1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (is_bad_inode(inode)) 224 goto no_delete; 225 dquot_initialize(inode); 226 227 if (ext4_should_order_data(inode)) 228 ext4_begin_ordered_truncate(inode, 0); 229 truncate_inode_pages_final(&inode->i_data); 230 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Called with i_data_sem down, which is important since we can call 324 * ext4_discard_preallocations() from here. 325 */ 326 void ext4_da_update_reserve_space(struct inode *inode, 327 int used, int quota_claim) 328 { 329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 330 struct ext4_inode_info *ei = EXT4_I(inode); 331 332 spin_lock(&ei->i_block_reservation_lock); 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 334 if (unlikely(used > ei->i_reserved_data_blocks)) { 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 336 "with only %d reserved data blocks", 337 __func__, inode->i_ino, used, 338 ei->i_reserved_data_blocks); 339 WARN_ON(1); 340 used = ei->i_reserved_data_blocks; 341 } 342 343 /* Update per-inode reservations */ 344 ei->i_reserved_data_blocks -= used; 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 346 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 348 349 /* Update quota subsystem for data blocks */ 350 if (quota_claim) 351 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 352 else { 353 /* 354 * We did fallocate with an offset that is already delayed 355 * allocated. So on delayed allocated writeback we should 356 * not re-claim the quota for fallocated blocks. 357 */ 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 359 } 360 361 /* 362 * If we have done all the pending block allocations and if 363 * there aren't any writers on the inode, we can discard the 364 * inode's preallocations. 365 */ 366 if ((ei->i_reserved_data_blocks == 0) && 367 (atomic_read(&inode->i_writecount) == 0)) 368 ext4_discard_preallocations(inode); 369 } 370 371 static int __check_block_validity(struct inode *inode, const char *func, 372 unsigned int line, 373 struct ext4_map_blocks *map) 374 { 375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 376 map->m_len)) { 377 ext4_error_inode(inode, func, line, map->m_pblk, 378 "lblock %lu mapped to illegal pblock " 379 "(length %d)", (unsigned long) map->m_lblk, 380 map->m_len); 381 return -EFSCORRUPTED; 382 } 383 return 0; 384 } 385 386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 387 ext4_lblk_t len) 388 { 389 int ret; 390 391 if (ext4_encrypted_inode(inode)) 392 return ext4_encrypted_zeroout(inode, lblk, pblk, len); 393 394 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 395 if (ret > 0) 396 ret = 0; 397 398 return ret; 399 } 400 401 #define check_block_validity(inode, map) \ 402 __check_block_validity((inode), __func__, __LINE__, (map)) 403 404 #ifdef ES_AGGRESSIVE_TEST 405 static void ext4_map_blocks_es_recheck(handle_t *handle, 406 struct inode *inode, 407 struct ext4_map_blocks *es_map, 408 struct ext4_map_blocks *map, 409 int flags) 410 { 411 int retval; 412 413 map->m_flags = 0; 414 /* 415 * There is a race window that the result is not the same. 416 * e.g. xfstests #223 when dioread_nolock enables. The reason 417 * is that we lookup a block mapping in extent status tree with 418 * out taking i_data_sem. So at the time the unwritten extent 419 * could be converted. 420 */ 421 down_read(&EXT4_I(inode)->i_data_sem); 422 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 423 retval = ext4_ext_map_blocks(handle, inode, map, flags & 424 EXT4_GET_BLOCKS_KEEP_SIZE); 425 } else { 426 retval = ext4_ind_map_blocks(handle, inode, map, flags & 427 EXT4_GET_BLOCKS_KEEP_SIZE); 428 } 429 up_read((&EXT4_I(inode)->i_data_sem)); 430 431 /* 432 * We don't check m_len because extent will be collpased in status 433 * tree. So the m_len might not equal. 434 */ 435 if (es_map->m_lblk != map->m_lblk || 436 es_map->m_flags != map->m_flags || 437 es_map->m_pblk != map->m_pblk) { 438 printk("ES cache assertion failed for inode: %lu " 439 "es_cached ex [%d/%d/%llu/%x] != " 440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 441 inode->i_ino, es_map->m_lblk, es_map->m_len, 442 es_map->m_pblk, es_map->m_flags, map->m_lblk, 443 map->m_len, map->m_pblk, map->m_flags, 444 retval, flags); 445 } 446 } 447 #endif /* ES_AGGRESSIVE_TEST */ 448 449 /* 450 * The ext4_map_blocks() function tries to look up the requested blocks, 451 * and returns if the blocks are already mapped. 452 * 453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 454 * and store the allocated blocks in the result buffer head and mark it 455 * mapped. 456 * 457 * If file type is extents based, it will call ext4_ext_map_blocks(), 458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 459 * based files 460 * 461 * On success, it returns the number of blocks being mapped or allocated. 462 * if create==0 and the blocks are pre-allocated and unwritten block, 463 * the result buffer head is unmapped. If the create ==1, it will make sure 464 * the buffer head is mapped. 465 * 466 * It returns 0 if plain look up failed (blocks have not been allocated), in 467 * that case, buffer head is unmapped 468 * 469 * It returns the error in case of allocation failure. 470 */ 471 int ext4_map_blocks(handle_t *handle, struct inode *inode, 472 struct ext4_map_blocks *map, int flags) 473 { 474 struct extent_status es; 475 int retval; 476 int ret = 0; 477 #ifdef ES_AGGRESSIVE_TEST 478 struct ext4_map_blocks orig_map; 479 480 memcpy(&orig_map, map, sizeof(*map)); 481 #endif 482 483 map->m_flags = 0; 484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 485 "logical block %lu\n", inode->i_ino, flags, map->m_len, 486 (unsigned long) map->m_lblk); 487 488 /* 489 * ext4_map_blocks returns an int, and m_len is an unsigned int 490 */ 491 if (unlikely(map->m_len > INT_MAX)) 492 map->m_len = INT_MAX; 493 494 /* We can handle the block number less than EXT_MAX_BLOCKS */ 495 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 496 return -EFSCORRUPTED; 497 498 /* Lookup extent status tree firstly */ 499 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 500 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 501 map->m_pblk = ext4_es_pblock(&es) + 502 map->m_lblk - es.es_lblk; 503 map->m_flags |= ext4_es_is_written(&es) ? 504 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 505 retval = es.es_len - (map->m_lblk - es.es_lblk); 506 if (retval > map->m_len) 507 retval = map->m_len; 508 map->m_len = retval; 509 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 510 retval = 0; 511 } else { 512 BUG_ON(1); 513 } 514 #ifdef ES_AGGRESSIVE_TEST 515 ext4_map_blocks_es_recheck(handle, inode, map, 516 &orig_map, flags); 517 #endif 518 goto found; 519 } 520 521 /* 522 * Try to see if we can get the block without requesting a new 523 * file system block. 524 */ 525 down_read(&EXT4_I(inode)->i_data_sem); 526 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 527 retval = ext4_ext_map_blocks(handle, inode, map, flags & 528 EXT4_GET_BLOCKS_KEEP_SIZE); 529 } else { 530 retval = ext4_ind_map_blocks(handle, inode, map, flags & 531 EXT4_GET_BLOCKS_KEEP_SIZE); 532 } 533 if (retval > 0) { 534 unsigned int status; 535 536 if (unlikely(retval != map->m_len)) { 537 ext4_warning(inode->i_sb, 538 "ES len assertion failed for inode " 539 "%lu: retval %d != map->m_len %d", 540 inode->i_ino, retval, map->m_len); 541 WARN_ON(1); 542 } 543 544 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 545 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 546 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 547 !(status & EXTENT_STATUS_WRITTEN) && 548 ext4_find_delalloc_range(inode, map->m_lblk, 549 map->m_lblk + map->m_len - 1)) 550 status |= EXTENT_STATUS_DELAYED; 551 ret = ext4_es_insert_extent(inode, map->m_lblk, 552 map->m_len, map->m_pblk, status); 553 if (ret < 0) 554 retval = ret; 555 } 556 up_read((&EXT4_I(inode)->i_data_sem)); 557 558 found: 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 560 ret = check_block_validity(inode, map); 561 if (ret != 0) 562 return ret; 563 } 564 565 /* If it is only a block(s) look up */ 566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 567 return retval; 568 569 /* 570 * Returns if the blocks have already allocated 571 * 572 * Note that if blocks have been preallocated 573 * ext4_ext_get_block() returns the create = 0 574 * with buffer head unmapped. 575 */ 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 577 /* 578 * If we need to convert extent to unwritten 579 * we continue and do the actual work in 580 * ext4_ext_map_blocks() 581 */ 582 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 583 return retval; 584 585 /* 586 * Here we clear m_flags because after allocating an new extent, 587 * it will be set again. 588 */ 589 map->m_flags &= ~EXT4_MAP_FLAGS; 590 591 /* 592 * New blocks allocate and/or writing to unwritten extent 593 * will possibly result in updating i_data, so we take 594 * the write lock of i_data_sem, and call get_block() 595 * with create == 1 flag. 596 */ 597 down_write(&EXT4_I(inode)->i_data_sem); 598 599 /* 600 * We need to check for EXT4 here because migrate 601 * could have changed the inode type in between 602 */ 603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 604 retval = ext4_ext_map_blocks(handle, inode, map, flags); 605 } else { 606 retval = ext4_ind_map_blocks(handle, inode, map, flags); 607 608 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 609 /* 610 * We allocated new blocks which will result in 611 * i_data's format changing. Force the migrate 612 * to fail by clearing migrate flags 613 */ 614 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 615 } 616 617 /* 618 * Update reserved blocks/metadata blocks after successful 619 * block allocation which had been deferred till now. We don't 620 * support fallocate for non extent files. So we can update 621 * reserve space here. 622 */ 623 if ((retval > 0) && 624 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 625 ext4_da_update_reserve_space(inode, retval, 1); 626 } 627 628 if (retval > 0) { 629 unsigned int status; 630 631 if (unlikely(retval != map->m_len)) { 632 ext4_warning(inode->i_sb, 633 "ES len assertion failed for inode " 634 "%lu: retval %d != map->m_len %d", 635 inode->i_ino, retval, map->m_len); 636 WARN_ON(1); 637 } 638 639 /* 640 * If the extent has been zeroed out, we don't need to update 641 * extent status tree. 642 */ 643 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 644 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 645 if (ext4_es_is_written(&es)) 646 goto has_zeroout; 647 } 648 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 649 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 650 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 651 !(status & EXTENT_STATUS_WRITTEN) && 652 ext4_find_delalloc_range(inode, map->m_lblk, 653 map->m_lblk + map->m_len - 1)) 654 status |= EXTENT_STATUS_DELAYED; 655 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 656 map->m_pblk, status); 657 if (ret < 0) 658 retval = ret; 659 } 660 661 has_zeroout: 662 up_write((&EXT4_I(inode)->i_data_sem)); 663 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 664 ret = check_block_validity(inode, map); 665 if (ret != 0) 666 return ret; 667 } 668 return retval; 669 } 670 671 /* Maximum number of blocks we map for direct IO at once. */ 672 #define DIO_MAX_BLOCKS 4096 673 674 static int _ext4_get_block(struct inode *inode, sector_t iblock, 675 struct buffer_head *bh, int flags) 676 { 677 handle_t *handle = ext4_journal_current_handle(); 678 struct ext4_map_blocks map; 679 int ret = 0, started = 0; 680 int dio_credits; 681 682 if (ext4_has_inline_data(inode)) 683 return -ERANGE; 684 685 map.m_lblk = iblock; 686 map.m_len = bh->b_size >> inode->i_blkbits; 687 688 if (flags && !handle) { 689 /* Direct IO write... */ 690 if (map.m_len > DIO_MAX_BLOCKS) 691 map.m_len = DIO_MAX_BLOCKS; 692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 694 dio_credits); 695 if (IS_ERR(handle)) { 696 ret = PTR_ERR(handle); 697 return ret; 698 } 699 started = 1; 700 } 701 702 ret = ext4_map_blocks(handle, inode, &map, flags); 703 if (ret > 0) { 704 ext4_io_end_t *io_end = ext4_inode_aio(inode); 705 706 map_bh(bh, inode->i_sb, map.m_pblk); 707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 708 if (IS_DAX(inode) && buffer_unwritten(bh)) { 709 /* 710 * dgc: I suspect unwritten conversion on ext4+DAX is 711 * fundamentally broken here when there are concurrent 712 * read/write in progress on this inode. 713 */ 714 WARN_ON_ONCE(io_end); 715 bh->b_assoc_map = inode->i_mapping; 716 bh->b_private = (void *)(unsigned long)iblock; 717 } 718 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 719 set_buffer_defer_completion(bh); 720 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 721 ret = 0; 722 } 723 if (started) 724 ext4_journal_stop(handle); 725 return ret; 726 } 727 728 int ext4_get_block(struct inode *inode, sector_t iblock, 729 struct buffer_head *bh, int create) 730 { 731 return _ext4_get_block(inode, iblock, bh, 732 create ? EXT4_GET_BLOCKS_CREATE : 0); 733 } 734 735 /* 736 * `handle' can be NULL if create is zero 737 */ 738 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 739 ext4_lblk_t block, int map_flags) 740 { 741 struct ext4_map_blocks map; 742 struct buffer_head *bh; 743 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 744 int err; 745 746 J_ASSERT(handle != NULL || create == 0); 747 748 map.m_lblk = block; 749 map.m_len = 1; 750 err = ext4_map_blocks(handle, inode, &map, map_flags); 751 752 if (err == 0) 753 return create ? ERR_PTR(-ENOSPC) : NULL; 754 if (err < 0) 755 return ERR_PTR(err); 756 757 bh = sb_getblk(inode->i_sb, map.m_pblk); 758 if (unlikely(!bh)) 759 return ERR_PTR(-ENOMEM); 760 if (map.m_flags & EXT4_MAP_NEW) { 761 J_ASSERT(create != 0); 762 J_ASSERT(handle != NULL); 763 764 /* 765 * Now that we do not always journal data, we should 766 * keep in mind whether this should always journal the 767 * new buffer as metadata. For now, regular file 768 * writes use ext4_get_block instead, so it's not a 769 * problem. 770 */ 771 lock_buffer(bh); 772 BUFFER_TRACE(bh, "call get_create_access"); 773 err = ext4_journal_get_create_access(handle, bh); 774 if (unlikely(err)) { 775 unlock_buffer(bh); 776 goto errout; 777 } 778 if (!buffer_uptodate(bh)) { 779 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 780 set_buffer_uptodate(bh); 781 } 782 unlock_buffer(bh); 783 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 784 err = ext4_handle_dirty_metadata(handle, inode, bh); 785 if (unlikely(err)) 786 goto errout; 787 } else 788 BUFFER_TRACE(bh, "not a new buffer"); 789 return bh; 790 errout: 791 brelse(bh); 792 return ERR_PTR(err); 793 } 794 795 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 796 ext4_lblk_t block, int map_flags) 797 { 798 struct buffer_head *bh; 799 800 bh = ext4_getblk(handle, inode, block, map_flags); 801 if (IS_ERR(bh)) 802 return bh; 803 if (!bh || buffer_uptodate(bh)) 804 return bh; 805 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 806 wait_on_buffer(bh); 807 if (buffer_uptodate(bh)) 808 return bh; 809 put_bh(bh); 810 return ERR_PTR(-EIO); 811 } 812 813 int ext4_walk_page_buffers(handle_t *handle, 814 struct buffer_head *head, 815 unsigned from, 816 unsigned to, 817 int *partial, 818 int (*fn)(handle_t *handle, 819 struct buffer_head *bh)) 820 { 821 struct buffer_head *bh; 822 unsigned block_start, block_end; 823 unsigned blocksize = head->b_size; 824 int err, ret = 0; 825 struct buffer_head *next; 826 827 for (bh = head, block_start = 0; 828 ret == 0 && (bh != head || !block_start); 829 block_start = block_end, bh = next) { 830 next = bh->b_this_page; 831 block_end = block_start + blocksize; 832 if (block_end <= from || block_start >= to) { 833 if (partial && !buffer_uptodate(bh)) 834 *partial = 1; 835 continue; 836 } 837 err = (*fn)(handle, bh); 838 if (!ret) 839 ret = err; 840 } 841 return ret; 842 } 843 844 /* 845 * To preserve ordering, it is essential that the hole instantiation and 846 * the data write be encapsulated in a single transaction. We cannot 847 * close off a transaction and start a new one between the ext4_get_block() 848 * and the commit_write(). So doing the jbd2_journal_start at the start of 849 * prepare_write() is the right place. 850 * 851 * Also, this function can nest inside ext4_writepage(). In that case, we 852 * *know* that ext4_writepage() has generated enough buffer credits to do the 853 * whole page. So we won't block on the journal in that case, which is good, 854 * because the caller may be PF_MEMALLOC. 855 * 856 * By accident, ext4 can be reentered when a transaction is open via 857 * quota file writes. If we were to commit the transaction while thus 858 * reentered, there can be a deadlock - we would be holding a quota 859 * lock, and the commit would never complete if another thread had a 860 * transaction open and was blocking on the quota lock - a ranking 861 * violation. 862 * 863 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 864 * will _not_ run commit under these circumstances because handle->h_ref 865 * is elevated. We'll still have enough credits for the tiny quotafile 866 * write. 867 */ 868 int do_journal_get_write_access(handle_t *handle, 869 struct buffer_head *bh) 870 { 871 int dirty = buffer_dirty(bh); 872 int ret; 873 874 if (!buffer_mapped(bh) || buffer_freed(bh)) 875 return 0; 876 /* 877 * __block_write_begin() could have dirtied some buffers. Clean 878 * the dirty bit as jbd2_journal_get_write_access() could complain 879 * otherwise about fs integrity issues. Setting of the dirty bit 880 * by __block_write_begin() isn't a real problem here as we clear 881 * the bit before releasing a page lock and thus writeback cannot 882 * ever write the buffer. 883 */ 884 if (dirty) 885 clear_buffer_dirty(bh); 886 BUFFER_TRACE(bh, "get write access"); 887 ret = ext4_journal_get_write_access(handle, bh); 888 if (!ret && dirty) 889 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 890 return ret; 891 } 892 893 #ifdef CONFIG_EXT4_FS_ENCRYPTION 894 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 895 get_block_t *get_block) 896 { 897 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 898 unsigned to = from + len; 899 struct inode *inode = page->mapping->host; 900 unsigned block_start, block_end; 901 sector_t block; 902 int err = 0; 903 unsigned blocksize = inode->i_sb->s_blocksize; 904 unsigned bbits; 905 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 906 bool decrypt = false; 907 908 BUG_ON(!PageLocked(page)); 909 BUG_ON(from > PAGE_CACHE_SIZE); 910 BUG_ON(to > PAGE_CACHE_SIZE); 911 BUG_ON(from > to); 912 913 if (!page_has_buffers(page)) 914 create_empty_buffers(page, blocksize, 0); 915 head = page_buffers(page); 916 bbits = ilog2(blocksize); 917 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 918 919 for (bh = head, block_start = 0; bh != head || !block_start; 920 block++, block_start = block_end, bh = bh->b_this_page) { 921 block_end = block_start + blocksize; 922 if (block_end <= from || block_start >= to) { 923 if (PageUptodate(page)) { 924 if (!buffer_uptodate(bh)) 925 set_buffer_uptodate(bh); 926 } 927 continue; 928 } 929 if (buffer_new(bh)) 930 clear_buffer_new(bh); 931 if (!buffer_mapped(bh)) { 932 WARN_ON(bh->b_size != blocksize); 933 err = get_block(inode, block, bh, 1); 934 if (err) 935 break; 936 if (buffer_new(bh)) { 937 unmap_underlying_metadata(bh->b_bdev, 938 bh->b_blocknr); 939 if (PageUptodate(page)) { 940 clear_buffer_new(bh); 941 set_buffer_uptodate(bh); 942 mark_buffer_dirty(bh); 943 continue; 944 } 945 if (block_end > to || block_start < from) 946 zero_user_segments(page, to, block_end, 947 block_start, from); 948 continue; 949 } 950 } 951 if (PageUptodate(page)) { 952 if (!buffer_uptodate(bh)) 953 set_buffer_uptodate(bh); 954 continue; 955 } 956 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 957 !buffer_unwritten(bh) && 958 (block_start < from || block_end > to)) { 959 ll_rw_block(READ, 1, &bh); 960 *wait_bh++ = bh; 961 decrypt = ext4_encrypted_inode(inode) && 962 S_ISREG(inode->i_mode); 963 } 964 } 965 /* 966 * If we issued read requests, let them complete. 