1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Called at the last iput() if i_nlink is zero. 168 */ 169 void ext4_evict_inode(struct inode *inode) 170 { 171 handle_t *handle; 172 int err; 173 /* 174 * Credits for final inode cleanup and freeing: 175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 176 * (xattr block freeing), bitmap, group descriptor (inode freeing) 177 */ 178 int extra_credits = 6; 179 struct ext4_xattr_inode_array *ea_inode_array = NULL; 180 181 trace_ext4_evict_inode(inode); 182 183 if (inode->i_nlink) { 184 /* 185 * When journalling data dirty buffers are tracked only in the 186 * journal. So although mm thinks everything is clean and 187 * ready for reaping the inode might still have some pages to 188 * write in the running transaction or waiting to be 189 * checkpointed. Thus calling jbd2_journal_invalidatepage() 190 * (via truncate_inode_pages()) to discard these buffers can 191 * cause data loss. Also even if we did not discard these 192 * buffers, we would have no way to find them after the inode 193 * is reaped and thus user could see stale data if he tries to 194 * read them before the transaction is checkpointed. So be 195 * careful and force everything to disk here... We use 196 * ei->i_datasync_tid to store the newest transaction 197 * containing inode's data. 198 * 199 * Note that directories do not have this problem because they 200 * don't use page cache. 201 */ 202 if (inode->i_ino != EXT4_JOURNAL_INO && 203 ext4_should_journal_data(inode) && 204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 205 inode->i_data.nrpages) { 206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 208 209 jbd2_complete_transaction(journal, commit_tid); 210 filemap_write_and_wait(&inode->i_data); 211 } 212 truncate_inode_pages_final(&inode->i_data); 213 214 goto no_delete; 215 } 216 217 if (is_bad_inode(inode)) 218 goto no_delete; 219 dquot_initialize(inode); 220 221 if (ext4_should_order_data(inode)) 222 ext4_begin_ordered_truncate(inode, 0); 223 truncate_inode_pages_final(&inode->i_data); 224 225 /* 226 * Protect us against freezing - iput() caller didn't have to have any 227 * protection against it 228 */ 229 sb_start_intwrite(inode->i_sb); 230 231 if (!IS_NOQUOTA(inode)) 232 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 233 234 /* 235 * Block bitmap, group descriptor, and inode are accounted in both 236 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 237 */ 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode) + extra_credits - 3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 255 /* 256 * Set inode->i_size to 0 before calling ext4_truncate(). We need 257 * special handling of symlinks here because i_size is used to 258 * determine whether ext4_inode_info->i_data contains symlink data or 259 * block mappings. Setting i_size to 0 will remove its fast symlink 260 * status. Erase i_data so that it becomes a valid empty block map. 261 */ 262 if (ext4_inode_is_fast_symlink(inode)) 263 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 264 inode->i_size = 0; 265 err = ext4_mark_inode_dirty(handle, inode); 266 if (err) { 267 ext4_warning(inode->i_sb, 268 "couldn't mark inode dirty (err %d)", err); 269 goto stop_handle; 270 } 271 if (inode->i_blocks) { 272 err = ext4_truncate(inode); 273 if (err) { 274 ext4_error(inode->i_sb, 275 "couldn't truncate inode %lu (err %d)", 276 inode->i_ino, err); 277 goto stop_handle; 278 } 279 } 280 281 /* Remove xattr references. */ 282 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 283 extra_credits); 284 if (err) { 285 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 286 stop_handle: 287 ext4_journal_stop(handle); 288 ext4_orphan_del(NULL, inode); 289 sb_end_intwrite(inode->i_sb); 290 ext4_xattr_inode_array_free(ea_inode_array); 291 goto no_delete; 292 } 293 294 /* 295 * Kill off the orphan record which ext4_truncate created. 296 * AKPM: I think this can be inside the above `if'. 297 * Note that ext4_orphan_del() has to be able to cope with the 298 * deletion of a non-existent orphan - this is because we don't 299 * know if ext4_truncate() actually created an orphan record. 300 * (Well, we could do this if we need to, but heck - it works) 301 */ 302 ext4_orphan_del(handle, inode); 303 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 304 305 /* 306 * One subtle ordering requirement: if anything has gone wrong 307 * (transaction abort, IO errors, whatever), then we can still 308 * do these next steps (the fs will already have been marked as 309 * having errors), but we can't free the inode if the mark_dirty 310 * fails. 311 */ 312 if (ext4_mark_inode_dirty(handle, inode)) 313 /* If that failed, just do the required in-core inode clear. */ 314 ext4_clear_inode(inode); 315 else 316 ext4_free_inode(handle, inode); 317 ext4_journal_stop(handle); 318 sb_end_intwrite(inode->i_sb); 319 ext4_xattr_inode_array_free(ea_inode_array); 320 return; 321 no_delete: 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 323 } 324 325 #ifdef CONFIG_QUOTA 326 qsize_t *ext4_get_reserved_space(struct inode *inode) 327 { 328 return &EXT4_I(inode)->i_reserved_quota; 329 } 330 #endif 331 332 /* 333 * Called with i_data_sem down, which is important since we can call 334 * ext4_discard_preallocations() from here. 335 */ 336 void ext4_da_update_reserve_space(struct inode *inode, 337 int used, int quota_claim) 338 { 339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 340 struct ext4_inode_info *ei = EXT4_I(inode); 341 342 spin_lock(&ei->i_block_reservation_lock); 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 344 if (unlikely(used > ei->i_reserved_data_blocks)) { 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 346 "with only %d reserved data blocks", 347 __func__, inode->i_ino, used, 348 ei->i_reserved_data_blocks); 349 WARN_ON(1); 350 used = ei->i_reserved_data_blocks; 351 } 352 353 /* Update per-inode reservations */ 354 ei->i_reserved_data_blocks -= used; 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 356 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 358 359 /* Update quota subsystem for data blocks */ 360 if (quota_claim) 361 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 362 else { 363 /* 364 * We did fallocate with an offset that is already delayed 365 * allocated. So on delayed allocated writeback we should 366 * not re-claim the quota for fallocated blocks. 367 */ 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 369 } 370 371 /* 372 * If we have done all the pending block allocations and if 373 * there aren't any writers on the inode, we can discard the 374 * inode's preallocations. 375 */ 376 if ((ei->i_reserved_data_blocks == 0) && 377 !inode_is_open_for_write(inode)) 378 ext4_discard_preallocations(inode); 379 } 380 381 static int __check_block_validity(struct inode *inode, const char *func, 382 unsigned int line, 383 struct ext4_map_blocks *map) 384 { 385 if (ext4_has_feature_journal(inode->i_sb) && 386 (inode->i_ino == 387 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 388 return 0; 389 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 390 map->m_len)) { 391 ext4_error_inode(inode, func, line, map->m_pblk, 392 "lblock %lu mapped to illegal pblock %llu " 393 "(length %d)", (unsigned long) map->m_lblk, 394 map->m_pblk, map->m_len); 395 return -EFSCORRUPTED; 396 } 397 return 0; 398 } 399 400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 401 ext4_lblk_t len) 402 { 403 int ret; 404 405 if (IS_ENCRYPTED(inode)) 406 return fscrypt_zeroout_range(inode, lblk, pblk, len); 407 408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 409 if (ret > 0) 410 ret = 0; 411 412 return ret; 413 } 414 415 #define check_block_validity(inode, map) \ 416 __check_block_validity((inode), __func__, __LINE__, (map)) 417 418 #ifdef ES_AGGRESSIVE_TEST 419 static void ext4_map_blocks_es_recheck(handle_t *handle, 420 struct inode *inode, 421 struct ext4_map_blocks *es_map, 422 struct ext4_map_blocks *map, 423 int flags) 424 { 425 int retval; 426 427 map->m_flags = 0; 428 /* 429 * There is a race window that the result is not the same. 430 * e.g. xfstests #223 when dioread_nolock enables. The reason 431 * is that we lookup a block mapping in extent status tree with 432 * out taking i_data_sem. So at the time the unwritten extent 433 * could be converted. 434 */ 435 down_read(&EXT4_I(inode)->i_data_sem); 436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 437 retval = ext4_ext_map_blocks(handle, inode, map, flags & 438 EXT4_GET_BLOCKS_KEEP_SIZE); 439 } else { 440 retval = ext4_ind_map_blocks(handle, inode, map, flags & 441 EXT4_GET_BLOCKS_KEEP_SIZE); 442 } 443 up_read((&EXT4_I(inode)->i_data_sem)); 444 445 /* 446 * We don't check m_len because extent will be collpased in status 447 * tree. So the m_len might not equal. 448 */ 449 if (es_map->m_lblk != map->m_lblk || 450 es_map->m_flags != map->m_flags || 451 es_map->m_pblk != map->m_pblk) { 452 printk("ES cache assertion failed for inode: %lu " 453 "es_cached ex [%d/%d/%llu/%x] != " 454 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 455 inode->i_ino, es_map->m_lblk, es_map->m_len, 456 es_map->m_pblk, es_map->m_flags, map->m_lblk, 457 map->m_len, map->m_pblk, map->m_flags, 458 retval, flags); 459 } 460 } 461 #endif /* ES_AGGRESSIVE_TEST */ 462 463 /* 464 * The ext4_map_blocks() function tries to look up the requested blocks, 465 * and returns if the blocks are already mapped. 466 * 467 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 468 * and store the allocated blocks in the result buffer head and mark it 469 * mapped. 470 * 471 * If file type is extents based, it will call ext4_ext_map_blocks(), 472 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 473 * based files 474 * 475 * On success, it returns the number of blocks being mapped or allocated. if 476 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 477 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 478 * 479 * It returns 0 if plain look up failed (blocks have not been allocated), in 480 * that case, @map is returned as unmapped but we still do fill map->m_len to 481 * indicate the length of a hole starting at map->m_lblk. 482 * 483 * It returns the error in case of allocation failure. 484 */ 485 int ext4_map_blocks(handle_t *handle, struct inode *inode, 486 struct ext4_map_blocks *map, int flags) 487 { 488 struct extent_status es; 489 int retval; 490 int ret = 0; 491 #ifdef ES_AGGRESSIVE_TEST 492 struct ext4_map_blocks orig_map; 493 494 memcpy(&orig_map, map, sizeof(*map)); 495 #endif 496 497 map->m_flags = 0; 498 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 499 "logical block %lu\n", inode->i_ino, flags, map->m_len, 500 (unsigned long) map->m_lblk); 501 502 /* 503 * ext4_map_blocks returns an int, and m_len is an unsigned int 504 */ 505 if (unlikely(map->m_len > INT_MAX)) 506 map->m_len = INT_MAX; 507 508 /* We can handle the block number less than EXT_MAX_BLOCKS */ 509 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 510 return -EFSCORRUPTED; 511 512 /* Lookup extent status tree firstly */ 513 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 514 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 515 map->m_pblk = ext4_es_pblock(&es) + 516 map->m_lblk - es.es_lblk; 517 map->m_flags |= ext4_es_is_written(&es) ? 518 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 519 retval = es.es_len - (map->m_lblk - es.es_lblk); 520 if (retval > map->m_len) 521 retval = map->m_len; 522 map->m_len = retval; 523 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 524 map->m_pblk = 0; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 retval = 0; 530 } else { 531 BUG(); 532 } 533 #ifdef ES_AGGRESSIVE_TEST 534 ext4_map_blocks_es_recheck(handle, inode, map, 535 &orig_map, flags); 536 #endif 537 goto found; 538 } 539 540 /* 541 * Try to see if we can get the block without requesting a new 542 * file system block. 543 */ 544 down_read(&EXT4_I(inode)->i_data_sem); 545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 546 retval = ext4_ext_map_blocks(handle, inode, map, flags & 547 EXT4_GET_BLOCKS_KEEP_SIZE); 548 } else { 549 retval = ext4_ind_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ret = ext4_es_insert_extent(inode, map->m_lblk, 571 map->m_len, map->m_pblk, status); 572 if (ret < 0) 573 retval = ret; 574 } 575 up_read((&EXT4_I(inode)->i_data_sem)); 576 577 found: 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 584 /* If it is only a block(s) look up */ 585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 586 return retval; 587 588 /* 589 * Returns if the blocks have already allocated 590 * 591 * Note that if blocks have been preallocated 592 * ext4_ext_get_block() returns the create = 0 593 * with buffer head unmapped. 594 */ 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 596 /* 597 * If we need to convert extent to unwritten 598 * we continue and do the actual work in 599 * ext4_ext_map_blocks() 600 */ 601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 602 return retval; 603 604 /* 605 * Here we clear m_flags because after allocating an new extent, 606 * it will be set again. 607 */ 608 map->m_flags &= ~EXT4_MAP_FLAGS; 609 610 /* 611 * New blocks allocate and/or writing to unwritten extent 612 * will possibly result in updating i_data, so we take 613 * the write lock of i_data_sem, and call get_block() 614 * with create == 1 flag. 615 */ 616 down_write(&EXT4_I(inode)->i_data_sem); 617 618 /* 619 * We need to check for EXT4 here because migrate 620 * could have changed the inode type in between 621 */ 622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 623 retval = ext4_ext_map_blocks(handle, inode, map, flags); 624 } else { 625 retval = ext4_ind_map_blocks(handle, inode, map, flags); 626 627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 628 /* 629 * We allocated new blocks which will result in 630 * i_data's format changing. Force the migrate 631 * to fail by clearing migrate flags 632 */ 633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 634 } 635 636 /* 637 * Update reserved blocks/metadata blocks after successful 638 * block allocation which had been deferred till now. We don't 639 * support fallocate for non extent files. So we can update 640 * reserve space here. 641 */ 642 if ((retval > 0) && 643 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 644 ext4_da_update_reserve_space(inode, retval, 1); 645 } 646 647 if (retval > 0) { 648 unsigned int status; 649 650 if (unlikely(retval != map->m_len)) { 651 ext4_warning(inode->i_sb, 652 "ES len assertion failed for inode " 653 "%lu: retval %d != map->m_len %d", 654 inode->i_ino, retval, map->m_len); 655 WARN_ON(1); 656 } 657 658 /* 659 * We have to zeroout blocks before inserting them into extent 660 * status tree. Otherwise someone could look them up there and 661 * use them before they are really zeroed. We also have to 662 * unmap metadata before zeroing as otherwise writeback can 663 * overwrite zeros with stale data from block device. 664 */ 665 if (flags & EXT4_GET_BLOCKS_ZERO && 666 map->m_flags & EXT4_MAP_MAPPED && 667 map->m_flags & EXT4_MAP_NEW) { 668 ret = ext4_issue_zeroout(inode, map->m_lblk, 669 map->m_pblk, map->m_len); 670 if (ret) { 671 retval = ret; 672 goto out_sem; 673 } 674 } 675 676 /* 677 * If the extent has been zeroed out, we don't need to update 678 * extent status tree. 679 */ 680 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 681 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 682 if (ext4_es_is_written(&es)) 683 goto out_sem; 684 } 685 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 686 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 687 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 688 !(status & EXTENT_STATUS_WRITTEN) && 689 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 690 map->m_lblk + map->m_len - 1)) 691 status |= EXTENT_STATUS_DELAYED; 692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 693 map->m_pblk, status); 694 if (ret < 0) { 695 retval = ret; 696 goto out_sem; 697 } 698 } 699 700 out_sem: 701 up_write((&EXT4_I(inode)->i_data_sem)); 702 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 703 ret = check_block_validity(inode, map); 704 if (ret != 0) 705 return ret; 706 707 /* 708 * Inodes with freshly allocated blocks where contents will be 709 * visible after transaction commit must be on transaction's 710 * ordered data list. 711 */ 712 if (map->m_flags & EXT4_MAP_NEW && 713 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 714 !(flags & EXT4_GET_BLOCKS_ZERO) && 715 !ext4_is_quota_file(inode) && 716 ext4_should_order_data(inode)) { 717 loff_t start_byte = 718 (loff_t)map->m_lblk << inode->i_blkbits; 719 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 720 721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 722 ret = ext4_jbd2_inode_add_wait(handle, inode, 723 start_byte, length); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode, 726 start_byte, length); 727 if (ret) 728 return ret; 729 } 730 } 731 return retval; 732 } 733 734 /* 735 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 736 * we have to be careful as someone else may be manipulating b_state as well. 737 */ 738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 739 { 740 unsigned long old_state; 741 unsigned long new_state; 742 743 flags &= EXT4_MAP_FLAGS; 744 745 /* Dummy buffer_head? Set non-atomically. */ 746 if (!bh->b_page) { 747 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 748 return; 749 } 750 /* 751 * Someone else may be modifying b_state. Be careful! This is ugly but 752 * once we get rid of using bh as a container for mapping information 753 * to pass to / from get_block functions, this can go away. 754 */ 755 do { 756 old_state = READ_ONCE(bh->b_state); 757 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 758 } while (unlikely( 759 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 760 } 761 762 static int _ext4_get_block(struct inode *inode, sector_t iblock, 763 struct buffer_head *bh, int flags) 764 { 765 struct ext4_map_blocks map; 766 int ret = 0; 767 768 if (ext4_has_inline_data(inode)) 769 return -ERANGE; 770 771 map.m_lblk = iblock; 772 map.m_len = bh->b_size >> inode->i_blkbits; 773 774 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 775 flags); 776 if (ret > 0) { 777 map_bh(bh, inode->i_sb, map.m_pblk); 778 ext4_update_bh_state(bh, map.m_flags); 779 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 780 ret = 0; 781 } else if (ret == 0) { 782 /* hole case, need to fill in bh->b_size */ 783 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 784 } 785 return ret; 786 } 787 788 int ext4_get_block(struct inode *inode, sector_t iblock, 789 struct buffer_head *bh, int create) 790 { 791 return _ext4_get_block(inode, iblock, bh, 792 create ? EXT4_GET_BLOCKS_CREATE : 0); 793 } 794 795 /* 796 * Get block function used when preparing for buffered write if we require 797 * creating an unwritten extent if blocks haven't been allocated. The extent 798 * will be converted to written after the IO is complete. 799 */ 800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 801 struct buffer_head *bh_result, int create) 802 { 803 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 804 inode->i_ino, create); 805 return _ext4_get_block(inode, iblock, bh_result, 806 EXT4_GET_BLOCKS_IO_CREATE_EXT); 807 } 808 809 /* Maximum number of blocks we map for direct IO at once. */ 810 #define DIO_MAX_BLOCKS 4096 811 812 /* 813 * `handle' can be NULL if create is zero 814 */ 815 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 816 ext4_lblk_t block, int map_flags) 817 { 818 struct ext4_map_blocks map; 819 struct buffer_head *bh; 820 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 821 int err; 822 823 J_ASSERT(handle != NULL || create == 0); 824 825 map.m_lblk = block; 826 map.m_len = 1; 827 err = ext4_map_blocks(handle, inode, &map, map_flags); 828 829 if (err == 0) 830 return create ? ERR_PTR(-ENOSPC) : NULL; 831 if (err < 0) 832 return ERR_PTR(err); 833 834 bh = sb_getblk(inode->i_sb, map.m_pblk); 835 if (unlikely(!bh)) 836 return ERR_PTR(-ENOMEM); 837 if (map.m_flags & EXT4_MAP_NEW) { 838 J_ASSERT(create != 0); 839 J_ASSERT(handle != NULL); 840 841 /* 842 * Now that we do not always journal data, we should 843 * keep in mind whether this should always journal the 844 * new buffer as metadata. For now, regular file 845 * writes use ext4_get_block instead, so it's not a 846 * problem. 