struct inode *inode, int flags)
4873 {
4874 	handle_t *handle;
4875 
4876 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4877 	if (IS_ERR(handle))
4878 		goto out;
4879 
4880 	ext4_mark_inode_dirty(handle, inode);
4881 
4882 	ext4_journal_stop(handle);
4883 out:
4884 	return;
4885 }
4886 
4887 #if 0
4888 /*
4889  * Bind an inode's backing buffer_head into this transaction, to prevent
4890  * it from being flushed to disk early.  Unlike
4891  * ext4_reserve_inode_write, this leaves behind no bh reference and
4892  * returns no iloc structure, so the caller needs to repeat the iloc
4893  * lookup to mark the inode dirty later.
4894  */
4895 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4896 {
4897 	struct ext4_iloc iloc;
4898 
4899 	int err = 0;
4900 	if (handle) {
4901 		err = ext4_get_inode_loc(inode, &iloc);
4902 		if (!err) {
4903 			BUFFER_TRACE(iloc.bh, "get_write_access");
4904 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4905 			if (!err)
4906 				err = ext4_handle_dirty_metadata(handle,
4907 								 NULL,
4908 								 iloc.bh);
4909 			brelse(iloc.bh);
4910 		}
4911 	}
4912 	ext4_std_error(inode->i_sb, err);
4913 	return err;
4914 }
4915 #endif
4916 
4917 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4918 {
4919 	journal_t *journal;
4920 	handle_t *handle;
4921 	int err;
4922 
4923 	/*
4924 	 * We have to be very careful here: changing a data block's
4925 	 * journaling status dynamically is dangerous.  If we write a
4926 	 * data block to the journal, change the status and then delete
4927 	 * that block, we risk forgetting to revoke the old log record
4928 	 * from the journal and so a subsequent replay can corrupt data.
4929 	 * So, first we make sure that the journal is empty and that
4930 	 * nobody is changing anything.
4931 	 */
4932 
4933 	journal = EXT4_JOURNAL(inode);
4934 	if (!journal)
4935 		return 0;
4936 	if (is_journal_aborted(journal))
4937 		return -EROFS;
4938 	/* We have to allocate physical blocks for delalloc blocks
4939 	 * before flushing journal. otherwise delalloc blocks can not
4940 	 * be allocated any more. even more truncate on delalloc blocks
4941 	 * could trigger BUG by flushing delalloc blocks in journal.
4942 	 * There is no delalloc block in non-journal data mode.
4943 	 */
4944 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4945 		err = ext4_alloc_da_blocks(inode);
4946 		if (err < 0)
4947 			return err;
4948 	}
4949 
4950 	/* Wait for all existing dio workers */
4951 	ext4_inode_block_unlocked_dio(inode);
4952 	inode_dio_wait(inode);
4953 
4954 	jbd2_journal_lock_updates(journal);
4955 
4956 	/*
4957 	 * OK, there are no updates running now, and all cached data is
4958 	 * synced to disk.  We are now in a completely consistent state
4959 	 * which doesn't have anything in the journal, and we know that
4960 	 * no filesystem updates are running, so it is safe to modify
4961 	 * the inode's in-core data-journaling state flag now.
4962 	 */
4963 
4964 	if (val)
4965 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4966 	else {
4967 		jbd2_journal_flush(journal);
4968 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4969 	}
4970 	ext4_set_aops(inode);
4971 
4972 	jbd2_journal_unlock_updates(journal);
4973 	ext4_inode_resume_unlocked_dio(inode);
4974 
4975 	/* Finally we can mark the inode as dirty. */
4976 
4977 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4978 	if (IS_ERR(handle))
4979 		return PTR_ERR(handle);
4980 
4981 	err = ext4_mark_inode_dirty(handle, inode);
4982 	ext4_handle_sync(handle);
4983 	ext4_journal_stop(handle);
4984 	ext4_std_error(inode->i_sb, err);
4985 
4986 	return err;
4987 }
4988 
4989 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4990 {
4991 	return !buffer_mapped(bh);
4992 }
4993 
4994 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4995 {
4996 	struct page *page = vmf->page;
4997 	loff_t size;
4998 	unsigned long len;
4999 	int ret;
5000 	struct file *file = vma->vm_file;
5001 	struct inode *inode = file_inode(file);
5002 	struct address_space *mapping = inode->i_mapping;
5003 	handle_t *handle;
5004 	get_block_t *get_block;
5005 	int retries = 0;
5006 
5007 	sb_start_pagefault(inode->i_sb);
5008 	file_update_time(vma->vm_file);
5009 	/* Delalloc case is easy... */
5010 	if (test_opt(inode->i_sb, DELALLOC) &&
5011 	    !ext4_should_journal_data(inode) &&
5012 	    !ext4_nonda_switch(inode->i_sb)) {
5013 		do {
5014 			ret = __block_page_mkwrite(vma, vmf,
5015 						   ext4_da_get_block_prep);
5016 		} while (ret == -ENOSPC &&
5017 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5018 		goto out_ret;
5019 	}
5020 
5021 	lock_page(page);
5022 	size = i_size_read(inode);
5023 	/* Page got truncated from under us? */
5024 	if (page->mapping != mapping || page_offset(page) > size) {
5025 		unlock_page(page);
5026 		ret = VM_FAULT_NOPAGE;
5027 		goto out;
5028 	}
5029 
5030 	if (page->index == size >> PAGE_CACHE_SHIFT)
5031 		len = size & ~PAGE_CACHE_MASK;
5032 	else
5033 		len = PAGE_CACHE_SIZE;
5034 	/*
5035 	 * Return if we have all the buffers mapped. This avoids the need to do
5036 	 * journal_start/journal_stop which can block and take a long time
5037 	 */
5038 	if (page_has_buffers(page)) {
5039 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5040 					    0, len, NULL,
5041 					    ext4_bh_unmapped)) {
5042 			/* Wait so that we don't change page under IO */
5043 			wait_for_stable_page(page);
5044 			ret = VM_FAULT_LOCKED;
5045 			goto out;
5046 		}
5047 	}
5048 	unlock_page(page);
5049 	/* OK, we need to fill the hole... */
5050 	if (ext4_should_dioread_nolock(inode))
5051 		get_block = ext4_get_block_write;
5052 	else
5053 		get_block = ext4_get_block;
5054 retry_alloc:
5055 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5056 				    ext4_writepage_trans_blocks(inode));
5057 	if (IS_ERR(handle)) {
5058 		ret = VM_FAULT_SIGBUS;
5059 		goto out;
5060 	}
5061 	ret = __block_page_mkwrite(vma, vmf, get_block);
5062 	if (!ret && ext4_should_journal_data(inode)) {
5063 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5064 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5065 			unlock_page(page);
5066 			ret = VM_FAULT_SIGBUS;
5067 			ext4_journal_stop(handle);
5068 			goto out;
5069 		}
5070 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5071 	}
5072 	ext4_journal_stop(handle);
5073 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5074 		goto retry_alloc;
5075 out_ret:
5076 	ret = block_page_mkwrite_return(ret);
5077 out:
5078 	sb_end_pagefault(inode->i_sb);
5079 	return ret;
5080 }
5081