xref: /openbmc/linux/fs/ext4/inode.c (revision 53085fac02d12fcd29a9cb074ec480ff0f77ae5c)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (is_bad_inode(inode))
224 		goto no_delete;
225 	dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 					int used, int quota_claim)
328 {
329 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 	struct ext4_inode_info *ei = EXT4_I(inode);
331 
332 	spin_lock(&ei->i_block_reservation_lock);
333 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 	if (unlikely(used > ei->i_reserved_data_blocks)) {
335 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 			 "with only %d reserved data blocks",
337 			 __func__, inode->i_ino, used,
338 			 ei->i_reserved_data_blocks);
339 		WARN_ON(1);
340 		used = ei->i_reserved_data_blocks;
341 	}
342 
343 	/* Update per-inode reservations */
344 	ei->i_reserved_data_blocks -= used;
345 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 
347 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 
349 	/* Update quota subsystem for data blocks */
350 	if (quota_claim)
351 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 	else {
353 		/*
354 		 * We did fallocate with an offset that is already delayed
355 		 * allocated. So on delayed allocated writeback we should
356 		 * not re-claim the quota for fallocated blocks.
357 		 */
358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 	}
360 
361 	/*
362 	 * If we have done all the pending block allocations and if
363 	 * there aren't any writers on the inode, we can discard the
364 	 * inode's preallocations.
365 	 */
366 	if ((ei->i_reserved_data_blocks == 0) &&
367 	    (atomic_read(&inode->i_writecount) == 0))
368 		ext4_discard_preallocations(inode);
369 }
370 
371 static int __check_block_validity(struct inode *inode, const char *func,
372 				unsigned int line,
373 				struct ext4_map_blocks *map)
374 {
375 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 				   map->m_len)) {
377 		ext4_error_inode(inode, func, line, map->m_pblk,
378 				 "lblock %lu mapped to illegal pblock "
379 				 "(length %d)", (unsigned long) map->m_lblk,
380 				 map->m_len);
381 		return -EFSCORRUPTED;
382 	}
383 	return 0;
384 }
385 
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 		       ext4_lblk_t len)
388 {
389 	int ret;
390 
391 	if (ext4_encrypted_inode(inode))
392 		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393 
394 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 	if (ret > 0)
396 		ret = 0;
397 
398 	return ret;
399 }
400 
401 #define check_block_validity(inode, map)	\
402 	__check_block_validity((inode), __func__, __LINE__, (map))
403 
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406 				       struct inode *inode,
407 				       struct ext4_map_blocks *es_map,
408 				       struct ext4_map_blocks *map,
409 				       int flags)
410 {
411 	int retval;
412 
413 	map->m_flags = 0;
414 	/*
415 	 * There is a race window that the result is not the same.
416 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
417 	 * is that we lookup a block mapping in extent status tree with
418 	 * out taking i_data_sem.  So at the time the unwritten extent
419 	 * could be converted.
420 	 */
421 	down_read(&EXT4_I(inode)->i_data_sem);
422 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 					     EXT4_GET_BLOCKS_KEEP_SIZE);
425 	} else {
426 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 					     EXT4_GET_BLOCKS_KEEP_SIZE);
428 	}
429 	up_read((&EXT4_I(inode)->i_data_sem));
430 
431 	/*
432 	 * We don't check m_len because extent will be collpased in status
433 	 * tree.  So the m_len might not equal.
434 	 */
435 	if (es_map->m_lblk != map->m_lblk ||
436 	    es_map->m_flags != map->m_flags ||
437 	    es_map->m_pblk != map->m_pblk) {
438 		printk("ES cache assertion failed for inode: %lu "
439 		       "es_cached ex [%d/%d/%llu/%x] != "
440 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
442 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 		       map->m_len, map->m_pblk, map->m_flags,
444 		       retval, flags);
445 	}
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448 
449 /*
450  * The ext4_map_blocks() function tries to look up the requested blocks,
451  * and returns if the blocks are already mapped.
452  *
453  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454  * and store the allocated blocks in the result buffer head and mark it
455  * mapped.
456  *
457  * If file type is extents based, it will call ext4_ext_map_blocks(),
458  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459  * based files
460  *
461  * On success, it returns the number of blocks being mapped or allocated.
462  * if create==0 and the blocks are pre-allocated and unwritten block,
463  * the result buffer head is unmapped. If the create ==1, it will make sure
464  * the buffer head is mapped.
465  *
466  * It returns 0 if plain look up failed (blocks have not been allocated), in
467  * that case, buffer head is unmapped
468  *
469  * It returns the error in case of allocation failure.
470  */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 		    struct ext4_map_blocks *map, int flags)
473 {
474 	struct extent_status es;
475 	int retval;
476 	int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478 	struct ext4_map_blocks orig_map;
479 
480 	memcpy(&orig_map, map, sizeof(*map));
481 #endif
482 
483 	map->m_flags = 0;
484 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 		  (unsigned long) map->m_lblk);
487 
488 	/*
489 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 	 */
491 	if (unlikely(map->m_len > INT_MAX))
492 		map->m_len = INT_MAX;
493 
494 	/* We can handle the block number less than EXT_MAX_BLOCKS */
495 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496 		return -EFSCORRUPTED;
497 
498 	/* Lookup extent status tree firstly */
499 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 			map->m_pblk = ext4_es_pblock(&es) +
502 					map->m_lblk - es.es_lblk;
503 			map->m_flags |= ext4_es_is_written(&es) ?
504 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 			retval = es.es_len - (map->m_lblk - es.es_lblk);
506 			if (retval > map->m_len)
507 				retval = map->m_len;
508 			map->m_len = retval;
509 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 			retval = 0;
511 		} else {
512 			BUG_ON(1);
513 		}
514 #ifdef ES_AGGRESSIVE_TEST
515 		ext4_map_blocks_es_recheck(handle, inode, map,
516 					   &orig_map, flags);
517 #endif
518 		goto found;
519 	}
520 
521 	/*
522 	 * Try to see if we can get the block without requesting a new
523 	 * file system block.
524 	 */
525 	down_read(&EXT4_I(inode)->i_data_sem);
526 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 					     EXT4_GET_BLOCKS_KEEP_SIZE);
529 	} else {
530 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 					     EXT4_GET_BLOCKS_KEEP_SIZE);
532 	}
533 	if (retval > 0) {
534 		unsigned int status;
535 
536 		if (unlikely(retval != map->m_len)) {
537 			ext4_warning(inode->i_sb,
538 				     "ES len assertion failed for inode "
539 				     "%lu: retval %d != map->m_len %d",
540 				     inode->i_ino, retval, map->m_len);
541 			WARN_ON(1);
542 		}
543 
544 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547 		    !(status & EXTENT_STATUS_WRITTEN) &&
548 		    ext4_find_delalloc_range(inode, map->m_lblk,
549 					     map->m_lblk + map->m_len - 1))
550 			status |= EXTENT_STATUS_DELAYED;
551 		ret = ext4_es_insert_extent(inode, map->m_lblk,
552 					    map->m_len, map->m_pblk, status);
553 		if (ret < 0)
554 			retval = ret;
555 	}
556 	up_read((&EXT4_I(inode)->i_data_sem));
557 
558 found:
559 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560 		ret = check_block_validity(inode, map);
561 		if (ret != 0)
562 			return ret;
563 	}
564 
565 	/* If it is only a block(s) look up */
566 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567 		return retval;
568 
569 	/*
570 	 * Returns if the blocks have already allocated
571 	 *
572 	 * Note that if blocks have been preallocated
573 	 * ext4_ext_get_block() returns the create = 0
574 	 * with buffer head unmapped.
575 	 */
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 		/*
578 		 * If we need to convert extent to unwritten
579 		 * we continue and do the actual work in
580 		 * ext4_ext_map_blocks()
581 		 */
582 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 			return retval;
584 
585 	/*
586 	 * Here we clear m_flags because after allocating an new extent,
587 	 * it will be set again.
588 	 */
589 	map->m_flags &= ~EXT4_MAP_FLAGS;
590 
591 	/*
592 	 * New blocks allocate and/or writing to unwritten extent
593 	 * will possibly result in updating i_data, so we take
594 	 * the write lock of i_data_sem, and call get_block()
595 	 * with create == 1 flag.
596 	 */
597 	down_write(&EXT4_I(inode)->i_data_sem);
598 
599 	/*
600 	 * We need to check for EXT4 here because migrate
601 	 * could have changed the inode type in between
602 	 */
603 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
605 	} else {
606 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
607 
608 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609 			/*
610 			 * We allocated new blocks which will result in
611 			 * i_data's format changing.  Force the migrate
612 			 * to fail by clearing migrate flags
613 			 */
614 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615 		}
616 
617 		/*
618 		 * Update reserved blocks/metadata blocks after successful
619 		 * block allocation which had been deferred till now. We don't
620 		 * support fallocate for non extent files. So we can update
621 		 * reserve space here.
622 		 */
623 		if ((retval > 0) &&
624 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625 			ext4_da_update_reserve_space(inode, retval, 1);
626 	}
627 
628 	if (retval > 0) {
629 		unsigned int status;
630 
631 		if (unlikely(retval != map->m_len)) {
632 			ext4_warning(inode->i_sb,
633 				     "ES len assertion failed for inode "
634 				     "%lu: retval %d != map->m_len %d",
635 				     inode->i_ino, retval, map->m_len);
636 			WARN_ON(1);
637 		}
638 
639 		/*
640 		 * If the extent has been zeroed out, we don't need to update
641 		 * extent status tree.
642 		 */
643 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
644 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
645 			if (ext4_es_is_written(&es))
646 				goto has_zeroout;
647 		}
648 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
649 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
650 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
651 		    !(status & EXTENT_STATUS_WRITTEN) &&
652 		    ext4_find_delalloc_range(inode, map->m_lblk,
653 					     map->m_lblk + map->m_len - 1))
654 			status |= EXTENT_STATUS_DELAYED;
655 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
656 					    map->m_pblk, status);
657 		if (ret < 0)
658 			retval = ret;
659 	}
660 
661 has_zeroout:
662 	up_write((&EXT4_I(inode)->i_data_sem));
663 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
664 		ret = check_block_validity(inode, map);
665 		if (ret != 0)
666 			return ret;
667 	}
668 	return retval;
669 }
670 
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673 
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675 			   struct buffer_head *bh, int flags)
676 {
677 	handle_t *handle = ext4_journal_current_handle();
678 	struct ext4_map_blocks map;
679 	int ret = 0, started = 0;
680 	int dio_credits;
681 
682 	if (ext4_has_inline_data(inode))
683 		return -ERANGE;
684 
685 	map.m_lblk = iblock;
686 	map.m_len = bh->b_size >> inode->i_blkbits;
687 
688 	if (flags && !handle) {
689 		/* Direct IO write... */
690 		if (map.m_len > DIO_MAX_BLOCKS)
691 			map.m_len = DIO_MAX_BLOCKS;
692 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694 					    dio_credits);
695 		if (IS_ERR(handle)) {
696 			ret = PTR_ERR(handle);
697 			return ret;
698 		}
699 		started = 1;
700 	}
701 
702 	ret = ext4_map_blocks(handle, inode, &map, flags);
703 	if (ret > 0) {
704 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
705 
706 		map_bh(bh, inode->i_sb, map.m_pblk);
707 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708 		if (IS_DAX(inode) && buffer_unwritten(bh)) {
709 			/*
710 			 * dgc: I suspect unwritten conversion on ext4+DAX is
711 			 * fundamentally broken here when there are concurrent
712 			 * read/write in progress on this inode.
713 			 */
714 			WARN_ON_ONCE(io_end);
715 			bh->b_assoc_map = inode->i_mapping;
716 			bh->b_private = (void *)(unsigned long)iblock;
717 		}
718 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
719 			set_buffer_defer_completion(bh);
720 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
721 		ret = 0;
722 	}
723 	if (started)
724 		ext4_journal_stop(handle);
725 	return ret;
726 }
727 
728 int ext4_get_block(struct inode *inode, sector_t iblock,
729 		   struct buffer_head *bh, int create)
730 {
731 	return _ext4_get_block(inode, iblock, bh,
732 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
733 }
734 
735 /*
736  * `handle' can be NULL if create is zero
737  */
738 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
739 				ext4_lblk_t block, int map_flags)
740 {
741 	struct ext4_map_blocks map;
742 	struct buffer_head *bh;
743 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
744 	int err;
745 
746 	J_ASSERT(handle != NULL || create == 0);
747 
748 	map.m_lblk = block;
749 	map.m_len = 1;
750 	err = ext4_map_blocks(handle, inode, &map, map_flags);
751 
752 	if (err == 0)
753 		return create ? ERR_PTR(-ENOSPC) : NULL;
754 	if (err < 0)
755 		return ERR_PTR(err);
756 
757 	bh = sb_getblk(inode->i_sb, map.m_pblk);
758 	if (unlikely(!bh))
759 		return ERR_PTR(-ENOMEM);
760 	if (map.m_flags & EXT4_MAP_NEW) {
761 		J_ASSERT(create != 0);
762 		J_ASSERT(handle != NULL);
763 
764 		/*
765 		 * Now that we do not always journal data, we should
766 		 * keep in mind whether this should always journal the
767 		 * new buffer as metadata.  For now, regular file
768 		 * writes use ext4_get_block instead, so it's not a
769 		 * problem.
770 		 */
771 		lock_buffer(bh);
772 		BUFFER_TRACE(bh, "call get_create_access");
773 		err = ext4_journal_get_create_access(handle, bh);
774 		if (unlikely(err)) {
775 			unlock_buffer(bh);
776 			goto errout;
777 		}
778 		if (!buffer_uptodate(bh)) {
779 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
780 			set_buffer_uptodate(bh);
781 		}
782 		unlock_buffer(bh);
783 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
784 		err = ext4_handle_dirty_metadata(handle, inode, bh);
785 		if (unlikely(err))
786 			goto errout;
787 	} else
788 		BUFFER_TRACE(bh, "not a new buffer");
789 	return bh;
790 errout:
791 	brelse(bh);
792 	return ERR_PTR(err);
793 }
794 
795 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
796 			       ext4_lblk_t block, int map_flags)
797 {
798 	struct buffer_head *bh;
799 
800 	bh = ext4_getblk(handle, inode, block, map_flags);
801 	if (IS_ERR(bh))
802 		return bh;
803 	if (!bh || buffer_uptodate(bh))
804 		return bh;
805 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
806 	wait_on_buffer(bh);
807 	if (buffer_uptodate(bh))
808 		return bh;
809 	put_bh(bh);
810 	return ERR_PTR(-EIO);
811 }
812 
813 int ext4_walk_page_buffers(handle_t *handle,
814 			   struct buffer_head *head,
815 			   unsigned from,
816 			   unsigned to,
817 			   int *partial,
818 			   int (*fn)(handle_t *handle,
819 				     struct buffer_head *bh))
820 {
821 	struct buffer_head *bh;
822 	unsigned block_start, block_end;
823 	unsigned blocksize = head->b_size;
824 	int err, ret = 0;
825 	struct buffer_head *next;
826 
827 	for (bh = head, block_start = 0;
828 	     ret == 0 && (bh != head || !block_start);
829 	     block_start = block_end, bh = next) {
830 		next = bh->b_this_page;
831 		block_end = block_start + blocksize;
832 		if (block_end <= from || block_start >= to) {
833 			if (partial && !buffer_uptodate(bh))
834 				*partial = 1;
835 			continue;
836 		}
837 		err = (*fn)(handle, bh);
838 		if (!ret)
839 			ret = err;
840 	}
841 	return ret;
842 }
843 
844 /*
845  * To preserve ordering, it is essential that the hole instantiation and
846  * the data write be encapsulated in a single transaction.  We cannot
847  * close off a transaction and start a new one between the ext4_get_block()
848  * and the commit_write().  So doing the jbd2_journal_start at the start of
849  * prepare_write() is the right place.
850  *
851  * Also, this function can nest inside ext4_writepage().  In that case, we
852  * *know* that ext4_writepage() has generated enough buffer credits to do the
853  * whole page.  So we won't block on the journal in that case, which is good,
854  * because the caller may be PF_MEMALLOC.
855  *
856  * By accident, ext4 can be reentered when a transaction is open via
857  * quota file writes.  If we were to commit the transaction while thus
858  * reentered, there can be a deadlock - we would be holding a quota
859  * lock, and the commit would never complete if another thread had a
860  * transaction open and was blocking on the quota lock - a ranking
861  * violation.
862  *
863  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
864  * will _not_ run commit under these circumstances because handle->h_ref
865  * is elevated.  We'll still have enough credits for the tiny quotafile
866  * write.
867  */
868 int do_journal_get_write_access(handle_t *handle,
869 				struct buffer_head *bh)
870 {
871 	int dirty = buffer_dirty(bh);
872 	int ret;
873 
874 	if (!buffer_mapped(bh) || buffer_freed(bh))
875 		return 0;
876 	/*
877 	 * __block_write_begin() could have dirtied some buffers. Clean
878 	 * the dirty bit as jbd2_journal_get_write_access() could complain
879 	 * otherwise about fs integrity issues. Setting of the dirty bit
880 	 * by __block_write_begin() isn't a real problem here as we clear
881 	 * the bit before releasing a page lock and thus writeback cannot
882 	 * ever write the buffer.
883 	 */
884 	if (dirty)
885 		clear_buffer_dirty(bh);
886 	BUFFER_TRACE(bh, "get write access");
887 	ret = ext4_journal_get_write_access(handle, bh);
888 	if (!ret && dirty)
889 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
890 	return ret;
891 }
892 
893 #ifdef CONFIG_EXT4_FS_ENCRYPTION
894 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
895 				  get_block_t *get_block)
896 {
897 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
898 	unsigned to = from + len;
899 	struct inode *inode = page->mapping->host;
900 	unsigned block_start, block_end;
901 	sector_t block;
902 	int err = 0;
903 	unsigned blocksize = inode->i_sb->s_blocksize;
904 	unsigned bbits;
905 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
906 	bool decrypt = false;
907 
908 	BUG_ON(!PageLocked(page));
909 	BUG_ON(from > PAGE_CACHE_SIZE);
910 	BUG_ON(to > PAGE_CACHE_SIZE);
911 	BUG_ON(from > to);
912 
913 	if (!page_has_buffers(page))
914 		create_empty_buffers(page, blocksize, 0);
915 	head = page_buffers(page);
916 	bbits = ilog2(blocksize);
917 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
918 
919 	for (bh = head, block_start = 0; bh != head || !block_start;
920 	    block++, block_start = block_end, bh = bh->b_this_page) {
921 		block_end = block_start + blocksize;
922 		if (block_end <= from || block_start >= to) {
923 			if (PageUptodate(page)) {
924 				if (!buffer_uptodate(bh))
925 					set_buffer_uptodate(bh);
926 			}
927 			continue;
928 		}
929 		if (buffer_new(bh))
930 			clear_buffer_new(bh);
931 		if (!buffer_mapped(bh)) {
932 			WARN_ON(bh->b_size != blocksize);
933 			err = get_block(inode, block, bh, 1);
934 			if (err)
935 				break;
936 			if (buffer_new(bh)) {
937 				unmap_underlying_metadata(bh->b_bdev,
938 							  bh->b_blocknr);
939 				if (PageUptodate(page)) {
940 					clear_buffer_new(bh);
941 					set_buffer_uptodate(bh);
942 					mark_buffer_dirty(bh);
943 					continue;
944 				}
945 				if (block_end > to || block_start < from)
946 					zero_user_segments(page, to, block_end,
947 							   block_start, from);
948 				continue;
949 			}
950 		}
951 		if (PageUptodate(page)) {
952 			if (!buffer_uptodate(bh))
953 				set_buffer_uptodate(bh);
954 			continue;
955 		}
956 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
957 		    !buffer_unwritten(bh) &&
958 		    (block_start < from || block_end > to)) {
959 			ll_rw_block(READ, 1, &bh);
960 			*wait_bh++ = bh;
961 			decrypt = ext4_encrypted_inode(inode) &&
962 				S_ISREG(inode->i_mode);
963 		}
964 	}
965 	/*
966 	 * If we issued read requests, let them complete.