847 */ 848 lock_buffer(bh); 849 BUFFER_TRACE(bh, "call get_create_access"); 850 err = ext4_journal_get_create_access(handle, bh); 851 if (unlikely(err)) { 852 unlock_buffer(bh); 853 goto errout; 854 } 855 if (!buffer_uptodate(bh)) { 856 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 857 set_buffer_uptodate(bh); 858 } 859 unlock_buffer(bh); 860 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 861 err = ext4_handle_dirty_metadata(handle, inode, bh); 862 if (unlikely(err)) 863 goto errout; 864 } else 865 BUFFER_TRACE(bh, "not a new buffer"); 866 return bh; 867 errout: 868 brelse(bh); 869 return ERR_PTR(err); 870 } 871 872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 873 ext4_lblk_t block, int map_flags) 874 { 875 struct buffer_head *bh; 876 877 bh = ext4_getblk(handle, inode, block, map_flags); 878 if (IS_ERR(bh)) 879 return bh; 880 if (!bh || ext4_buffer_uptodate(bh)) 881 return bh; 882 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 883 wait_on_buffer(bh); 884 if (buffer_uptodate(bh)) 885 return bh; 886 put_bh(bh); 887 return ERR_PTR(-EIO); 888 } 889 890 /* Read a contiguous batch of blocks. */ 891 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 892 bool wait, struct buffer_head **bhs) 893 { 894 int i, err; 895 896 for (i = 0; i < bh_count; i++) { 897 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 898 if (IS_ERR(bhs[i])) { 899 err = PTR_ERR(bhs[i]); 900 bh_count = i; 901 goto out_brelse; 902 } 903 } 904 905 for (i = 0; i < bh_count; i++) 906 /* Note that NULL bhs[i] is valid because of holes. */ 907 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 908 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 909 &bhs[i]); 910 911 if (!wait) 912 return 0; 913 914 for (i = 0; i < bh_count; i++) 915 if (bhs[i]) 916 wait_on_buffer(bhs[i]); 917 918 for (i = 0; i < bh_count; i++) { 919 if (bhs[i] && !buffer_uptodate(bhs[i])) { 920 err = -EIO; 921 goto out_brelse; 922 } 923 } 924 return 0; 925 926 out_brelse: 927 for (i = 0; i < bh_count; i++) { 928 brelse(bhs[i]); 929 bhs[i] = NULL; 930 } 931 return err; 932 } 933 934 int ext4_walk_page_buffers(handle_t *handle, 935 struct buffer_head *head, 936 unsigned from, 937 unsigned to, 938 int *partial, 939 int (*fn)(handle_t *handle, 940 struct buffer_head *bh)) 941 { 942 struct buffer_head *bh; 943 unsigned block_start, block_end; 944 unsigned blocksize = head->b_size; 945 int err, ret = 0; 946 struct buffer_head *next; 947 948 for (bh = head, block_start = 0; 949 ret == 0 && (bh != head || !block_start); 950 block_start = block_end, bh = next) { 951 next = bh->b_this_page; 952 block_end = block_start + blocksize; 953 if (block_end <= from || block_start >= to) { 954 if (partial && !buffer_uptodate(bh)) 955 *partial = 1; 956 continue; 957 } 958 err = (*fn)(handle, bh); 959 if (!ret) 960 ret = err; 961 } 962 return ret; 963 } 964 965 /* 966 * To preserve ordering, it is essential that the hole instantiation and 967 * the data write be encapsulated in a single transaction. We cannot 968 * close off a transaction and start a new one between the ext4_get_block() 969 * and the commit_write(). So doing the jbd2_journal_start at the start of 970 * prepare_write() is the right place. 971 * 972 * Also, this function can nest inside ext4_writepage(). In that case, we 973 * *know* that ext4_writepage() has generated enough buffer credits to do the 974 * whole page. So we won't block on the journal in that case, which is good, 975 * because the caller may be PF_MEMALLOC. 976 * 977 * By accident, ext4 can be reentered when a transaction is open via 978 * quota file writes. If we were to commit the transaction while thus 979 * reentered, there can be a deadlock - we would be holding a quota 980 * lock, and the commit would never complete if another thread had a 981 * transaction open and was blocking on the quota lock - a ranking 982 * violation. 983 * 984 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 985 * will _not_ run commit under these circumstances because handle->h_ref 986 * is elevated. We'll still have enough credits for the tiny quotafile 987 * write. 988 */ 989 int do_journal_get_write_access(handle_t *handle, 990 struct buffer_head *bh) 991 { 992 int dirty = buffer_dirty(bh); 993 int ret; 994 995 if (!buffer_mapped(bh) || buffer_freed(bh)) 996 return 0; 997 /* 998 * __block_write_begin() could have dirtied some buffers. Clean 999 * the dirty bit as jbd2_journal_get_write_access() could complain 1000 * otherwise about fs integrity issues. Setting of the dirty bit 1001 * by __block_write_begin() isn't a real problem here as we clear 1002 * the bit before releasing a page lock and thus writeback cannot 1003 * ever write the buffer. 1004 */ 1005 if (dirty) 1006 clear_buffer_dirty(bh); 1007 BUFFER_TRACE(bh, "get write access"); 1008 ret = ext4_journal_get_write_access(handle, bh); 1009 if (!ret && dirty) 1010 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1011 return ret; 1012 } 1013 1014 #ifdef CONFIG_FS_ENCRYPTION 1015 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1016 get_block_t *get_block) 1017 { 1018 unsigned from = pos & (PAGE_SIZE - 1); 1019 unsigned to = from + len; 1020 struct inode *inode = page->mapping->host; 1021 unsigned block_start, block_end; 1022 sector_t block; 1023 int err = 0; 1024 unsigned blocksize = inode->i_sb->s_blocksize; 1025 unsigned bbits; 1026 struct buffer_head *bh, *head, *wait[2]; 1027 int nr_wait = 0; 1028 int i; 1029 1030 BUG_ON(!PageLocked(page)); 1031 BUG_ON(from > PAGE_SIZE); 1032 BUG_ON(to > PAGE_SIZE); 1033 BUG_ON(from > to); 1034 1035 if (!page_has_buffers(page)) 1036 create_empty_buffers(page, blocksize, 0); 1037 head = page_buffers(page); 1038 bbits = ilog2(blocksize); 1039 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1040 1041 for (bh = head, block_start = 0; bh != head || !block_start; 1042 block++, block_start = block_end, bh = bh->b_this_page) { 1043 block_end = block_start + blocksize; 1044 if (block_end <= from || block_start >= to) { 1045 if (PageUptodate(page)) { 1046 if (!buffer_uptodate(bh)) 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (PageUptodate(page)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 zero_user_segments(page, to, block_end, 1067 block_start, from); 1068 continue; 1069 } 1070 } 1071 if (PageUptodate(page)) { 1072 if (!buffer_uptodate(bh)) 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 page_zero_new_buffers(page, from, to); 1093 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1098 bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1111 loff_t pos, unsigned len, unsigned flags, 1112 struct page **pagep, void **fsdata) 1113 { 1114 struct inode *inode = mapping->host; 1115 int ret, needed_blocks; 1116 handle_t *handle; 1117 int retries = 0; 1118 struct page *page; 1119 pgoff_t index; 1120 unsigned from, to; 1121 1122 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1123 return -EIO; 1124 1125 trace_ext4_write_begin(inode, pos, len, flags); 1126 /* 1127 * Reserve one block more for addition to orphan list in case 1128 * we allocate blocks but write fails for some reason 1129 */ 1130 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1131 index = pos >> PAGE_SHIFT; 1132 from = pos & (PAGE_SIZE - 1); 1133 to = from + len; 1134 1135 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1136 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1137 flags, pagep); 1138 if (ret < 0) 1139 return ret; 1140 if (ret == 1) 1141 return 0; 1142 } 1143 1144 /* 1145 * grab_cache_page_write_begin() can take a long time if the 1146 * system is thrashing due to memory pressure, or if the page 1147 * is being written back. So grab it first before we start 1148 * the transaction handle. This also allows us to allocate 1149 * the page (if needed) without using GFP_NOFS. 1150 */ 1151 retry_grab: 1152 page = grab_cache_page_write_begin(mapping, index, flags); 1153 if (!page) 1154 return -ENOMEM; 1155 unlock_page(page); 1156 1157 retry_journal: 1158 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1159 if (IS_ERR(handle)) { 1160 put_page(page); 1161 return PTR_ERR(handle); 1162 } 1163 1164 lock_page(page); 1165 if (page->mapping != mapping) { 1166 /* The page got truncated from under us */ 1167 unlock_page(page); 1168 put_page(page); 1169 ext4_journal_stop(handle); 1170 goto retry_grab; 1171 } 1172 /* In case writeback began while the page was unlocked */ 1173 wait_for_stable_page(page); 1174 1175 #ifdef CONFIG_FS_ENCRYPTION 1176 if (ext4_should_dioread_nolock(inode)) 1177 ret = ext4_block_write_begin(page, pos, len, 1178 ext4_get_block_unwritten); 1179 else 1180 ret = ext4_block_write_begin(page, pos, len, 1181 ext4_get_block); 1182 #else 1183 if (ext4_should_dioread_nolock(inode)) 1184 ret = __block_write_begin(page, pos, len, 1185 ext4_get_block_unwritten); 1186 else 1187 ret = __block_write_begin(page, pos, len, ext4_get_block); 1188 #endif 1189 if (!ret && ext4_should_journal_data(inode)) { 1190 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1191 from, to, NULL, 1192 do_journal_get_write_access); 1193 } 1194 1195 if (ret) { 1196 bool extended = (pos + len > inode->i_size) && 1197 !ext4_verity_in_progress(inode); 1198 1199 unlock_page(page); 1200 /* 1201 * __block_write_begin may have instantiated a few blocks 1202 * outside i_size. Trim these off again. Don't need 1203 * i_size_read because we hold i_mutex. 1204 * 1205 * Add inode to orphan list in case we crash before 1206 * truncate finishes 1207 */ 1208 if (extended && ext4_can_truncate(inode)) 1209 ext4_orphan_add(handle, inode); 1210 1211 ext4_journal_stop(handle); 1212 if (extended) { 1213 ext4_truncate_failed_write(inode); 1214 /* 1215 * If truncate failed early the inode might 1216 * still be on the orphan list; we need to 1217 * make sure the inode is removed from the 1218 * orphan list in that case. 1219 */ 1220 if (inode->i_nlink) 1221 ext4_orphan_del(NULL, inode); 1222 } 1223 1224 if (ret == -ENOSPC && 1225 ext4_should_retry_alloc(inode->i_sb, &retries)) 1226 goto retry_journal; 1227 put_page(page); 1228 return ret; 1229 } 1230 *pagep = page; 1231 return ret; 1232 } 1233 1234 /* For write_end() in data=journal mode */ 1235 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1236 { 1237 int ret; 1238 if (!buffer_mapped(bh) || buffer_freed(bh)) 1239 return 0; 1240 set_buffer_uptodate(bh); 1241 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1242 clear_buffer_meta(bh); 1243 clear_buffer_prio(bh); 1244 return ret; 1245 } 1246 1247 /* 1248 * We need to pick up the new inode size which generic_commit_write gave us 1249 * `file' can be NULL - eg, when called from page_symlink(). 1250 * 1251 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1252 * buffers are managed internally. 1253 */ 1254 static int ext4_write_end(struct file *file, 1255 struct address_space *mapping, 1256 loff_t pos, unsigned len, unsigned copied, 1257 struct page *page, void *fsdata) 1258 { 1259 handle_t *handle = ext4_journal_current_handle(); 1260 struct inode *inode = mapping->host; 1261 loff_t old_size = inode->i_size; 1262 int ret = 0, ret2; 1263 int i_size_changed = 0; 1264 int inline_data = ext4_has_inline_data(inode); 1265 bool verity = ext4_verity_in_progress(inode); 1266 1267 trace_ext4_write_end(inode, pos, len, copied); 1268 if (inline_data) { 1269 ret = ext4_write_inline_data_end(inode, pos, len, 1270 copied, page); 1271 if (ret < 0) { 1272 unlock_page(page); 1273 put_page(page); 1274 goto errout; 1275 } 1276 copied = ret; 1277 } else 1278 copied = block_write_end(file, mapping, pos, 1279 len, copied, page, fsdata); 1280 /* 1281 * it's important to update i_size while still holding page lock: 1282 * page writeout could otherwise come in and zero beyond i_size. 1283 * 1284 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1285 * blocks are being written past EOF, so skip the i_size update. 1286 */ 1287 if (!verity) 1288 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1289 unlock_page(page); 1290 put_page(page); 1291 1292 if (old_size < pos && !verity) 1293 pagecache_isize_extended(inode, old_size, pos); 1294 /* 1295 * Don't mark the inode dirty under page lock. First, it unnecessarily 1296 * makes the holding time of page lock longer. Second, it forces lock 1297 * ordering of page lock and transaction start for journaling 1298 * filesystems. 1299 */ 1300 if (i_size_changed || inline_data) 1301 ext4_mark_inode_dirty(handle, inode); 1302 1303 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1304 /* if we have allocated more blocks and copied 1305 * less. We will have blocks allocated outside 1306 * inode->i_size. So truncate them 1307 */ 1308 ext4_orphan_add(handle, inode); 1309 errout: 1310 ret2 = ext4_journal_stop(handle); 1311 if (!ret) 1312 ret = ret2; 1313 1314 if (pos + len > inode->i_size && !verity) { 1315 ext4_truncate_failed_write(inode); 1316 /* 1317 * If truncate failed early the inode might still be 1318 * on the orphan list; we need to make sure the inode 1319 * is removed from the orphan list in that case. 1320 */ 1321 if (inode->i_nlink) 1322 ext4_orphan_del(NULL, inode); 1323 } 1324 1325 return ret ? ret : copied; 1326 } 1327 1328 /* 1329 * This is a private version of page_zero_new_buffers() which doesn't 1330 * set the buffer to be dirty, since in data=journalled mode we need 1331 * to call ext4_handle_dirty_metadata() instead. 1332 */ 1333 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1334 struct page *page, 1335 unsigned from, unsigned to) 1336 { 1337 unsigned int block_start = 0, block_end; 1338 struct buffer_head *head, *bh; 1339 1340 bh = head = page_buffers(page); 1341 do { 1342 block_end = block_start + bh->b_size; 1343 if (buffer_new(bh)) { 1344 if (block_end > from && block_start < to) { 1345 if (!PageUptodate(page)) { 1346 unsigned start, size; 1347 1348 start = max(from, block_start); 1349 size = min(to, block_end) - start; 1350 1351 zero_user(page, start, size); 1352 write_end_fn(handle, bh); 1353 } 1354 clear_buffer_new(bh); 1355 } 1356 } 1357 block_start = block_end; 1358 bh = bh->b_this_page; 1359 } while (bh != head); 1360 } 1361 1362 static int ext4_journalled_write_end(struct file *file, 1363 struct address_space *mapping, 1364 loff_t pos, unsigned len, unsigned copied, 1365 struct page *page, void *fsdata) 1366 { 1367 handle_t *handle = ext4_journal_current_handle(); 1368 struct inode *inode = mapping->host; 1369 loff_t old_size = inode->i_size; 1370 int ret = 0, ret2; 1371 int partial = 0; 1372 unsigned from, to; 1373 int size_changed = 0; 1374 int inline_data = ext4_has_inline_data(inode); 1375 bool verity = ext4_verity_in_progress(inode); 1376 1377 trace_ext4_journalled_write_end(inode, pos, len, copied); 1378 from = pos & (PAGE_SIZE - 1); 1379 to = from + len; 1380 1381 BUG_ON(!ext4_handle_valid(handle)); 1382 1383 if (inline_data) { 1384 ret = ext4_write_inline_data_end(inode, pos, len, 1385 copied, page); 1386 if (ret < 0) { 1387 unlock_page(page); 1388 put_page(page); 1389 goto errout; 1390 } 1391 copied = ret; 1392 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1393 copied = 0; 1394 ext4_journalled_zero_new_buffers(handle, page, from, to); 1395 } else { 1396 if (unlikely(copied < len)) 1397 ext4_journalled_zero_new_buffers(handle, page, 1398 from + copied, to); 1399 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1400 from + copied, &partial, 1401 write_end_fn); 1402 if (!partial) 1403 SetPageUptodate(page); 1404 } 1405 if (!verity) 1406 size_changed = ext4_update_inode_size(inode, pos + copied); 1407 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1408 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1409 unlock_page(page); 1410 put_page(page); 1411 1412 if (old_size < pos && !verity) 1413 pagecache_isize_extended(inode, old_size, pos); 1414 1415 if (size_changed || inline_data) { 1416 ret2 = ext4_mark_inode_dirty(handle, inode); 1417 if (!ret) 1418 ret = ret2; 1419 } 1420 1421 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1422 /* if we have allocated more blocks and copied 1423 * less. We will have blocks allocated outside 1424 * inode->i_size. So truncate them 1425 */ 1426 ext4_orphan_add(handle, inode); 1427 1428 errout: 1429 ret2 = ext4_journal_stop(handle); 1430 if (!ret) 1431 ret = ret2; 1432 if (pos + len > inode->i_size && !verity) { 1433 ext4_truncate_failed_write(inode); 1434 /* 1435 * If truncate failed early the inode might still be 1436 * on the orphan list; we need to make sure the inode 1437 * is removed from the orphan list in that case. 1438 */ 1439 if (inode->i_nlink) 1440 ext4_orphan_del(NULL, inode); 1441 } 1442 1443 return ret ? ret : copied; 1444 } 1445 1446 /* 1447 * Reserve space for a single cluster 1448 */ 1449 static int ext4_da_reserve_space(struct inode *inode) 1450 { 1451 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1452 struct ext4_inode_info *ei = EXT4_I(inode); 1453 int ret; 1454 1455 /* 1456 * We will charge metadata quota at writeout time; this saves 1457 * us from metadata over-estimation, though we may go over by 1458 * a small amount in the end. Here we just reserve for data. 1459 */ 1460 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1461 if (ret) 1462 return ret; 1463 1464 spin_lock(&ei->i_block_reservation_lock); 1465 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1466 spin_unlock(&ei->i_block_reservation_lock); 1467 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1468 return -ENOSPC; 1469 } 1470 ei->i_reserved_data_blocks++; 1471 trace_ext4_da_reserve_space(inode); 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 1474 return 0; /* success */ 1475 } 1476 1477 void ext4_da_release_space(struct inode *inode, int to_free) 1478 { 1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1480 struct ext4_inode_info *ei = EXT4_I(inode); 1481 1482 if (!to_free) 1483 return; /* Nothing to release, exit */ 1484 1485 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1486 1487 trace_ext4_da_release_space(inode, to_free); 1488 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1489 /* 1490 * if there aren't enough reserved blocks, then the 1491 * counter is messed up somewhere. Since this 1492 * function is called from invalidate page, it's 1493 * harmless to return without any action. 1494 */ 1495 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1496 "ino %lu, to_free %d with only %d reserved " 1497 "data blocks", inode->i_ino, to_free, 1498 ei->i_reserved_data_blocks); 1499 WARN_ON(1); 1500 to_free = ei->i_reserved_data_blocks; 1501 } 1502 ei->i_reserved_data_blocks -= to_free; 1503 1504 /* update fs dirty data blocks counter */ 1505 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1506 1507 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1508 1509 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1510 } 1511 1512 /* 1513 * Delayed allocation stuff 1514 */ 1515 1516 struct mpage_da_data { 1517 struct inode *inode; 1518 struct writeback_control *wbc; 1519 1520 pgoff_t first_page; /* The first page to write */ 1521 pgoff_t next_page; /* Current page to examine */ 1522 pgoff_t last_page; /* Last page to examine */ 1523 /* 1524 * Extent to map - this can be after first_page because that can be 1525 * fully mapped. We somewhat abuse m_flags to store whether the extent 1526 * is delalloc or unwritten. 1527 */ 1528 struct ext4_map_blocks map; 1529 struct ext4_io_submit io_submit; /* IO submission data */ 1530 unsigned int do_map:1; 1531 }; 1532 1533 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1534 bool invalidate) 1535 { 1536 int nr_pages, i; 1537 pgoff_t index, end; 1538 struct pagevec pvec; 1539 struct inode *inode = mpd->inode; 1540 struct address_space *mapping = inode->i_mapping; 1541 1542 /* This is necessary when next_page == 0. */ 1543 if (mpd->first_page >= mpd->next_page) 1544 return; 1545 1546 index = mpd->first_page; 1547 end = mpd->next_page - 1; 1548 if (invalidate) { 1549 ext4_lblk_t start, last; 1550 start = index << (PAGE_SHIFT - inode->i_blkbits); 1551 last = end << (PAGE_SHIFT - inode->i_blkbits); 1552 ext4_es_remove_extent(inode, start, last - start + 1); 1553 } 1554 1555 pagevec_init(&pvec); 1556 while (index <= end) { 1557 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1558 if (nr_pages == 0) 1559 break; 1560 for (i = 0; i < nr_pages; i++) { 1561 struct page *page = pvec.pages[i]; 1562 1563 BUG_ON(!PageLocked(page)); 1564 BUG_ON(PageWriteback(page)); 1565 if (invalidate) { 1566 if (page_mapped(page)) 1567 clear_page_dirty_for_io(page); 1568 block_invalidatepage(page, 0, PAGE_SIZE); 1569 ClearPageUptodate(page); 1570 } 1571 unlock_page(page); 1572 } 1573 pagevec_release(&pvec); 1574 } 1575 } 1576 1577 static void ext4_print_free_blocks(struct inode *inode) 1578 { 1579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1580 struct super_block *sb = inode->i_sb; 1581 struct ext4_inode_info *ei = EXT4_I(inode); 1582 1583 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1584 EXT4_C2B(EXT4_SB(inode->i_sb), 1585 ext4_count_free_clusters(sb))); 1586 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1587 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1588 (long long) EXT4_C2B(EXT4_SB(sb), 1589 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1590 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1591 (long long) EXT4_C2B(EXT4_SB(sb), 1592 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1593 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1594 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1595 ei->i_reserved_data_blocks); 1596 return; 1597 } 1598 1599 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1600 { 1601 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1602 } 1603 1604 /* 1605 * ext4_insert_delayed_block - adds a delayed block to the extents status 1606 * tree, incrementing the reserved cluster/block 1607 * count or making a pending reservation 1608 * where needed 1609 * 1610 * @inode - file containing the newly added block 1611 * @lblk - logical block to be added 1612 * 1613 * Returns 0 on success, negative error code on failure. 