967 */ 968 while (wait_bh > wait) { 969 wait_on_buffer(*--wait_bh); 970 if (!buffer_uptodate(*wait_bh)) 971 err = -EIO; 972 } 973 if (unlikely(err)) 974 page_zero_new_buffers(page, from, to); 975 else if (decrypt) 976 err = ext4_decrypt(page); 977 return err; 978 } 979 #endif 980 981 static int ext4_write_begin(struct file *file, struct address_space *mapping, 982 loff_t pos, unsigned len, unsigned flags, 983 struct page **pagep, void **fsdata) 984 { 985 struct inode *inode = mapping->host; 986 int ret, needed_blocks; 987 handle_t *handle; 988 int retries = 0; 989 struct page *page; 990 pgoff_t index; 991 unsigned from, to; 992 993 trace_ext4_write_begin(inode, pos, len, flags); 994 /* 995 * Reserve one block more for addition to orphan list in case 996 * we allocate blocks but write fails for some reason 997 */ 998 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 999 index = pos >> PAGE_CACHE_SHIFT; 1000 from = pos & (PAGE_CACHE_SIZE - 1); 1001 to = from + len; 1002 1003 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1004 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1005 flags, pagep); 1006 if (ret < 0) 1007 return ret; 1008 if (ret == 1) 1009 return 0; 1010 } 1011 1012 /* 1013 * grab_cache_page_write_begin() can take a long time if the 1014 * system is thrashing due to memory pressure, or if the page 1015 * is being written back. So grab it first before we start 1016 * the transaction handle. This also allows us to allocate 1017 * the page (if needed) without using GFP_NOFS. 1018 */ 1019 retry_grab: 1020 page = grab_cache_page_write_begin(mapping, index, flags); 1021 if (!page) 1022 return -ENOMEM; 1023 unlock_page(page); 1024 1025 retry_journal: 1026 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1027 if (IS_ERR(handle)) { 1028 page_cache_release(page); 1029 return PTR_ERR(handle); 1030 } 1031 1032 lock_page(page); 1033 if (page->mapping != mapping) { 1034 /* The page got truncated from under us */ 1035 unlock_page(page); 1036 page_cache_release(page); 1037 ext4_journal_stop(handle); 1038 goto retry_grab; 1039 } 1040 /* In case writeback began while the page was unlocked */ 1041 wait_for_stable_page(page); 1042 1043 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1044 if (ext4_should_dioread_nolock(inode)) 1045 ret = ext4_block_write_begin(page, pos, len, 1046 ext4_get_block_write); 1047 else 1048 ret = ext4_block_write_begin(page, pos, len, 1049 ext4_get_block); 1050 #else 1051 if (ext4_should_dioread_nolock(inode)) 1052 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1053 else 1054 ret = __block_write_begin(page, pos, len, ext4_get_block); 1055 #endif 1056 if (!ret && ext4_should_journal_data(inode)) { 1057 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1058 from, to, NULL, 1059 do_journal_get_write_access); 1060 } 1061 1062 if (ret) { 1063 unlock_page(page); 1064 /* 1065 * __block_write_begin may have instantiated a few blocks 1066 * outside i_size. Trim these off again. Don't need 1067 * i_size_read because we hold i_mutex. 1068 * 1069 * Add inode to orphan list in case we crash before 1070 * truncate finishes 1071 */ 1072 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1073 ext4_orphan_add(handle, inode); 1074 1075 ext4_journal_stop(handle); 1076 if (pos + len > inode->i_size) { 1077 ext4_truncate_failed_write(inode); 1078 /* 1079 * If truncate failed early the inode might 1080 * still be on the orphan list; we need to 1081 * make sure the inode is removed from the 1082 * orphan list in that case. 1083 */ 1084 if (inode->i_nlink) 1085 ext4_orphan_del(NULL, inode); 1086 } 1087 1088 if (ret == -ENOSPC && 1089 ext4_should_retry_alloc(inode->i_sb, &retries)) 1090 goto retry_journal; 1091 page_cache_release(page); 1092 return ret; 1093 } 1094 *pagep = page; 1095 return ret; 1096 } 1097 1098 /* For write_end() in data=journal mode */ 1099 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1100 { 1101 int ret; 1102 if (!buffer_mapped(bh) || buffer_freed(bh)) 1103 return 0; 1104 set_buffer_uptodate(bh); 1105 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1106 clear_buffer_meta(bh); 1107 clear_buffer_prio(bh); 1108 return ret; 1109 } 1110 1111 /* 1112 * We need to pick up the new inode size which generic_commit_write gave us 1113 * `file' can be NULL - eg, when called from page_symlink(). 1114 * 1115 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1116 * buffers are managed internally. 1117 */ 1118 static int ext4_write_end(struct file *file, 1119 struct address_space *mapping, 1120 loff_t pos, unsigned len, unsigned copied, 1121 struct page *page, void *fsdata) 1122 { 1123 handle_t *handle = ext4_journal_current_handle(); 1124 struct inode *inode = mapping->host; 1125 loff_t old_size = inode->i_size; 1126 int ret = 0, ret2; 1127 int i_size_changed = 0; 1128 1129 trace_ext4_write_end(inode, pos, len, copied); 1130 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1131 ret = ext4_jbd2_file_inode(handle, inode); 1132 if (ret) { 1133 unlock_page(page); 1134 page_cache_release(page); 1135 goto errout; 1136 } 1137 } 1138 1139 if (ext4_has_inline_data(inode)) { 1140 ret = ext4_write_inline_data_end(inode, pos, len, 1141 copied, page); 1142 if (ret < 0) 1143 goto errout; 1144 copied = ret; 1145 } else 1146 copied = block_write_end(file, mapping, pos, 1147 len, copied, page, fsdata); 1148 /* 1149 * it's important to update i_size while still holding page lock: 1150 * page writeout could otherwise come in and zero beyond i_size. 1151 */ 1152 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1153 unlock_page(page); 1154 page_cache_release(page); 1155 1156 if (old_size < pos) 1157 pagecache_isize_extended(inode, old_size, pos); 1158 /* 1159 * Don't mark the inode dirty under page lock. First, it unnecessarily 1160 * makes the holding time of page lock longer. Second, it forces lock 1161 * ordering of page lock and transaction start for journaling 1162 * filesystems. 1163 */ 1164 if (i_size_changed) 1165 ext4_mark_inode_dirty(handle, inode); 1166 1167 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1168 /* if we have allocated more blocks and copied 1169 * less. We will have blocks allocated outside 1170 * inode->i_size. So truncate them 1171 */ 1172 ext4_orphan_add(handle, inode); 1173 errout: 1174 ret2 = ext4_journal_stop(handle); 1175 if (!ret) 1176 ret = ret2; 1177 1178 if (pos + len > inode->i_size) { 1179 ext4_truncate_failed_write(inode); 1180 /* 1181 * If truncate failed early the inode might still be 1182 * on the orphan list; we need to make sure the inode 1183 * is removed from the orphan list in that case. 1184 */ 1185 if (inode->i_nlink) 1186 ext4_orphan_del(NULL, inode); 1187 } 1188 1189 return ret ? ret : copied; 1190 } 1191 1192 /* 1193 * This is a private version of page_zero_new_buffers() which doesn't 1194 * set the buffer to be dirty, since in data=journalled mode we need 1195 * to call ext4_handle_dirty_metadata() instead. 1196 */ 1197 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1198 { 1199 unsigned int block_start = 0, block_end; 1200 struct buffer_head *head, *bh; 1201 1202 bh = head = page_buffers(page); 1203 do { 1204 block_end = block_start + bh->b_size; 1205 if (buffer_new(bh)) { 1206 if (block_end > from && block_start < to) { 1207 if (!PageUptodate(page)) { 1208 unsigned start, size; 1209 1210 start = max(from, block_start); 1211 size = min(to, block_end) - start; 1212 1213 zero_user(page, start, size); 1214 set_buffer_uptodate(bh); 1215 } 1216 clear_buffer_new(bh); 1217 } 1218 } 1219 block_start = block_end; 1220 bh = bh->b_this_page; 1221 } while (bh != head); 1222 } 1223 1224 static int ext4_journalled_write_end(struct file *file, 1225 struct address_space *mapping, 1226 loff_t pos, unsigned len, unsigned copied, 1227 struct page *page, void *fsdata) 1228 { 1229 handle_t *handle = ext4_journal_current_handle(); 1230 struct inode *inode = mapping->host; 1231 loff_t old_size = inode->i_size; 1232 int ret = 0, ret2; 1233 int partial = 0; 1234 unsigned from, to; 1235 int size_changed = 0; 1236 1237 trace_ext4_journalled_write_end(inode, pos, len, copied); 1238 from = pos & (PAGE_CACHE_SIZE - 1); 1239 to = from + len; 1240 1241 BUG_ON(!ext4_handle_valid(handle)); 1242 1243 if (ext4_has_inline_data(inode)) 1244 copied = ext4_write_inline_data_end(inode, pos, len, 1245 copied, page); 1246 else { 1247 if (copied < len) { 1248 if (!PageUptodate(page)) 1249 copied = 0; 1250 zero_new_buffers(page, from+copied, to); 1251 } 1252 1253 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1254 to, &partial, write_end_fn); 1255 if (!partial) 1256 SetPageUptodate(page); 1257 } 1258 size_changed = ext4_update_inode_size(inode, pos + copied); 1259 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1260 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1261 unlock_page(page); 1262 page_cache_release(page); 1263 1264 if (old_size < pos) 1265 pagecache_isize_extended(inode, old_size, pos); 1266 1267 if (size_changed) { 1268 ret2 = ext4_mark_inode_dirty(handle, inode); 1269 if (!ret) 1270 ret = ret2; 1271 } 1272 1273 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1274 /* if we have allocated more blocks and copied 1275 * less. We will have blocks allocated outside 1276 * inode->i_size. So truncate them 1277 */ 1278 ext4_orphan_add(handle, inode); 1279 1280 ret2 = ext4_journal_stop(handle); 1281 if (!ret) 1282 ret = ret2; 1283 if (pos + len > inode->i_size) { 1284 ext4_truncate_failed_write(inode); 1285 /* 1286 * If truncate failed early the inode might still be 1287 * on the orphan list; we need to make sure the inode 1288 * is removed from the orphan list in that case. 1289 */ 1290 if (inode->i_nlink) 1291 ext4_orphan_del(NULL, inode); 1292 } 1293 1294 return ret ? ret : copied; 1295 } 1296 1297 /* 1298 * Reserve space for a single cluster 1299 */ 1300 static int ext4_da_reserve_space(struct inode *inode) 1301 { 1302 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1303 struct ext4_inode_info *ei = EXT4_I(inode); 1304 int ret; 1305 1306 /* 1307 * We will charge metadata quota at writeout time; this saves 1308 * us from metadata over-estimation, though we may go over by 1309 * a small amount in the end. Here we just reserve for data. 1310 */ 1311 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1312 if (ret) 1313 return ret; 1314 1315 spin_lock(&ei->i_block_reservation_lock); 1316 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1317 spin_unlock(&ei->i_block_reservation_lock); 1318 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1319 return -ENOSPC; 1320 } 1321 ei->i_reserved_data_blocks++; 1322 trace_ext4_da_reserve_space(inode); 1323 spin_unlock(&ei->i_block_reservation_lock); 1324 1325 return 0; /* success */ 1326 } 1327 1328 static void ext4_da_release_space(struct inode *inode, int to_free) 1329 { 1330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1331 struct ext4_inode_info *ei = EXT4_I(inode); 1332 1333 if (!to_free) 1334 return; /* Nothing to release, exit */ 1335 1336 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1337 1338 trace_ext4_da_release_space(inode, to_free); 1339 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1340 /* 1341 * if there aren't enough reserved blocks, then the 1342 * counter is messed up somewhere. Since this 1343 * function is called from invalidate page, it's 1344 * harmless to return without any action. 1345 */ 1346 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1347 "ino %lu, to_free %d with only %d reserved " 1348 "data blocks", inode->i_ino, to_free, 1349 ei->i_reserved_data_blocks); 1350 WARN_ON(1); 1351 to_free = ei->i_reserved_data_blocks; 1352 } 1353 ei->i_reserved_data_blocks -= to_free; 1354 1355 /* update fs dirty data blocks counter */ 1356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1357 1358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1359 1360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1361 } 1362 1363 static void ext4_da_page_release_reservation(struct page *page, 1364 unsigned int offset, 1365 unsigned int length) 1366 { 1367 int to_release = 0, contiguous_blks = 0; 1368 struct buffer_head *head, *bh; 1369 unsigned int curr_off = 0; 1370 struct inode *inode = page->mapping->host; 1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1372 unsigned int stop = offset + length; 1373 int num_clusters; 1374 ext4_fsblk_t lblk; 1375 1376 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1377 1378 head = page_buffers(page); 1379 bh = head; 1380 do { 1381 unsigned int next_off = curr_off + bh->b_size; 1382 1383 if (next_off > stop) 1384 break; 1385 1386 if ((offset <= curr_off) && (buffer_delay(bh))) { 1387 to_release++; 1388 contiguous_blks++; 1389 clear_buffer_delay(bh); 1390 } else if (contiguous_blks) { 1391 lblk = page->index << 1392 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1393 lblk += (curr_off >> inode->i_blkbits) - 1394 contiguous_blks; 1395 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1396 contiguous_blks = 0; 1397 } 1398 curr_off = next_off; 1399 } while ((bh = bh->b_this_page) != head); 1400 1401 if (contiguous_blks) { 1402 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1403 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1404 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1405 } 1406 1407 /* If we have released all the blocks belonging to a cluster, then we 1408 * need to release the reserved space for that cluster. */ 1409 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1410 while (num_clusters > 0) { 1411 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1412 ((num_clusters - 1) << sbi->s_cluster_bits); 1413 if (sbi->s_cluster_ratio == 1 || 1414 !ext4_find_delalloc_cluster(inode, lblk)) 1415 ext4_da_release_space(inode, 1); 1416 1417 num_clusters--; 1418 } 1419 } 1420 1421 /* 1422 * Delayed allocation stuff 1423 */ 1424 1425 struct mpage_da_data { 1426 struct inode *inode; 1427 struct writeback_control *wbc; 1428 1429 pgoff_t first_page; /* The first page to write */ 1430 pgoff_t next_page; /* Current page to examine */ 1431 pgoff_t last_page; /* Last page to examine */ 1432 /* 1433 * Extent to map - this can be after first_page because that can be 1434 * fully mapped. We somewhat abuse m_flags to store whether the extent 1435 * is delalloc or unwritten. 1436 */ 1437 struct ext4_map_blocks map; 1438 struct ext4_io_submit io_submit; /* IO submission data */ 1439 }; 1440 1441 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1442 bool invalidate) 1443 { 1444 int nr_pages, i; 1445 pgoff_t index, end; 1446 struct pagevec pvec; 1447 struct inode *inode = mpd->inode; 1448 struct address_space *mapping = inode->i_mapping; 1449 1450 /* This is necessary when next_page == 0. */ 1451 if (mpd->first_page >= mpd->next_page) 1452 return; 1453 1454 index = mpd->first_page; 1455 end = mpd->next_page - 1; 1456 if (invalidate) { 1457 ext4_lblk_t start, last; 1458 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1459 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1460 ext4_es_remove_extent(inode, start, last - start + 1); 1461 } 1462 1463 pagevec_init(&pvec, 0); 1464 while (index <= end) { 1465 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1466 if (nr_pages == 0) 1467 break; 1468 for (i = 0; i < nr_pages; i++) { 1469 struct page *page = pvec.pages[i]; 1470 if (page->index > end) 1471 break; 1472 BUG_ON(!PageLocked(page)); 1473 BUG_ON(PageWriteback(page)); 1474 if (invalidate) { 1475 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1476 ClearPageUptodate(page); 1477 } 1478 unlock_page(page); 1479 } 1480 index = pvec.pages[nr_pages - 1]->index + 1; 1481 pagevec_release(&pvec); 1482 } 1483 } 1484 1485 static void ext4_print_free_blocks(struct inode *inode) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct super_block *sb = inode->i_sb; 1489 struct ext4_inode_info *ei = EXT4_I(inode); 1490 1491 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1492 EXT4_C2B(EXT4_SB(inode->i_sb), 1493 ext4_count_free_clusters(sb))); 1494 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1495 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1496 (long long) EXT4_C2B(EXT4_SB(sb), 1497 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1498 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1499 (long long) EXT4_C2B(EXT4_SB(sb), 1500 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1501 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1502 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1503 ei->i_reserved_data_blocks); 1504 return; 1505 } 1506 1507 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1508 { 1509 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1510 } 1511 1512 /* 1513 * This function is grabs code from the very beginning of 1514 * ext4_map_blocks, but assumes that the caller is from delayed write 1515 * time. This function looks up the requested blocks and sets the 1516 * buffer delay bit under the protection of i_data_sem. 1517 */ 1518 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1519 struct ext4_map_blocks *map, 1520 struct buffer_head *bh) 1521 { 1522 struct extent_status es; 1523 int retval; 1524 sector_t invalid_block = ~((sector_t) 0xffff); 1525 #ifdef ES_AGGRESSIVE_TEST 1526 struct ext4_map_blocks orig_map; 1527 1528 memcpy(&orig_map, map, sizeof(*map)); 1529 #endif 1530 1531 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1532 invalid_block = ~0; 1533 1534 map->m_flags = 0; 1535 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1536 "logical block %lu\n", inode->i_ino, map->m_len, 1537 (unsigned long) map->m_lblk); 1538 1539 /* Lookup extent status tree firstly */ 1540 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1541 if (ext4_es_is_hole(&es)) { 1542 retval = 0; 1543 down_read(&EXT4_I(inode)->i_data_sem); 1544 goto add_delayed; 1545 } 1546 1547 /* 1548 * Delayed extent could be allocated by fallocate. 1549 * So we need to check it. 1550 */ 1551 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1552 map_bh(bh, inode->i_sb, invalid_block); 1553 set_buffer_new(bh); 1554 set_buffer_delay(bh); 1555 return 0; 1556 } 1557 1558 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1559 retval = es.es_len - (iblock - es.es_lblk); 1560 if (retval > map->m_len) 1561 retval = map->m_len; 1562 map->m_len = retval; 1563 if (ext4_es_is_written(&es)) 1564 map->m_flags |= EXT4_MAP_MAPPED; 1565 else if (ext4_es_is_unwritten(&es)) 1566 map->m_flags |= EXT4_MAP_UNWRITTEN; 1567 else 1568 BUG_ON(1); 1569 1570 #ifdef ES_AGGRESSIVE_TEST 1571 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1572 #endif 1573 return retval; 1574 } 1575 1576 /* 1577 * Try to see if we can get the block without requesting a new 1578 * file system block. 1579 */ 1580 down_read(&EXT4_I(inode)->i_data_sem); 1581 if (ext4_has_inline_data(inode)) 1582 retval = 0; 1583 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1584 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1585 else 1586 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1587 1588 add_delayed: 1589 if (retval == 0) { 1590 int ret; 1591 /* 1592 * XXX: __block_prepare_write() unmaps passed block, 1593 * is it OK? 1594 */ 1595 /* 1596 * If the block was allocated from previously allocated cluster, 1597 * then we don't need to reserve it again. However we still need 1598 * to reserve metadata for every block we're going to write. 1599 */ 1600 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1601 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1602 ret = ext4_da_reserve_space(inode); 1603 if (ret) { 1604 /* not enough space to reserve */ 1605 retval = ret; 1606 goto out_unlock; 1607 } 1608 } 1609 1610 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1611 ~0, EXTENT_STATUS_DELAYED); 1612 if (ret) { 1613 retval = ret; 1614 goto out_unlock; 1615 } 1616 1617 map_bh(bh, inode->i_sb, invalid_block); 1618 set_buffer_new(bh); 1619 set_buffer_delay(bh); 1620 } else if (retval > 0) { 1621 int ret; 1622 unsigned int status; 1623 1624 if (unlikely(retval != map->m_len)) { 1625 ext4_warning(inode->i_sb, 1626 "ES len assertion failed for inode " 1627 "%lu: retval %d != map->m_len %d", 1628 inode->i_ino, retval, map->m_len); 1629 WARN_ON(1); 1630 } 1631 1632 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1633 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1634 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1635 map->m_pblk, status); 1636 if (ret != 0) 1637 retval = ret; 1638 } 1639 1640 out_unlock: 1641 up_read((&EXT4_I(inode)->i_data_sem)); 1642 1643 return retval; 1644 } 1645 1646 /* 1647 * This is a special get_block_t callback which is used by 1648 * ext4_da_write_begin(). It will either return mapped block or 1649 * reserve space for a single block. 