967 	 */
968 	while (wait_bh > wait) {
969 		wait_on_buffer(*--wait_bh);
970 		if (!buffer_uptodate(*wait_bh))
971 			err = -EIO;
972 	}
973 	if (unlikely(err))
974 		page_zero_new_buffers(page, from, to);
975 	else if (decrypt)
976 		err = ext4_decrypt(page);
977 	return err;
978 }
979 #endif
980 
981 static int ext4_write_begin(struct file *file, struct address_space *mapping,
982 			    loff_t pos, unsigned len, unsigned flags,
983 			    struct page **pagep, void **fsdata)
984 {
985 	struct inode *inode = mapping->host;
986 	int ret, needed_blocks;
987 	handle_t *handle;
988 	int retries = 0;
989 	struct page *page;
990 	pgoff_t index;
991 	unsigned from, to;
992 
993 	trace_ext4_write_begin(inode, pos, len, flags);
994 	/*
995 	 * Reserve one block more for addition to orphan list in case
996 	 * we allocate blocks but write fails for some reason
997 	 */
998 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
999 	index = pos >> PAGE_CACHE_SHIFT;
1000 	from = pos & (PAGE_CACHE_SIZE - 1);
1001 	to = from + len;
1002 
1003 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1004 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1005 						    flags, pagep);
1006 		if (ret < 0)
1007 			return ret;
1008 		if (ret == 1)
1009 			return 0;
1010 	}
1011 
1012 	/*
1013 	 * grab_cache_page_write_begin() can take a long time if the
1014 	 * system is thrashing due to memory pressure, or if the page
1015 	 * is being written back.  So grab it first before we start
1016 	 * the transaction handle.  This also allows us to allocate
1017 	 * the page (if needed) without using GFP_NOFS.
1018 	 */
1019 retry_grab:
1020 	page = grab_cache_page_write_begin(mapping, index, flags);
1021 	if (!page)
1022 		return -ENOMEM;
1023 	unlock_page(page);
1024 
1025 retry_journal:
1026 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1027 	if (IS_ERR(handle)) {
1028 		page_cache_release(page);
1029 		return PTR_ERR(handle);
1030 	}
1031 
1032 	lock_page(page);
1033 	if (page->mapping != mapping) {
1034 		/* The page got truncated from under us */
1035 		unlock_page(page);
1036 		page_cache_release(page);
1037 		ext4_journal_stop(handle);
1038 		goto retry_grab;
1039 	}
1040 	/* In case writeback began while the page was unlocked */
1041 	wait_for_stable_page(page);
1042 
1043 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1044 	if (ext4_should_dioread_nolock(inode))
1045 		ret = ext4_block_write_begin(page, pos, len,
1046 					     ext4_get_block_write);
1047 	else
1048 		ret = ext4_block_write_begin(page, pos, len,
1049 					     ext4_get_block);
1050 #else
1051 	if (ext4_should_dioread_nolock(inode))
1052 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1053 	else
1054 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1055 #endif
1056 	if (!ret && ext4_should_journal_data(inode)) {
1057 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1058 					     from, to, NULL,
1059 					     do_journal_get_write_access);
1060 	}
1061 
1062 	if (ret) {
1063 		unlock_page(page);
1064 		/*
1065 		 * __block_write_begin may have instantiated a few blocks
1066 		 * outside i_size.  Trim these off again. Don't need
1067 		 * i_size_read because we hold i_mutex.
1068 		 *
1069 		 * Add inode to orphan list in case we crash before
1070 		 * truncate finishes
1071 		 */
1072 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1073 			ext4_orphan_add(handle, inode);
1074 
1075 		ext4_journal_stop(handle);
1076 		if (pos + len > inode->i_size) {
1077 			ext4_truncate_failed_write(inode);
1078 			/*
1079 			 * If truncate failed early the inode might
1080 			 * still be on the orphan list; we need to
1081 			 * make sure the inode is removed from the
1082 			 * orphan list in that case.
1083 			 */
1084 			if (inode->i_nlink)
1085 				ext4_orphan_del(NULL, inode);
1086 		}
1087 
1088 		if (ret == -ENOSPC &&
1089 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1090 			goto retry_journal;
1091 		page_cache_release(page);
1092 		return ret;
1093 	}
1094 	*pagep = page;
1095 	return ret;
1096 }
1097 
1098 /* For write_end() in data=journal mode */
1099 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1100 {
1101 	int ret;
1102 	if (!buffer_mapped(bh) || buffer_freed(bh))
1103 		return 0;
1104 	set_buffer_uptodate(bh);
1105 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1106 	clear_buffer_meta(bh);
1107 	clear_buffer_prio(bh);
1108 	return ret;
1109 }
1110 
1111 /*
1112  * We need to pick up the new inode size which generic_commit_write gave us
1113  * `file' can be NULL - eg, when called from page_symlink().
1114  *
1115  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1116  * buffers are managed internally.
1117  */
1118 static int ext4_write_end(struct file *file,
1119 			  struct address_space *mapping,
1120 			  loff_t pos, unsigned len, unsigned copied,
1121 			  struct page *page, void *fsdata)
1122 {
1123 	handle_t *handle = ext4_journal_current_handle();
1124 	struct inode *inode = mapping->host;
1125 	loff_t old_size = inode->i_size;
1126 	int ret = 0, ret2;
1127 	int i_size_changed = 0;
1128 
1129 	trace_ext4_write_end(inode, pos, len, copied);
1130 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1131 		ret = ext4_jbd2_file_inode(handle, inode);
1132 		if (ret) {
1133 			unlock_page(page);
1134 			page_cache_release(page);
1135 			goto errout;
1136 		}
1137 	}
1138 
1139 	if (ext4_has_inline_data(inode)) {
1140 		ret = ext4_write_inline_data_end(inode, pos, len,
1141 						 copied, page);
1142 		if (ret < 0)
1143 			goto errout;
1144 		copied = ret;
1145 	} else
1146 		copied = block_write_end(file, mapping, pos,
1147 					 len, copied, page, fsdata);
1148 	/*
1149 	 * it's important to update i_size while still holding page lock:
1150 	 * page writeout could otherwise come in and zero beyond i_size.
1151 	 */
1152 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1153 	unlock_page(page);
1154 	page_cache_release(page);
1155 
1156 	if (old_size < pos)
1157 		pagecache_isize_extended(inode, old_size, pos);
1158 	/*
1159 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1160 	 * makes the holding time of page lock longer. Second, it forces lock
1161 	 * ordering of page lock and transaction start for journaling
1162 	 * filesystems.
1163 	 */
1164 	if (i_size_changed)
1165 		ext4_mark_inode_dirty(handle, inode);
1166 
1167 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1168 		/* if we have allocated more blocks and copied
1169 		 * less. We will have blocks allocated outside
1170 		 * inode->i_size. So truncate them
1171 		 */
1172 		ext4_orphan_add(handle, inode);
1173 errout:
1174 	ret2 = ext4_journal_stop(handle);
1175 	if (!ret)
1176 		ret = ret2;
1177 
1178 	if (pos + len > inode->i_size) {
1179 		ext4_truncate_failed_write(inode);
1180 		/*
1181 		 * If truncate failed early the inode might still be
1182 		 * on the orphan list; we need to make sure the inode
1183 		 * is removed from the orphan list in that case.
1184 		 */
1185 		if (inode->i_nlink)
1186 			ext4_orphan_del(NULL, inode);
1187 	}
1188 
1189 	return ret ? ret : copied;
1190 }
1191 
1192 /*
1193  * This is a private version of page_zero_new_buffers() which doesn't
1194  * set the buffer to be dirty, since in data=journalled mode we need
1195  * to call ext4_handle_dirty_metadata() instead.
1196  */
1197 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1198 {
1199 	unsigned int block_start = 0, block_end;
1200 	struct buffer_head *head, *bh;
1201 
1202 	bh = head = page_buffers(page);
1203 	do {
1204 		block_end = block_start + bh->b_size;
1205 		if (buffer_new(bh)) {
1206 			if (block_end > from && block_start < to) {
1207 				if (!PageUptodate(page)) {
1208 					unsigned start, size;
1209 
1210 					start = max(from, block_start);
1211 					size = min(to, block_end) - start;
1212 
1213 					zero_user(page, start, size);
1214 					set_buffer_uptodate(bh);
1215 				}
1216 				clear_buffer_new(bh);
1217 			}
1218 		}
1219 		block_start = block_end;
1220 		bh = bh->b_this_page;
1221 	} while (bh != head);
1222 }
1223 
1224 static int ext4_journalled_write_end(struct file *file,
1225 				     struct address_space *mapping,
1226 				     loff_t pos, unsigned len, unsigned copied,
1227 				     struct page *page, void *fsdata)
1228 {
1229 	handle_t *handle = ext4_journal_current_handle();
1230 	struct inode *inode = mapping->host;
1231 	loff_t old_size = inode->i_size;
1232 	int ret = 0, ret2;
1233 	int partial = 0;
1234 	unsigned from, to;
1235 	int size_changed = 0;
1236 
1237 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1238 	from = pos & (PAGE_CACHE_SIZE - 1);
1239 	to = from + len;
1240 
1241 	BUG_ON(!ext4_handle_valid(handle));
1242 
1243 	if (ext4_has_inline_data(inode))
1244 		copied = ext4_write_inline_data_end(inode, pos, len,
1245 						    copied, page);
1246 	else {
1247 		if (copied < len) {
1248 			if (!PageUptodate(page))
1249 				copied = 0;
1250 			zero_new_buffers(page, from+copied, to);
1251 		}
1252 
1253 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1254 					     to, &partial, write_end_fn);
1255 		if (!partial)
1256 			SetPageUptodate(page);
1257 	}
1258 	size_changed = ext4_update_inode_size(inode, pos + copied);
1259 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1260 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1261 	unlock_page(page);
1262 	page_cache_release(page);
1263 
1264 	if (old_size < pos)
1265 		pagecache_isize_extended(inode, old_size, pos);
1266 
1267 	if (size_changed) {
1268 		ret2 = ext4_mark_inode_dirty(handle, inode);
1269 		if (!ret)
1270 			ret = ret2;
1271 	}
1272 
1273 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1274 		/* if we have allocated more blocks and copied
1275 		 * less. We will have blocks allocated outside
1276 		 * inode->i_size. So truncate them
1277 		 */
1278 		ext4_orphan_add(handle, inode);
1279 
1280 	ret2 = ext4_journal_stop(handle);
1281 	if (!ret)
1282 		ret = ret2;
1283 	if (pos + len > inode->i_size) {
1284 		ext4_truncate_failed_write(inode);
1285 		/*
1286 		 * If truncate failed early the inode might still be
1287 		 * on the orphan list; we need to make sure the inode
1288 		 * is removed from the orphan list in that case.
1289 		 */
1290 		if (inode->i_nlink)
1291 			ext4_orphan_del(NULL, inode);
1292 	}
1293 
1294 	return ret ? ret : copied;
1295 }
1296 
1297 /*
1298  * Reserve space for a single cluster
1299  */
1300 static int ext4_da_reserve_space(struct inode *inode)
1301 {
1302 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1303 	struct ext4_inode_info *ei = EXT4_I(inode);
1304 	int ret;
1305 
1306 	/*
1307 	 * We will charge metadata quota at writeout time; this saves
1308 	 * us from metadata over-estimation, though we may go over by
1309 	 * a small amount in the end.  Here we just reserve for data.
1310 	 */
1311 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1312 	if (ret)
1313 		return ret;
1314 
1315 	spin_lock(&ei->i_block_reservation_lock);
1316 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1317 		spin_unlock(&ei->i_block_reservation_lock);
1318 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1319 		return -ENOSPC;
1320 	}
1321 	ei->i_reserved_data_blocks++;
1322 	trace_ext4_da_reserve_space(inode);
1323 	spin_unlock(&ei->i_block_reservation_lock);
1324 
1325 	return 0;       /* success */
1326 }
1327 
1328 static void ext4_da_release_space(struct inode *inode, int to_free)
1329 {
1330 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331 	struct ext4_inode_info *ei = EXT4_I(inode);
1332 
1333 	if (!to_free)
1334 		return;		/* Nothing to release, exit */
1335 
1336 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1337 
1338 	trace_ext4_da_release_space(inode, to_free);
1339 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1340 		/*
1341 		 * if there aren't enough reserved blocks, then the
1342 		 * counter is messed up somewhere.  Since this
1343 		 * function is called from invalidate page, it's
1344 		 * harmless to return without any action.
1345 		 */
1346 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1347 			 "ino %lu, to_free %d with only %d reserved "
1348 			 "data blocks", inode->i_ino, to_free,
1349 			 ei->i_reserved_data_blocks);
1350 		WARN_ON(1);
1351 		to_free = ei->i_reserved_data_blocks;
1352 	}
1353 	ei->i_reserved_data_blocks -= to_free;
1354 
1355 	/* update fs dirty data blocks counter */
1356 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357 
1358 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359 
1360 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 }
1362 
1363 static void ext4_da_page_release_reservation(struct page *page,
1364 					     unsigned int offset,
1365 					     unsigned int length)
1366 {
1367 	int to_release = 0, contiguous_blks = 0;
1368 	struct buffer_head *head, *bh;
1369 	unsigned int curr_off = 0;
1370 	struct inode *inode = page->mapping->host;
1371 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372 	unsigned int stop = offset + length;
1373 	int num_clusters;
1374 	ext4_fsblk_t lblk;
1375 
1376 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377 
1378 	head = page_buffers(page);
1379 	bh = head;
1380 	do {
1381 		unsigned int next_off = curr_off + bh->b_size;
1382 
1383 		if (next_off > stop)
1384 			break;
1385 
1386 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1387 			to_release++;
1388 			contiguous_blks++;
1389 			clear_buffer_delay(bh);
1390 		} else if (contiguous_blks) {
1391 			lblk = page->index <<
1392 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1393 			lblk += (curr_off >> inode->i_blkbits) -
1394 				contiguous_blks;
1395 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1396 			contiguous_blks = 0;
1397 		}
1398 		curr_off = next_off;
1399 	} while ((bh = bh->b_this_page) != head);
1400 
1401 	if (contiguous_blks) {
1402 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1403 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1404 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1405 	}
1406 
1407 	/* If we have released all the blocks belonging to a cluster, then we
1408 	 * need to release the reserved space for that cluster. */
1409 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1410 	while (num_clusters > 0) {
1411 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1412 			((num_clusters - 1) << sbi->s_cluster_bits);
1413 		if (sbi->s_cluster_ratio == 1 ||
1414 		    !ext4_find_delalloc_cluster(inode, lblk))
1415 			ext4_da_release_space(inode, 1);
1416 
1417 		num_clusters--;
1418 	}
1419 }
1420 
1421 /*
1422  * Delayed allocation stuff
1423  */
1424 
1425 struct mpage_da_data {
1426 	struct inode *inode;
1427 	struct writeback_control *wbc;
1428 
1429 	pgoff_t first_page;	/* The first page to write */
1430 	pgoff_t next_page;	/* Current page to examine */
1431 	pgoff_t last_page;	/* Last page to examine */
1432 	/*
1433 	 * Extent to map - this can be after first_page because that can be
1434 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1435 	 * is delalloc or unwritten.
1436 	 */
1437 	struct ext4_map_blocks map;
1438 	struct ext4_io_submit io_submit;	/* IO submission data */
1439 };
1440 
1441 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1442 				       bool invalidate)
1443 {
1444 	int nr_pages, i;
1445 	pgoff_t index, end;
1446 	struct pagevec pvec;
1447 	struct inode *inode = mpd->inode;
1448 	struct address_space *mapping = inode->i_mapping;
1449 
1450 	/* This is necessary when next_page == 0. */
1451 	if (mpd->first_page >= mpd->next_page)
1452 		return;
1453 
1454 	index = mpd->first_page;
1455 	end   = mpd->next_page - 1;
1456 	if (invalidate) {
1457 		ext4_lblk_t start, last;
1458 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1459 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1460 		ext4_es_remove_extent(inode, start, last - start + 1);
1461 	}
1462 
1463 	pagevec_init(&pvec, 0);
1464 	while (index <= end) {
1465 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1466 		if (nr_pages == 0)
1467 			break;
1468 		for (i = 0; i < nr_pages; i++) {
1469 			struct page *page = pvec.pages[i];
1470 			if (page->index > end)
1471 				break;
1472 			BUG_ON(!PageLocked(page));
1473 			BUG_ON(PageWriteback(page));
1474 			if (invalidate) {
1475 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1476 				ClearPageUptodate(page);
1477 			}
1478 			unlock_page(page);
1479 		}
1480 		index = pvec.pages[nr_pages - 1]->index + 1;
1481 		pagevec_release(&pvec);
1482 	}
1483 }
1484 
1485 static void ext4_print_free_blocks(struct inode *inode)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct super_block *sb = inode->i_sb;
1489 	struct ext4_inode_info *ei = EXT4_I(inode);
1490 
1491 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1492 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1493 			ext4_count_free_clusters(sb)));
1494 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1495 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1496 	       (long long) EXT4_C2B(EXT4_SB(sb),
1497 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1498 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1499 	       (long long) EXT4_C2B(EXT4_SB(sb),
1500 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1501 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1502 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1503 		 ei->i_reserved_data_blocks);
1504 	return;
1505 }
1506 
1507 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1508 {
1509 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1510 }
1511 
1512 /*
1513  * This function is grabs code from the very beginning of
1514  * ext4_map_blocks, but assumes that the caller is from delayed write
1515  * time. This function looks up the requested blocks and sets the
1516  * buffer delay bit under the protection of i_data_sem.
1517  */
1518 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1519 			      struct ext4_map_blocks *map,
1520 			      struct buffer_head *bh)
1521 {
1522 	struct extent_status es;
1523 	int retval;
1524 	sector_t invalid_block = ~((sector_t) 0xffff);
1525 #ifdef ES_AGGRESSIVE_TEST
1526 	struct ext4_map_blocks orig_map;
1527 
1528 	memcpy(&orig_map, map, sizeof(*map));
1529 #endif
1530 
1531 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1532 		invalid_block = ~0;
1533 
1534 	map->m_flags = 0;
1535 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1536 		  "logical block %lu\n", inode->i_ino, map->m_len,
1537 		  (unsigned long) map->m_lblk);
1538 
1539 	/* Lookup extent status tree firstly */
1540 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1541 		if (ext4_es_is_hole(&es)) {
1542 			retval = 0;
1543 			down_read(&EXT4_I(inode)->i_data_sem);
1544 			goto add_delayed;
1545 		}
1546 
1547 		/*
1548 		 * Delayed extent could be allocated by fallocate.
1549 		 * So we need to check it.
1550 		 */
1551 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552 			map_bh(bh, inode->i_sb, invalid_block);
1553 			set_buffer_new(bh);
1554 			set_buffer_delay(bh);
1555 			return 0;
1556 		}
1557 
1558 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559 		retval = es.es_len - (iblock - es.es_lblk);
1560 		if (retval > map->m_len)
1561 			retval = map->m_len;
1562 		map->m_len = retval;
1563 		if (ext4_es_is_written(&es))
1564 			map->m_flags |= EXT4_MAP_MAPPED;
1565 		else if (ext4_es_is_unwritten(&es))
1566 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1567 		else
1568 			BUG_ON(1);
1569 
1570 #ifdef ES_AGGRESSIVE_TEST
1571 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 #endif
1573 		return retval;
1574 	}
1575 
1576 	/*
1577 	 * Try to see if we can get the block without requesting a new
1578 	 * file system block.
1579 	 */
1580 	down_read(&EXT4_I(inode)->i_data_sem);
1581 	if (ext4_has_inline_data(inode))
1582 		retval = 0;
1583 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1584 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1585 	else
1586 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1587 
1588 add_delayed:
1589 	if (retval == 0) {
1590 		int ret;
1591 		/*
1592 		 * XXX: __block_prepare_write() unmaps passed block,
1593 		 * is it OK?
1594 		 */
1595 		/*
1596 		 * If the block was allocated from previously allocated cluster,
1597 		 * then we don't need to reserve it again. However we still need
1598 		 * to reserve metadata for every block we're going to write.
1599 		 */
1600 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1601 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1602 			ret = ext4_da_reserve_space(inode);
1603 			if (ret) {
1604 				/* not enough space to reserve */
1605 				retval = ret;
1606 				goto out_unlock;
1607 			}
1608 		}
1609 
1610 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1611 					    ~0, EXTENT_STATUS_DELAYED);
1612 		if (ret) {
1613 			retval = ret;
1614 			goto out_unlock;
1615 		}
1616 
1617 		map_bh(bh, inode->i_sb, invalid_block);
1618 		set_buffer_new(bh);
1619 		set_buffer_delay(bh);
1620 	} else if (retval > 0) {
1621 		int ret;
1622 		unsigned int status;
1623 
1624 		if (unlikely(retval != map->m_len)) {
1625 			ext4_warning(inode->i_sb,
1626 				     "ES len assertion failed for inode "
1627 				     "%lu: retval %d != map->m_len %d",
1628 				     inode->i_ino, retval, map->m_len);
1629 			WARN_ON(1);
1630 		}
1631 
1632 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1633 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1634 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1635 					    map->m_pblk, status);
1636 		if (ret != 0)
1637 			retval = ret;
1638 	}
1639 
1640 out_unlock:
1641 	up_read((&EXT4_I(inode)->i_data_sem));
1642 
1643 	return retval;
1644 }
1645 
1646 /*
1647  * This is a special get_block_t callback which is used by
1648  * ext4_da_write_begin().  It will either return mapped block or
1649  * reserve space for a single block.
