1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 (atomic_read(&inode->i_writecount) == 0)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 403 map->m_len)) { 404 ext4_error_inode(inode, func, line, map->m_pblk, 405 "lblock %lu mapped to illegal pblock %llu " 406 "(length %d)", (unsigned long) map->m_lblk, 407 map->m_pblk, map->m_len); 408 return -EFSCORRUPTED; 409 } 410 return 0; 411 } 412 413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 414 ext4_lblk_t len) 415 { 416 int ret; 417 418 if (IS_ENCRYPTED(inode)) 419 return fscrypt_zeroout_range(inode, lblk, pblk, len); 420 421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 422 if (ret > 0) 423 ret = 0; 424 425 return ret; 426 } 427 428 #define check_block_validity(inode, map) \ 429 __check_block_validity((inode), __func__, __LINE__, (map)) 430 431 #ifdef ES_AGGRESSIVE_TEST 432 static void ext4_map_blocks_es_recheck(handle_t *handle, 433 struct inode *inode, 434 struct ext4_map_blocks *es_map, 435 struct ext4_map_blocks *map, 436 int flags) 437 { 438 int retval; 439 440 map->m_flags = 0; 441 /* 442 * There is a race window that the result is not the same. 443 * e.g. xfstests #223 when dioread_nolock enables. The reason 444 * is that we lookup a block mapping in extent status tree with 445 * out taking i_data_sem. So at the time the unwritten extent 446 * could be converted. 447 */ 448 down_read(&EXT4_I(inode)->i_data_sem); 449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 450 retval = ext4_ext_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } else { 453 retval = ext4_ind_map_blocks(handle, inode, map, flags & 454 EXT4_GET_BLOCKS_KEEP_SIZE); 455 } 456 up_read((&EXT4_I(inode)->i_data_sem)); 457 458 /* 459 * We don't check m_len because extent will be collpased in status 460 * tree. So the m_len might not equal. 461 */ 462 if (es_map->m_lblk != map->m_lblk || 463 es_map->m_flags != map->m_flags || 464 es_map->m_pblk != map->m_pblk) { 465 printk("ES cache assertion failed for inode: %lu " 466 "es_cached ex [%d/%d/%llu/%x] != " 467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 468 inode->i_ino, es_map->m_lblk, es_map->m_len, 469 es_map->m_pblk, es_map->m_flags, map->m_lblk, 470 map->m_len, map->m_pblk, map->m_flags, 471 retval, flags); 472 } 473 } 474 #endif /* ES_AGGRESSIVE_TEST */ 475 476 /* 477 * The ext4_map_blocks() function tries to look up the requested blocks, 478 * and returns if the blocks are already mapped. 479 * 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 481 * and store the allocated blocks in the result buffer head and mark it 482 * mapped. 483 * 484 * If file type is extents based, it will call ext4_ext_map_blocks(), 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 486 * based files 487 * 488 * On success, it returns the number of blocks being mapped or allocated. if 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 491 * 492 * It returns 0 if plain look up failed (blocks have not been allocated), in 493 * that case, @map is returned as unmapped but we still do fill map->m_len to 494 * indicate the length of a hole starting at map->m_lblk. 495 * 496 * It returns the error in case of allocation failure. 497 */ 498 int ext4_map_blocks(handle_t *handle, struct inode *inode, 499 struct ext4_map_blocks *map, int flags) 500 { 501 struct extent_status es; 502 int retval; 503 int ret = 0; 504 #ifdef ES_AGGRESSIVE_TEST 505 struct ext4_map_blocks orig_map; 506 507 memcpy(&orig_map, map, sizeof(*map)); 508 #endif 509 510 map->m_flags = 0; 511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 512 "logical block %lu\n", inode->i_ino, flags, map->m_len, 513 (unsigned long) map->m_lblk); 514 515 /* 516 * ext4_map_blocks returns an int, and m_len is an unsigned int 517 */ 518 if (unlikely(map->m_len > INT_MAX)) 519 map->m_len = INT_MAX; 520 521 /* We can handle the block number less than EXT_MAX_BLOCKS */ 522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 523 return -EFSCORRUPTED; 524 525 /* Lookup extent status tree firstly */ 526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 528 map->m_pblk = ext4_es_pblock(&es) + 529 map->m_lblk - es.es_lblk; 530 map->m_flags |= ext4_es_is_written(&es) ? 531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 532 retval = es.es_len - (map->m_lblk - es.es_lblk); 533 if (retval > map->m_len) 534 retval = map->m_len; 535 map->m_len = retval; 536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 537 map->m_pblk = 0; 538 retval = es.es_len - (map->m_lblk - es.es_lblk); 539 if (retval > map->m_len) 540 retval = map->m_len; 541 map->m_len = retval; 542 retval = 0; 543 } else { 544 BUG_ON(1); 545 } 546 #ifdef ES_AGGRESSIVE_TEST 547 ext4_map_blocks_es_recheck(handle, inode, map, 548 &orig_map, flags); 549 #endif 550 goto found; 551 } 552 553 /* 554 * Try to see if we can get the block without requesting a new 555 * file system block. 556 */ 557 down_read(&EXT4_I(inode)->i_data_sem); 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 559 retval = ext4_ext_map_blocks(handle, inode, map, flags & 560 EXT4_GET_BLOCKS_KEEP_SIZE); 561 } else { 562 retval = ext4_ind_map_blocks(handle, inode, map, flags & 563 EXT4_GET_BLOCKS_KEEP_SIZE); 564 } 565 if (retval > 0) { 566 unsigned int status; 567 568 if (unlikely(retval != map->m_len)) { 569 ext4_warning(inode->i_sb, 570 "ES len assertion failed for inode " 571 "%lu: retval %d != map->m_len %d", 572 inode->i_ino, retval, map->m_len); 573 WARN_ON(1); 574 } 575 576 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 579 !(status & EXTENT_STATUS_WRITTEN) && 580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 581 map->m_lblk + map->m_len - 1)) 582 status |= EXTENT_STATUS_DELAYED; 583 ret = ext4_es_insert_extent(inode, map->m_lblk, 584 map->m_len, map->m_pblk, status); 585 if (ret < 0) 586 retval = ret; 587 } 588 up_read((&EXT4_I(inode)->i_data_sem)); 589 590 found: 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 592 ret = check_block_validity(inode, map); 593 if (ret != 0) 594 return ret; 595 } 596 597 /* If it is only a block(s) look up */ 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 599 return retval; 600 601 /* 602 * Returns if the blocks have already allocated 603 * 604 * Note that if blocks have been preallocated 605 * ext4_ext_get_block() returns the create = 0 606 * with buffer head unmapped. 607 */ 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 609 /* 610 * If we need to convert extent to unwritten 611 * we continue and do the actual work in 612 * ext4_ext_map_blocks() 613 */ 614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 615 return retval; 616 617 /* 618 * Here we clear m_flags because after allocating an new extent, 619 * it will be set again. 620 */ 621 map->m_flags &= ~EXT4_MAP_FLAGS; 622 623 /* 624 * New blocks allocate and/or writing to unwritten extent 625 * will possibly result in updating i_data, so we take 626 * the write lock of i_data_sem, and call get_block() 627 * with create == 1 flag. 628 */ 629 down_write(&EXT4_I(inode)->i_data_sem); 630 631 /* 632 * We need to check for EXT4 here because migrate 633 * could have changed the inode type in between 634 */ 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 636 retval = ext4_ext_map_blocks(handle, inode, map, flags); 637 } else { 638 retval = ext4_ind_map_blocks(handle, inode, map, flags); 639 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 641 /* 642 * We allocated new blocks which will result in 643 * i_data's format changing. Force the migrate 644 * to fail by clearing migrate flags 645 */ 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 647 } 648 649 /* 650 * Update reserved blocks/metadata blocks after successful 651 * block allocation which had been deferred till now. We don't 652 * support fallocate for non extent files. So we can update 653 * reserve space here. 654 */ 655 if ((retval > 0) && 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 657 ext4_da_update_reserve_space(inode, retval, 1); 658 } 659 660 if (retval > 0) { 661 unsigned int status; 662 663 if (unlikely(retval != map->m_len)) { 664 ext4_warning(inode->i_sb, 665 "ES len assertion failed for inode " 666 "%lu: retval %d != map->m_len %d", 667 inode->i_ino, retval, map->m_len); 668 WARN_ON(1); 669 } 670 671 /* 672 * We have to zeroout blocks before inserting them into extent 673 * status tree. Otherwise someone could look them up there and 674 * use them before they are really zeroed. We also have to 675 * unmap metadata before zeroing as otherwise writeback can 676 * overwrite zeros with stale data from block device. 677 */ 678 if (flags & EXT4_GET_BLOCKS_ZERO && 679 map->m_flags & EXT4_MAP_MAPPED && 680 map->m_flags & EXT4_MAP_NEW) { 681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 682 map->m_len); 683 ret = ext4_issue_zeroout(inode, map->m_lblk, 684 map->m_pblk, map->m_len); 685 if (ret) { 686 retval = ret; 687 goto out_sem; 688 } 689 } 690 691 /* 692 * If the extent has been zeroed out, we don't need to update 693 * extent status tree. 694 */ 695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 697 if (ext4_es_is_written(&es)) 698 goto out_sem; 699 } 700 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 703 !(status & EXTENT_STATUS_WRITTEN) && 704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 705 map->m_lblk + map->m_len - 1)) 706 status |= EXTENT_STATUS_DELAYED; 707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 708 map->m_pblk, status); 709 if (ret < 0) { 710 retval = ret; 711 goto out_sem; 712 } 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 733 ret = ext4_jbd2_inode_add_wait(handle, inode); 734 else 735 ret = ext4_jbd2_inode_add_write(handle, inode); 736 if (ret) 737 return ret; 738 } 739 } 740 return retval; 741 } 742 743 /* 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 745 * we have to be careful as someone else may be manipulating b_state as well. 746 */ 747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 748 { 749 unsigned long old_state; 750 unsigned long new_state; 751 752 flags &= EXT4_MAP_FLAGS; 753 754 /* Dummy buffer_head? Set non-atomically. */ 755 if (!bh->b_page) { 756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 757 return; 758 } 759 /* 760 * Someone else may be modifying b_state. Be careful! This is ugly but 761 * once we get rid of using bh as a container for mapping information 762 * to pass to / from get_block functions, this can go away. 763 */ 764 do { 765 old_state = READ_ONCE(bh->b_state); 766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 767 } while (unlikely( 768 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 769 } 770 771 static int _ext4_get_block(struct inode *inode, sector_t iblock, 772 struct buffer_head *bh, int flags) 773 { 774 struct ext4_map_blocks map; 775 int ret = 0; 776 777 if (ext4_has_inline_data(inode)) 778 return -ERANGE; 779 780 map.m_lblk = iblock; 781 map.m_len = bh->b_size >> inode->i_blkbits; 782 783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 784 flags); 785 if (ret > 0) { 786 map_bh(bh, inode->i_sb, map.m_pblk); 787 ext4_update_bh_state(bh, map.m_flags); 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 789 ret = 0; 790 } else if (ret == 0) { 791 /* hole case, need to fill in bh->b_size */ 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 } 794 return ret; 795 } 796 797 int ext4_get_block(struct inode *inode, sector_t iblock, 798 struct buffer_head *bh, int create) 799 { 800 return _ext4_get_block(inode, iblock, bh, 801 create ? EXT4_GET_BLOCKS_CREATE : 0); 802 } 803 804 /* 805 * Get block function used when preparing for buffered write if we require 806 * creating an unwritten extent if blocks haven't been allocated. The extent 807 * will be converted to written after the IO is complete. 808 */ 809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 810 struct buffer_head *bh_result, int create) 811 { 812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 813 inode->i_ino, create); 814 return _ext4_get_block(inode, iblock, bh_result, 815 EXT4_GET_BLOCKS_IO_CREATE_EXT); 816 } 817 818 /* Maximum number of blocks we map for direct IO at once. */ 819 #define DIO_MAX_BLOCKS 4096 820 821 /* 822 * Get blocks function for the cases that need to start a transaction - 823 * generally difference cases of direct IO and DAX IO. It also handles retries 824 * in case of ENOSPC. 825 */ 826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 827 struct buffer_head *bh_result, int flags) 828 { 829 int dio_credits; 830 handle_t *handle; 831 int retries = 0; 832 int ret; 833 834 /* Trim mapping request to maximum we can map at once for DIO */ 835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 837 dio_credits = ext4_chunk_trans_blocks(inode, 838 bh_result->b_size >> inode->i_blkbits); 839 retry: 840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 841 if (IS_ERR(handle)) 842 return PTR_ERR(handle); 843 844 ret = _ext4_get_block(inode, iblock, bh_result, flags); 845 ext4_journal_stop(handle); 846 847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 848 goto retry; 849 return ret; 850 } 851 852 /* Get block function for DIO reads and writes to inodes without extents */ 853 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 854 struct buffer_head *bh, int create) 855 { 856 /* We don't expect handle for direct IO */ 857 WARN_ON_ONCE(ext4_journal_current_handle()); 858 859 if (!create) 860 return _ext4_get_block(inode, iblock, bh, 0); 861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 862 } 863 864 /* 865 * Get block function for AIO DIO writes when we create unwritten extent if 866 * blocks are not allocated yet. The extent will be converted to written 867 * after IO is complete. 868 */ 869 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 870 sector_t iblock, struct buffer_head *bh_result, int create) 871 { 872 int ret; 873 874 /* We don't expect handle for direct IO */ 875 WARN_ON_ONCE(ext4_journal_current_handle()); 876 877 ret = ext4_get_block_trans(inode, iblock, bh_result, 878 EXT4_GET_BLOCKS_IO_CREATE_EXT); 879 880 /* 881 * When doing DIO using unwritten extents, we need io_end to convert 882 * unwritten extents to written on IO completion. We allocate io_end 883 * once we spot unwritten extent and store it in b_private. Generic 884 * DIO code keeps b_private set and furthermore passes the value to 885 * our completion callback in 'private' argument. 886 */ 887 if (!ret && buffer_unwritten(bh_result)) { 888 if (!bh_result->b_private) { 889 ext4_io_end_t *io_end; 890 891 io_end = ext4_init_io_end(inode, GFP_KERNEL); 892 if (!io_end) 893 return -ENOMEM; 894 bh_result->b_private = io_end; 895 ext4_set_io_unwritten_flag(inode, io_end); 896 } 897 set_buffer_defer_completion(bh_result); 898 } 899 900 return ret; 901 } 902 903 /* 904 * Get block function for non-AIO DIO writes when we create unwritten extent if 905 * blocks are not allocated yet. The extent will be converted to written 906 * after IO is complete by ext4_direct_IO_write(). 907 */ 908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 909 sector_t iblock, struct buffer_head *bh_result, int create) 910 { 911 int ret; 912 913 /* We don't expect handle for direct IO */ 914 WARN_ON_ONCE(ext4_journal_current_handle()); 915 916 ret = ext4_get_block_trans(inode, iblock, bh_result, 917 EXT4_GET_BLOCKS_IO_CREATE_EXT); 918 919 /* 920 * Mark inode as having pending DIO writes to unwritten extents. 921 * ext4_direct_IO_write() checks this flag and converts extents to 922 * written. 923 */ 924 if (!ret && buffer_unwritten(bh_result)) 925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 926 927 return ret; 928 } 929 930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 931 struct buffer_head *bh_result, int create) 932 { 933 int ret; 934 935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 936 inode->i_ino, create); 937 /* We don't expect handle for direct IO */ 938 WARN_ON_ONCE(ext4_journal_current_handle()); 939 940 ret = _ext4_get_block(inode, iblock, bh_result, 0); 941 /* 942 * Blocks should have been preallocated! ext4_file_write_iter() checks 943 * that. 944 */ 945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 946 947 return ret; 948 } 949 950 951 /* 952 * `handle' can be NULL if create is zero 953 */ 954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 955 ext4_lblk_t block, int map_flags) 956 { 957 struct ext4_map_blocks map; 958 struct buffer_head *bh; 959 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 960 int err; 961 962 J_ASSERT(handle != NULL || create == 0); 963 964 map.m_lblk = block; 965 map.m_len = 1; 966 err = ext4_map_blocks(handle, inode, &map, map_flags); 967 968 if (err == 0) 969 return create ? ERR_PTR(-ENOSPC) : NULL; 970 if (err < 0) 971 return ERR_PTR(err); 972 973 bh = sb_getblk(inode->i_sb, map.m_pblk); 974 if (unlikely(!bh)) 975 return ERR_PTR(-ENOMEM); 976 if (map.m_flags & EXT4_MAP_NEW) { 977 J_ASSERT(create != 0); 978 J_ASSERT(handle != NULL); 979 980 /* 981 * Now that we do not always journal data, we should 982 * keep in mind whether this should always journal the 983 * new buffer as metadata. For now, regular file 984 * writes use ext4_get_block instead, so it's not a 985 * problem. 986 */ 987 lock_buffer(bh); 988 BUFFER_TRACE(bh, "call get_create_access"); 989 err = ext4_journal_get_create_access(handle, bh); 990 if (unlikely(err)) { 991 unlock_buffer(bh); 992 goto errout; 993 } 994 if (!buffer_uptodate(bh)) { 995 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 996 set_buffer_uptodate(bh); 997 } 998 unlock_buffer(bh); 999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1000 err = ext4_handle_dirty_metadata(handle, inode, bh); 1001 if (unlikely(err)) 1002 goto errout; 1003 } else 1004 BUFFER_TRACE(bh, "not a new buffer"); 1005 return bh; 1006 errout: 1007 brelse(bh); 1008 return ERR_PTR(err); 1009 } 1010 1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1012 ext4_lblk_t block, int map_flags) 1013 { 1014 struct buffer_head *bh; 1015 1016 bh = ext4_getblk(handle, inode, block, map_flags); 1017 if (IS_ERR(bh)) 1018 return bh; 1019 if (!bh || buffer_uptodate(bh)) 1020 return bh; 1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1022 wait_on_buffer(bh); 1023 if (buffer_uptodate(bh)) 1024 return bh; 1025 put_bh(bh); 1026 return ERR_PTR(-EIO); 1027 } 1028 1029 /* Read a contiguous batch of blocks. */ 1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1031 bool wait, struct buffer_head **bhs) 1032 { 1033 int i, err; 1034 1035 for (i = 0; i < bh_count; i++) { 1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1037 if (IS_ERR(bhs[i])) { 1038 err = PTR_ERR(bhs[i]); 1039 bh_count = i; 1040 goto out_brelse; 1041 } 1042 } 1043 1044 for (i = 0; i < bh_count; i++) 1045 /* Note that NULL bhs[i] is valid because of holes. */ 1046 if (bhs[i] && !buffer_uptodate(bhs[i])) 1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1048 &bhs[i]); 1049 1050 if (!wait) 1051 return 0; 1052 1053 for (i = 0; i < bh_count; i++) 1054 if (bhs[i]) 1055 wait_on_buffer(bhs[i]); 1056 1057 for (i = 0; i < bh_count; i++) { 1058 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1059 err = -EIO; 1060 goto out_brelse; 1061 } 1062 } 1063 return 0; 1064 1065 out_brelse: 1066 for (i = 0; i < bh_count; i++) { 1067 brelse(bhs[i]); 1068 bhs[i] = NULL; 1069 } 1070 return err; 1071 } 1072 1073 int ext4_walk_page_buffers(handle_t *handle, 1074 struct buffer_head *head, 1075 unsigned from, 1076 unsigned to, 1077 int *partial, 1078 int (*fn)(handle_t *handle, 1079 struct buffer_head *bh)) 1080 { 1081 struct buffer_head *bh; 1082 unsigned block_start, block_end; 1083 unsigned blocksize = head->b_size; 1084 int err, ret = 0; 1085 struct buffer_head *next; 1086 1087 for (bh = head, block_start = 0; 1088 ret == 0 && (bh != head || !block_start); 1089 block_start = block_end, bh = next) { 1090 next = bh->b_this_page; 1091 block_end = block_start + blocksize; 1092 if (block_end <= from || block_start >= to) { 1093 if (partial && !buffer_uptodate(bh)) 1094 *partial = 1; 1095 continue; 1096 } 1097 err = (*fn)(handle, bh); 1098 if (!ret) 1099 ret = err; 1100 } 1101 return ret; 1102 } 1103 1104 /* 1105 * To preserve ordering, it is essential that the hole instantiation and 1106 * the data write be encapsulated in a single transaction. We cannot 1107 * close off a transaction and start a new one between the ext4_get_block() 1108 * and the commit_write(). So doing the jbd2_journal_start at the start of 1109 * prepare_write() is the right place. 1110 * 1111 * Also, this function can nest inside ext4_writepage(). In that case, we 1112 * *know* that ext4_writepage() has generated enough buffer credits to do the 1113 * whole page. So we won't block on the journal in that case, which is good, 1114 * because the caller may be PF_MEMALLOC. 1115 * 1116 * By accident, ext4 can be reentered when a transaction is open via 1117 * quota file writes. If we were to commit the transaction while thus 1118 * reentered, there can be a deadlock - we would be holding a quota 1119 * lock, and the commit would never complete if another thread had a 1120 * transaction open and was blocking on the quota lock - a ranking 1121 * violation. 1122 * 1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1124 * will _not_ run commit under these circumstances because handle->h_ref 1125 * is elevated. We'll still have enough credits for the tiny quotafile 1126 * write. 1127 */ 1128 int do_journal_get_write_access(handle_t *handle, 1129 struct buffer_head *bh) 1130 { 1131 int dirty = buffer_dirty(bh); 1132 int ret; 1133 1134 if (!buffer_mapped(bh) || buffer_freed(bh)) 1135 return 0; 1136 /* 1137 * __block_write_begin() could have dirtied some buffers. Clean 1138 * the dirty bit as jbd2_journal_get_write_access() could complain 1139 * otherwise about fs integrity issues. Setting of the dirty bit 1140 * by __block_write_begin() isn't a real problem here as we clear 1141 * the bit before releasing a page lock and thus writeback cannot 1142 * ever write the buffer. 1143 */ 1144 if (dirty) 1145 clear_buffer_dirty(bh); 1146 BUFFER_TRACE(bh, "get write access"); 1147 ret = ext4_journal_get_write_access(handle, bh); 1148 if (!ret && dirty) 1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1150 return ret; 1151 } 1152 1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1155 get_block_t *get_block) 1156 { 1157 unsigned from = pos & (PAGE_SIZE - 1); 1158 unsigned to = from + len; 1159 struct inode *inode = page->mapping->host; 1160 unsigned block_start, block_end; 1161 sector_t block; 1162 int err = 0; 1163 unsigned blocksize = inode->i_sb->s_blocksize; 1164 unsigned bbits; 1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1166 bool decrypt = false; 1167 1168 BUG_ON(!PageLocked(page)); 1169 BUG_ON(from > PAGE_SIZE); 1170 BUG_ON(to > PAGE_SIZE); 1171 BUG_ON(from > to); 1172 1173 if (!page_has_buffers(page)) 1174 create_empty_buffers(page, blocksize, 0); 1175 head = page_buffers(page); 1176 bbits = ilog2(blocksize); 1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1178 1179 for (bh = head, block_start = 0; bh != head || !block_start; 1180 block++, block_start = block_end, bh = bh->b_this_page) { 1181 block_end = block_start + blocksize; 1182 if (block_end <= from || block_start >= to) { 1183 if (PageUptodate(page)) { 1184 if (!buffer_uptodate(bh)) 1185 set_buffer_uptodate(bh); 1186 } 1187 continue; 1188 } 1189 if (buffer_new(bh)) 1190 clear_buffer_new(bh); 1191 if (!buffer_mapped(bh)) { 1192 WARN_ON(bh->b_size != blocksize); 1193 err = get_block(inode, block, bh, 1); 1194 if (err) 1195 break; 1196 if (buffer_new(bh)) { 1197 clean_bdev_bh_alias(bh); 1198 if (PageUptodate(page)) { 1199 clear_buffer_new(bh); 1200 set_buffer_uptodate(bh); 1201 mark_buffer_dirty(bh); 1202 continue; 1203 } 1204 if (block_end > to || block_start < from) 1205 zero_user_segments(page, to, block_end, 1206 block_start, from); 1207 continue; 1208 } 1209 } 1210 if (PageUptodate(page)) { 1211 if (!buffer_uptodate(bh)) 1212 set_buffer_uptodate(bh); 1213 continue; 1214 } 1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1216 !buffer_unwritten(bh) && 1217 (block_start < from || block_end > to)) { 1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1219 *wait_bh++ = bh; 1220 decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 1221 } 1222 } 1223 /* 1224 * If we issued read requests, let them complete. 