1650 * 1651 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1652 * We also have b_blocknr = -1 and b_bdev initialized properly 1653 * 1654 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1655 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1656 * initialized properly. 1657 */ 1658 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1659 struct buffer_head *bh, int create) 1660 { 1661 struct ext4_map_blocks map; 1662 int ret = 0; 1663 1664 BUG_ON(create == 0); 1665 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1666 1667 map.m_lblk = iblock; 1668 map.m_len = 1; 1669 1670 /* 1671 * first, we need to know whether the block is allocated already 1672 * preallocated blocks are unmapped but should treated 1673 * the same as allocated blocks. 1674 */ 1675 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1676 if (ret <= 0) 1677 return ret; 1678 1679 map_bh(bh, inode->i_sb, map.m_pblk); 1680 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1681 1682 if (buffer_unwritten(bh)) { 1683 /* A delayed write to unwritten bh should be marked 1684 * new and mapped. Mapped ensures that we don't do 1685 * get_block multiple times when we write to the same 1686 * offset and new ensures that we do proper zero out 1687 * for partial write. 1688 */ 1689 set_buffer_new(bh); 1690 set_buffer_mapped(bh); 1691 } 1692 return 0; 1693 } 1694 1695 static int bget_one(handle_t *handle, struct buffer_head *bh) 1696 { 1697 get_bh(bh); 1698 return 0; 1699 } 1700 1701 static int bput_one(handle_t *handle, struct buffer_head *bh) 1702 { 1703 put_bh(bh); 1704 return 0; 1705 } 1706 1707 static int __ext4_journalled_writepage(struct page *page, 1708 unsigned int len) 1709 { 1710 struct address_space *mapping = page->mapping; 1711 struct inode *inode = mapping->host; 1712 struct buffer_head *page_bufs = NULL; 1713 handle_t *handle = NULL; 1714 int ret = 0, err = 0; 1715 int inline_data = ext4_has_inline_data(inode); 1716 struct buffer_head *inode_bh = NULL; 1717 1718 ClearPageChecked(page); 1719 1720 if (inline_data) { 1721 BUG_ON(page->index != 0); 1722 BUG_ON(len > ext4_get_max_inline_size(inode)); 1723 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1724 if (inode_bh == NULL) 1725 goto out; 1726 } else { 1727 page_bufs = page_buffers(page); 1728 if (!page_bufs) { 1729 BUG(); 1730 goto out; 1731 } 1732 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1733 NULL, bget_one); 1734 } 1735 /* 1736 * We need to release the page lock before we start the 1737 * journal, so grab a reference so the page won't disappear 1738 * out from under us. 1739 */ 1740 get_page(page); 1741 unlock_page(page); 1742 1743 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1744 ext4_writepage_trans_blocks(inode)); 1745 if (IS_ERR(handle)) { 1746 ret = PTR_ERR(handle); 1747 put_page(page); 1748 goto out_no_pagelock; 1749 } 1750 BUG_ON(!ext4_handle_valid(handle)); 1751 1752 lock_page(page); 1753 put_page(page); 1754 if (page->mapping != mapping) { 1755 /* The page got truncated from under us */ 1756 ext4_journal_stop(handle); 1757 ret = 0; 1758 goto out; 1759 } 1760 1761 if (inline_data) { 1762 BUFFER_TRACE(inode_bh, "get write access"); 1763 ret = ext4_journal_get_write_access(handle, inode_bh); 1764 1765 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1766 1767 } else { 1768 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1769 do_journal_get_write_access); 1770 1771 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1772 write_end_fn); 1773 } 1774 if (ret == 0) 1775 ret = err; 1776 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1777 err = ext4_journal_stop(handle); 1778 if (!ret) 1779 ret = err; 1780 1781 if (!ext4_has_inline_data(inode)) 1782 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1783 NULL, bput_one); 1784 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1785 out: 1786 unlock_page(page); 1787 out_no_pagelock: 1788 brelse(inode_bh); 1789 return ret; 1790 } 1791 1792 /* 1793 * Note that we don't need to start a transaction unless we're journaling data 1794 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1795 * need to file the inode to the transaction's list in ordered mode because if 1796 * we are writing back data added by write(), the inode is already there and if 1797 * we are writing back data modified via mmap(), no one guarantees in which 1798 * transaction the data will hit the disk. In case we are journaling data, we 1799 * cannot start transaction directly because transaction start ranks above page 1800 * lock so we have to do some magic. 1801 * 1802 * This function can get called via... 1803 * - ext4_writepages after taking page lock (have journal handle) 1804 * - journal_submit_inode_data_buffers (no journal handle) 1805 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1806 * - grab_page_cache when doing write_begin (have journal handle) 1807 * 1808 * We don't do any block allocation in this function. If we have page with 1809 * multiple blocks we need to write those buffer_heads that are mapped. This 1810 * is important for mmaped based write. So if we do with blocksize 1K 1811 * truncate(f, 1024); 1812 * a = mmap(f, 0, 4096); 1813 * a[0] = 'a'; 1814 * truncate(f, 4096); 1815 * we have in the page first buffer_head mapped via page_mkwrite call back 1816 * but other buffer_heads would be unmapped but dirty (dirty done via the 1817 * do_wp_page). So writepage should write the first block. If we modify 1818 * the mmap area beyond 1024 we will again get a page_fault and the 1819 * page_mkwrite callback will do the block allocation and mark the 1820 * buffer_heads mapped. 1821 * 1822 * We redirty the page if we have any buffer_heads that is either delay or 1823 * unwritten in the page. 1824 * 1825 * We can get recursively called as show below. 1826 * 1827 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1828 * ext4_writepage() 1829 * 1830 * But since we don't do any block allocation we should not deadlock. 1831 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1832 */ 1833 static int ext4_writepage(struct page *page, 1834 struct writeback_control *wbc) 1835 { 1836 int ret = 0; 1837 loff_t size; 1838 unsigned int len; 1839 struct buffer_head *page_bufs = NULL; 1840 struct inode *inode = page->mapping->host; 1841 struct ext4_io_submit io_submit; 1842 bool keep_towrite = false; 1843 1844 trace_ext4_writepage(page); 1845 size = i_size_read(inode); 1846 if (page->index == size >> PAGE_CACHE_SHIFT) 1847 len = size & ~PAGE_CACHE_MASK; 1848 else 1849 len = PAGE_CACHE_SIZE; 1850 1851 page_bufs = page_buffers(page); 1852 /* 1853 * We cannot do block allocation or other extent handling in this 1854 * function. If there are buffers needing that, we have to redirty 1855 * the page. But we may reach here when we do a journal commit via 1856 * journal_submit_inode_data_buffers() and in that case we must write 1857 * allocated buffers to achieve data=ordered mode guarantees. 1858 * 1859 * Also, if there is only one buffer per page (the fs block 1860 * size == the page size), if one buffer needs block 1861 * allocation or needs to modify the extent tree to clear the 1862 * unwritten flag, we know that the page can't be written at 1863 * all, so we might as well refuse the write immediately. 1864 * Unfortunately if the block size != page size, we can't as 1865 * easily detect this case using ext4_walk_page_buffers(), but 1866 * for the extremely common case, this is an optimization that 1867 * skips a useless round trip through ext4_bio_write_page(). 1868 */ 1869 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1870 ext4_bh_delay_or_unwritten)) { 1871 redirty_page_for_writepage(wbc, page); 1872 if ((current->flags & PF_MEMALLOC) || 1873 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) { 1874 /* 1875 * For memory cleaning there's no point in writing only 1876 * some buffers. So just bail out. Warn if we came here 1877 * from direct reclaim. 1878 */ 1879 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1880 == PF_MEMALLOC); 1881 unlock_page(page); 1882 return 0; 1883 } 1884 keep_towrite = true; 1885 } 1886 1887 if (PageChecked(page) && ext4_should_journal_data(inode)) 1888 /* 1889 * It's mmapped pagecache. Add buffers and journal it. There 1890 * doesn't seem much point in redirtying the page here. 1891 */ 1892 return __ext4_journalled_writepage(page, len); 1893 1894 ext4_io_submit_init(&io_submit, wbc); 1895 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1896 if (!io_submit.io_end) { 1897 redirty_page_for_writepage(wbc, page); 1898 unlock_page(page); 1899 return -ENOMEM; 1900 } 1901 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1902 ext4_io_submit(&io_submit); 1903 /* Drop io_end reference we got from init */ 1904 ext4_put_io_end_defer(io_submit.io_end); 1905 return ret; 1906 } 1907 1908 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1909 { 1910 int len; 1911 loff_t size = i_size_read(mpd->inode); 1912 int err; 1913 1914 BUG_ON(page->index != mpd->first_page); 1915 if (page->index == size >> PAGE_CACHE_SHIFT) 1916 len = size & ~PAGE_CACHE_MASK; 1917 else 1918 len = PAGE_CACHE_SIZE; 1919 clear_page_dirty_for_io(page); 1920 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1921 if (!err) 1922 mpd->wbc->nr_to_write--; 1923 mpd->first_page++; 1924 1925 return err; 1926 } 1927 1928 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1929 1930 /* 1931 * mballoc gives us at most this number of blocks... 1932 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1933 * The rest of mballoc seems to handle chunks up to full group size. 1934 */ 1935 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1936 1937 /* 1938 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1939 * 1940 * @mpd - extent of blocks 1941 * @lblk - logical number of the block in the file 1942 * @bh - buffer head we want to add to the extent 1943 * 1944 * The function is used to collect contig. blocks in the same state. If the 1945 * buffer doesn't require mapping for writeback and we haven't started the 1946 * extent of buffers to map yet, the function returns 'true' immediately - the 1947 * caller can write the buffer right away. Otherwise the function returns true 1948 * if the block has been added to the extent, false if the block couldn't be 1949 * added. 1950 */ 1951 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1952 struct buffer_head *bh) 1953 { 1954 struct ext4_map_blocks *map = &mpd->map; 1955 1956 /* Buffer that doesn't need mapping for writeback? */ 1957 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1958 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1959 /* So far no extent to map => we write the buffer right away */ 1960 if (map->m_len == 0) 1961 return true; 1962 return false; 1963 } 1964 1965 /* First block in the extent? */ 1966 if (map->m_len == 0) { 1967 map->m_lblk = lblk; 1968 map->m_len = 1; 1969 map->m_flags = bh->b_state & BH_FLAGS; 1970 return true; 1971 } 1972 1973 /* Don't go larger than mballoc is willing to allocate */ 1974 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1975 return false; 1976 1977 /* Can we merge the block to our big extent? */ 1978 if (lblk == map->m_lblk + map->m_len && 1979 (bh->b_state & BH_FLAGS) == map->m_flags) { 1980 map->m_len++; 1981 return true; 1982 } 1983 return false; 1984 } 1985 1986 /* 1987 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1988 * 1989 * @mpd - extent of blocks for mapping 1990 * @head - the first buffer in the page 1991 * @bh - buffer we should start processing from 1992 * @lblk - logical number of the block in the file corresponding to @bh 1993 * 1994 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1995 * the page for IO if all buffers in this page were mapped and there's no 1996 * accumulated extent of buffers to map or add buffers in the page to the 1997 * extent of buffers to map. The function returns 1 if the caller can continue 1998 * by processing the next page, 0 if it should stop adding buffers to the 1999 * extent to map because we cannot extend it anymore. It can also return value 2000 * < 0 in case of error during IO submission. 2001 */ 2002 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2003 struct buffer_head *head, 2004 struct buffer_head *bh, 2005 ext4_lblk_t lblk) 2006 { 2007 struct inode *inode = mpd->inode; 2008 int err; 2009 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2010 >> inode->i_blkbits; 2011 2012 do { 2013 BUG_ON(buffer_locked(bh)); 2014 2015 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2016 /* Found extent to map? */ 2017 if (mpd->map.m_len) 2018 return 0; 2019 /* Everything mapped so far and we hit EOF */ 2020 break; 2021 } 2022 } while (lblk++, (bh = bh->b_this_page) != head); 2023 /* So far everything mapped? Submit the page for IO. */ 2024 if (mpd->map.m_len == 0) { 2025 err = mpage_submit_page(mpd, head->b_page); 2026 if (err < 0) 2027 return err; 2028 } 2029 return lblk < blocks; 2030 } 2031 2032 /* 2033 * mpage_map_buffers - update buffers corresponding to changed extent and 2034 * submit fully mapped pages for IO 2035 * 2036 * @mpd - description of extent to map, on return next extent to map 2037 * 2038 * Scan buffers corresponding to changed extent (we expect corresponding pages 2039 * to be already locked) and update buffer state according to new extent state. 2040 * We map delalloc buffers to their physical location, clear unwritten bits, 2041 * and mark buffers as uninit when we perform writes to unwritten extents 2042 * and do extent conversion after IO is finished. If the last page is not fully 2043 * mapped, we update @map to the next extent in the last page that needs 2044 * mapping. Otherwise we submit the page for IO. 2045 */ 2046 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2047 { 2048 struct pagevec pvec; 2049 int nr_pages, i; 2050 struct inode *inode = mpd->inode; 2051 struct buffer_head *head, *bh; 2052 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2053 pgoff_t start, end; 2054 ext4_lblk_t lblk; 2055 sector_t pblock; 2056 int err; 2057 2058 start = mpd->map.m_lblk >> bpp_bits; 2059 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2060 lblk = start << bpp_bits; 2061 pblock = mpd->map.m_pblk; 2062 2063 pagevec_init(&pvec, 0); 2064 while (start <= end) { 2065 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2066 PAGEVEC_SIZE); 2067 if (nr_pages == 0) 2068 break; 2069 for (i = 0; i < nr_pages; i++) { 2070 struct page *page = pvec.pages[i]; 2071 2072 if (page->index > end) 2073 break; 2074 /* Up to 'end' pages must be contiguous */ 2075 BUG_ON(page->index != start); 2076 bh = head = page_buffers(page); 2077 do { 2078 if (lblk < mpd->map.m_lblk) 2079 continue; 2080 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2081 /* 2082 * Buffer after end of mapped extent. 2083 * Find next buffer in the page to map. 2084 */ 2085 mpd->map.m_len = 0; 2086 mpd->map.m_flags = 0; 2087 /* 2088 * FIXME: If dioread_nolock supports 2089 * blocksize < pagesize, we need to make 2090 * sure we add size mapped so far to 2091 * io_end->size as the following call 2092 * can submit the page for IO. 2093 */ 2094 err = mpage_process_page_bufs(mpd, head, 2095 bh, lblk); 2096 pagevec_release(&pvec); 2097 if (err > 0) 2098 err = 0; 2099 return err; 2100 } 2101 if (buffer_delay(bh)) { 2102 clear_buffer_delay(bh); 2103 bh->b_blocknr = pblock++; 2104 } 2105 clear_buffer_unwritten(bh); 2106 } while (lblk++, (bh = bh->b_this_page) != head); 2107 2108 /* 2109 * FIXME: This is going to break if dioread_nolock 2110 * supports blocksize < pagesize as we will try to 2111 * convert potentially unmapped parts of inode. 2112 */ 2113 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2114 /* Page fully mapped - let IO run! */ 2115 err = mpage_submit_page(mpd, page); 2116 if (err < 0) { 2117 pagevec_release(&pvec); 2118 return err; 2119 } 2120 start++; 2121 } 2122 pagevec_release(&pvec); 2123 } 2124 /* Extent fully mapped and matches with page boundary. We are done. */ 2125 mpd->map.m_len = 0; 2126 mpd->map.m_flags = 0; 2127 return 0; 2128 } 2129 2130 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2131 { 2132 struct inode *inode = mpd->inode; 2133 struct ext4_map_blocks *map = &mpd->map; 2134 int get_blocks_flags; 2135 int err, dioread_nolock; 2136 2137 trace_ext4_da_write_pages_extent(inode, map); 2138 /* 2139 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2140 * to convert an unwritten extent to be initialized (in the case 2141 * where we have written into one or more preallocated blocks). It is 2142 * possible that we're going to need more metadata blocks than 2143 * previously reserved. However we must not fail because we're in 2144 * writeback and there is nothing we can do about it so it might result 2145 * in data loss. So use reserved blocks to allocate metadata if 2146 * possible. 2147 * 2148 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2149 * the blocks in question are delalloc blocks. This indicates 2150 * that the blocks and quotas has already been checked when 2151 * the data was copied into the page cache. 2152 */ 2153 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2154 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2155 dioread_nolock = ext4_should_dioread_nolock(inode); 2156 if (dioread_nolock) 2157 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2158 if (map->m_flags & (1 << BH_Delay)) 2159 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2160 2161 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2162 if (err < 0) 2163 return err; 2164 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2165 if (!mpd->io_submit.io_end->handle && 2166 ext4_handle_valid(handle)) { 2167 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2168 handle->h_rsv_handle = NULL; 2169 } 2170 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2171 } 2172 2173 BUG_ON(map->m_len == 0); 2174 if (map->m_flags & EXT4_MAP_NEW) { 2175 struct block_device *bdev = inode->i_sb->s_bdev; 2176 int i; 2177 2178 for (i = 0; i < map->m_len; i++) 2179 unmap_underlying_metadata(bdev, map->m_pblk + i); 2180 } 2181 return 0; 2182 } 2183 2184 /* 2185 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2186 * mpd->len and submit pages underlying it for IO 2187 * 2188 * @handle - handle for journal operations 2189 * @mpd - extent to map 2190 * @give_up_on_write - we set this to true iff there is a fatal error and there 2191 * is no hope of writing the data. The caller should discard 2192 * dirty pages to avoid infinite loops. 2193 * 2194 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2195 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2196 * them to initialized or split the described range from larger unwritten 2197 * extent. Note that we need not map all the described range since allocation 2198 * can return less blocks or the range is covered by more unwritten extents. We 2199 * cannot map more because we are limited by reserved transaction credits. On 2200 * the other hand we always make sure that the last touched page is fully 2201 * mapped so that it can be written out (and thus forward progress is 2202 * guaranteed). After mapping we submit all mapped pages for IO. 2203 */ 2204 static int mpage_map_and_submit_extent(handle_t *handle, 2205 struct mpage_da_data *mpd, 2206 bool *give_up_on_write) 2207 { 2208 struct inode *inode = mpd->inode; 2209 struct ext4_map_blocks *map = &mpd->map; 2210 int err; 2211 loff_t disksize; 2212 int progress = 0; 2213 2214 mpd->io_submit.io_end->offset = 2215 ((loff_t)map->m_lblk) << inode->i_blkbits; 2216 do { 2217 err = mpage_map_one_extent(handle, mpd); 2218 if (err < 0) { 2219 struct super_block *sb = inode->i_sb; 2220 2221 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2222 goto invalidate_dirty_pages; 2223 /* 2224 * Let the uper layers retry transient errors. 2225 * In the case of ENOSPC, if ext4_count_free_blocks() 2226 * is non-zero, a commit should free up blocks. 