1650  *
1651  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1652  * We also have b_blocknr = -1 and b_bdev initialized properly
1653  *
1654  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1655  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1656  * initialized properly.
1657  */
1658 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1659 			   struct buffer_head *bh, int create)
1660 {
1661 	struct ext4_map_blocks map;
1662 	int ret = 0;
1663 
1664 	BUG_ON(create == 0);
1665 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1666 
1667 	map.m_lblk = iblock;
1668 	map.m_len = 1;
1669 
1670 	/*
1671 	 * first, we need to know whether the block is allocated already
1672 	 * preallocated blocks are unmapped but should treated
1673 	 * the same as allocated blocks.
1674 	 */
1675 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1676 	if (ret <= 0)
1677 		return ret;
1678 
1679 	map_bh(bh, inode->i_sb, map.m_pblk);
1680 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1681 
1682 	if (buffer_unwritten(bh)) {
1683 		/* A delayed write to unwritten bh should be marked
1684 		 * new and mapped.  Mapped ensures that we don't do
1685 		 * get_block multiple times when we write to the same
1686 		 * offset and new ensures that we do proper zero out
1687 		 * for partial write.
1688 		 */
1689 		set_buffer_new(bh);
1690 		set_buffer_mapped(bh);
1691 	}
1692 	return 0;
1693 }
1694 
1695 static int bget_one(handle_t *handle, struct buffer_head *bh)
1696 {
1697 	get_bh(bh);
1698 	return 0;
1699 }
1700 
1701 static int bput_one(handle_t *handle, struct buffer_head *bh)
1702 {
1703 	put_bh(bh);
1704 	return 0;
1705 }
1706 
1707 static int __ext4_journalled_writepage(struct page *page,
1708 				       unsigned int len)
1709 {
1710 	struct address_space *mapping = page->mapping;
1711 	struct inode *inode = mapping->host;
1712 	struct buffer_head *page_bufs = NULL;
1713 	handle_t *handle = NULL;
1714 	int ret = 0, err = 0;
1715 	int inline_data = ext4_has_inline_data(inode);
1716 	struct buffer_head *inode_bh = NULL;
1717 
1718 	ClearPageChecked(page);
1719 
1720 	if (inline_data) {
1721 		BUG_ON(page->index != 0);
1722 		BUG_ON(len > ext4_get_max_inline_size(inode));
1723 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1724 		if (inode_bh == NULL)
1725 			goto out;
1726 	} else {
1727 		page_bufs = page_buffers(page);
1728 		if (!page_bufs) {
1729 			BUG();
1730 			goto out;
1731 		}
1732 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1733 				       NULL, bget_one);
1734 	}
1735 	/*
1736 	 * We need to release the page lock before we start the
1737 	 * journal, so grab a reference so the page won't disappear
1738 	 * out from under us.
1739 	 */
1740 	get_page(page);
1741 	unlock_page(page);
1742 
1743 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1744 				    ext4_writepage_trans_blocks(inode));
1745 	if (IS_ERR(handle)) {
1746 		ret = PTR_ERR(handle);
1747 		put_page(page);
1748 		goto out_no_pagelock;
1749 	}
1750 	BUG_ON(!ext4_handle_valid(handle));
1751 
1752 	lock_page(page);
1753 	put_page(page);
1754 	if (page->mapping != mapping) {
1755 		/* The page got truncated from under us */
1756 		ext4_journal_stop(handle);
1757 		ret = 0;
1758 		goto out;
1759 	}
1760 
1761 	if (inline_data) {
1762 		BUFFER_TRACE(inode_bh, "get write access");
1763 		ret = ext4_journal_get_write_access(handle, inode_bh);
1764 
1765 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1766 
1767 	} else {
1768 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769 					     do_journal_get_write_access);
1770 
1771 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772 					     write_end_fn);
1773 	}
1774 	if (ret == 0)
1775 		ret = err;
1776 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1777 	err = ext4_journal_stop(handle);
1778 	if (!ret)
1779 		ret = err;
1780 
1781 	if (!ext4_has_inline_data(inode))
1782 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1783 				       NULL, bput_one);
1784 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1785 out:
1786 	unlock_page(page);
1787 out_no_pagelock:
1788 	brelse(inode_bh);
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Note that we don't need to start a transaction unless we're journaling data
1794  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1795  * need to file the inode to the transaction's list in ordered mode because if
1796  * we are writing back data added by write(), the inode is already there and if
1797  * we are writing back data modified via mmap(), no one guarantees in which
1798  * transaction the data will hit the disk. In case we are journaling data, we
1799  * cannot start transaction directly because transaction start ranks above page
1800  * lock so we have to do some magic.
1801  *
1802  * This function can get called via...
1803  *   - ext4_writepages after taking page lock (have journal handle)
1804  *   - journal_submit_inode_data_buffers (no journal handle)
1805  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1806  *   - grab_page_cache when doing write_begin (have journal handle)
1807  *
1808  * We don't do any block allocation in this function. If we have page with
1809  * multiple blocks we need to write those buffer_heads that are mapped. This
1810  * is important for mmaped based write. So if we do with blocksize 1K
1811  * truncate(f, 1024);
1812  * a = mmap(f, 0, 4096);
1813  * a[0] = 'a';
1814  * truncate(f, 4096);
1815  * we have in the page first buffer_head mapped via page_mkwrite call back
1816  * but other buffer_heads would be unmapped but dirty (dirty done via the
1817  * do_wp_page). So writepage should write the first block. If we modify
1818  * the mmap area beyond 1024 we will again get a page_fault and the
1819  * page_mkwrite callback will do the block allocation and mark the
1820  * buffer_heads mapped.
1821  *
1822  * We redirty the page if we have any buffer_heads that is either delay or
1823  * unwritten in the page.
1824  *
1825  * We can get recursively called as show below.
1826  *
1827  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1828  *		ext4_writepage()
1829  *
1830  * But since we don't do any block allocation we should not deadlock.
1831  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1832  */
1833 static int ext4_writepage(struct page *page,
1834 			  struct writeback_control *wbc)
1835 {
1836 	int ret = 0;
1837 	loff_t size;
1838 	unsigned int len;
1839 	struct buffer_head *page_bufs = NULL;
1840 	struct inode *inode = page->mapping->host;
1841 	struct ext4_io_submit io_submit;
1842 	bool keep_towrite = false;
1843 
1844 	trace_ext4_writepage(page);
1845 	size = i_size_read(inode);
1846 	if (page->index == size >> PAGE_CACHE_SHIFT)
1847 		len = size & ~PAGE_CACHE_MASK;
1848 	else
1849 		len = PAGE_CACHE_SIZE;
1850 
1851 	page_bufs = page_buffers(page);
1852 	/*
1853 	 * We cannot do block allocation or other extent handling in this
1854 	 * function. If there are buffers needing that, we have to redirty
1855 	 * the page. But we may reach here when we do a journal commit via
1856 	 * journal_submit_inode_data_buffers() and in that case we must write
1857 	 * allocated buffers to achieve data=ordered mode guarantees.
1858 	 *
1859 	 * Also, if there is only one buffer per page (the fs block
1860 	 * size == the page size), if one buffer needs block
1861 	 * allocation or needs to modify the extent tree to clear the
1862 	 * unwritten flag, we know that the page can't be written at
1863 	 * all, so we might as well refuse the write immediately.
1864 	 * Unfortunately if the block size != page size, we can't as
1865 	 * easily detect this case using ext4_walk_page_buffers(), but
1866 	 * for the extremely common case, this is an optimization that
1867 	 * skips a useless round trip through ext4_bio_write_page().
1868 	 */
1869 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1870 				   ext4_bh_delay_or_unwritten)) {
1871 		redirty_page_for_writepage(wbc, page);
1872 		if ((current->flags & PF_MEMALLOC) ||
1873 		    (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1874 			/*
1875 			 * For memory cleaning there's no point in writing only
1876 			 * some buffers. So just bail out. Warn if we came here
1877 			 * from direct reclaim.
1878 			 */
1879 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1880 							== PF_MEMALLOC);
1881 			unlock_page(page);
1882 			return 0;
1883 		}
1884 		keep_towrite = true;
1885 	}
1886 
1887 	if (PageChecked(page) && ext4_should_journal_data(inode))
1888 		/*
1889 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1890 		 * doesn't seem much point in redirtying the page here.
1891 		 */
1892 		return __ext4_journalled_writepage(page, len);
1893 
1894 	ext4_io_submit_init(&io_submit, wbc);
1895 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1896 	if (!io_submit.io_end) {
1897 		redirty_page_for_writepage(wbc, page);
1898 		unlock_page(page);
1899 		return -ENOMEM;
1900 	}
1901 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1902 	ext4_io_submit(&io_submit);
1903 	/* Drop io_end reference we got from init */
1904 	ext4_put_io_end_defer(io_submit.io_end);
1905 	return ret;
1906 }
1907 
1908 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1909 {
1910 	int len;
1911 	loff_t size = i_size_read(mpd->inode);
1912 	int err;
1913 
1914 	BUG_ON(page->index != mpd->first_page);
1915 	if (page->index == size >> PAGE_CACHE_SHIFT)
1916 		len = size & ~PAGE_CACHE_MASK;
1917 	else
1918 		len = PAGE_CACHE_SIZE;
1919 	clear_page_dirty_for_io(page);
1920 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1921 	if (!err)
1922 		mpd->wbc->nr_to_write--;
1923 	mpd->first_page++;
1924 
1925 	return err;
1926 }
1927 
1928 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1929 
1930 /*
1931  * mballoc gives us at most this number of blocks...
1932  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1933  * The rest of mballoc seems to handle chunks up to full group size.
1934  */
1935 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1936 
1937 /*
1938  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1939  *
1940  * @mpd - extent of blocks
1941  * @lblk - logical number of the block in the file
1942  * @bh - buffer head we want to add to the extent
1943  *
1944  * The function is used to collect contig. blocks in the same state. If the
1945  * buffer doesn't require mapping for writeback and we haven't started the
1946  * extent of buffers to map yet, the function returns 'true' immediately - the
1947  * caller can write the buffer right away. Otherwise the function returns true
1948  * if the block has been added to the extent, false if the block couldn't be
1949  * added.
1950  */
1951 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1952 				   struct buffer_head *bh)
1953 {
1954 	struct ext4_map_blocks *map = &mpd->map;
1955 
1956 	/* Buffer that doesn't need mapping for writeback? */
1957 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1958 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1959 		/* So far no extent to map => we write the buffer right away */
1960 		if (map->m_len == 0)
1961 			return true;
1962 		return false;
1963 	}
1964 
1965 	/* First block in the extent? */
1966 	if (map->m_len == 0) {
1967 		map->m_lblk = lblk;
1968 		map->m_len = 1;
1969 		map->m_flags = bh->b_state & BH_FLAGS;
1970 		return true;
1971 	}
1972 
1973 	/* Don't go larger than mballoc is willing to allocate */
1974 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1975 		return false;
1976 
1977 	/* Can we merge the block to our big extent? */
1978 	if (lblk == map->m_lblk + map->m_len &&
1979 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1980 		map->m_len++;
1981 		return true;
1982 	}
1983 	return false;
1984 }
1985 
1986 /*
1987  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1988  *
1989  * @mpd - extent of blocks for mapping
1990  * @head - the first buffer in the page
1991  * @bh - buffer we should start processing from
1992  * @lblk - logical number of the block in the file corresponding to @bh
1993  *
1994  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1995  * the page for IO if all buffers in this page were mapped and there's no
1996  * accumulated extent of buffers to map or add buffers in the page to the
1997  * extent of buffers to map. The function returns 1 if the caller can continue
1998  * by processing the next page, 0 if it should stop adding buffers to the
1999  * extent to map because we cannot extend it anymore. It can also return value
2000  * < 0 in case of error during IO submission.
2001  */
2002 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2003 				   struct buffer_head *head,
2004 				   struct buffer_head *bh,
2005 				   ext4_lblk_t lblk)
2006 {
2007 	struct inode *inode = mpd->inode;
2008 	int err;
2009 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2010 							>> inode->i_blkbits;
2011 
2012 	do {
2013 		BUG_ON(buffer_locked(bh));
2014 
2015 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2016 			/* Found extent to map? */
2017 			if (mpd->map.m_len)
2018 				return 0;
2019 			/* Everything mapped so far and we hit EOF */
2020 			break;
2021 		}
2022 	} while (lblk++, (bh = bh->b_this_page) != head);
2023 	/* So far everything mapped? Submit the page for IO. */
2024 	if (mpd->map.m_len == 0) {
2025 		err = mpage_submit_page(mpd, head->b_page);
2026 		if (err < 0)
2027 			return err;
2028 	}
2029 	return lblk < blocks;
2030 }
2031 
2032 /*
2033  * mpage_map_buffers - update buffers corresponding to changed extent and
2034  *		       submit fully mapped pages for IO
2035  *
2036  * @mpd - description of extent to map, on return next extent to map
2037  *
2038  * Scan buffers corresponding to changed extent (we expect corresponding pages
2039  * to be already locked) and update buffer state according to new extent state.
2040  * We map delalloc buffers to their physical location, clear unwritten bits,
2041  * and mark buffers as uninit when we perform writes to unwritten extents
2042  * and do extent conversion after IO is finished. If the last page is not fully
2043  * mapped, we update @map to the next extent in the last page that needs
2044  * mapping. Otherwise we submit the page for IO.
2045  */
2046 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2047 {
2048 	struct pagevec pvec;
2049 	int nr_pages, i;
2050 	struct inode *inode = mpd->inode;
2051 	struct buffer_head *head, *bh;
2052 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2053 	pgoff_t start, end;
2054 	ext4_lblk_t lblk;
2055 	sector_t pblock;
2056 	int err;
2057 
2058 	start = mpd->map.m_lblk >> bpp_bits;
2059 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2060 	lblk = start << bpp_bits;
2061 	pblock = mpd->map.m_pblk;
2062 
2063 	pagevec_init(&pvec, 0);
2064 	while (start <= end) {
2065 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2066 					  PAGEVEC_SIZE);
2067 		if (nr_pages == 0)
2068 			break;
2069 		for (i = 0; i < nr_pages; i++) {
2070 			struct page *page = pvec.pages[i];
2071 
2072 			if (page->index > end)
2073 				break;
2074 			/* Up to 'end' pages must be contiguous */
2075 			BUG_ON(page->index != start);
2076 			bh = head = page_buffers(page);
2077 			do {
2078 				if (lblk < mpd->map.m_lblk)
2079 					continue;
2080 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2081 					/*
2082 					 * Buffer after end of mapped extent.
2083 					 * Find next buffer in the page to map.
2084 					 */
2085 					mpd->map.m_len = 0;
2086 					mpd->map.m_flags = 0;
2087 					/*
2088 					 * FIXME: If dioread_nolock supports
2089 					 * blocksize < pagesize, we need to make
2090 					 * sure we add size mapped so far to
2091 					 * io_end->size as the following call
2092 					 * can submit the page for IO.
2093 					 */
2094 					err = mpage_process_page_bufs(mpd, head,
2095 								      bh, lblk);
2096 					pagevec_release(&pvec);
2097 					if (err > 0)
2098 						err = 0;
2099 					return err;
2100 				}
2101 				if (buffer_delay(bh)) {
2102 					clear_buffer_delay(bh);
2103 					bh->b_blocknr = pblock++;
2104 				}
2105 				clear_buffer_unwritten(bh);
2106 			} while (lblk++, (bh = bh->b_this_page) != head);
2107 
2108 			/*
2109 			 * FIXME: This is going to break if dioread_nolock
2110 			 * supports blocksize < pagesize as we will try to
2111 			 * convert potentially unmapped parts of inode.
2112 			 */
2113 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2114 			/* Page fully mapped - let IO run! */
2115 			err = mpage_submit_page(mpd, page);
2116 			if (err < 0) {
2117 				pagevec_release(&pvec);
2118 				return err;
2119 			}
2120 			start++;
2121 		}
2122 		pagevec_release(&pvec);
2123 	}
2124 	/* Extent fully mapped and matches with page boundary. We are done. */
2125 	mpd->map.m_len = 0;
2126 	mpd->map.m_flags = 0;
2127 	return 0;
2128 }
2129 
2130 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2131 {
2132 	struct inode *inode = mpd->inode;
2133 	struct ext4_map_blocks *map = &mpd->map;
2134 	int get_blocks_flags;
2135 	int err, dioread_nolock;
2136 
2137 	trace_ext4_da_write_pages_extent(inode, map);
2138 	/*
2139 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2140 	 * to convert an unwritten extent to be initialized (in the case
2141 	 * where we have written into one or more preallocated blocks).  It is
2142 	 * possible that we're going to need more metadata blocks than
2143 	 * previously reserved. However we must not fail because we're in
2144 	 * writeback and there is nothing we can do about it so it might result
2145 	 * in data loss.  So use reserved blocks to allocate metadata if
2146 	 * possible.
2147 	 *
2148 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2149 	 * the blocks in question are delalloc blocks.  This indicates
2150 	 * that the blocks and quotas has already been checked when
2151 	 * the data was copied into the page cache.
2152 	 */
2153 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2154 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2155 	dioread_nolock = ext4_should_dioread_nolock(inode);
2156 	if (dioread_nolock)
2157 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2158 	if (map->m_flags & (1 << BH_Delay))
2159 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2160 
2161 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2162 	if (err < 0)
2163 		return err;
2164 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2165 		if (!mpd->io_submit.io_end->handle &&
2166 		    ext4_handle_valid(handle)) {
2167 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2168 			handle->h_rsv_handle = NULL;
2169 		}
2170 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2171 	}
2172 
2173 	BUG_ON(map->m_len == 0);
2174 	if (map->m_flags & EXT4_MAP_NEW) {
2175 		struct block_device *bdev = inode->i_sb->s_bdev;
2176 		int i;
2177 
2178 		for (i = 0; i < map->m_len; i++)
2179 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2180 	}
2181 	return 0;
2182 }
2183 
2184 /*
2185  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2186  *				 mpd->len and submit pages underlying it for IO
2187  *
2188  * @handle - handle for journal operations
2189  * @mpd - extent to map
2190  * @give_up_on_write - we set this to true iff there is a fatal error and there
2191  *                     is no hope of writing the data. The caller should discard
2192  *                     dirty pages to avoid infinite loops.
2193  *
2194  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2195  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2196  * them to initialized or split the described range from larger unwritten
2197  * extent. Note that we need not map all the described range since allocation
2198  * can return less blocks or the range is covered by more unwritten extents. We
2199  * cannot map more because we are limited by reserved transaction credits. On
2200  * the other hand we always make sure that the last touched page is fully
2201  * mapped so that it can be written out (and thus forward progress is
2202  * guaranteed). After mapping we submit all mapped pages for IO.
2203  */
2204 static int mpage_map_and_submit_extent(handle_t *handle,
2205 				       struct mpage_da_data *mpd,
2206 				       bool *give_up_on_write)
2207 {
2208 	struct inode *inode = mpd->inode;
2209 	struct ext4_map_blocks *map = &mpd->map;
2210 	int err;
2211 	loff_t disksize;
2212 	int progress = 0;
2213 
2214 	mpd->io_submit.io_end->offset =
2215 				((loff_t)map->m_lblk) << inode->i_blkbits;
2216 	do {
2217 		err = mpage_map_one_extent(handle, mpd);
2218 		if (err < 0) {
2219 			struct super_block *sb = inode->i_sb;
2220 
2221 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2222 				goto invalidate_dirty_pages;
2223 			/*
2224 			 * Let the uper layers retry transient errors.
2225 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2226 			 * is non-zero, a commit should free up blocks.
2227 			 */
2228 			if ((err == -ENOMEM) ||
2229 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2230 				if (progress)
2231 					goto update_disksize;
2232 				return err;
2233 			}
2234 			ext4_msg(sb, KERN_CRIT,
2235 				 "Delayed block allocation failed for "
2236 				 "inode %lu at logical offset %llu with"
2237 				 " max blocks %u with error %d",
2238 				 inode->i_ino,
2239 				 (unsigned long long)map->m_lblk,
2240 				 (unsigned)map->m_len, -err);
2241 			ext4_msg(sb, KERN_CRIT,
2242 				 "This should not happen!! Data will "
2243 				 "be lost\n");
2244 			if (err == -ENOSPC)
2245 				ext4_print_free_blocks(inode);
2246 		invalidate_dirty_pages:
2247 			*give_up_on_write = true;
2248 			return err;
2249 		}
2250 		progress = 1;
2251 		/*
2252 		 * Update buffer state, submit mapped pages, and get us new
2253 		 * extent to map
2254 		 */
2255 		err = mpage_map_and_submit_buffers(mpd);
2256 		if (err < 0)
2257 			goto update_disksize;
2258 	} while (map->m_len);
2259 
2260 update_disksize:
2261 	/*
2262 	 * Update on-disk size after IO is submitted.  Races with
2263 	 * truncate are avoided by checking i_size under i_data_sem.