1225 */ 1226 while (wait_bh > wait) { 1227 wait_on_buffer(*--wait_bh); 1228 if (!buffer_uptodate(*wait_bh)) 1229 err = -EIO; 1230 } 1231 if (unlikely(err)) 1232 page_zero_new_buffers(page, from, to); 1233 else if (decrypt) 1234 err = fscrypt_decrypt_page(page->mapping->host, page, 1235 PAGE_SIZE, 0, page->index); 1236 return err; 1237 } 1238 #endif 1239 1240 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1241 loff_t pos, unsigned len, unsigned flags, 1242 struct page **pagep, void **fsdata) 1243 { 1244 struct inode *inode = mapping->host; 1245 int ret, needed_blocks; 1246 handle_t *handle; 1247 int retries = 0; 1248 struct page *page; 1249 pgoff_t index; 1250 unsigned from, to; 1251 1252 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1253 return -EIO; 1254 1255 trace_ext4_write_begin(inode, pos, len, flags); 1256 /* 1257 * Reserve one block more for addition to orphan list in case 1258 * we allocate blocks but write fails for some reason 1259 */ 1260 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1261 index = pos >> PAGE_SHIFT; 1262 from = pos & (PAGE_SIZE - 1); 1263 to = from + len; 1264 1265 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1266 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1267 flags, pagep); 1268 if (ret < 0) 1269 return ret; 1270 if (ret == 1) 1271 return 0; 1272 } 1273 1274 /* 1275 * grab_cache_page_write_begin() can take a long time if the 1276 * system is thrashing due to memory pressure, or if the page 1277 * is being written back. So grab it first before we start 1278 * the transaction handle. This also allows us to allocate 1279 * the page (if needed) without using GFP_NOFS. 1280 */ 1281 retry_grab: 1282 page = grab_cache_page_write_begin(mapping, index, flags); 1283 if (!page) 1284 return -ENOMEM; 1285 unlock_page(page); 1286 1287 retry_journal: 1288 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1289 if (IS_ERR(handle)) { 1290 put_page(page); 1291 return PTR_ERR(handle); 1292 } 1293 1294 lock_page(page); 1295 if (page->mapping != mapping) { 1296 /* The page got truncated from under us */ 1297 unlock_page(page); 1298 put_page(page); 1299 ext4_journal_stop(handle); 1300 goto retry_grab; 1301 } 1302 /* In case writeback began while the page was unlocked */ 1303 wait_for_stable_page(page); 1304 1305 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1306 if (ext4_should_dioread_nolock(inode)) 1307 ret = ext4_block_write_begin(page, pos, len, 1308 ext4_get_block_unwritten); 1309 else 1310 ret = ext4_block_write_begin(page, pos, len, 1311 ext4_get_block); 1312 #else 1313 if (ext4_should_dioread_nolock(inode)) 1314 ret = __block_write_begin(page, pos, len, 1315 ext4_get_block_unwritten); 1316 else 1317 ret = __block_write_begin(page, pos, len, ext4_get_block); 1318 #endif 1319 if (!ret && ext4_should_journal_data(inode)) { 1320 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1321 from, to, NULL, 1322 do_journal_get_write_access); 1323 } 1324 1325 if (ret) { 1326 unlock_page(page); 1327 /* 1328 * __block_write_begin may have instantiated a few blocks 1329 * outside i_size. Trim these off again. Don't need 1330 * i_size_read because we hold i_mutex. 1331 * 1332 * Add inode to orphan list in case we crash before 1333 * truncate finishes 1334 */ 1335 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1336 ext4_orphan_add(handle, inode); 1337 1338 ext4_journal_stop(handle); 1339 if (pos + len > inode->i_size) { 1340 ext4_truncate_failed_write(inode); 1341 /* 1342 * If truncate failed early the inode might 1343 * still be on the orphan list; we need to 1344 * make sure the inode is removed from the 1345 * orphan list in that case. 1346 */ 1347 if (inode->i_nlink) 1348 ext4_orphan_del(NULL, inode); 1349 } 1350 1351 if (ret == -ENOSPC && 1352 ext4_should_retry_alloc(inode->i_sb, &retries)) 1353 goto retry_journal; 1354 put_page(page); 1355 return ret; 1356 } 1357 *pagep = page; 1358 return ret; 1359 } 1360 1361 /* For write_end() in data=journal mode */ 1362 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1363 { 1364 int ret; 1365 if (!buffer_mapped(bh) || buffer_freed(bh)) 1366 return 0; 1367 set_buffer_uptodate(bh); 1368 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1369 clear_buffer_meta(bh); 1370 clear_buffer_prio(bh); 1371 return ret; 1372 } 1373 1374 /* 1375 * We need to pick up the new inode size which generic_commit_write gave us 1376 * `file' can be NULL - eg, when called from page_symlink(). 1377 * 1378 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1379 * buffers are managed internally. 1380 */ 1381 static int ext4_write_end(struct file *file, 1382 struct address_space *mapping, 1383 loff_t pos, unsigned len, unsigned copied, 1384 struct page *page, void *fsdata) 1385 { 1386 handle_t *handle = ext4_journal_current_handle(); 1387 struct inode *inode = mapping->host; 1388 loff_t old_size = inode->i_size; 1389 int ret = 0, ret2; 1390 int i_size_changed = 0; 1391 int inline_data = ext4_has_inline_data(inode); 1392 1393 trace_ext4_write_end(inode, pos, len, copied); 1394 if (inline_data) { 1395 ret = ext4_write_inline_data_end(inode, pos, len, 1396 copied, page); 1397 if (ret < 0) { 1398 unlock_page(page); 1399 put_page(page); 1400 goto errout; 1401 } 1402 copied = ret; 1403 } else 1404 copied = block_write_end(file, mapping, pos, 1405 len, copied, page, fsdata); 1406 /* 1407 * it's important to update i_size while still holding page lock: 1408 * page writeout could otherwise come in and zero beyond i_size. 1409 */ 1410 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1411 unlock_page(page); 1412 put_page(page); 1413 1414 if (old_size < pos) 1415 pagecache_isize_extended(inode, old_size, pos); 1416 /* 1417 * Don't mark the inode dirty under page lock. First, it unnecessarily 1418 * makes the holding time of page lock longer. Second, it forces lock 1419 * ordering of page lock and transaction start for journaling 1420 * filesystems. 1421 */ 1422 if (i_size_changed || inline_data) 1423 ext4_mark_inode_dirty(handle, inode); 1424 1425 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1426 /* if we have allocated more blocks and copied 1427 * less. We will have blocks allocated outside 1428 * inode->i_size. So truncate them 1429 */ 1430 ext4_orphan_add(handle, inode); 1431 errout: 1432 ret2 = ext4_journal_stop(handle); 1433 if (!ret) 1434 ret = ret2; 1435 1436 if (pos + len > inode->i_size) { 1437 ext4_truncate_failed_write(inode); 1438 /* 1439 * If truncate failed early the inode might still be 1440 * on the orphan list; we need to make sure the inode 1441 * is removed from the orphan list in that case. 1442 */ 1443 if (inode->i_nlink) 1444 ext4_orphan_del(NULL, inode); 1445 } 1446 1447 return ret ? ret : copied; 1448 } 1449 1450 /* 1451 * This is a private version of page_zero_new_buffers() which doesn't 1452 * set the buffer to be dirty, since in data=journalled mode we need 1453 * to call ext4_handle_dirty_metadata() instead. 1454 */ 1455 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1456 struct page *page, 1457 unsigned from, unsigned to) 1458 { 1459 unsigned int block_start = 0, block_end; 1460 struct buffer_head *head, *bh; 1461 1462 bh = head = page_buffers(page); 1463 do { 1464 block_end = block_start + bh->b_size; 1465 if (buffer_new(bh)) { 1466 if (block_end > from && block_start < to) { 1467 if (!PageUptodate(page)) { 1468 unsigned start, size; 1469 1470 start = max(from, block_start); 1471 size = min(to, block_end) - start; 1472 1473 zero_user(page, start, size); 1474 write_end_fn(handle, bh); 1475 } 1476 clear_buffer_new(bh); 1477 } 1478 } 1479 block_start = block_end; 1480 bh = bh->b_this_page; 1481 } while (bh != head); 1482 } 1483 1484 static int ext4_journalled_write_end(struct file *file, 1485 struct address_space *mapping, 1486 loff_t pos, unsigned len, unsigned copied, 1487 struct page *page, void *fsdata) 1488 { 1489 handle_t *handle = ext4_journal_current_handle(); 1490 struct inode *inode = mapping->host; 1491 loff_t old_size = inode->i_size; 1492 int ret = 0, ret2; 1493 int partial = 0; 1494 unsigned from, to; 1495 int size_changed = 0; 1496 int inline_data = ext4_has_inline_data(inode); 1497 1498 trace_ext4_journalled_write_end(inode, pos, len, copied); 1499 from = pos & (PAGE_SIZE - 1); 1500 to = from + len; 1501 1502 BUG_ON(!ext4_handle_valid(handle)); 1503 1504 if (inline_data) { 1505 ret = ext4_write_inline_data_end(inode, pos, len, 1506 copied, page); 1507 if (ret < 0) { 1508 unlock_page(page); 1509 put_page(page); 1510 goto errout; 1511 } 1512 copied = ret; 1513 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1514 copied = 0; 1515 ext4_journalled_zero_new_buffers(handle, page, from, to); 1516 } else { 1517 if (unlikely(copied < len)) 1518 ext4_journalled_zero_new_buffers(handle, page, 1519 from + copied, to); 1520 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1521 from + copied, &partial, 1522 write_end_fn); 1523 if (!partial) 1524 SetPageUptodate(page); 1525 } 1526 size_changed = ext4_update_inode_size(inode, pos + copied); 1527 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1528 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1529 unlock_page(page); 1530 put_page(page); 1531 1532 if (old_size < pos) 1533 pagecache_isize_extended(inode, old_size, pos); 1534 1535 if (size_changed || inline_data) { 1536 ret2 = ext4_mark_inode_dirty(handle, inode); 1537 if (!ret) 1538 ret = ret2; 1539 } 1540 1541 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1542 /* if we have allocated more blocks and copied 1543 * less. We will have blocks allocated outside 1544 * inode->i_size. So truncate them 1545 */ 1546 ext4_orphan_add(handle, inode); 1547 1548 errout: 1549 ret2 = ext4_journal_stop(handle); 1550 if (!ret) 1551 ret = ret2; 1552 if (pos + len > inode->i_size) { 1553 ext4_truncate_failed_write(inode); 1554 /* 1555 * If truncate failed early the inode might still be 1556 * on the orphan list; we need to make sure the inode 1557 * is removed from the orphan list in that case. 1558 */ 1559 if (inode->i_nlink) 1560 ext4_orphan_del(NULL, inode); 1561 } 1562 1563 return ret ? ret : copied; 1564 } 1565 1566 /* 1567 * Reserve space for a single cluster 1568 */ 1569 static int ext4_da_reserve_space(struct inode *inode) 1570 { 1571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1572 struct ext4_inode_info *ei = EXT4_I(inode); 1573 int ret; 1574 1575 /* 1576 * We will charge metadata quota at writeout time; this saves 1577 * us from metadata over-estimation, though we may go over by 1578 * a small amount in the end. Here we just reserve for data. 1579 */ 1580 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1581 if (ret) 1582 return ret; 1583 1584 spin_lock(&ei->i_block_reservation_lock); 1585 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1586 spin_unlock(&ei->i_block_reservation_lock); 1587 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1588 return -ENOSPC; 1589 } 1590 ei->i_reserved_data_blocks++; 1591 trace_ext4_da_reserve_space(inode); 1592 spin_unlock(&ei->i_block_reservation_lock); 1593 1594 return 0; /* success */ 1595 } 1596 1597 void ext4_da_release_space(struct inode *inode, int to_free) 1598 { 1599 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1600 struct ext4_inode_info *ei = EXT4_I(inode); 1601 1602 if (!to_free) 1603 return; /* Nothing to release, exit */ 1604 1605 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1606 1607 trace_ext4_da_release_space(inode, to_free); 1608 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1609 /* 1610 * if there aren't enough reserved blocks, then the 1611 * counter is messed up somewhere. Since this 1612 * function is called from invalidate page, it's 1613 * harmless to return without any action. 1614 */ 1615 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1616 "ino %lu, to_free %d with only %d reserved " 1617 "data blocks", inode->i_ino, to_free, 1618 ei->i_reserved_data_blocks); 1619 WARN_ON(1); 1620 to_free = ei->i_reserved_data_blocks; 1621 } 1622 ei->i_reserved_data_blocks -= to_free; 1623 1624 /* update fs dirty data blocks counter */ 1625 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1626 1627 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1628 1629 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1630 } 1631 1632 static void ext4_da_page_release_reservation(struct page *page, 1633 unsigned int offset, 1634 unsigned int length) 1635 { 1636 int contiguous_blks = 0; 1637 struct buffer_head *head, *bh; 1638 unsigned int curr_off = 0; 1639 struct inode *inode = page->mapping->host; 1640 unsigned int stop = offset + length; 1641 ext4_fsblk_t lblk; 1642 1643 BUG_ON(stop > PAGE_SIZE || stop < length); 1644 1645 head = page_buffers(page); 1646 bh = head; 1647 do { 1648 unsigned int next_off = curr_off + bh->b_size; 1649 1650 if (next_off > stop) 1651 break; 1652 1653 if ((offset <= curr_off) && (buffer_delay(bh))) { 1654 contiguous_blks++; 1655 clear_buffer_delay(bh); 1656 } else if (contiguous_blks) { 1657 lblk = page->index << 1658 (PAGE_SHIFT - inode->i_blkbits); 1659 lblk += (curr_off >> inode->i_blkbits) - 1660 contiguous_blks; 1661 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1662 contiguous_blks = 0; 1663 } 1664 curr_off = next_off; 1665 } while ((bh = bh->b_this_page) != head); 1666 1667 if (contiguous_blks) { 1668 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1669 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1670 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1671 } 1672 1673 } 1674 1675 /* 1676 * Delayed allocation stuff 1677 */ 1678 1679 struct mpage_da_data { 1680 struct inode *inode; 1681 struct writeback_control *wbc; 1682 1683 pgoff_t first_page; /* The first page to write */ 1684 pgoff_t next_page; /* Current page to examine */ 1685 pgoff_t last_page; /* Last page to examine */ 1686 /* 1687 * Extent to map - this can be after first_page because that can be 1688 * fully mapped. We somewhat abuse m_flags to store whether the extent 1689 * is delalloc or unwritten. 1690 */ 1691 struct ext4_map_blocks map; 1692 struct ext4_io_submit io_submit; /* IO submission data */ 1693 unsigned int do_map:1; 1694 }; 1695 1696 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1697 bool invalidate) 1698 { 1699 int nr_pages, i; 1700 pgoff_t index, end; 1701 struct pagevec pvec; 1702 struct inode *inode = mpd->inode; 1703 struct address_space *mapping = inode->i_mapping; 1704 1705 /* This is necessary when next_page == 0. */ 1706 if (mpd->first_page >= mpd->next_page) 1707 return; 1708 1709 index = mpd->first_page; 1710 end = mpd->next_page - 1; 1711 if (invalidate) { 1712 ext4_lblk_t start, last; 1713 start = index << (PAGE_SHIFT - inode->i_blkbits); 1714 last = end << (PAGE_SHIFT - inode->i_blkbits); 1715 ext4_es_remove_extent(inode, start, last - start + 1); 1716 } 1717 1718 pagevec_init(&pvec); 1719 while (index <= end) { 1720 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1721 if (nr_pages == 0) 1722 break; 1723 for (i = 0; i < nr_pages; i++) { 1724 struct page *page = pvec.pages[i]; 1725 1726 BUG_ON(!PageLocked(page)); 1727 BUG_ON(PageWriteback(page)); 1728 if (invalidate) { 1729 if (page_mapped(page)) 1730 clear_page_dirty_for_io(page); 1731 block_invalidatepage(page, 0, PAGE_SIZE); 1732 ClearPageUptodate(page); 1733 } 1734 unlock_page(page); 1735 } 1736 pagevec_release(&pvec); 1737 } 1738 } 1739 1740 static void ext4_print_free_blocks(struct inode *inode) 1741 { 1742 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1743 struct super_block *sb = inode->i_sb; 1744 struct ext4_inode_info *ei = EXT4_I(inode); 1745 1746 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1747 EXT4_C2B(EXT4_SB(inode->i_sb), 1748 ext4_count_free_clusters(sb))); 1749 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1750 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1751 (long long) EXT4_C2B(EXT4_SB(sb), 1752 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1753 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1754 (long long) EXT4_C2B(EXT4_SB(sb), 1755 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1756 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1757 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1758 ei->i_reserved_data_blocks); 1759 return; 1760 } 1761 1762 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1763 { 1764 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1765 } 1766 1767 /* 1768 * ext4_insert_delayed_block - adds a delayed block to the extents status 1769 * tree, incrementing the reserved cluster/block 1770 * count or making a pending reservation 1771 * where needed 1772 * 1773 * @inode - file containing the newly added block 1774 * @lblk - logical block to be added 1775 * 1776 * Returns 0 on success, negative error code on failure. 1777 */ 1778 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1779 { 1780 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1781 int ret; 1782 bool allocated = false; 1783 1784 /* 1785 * If the cluster containing lblk is shared with a delayed, 1786 * written, or unwritten extent in a bigalloc file system, it's 1787 * already been accounted for and does not need to be reserved. 1788 * A pending reservation must be made for the cluster if it's 1789 * shared with a written or unwritten extent and doesn't already 1790 * have one. Written and unwritten extents can be purged from the 1791 * extents status tree if the system is under memory pressure, so 1792 * it's necessary to examine the extent tree if a search of the 1793 * extents status tree doesn't get a match. 1794 */ 1795 if (sbi->s_cluster_ratio == 1) { 1796 ret = ext4_da_reserve_space(inode); 1797 if (ret != 0) /* ENOSPC */ 1798 goto errout; 1799 } else { /* bigalloc */ 1800 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1801 if (!ext4_es_scan_clu(inode, 1802 &ext4_es_is_mapped, lblk)) { 1803 ret = ext4_clu_mapped(inode, 1804 EXT4_B2C(sbi, lblk)); 1805 if (ret < 0) 1806 goto errout; 1807 if (ret == 0) { 1808 ret = ext4_da_reserve_space(inode); 1809 if (ret != 0) /* ENOSPC */ 1810 goto errout; 1811 } else { 1812 allocated = true; 1813 } 1814 } else { 1815 allocated = true; 1816 } 1817 } 1818 } 1819 1820 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1821 1822 errout: 1823 return ret; 1824 } 1825 1826 /* 1827 * This function is grabs code from the very beginning of 1828 * ext4_map_blocks, but assumes that the caller is from delayed write 1829 * time. This function looks up the requested blocks and sets the 1830 * buffer delay bit under the protection of i_data_sem. 1831 */ 1832 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1833 struct ext4_map_blocks *map, 1834 struct buffer_head *bh) 1835 { 1836 struct extent_status es; 1837 int retval; 1838 sector_t invalid_block = ~((sector_t) 0xffff); 1839 #ifdef ES_AGGRESSIVE_TEST 1840 struct ext4_map_blocks orig_map; 1841 1842 memcpy(&orig_map, map, sizeof(*map)); 1843 #endif 1844 1845 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1846 invalid_block = ~0; 1847 1848 map->m_flags = 0; 1849 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1850 "logical block %lu\n", inode->i_ino, map->m_len, 1851 (unsigned long) map->m_lblk); 1852 1853 /* Lookup extent status tree firstly */ 1854 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1855 if (ext4_es_is_hole(&es)) { 1856 retval = 0; 1857 down_read(&EXT4_I(inode)->i_data_sem); 1858 goto add_delayed; 1859 } 1860 1861 /* 1862 * Delayed extent could be allocated by fallocate. 1863 * So we need to check it. 1864 */ 1865 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1866 map_bh(bh, inode->i_sb, invalid_block); 1867 set_buffer_new(bh); 1868 set_buffer_delay(bh); 1869 return 0; 1870 } 1871 1872 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1873 retval = es.es_len - (iblock - es.es_lblk); 1874 if (retval > map->m_len) 1875 retval = map->m_len; 1876 map->m_len = retval; 1877 if (ext4_es_is_written(&es)) 1878 map->m_flags |= EXT4_MAP_MAPPED; 1879 else if (ext4_es_is_unwritten(&es)) 1880 map->m_flags |= EXT4_MAP_UNWRITTEN; 1881 else 1882 BUG_ON(1); 1883 1884 #ifdef ES_AGGRESSIVE_TEST 1885 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1886 #endif 1887 return retval; 1888 } 1889 1890 /* 1891 * Try to see if we can get the block without requesting a new 1892 * file system block. 1893 */ 1894 down_read(&EXT4_I(inode)->i_data_sem); 1895 if (ext4_has_inline_data(inode)) 1896 retval = 0; 1897 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1898 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1899 else 1900 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1901 1902 add_delayed: 1903 if (retval == 0) { 1904 int ret; 1905 1906 /* 1907 * XXX: __block_prepare_write() unmaps passed block, 1908 * is it OK? 1909 */ 1910 1911 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1912 if (ret != 0) { 1913 retval = ret; 1914 goto out_unlock; 1915 } 1916 1917 map_bh(bh, inode->i_sb, invalid_block); 1918 set_buffer_new(bh); 1919 set_buffer_delay(bh); 1920 } else if (retval > 0) { 1921 int ret; 1922 unsigned int status; 1923 1924 if (unlikely(retval != map->m_len)) { 1925 ext4_warning(inode->i_sb, 1926 "ES len assertion failed for inode " 1927 "%lu: retval %d != map->m_len %d", 1928 inode->i_ino, retval, map->m_len); 1929 WARN_ON(1); 1930 } 1931 1932 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1933 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1934 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1935 map->m_pblk, status); 1936 if (ret != 0) 1937 retval = ret; 1938 } 1939 1940 out_unlock: 1941 up_read((&EXT4_I(inode)->i_data_sem)); 1942 1943 return retval; 1944 } 1945 1946 /* 1947 * This is a special get_block_t callback which is used by 1948 * ext4_da_write_begin(). It will either return mapped block or 1949 * reserve space for a single block. 1950 * 1951 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1952 * We also have b_blocknr = -1 and b_bdev initialized properly 1953 * 1954 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1955 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1956 * initialized properly. 