2227 */ 2228 if ((err == -ENOMEM) || 2229 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2230 if (progress) 2231 goto update_disksize; 2232 return err; 2233 } 2234 ext4_msg(sb, KERN_CRIT, 2235 "Delayed block allocation failed for " 2236 "inode %lu at logical offset %llu with" 2237 " max blocks %u with error %d", 2238 inode->i_ino, 2239 (unsigned long long)map->m_lblk, 2240 (unsigned)map->m_len, -err); 2241 ext4_msg(sb, KERN_CRIT, 2242 "This should not happen!! Data will " 2243 "be lost\n"); 2244 if (err == -ENOSPC) 2245 ext4_print_free_blocks(inode); 2246 invalidate_dirty_pages: 2247 *give_up_on_write = true; 2248 return err; 2249 } 2250 progress = 1; 2251 /* 2252 * Update buffer state, submit mapped pages, and get us new 2253 * extent to map 2254 */ 2255 err = mpage_map_and_submit_buffers(mpd); 2256 if (err < 0) 2257 goto update_disksize; 2258 } while (map->m_len); 2259 2260 update_disksize: 2261 /* 2262 * Update on-disk size after IO is submitted. Races with 2263 * truncate are avoided by checking i_size under i_data_sem. 2264 */ 2265 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2266 if (disksize > EXT4_I(inode)->i_disksize) { 2267 int err2; 2268 loff_t i_size; 2269 2270 down_write(&EXT4_I(inode)->i_data_sem); 2271 i_size = i_size_read(inode); 2272 if (disksize > i_size) 2273 disksize = i_size; 2274 if (disksize > EXT4_I(inode)->i_disksize) 2275 EXT4_I(inode)->i_disksize = disksize; 2276 err2 = ext4_mark_inode_dirty(handle, inode); 2277 up_write(&EXT4_I(inode)->i_data_sem); 2278 if (err2) 2279 ext4_error(inode->i_sb, 2280 "Failed to mark inode %lu dirty", 2281 inode->i_ino); 2282 if (!err) 2283 err = err2; 2284 } 2285 return err; 2286 } 2287 2288 /* 2289 * Calculate the total number of credits to reserve for one writepages 2290 * iteration. This is called from ext4_writepages(). We map an extent of 2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2293 * bpp - 1 blocks in bpp different extents. 2294 */ 2295 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2296 { 2297 int bpp = ext4_journal_blocks_per_page(inode); 2298 2299 return ext4_meta_trans_blocks(inode, 2300 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2301 } 2302 2303 /* 2304 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2305 * and underlying extent to map 2306 * 2307 * @mpd - where to look for pages 2308 * 2309 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2310 * IO immediately. When we find a page which isn't mapped we start accumulating 2311 * extent of buffers underlying these pages that needs mapping (formed by 2312 * either delayed or unwritten buffers). We also lock the pages containing 2313 * these buffers. The extent found is returned in @mpd structure (starting at 2314 * mpd->lblk with length mpd->len blocks). 2315 * 2316 * Note that this function can attach bios to one io_end structure which are 2317 * neither logically nor physically contiguous. Although it may seem as an 2318 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2319 * case as we need to track IO to all buffers underlying a page in one io_end. 2320 */ 2321 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2322 { 2323 struct address_space *mapping = mpd->inode->i_mapping; 2324 struct pagevec pvec; 2325 unsigned int nr_pages; 2326 long left = mpd->wbc->nr_to_write; 2327 pgoff_t index = mpd->first_page; 2328 pgoff_t end = mpd->last_page; 2329 int tag; 2330 int i, err = 0; 2331 int blkbits = mpd->inode->i_blkbits; 2332 ext4_lblk_t lblk; 2333 struct buffer_head *head; 2334 2335 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2336 tag = PAGECACHE_TAG_TOWRITE; 2337 else 2338 tag = PAGECACHE_TAG_DIRTY; 2339 2340 pagevec_init(&pvec, 0); 2341 mpd->map.m_len = 0; 2342 mpd->next_page = index; 2343 while (index <= end) { 2344 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2345 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2346 if (nr_pages == 0) 2347 goto out; 2348 2349 for (i = 0; i < nr_pages; i++) { 2350 struct page *page = pvec.pages[i]; 2351 2352 /* 2353 * At this point, the page may be truncated or 2354 * invalidated (changing page->mapping to NULL), or 2355 * even swizzled back from swapper_space to tmpfs file 2356 * mapping. However, page->index will not change 2357 * because we have a reference on the page. 2358 */ 2359 if (page->index > end) 2360 goto out; 2361 2362 /* 2363 * Accumulated enough dirty pages? This doesn't apply 2364 * to WB_SYNC_ALL mode. For integrity sync we have to 2365 * keep going because someone may be concurrently 2366 * dirtying pages, and we might have synced a lot of 2367 * newly appeared dirty pages, but have not synced all 2368 * of the old dirty pages. 2369 */ 2370 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2371 goto out; 2372 2373 /* If we can't merge this page, we are done. */ 2374 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2375 goto out; 2376 2377 lock_page(page); 2378 /* 2379 * If the page is no longer dirty, or its mapping no 2380 * longer corresponds to inode we are writing (which 2381 * means it has been truncated or invalidated), or the 2382 * page is already under writeback and we are not doing 2383 * a data integrity writeback, skip the page 2384 */ 2385 if (!PageDirty(page) || 2386 (PageWriteback(page) && 2387 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2388 unlikely(page->mapping != mapping)) { 2389 unlock_page(page); 2390 continue; 2391 } 2392 2393 wait_on_page_writeback(page); 2394 BUG_ON(PageWriteback(page)); 2395 2396 if (mpd->map.m_len == 0) 2397 mpd->first_page = page->index; 2398 mpd->next_page = page->index + 1; 2399 /* Add all dirty buffers to mpd */ 2400 lblk = ((ext4_lblk_t)page->index) << 2401 (PAGE_CACHE_SHIFT - blkbits); 2402 head = page_buffers(page); 2403 err = mpage_process_page_bufs(mpd, head, head, lblk); 2404 if (err <= 0) 2405 goto out; 2406 err = 0; 2407 left--; 2408 } 2409 pagevec_release(&pvec); 2410 cond_resched(); 2411 } 2412 return 0; 2413 out: 2414 pagevec_release(&pvec); 2415 return err; 2416 } 2417 2418 static int __writepage(struct page *page, struct writeback_control *wbc, 2419 void *data) 2420 { 2421 struct address_space *mapping = data; 2422 int ret = ext4_writepage(page, wbc); 2423 mapping_set_error(mapping, ret); 2424 return ret; 2425 } 2426 2427 static int ext4_writepages(struct address_space *mapping, 2428 struct writeback_control *wbc) 2429 { 2430 pgoff_t writeback_index = 0; 2431 long nr_to_write = wbc->nr_to_write; 2432 int range_whole = 0; 2433 int cycled = 1; 2434 handle_t *handle = NULL; 2435 struct mpage_da_data mpd; 2436 struct inode *inode = mapping->host; 2437 int needed_blocks, rsv_blocks = 0, ret = 0; 2438 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2439 bool done; 2440 struct blk_plug plug; 2441 bool give_up_on_write = false; 2442 2443 trace_ext4_writepages(inode, wbc); 2444 2445 /* 2446 * No pages to write? This is mainly a kludge to avoid starting 2447 * a transaction for special inodes like journal inode on last iput() 2448 * because that could violate lock ordering on umount 2449 */ 2450 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2451 goto out_writepages; 2452 2453 if (ext4_should_journal_data(inode)) { 2454 struct blk_plug plug; 2455 2456 blk_start_plug(&plug); 2457 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2458 blk_finish_plug(&plug); 2459 goto out_writepages; 2460 } 2461 2462 /* 2463 * If the filesystem has aborted, it is read-only, so return 2464 * right away instead of dumping stack traces later on that 2465 * will obscure the real source of the problem. We test 2466 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2467 * the latter could be true if the filesystem is mounted 2468 * read-only, and in that case, ext4_writepages should 2469 * *never* be called, so if that ever happens, we would want 2470 * the stack trace. 2471 */ 2472 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2473 ret = -EROFS; 2474 goto out_writepages; 2475 } 2476 2477 if (ext4_should_dioread_nolock(inode)) { 2478 /* 2479 * We may need to convert up to one extent per block in 2480 * the page and we may dirty the inode. 2481 */ 2482 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2483 } 2484 2485 /* 2486 * If we have inline data and arrive here, it means that 2487 * we will soon create the block for the 1st page, so 2488 * we'd better clear the inline data here. 2489 */ 2490 if (ext4_has_inline_data(inode)) { 2491 /* Just inode will be modified... */ 2492 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2493 if (IS_ERR(handle)) { 2494 ret = PTR_ERR(handle); 2495 goto out_writepages; 2496 } 2497 BUG_ON(ext4_test_inode_state(inode, 2498 EXT4_STATE_MAY_INLINE_DATA)); 2499 ext4_destroy_inline_data(handle, inode); 2500 ext4_journal_stop(handle); 2501 } 2502 2503 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2504 range_whole = 1; 2505 2506 if (wbc->range_cyclic) { 2507 writeback_index = mapping->writeback_index; 2508 if (writeback_index) 2509 cycled = 0; 2510 mpd.first_page = writeback_index; 2511 mpd.last_page = -1; 2512 } else { 2513 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2514 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2515 } 2516 2517 mpd.inode = inode; 2518 mpd.wbc = wbc; 2519 ext4_io_submit_init(&mpd.io_submit, wbc); 2520 retry: 2521 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2522 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2523 done = false; 2524 blk_start_plug(&plug); 2525 while (!done && mpd.first_page <= mpd.last_page) { 2526 /* For each extent of pages we use new io_end */ 2527 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2528 if (!mpd.io_submit.io_end) { 2529 ret = -ENOMEM; 2530 break; 2531 } 2532 2533 /* 2534 * We have two constraints: We find one extent to map and we 2535 * must always write out whole page (makes a difference when 2536 * blocksize < pagesize) so that we don't block on IO when we 2537 * try to write out the rest of the page. Journalled mode is 2538 * not supported by delalloc. 2539 */ 2540 BUG_ON(ext4_should_journal_data(inode)); 2541 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2542 2543 /* start a new transaction */ 2544 handle = ext4_journal_start_with_reserve(inode, 2545 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2546 if (IS_ERR(handle)) { 2547 ret = PTR_ERR(handle); 2548 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2549 "%ld pages, ino %lu; err %d", __func__, 2550 wbc->nr_to_write, inode->i_ino, ret); 2551 /* Release allocated io_end */ 2552 ext4_put_io_end(mpd.io_submit.io_end); 2553 break; 2554 } 2555 2556 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2557 ret = mpage_prepare_extent_to_map(&mpd); 2558 if (!ret) { 2559 if (mpd.map.m_len) 2560 ret = mpage_map_and_submit_extent(handle, &mpd, 2561 &give_up_on_write); 2562 else { 2563 /* 2564 * We scanned the whole range (or exhausted 2565 * nr_to_write), submitted what was mapped and 2566 * didn't find anything needing mapping. We are 2567 * done. 2568 */ 2569 done = true; 2570 } 2571 } 2572 ext4_journal_stop(handle); 2573 /* Submit prepared bio */ 2574 ext4_io_submit(&mpd.io_submit); 2575 /* Unlock pages we didn't use */ 2576 mpage_release_unused_pages(&mpd, give_up_on_write); 2577 /* Drop our io_end reference we got from init */ 2578 ext4_put_io_end(mpd.io_submit.io_end); 2579 2580 if (ret == -ENOSPC && sbi->s_journal) { 2581 /* 2582 * Commit the transaction which would 2583 * free blocks released in the transaction 2584 * and try again 2585 */ 2586 jbd2_journal_force_commit_nested(sbi->s_journal); 2587 ret = 0; 2588 continue; 2589 } 2590 /* Fatal error - ENOMEM, EIO... */ 2591 if (ret) 2592 break; 2593 } 2594 blk_finish_plug(&plug); 2595 if (!ret && !cycled && wbc->nr_to_write > 0) { 2596 cycled = 1; 2597 mpd.last_page = writeback_index - 1; 2598 mpd.first_page = 0; 2599 goto retry; 2600 } 2601 2602 /* Update index */ 2603 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2604 /* 2605 * Set the writeback_index so that range_cyclic 2606 * mode will write it back later 2607 */ 2608 mapping->writeback_index = mpd.first_page; 2609 2610 out_writepages: 2611 trace_ext4_writepages_result(inode, wbc, ret, 2612 nr_to_write - wbc->nr_to_write); 2613 return ret; 2614 } 2615 2616 static int ext4_nonda_switch(struct super_block *sb) 2617 { 2618 s64 free_clusters, dirty_clusters; 2619 struct ext4_sb_info *sbi = EXT4_SB(sb); 2620 2621 /* 2622 * switch to non delalloc mode if we are running low 2623 * on free block. The free block accounting via percpu 2624 * counters can get slightly wrong with percpu_counter_batch getting 2625 * accumulated on each CPU without updating global counters 2626 * Delalloc need an accurate free block accounting. So switch 2627 * to non delalloc when we are near to error range. 2628 */ 2629 free_clusters = 2630 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2631 dirty_clusters = 2632 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2633 /* 2634 * Start pushing delalloc when 1/2 of free blocks are dirty. 2635 */ 2636 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2637 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2638 2639 if (2 * free_clusters < 3 * dirty_clusters || 2640 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2641 /* 2642 * free block count is less than 150% of dirty blocks 2643 * or free blocks is less than watermark 2644 */ 2645 return 1; 2646 } 2647 return 0; 2648 } 2649 2650 /* We always reserve for an inode update; the superblock could be there too */ 2651 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2652 { 2653 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2654 return 1; 2655 2656 if (pos + len <= 0x7fffffffULL) 2657 return 1; 2658 2659 /* We might need to update the superblock to set LARGE_FILE */ 2660 return 2; 2661 } 2662 2663 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2664 loff_t pos, unsigned len, unsigned flags, 2665 struct page **pagep, void **fsdata) 2666 { 2667 int ret, retries = 0; 2668 struct page *page; 2669 pgoff_t index; 2670 struct inode *inode = mapping->host; 2671 handle_t *handle; 2672 2673 index = pos >> PAGE_CACHE_SHIFT; 2674 2675 if (ext4_nonda_switch(inode->i_sb)) { 2676 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2677 return ext4_write_begin(file, mapping, pos, 2678 len, flags, pagep, fsdata); 2679 } 2680 *fsdata = (void *)0; 2681 trace_ext4_da_write_begin(inode, pos, len, flags); 2682 2683 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2684 ret = ext4_da_write_inline_data_begin(mapping, inode, 2685 pos, len, flags, 2686 pagep, fsdata); 2687 if (ret < 0) 2688 return ret; 2689 if (ret == 1) 2690 return 0; 2691 } 2692 2693 /* 2694 * grab_cache_page_write_begin() can take a long time if the 2695 * system is thrashing due to memory pressure, or if the page 2696 * is being written back. So grab it first before we start 2697 * the transaction handle. This also allows us to allocate 2698 * the page (if needed) without using GFP_NOFS. 2699 */ 2700 retry_grab: 2701 page = grab_cache_page_write_begin(mapping, index, flags); 2702 if (!page) 2703 return -ENOMEM; 2704 unlock_page(page); 2705 2706 /* 2707 * With delayed allocation, we don't log the i_disksize update 2708 * if there is delayed block allocation. But we still need 2709 * to journalling the i_disksize update if writes to the end 2710 * of file which has an already mapped buffer. 2711 */ 2712 retry_journal: 2713 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2714 ext4_da_write_credits(inode, pos, len)); 2715 if (IS_ERR(handle)) { 2716 page_cache_release(page); 2717 return PTR_ERR(handle); 2718 } 2719 2720 lock_page(page); 2721 if (page->mapping != mapping) { 2722 /* The page got truncated from under us */ 2723 unlock_page(page); 2724 page_cache_release(page); 2725 ext4_journal_stop(handle); 2726 goto retry_grab; 2727 } 2728 /* In case writeback began while the page was unlocked */ 2729 wait_for_stable_page(page); 2730 2731 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2732 ret = ext4_block_write_begin(page, pos, len, 2733 ext4_da_get_block_prep); 2734 #else 2735 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2736 #endif 2737 if (ret < 0) { 2738 unlock_page(page); 2739 ext4_journal_stop(handle); 2740 /* 2741 * block_write_begin may have instantiated a few blocks 2742 * outside i_size. Trim these off again. Don't need 2743 * i_size_read because we hold i_mutex. 2744 */ 2745 if (pos + len > inode->i_size) 2746 ext4_truncate_failed_write(inode); 2747 2748 if (ret == -ENOSPC && 2749 ext4_should_retry_alloc(inode->i_sb, &retries)) 2750 goto retry_journal; 2751 2752 page_cache_release(page); 2753 return ret; 2754 } 2755 2756 *pagep = page; 2757 return ret; 2758 } 2759 2760 /* 2761 * Check if we should update i_disksize 2762 * when write to the end of file but not require block allocation 2763 */ 2764 static int ext4_da_should_update_i_disksize(struct page *page, 2765 unsigned long offset) 2766 { 2767 struct buffer_head *bh; 2768 struct inode *inode = page->mapping->host; 2769 unsigned int idx; 2770 int i; 2771 2772 bh = page_buffers(page); 2773 idx = offset >> inode->i_blkbits; 2774 2775 for (i = 0; i < idx; i++) 2776 bh = bh->b_this_page; 2777 2778 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2779 return 0; 2780 return 1; 2781 } 2782 2783 static int ext4_da_write_end(struct file *file, 2784 struct address_space *mapping, 2785 loff_t pos, unsigned len, unsigned copied, 2786 struct page *page, void *fsdata) 2787 { 2788 struct inode *inode = mapping->host; 2789 int ret = 0, ret2; 2790 handle_t *handle = ext4_journal_current_handle(); 2791 loff_t new_i_size; 2792 unsigned long start, end; 2793 int write_mode = (int)(unsigned long)fsdata; 2794 2795 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2796 return ext4_write_end(file, mapping, pos, 2797 len, copied, page, fsdata); 2798 2799 trace_ext4_da_write_end(inode, pos, len, copied); 2800 start = pos & (PAGE_CACHE_SIZE - 1); 2801 end = start + copied - 1; 2802 2803 /* 2804 * generic_write_end() will run mark_inode_dirty() if i_size 2805 * changes. So let's piggyback the i_disksize mark_inode_dirty 2806 * into that. 2807 */ 2808 new_i_size = pos + copied; 2809 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2810 if (ext4_has_inline_data(inode) || 2811 ext4_da_should_update_i_disksize(page, end)) { 2812 ext4_update_i_disksize(inode, new_i_size); 2813 /* We need to mark inode dirty even if 2814 * new_i_size is less that inode->i_size 2815 * bu greater than i_disksize.(hint delalloc) 2816 */ 2817 ext4_mark_inode_dirty(handle, inode); 2818 } 2819 } 2820 2821 if (write_mode != CONVERT_INLINE_DATA && 2822 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2823 ext4_has_inline_data(inode)) 2824 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2825 page); 2826 else 2827 ret2 = generic_write_end(file, mapping, pos, len, copied, 2828 page, fsdata); 2829 2830 copied = ret2; 2831 if (ret2 < 0) 2832 ret = ret2; 2833 ret2 = ext4_journal_stop(handle); 2834 if (!ret) 2835 ret = ret2; 2836 2837 return ret ? ret : copied; 2838 } 2839 2840 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2841 unsigned int length) 2842 { 2843 /* 2844 * Drop reserved blocks 2845 */ 2846 BUG_ON(!PageLocked(page)); 2847 if (!page_has_buffers(page)) 2848 goto out; 2849 2850 ext4_da_page_release_reservation(page, offset, length); 2851 2852 out: 2853 ext4_invalidatepage(page, offset, length); 2854 2855 return; 2856 } 2857 2858 /* 2859 * Force all delayed allocation blocks to be allocated for a given inode. 2860 */ 2861 int ext4_alloc_da_blocks(struct inode *inode) 2862 { 2863 trace_ext4_alloc_da_blocks(inode); 2864 2865 if (!EXT4_I(inode)->i_reserved_data_blocks) 2866 return 0; 2867 2868 /* 2869 * We do something simple for now. The filemap_flush() will 2870 * also start triggering a write of the data blocks, which is 2871 * not strictly speaking necessary (and for users of 2872 * laptop_mode, not even desirable). However, to do otherwise 2873 * would require replicating code paths in: 2874 * 2875 * ext4_writepages() -> 2876 * write_cache_pages() ---> (via passed in callback function) 2877 * __mpage_da_writepage() --> 2878 * mpage_add_bh_to_extent() 2879 * mpage_da_map_blocks() 2880 * 2881 * The problem is that write_cache_pages(), located in 2882 * mm/page-writeback.c, marks pages clean in preparation for 2883 * doing I/O, which is not desirable if we're not planning on 2884 * doing I/O at all. 2885 * 2886 * We could call write_cache_pages(), and then redirty all of 2887 * the pages by calling redirty_page_for_writepage() but that 2888 * would be ugly in the extreme. So instead we would need to 2889 * replicate parts of the code in the above functions, 2890 * simplifying them because we wouldn't actually intend to 2891 * write out the pages, but rather only collect contiguous 2892 * logical block extents, call the multi-block allocator, and 2893 * then update the buffer heads with the block allocations. 