1614 */ 1615 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1616 { 1617 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1618 int ret; 1619 bool allocated = false; 1620 1621 /* 1622 * If the cluster containing lblk is shared with a delayed, 1623 * written, or unwritten extent in a bigalloc file system, it's 1624 * already been accounted for and does not need to be reserved. 1625 * A pending reservation must be made for the cluster if it's 1626 * shared with a written or unwritten extent and doesn't already 1627 * have one. Written and unwritten extents can be purged from the 1628 * extents status tree if the system is under memory pressure, so 1629 * it's necessary to examine the extent tree if a search of the 1630 * extents status tree doesn't get a match. 1631 */ 1632 if (sbi->s_cluster_ratio == 1) { 1633 ret = ext4_da_reserve_space(inode); 1634 if (ret != 0) /* ENOSPC */ 1635 goto errout; 1636 } else { /* bigalloc */ 1637 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1638 if (!ext4_es_scan_clu(inode, 1639 &ext4_es_is_mapped, lblk)) { 1640 ret = ext4_clu_mapped(inode, 1641 EXT4_B2C(sbi, lblk)); 1642 if (ret < 0) 1643 goto errout; 1644 if (ret == 0) { 1645 ret = ext4_da_reserve_space(inode); 1646 if (ret != 0) /* ENOSPC */ 1647 goto errout; 1648 } else { 1649 allocated = true; 1650 } 1651 } else { 1652 allocated = true; 1653 } 1654 } 1655 } 1656 1657 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1658 1659 errout: 1660 return ret; 1661 } 1662 1663 /* 1664 * This function is grabs code from the very beginning of 1665 * ext4_map_blocks, but assumes that the caller is from delayed write 1666 * time. This function looks up the requested blocks and sets the 1667 * buffer delay bit under the protection of i_data_sem. 1668 */ 1669 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1670 struct ext4_map_blocks *map, 1671 struct buffer_head *bh) 1672 { 1673 struct extent_status es; 1674 int retval; 1675 sector_t invalid_block = ~((sector_t) 0xffff); 1676 #ifdef ES_AGGRESSIVE_TEST 1677 struct ext4_map_blocks orig_map; 1678 1679 memcpy(&orig_map, map, sizeof(*map)); 1680 #endif 1681 1682 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1683 invalid_block = ~0; 1684 1685 map->m_flags = 0; 1686 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1687 "logical block %lu\n", inode->i_ino, map->m_len, 1688 (unsigned long) map->m_lblk); 1689 1690 /* Lookup extent status tree firstly */ 1691 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1692 if (ext4_es_is_hole(&es)) { 1693 retval = 0; 1694 down_read(&EXT4_I(inode)->i_data_sem); 1695 goto add_delayed; 1696 } 1697 1698 /* 1699 * Delayed extent could be allocated by fallocate. 1700 * So we need to check it. 1701 */ 1702 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1703 map_bh(bh, inode->i_sb, invalid_block); 1704 set_buffer_new(bh); 1705 set_buffer_delay(bh); 1706 return 0; 1707 } 1708 1709 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1710 retval = es.es_len - (iblock - es.es_lblk); 1711 if (retval > map->m_len) 1712 retval = map->m_len; 1713 map->m_len = retval; 1714 if (ext4_es_is_written(&es)) 1715 map->m_flags |= EXT4_MAP_MAPPED; 1716 else if (ext4_es_is_unwritten(&es)) 1717 map->m_flags |= EXT4_MAP_UNWRITTEN; 1718 else 1719 BUG(); 1720 1721 #ifdef ES_AGGRESSIVE_TEST 1722 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1723 #endif 1724 return retval; 1725 } 1726 1727 /* 1728 * Try to see if we can get the block without requesting a new 1729 * file system block. 1730 */ 1731 down_read(&EXT4_I(inode)->i_data_sem); 1732 if (ext4_has_inline_data(inode)) 1733 retval = 0; 1734 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1735 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1736 else 1737 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1738 1739 add_delayed: 1740 if (retval == 0) { 1741 int ret; 1742 1743 /* 1744 * XXX: __block_prepare_write() unmaps passed block, 1745 * is it OK? 1746 */ 1747 1748 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1749 if (ret != 0) { 1750 retval = ret; 1751 goto out_unlock; 1752 } 1753 1754 map_bh(bh, inode->i_sb, invalid_block); 1755 set_buffer_new(bh); 1756 set_buffer_delay(bh); 1757 } else if (retval > 0) { 1758 int ret; 1759 unsigned int status; 1760 1761 if (unlikely(retval != map->m_len)) { 1762 ext4_warning(inode->i_sb, 1763 "ES len assertion failed for inode " 1764 "%lu: retval %d != map->m_len %d", 1765 inode->i_ino, retval, map->m_len); 1766 WARN_ON(1); 1767 } 1768 1769 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1770 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1771 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1772 map->m_pblk, status); 1773 if (ret != 0) 1774 retval = ret; 1775 } 1776 1777 out_unlock: 1778 up_read((&EXT4_I(inode)->i_data_sem)); 1779 1780 return retval; 1781 } 1782 1783 /* 1784 * This is a special get_block_t callback which is used by 1785 * ext4_da_write_begin(). It will either return mapped block or 1786 * reserve space for a single block. 1787 * 1788 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1789 * We also have b_blocknr = -1 and b_bdev initialized properly 1790 * 1791 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1792 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1793 * initialized properly. 1794 */ 1795 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1796 struct buffer_head *bh, int create) 1797 { 1798 struct ext4_map_blocks map; 1799 int ret = 0; 1800 1801 BUG_ON(create == 0); 1802 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1803 1804 map.m_lblk = iblock; 1805 map.m_len = 1; 1806 1807 /* 1808 * first, we need to know whether the block is allocated already 1809 * preallocated blocks are unmapped but should treated 1810 * the same as allocated blocks. 1811 */ 1812 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1813 if (ret <= 0) 1814 return ret; 1815 1816 map_bh(bh, inode->i_sb, map.m_pblk); 1817 ext4_update_bh_state(bh, map.m_flags); 1818 1819 if (buffer_unwritten(bh)) { 1820 /* A delayed write to unwritten bh should be marked 1821 * new and mapped. Mapped ensures that we don't do 1822 * get_block multiple times when we write to the same 1823 * offset and new ensures that we do proper zero out 1824 * for partial write. 1825 */ 1826 set_buffer_new(bh); 1827 set_buffer_mapped(bh); 1828 } 1829 return 0; 1830 } 1831 1832 static int bget_one(handle_t *handle, struct buffer_head *bh) 1833 { 1834 get_bh(bh); 1835 return 0; 1836 } 1837 1838 static int bput_one(handle_t *handle, struct buffer_head *bh) 1839 { 1840 put_bh(bh); 1841 return 0; 1842 } 1843 1844 static int __ext4_journalled_writepage(struct page *page, 1845 unsigned int len) 1846 { 1847 struct address_space *mapping = page->mapping; 1848 struct inode *inode = mapping->host; 1849 struct buffer_head *page_bufs = NULL; 1850 handle_t *handle = NULL; 1851 int ret = 0, err = 0; 1852 int inline_data = ext4_has_inline_data(inode); 1853 struct buffer_head *inode_bh = NULL; 1854 1855 ClearPageChecked(page); 1856 1857 if (inline_data) { 1858 BUG_ON(page->index != 0); 1859 BUG_ON(len > ext4_get_max_inline_size(inode)); 1860 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1861 if (inode_bh == NULL) 1862 goto out; 1863 } else { 1864 page_bufs = page_buffers(page); 1865 if (!page_bufs) { 1866 BUG(); 1867 goto out; 1868 } 1869 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1870 NULL, bget_one); 1871 } 1872 /* 1873 * We need to release the page lock before we start the 1874 * journal, so grab a reference so the page won't disappear 1875 * out from under us. 1876 */ 1877 get_page(page); 1878 unlock_page(page); 1879 1880 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1881 ext4_writepage_trans_blocks(inode)); 1882 if (IS_ERR(handle)) { 1883 ret = PTR_ERR(handle); 1884 put_page(page); 1885 goto out_no_pagelock; 1886 } 1887 BUG_ON(!ext4_handle_valid(handle)); 1888 1889 lock_page(page); 1890 put_page(page); 1891 if (page->mapping != mapping) { 1892 /* The page got truncated from under us */ 1893 ext4_journal_stop(handle); 1894 ret = 0; 1895 goto out; 1896 } 1897 1898 if (inline_data) { 1899 ret = ext4_mark_inode_dirty(handle, inode); 1900 } else { 1901 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1902 do_journal_get_write_access); 1903 1904 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1905 write_end_fn); 1906 } 1907 if (ret == 0) 1908 ret = err; 1909 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1910 err = ext4_journal_stop(handle); 1911 if (!ret) 1912 ret = err; 1913 1914 if (!ext4_has_inline_data(inode)) 1915 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1916 NULL, bput_one); 1917 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1918 out: 1919 unlock_page(page); 1920 out_no_pagelock: 1921 brelse(inode_bh); 1922 return ret; 1923 } 1924 1925 /* 1926 * Note that we don't need to start a transaction unless we're journaling data 1927 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1928 * need to file the inode to the transaction's list in ordered mode because if 1929 * we are writing back data added by write(), the inode is already there and if 1930 * we are writing back data modified via mmap(), no one guarantees in which 1931 * transaction the data will hit the disk. In case we are journaling data, we 1932 * cannot start transaction directly because transaction start ranks above page 1933 * lock so we have to do some magic. 1934 * 1935 * This function can get called via... 1936 * - ext4_writepages after taking page lock (have journal handle) 1937 * - journal_submit_inode_data_buffers (no journal handle) 1938 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1939 * - grab_page_cache when doing write_begin (have journal handle) 1940 * 1941 * We don't do any block allocation in this function. If we have page with 1942 * multiple blocks we need to write those buffer_heads that are mapped. This 1943 * is important for mmaped based write. So if we do with blocksize 1K 1944 * truncate(f, 1024); 1945 * a = mmap(f, 0, 4096); 1946 * a[0] = 'a'; 1947 * truncate(f, 4096); 1948 * we have in the page first buffer_head mapped via page_mkwrite call back 1949 * but other buffer_heads would be unmapped but dirty (dirty done via the 1950 * do_wp_page). So writepage should write the first block. If we modify 1951 * the mmap area beyond 1024 we will again get a page_fault and the 1952 * page_mkwrite callback will do the block allocation and mark the 1953 * buffer_heads mapped. 1954 * 1955 * We redirty the page if we have any buffer_heads that is either delay or 1956 * unwritten in the page. 1957 * 1958 * We can get recursively called as show below. 1959 * 1960 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1961 * ext4_writepage() 1962 * 1963 * But since we don't do any block allocation we should not deadlock. 1964 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1965 */ 1966 static int ext4_writepage(struct page *page, 1967 struct writeback_control *wbc) 1968 { 1969 int ret = 0; 1970 loff_t size; 1971 unsigned int len; 1972 struct buffer_head *page_bufs = NULL; 1973 struct inode *inode = page->mapping->host; 1974 struct ext4_io_submit io_submit; 1975 bool keep_towrite = false; 1976 1977 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1978 ext4_invalidatepage(page, 0, PAGE_SIZE); 1979 unlock_page(page); 1980 return -EIO; 1981 } 1982 1983 trace_ext4_writepage(page); 1984 size = i_size_read(inode); 1985 if (page->index == size >> PAGE_SHIFT && 1986 !ext4_verity_in_progress(inode)) 1987 len = size & ~PAGE_MASK; 1988 else 1989 len = PAGE_SIZE; 1990 1991 page_bufs = page_buffers(page); 1992 /* 1993 * We cannot do block allocation or other extent handling in this 1994 * function. If there are buffers needing that, we have to redirty 1995 * the page. But we may reach here when we do a journal commit via 1996 * journal_submit_inode_data_buffers() and in that case we must write 1997 * allocated buffers to achieve data=ordered mode guarantees. 1998 * 1999 * Also, if there is only one buffer per page (the fs block 2000 * size == the page size), if one buffer needs block 2001 * allocation or needs to modify the extent tree to clear the 2002 * unwritten flag, we know that the page can't be written at 2003 * all, so we might as well refuse the write immediately. 2004 * Unfortunately if the block size != page size, we can't as 2005 * easily detect this case using ext4_walk_page_buffers(), but 2006 * for the extremely common case, this is an optimization that 2007 * skips a useless round trip through ext4_bio_write_page(). 2008 */ 2009 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2010 ext4_bh_delay_or_unwritten)) { 2011 redirty_page_for_writepage(wbc, page); 2012 if ((current->flags & PF_MEMALLOC) || 2013 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2014 /* 2015 * For memory cleaning there's no point in writing only 2016 * some buffers. So just bail out. Warn if we came here 2017 * from direct reclaim. 2018 */ 2019 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2020 == PF_MEMALLOC); 2021 unlock_page(page); 2022 return 0; 2023 } 2024 keep_towrite = true; 2025 } 2026 2027 if (PageChecked(page) && ext4_should_journal_data(inode)) 2028 /* 2029 * It's mmapped pagecache. Add buffers and journal it. There 2030 * doesn't seem much point in redirtying the page here. 2031 */ 2032 return __ext4_journalled_writepage(page, len); 2033 2034 ext4_io_submit_init(&io_submit, wbc); 2035 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2036 if (!io_submit.io_end) { 2037 redirty_page_for_writepage(wbc, page); 2038 unlock_page(page); 2039 return -ENOMEM; 2040 } 2041 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2042 ext4_io_submit(&io_submit); 2043 /* Drop io_end reference we got from init */ 2044 ext4_put_io_end_defer(io_submit.io_end); 2045 return ret; 2046 } 2047 2048 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2049 { 2050 int len; 2051 loff_t size; 2052 int err; 2053 2054 BUG_ON(page->index != mpd->first_page); 2055 clear_page_dirty_for_io(page); 2056 /* 2057 * We have to be very careful here! Nothing protects writeback path 2058 * against i_size changes and the page can be writeably mapped into 2059 * page tables. So an application can be growing i_size and writing 2060 * data through mmap while writeback runs. clear_page_dirty_for_io() 2061 * write-protects our page in page tables and the page cannot get 2062 * written to again until we release page lock. So only after 2063 * clear_page_dirty_for_io() we are safe to sample i_size for 2064 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2065 * on the barrier provided by TestClearPageDirty in 2066 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2067 * after page tables are updated. 2068 */ 2069 size = i_size_read(mpd->inode); 2070 if (page->index == size >> PAGE_SHIFT && 2071 !ext4_verity_in_progress(mpd->inode)) 2072 len = size & ~PAGE_MASK; 2073 else 2074 len = PAGE_SIZE; 2075 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2076 if (!err) 2077 mpd->wbc->nr_to_write--; 2078 mpd->first_page++; 2079 2080 return err; 2081 } 2082 2083 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2084 2085 /* 2086 * mballoc gives us at most this number of blocks... 2087 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2088 * The rest of mballoc seems to handle chunks up to full group size. 2089 */ 2090 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2091 2092 /* 2093 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2094 * 2095 * @mpd - extent of blocks 2096 * @lblk - logical number of the block in the file 2097 * @bh - buffer head we want to add to the extent 2098 * 2099 * The function is used to collect contig. blocks in the same state. If the 2100 * buffer doesn't require mapping for writeback and we haven't started the 2101 * extent of buffers to map yet, the function returns 'true' immediately - the 2102 * caller can write the buffer right away. Otherwise the function returns true 2103 * if the block has been added to the extent, false if the block couldn't be 2104 * added. 2105 */ 2106 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2107 struct buffer_head *bh) 2108 { 2109 struct ext4_map_blocks *map = &mpd->map; 2110 2111 /* Buffer that doesn't need mapping for writeback? */ 2112 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2113 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2114 /* So far no extent to map => we write the buffer right away */ 2115 if (map->m_len == 0) 2116 return true; 2117 return false; 2118 } 2119 2120 /* First block in the extent? */ 2121 if (map->m_len == 0) { 2122 /* We cannot map unless handle is started... */ 2123 if (!mpd->do_map) 2124 return false; 2125 map->m_lblk = lblk; 2126 map->m_len = 1; 2127 map->m_flags = bh->b_state & BH_FLAGS; 2128 return true; 2129 } 2130 2131 /* Don't go larger than mballoc is willing to allocate */ 2132 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2133 return false; 2134 2135 /* Can we merge the block to our big extent? */ 2136 if (lblk == map->m_lblk + map->m_len && 2137 (bh->b_state & BH_FLAGS) == map->m_flags) { 2138 map->m_len++; 2139 return true; 2140 } 2141 return false; 2142 } 2143 2144 /* 2145 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2146 * 2147 * @mpd - extent of blocks for mapping 2148 * @head - the first buffer in the page 2149 * @bh - buffer we should start processing from 2150 * @lblk - logical number of the block in the file corresponding to @bh 2151 * 2152 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2153 * the page for IO if all buffers in this page were mapped and there's no 2154 * accumulated extent of buffers to map or add buffers in the page to the 2155 * extent of buffers to map. The function returns 1 if the caller can continue 2156 * by processing the next page, 0 if it should stop adding buffers to the 2157 * extent to map because we cannot extend it anymore. It can also return value 2158 * < 0 in case of error during IO submission. 2159 */ 2160 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2161 struct buffer_head *head, 2162 struct buffer_head *bh, 2163 ext4_lblk_t lblk) 2164 { 2165 struct inode *inode = mpd->inode; 2166 int err; 2167 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2168 >> inode->i_blkbits; 2169 2170 if (ext4_verity_in_progress(inode)) 2171 blocks = EXT_MAX_BLOCKS; 2172 2173 do { 2174 BUG_ON(buffer_locked(bh)); 2175 2176 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2177 /* Found extent to map? */ 2178 if (mpd->map.m_len) 2179 return 0; 2180 /* Buffer needs mapping and handle is not started? */ 2181 if (!mpd->do_map) 2182 return 0; 2183 /* Everything mapped so far and we hit EOF */ 2184 break; 2185 } 2186 } while (lblk++, (bh = bh->b_this_page) != head); 2187 /* So far everything mapped? Submit the page for IO. */ 2188 if (mpd->map.m_len == 0) { 2189 err = mpage_submit_page(mpd, head->b_page); 2190 if (err < 0) 2191 return err; 2192 } 2193 return lblk < blocks; 2194 } 2195 2196 /* 2197 * mpage_process_page - update page buffers corresponding to changed extent and 2198 * may submit fully mapped page for IO 2199 * 2200 * @mpd - description of extent to map, on return next extent to map 2201 * @m_lblk - logical block mapping. 2202 * @m_pblk - corresponding physical mapping. 2203 * @map_bh - determines on return whether this page requires any further 2204 * mapping or not. 2205 * Scan given page buffers corresponding to changed extent and update buffer 2206 * state according to new extent state. 