1957 */ 1958 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1959 struct buffer_head *bh, int create) 1960 { 1961 struct ext4_map_blocks map; 1962 int ret = 0; 1963 1964 BUG_ON(create == 0); 1965 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1966 1967 map.m_lblk = iblock; 1968 map.m_len = 1; 1969 1970 /* 1971 * first, we need to know whether the block is allocated already 1972 * preallocated blocks are unmapped but should treated 1973 * the same as allocated blocks. 1974 */ 1975 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1976 if (ret <= 0) 1977 return ret; 1978 1979 map_bh(bh, inode->i_sb, map.m_pblk); 1980 ext4_update_bh_state(bh, map.m_flags); 1981 1982 if (buffer_unwritten(bh)) { 1983 /* A delayed write to unwritten bh should be marked 1984 * new and mapped. Mapped ensures that we don't do 1985 * get_block multiple times when we write to the same 1986 * offset and new ensures that we do proper zero out 1987 * for partial write. 1988 */ 1989 set_buffer_new(bh); 1990 set_buffer_mapped(bh); 1991 } 1992 return 0; 1993 } 1994 1995 static int bget_one(handle_t *handle, struct buffer_head *bh) 1996 { 1997 get_bh(bh); 1998 return 0; 1999 } 2000 2001 static int bput_one(handle_t *handle, struct buffer_head *bh) 2002 { 2003 put_bh(bh); 2004 return 0; 2005 } 2006 2007 static int __ext4_journalled_writepage(struct page *page, 2008 unsigned int len) 2009 { 2010 struct address_space *mapping = page->mapping; 2011 struct inode *inode = mapping->host; 2012 struct buffer_head *page_bufs = NULL; 2013 handle_t *handle = NULL; 2014 int ret = 0, err = 0; 2015 int inline_data = ext4_has_inline_data(inode); 2016 struct buffer_head *inode_bh = NULL; 2017 2018 ClearPageChecked(page); 2019 2020 if (inline_data) { 2021 BUG_ON(page->index != 0); 2022 BUG_ON(len > ext4_get_max_inline_size(inode)); 2023 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2024 if (inode_bh == NULL) 2025 goto out; 2026 } else { 2027 page_bufs = page_buffers(page); 2028 if (!page_bufs) { 2029 BUG(); 2030 goto out; 2031 } 2032 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2033 NULL, bget_one); 2034 } 2035 /* 2036 * We need to release the page lock before we start the 2037 * journal, so grab a reference so the page won't disappear 2038 * out from under us. 2039 */ 2040 get_page(page); 2041 unlock_page(page); 2042 2043 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2044 ext4_writepage_trans_blocks(inode)); 2045 if (IS_ERR(handle)) { 2046 ret = PTR_ERR(handle); 2047 put_page(page); 2048 goto out_no_pagelock; 2049 } 2050 BUG_ON(!ext4_handle_valid(handle)); 2051 2052 lock_page(page); 2053 put_page(page); 2054 if (page->mapping != mapping) { 2055 /* The page got truncated from under us */ 2056 ext4_journal_stop(handle); 2057 ret = 0; 2058 goto out; 2059 } 2060 2061 if (inline_data) { 2062 ret = ext4_mark_inode_dirty(handle, inode); 2063 } else { 2064 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2065 do_journal_get_write_access); 2066 2067 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2068 write_end_fn); 2069 } 2070 if (ret == 0) 2071 ret = err; 2072 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2073 err = ext4_journal_stop(handle); 2074 if (!ret) 2075 ret = err; 2076 2077 if (!ext4_has_inline_data(inode)) 2078 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2079 NULL, bput_one); 2080 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2081 out: 2082 unlock_page(page); 2083 out_no_pagelock: 2084 brelse(inode_bh); 2085 return ret; 2086 } 2087 2088 /* 2089 * Note that we don't need to start a transaction unless we're journaling data 2090 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2091 * need to file the inode to the transaction's list in ordered mode because if 2092 * we are writing back data added by write(), the inode is already there and if 2093 * we are writing back data modified via mmap(), no one guarantees in which 2094 * transaction the data will hit the disk. In case we are journaling data, we 2095 * cannot start transaction directly because transaction start ranks above page 2096 * lock so we have to do some magic. 2097 * 2098 * This function can get called via... 2099 * - ext4_writepages after taking page lock (have journal handle) 2100 * - journal_submit_inode_data_buffers (no journal handle) 2101 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2102 * - grab_page_cache when doing write_begin (have journal handle) 2103 * 2104 * We don't do any block allocation in this function. If we have page with 2105 * multiple blocks we need to write those buffer_heads that are mapped. This 2106 * is important for mmaped based write. So if we do with blocksize 1K 2107 * truncate(f, 1024); 2108 * a = mmap(f, 0, 4096); 2109 * a[0] = 'a'; 2110 * truncate(f, 4096); 2111 * we have in the page first buffer_head mapped via page_mkwrite call back 2112 * but other buffer_heads would be unmapped but dirty (dirty done via the 2113 * do_wp_page). So writepage should write the first block. If we modify 2114 * the mmap area beyond 1024 we will again get a page_fault and the 2115 * page_mkwrite callback will do the block allocation and mark the 2116 * buffer_heads mapped. 2117 * 2118 * We redirty the page if we have any buffer_heads that is either delay or 2119 * unwritten in the page. 2120 * 2121 * We can get recursively called as show below. 2122 * 2123 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2124 * ext4_writepage() 2125 * 2126 * But since we don't do any block allocation we should not deadlock. 2127 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2128 */ 2129 static int ext4_writepage(struct page *page, 2130 struct writeback_control *wbc) 2131 { 2132 int ret = 0; 2133 loff_t size; 2134 unsigned int len; 2135 struct buffer_head *page_bufs = NULL; 2136 struct inode *inode = page->mapping->host; 2137 struct ext4_io_submit io_submit; 2138 bool keep_towrite = false; 2139 2140 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2141 ext4_invalidatepage(page, 0, PAGE_SIZE); 2142 unlock_page(page); 2143 return -EIO; 2144 } 2145 2146 trace_ext4_writepage(page); 2147 size = i_size_read(inode); 2148 if (page->index == size >> PAGE_SHIFT) 2149 len = size & ~PAGE_MASK; 2150 else 2151 len = PAGE_SIZE; 2152 2153 page_bufs = page_buffers(page); 2154 /* 2155 * We cannot do block allocation or other extent handling in this 2156 * function. If there are buffers needing that, we have to redirty 2157 * the page. But we may reach here when we do a journal commit via 2158 * journal_submit_inode_data_buffers() and in that case we must write 2159 * allocated buffers to achieve data=ordered mode guarantees. 2160 * 2161 * Also, if there is only one buffer per page (the fs block 2162 * size == the page size), if one buffer needs block 2163 * allocation or needs to modify the extent tree to clear the 2164 * unwritten flag, we know that the page can't be written at 2165 * all, so we might as well refuse the write immediately. 2166 * Unfortunately if the block size != page size, we can't as 2167 * easily detect this case using ext4_walk_page_buffers(), but 2168 * for the extremely common case, this is an optimization that 2169 * skips a useless round trip through ext4_bio_write_page(). 2170 */ 2171 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2172 ext4_bh_delay_or_unwritten)) { 2173 redirty_page_for_writepage(wbc, page); 2174 if ((current->flags & PF_MEMALLOC) || 2175 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2176 /* 2177 * For memory cleaning there's no point in writing only 2178 * some buffers. So just bail out. Warn if we came here 2179 * from direct reclaim. 2180 */ 2181 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2182 == PF_MEMALLOC); 2183 unlock_page(page); 2184 return 0; 2185 } 2186 keep_towrite = true; 2187 } 2188 2189 if (PageChecked(page) && ext4_should_journal_data(inode)) 2190 /* 2191 * It's mmapped pagecache. Add buffers and journal it. There 2192 * doesn't seem much point in redirtying the page here. 2193 */ 2194 return __ext4_journalled_writepage(page, len); 2195 2196 ext4_io_submit_init(&io_submit, wbc); 2197 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2198 if (!io_submit.io_end) { 2199 redirty_page_for_writepage(wbc, page); 2200 unlock_page(page); 2201 return -ENOMEM; 2202 } 2203 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2204 ext4_io_submit(&io_submit); 2205 /* Drop io_end reference we got from init */ 2206 ext4_put_io_end_defer(io_submit.io_end); 2207 return ret; 2208 } 2209 2210 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2211 { 2212 int len; 2213 loff_t size; 2214 int err; 2215 2216 BUG_ON(page->index != mpd->first_page); 2217 clear_page_dirty_for_io(page); 2218 /* 2219 * We have to be very careful here! Nothing protects writeback path 2220 * against i_size changes and the page can be writeably mapped into 2221 * page tables. So an application can be growing i_size and writing 2222 * data through mmap while writeback runs. clear_page_dirty_for_io() 2223 * write-protects our page in page tables and the page cannot get 2224 * written to again until we release page lock. So only after 2225 * clear_page_dirty_for_io() we are safe to sample i_size for 2226 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2227 * on the barrier provided by TestClearPageDirty in 2228 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2229 * after page tables are updated. 2230 */ 2231 size = i_size_read(mpd->inode); 2232 if (page->index == size >> PAGE_SHIFT) 2233 len = size & ~PAGE_MASK; 2234 else 2235 len = PAGE_SIZE; 2236 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2237 if (!err) 2238 mpd->wbc->nr_to_write--; 2239 mpd->first_page++; 2240 2241 return err; 2242 } 2243 2244 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2245 2246 /* 2247 * mballoc gives us at most this number of blocks... 2248 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2249 * The rest of mballoc seems to handle chunks up to full group size. 2250 */ 2251 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2252 2253 /* 2254 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2255 * 2256 * @mpd - extent of blocks 2257 * @lblk - logical number of the block in the file 2258 * @bh - buffer head we want to add to the extent 2259 * 2260 * The function is used to collect contig. blocks in the same state. If the 2261 * buffer doesn't require mapping for writeback and we haven't started the 2262 * extent of buffers to map yet, the function returns 'true' immediately - the 2263 * caller can write the buffer right away. Otherwise the function returns true 2264 * if the block has been added to the extent, false if the block couldn't be 2265 * added. 2266 */ 2267 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2268 struct buffer_head *bh) 2269 { 2270 struct ext4_map_blocks *map = &mpd->map; 2271 2272 /* Buffer that doesn't need mapping for writeback? */ 2273 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2274 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2275 /* So far no extent to map => we write the buffer right away */ 2276 if (map->m_len == 0) 2277 return true; 2278 return false; 2279 } 2280 2281 /* First block in the extent? */ 2282 if (map->m_len == 0) { 2283 /* We cannot map unless handle is started... */ 2284 if (!mpd->do_map) 2285 return false; 2286 map->m_lblk = lblk; 2287 map->m_len = 1; 2288 map->m_flags = bh->b_state & BH_FLAGS; 2289 return true; 2290 } 2291 2292 /* Don't go larger than mballoc is willing to allocate */ 2293 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2294 return false; 2295 2296 /* Can we merge the block to our big extent? */ 2297 if (lblk == map->m_lblk + map->m_len && 2298 (bh->b_state & BH_FLAGS) == map->m_flags) { 2299 map->m_len++; 2300 return true; 2301 } 2302 return false; 2303 } 2304 2305 /* 2306 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2307 * 2308 * @mpd - extent of blocks for mapping 2309 * @head - the first buffer in the page 2310 * @bh - buffer we should start processing from 2311 * @lblk - logical number of the block in the file corresponding to @bh 2312 * 2313 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2314 * the page for IO if all buffers in this page were mapped and there's no 2315 * accumulated extent of buffers to map or add buffers in the page to the 2316 * extent of buffers to map. The function returns 1 if the caller can continue 2317 * by processing the next page, 0 if it should stop adding buffers to the 2318 * extent to map because we cannot extend it anymore. It can also return value 2319 * < 0 in case of error during IO submission. 2320 */ 2321 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2322 struct buffer_head *head, 2323 struct buffer_head *bh, 2324 ext4_lblk_t lblk) 2325 { 2326 struct inode *inode = mpd->inode; 2327 int err; 2328 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2329 >> inode->i_blkbits; 2330 2331 do { 2332 BUG_ON(buffer_locked(bh)); 2333 2334 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2335 /* Found extent to map? */ 2336 if (mpd->map.m_len) 2337 return 0; 2338 /* Buffer needs mapping and handle is not started? */ 2339 if (!mpd->do_map) 2340 return 0; 2341 /* Everything mapped so far and we hit EOF */ 2342 break; 2343 } 2344 } while (lblk++, (bh = bh->b_this_page) != head); 2345 /* So far everything mapped? Submit the page for IO. */ 2346 if (mpd->map.m_len == 0) { 2347 err = mpage_submit_page(mpd, head->b_page); 2348 if (err < 0) 2349 return err; 2350 } 2351 return lblk < blocks; 2352 } 2353 2354 /* 2355 * mpage_map_buffers - update buffers corresponding to changed extent and 2356 * submit fully mapped pages for IO 2357 * 2358 * @mpd - description of extent to map, on return next extent to map 2359 * 2360 * Scan buffers corresponding to changed extent (we expect corresponding pages 2361 * to be already locked) and update buffer state according to new extent state. 2362 * We map delalloc buffers to their physical location, clear unwritten bits, 2363 * and mark buffers as uninit when we perform writes to unwritten extents 2364 * and do extent conversion after IO is finished. If the last page is not fully 2365 * mapped, we update @map to the next extent in the last page that needs 2366 * mapping. Otherwise we submit the page for IO. 2367 */ 2368 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2369 { 2370 struct pagevec pvec; 2371 int nr_pages, i; 2372 struct inode *inode = mpd->inode; 2373 struct buffer_head *head, *bh; 2374 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2375 pgoff_t start, end; 2376 ext4_lblk_t lblk; 2377 sector_t pblock; 2378 int err; 2379 2380 start = mpd->map.m_lblk >> bpp_bits; 2381 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2382 lblk = start << bpp_bits; 2383 pblock = mpd->map.m_pblk; 2384 2385 pagevec_init(&pvec); 2386 while (start <= end) { 2387 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2388 &start, end); 2389 if (nr_pages == 0) 2390 break; 2391 for (i = 0; i < nr_pages; i++) { 2392 struct page *page = pvec.pages[i]; 2393 2394 bh = head = page_buffers(page); 2395 do { 2396 if (lblk < mpd->map.m_lblk) 2397 continue; 2398 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2399 /* 2400 * Buffer after end of mapped extent. 2401 * Find next buffer in the page to map. 2402 */ 2403 mpd->map.m_len = 0; 2404 mpd->map.m_flags = 0; 2405 /* 2406 * FIXME: If dioread_nolock supports 2407 * blocksize < pagesize, we need to make 2408 * sure we add size mapped so far to 2409 * io_end->size as the following call 2410 * can submit the page for IO. 2411 */ 2412 err = mpage_process_page_bufs(mpd, head, 2413 bh, lblk); 2414 pagevec_release(&pvec); 2415 if (err > 0) 2416 err = 0; 2417 return err; 2418 } 2419 if (buffer_delay(bh)) { 2420 clear_buffer_delay(bh); 2421 bh->b_blocknr = pblock++; 2422 } 2423 clear_buffer_unwritten(bh); 2424 } while (lblk++, (bh = bh->b_this_page) != head); 2425 2426 /* 2427 * FIXME: This is going to break if dioread_nolock 2428 * supports blocksize < pagesize as we will try to 2429 * convert potentially unmapped parts of inode. 2430 */ 2431 mpd->io_submit.io_end->size += PAGE_SIZE; 2432 /* Page fully mapped - let IO run! */ 2433 err = mpage_submit_page(mpd, page); 2434 if (err < 0) { 2435 pagevec_release(&pvec); 2436 return err; 2437 } 2438 } 2439 pagevec_release(&pvec); 2440 } 2441 /* Extent fully mapped and matches with page boundary. We are done. */ 2442 mpd->map.m_len = 0; 2443 mpd->map.m_flags = 0; 2444 return 0; 2445 } 2446 2447 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2448 { 2449 struct inode *inode = mpd->inode; 2450 struct ext4_map_blocks *map = &mpd->map; 2451 int get_blocks_flags; 2452 int err, dioread_nolock; 2453 2454 trace_ext4_da_write_pages_extent(inode, map); 2455 /* 2456 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2457 * to convert an unwritten extent to be initialized (in the case 2458 * where we have written into one or more preallocated blocks). It is 2459 * possible that we're going to need more metadata blocks than 2460 * previously reserved. However we must not fail because we're in 2461 * writeback and there is nothing we can do about it so it might result 2462 * in data loss. So use reserved blocks to allocate metadata if 2463 * possible. 2464 * 2465 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2466 * the blocks in question are delalloc blocks. This indicates 2467 * that the blocks and quotas has already been checked when 2468 * the data was copied into the page cache. 2469 */ 2470 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2471 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2472 EXT4_GET_BLOCKS_IO_SUBMIT; 2473 dioread_nolock = ext4_should_dioread_nolock(inode); 2474 if (dioread_nolock) 2475 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2476 if (map->m_flags & (1 << BH_Delay)) 2477 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2478 2479 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2480 if (err < 0) 2481 return err; 2482 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2483 if (!mpd->io_submit.io_end->handle && 2484 ext4_handle_valid(handle)) { 2485 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2486 handle->h_rsv_handle = NULL; 2487 } 2488 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2489 } 2490 2491 BUG_ON(map->m_len == 0); 2492 if (map->m_flags & EXT4_MAP_NEW) { 2493 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2494 map->m_len); 2495 } 2496 return 0; 2497 } 2498 2499 /* 2500 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2501 * mpd->len and submit pages underlying it for IO 2502 * 2503 * @handle - handle for journal operations 2504 * @mpd - extent to map 2505 * @give_up_on_write - we set this to true iff there is a fatal error and there 2506 * is no hope of writing the data. The caller should discard 2507 * dirty pages to avoid infinite loops. 2508 * 2509 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2510 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2511 * them to initialized or split the described range from larger unwritten 2512 * extent. Note that we need not map all the described range since allocation 2513 * can return less blocks or the range is covered by more unwritten extents. We 2514 * cannot map more because we are limited by reserved transaction credits. On 2515 * the other hand we always make sure that the last touched page is fully 2516 * mapped so that it can be written out (and thus forward progress is 2517 * guaranteed). After mapping we submit all mapped pages for IO. 2518 */ 2519 static int mpage_map_and_submit_extent(handle_t *handle, 2520 struct mpage_da_data *mpd, 2521 bool *give_up_on_write) 2522 { 2523 struct inode *inode = mpd->inode; 2524 struct ext4_map_blocks *map = &mpd->map; 2525 int err; 2526 loff_t disksize; 2527 int progress = 0; 2528 2529 mpd->io_submit.io_end->offset = 2530 ((loff_t)map->m_lblk) << inode->i_blkbits; 2531 do { 2532 err = mpage_map_one_extent(handle, mpd); 2533 if (err < 0) { 2534 struct super_block *sb = inode->i_sb; 2535 2536 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2537 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2538 goto invalidate_dirty_pages; 2539 /* 2540 * Let the uper layers retry transient errors. 2541 * In the case of ENOSPC, if ext4_count_free_blocks() 2542 * is non-zero, a commit should free up blocks. 2543 */ 2544 if ((err == -ENOMEM) || 2545 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2546 if (progress) 2547 goto update_disksize; 2548 return err; 2549 } 2550 ext4_msg(sb, KERN_CRIT, 2551 "Delayed block allocation failed for " 2552 "inode %lu at logical offset %llu with" 2553 " max blocks %u with error %d", 2554 inode->i_ino, 2555 (unsigned long long)map->m_lblk, 2556 (unsigned)map->m_len, -err); 2557 ext4_msg(sb, KERN_CRIT, 2558 "This should not happen!! Data will " 2559 "be lost\n"); 2560 if (err == -ENOSPC) 2561 ext4_print_free_blocks(inode); 2562 invalidate_dirty_pages: 2563 *give_up_on_write = true; 2564 return err; 2565 } 2566 progress = 1; 2567 /* 2568 * Update buffer state, submit mapped pages, and get us new 2569 * extent to map 2570 */ 2571 err = mpage_map_and_submit_buffers(mpd); 2572 if (err < 0) 2573 goto update_disksize; 2574 } while (map->m_len); 2575 2576 update_disksize: 2577 /* 2578 * Update on-disk size after IO is submitted. Races with 2579 * truncate are avoided by checking i_size under i_data_sem. 2580 */ 2581 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2582 if (disksize > EXT4_I(inode)->i_disksize) { 2583 int err2; 2584 loff_t i_size; 2585 2586 down_write(&EXT4_I(inode)->i_data_sem); 2587 i_size = i_size_read(inode); 2588 if (disksize > i_size) 2589 disksize = i_size; 2590 if (disksize > EXT4_I(inode)->i_disksize) 2591 EXT4_I(inode)->i_disksize = disksize; 2592 up_write(&EXT4_I(inode)->i_data_sem); 2593 err2 = ext4_mark_inode_dirty(handle, inode); 2594 if (err2) 2595 ext4_error(inode->i_sb, 2596 "Failed to mark inode %lu dirty", 2597 inode->i_ino); 2598 if (!err) 2599 err = err2; 2600 } 2601 return err; 2602 } 2603 2604 /* 2605 * Calculate the total number of credits to reserve for one writepages 2606 * iteration. This is called from ext4_writepages(). We map an extent of 2607 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2608 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2609 * bpp - 1 blocks in bpp different extents. 2610 */ 2611 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2612 { 2613 int bpp = ext4_journal_blocks_per_page(inode); 2614 2615 return ext4_meta_trans_blocks(inode, 2616 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2617 } 2618 2619 /* 2620 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2621 * and underlying extent to map 2622 * 2623 * @mpd - where to look for pages 2624 * 2625 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2626 * IO immediately. When we find a page which isn't mapped we start accumulating 2627 * extent of buffers underlying these pages that needs mapping (formed by 2628 * either delayed or unwritten buffers). We also lock the pages containing 2629 * these buffers. The extent found is returned in @mpd structure (starting at 2630 * mpd->lblk with length mpd->len blocks). 