2894 * 2895 * For now, though, we'll cheat by calling filemap_flush(), 2896 * which will map the blocks, and start the I/O, but not 2897 * actually wait for the I/O to complete. 2898 */ 2899 return filemap_flush(inode->i_mapping); 2900 } 2901 2902 /* 2903 * bmap() is special. It gets used by applications such as lilo and by 2904 * the swapper to find the on-disk block of a specific piece of data. 2905 * 2906 * Naturally, this is dangerous if the block concerned is still in the 2907 * journal. If somebody makes a swapfile on an ext4 data-journaling 2908 * filesystem and enables swap, then they may get a nasty shock when the 2909 * data getting swapped to that swapfile suddenly gets overwritten by 2910 * the original zero's written out previously to the journal and 2911 * awaiting writeback in the kernel's buffer cache. 2912 * 2913 * So, if we see any bmap calls here on a modified, data-journaled file, 2914 * take extra steps to flush any blocks which might be in the cache. 2915 */ 2916 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2917 { 2918 struct inode *inode = mapping->host; 2919 journal_t *journal; 2920 int err; 2921 2922 /* 2923 * We can get here for an inline file via the FIBMAP ioctl 2924 */ 2925 if (ext4_has_inline_data(inode)) 2926 return 0; 2927 2928 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2929 test_opt(inode->i_sb, DELALLOC)) { 2930 /* 2931 * With delalloc we want to sync the file 2932 * so that we can make sure we allocate 2933 * blocks for file 2934 */ 2935 filemap_write_and_wait(mapping); 2936 } 2937 2938 if (EXT4_JOURNAL(inode) && 2939 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2940 /* 2941 * This is a REALLY heavyweight approach, but the use of 2942 * bmap on dirty files is expected to be extremely rare: 2943 * only if we run lilo or swapon on a freshly made file 2944 * do we expect this to happen. 2945 * 2946 * (bmap requires CAP_SYS_RAWIO so this does not 2947 * represent an unprivileged user DOS attack --- we'd be 2948 * in trouble if mortal users could trigger this path at 2949 * will.) 2950 * 2951 * NB. EXT4_STATE_JDATA is not set on files other than 2952 * regular files. If somebody wants to bmap a directory 2953 * or symlink and gets confused because the buffer 2954 * hasn't yet been flushed to disk, they deserve 2955 * everything they get. 2956 */ 2957 2958 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2959 journal = EXT4_JOURNAL(inode); 2960 jbd2_journal_lock_updates(journal); 2961 err = jbd2_journal_flush(journal); 2962 jbd2_journal_unlock_updates(journal); 2963 2964 if (err) 2965 return 0; 2966 } 2967 2968 return generic_block_bmap(mapping, block, ext4_get_block); 2969 } 2970 2971 static int ext4_readpage(struct file *file, struct page *page) 2972 { 2973 int ret = -EAGAIN; 2974 struct inode *inode = page->mapping->host; 2975 2976 trace_ext4_readpage(page); 2977 2978 if (ext4_has_inline_data(inode)) 2979 ret = ext4_readpage_inline(inode, page); 2980 2981 if (ret == -EAGAIN) 2982 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2983 2984 return ret; 2985 } 2986 2987 static int 2988 ext4_readpages(struct file *file, struct address_space *mapping, 2989 struct list_head *pages, unsigned nr_pages) 2990 { 2991 struct inode *inode = mapping->host; 2992 2993 /* If the file has inline data, no need to do readpages. */ 2994 if (ext4_has_inline_data(inode)) 2995 return 0; 2996 2997 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2998 } 2999 3000 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3001 unsigned int length) 3002 { 3003 trace_ext4_invalidatepage(page, offset, length); 3004 3005 /* No journalling happens on data buffers when this function is used */ 3006 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3007 3008 block_invalidatepage(page, offset, length); 3009 } 3010 3011 static int __ext4_journalled_invalidatepage(struct page *page, 3012 unsigned int offset, 3013 unsigned int length) 3014 { 3015 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3016 3017 trace_ext4_journalled_invalidatepage(page, offset, length); 3018 3019 /* 3020 * If it's a full truncate we just forget about the pending dirtying 3021 */ 3022 if (offset == 0 && length == PAGE_CACHE_SIZE) 3023 ClearPageChecked(page); 3024 3025 return jbd2_journal_invalidatepage(journal, page, offset, length); 3026 } 3027 3028 /* Wrapper for aops... */ 3029 static void ext4_journalled_invalidatepage(struct page *page, 3030 unsigned int offset, 3031 unsigned int length) 3032 { 3033 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3034 } 3035 3036 static int ext4_releasepage(struct page *page, gfp_t wait) 3037 { 3038 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3039 3040 trace_ext4_releasepage(page); 3041 3042 /* Page has dirty journalled data -> cannot release */ 3043 if (PageChecked(page)) 3044 return 0; 3045 if (journal) 3046 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3047 else 3048 return try_to_free_buffers(page); 3049 } 3050 3051 /* 3052 * ext4_get_block used when preparing for a DIO write or buffer write. 3053 * We allocate an uinitialized extent if blocks haven't been allocated. 3054 * The extent will be converted to initialized after the IO is complete. 3055 */ 3056 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3057 struct buffer_head *bh_result, int create) 3058 { 3059 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3060 inode->i_ino, create); 3061 return _ext4_get_block(inode, iblock, bh_result, 3062 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3063 } 3064 3065 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock, 3066 struct buffer_head *bh_result, int create) 3067 { 3068 int ret; 3069 3070 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n", 3071 inode->i_ino, create); 3072 ret = _ext4_get_block(inode, iblock, bh_result, 0); 3073 /* 3074 * Blocks should have been preallocated! ext4_file_write_iter() checks 3075 * that. 3076 */ 3077 WARN_ON_ONCE(!buffer_mapped(bh_result)); 3078 3079 return ret; 3080 } 3081 3082 int ext4_get_block_dax(struct inode *inode, sector_t iblock, 3083 struct buffer_head *bh_result, int create) 3084 { 3085 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT; 3086 if (create) 3087 flags |= EXT4_GET_BLOCKS_CREATE; 3088 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n", 3089 inode->i_ino, create); 3090 return _ext4_get_block(inode, iblock, bh_result, flags); 3091 } 3092 3093 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3094 ssize_t size, void *private) 3095 { 3096 ext4_io_end_t *io_end = iocb->private; 3097 3098 /* if not async direct IO just return */ 3099 if (!io_end) 3100 return; 3101 3102 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3103 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3104 iocb->private, io_end->inode->i_ino, iocb, offset, 3105 size); 3106 3107 iocb->private = NULL; 3108 io_end->offset = offset; 3109 io_end->size = size; 3110 ext4_put_io_end(io_end); 3111 } 3112 3113 /* 3114 * For ext4 extent files, ext4 will do direct-io write to holes, 3115 * preallocated extents, and those write extend the file, no need to 3116 * fall back to buffered IO. 3117 * 3118 * For holes, we fallocate those blocks, mark them as unwritten 3119 * If those blocks were preallocated, we mark sure they are split, but 3120 * still keep the range to write as unwritten. 3121 * 3122 * The unwritten extents will be converted to written when DIO is completed. 3123 * For async direct IO, since the IO may still pending when return, we 3124 * set up an end_io call back function, which will do the conversion 3125 * when async direct IO completed. 3126 * 3127 * If the O_DIRECT write will extend the file then add this inode to the 3128 * orphan list. So recovery will truncate it back to the original size 3129 * if the machine crashes during the write. 3130 * 3131 */ 3132 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3133 loff_t offset) 3134 { 3135 struct file *file = iocb->ki_filp; 3136 struct inode *inode = file->f_mapping->host; 3137 ssize_t ret; 3138 size_t count = iov_iter_count(iter); 3139 int overwrite = 0; 3140 get_block_t *get_block_func = NULL; 3141 int dio_flags = 0; 3142 loff_t final_size = offset + count; 3143 ext4_io_end_t *io_end = NULL; 3144 3145 /* Use the old path for reads and writes beyond i_size. */ 3146 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3147 return ext4_ind_direct_IO(iocb, iter, offset); 3148 3149 BUG_ON(iocb->private == NULL); 3150 3151 /* 3152 * Make all waiters for direct IO properly wait also for extent 3153 * conversion. This also disallows race between truncate() and 3154 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3155 */ 3156 if (iov_iter_rw(iter) == WRITE) 3157 inode_dio_begin(inode); 3158 3159 /* If we do a overwrite dio, i_mutex locking can be released */ 3160 overwrite = *((int *)iocb->private); 3161 3162 if (overwrite) 3163 mutex_unlock(&inode->i_mutex); 3164 3165 /* 3166 * We could direct write to holes and fallocate. 3167 * 3168 * Allocated blocks to fill the hole are marked as 3169 * unwritten to prevent parallel buffered read to expose 3170 * the stale data before DIO complete the data IO. 3171 * 3172 * As to previously fallocated extents, ext4 get_block will 3173 * just simply mark the buffer mapped but still keep the 3174 * extents unwritten. 3175 * 3176 * For non AIO case, we will convert those unwritten extents 3177 * to written after return back from blockdev_direct_IO. 3178 * 3179 * For async DIO, the conversion needs to be deferred when the 3180 * IO is completed. The ext4 end_io callback function will be 3181 * called to take care of the conversion work. Here for async 3182 * case, we allocate an io_end structure to hook to the iocb. 3183 */ 3184 iocb->private = NULL; 3185 ext4_inode_aio_set(inode, NULL); 3186 if (!is_sync_kiocb(iocb)) { 3187 io_end = ext4_init_io_end(inode, GFP_NOFS); 3188 if (!io_end) { 3189 ret = -ENOMEM; 3190 goto retake_lock; 3191 } 3192 /* 3193 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3194 */ 3195 iocb->private = ext4_get_io_end(io_end); 3196 /* 3197 * we save the io structure for current async direct 3198 * IO, so that later ext4_map_blocks() could flag the 3199 * io structure whether there is a unwritten extents 3200 * needs to be converted when IO is completed. 3201 */ 3202 ext4_inode_aio_set(inode, io_end); 3203 } 3204 3205 if (overwrite) { 3206 get_block_func = ext4_get_block_overwrite; 3207 } else { 3208 get_block_func = ext4_get_block_write; 3209 dio_flags = DIO_LOCKING; 3210 } 3211 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3212 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3213 #endif 3214 if (IS_DAX(inode)) 3215 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3216 ext4_end_io_dio, dio_flags); 3217 else 3218 ret = __blockdev_direct_IO(iocb, inode, 3219 inode->i_sb->s_bdev, iter, offset, 3220 get_block_func, 3221 ext4_end_io_dio, NULL, dio_flags); 3222 3223 /* 3224 * Put our reference to io_end. This can free the io_end structure e.g. 3225 * in sync IO case or in case of error. It can even perform extent 3226 * conversion if all bios we submitted finished before we got here. 3227 * Note that in that case iocb->private can be already set to NULL 3228 * here. 3229 */ 3230 if (io_end) { 3231 ext4_inode_aio_set(inode, NULL); 3232 ext4_put_io_end(io_end); 3233 /* 3234 * When no IO was submitted ext4_end_io_dio() was not 3235 * called so we have to put iocb's reference. 3236 */ 3237 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3238 WARN_ON(iocb->private != io_end); 3239 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3240 ext4_put_io_end(io_end); 3241 iocb->private = NULL; 3242 } 3243 } 3244 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3245 EXT4_STATE_DIO_UNWRITTEN)) { 3246 int err; 3247 /* 3248 * for non AIO case, since the IO is already 3249 * completed, we could do the conversion right here 3250 */ 3251 err = ext4_convert_unwritten_extents(NULL, inode, 3252 offset, ret); 3253 if (err < 0) 3254 ret = err; 3255 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3256 } 3257 3258 retake_lock: 3259 if (iov_iter_rw(iter) == WRITE) 3260 inode_dio_end(inode); 3261 /* take i_mutex locking again if we do a ovewrite dio */ 3262 if (overwrite) 3263 mutex_lock(&inode->i_mutex); 3264 3265 return ret; 3266 } 3267 3268 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3269 loff_t offset) 3270 { 3271 struct file *file = iocb->ki_filp; 3272 struct inode *inode = file->f_mapping->host; 3273 size_t count = iov_iter_count(iter); 3274 ssize_t ret; 3275 3276 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3277 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3278 return 0; 3279 #endif 3280 3281 /* 3282 * If we are doing data journalling we don't support O_DIRECT 3283 */ 3284 if (ext4_should_journal_data(inode)) 3285 return 0; 3286 3287 /* Let buffer I/O handle the inline data case. */ 3288 if (ext4_has_inline_data(inode)) 3289 return 0; 3290 3291 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3292 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3293 ret = ext4_ext_direct_IO(iocb, iter, offset); 3294 else 3295 ret = ext4_ind_direct_IO(iocb, iter, offset); 3296 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3297 return ret; 3298 } 3299 3300 /* 3301 * Pages can be marked dirty completely asynchronously from ext4's journalling 3302 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3303 * much here because ->set_page_dirty is called under VFS locks. The page is 3304 * not necessarily locked. 3305 * 3306 * We cannot just dirty the page and leave attached buffers clean, because the 3307 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3308 * or jbddirty because all the journalling code will explode. 3309 * 3310 * So what we do is to mark the page "pending dirty" and next time writepage 3311 * is called, propagate that into the buffers appropriately. 3312 */ 3313 static int ext4_journalled_set_page_dirty(struct page *page) 3314 { 3315 SetPageChecked(page); 3316 return __set_page_dirty_nobuffers(page); 3317 } 3318 3319 static const struct address_space_operations ext4_aops = { 3320 .readpage = ext4_readpage, 3321 .readpages = ext4_readpages, 3322 .writepage = ext4_writepage, 3323 .writepages = ext4_writepages, 3324 .write_begin = ext4_write_begin, 3325 .write_end = ext4_write_end, 3326 .bmap = ext4_bmap, 3327 .invalidatepage = ext4_invalidatepage, 3328 .releasepage = ext4_releasepage, 3329 .direct_IO = ext4_direct_IO, 3330 .migratepage = buffer_migrate_page, 3331 .is_partially_uptodate = block_is_partially_uptodate, 3332 .error_remove_page = generic_error_remove_page, 3333 }; 3334 3335 static const struct address_space_operations ext4_journalled_aops = { 3336 .readpage = ext4_readpage, 3337 .readpages = ext4_readpages, 3338 .writepage = ext4_writepage, 3339 .writepages = ext4_writepages, 3340 .write_begin = ext4_write_begin, 3341 .write_end = ext4_journalled_write_end, 3342 .set_page_dirty = ext4_journalled_set_page_dirty, 3343 .bmap = ext4_bmap, 3344 .invalidatepage = ext4_journalled_invalidatepage, 3345 .releasepage = ext4_releasepage, 3346 .direct_IO = ext4_direct_IO, 3347 .is_partially_uptodate = block_is_partially_uptodate, 3348 .error_remove_page = generic_error_remove_page, 3349 }; 3350 3351 static const struct address_space_operations ext4_da_aops = { 3352 .readpage = ext4_readpage, 3353 .readpages = ext4_readpages, 3354 .writepage = ext4_writepage, 3355 .writepages = ext4_writepages, 3356 .write_begin = ext4_da_write_begin, 3357 .write_end = ext4_da_write_end, 3358 .bmap = ext4_bmap, 3359 .invalidatepage = ext4_da_invalidatepage, 3360 .releasepage = ext4_releasepage, 3361 .direct_IO = ext4_direct_IO, 3362 .migratepage = buffer_migrate_page, 3363 .is_partially_uptodate = block_is_partially_uptodate, 3364 .error_remove_page = generic_error_remove_page, 3365 }; 3366 3367 void ext4_set_aops(struct inode *inode) 3368 { 3369 switch (ext4_inode_journal_mode(inode)) { 3370 case EXT4_INODE_ORDERED_DATA_MODE: 3371 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3372 break; 3373 case EXT4_INODE_WRITEBACK_DATA_MODE: 3374 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3375 break; 3376 case EXT4_INODE_JOURNAL_DATA_MODE: 3377 inode->i_mapping->a_ops = &ext4_journalled_aops; 3378 return; 3379 default: 3380 BUG(); 3381 } 3382 if (test_opt(inode->i_sb, DELALLOC)) 3383 inode->i_mapping->a_ops = &ext4_da_aops; 3384 else 3385 inode->i_mapping->a_ops = &ext4_aops; 3386 } 3387 3388 static int __ext4_block_zero_page_range(handle_t *handle, 3389 struct address_space *mapping, loff_t from, loff_t length) 3390 { 3391 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3392 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3393 unsigned blocksize, pos; 3394 ext4_lblk_t iblock; 3395 struct inode *inode = mapping->host; 3396 struct buffer_head *bh; 3397 struct page *page; 3398 int err = 0; 3399 3400 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3401 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3402 if (!page) 3403 return -ENOMEM; 3404 3405 blocksize = inode->i_sb->s_blocksize; 3406 3407 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3408 3409 if (!page_has_buffers(page)) 3410 create_empty_buffers(page, blocksize, 0); 3411 3412 /* Find the buffer that contains "offset" */ 3413 bh = page_buffers(page); 3414 pos = blocksize; 3415 while (offset >= pos) { 3416 bh = bh->b_this_page; 3417 iblock++; 3418 pos += blocksize; 3419 } 3420 if (buffer_freed(bh)) { 3421 BUFFER_TRACE(bh, "freed: skip"); 3422 goto unlock; 3423 } 3424 if (!buffer_mapped(bh)) { 3425 BUFFER_TRACE(bh, "unmapped"); 3426 ext4_get_block(inode, iblock, bh, 0); 3427 /* unmapped? It's a hole - nothing to do */ 3428 if (!buffer_mapped(bh)) { 3429 BUFFER_TRACE(bh, "still unmapped"); 3430 goto unlock; 3431 } 3432 } 3433 3434 /* Ok, it's mapped. Make sure it's up-to-date */ 3435 if (PageUptodate(page)) 3436 set_buffer_uptodate(bh); 3437 3438 if (!buffer_uptodate(bh)) { 3439 err = -EIO; 3440 ll_rw_block(READ, 1, &bh); 3441 wait_on_buffer(bh); 3442 /* Uhhuh. Read error. Complain and punt. */ 3443 if (!buffer_uptodate(bh)) 3444 goto unlock; 3445 if (S_ISREG(inode->i_mode) && 3446 ext4_encrypted_inode(inode)) { 3447 /* We expect the key to be set. */ 3448 BUG_ON(!ext4_has_encryption_key(inode)); 3449 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3450 WARN_ON_ONCE(ext4_decrypt(page)); 3451 } 3452 } 3453 if (ext4_should_journal_data(inode)) { 3454 BUFFER_TRACE(bh, "get write access"); 3455 err = ext4_journal_get_write_access(handle, bh); 3456 if (err) 3457 goto unlock; 3458 } 3459 zero_user(page, offset, length); 3460 BUFFER_TRACE(bh, "zeroed end of block"); 3461 3462 if (ext4_should_journal_data(inode)) { 3463 err = ext4_handle_dirty_metadata(handle, inode, bh); 3464 } else { 3465 err = 0; 3466 mark_buffer_dirty(bh); 3467 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3468 err = ext4_jbd2_file_inode(handle, inode); 3469 } 3470 3471 unlock: 3472 unlock_page(page); 3473 page_cache_release(page); 3474 return err; 3475 } 3476 3477 /* 3478 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3479 * starting from file offset 'from'. The range to be zero'd must 3480 * be contained with in one block. If the specified range exceeds 3481 * the end of the block it will be shortened to end of the block 3482 * that cooresponds to 'from' 3483 */ 3484 static int ext4_block_zero_page_range(handle_t *handle, 3485 struct address_space *mapping, loff_t from, loff_t length) 3486 { 3487 struct inode *inode = mapping->host; 3488 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3489 unsigned blocksize = inode->i_sb->s_blocksize; 3490 unsigned max = blocksize - (offset & (blocksize - 1)); 3491 3492 /* 3493 * correct length if it does not fall between 3494 * 'from' and the end of the block 3495 */ 3496 if (length > max || length < 0) 3497 length = max; 3498 3499 if (IS_DAX(inode)) 3500 return dax_zero_page_range(inode, from, length, ext4_get_block); 3501 return __ext4_block_zero_page_range(handle, mapping, from, length); 3502 } 3503 3504 /* 3505 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3506 * up to the end of the block which corresponds to `from'. 3507 * This required during truncate. We need to physically zero the tail end 3508 * of that block so it doesn't yield old data if the file is later grown. 