2207 * We map delalloc buffers to their physical location, clear unwritten bits. 2208 * If the given page is not fully mapped, we update @map to the next extent in 2209 * the given page that needs mapping & return @map_bh as true. 2210 */ 2211 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2212 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2213 bool *map_bh) 2214 { 2215 struct buffer_head *head, *bh; 2216 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2217 ext4_lblk_t lblk = *m_lblk; 2218 ext4_fsblk_t pblock = *m_pblk; 2219 int err = 0; 2220 int blkbits = mpd->inode->i_blkbits; 2221 ssize_t io_end_size = 0; 2222 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2223 2224 bh = head = page_buffers(page); 2225 do { 2226 if (lblk < mpd->map.m_lblk) 2227 continue; 2228 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2229 /* 2230 * Buffer after end of mapped extent. 2231 * Find next buffer in the page to map. 2232 */ 2233 mpd->map.m_len = 0; 2234 mpd->map.m_flags = 0; 2235 io_end_vec->size += io_end_size; 2236 io_end_size = 0; 2237 2238 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2239 if (err > 0) 2240 err = 0; 2241 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2242 io_end_vec = ext4_alloc_io_end_vec(io_end); 2243 io_end_vec->offset = mpd->map.m_lblk << blkbits; 2244 } 2245 *map_bh = true; 2246 goto out; 2247 } 2248 if (buffer_delay(bh)) { 2249 clear_buffer_delay(bh); 2250 bh->b_blocknr = pblock++; 2251 } 2252 clear_buffer_unwritten(bh); 2253 io_end_size += (1 << blkbits); 2254 } while (lblk++, (bh = bh->b_this_page) != head); 2255 2256 io_end_vec->size += io_end_size; 2257 io_end_size = 0; 2258 *map_bh = false; 2259 out: 2260 *m_lblk = lblk; 2261 *m_pblk = pblock; 2262 return err; 2263 } 2264 2265 /* 2266 * mpage_map_buffers - update buffers corresponding to changed extent and 2267 * submit fully mapped pages for IO 2268 * 2269 * @mpd - description of extent to map, on return next extent to map 2270 * 2271 * Scan buffers corresponding to changed extent (we expect corresponding pages 2272 * to be already locked) and update buffer state according to new extent state. 2273 * We map delalloc buffers to their physical location, clear unwritten bits, 2274 * and mark buffers as uninit when we perform writes to unwritten extents 2275 * and do extent conversion after IO is finished. If the last page is not fully 2276 * mapped, we update @map to the next extent in the last page that needs 2277 * mapping. Otherwise we submit the page for IO. 2278 */ 2279 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2280 { 2281 struct pagevec pvec; 2282 int nr_pages, i; 2283 struct inode *inode = mpd->inode; 2284 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2285 pgoff_t start, end; 2286 ext4_lblk_t lblk; 2287 ext4_fsblk_t pblock; 2288 int err; 2289 bool map_bh = false; 2290 2291 start = mpd->map.m_lblk >> bpp_bits; 2292 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2293 lblk = start << bpp_bits; 2294 pblock = mpd->map.m_pblk; 2295 2296 pagevec_init(&pvec); 2297 while (start <= end) { 2298 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2299 &start, end); 2300 if (nr_pages == 0) 2301 break; 2302 for (i = 0; i < nr_pages; i++) { 2303 struct page *page = pvec.pages[i]; 2304 2305 err = mpage_process_page(mpd, page, &lblk, &pblock, 2306 &map_bh); 2307 /* 2308 * If map_bh is true, means page may require further bh 2309 * mapping, or maybe the page was submitted for IO. 2310 * So we return to call further extent mapping. 2311 */ 2312 if (err < 0 || map_bh == true) 2313 goto out; 2314 /* Page fully mapped - let IO run! */ 2315 err = mpage_submit_page(mpd, page); 2316 if (err < 0) 2317 goto out; 2318 } 2319 pagevec_release(&pvec); 2320 } 2321 /* Extent fully mapped and matches with page boundary. We are done. */ 2322 mpd->map.m_len = 0; 2323 mpd->map.m_flags = 0; 2324 return 0; 2325 out: 2326 pagevec_release(&pvec); 2327 return err; 2328 } 2329 2330 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2331 { 2332 struct inode *inode = mpd->inode; 2333 struct ext4_map_blocks *map = &mpd->map; 2334 int get_blocks_flags; 2335 int err, dioread_nolock; 2336 2337 trace_ext4_da_write_pages_extent(inode, map); 2338 /* 2339 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2340 * to convert an unwritten extent to be initialized (in the case 2341 * where we have written into one or more preallocated blocks). It is 2342 * possible that we're going to need more metadata blocks than 2343 * previously reserved. However we must not fail because we're in 2344 * writeback and there is nothing we can do about it so it might result 2345 * in data loss. So use reserved blocks to allocate metadata if 2346 * possible. 2347 * 2348 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2349 * the blocks in question are delalloc blocks. This indicates 2350 * that the blocks and quotas has already been checked when 2351 * the data was copied into the page cache. 2352 */ 2353 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2354 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2355 EXT4_GET_BLOCKS_IO_SUBMIT; 2356 dioread_nolock = ext4_should_dioread_nolock(inode); 2357 if (dioread_nolock) 2358 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2359 if (map->m_flags & (1 << BH_Delay)) 2360 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2361 2362 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2363 if (err < 0) 2364 return err; 2365 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2366 if (!mpd->io_submit.io_end->handle && 2367 ext4_handle_valid(handle)) { 2368 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2369 handle->h_rsv_handle = NULL; 2370 } 2371 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2372 } 2373 2374 BUG_ON(map->m_len == 0); 2375 return 0; 2376 } 2377 2378 /* 2379 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2380 * mpd->len and submit pages underlying it for IO 2381 * 2382 * @handle - handle for journal operations 2383 * @mpd - extent to map 2384 * @give_up_on_write - we set this to true iff there is a fatal error and there 2385 * is no hope of writing the data. The caller should discard 2386 * dirty pages to avoid infinite loops. 2387 * 2388 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2389 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2390 * them to initialized or split the described range from larger unwritten 2391 * extent. Note that we need not map all the described range since allocation 2392 * can return less blocks or the range is covered by more unwritten extents. We 2393 * cannot map more because we are limited by reserved transaction credits. On 2394 * the other hand we always make sure that the last touched page is fully 2395 * mapped so that it can be written out (and thus forward progress is 2396 * guaranteed). After mapping we submit all mapped pages for IO. 2397 */ 2398 static int mpage_map_and_submit_extent(handle_t *handle, 2399 struct mpage_da_data *mpd, 2400 bool *give_up_on_write) 2401 { 2402 struct inode *inode = mpd->inode; 2403 struct ext4_map_blocks *map = &mpd->map; 2404 int err; 2405 loff_t disksize; 2406 int progress = 0; 2407 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2408 struct ext4_io_end_vec *io_end_vec = ext4_alloc_io_end_vec(io_end); 2409 2410 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2411 do { 2412 err = mpage_map_one_extent(handle, mpd); 2413 if (err < 0) { 2414 struct super_block *sb = inode->i_sb; 2415 2416 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2417 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2418 goto invalidate_dirty_pages; 2419 /* 2420 * Let the uper layers retry transient errors. 2421 * In the case of ENOSPC, if ext4_count_free_blocks() 2422 * is non-zero, a commit should free up blocks. 2423 */ 2424 if ((err == -ENOMEM) || 2425 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2426 if (progress) 2427 goto update_disksize; 2428 return err; 2429 } 2430 ext4_msg(sb, KERN_CRIT, 2431 "Delayed block allocation failed for " 2432 "inode %lu at logical offset %llu with" 2433 " max blocks %u with error %d", 2434 inode->i_ino, 2435 (unsigned long long)map->m_lblk, 2436 (unsigned)map->m_len, -err); 2437 ext4_msg(sb, KERN_CRIT, 2438 "This should not happen!! Data will " 2439 "be lost\n"); 2440 if (err == -ENOSPC) 2441 ext4_print_free_blocks(inode); 2442 invalidate_dirty_pages: 2443 *give_up_on_write = true; 2444 return err; 2445 } 2446 progress = 1; 2447 /* 2448 * Update buffer state, submit mapped pages, and get us new 2449 * extent to map 2450 */ 2451 err = mpage_map_and_submit_buffers(mpd); 2452 if (err < 0) 2453 goto update_disksize; 2454 } while (map->m_len); 2455 2456 update_disksize: 2457 /* 2458 * Update on-disk size after IO is submitted. Races with 2459 * truncate are avoided by checking i_size under i_data_sem. 2460 */ 2461 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2462 if (disksize > EXT4_I(inode)->i_disksize) { 2463 int err2; 2464 loff_t i_size; 2465 2466 down_write(&EXT4_I(inode)->i_data_sem); 2467 i_size = i_size_read(inode); 2468 if (disksize > i_size) 2469 disksize = i_size; 2470 if (disksize > EXT4_I(inode)->i_disksize) 2471 EXT4_I(inode)->i_disksize = disksize; 2472 up_write(&EXT4_I(inode)->i_data_sem); 2473 err2 = ext4_mark_inode_dirty(handle, inode); 2474 if (err2) 2475 ext4_error(inode->i_sb, 2476 "Failed to mark inode %lu dirty", 2477 inode->i_ino); 2478 if (!err) 2479 err = err2; 2480 } 2481 return err; 2482 } 2483 2484 /* 2485 * Calculate the total number of credits to reserve for one writepages 2486 * iteration. This is called from ext4_writepages(). We map an extent of 2487 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2488 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2489 * bpp - 1 blocks in bpp different extents. 2490 */ 2491 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2492 { 2493 int bpp = ext4_journal_blocks_per_page(inode); 2494 2495 return ext4_meta_trans_blocks(inode, 2496 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2497 } 2498 2499 /* 2500 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2501 * and underlying extent to map 2502 * 2503 * @mpd - where to look for pages 2504 * 2505 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2506 * IO immediately. When we find a page which isn't mapped we start accumulating 2507 * extent of buffers underlying these pages that needs mapping (formed by 2508 * either delayed or unwritten buffers). We also lock the pages containing 2509 * these buffers. The extent found is returned in @mpd structure (starting at 2510 * mpd->lblk with length mpd->len blocks). 2511 * 2512 * Note that this function can attach bios to one io_end structure which are 2513 * neither logically nor physically contiguous. Although it may seem as an 2514 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2515 * case as we need to track IO to all buffers underlying a page in one io_end. 2516 */ 2517 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2518 { 2519 struct address_space *mapping = mpd->inode->i_mapping; 2520 struct pagevec pvec; 2521 unsigned int nr_pages; 2522 long left = mpd->wbc->nr_to_write; 2523 pgoff_t index = mpd->first_page; 2524 pgoff_t end = mpd->last_page; 2525 xa_mark_t tag; 2526 int i, err = 0; 2527 int blkbits = mpd->inode->i_blkbits; 2528 ext4_lblk_t lblk; 2529 struct buffer_head *head; 2530 2531 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2532 tag = PAGECACHE_TAG_TOWRITE; 2533 else 2534 tag = PAGECACHE_TAG_DIRTY; 2535 2536 pagevec_init(&pvec); 2537 mpd->map.m_len = 0; 2538 mpd->next_page = index; 2539 while (index <= end) { 2540 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2541 tag); 2542 if (nr_pages == 0) 2543 goto out; 2544 2545 for (i = 0; i < nr_pages; i++) { 2546 struct page *page = pvec.pages[i]; 2547 2548 /* 2549 * Accumulated enough dirty pages? This doesn't apply 2550 * to WB_SYNC_ALL mode. For integrity sync we have to 2551 * keep going because someone may be concurrently 2552 * dirtying pages, and we might have synced a lot of 2553 * newly appeared dirty pages, but have not synced all 2554 * of the old dirty pages. 2555 */ 2556 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2557 goto out; 2558 2559 /* If we can't merge this page, we are done. */ 2560 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2561 goto out; 2562 2563 lock_page(page); 2564 /* 2565 * If the page is no longer dirty, or its mapping no 2566 * longer corresponds to inode we are writing (which 2567 * means it has been truncated or invalidated), or the 2568 * page is already under writeback and we are not doing 2569 * a data integrity writeback, skip the page 2570 */ 2571 if (!PageDirty(page) || 2572 (PageWriteback(page) && 2573 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2574 unlikely(page->mapping != mapping)) { 2575 unlock_page(page); 2576 continue; 2577 } 2578 2579 wait_on_page_writeback(page); 2580 BUG_ON(PageWriteback(page)); 2581 2582 if (mpd->map.m_len == 0) 2583 mpd->first_page = page->index; 2584 mpd->next_page = page->index + 1; 2585 /* Add all dirty buffers to mpd */ 2586 lblk = ((ext4_lblk_t)page->index) << 2587 (PAGE_SHIFT - blkbits); 2588 head = page_buffers(page); 2589 err = mpage_process_page_bufs(mpd, head, head, lblk); 2590 if (err <= 0) 2591 goto out; 2592 err = 0; 2593 left--; 2594 } 2595 pagevec_release(&pvec); 2596 cond_resched(); 2597 } 2598 return 0; 2599 out: 2600 pagevec_release(&pvec); 2601 return err; 2602 } 2603 2604 static int ext4_writepages(struct address_space *mapping, 2605 struct writeback_control *wbc) 2606 { 2607 pgoff_t writeback_index = 0; 2608 long nr_to_write = wbc->nr_to_write; 2609 int range_whole = 0; 2610 int cycled = 1; 2611 handle_t *handle = NULL; 2612 struct mpage_da_data mpd; 2613 struct inode *inode = mapping->host; 2614 int needed_blocks, rsv_blocks = 0, ret = 0; 2615 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2616 bool done; 2617 struct blk_plug plug; 2618 bool give_up_on_write = false; 2619 2620 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2621 return -EIO; 2622 2623 percpu_down_read(&sbi->s_journal_flag_rwsem); 2624 trace_ext4_writepages(inode, wbc); 2625 2626 /* 2627 * No pages to write? This is mainly a kludge to avoid starting 2628 * a transaction for special inodes like journal inode on last iput() 2629 * because that could violate lock ordering on umount 2630 */ 2631 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2632 goto out_writepages; 2633 2634 if (ext4_should_journal_data(inode)) { 2635 ret = generic_writepages(mapping, wbc); 2636 goto out_writepages; 2637 } 2638 2639 /* 2640 * If the filesystem has aborted, it is read-only, so return 2641 * right away instead of dumping stack traces later on that 2642 * will obscure the real source of the problem. We test 2643 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2644 * the latter could be true if the filesystem is mounted 2645 * read-only, and in that case, ext4_writepages should 2646 * *never* be called, so if that ever happens, we would want 2647 * the stack trace. 2648 */ 2649 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2650 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2651 ret = -EROFS; 2652 goto out_writepages; 2653 } 2654 2655 /* 2656 * If we have inline data and arrive here, it means that 2657 * we will soon create the block for the 1st page, so 2658 * we'd better clear the inline data here. 2659 */ 2660 if (ext4_has_inline_data(inode)) { 2661 /* Just inode will be modified... */ 2662 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2663 if (IS_ERR(handle)) { 2664 ret = PTR_ERR(handle); 2665 goto out_writepages; 2666 } 2667 BUG_ON(ext4_test_inode_state(inode, 2668 EXT4_STATE_MAY_INLINE_DATA)); 2669 ext4_destroy_inline_data(handle, inode); 2670 ext4_journal_stop(handle); 2671 } 2672 2673 if (ext4_should_dioread_nolock(inode)) { 2674 /* 2675 * We may need to convert up to one extent per block in 2676 * the page and we may dirty the inode. 2677 */ 2678 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2679 PAGE_SIZE >> inode->i_blkbits); 2680 } 2681 2682 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2683 range_whole = 1; 2684 2685 if (wbc->range_cyclic) { 2686 writeback_index = mapping->writeback_index; 2687 if (writeback_index) 2688 cycled = 0; 2689 mpd.first_page = writeback_index; 2690 mpd.last_page = -1; 2691 } else { 2692 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2693 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2694 } 2695 2696 mpd.inode = inode; 2697 mpd.wbc = wbc; 2698 ext4_io_submit_init(&mpd.io_submit, wbc); 2699 retry: 2700 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2701 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2702 done = false; 2703 blk_start_plug(&plug); 2704 2705 /* 2706 * First writeback pages that don't need mapping - we can avoid 2707 * starting a transaction unnecessarily and also avoid being blocked 2708 * in the block layer on device congestion while having transaction 2709 * started. 2710 */ 2711 mpd.do_map = 0; 2712 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2713 if (!mpd.io_submit.io_end) { 2714 ret = -ENOMEM; 2715 goto unplug; 2716 } 2717 ret = mpage_prepare_extent_to_map(&mpd); 2718 /* Unlock pages we didn't use */ 2719 mpage_release_unused_pages(&mpd, false); 2720 /* Submit prepared bio */ 2721 ext4_io_submit(&mpd.io_submit); 2722 ext4_put_io_end_defer(mpd.io_submit.io_end); 2723 mpd.io_submit.io_end = NULL; 2724 if (ret < 0) 2725 goto unplug; 2726 2727 while (!done && mpd.first_page <= mpd.last_page) { 2728 /* For each extent of pages we use new io_end */ 2729 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2730 if (!mpd.io_submit.io_end) { 2731 ret = -ENOMEM; 2732 break; 2733 } 2734 2735 /* 2736 * We have two constraints: We find one extent to map and we 2737 * must always write out whole page (makes a difference when 2738 * blocksize < pagesize) so that we don't block on IO when we 2739 * try to write out the rest of the page. Journalled mode is 2740 * not supported by delalloc. 2741 */ 2742 BUG_ON(ext4_should_journal_data(inode)); 2743 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2744 2745 /* start a new transaction */ 2746 handle = ext4_journal_start_with_reserve(inode, 2747 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2748 if (IS_ERR(handle)) { 2749 ret = PTR_ERR(handle); 2750 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2751 "%ld pages, ino %lu; err %d", __func__, 2752 wbc->nr_to_write, inode->i_ino, ret); 2753 /* Release allocated io_end */ 2754 ext4_put_io_end(mpd.io_submit.io_end); 2755 mpd.io_submit.io_end = NULL; 2756 break; 2757 } 2758 mpd.do_map = 1; 2759 2760 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2761 ret = mpage_prepare_extent_to_map(&mpd); 2762 if (!ret) { 2763 if (mpd.map.m_len) 2764 ret = mpage_map_and_submit_extent(handle, &mpd, 2765 &give_up_on_write); 2766 else { 2767 /* 2768 * We scanned the whole range (or exhausted 2769 * nr_to_write), submitted what was mapped and 2770 * didn't find anything needing mapping. We are 2771 * done. 2772 */ 2773 done = true; 2774 } 2775 } 2776 /* 2777 * Caution: If the handle is synchronous, 2778 * ext4_journal_stop() can wait for transaction commit 2779 * to finish which may depend on writeback of pages to 2780 * complete or on page lock to be released. In that 2781 * case, we have to wait until after after we have 2782 * submitted all the IO, released page locks we hold, 2783 * and dropped io_end reference (for extent conversion 2784 * to be able to complete) before stopping the handle. 2785 */ 2786 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2787 ext4_journal_stop(handle); 2788 handle = NULL; 2789 mpd.do_map = 0; 2790 } 2791 /* Unlock pages we didn't use */ 2792 mpage_release_unused_pages(&mpd, give_up_on_write); 2793 /* Submit prepared bio */ 2794 ext4_io_submit(&mpd.io_submit); 2795 2796 /* 2797 * Drop our io_end reference we got from init. We have 2798 * to be careful and use deferred io_end finishing if 2799 * we are still holding the transaction as we can 2800 * release the last reference to io_end which may end 2801 * up doing unwritten extent conversion. 