2264 	 */
2265 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2266 	if (disksize > EXT4_I(inode)->i_disksize) {
2267 		int err2;
2268 		loff_t i_size;
2269 
2270 		down_write(&EXT4_I(inode)->i_data_sem);
2271 		i_size = i_size_read(inode);
2272 		if (disksize > i_size)
2273 			disksize = i_size;
2274 		if (disksize > EXT4_I(inode)->i_disksize)
2275 			EXT4_I(inode)->i_disksize = disksize;
2276 		err2 = ext4_mark_inode_dirty(handle, inode);
2277 		up_write(&EXT4_I(inode)->i_data_sem);
2278 		if (err2)
2279 			ext4_error(inode->i_sb,
2280 				   "Failed to mark inode %lu dirty",
2281 				   inode->i_ino);
2282 		if (!err)
2283 			err = err2;
2284 	}
2285 	return err;
2286 }
2287 
2288 /*
2289  * Calculate the total number of credits to reserve for one writepages
2290  * iteration. This is called from ext4_writepages(). We map an extent of
2291  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293  * bpp - 1 blocks in bpp different extents.
2294  */
2295 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296 {
2297 	int bpp = ext4_journal_blocks_per_page(inode);
2298 
2299 	return ext4_meta_trans_blocks(inode,
2300 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301 }
2302 
2303 /*
2304  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2305  * 				 and underlying extent to map
2306  *
2307  * @mpd - where to look for pages
2308  *
2309  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2310  * IO immediately. When we find a page which isn't mapped we start accumulating
2311  * extent of buffers underlying these pages that needs mapping (formed by
2312  * either delayed or unwritten buffers). We also lock the pages containing
2313  * these buffers. The extent found is returned in @mpd structure (starting at
2314  * mpd->lblk with length mpd->len blocks).
2315  *
2316  * Note that this function can attach bios to one io_end structure which are
2317  * neither logically nor physically contiguous. Although it may seem as an
2318  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2319  * case as we need to track IO to all buffers underlying a page in one io_end.
2320  */
2321 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2322 {
2323 	struct address_space *mapping = mpd->inode->i_mapping;
2324 	struct pagevec pvec;
2325 	unsigned int nr_pages;
2326 	long left = mpd->wbc->nr_to_write;
2327 	pgoff_t index = mpd->first_page;
2328 	pgoff_t end = mpd->last_page;
2329 	int tag;
2330 	int i, err = 0;
2331 	int blkbits = mpd->inode->i_blkbits;
2332 	ext4_lblk_t lblk;
2333 	struct buffer_head *head;
2334 
2335 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2336 		tag = PAGECACHE_TAG_TOWRITE;
2337 	else
2338 		tag = PAGECACHE_TAG_DIRTY;
2339 
2340 	pagevec_init(&pvec, 0);
2341 	mpd->map.m_len = 0;
2342 	mpd->next_page = index;
2343 	while (index <= end) {
2344 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2345 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2346 		if (nr_pages == 0)
2347 			goto out;
2348 
2349 		for (i = 0; i < nr_pages; i++) {
2350 			struct page *page = pvec.pages[i];
2351 
2352 			/*
2353 			 * At this point, the page may be truncated or
2354 			 * invalidated (changing page->mapping to NULL), or
2355 			 * even swizzled back from swapper_space to tmpfs file
2356 			 * mapping. However, page->index will not change
2357 			 * because we have a reference on the page.
2358 			 */
2359 			if (page->index > end)
2360 				goto out;
2361 
2362 			/*
2363 			 * Accumulated enough dirty pages? This doesn't apply
2364 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2365 			 * keep going because someone may be concurrently
2366 			 * dirtying pages, and we might have synced a lot of
2367 			 * newly appeared dirty pages, but have not synced all
2368 			 * of the old dirty pages.
2369 			 */
2370 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2371 				goto out;
2372 
2373 			/* If we can't merge this page, we are done. */
2374 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2375 				goto out;
2376 
2377 			lock_page(page);
2378 			/*
2379 			 * If the page is no longer dirty, or its mapping no
2380 			 * longer corresponds to inode we are writing (which
2381 			 * means it has been truncated or invalidated), or the
2382 			 * page is already under writeback and we are not doing
2383 			 * a data integrity writeback, skip the page
2384 			 */
2385 			if (!PageDirty(page) ||
2386 			    (PageWriteback(page) &&
2387 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2388 			    unlikely(page->mapping != mapping)) {
2389 				unlock_page(page);
2390 				continue;
2391 			}
2392 
2393 			wait_on_page_writeback(page);
2394 			BUG_ON(PageWriteback(page));
2395 
2396 			if (mpd->map.m_len == 0)
2397 				mpd->first_page = page->index;
2398 			mpd->next_page = page->index + 1;
2399 			/* Add all dirty buffers to mpd */
2400 			lblk = ((ext4_lblk_t)page->index) <<
2401 				(PAGE_CACHE_SHIFT - blkbits);
2402 			head = page_buffers(page);
2403 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2404 			if (err <= 0)
2405 				goto out;
2406 			err = 0;
2407 			left--;
2408 		}
2409 		pagevec_release(&pvec);
2410 		cond_resched();
2411 	}
2412 	return 0;
2413 out:
2414 	pagevec_release(&pvec);
2415 	return err;
2416 }
2417 
2418 static int __writepage(struct page *page, struct writeback_control *wbc,
2419 		       void *data)
2420 {
2421 	struct address_space *mapping = data;
2422 	int ret = ext4_writepage(page, wbc);
2423 	mapping_set_error(mapping, ret);
2424 	return ret;
2425 }
2426 
2427 static int ext4_writepages(struct address_space *mapping,
2428 			   struct writeback_control *wbc)
2429 {
2430 	pgoff_t	writeback_index = 0;
2431 	long nr_to_write = wbc->nr_to_write;
2432 	int range_whole = 0;
2433 	int cycled = 1;
2434 	handle_t *handle = NULL;
2435 	struct mpage_da_data mpd;
2436 	struct inode *inode = mapping->host;
2437 	int needed_blocks, rsv_blocks = 0, ret = 0;
2438 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2439 	bool done;
2440 	struct blk_plug plug;
2441 	bool give_up_on_write = false;
2442 
2443 	trace_ext4_writepages(inode, wbc);
2444 
2445 	/*
2446 	 * No pages to write? This is mainly a kludge to avoid starting
2447 	 * a transaction for special inodes like journal inode on last iput()
2448 	 * because that could violate lock ordering on umount
2449 	 */
2450 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2451 		goto out_writepages;
2452 
2453 	if (ext4_should_journal_data(inode)) {
2454 		struct blk_plug plug;
2455 
2456 		blk_start_plug(&plug);
2457 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2458 		blk_finish_plug(&plug);
2459 		goto out_writepages;
2460 	}
2461 
2462 	/*
2463 	 * If the filesystem has aborted, it is read-only, so return
2464 	 * right away instead of dumping stack traces later on that
2465 	 * will obscure the real source of the problem.  We test
2466 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2467 	 * the latter could be true if the filesystem is mounted
2468 	 * read-only, and in that case, ext4_writepages should
2469 	 * *never* be called, so if that ever happens, we would want
2470 	 * the stack trace.
2471 	 */
2472 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2473 		ret = -EROFS;
2474 		goto out_writepages;
2475 	}
2476 
2477 	if (ext4_should_dioread_nolock(inode)) {
2478 		/*
2479 		 * We may need to convert up to one extent per block in
2480 		 * the page and we may dirty the inode.
2481 		 */
2482 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2483 	}
2484 
2485 	/*
2486 	 * If we have inline data and arrive here, it means that
2487 	 * we will soon create the block for the 1st page, so
2488 	 * we'd better clear the inline data here.
2489 	 */
2490 	if (ext4_has_inline_data(inode)) {
2491 		/* Just inode will be modified... */
2492 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2493 		if (IS_ERR(handle)) {
2494 			ret = PTR_ERR(handle);
2495 			goto out_writepages;
2496 		}
2497 		BUG_ON(ext4_test_inode_state(inode,
2498 				EXT4_STATE_MAY_INLINE_DATA));
2499 		ext4_destroy_inline_data(handle, inode);
2500 		ext4_journal_stop(handle);
2501 	}
2502 
2503 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2504 		range_whole = 1;
2505 
2506 	if (wbc->range_cyclic) {
2507 		writeback_index = mapping->writeback_index;
2508 		if (writeback_index)
2509 			cycled = 0;
2510 		mpd.first_page = writeback_index;
2511 		mpd.last_page = -1;
2512 	} else {
2513 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2514 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2515 	}
2516 
2517 	mpd.inode = inode;
2518 	mpd.wbc = wbc;
2519 	ext4_io_submit_init(&mpd.io_submit, wbc);
2520 retry:
2521 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2522 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2523 	done = false;
2524 	blk_start_plug(&plug);
2525 	while (!done && mpd.first_page <= mpd.last_page) {
2526 		/* For each extent of pages we use new io_end */
2527 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2528 		if (!mpd.io_submit.io_end) {
2529 			ret = -ENOMEM;
2530 			break;
2531 		}
2532 
2533 		/*
2534 		 * We have two constraints: We find one extent to map and we
2535 		 * must always write out whole page (makes a difference when
2536 		 * blocksize < pagesize) so that we don't block on IO when we
2537 		 * try to write out the rest of the page. Journalled mode is
2538 		 * not supported by delalloc.
2539 		 */
2540 		BUG_ON(ext4_should_journal_data(inode));
2541 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2542 
2543 		/* start a new transaction */
2544 		handle = ext4_journal_start_with_reserve(inode,
2545 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2546 		if (IS_ERR(handle)) {
2547 			ret = PTR_ERR(handle);
2548 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2549 			       "%ld pages, ino %lu; err %d", __func__,
2550 				wbc->nr_to_write, inode->i_ino, ret);
2551 			/* Release allocated io_end */
2552 			ext4_put_io_end(mpd.io_submit.io_end);
2553 			break;
2554 		}
2555 
2556 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2557 		ret = mpage_prepare_extent_to_map(&mpd);
2558 		if (!ret) {
2559 			if (mpd.map.m_len)
2560 				ret = mpage_map_and_submit_extent(handle, &mpd,
2561 					&give_up_on_write);
2562 			else {
2563 				/*
2564 				 * We scanned the whole range (or exhausted
2565 				 * nr_to_write), submitted what was mapped and
2566 				 * didn't find anything needing mapping. We are
2567 				 * done.
2568 				 */
2569 				done = true;
2570 			}
2571 		}
2572 		ext4_journal_stop(handle);
2573 		/* Submit prepared bio */
2574 		ext4_io_submit(&mpd.io_submit);
2575 		/* Unlock pages we didn't use */
2576 		mpage_release_unused_pages(&mpd, give_up_on_write);
2577 		/* Drop our io_end reference we got from init */
2578 		ext4_put_io_end(mpd.io_submit.io_end);
2579 
2580 		if (ret == -ENOSPC && sbi->s_journal) {
2581 			/*
2582 			 * Commit the transaction which would
2583 			 * free blocks released in the transaction
2584 			 * and try again
2585 			 */
2586 			jbd2_journal_force_commit_nested(sbi->s_journal);
2587 			ret = 0;
2588 			continue;
2589 		}
2590 		/* Fatal error - ENOMEM, EIO... */
2591 		if (ret)
2592 			break;
2593 	}
2594 	blk_finish_plug(&plug);
2595 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2596 		cycled = 1;
2597 		mpd.last_page = writeback_index - 1;
2598 		mpd.first_page = 0;
2599 		goto retry;
2600 	}
2601 
2602 	/* Update index */
2603 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2604 		/*
2605 		 * Set the writeback_index so that range_cyclic
2606 		 * mode will write it back later
2607 		 */
2608 		mapping->writeback_index = mpd.first_page;
2609 
2610 out_writepages:
2611 	trace_ext4_writepages_result(inode, wbc, ret,
2612 				     nr_to_write - wbc->nr_to_write);
2613 	return ret;
2614 }
2615 
2616 static int ext4_nonda_switch(struct super_block *sb)
2617 {
2618 	s64 free_clusters, dirty_clusters;
2619 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2620 
2621 	/*
2622 	 * switch to non delalloc mode if we are running low
2623 	 * on free block. The free block accounting via percpu
2624 	 * counters can get slightly wrong with percpu_counter_batch getting
2625 	 * accumulated on each CPU without updating global counters
2626 	 * Delalloc need an accurate free block accounting. So switch
2627 	 * to non delalloc when we are near to error range.
2628 	 */
2629 	free_clusters =
2630 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2631 	dirty_clusters =
2632 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2633 	/*
2634 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2635 	 */
2636 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2637 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2638 
2639 	if (2 * free_clusters < 3 * dirty_clusters ||
2640 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2641 		/*
2642 		 * free block count is less than 150% of dirty blocks
2643 		 * or free blocks is less than watermark
2644 		 */
2645 		return 1;
2646 	}
2647 	return 0;
2648 }
2649 
2650 /* We always reserve for an inode update; the superblock could be there too */
2651 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2652 {
2653 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2654 		return 1;
2655 
2656 	if (pos + len <= 0x7fffffffULL)
2657 		return 1;
2658 
2659 	/* We might need to update the superblock to set LARGE_FILE */
2660 	return 2;
2661 }
2662 
2663 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2664 			       loff_t pos, unsigned len, unsigned flags,
2665 			       struct page **pagep, void **fsdata)
2666 {
2667 	int ret, retries = 0;
2668 	struct page *page;
2669 	pgoff_t index;
2670 	struct inode *inode = mapping->host;
2671 	handle_t *handle;
2672 
2673 	index = pos >> PAGE_CACHE_SHIFT;
2674 
2675 	if (ext4_nonda_switch(inode->i_sb)) {
2676 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2677 		return ext4_write_begin(file, mapping, pos,
2678 					len, flags, pagep, fsdata);
2679 	}
2680 	*fsdata = (void *)0;
2681 	trace_ext4_da_write_begin(inode, pos, len, flags);
2682 
2683 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2684 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2685 						      pos, len, flags,
2686 						      pagep, fsdata);
2687 		if (ret < 0)
2688 			return ret;
2689 		if (ret == 1)
2690 			return 0;
2691 	}
2692 
2693 	/*
2694 	 * grab_cache_page_write_begin() can take a long time if the
2695 	 * system is thrashing due to memory pressure, or if the page
2696 	 * is being written back.  So grab it first before we start
2697 	 * the transaction handle.  This also allows us to allocate
2698 	 * the page (if needed) without using GFP_NOFS.
2699 	 */
2700 retry_grab:
2701 	page = grab_cache_page_write_begin(mapping, index, flags);
2702 	if (!page)
2703 		return -ENOMEM;
2704 	unlock_page(page);
2705 
2706 	/*
2707 	 * With delayed allocation, we don't log the i_disksize update
2708 	 * if there is delayed block allocation. But we still need
2709 	 * to journalling the i_disksize update if writes to the end
2710 	 * of file which has an already mapped buffer.
2711 	 */
2712 retry_journal:
2713 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2714 				ext4_da_write_credits(inode, pos, len));
2715 	if (IS_ERR(handle)) {
2716 		page_cache_release(page);
2717 		return PTR_ERR(handle);
2718 	}
2719 
2720 	lock_page(page);
2721 	if (page->mapping != mapping) {
2722 		/* The page got truncated from under us */
2723 		unlock_page(page);
2724 		page_cache_release(page);
2725 		ext4_journal_stop(handle);
2726 		goto retry_grab;
2727 	}
2728 	/* In case writeback began while the page was unlocked */
2729 	wait_for_stable_page(page);
2730 
2731 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2732 	ret = ext4_block_write_begin(page, pos, len,
2733 				     ext4_da_get_block_prep);
2734 #else
2735 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2736 #endif
2737 	if (ret < 0) {
2738 		unlock_page(page);
2739 		ext4_journal_stop(handle);
2740 		/*
2741 		 * block_write_begin may have instantiated a few blocks
2742 		 * outside i_size.  Trim these off again. Don't need
2743 		 * i_size_read because we hold i_mutex.
2744 		 */
2745 		if (pos + len > inode->i_size)
2746 			ext4_truncate_failed_write(inode);
2747 
2748 		if (ret == -ENOSPC &&
2749 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2750 			goto retry_journal;
2751 
2752 		page_cache_release(page);
2753 		return ret;
2754 	}
2755 
2756 	*pagep = page;
2757 	return ret;
2758 }
2759 
2760 /*
2761  * Check if we should update i_disksize
2762  * when write to the end of file but not require block allocation
2763  */
2764 static int ext4_da_should_update_i_disksize(struct page *page,
2765 					    unsigned long offset)
2766 {
2767 	struct buffer_head *bh;
2768 	struct inode *inode = page->mapping->host;
2769 	unsigned int idx;
2770 	int i;
2771 
2772 	bh = page_buffers(page);
2773 	idx = offset >> inode->i_blkbits;
2774 
2775 	for (i = 0; i < idx; i++)
2776 		bh = bh->b_this_page;
2777 
2778 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2779 		return 0;
2780 	return 1;
2781 }
2782 
2783 static int ext4_da_write_end(struct file *file,
2784 			     struct address_space *mapping,
2785 			     loff_t pos, unsigned len, unsigned copied,
2786 			     struct page *page, void *fsdata)
2787 {
2788 	struct inode *inode = mapping->host;
2789 	int ret = 0, ret2;
2790 	handle_t *handle = ext4_journal_current_handle();
2791 	loff_t new_i_size;
2792 	unsigned long start, end;
2793 	int write_mode = (int)(unsigned long)fsdata;
2794 
2795 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2796 		return ext4_write_end(file, mapping, pos,
2797 				      len, copied, page, fsdata);
2798 
2799 	trace_ext4_da_write_end(inode, pos, len, copied);
2800 	start = pos & (PAGE_CACHE_SIZE - 1);
2801 	end = start + copied - 1;
2802 
2803 	/*
2804 	 * generic_write_end() will run mark_inode_dirty() if i_size
2805 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2806 	 * into that.
2807 	 */
2808 	new_i_size = pos + copied;
2809 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2810 		if (ext4_has_inline_data(inode) ||
2811 		    ext4_da_should_update_i_disksize(page, end)) {
2812 			ext4_update_i_disksize(inode, new_i_size);
2813 			/* We need to mark inode dirty even if
2814 			 * new_i_size is less that inode->i_size
2815 			 * bu greater than i_disksize.(hint delalloc)
2816 			 */
2817 			ext4_mark_inode_dirty(handle, inode);
2818 		}
2819 	}
2820 
2821 	if (write_mode != CONVERT_INLINE_DATA &&
2822 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2823 	    ext4_has_inline_data(inode))
2824 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2825 						     page);
2826 	else
2827 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2828 							page, fsdata);
2829 
2830 	copied = ret2;
2831 	if (ret2 < 0)
2832 		ret = ret2;
2833 	ret2 = ext4_journal_stop(handle);
2834 	if (!ret)
2835 		ret = ret2;
2836 
2837 	return ret ? ret : copied;
2838 }
2839 
2840 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2841 				   unsigned int length)
2842 {
2843 	/*
2844 	 * Drop reserved blocks
2845 	 */
2846 	BUG_ON(!PageLocked(page));
2847 	if (!page_has_buffers(page))
2848 		goto out;
2849 
2850 	ext4_da_page_release_reservation(page, offset, length);
2851 
2852 out:
2853 	ext4_invalidatepage(page, offset, length);
2854 
2855 	return;
2856 }
2857 
2858 /*
2859  * Force all delayed allocation blocks to be allocated for a given inode.
2860  */
2861 int ext4_alloc_da_blocks(struct inode *inode)
2862 {
2863 	trace_ext4_alloc_da_blocks(inode);
2864 
2865 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2866 		return 0;
2867 
2868 	/*
2869 	 * We do something simple for now.  The filemap_flush() will
2870 	 * also start triggering a write of the data blocks, which is
2871 	 * not strictly speaking necessary (and for users of
2872 	 * laptop_mode, not even desirable).  However, to do otherwise
2873 	 * would require replicating code paths in:
2874 	 *
2875 	 * ext4_writepages() ->
2876 	 *    write_cache_pages() ---> (via passed in callback function)
2877 	 *        __mpage_da_writepage() -->
2878 	 *           mpage_add_bh_to_extent()
2879 	 *           mpage_da_map_blocks()
2880 	 *
2881 	 * The problem is that write_cache_pages(), located in
2882 	 * mm/page-writeback.c, marks pages clean in preparation for
2883 	 * doing I/O, which is not desirable if we're not planning on
2884 	 * doing I/O at all.
2885 	 *
2886 	 * We could call write_cache_pages(), and then redirty all of
2887 	 * the pages by calling redirty_page_for_writepage() but that
2888 	 * would be ugly in the extreme.  So instead we would need to
2889 	 * replicate parts of the code in the above functions,
2890 	 * simplifying them because we wouldn't actually intend to
2891 	 * write out the pages, but rather only collect contiguous
2892 	 * logical block extents, call the multi-block allocator, and
2893 	 * then update the buffer heads with the block allocations.