2631 * 2632 * Note that this function can attach bios to one io_end structure which are 2633 * neither logically nor physically contiguous. Although it may seem as an 2634 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2635 * case as we need to track IO to all buffers underlying a page in one io_end. 2636 */ 2637 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2638 { 2639 struct address_space *mapping = mpd->inode->i_mapping; 2640 struct pagevec pvec; 2641 unsigned int nr_pages; 2642 long left = mpd->wbc->nr_to_write; 2643 pgoff_t index = mpd->first_page; 2644 pgoff_t end = mpd->last_page; 2645 xa_mark_t tag; 2646 int i, err = 0; 2647 int blkbits = mpd->inode->i_blkbits; 2648 ext4_lblk_t lblk; 2649 struct buffer_head *head; 2650 2651 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2652 tag = PAGECACHE_TAG_TOWRITE; 2653 else 2654 tag = PAGECACHE_TAG_DIRTY; 2655 2656 pagevec_init(&pvec); 2657 mpd->map.m_len = 0; 2658 mpd->next_page = index; 2659 while (index <= end) { 2660 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2661 tag); 2662 if (nr_pages == 0) 2663 goto out; 2664 2665 for (i = 0; i < nr_pages; i++) { 2666 struct page *page = pvec.pages[i]; 2667 2668 /* 2669 * Accumulated enough dirty pages? This doesn't apply 2670 * to WB_SYNC_ALL mode. For integrity sync we have to 2671 * keep going because someone may be concurrently 2672 * dirtying pages, and we might have synced a lot of 2673 * newly appeared dirty pages, but have not synced all 2674 * of the old dirty pages. 2675 */ 2676 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2677 goto out; 2678 2679 /* If we can't merge this page, we are done. */ 2680 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2681 goto out; 2682 2683 lock_page(page); 2684 /* 2685 * If the page is no longer dirty, or its mapping no 2686 * longer corresponds to inode we are writing (which 2687 * means it has been truncated or invalidated), or the 2688 * page is already under writeback and we are not doing 2689 * a data integrity writeback, skip the page 2690 */ 2691 if (!PageDirty(page) || 2692 (PageWriteback(page) && 2693 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2694 unlikely(page->mapping != mapping)) { 2695 unlock_page(page); 2696 continue; 2697 } 2698 2699 wait_on_page_writeback(page); 2700 BUG_ON(PageWriteback(page)); 2701 2702 if (mpd->map.m_len == 0) 2703 mpd->first_page = page->index; 2704 mpd->next_page = page->index + 1; 2705 /* Add all dirty buffers to mpd */ 2706 lblk = ((ext4_lblk_t)page->index) << 2707 (PAGE_SHIFT - blkbits); 2708 head = page_buffers(page); 2709 err = mpage_process_page_bufs(mpd, head, head, lblk); 2710 if (err <= 0) 2711 goto out; 2712 err = 0; 2713 left--; 2714 } 2715 pagevec_release(&pvec); 2716 cond_resched(); 2717 } 2718 return 0; 2719 out: 2720 pagevec_release(&pvec); 2721 return err; 2722 } 2723 2724 static int ext4_writepages(struct address_space *mapping, 2725 struct writeback_control *wbc) 2726 { 2727 pgoff_t writeback_index = 0; 2728 long nr_to_write = wbc->nr_to_write; 2729 int range_whole = 0; 2730 int cycled = 1; 2731 handle_t *handle = NULL; 2732 struct mpage_da_data mpd; 2733 struct inode *inode = mapping->host; 2734 int needed_blocks, rsv_blocks = 0, ret = 0; 2735 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2736 bool done; 2737 struct blk_plug plug; 2738 bool give_up_on_write = false; 2739 2740 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2741 return -EIO; 2742 2743 percpu_down_read(&sbi->s_journal_flag_rwsem); 2744 trace_ext4_writepages(inode, wbc); 2745 2746 /* 2747 * No pages to write? This is mainly a kludge to avoid starting 2748 * a transaction for special inodes like journal inode on last iput() 2749 * because that could violate lock ordering on umount 2750 */ 2751 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2752 goto out_writepages; 2753 2754 if (ext4_should_journal_data(inode)) { 2755 ret = generic_writepages(mapping, wbc); 2756 goto out_writepages; 2757 } 2758 2759 /* 2760 * If the filesystem has aborted, it is read-only, so return 2761 * right away instead of dumping stack traces later on that 2762 * will obscure the real source of the problem. We test 2763 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2764 * the latter could be true if the filesystem is mounted 2765 * read-only, and in that case, ext4_writepages should 2766 * *never* be called, so if that ever happens, we would want 2767 * the stack trace. 2768 */ 2769 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2770 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2771 ret = -EROFS; 2772 goto out_writepages; 2773 } 2774 2775 if (ext4_should_dioread_nolock(inode)) { 2776 /* 2777 * We may need to convert up to one extent per block in 2778 * the page and we may dirty the inode. 2779 */ 2780 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2781 PAGE_SIZE >> inode->i_blkbits); 2782 } 2783 2784 /* 2785 * If we have inline data and arrive here, it means that 2786 * we will soon create the block for the 1st page, so 2787 * we'd better clear the inline data here. 2788 */ 2789 if (ext4_has_inline_data(inode)) { 2790 /* Just inode will be modified... */ 2791 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2792 if (IS_ERR(handle)) { 2793 ret = PTR_ERR(handle); 2794 goto out_writepages; 2795 } 2796 BUG_ON(ext4_test_inode_state(inode, 2797 EXT4_STATE_MAY_INLINE_DATA)); 2798 ext4_destroy_inline_data(handle, inode); 2799 ext4_journal_stop(handle); 2800 } 2801 2802 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2803 range_whole = 1; 2804 2805 if (wbc->range_cyclic) { 2806 writeback_index = mapping->writeback_index; 2807 if (writeback_index) 2808 cycled = 0; 2809 mpd.first_page = writeback_index; 2810 mpd.last_page = -1; 2811 } else { 2812 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2813 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2814 } 2815 2816 mpd.inode = inode; 2817 mpd.wbc = wbc; 2818 ext4_io_submit_init(&mpd.io_submit, wbc); 2819 retry: 2820 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2821 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2822 done = false; 2823 blk_start_plug(&plug); 2824 2825 /* 2826 * First writeback pages that don't need mapping - we can avoid 2827 * starting a transaction unnecessarily and also avoid being blocked 2828 * in the block layer on device congestion while having transaction 2829 * started. 2830 */ 2831 mpd.do_map = 0; 2832 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2833 if (!mpd.io_submit.io_end) { 2834 ret = -ENOMEM; 2835 goto unplug; 2836 } 2837 ret = mpage_prepare_extent_to_map(&mpd); 2838 /* Submit prepared bio */ 2839 ext4_io_submit(&mpd.io_submit); 2840 ext4_put_io_end_defer(mpd.io_submit.io_end); 2841 mpd.io_submit.io_end = NULL; 2842 /* Unlock pages we didn't use */ 2843 mpage_release_unused_pages(&mpd, false); 2844 if (ret < 0) 2845 goto unplug; 2846 2847 while (!done && mpd.first_page <= mpd.last_page) { 2848 /* For each extent of pages we use new io_end */ 2849 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2850 if (!mpd.io_submit.io_end) { 2851 ret = -ENOMEM; 2852 break; 2853 } 2854 2855 /* 2856 * We have two constraints: We find one extent to map and we 2857 * must always write out whole page (makes a difference when 2858 * blocksize < pagesize) so that we don't block on IO when we 2859 * try to write out the rest of the page. Journalled mode is 2860 * not supported by delalloc. 2861 */ 2862 BUG_ON(ext4_should_journal_data(inode)); 2863 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2864 2865 /* start a new transaction */ 2866 handle = ext4_journal_start_with_reserve(inode, 2867 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2868 if (IS_ERR(handle)) { 2869 ret = PTR_ERR(handle); 2870 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2871 "%ld pages, ino %lu; err %d", __func__, 2872 wbc->nr_to_write, inode->i_ino, ret); 2873 /* Release allocated io_end */ 2874 ext4_put_io_end(mpd.io_submit.io_end); 2875 mpd.io_submit.io_end = NULL; 2876 break; 2877 } 2878 mpd.do_map = 1; 2879 2880 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2881 ret = mpage_prepare_extent_to_map(&mpd); 2882 if (!ret) { 2883 if (mpd.map.m_len) 2884 ret = mpage_map_and_submit_extent(handle, &mpd, 2885 &give_up_on_write); 2886 else { 2887 /* 2888 * We scanned the whole range (or exhausted 2889 * nr_to_write), submitted what was mapped and 2890 * didn't find anything needing mapping. We are 2891 * done. 2892 */ 2893 done = true; 2894 } 2895 } 2896 /* 2897 * Caution: If the handle is synchronous, 2898 * ext4_journal_stop() can wait for transaction commit 2899 * to finish which may depend on writeback of pages to 2900 * complete or on page lock to be released. In that 2901 * case, we have to wait until after after we have 2902 * submitted all the IO, released page locks we hold, 2903 * and dropped io_end reference (for extent conversion 2904 * to be able to complete) before stopping the handle. 2905 */ 2906 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2907 ext4_journal_stop(handle); 2908 handle = NULL; 2909 mpd.do_map = 0; 2910 } 2911 /* Submit prepared bio */ 2912 ext4_io_submit(&mpd.io_submit); 2913 /* Unlock pages we didn't use */ 2914 mpage_release_unused_pages(&mpd, give_up_on_write); 2915 /* 2916 * Drop our io_end reference we got from init. We have 2917 * to be careful and use deferred io_end finishing if 2918 * we are still holding the transaction as we can 2919 * release the last reference to io_end which may end 2920 * up doing unwritten extent conversion. 2921 */ 2922 if (handle) { 2923 ext4_put_io_end_defer(mpd.io_submit.io_end); 2924 ext4_journal_stop(handle); 2925 } else 2926 ext4_put_io_end(mpd.io_submit.io_end); 2927 mpd.io_submit.io_end = NULL; 2928 2929 if (ret == -ENOSPC && sbi->s_journal) { 2930 /* 2931 * Commit the transaction which would 2932 * free blocks released in the transaction 2933 * and try again 2934 */ 2935 jbd2_journal_force_commit_nested(sbi->s_journal); 2936 ret = 0; 2937 continue; 2938 } 2939 /* Fatal error - ENOMEM, EIO... */ 2940 if (ret) 2941 break; 2942 } 2943 unplug: 2944 blk_finish_plug(&plug); 2945 if (!ret && !cycled && wbc->nr_to_write > 0) { 2946 cycled = 1; 2947 mpd.last_page = writeback_index - 1; 2948 mpd.first_page = 0; 2949 goto retry; 2950 } 2951 2952 /* Update index */ 2953 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2954 /* 2955 * Set the writeback_index so that range_cyclic 2956 * mode will write it back later 2957 */ 2958 mapping->writeback_index = mpd.first_page; 2959 2960 out_writepages: 2961 trace_ext4_writepages_result(inode, wbc, ret, 2962 nr_to_write - wbc->nr_to_write); 2963 percpu_up_read(&sbi->s_journal_flag_rwsem); 2964 return ret; 2965 } 2966 2967 static int ext4_dax_writepages(struct address_space *mapping, 2968 struct writeback_control *wbc) 2969 { 2970 int ret; 2971 long nr_to_write = wbc->nr_to_write; 2972 struct inode *inode = mapping->host; 2973 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2974 2975 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2976 return -EIO; 2977 2978 percpu_down_read(&sbi->s_journal_flag_rwsem); 2979 trace_ext4_writepages(inode, wbc); 2980 2981 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2982 trace_ext4_writepages_result(inode, wbc, ret, 2983 nr_to_write - wbc->nr_to_write); 2984 percpu_up_read(&sbi->s_journal_flag_rwsem); 2985 return ret; 2986 } 2987 2988 static int ext4_nonda_switch(struct super_block *sb) 2989 { 2990 s64 free_clusters, dirty_clusters; 2991 struct ext4_sb_info *sbi = EXT4_SB(sb); 2992 2993 /* 2994 * switch to non delalloc mode if we are running low 2995 * on free block. The free block accounting via percpu 2996 * counters can get slightly wrong with percpu_counter_batch getting 2997 * accumulated on each CPU without updating global counters 2998 * Delalloc need an accurate free block accounting. So switch 2999 * to non delalloc when we are near to error range. 3000 */ 3001 free_clusters = 3002 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3003 dirty_clusters = 3004 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3005 /* 3006 * Start pushing delalloc when 1/2 of free blocks are dirty. 3007 */ 3008 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3009 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3010 3011 if (2 * free_clusters < 3 * dirty_clusters || 3012 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3013 /* 3014 * free block count is less than 150% of dirty blocks 3015 * or free blocks is less than watermark 3016 */ 3017 return 1; 3018 } 3019 return 0; 3020 } 3021 3022 /* We always reserve for an inode update; the superblock could be there too */ 3023 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3024 { 3025 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3026 return 1; 3027 3028 if (pos + len <= 0x7fffffffULL) 3029 return 1; 3030 3031 /* We might need to update the superblock to set LARGE_FILE */ 3032 return 2; 3033 } 3034 3035 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3036 loff_t pos, unsigned len, unsigned flags, 3037 struct page **pagep, void **fsdata) 3038 { 3039 int ret, retries = 0; 3040 struct page *page; 3041 pgoff_t index; 3042 struct inode *inode = mapping->host; 3043 handle_t *handle; 3044 3045 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3046 return -EIO; 3047 3048 index = pos >> PAGE_SHIFT; 3049 3050 if (ext4_nonda_switch(inode->i_sb) || 3051 S_ISLNK(inode->i_mode)) { 3052 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3053 return ext4_write_begin(file, mapping, pos, 3054 len, flags, pagep, fsdata); 3055 } 3056 *fsdata = (void *)0; 3057 trace_ext4_da_write_begin(inode, pos, len, flags); 3058 3059 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3060 ret = ext4_da_write_inline_data_begin(mapping, inode, 3061 pos, len, flags, 3062 pagep, fsdata); 3063 if (ret < 0) 3064 return ret; 3065 if (ret == 1) 3066 return 0; 3067 } 3068 3069 /* 3070 * grab_cache_page_write_begin() can take a long time if the 3071 * system is thrashing due to memory pressure, or if the page 3072 * is being written back. So grab it first before we start 3073 * the transaction handle. This also allows us to allocate 3074 * the page (if needed) without using GFP_NOFS. 3075 */ 3076 retry_grab: 3077 page = grab_cache_page_write_begin(mapping, index, flags); 3078 if (!page) 3079 return -ENOMEM; 3080 unlock_page(page); 3081 3082 /* 3083 * With delayed allocation, we don't log the i_disksize update 3084 * if there is delayed block allocation. But we still need 3085 * to journalling the i_disksize update if writes to the end 3086 * of file which has an already mapped buffer. 3087 */ 3088 retry_journal: 3089 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3090 ext4_da_write_credits(inode, pos, len)); 3091 if (IS_ERR(handle)) { 3092 put_page(page); 3093 return PTR_ERR(handle); 3094 } 3095 3096 lock_page(page); 3097 if (page->mapping != mapping) { 3098 /* The page got truncated from under us */ 3099 unlock_page(page); 3100 put_page(page); 3101 ext4_journal_stop(handle); 3102 goto retry_grab; 3103 } 3104 /* In case writeback began while the page was unlocked */ 3105 wait_for_stable_page(page); 3106 3107 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3108 ret = ext4_block_write_begin(page, pos, len, 3109 ext4_da_get_block_prep); 3110 #else 3111 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3112 #endif 3113 if (ret < 0) { 3114 unlock_page(page); 3115 ext4_journal_stop(handle); 3116 /* 3117 * block_write_begin may have instantiated a few blocks 3118 * outside i_size. Trim these off again. Don't need 3119 * i_size_read because we hold i_mutex. 3120 */ 3121 if (pos + len > inode->i_size) 3122 ext4_truncate_failed_write(inode); 3123 3124 if (ret == -ENOSPC && 3125 ext4_should_retry_alloc(inode->i_sb, &retries)) 3126 goto retry_journal; 3127 3128 put_page(page); 3129 return ret; 3130 } 3131 3132 *pagep = page; 3133 return ret; 3134 } 3135 3136 /* 3137 * Check if we should update i_disksize 3138 * when write to the end of file but not require block allocation 3139 */ 3140 static int ext4_da_should_update_i_disksize(struct page *page, 3141 unsigned long offset) 3142 { 3143 struct buffer_head *bh; 3144 struct inode *inode = page->mapping->host; 3145 unsigned int idx; 3146 int i; 3147 3148 bh = page_buffers(page); 3149 idx = offset >> inode->i_blkbits; 3150 3151 for (i = 0; i < idx; i++) 3152 bh = bh->b_this_page; 3153 3154 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3155 return 0; 3156 return 1; 3157 } 3158 3159 static int ext4_da_write_end(struct file *file, 3160 struct address_space *mapping, 3161 loff_t pos, unsigned len, unsigned copied, 3162 struct page *page, void *fsdata) 3163 { 3164 struct inode *inode = mapping->host; 3165 int ret = 0, ret2; 3166 handle_t *handle = ext4_journal_current_handle(); 3167 loff_t new_i_size; 3168 unsigned long start, end; 3169 int write_mode = (int)(unsigned long)fsdata; 3170 3171 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3172 return ext4_write_end(file, mapping, pos, 3173 len, copied, page, fsdata); 3174 3175 trace_ext4_da_write_end(inode, pos, len, copied); 3176 start = pos & (PAGE_SIZE - 1); 3177 end = start + copied - 1; 3178 3179 /* 3180 * generic_write_end() will run mark_inode_dirty() if i_size 3181 * changes. So let's piggyback the i_disksize mark_inode_dirty 3182 * into that. 3183 */ 3184 new_i_size = pos + copied; 3185 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3186 if (ext4_has_inline_data(inode) || 3187 ext4_da_should_update_i_disksize(page, end)) { 3188 ext4_update_i_disksize(inode, new_i_size); 3189 /* We need to mark inode dirty even if 3190 * new_i_size is less that inode->i_size 3191 * bu greater than i_disksize.(hint delalloc) 3192 */ 3193 ext4_mark_inode_dirty(handle, inode); 3194 } 3195 } 3196 3197 if (write_mode != CONVERT_INLINE_DATA && 3198 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3199 ext4_has_inline_data(inode)) 3200 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3201 page); 3202 else 3203 ret2 = generic_write_end(file, mapping, pos, len, copied, 3204 page, fsdata); 3205 3206 copied = ret2; 3207 if (ret2 < 0) 3208 ret = ret2; 3209 ret2 = ext4_journal_stop(handle); 3210 if (!ret) 3211 ret = ret2; 3212 3213 return ret ? ret : copied; 3214 } 3215 3216 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3217 unsigned int length) 3218 { 3219 /* 3220 * Drop reserved blocks 3221 */ 3222 BUG_ON(!PageLocked(page)); 3223 if (!page_has_buffers(page)) 3224 goto out; 3225 3226 ext4_da_page_release_reservation(page, offset, length); 3227 3228 out: 3229 ext4_invalidatepage(page, offset, length); 3230 3231 return; 3232 } 3233 3234 /* 3235 * Force all delayed allocation blocks to be allocated for a given inode. 3236 */ 3237 int ext4_alloc_da_blocks(struct inode *inode) 3238 { 3239 trace_ext4_alloc_da_blocks(inode); 3240 3241 if (!EXT4_I(inode)->i_reserved_data_blocks) 3242 return 0; 3243 3244 /* 3245 * We do something simple for now. The filemap_flush() will 3246 * also start triggering a write of the data blocks, which is 3247 * not strictly speaking necessary (and for users of 3248 * laptop_mode, not even desirable). However, to do otherwise 3249 * would require replicating code paths in: 3250 * 3251 * ext4_writepages() -> 3252 * write_cache_pages() ---> (via passed in callback function) 3253 * __mpage_da_writepage() --> 3254 * mpage_add_bh_to_extent() 3255 * mpage_da_map_blocks() 3256 * 3257 * The problem is that write_cache_pages(), located in 3258 * mm/page-writeback.c, marks pages clean in preparation for 3259 * doing I/O, which is not desirable if we're not planning on 3260 * doing I/O at all. 3261 * 3262 * We could call write_cache_pages(), and then redirty all of 3263 * the pages by calling redirty_page_for_writepage() but that 3264 * would be ugly in the extreme. So instead we would need to 3265 * replicate parts of the code in the above functions, 3266 * simplifying them because we wouldn't actually intend to 3267 * write out the pages, but rather only collect contiguous 3268 * logical block extents, call the multi-block allocator, and 3269 * then update the buffer heads with the block allocations. 3270 * 3271 * For now, though, we'll cheat by calling filemap_flush(), 3272 * which will map the blocks, and start the I/O, but not 3273 * actually wait for the I/O to complete. 3274 */ 3275 return filemap_flush(inode->i_mapping); 3276 } 3277 3278 /* 3279 * bmap() is special. It gets used by applications such as lilo and by 3280 * the swapper to find the on-disk block of a specific piece of data. 3281 * 3282 * Naturally, this is dangerous if the block concerned is still in the 3283 * journal. If somebody makes a swapfile on an ext4 data-journaling 3284 * filesystem and enables swap, then they may get a nasty shock when the 3285 * data getting swapped to that swapfile suddenly gets overwritten by 3286 * the original zero's written out previously to the journal and 3287 * awaiting writeback in the kernel's buffer cache. 3288 * 3289 * So, if we see any bmap calls here on a modified, data-journaled file, 3290 * take extra steps to flush any blocks which might be in the cache. 3291 */ 3292 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3293 { 3294 struct inode *inode = mapping->host; 3295 journal_t *journal; 3296 int err; 3297 3298 /* 3299 * We can get here for an inline file via the FIBMAP ioctl 3300 */ 3301 if (ext4_has_inline_data(inode)) 3302 return 0; 3303 3304 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3305 test_opt(inode->i_sb, DELALLOC)) { 3306 /* 3307 * With delalloc we want to sync the file 3308 * so that we can make sure we allocate 3309 * blocks for file 3310 */ 3311 filemap_write_and_wait(mapping); 3312 } 3313 3314 if (EXT4_JOURNAL(inode) && 3315 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3316 /* 3317 * This is a REALLY heavyweight approach, but the use of 3318 * bmap on dirty files is expected to be extremely rare: 3319 * only if we run lilo or swapon on a freshly made file 3320 * do we expect this to happen. 