2802 */ 2803 if (handle) { 2804 ext4_put_io_end_defer(mpd.io_submit.io_end); 2805 ext4_journal_stop(handle); 2806 } else 2807 ext4_put_io_end(mpd.io_submit.io_end); 2808 mpd.io_submit.io_end = NULL; 2809 2810 if (ret == -ENOSPC && sbi->s_journal) { 2811 /* 2812 * Commit the transaction which would 2813 * free blocks released in the transaction 2814 * and try again 2815 */ 2816 jbd2_journal_force_commit_nested(sbi->s_journal); 2817 ret = 0; 2818 continue; 2819 } 2820 /* Fatal error - ENOMEM, EIO... */ 2821 if (ret) 2822 break; 2823 } 2824 unplug: 2825 blk_finish_plug(&plug); 2826 if (!ret && !cycled && wbc->nr_to_write > 0) { 2827 cycled = 1; 2828 mpd.last_page = writeback_index - 1; 2829 mpd.first_page = 0; 2830 goto retry; 2831 } 2832 2833 /* Update index */ 2834 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2835 /* 2836 * Set the writeback_index so that range_cyclic 2837 * mode will write it back later 2838 */ 2839 mapping->writeback_index = mpd.first_page; 2840 2841 out_writepages: 2842 trace_ext4_writepages_result(inode, wbc, ret, 2843 nr_to_write - wbc->nr_to_write); 2844 percpu_up_read(&sbi->s_journal_flag_rwsem); 2845 return ret; 2846 } 2847 2848 static int ext4_dax_writepages(struct address_space *mapping, 2849 struct writeback_control *wbc) 2850 { 2851 int ret; 2852 long nr_to_write = wbc->nr_to_write; 2853 struct inode *inode = mapping->host; 2854 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2855 2856 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2857 return -EIO; 2858 2859 percpu_down_read(&sbi->s_journal_flag_rwsem); 2860 trace_ext4_writepages(inode, wbc); 2861 2862 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2863 trace_ext4_writepages_result(inode, wbc, ret, 2864 nr_to_write - wbc->nr_to_write); 2865 percpu_up_read(&sbi->s_journal_flag_rwsem); 2866 return ret; 2867 } 2868 2869 static int ext4_nonda_switch(struct super_block *sb) 2870 { 2871 s64 free_clusters, dirty_clusters; 2872 struct ext4_sb_info *sbi = EXT4_SB(sb); 2873 2874 /* 2875 * switch to non delalloc mode if we are running low 2876 * on free block. The free block accounting via percpu 2877 * counters can get slightly wrong with percpu_counter_batch getting 2878 * accumulated on each CPU without updating global counters 2879 * Delalloc need an accurate free block accounting. So switch 2880 * to non delalloc when we are near to error range. 2881 */ 2882 free_clusters = 2883 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2884 dirty_clusters = 2885 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2886 /* 2887 * Start pushing delalloc when 1/2 of free blocks are dirty. 2888 */ 2889 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2890 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2891 2892 if (2 * free_clusters < 3 * dirty_clusters || 2893 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2894 /* 2895 * free block count is less than 150% of dirty blocks 2896 * or free blocks is less than watermark 2897 */ 2898 return 1; 2899 } 2900 return 0; 2901 } 2902 2903 /* We always reserve for an inode update; the superblock could be there too */ 2904 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2905 { 2906 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2907 return 1; 2908 2909 if (pos + len <= 0x7fffffffULL) 2910 return 1; 2911 2912 /* We might need to update the superblock to set LARGE_FILE */ 2913 return 2; 2914 } 2915 2916 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2917 loff_t pos, unsigned len, unsigned flags, 2918 struct page **pagep, void **fsdata) 2919 { 2920 int ret, retries = 0; 2921 struct page *page; 2922 pgoff_t index; 2923 struct inode *inode = mapping->host; 2924 handle_t *handle; 2925 2926 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2927 return -EIO; 2928 2929 index = pos >> PAGE_SHIFT; 2930 2931 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2932 ext4_verity_in_progress(inode)) { 2933 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2934 return ext4_write_begin(file, mapping, pos, 2935 len, flags, pagep, fsdata); 2936 } 2937 *fsdata = (void *)0; 2938 trace_ext4_da_write_begin(inode, pos, len, flags); 2939 2940 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2941 ret = ext4_da_write_inline_data_begin(mapping, inode, 2942 pos, len, flags, 2943 pagep, fsdata); 2944 if (ret < 0) 2945 return ret; 2946 if (ret == 1) 2947 return 0; 2948 } 2949 2950 /* 2951 * grab_cache_page_write_begin() can take a long time if the 2952 * system is thrashing due to memory pressure, or if the page 2953 * is being written back. So grab it first before we start 2954 * the transaction handle. This also allows us to allocate 2955 * the page (if needed) without using GFP_NOFS. 2956 */ 2957 retry_grab: 2958 page = grab_cache_page_write_begin(mapping, index, flags); 2959 if (!page) 2960 return -ENOMEM; 2961 unlock_page(page); 2962 2963 /* 2964 * With delayed allocation, we don't log the i_disksize update 2965 * if there is delayed block allocation. But we still need 2966 * to journalling the i_disksize update if writes to the end 2967 * of file which has an already mapped buffer. 2968 */ 2969 retry_journal: 2970 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2971 ext4_da_write_credits(inode, pos, len)); 2972 if (IS_ERR(handle)) { 2973 put_page(page); 2974 return PTR_ERR(handle); 2975 } 2976 2977 lock_page(page); 2978 if (page->mapping != mapping) { 2979 /* The page got truncated from under us */ 2980 unlock_page(page); 2981 put_page(page); 2982 ext4_journal_stop(handle); 2983 goto retry_grab; 2984 } 2985 /* In case writeback began while the page was unlocked */ 2986 wait_for_stable_page(page); 2987 2988 #ifdef CONFIG_FS_ENCRYPTION 2989 ret = ext4_block_write_begin(page, pos, len, 2990 ext4_da_get_block_prep); 2991 #else 2992 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2993 #endif 2994 if (ret < 0) { 2995 unlock_page(page); 2996 ext4_journal_stop(handle); 2997 /* 2998 * block_write_begin may have instantiated a few blocks 2999 * outside i_size. Trim these off again. Don't need 3000 * i_size_read because we hold i_mutex. 3001 */ 3002 if (pos + len > inode->i_size) 3003 ext4_truncate_failed_write(inode); 3004 3005 if (ret == -ENOSPC && 3006 ext4_should_retry_alloc(inode->i_sb, &retries)) 3007 goto retry_journal; 3008 3009 put_page(page); 3010 return ret; 3011 } 3012 3013 *pagep = page; 3014 return ret; 3015 } 3016 3017 /* 3018 * Check if we should update i_disksize 3019 * when write to the end of file but not require block allocation 3020 */ 3021 static int ext4_da_should_update_i_disksize(struct page *page, 3022 unsigned long offset) 3023 { 3024 struct buffer_head *bh; 3025 struct inode *inode = page->mapping->host; 3026 unsigned int idx; 3027 int i; 3028 3029 bh = page_buffers(page); 3030 idx = offset >> inode->i_blkbits; 3031 3032 for (i = 0; i < idx; i++) 3033 bh = bh->b_this_page; 3034 3035 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3036 return 0; 3037 return 1; 3038 } 3039 3040 static int ext4_da_write_end(struct file *file, 3041 struct address_space *mapping, 3042 loff_t pos, unsigned len, unsigned copied, 3043 struct page *page, void *fsdata) 3044 { 3045 struct inode *inode = mapping->host; 3046 int ret = 0, ret2; 3047 handle_t *handle = ext4_journal_current_handle(); 3048 loff_t new_i_size; 3049 unsigned long start, end; 3050 int write_mode = (int)(unsigned long)fsdata; 3051 3052 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3053 return ext4_write_end(file, mapping, pos, 3054 len, copied, page, fsdata); 3055 3056 trace_ext4_da_write_end(inode, pos, len, copied); 3057 start = pos & (PAGE_SIZE - 1); 3058 end = start + copied - 1; 3059 3060 /* 3061 * generic_write_end() will run mark_inode_dirty() if i_size 3062 * changes. So let's piggyback the i_disksize mark_inode_dirty 3063 * into that. 3064 */ 3065 new_i_size = pos + copied; 3066 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3067 if (ext4_has_inline_data(inode) || 3068 ext4_da_should_update_i_disksize(page, end)) { 3069 ext4_update_i_disksize(inode, new_i_size); 3070 /* We need to mark inode dirty even if 3071 * new_i_size is less that inode->i_size 3072 * bu greater than i_disksize.(hint delalloc) 3073 */ 3074 ext4_mark_inode_dirty(handle, inode); 3075 } 3076 } 3077 3078 if (write_mode != CONVERT_INLINE_DATA && 3079 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3080 ext4_has_inline_data(inode)) 3081 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3082 page); 3083 else 3084 ret2 = generic_write_end(file, mapping, pos, len, copied, 3085 page, fsdata); 3086 3087 copied = ret2; 3088 if (ret2 < 0) 3089 ret = ret2; 3090 ret2 = ext4_journal_stop(handle); 3091 if (!ret) 3092 ret = ret2; 3093 3094 return ret ? ret : copied; 3095 } 3096 3097 /* 3098 * Force all delayed allocation blocks to be allocated for a given inode. 3099 */ 3100 int ext4_alloc_da_blocks(struct inode *inode) 3101 { 3102 trace_ext4_alloc_da_blocks(inode); 3103 3104 if (!EXT4_I(inode)->i_reserved_data_blocks) 3105 return 0; 3106 3107 /* 3108 * We do something simple for now. The filemap_flush() will 3109 * also start triggering a write of the data blocks, which is 3110 * not strictly speaking necessary (and for users of 3111 * laptop_mode, not even desirable). However, to do otherwise 3112 * would require replicating code paths in: 3113 * 3114 * ext4_writepages() -> 3115 * write_cache_pages() ---> (via passed in callback function) 3116 * __mpage_da_writepage() --> 3117 * mpage_add_bh_to_extent() 3118 * mpage_da_map_blocks() 3119 * 3120 * The problem is that write_cache_pages(), located in 3121 * mm/page-writeback.c, marks pages clean in preparation for 3122 * doing I/O, which is not desirable if we're not planning on 3123 * doing I/O at all. 3124 * 3125 * We could call write_cache_pages(), and then redirty all of 3126 * the pages by calling redirty_page_for_writepage() but that 3127 * would be ugly in the extreme. So instead we would need to 3128 * replicate parts of the code in the above functions, 3129 * simplifying them because we wouldn't actually intend to 3130 * write out the pages, but rather only collect contiguous 3131 * logical block extents, call the multi-block allocator, and 3132 * then update the buffer heads with the block allocations. 3133 * 3134 * For now, though, we'll cheat by calling filemap_flush(), 3135 * which will map the blocks, and start the I/O, but not 3136 * actually wait for the I/O to complete. 3137 */ 3138 return filemap_flush(inode->i_mapping); 3139 } 3140 3141 /* 3142 * bmap() is special. It gets used by applications such as lilo and by 3143 * the swapper to find the on-disk block of a specific piece of data. 3144 * 3145 * Naturally, this is dangerous if the block concerned is still in the 3146 * journal. If somebody makes a swapfile on an ext4 data-journaling 3147 * filesystem and enables swap, then they may get a nasty shock when the 3148 * data getting swapped to that swapfile suddenly gets overwritten by 3149 * the original zero's written out previously to the journal and 3150 * awaiting writeback in the kernel's buffer cache. 3151 * 3152 * So, if we see any bmap calls here on a modified, data-journaled file, 3153 * take extra steps to flush any blocks which might be in the cache. 3154 */ 3155 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3156 { 3157 struct inode *inode = mapping->host; 3158 journal_t *journal; 3159 int err; 3160 3161 /* 3162 * We can get here for an inline file via the FIBMAP ioctl 3163 */ 3164 if (ext4_has_inline_data(inode)) 3165 return 0; 3166 3167 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3168 test_opt(inode->i_sb, DELALLOC)) { 3169 /* 3170 * With delalloc we want to sync the file 3171 * so that we can make sure we allocate 3172 * blocks for file 3173 */ 3174 filemap_write_and_wait(mapping); 3175 } 3176 3177 if (EXT4_JOURNAL(inode) && 3178 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3179 /* 3180 * This is a REALLY heavyweight approach, but the use of 3181 * bmap on dirty files is expected to be extremely rare: 3182 * only if we run lilo or swapon on a freshly made file 3183 * do we expect this to happen. 3184 * 3185 * (bmap requires CAP_SYS_RAWIO so this does not 3186 * represent an unprivileged user DOS attack --- we'd be 3187 * in trouble if mortal users could trigger this path at 3188 * will.) 3189 * 3190 * NB. EXT4_STATE_JDATA is not set on files other than 3191 * regular files. If somebody wants to bmap a directory 3192 * or symlink and gets confused because the buffer 3193 * hasn't yet been flushed to disk, they deserve 3194 * everything they get. 3195 */ 3196 3197 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3198 journal = EXT4_JOURNAL(inode); 3199 jbd2_journal_lock_updates(journal); 3200 err = jbd2_journal_flush(journal); 3201 jbd2_journal_unlock_updates(journal); 3202 3203 if (err) 3204 return 0; 3205 } 3206 3207 return generic_block_bmap(mapping, block, ext4_get_block); 3208 } 3209 3210 static int ext4_readpage(struct file *file, struct page *page) 3211 { 3212 int ret = -EAGAIN; 3213 struct inode *inode = page->mapping->host; 3214 3215 trace_ext4_readpage(page); 3216 3217 if (ext4_has_inline_data(inode)) 3218 ret = ext4_readpage_inline(inode, page); 3219 3220 if (ret == -EAGAIN) 3221 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3222 false); 3223 3224 return ret; 3225 } 3226 3227 static int 3228 ext4_readpages(struct file *file, struct address_space *mapping, 3229 struct list_head *pages, unsigned nr_pages) 3230 { 3231 struct inode *inode = mapping->host; 3232 3233 /* If the file has inline data, no need to do readpages. */ 3234 if (ext4_has_inline_data(inode)) 3235 return 0; 3236 3237 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3238 } 3239 3240 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3241 unsigned int length) 3242 { 3243 trace_ext4_invalidatepage(page, offset, length); 3244 3245 /* No journalling happens on data buffers when this function is used */ 3246 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3247 3248 block_invalidatepage(page, offset, length); 3249 } 3250 3251 static int __ext4_journalled_invalidatepage(struct page *page, 3252 unsigned int offset, 3253 unsigned int length) 3254 { 3255 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3256 3257 trace_ext4_journalled_invalidatepage(page, offset, length); 3258 3259 /* 3260 * If it's a full truncate we just forget about the pending dirtying 3261 */ 3262 if (offset == 0 && length == PAGE_SIZE) 3263 ClearPageChecked(page); 3264 3265 return jbd2_journal_invalidatepage(journal, page, offset, length); 3266 } 3267 3268 /* Wrapper for aops... */ 3269 static void ext4_journalled_invalidatepage(struct page *page, 3270 unsigned int offset, 3271 unsigned int length) 3272 { 3273 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3274 } 3275 3276 static int ext4_releasepage(struct page *page, gfp_t wait) 3277 { 3278 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3279 3280 trace_ext4_releasepage(page); 3281 3282 /* Page has dirty journalled data -> cannot release */ 3283 if (PageChecked(page)) 3284 return 0; 3285 if (journal) 3286 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3287 else 3288 return try_to_free_buffers(page); 3289 } 3290 3291 static bool ext4_inode_datasync_dirty(struct inode *inode) 3292 { 3293 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3294 3295 if (journal) 3296 return !jbd2_transaction_committed(journal, 3297 EXT4_I(inode)->i_datasync_tid); 3298 /* Any metadata buffers to write? */ 3299 if (!list_empty(&inode->i_mapping->private_list)) 3300 return true; 3301 return inode->i_state & I_DIRTY_DATASYNC; 3302 } 3303 3304 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3305 struct ext4_map_blocks *map, loff_t offset, 3306 loff_t length) 3307 { 3308 u8 blkbits = inode->i_blkbits; 3309 3310 /* 3311 * Writes that span EOF might trigger an I/O size update on completion, 3312 * so consider them to be dirty for the purpose of O_DSYNC, even if 3313 * there is no other metadata changes being made or are pending. 3314 */ 3315 iomap->flags = 0; 3316 if (ext4_inode_datasync_dirty(inode) || 3317 offset + length > i_size_read(inode)) 3318 iomap->flags |= IOMAP_F_DIRTY; 3319 3320 if (map->m_flags & EXT4_MAP_NEW) 3321 iomap->flags |= IOMAP_F_NEW; 3322 3323 iomap->bdev = inode->i_sb->s_bdev; 3324 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3325 iomap->offset = (u64) map->m_lblk << blkbits; 3326 iomap->length = (u64) map->m_len << blkbits; 3327 3328 /* 3329 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3330 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3331 * set. In order for any allocated unwritten extents to be converted 3332 * into written extents correctly within the ->end_io() handler, we 3333 * need to ensure that the iomap->type is set appropriately. Hence, the 3334 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3335 * been set first. 3336 */ 3337 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3338 iomap->type = IOMAP_UNWRITTEN; 3339 iomap->addr = (u64) map->m_pblk << blkbits; 3340 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3341 iomap->type = IOMAP_MAPPED; 3342 iomap->addr = (u64) map->m_pblk << blkbits; 3343 } else { 3344 iomap->type = IOMAP_HOLE; 3345 iomap->addr = IOMAP_NULL_ADDR; 3346 } 3347 } 3348 3349 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3350 unsigned int flags) 3351 { 3352 handle_t *handle; 3353 u8 blkbits = inode->i_blkbits; 3354 int ret, dio_credits, m_flags = 0, retries = 0; 3355 3356 /* 3357 * Trim the mapping request to the maximum value that we can map at 3358 * once for direct I/O. 3359 */ 3360 if (map->m_len > DIO_MAX_BLOCKS) 3361 map->m_len = DIO_MAX_BLOCKS; 3362 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3363 3364 retry: 3365 /* 3366 * Either we allocate blocks and then don't get an unwritten extent, so 3367 * in that case we have reserved enough credits. Or, the blocks are 3368 * already allocated and unwritten. In that case, the extent conversion 3369 * fits into the credits as well. 3370 */ 3371 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3372 if (IS_ERR(handle)) 3373 return PTR_ERR(handle); 3374 3375 /* 3376 * DAX and direct I/O are the only two operations that are currently 3377 * supported with IOMAP_WRITE. 3378 */ 3379 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3380 if (IS_DAX(inode)) 3381 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3382 /* 3383 * We use i_size instead of i_disksize here because delalloc writeback 3384 * can complete at any point during the I/O and subsequently push the 3385 * i_disksize out to i_size. This could be beyond where direct I/O is 3386 * happening and thus expose allocated blocks to direct I/O reads. 3387 */ 3388 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3389 m_flags = EXT4_GET_BLOCKS_CREATE; 3390 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3391 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3392 3393 ret = ext4_map_blocks(handle, inode, map, m_flags); 3394 3395 /* 3396 * We cannot fill holes in indirect tree based inodes as that could 3397 * expose stale data in the case of a crash. Use the magic error code 3398 * to fallback to buffered I/O. 3399 */ 3400 if (!m_flags && !ret) 3401 ret = -ENOTBLK; 3402 3403 ext4_journal_stop(handle); 3404 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3405 goto retry; 3406 3407 return ret; 3408 } 3409 3410 3411 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3412 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3413 { 3414 int ret; 3415 struct ext4_map_blocks map; 3416 u8 blkbits = inode->i_blkbits; 3417 3418 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3419 return -EINVAL; 3420 3421 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3422 return -ERANGE; 3423 3424 /* 3425 * Calculate the first and last logical blocks respectively. 3426 */ 3427 map.m_lblk = offset >> blkbits; 3428 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3429 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3430 3431 if (flags & IOMAP_WRITE) 3432 ret = ext4_iomap_alloc(inode, &map, flags); 3433 else 3434 ret = ext4_map_blocks(NULL, inode, &map, 0); 3435 3436 if (ret < 0) 3437 return ret; 3438 3439 ext4_set_iomap(inode, iomap, &map, offset, length); 3440 3441 return 0; 3442 } 3443 3444 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3445 ssize_t written, unsigned flags, struct iomap *iomap) 3446 { 3447 /* 3448 * Check to see whether an error occurred while writing out the data to 3449 * the allocated blocks. If so, return the magic error code so that we 3450 * fallback to buffered I/O and attempt to complete the remainder of 3451 * the I/O. Any blocks that may have been allocated in preparation for 3452 * the direct I/O will be reused during buffered I/O. 3453 */ 3454 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3455 return -ENOTBLK; 3456 3457 return 0; 3458 } 3459 3460 const struct iomap_ops ext4_iomap_ops = { 3461 .iomap_begin = ext4_iomap_begin, 3462 .iomap_end = ext4_iomap_end, 3463 }; 3464 3465 static bool ext4_iomap_is_delalloc(struct inode *inode, 3466 struct ext4_map_blocks *map) 3467 { 3468 struct extent_status es; 3469 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3470 3471 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3472 map->m_lblk, end, &es); 3473 3474 if (!es.es_len || es.es_lblk > end) 3475 return false; 3476 3477 if (es.es_lblk > map->m_lblk) { 3478 map->m_len = es.es_lblk - map->m_lblk; 3479 return false; 3480 } 3481 3482 offset = map->m_lblk - es.es_lblk; 3483 map->m_len = es.es_len - offset; 3484 3485 return true; 3486 } 3487 3488 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3489 loff_t length, unsigned int flags, 3490 struct iomap *iomap, struct iomap *srcmap) 3491 { 3492 int ret; 3493 bool delalloc = false; 3494 struct ext4_map_blocks map; 3495 u8 blkbits = inode->i_blkbits; 3496 3497 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3498 return -EINVAL; 3499 3500 if (ext4_has_inline_data(inode)) { 3501 ret = ext4_inline_data_iomap(inode, iomap); 3502 if (ret != -EAGAIN) { 3503 if (ret == 0 && offset >= iomap->length) 3504 ret = -ENOENT; 3505 return ret; 3506 } 3507 } 3508 3509 /* 3510 * Calculate the first and last logical block respectively. 