2894 	 *
2895 	 * For now, though, we'll cheat by calling filemap_flush(),
2896 	 * which will map the blocks, and start the I/O, but not
2897 	 * actually wait for the I/O to complete.
2898 	 */
2899 	return filemap_flush(inode->i_mapping);
2900 }
2901 
2902 /*
2903  * bmap() is special.  It gets used by applications such as lilo and by
2904  * the swapper to find the on-disk block of a specific piece of data.
2905  *
2906  * Naturally, this is dangerous if the block concerned is still in the
2907  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2908  * filesystem and enables swap, then they may get a nasty shock when the
2909  * data getting swapped to that swapfile suddenly gets overwritten by
2910  * the original zero's written out previously to the journal and
2911  * awaiting writeback in the kernel's buffer cache.
2912  *
2913  * So, if we see any bmap calls here on a modified, data-journaled file,
2914  * take extra steps to flush any blocks which might be in the cache.
2915  */
2916 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2917 {
2918 	struct inode *inode = mapping->host;
2919 	journal_t *journal;
2920 	int err;
2921 
2922 	/*
2923 	 * We can get here for an inline file via the FIBMAP ioctl
2924 	 */
2925 	if (ext4_has_inline_data(inode))
2926 		return 0;
2927 
2928 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2929 			test_opt(inode->i_sb, DELALLOC)) {
2930 		/*
2931 		 * With delalloc we want to sync the file
2932 		 * so that we can make sure we allocate
2933 		 * blocks for file
2934 		 */
2935 		filemap_write_and_wait(mapping);
2936 	}
2937 
2938 	if (EXT4_JOURNAL(inode) &&
2939 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2940 		/*
2941 		 * This is a REALLY heavyweight approach, but the use of
2942 		 * bmap on dirty files is expected to be extremely rare:
2943 		 * only if we run lilo or swapon on a freshly made file
2944 		 * do we expect this to happen.
2945 		 *
2946 		 * (bmap requires CAP_SYS_RAWIO so this does not
2947 		 * represent an unprivileged user DOS attack --- we'd be
2948 		 * in trouble if mortal users could trigger this path at
2949 		 * will.)
2950 		 *
2951 		 * NB. EXT4_STATE_JDATA is not set on files other than
2952 		 * regular files.  If somebody wants to bmap a directory
2953 		 * or symlink and gets confused because the buffer
2954 		 * hasn't yet been flushed to disk, they deserve
2955 		 * everything they get.
2956 		 */
2957 
2958 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2959 		journal = EXT4_JOURNAL(inode);
2960 		jbd2_journal_lock_updates(journal);
2961 		err = jbd2_journal_flush(journal);
2962 		jbd2_journal_unlock_updates(journal);
2963 
2964 		if (err)
2965 			return 0;
2966 	}
2967 
2968 	return generic_block_bmap(mapping, block, ext4_get_block);
2969 }
2970 
2971 static int ext4_readpage(struct file *file, struct page *page)
2972 {
2973 	int ret = -EAGAIN;
2974 	struct inode *inode = page->mapping->host;
2975 
2976 	trace_ext4_readpage(page);
2977 
2978 	if (ext4_has_inline_data(inode))
2979 		ret = ext4_readpage_inline(inode, page);
2980 
2981 	if (ret == -EAGAIN)
2982 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2983 
2984 	return ret;
2985 }
2986 
2987 static int
2988 ext4_readpages(struct file *file, struct address_space *mapping,
2989 		struct list_head *pages, unsigned nr_pages)
2990 {
2991 	struct inode *inode = mapping->host;
2992 
2993 	/* If the file has inline data, no need to do readpages. */
2994 	if (ext4_has_inline_data(inode))
2995 		return 0;
2996 
2997 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2998 }
2999 
3000 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3001 				unsigned int length)
3002 {
3003 	trace_ext4_invalidatepage(page, offset, length);
3004 
3005 	/* No journalling happens on data buffers when this function is used */
3006 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3007 
3008 	block_invalidatepage(page, offset, length);
3009 }
3010 
3011 static int __ext4_journalled_invalidatepage(struct page *page,
3012 					    unsigned int offset,
3013 					    unsigned int length)
3014 {
3015 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3016 
3017 	trace_ext4_journalled_invalidatepage(page, offset, length);
3018 
3019 	/*
3020 	 * If it's a full truncate we just forget about the pending dirtying
3021 	 */
3022 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3023 		ClearPageChecked(page);
3024 
3025 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3026 }
3027 
3028 /* Wrapper for aops... */
3029 static void ext4_journalled_invalidatepage(struct page *page,
3030 					   unsigned int offset,
3031 					   unsigned int length)
3032 {
3033 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3034 }
3035 
3036 static int ext4_releasepage(struct page *page, gfp_t wait)
3037 {
3038 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3039 
3040 	trace_ext4_releasepage(page);
3041 
3042 	/* Page has dirty journalled data -> cannot release */
3043 	if (PageChecked(page))
3044 		return 0;
3045 	if (journal)
3046 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3047 	else
3048 		return try_to_free_buffers(page);
3049 }
3050 
3051 /*
3052  * ext4_get_block used when preparing for a DIO write or buffer write.
3053  * We allocate an uinitialized extent if blocks haven't been allocated.
3054  * The extent will be converted to initialized after the IO is complete.
3055  */
3056 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3057 		   struct buffer_head *bh_result, int create)
3058 {
3059 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3060 		   inode->i_ino, create);
3061 	return _ext4_get_block(inode, iblock, bh_result,
3062 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3063 }
3064 
3065 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3066 		   struct buffer_head *bh_result, int create)
3067 {
3068 	int ret;
3069 
3070 	ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3071 		   inode->i_ino, create);
3072 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
3073 	/*
3074 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
3075 	 * that.
3076 	 */
3077 	WARN_ON_ONCE(!buffer_mapped(bh_result));
3078 
3079 	return ret;
3080 }
3081 
3082 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3083 		   struct buffer_head *bh_result, int create)
3084 {
3085 	int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3086 	if (create)
3087 		flags |= EXT4_GET_BLOCKS_CREATE;
3088 	ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3089 		   inode->i_ino, create);
3090 	return _ext4_get_block(inode, iblock, bh_result, flags);
3091 }
3092 
3093 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3094 			    ssize_t size, void *private)
3095 {
3096         ext4_io_end_t *io_end = iocb->private;
3097 
3098 	/* if not async direct IO just return */
3099 	if (!io_end)
3100 		return;
3101 
3102 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3103 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3104  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3105 		  size);
3106 
3107 	iocb->private = NULL;
3108 	io_end->offset = offset;
3109 	io_end->size = size;
3110 	ext4_put_io_end(io_end);
3111 }
3112 
3113 /*
3114  * For ext4 extent files, ext4 will do direct-io write to holes,
3115  * preallocated extents, and those write extend the file, no need to
3116  * fall back to buffered IO.
3117  *
3118  * For holes, we fallocate those blocks, mark them as unwritten
3119  * If those blocks were preallocated, we mark sure they are split, but
3120  * still keep the range to write as unwritten.
3121  *
3122  * The unwritten extents will be converted to written when DIO is completed.
3123  * For async direct IO, since the IO may still pending when return, we
3124  * set up an end_io call back function, which will do the conversion
3125  * when async direct IO completed.
3126  *
3127  * If the O_DIRECT write will extend the file then add this inode to the
3128  * orphan list.  So recovery will truncate it back to the original size
3129  * if the machine crashes during the write.
3130  *
3131  */
3132 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3133 				  loff_t offset)
3134 {
3135 	struct file *file = iocb->ki_filp;
3136 	struct inode *inode = file->f_mapping->host;
3137 	ssize_t ret;
3138 	size_t count = iov_iter_count(iter);
3139 	int overwrite = 0;
3140 	get_block_t *get_block_func = NULL;
3141 	int dio_flags = 0;
3142 	loff_t final_size = offset + count;
3143 	ext4_io_end_t *io_end = NULL;
3144 
3145 	/* Use the old path for reads and writes beyond i_size. */
3146 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3147 		return ext4_ind_direct_IO(iocb, iter, offset);
3148 
3149 	BUG_ON(iocb->private == NULL);
3150 
3151 	/*
3152 	 * Make all waiters for direct IO properly wait also for extent
3153 	 * conversion. This also disallows race between truncate() and
3154 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3155 	 */
3156 	if (iov_iter_rw(iter) == WRITE)
3157 		inode_dio_begin(inode);
3158 
3159 	/* If we do a overwrite dio, i_mutex locking can be released */
3160 	overwrite = *((int *)iocb->private);
3161 
3162 	if (overwrite)
3163 		mutex_unlock(&inode->i_mutex);
3164 
3165 	/*
3166 	 * We could direct write to holes and fallocate.
3167 	 *
3168 	 * Allocated blocks to fill the hole are marked as
3169 	 * unwritten to prevent parallel buffered read to expose
3170 	 * the stale data before DIO complete the data IO.
3171 	 *
3172 	 * As to previously fallocated extents, ext4 get_block will
3173 	 * just simply mark the buffer mapped but still keep the
3174 	 * extents unwritten.
3175 	 *
3176 	 * For non AIO case, we will convert those unwritten extents
3177 	 * to written after return back from blockdev_direct_IO.
3178 	 *
3179 	 * For async DIO, the conversion needs to be deferred when the
3180 	 * IO is completed. The ext4 end_io callback function will be
3181 	 * called to take care of the conversion work.  Here for async
3182 	 * case, we allocate an io_end structure to hook to the iocb.
3183 	 */
3184 	iocb->private = NULL;
3185 	ext4_inode_aio_set(inode, NULL);
3186 	if (!is_sync_kiocb(iocb)) {
3187 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3188 		if (!io_end) {
3189 			ret = -ENOMEM;
3190 			goto retake_lock;
3191 		}
3192 		/*
3193 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3194 		 */
3195 		iocb->private = ext4_get_io_end(io_end);
3196 		/*
3197 		 * we save the io structure for current async direct
3198 		 * IO, so that later ext4_map_blocks() could flag the
3199 		 * io structure whether there is a unwritten extents
3200 		 * needs to be converted when IO is completed.
3201 		 */
3202 		ext4_inode_aio_set(inode, io_end);
3203 	}
3204 
3205 	if (overwrite) {
3206 		get_block_func = ext4_get_block_overwrite;
3207 	} else {
3208 		get_block_func = ext4_get_block_write;
3209 		dio_flags = DIO_LOCKING;
3210 	}
3211 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3212 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3213 #endif
3214 	if (IS_DAX(inode))
3215 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3216 				ext4_end_io_dio, dio_flags);
3217 	else
3218 		ret = __blockdev_direct_IO(iocb, inode,
3219 					   inode->i_sb->s_bdev, iter, offset,
3220 					   get_block_func,
3221 					   ext4_end_io_dio, NULL, dio_flags);
3222 
3223 	/*
3224 	 * Put our reference to io_end. This can free the io_end structure e.g.
3225 	 * in sync IO case or in case of error. It can even perform extent
3226 	 * conversion if all bios we submitted finished before we got here.
3227 	 * Note that in that case iocb->private can be already set to NULL
3228 	 * here.
3229 	 */
3230 	if (io_end) {
3231 		ext4_inode_aio_set(inode, NULL);
3232 		ext4_put_io_end(io_end);
3233 		/*
3234 		 * When no IO was submitted ext4_end_io_dio() was not
3235 		 * called so we have to put iocb's reference.
3236 		 */
3237 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3238 			WARN_ON(iocb->private != io_end);
3239 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3240 			ext4_put_io_end(io_end);
3241 			iocb->private = NULL;
3242 		}
3243 	}
3244 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3245 						EXT4_STATE_DIO_UNWRITTEN)) {
3246 		int err;
3247 		/*
3248 		 * for non AIO case, since the IO is already
3249 		 * completed, we could do the conversion right here
3250 		 */
3251 		err = ext4_convert_unwritten_extents(NULL, inode,
3252 						     offset, ret);
3253 		if (err < 0)
3254 			ret = err;
3255 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3256 	}
3257 
3258 retake_lock:
3259 	if (iov_iter_rw(iter) == WRITE)
3260 		inode_dio_end(inode);
3261 	/* take i_mutex locking again if we do a ovewrite dio */
3262 	if (overwrite)
3263 		mutex_lock(&inode->i_mutex);
3264 
3265 	return ret;
3266 }
3267 
3268 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3269 			      loff_t offset)
3270 {
3271 	struct file *file = iocb->ki_filp;
3272 	struct inode *inode = file->f_mapping->host;
3273 	size_t count = iov_iter_count(iter);
3274 	ssize_t ret;
3275 
3276 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3277 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3278 		return 0;
3279 #endif
3280 
3281 	/*
3282 	 * If we are doing data journalling we don't support O_DIRECT
3283 	 */
3284 	if (ext4_should_journal_data(inode))
3285 		return 0;
3286 
3287 	/* Let buffer I/O handle the inline data case. */
3288 	if (ext4_has_inline_data(inode))
3289 		return 0;
3290 
3291 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3292 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3293 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3294 	else
3295 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3296 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3297 	return ret;
3298 }
3299 
3300 /*
3301  * Pages can be marked dirty completely asynchronously from ext4's journalling
3302  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3303  * much here because ->set_page_dirty is called under VFS locks.  The page is
3304  * not necessarily locked.
3305  *
3306  * We cannot just dirty the page and leave attached buffers clean, because the
3307  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3308  * or jbddirty because all the journalling code will explode.
3309  *
3310  * So what we do is to mark the page "pending dirty" and next time writepage
3311  * is called, propagate that into the buffers appropriately.
3312  */
3313 static int ext4_journalled_set_page_dirty(struct page *page)
3314 {
3315 	SetPageChecked(page);
3316 	return __set_page_dirty_nobuffers(page);
3317 }
3318 
3319 static const struct address_space_operations ext4_aops = {
3320 	.readpage		= ext4_readpage,
3321 	.readpages		= ext4_readpages,
3322 	.writepage		= ext4_writepage,
3323 	.writepages		= ext4_writepages,
3324 	.write_begin		= ext4_write_begin,
3325 	.write_end		= ext4_write_end,
3326 	.bmap			= ext4_bmap,
3327 	.invalidatepage		= ext4_invalidatepage,
3328 	.releasepage		= ext4_releasepage,
3329 	.direct_IO		= ext4_direct_IO,
3330 	.migratepage		= buffer_migrate_page,
3331 	.is_partially_uptodate  = block_is_partially_uptodate,
3332 	.error_remove_page	= generic_error_remove_page,
3333 };
3334 
3335 static const struct address_space_operations ext4_journalled_aops = {
3336 	.readpage		= ext4_readpage,
3337 	.readpages		= ext4_readpages,
3338 	.writepage		= ext4_writepage,
3339 	.writepages		= ext4_writepages,
3340 	.write_begin		= ext4_write_begin,
3341 	.write_end		= ext4_journalled_write_end,
3342 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3343 	.bmap			= ext4_bmap,
3344 	.invalidatepage		= ext4_journalled_invalidatepage,
3345 	.releasepage		= ext4_releasepage,
3346 	.direct_IO		= ext4_direct_IO,
3347 	.is_partially_uptodate  = block_is_partially_uptodate,
3348 	.error_remove_page	= generic_error_remove_page,
3349 };
3350 
3351 static const struct address_space_operations ext4_da_aops = {
3352 	.readpage		= ext4_readpage,
3353 	.readpages		= ext4_readpages,
3354 	.writepage		= ext4_writepage,
3355 	.writepages		= ext4_writepages,
3356 	.write_begin		= ext4_da_write_begin,
3357 	.write_end		= ext4_da_write_end,
3358 	.bmap			= ext4_bmap,
3359 	.invalidatepage		= ext4_da_invalidatepage,
3360 	.releasepage		= ext4_releasepage,
3361 	.direct_IO		= ext4_direct_IO,
3362 	.migratepage		= buffer_migrate_page,
3363 	.is_partially_uptodate  = block_is_partially_uptodate,
3364 	.error_remove_page	= generic_error_remove_page,
3365 };
3366 
3367 void ext4_set_aops(struct inode *inode)
3368 {
3369 	switch (ext4_inode_journal_mode(inode)) {
3370 	case EXT4_INODE_ORDERED_DATA_MODE:
3371 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3372 		break;
3373 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3374 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3375 		break;
3376 	case EXT4_INODE_JOURNAL_DATA_MODE:
3377 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3378 		return;
3379 	default:
3380 		BUG();
3381 	}
3382 	if (test_opt(inode->i_sb, DELALLOC))
3383 		inode->i_mapping->a_ops = &ext4_da_aops;
3384 	else
3385 		inode->i_mapping->a_ops = &ext4_aops;
3386 }
3387 
3388 static int __ext4_block_zero_page_range(handle_t *handle,
3389 		struct address_space *mapping, loff_t from, loff_t length)
3390 {
3391 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3392 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3393 	unsigned blocksize, pos;
3394 	ext4_lblk_t iblock;
3395 	struct inode *inode = mapping->host;
3396 	struct buffer_head *bh;
3397 	struct page *page;
3398 	int err = 0;
3399 
3400 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3401 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3402 	if (!page)
3403 		return -ENOMEM;
3404 
3405 	blocksize = inode->i_sb->s_blocksize;
3406 
3407 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3408 
3409 	if (!page_has_buffers(page))
3410 		create_empty_buffers(page, blocksize, 0);
3411 
3412 	/* Find the buffer that contains "offset" */
3413 	bh = page_buffers(page);
3414 	pos = blocksize;
3415 	while (offset >= pos) {
3416 		bh = bh->b_this_page;
3417 		iblock++;
3418 		pos += blocksize;
3419 	}
3420 	if (buffer_freed(bh)) {
3421 		BUFFER_TRACE(bh, "freed: skip");
3422 		goto unlock;
3423 	}
3424 	if (!buffer_mapped(bh)) {
3425 		BUFFER_TRACE(bh, "unmapped");
3426 		ext4_get_block(inode, iblock, bh, 0);
3427 		/* unmapped? It's a hole - nothing to do */
3428 		if (!buffer_mapped(bh)) {
3429 			BUFFER_TRACE(bh, "still unmapped");
3430 			goto unlock;
3431 		}
3432 	}
3433 
3434 	/* Ok, it's mapped. Make sure it's up-to-date */
3435 	if (PageUptodate(page))
3436 		set_buffer_uptodate(bh);
3437 
3438 	if (!buffer_uptodate(bh)) {
3439 		err = -EIO;
3440 		ll_rw_block(READ, 1, &bh);
3441 		wait_on_buffer(bh);
3442 		/* Uhhuh. Read error. Complain and punt. */
3443 		if (!buffer_uptodate(bh))
3444 			goto unlock;
3445 		if (S_ISREG(inode->i_mode) &&
3446 		    ext4_encrypted_inode(inode)) {
3447 			/* We expect the key to be set. */
3448 			BUG_ON(!ext4_has_encryption_key(inode));
3449 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3450 			WARN_ON_ONCE(ext4_decrypt(page));
3451 		}
3452 	}
3453 	if (ext4_should_journal_data(inode)) {
3454 		BUFFER_TRACE(bh, "get write access");
3455 		err = ext4_journal_get_write_access(handle, bh);
3456 		if (err)
3457 			goto unlock;
3458 	}
3459 	zero_user(page, offset, length);
3460 	BUFFER_TRACE(bh, "zeroed end of block");
3461 
3462 	if (ext4_should_journal_data(inode)) {
3463 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3464 	} else {
3465 		err = 0;
3466 		mark_buffer_dirty(bh);
3467 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3468 			err = ext4_jbd2_file_inode(handle, inode);
3469 	}
3470 
3471 unlock:
3472 	unlock_page(page);
3473 	page_cache_release(page);
3474 	return err;
3475 }
3476 
3477 /*
3478  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3479  * starting from file offset 'from'.  The range to be zero'd must
3480  * be contained with in one block.  If the specified range exceeds
3481  * the end of the block it will be shortened to end of the block
3482  * that cooresponds to 'from'
3483  */
3484 static int ext4_block_zero_page_range(handle_t *handle,
3485 		struct address_space *mapping, loff_t from, loff_t length)
3486 {
3487 	struct inode *inode = mapping->host;
3488 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3489 	unsigned blocksize = inode->i_sb->s_blocksize;
3490 	unsigned max = blocksize - (offset & (blocksize - 1));
3491 
3492 	/*
3493 	 * correct length if it does not fall between
3494 	 * 'from' and the end of the block
3495 	 */
3496 	if (length > max || length < 0)
3497 		length = max;
3498 
3499 	if (IS_DAX(inode))
3500 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3501 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3502 }
3503 
3504 /*
3505  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3506  * up to the end of the block which corresponds to `from'.
3507  * This required during truncate. We need to physically zero the tail end
3508  * of that block so it doesn't yield old data if the file is later grown.