3509 */ 3510 static int ext4_block_truncate_page(handle_t *handle, 3511 struct address_space *mapping, loff_t from) 3512 { 3513 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3514 unsigned length; 3515 unsigned blocksize; 3516 struct inode *inode = mapping->host; 3517 3518 blocksize = inode->i_sb->s_blocksize; 3519 length = blocksize - (offset & (blocksize - 1)); 3520 3521 return ext4_block_zero_page_range(handle, mapping, from, length); 3522 } 3523 3524 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3525 loff_t lstart, loff_t length) 3526 { 3527 struct super_block *sb = inode->i_sb; 3528 struct address_space *mapping = inode->i_mapping; 3529 unsigned partial_start, partial_end; 3530 ext4_fsblk_t start, end; 3531 loff_t byte_end = (lstart + length - 1); 3532 int err = 0; 3533 3534 partial_start = lstart & (sb->s_blocksize - 1); 3535 partial_end = byte_end & (sb->s_blocksize - 1); 3536 3537 start = lstart >> sb->s_blocksize_bits; 3538 end = byte_end >> sb->s_blocksize_bits; 3539 3540 /* Handle partial zero within the single block */ 3541 if (start == end && 3542 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3543 err = ext4_block_zero_page_range(handle, mapping, 3544 lstart, length); 3545 return err; 3546 } 3547 /* Handle partial zero out on the start of the range */ 3548 if (partial_start) { 3549 err = ext4_block_zero_page_range(handle, mapping, 3550 lstart, sb->s_blocksize); 3551 if (err) 3552 return err; 3553 } 3554 /* Handle partial zero out on the end of the range */ 3555 if (partial_end != sb->s_blocksize - 1) 3556 err = ext4_block_zero_page_range(handle, mapping, 3557 byte_end - partial_end, 3558 partial_end + 1); 3559 return err; 3560 } 3561 3562 int ext4_can_truncate(struct inode *inode) 3563 { 3564 if (S_ISREG(inode->i_mode)) 3565 return 1; 3566 if (S_ISDIR(inode->i_mode)) 3567 return 1; 3568 if (S_ISLNK(inode->i_mode)) 3569 return !ext4_inode_is_fast_symlink(inode); 3570 return 0; 3571 } 3572 3573 /* 3574 * We have to make sure i_disksize gets properly updated before we truncate 3575 * page cache due to hole punching or zero range. Otherwise i_disksize update 3576 * can get lost as it may have been postponed to submission of writeback but 3577 * that will never happen after we truncate page cache. 3578 */ 3579 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3580 loff_t len) 3581 { 3582 handle_t *handle; 3583 loff_t size = i_size_read(inode); 3584 3585 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3586 if (offset > size || offset + len < size) 3587 return 0; 3588 3589 if (EXT4_I(inode)->i_disksize >= size) 3590 return 0; 3591 3592 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3593 if (IS_ERR(handle)) 3594 return PTR_ERR(handle); 3595 ext4_update_i_disksize(inode, size); 3596 ext4_mark_inode_dirty(handle, inode); 3597 ext4_journal_stop(handle); 3598 3599 return 0; 3600 } 3601 3602 /* 3603 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3604 * associated with the given offset and length 3605 * 3606 * @inode: File inode 3607 * @offset: The offset where the hole will begin 3608 * @len: The length of the hole 3609 * 3610 * Returns: 0 on success or negative on failure 3611 */ 3612 3613 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3614 { 3615 struct super_block *sb = inode->i_sb; 3616 ext4_lblk_t first_block, stop_block; 3617 struct address_space *mapping = inode->i_mapping; 3618 loff_t first_block_offset, last_block_offset; 3619 handle_t *handle; 3620 unsigned int credits; 3621 int ret = 0; 3622 3623 if (!S_ISREG(inode->i_mode)) 3624 return -EOPNOTSUPP; 3625 3626 trace_ext4_punch_hole(inode, offset, length, 0); 3627 3628 /* 3629 * Write out all dirty pages to avoid race conditions 3630 * Then release them. 3631 */ 3632 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3633 ret = filemap_write_and_wait_range(mapping, offset, 3634 offset + length - 1); 3635 if (ret) 3636 return ret; 3637 } 3638 3639 mutex_lock(&inode->i_mutex); 3640 3641 /* No need to punch hole beyond i_size */ 3642 if (offset >= inode->i_size) 3643 goto out_mutex; 3644 3645 /* 3646 * If the hole extends beyond i_size, set the hole 3647 * to end after the page that contains i_size 3648 */ 3649 if (offset + length > inode->i_size) { 3650 length = inode->i_size + 3651 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3652 offset; 3653 } 3654 3655 if (offset & (sb->s_blocksize - 1) || 3656 (offset + length) & (sb->s_blocksize - 1)) { 3657 /* 3658 * Attach jinode to inode for jbd2 if we do any zeroing of 3659 * partial block 3660 */ 3661 ret = ext4_inode_attach_jinode(inode); 3662 if (ret < 0) 3663 goto out_mutex; 3664 3665 } 3666 3667 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3668 ext4_inode_block_unlocked_dio(inode); 3669 inode_dio_wait(inode); 3670 3671 /* 3672 * Prevent page faults from reinstantiating pages we have released from 3673 * page cache. 3674 */ 3675 down_write(&EXT4_I(inode)->i_mmap_sem); 3676 first_block_offset = round_up(offset, sb->s_blocksize); 3677 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3678 3679 /* Now release the pages and zero block aligned part of pages*/ 3680 if (last_block_offset > first_block_offset) { 3681 ret = ext4_update_disksize_before_punch(inode, offset, length); 3682 if (ret) 3683 goto out_dio; 3684 truncate_pagecache_range(inode, first_block_offset, 3685 last_block_offset); 3686 } 3687 3688 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3689 credits = ext4_writepage_trans_blocks(inode); 3690 else 3691 credits = ext4_blocks_for_truncate(inode); 3692 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3693 if (IS_ERR(handle)) { 3694 ret = PTR_ERR(handle); 3695 ext4_std_error(sb, ret); 3696 goto out_dio; 3697 } 3698 3699 ret = ext4_zero_partial_blocks(handle, inode, offset, 3700 length); 3701 if (ret) 3702 goto out_stop; 3703 3704 first_block = (offset + sb->s_blocksize - 1) >> 3705 EXT4_BLOCK_SIZE_BITS(sb); 3706 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3707 3708 /* If there are no blocks to remove, return now */ 3709 if (first_block >= stop_block) 3710 goto out_stop; 3711 3712 down_write(&EXT4_I(inode)->i_data_sem); 3713 ext4_discard_preallocations(inode); 3714 3715 ret = ext4_es_remove_extent(inode, first_block, 3716 stop_block - first_block); 3717 if (ret) { 3718 up_write(&EXT4_I(inode)->i_data_sem); 3719 goto out_stop; 3720 } 3721 3722 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3723 ret = ext4_ext_remove_space(inode, first_block, 3724 stop_block - 1); 3725 else 3726 ret = ext4_ind_remove_space(handle, inode, first_block, 3727 stop_block); 3728 3729 up_write(&EXT4_I(inode)->i_data_sem); 3730 if (IS_SYNC(inode)) 3731 ext4_handle_sync(handle); 3732 3733 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3734 ext4_mark_inode_dirty(handle, inode); 3735 out_stop: 3736 ext4_journal_stop(handle); 3737 out_dio: 3738 up_write(&EXT4_I(inode)->i_mmap_sem); 3739 ext4_inode_resume_unlocked_dio(inode); 3740 out_mutex: 3741 mutex_unlock(&inode->i_mutex); 3742 return ret; 3743 } 3744 3745 int ext4_inode_attach_jinode(struct inode *inode) 3746 { 3747 struct ext4_inode_info *ei = EXT4_I(inode); 3748 struct jbd2_inode *jinode; 3749 3750 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3751 return 0; 3752 3753 jinode = jbd2_alloc_inode(GFP_KERNEL); 3754 spin_lock(&inode->i_lock); 3755 if (!ei->jinode) { 3756 if (!jinode) { 3757 spin_unlock(&inode->i_lock); 3758 return -ENOMEM; 3759 } 3760 ei->jinode = jinode; 3761 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3762 jinode = NULL; 3763 } 3764 spin_unlock(&inode->i_lock); 3765 if (unlikely(jinode != NULL)) 3766 jbd2_free_inode(jinode); 3767 return 0; 3768 } 3769 3770 /* 3771 * ext4_truncate() 3772 * 3773 * We block out ext4_get_block() block instantiations across the entire 3774 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3775 * simultaneously on behalf of the same inode. 3776 * 3777 * As we work through the truncate and commit bits of it to the journal there 3778 * is one core, guiding principle: the file's tree must always be consistent on 3779 * disk. We must be able to restart the truncate after a crash. 3780 * 3781 * The file's tree may be transiently inconsistent in memory (although it 3782 * probably isn't), but whenever we close off and commit a journal transaction, 3783 * the contents of (the filesystem + the journal) must be consistent and 3784 * restartable. It's pretty simple, really: bottom up, right to left (although 3785 * left-to-right works OK too). 3786 * 3787 * Note that at recovery time, journal replay occurs *before* the restart of 3788 * truncate against the orphan inode list. 3789 * 3790 * The committed inode has the new, desired i_size (which is the same as 3791 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3792 * that this inode's truncate did not complete and it will again call 3793 * ext4_truncate() to have another go. So there will be instantiated blocks 3794 * to the right of the truncation point in a crashed ext4 filesystem. But 3795 * that's fine - as long as they are linked from the inode, the post-crash 3796 * ext4_truncate() run will find them and release them. 3797 */ 3798 void ext4_truncate(struct inode *inode) 3799 { 3800 struct ext4_inode_info *ei = EXT4_I(inode); 3801 unsigned int credits; 3802 handle_t *handle; 3803 struct address_space *mapping = inode->i_mapping; 3804 3805 /* 3806 * There is a possibility that we're either freeing the inode 3807 * or it's a completely new inode. In those cases we might not 3808 * have i_mutex locked because it's not necessary. 3809 */ 3810 if (!(inode->i_state & (I_NEW|I_FREEING))) 3811 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3812 trace_ext4_truncate_enter(inode); 3813 3814 if (!ext4_can_truncate(inode)) 3815 return; 3816 3817 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3818 3819 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3820 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3821 3822 if (ext4_has_inline_data(inode)) { 3823 int has_inline = 1; 3824 3825 ext4_inline_data_truncate(inode, &has_inline); 3826 if (has_inline) 3827 return; 3828 } 3829 3830 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3831 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3832 if (ext4_inode_attach_jinode(inode) < 0) 3833 return; 3834 } 3835 3836 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3837 credits = ext4_writepage_trans_blocks(inode); 3838 else 3839 credits = ext4_blocks_for_truncate(inode); 3840 3841 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3842 if (IS_ERR(handle)) { 3843 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3844 return; 3845 } 3846 3847 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3848 ext4_block_truncate_page(handle, mapping, inode->i_size); 3849 3850 /* 3851 * We add the inode to the orphan list, so that if this 3852 * truncate spans multiple transactions, and we crash, we will 3853 * resume the truncate when the filesystem recovers. It also 3854 * marks the inode dirty, to catch the new size. 3855 * 3856 * Implication: the file must always be in a sane, consistent 3857 * truncatable state while each transaction commits. 3858 */ 3859 if (ext4_orphan_add(handle, inode)) 3860 goto out_stop; 3861 3862 down_write(&EXT4_I(inode)->i_data_sem); 3863 3864 ext4_discard_preallocations(inode); 3865 3866 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3867 ext4_ext_truncate(handle, inode); 3868 else 3869 ext4_ind_truncate(handle, inode); 3870 3871 up_write(&ei->i_data_sem); 3872 3873 if (IS_SYNC(inode)) 3874 ext4_handle_sync(handle); 3875 3876 out_stop: 3877 /* 3878 * If this was a simple ftruncate() and the file will remain alive, 3879 * then we need to clear up the orphan record which we created above. 3880 * However, if this was a real unlink then we were called by 3881 * ext4_evict_inode(), and we allow that function to clean up the 3882 * orphan info for us. 3883 */ 3884 if (inode->i_nlink) 3885 ext4_orphan_del(handle, inode); 3886 3887 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3888 ext4_mark_inode_dirty(handle, inode); 3889 ext4_journal_stop(handle); 3890 3891 trace_ext4_truncate_exit(inode); 3892 } 3893 3894 /* 3895 * ext4_get_inode_loc returns with an extra refcount against the inode's 3896 * underlying buffer_head on success. If 'in_mem' is true, we have all 3897 * data in memory that is needed to recreate the on-disk version of this 3898 * inode. 3899 */ 3900 static int __ext4_get_inode_loc(struct inode *inode, 3901 struct ext4_iloc *iloc, int in_mem) 3902 { 3903 struct ext4_group_desc *gdp; 3904 struct buffer_head *bh; 3905 struct super_block *sb = inode->i_sb; 3906 ext4_fsblk_t block; 3907 int inodes_per_block, inode_offset; 3908 3909 iloc->bh = NULL; 3910 if (!ext4_valid_inum(sb, inode->i_ino)) 3911 return -EFSCORRUPTED; 3912 3913 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3914 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3915 if (!gdp) 3916 return -EIO; 3917 3918 /* 3919 * Figure out the offset within the block group inode table 3920 */ 3921 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3922 inode_offset = ((inode->i_ino - 1) % 3923 EXT4_INODES_PER_GROUP(sb)); 3924 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3925 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3926 3927 bh = sb_getblk(sb, block); 3928 if (unlikely(!bh)) 3929 return -ENOMEM; 3930 if (!buffer_uptodate(bh)) { 3931 lock_buffer(bh); 3932 3933 /* 3934 * If the buffer has the write error flag, we have failed 3935 * to write out another inode in the same block. In this 3936 * case, we don't have to read the block because we may 3937 * read the old inode data successfully. 3938 */ 3939 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3940 set_buffer_uptodate(bh); 3941 3942 if (buffer_uptodate(bh)) { 3943 /* someone brought it uptodate while we waited */ 3944 unlock_buffer(bh); 3945 goto has_buffer; 3946 } 3947 3948 /* 3949 * If we have all information of the inode in memory and this 3950 * is the only valid inode in the block, we need not read the 3951 * block. 3952 */ 3953 if (in_mem) { 3954 struct buffer_head *bitmap_bh; 3955 int i, start; 3956 3957 start = inode_offset & ~(inodes_per_block - 1); 3958 3959 /* Is the inode bitmap in cache? */ 3960 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3961 if (unlikely(!bitmap_bh)) 3962 goto make_io; 3963 3964 /* 3965 * If the inode bitmap isn't in cache then the 3966 * optimisation may end up performing two reads instead 3967 * of one, so skip it. 3968 */ 3969 if (!buffer_uptodate(bitmap_bh)) { 3970 brelse(bitmap_bh); 3971 goto make_io; 3972 } 3973 for (i = start; i < start + inodes_per_block; i++) { 3974 if (i == inode_offset) 3975 continue; 3976 if (ext4_test_bit(i, bitmap_bh->b_data)) 3977 break; 3978 } 3979 brelse(bitmap_bh); 3980 if (i == start + inodes_per_block) { 3981 /* all other inodes are free, so skip I/O */ 3982 memset(bh->b_data, 0, bh->b_size); 3983 set_buffer_uptodate(bh); 3984 unlock_buffer(bh); 3985 goto has_buffer; 3986 } 3987 } 3988 3989 make_io: 3990 /* 3991 * If we need to do any I/O, try to pre-readahead extra 3992 * blocks from the inode table. 3993 */ 3994 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3995 ext4_fsblk_t b, end, table; 3996 unsigned num; 3997 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3998 3999 table = ext4_inode_table(sb, gdp); 4000 /* s_inode_readahead_blks is always a power of 2 */ 4001 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4002 if (table > b) 4003 b = table; 4004 end = b + ra_blks; 4005 num = EXT4_INODES_PER_GROUP(sb); 4006 if (ext4_has_group_desc_csum(sb)) 4007 num -= ext4_itable_unused_count(sb, gdp); 4008 table += num / inodes_per_block; 4009 if (end > table) 4010 end = table; 4011 while (b <= end) 4012 sb_breadahead(sb, b++); 4013 } 4014 4015 /* 4016 * There are other valid inodes in the buffer, this inode 4017 * has in-inode xattrs, or we don't have this inode in memory. 4018 * Read the block from disk. 4019 */ 4020 trace_ext4_load_inode(inode); 4021 get_bh(bh); 4022 bh->b_end_io = end_buffer_read_sync; 4023 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4024 wait_on_buffer(bh); 4025 if (!buffer_uptodate(bh)) { 4026 EXT4_ERROR_INODE_BLOCK(inode, block, 4027 "unable to read itable block"); 4028 brelse(bh); 4029 return -EIO; 4030 } 4031 } 4032 has_buffer: 4033 iloc->bh = bh; 4034 return 0; 4035 } 4036 4037 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4038 { 4039 /* We have all inode data except xattrs in memory here. */ 4040 return __ext4_get_inode_loc(inode, iloc, 4041 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4042 } 4043 4044 void ext4_set_inode_flags(struct inode *inode) 4045 { 4046 unsigned int flags = EXT4_I(inode)->i_flags; 4047 unsigned int new_fl = 0; 4048 4049 if (flags & EXT4_SYNC_FL) 4050 new_fl |= S_SYNC; 4051 if (flags & EXT4_APPEND_FL) 4052 new_fl |= S_APPEND; 4053 if (flags & EXT4_IMMUTABLE_FL) 4054 new_fl |= S_IMMUTABLE; 4055 if (flags & EXT4_NOATIME_FL) 4056 new_fl |= S_NOATIME; 4057 if (flags & EXT4_DIRSYNC_FL) 4058 new_fl |= S_DIRSYNC; 4059 if (test_opt(inode->i_sb, DAX)) 4060 new_fl |= S_DAX; 4061 inode_set_flags(inode, new_fl, 4062 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4063 } 4064 4065 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4066 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4067 { 4068 unsigned int vfs_fl; 4069 unsigned long old_fl, new_fl; 4070 4071 do { 4072 vfs_fl = ei->vfs_inode.i_flags; 4073 old_fl = ei->i_flags; 4074 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4075 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4076 EXT4_DIRSYNC_FL); 4077 if (vfs_fl & S_SYNC) 4078 new_fl |= EXT4_SYNC_FL; 4079 if (vfs_fl & S_APPEND) 4080 new_fl |= EXT4_APPEND_FL; 4081 if (vfs_fl & S_IMMUTABLE) 4082 new_fl |= EXT4_IMMUTABLE_FL; 4083 if (vfs_fl & S_NOATIME) 4084 new_fl |= EXT4_NOATIME_FL; 4085 if (vfs_fl & S_DIRSYNC) 4086 new_fl |= EXT4_DIRSYNC_FL; 4087 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4088 } 4089 4090 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4091 struct ext4_inode_info *ei) 4092 { 4093 blkcnt_t i_blocks ; 4094 struct inode *inode = &(ei->vfs_inode); 4095 struct super_block *sb = inode->i_sb; 4096 4097 if (ext4_has_feature_huge_file(sb)) { 4098 /* we are using combined 48 bit field */ 4099 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4100 le32_to_cpu(raw_inode->i_blocks_lo); 4101 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4102 /* i_blocks represent file system block size */ 4103 return i_blocks << (inode->i_blkbits - 9); 4104 } else { 4105 return i_blocks; 4106 } 4107 } else { 4108 return le32_to_cpu(raw_inode->i_blocks_lo); 4109 } 4110 } 4111 4112 static inline void ext4_iget_extra_inode(struct inode *inode, 4113 struct ext4_inode *raw_inode, 4114 struct ext4_inode_info *ei) 4115 { 4116 __le32 *magic = (void *)raw_inode + 4117 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4118 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4119 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4120 ext4_find_inline_data_nolock(inode); 4121 } else 4122 EXT4_I(inode)->i_inline_off = 0; 4123 } 4124 4125 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4126 { 4127 struct ext4_iloc iloc; 4128 struct ext4_inode *raw_inode; 4129 struct ext4_inode_info *ei; 4130 struct inode *inode; 4131 journal_t *journal = EXT4_SB(sb)->s_journal; 4132 long ret; 4133 int block; 4134 uid_t i_uid; 4135 gid_t i_gid; 4136 4137 inode = iget_locked(sb, ino); 4138 if (!inode) 4139 return ERR_PTR(-ENOMEM); 4140 if (!(inode->i_state & I_NEW)) 4141 return inode; 4142 4143 ei = EXT4_I(inode); 4144 iloc.bh = NULL; 4145 4146 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4147 if (ret < 0) 4148 goto bad_inode; 4149 raw_inode = ext4_raw_inode(&iloc); 4150 4151 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4152 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4153 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4154 EXT4_INODE_SIZE(inode->i_sb)) { 4155 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4156 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4157 EXT4_INODE_SIZE(inode->i_sb)); 4158 ret = -EFSCORRUPTED; 4159 goto bad_inode; 4160 } 4161 } else 4162 ei->i_extra_isize = 0; 4163 4164 /* Precompute checksum seed for inode metadata */ 4165 if (ext4_has_metadata_csum(sb)) { 4166 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4167 __u32 csum; 4168 __le32 inum = cpu_to_le32(inode->i_ino); 4169 __le32 gen = raw_inode->i_generation; 4170 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4171 sizeof(inum)); 4172 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4173 sizeof(gen)); 4174 } 4175 4176 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4177 EXT4_ERROR_INODE(inode, "checksum invalid"); 4178 ret = -EFSBADCRC; 4179 goto bad_inode; 4180 } 4181 4182 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4183 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4184 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4185 if (!