3511 */ 3512 map.m_lblk = offset >> blkbits; 3513 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3514 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3515 3516 ret = ext4_map_blocks(NULL, inode, &map, 0); 3517 if (ret < 0) 3518 return ret; 3519 if (ret == 0) 3520 delalloc = ext4_iomap_is_delalloc(inode, &map); 3521 3522 ext4_set_iomap(inode, iomap, &map, offset, length); 3523 if (delalloc && iomap->type == IOMAP_HOLE) 3524 iomap->type = IOMAP_DELALLOC; 3525 3526 return 0; 3527 } 3528 3529 const struct iomap_ops ext4_iomap_report_ops = { 3530 .iomap_begin = ext4_iomap_begin_report, 3531 }; 3532 3533 /* 3534 * Pages can be marked dirty completely asynchronously from ext4's journalling 3535 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3536 * much here because ->set_page_dirty is called under VFS locks. The page is 3537 * not necessarily locked. 3538 * 3539 * We cannot just dirty the page and leave attached buffers clean, because the 3540 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3541 * or jbddirty because all the journalling code will explode. 3542 * 3543 * So what we do is to mark the page "pending dirty" and next time writepage 3544 * is called, propagate that into the buffers appropriately. 3545 */ 3546 static int ext4_journalled_set_page_dirty(struct page *page) 3547 { 3548 SetPageChecked(page); 3549 return __set_page_dirty_nobuffers(page); 3550 } 3551 3552 static int ext4_set_page_dirty(struct page *page) 3553 { 3554 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3555 WARN_ON_ONCE(!page_has_buffers(page)); 3556 return __set_page_dirty_buffers(page); 3557 } 3558 3559 static const struct address_space_operations ext4_aops = { 3560 .readpage = ext4_readpage, 3561 .readpages = ext4_readpages, 3562 .writepage = ext4_writepage, 3563 .writepages = ext4_writepages, 3564 .write_begin = ext4_write_begin, 3565 .write_end = ext4_write_end, 3566 .set_page_dirty = ext4_set_page_dirty, 3567 .bmap = ext4_bmap, 3568 .invalidatepage = ext4_invalidatepage, 3569 .releasepage = ext4_releasepage, 3570 .direct_IO = noop_direct_IO, 3571 .migratepage = buffer_migrate_page, 3572 .is_partially_uptodate = block_is_partially_uptodate, 3573 .error_remove_page = generic_error_remove_page, 3574 }; 3575 3576 static const struct address_space_operations ext4_journalled_aops = { 3577 .readpage = ext4_readpage, 3578 .readpages = ext4_readpages, 3579 .writepage = ext4_writepage, 3580 .writepages = ext4_writepages, 3581 .write_begin = ext4_write_begin, 3582 .write_end = ext4_journalled_write_end, 3583 .set_page_dirty = ext4_journalled_set_page_dirty, 3584 .bmap = ext4_bmap, 3585 .invalidatepage = ext4_journalled_invalidatepage, 3586 .releasepage = ext4_releasepage, 3587 .direct_IO = noop_direct_IO, 3588 .is_partially_uptodate = block_is_partially_uptodate, 3589 .error_remove_page = generic_error_remove_page, 3590 }; 3591 3592 static const struct address_space_operations ext4_da_aops = { 3593 .readpage = ext4_readpage, 3594 .readpages = ext4_readpages, 3595 .writepage = ext4_writepage, 3596 .writepages = ext4_writepages, 3597 .write_begin = ext4_da_write_begin, 3598 .write_end = ext4_da_write_end, 3599 .set_page_dirty = ext4_set_page_dirty, 3600 .bmap = ext4_bmap, 3601 .invalidatepage = ext4_invalidatepage, 3602 .releasepage = ext4_releasepage, 3603 .direct_IO = noop_direct_IO, 3604 .migratepage = buffer_migrate_page, 3605 .is_partially_uptodate = block_is_partially_uptodate, 3606 .error_remove_page = generic_error_remove_page, 3607 }; 3608 3609 static const struct address_space_operations ext4_dax_aops = { 3610 .writepages = ext4_dax_writepages, 3611 .direct_IO = noop_direct_IO, 3612 .set_page_dirty = noop_set_page_dirty, 3613 .bmap = ext4_bmap, 3614 .invalidatepage = noop_invalidatepage, 3615 }; 3616 3617 void ext4_set_aops(struct inode *inode) 3618 { 3619 switch (ext4_inode_journal_mode(inode)) { 3620 case EXT4_INODE_ORDERED_DATA_MODE: 3621 case EXT4_INODE_WRITEBACK_DATA_MODE: 3622 break; 3623 case EXT4_INODE_JOURNAL_DATA_MODE: 3624 inode->i_mapping->a_ops = &ext4_journalled_aops; 3625 return; 3626 default: 3627 BUG(); 3628 } 3629 if (IS_DAX(inode)) 3630 inode->i_mapping->a_ops = &ext4_dax_aops; 3631 else if (test_opt(inode->i_sb, DELALLOC)) 3632 inode->i_mapping->a_ops = &ext4_da_aops; 3633 else 3634 inode->i_mapping->a_ops = &ext4_aops; 3635 } 3636 3637 static int __ext4_block_zero_page_range(handle_t *handle, 3638 struct address_space *mapping, loff_t from, loff_t length) 3639 { 3640 ext4_fsblk_t index = from >> PAGE_SHIFT; 3641 unsigned offset = from & (PAGE_SIZE-1); 3642 unsigned blocksize, pos; 3643 ext4_lblk_t iblock; 3644 struct inode *inode = mapping->host; 3645 struct buffer_head *bh; 3646 struct page *page; 3647 int err = 0; 3648 3649 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3650 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3651 if (!page) 3652 return -ENOMEM; 3653 3654 blocksize = inode->i_sb->s_blocksize; 3655 3656 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3657 3658 if (!page_has_buffers(page)) 3659 create_empty_buffers(page, blocksize, 0); 3660 3661 /* Find the buffer that contains "offset" */ 3662 bh = page_buffers(page); 3663 pos = blocksize; 3664 while (offset >= pos) { 3665 bh = bh->b_this_page; 3666 iblock++; 3667 pos += blocksize; 3668 } 3669 if (buffer_freed(bh)) { 3670 BUFFER_TRACE(bh, "freed: skip"); 3671 goto unlock; 3672 } 3673 if (!buffer_mapped(bh)) { 3674 BUFFER_TRACE(bh, "unmapped"); 3675 ext4_get_block(inode, iblock, bh, 0); 3676 /* unmapped? It's a hole - nothing to do */ 3677 if (!buffer_mapped(bh)) { 3678 BUFFER_TRACE(bh, "still unmapped"); 3679 goto unlock; 3680 } 3681 } 3682 3683 /* Ok, it's mapped. Make sure it's up-to-date */ 3684 if (PageUptodate(page)) 3685 set_buffer_uptodate(bh); 3686 3687 if (!buffer_uptodate(bh)) { 3688 err = -EIO; 3689 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3690 wait_on_buffer(bh); 3691 /* Uhhuh. Read error. Complain and punt. */ 3692 if (!buffer_uptodate(bh)) 3693 goto unlock; 3694 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 3695 /* We expect the key to be set. */ 3696 BUG_ON(!fscrypt_has_encryption_key(inode)); 3697 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks( 3698 page, blocksize, bh_offset(bh))); 3699 } 3700 } 3701 if (ext4_should_journal_data(inode)) { 3702 BUFFER_TRACE(bh, "get write access"); 3703 err = ext4_journal_get_write_access(handle, bh); 3704 if (err) 3705 goto unlock; 3706 } 3707 zero_user(page, offset, length); 3708 BUFFER_TRACE(bh, "zeroed end of block"); 3709 3710 if (ext4_should_journal_data(inode)) { 3711 err = ext4_handle_dirty_metadata(handle, inode, bh); 3712 } else { 3713 err = 0; 3714 mark_buffer_dirty(bh); 3715 if (ext4_should_order_data(inode)) 3716 err = ext4_jbd2_inode_add_write(handle, inode, from, 3717 length); 3718 } 3719 3720 unlock: 3721 unlock_page(page); 3722 put_page(page); 3723 return err; 3724 } 3725 3726 /* 3727 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3728 * starting from file offset 'from'. The range to be zero'd must 3729 * be contained with in one block. If the specified range exceeds 3730 * the end of the block it will be shortened to end of the block 3731 * that cooresponds to 'from' 3732 */ 3733 static int ext4_block_zero_page_range(handle_t *handle, 3734 struct address_space *mapping, loff_t from, loff_t length) 3735 { 3736 struct inode *inode = mapping->host; 3737 unsigned offset = from & (PAGE_SIZE-1); 3738 unsigned blocksize = inode->i_sb->s_blocksize; 3739 unsigned max = blocksize - (offset & (blocksize - 1)); 3740 3741 /* 3742 * correct length if it does not fall between 3743 * 'from' and the end of the block 3744 */ 3745 if (length > max || length < 0) 3746 length = max; 3747 3748 if (IS_DAX(inode)) { 3749 return iomap_zero_range(inode, from, length, NULL, 3750 &ext4_iomap_ops); 3751 } 3752 return __ext4_block_zero_page_range(handle, mapping, from, length); 3753 } 3754 3755 /* 3756 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3757 * up to the end of the block which corresponds to `from'. 3758 * This required during truncate. We need to physically zero the tail end 3759 * of that block so it doesn't yield old data if the file is later grown. 3760 */ 3761 static int ext4_block_truncate_page(handle_t *handle, 3762 struct address_space *mapping, loff_t from) 3763 { 3764 unsigned offset = from & (PAGE_SIZE-1); 3765 unsigned length; 3766 unsigned blocksize; 3767 struct inode *inode = mapping->host; 3768 3769 /* If we are processing an encrypted inode during orphan list handling */ 3770 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3771 return 0; 3772 3773 blocksize = inode->i_sb->s_blocksize; 3774 length = blocksize - (offset & (blocksize - 1)); 3775 3776 return ext4_block_zero_page_range(handle, mapping, from, length); 3777 } 3778 3779 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3780 loff_t lstart, loff_t length) 3781 { 3782 struct super_block *sb = inode->i_sb; 3783 struct address_space *mapping = inode->i_mapping; 3784 unsigned partial_start, partial_end; 3785 ext4_fsblk_t start, end; 3786 loff_t byte_end = (lstart + length - 1); 3787 int err = 0; 3788 3789 partial_start = lstart & (sb->s_blocksize - 1); 3790 partial_end = byte_end & (sb->s_blocksize - 1); 3791 3792 start = lstart >> sb->s_blocksize_bits; 3793 end = byte_end >> sb->s_blocksize_bits; 3794 3795 /* Handle partial zero within the single block */ 3796 if (start == end && 3797 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3798 err = ext4_block_zero_page_range(handle, mapping, 3799 lstart, length); 3800 return err; 3801 } 3802 /* Handle partial zero out on the start of the range */ 3803 if (partial_start) { 3804 err = ext4_block_zero_page_range(handle, mapping, 3805 lstart, sb->s_blocksize); 3806 if (err) 3807 return err; 3808 } 3809 /* Handle partial zero out on the end of the range */ 3810 if (partial_end != sb->s_blocksize - 1) 3811 err = ext4_block_zero_page_range(handle, mapping, 3812 byte_end - partial_end, 3813 partial_end + 1); 3814 return err; 3815 } 3816 3817 int ext4_can_truncate(struct inode *inode) 3818 { 3819 if (S_ISREG(inode->i_mode)) 3820 return 1; 3821 if (S_ISDIR(inode->i_mode)) 3822 return 1; 3823 if (S_ISLNK(inode->i_mode)) 3824 return !ext4_inode_is_fast_symlink(inode); 3825 return 0; 3826 } 3827 3828 /* 3829 * We have to make sure i_disksize gets properly updated before we truncate 3830 * page cache due to hole punching or zero range. Otherwise i_disksize update 3831 * can get lost as it may have been postponed to submission of writeback but 3832 * that will never happen after we truncate page cache. 3833 */ 3834 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3835 loff_t len) 3836 { 3837 handle_t *handle; 3838 loff_t size = i_size_read(inode); 3839 3840 WARN_ON(!inode_is_locked(inode)); 3841 if (offset > size || offset + len < size) 3842 return 0; 3843 3844 if (EXT4_I(inode)->i_disksize >= size) 3845 return 0; 3846 3847 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3848 if (IS_ERR(handle)) 3849 return PTR_ERR(handle); 3850 ext4_update_i_disksize(inode, size); 3851 ext4_mark_inode_dirty(handle, inode); 3852 ext4_journal_stop(handle); 3853 3854 return 0; 3855 } 3856 3857 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3858 { 3859 up_write(&ei->i_mmap_sem); 3860 schedule(); 3861 down_write(&ei->i_mmap_sem); 3862 } 3863 3864 int ext4_break_layouts(struct inode *inode) 3865 { 3866 struct ext4_inode_info *ei = EXT4_I(inode); 3867 struct page *page; 3868 int error; 3869 3870 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3871 return -EINVAL; 3872 3873 do { 3874 page = dax_layout_busy_page(inode->i_mapping); 3875 if (!page) 3876 return 0; 3877 3878 error = ___wait_var_event(&page->_refcount, 3879 atomic_read(&page->_refcount) == 1, 3880 TASK_INTERRUPTIBLE, 0, 0, 3881 ext4_wait_dax_page(ei)); 3882 } while (error == 0); 3883 3884 return error; 3885 } 3886 3887 /* 3888 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3889 * associated with the given offset and length 3890 * 3891 * @inode: File inode 3892 * @offset: The offset where the hole will begin 3893 * @len: The length of the hole 3894 * 3895 * Returns: 0 on success or negative on failure 3896 */ 3897 3898 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3899 { 3900 struct super_block *sb = inode->i_sb; 3901 ext4_lblk_t first_block, stop_block; 3902 struct address_space *mapping = inode->i_mapping; 3903 loff_t first_block_offset, last_block_offset; 3904 handle_t *handle; 3905 unsigned int credits; 3906 int ret = 0; 3907 3908 if (!S_ISREG(inode->i_mode)) 3909 return -EOPNOTSUPP; 3910 3911 trace_ext4_punch_hole(inode, offset, length, 0); 3912 3913 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3914 if (ext4_has_inline_data(inode)) { 3915 down_write(&EXT4_I(inode)->i_mmap_sem); 3916 ret = ext4_convert_inline_data(inode); 3917 up_write(&EXT4_I(inode)->i_mmap_sem); 3918 if (ret) 3919 return ret; 3920 } 3921 3922 /* 3923 * Write out all dirty pages to avoid race conditions 3924 * Then release them. 3925 */ 3926 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3927 ret = filemap_write_and_wait_range(mapping, offset, 3928 offset + length - 1); 3929 if (ret) 3930 return ret; 3931 } 3932 3933 inode_lock(inode); 3934 3935 /* No need to punch hole beyond i_size */ 3936 if (offset >= inode->i_size) 3937 goto out_mutex; 3938 3939 /* 3940 * If the hole extends beyond i_size, set the hole 3941 * to end after the page that contains i_size 3942 */ 3943 if (offset + length > inode->i_size) { 3944 length = inode->i_size + 3945 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3946 offset; 3947 } 3948 3949 if (offset & (sb->s_blocksize - 1) || 3950 (offset + length) & (sb->s_blocksize - 1)) { 3951 /* 3952 * Attach jinode to inode for jbd2 if we do any zeroing of 3953 * partial block 3954 */ 3955 ret = ext4_inode_attach_jinode(inode); 3956 if (ret < 0) 3957 goto out_mutex; 3958 3959 } 3960 3961 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3962 inode_dio_wait(inode); 3963 3964 /* 3965 * Prevent page faults from reinstantiating pages we have released from 3966 * page cache. 3967 */ 3968 down_write(&EXT4_I(inode)->i_mmap_sem); 3969 3970 ret = ext4_break_layouts(inode); 3971 if (ret) 3972 goto out_dio; 3973 3974 first_block_offset = round_up(offset, sb->s_blocksize); 3975 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3976 3977 /* Now release the pages and zero block aligned part of pages*/ 3978 if (last_block_offset > first_block_offset) { 3979 ret = ext4_update_disksize_before_punch(inode, offset, length); 3980 if (ret) 3981 goto out_dio; 3982 truncate_pagecache_range(inode, first_block_offset, 3983 last_block_offset); 3984 } 3985 3986 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3987 credits = ext4_writepage_trans_blocks(inode); 3988 else 3989 credits = ext4_blocks_for_truncate(inode); 3990 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3991 if (IS_ERR(handle)) { 3992 ret = PTR_ERR(handle); 3993 ext4_std_error(sb, ret); 3994 goto out_dio; 3995 } 3996 3997 ret = ext4_zero_partial_blocks(handle, inode, offset, 3998 length); 3999 if (ret) 4000 goto out_stop; 4001 4002 first_block = (offset + sb->s_blocksize - 1) >> 4003 EXT4_BLOCK_SIZE_BITS(sb); 4004 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4005 4006 /* If there are blocks to remove, do it */ 4007 if (stop_block > first_block) { 4008 4009 down_write(&EXT4_I(inode)->i_data_sem); 4010 ext4_discard_preallocations(inode); 4011 4012 ret = ext4_es_remove_extent(inode, first_block, 4013 stop_block - first_block); 4014 if (ret) { 4015 up_write(&EXT4_I(inode)->i_data_sem); 4016 goto out_stop; 4017 } 4018 4019 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4020 ret = ext4_ext_remove_space(inode, first_block, 4021 stop_block - 1); 4022 else 4023 ret = ext4_ind_remove_space(handle, inode, first_block, 4024 stop_block); 4025 4026 up_write(&EXT4_I(inode)->i_data_sem); 4027 } 4028 if (IS_SYNC(inode)) 4029 ext4_handle_sync(handle); 4030 4031 inode->i_mtime = inode->i_ctime = current_time(inode); 4032 ext4_mark_inode_dirty(handle, inode); 4033 if (ret >= 0) 4034 ext4_update_inode_fsync_trans(handle, inode, 1); 4035 out_stop: 4036 ext4_journal_stop(handle); 4037 out_dio: 4038 up_write(&EXT4_I(inode)->i_mmap_sem); 4039 out_mutex: 4040 inode_unlock(inode); 4041 return ret; 4042 } 4043 4044 int ext4_inode_attach_jinode(struct inode *inode) 4045 { 4046 struct ext4_inode_info *ei = EXT4_I(inode); 4047 struct jbd2_inode *jinode; 4048 4049 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4050 return 0; 4051 4052 jinode = jbd2_alloc_inode(GFP_KERNEL); 4053 spin_lock(&inode->i_lock); 4054 if (!ei->jinode) { 4055 if (!jinode) { 4056 spin_unlock(&inode->i_lock); 4057 return -ENOMEM; 4058 } 4059 ei->jinode = jinode; 4060 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4061 jinode = NULL; 4062 } 4063 spin_unlock(&inode->i_lock); 4064 if (unlikely(jinode != NULL)) 4065 jbd2_free_inode(jinode); 4066 return 0; 4067 } 4068 4069 /* 4070 * ext4_truncate() 4071 * 4072 * We block out ext4_get_block() block instantiations across the entire 4073 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4074 * simultaneously on behalf of the same inode. 4075 * 4076 * As we work through the truncate and commit bits of it to the journal there 4077 * is one core, guiding principle: the file's tree must always be consistent on 4078 * disk. We must be able to restart the truncate after a crash. 4079 * 4080 * The file's tree may be transiently inconsistent in memory (although it 4081 * probably isn't), but whenever we close off and commit a journal transaction, 4082 * the contents of (the filesystem + the journal) must be consistent and 4083 * restartable. It's pretty simple, really: bottom up, right to left (although 4084 * left-to-right works OK too). 4085 * 4086 * Note that at recovery time, journal replay occurs *before* the restart of 4087 * truncate against the orphan inode list. 4088 * 4089 * The committed inode has the new, desired i_size (which is the same as 4090 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4091 * that this inode's truncate did not complete and it will again call 4092 * ext4_truncate() to have another go. So there will be instantiated blocks 4093 * to the right of the truncation point in a crashed ext4 filesystem. But 4094 * that's fine - as long as they are linked from the inode, the post-crash 4095 * ext4_truncate() run will find them and release them. 4096 */ 4097 int ext4_truncate(struct inode *inode) 4098 { 4099 struct ext4_inode_info *ei = EXT4_I(inode); 4100 unsigned int credits; 4101 int err = 0; 4102 handle_t *handle; 4103 struct address_space *mapping = inode->i_mapping; 4104 4105 /* 4106 * There is a possibility that we're either freeing the inode 4107 * or it's a completely new inode. In those cases we might not 4108 * have i_mutex locked because it's not necessary. 4109 */ 4110 if (!(inode->i_state & (I_NEW|I_FREEING))) 4111 WARN_ON(!inode_is_locked(inode)); 4112 trace_ext4_truncate_enter(inode); 4113 4114 if (!ext4_can_truncate(inode)) 4115 return 0; 4116 4117 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4118 4119 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4120 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4121 4122 if (ext4_has_inline_data(inode)) { 4123 int has_inline = 1; 4124 4125 err = ext4_inline_data_truncate(inode, &has_inline); 4126 if (err) 4127 return err; 4128 if (has_inline) 4129 return 0; 4130 } 4131 4132 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4133 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4134 if (ext4_inode_attach_jinode(inode) < 0) 4135 return 0; 4136 } 4137 4138 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4139 credits = ext4_writepage_trans_blocks(inode); 4140 else 4141 credits = ext4_blocks_for_truncate(inode); 4142 4143 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4144 if (IS_ERR(handle)) 4145 return PTR_ERR(handle); 4146 4147 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4148 ext4_block_truncate_page(handle, mapping, inode->i_size); 4149 4150 /* 4151 * We add the inode to the orphan list, so that if this 4152 * truncate spans multiple transactions, and we crash, we will 4153 * resume the truncate when the filesystem recovers. It also 4154 * marks the inode dirty, to catch the new size. 4155 * 4156 * Implication: the file must always be in a sane, consistent 4157 * truncatable state while each transaction commits. 