3509  */
3510 static int ext4_block_truncate_page(handle_t *handle,
3511 		struct address_space *mapping, loff_t from)
3512 {
3513 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3514 	unsigned length;
3515 	unsigned blocksize;
3516 	struct inode *inode = mapping->host;
3517 
3518 	blocksize = inode->i_sb->s_blocksize;
3519 	length = blocksize - (offset & (blocksize - 1));
3520 
3521 	return ext4_block_zero_page_range(handle, mapping, from, length);
3522 }
3523 
3524 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3525 			     loff_t lstart, loff_t length)
3526 {
3527 	struct super_block *sb = inode->i_sb;
3528 	struct address_space *mapping = inode->i_mapping;
3529 	unsigned partial_start, partial_end;
3530 	ext4_fsblk_t start, end;
3531 	loff_t byte_end = (lstart + length - 1);
3532 	int err = 0;
3533 
3534 	partial_start = lstart & (sb->s_blocksize - 1);
3535 	partial_end = byte_end & (sb->s_blocksize - 1);
3536 
3537 	start = lstart >> sb->s_blocksize_bits;
3538 	end = byte_end >> sb->s_blocksize_bits;
3539 
3540 	/* Handle partial zero within the single block */
3541 	if (start == end &&
3542 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3543 		err = ext4_block_zero_page_range(handle, mapping,
3544 						 lstart, length);
3545 		return err;
3546 	}
3547 	/* Handle partial zero out on the start of the range */
3548 	if (partial_start) {
3549 		err = ext4_block_zero_page_range(handle, mapping,
3550 						 lstart, sb->s_blocksize);
3551 		if (err)
3552 			return err;
3553 	}
3554 	/* Handle partial zero out on the end of the range */
3555 	if (partial_end != sb->s_blocksize - 1)
3556 		err = ext4_block_zero_page_range(handle, mapping,
3557 						 byte_end - partial_end,
3558 						 partial_end + 1);
3559 	return err;
3560 }
3561 
3562 int ext4_can_truncate(struct inode *inode)
3563 {
3564 	if (S_ISREG(inode->i_mode))
3565 		return 1;
3566 	if (S_ISDIR(inode->i_mode))
3567 		return 1;
3568 	if (S_ISLNK(inode->i_mode))
3569 		return !ext4_inode_is_fast_symlink(inode);
3570 	return 0;
3571 }
3572 
3573 /*
3574  * We have to make sure i_disksize gets properly updated before we truncate
3575  * page cache due to hole punching or zero range. Otherwise i_disksize update
3576  * can get lost as it may have been postponed to submission of writeback but
3577  * that will never happen after we truncate page cache.
3578  */
3579 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3580 				      loff_t len)
3581 {
3582 	handle_t *handle;
3583 	loff_t size = i_size_read(inode);
3584 
3585 	WARN_ON(!mutex_is_locked(&inode->i_mutex));
3586 	if (offset > size || offset + len < size)
3587 		return 0;
3588 
3589 	if (EXT4_I(inode)->i_disksize >= size)
3590 		return 0;
3591 
3592 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3593 	if (IS_ERR(handle))
3594 		return PTR_ERR(handle);
3595 	ext4_update_i_disksize(inode, size);
3596 	ext4_mark_inode_dirty(handle, inode);
3597 	ext4_journal_stop(handle);
3598 
3599 	return 0;
3600 }
3601 
3602 /*
3603  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3604  * associated with the given offset and length
3605  *
3606  * @inode:  File inode
3607  * @offset: The offset where the hole will begin
3608  * @len:    The length of the hole
3609  *
3610  * Returns: 0 on success or negative on failure
3611  */
3612 
3613 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3614 {
3615 	struct super_block *sb = inode->i_sb;
3616 	ext4_lblk_t first_block, stop_block;
3617 	struct address_space *mapping = inode->i_mapping;
3618 	loff_t first_block_offset, last_block_offset;
3619 	handle_t *handle;
3620 	unsigned int credits;
3621 	int ret = 0;
3622 
3623 	if (!S_ISREG(inode->i_mode))
3624 		return -EOPNOTSUPP;
3625 
3626 	trace_ext4_punch_hole(inode, offset, length, 0);
3627 
3628 	/*
3629 	 * Write out all dirty pages to avoid race conditions
3630 	 * Then release them.
3631 	 */
3632 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3633 		ret = filemap_write_and_wait_range(mapping, offset,
3634 						   offset + length - 1);
3635 		if (ret)
3636 			return ret;
3637 	}
3638 
3639 	mutex_lock(&inode->i_mutex);
3640 
3641 	/* No need to punch hole beyond i_size */
3642 	if (offset >= inode->i_size)
3643 		goto out_mutex;
3644 
3645 	/*
3646 	 * If the hole extends beyond i_size, set the hole
3647 	 * to end after the page that contains i_size
3648 	 */
3649 	if (offset + length > inode->i_size) {
3650 		length = inode->i_size +
3651 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3652 		   offset;
3653 	}
3654 
3655 	if (offset & (sb->s_blocksize - 1) ||
3656 	    (offset + length) & (sb->s_blocksize - 1)) {
3657 		/*
3658 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3659 		 * partial block
3660 		 */
3661 		ret = ext4_inode_attach_jinode(inode);
3662 		if (ret < 0)
3663 			goto out_mutex;
3664 
3665 	}
3666 
3667 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3668 	ext4_inode_block_unlocked_dio(inode);
3669 	inode_dio_wait(inode);
3670 
3671 	/*
3672 	 * Prevent page faults from reinstantiating pages we have released from
3673 	 * page cache.
3674 	 */
3675 	down_write(&EXT4_I(inode)->i_mmap_sem);
3676 	first_block_offset = round_up(offset, sb->s_blocksize);
3677 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3678 
3679 	/* Now release the pages and zero block aligned part of pages*/
3680 	if (last_block_offset > first_block_offset) {
3681 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3682 		if (ret)
3683 			goto out_dio;
3684 		truncate_pagecache_range(inode, first_block_offset,
3685 					 last_block_offset);
3686 	}
3687 
3688 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3689 		credits = ext4_writepage_trans_blocks(inode);
3690 	else
3691 		credits = ext4_blocks_for_truncate(inode);
3692 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3693 	if (IS_ERR(handle)) {
3694 		ret = PTR_ERR(handle);
3695 		ext4_std_error(sb, ret);
3696 		goto out_dio;
3697 	}
3698 
3699 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3700 				       length);
3701 	if (ret)
3702 		goto out_stop;
3703 
3704 	first_block = (offset + sb->s_blocksize - 1) >>
3705 		EXT4_BLOCK_SIZE_BITS(sb);
3706 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3707 
3708 	/* If there are no blocks to remove, return now */
3709 	if (first_block >= stop_block)
3710 		goto out_stop;
3711 
3712 	down_write(&EXT4_I(inode)->i_data_sem);
3713 	ext4_discard_preallocations(inode);
3714 
3715 	ret = ext4_es_remove_extent(inode, first_block,
3716 				    stop_block - first_block);
3717 	if (ret) {
3718 		up_write(&EXT4_I(inode)->i_data_sem);
3719 		goto out_stop;
3720 	}
3721 
3722 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3723 		ret = ext4_ext_remove_space(inode, first_block,
3724 					    stop_block - 1);
3725 	else
3726 		ret = ext4_ind_remove_space(handle, inode, first_block,
3727 					    stop_block);
3728 
3729 	up_write(&EXT4_I(inode)->i_data_sem);
3730 	if (IS_SYNC(inode))
3731 		ext4_handle_sync(handle);
3732 
3733 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3734 	ext4_mark_inode_dirty(handle, inode);
3735 out_stop:
3736 	ext4_journal_stop(handle);
3737 out_dio:
3738 	up_write(&EXT4_I(inode)->i_mmap_sem);
3739 	ext4_inode_resume_unlocked_dio(inode);
3740 out_mutex:
3741 	mutex_unlock(&inode->i_mutex);
3742 	return ret;
3743 }
3744 
3745 int ext4_inode_attach_jinode(struct inode *inode)
3746 {
3747 	struct ext4_inode_info *ei = EXT4_I(inode);
3748 	struct jbd2_inode *jinode;
3749 
3750 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3751 		return 0;
3752 
3753 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3754 	spin_lock(&inode->i_lock);
3755 	if (!ei->jinode) {
3756 		if (!jinode) {
3757 			spin_unlock(&inode->i_lock);
3758 			return -ENOMEM;
3759 		}
3760 		ei->jinode = jinode;
3761 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3762 		jinode = NULL;
3763 	}
3764 	spin_unlock(&inode->i_lock);
3765 	if (unlikely(jinode != NULL))
3766 		jbd2_free_inode(jinode);
3767 	return 0;
3768 }
3769 
3770 /*
3771  * ext4_truncate()
3772  *
3773  * We block out ext4_get_block() block instantiations across the entire
3774  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3775  * simultaneously on behalf of the same inode.
3776  *
3777  * As we work through the truncate and commit bits of it to the journal there
3778  * is one core, guiding principle: the file's tree must always be consistent on
3779  * disk.  We must be able to restart the truncate after a crash.
3780  *
3781  * The file's tree may be transiently inconsistent in memory (although it
3782  * probably isn't), but whenever we close off and commit a journal transaction,
3783  * the contents of (the filesystem + the journal) must be consistent and
3784  * restartable.  It's pretty simple, really: bottom up, right to left (although
3785  * left-to-right works OK too).
3786  *
3787  * Note that at recovery time, journal replay occurs *before* the restart of
3788  * truncate against the orphan inode list.
3789  *
3790  * The committed inode has the new, desired i_size (which is the same as
3791  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3792  * that this inode's truncate did not complete and it will again call
3793  * ext4_truncate() to have another go.  So there will be instantiated blocks
3794  * to the right of the truncation point in a crashed ext4 filesystem.  But
3795  * that's fine - as long as they are linked from the inode, the post-crash
3796  * ext4_truncate() run will find them and release them.
3797  */
3798 void ext4_truncate(struct inode *inode)
3799 {
3800 	struct ext4_inode_info *ei = EXT4_I(inode);
3801 	unsigned int credits;
3802 	handle_t *handle;
3803 	struct address_space *mapping = inode->i_mapping;
3804 
3805 	/*
3806 	 * There is a possibility that we're either freeing the inode
3807 	 * or it's a completely new inode. In those cases we might not
3808 	 * have i_mutex locked because it's not necessary.
3809 	 */
3810 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3811 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3812 	trace_ext4_truncate_enter(inode);
3813 
3814 	if (!ext4_can_truncate(inode))
3815 		return;
3816 
3817 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3818 
3819 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3820 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3821 
3822 	if (ext4_has_inline_data(inode)) {
3823 		int has_inline = 1;
3824 
3825 		ext4_inline_data_truncate(inode, &has_inline);
3826 		if (has_inline)
3827 			return;
3828 	}
3829 
3830 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3831 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3832 		if (ext4_inode_attach_jinode(inode) < 0)
3833 			return;
3834 	}
3835 
3836 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3837 		credits = ext4_writepage_trans_blocks(inode);
3838 	else
3839 		credits = ext4_blocks_for_truncate(inode);
3840 
3841 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3842 	if (IS_ERR(handle)) {
3843 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3844 		return;
3845 	}
3846 
3847 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3848 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3849 
3850 	/*
3851 	 * We add the inode to the orphan list, so that if this
3852 	 * truncate spans multiple transactions, and we crash, we will
3853 	 * resume the truncate when the filesystem recovers.  It also
3854 	 * marks the inode dirty, to catch the new size.
3855 	 *
3856 	 * Implication: the file must always be in a sane, consistent
3857 	 * truncatable state while each transaction commits.
3858 	 */
3859 	if (ext4_orphan_add(handle, inode))
3860 		goto out_stop;
3861 
3862 	down_write(&EXT4_I(inode)->i_data_sem);
3863 
3864 	ext4_discard_preallocations(inode);
3865 
3866 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3867 		ext4_ext_truncate(handle, inode);
3868 	else
3869 		ext4_ind_truncate(handle, inode);
3870 
3871 	up_write(&ei->i_data_sem);
3872 
3873 	if (IS_SYNC(inode))
3874 		ext4_handle_sync(handle);
3875 
3876 out_stop:
3877 	/*
3878 	 * If this was a simple ftruncate() and the file will remain alive,
3879 	 * then we need to clear up the orphan record which we created above.
3880 	 * However, if this was a real unlink then we were called by
3881 	 * ext4_evict_inode(), and we allow that function to clean up the
3882 	 * orphan info for us.
3883 	 */
3884 	if (inode->i_nlink)
3885 		ext4_orphan_del(handle, inode);
3886 
3887 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3888 	ext4_mark_inode_dirty(handle, inode);
3889 	ext4_journal_stop(handle);
3890 
3891 	trace_ext4_truncate_exit(inode);
3892 }
3893 
3894 /*
3895  * ext4_get_inode_loc returns with an extra refcount against the inode's
3896  * underlying buffer_head on success. If 'in_mem' is true, we have all
3897  * data in memory that is needed to recreate the on-disk version of this
3898  * inode.
3899  */
3900 static int __ext4_get_inode_loc(struct inode *inode,
3901 				struct ext4_iloc *iloc, int in_mem)
3902 {
3903 	struct ext4_group_desc	*gdp;
3904 	struct buffer_head	*bh;
3905 	struct super_block	*sb = inode->i_sb;
3906 	ext4_fsblk_t		block;
3907 	int			inodes_per_block, inode_offset;
3908 
3909 	iloc->bh = NULL;
3910 	if (!ext4_valid_inum(sb, inode->i_ino))
3911 		return -EFSCORRUPTED;
3912 
3913 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3914 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3915 	if (!gdp)
3916 		return -EIO;
3917 
3918 	/*
3919 	 * Figure out the offset within the block group inode table
3920 	 */
3921 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3922 	inode_offset = ((inode->i_ino - 1) %
3923 			EXT4_INODES_PER_GROUP(sb));
3924 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3925 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3926 
3927 	bh = sb_getblk(sb, block);
3928 	if (unlikely(!bh))
3929 		return -ENOMEM;
3930 	if (!buffer_uptodate(bh)) {
3931 		lock_buffer(bh);
3932 
3933 		/*
3934 		 * If the buffer has the write error flag, we have failed
3935 		 * to write out another inode in the same block.  In this
3936 		 * case, we don't have to read the block because we may
3937 		 * read the old inode data successfully.
3938 		 */
3939 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3940 			set_buffer_uptodate(bh);
3941 
3942 		if (buffer_uptodate(bh)) {
3943 			/* someone brought it uptodate while we waited */
3944 			unlock_buffer(bh);
3945 			goto has_buffer;
3946 		}
3947 
3948 		/*
3949 		 * If we have all information of the inode in memory and this
3950 		 * is the only valid inode in the block, we need not read the
3951 		 * block.
3952 		 */
3953 		if (in_mem) {
3954 			struct buffer_head *bitmap_bh;
3955 			int i, start;
3956 
3957 			start = inode_offset & ~(inodes_per_block - 1);
3958 
3959 			/* Is the inode bitmap in cache? */
3960 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3961 			if (unlikely(!bitmap_bh))
3962 				goto make_io;
3963 
3964 			/*
3965 			 * If the inode bitmap isn't in cache then the
3966 			 * optimisation may end up performing two reads instead
3967 			 * of one, so skip it.
3968 			 */
3969 			if (!buffer_uptodate(bitmap_bh)) {
3970 				brelse(bitmap_bh);
3971 				goto make_io;
3972 			}
3973 			for (i = start; i < start + inodes_per_block; i++) {
3974 				if (i == inode_offset)
3975 					continue;
3976 				if (ext4_test_bit(i, bitmap_bh->b_data))
3977 					break;
3978 			}
3979 			brelse(bitmap_bh);
3980 			if (i == start + inodes_per_block) {
3981 				/* all other inodes are free, so skip I/O */
3982 				memset(bh->b_data, 0, bh->b_size);
3983 				set_buffer_uptodate(bh);
3984 				unlock_buffer(bh);
3985 				goto has_buffer;
3986 			}
3987 		}
3988 
3989 make_io:
3990 		/*
3991 		 * If we need to do any I/O, try to pre-readahead extra
3992 		 * blocks from the inode table.
3993 		 */
3994 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3995 			ext4_fsblk_t b, end, table;
3996 			unsigned num;
3997 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3998 
3999 			table = ext4_inode_table(sb, gdp);
4000 			/* s_inode_readahead_blks is always a power of 2 */
4001 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4002 			if (table > b)
4003 				b = table;
4004 			end = b + ra_blks;
4005 			num = EXT4_INODES_PER_GROUP(sb);
4006 			if (ext4_has_group_desc_csum(sb))
4007 				num -= ext4_itable_unused_count(sb, gdp);
4008 			table += num / inodes_per_block;
4009 			if (end > table)
4010 				end = table;
4011 			while (b <= end)
4012 				sb_breadahead(sb, b++);
4013 		}
4014 
4015 		/*
4016 		 * There are other valid inodes in the buffer, this inode
4017 		 * has in-inode xattrs, or we don't have this inode in memory.
4018 		 * Read the block from disk.
4019 		 */
4020 		trace_ext4_load_inode(inode);
4021 		get_bh(bh);
4022 		bh->b_end_io = end_buffer_read_sync;
4023 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4024 		wait_on_buffer(bh);
4025 		if (!buffer_uptodate(bh)) {
4026 			EXT4_ERROR_INODE_BLOCK(inode, block,
4027 					       "unable to read itable block");
4028 			brelse(bh);
4029 			return -EIO;
4030 		}
4031 	}
4032 has_buffer:
4033 	iloc->bh = bh;
4034 	return 0;
4035 }
4036 
4037 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4038 {
4039 	/* We have all inode data except xattrs in memory here. */
4040 	return __ext4_get_inode_loc(inode, iloc,
4041 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4042 }
4043 
4044 void ext4_set_inode_flags(struct inode *inode)
4045 {
4046 	unsigned int flags = EXT4_I(inode)->i_flags;
4047 	unsigned int new_fl = 0;
4048 
4049 	if (flags & EXT4_SYNC_FL)
4050 		new_fl |= S_SYNC;
4051 	if (flags & EXT4_APPEND_FL)
4052 		new_fl |= S_APPEND;
4053 	if (flags & EXT4_IMMUTABLE_FL)
4054 		new_fl |= S_IMMUTABLE;
4055 	if (flags & EXT4_NOATIME_FL)
4056 		new_fl |= S_NOATIME;
4057 	if (flags & EXT4_DIRSYNC_FL)
4058 		new_fl |= S_DIRSYNC;
4059 	if (test_opt(inode->i_sb, DAX))
4060 		new_fl |= S_DAX;
4061 	inode_set_flags(inode, new_fl,
4062 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4063 }
4064 
4065 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4066 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4067 {
4068 	unsigned int vfs_fl;
4069 	unsigned long old_fl, new_fl;
4070 
4071 	do {
4072 		vfs_fl = ei->vfs_inode.i_flags;
4073 		old_fl = ei->i_flags;
4074 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4075 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4076 				EXT4_DIRSYNC_FL);
4077 		if (vfs_fl & S_SYNC)
4078 			new_fl |= EXT4_SYNC_FL;
4079 		if (vfs_fl & S_APPEND)
4080 			new_fl |= EXT4_APPEND_FL;
4081 		if (vfs_fl & S_IMMUTABLE)
4082 			new_fl |= EXT4_IMMUTABLE_FL;
4083 		if (vfs_fl & S_NOATIME)
4084 			new_fl |= EXT4_NOATIME_FL;
4085 		if (vfs_fl & S_DIRSYNC)
4086 			new_fl |= EXT4_DIRSYNC_FL;
4087 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4088 }
4089 
4090 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4091 				  struct ext4_inode_info *ei)
4092 {
4093 	blkcnt_t i_blocks ;
4094 	struct inode *inode = &(ei->vfs_inode);
4095 	struct super_block *sb = inode->i_sb;
4096 
4097 	if (ext4_has_feature_huge_file(sb)) {
4098 		/* we are using combined 48 bit field */
4099 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4100 					le32_to_cpu(raw_inode->i_blocks_lo);
4101 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4102 			/* i_blocks represent file system block size */
4103 			return i_blocks  << (inode->i_blkbits - 9);
4104 		} else {
4105 			return i_blocks;
4106 		}
4107 	} else {
4108 		return le32_to_cpu(raw_inode->i_blocks_lo);
4109 	}
4110 }
4111 
4112 static inline void ext4_iget_extra_inode(struct inode *inode,
4113 					 struct ext4_inode *raw_inode,
4114 					 struct ext4_inode_info *ei)
4115 {
4116 	__le32 *magic = (void *)raw_inode +
4117 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4118 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4119 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4120 		ext4_find_inline_data_nolock(inode);
4121 	} else
4122 		EXT4_I(inode)->i_inline_off = 0;
4123 }
4124 
4125 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4126 {
4127 	struct ext4_iloc iloc;
4128 	struct ext4_inode *raw_inode;
4129 	struct ext4_inode_info *ei;
4130 	struct inode *inode;
4131 	journal_t *journal = EXT4_SB(sb)->s_journal;
4132 	long ret;
4133 	int block;
4134 	uid_t i_uid;
4135 	gid_t i_gid;
4136 
4137 	inode = iget_locked(sb, ino);
4138 	if (!inode)
4139 		return ERR_PTR(-ENOMEM);
4140 	if (!(inode->i_state & I_NEW))
4141 		return inode;
4142 
4143 	ei = EXT4_I(inode);
4144 	iloc.bh = NULL;
4145 
4146 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4147 	if (ret < 0)
4148 		goto bad_inode;
4149 	raw_inode = ext4_raw_inode(&iloc);
4150 
4151 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4152 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4153 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4154 		    EXT4_INODE_SIZE(inode->i_sb)) {
4155 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4156 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4157 				EXT4_INODE_SIZE(inode->i_sb));
4158 			ret = -EFSCORRUPTED;
4159 			goto bad_inode;
4160 		}
4161 	} else
4162 		ei->i_extra_isize = 0;
4163 
4164 	/* Precompute checksum seed for inode metadata */
4165 	if (ext4_has_metadata_csum(sb)) {
4166 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4167 		__u32 csum;
4168 		__le32 inum = cpu_to_le32(inode->i_ino);
4169 		__le32 gen = raw_inode->i_generation;
4170 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4171 				   sizeof(inum));
4172 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4173 					      sizeof(gen));
4174 	}
4175 
4176 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4177 		EXT4_ERROR_INODE(inode, "checksum invalid");
4178 		ret = -EFSBADCRC;
4179 		goto bad_inode;
4180 	}
4181 
4182 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4183 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4184 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4185 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4186 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4187 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4188 	}
4189 	i_uid_write(inode, i_uid);
4190 	i_gid_write(inode, i_gid);
4191 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4192 
4193 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4194 	ei->i_inline_off = 0;
4195 	ei->i_dir_start_lookup = 0;
4196 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4197 	/* We now have enough fields to check if the inode was active or not.