3321 * 3322 * (bmap requires CAP_SYS_RAWIO so this does not 3323 * represent an unprivileged user DOS attack --- we'd be 3324 * in trouble if mortal users could trigger this path at 3325 * will.) 3326 * 3327 * NB. EXT4_STATE_JDATA is not set on files other than 3328 * regular files. If somebody wants to bmap a directory 3329 * or symlink and gets confused because the buffer 3330 * hasn't yet been flushed to disk, they deserve 3331 * everything they get. 3332 */ 3333 3334 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3335 journal = EXT4_JOURNAL(inode); 3336 jbd2_journal_lock_updates(journal); 3337 err = jbd2_journal_flush(journal); 3338 jbd2_journal_unlock_updates(journal); 3339 3340 if (err) 3341 return 0; 3342 } 3343 3344 return generic_block_bmap(mapping, block, ext4_get_block); 3345 } 3346 3347 static int ext4_readpage(struct file *file, struct page *page) 3348 { 3349 int ret = -EAGAIN; 3350 struct inode *inode = page->mapping->host; 3351 3352 trace_ext4_readpage(page); 3353 3354 if (ext4_has_inline_data(inode)) 3355 ret = ext4_readpage_inline(inode, page); 3356 3357 if (ret == -EAGAIN) 3358 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3359 false); 3360 3361 return ret; 3362 } 3363 3364 static int 3365 ext4_readpages(struct file *file, struct address_space *mapping, 3366 struct list_head *pages, unsigned nr_pages) 3367 { 3368 struct inode *inode = mapping->host; 3369 3370 /* If the file has inline data, no need to do readpages. */ 3371 if (ext4_has_inline_data(inode)) 3372 return 0; 3373 3374 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3375 } 3376 3377 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3378 unsigned int length) 3379 { 3380 trace_ext4_invalidatepage(page, offset, length); 3381 3382 /* No journalling happens on data buffers when this function is used */ 3383 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3384 3385 block_invalidatepage(page, offset, length); 3386 } 3387 3388 static int __ext4_journalled_invalidatepage(struct page *page, 3389 unsigned int offset, 3390 unsigned int length) 3391 { 3392 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3393 3394 trace_ext4_journalled_invalidatepage(page, offset, length); 3395 3396 /* 3397 * If it's a full truncate we just forget about the pending dirtying 3398 */ 3399 if (offset == 0 && length == PAGE_SIZE) 3400 ClearPageChecked(page); 3401 3402 return jbd2_journal_invalidatepage(journal, page, offset, length); 3403 } 3404 3405 /* Wrapper for aops... */ 3406 static void ext4_journalled_invalidatepage(struct page *page, 3407 unsigned int offset, 3408 unsigned int length) 3409 { 3410 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3411 } 3412 3413 static int ext4_releasepage(struct page *page, gfp_t wait) 3414 { 3415 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3416 3417 trace_ext4_releasepage(page); 3418 3419 /* Page has dirty journalled data -> cannot release */ 3420 if (PageChecked(page)) 3421 return 0; 3422 if (journal) 3423 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3424 else 3425 return try_to_free_buffers(page); 3426 } 3427 3428 static bool ext4_inode_datasync_dirty(struct inode *inode) 3429 { 3430 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3431 3432 if (journal) 3433 return !jbd2_transaction_committed(journal, 3434 EXT4_I(inode)->i_datasync_tid); 3435 /* Any metadata buffers to write? */ 3436 if (!list_empty(&inode->i_mapping->private_list)) 3437 return true; 3438 return inode->i_state & I_DIRTY_DATASYNC; 3439 } 3440 3441 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3442 unsigned flags, struct iomap *iomap) 3443 { 3444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3445 unsigned int blkbits = inode->i_blkbits; 3446 unsigned long first_block, last_block; 3447 struct ext4_map_blocks map; 3448 bool delalloc = false; 3449 int ret; 3450 3451 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3452 return -EINVAL; 3453 first_block = offset >> blkbits; 3454 last_block = min_t(loff_t, (offset + length - 1) >> blkbits, 3455 EXT4_MAX_LOGICAL_BLOCK); 3456 3457 if (flags & IOMAP_REPORT) { 3458 if (ext4_has_inline_data(inode)) { 3459 ret = ext4_inline_data_iomap(inode, iomap); 3460 if (ret != -EAGAIN) { 3461 if (ret == 0 && offset >= iomap->length) 3462 ret = -ENOENT; 3463 return ret; 3464 } 3465 } 3466 } else { 3467 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3468 return -ERANGE; 3469 } 3470 3471 map.m_lblk = first_block; 3472 map.m_len = last_block - first_block + 1; 3473 3474 if (flags & IOMAP_REPORT) { 3475 ret = ext4_map_blocks(NULL, inode, &map, 0); 3476 if (ret < 0) 3477 return ret; 3478 3479 if (ret == 0) { 3480 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3481 struct extent_status es; 3482 3483 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3484 map.m_lblk, end, &es); 3485 3486 if (!es.es_len || es.es_lblk > end) { 3487 /* entire range is a hole */ 3488 } else if (es.es_lblk > map.m_lblk) { 3489 /* range starts with a hole */ 3490 map.m_len = es.es_lblk - map.m_lblk; 3491 } else { 3492 ext4_lblk_t offs = 0; 3493 3494 if (es.es_lblk < map.m_lblk) 3495 offs = map.m_lblk - es.es_lblk; 3496 map.m_lblk = es.es_lblk + offs; 3497 map.m_len = es.es_len - offs; 3498 delalloc = true; 3499 } 3500 } 3501 } else if (flags & IOMAP_WRITE) { 3502 int dio_credits; 3503 handle_t *handle; 3504 int retries = 0; 3505 3506 /* Trim mapping request to maximum we can map at once for DIO */ 3507 if (map.m_len > DIO_MAX_BLOCKS) 3508 map.m_len = DIO_MAX_BLOCKS; 3509 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3510 retry: 3511 /* 3512 * Either we allocate blocks and then we don't get unwritten 3513 * extent so we have reserved enough credits, or the blocks 3514 * are already allocated and unwritten and in that case 3515 * extent conversion fits in the credits as well. 3516 */ 3517 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3518 dio_credits); 3519 if (IS_ERR(handle)) 3520 return PTR_ERR(handle); 3521 3522 ret = ext4_map_blocks(handle, inode, &map, 3523 EXT4_GET_BLOCKS_CREATE_ZERO); 3524 if (ret < 0) { 3525 ext4_journal_stop(handle); 3526 if (ret == -ENOSPC && 3527 ext4_should_retry_alloc(inode->i_sb, &retries)) 3528 goto retry; 3529 return ret; 3530 } 3531 3532 /* 3533 * If we added blocks beyond i_size, we need to make sure they 3534 * will get truncated if we crash before updating i_size in 3535 * ext4_iomap_end(). For faults we don't need to do that (and 3536 * even cannot because for orphan list operations inode_lock is 3537 * required) - if we happen to instantiate block beyond i_size, 3538 * it is because we race with truncate which has already added 3539 * the inode to the orphan list. 3540 */ 3541 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3542 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3543 int err; 3544 3545 err = ext4_orphan_add(handle, inode); 3546 if (err < 0) { 3547 ext4_journal_stop(handle); 3548 return err; 3549 } 3550 } 3551 ext4_journal_stop(handle); 3552 } else { 3553 ret = ext4_map_blocks(NULL, inode, &map, 0); 3554 if (ret < 0) 3555 return ret; 3556 } 3557 3558 iomap->flags = 0; 3559 if (ext4_inode_datasync_dirty(inode)) 3560 iomap->flags |= IOMAP_F_DIRTY; 3561 iomap->bdev = inode->i_sb->s_bdev; 3562 iomap->dax_dev = sbi->s_daxdev; 3563 iomap->offset = (u64)first_block << blkbits; 3564 iomap->length = (u64)map.m_len << blkbits; 3565 3566 if (ret == 0) { 3567 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3568 iomap->addr = IOMAP_NULL_ADDR; 3569 } else { 3570 if (map.m_flags & EXT4_MAP_MAPPED) { 3571 iomap->type = IOMAP_MAPPED; 3572 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3573 iomap->type = IOMAP_UNWRITTEN; 3574 } else { 3575 WARN_ON_ONCE(1); 3576 return -EIO; 3577 } 3578 iomap->addr = (u64)map.m_pblk << blkbits; 3579 } 3580 3581 if (map.m_flags & EXT4_MAP_NEW) 3582 iomap->flags |= IOMAP_F_NEW; 3583 3584 return 0; 3585 } 3586 3587 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3588 ssize_t written, unsigned flags, struct iomap *iomap) 3589 { 3590 int ret = 0; 3591 handle_t *handle; 3592 int blkbits = inode->i_blkbits; 3593 bool truncate = false; 3594 3595 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3596 return 0; 3597 3598 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3599 if (IS_ERR(handle)) { 3600 ret = PTR_ERR(handle); 3601 goto orphan_del; 3602 } 3603 if (ext4_update_inode_size(inode, offset + written)) 3604 ext4_mark_inode_dirty(handle, inode); 3605 /* 3606 * We may need to truncate allocated but not written blocks beyond EOF. 3607 */ 3608 if (iomap->offset + iomap->length > 3609 ALIGN(inode->i_size, 1 << blkbits)) { 3610 ext4_lblk_t written_blk, end_blk; 3611 3612 written_blk = (offset + written) >> blkbits; 3613 end_blk = (offset + length) >> blkbits; 3614 if (written_blk < end_blk && ext4_can_truncate(inode)) 3615 truncate = true; 3616 } 3617 /* 3618 * Remove inode from orphan list if we were extending a inode and 3619 * everything went fine. 3620 */ 3621 if (!truncate && inode->i_nlink && 3622 !list_empty(&EXT4_I(inode)->i_orphan)) 3623 ext4_orphan_del(handle, inode); 3624 ext4_journal_stop(handle); 3625 if (truncate) { 3626 ext4_truncate_failed_write(inode); 3627 orphan_del: 3628 /* 3629 * If truncate failed early the inode might still be on the 3630 * orphan list; we need to make sure the inode is removed from 3631 * the orphan list in that case. 3632 */ 3633 if (inode->i_nlink) 3634 ext4_orphan_del(NULL, inode); 3635 } 3636 return ret; 3637 } 3638 3639 const struct iomap_ops ext4_iomap_ops = { 3640 .iomap_begin = ext4_iomap_begin, 3641 .iomap_end = ext4_iomap_end, 3642 }; 3643 3644 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3645 ssize_t size, void *private) 3646 { 3647 ext4_io_end_t *io_end = private; 3648 3649 /* if not async direct IO just return */ 3650 if (!io_end) 3651 return 0; 3652 3653 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3654 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3655 io_end, io_end->inode->i_ino, iocb, offset, size); 3656 3657 /* 3658 * Error during AIO DIO. We cannot convert unwritten extents as the 3659 * data was not written. Just clear the unwritten flag and drop io_end. 3660 */ 3661 if (size <= 0) { 3662 ext4_clear_io_unwritten_flag(io_end); 3663 size = 0; 3664 } 3665 io_end->offset = offset; 3666 io_end->size = size; 3667 ext4_put_io_end(io_end); 3668 3669 return 0; 3670 } 3671 3672 /* 3673 * Handling of direct IO writes. 3674 * 3675 * For ext4 extent files, ext4 will do direct-io write even to holes, 3676 * preallocated extents, and those write extend the file, no need to 3677 * fall back to buffered IO. 3678 * 3679 * For holes, we fallocate those blocks, mark them as unwritten 3680 * If those blocks were preallocated, we mark sure they are split, but 3681 * still keep the range to write as unwritten. 3682 * 3683 * The unwritten extents will be converted to written when DIO is completed. 3684 * For async direct IO, since the IO may still pending when return, we 3685 * set up an end_io call back function, which will do the conversion 3686 * when async direct IO completed. 3687 * 3688 * If the O_DIRECT write will extend the file then add this inode to the 3689 * orphan list. So recovery will truncate it back to the original size 3690 * if the machine crashes during the write. 3691 * 3692 */ 3693 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3694 { 3695 struct file *file = iocb->ki_filp; 3696 struct inode *inode = file->f_mapping->host; 3697 struct ext4_inode_info *ei = EXT4_I(inode); 3698 ssize_t ret; 3699 loff_t offset = iocb->ki_pos; 3700 size_t count = iov_iter_count(iter); 3701 int overwrite = 0; 3702 get_block_t *get_block_func = NULL; 3703 int dio_flags = 0; 3704 loff_t final_size = offset + count; 3705 int orphan = 0; 3706 handle_t *handle; 3707 3708 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3709 /* Credits for sb + inode write */ 3710 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3711 if (IS_ERR(handle)) { 3712 ret = PTR_ERR(handle); 3713 goto out; 3714 } 3715 ret = ext4_orphan_add(handle, inode); 3716 if (ret) { 3717 ext4_journal_stop(handle); 3718 goto out; 3719 } 3720 orphan = 1; 3721 ext4_update_i_disksize(inode, inode->i_size); 3722 ext4_journal_stop(handle); 3723 } 3724 3725 BUG_ON(iocb->private == NULL); 3726 3727 /* 3728 * Make all waiters for direct IO properly wait also for extent 3729 * conversion. This also disallows race between truncate() and 3730 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3731 */ 3732 inode_dio_begin(inode); 3733 3734 /* If we do a overwrite dio, i_mutex locking can be released */ 3735 overwrite = *((int *)iocb->private); 3736 3737 if (overwrite) 3738 inode_unlock(inode); 3739 3740 /* 3741 * For extent mapped files we could direct write to holes and fallocate. 3742 * 3743 * Allocated blocks to fill the hole are marked as unwritten to prevent 3744 * parallel buffered read to expose the stale data before DIO complete 3745 * the data IO. 3746 * 3747 * As to previously fallocated extents, ext4 get_block will just simply 3748 * mark the buffer mapped but still keep the extents unwritten. 3749 * 3750 * For non AIO case, we will convert those unwritten extents to written 3751 * after return back from blockdev_direct_IO. That way we save us from 3752 * allocating io_end structure and also the overhead of offloading 3753 * the extent convertion to a workqueue. 3754 * 3755 * For async DIO, the conversion needs to be deferred when the 3756 * IO is completed. The ext4 end_io callback function will be 3757 * called to take care of the conversion work. Here for async 3758 * case, we allocate an io_end structure to hook to the iocb. 3759 */ 3760 iocb->private = NULL; 3761 if (overwrite) 3762 get_block_func = ext4_dio_get_block_overwrite; 3763 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3764 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3765 get_block_func = ext4_dio_get_block; 3766 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3767 } else if (is_sync_kiocb(iocb)) { 3768 get_block_func = ext4_dio_get_block_unwritten_sync; 3769 dio_flags = DIO_LOCKING; 3770 } else { 3771 get_block_func = ext4_dio_get_block_unwritten_async; 3772 dio_flags = DIO_LOCKING; 3773 } 3774 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3775 get_block_func, ext4_end_io_dio, NULL, 3776 dio_flags); 3777 3778 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3779 EXT4_STATE_DIO_UNWRITTEN)) { 3780 int err; 3781 /* 3782 * for non AIO case, since the IO is already 3783 * completed, we could do the conversion right here 3784 */ 3785 err = ext4_convert_unwritten_extents(NULL, inode, 3786 offset, ret); 3787 if (err < 0) 3788 ret = err; 3789 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3790 } 3791 3792 inode_dio_end(inode); 3793 /* take i_mutex locking again if we do a ovewrite dio */ 3794 if (overwrite) 3795 inode_lock(inode); 3796 3797 if (ret < 0 && final_size > inode->i_size) 3798 ext4_truncate_failed_write(inode); 3799 3800 /* Handle extending of i_size after direct IO write */ 3801 if (orphan) { 3802 int err; 3803 3804 /* Credits for sb + inode write */ 3805 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3806 if (IS_ERR(handle)) { 3807 /* 3808 * We wrote the data but cannot extend 3809 * i_size. Bail out. In async io case, we do 3810 * not return error here because we have 3811 * already submmitted the corresponding 3812 * bio. Returning error here makes the caller 3813 * think that this IO is done and failed 3814 * resulting in race with bio's completion 3815 * handler. 3816 */ 3817 if (!ret) 3818 ret = PTR_ERR(handle); 3819 if (inode->i_nlink) 3820 ext4_orphan_del(NULL, inode); 3821 3822 goto out; 3823 } 3824 if (inode->i_nlink) 3825 ext4_orphan_del(handle, inode); 3826 if (ret > 0) { 3827 loff_t end = offset + ret; 3828 if (end > inode->i_size || end > ei->i_disksize) { 3829 ext4_update_i_disksize(inode, end); 3830 if (end > inode->i_size) 3831 i_size_write(inode, end); 3832 /* 3833 * We're going to return a positive `ret' 3834 * here due to non-zero-length I/O, so there's 3835 * no way of reporting error returns from 3836 * ext4_mark_inode_dirty() to userspace. So 3837 * ignore it. 3838 */ 3839 ext4_mark_inode_dirty(handle, inode); 3840 } 3841 } 3842 err = ext4_journal_stop(handle); 3843 if (ret == 0) 3844 ret = err; 3845 } 3846 out: 3847 return ret; 3848 } 3849 3850 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3851 { 3852 struct address_space *mapping = iocb->ki_filp->f_mapping; 3853 struct inode *inode = mapping->host; 3854 size_t count = iov_iter_count(iter); 3855 ssize_t ret; 3856 3857 /* 3858 * Shared inode_lock is enough for us - it protects against concurrent 3859 * writes & truncates and since we take care of writing back page cache, 3860 * we are protected against page writeback as well. 3861 */ 3862 inode_lock_shared(inode); 3863 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3864 iocb->ki_pos + count - 1); 3865 if (ret) 3866 goto out_unlock; 3867 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3868 iter, ext4_dio_get_block, NULL, NULL, 0); 3869 out_unlock: 3870 inode_unlock_shared(inode); 3871 return ret; 3872 } 3873 3874 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3875 { 3876 struct file *file = iocb->ki_filp; 3877 struct inode *inode = file->f_mapping->host; 3878 size_t count = iov_iter_count(iter); 3879 loff_t offset = iocb->ki_pos; 3880 ssize_t ret; 3881 3882 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3883 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3884 return 0; 3885 #endif 3886 3887 /* 3888 * If we are doing data journalling we don't support O_DIRECT 3889 */ 3890 if (ext4_should_journal_data(inode)) 3891 return 0; 3892 3893 /* Let buffer I/O handle the inline data case. */ 3894 if (ext4_has_inline_data(inode)) 3895 return 0; 3896 3897 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3898 if (iov_iter_rw(iter) == READ) 3899 ret = ext4_direct_IO_read(iocb, iter); 3900 else 3901 ret = ext4_direct_IO_write(iocb, iter); 3902 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3903 return ret; 3904 } 3905 3906 /* 3907 * Pages can be marked dirty completely asynchronously from ext4's journalling 3908 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3909 * much here because ->set_page_dirty is called under VFS locks. The page is 3910 * not necessarily locked. 3911 * 3912 * We cannot just dirty the page and leave attached buffers clean, because the 3913 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3914 * or jbddirty because all the journalling code will explode. 3915 * 3916 * So what we do is to mark the page "pending dirty" and next time writepage 3917 * is called, propagate that into the buffers appropriately. 3918 */ 3919 static int ext4_journalled_set_page_dirty(struct page *page) 3920 { 3921 SetPageChecked(page); 3922 return __set_page_dirty_nobuffers(page); 3923 } 3924 3925 static int ext4_set_page_dirty(struct page *page) 3926 { 3927 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3928 WARN_ON_ONCE(!page_has_buffers(page)); 3929 return __set_page_dirty_buffers(page); 3930 } 3931 3932 static const struct address_space_operations ext4_aops = { 3933 .readpage = ext4_readpage, 3934 .readpages = ext4_readpages, 3935 .writepage = ext4_writepage, 3936 .writepages = ext4_writepages, 3937 .write_begin = ext4_write_begin, 3938 .write_end = ext4_write_end, 3939 .set_page_dirty = ext4_set_page_dirty, 3940 .bmap = ext4_bmap, 3941 .invalidatepage = ext4_invalidatepage, 3942 .releasepage = ext4_releasepage, 3943 .direct_IO = ext4_direct_IO, 3944 .migratepage = buffer_migrate_page, 3945 .is_partially_uptodate = block_is_partially_uptodate, 3946 .error_remove_page = generic_error_remove_page, 3947 }; 3948 3949 static const struct address_space_operations ext4_journalled_aops = { 3950 .readpage = ext4_readpage, 3951 .readpages = ext4_readpages, 3952 .writepage = ext4_writepage, 3953 .writepages = ext4_writepages, 3954 .write_begin = ext4_write_begin, 3955 .write_end = ext4_journalled_write_end, 3956 .set_page_dirty = ext4_journalled_set_page_dirty, 3957 .bmap = ext4_bmap, 3958 .invalidatepage = ext4_journalled_invalidatepage, 3959 .releasepage = ext4_releasepage, 3960 .direct_IO = ext4_direct_IO, 3961 .is_partially_uptodate = block_is_partially_uptodate, 3962 .error_remove_page = generic_error_remove_page, 3963 }; 3964 3965 static const struct address_space_operations ext4_da_aops = { 3966 .readpage = ext4_readpage, 3967 .readpages = ext4_readpages, 3968 .writepage = ext4_writepage, 3969 .writepages = ext4_writepages, 3970 .write_begin = ext4_da_write_begin, 3971 .write_end = ext4_da_write_end, 3972 .set_page_dirty = ext4_set_page_dirty, 3973 .bmap = ext4_bmap, 3974 .invalidatepage = ext4_da_invalidatepage, 3975 .releasepage = ext4_releasepage, 3976 .direct_IO = ext4_direct_IO, 3977 .migratepage = buffer_migrate_page, 3978 .is_partially_uptodate = block_is_partially_uptodate, 3979 .error_remove_page = generic_error_remove_page, 3980 }; 3981 3982 static const struct address_space_operations ext4_dax_aops = { 3983 .writepages = ext4_dax_writepages, 3984 .direct_IO = noop_direct_IO, 3985 .set_page_dirty = noop_set_page_dirty, 3986 .bmap = ext4_bmap, 3987 .invalidatepage = noop_invalidatepage, 3988 }; 3989 3990 void ext4_set_aops(struct inode *inode) 3991 { 3992 switch (ext4_inode_journal_mode(inode)) { 3993 case EXT4_INODE_ORDERED_DATA_MODE: 3994 case EXT4_INODE_WRITEBACK_DATA_MODE: 3995 break; 3996 case EXT4_INODE_JOURNAL_DATA_MODE: 3997 inode->i_mapping->a_ops = &ext4_journalled_aops; 3998 return; 3999 default: 4000 BUG(); 4001 } 4002 if (IS_DAX(inode)) 4003 inode->i_mapping->a_ops = &ext4_dax_aops; 4004 else if (test_opt(inode->i_sb, DELALLOC)) 4005 inode->i_mapping->a_ops = &ext4_da_aops; 4006 else 4007 inode->i_mapping->a_ops = &ext4_aops; 4008 } 4009 4010 static int __ext4_block_zero_page_range(handle_t *handle, 4011 struct address_space *mapping, loff_t from, loff_t length) 4012 { 4013 ext4_fsblk_t index = from >> PAGE_SHIFT; 4014 unsigned offset = from & (PAGE_SIZE-1); 4015 unsigned blocksize, pos; 4016 ext4_lblk_t iblock; 4017 struct inode *inode = mapping->host; 4018 struct buffer_head *bh; 4019 struct page *page; 4020 int err = 0; 4021 4022 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 4023 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4024 if (!page) 4025 return -ENOMEM; 4026 4027 blocksize = inode->i_sb->s_blocksize; 4028 4029 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4030 4031 if (!page_has_buffers(page)) 4032 create_empty_buffers(page, blocksize, 0); 4033 4034 /* Find the buffer that contains "offset" */ 4035 bh = page_buffers(page); 4036 pos = blocksize; 4037 while (offset >= pos) { 4038 bh = bh->b_this_page; 4039 iblock++; 4040 pos += blocksize; 4041 } 4042 if (buffer_freed(bh)) { 4043 BUFFER_TRACE(bh, "freed: skip"); 4044 goto unlock; 4045 } 4046 if (!buffer_mapped(bh)) { 4047 BUFFER_TRACE(bh, "unmapped"); 4048 ext4_get_block(inode, iblock, bh, 0); 4049 /* unmapped? It's a hole - nothing to do */ 4050 if (!buffer_mapped(bh)) { 4051 BUFFER_TRACE(bh, "still unmapped"); 4052 goto unlock; 4053 } 4054 } 4055 4056 /* Ok, it's mapped. Make sure it's up-to-date */ 4057 if (PageUptodate(page)) 4058 set_buffer_uptodate(bh); 4059 4060 if (!buffer_uptodate(bh)) { 4061 err = -EIO; 4062 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4063 wait_on_buffer(bh); 4064 /* Uhhuh. Read error. Complain and punt. */ 4065 if (!buffer_uptodate(bh)) 4066 goto unlock; 4067 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4068 /* We expect the key to be set. */ 4069 BUG_ON(!fscrypt_has_encryption_key(inode)); 4070 BUG_ON(blocksize != PAGE_SIZE); 4071 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4072 page, PAGE_SIZE, 0, page->index)); 4073 } 4074 } 4075 if (ext4_should_journal_data(inode)) { 4076 BUFFER_TRACE(bh, "get write access"); 4077 err = ext4_journal_get_write_access(handle, bh); 4078 if (err) 4079 goto unlock; 4080 } 4081 zero_user(page, offset, length); 4082 BUFFER_TRACE(bh, "zeroed end of block"); 4083 4084 if (ext4_should_journal_data(inode)) { 4085 err = ext4_handle_dirty_metadata(handle, inode, bh); 4086 } else { 4087 err = 0; 4088 mark_buffer_dirty(bh); 4089 if (ext4_should_order_data(inode)) 4090 err = ext4_jbd2_inode_add_write(handle, inode); 4091 } 4092 4093 unlock: 4094 unlock_page(page); 4095 put_page(page); 4096 return err; 4097 } 4098 4099 /* 4100 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4101 * starting from file offset 'from'. The range to be zero'd must 4102 * be contained with in one block. If the specified range exceeds 4103 * the end of the block it will be shortened to end of the block 4104 * that cooresponds to 'from' 4105 */ 4106 static int ext4_block_zero_page_range(handle_t *handle, 4107 struct address_space *mapping, loff_t from, loff_t length) 4108 { 4109 struct inode *inode = mapping->host; 4110 unsigned offset = from & (PAGE_SIZE-1); 4111 unsigned blocksize = inode->i_sb->s_blocksize; 4112 unsigned max = blocksize - (offset & (blocksize - 1)); 4113 4114 /* 4115 * correct length if it does not fall between 4116 * 'from' and the end of the block 4117 */ 4118 if (length > max || length < 0) 4119 length = max; 4120 4121 if (IS_DAX(inode)) { 4122 return iomap_zero_range(inode, from, length, NULL, 4123 &ext4_iomap_ops); 4124 } 4125 return __ext4_block_zero_page_range(handle, mapping, from, length); 4126 } 4127 4128 /* 4129 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4130 * up to the end of the block which corresponds to `from'. 