(test_opt(inode->i_sb, NO_UID32))) { 4186 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4187 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4188 } 4189 i_uid_write(inode, i_uid); 4190 i_gid_write(inode, i_gid); 4191 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4192 4193 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4194 ei->i_inline_off = 0; 4195 ei->i_dir_start_lookup = 0; 4196 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4197 /* We now have enough fields to check if the inode was active or not. 4198 * This is needed because nfsd might try to access dead inodes 4199 * the test is that same one that e2fsck uses 4200 * NeilBrown 1999oct15 4201 */ 4202 if (inode->i_nlink == 0) { 4203 if ((inode->i_mode == 0 || 4204 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4205 ino != EXT4_BOOT_LOADER_INO) { 4206 /* this inode is deleted */ 4207 ret = -ESTALE; 4208 goto bad_inode; 4209 } 4210 /* The only unlinked inodes we let through here have 4211 * valid i_mode and are being read by the orphan 4212 * recovery code: that's fine, we're about to complete 4213 * the process of deleting those. 4214 * OR it is the EXT4_BOOT_LOADER_INO which is 4215 * not initialized on a new filesystem. */ 4216 } 4217 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4218 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4219 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4220 if (ext4_has_feature_64bit(sb)) 4221 ei->i_file_acl |= 4222 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4223 inode->i_size = ext4_isize(raw_inode); 4224 ei->i_disksize = inode->i_size; 4225 #ifdef CONFIG_QUOTA 4226 ei->i_reserved_quota = 0; 4227 #endif 4228 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4229 ei->i_block_group = iloc.block_group; 4230 ei->i_last_alloc_group = ~0; 4231 /* 4232 * NOTE! The in-memory inode i_data array is in little-endian order 4233 * even on big-endian machines: we do NOT byteswap the block numbers! 4234 */ 4235 for (block = 0; block < EXT4_N_BLOCKS; block++) 4236 ei->i_data[block] = raw_inode->i_block[block]; 4237 INIT_LIST_HEAD(&ei->i_orphan); 4238 4239 /* 4240 * Set transaction id's of transactions that have to be committed 4241 * to finish f[data]sync. We set them to currently running transaction 4242 * as we cannot be sure that the inode or some of its metadata isn't 4243 * part of the transaction - the inode could have been reclaimed and 4244 * now it is reread from disk. 4245 */ 4246 if (journal) { 4247 transaction_t *transaction; 4248 tid_t tid; 4249 4250 read_lock(&journal->j_state_lock); 4251 if (journal->j_running_transaction) 4252 transaction = journal->j_running_transaction; 4253 else 4254 transaction = journal->j_committing_transaction; 4255 if (transaction) 4256 tid = transaction->t_tid; 4257 else 4258 tid = journal->j_commit_sequence; 4259 read_unlock(&journal->j_state_lock); 4260 ei->i_sync_tid = tid; 4261 ei->i_datasync_tid = tid; 4262 } 4263 4264 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4265 if (ei->i_extra_isize == 0) { 4266 /* The extra space is currently unused. Use it. */ 4267 ei->i_extra_isize = sizeof(struct ext4_inode) - 4268 EXT4_GOOD_OLD_INODE_SIZE; 4269 } else { 4270 ext4_iget_extra_inode(inode, raw_inode, ei); 4271 } 4272 } 4273 4274 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4275 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4276 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4277 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4278 4279 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4280 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4281 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4282 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4283 inode->i_version |= 4284 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4285 } 4286 } 4287 4288 ret = 0; 4289 if (ei->i_file_acl && 4290 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4291 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4292 ei->i_file_acl); 4293 ret = -EFSCORRUPTED; 4294 goto bad_inode; 4295 } else if (!ext4_has_inline_data(inode)) { 4296 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4297 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4298 (S_ISLNK(inode->i_mode) && 4299 !ext4_inode_is_fast_symlink(inode)))) 4300 /* Validate extent which is part of inode */ 4301 ret = ext4_ext_check_inode(inode); 4302 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4303 (S_ISLNK(inode->i_mode) && 4304 !ext4_inode_is_fast_symlink(inode))) { 4305 /* Validate block references which are part of inode */ 4306 ret = ext4_ind_check_inode(inode); 4307 } 4308 } 4309 if (ret) 4310 goto bad_inode; 4311 4312 if (S_ISREG(inode->i_mode)) { 4313 inode->i_op = &ext4_file_inode_operations; 4314 inode->i_fop = &ext4_file_operations; 4315 ext4_set_aops(inode); 4316 } else if (S_ISDIR(inode->i_mode)) { 4317 inode->i_op = &ext4_dir_inode_operations; 4318 inode->i_fop = &ext4_dir_operations; 4319 } else if (S_ISLNK(inode->i_mode)) { 4320 if (ext4_encrypted_inode(inode)) { 4321 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4322 ext4_set_aops(inode); 4323 } else if (ext4_inode_is_fast_symlink(inode)) { 4324 inode->i_link = (char *)ei->i_data; 4325 inode->i_op = &ext4_fast_symlink_inode_operations; 4326 nd_terminate_link(ei->i_data, inode->i_size, 4327 sizeof(ei->i_data) - 1); 4328 } else { 4329 inode->i_op = &ext4_symlink_inode_operations; 4330 ext4_set_aops(inode); 4331 } 4332 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4333 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4334 inode->i_op = &ext4_special_inode_operations; 4335 if (raw_inode->i_block[0]) 4336 init_special_inode(inode, inode->i_mode, 4337 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4338 else 4339 init_special_inode(inode, inode->i_mode, 4340 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4341 } else if (ino == EXT4_BOOT_LOADER_INO) { 4342 make_bad_inode(inode); 4343 } else { 4344 ret = -EFSCORRUPTED; 4345 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4346 goto bad_inode; 4347 } 4348 brelse(iloc.bh); 4349 ext4_set_inode_flags(inode); 4350 unlock_new_inode(inode); 4351 return inode; 4352 4353 bad_inode: 4354 brelse(iloc.bh); 4355 iget_failed(inode); 4356 return ERR_PTR(ret); 4357 } 4358 4359 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4360 { 4361 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4362 return ERR_PTR(-EFSCORRUPTED); 4363 return ext4_iget(sb, ino); 4364 } 4365 4366 static int ext4_inode_blocks_set(handle_t *handle, 4367 struct ext4_inode *raw_inode, 4368 struct ext4_inode_info *ei) 4369 { 4370 struct inode *inode = &(ei->vfs_inode); 4371 u64 i_blocks = inode->i_blocks; 4372 struct super_block *sb = inode->i_sb; 4373 4374 if (i_blocks <= ~0U) { 4375 /* 4376 * i_blocks can be represented in a 32 bit variable 4377 * as multiple of 512 bytes 4378 */ 4379 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4380 raw_inode->i_blocks_high = 0; 4381 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4382 return 0; 4383 } 4384 if (!ext4_has_feature_huge_file(sb)) 4385 return -EFBIG; 4386 4387 if (i_blocks <= 0xffffffffffffULL) { 4388 /* 4389 * i_blocks can be represented in a 48 bit variable 4390 * as multiple of 512 bytes 4391 */ 4392 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4393 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4394 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4395 } else { 4396 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4397 /* i_block is stored in file system block size */ 4398 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4399 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4400 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4401 } 4402 return 0; 4403 } 4404 4405 struct other_inode { 4406 unsigned long orig_ino; 4407 struct ext4_inode *raw_inode; 4408 }; 4409 4410 static int other_inode_match(struct inode * inode, unsigned long ino, 4411 void *data) 4412 { 4413 struct other_inode *oi = (struct other_inode *) data; 4414 4415 if ((inode->i_ino != ino) || 4416 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4417 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4418 ((inode->i_state & I_DIRTY_TIME) == 0)) 4419 return 0; 4420 spin_lock(&inode->i_lock); 4421 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4422 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4423 (inode->i_state & I_DIRTY_TIME)) { 4424 struct ext4_inode_info *ei = EXT4_I(inode); 4425 4426 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4427 spin_unlock(&inode->i_lock); 4428 4429 spin_lock(&ei->i_raw_lock); 4430 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4431 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4432 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4433 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4434 spin_unlock(&ei->i_raw_lock); 4435 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4436 return -1; 4437 } 4438 spin_unlock(&inode->i_lock); 4439 return -1; 4440 } 4441 4442 /* 4443 * Opportunistically update the other time fields for other inodes in 4444 * the same inode table block. 4445 */ 4446 static void ext4_update_other_inodes_time(struct super_block *sb, 4447 unsigned long orig_ino, char *buf) 4448 { 4449 struct other_inode oi; 4450 unsigned long ino; 4451 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4452 int inode_size = EXT4_INODE_SIZE(sb); 4453 4454 oi.orig_ino = orig_ino; 4455 /* 4456 * Calculate the first inode in the inode table block. Inode 4457 * numbers are one-based. That is, the first inode in a block 4458 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4459 */ 4460 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4461 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4462 if (ino == orig_ino) 4463 continue; 4464 oi.raw_inode = (struct ext4_inode *) buf; 4465 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4466 } 4467 } 4468 4469 /* 4470 * Post the struct inode info into an on-disk inode location in the 4471 * buffer-cache. This gobbles the caller's reference to the 4472 * buffer_head in the inode location struct. 4473 * 4474 * The caller must have write access to iloc->bh. 4475 */ 4476 static int ext4_do_update_inode(handle_t *handle, 4477 struct inode *inode, 4478 struct ext4_iloc *iloc) 4479 { 4480 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4481 struct ext4_inode_info *ei = EXT4_I(inode); 4482 struct buffer_head *bh = iloc->bh; 4483 struct super_block *sb = inode->i_sb; 4484 int err = 0, rc, block; 4485 int need_datasync = 0, set_large_file = 0; 4486 uid_t i_uid; 4487 gid_t i_gid; 4488 4489 spin_lock(&ei->i_raw_lock); 4490 4491 /* For fields not tracked in the in-memory inode, 4492 * initialise them to zero for new inodes. */ 4493 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4494 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4495 4496 ext4_get_inode_flags(ei); 4497 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4498 i_uid = i_uid_read(inode); 4499 i_gid = i_gid_read(inode); 4500 if (!(test_opt(inode->i_sb, NO_UID32))) { 4501 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4502 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4503 /* 4504 * Fix up interoperability with old kernels. Otherwise, old inodes get 4505 * re-used with the upper 16 bits of the uid/gid intact 4506 */ 4507 if (!ei->i_dtime) { 4508 raw_inode->i_uid_high = 4509 cpu_to_le16(high_16_bits(i_uid)); 4510 raw_inode->i_gid_high = 4511 cpu_to_le16(high_16_bits(i_gid)); 4512 } else { 4513 raw_inode->i_uid_high = 0; 4514 raw_inode->i_gid_high = 0; 4515 } 4516 } else { 4517 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4518 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4519 raw_inode->i_uid_high = 0; 4520 raw_inode->i_gid_high = 0; 4521 } 4522 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4523 4524 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4525 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4526 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4527 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4528 4529 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4530 if (err) { 4531 spin_unlock(&ei->i_raw_lock); 4532 goto out_brelse; 4533 } 4534 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4535 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4536 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4537 raw_inode->i_file_acl_high = 4538 cpu_to_le16(ei->i_file_acl >> 32); 4539 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4540 if (ei->i_disksize != ext4_isize(raw_inode)) { 4541 ext4_isize_set(raw_inode, ei->i_disksize); 4542 need_datasync = 1; 4543 } 4544 if (ei->i_disksize > 0x7fffffffULL) { 4545 if (!ext4_has_feature_large_file(sb) || 4546 EXT4_SB(sb)->s_es->s_rev_level == 4547 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4548 set_large_file = 1; 4549 } 4550 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4551 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4552 if (old_valid_dev(inode->i_rdev)) { 4553 raw_inode->i_block[0] = 4554 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4555 raw_inode->i_block[1] = 0; 4556 } else { 4557 raw_inode->i_block[0] = 0; 4558 raw_inode->i_block[1] = 4559 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4560 raw_inode->i_block[2] = 0; 4561 } 4562 } else if (!ext4_has_inline_data(inode)) { 4563 for (block = 0; block < EXT4_N_BLOCKS; block++) 4564 raw_inode->i_block[block] = ei->i_data[block]; 4565 } 4566 4567 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4568 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4569 if (ei->i_extra_isize) { 4570 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4571 raw_inode->i_version_hi = 4572 cpu_to_le32(inode->i_version >> 32); 4573 raw_inode->i_extra_isize = 4574 cpu_to_le16(ei->i_extra_isize); 4575 } 4576 } 4577 ext4_inode_csum_set(inode, raw_inode, ei); 4578 spin_unlock(&ei->i_raw_lock); 4579 if (inode->i_sb->s_flags & MS_LAZYTIME) 4580 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4581 bh->b_data); 4582 4583 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4584 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4585 if (!err) 4586 err = rc; 4587 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4588 if (set_large_file) { 4589 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4590 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4591 if (err) 4592 goto out_brelse; 4593 ext4_update_dynamic_rev(sb); 4594 ext4_set_feature_large_file(sb); 4595 ext4_handle_sync(handle); 4596 err = ext4_handle_dirty_super(handle, sb); 4597 } 4598 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4599 out_brelse: 4600 brelse(bh); 4601 ext4_std_error(inode->i_sb, err); 4602 return err; 4603 } 4604 4605 /* 4606 * ext4_write_inode() 4607 * 4608 * We are called from a few places: 4609 * 4610 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4611 * Here, there will be no transaction running. We wait for any running 4612 * transaction to commit. 4613 * 4614 * - Within flush work (sys_sync(), kupdate and such). 4615 * We wait on commit, if told to. 4616 * 4617 * - Within iput_final() -> write_inode_now() 4618 * We wait on commit, if told to. 4619 * 4620 * In all cases it is actually safe for us to return without doing anything, 4621 * because the inode has been copied into a raw inode buffer in 4622 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4623 * writeback. 4624 * 4625 * Note that we are absolutely dependent upon all inode dirtiers doing the 4626 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4627 * which we are interested. 4628 * 4629 * It would be a bug for them to not do this. The code: 4630 * 4631 * mark_inode_dirty(inode) 4632 * stuff(); 4633 * inode->i_size = expr; 4634 * 4635 * is in error because write_inode() could occur while `stuff()' is running, 4636 * and the new i_size will be lost. Plus the inode will no longer be on the 4637 * superblock's dirty inode list. 4638 */ 4639 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4640 { 4641 int err; 4642 4643 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4644 return 0; 4645 4646 if (EXT4_SB(inode->i_sb)->s_journal) { 4647 if (ext4_journal_current_handle()) { 4648 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4649 dump_stack(); 4650 return -EIO; 4651 } 4652 4653 /* 4654 * No need to force transaction in WB_SYNC_NONE mode. Also 4655 * ext4_sync_fs() will force the commit after everything is 4656 * written. 4657 */ 4658 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4659 return 0; 4660 4661 err = ext4_force_commit(inode->i_sb); 4662 } else { 4663 struct ext4_iloc iloc; 4664 4665 err = __ext4_get_inode_loc(inode, &iloc, 0); 4666 if (err) 4667 return err; 4668 /* 4669 * sync(2) will flush the whole buffer cache. No need to do 4670 * it here separately for each inode. 4671 */ 4672 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4673 sync_dirty_buffer(iloc.bh); 4674 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4675 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4676 "IO error syncing inode"); 4677 err = -EIO; 4678 } 4679 brelse(iloc.bh); 4680 } 4681 return err; 4682 } 4683 4684 /* 4685 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4686 * buffers that are attached to a page stradding i_size and are undergoing 4687 * commit. In that case we have to wait for commit to finish and try again. 4688 */ 4689 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4690 { 4691 struct page *page; 4692 unsigned offset; 4693 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4694 tid_t commit_tid = 0; 4695 int ret; 4696 4697 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4698 /* 4699 * All buffers in the last page remain valid? Then there's nothing to 4700 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4701 * blocksize case 4702 */ 4703 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4704 return; 4705 while (1) { 4706 page = find_lock_page(inode->i_mapping, 4707 inode->i_size >> PAGE_CACHE_SHIFT); 4708 if (!page) 4709 return; 4710 ret = __ext4_journalled_invalidatepage(page, offset, 4711 PAGE_CACHE_SIZE - offset); 4712 unlock_page(page); 4713 page_cache_release(page); 4714 if (ret != -EBUSY) 4715 return; 4716 commit_tid = 0; 4717 read_lock(&journal->j_state_lock); 4718 if (journal->j_committing_transaction) 4719 commit_tid = journal->j_committing_transaction->t_tid; 4720 read_unlock(&journal->j_state_lock); 4721 if (commit_tid) 4722 jbd2_log_wait_commit(journal, commit_tid); 4723 } 4724 } 4725 4726 /* 4727 * ext4_setattr() 4728 * 4729 * Called from notify_change. 4730 * 4731 * We want to trap VFS attempts to truncate the file as soon as 4732 * possible. In particular, we want to make sure that when the VFS 4733 * shrinks i_size, we put the inode on the orphan list and modify 4734 * i_disksize immediately, so that during the subsequent flushing of 4735 * dirty pages and freeing of disk blocks, we can guarantee that any 4736 * commit will leave the blocks being flushed in an unused state on 4737 * disk. (On recovery, the inode will get truncated and the blocks will 4738 * be freed, so we have a strong guarantee that no future commit will 4739 * leave these blocks visible to the user.) 4740 * 4741 * Another thing we have to assure is that if we are in ordered mode 4742 * and inode is still attached to the committing transaction, we must 4743 * we start writeout of all the dirty pages which are being truncated. 4744 * This way we are sure that all the data written in the previous 4745 * transaction are already on disk (truncate waits for pages under 4746 * writeback). 