4198 	 * This is needed because nfsd might try to access dead inodes
4199 	 * the test is that same one that e2fsck uses
4200 	 * NeilBrown 1999oct15
4201 	 */
4202 	if (inode->i_nlink == 0) {
4203 		if ((inode->i_mode == 0 ||
4204 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4205 		    ino != EXT4_BOOT_LOADER_INO) {
4206 			/* this inode is deleted */
4207 			ret = -ESTALE;
4208 			goto bad_inode;
4209 		}
4210 		/* The only unlinked inodes we let through here have
4211 		 * valid i_mode and are being read by the orphan
4212 		 * recovery code: that's fine, we're about to complete
4213 		 * the process of deleting those.
4214 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4215 		 * not initialized on a new filesystem. */
4216 	}
4217 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4218 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4219 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4220 	if (ext4_has_feature_64bit(sb))
4221 		ei->i_file_acl |=
4222 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4223 	inode->i_size = ext4_isize(raw_inode);
4224 	ei->i_disksize = inode->i_size;
4225 #ifdef CONFIG_QUOTA
4226 	ei->i_reserved_quota = 0;
4227 #endif
4228 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4229 	ei->i_block_group = iloc.block_group;
4230 	ei->i_last_alloc_group = ~0;
4231 	/*
4232 	 * NOTE! The in-memory inode i_data array is in little-endian order
4233 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4234 	 */
4235 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4236 		ei->i_data[block] = raw_inode->i_block[block];
4237 	INIT_LIST_HEAD(&ei->i_orphan);
4238 
4239 	/*
4240 	 * Set transaction id's of transactions that have to be committed
4241 	 * to finish f[data]sync. We set them to currently running transaction
4242 	 * as we cannot be sure that the inode or some of its metadata isn't
4243 	 * part of the transaction - the inode could have been reclaimed and
4244 	 * now it is reread from disk.
4245 	 */
4246 	if (journal) {
4247 		transaction_t *transaction;
4248 		tid_t tid;
4249 
4250 		read_lock(&journal->j_state_lock);
4251 		if (journal->j_running_transaction)
4252 			transaction = journal->j_running_transaction;
4253 		else
4254 			transaction = journal->j_committing_transaction;
4255 		if (transaction)
4256 			tid = transaction->t_tid;
4257 		else
4258 			tid = journal->j_commit_sequence;
4259 		read_unlock(&journal->j_state_lock);
4260 		ei->i_sync_tid = tid;
4261 		ei->i_datasync_tid = tid;
4262 	}
4263 
4264 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4265 		if (ei->i_extra_isize == 0) {
4266 			/* The extra space is currently unused. Use it. */
4267 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4268 					    EXT4_GOOD_OLD_INODE_SIZE;
4269 		} else {
4270 			ext4_iget_extra_inode(inode, raw_inode, ei);
4271 		}
4272 	}
4273 
4274 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4275 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4276 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4277 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4278 
4279 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4280 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4281 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4282 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4283 				inode->i_version |=
4284 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4285 		}
4286 	}
4287 
4288 	ret = 0;
4289 	if (ei->i_file_acl &&
4290 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4291 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4292 				 ei->i_file_acl);
4293 		ret = -EFSCORRUPTED;
4294 		goto bad_inode;
4295 	} else if (!ext4_has_inline_data(inode)) {
4296 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4297 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4298 			    (S_ISLNK(inode->i_mode) &&
4299 			     !ext4_inode_is_fast_symlink(inode))))
4300 				/* Validate extent which is part of inode */
4301 				ret = ext4_ext_check_inode(inode);
4302 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4303 			   (S_ISLNK(inode->i_mode) &&
4304 			    !ext4_inode_is_fast_symlink(inode))) {
4305 			/* Validate block references which are part of inode */
4306 			ret = ext4_ind_check_inode(inode);
4307 		}
4308 	}
4309 	if (ret)
4310 		goto bad_inode;
4311 
4312 	if (S_ISREG(inode->i_mode)) {
4313 		inode->i_op = &ext4_file_inode_operations;
4314 		inode->i_fop = &ext4_file_operations;
4315 		ext4_set_aops(inode);
4316 	} else if (S_ISDIR(inode->i_mode)) {
4317 		inode->i_op = &ext4_dir_inode_operations;
4318 		inode->i_fop = &ext4_dir_operations;
4319 	} else if (S_ISLNK(inode->i_mode)) {
4320 		if (ext4_encrypted_inode(inode)) {
4321 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4322 			ext4_set_aops(inode);
4323 		} else if (ext4_inode_is_fast_symlink(inode)) {
4324 			inode->i_link = (char *)ei->i_data;
4325 			inode->i_op = &ext4_fast_symlink_inode_operations;
4326 			nd_terminate_link(ei->i_data, inode->i_size,
4327 				sizeof(ei->i_data) - 1);
4328 		} else {
4329 			inode->i_op = &ext4_symlink_inode_operations;
4330 			ext4_set_aops(inode);
4331 		}
4332 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4333 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4334 		inode->i_op = &ext4_special_inode_operations;
4335 		if (raw_inode->i_block[0])
4336 			init_special_inode(inode, inode->i_mode,
4337 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4338 		else
4339 			init_special_inode(inode, inode->i_mode,
4340 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4341 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4342 		make_bad_inode(inode);
4343 	} else {
4344 		ret = -EFSCORRUPTED;
4345 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4346 		goto bad_inode;
4347 	}
4348 	brelse(iloc.bh);
4349 	ext4_set_inode_flags(inode);
4350 	unlock_new_inode(inode);
4351 	return inode;
4352 
4353 bad_inode:
4354 	brelse(iloc.bh);
4355 	iget_failed(inode);
4356 	return ERR_PTR(ret);
4357 }
4358 
4359 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4360 {
4361 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4362 		return ERR_PTR(-EFSCORRUPTED);
4363 	return ext4_iget(sb, ino);
4364 }
4365 
4366 static int ext4_inode_blocks_set(handle_t *handle,
4367 				struct ext4_inode *raw_inode,
4368 				struct ext4_inode_info *ei)
4369 {
4370 	struct inode *inode = &(ei->vfs_inode);
4371 	u64 i_blocks = inode->i_blocks;
4372 	struct super_block *sb = inode->i_sb;
4373 
4374 	if (i_blocks <= ~0U) {
4375 		/*
4376 		 * i_blocks can be represented in a 32 bit variable
4377 		 * as multiple of 512 bytes
4378 		 */
4379 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4380 		raw_inode->i_blocks_high = 0;
4381 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4382 		return 0;
4383 	}
4384 	if (!ext4_has_feature_huge_file(sb))
4385 		return -EFBIG;
4386 
4387 	if (i_blocks <= 0xffffffffffffULL) {
4388 		/*
4389 		 * i_blocks can be represented in a 48 bit variable
4390 		 * as multiple of 512 bytes
4391 		 */
4392 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4393 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4394 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4395 	} else {
4396 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4397 		/* i_block is stored in file system block size */
4398 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4399 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4400 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4401 	}
4402 	return 0;
4403 }
4404 
4405 struct other_inode {
4406 	unsigned long		orig_ino;
4407 	struct ext4_inode	*raw_inode;
4408 };
4409 
4410 static int other_inode_match(struct inode * inode, unsigned long ino,
4411 			     void *data)
4412 {
4413 	struct other_inode *oi = (struct other_inode *) data;
4414 
4415 	if ((inode->i_ino != ino) ||
4416 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4417 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4418 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4419 		return 0;
4420 	spin_lock(&inode->i_lock);
4421 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4422 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4423 	    (inode->i_state & I_DIRTY_TIME)) {
4424 		struct ext4_inode_info	*ei = EXT4_I(inode);
4425 
4426 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4427 		spin_unlock(&inode->i_lock);
4428 
4429 		spin_lock(&ei->i_raw_lock);
4430 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4431 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4432 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4433 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4434 		spin_unlock(&ei->i_raw_lock);
4435 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4436 		return -1;
4437 	}
4438 	spin_unlock(&inode->i_lock);
4439 	return -1;
4440 }
4441 
4442 /*
4443  * Opportunistically update the other time fields for other inodes in
4444  * the same inode table block.
4445  */
4446 static void ext4_update_other_inodes_time(struct super_block *sb,
4447 					  unsigned long orig_ino, char *buf)
4448 {
4449 	struct other_inode oi;
4450 	unsigned long ino;
4451 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4452 	int inode_size = EXT4_INODE_SIZE(sb);
4453 
4454 	oi.orig_ino = orig_ino;
4455 	/*
4456 	 * Calculate the first inode in the inode table block.  Inode
4457 	 * numbers are one-based.  That is, the first inode in a block
4458 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4459 	 */
4460 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4461 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4462 		if (ino == orig_ino)
4463 			continue;
4464 		oi.raw_inode = (struct ext4_inode *) buf;
4465 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4466 	}
4467 }
4468 
4469 /*
4470  * Post the struct inode info into an on-disk inode location in the
4471  * buffer-cache.  This gobbles the caller's reference to the
4472  * buffer_head in the inode location struct.
4473  *
4474  * The caller must have write access to iloc->bh.
4475  */
4476 static int ext4_do_update_inode(handle_t *handle,
4477 				struct inode *inode,
4478 				struct ext4_iloc *iloc)
4479 {
4480 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4481 	struct ext4_inode_info *ei = EXT4_I(inode);
4482 	struct buffer_head *bh = iloc->bh;
4483 	struct super_block *sb = inode->i_sb;
4484 	int err = 0, rc, block;
4485 	int need_datasync = 0, set_large_file = 0;
4486 	uid_t i_uid;
4487 	gid_t i_gid;
4488 
4489 	spin_lock(&ei->i_raw_lock);
4490 
4491 	/* For fields not tracked in the in-memory inode,
4492 	 * initialise them to zero for new inodes. */
4493 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4494 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4495 
4496 	ext4_get_inode_flags(ei);
4497 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4498 	i_uid = i_uid_read(inode);
4499 	i_gid = i_gid_read(inode);
4500 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4501 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4502 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4503 /*
4504  * Fix up interoperability with old kernels. Otherwise, old inodes get
4505  * re-used with the upper 16 bits of the uid/gid intact
4506  */
4507 		if (!ei->i_dtime) {
4508 			raw_inode->i_uid_high =
4509 				cpu_to_le16(high_16_bits(i_uid));
4510 			raw_inode->i_gid_high =
4511 				cpu_to_le16(high_16_bits(i_gid));
4512 		} else {
4513 			raw_inode->i_uid_high = 0;
4514 			raw_inode->i_gid_high = 0;
4515 		}
4516 	} else {
4517 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4518 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4519 		raw_inode->i_uid_high = 0;
4520 		raw_inode->i_gid_high = 0;
4521 	}
4522 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4523 
4524 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4525 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4526 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4527 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4528 
4529 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4530 	if (err) {
4531 		spin_unlock(&ei->i_raw_lock);
4532 		goto out_brelse;
4533 	}
4534 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4535 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4536 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4537 		raw_inode->i_file_acl_high =
4538 			cpu_to_le16(ei->i_file_acl >> 32);
4539 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4540 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4541 		ext4_isize_set(raw_inode, ei->i_disksize);
4542 		need_datasync = 1;
4543 	}
4544 	if (ei->i_disksize > 0x7fffffffULL) {
4545 		if (!ext4_has_feature_large_file(sb) ||
4546 				EXT4_SB(sb)->s_es->s_rev_level ==
4547 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4548 			set_large_file = 1;
4549 	}
4550 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4551 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4552 		if (old_valid_dev(inode->i_rdev)) {
4553 			raw_inode->i_block[0] =
4554 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4555 			raw_inode->i_block[1] = 0;
4556 		} else {
4557 			raw_inode->i_block[0] = 0;
4558 			raw_inode->i_block[1] =
4559 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4560 			raw_inode->i_block[2] = 0;
4561 		}
4562 	} else if (!ext4_has_inline_data(inode)) {
4563 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4564 			raw_inode->i_block[block] = ei->i_data[block];
4565 	}
4566 
4567 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4568 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4569 		if (ei->i_extra_isize) {
4570 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4571 				raw_inode->i_version_hi =
4572 					cpu_to_le32(inode->i_version >> 32);
4573 			raw_inode->i_extra_isize =
4574 				cpu_to_le16(ei->i_extra_isize);
4575 		}
4576 	}
4577 	ext4_inode_csum_set(inode, raw_inode, ei);
4578 	spin_unlock(&ei->i_raw_lock);
4579 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4580 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4581 					      bh->b_data);
4582 
4583 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4584 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4585 	if (!err)
4586 		err = rc;
4587 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4588 	if (set_large_file) {
4589 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4590 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4591 		if (err)
4592 			goto out_brelse;
4593 		ext4_update_dynamic_rev(sb);
4594 		ext4_set_feature_large_file(sb);
4595 		ext4_handle_sync(handle);
4596 		err = ext4_handle_dirty_super(handle, sb);
4597 	}
4598 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4599 out_brelse:
4600 	brelse(bh);
4601 	ext4_std_error(inode->i_sb, err);
4602 	return err;
4603 }
4604 
4605 /*
4606  * ext4_write_inode()
4607  *
4608  * We are called from a few places:
4609  *
4610  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4611  *   Here, there will be no transaction running. We wait for any running
4612  *   transaction to commit.
4613  *
4614  * - Within flush work (sys_sync(), kupdate and such).
4615  *   We wait on commit, if told to.
4616  *
4617  * - Within iput_final() -> write_inode_now()
4618  *   We wait on commit, if told to.
4619  *
4620  * In all cases it is actually safe for us to return without doing anything,
4621  * because the inode has been copied into a raw inode buffer in
4622  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4623  * writeback.
4624  *
4625  * Note that we are absolutely dependent upon all inode dirtiers doing the
4626  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4627  * which we are interested.
4628  *
4629  * It would be a bug for them to not do this.  The code:
4630  *
4631  *	mark_inode_dirty(inode)
4632  *	stuff();
4633  *	inode->i_size = expr;
4634  *
4635  * is in error because write_inode() could occur while `stuff()' is running,
4636  * and the new i_size will be lost.  Plus the inode will no longer be on the
4637  * superblock's dirty inode list.
4638  */
4639 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4640 {
4641 	int err;
4642 
4643 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4644 		return 0;
4645 
4646 	if (EXT4_SB(inode->i_sb)->s_journal) {
4647 		if (ext4_journal_current_handle()) {
4648 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4649 			dump_stack();
4650 			return -EIO;
4651 		}
4652 
4653 		/*
4654 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4655 		 * ext4_sync_fs() will force the commit after everything is
4656 		 * written.
4657 		 */
4658 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4659 			return 0;
4660 
4661 		err = ext4_force_commit(inode->i_sb);
4662 	} else {
4663 		struct ext4_iloc iloc;
4664 
4665 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4666 		if (err)
4667 			return err;
4668 		/*
4669 		 * sync(2) will flush the whole buffer cache. No need to do
4670 		 * it here separately for each inode.
4671 		 */
4672 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4673 			sync_dirty_buffer(iloc.bh);
4674 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4675 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4676 					 "IO error syncing inode");
4677 			err = -EIO;
4678 		}
4679 		brelse(iloc.bh);
4680 	}
4681 	return err;
4682 }
4683 
4684 /*
4685  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4686  * buffers that are attached to a page stradding i_size and are undergoing
4687  * commit. In that case we have to wait for commit to finish and try again.
4688  */
4689 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4690 {
4691 	struct page *page;
4692 	unsigned offset;
4693 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4694 	tid_t commit_tid = 0;
4695 	int ret;
4696 
4697 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4698 	/*
4699 	 * All buffers in the last page remain valid? Then there's nothing to
4700 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4701 	 * blocksize case
4702 	 */
4703 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4704 		return;
4705 	while (1) {
4706 		page = find_lock_page(inode->i_mapping,
4707 				      inode->i_size >> PAGE_CACHE_SHIFT);
4708 		if (!page)
4709 			return;
4710 		ret = __ext4_journalled_invalidatepage(page, offset,
4711 						PAGE_CACHE_SIZE - offset);
4712 		unlock_page(page);
4713 		page_cache_release(page);
4714 		if (ret != -EBUSY)
4715 			return;
4716 		commit_tid = 0;
4717 		read_lock(&journal->j_state_lock);
4718 		if (journal->j_committing_transaction)
4719 			commit_tid = journal->j_committing_transaction->t_tid;
4720 		read_unlock(&journal->j_state_lock);
4721 		if (commit_tid)
4722 			jbd2_log_wait_commit(journal, commit_tid);
4723 	}
4724 }
4725 
4726 /*
4727  * ext4_setattr()
4728  *
4729  * Called from notify_change.
4730  *
4731  * We want to trap VFS attempts to truncate the file as soon as
4732  * possible.  In particular, we want to make sure that when the VFS
4733  * shrinks i_size, we put the inode on the orphan list and modify
4734  * i_disksize immediately, so that during the subsequent flushing of
4735  * dirty pages and freeing of disk blocks, we can guarantee that any
4736  * commit will leave the blocks being flushed in an unused state on
4737  * disk.  (On recovery, the inode will get truncated and the blocks will
4738  * be freed, so we have a strong guarantee that no future commit will
4739  * leave these blocks visible to the user.)
4740  *
4741  * Another thing we have to assure is that if we are in ordered mode
4742  * and inode is still attached to the committing transaction, we must
4743  * we start writeout of all the dirty pages which are being truncated.
4744  * This way we are sure that all the data written in the previous
4745  * transaction are already on disk (truncate waits for pages under
4746  * writeback).
4747  *
4748  * Called with inode->i_mutex down.