4131 * This required during truncate. We need to physically zero the tail end 4132 * of that block so it doesn't yield old data if the file is later grown. 4133 */ 4134 static int ext4_block_truncate_page(handle_t *handle, 4135 struct address_space *mapping, loff_t from) 4136 { 4137 unsigned offset = from & (PAGE_SIZE-1); 4138 unsigned length; 4139 unsigned blocksize; 4140 struct inode *inode = mapping->host; 4141 4142 /* If we are processing an encrypted inode during orphan list handling */ 4143 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4144 return 0; 4145 4146 blocksize = inode->i_sb->s_blocksize; 4147 length = blocksize - (offset & (blocksize - 1)); 4148 4149 return ext4_block_zero_page_range(handle, mapping, from, length); 4150 } 4151 4152 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4153 loff_t lstart, loff_t length) 4154 { 4155 struct super_block *sb = inode->i_sb; 4156 struct address_space *mapping = inode->i_mapping; 4157 unsigned partial_start, partial_end; 4158 ext4_fsblk_t start, end; 4159 loff_t byte_end = (lstart + length - 1); 4160 int err = 0; 4161 4162 partial_start = lstart & (sb->s_blocksize - 1); 4163 partial_end = byte_end & (sb->s_blocksize - 1); 4164 4165 start = lstart >> sb->s_blocksize_bits; 4166 end = byte_end >> sb->s_blocksize_bits; 4167 4168 /* Handle partial zero within the single block */ 4169 if (start == end && 4170 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4171 err = ext4_block_zero_page_range(handle, mapping, 4172 lstart, length); 4173 return err; 4174 } 4175 /* Handle partial zero out on the start of the range */ 4176 if (partial_start) { 4177 err = ext4_block_zero_page_range(handle, mapping, 4178 lstart, sb->s_blocksize); 4179 if (err) 4180 return err; 4181 } 4182 /* Handle partial zero out on the end of the range */ 4183 if (partial_end != sb->s_blocksize - 1) 4184 err = ext4_block_zero_page_range(handle, mapping, 4185 byte_end - partial_end, 4186 partial_end + 1); 4187 return err; 4188 } 4189 4190 int ext4_can_truncate(struct inode *inode) 4191 { 4192 if (S_ISREG(inode->i_mode)) 4193 return 1; 4194 if (S_ISDIR(inode->i_mode)) 4195 return 1; 4196 if (S_ISLNK(inode->i_mode)) 4197 return !ext4_inode_is_fast_symlink(inode); 4198 return 0; 4199 } 4200 4201 /* 4202 * We have to make sure i_disksize gets properly updated before we truncate 4203 * page cache due to hole punching or zero range. Otherwise i_disksize update 4204 * can get lost as it may have been postponed to submission of writeback but 4205 * that will never happen after we truncate page cache. 4206 */ 4207 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4208 loff_t len) 4209 { 4210 handle_t *handle; 4211 loff_t size = i_size_read(inode); 4212 4213 WARN_ON(!inode_is_locked(inode)); 4214 if (offset > size || offset + len < size) 4215 return 0; 4216 4217 if (EXT4_I(inode)->i_disksize >= size) 4218 return 0; 4219 4220 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4221 if (IS_ERR(handle)) 4222 return PTR_ERR(handle); 4223 ext4_update_i_disksize(inode, size); 4224 ext4_mark_inode_dirty(handle, inode); 4225 ext4_journal_stop(handle); 4226 4227 return 0; 4228 } 4229 4230 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4231 { 4232 up_write(&ei->i_mmap_sem); 4233 schedule(); 4234 down_write(&ei->i_mmap_sem); 4235 } 4236 4237 int ext4_break_layouts(struct inode *inode) 4238 { 4239 struct ext4_inode_info *ei = EXT4_I(inode); 4240 struct page *page; 4241 int error; 4242 4243 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4244 return -EINVAL; 4245 4246 do { 4247 page = dax_layout_busy_page(inode->i_mapping); 4248 if (!page) 4249 return 0; 4250 4251 error = ___wait_var_event(&page->_refcount, 4252 atomic_read(&page->_refcount) == 1, 4253 TASK_INTERRUPTIBLE, 0, 0, 4254 ext4_wait_dax_page(ei)); 4255 } while (error == 0); 4256 4257 return error; 4258 } 4259 4260 /* 4261 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4262 * associated with the given offset and length 4263 * 4264 * @inode: File inode 4265 * @offset: The offset where the hole will begin 4266 * @len: The length of the hole 4267 * 4268 * Returns: 0 on success or negative on failure 4269 */ 4270 4271 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4272 { 4273 struct super_block *sb = inode->i_sb; 4274 ext4_lblk_t first_block, stop_block; 4275 struct address_space *mapping = inode->i_mapping; 4276 loff_t first_block_offset, last_block_offset; 4277 handle_t *handle; 4278 unsigned int credits; 4279 int ret = 0; 4280 4281 if (!S_ISREG(inode->i_mode)) 4282 return -EOPNOTSUPP; 4283 4284 trace_ext4_punch_hole(inode, offset, length, 0); 4285 4286 /* 4287 * Write out all dirty pages to avoid race conditions 4288 * Then release them. 4289 */ 4290 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4291 ret = filemap_write_and_wait_range(mapping, offset, 4292 offset + length - 1); 4293 if (ret) 4294 return ret; 4295 } 4296 4297 inode_lock(inode); 4298 4299 /* No need to punch hole beyond i_size */ 4300 if (offset >= inode->i_size) 4301 goto out_mutex; 4302 4303 /* 4304 * If the hole extends beyond i_size, set the hole 4305 * to end after the page that contains i_size 4306 */ 4307 if (offset + length > inode->i_size) { 4308 length = inode->i_size + 4309 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4310 offset; 4311 } 4312 4313 if (offset & (sb->s_blocksize - 1) || 4314 (offset + length) & (sb->s_blocksize - 1)) { 4315 /* 4316 * Attach jinode to inode for jbd2 if we do any zeroing of 4317 * partial block 4318 */ 4319 ret = ext4_inode_attach_jinode(inode); 4320 if (ret < 0) 4321 goto out_mutex; 4322 4323 } 4324 4325 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4326 inode_dio_wait(inode); 4327 4328 /* 4329 * Prevent page faults from reinstantiating pages we have released from 4330 * page cache. 4331 */ 4332 down_write(&EXT4_I(inode)->i_mmap_sem); 4333 4334 ret = ext4_break_layouts(inode); 4335 if (ret) 4336 goto out_dio; 4337 4338 first_block_offset = round_up(offset, sb->s_blocksize); 4339 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4340 4341 /* Now release the pages and zero block aligned part of pages*/ 4342 if (last_block_offset > first_block_offset) { 4343 ret = ext4_update_disksize_before_punch(inode, offset, length); 4344 if (ret) 4345 goto out_dio; 4346 truncate_pagecache_range(inode, first_block_offset, 4347 last_block_offset); 4348 } 4349 4350 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4351 credits = ext4_writepage_trans_blocks(inode); 4352 else 4353 credits = ext4_blocks_for_truncate(inode); 4354 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4355 if (IS_ERR(handle)) { 4356 ret = PTR_ERR(handle); 4357 ext4_std_error(sb, ret); 4358 goto out_dio; 4359 } 4360 4361 ret = ext4_zero_partial_blocks(handle, inode, offset, 4362 length); 4363 if (ret) 4364 goto out_stop; 4365 4366 first_block = (offset + sb->s_blocksize - 1) >> 4367 EXT4_BLOCK_SIZE_BITS(sb); 4368 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4369 4370 /* If there are blocks to remove, do it */ 4371 if (stop_block > first_block) { 4372 4373 down_write(&EXT4_I(inode)->i_data_sem); 4374 ext4_discard_preallocations(inode); 4375 4376 ret = ext4_es_remove_extent(inode, first_block, 4377 stop_block - first_block); 4378 if (ret) { 4379 up_write(&EXT4_I(inode)->i_data_sem); 4380 goto out_stop; 4381 } 4382 4383 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4384 ret = ext4_ext_remove_space(inode, first_block, 4385 stop_block - 1); 4386 else 4387 ret = ext4_ind_remove_space(handle, inode, first_block, 4388 stop_block); 4389 4390 up_write(&EXT4_I(inode)->i_data_sem); 4391 } 4392 if (IS_SYNC(inode)) 4393 ext4_handle_sync(handle); 4394 4395 inode->i_mtime = inode->i_ctime = current_time(inode); 4396 ext4_mark_inode_dirty(handle, inode); 4397 if (ret >= 0) 4398 ext4_update_inode_fsync_trans(handle, inode, 1); 4399 out_stop: 4400 ext4_journal_stop(handle); 4401 out_dio: 4402 up_write(&EXT4_I(inode)->i_mmap_sem); 4403 out_mutex: 4404 inode_unlock(inode); 4405 return ret; 4406 } 4407 4408 int ext4_inode_attach_jinode(struct inode *inode) 4409 { 4410 struct ext4_inode_info *ei = EXT4_I(inode); 4411 struct jbd2_inode *jinode; 4412 4413 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4414 return 0; 4415 4416 jinode = jbd2_alloc_inode(GFP_KERNEL); 4417 spin_lock(&inode->i_lock); 4418 if (!ei->jinode) { 4419 if (!jinode) { 4420 spin_unlock(&inode->i_lock); 4421 return -ENOMEM; 4422 } 4423 ei->jinode = jinode; 4424 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4425 jinode = NULL; 4426 } 4427 spin_unlock(&inode->i_lock); 4428 if (unlikely(jinode != NULL)) 4429 jbd2_free_inode(jinode); 4430 return 0; 4431 } 4432 4433 /* 4434 * ext4_truncate() 4435 * 4436 * We block out ext4_get_block() block instantiations across the entire 4437 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4438 * simultaneously on behalf of the same inode. 4439 * 4440 * As we work through the truncate and commit bits of it to the journal there 4441 * is one core, guiding principle: the file's tree must always be consistent on 4442 * disk. We must be able to restart the truncate after a crash. 4443 * 4444 * The file's tree may be transiently inconsistent in memory (although it 4445 * probably isn't), but whenever we close off and commit a journal transaction, 4446 * the contents of (the filesystem + the journal) must be consistent and 4447 * restartable. It's pretty simple, really: bottom up, right to left (although 4448 * left-to-right works OK too). 4449 * 4450 * Note that at recovery time, journal replay occurs *before* the restart of 4451 * truncate against the orphan inode list. 4452 * 4453 * The committed inode has the new, desired i_size (which is the same as 4454 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4455 * that this inode's truncate did not complete and it will again call 4456 * ext4_truncate() to have another go. So there will be instantiated blocks 4457 * to the right of the truncation point in a crashed ext4 filesystem. But 4458 * that's fine - as long as they are linked from the inode, the post-crash 4459 * ext4_truncate() run will find them and release them. 4460 */ 4461 int ext4_truncate(struct inode *inode) 4462 { 4463 struct ext4_inode_info *ei = EXT4_I(inode); 4464 unsigned int credits; 4465 int err = 0; 4466 handle_t *handle; 4467 struct address_space *mapping = inode->i_mapping; 4468 4469 /* 4470 * There is a possibility that we're either freeing the inode 4471 * or it's a completely new inode. In those cases we might not 4472 * have i_mutex locked because it's not necessary. 4473 */ 4474 if (!(inode->i_state & (I_NEW|I_FREEING))) 4475 WARN_ON(!inode_is_locked(inode)); 4476 trace_ext4_truncate_enter(inode); 4477 4478 if (!ext4_can_truncate(inode)) 4479 return 0; 4480 4481 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4482 4483 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4484 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4485 4486 if (ext4_has_inline_data(inode)) { 4487 int has_inline = 1; 4488 4489 err = ext4_inline_data_truncate(inode, &has_inline); 4490 if (err) 4491 return err; 4492 if (has_inline) 4493 return 0; 4494 } 4495 4496 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4497 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4498 if (ext4_inode_attach_jinode(inode) < 0) 4499 return 0; 4500 } 4501 4502 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4503 credits = ext4_writepage_trans_blocks(inode); 4504 else 4505 credits = ext4_blocks_for_truncate(inode); 4506 4507 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4508 if (IS_ERR(handle)) 4509 return PTR_ERR(handle); 4510 4511 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4512 ext4_block_truncate_page(handle, mapping, inode->i_size); 4513 4514 /* 4515 * We add the inode to the orphan list, so that if this 4516 * truncate spans multiple transactions, and we crash, we will 4517 * resume the truncate when the filesystem recovers. It also 4518 * marks the inode dirty, to catch the new size. 4519 * 4520 * Implication: the file must always be in a sane, consistent 4521 * truncatable state while each transaction commits. 4522 */ 4523 err = ext4_orphan_add(handle, inode); 4524 if (err) 4525 goto out_stop; 4526 4527 down_write(&EXT4_I(inode)->i_data_sem); 4528 4529 ext4_discard_preallocations(inode); 4530 4531 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4532 err = ext4_ext_truncate(handle, inode); 4533 else 4534 ext4_ind_truncate(handle, inode); 4535 4536 up_write(&ei->i_data_sem); 4537 if (err) 4538 goto out_stop; 4539 4540 if (IS_SYNC(inode)) 4541 ext4_handle_sync(handle); 4542 4543 out_stop: 4544 /* 4545 * If this was a simple ftruncate() and the file will remain alive, 4546 * then we need to clear up the orphan record which we created above. 4547 * However, if this was a real unlink then we were called by 4548 * ext4_evict_inode(), and we allow that function to clean up the 4549 * orphan info for us. 4550 */ 4551 if (inode->i_nlink) 4552 ext4_orphan_del(handle, inode); 4553 4554 inode->i_mtime = inode->i_ctime = current_time(inode); 4555 ext4_mark_inode_dirty(handle, inode); 4556 ext4_journal_stop(handle); 4557 4558 trace_ext4_truncate_exit(inode); 4559 return err; 4560 } 4561 4562 /* 4563 * ext4_get_inode_loc returns with an extra refcount against the inode's 4564 * underlying buffer_head on success. If 'in_mem' is true, we have all 4565 * data in memory that is needed to recreate the on-disk version of this 4566 * inode. 4567 */ 4568 static int __ext4_get_inode_loc(struct inode *inode, 4569 struct ext4_iloc *iloc, int in_mem) 4570 { 4571 struct ext4_group_desc *gdp; 4572 struct buffer_head *bh; 4573 struct super_block *sb = inode->i_sb; 4574 ext4_fsblk_t block; 4575 int inodes_per_block, inode_offset; 4576 4577 iloc->bh = NULL; 4578 if (inode->i_ino < EXT4_ROOT_INO || 4579 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4580 return -EFSCORRUPTED; 4581 4582 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4583 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4584 if (!gdp) 4585 return -EIO; 4586 4587 /* 4588 * Figure out the offset within the block group inode table 4589 */ 4590 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4591 inode_offset = ((inode->i_ino - 1) % 4592 EXT4_INODES_PER_GROUP(sb)); 4593 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4594 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4595 4596 bh = sb_getblk(sb, block); 4597 if (unlikely(!bh)) 4598 return -ENOMEM; 4599 if (!buffer_uptodate(bh)) { 4600 lock_buffer(bh); 4601 4602 /* 4603 * If the buffer has the write error flag, we have failed 4604 * to write out another inode in the same block. In this 4605 * case, we don't have to read the block because we may 4606 * read the old inode data successfully. 4607 */ 4608 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4609 set_buffer_uptodate(bh); 4610 4611 if (buffer_uptodate(bh)) { 4612 /* someone brought it uptodate while we waited */ 4613 unlock_buffer(bh); 4614 goto has_buffer; 4615 } 4616 4617 /* 4618 * If we have all information of the inode in memory and this 4619 * is the only valid inode in the block, we need not read the 4620 * block. 4621 */ 4622 if (in_mem) { 4623 struct buffer_head *bitmap_bh; 4624 int i, start; 4625 4626 start = inode_offset & ~(inodes_per_block - 1); 4627 4628 /* Is the inode bitmap in cache? */ 4629 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4630 if (unlikely(!bitmap_bh)) 4631 goto make_io; 4632 4633 /* 4634 * If the inode bitmap isn't in cache then the 4635 * optimisation may end up performing two reads instead 4636 * of one, so skip it. 4637 */ 4638 if (!buffer_uptodate(bitmap_bh)) { 4639 brelse(bitmap_bh); 4640 goto make_io; 4641 } 4642 for (i = start; i < start + inodes_per_block; i++) { 4643 if (i == inode_offset) 4644 continue; 4645 if (ext4_test_bit(i, bitmap_bh->b_data)) 4646 break; 4647 } 4648 brelse(bitmap_bh); 4649 if (i == start + inodes_per_block) { 4650 /* all other inodes are free, so skip I/O */ 4651 memset(bh->b_data, 0, bh->b_size); 4652 set_buffer_uptodate(bh); 4653 unlock_buffer(bh); 4654 goto has_buffer; 4655 } 4656 } 4657 4658 make_io: 4659 /* 4660 * If we need to do any I/O, try to pre-readahead extra 4661 * blocks from the inode table. 4662 */ 4663 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4664 ext4_fsblk_t b, end, table; 4665 unsigned num; 4666 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4667 4668 table = ext4_inode_table(sb, gdp); 4669 /* s_inode_readahead_blks is always a power of 2 */ 4670 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4671 if (table > b) 4672 b = table; 4673 end = b + ra_blks; 4674 num = EXT4_INODES_PER_GROUP(sb); 4675 if (ext4_has_group_desc_csum(sb)) 4676 num -= ext4_itable_unused_count(sb, gdp); 4677 table += num / inodes_per_block; 4678 if (end > table) 4679 end = table; 4680 while (b <= end) 4681 sb_breadahead(sb, b++); 4682 } 4683 4684 /* 4685 * There are other valid inodes in the buffer, this inode 4686 * has in-inode xattrs, or we don't have this inode in memory. 4687 * Read the block from disk. 4688 */ 4689 trace_ext4_load_inode(inode); 4690 get_bh(bh); 4691 bh->b_end_io = end_buffer_read_sync; 4692 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4693 wait_on_buffer(bh); 4694 if (!buffer_uptodate(bh)) { 4695 EXT4_ERROR_INODE_BLOCK(inode, block, 4696 "unable to read itable block"); 4697 brelse(bh); 4698 return -EIO; 4699 } 4700 } 4701 has_buffer: 4702 iloc->bh = bh; 4703 return 0; 4704 } 4705 4706 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4707 { 4708 /* We have all inode data except xattrs in memory here. */ 4709 return __ext4_get_inode_loc(inode, iloc, 4710 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4711 } 4712 4713 static bool ext4_should_use_dax(struct inode *inode) 4714 { 4715 if (!test_opt(inode->i_sb, DAX)) 4716 return false; 4717 if (!S_ISREG(inode->i_mode)) 4718 return false; 4719 if (ext4_should_journal_data(inode)) 4720 return false; 4721 if (ext4_has_inline_data(inode)) 4722 return false; 4723 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4724 return false; 4725 return true; 4726 } 4727 4728 void ext4_set_inode_flags(struct inode *inode) 4729 { 4730 unsigned int flags = EXT4_I(inode)->i_flags; 4731 unsigned int new_fl = 0; 4732 4733 if (flags & EXT4_SYNC_FL) 4734 new_fl |= S_SYNC; 4735 if (flags & EXT4_APPEND_FL) 4736 new_fl |= S_APPEND; 4737 if (flags & EXT4_IMMUTABLE_FL) 4738 new_fl |= S_IMMUTABLE; 4739 if (flags & EXT4_NOATIME_FL) 4740 new_fl |= S_NOATIME; 4741 if (flags & EXT4_DIRSYNC_FL) 4742 new_fl |= S_DIRSYNC; 4743 if (ext4_should_use_dax(inode)) 4744 new_fl |= S_DAX; 4745 if (flags & EXT4_ENCRYPT_FL) 4746 new_fl |= S_ENCRYPTED; 4747 inode_set_flags(inode, new_fl, 4748 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4749 S_ENCRYPTED); 4750 } 4751 4752 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4753 struct ext4_inode_info *ei) 4754 { 4755 blkcnt_t i_blocks ; 4756 struct inode *inode = &(ei->vfs_inode); 4757 struct super_block *sb = inode->i_sb; 4758 4759 if (ext4_has_feature_huge_file(sb)) { 4760 /* we are using combined 48 bit field */ 4761 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4762 le32_to_cpu(raw_inode->i_blocks_lo); 4763 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4764 /* i_blocks represent file system block size */ 4765 return i_blocks << (inode->i_blkbits - 9); 4766 } else { 4767 return i_blocks; 4768 } 4769 } else { 4770 return le32_to_cpu(raw_inode->i_blocks_lo); 4771 } 4772 } 4773 4774 static inline int ext4_iget_extra_inode(struct inode *inode, 4775 struct ext4_inode *raw_inode, 4776 struct ext4_inode_info *ei) 4777 { 4778 __le32 *magic = (void *)raw_inode + 4779 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4780 4781 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4782 EXT4_INODE_SIZE(inode->i_sb) && 4783 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4784 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4785 return ext4_find_inline_data_nolock(inode); 4786 } else 4787 EXT4_I(inode)->i_inline_off = 0; 4788 return 0; 4789 } 4790 4791 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4792 { 4793 if (!ext4_has_feature_project(inode->i_sb)) 4794 return -EOPNOTSUPP; 4795 *projid = EXT4_I(inode)->i_projid; 4796 return 0; 4797 } 4798 4799 /* 4800 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4801 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4802 * set. 4803 */ 4804 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4805 { 4806 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4807 inode_set_iversion_raw(inode, val); 4808 else 4809 inode_set_iversion_queried(inode, val); 4810 } 4811 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4812 { 4813 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4814 return inode_peek_iversion_raw(inode); 4815 else 4816 return inode_peek_iversion(inode); 4817 } 4818 4819 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4820 ext4_iget_flags flags, const char *function, 4821 unsigned int line) 4822 { 4823 struct ext4_iloc iloc; 4824 struct ext4_inode *raw_inode; 4825 struct ext4_inode_info *ei; 4826 struct inode *inode; 4827 journal_t *journal = EXT4_SB(sb)->s_journal; 4828 long ret; 4829 loff_t size; 4830 int block; 4831 uid_t i_uid; 4832 gid_t i_gid; 4833 projid_t i_projid; 4834 4835 if ((!(flags & EXT4_IGET_SPECIAL) && 4836 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4837 (ino < EXT4_ROOT_INO) || 4838 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4839 if (flags & EXT4_IGET_HANDLE) 4840 return ERR_PTR(-ESTALE); 4841 __ext4_error(sb, function, line, 4842 "inode #%lu: comm %s: iget: illegal inode #", 4843 ino, current->comm); 4844 return ERR_PTR(-EFSCORRUPTED); 4845 } 4846 4847 inode = iget_locked(sb, ino); 4848 if (!inode) 4849 return ERR_PTR(-ENOMEM); 4850 if (!