4747 * 4748 * Called with inode->i_mutex down. 4749 */ 4750 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4751 { 4752 struct inode *inode = d_inode(dentry); 4753 int error, rc = 0; 4754 int orphan = 0; 4755 const unsigned int ia_valid = attr->ia_valid; 4756 4757 error = inode_change_ok(inode, attr); 4758 if (error) 4759 return error; 4760 4761 if (is_quota_modification(inode, attr)) { 4762 error = dquot_initialize(inode); 4763 if (error) 4764 return error; 4765 } 4766 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4767 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4768 handle_t *handle; 4769 4770 /* (user+group)*(old+new) structure, inode write (sb, 4771 * inode block, ? - but truncate inode update has it) */ 4772 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4773 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4774 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4775 if (IS_ERR(handle)) { 4776 error = PTR_ERR(handle); 4777 goto err_out; 4778 } 4779 error = dquot_transfer(inode, attr); 4780 if (error) { 4781 ext4_journal_stop(handle); 4782 return error; 4783 } 4784 /* Update corresponding info in inode so that everything is in 4785 * one transaction */ 4786 if (attr->ia_valid & ATTR_UID) 4787 inode->i_uid = attr->ia_uid; 4788 if (attr->ia_valid & ATTR_GID) 4789 inode->i_gid = attr->ia_gid; 4790 error = ext4_mark_inode_dirty(handle, inode); 4791 ext4_journal_stop(handle); 4792 } 4793 4794 if (attr->ia_valid & ATTR_SIZE) { 4795 handle_t *handle; 4796 loff_t oldsize = inode->i_size; 4797 int shrink = (attr->ia_size <= inode->i_size); 4798 4799 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4801 4802 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4803 return -EFBIG; 4804 } 4805 if (!S_ISREG(inode->i_mode)) 4806 return -EINVAL; 4807 4808 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4809 inode_inc_iversion(inode); 4810 4811 if (ext4_should_order_data(inode) && 4812 (attr->ia_size < inode->i_size)) { 4813 error = ext4_begin_ordered_truncate(inode, 4814 attr->ia_size); 4815 if (error) 4816 goto err_out; 4817 } 4818 if (attr->ia_size != inode->i_size) { 4819 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4820 if (IS_ERR(handle)) { 4821 error = PTR_ERR(handle); 4822 goto err_out; 4823 } 4824 if (ext4_handle_valid(handle) && shrink) { 4825 error = ext4_orphan_add(handle, inode); 4826 orphan = 1; 4827 } 4828 /* 4829 * Update c/mtime on truncate up, ext4_truncate() will 4830 * update c/mtime in shrink case below 4831 */ 4832 if (!shrink) { 4833 inode->i_mtime = ext4_current_time(inode); 4834 inode->i_ctime = inode->i_mtime; 4835 } 4836 down_write(&EXT4_I(inode)->i_data_sem); 4837 EXT4_I(inode)->i_disksize = attr->ia_size; 4838 rc = ext4_mark_inode_dirty(handle, inode); 4839 if (!error) 4840 error = rc; 4841 /* 4842 * We have to update i_size under i_data_sem together 4843 * with i_disksize to avoid races with writeback code 4844 * running ext4_wb_update_i_disksize(). 4845 */ 4846 if (!error) 4847 i_size_write(inode, attr->ia_size); 4848 up_write(&EXT4_I(inode)->i_data_sem); 4849 ext4_journal_stop(handle); 4850 if (error) { 4851 if (orphan) 4852 ext4_orphan_del(NULL, inode); 4853 goto err_out; 4854 } 4855 } 4856 if (!shrink) 4857 pagecache_isize_extended(inode, oldsize, inode->i_size); 4858 4859 /* 4860 * Blocks are going to be removed from the inode. Wait 4861 * for dio in flight. Temporarily disable 4862 * dioread_nolock to prevent livelock. 4863 */ 4864 if (orphan) { 4865 if (!ext4_should_journal_data(inode)) { 4866 ext4_inode_block_unlocked_dio(inode); 4867 inode_dio_wait(inode); 4868 ext4_inode_resume_unlocked_dio(inode); 4869 } else 4870 ext4_wait_for_tail_page_commit(inode); 4871 } 4872 down_write(&EXT4_I(inode)->i_mmap_sem); 4873 /* 4874 * Truncate pagecache after we've waited for commit 4875 * in data=journal mode to make pages freeable. 4876 */ 4877 truncate_pagecache(inode, inode->i_size); 4878 if (shrink) 4879 ext4_truncate(inode); 4880 up_write(&EXT4_I(inode)->i_mmap_sem); 4881 } 4882 4883 if (!rc) { 4884 setattr_copy(inode, attr); 4885 mark_inode_dirty(inode); 4886 } 4887 4888 /* 4889 * If the call to ext4_truncate failed to get a transaction handle at 4890 * all, we need to clean up the in-core orphan list manually. 4891 */ 4892 if (orphan && inode->i_nlink) 4893 ext4_orphan_del(NULL, inode); 4894 4895 if (!rc && (ia_valid & ATTR_MODE)) 4896 rc = posix_acl_chmod(inode, inode->i_mode); 4897 4898 err_out: 4899 ext4_std_error(inode->i_sb, error); 4900 if (!error) 4901 error = rc; 4902 return error; 4903 } 4904 4905 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4906 struct kstat *stat) 4907 { 4908 struct inode *inode; 4909 unsigned long long delalloc_blocks; 4910 4911 inode = d_inode(dentry); 4912 generic_fillattr(inode, stat); 4913 4914 /* 4915 * If there is inline data in the inode, the inode will normally not 4916 * have data blocks allocated (it may have an external xattr block). 4917 * Report at least one sector for such files, so tools like tar, rsync, 4918 * others doen't incorrectly think the file is completely sparse. 4919 */ 4920 if (unlikely(ext4_has_inline_data(inode))) 4921 stat->blocks += (stat->size + 511) >> 9; 4922 4923 /* 4924 * We can't update i_blocks if the block allocation is delayed 4925 * otherwise in the case of system crash before the real block 4926 * allocation is done, we will have i_blocks inconsistent with 4927 * on-disk file blocks. 4928 * We always keep i_blocks updated together with real 4929 * allocation. But to not confuse with user, stat 4930 * will return the blocks that include the delayed allocation 4931 * blocks for this file. 4932 */ 4933 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4934 EXT4_I(inode)->i_reserved_data_blocks); 4935 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4936 return 0; 4937 } 4938 4939 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4940 int pextents) 4941 { 4942 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4943 return ext4_ind_trans_blocks(inode, lblocks); 4944 return ext4_ext_index_trans_blocks(inode, pextents); 4945 } 4946 4947 /* 4948 * Account for index blocks, block groups bitmaps and block group 4949 * descriptor blocks if modify datablocks and index blocks 4950 * worse case, the indexs blocks spread over different block groups 4951 * 4952 * If datablocks are discontiguous, they are possible to spread over 4953 * different block groups too. If they are contiguous, with flexbg, 4954 * they could still across block group boundary. 4955 * 4956 * Also account for superblock, inode, quota and xattr blocks 4957 */ 4958 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4959 int pextents) 4960 { 4961 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4962 int gdpblocks; 4963 int idxblocks; 4964 int ret = 0; 4965 4966 /* 4967 * How many index blocks need to touch to map @lblocks logical blocks 4968 * to @pextents physical extents? 4969 */ 4970 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4971 4972 ret = idxblocks; 4973 4974 /* 4975 * Now let's see how many group bitmaps and group descriptors need 4976 * to account 4977 */ 4978 groups = idxblocks + pextents; 4979 gdpblocks = groups; 4980 if (groups > ngroups) 4981 groups = ngroups; 4982 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4983 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4984 4985 /* bitmaps and block group descriptor blocks */ 4986 ret += groups + gdpblocks; 4987 4988 /* Blocks for super block, inode, quota and xattr blocks */ 4989 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4990 4991 return ret; 4992 } 4993 4994 /* 4995 * Calculate the total number of credits to reserve to fit 4996 * the modification of a single pages into a single transaction, 4997 * which may include multiple chunks of block allocations. 4998 * 4999 * This could be called via ext4_write_begin() 5000 * 5001 * We need to consider the worse case, when 5002 * one new block per extent. 5003 */ 5004 int ext4_writepage_trans_blocks(struct inode *inode) 5005 { 5006 int bpp = ext4_journal_blocks_per_page(inode); 5007 int ret; 5008 5009 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5010 5011 /* Account for data blocks for journalled mode */ 5012 if (ext4_should_journal_data(inode)) 5013 ret += bpp; 5014 return ret; 5015 } 5016 5017 /* 5018 * Calculate the journal credits for a chunk of data modification. 5019 * 5020 * This is called from DIO, fallocate or whoever calling 5021 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5022 * 5023 * journal buffers for data blocks are not included here, as DIO 5024 * and fallocate do no need to journal data buffers. 5025 */ 5026 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5027 { 5028 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5029 } 5030 5031 /* 5032 * The caller must have previously called ext4_reserve_inode_write(). 5033 * Give this, we know that the caller already has write access to iloc->bh. 5034 */ 5035 int ext4_mark_iloc_dirty(handle_t *handle, 5036 struct inode *inode, struct ext4_iloc *iloc) 5037 { 5038 int err = 0; 5039 5040 if (IS_I_VERSION(inode)) 5041 inode_inc_iversion(inode); 5042 5043 /* the do_update_inode consumes one bh->b_count */ 5044 get_bh(iloc->bh); 5045 5046 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5047 err = ext4_do_update_inode(handle, inode, iloc); 5048 put_bh(iloc->bh); 5049 return err; 5050 } 5051 5052 /* 5053 * On success, We end up with an outstanding reference count against 5054 * iloc->bh. This _must_ be cleaned up later. 5055 */ 5056 5057 int 5058 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5059 struct ext4_iloc *iloc) 5060 { 5061 int err; 5062 5063 err = ext4_get_inode_loc(inode, iloc); 5064 if (!err) { 5065 BUFFER_TRACE(iloc->bh, "get_write_access"); 5066 err = ext4_journal_get_write_access(handle, iloc->bh); 5067 if (err) { 5068 brelse(iloc->bh); 5069 iloc->bh = NULL; 5070 } 5071 } 5072 ext4_std_error(inode->i_sb, err); 5073 return err; 5074 } 5075 5076 /* 5077 * Expand an inode by new_extra_isize bytes. 5078 * Returns 0 on success or negative error number on failure. 5079 */ 5080 static int ext4_expand_extra_isize(struct inode *inode, 5081 unsigned int new_extra_isize, 5082 struct ext4_iloc iloc, 5083 handle_t *handle) 5084 { 5085 struct ext4_inode *raw_inode; 5086 struct ext4_xattr_ibody_header *header; 5087 5088 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5089 return 0; 5090 5091 raw_inode = ext4_raw_inode(&iloc); 5092 5093 header = IHDR(inode, raw_inode); 5094 5095 /* No extended attributes present */ 5096 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5097 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5098 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5099 new_extra_isize); 5100 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5101 return 0; 5102 } 5103 5104 /* try to expand with EAs present */ 5105 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5106 raw_inode, handle); 5107 } 5108 5109 /* 5110 * What we do here is to mark the in-core inode as clean with respect to inode 5111 * dirtiness (it may still be data-dirty). 5112 * This means that the in-core inode may be reaped by prune_icache 5113 * without having to perform any I/O. This is a very good thing, 5114 * because *any* task may call prune_icache - even ones which 5115 * have a transaction open against a different journal. 5116 * 5117 * Is this cheating? Not really. Sure, we haven't written the 5118 * inode out, but prune_icache isn't a user-visible syncing function. 5119 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5120 * we start and wait on commits. 5121 */ 5122 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5123 { 5124 struct ext4_iloc iloc; 5125 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5126 static unsigned int mnt_count; 5127 int err, ret; 5128 5129 might_sleep(); 5130 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5131 err = ext4_reserve_inode_write(handle, inode, &iloc); 5132 if (ext4_handle_valid(handle) && 5133 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5134 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5135 /* 5136 * We need extra buffer credits since we may write into EA block 5137 * with this same handle. If journal_extend fails, then it will 5138 * only result in a minor loss of functionality for that inode. 5139 * If this is felt to be critical, then e2fsck should be run to 5140 * force a large enough s_min_extra_isize. 5141 */ 5142 if ((jbd2_journal_extend(handle, 5143 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5144 ret = ext4_expand_extra_isize(inode, 5145 sbi->s_want_extra_isize, 5146 iloc, handle); 5147 if (ret) { 5148 ext4_set_inode_state(inode, 5149 EXT4_STATE_NO_EXPAND); 5150 if (mnt_count != 5151 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5152 ext4_warning(inode->i_sb, 5153 "Unable to expand inode %lu. Delete" 5154 " some EAs or run e2fsck.", 5155 inode->i_ino); 5156 mnt_count = 5157 le16_to_cpu(sbi->s_es->s_mnt_count); 5158 } 5159 } 5160 } 5161 } 5162 if (!err) 5163 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5164 return err; 5165 } 5166 5167 /* 5168 * ext4_dirty_inode() is called from __mark_inode_dirty() 5169 * 5170 * We're really interested in the case where a file is being extended. 5171 * i_size has been changed by generic_commit_write() and we thus need 5172 * to include the updated inode in the current transaction. 5173 * 5174 * Also, dquot_alloc_block() will always dirty the inode when blocks 5175 * are allocated to the file. 5176 * 5177 * If the inode is marked synchronous, we don't honour that here - doing 5178 * so would cause a commit on atime updates, which we don't bother doing. 5179 * We handle synchronous inodes at the highest possible level. 5180 * 5181 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5182 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5183 * to copy into the on-disk inode structure are the timestamp files. 5184 */ 5185 void ext4_dirty_inode(struct inode *inode, int flags) 5186 { 5187 handle_t *handle; 5188 5189 if (flags == I_DIRTY_TIME) 5190 return; 5191 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5192 if (IS_ERR(handle)) 5193 goto out; 5194 5195 ext4_mark_inode_dirty(handle, inode); 5196 5197 ext4_journal_stop(handle); 5198 out: 5199 return; 5200 } 5201 5202 #if 0 5203 /* 5204 * Bind an inode's backing buffer_head into this transaction, to prevent 5205 * it from being flushed to disk early. Unlike 5206 * ext4_reserve_inode_write, this leaves behind no bh reference and 5207 * returns no iloc structure, so the caller needs to repeat the iloc 5208 * lookup to mark the inode dirty later. 5209 */ 5210 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5211 { 5212 struct ext4_iloc iloc; 5213 5214 int err = 0; 5215 if (handle) { 5216 err = ext4_get_inode_loc(inode, &iloc); 5217 if (!err) { 5218 BUFFER_TRACE(iloc.bh, "get_write_access"); 5219 err = jbd2_journal_get_write_access(handle, iloc.bh); 5220 if (!err) 5221 err = ext4_handle_dirty_metadata(handle, 5222 NULL, 5223 iloc.bh); 5224 brelse(iloc.bh); 5225 } 5226 } 5227 ext4_std_error(inode->i_sb, err); 5228 return err; 5229 } 5230 #endif 5231 5232 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5233 { 5234 journal_t *journal; 5235 handle_t *handle; 5236 int err; 5237 5238 /* 5239 * We have to be very careful here: changing a data block's 5240 * journaling status dynamically is dangerous. If we write a 5241 * data block to the journal, change the status and then delete 5242 * that block, we risk forgetting to revoke the old log record 5243 * from the journal and so a subsequent replay can corrupt data. 5244 * So, first we make sure that the journal is empty and that 5245 * nobody is changing anything. 5246 */ 5247 5248 journal = EXT4_JOURNAL(inode); 5249 if (!journal) 5250 return 0; 5251 if (is_journal_aborted(journal)) 5252 return -EROFS; 5253 /* We have to allocate physical blocks for delalloc blocks 5254 * before flushing journal. otherwise delalloc blocks can not 5255 * be allocated any more. even more truncate on delalloc blocks 5256 * could trigger BUG by flushing delalloc blocks in journal. 5257 * There is no delalloc block in non-journal data mode. 5258 */ 5259 if (val && test_opt(inode->i_sb, DELALLOC)) { 5260 err = ext4_alloc_da_blocks(inode); 5261 if (err < 0) 5262 return err; 5263 } 5264 5265 /* Wait for all existing dio workers */ 5266 ext4_inode_block_unlocked_dio(inode); 5267 inode_dio_wait(inode); 5268 5269 jbd2_journal_lock_updates(journal); 5270 5271 /* 5272 * OK, there are no updates running now, and all cached data is 5273 * synced to disk. We are now in a completely consistent state 5274 * which doesn't have anything in the journal, and we know that 5275 * no filesystem updates are running, so it is safe to modify 5276 * the inode's in-core data-journaling state flag now. 5277 */ 5278 5279 if (val) 5280 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5281 else { 5282 err = jbd2_journal_flush(journal); 5283 if (err < 0) { 5284 jbd2_journal_unlock_updates(journal); 5285 ext4_inode_resume_unlocked_dio(inode); 5286 return err; 5287 } 5288 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5289 } 5290 ext4_set_aops(inode); 5291 5292 jbd2_journal_unlock_updates(journal); 5293 ext4_inode_resume_unlocked_dio(inode); 5294 5295 /* Finally we can mark the inode as dirty. */ 5296 5297 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5298 if (IS_ERR(handle)) 5299 return PTR_ERR(handle); 5300 5301 err = ext4_mark_inode_dirty(handle, inode); 5302 ext4_handle_sync(handle); 5303 ext4_journal_stop(handle); 5304 ext4_std_error(inode->i_sb, err); 5305 5306 return err; 5307 } 5308 5309 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5310 { 5311 return !buffer_mapped(bh); 5312 } 5313 5314 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5315 { 5316 struct page *page = vmf->page; 5317 loff_t size; 5318 unsigned long len; 5319 int ret; 5320 struct file *file = vma->vm_file; 5321 struct inode *inode = file_inode(file); 5322 struct address_space *mapping = inode->i_mapping; 5323 handle_t *handle; 5324 get_block_t *get_block; 5325 int retries = 0; 5326 5327 sb_start_pagefault(inode->i_sb); 5328 file_update_time(vma->vm_file); 5329 5330 down_read(&EXT4_I(inode)->i_mmap_sem); 5331 /* Delalloc case is easy... */ 5332 if (test_opt(inode->i_sb, DELALLOC) && 5333 !ext4_should_journal_data(inode) && 5334 !ext4_nonda_switch(inode->i_sb)) { 5335 do { 5336 ret = block_page_mkwrite(vma, vmf, 5337 ext4_da_get_block_prep); 5338 } while (ret == -ENOSPC && 5339 ext4_should_retry_alloc(inode->i_sb, &retries)); 5340 goto out_ret; 5341 } 5342 5343 lock_page(page); 5344 size = i_size_read(inode); 5345 /* Page got truncated from under us? */ 5346 if (page->mapping != mapping || page_offset(page) > size) { 5347 unlock_page(page); 5348 ret = VM_FAULT_NOPAGE; 5349 goto out; 5350 } 5351 5352 if (page->index == size >> PAGE_CACHE_SHIFT) 5353 len = size & ~PAGE_CACHE_MASK; 5354 else 5355 len = PAGE_CACHE_SIZE; 5356 /* 5357 * Return if we have all the buffers mapped. This avoids the need to do 5358 * journal_start/journal_stop which can block and take a long time 5359 */ 5360 if (page_has_buffers(page)) { 5361 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5362 0, len, NULL, 5363 ext4_bh_unmapped)) { 5364 /* Wait so that we don't change page under IO */ 5365 wait_for_stable_page(page); 5366 ret = VM_FAULT_LOCKED; 5367 goto out; 5368 } 5369 } 5370 unlock_page(page); 5371 /* OK, we need to fill the hole... */ 5372 if (ext4_should_dioread_nolock(inode)) 5373 get_block = ext4_get_block_write; 5374 else 5375 get_block = ext4_get_block; 5376 retry_alloc: 5377 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5378 ext4_writepage_trans_blocks(inode)); 5379 if (IS_ERR(handle)) { 5380 ret = VM_FAULT_SIGBUS; 5381 goto out; 5382 } 5383 ret = block_page_mkwrite(vma, vmf, get_block); 5384 if (!ret && ext4_should_journal_data(inode)) { 5385 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5386 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5387 unlock_page(page); 5388 ret = VM_FAULT_SIGBUS; 5389 ext4_journal_stop(handle); 5390 goto out; 5391 } 5392 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5393 } 5394 ext4_journal_stop(handle); 5395 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5396 goto retry_alloc; 5397 out_ret: 5398 ret = block_page_mkwrite_return(ret); 5399 out: 5400 up_read(&EXT4_I(inode)->i_mmap_sem); 5401 sb_end_pagefault(inode->i_sb); 5402 return ret; 5403 } 5404 5405 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5406 { 5407 struct inode *inode = file_inode(vma->vm_file); 5408 int err; 5409 5410 down_read(&EXT4_I(inode)->i_mmap_sem); 5411 err = filemap_fault(vma, vmf); 5412 up_read(&EXT4_I(inode)->i_mmap_sem); 5413 5414 return err; 5415 } 5416