4749  */
4750 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4751 {
4752 	struct inode *inode = d_inode(dentry);
4753 	int error, rc = 0;
4754 	int orphan = 0;
4755 	const unsigned int ia_valid = attr->ia_valid;
4756 
4757 	error = inode_change_ok(inode, attr);
4758 	if (error)
4759 		return error;
4760 
4761 	if (is_quota_modification(inode, attr)) {
4762 		error = dquot_initialize(inode);
4763 		if (error)
4764 			return error;
4765 	}
4766 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4767 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4768 		handle_t *handle;
4769 
4770 		/* (user+group)*(old+new) structure, inode write (sb,
4771 		 * inode block, ? - but truncate inode update has it) */
4772 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4773 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4774 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4775 		if (IS_ERR(handle)) {
4776 			error = PTR_ERR(handle);
4777 			goto err_out;
4778 		}
4779 		error = dquot_transfer(inode, attr);
4780 		if (error) {
4781 			ext4_journal_stop(handle);
4782 			return error;
4783 		}
4784 		/* Update corresponding info in inode so that everything is in
4785 		 * one transaction */
4786 		if (attr->ia_valid & ATTR_UID)
4787 			inode->i_uid = attr->ia_uid;
4788 		if (attr->ia_valid & ATTR_GID)
4789 			inode->i_gid = attr->ia_gid;
4790 		error = ext4_mark_inode_dirty(handle, inode);
4791 		ext4_journal_stop(handle);
4792 	}
4793 
4794 	if (attr->ia_valid & ATTR_SIZE) {
4795 		handle_t *handle;
4796 		loff_t oldsize = inode->i_size;
4797 		int shrink = (attr->ia_size <= inode->i_size);
4798 
4799 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4800 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4801 
4802 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4803 				return -EFBIG;
4804 		}
4805 		if (!S_ISREG(inode->i_mode))
4806 			return -EINVAL;
4807 
4808 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4809 			inode_inc_iversion(inode);
4810 
4811 		if (ext4_should_order_data(inode) &&
4812 		    (attr->ia_size < inode->i_size)) {
4813 			error = ext4_begin_ordered_truncate(inode,
4814 							    attr->ia_size);
4815 			if (error)
4816 				goto err_out;
4817 		}
4818 		if (attr->ia_size != inode->i_size) {
4819 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4820 			if (IS_ERR(handle)) {
4821 				error = PTR_ERR(handle);
4822 				goto err_out;
4823 			}
4824 			if (ext4_handle_valid(handle) && shrink) {
4825 				error = ext4_orphan_add(handle, inode);
4826 				orphan = 1;
4827 			}
4828 			/*
4829 			 * Update c/mtime on truncate up, ext4_truncate() will
4830 			 * update c/mtime in shrink case below
4831 			 */
4832 			if (!shrink) {
4833 				inode->i_mtime = ext4_current_time(inode);
4834 				inode->i_ctime = inode->i_mtime;
4835 			}
4836 			down_write(&EXT4_I(inode)->i_data_sem);
4837 			EXT4_I(inode)->i_disksize = attr->ia_size;
4838 			rc = ext4_mark_inode_dirty(handle, inode);
4839 			if (!error)
4840 				error = rc;
4841 			/*
4842 			 * We have to update i_size under i_data_sem together
4843 			 * with i_disksize to avoid races with writeback code
4844 			 * running ext4_wb_update_i_disksize().
4845 			 */
4846 			if (!error)
4847 				i_size_write(inode, attr->ia_size);
4848 			up_write(&EXT4_I(inode)->i_data_sem);
4849 			ext4_journal_stop(handle);
4850 			if (error) {
4851 				if (orphan)
4852 					ext4_orphan_del(NULL, inode);
4853 				goto err_out;
4854 			}
4855 		}
4856 		if (!shrink)
4857 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4858 
4859 		/*
4860 		 * Blocks are going to be removed from the inode. Wait
4861 		 * for dio in flight.  Temporarily disable
4862 		 * dioread_nolock to prevent livelock.
4863 		 */
4864 		if (orphan) {
4865 			if (!ext4_should_journal_data(inode)) {
4866 				ext4_inode_block_unlocked_dio(inode);
4867 				inode_dio_wait(inode);
4868 				ext4_inode_resume_unlocked_dio(inode);
4869 			} else
4870 				ext4_wait_for_tail_page_commit(inode);
4871 		}
4872 		down_write(&EXT4_I(inode)->i_mmap_sem);
4873 		/*
4874 		 * Truncate pagecache after we've waited for commit
4875 		 * in data=journal mode to make pages freeable.
4876 		 */
4877 		truncate_pagecache(inode, inode->i_size);
4878 		if (shrink)
4879 			ext4_truncate(inode);
4880 		up_write(&EXT4_I(inode)->i_mmap_sem);
4881 	}
4882 
4883 	if (!rc) {
4884 		setattr_copy(inode, attr);
4885 		mark_inode_dirty(inode);
4886 	}
4887 
4888 	/*
4889 	 * If the call to ext4_truncate failed to get a transaction handle at
4890 	 * all, we need to clean up the in-core orphan list manually.
4891 	 */
4892 	if (orphan && inode->i_nlink)
4893 		ext4_orphan_del(NULL, inode);
4894 
4895 	if (!rc && (ia_valid & ATTR_MODE))
4896 		rc = posix_acl_chmod(inode, inode->i_mode);
4897 
4898 err_out:
4899 	ext4_std_error(inode->i_sb, error);
4900 	if (!error)
4901 		error = rc;
4902 	return error;
4903 }
4904 
4905 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4906 		 struct kstat *stat)
4907 {
4908 	struct inode *inode;
4909 	unsigned long long delalloc_blocks;
4910 
4911 	inode = d_inode(dentry);
4912 	generic_fillattr(inode, stat);
4913 
4914 	/*
4915 	 * If there is inline data in the inode, the inode will normally not
4916 	 * have data blocks allocated (it may have an external xattr block).
4917 	 * Report at least one sector for such files, so tools like tar, rsync,
4918 	 * others doen't incorrectly think the file is completely sparse.
4919 	 */
4920 	if (unlikely(ext4_has_inline_data(inode)))
4921 		stat->blocks += (stat->size + 511) >> 9;
4922 
4923 	/*
4924 	 * We can't update i_blocks if the block allocation is delayed
4925 	 * otherwise in the case of system crash before the real block
4926 	 * allocation is done, we will have i_blocks inconsistent with
4927 	 * on-disk file blocks.
4928 	 * We always keep i_blocks updated together with real
4929 	 * allocation. But to not confuse with user, stat
4930 	 * will return the blocks that include the delayed allocation
4931 	 * blocks for this file.
4932 	 */
4933 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4934 				   EXT4_I(inode)->i_reserved_data_blocks);
4935 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4936 	return 0;
4937 }
4938 
4939 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4940 				   int pextents)
4941 {
4942 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4943 		return ext4_ind_trans_blocks(inode, lblocks);
4944 	return ext4_ext_index_trans_blocks(inode, pextents);
4945 }
4946 
4947 /*
4948  * Account for index blocks, block groups bitmaps and block group
4949  * descriptor blocks if modify datablocks and index blocks
4950  * worse case, the indexs blocks spread over different block groups
4951  *
4952  * If datablocks are discontiguous, they are possible to spread over
4953  * different block groups too. If they are contiguous, with flexbg,
4954  * they could still across block group boundary.
4955  *
4956  * Also account for superblock, inode, quota and xattr blocks
4957  */
4958 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4959 				  int pextents)
4960 {
4961 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4962 	int gdpblocks;
4963 	int idxblocks;
4964 	int ret = 0;
4965 
4966 	/*
4967 	 * How many index blocks need to touch to map @lblocks logical blocks
4968 	 * to @pextents physical extents?
4969 	 */
4970 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4971 
4972 	ret = idxblocks;
4973 
4974 	/*
4975 	 * Now let's see how many group bitmaps and group descriptors need
4976 	 * to account
4977 	 */
4978 	groups = idxblocks + pextents;
4979 	gdpblocks = groups;
4980 	if (groups > ngroups)
4981 		groups = ngroups;
4982 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4983 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4984 
4985 	/* bitmaps and block group descriptor blocks */
4986 	ret += groups + gdpblocks;
4987 
4988 	/* Blocks for super block, inode, quota and xattr blocks */
4989 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4990 
4991 	return ret;
4992 }
4993 
4994 /*
4995  * Calculate the total number of credits to reserve to fit
4996  * the modification of a single pages into a single transaction,
4997  * which may include multiple chunks of block allocations.
4998  *
4999  * This could be called via ext4_write_begin()
5000  *
5001  * We need to consider the worse case, when
5002  * one new block per extent.
5003  */
5004 int ext4_writepage_trans_blocks(struct inode *inode)
5005 {
5006 	int bpp = ext4_journal_blocks_per_page(inode);
5007 	int ret;
5008 
5009 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5010 
5011 	/* Account for data blocks for journalled mode */
5012 	if (ext4_should_journal_data(inode))
5013 		ret += bpp;
5014 	return ret;
5015 }
5016 
5017 /*
5018  * Calculate the journal credits for a chunk of data modification.
5019  *
5020  * This is called from DIO, fallocate or whoever calling
5021  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5022  *
5023  * journal buffers for data blocks are not included here, as DIO
5024  * and fallocate do no need to journal data buffers.
5025  */
5026 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5027 {
5028 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5029 }
5030 
5031 /*
5032  * The caller must have previously called ext4_reserve_inode_write().
5033  * Give this, we know that the caller already has write access to iloc->bh.
5034  */
5035 int ext4_mark_iloc_dirty(handle_t *handle,
5036 			 struct inode *inode, struct ext4_iloc *iloc)
5037 {
5038 	int err = 0;
5039 
5040 	if (IS_I_VERSION(inode))
5041 		inode_inc_iversion(inode);
5042 
5043 	/* the do_update_inode consumes one bh->b_count */
5044 	get_bh(iloc->bh);
5045 
5046 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5047 	err = ext4_do_update_inode(handle, inode, iloc);
5048 	put_bh(iloc->bh);
5049 	return err;
5050 }
5051 
5052 /*
5053  * On success, We end up with an outstanding reference count against
5054  * iloc->bh.  This _must_ be cleaned up later.
5055  */
5056 
5057 int
5058 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5059 			 struct ext4_iloc *iloc)
5060 {
5061 	int err;
5062 
5063 	err = ext4_get_inode_loc(inode, iloc);
5064 	if (!err) {
5065 		BUFFER_TRACE(iloc->bh, "get_write_access");
5066 		err = ext4_journal_get_write_access(handle, iloc->bh);
5067 		if (err) {
5068 			brelse(iloc->bh);
5069 			iloc->bh = NULL;
5070 		}
5071 	}
5072 	ext4_std_error(inode->i_sb, err);
5073 	return err;
5074 }
5075 
5076 /*
5077  * Expand an inode by new_extra_isize bytes.
5078  * Returns 0 on success or negative error number on failure.
5079  */
5080 static int ext4_expand_extra_isize(struct inode *inode,
5081 				   unsigned int new_extra_isize,
5082 				   struct ext4_iloc iloc,
5083 				   handle_t *handle)
5084 {
5085 	struct ext4_inode *raw_inode;
5086 	struct ext4_xattr_ibody_header *header;
5087 
5088 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5089 		return 0;
5090 
5091 	raw_inode = ext4_raw_inode(&iloc);
5092 
5093 	header = IHDR(inode, raw_inode);
5094 
5095 	/* No extended attributes present */
5096 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5097 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5098 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5099 			new_extra_isize);
5100 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5101 		return 0;
5102 	}
5103 
5104 	/* try to expand with EAs present */
5105 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5106 					  raw_inode, handle);
5107 }
5108 
5109 /*
5110  * What we do here is to mark the in-core inode as clean with respect to inode
5111  * dirtiness (it may still be data-dirty).
5112  * This means that the in-core inode may be reaped by prune_icache
5113  * without having to perform any I/O.  This is a very good thing,
5114  * because *any* task may call prune_icache - even ones which
5115  * have a transaction open against a different journal.
5116  *
5117  * Is this cheating?  Not really.  Sure, we haven't written the
5118  * inode out, but prune_icache isn't a user-visible syncing function.
5119  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5120  * we start and wait on commits.
5121  */
5122 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5123 {
5124 	struct ext4_iloc iloc;
5125 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5126 	static unsigned int mnt_count;
5127 	int err, ret;
5128 
5129 	might_sleep();
5130 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5131 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5132 	if (ext4_handle_valid(handle) &&
5133 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5134 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5135 		/*
5136 		 * We need extra buffer credits since we may write into EA block
5137 		 * with this same handle. If journal_extend fails, then it will
5138 		 * only result in a minor loss of functionality for that inode.
5139 		 * If this is felt to be critical, then e2fsck should be run to
5140 		 * force a large enough s_min_extra_isize.
5141 		 */
5142 		if ((jbd2_journal_extend(handle,
5143 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5144 			ret = ext4_expand_extra_isize(inode,
5145 						      sbi->s_want_extra_isize,
5146 						      iloc, handle);
5147 			if (ret) {
5148 				ext4_set_inode_state(inode,
5149 						     EXT4_STATE_NO_EXPAND);
5150 				if (mnt_count !=
5151 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5152 					ext4_warning(inode->i_sb,
5153 					"Unable to expand inode %lu. Delete"
5154 					" some EAs or run e2fsck.",
5155 					inode->i_ino);
5156 					mnt_count =
5157 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5158 				}
5159 			}
5160 		}
5161 	}
5162 	if (!err)
5163 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5164 	return err;
5165 }
5166 
5167 /*
5168  * ext4_dirty_inode() is called from __mark_inode_dirty()
5169  *
5170  * We're really interested in the case where a file is being extended.
5171  * i_size has been changed by generic_commit_write() and we thus need
5172  * to include the updated inode in the current transaction.
5173  *
5174  * Also, dquot_alloc_block() will always dirty the inode when blocks
5175  * are allocated to the file.
5176  *
5177  * If the inode is marked synchronous, we don't honour that here - doing
5178  * so would cause a commit on atime updates, which we don't bother doing.
5179  * We handle synchronous inodes at the highest possible level.
5180  *
5181  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5182  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5183  * to copy into the on-disk inode structure are the timestamp files.
5184  */
5185 void ext4_dirty_inode(struct inode *inode, int flags)
5186 {
5187 	handle_t *handle;
5188 
5189 	if (flags == I_DIRTY_TIME)
5190 		return;
5191 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5192 	if (IS_ERR(handle))
5193 		goto out;
5194 
5195 	ext4_mark_inode_dirty(handle, inode);
5196 
5197 	ext4_journal_stop(handle);
5198 out:
5199 	return;
5200 }
5201 
5202 #if 0
5203 /*
5204  * Bind an inode's backing buffer_head into this transaction, to prevent
5205  * it from being flushed to disk early.  Unlike
5206  * ext4_reserve_inode_write, this leaves behind no bh reference and
5207  * returns no iloc structure, so the caller needs to repeat the iloc
5208  * lookup to mark the inode dirty later.
5209  */
5210 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5211 {
5212 	struct ext4_iloc iloc;
5213 
5214 	int err = 0;
5215 	if (handle) {
5216 		err = ext4_get_inode_loc(inode, &iloc);
5217 		if (!err) {
5218 			BUFFER_TRACE(iloc.bh, "get_write_access");
5219 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5220 			if (!err)
5221 				err = ext4_handle_dirty_metadata(handle,
5222 								 NULL,
5223 								 iloc.bh);
5224 			brelse(iloc.bh);
5225 		}
5226 	}
5227 	ext4_std_error(inode->i_sb, err);
5228 	return err;
5229 }
5230 #endif
5231 
5232 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5233 {
5234 	journal_t *journal;
5235 	handle_t *handle;
5236 	int err;
5237 
5238 	/*
5239 	 * We have to be very careful here: changing a data block's
5240 	 * journaling status dynamically is dangerous.  If we write a
5241 	 * data block to the journal, change the status and then delete
5242 	 * that block, we risk forgetting to revoke the old log record
5243 	 * from the journal and so a subsequent replay can corrupt data.
5244 	 * So, first we make sure that the journal is empty and that
5245 	 * nobody is changing anything.
5246 	 */
5247 
5248 	journal = EXT4_JOURNAL(inode);
5249 	if (!journal)
5250 		return 0;
5251 	if (is_journal_aborted(journal))
5252 		return -EROFS;
5253 	/* We have to allocate physical blocks for delalloc blocks
5254 	 * before flushing journal. otherwise delalloc blocks can not
5255 	 * be allocated any more. even more truncate on delalloc blocks
5256 	 * could trigger BUG by flushing delalloc blocks in journal.
5257 	 * There is no delalloc block in non-journal data mode.
5258 	 */
5259 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5260 		err = ext4_alloc_da_blocks(inode);
5261 		if (err < 0)
5262 			return err;
5263 	}
5264 
5265 	/* Wait for all existing dio workers */
5266 	ext4_inode_block_unlocked_dio(inode);
5267 	inode_dio_wait(inode);
5268 
5269 	jbd2_journal_lock_updates(journal);
5270 
5271 	/*
5272 	 * OK, there are no updates running now, and all cached data is
5273 	 * synced to disk.  We are now in a completely consistent state
5274 	 * which doesn't have anything in the journal, and we know that
5275 	 * no filesystem updates are running, so it is safe to modify
5276 	 * the inode's in-core data-journaling state flag now.
5277 	 */
5278 
5279 	if (val)
5280 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5281 	else {
5282 		err = jbd2_journal_flush(journal);
5283 		if (err < 0) {
5284 			jbd2_journal_unlock_updates(journal);
5285 			ext4_inode_resume_unlocked_dio(inode);
5286 			return err;
5287 		}
5288 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5289 	}
5290 	ext4_set_aops(inode);
5291 
5292 	jbd2_journal_unlock_updates(journal);
5293 	ext4_inode_resume_unlocked_dio(inode);
5294 
5295 	/* Finally we can mark the inode as dirty. */
5296 
5297 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5298 	if (IS_ERR(handle))
5299 		return PTR_ERR(handle);
5300 
5301 	err = ext4_mark_inode_dirty(handle, inode);
5302 	ext4_handle_sync(handle);
5303 	ext4_journal_stop(handle);
5304 	ext4_std_error(inode->i_sb, err);
5305 
5306 	return err;
5307 }
5308 
5309 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5310 {
5311 	return !buffer_mapped(bh);
5312 }
5313 
5314 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5315 {
5316 	struct page *page = vmf->page;
5317 	loff_t size;
5318 	unsigned long len;
5319 	int ret;
5320 	struct file *file = vma->vm_file;
5321 	struct inode *inode = file_inode(file);
5322 	struct address_space *mapping = inode->i_mapping;
5323 	handle_t *handle;
5324 	get_block_t *get_block;
5325 	int retries = 0;
5326 
5327 	sb_start_pagefault(inode->i_sb);
5328 	file_update_time(vma->vm_file);
5329 
5330 	down_read(&EXT4_I(inode)->i_mmap_sem);
5331 	/* Delalloc case is easy... */
5332 	if (test_opt(inode->i_sb, DELALLOC) &&
5333 	    !ext4_should_journal_data(inode) &&
5334 	    !ext4_nonda_switch(inode->i_sb)) {
5335 		do {
5336 			ret = block_page_mkwrite(vma, vmf,
5337 						   ext4_da_get_block_prep);
5338 		} while (ret == -ENOSPC &&
5339 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5340 		goto out_ret;
5341 	}
5342 
5343 	lock_page(page);
5344 	size = i_size_read(inode);
5345 	/* Page got truncated from under us? */
5346 	if (page->mapping != mapping || page_offset(page) > size) {
5347 		unlock_page(page);
5348 		ret = VM_FAULT_NOPAGE;
5349 		goto out;
5350 	}
5351 
5352 	if (page->index == size >> PAGE_CACHE_SHIFT)
5353 		len = size & ~PAGE_CACHE_MASK;
5354 	else
5355 		len = PAGE_CACHE_SIZE;
5356 	/*
5357 	 * Return if we have all the buffers mapped. This avoids the need to do
5358 	 * journal_start/journal_stop which can block and take a long time
5359 	 */
5360 	if (page_has_buffers(page)) {
5361 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5362 					    0, len, NULL,
5363 					    ext4_bh_unmapped)) {
5364 			/* Wait so that we don't change page under IO */
5365 			wait_for_stable_page(page);
5366 			ret = VM_FAULT_LOCKED;
5367 			goto out;
5368 		}
5369 	}
5370 	unlock_page(page);
5371 	/* OK, we need to fill the hole... */
5372 	if (ext4_should_dioread_nolock(inode))
5373 		get_block = ext4_get_block_write;
5374 	else
5375 		get_block = ext4_get_block;
5376 retry_alloc:
5377 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5378 				    ext4_writepage_trans_blocks(inode));
5379 	if (IS_ERR(handle)) {
5380 		ret = VM_FAULT_SIGBUS;
5381 		goto out;
5382 	}
5383 	ret = block_page_mkwrite(vma, vmf, get_block);
5384 	if (!ret && ext4_should_journal_data(inode)) {
5385 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5386 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5387 			unlock_page(page);
5388 			ret = VM_FAULT_SIGBUS;
5389 			ext4_journal_stop(handle);
5390 			goto out;
5391 		}
5392 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5393 	}
5394 	ext4_journal_stop(handle);
5395 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5396 		goto retry_alloc;
5397 out_ret:
5398 	ret = block_page_mkwrite_return(ret);
5399 out:
5400 	up_read(&EXT4_I(inode)->i_mmap_sem);
5401 	sb_end_pagefault(inode->i_sb);
5402 	return ret;
5403 }
5404 
5405 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5406 {
5407 	struct inode *inode = file_inode(vma->vm_file);
5408 	int err;
5409 
5410 	down_read(&EXT4_I(inode)->i_mmap_sem);
5411 	err = filemap_fault(vma, vmf);
5412 	up_read(&EXT4_I(inode)->i_mmap_sem);
5413 
5414 	return err;
5415 }
5416