(inode->i_state & I_NEW)) 4851 return inode; 4852 4853 ei = EXT4_I(inode); 4854 iloc.bh = NULL; 4855 4856 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4857 if (ret < 0) 4858 goto bad_inode; 4859 raw_inode = ext4_raw_inode(&iloc); 4860 4861 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4862 ext4_error_inode(inode, function, line, 0, 4863 "iget: root inode unallocated"); 4864 ret = -EFSCORRUPTED; 4865 goto bad_inode; 4866 } 4867 4868 if ((flags & EXT4_IGET_HANDLE) && 4869 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4870 ret = -ESTALE; 4871 goto bad_inode; 4872 } 4873 4874 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4875 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4876 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4877 EXT4_INODE_SIZE(inode->i_sb) || 4878 (ei->i_extra_isize & 3)) { 4879 ext4_error_inode(inode, function, line, 0, 4880 "iget: bad extra_isize %u " 4881 "(inode size %u)", 4882 ei->i_extra_isize, 4883 EXT4_INODE_SIZE(inode->i_sb)); 4884 ret = -EFSCORRUPTED; 4885 goto bad_inode; 4886 } 4887 } else 4888 ei->i_extra_isize = 0; 4889 4890 /* Precompute checksum seed for inode metadata */ 4891 if (ext4_has_metadata_csum(sb)) { 4892 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4893 __u32 csum; 4894 __le32 inum = cpu_to_le32(inode->i_ino); 4895 __le32 gen = raw_inode->i_generation; 4896 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4897 sizeof(inum)); 4898 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4899 sizeof(gen)); 4900 } 4901 4902 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4903 ext4_error_inode(inode, function, line, 0, 4904 "iget: checksum invalid"); 4905 ret = -EFSBADCRC; 4906 goto bad_inode; 4907 } 4908 4909 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4910 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4911 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4912 if (ext4_has_feature_project(sb) && 4913 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4914 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4915 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4916 else 4917 i_projid = EXT4_DEF_PROJID; 4918 4919 if (!(test_opt(inode->i_sb, NO_UID32))) { 4920 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4921 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4922 } 4923 i_uid_write(inode, i_uid); 4924 i_gid_write(inode, i_gid); 4925 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4926 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4927 4928 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4929 ei->i_inline_off = 0; 4930 ei->i_dir_start_lookup = 0; 4931 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4932 /* We now have enough fields to check if the inode was active or not. 4933 * This is needed because nfsd might try to access dead inodes 4934 * the test is that same one that e2fsck uses 4935 * NeilBrown 1999oct15 4936 */ 4937 if (inode->i_nlink == 0) { 4938 if ((inode->i_mode == 0 || 4939 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4940 ino != EXT4_BOOT_LOADER_INO) { 4941 /* this inode is deleted */ 4942 ret = -ESTALE; 4943 goto bad_inode; 4944 } 4945 /* The only unlinked inodes we let through here have 4946 * valid i_mode and are being read by the orphan 4947 * recovery code: that's fine, we're about to complete 4948 * the process of deleting those. 4949 * OR it is the EXT4_BOOT_LOADER_INO which is 4950 * not initialized on a new filesystem. */ 4951 } 4952 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4953 ext4_set_inode_flags(inode); 4954 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4955 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4956 if (ext4_has_feature_64bit(sb)) 4957 ei->i_file_acl |= 4958 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4959 inode->i_size = ext4_isize(sb, raw_inode); 4960 if ((size = i_size_read(inode)) < 0) { 4961 ext4_error_inode(inode, function, line, 0, 4962 "iget: bad i_size value: %lld", size); 4963 ret = -EFSCORRUPTED; 4964 goto bad_inode; 4965 } 4966 ei->i_disksize = inode->i_size; 4967 #ifdef CONFIG_QUOTA 4968 ei->i_reserved_quota = 0; 4969 #endif 4970 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4971 ei->i_block_group = iloc.block_group; 4972 ei->i_last_alloc_group = ~0; 4973 /* 4974 * NOTE! The in-memory inode i_data array is in little-endian order 4975 * even on big-endian machines: we do NOT byteswap the block numbers! 4976 */ 4977 for (block = 0; block < EXT4_N_BLOCKS; block++) 4978 ei->i_data[block] = raw_inode->i_block[block]; 4979 INIT_LIST_HEAD(&ei->i_orphan); 4980 4981 /* 4982 * Set transaction id's of transactions that have to be committed 4983 * to finish f[data]sync. We set them to currently running transaction 4984 * as we cannot be sure that the inode or some of its metadata isn't 4985 * part of the transaction - the inode could have been reclaimed and 4986 * now it is reread from disk. 4987 */ 4988 if (journal) { 4989 transaction_t *transaction; 4990 tid_t tid; 4991 4992 read_lock(&journal->j_state_lock); 4993 if (journal->j_running_transaction) 4994 transaction = journal->j_running_transaction; 4995 else 4996 transaction = journal->j_committing_transaction; 4997 if (transaction) 4998 tid = transaction->t_tid; 4999 else 5000 tid = journal->j_commit_sequence; 5001 read_unlock(&journal->j_state_lock); 5002 ei->i_sync_tid = tid; 5003 ei->i_datasync_tid = tid; 5004 } 5005 5006 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5007 if (ei->i_extra_isize == 0) { 5008 /* The extra space is currently unused. Use it. */ 5009 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5010 ei->i_extra_isize = sizeof(struct ext4_inode) - 5011 EXT4_GOOD_OLD_INODE_SIZE; 5012 } else { 5013 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5014 if (ret) 5015 goto bad_inode; 5016 } 5017 } 5018 5019 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5020 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5021 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5022 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5023 5024 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5025 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5026 5027 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5028 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5029 ivers |= 5030 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5031 } 5032 ext4_inode_set_iversion_queried(inode, ivers); 5033 } 5034 5035 ret = 0; 5036 if (ei->i_file_acl && 5037 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5038 ext4_error_inode(inode, function, line, 0, 5039 "iget: bad extended attribute block %llu", 5040 ei->i_file_acl); 5041 ret = -EFSCORRUPTED; 5042 goto bad_inode; 5043 } else if (!ext4_has_inline_data(inode)) { 5044 /* validate the block references in the inode */ 5045 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5046 (S_ISLNK(inode->i_mode) && 5047 !ext4_inode_is_fast_symlink(inode))) { 5048 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5049 ret = ext4_ext_check_inode(inode); 5050 else 5051 ret = ext4_ind_check_inode(inode); 5052 } 5053 } 5054 if (ret) 5055 goto bad_inode; 5056 5057 if (S_ISREG(inode->i_mode)) { 5058 inode->i_op = &ext4_file_inode_operations; 5059 inode->i_fop = &ext4_file_operations; 5060 ext4_set_aops(inode); 5061 } else if (S_ISDIR(inode->i_mode)) { 5062 inode->i_op = &ext4_dir_inode_operations; 5063 inode->i_fop = &ext4_dir_operations; 5064 } else if (S_ISLNK(inode->i_mode)) { 5065 /* VFS does not allow setting these so must be corruption */ 5066 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5067 ext4_error_inode(inode, function, line, 0, 5068 "iget: immutable or append flags " 5069 "not allowed on symlinks"); 5070 ret = -EFSCORRUPTED; 5071 goto bad_inode; 5072 } 5073 if (IS_ENCRYPTED(inode)) { 5074 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5075 ext4_set_aops(inode); 5076 } else if (ext4_inode_is_fast_symlink(inode)) { 5077 inode->i_link = (char *)ei->i_data; 5078 inode->i_op = &ext4_fast_symlink_inode_operations; 5079 nd_terminate_link(ei->i_data, inode->i_size, 5080 sizeof(ei->i_data) - 1); 5081 } else { 5082 inode->i_op = &ext4_symlink_inode_operations; 5083 ext4_set_aops(inode); 5084 } 5085 inode_nohighmem(inode); 5086 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5087 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5088 inode->i_op = &ext4_special_inode_operations; 5089 if (raw_inode->i_block[0]) 5090 init_special_inode(inode, inode->i_mode, 5091 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5092 else 5093 init_special_inode(inode, inode->i_mode, 5094 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5095 } else if (ino == EXT4_BOOT_LOADER_INO) { 5096 make_bad_inode(inode); 5097 } else { 5098 ret = -EFSCORRUPTED; 5099 ext4_error_inode(inode, function, line, 0, 5100 "iget: bogus i_mode (%o)", inode->i_mode); 5101 goto bad_inode; 5102 } 5103 brelse(iloc.bh); 5104 5105 unlock_new_inode(inode); 5106 return inode; 5107 5108 bad_inode: 5109 brelse(iloc.bh); 5110 iget_failed(inode); 5111 return ERR_PTR(ret); 5112 } 5113 5114 static int ext4_inode_blocks_set(handle_t *handle, 5115 struct ext4_inode *raw_inode, 5116 struct ext4_inode_info *ei) 5117 { 5118 struct inode *inode = &(ei->vfs_inode); 5119 u64 i_blocks = inode->i_blocks; 5120 struct super_block *sb = inode->i_sb; 5121 5122 if (i_blocks <= ~0U) { 5123 /* 5124 * i_blocks can be represented in a 32 bit variable 5125 * as multiple of 512 bytes 5126 */ 5127 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5128 raw_inode->i_blocks_high = 0; 5129 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5130 return 0; 5131 } 5132 if (!ext4_has_feature_huge_file(sb)) 5133 return -EFBIG; 5134 5135 if (i_blocks <= 0xffffffffffffULL) { 5136 /* 5137 * i_blocks can be represented in a 48 bit variable 5138 * as multiple of 512 bytes 5139 */ 5140 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5141 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5142 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5143 } else { 5144 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5145 /* i_block is stored in file system block size */ 5146 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5147 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5148 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5149 } 5150 return 0; 5151 } 5152 5153 struct other_inode { 5154 unsigned long orig_ino; 5155 struct ext4_inode *raw_inode; 5156 }; 5157 5158 static int other_inode_match(struct inode * inode, unsigned long ino, 5159 void *data) 5160 { 5161 struct other_inode *oi = (struct other_inode *) data; 5162 5163 if ((inode->i_ino != ino) || 5164 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5165 I_DIRTY_INODE)) || 5166 ((inode->i_state & I_DIRTY_TIME) == 0)) 5167 return 0; 5168 spin_lock(&inode->i_lock); 5169 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5170 I_DIRTY_INODE)) == 0) && 5171 (inode->i_state & I_DIRTY_TIME)) { 5172 struct ext4_inode_info *ei = EXT4_I(inode); 5173 5174 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5175 spin_unlock(&inode->i_lock); 5176 5177 spin_lock(&ei->i_raw_lock); 5178 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5179 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5180 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5181 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5182 spin_unlock(&ei->i_raw_lock); 5183 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5184 return -1; 5185 } 5186 spin_unlock(&inode->i_lock); 5187 return -1; 5188 } 5189 5190 /* 5191 * Opportunistically update the other time fields for other inodes in 5192 * the same inode table block. 5193 */ 5194 static void ext4_update_other_inodes_time(struct super_block *sb, 5195 unsigned long orig_ino, char *buf) 5196 { 5197 struct other_inode oi; 5198 unsigned long ino; 5199 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5200 int inode_size = EXT4_INODE_SIZE(sb); 5201 5202 oi.orig_ino = orig_ino; 5203 /* 5204 * Calculate the first inode in the inode table block. Inode 5205 * numbers are one-based. That is, the first inode in a block 5206 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5207 */ 5208 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5209 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5210 if (ino == orig_ino) 5211 continue; 5212 oi.raw_inode = (struct ext4_inode *) buf; 5213 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5214 } 5215 } 5216 5217 /* 5218 * Post the struct inode info into an on-disk inode location in the 5219 * buffer-cache. This gobbles the caller's reference to the 5220 * buffer_head in the inode location struct. 5221 * 5222 * The caller must have write access to iloc->bh. 5223 */ 5224 static int ext4_do_update_inode(handle_t *handle, 5225 struct inode *inode, 5226 struct ext4_iloc *iloc) 5227 { 5228 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5229 struct ext4_inode_info *ei = EXT4_I(inode); 5230 struct buffer_head *bh = iloc->bh; 5231 struct super_block *sb = inode->i_sb; 5232 int err = 0, rc, block; 5233 int need_datasync = 0, set_large_file = 0; 5234 uid_t i_uid; 5235 gid_t i_gid; 5236 projid_t i_projid; 5237 5238 spin_lock(&ei->i_raw_lock); 5239 5240 /* For fields not tracked in the in-memory inode, 5241 * initialise them to zero for new inodes. */ 5242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5244 5245 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5246 i_uid = i_uid_read(inode); 5247 i_gid = i_gid_read(inode); 5248 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5249 if (!(test_opt(inode->i_sb, NO_UID32))) { 5250 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5251 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5252 /* 5253 * Fix up interoperability with old kernels. Otherwise, old inodes get 5254 * re-used with the upper 16 bits of the uid/gid intact 5255 */ 5256 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5257 raw_inode->i_uid_high = 0; 5258 raw_inode->i_gid_high = 0; 5259 } else { 5260 raw_inode->i_uid_high = 5261 cpu_to_le16(high_16_bits(i_uid)); 5262 raw_inode->i_gid_high = 5263 cpu_to_le16(high_16_bits(i_gid)); 5264 } 5265 } else { 5266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5268 raw_inode->i_uid_high = 0; 5269 raw_inode->i_gid_high = 0; 5270 } 5271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5272 5273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5277 5278 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5279 if (err) { 5280 spin_unlock(&ei->i_raw_lock); 5281 goto out_brelse; 5282 } 5283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5284 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5285 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5286 raw_inode->i_file_acl_high = 5287 cpu_to_le16(ei->i_file_acl >> 32); 5288 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5289 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5290 ext4_isize_set(raw_inode, ei->i_disksize); 5291 need_datasync = 1; 5292 } 5293 if (ei->i_disksize > 0x7fffffffULL) { 5294 if (!ext4_has_feature_large_file(sb) || 5295 EXT4_SB(sb)->s_es->s_rev_level == 5296 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5297 set_large_file = 1; 5298 } 5299 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5300 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5301 if (old_valid_dev(inode->i_rdev)) { 5302 raw_inode->i_block[0] = 5303 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5304 raw_inode->i_block[1] = 0; 5305 } else { 5306 raw_inode->i_block[0] = 0; 5307 raw_inode->i_block[1] = 5308 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5309 raw_inode->i_block[2] = 0; 5310 } 5311 } else if (!ext4_has_inline_data(inode)) { 5312 for (block = 0; block < EXT4_N_BLOCKS; block++) 5313 raw_inode->i_block[block] = ei->i_data[block]; 5314 } 5315 5316 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5317 u64 ivers = ext4_inode_peek_iversion(inode); 5318 5319 raw_inode->i_disk_version = cpu_to_le32(ivers); 5320 if (ei->i_extra_isize) { 5321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5322 raw_inode->i_version_hi = 5323 cpu_to_le32(ivers >> 32); 5324 raw_inode->i_extra_isize = 5325 cpu_to_le16(ei->i_extra_isize); 5326 } 5327 } 5328 5329 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5330 i_projid != EXT4_DEF_PROJID); 5331 5332 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5333 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5334 raw_inode->i_projid = cpu_to_le32(i_projid); 5335 5336 ext4_inode_csum_set(inode, raw_inode, ei); 5337 spin_unlock(&ei->i_raw_lock); 5338 if (inode->i_sb->s_flags & SB_LAZYTIME) 5339 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5340 bh->b_data); 5341 5342 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5343 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5344 if (!err) 5345 err = rc; 5346 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5347 if (set_large_file) { 5348 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5349 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5350 if (err) 5351 goto out_brelse; 5352 ext4_update_dynamic_rev(sb); 5353 ext4_set_feature_large_file(sb); 5354 ext4_handle_sync(handle); 5355 err = ext4_handle_dirty_super(handle, sb); 5356 } 5357 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5358 out_brelse: 5359 brelse(bh); 5360 ext4_std_error(inode->i_sb, err); 5361 return err; 5362 } 5363 5364 /* 5365 * ext4_write_inode() 5366 * 5367 * We are called from a few places: 5368 * 5369 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5370 * Here, there will be no transaction running. We wait for any running 5371 * transaction to commit. 5372 * 5373 * - Within flush work (sys_sync(), kupdate and such). 5374 * We wait on commit, if told to. 5375 * 5376 * - Within iput_final() -> write_inode_now() 5377 * We wait on commit, if told to. 5378 * 5379 * In all cases it is actually safe for us to return without doing anything, 5380 * because the inode has been copied into a raw inode buffer in 5381 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5382 * writeback. 5383 * 5384 * Note that we are absolutely dependent upon all inode dirtiers doing the 5385 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5386 * which we are interested. 5387 * 5388 * It would be a bug for them to not do this. The code: 5389 * 5390 * mark_inode_dirty(inode) 5391 * stuff(); 5392 * inode->i_size = expr; 5393 * 5394 * is in error because write_inode() could occur while `stuff()' is running, 5395 * and the new i_size will be lost. Plus the inode will no longer be on the 5396 * superblock's dirty inode list. 5397 */ 5398 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5399 { 5400 int err; 5401 5402 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5403 sb_rdonly(inode->i_sb)) 5404 return 0; 5405 5406 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5407 return -EIO; 5408 5409 if (EXT4_SB(inode->i_sb)->s_journal) { 5410 if (ext4_journal_current_handle()) { 5411 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5412 dump_stack(); 5413 return -EIO; 5414 } 5415 5416 /* 5417 * No need to force transaction in WB_SYNC_NONE mode. Also 5418 * ext4_sync_fs() will force the commit after everything is 5419 * written. 5420 */ 5421 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5422 return 0; 5423 5424 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5425 EXT4_I(inode)->i_sync_tid); 5426 } else { 5427 struct ext4_iloc iloc; 5428 5429 err = __ext4_get_inode_loc(inode, &iloc, 0); 5430 if (err) 5431 return err; 5432 /* 5433 * sync(2) will flush the whole buffer cache. No need to do 5434 * it here separately for each inode. 5435 */ 5436 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5437 sync_dirty_buffer(iloc.bh); 5438 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5439 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5440 "IO error syncing inode"); 5441 err = -EIO; 5442 } 5443 brelse(iloc.bh); 5444 } 5445 return err; 5446 } 5447 5448 /* 5449 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5450 * buffers that are attached to a page stradding i_size and are undergoing 5451 * commit. In that case we have to wait for commit to finish and try again. 5452 */ 5453 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5454 { 5455 struct page *page; 5456 unsigned offset; 5457 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5458 tid_t commit_tid = 0; 5459 int ret; 5460 5461 offset = inode->i_size & (PAGE_SIZE - 1); 5462 /* 5463 * All buffers in the last page remain valid? Then there's nothing to 5464 * do. We do the check mainly to optimize the common PAGE_SIZE == 5465 * blocksize case 5466 */ 5467 if (offset > PAGE_SIZE - i_blocksize(inode)) 5468 return; 5469 while (1) { 5470 page = find_lock_page(inode->i_mapping, 5471 inode->i_size >> PAGE_SHIFT); 5472 if (!page) 5473 return; 5474 ret = __ext4_journalled_invalidatepage(page, offset, 5475 PAGE_SIZE - offset); 5476 unlock_page(page); 5477 put_page(page); 5478 if (ret != -EBUSY) 5479 return; 5480 commit_tid = 0; 5481 read_lock(&journal->j_state_lock); 5482 if (journal->j_committing_transaction) 5483 commit_tid = journal->j_committing_transaction->t_tid; 5484 read_unlock(&journal->j_state_lock); 5485 if (commit_tid) 5486 jbd2_log_wait_commit(journal, commit_tid); 5487 } 5488 } 5489 5490 /* 5491 * ext4_setattr() 5492 * 5493 * Called from notify_change. 5494 * 5495 * We want to trap VFS attempts to truncate the file as soon as 5496 * possible. In particular, we want to make sure that when the VFS 5497 * shrinks i_size, we put the inode on the orphan list and modify 5498 * i_disksize immediately, so that during the subsequent flushing of 5499 * dirty pages and freeing of disk blocks, we can guarantee that any 5500 * commit will leave the blocks being flushed in an unused state on 5501 * disk. (On recovery, the inode will get truncated and the blocks will 5502 * be freed, so we have a strong guarantee that no future commit will 5503 * leave these blocks visible to the user.) 5504 * 5505 * Another thing we have to assure is that if we are in ordered mode 5506 * and inode is still attached to the committing transaction, we must 5507 * we start writeout of all the dirty pages which are being truncated. 5508 * This way we are sure that all the data written in the previous 5509 * transaction are already on disk (truncate waits for pages under 5510 * writeback). 5511 * 5512 * Called with inode->i_mutex down. 5513 */ 5514 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5515 { 5516 struct inode *inode = d_inode(dentry); 5517 int error, rc = 0; 5518 int orphan = 0; 5519 const unsigned int ia_valid = attr->ia_valid; 5520 5521 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5522 return -EIO; 5523 5524 error = setattr_prepare(dentry, attr); 5525 if (error) 5526 return error; 5527 5528 error = fscrypt_prepare_setattr(dentry, attr); 5529 if (error) 5530 return error; 5531 5532 if (is_quota_modification(inode, attr)) { 5533 error = dquot_initialize(inode); 5534 if (error) 5535 return error; 5536 } 5537 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5538 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5539 handle_t *handle; 5540 5541 /* (user+group)*(old+new) structure, inode write (sb, 5542 * inode block, ? - but truncate inode update has it) */ 5543 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5544 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5545 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5546 if (IS_ERR(handle)) { 5547 error = PTR_ERR(handle); 5548 goto err_out; 5549 } 5550 5551 /* dquot_transfer() calls back ext4_get_inode_usage() which 5552 * counts xattr inode references. 