4158 */ 4159 err = ext4_orphan_add(handle, inode); 4160 if (err) 4161 goto out_stop; 4162 4163 down_write(&EXT4_I(inode)->i_data_sem); 4164 4165 ext4_discard_preallocations(inode); 4166 4167 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4168 err = ext4_ext_truncate(handle, inode); 4169 else 4170 ext4_ind_truncate(handle, inode); 4171 4172 up_write(&ei->i_data_sem); 4173 if (err) 4174 goto out_stop; 4175 4176 if (IS_SYNC(inode)) 4177 ext4_handle_sync(handle); 4178 4179 out_stop: 4180 /* 4181 * If this was a simple ftruncate() and the file will remain alive, 4182 * then we need to clear up the orphan record which we created above. 4183 * However, if this was a real unlink then we were called by 4184 * ext4_evict_inode(), and we allow that function to clean up the 4185 * orphan info for us. 4186 */ 4187 if (inode->i_nlink) 4188 ext4_orphan_del(handle, inode); 4189 4190 inode->i_mtime = inode->i_ctime = current_time(inode); 4191 ext4_mark_inode_dirty(handle, inode); 4192 ext4_journal_stop(handle); 4193 4194 trace_ext4_truncate_exit(inode); 4195 return err; 4196 } 4197 4198 /* 4199 * ext4_get_inode_loc returns with an extra refcount against the inode's 4200 * underlying buffer_head on success. If 'in_mem' is true, we have all 4201 * data in memory that is needed to recreate the on-disk version of this 4202 * inode. 4203 */ 4204 static int __ext4_get_inode_loc(struct inode *inode, 4205 struct ext4_iloc *iloc, int in_mem) 4206 { 4207 struct ext4_group_desc *gdp; 4208 struct buffer_head *bh; 4209 struct super_block *sb = inode->i_sb; 4210 ext4_fsblk_t block; 4211 struct blk_plug plug; 4212 int inodes_per_block, inode_offset; 4213 4214 iloc->bh = NULL; 4215 if (inode->i_ino < EXT4_ROOT_INO || 4216 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4217 return -EFSCORRUPTED; 4218 4219 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4220 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4221 if (!gdp) 4222 return -EIO; 4223 4224 /* 4225 * Figure out the offset within the block group inode table 4226 */ 4227 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4228 inode_offset = ((inode->i_ino - 1) % 4229 EXT4_INODES_PER_GROUP(sb)); 4230 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4231 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4232 4233 bh = sb_getblk(sb, block); 4234 if (unlikely(!bh)) 4235 return -ENOMEM; 4236 if (!buffer_uptodate(bh)) { 4237 lock_buffer(bh); 4238 4239 /* 4240 * If the buffer has the write error flag, we have failed 4241 * to write out another inode in the same block. In this 4242 * case, we don't have to read the block because we may 4243 * read the old inode data successfully. 4244 */ 4245 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4246 set_buffer_uptodate(bh); 4247 4248 if (buffer_uptodate(bh)) { 4249 /* someone brought it uptodate while we waited */ 4250 unlock_buffer(bh); 4251 goto has_buffer; 4252 } 4253 4254 /* 4255 * If we have all information of the inode in memory and this 4256 * is the only valid inode in the block, we need not read the 4257 * block. 4258 */ 4259 if (in_mem) { 4260 struct buffer_head *bitmap_bh; 4261 int i, start; 4262 4263 start = inode_offset & ~(inodes_per_block - 1); 4264 4265 /* Is the inode bitmap in cache? */ 4266 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4267 if (unlikely(!bitmap_bh)) 4268 goto make_io; 4269 4270 /* 4271 * If the inode bitmap isn't in cache then the 4272 * optimisation may end up performing two reads instead 4273 * of one, so skip it. 4274 */ 4275 if (!buffer_uptodate(bitmap_bh)) { 4276 brelse(bitmap_bh); 4277 goto make_io; 4278 } 4279 for (i = start; i < start + inodes_per_block; i++) { 4280 if (i == inode_offset) 4281 continue; 4282 if (ext4_test_bit(i, bitmap_bh->b_data)) 4283 break; 4284 } 4285 brelse(bitmap_bh); 4286 if (i == start + inodes_per_block) { 4287 /* all other inodes are free, so skip I/O */ 4288 memset(bh->b_data, 0, bh->b_size); 4289 set_buffer_uptodate(bh); 4290 unlock_buffer(bh); 4291 goto has_buffer; 4292 } 4293 } 4294 4295 make_io: 4296 /* 4297 * If we need to do any I/O, try to pre-readahead extra 4298 * blocks from the inode table. 4299 */ 4300 blk_start_plug(&plug); 4301 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4302 ext4_fsblk_t b, end, table; 4303 unsigned num; 4304 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4305 4306 table = ext4_inode_table(sb, gdp); 4307 /* s_inode_readahead_blks is always a power of 2 */ 4308 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4309 if (table > b) 4310 b = table; 4311 end = b + ra_blks; 4312 num = EXT4_INODES_PER_GROUP(sb); 4313 if (ext4_has_group_desc_csum(sb)) 4314 num -= ext4_itable_unused_count(sb, gdp); 4315 table += num / inodes_per_block; 4316 if (end > table) 4317 end = table; 4318 while (b <= end) 4319 sb_breadahead(sb, b++); 4320 } 4321 4322 /* 4323 * There are other valid inodes in the buffer, this inode 4324 * has in-inode xattrs, or we don't have this inode in memory. 4325 * Read the block from disk. 4326 */ 4327 trace_ext4_load_inode(inode); 4328 get_bh(bh); 4329 bh->b_end_io = end_buffer_read_sync; 4330 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4331 blk_finish_plug(&plug); 4332 wait_on_buffer(bh); 4333 if (!buffer_uptodate(bh)) { 4334 EXT4_ERROR_INODE_BLOCK(inode, block, 4335 "unable to read itable block"); 4336 brelse(bh); 4337 return -EIO; 4338 } 4339 } 4340 has_buffer: 4341 iloc->bh = bh; 4342 return 0; 4343 } 4344 4345 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4346 { 4347 /* We have all inode data except xattrs in memory here. */ 4348 return __ext4_get_inode_loc(inode, iloc, 4349 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4350 } 4351 4352 static bool ext4_should_use_dax(struct inode *inode) 4353 { 4354 if (!test_opt(inode->i_sb, DAX)) 4355 return false; 4356 if (!S_ISREG(inode->i_mode)) 4357 return false; 4358 if (ext4_should_journal_data(inode)) 4359 return false; 4360 if (ext4_has_inline_data(inode)) 4361 return false; 4362 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4363 return false; 4364 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4365 return false; 4366 return true; 4367 } 4368 4369 void ext4_set_inode_flags(struct inode *inode) 4370 { 4371 unsigned int flags = EXT4_I(inode)->i_flags; 4372 unsigned int new_fl = 0; 4373 4374 if (flags & EXT4_SYNC_FL) 4375 new_fl |= S_SYNC; 4376 if (flags & EXT4_APPEND_FL) 4377 new_fl |= S_APPEND; 4378 if (flags & EXT4_IMMUTABLE_FL) 4379 new_fl |= S_IMMUTABLE; 4380 if (flags & EXT4_NOATIME_FL) 4381 new_fl |= S_NOATIME; 4382 if (flags & EXT4_DIRSYNC_FL) 4383 new_fl |= S_DIRSYNC; 4384 if (ext4_should_use_dax(inode)) 4385 new_fl |= S_DAX; 4386 if (flags & EXT4_ENCRYPT_FL) 4387 new_fl |= S_ENCRYPTED; 4388 if (flags & EXT4_CASEFOLD_FL) 4389 new_fl |= S_CASEFOLD; 4390 if (flags & EXT4_VERITY_FL) 4391 new_fl |= S_VERITY; 4392 inode_set_flags(inode, new_fl, 4393 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4394 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4395 } 4396 4397 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4398 struct ext4_inode_info *ei) 4399 { 4400 blkcnt_t i_blocks ; 4401 struct inode *inode = &(ei->vfs_inode); 4402 struct super_block *sb = inode->i_sb; 4403 4404 if (ext4_has_feature_huge_file(sb)) { 4405 /* we are using combined 48 bit field */ 4406 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4407 le32_to_cpu(raw_inode->i_blocks_lo); 4408 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4409 /* i_blocks represent file system block size */ 4410 return i_blocks << (inode->i_blkbits - 9); 4411 } else { 4412 return i_blocks; 4413 } 4414 } else { 4415 return le32_to_cpu(raw_inode->i_blocks_lo); 4416 } 4417 } 4418 4419 static inline int ext4_iget_extra_inode(struct inode *inode, 4420 struct ext4_inode *raw_inode, 4421 struct ext4_inode_info *ei) 4422 { 4423 __le32 *magic = (void *)raw_inode + 4424 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4425 4426 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4427 EXT4_INODE_SIZE(inode->i_sb) && 4428 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4429 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4430 return ext4_find_inline_data_nolock(inode); 4431 } else 4432 EXT4_I(inode)->i_inline_off = 0; 4433 return 0; 4434 } 4435 4436 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4437 { 4438 if (!ext4_has_feature_project(inode->i_sb)) 4439 return -EOPNOTSUPP; 4440 *projid = EXT4_I(inode)->i_projid; 4441 return 0; 4442 } 4443 4444 /* 4445 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4446 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4447 * set. 4448 */ 4449 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4450 { 4451 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4452 inode_set_iversion_raw(inode, val); 4453 else 4454 inode_set_iversion_queried(inode, val); 4455 } 4456 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4457 { 4458 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4459 return inode_peek_iversion_raw(inode); 4460 else 4461 return inode_peek_iversion(inode); 4462 } 4463 4464 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4465 ext4_iget_flags flags, const char *function, 4466 unsigned int line) 4467 { 4468 struct ext4_iloc iloc; 4469 struct ext4_inode *raw_inode; 4470 struct ext4_inode_info *ei; 4471 struct inode *inode; 4472 journal_t *journal = EXT4_SB(sb)->s_journal; 4473 long ret; 4474 loff_t size; 4475 int block; 4476 uid_t i_uid; 4477 gid_t i_gid; 4478 projid_t i_projid; 4479 4480 if ((!(flags & EXT4_IGET_SPECIAL) && 4481 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4482 (ino < EXT4_ROOT_INO) || 4483 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4484 if (flags & EXT4_IGET_HANDLE) 4485 return ERR_PTR(-ESTALE); 4486 __ext4_error(sb, function, line, 4487 "inode #%lu: comm %s: iget: illegal inode #", 4488 ino, current->comm); 4489 return ERR_PTR(-EFSCORRUPTED); 4490 } 4491 4492 inode = iget_locked(sb, ino); 4493 if (!inode) 4494 return ERR_PTR(-ENOMEM); 4495 if (!(inode->i_state & I_NEW)) 4496 return inode; 4497 4498 ei = EXT4_I(inode); 4499 iloc.bh = NULL; 4500 4501 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4502 if (ret < 0) 4503 goto bad_inode; 4504 raw_inode = ext4_raw_inode(&iloc); 4505 4506 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4507 ext4_error_inode(inode, function, line, 0, 4508 "iget: root inode unallocated"); 4509 ret = -EFSCORRUPTED; 4510 goto bad_inode; 4511 } 4512 4513 if ((flags & EXT4_IGET_HANDLE) && 4514 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4515 ret = -ESTALE; 4516 goto bad_inode; 4517 } 4518 4519 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4520 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4521 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4522 EXT4_INODE_SIZE(inode->i_sb) || 4523 (ei->i_extra_isize & 3)) { 4524 ext4_error_inode(inode, function, line, 0, 4525 "iget: bad extra_isize %u " 4526 "(inode size %u)", 4527 ei->i_extra_isize, 4528 EXT4_INODE_SIZE(inode->i_sb)); 4529 ret = -EFSCORRUPTED; 4530 goto bad_inode; 4531 } 4532 } else 4533 ei->i_extra_isize = 0; 4534 4535 /* Precompute checksum seed for inode metadata */ 4536 if (ext4_has_metadata_csum(sb)) { 4537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4538 __u32 csum; 4539 __le32 inum = cpu_to_le32(inode->i_ino); 4540 __le32 gen = raw_inode->i_generation; 4541 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4542 sizeof(inum)); 4543 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4544 sizeof(gen)); 4545 } 4546 4547 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4548 ext4_error_inode(inode, function, line, 0, 4549 "iget: checksum invalid"); 4550 ret = -EFSBADCRC; 4551 goto bad_inode; 4552 } 4553 4554 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4555 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4556 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4557 if (ext4_has_feature_project(sb) && 4558 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4559 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4560 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4561 else 4562 i_projid = EXT4_DEF_PROJID; 4563 4564 if (!(test_opt(inode->i_sb, NO_UID32))) { 4565 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4566 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4567 } 4568 i_uid_write(inode, i_uid); 4569 i_gid_write(inode, i_gid); 4570 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4571 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4572 4573 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4574 ei->i_inline_off = 0; 4575 ei->i_dir_start_lookup = 0; 4576 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4577 /* We now have enough fields to check if the inode was active or not. 4578 * This is needed because nfsd might try to access dead inodes 4579 * the test is that same one that e2fsck uses 4580 * NeilBrown 1999oct15 4581 */ 4582 if (inode->i_nlink == 0) { 4583 if ((inode->i_mode == 0 || 4584 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4585 ino != EXT4_BOOT_LOADER_INO) { 4586 /* this inode is deleted */ 4587 ret = -ESTALE; 4588 goto bad_inode; 4589 } 4590 /* The only unlinked inodes we let through here have 4591 * valid i_mode and are being read by the orphan 4592 * recovery code: that's fine, we're about to complete 4593 * the process of deleting those. 4594 * OR it is the EXT4_BOOT_LOADER_INO which is 4595 * not initialized on a new filesystem. */ 4596 } 4597 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4598 ext4_set_inode_flags(inode); 4599 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4600 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4601 if (ext4_has_feature_64bit(sb)) 4602 ei->i_file_acl |= 4603 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4604 inode->i_size = ext4_isize(sb, raw_inode); 4605 if ((size = i_size_read(inode)) < 0) { 4606 ext4_error_inode(inode, function, line, 0, 4607 "iget: bad i_size value: %lld", size); 4608 ret = -EFSCORRUPTED; 4609 goto bad_inode; 4610 } 4611 ei->i_disksize = inode->i_size; 4612 #ifdef CONFIG_QUOTA 4613 ei->i_reserved_quota = 0; 4614 #endif 4615 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4616 ei->i_block_group = iloc.block_group; 4617 ei->i_last_alloc_group = ~0; 4618 /* 4619 * NOTE! The in-memory inode i_data array is in little-endian order 4620 * even on big-endian machines: we do NOT byteswap the block numbers! 4621 */ 4622 for (block = 0; block < EXT4_N_BLOCKS; block++) 4623 ei->i_data[block] = raw_inode->i_block[block]; 4624 INIT_LIST_HEAD(&ei->i_orphan); 4625 4626 /* 4627 * Set transaction id's of transactions that have to be committed 4628 * to finish f[data]sync. We set them to currently running transaction 4629 * as we cannot be sure that the inode or some of its metadata isn't 4630 * part of the transaction - the inode could have been reclaimed and 4631 * now it is reread from disk. 4632 */ 4633 if (journal) { 4634 transaction_t *transaction; 4635 tid_t tid; 4636 4637 read_lock(&journal->j_state_lock); 4638 if (journal->j_running_transaction) 4639 transaction = journal->j_running_transaction; 4640 else 4641 transaction = journal->j_committing_transaction; 4642 if (transaction) 4643 tid = transaction->t_tid; 4644 else 4645 tid = journal->j_commit_sequence; 4646 read_unlock(&journal->j_state_lock); 4647 ei->i_sync_tid = tid; 4648 ei->i_datasync_tid = tid; 4649 } 4650 4651 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4652 if (ei->i_extra_isize == 0) { 4653 /* The extra space is currently unused. Use it. */ 4654 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4655 ei->i_extra_isize = sizeof(struct ext4_inode) - 4656 EXT4_GOOD_OLD_INODE_SIZE; 4657 } else { 4658 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4659 if (ret) 4660 goto bad_inode; 4661 } 4662 } 4663 4664 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4665 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4666 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4667 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4668 4669 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4670 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4671 4672 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4673 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4674 ivers |= 4675 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4676 } 4677 ext4_inode_set_iversion_queried(inode, ivers); 4678 } 4679 4680 ret = 0; 4681 if (ei->i_file_acl && 4682 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4683 ext4_error_inode(inode, function, line, 0, 4684 "iget: bad extended attribute block %llu", 4685 ei->i_file_acl); 4686 ret = -EFSCORRUPTED; 4687 goto bad_inode; 4688 } else if (!ext4_has_inline_data(inode)) { 4689 /* validate the block references in the inode */ 4690 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4691 (S_ISLNK(inode->i_mode) && 4692 !ext4_inode_is_fast_symlink(inode))) { 4693 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4694 ret = ext4_ext_check_inode(inode); 4695 else 4696 ret = ext4_ind_check_inode(inode); 4697 } 4698 } 4699 if (ret) 4700 goto bad_inode; 4701 4702 if (S_ISREG(inode->i_mode)) { 4703 inode->i_op = &ext4_file_inode_operations; 4704 inode->i_fop = &ext4_file_operations; 4705 ext4_set_aops(inode); 4706 } else if (S_ISDIR(inode->i_mode)) { 4707 inode->i_op = &ext4_dir_inode_operations; 4708 inode->i_fop = &ext4_dir_operations; 4709 } else if (S_ISLNK(inode->i_mode)) { 4710 /* VFS does not allow setting these so must be corruption */ 4711 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4712 ext4_error_inode(inode, function, line, 0, 4713 "iget: immutable or append flags " 4714 "not allowed on symlinks"); 4715 ret = -EFSCORRUPTED; 4716 goto bad_inode; 4717 } 4718 if (IS_ENCRYPTED(inode)) { 4719 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4720 ext4_set_aops(inode); 4721 } else if (ext4_inode_is_fast_symlink(inode)) { 4722 inode->i_link = (char *)ei->i_data; 4723 inode->i_op = &ext4_fast_symlink_inode_operations; 4724 nd_terminate_link(ei->i_data, inode->i_size, 4725 sizeof(ei->i_data) - 1); 4726 } else { 4727 inode->i_op = &ext4_symlink_inode_operations; 4728 ext4_set_aops(inode); 4729 } 4730 inode_nohighmem(inode); 4731 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4732 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4733 inode->i_op = &ext4_special_inode_operations; 4734 if (raw_inode->i_block[0]) 4735 init_special_inode(inode, inode->i_mode, 4736 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4737 else 4738 init_special_inode(inode, inode->i_mode, 4739 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4740 } else if (ino == EXT4_BOOT_LOADER_INO) { 4741 make_bad_inode(inode); 4742 } else { 4743 ret = -EFSCORRUPTED; 4744 ext4_error_inode(inode, function, line, 0, 4745 "iget: bogus i_mode (%o)", inode->i_mode); 4746 goto bad_inode; 4747 } 4748 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4749 ext4_error_inode(inode, function, line, 0, 4750 "casefold flag without casefold feature"); 4751 brelse(iloc.bh); 4752 4753 unlock_new_inode(inode); 4754 return inode; 4755 4756 bad_inode: 4757 brelse(iloc.bh); 4758 iget_failed(inode); 4759 return ERR_PTR(ret); 4760 } 4761 4762 static int ext4_inode_blocks_set(handle_t *handle, 4763 struct ext4_inode *raw_inode, 4764 struct ext4_inode_info *ei) 4765 { 4766 struct inode *inode = &(ei->vfs_inode); 4767 u64 i_blocks = inode->i_blocks; 4768 struct super_block *sb = inode->i_sb; 4769 4770 if (i_blocks <= ~0U) { 4771 /* 4772 * i_blocks can be represented in a 32 bit variable 4773 * as multiple of 512 bytes 4774 */ 4775 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4776 raw_inode->i_blocks_high = 0; 4777 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4778 return 0; 4779 } 4780 if (!ext4_has_feature_huge_file(sb)) 4781 return -EFBIG; 4782 4783 if (i_blocks <= 0xffffffffffffULL) { 4784 /* 4785 * i_blocks can be represented in a 48 bit variable 4786 * as multiple of 512 bytes 4787 */ 4788 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4789 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4790 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4791 } else { 4792 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4793 /* i_block is stored in file system block size */ 4794 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4795 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4796 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4797 } 4798 return 0; 4799 } 4800 4801 struct other_inode { 4802 unsigned long orig_ino; 4803 struct ext4_inode *raw_inode; 4804 }; 4805 4806 static int other_inode_match(struct inode * inode, unsigned long ino, 4807 void *data) 4808 { 4809 struct other_inode *oi = (struct other_inode *) data; 4810 4811 if ((inode->i_ino != ino) || 4812 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4813 I_DIRTY_INODE)) || 4814 ((inode->i_state & I_DIRTY_TIME) == 0)) 4815 return 0; 4816 spin_lock(&inode->i_lock); 4817 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4818 I_DIRTY_INODE)) == 0) && 4819 (inode->i_state & I_DIRTY_TIME)) { 4820 struct ext4_inode_info *ei = EXT4_I(inode); 4821 4822 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4823 spin_unlock(&inode->i_lock); 4824 4825 spin_lock(&ei->i_raw_lock); 4826 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4827 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4828 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4829 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4830 spin_unlock(&ei->i_raw_lock); 4831 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4832 return -1; 4833 } 4834 spin_unlock(&inode->i_lock); 4835 return -1; 4836 } 4837 4838 /* 4839 * Opportunistically update the other time fields for other inodes in 4840 * the same inode table block. 