5553 */ 5554 down_read(&EXT4_I(inode)->xattr_sem); 5555 error = dquot_transfer(inode, attr); 5556 up_read(&EXT4_I(inode)->xattr_sem); 5557 5558 if (error) { 5559 ext4_journal_stop(handle); 5560 return error; 5561 } 5562 /* Update corresponding info in inode so that everything is in 5563 * one transaction */ 5564 if (attr->ia_valid & ATTR_UID) 5565 inode->i_uid = attr->ia_uid; 5566 if (attr->ia_valid & ATTR_GID) 5567 inode->i_gid = attr->ia_gid; 5568 error = ext4_mark_inode_dirty(handle, inode); 5569 ext4_journal_stop(handle); 5570 } 5571 5572 if (attr->ia_valid & ATTR_SIZE) { 5573 handle_t *handle; 5574 loff_t oldsize = inode->i_size; 5575 int shrink = (attr->ia_size <= inode->i_size); 5576 5577 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5579 5580 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5581 return -EFBIG; 5582 } 5583 if (!S_ISREG(inode->i_mode)) 5584 return -EINVAL; 5585 5586 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5587 inode_inc_iversion(inode); 5588 5589 if (ext4_should_order_data(inode) && 5590 (attr->ia_size < inode->i_size)) { 5591 error = ext4_begin_ordered_truncate(inode, 5592 attr->ia_size); 5593 if (error) 5594 goto err_out; 5595 } 5596 if (attr->ia_size != inode->i_size) { 5597 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5598 if (IS_ERR(handle)) { 5599 error = PTR_ERR(handle); 5600 goto err_out; 5601 } 5602 if (ext4_handle_valid(handle) && shrink) { 5603 error = ext4_orphan_add(handle, inode); 5604 orphan = 1; 5605 } 5606 /* 5607 * Update c/mtime on truncate up, ext4_truncate() will 5608 * update c/mtime in shrink case below 5609 */ 5610 if (!shrink) { 5611 inode->i_mtime = current_time(inode); 5612 inode->i_ctime = inode->i_mtime; 5613 } 5614 down_write(&EXT4_I(inode)->i_data_sem); 5615 EXT4_I(inode)->i_disksize = attr->ia_size; 5616 rc = ext4_mark_inode_dirty(handle, inode); 5617 if (!error) 5618 error = rc; 5619 /* 5620 * We have to update i_size under i_data_sem together 5621 * with i_disksize to avoid races with writeback code 5622 * running ext4_wb_update_i_disksize(). 5623 */ 5624 if (!error) 5625 i_size_write(inode, attr->ia_size); 5626 up_write(&EXT4_I(inode)->i_data_sem); 5627 ext4_journal_stop(handle); 5628 if (error) { 5629 if (orphan) 5630 ext4_orphan_del(NULL, inode); 5631 goto err_out; 5632 } 5633 } 5634 if (!shrink) 5635 pagecache_isize_extended(inode, oldsize, inode->i_size); 5636 5637 /* 5638 * Blocks are going to be removed from the inode. Wait 5639 * for dio in flight. Temporarily disable 5640 * dioread_nolock to prevent livelock. 5641 */ 5642 if (orphan) { 5643 if (!ext4_should_journal_data(inode)) { 5644 inode_dio_wait(inode); 5645 } else 5646 ext4_wait_for_tail_page_commit(inode); 5647 } 5648 down_write(&EXT4_I(inode)->i_mmap_sem); 5649 5650 rc = ext4_break_layouts(inode); 5651 if (rc) { 5652 up_write(&EXT4_I(inode)->i_mmap_sem); 5653 error = rc; 5654 goto err_out; 5655 } 5656 5657 /* 5658 * Truncate pagecache after we've waited for commit 5659 * in data=journal mode to make pages freeable. 5660 */ 5661 truncate_pagecache(inode, inode->i_size); 5662 if (shrink) { 5663 rc = ext4_truncate(inode); 5664 if (rc) 5665 error = rc; 5666 } 5667 up_write(&EXT4_I(inode)->i_mmap_sem); 5668 } 5669 5670 if (!error) { 5671 setattr_copy(inode, attr); 5672 mark_inode_dirty(inode); 5673 } 5674 5675 /* 5676 * If the call to ext4_truncate failed to get a transaction handle at 5677 * all, we need to clean up the in-core orphan list manually. 5678 */ 5679 if (orphan && inode->i_nlink) 5680 ext4_orphan_del(NULL, inode); 5681 5682 if (!error && (ia_valid & ATTR_MODE)) 5683 rc = posix_acl_chmod(inode, inode->i_mode); 5684 5685 err_out: 5686 ext4_std_error(inode->i_sb, error); 5687 if (!error) 5688 error = rc; 5689 return error; 5690 } 5691 5692 int ext4_getattr(const struct path *path, struct kstat *stat, 5693 u32 request_mask, unsigned int query_flags) 5694 { 5695 struct inode *inode = d_inode(path->dentry); 5696 struct ext4_inode *raw_inode; 5697 struct ext4_inode_info *ei = EXT4_I(inode); 5698 unsigned int flags; 5699 5700 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5701 stat->result_mask |= STATX_BTIME; 5702 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5703 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5704 } 5705 5706 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5707 if (flags & EXT4_APPEND_FL) 5708 stat->attributes |= STATX_ATTR_APPEND; 5709 if (flags & EXT4_COMPR_FL) 5710 stat->attributes |= STATX_ATTR_COMPRESSED; 5711 if (flags & EXT4_ENCRYPT_FL) 5712 stat->attributes |= STATX_ATTR_ENCRYPTED; 5713 if (flags & EXT4_IMMUTABLE_FL) 5714 stat->attributes |= STATX_ATTR_IMMUTABLE; 5715 if (flags & EXT4_NODUMP_FL) 5716 stat->attributes |= STATX_ATTR_NODUMP; 5717 5718 stat->attributes_mask |= (STATX_ATTR_APPEND | 5719 STATX_ATTR_COMPRESSED | 5720 STATX_ATTR_ENCRYPTED | 5721 STATX_ATTR_IMMUTABLE | 5722 STATX_ATTR_NODUMP); 5723 5724 generic_fillattr(inode, stat); 5725 return 0; 5726 } 5727 5728 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5729 u32 request_mask, unsigned int query_flags) 5730 { 5731 struct inode *inode = d_inode(path->dentry); 5732 u64 delalloc_blocks; 5733 5734 ext4_getattr(path, stat, request_mask, query_flags); 5735 5736 /* 5737 * If there is inline data in the inode, the inode will normally not 5738 * have data blocks allocated (it may have an external xattr block). 5739 * Report at least one sector for such files, so tools like tar, rsync, 5740 * others don't incorrectly think the file is completely sparse. 5741 */ 5742 if (unlikely(ext4_has_inline_data(inode))) 5743 stat->blocks += (stat->size + 511) >> 9; 5744 5745 /* 5746 * We can't update i_blocks if the block allocation is delayed 5747 * otherwise in the case of system crash before the real block 5748 * allocation is done, we will have i_blocks inconsistent with 5749 * on-disk file blocks. 5750 * We always keep i_blocks updated together with real 5751 * allocation. But to not confuse with user, stat 5752 * will return the blocks that include the delayed allocation 5753 * blocks for this file. 5754 */ 5755 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5756 EXT4_I(inode)->i_reserved_data_blocks); 5757 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5758 return 0; 5759 } 5760 5761 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5762 int pextents) 5763 { 5764 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5765 return ext4_ind_trans_blocks(inode, lblocks); 5766 return ext4_ext_index_trans_blocks(inode, pextents); 5767 } 5768 5769 /* 5770 * Account for index blocks, block groups bitmaps and block group 5771 * descriptor blocks if modify datablocks and index blocks 5772 * worse case, the indexs blocks spread over different block groups 5773 * 5774 * If datablocks are discontiguous, they are possible to spread over 5775 * different block groups too. If they are contiguous, with flexbg, 5776 * they could still across block group boundary. 5777 * 5778 * Also account for superblock, inode, quota and xattr blocks 5779 */ 5780 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5781 int pextents) 5782 { 5783 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5784 int gdpblocks; 5785 int idxblocks; 5786 int ret = 0; 5787 5788 /* 5789 * How many index blocks need to touch to map @lblocks logical blocks 5790 * to @pextents physical extents? 5791 */ 5792 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5793 5794 ret = idxblocks; 5795 5796 /* 5797 * Now let's see how many group bitmaps and group descriptors need 5798 * to account 5799 */ 5800 groups = idxblocks + pextents; 5801 gdpblocks = groups; 5802 if (groups > ngroups) 5803 groups = ngroups; 5804 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5805 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5806 5807 /* bitmaps and block group descriptor blocks */ 5808 ret += groups + gdpblocks; 5809 5810 /* Blocks for super block, inode, quota and xattr blocks */ 5811 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5812 5813 return ret; 5814 } 5815 5816 /* 5817 * Calculate the total number of credits to reserve to fit 5818 * the modification of a single pages into a single transaction, 5819 * which may include multiple chunks of block allocations. 5820 * 5821 * This could be called via ext4_write_begin() 5822 * 5823 * We need to consider the worse case, when 5824 * one new block per extent. 5825 */ 5826 int ext4_writepage_trans_blocks(struct inode *inode) 5827 { 5828 int bpp = ext4_journal_blocks_per_page(inode); 5829 int ret; 5830 5831 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5832 5833 /* Account for data blocks for journalled mode */ 5834 if (ext4_should_journal_data(inode)) 5835 ret += bpp; 5836 return ret; 5837 } 5838 5839 /* 5840 * Calculate the journal credits for a chunk of data modification. 5841 * 5842 * This is called from DIO, fallocate or whoever calling 5843 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5844 * 5845 * journal buffers for data blocks are not included here, as DIO 5846 * and fallocate do no need to journal data buffers. 5847 */ 5848 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5849 { 5850 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5851 } 5852 5853 /* 5854 * The caller must have previously called ext4_reserve_inode_write(). 5855 * Give this, we know that the caller already has write access to iloc->bh. 5856 */ 5857 int ext4_mark_iloc_dirty(handle_t *handle, 5858 struct inode *inode, struct ext4_iloc *iloc) 5859 { 5860 int err = 0; 5861 5862 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5863 put_bh(iloc->bh); 5864 return -EIO; 5865 } 5866 if (IS_I_VERSION(inode)) 5867 inode_inc_iversion(inode); 5868 5869 /* the do_update_inode consumes one bh->b_count */ 5870 get_bh(iloc->bh); 5871 5872 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5873 err = ext4_do_update_inode(handle, inode, iloc); 5874 put_bh(iloc->bh); 5875 return err; 5876 } 5877 5878 /* 5879 * On success, We end up with an outstanding reference count against 5880 * iloc->bh. This _must_ be cleaned up later. 5881 */ 5882 5883 int 5884 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5885 struct ext4_iloc *iloc) 5886 { 5887 int err; 5888 5889 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5890 return -EIO; 5891 5892 err = ext4_get_inode_loc(inode, iloc); 5893 if (!err) { 5894 BUFFER_TRACE(iloc->bh, "get_write_access"); 5895 err = ext4_journal_get_write_access(handle, iloc->bh); 5896 if (err) { 5897 brelse(iloc->bh); 5898 iloc->bh = NULL; 5899 } 5900 } 5901 ext4_std_error(inode->i_sb, err); 5902 return err; 5903 } 5904 5905 static int __ext4_expand_extra_isize(struct inode *inode, 5906 unsigned int new_extra_isize, 5907 struct ext4_iloc *iloc, 5908 handle_t *handle, int *no_expand) 5909 { 5910 struct ext4_inode *raw_inode; 5911 struct ext4_xattr_ibody_header *header; 5912 int error; 5913 5914 raw_inode = ext4_raw_inode(iloc); 5915 5916 header = IHDR(inode, raw_inode); 5917 5918 /* No extended attributes present */ 5919 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5920 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5921 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5922 EXT4_I(inode)->i_extra_isize, 0, 5923 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5924 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5925 return 0; 5926 } 5927 5928 /* try to expand with EAs present */ 5929 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5930 raw_inode, handle); 5931 if (error) { 5932 /* 5933 * Inode size expansion failed; don't try again 5934 */ 5935 *no_expand = 1; 5936 } 5937 5938 return error; 5939 } 5940 5941 /* 5942 * Expand an inode by new_extra_isize bytes. 5943 * Returns 0 on success or negative error number on failure. 5944 */ 5945 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5946 unsigned int new_extra_isize, 5947 struct ext4_iloc iloc, 5948 handle_t *handle) 5949 { 5950 int no_expand; 5951 int error; 5952 5953 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5954 return -EOVERFLOW; 5955 5956 /* 5957 * In nojournal mode, we can immediately attempt to expand 5958 * the inode. When journaled, we first need to obtain extra 5959 * buffer credits since we may write into the EA block 5960 * with this same handle. If journal_extend fails, then it will 5961 * only result in a minor loss of functionality for that inode. 5962 * If this is felt to be critical, then e2fsck should be run to 5963 * force a large enough s_min_extra_isize. 5964 */ 5965 if (ext4_handle_valid(handle) && 5966 jbd2_journal_extend(handle, 5967 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5968 return -ENOSPC; 5969 5970 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5971 return -EBUSY; 5972 5973 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5974 handle, &no_expand); 5975 ext4_write_unlock_xattr(inode, &no_expand); 5976 5977 return error; 5978 } 5979 5980 int ext4_expand_extra_isize(struct inode *inode, 5981 unsigned int new_extra_isize, 5982 struct ext4_iloc *iloc) 5983 { 5984 handle_t *handle; 5985 int no_expand; 5986 int error, rc; 5987 5988 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5989 brelse(iloc->bh); 5990 return -EOVERFLOW; 5991 } 5992 5993 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5994 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5995 if (IS_ERR(handle)) { 5996 error = PTR_ERR(handle); 5997 brelse(iloc->bh); 5998 return error; 5999 } 6000 6001 ext4_write_lock_xattr(inode, &no_expand); 6002 6003 BUFFER_TRACE(iloc.bh, "get_write_access"); 6004 error = ext4_journal_get_write_access(handle, iloc->bh); 6005 if (error) { 6006 brelse(iloc->bh); 6007 goto out_stop; 6008 } 6009 6010 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6011 handle, &no_expand); 6012 6013 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6014 if (!error) 6015 error = rc; 6016 6017 ext4_write_unlock_xattr(inode, &no_expand); 6018 out_stop: 6019 ext4_journal_stop(handle); 6020 return error; 6021 } 6022 6023 /* 6024 * What we do here is to mark the in-core inode as clean with respect to inode 6025 * dirtiness (it may still be data-dirty). 6026 * This means that the in-core inode may be reaped by prune_icache 6027 * without having to perform any I/O. This is a very good thing, 6028 * because *any* task may call prune_icache - even ones which 6029 * have a transaction open against a different journal. 6030 * 6031 * Is this cheating? Not really. Sure, we haven't written the 6032 * inode out, but prune_icache isn't a user-visible syncing function. 6033 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6034 * we start and wait on commits. 6035 */ 6036 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6037 { 6038 struct ext4_iloc iloc; 6039 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6040 int err; 6041 6042 might_sleep(); 6043 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6044 err = ext4_reserve_inode_write(handle, inode, &iloc); 6045 if (err) 6046 return err; 6047 6048 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6049 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6050 iloc, handle); 6051 6052 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6053 } 6054 6055 /* 6056 * ext4_dirty_inode() is called from __mark_inode_dirty() 6057 * 6058 * We're really interested in the case where a file is being extended. 6059 * i_size has been changed by generic_commit_write() and we thus need 6060 * to include the updated inode in the current transaction. 6061 * 6062 * Also, dquot_alloc_block() will always dirty the inode when blocks 6063 * are allocated to the file. 6064 * 6065 * If the inode is marked synchronous, we don't honour that here - doing 6066 * so would cause a commit on atime updates, which we don't bother doing. 6067 * We handle synchronous inodes at the highest possible level. 6068 * 6069 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6070 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6071 * to copy into the on-disk inode structure are the timestamp files. 6072 */ 6073 void ext4_dirty_inode(struct inode *inode, int flags) 6074 { 6075 handle_t *handle; 6076 6077 if (flags == I_DIRTY_TIME) 6078 return; 6079 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6080 if (IS_ERR(handle)) 6081 goto out; 6082 6083 ext4_mark_inode_dirty(handle, inode); 6084 6085 ext4_journal_stop(handle); 6086 out: 6087 return; 6088 } 6089 6090 #if 0 6091 /* 6092 * Bind an inode's backing buffer_head into this transaction, to prevent 6093 * it from being flushed to disk early. Unlike 6094 * ext4_reserve_inode_write, this leaves behind no bh reference and 6095 * returns no iloc structure, so the caller needs to repeat the iloc 6096 * lookup to mark the inode dirty later. 6097 */ 6098 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 6099 { 6100 struct ext4_iloc iloc; 6101 6102 int err = 0; 6103 if (handle) { 6104 err = ext4_get_inode_loc(inode, &iloc); 6105 if (!err) { 6106 BUFFER_TRACE(iloc.bh, "get_write_access"); 6107 err = jbd2_journal_get_write_access(handle, iloc.bh); 6108 if (!err) 6109 err = ext4_handle_dirty_metadata(handle, 6110 NULL, 6111 iloc.bh); 6112 brelse(iloc.bh); 6113 } 6114 } 6115 ext4_std_error(inode->i_sb, err); 6116 return err; 6117 } 6118 #endif 6119 6120 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6121 { 6122 journal_t *journal; 6123 handle_t *handle; 6124 int err; 6125 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6126 6127 /* 6128 * We have to be very careful here: changing a data block's 6129 * journaling status dynamically is dangerous. If we write a 6130 * data block to the journal, change the status and then delete 6131 * that block, we risk forgetting to revoke the old log record 6132 * from the journal and so a subsequent replay can corrupt data. 6133 * So, first we make sure that the journal is empty and that 6134 * nobody is changing anything. 6135 */ 6136 6137 journal = EXT4_JOURNAL(inode); 6138 if (!journal) 6139 return 0; 6140 if (is_journal_aborted(journal)) 6141 return -EROFS; 6142 6143 /* Wait for all existing dio workers */ 6144 inode_dio_wait(inode); 6145 6146 /* 6147 * Before flushing the journal and switching inode's aops, we have 6148 * to flush all dirty data the inode has. There can be outstanding 6149 * delayed allocations, there can be unwritten extents created by 6150 * fallocate or buffered writes in dioread_nolock mode covered by 6151 * dirty data which can be converted only after flushing the dirty 6152 * data (and journalled aops don't know how to handle these cases). 6153 */ 6154 if (val) { 6155 down_write(&EXT4_I(inode)->i_mmap_sem); 6156 err = filemap_write_and_wait(inode->i_mapping); 6157 if (err < 0) { 6158 up_write(&EXT4_I(inode)->i_mmap_sem); 6159 return err; 6160 } 6161 } 6162 6163 percpu_down_write(&sbi->s_journal_flag_rwsem); 6164 jbd2_journal_lock_updates(journal); 6165 6166 /* 6167 * OK, there are no updates running now, and all cached data is 6168 * synced to disk. We are now in a completely consistent state 6169 * which doesn't have anything in the journal, and we know that 6170 * no filesystem updates are running, so it is safe to modify 6171 * the inode's in-core data-journaling state flag now. 6172 */ 6173 6174 if (val) 6175 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6176 else { 6177 err = jbd2_journal_flush(journal); 6178 if (err < 0) { 6179 jbd2_journal_unlock_updates(journal); 6180 percpu_up_write(&sbi->s_journal_flag_rwsem); 6181 return err; 6182 } 6183 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6184 } 6185 ext4_set_aops(inode); 6186 6187 jbd2_journal_unlock_updates(journal); 6188 percpu_up_write(&sbi->s_journal_flag_rwsem); 6189 6190 if (val) 6191 up_write(&EXT4_I(inode)->i_mmap_sem); 6192 6193 /* Finally we can mark the inode as dirty. */ 6194 6195 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6196 if (IS_ERR(handle)) 6197 return PTR_ERR(handle); 6198 6199 err = ext4_mark_inode_dirty(handle, inode); 6200 ext4_handle_sync(handle); 6201 ext4_journal_stop(handle); 6202 ext4_std_error(inode->i_sb, err); 6203 6204 return err; 6205 } 6206 6207 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6208 { 6209 return !buffer_mapped(bh); 6210 } 6211 6212 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6213 { 6214 struct vm_area_struct *vma = vmf->vma; 6215 struct page *page = vmf->page; 6216 loff_t size; 6217 unsigned long len; 6218 int err; 6219 vm_fault_t ret; 6220 struct file *file = vma->vm_file; 6221 struct inode *inode = file_inode(file); 6222 struct address_space *mapping = inode->i_mapping; 6223 handle_t *handle; 6224 get_block_t *get_block; 6225 int retries = 0; 6226 6227 sb_start_pagefault(inode->i_sb); 6228 file_update_time(vma->vm_file); 6229 6230 down_read(&EXT4_I(inode)->i_mmap_sem); 6231 6232 err = ext4_convert_inline_data(inode); 6233 if (err) 6234 goto out_ret; 6235 6236 /* Delalloc case is easy... */ 6237 if (test_opt(inode->i_sb, DELALLOC) && 6238 !ext4_should_journal_data(inode) && 6239 !ext4_nonda_switch(inode->i_sb)) { 6240 do { 6241 err = block_page_mkwrite(vma, vmf, 6242 ext4_da_get_block_prep); 6243 } while (err == -ENOSPC && 6244 ext4_should_retry_alloc(inode->i_sb, &retries)); 6245 goto out_ret; 6246 } 6247 6248 lock_page(page); 6249 size = i_size_read(inode); 6250 /* Page got truncated from under us? */ 6251 if (page->mapping != mapping || page_offset(page) > size) { 6252 unlock_page(page); 6253 ret = VM_FAULT_NOPAGE; 6254 goto out; 6255 } 6256 6257 if (page->index == size >> PAGE_SHIFT) 6258 len = size & ~PAGE_MASK; 6259 else 6260 len = PAGE_SIZE; 6261 /* 6262 * Return if we have all the buffers mapped. This avoids the need to do 6263 * journal_start/journal_stop which can block and take a long time 6264 */ 6265 if (page_has_buffers(page)) { 6266 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6267 0, len, NULL, 6268 ext4_bh_unmapped)) { 6269 /* Wait so that we don't change page under IO */ 6270 wait_for_stable_page(page); 6271 ret = VM_FAULT_LOCKED; 6272 goto out; 6273 } 6274 } 6275 unlock_page(page); 6276 /* OK, we need to fill the hole... */ 6277 if (ext4_should_dioread_nolock(inode)) 6278 get_block = ext4_get_block_unwritten; 6279 else 6280 get_block = ext4_get_block; 6281 retry_alloc: 6282 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6283 ext4_writepage_trans_blocks(inode)); 6284 if (IS_ERR(handle)) { 6285 ret = VM_FAULT_SIGBUS; 6286 goto out; 6287 } 6288 err = block_page_mkwrite(vma, vmf, get_block); 6289 if (!err && ext4_should_journal_data(inode)) { 6290 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6291 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6292 unlock_page(page); 6293 ret = VM_FAULT_SIGBUS; 6294 ext4_journal_stop(handle); 6295 goto out; 6296 } 6297 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6298 } 6299 ext4_journal_stop(handle); 6300 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6301 goto retry_alloc; 6302 out_ret: 6303 ret = block_page_mkwrite_return(err); 6304 out: 6305 up_read(&EXT4_I(inode)->i_mmap_sem); 6306 sb_end_pagefault(inode->i_sb); 6307 return ret; 6308 } 6309 6310 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6311 { 6312 struct inode *inode = file_inode(vmf->vma->vm_file); 6313 vm_fault_t ret; 6314 6315 down_read(&EXT4_I(inode)->i_mmap_sem); 6316 ret = filemap_fault(vmf); 6317 up_read(&EXT4_I(inode)->i_mmap_sem); 6318 6319 return ret; 6320 } 6321