4841 */ 4842 static void ext4_update_other_inodes_time(struct super_block *sb, 4843 unsigned long orig_ino, char *buf) 4844 { 4845 struct other_inode oi; 4846 unsigned long ino; 4847 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4848 int inode_size = EXT4_INODE_SIZE(sb); 4849 4850 oi.orig_ino = orig_ino; 4851 /* 4852 * Calculate the first inode in the inode table block. Inode 4853 * numbers are one-based. That is, the first inode in a block 4854 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4855 */ 4856 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4857 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4858 if (ino == orig_ino) 4859 continue; 4860 oi.raw_inode = (struct ext4_inode *) buf; 4861 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4862 } 4863 } 4864 4865 /* 4866 * Post the struct inode info into an on-disk inode location in the 4867 * buffer-cache. This gobbles the caller's reference to the 4868 * buffer_head in the inode location struct. 4869 * 4870 * The caller must have write access to iloc->bh. 4871 */ 4872 static int ext4_do_update_inode(handle_t *handle, 4873 struct inode *inode, 4874 struct ext4_iloc *iloc) 4875 { 4876 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4877 struct ext4_inode_info *ei = EXT4_I(inode); 4878 struct buffer_head *bh = iloc->bh; 4879 struct super_block *sb = inode->i_sb; 4880 int err = 0, rc, block; 4881 int need_datasync = 0, set_large_file = 0; 4882 uid_t i_uid; 4883 gid_t i_gid; 4884 projid_t i_projid; 4885 4886 spin_lock(&ei->i_raw_lock); 4887 4888 /* For fields not tracked in the in-memory inode, 4889 * initialise them to zero for new inodes. */ 4890 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4891 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4892 4893 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4894 i_uid = i_uid_read(inode); 4895 i_gid = i_gid_read(inode); 4896 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4897 if (!(test_opt(inode->i_sb, NO_UID32))) { 4898 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4899 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4900 /* 4901 * Fix up interoperability with old kernels. Otherwise, old inodes get 4902 * re-used with the upper 16 bits of the uid/gid intact 4903 */ 4904 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4905 raw_inode->i_uid_high = 0; 4906 raw_inode->i_gid_high = 0; 4907 } else { 4908 raw_inode->i_uid_high = 4909 cpu_to_le16(high_16_bits(i_uid)); 4910 raw_inode->i_gid_high = 4911 cpu_to_le16(high_16_bits(i_gid)); 4912 } 4913 } else { 4914 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4915 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4916 raw_inode->i_uid_high = 0; 4917 raw_inode->i_gid_high = 0; 4918 } 4919 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4920 4921 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4922 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4923 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4924 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4925 4926 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4927 if (err) { 4928 spin_unlock(&ei->i_raw_lock); 4929 goto out_brelse; 4930 } 4931 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4932 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4933 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4934 raw_inode->i_file_acl_high = 4935 cpu_to_le16(ei->i_file_acl >> 32); 4936 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4937 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 4938 ext4_isize_set(raw_inode, ei->i_disksize); 4939 need_datasync = 1; 4940 } 4941 if (ei->i_disksize > 0x7fffffffULL) { 4942 if (!ext4_has_feature_large_file(sb) || 4943 EXT4_SB(sb)->s_es->s_rev_level == 4944 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4945 set_large_file = 1; 4946 } 4947 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4948 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4949 if (old_valid_dev(inode->i_rdev)) { 4950 raw_inode->i_block[0] = 4951 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4952 raw_inode->i_block[1] = 0; 4953 } else { 4954 raw_inode->i_block[0] = 0; 4955 raw_inode->i_block[1] = 4956 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4957 raw_inode->i_block[2] = 0; 4958 } 4959 } else if (!ext4_has_inline_data(inode)) { 4960 for (block = 0; block < EXT4_N_BLOCKS; block++) 4961 raw_inode->i_block[block] = ei->i_data[block]; 4962 } 4963 4964 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4965 u64 ivers = ext4_inode_peek_iversion(inode); 4966 4967 raw_inode->i_disk_version = cpu_to_le32(ivers); 4968 if (ei->i_extra_isize) { 4969 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4970 raw_inode->i_version_hi = 4971 cpu_to_le32(ivers >> 32); 4972 raw_inode->i_extra_isize = 4973 cpu_to_le16(ei->i_extra_isize); 4974 } 4975 } 4976 4977 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 4978 i_projid != EXT4_DEF_PROJID); 4979 4980 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4981 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4982 raw_inode->i_projid = cpu_to_le32(i_projid); 4983 4984 ext4_inode_csum_set(inode, raw_inode, ei); 4985 spin_unlock(&ei->i_raw_lock); 4986 if (inode->i_sb->s_flags & SB_LAZYTIME) 4987 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4988 bh->b_data); 4989 4990 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4991 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4992 if (!err) 4993 err = rc; 4994 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4995 if (set_large_file) { 4996 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4997 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4998 if (err) 4999 goto out_brelse; 5000 ext4_set_feature_large_file(sb); 5001 ext4_handle_sync(handle); 5002 err = ext4_handle_dirty_super(handle, sb); 5003 } 5004 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5005 out_brelse: 5006 brelse(bh); 5007 ext4_std_error(inode->i_sb, err); 5008 return err; 5009 } 5010 5011 /* 5012 * ext4_write_inode() 5013 * 5014 * We are called from a few places: 5015 * 5016 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5017 * Here, there will be no transaction running. We wait for any running 5018 * transaction to commit. 5019 * 5020 * - Within flush work (sys_sync(), kupdate and such). 5021 * We wait on commit, if told to. 5022 * 5023 * - Within iput_final() -> write_inode_now() 5024 * We wait on commit, if told to. 5025 * 5026 * In all cases it is actually safe for us to return without doing anything, 5027 * because the inode has been copied into a raw inode buffer in 5028 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5029 * writeback. 5030 * 5031 * Note that we are absolutely dependent upon all inode dirtiers doing the 5032 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5033 * which we are interested. 5034 * 5035 * It would be a bug for them to not do this. The code: 5036 * 5037 * mark_inode_dirty(inode) 5038 * stuff(); 5039 * inode->i_size = expr; 5040 * 5041 * is in error because write_inode() could occur while `stuff()' is running, 5042 * and the new i_size will be lost. Plus the inode will no longer be on the 5043 * superblock's dirty inode list. 5044 */ 5045 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5046 { 5047 int err; 5048 5049 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5050 sb_rdonly(inode->i_sb)) 5051 return 0; 5052 5053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5054 return -EIO; 5055 5056 if (EXT4_SB(inode->i_sb)->s_journal) { 5057 if (ext4_journal_current_handle()) { 5058 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5059 dump_stack(); 5060 return -EIO; 5061 } 5062 5063 /* 5064 * No need to force transaction in WB_SYNC_NONE mode. Also 5065 * ext4_sync_fs() will force the commit after everything is 5066 * written. 5067 */ 5068 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5069 return 0; 5070 5071 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5072 EXT4_I(inode)->i_sync_tid); 5073 } else { 5074 struct ext4_iloc iloc; 5075 5076 err = __ext4_get_inode_loc(inode, &iloc, 0); 5077 if (err) 5078 return err; 5079 /* 5080 * sync(2) will flush the whole buffer cache. No need to do 5081 * it here separately for each inode. 5082 */ 5083 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5084 sync_dirty_buffer(iloc.bh); 5085 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5086 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5087 "IO error syncing inode"); 5088 err = -EIO; 5089 } 5090 brelse(iloc.bh); 5091 } 5092 return err; 5093 } 5094 5095 /* 5096 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5097 * buffers that are attached to a page stradding i_size and are undergoing 5098 * commit. In that case we have to wait for commit to finish and try again. 5099 */ 5100 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5101 { 5102 struct page *page; 5103 unsigned offset; 5104 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5105 tid_t commit_tid = 0; 5106 int ret; 5107 5108 offset = inode->i_size & (PAGE_SIZE - 1); 5109 /* 5110 * All buffers in the last page remain valid? Then there's nothing to 5111 * do. We do the check mainly to optimize the common PAGE_SIZE == 5112 * blocksize case 5113 */ 5114 if (offset > PAGE_SIZE - i_blocksize(inode)) 5115 return; 5116 while (1) { 5117 page = find_lock_page(inode->i_mapping, 5118 inode->i_size >> PAGE_SHIFT); 5119 if (!page) 5120 return; 5121 ret = __ext4_journalled_invalidatepage(page, offset, 5122 PAGE_SIZE - offset); 5123 unlock_page(page); 5124 put_page(page); 5125 if (ret != -EBUSY) 5126 return; 5127 commit_tid = 0; 5128 read_lock(&journal->j_state_lock); 5129 if (journal->j_committing_transaction) 5130 commit_tid = journal->j_committing_transaction->t_tid; 5131 read_unlock(&journal->j_state_lock); 5132 if (commit_tid) 5133 jbd2_log_wait_commit(journal, commit_tid); 5134 } 5135 } 5136 5137 /* 5138 * ext4_setattr() 5139 * 5140 * Called from notify_change. 5141 * 5142 * We want to trap VFS attempts to truncate the file as soon as 5143 * possible. In particular, we want to make sure that when the VFS 5144 * shrinks i_size, we put the inode on the orphan list and modify 5145 * i_disksize immediately, so that during the subsequent flushing of 5146 * dirty pages and freeing of disk blocks, we can guarantee that any 5147 * commit will leave the blocks being flushed in an unused state on 5148 * disk. (On recovery, the inode will get truncated and the blocks will 5149 * be freed, so we have a strong guarantee that no future commit will 5150 * leave these blocks visible to the user.) 5151 * 5152 * Another thing we have to assure is that if we are in ordered mode 5153 * and inode is still attached to the committing transaction, we must 5154 * we start writeout of all the dirty pages which are being truncated. 5155 * This way we are sure that all the data written in the previous 5156 * transaction are already on disk (truncate waits for pages under 5157 * writeback). 5158 * 5159 * Called with inode->i_mutex down. 5160 */ 5161 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5162 { 5163 struct inode *inode = d_inode(dentry); 5164 int error, rc = 0; 5165 int orphan = 0; 5166 const unsigned int ia_valid = attr->ia_valid; 5167 5168 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5169 return -EIO; 5170 5171 if (unlikely(IS_IMMUTABLE(inode))) 5172 return -EPERM; 5173 5174 if (unlikely(IS_APPEND(inode) && 5175 (ia_valid & (ATTR_MODE | ATTR_UID | 5176 ATTR_GID | ATTR_TIMES_SET)))) 5177 return -EPERM; 5178 5179 error = setattr_prepare(dentry, attr); 5180 if (error) 5181 return error; 5182 5183 error = fscrypt_prepare_setattr(dentry, attr); 5184 if (error) 5185 return error; 5186 5187 error = fsverity_prepare_setattr(dentry, attr); 5188 if (error) 5189 return error; 5190 5191 if (is_quota_modification(inode, attr)) { 5192 error = dquot_initialize(inode); 5193 if (error) 5194 return error; 5195 } 5196 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5197 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5198 handle_t *handle; 5199 5200 /* (user+group)*(old+new) structure, inode write (sb, 5201 * inode block, ? - but truncate inode update has it) */ 5202 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5203 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5204 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5205 if (IS_ERR(handle)) { 5206 error = PTR_ERR(handle); 5207 goto err_out; 5208 } 5209 5210 /* dquot_transfer() calls back ext4_get_inode_usage() which 5211 * counts xattr inode references. 5212 */ 5213 down_read(&EXT4_I(inode)->xattr_sem); 5214 error = dquot_transfer(inode, attr); 5215 up_read(&EXT4_I(inode)->xattr_sem); 5216 5217 if (error) { 5218 ext4_journal_stop(handle); 5219 return error; 5220 } 5221 /* Update corresponding info in inode so that everything is in 5222 * one transaction */ 5223 if (attr->ia_valid & ATTR_UID) 5224 inode->i_uid = attr->ia_uid; 5225 if (attr->ia_valid & ATTR_GID) 5226 inode->i_gid = attr->ia_gid; 5227 error = ext4_mark_inode_dirty(handle, inode); 5228 ext4_journal_stop(handle); 5229 } 5230 5231 if (attr->ia_valid & ATTR_SIZE) { 5232 handle_t *handle; 5233 loff_t oldsize = inode->i_size; 5234 int shrink = (attr->ia_size < inode->i_size); 5235 5236 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5237 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5238 5239 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5240 return -EFBIG; 5241 } 5242 if (!S_ISREG(inode->i_mode)) 5243 return -EINVAL; 5244 5245 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5246 inode_inc_iversion(inode); 5247 5248 if (shrink) { 5249 if (ext4_should_order_data(inode)) { 5250 error = ext4_begin_ordered_truncate(inode, 5251 attr->ia_size); 5252 if (error) 5253 goto err_out; 5254 } 5255 /* 5256 * Blocks are going to be removed from the inode. Wait 5257 * for dio in flight. 5258 */ 5259 inode_dio_wait(inode); 5260 } 5261 5262 down_write(&EXT4_I(inode)->i_mmap_sem); 5263 5264 rc = ext4_break_layouts(inode); 5265 if (rc) { 5266 up_write(&EXT4_I(inode)->i_mmap_sem); 5267 return rc; 5268 } 5269 5270 if (attr->ia_size != inode->i_size) { 5271 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5272 if (IS_ERR(handle)) { 5273 error = PTR_ERR(handle); 5274 goto out_mmap_sem; 5275 } 5276 if (ext4_handle_valid(handle) && shrink) { 5277 error = ext4_orphan_add(handle, inode); 5278 orphan = 1; 5279 } 5280 /* 5281 * Update c/mtime on truncate up, ext4_truncate() will 5282 * update c/mtime in shrink case below 5283 */ 5284 if (!shrink) { 5285 inode->i_mtime = current_time(inode); 5286 inode->i_ctime = inode->i_mtime; 5287 } 5288 down_write(&EXT4_I(inode)->i_data_sem); 5289 EXT4_I(inode)->i_disksize = attr->ia_size; 5290 rc = ext4_mark_inode_dirty(handle, inode); 5291 if (!error) 5292 error = rc; 5293 /* 5294 * We have to update i_size under i_data_sem together 5295 * with i_disksize to avoid races with writeback code 5296 * running ext4_wb_update_i_disksize(). 5297 */ 5298 if (!error) 5299 i_size_write(inode, attr->ia_size); 5300 up_write(&EXT4_I(inode)->i_data_sem); 5301 ext4_journal_stop(handle); 5302 if (error) 5303 goto out_mmap_sem; 5304 if (!shrink) { 5305 pagecache_isize_extended(inode, oldsize, 5306 inode->i_size); 5307 } else if (ext4_should_journal_data(inode)) { 5308 ext4_wait_for_tail_page_commit(inode); 5309 } 5310 } 5311 5312 /* 5313 * Truncate pagecache after we've waited for commit 5314 * in data=journal mode to make pages freeable. 5315 */ 5316 truncate_pagecache(inode, inode->i_size); 5317 /* 5318 * Call ext4_truncate() even if i_size didn't change to 5319 * truncate possible preallocated blocks. 5320 */ 5321 if (attr->ia_size <= oldsize) { 5322 rc = ext4_truncate(inode); 5323 if (rc) 5324 error = rc; 5325 } 5326 out_mmap_sem: 5327 up_write(&EXT4_I(inode)->i_mmap_sem); 5328 } 5329 5330 if (!error) { 5331 setattr_copy(inode, attr); 5332 mark_inode_dirty(inode); 5333 } 5334 5335 /* 5336 * If the call to ext4_truncate failed to get a transaction handle at 5337 * all, we need to clean up the in-core orphan list manually. 5338 */ 5339 if (orphan && inode->i_nlink) 5340 ext4_orphan_del(NULL, inode); 5341 5342 if (!error && (ia_valid & ATTR_MODE)) 5343 rc = posix_acl_chmod(inode, inode->i_mode); 5344 5345 err_out: 5346 ext4_std_error(inode->i_sb, error); 5347 if (!error) 5348 error = rc; 5349 return error; 5350 } 5351 5352 int ext4_getattr(const struct path *path, struct kstat *stat, 5353 u32 request_mask, unsigned int query_flags) 5354 { 5355 struct inode *inode = d_inode(path->dentry); 5356 struct ext4_inode *raw_inode; 5357 struct ext4_inode_info *ei = EXT4_I(inode); 5358 unsigned int flags; 5359 5360 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5361 stat->result_mask |= STATX_BTIME; 5362 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5363 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5364 } 5365 5366 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5367 if (flags & EXT4_APPEND_FL) 5368 stat->attributes |= STATX_ATTR_APPEND; 5369 if (flags & EXT4_COMPR_FL) 5370 stat->attributes |= STATX_ATTR_COMPRESSED; 5371 if (flags & EXT4_ENCRYPT_FL) 5372 stat->attributes |= STATX_ATTR_ENCRYPTED; 5373 if (flags & EXT4_IMMUTABLE_FL) 5374 stat->attributes |= STATX_ATTR_IMMUTABLE; 5375 if (flags & EXT4_NODUMP_FL) 5376 stat->attributes |= STATX_ATTR_NODUMP; 5377 5378 stat->attributes_mask |= (STATX_ATTR_APPEND | 5379 STATX_ATTR_COMPRESSED | 5380 STATX_ATTR_ENCRYPTED | 5381 STATX_ATTR_IMMUTABLE | 5382 STATX_ATTR_NODUMP); 5383 5384 generic_fillattr(inode, stat); 5385 return 0; 5386 } 5387 5388 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5389 u32 request_mask, unsigned int query_flags) 5390 { 5391 struct inode *inode = d_inode(path->dentry); 5392 u64 delalloc_blocks; 5393 5394 ext4_getattr(path, stat, request_mask, query_flags); 5395 5396 /* 5397 * If there is inline data in the inode, the inode will normally not 5398 * have data blocks allocated (it may have an external xattr block). 5399 * Report at least one sector for such files, so tools like tar, rsync, 5400 * others don't incorrectly think the file is completely sparse. 5401 */ 5402 if (unlikely(ext4_has_inline_data(inode))) 5403 stat->blocks += (stat->size + 511) >> 9; 5404 5405 /* 5406 * We can't update i_blocks if the block allocation is delayed 5407 * otherwise in the case of system crash before the real block 5408 * allocation is done, we will have i_blocks inconsistent with 5409 * on-disk file blocks. 5410 * We always keep i_blocks updated together with real 5411 * allocation. But to not confuse with user, stat 5412 * will return the blocks that include the delayed allocation 5413 * blocks for this file. 5414 */ 5415 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5416 EXT4_I(inode)->i_reserved_data_blocks); 5417 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5418 return 0; 5419 } 5420 5421 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5422 int pextents) 5423 { 5424 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5425 return ext4_ind_trans_blocks(inode, lblocks); 5426 return ext4_ext_index_trans_blocks(inode, pextents); 5427 } 5428 5429 /* 5430 * Account for index blocks, block groups bitmaps and block group 5431 * descriptor blocks if modify datablocks and index blocks 5432 * worse case, the indexs blocks spread over different block groups 5433 * 5434 * If datablocks are discontiguous, they are possible to spread over 5435 * different block groups too. If they are contiguous, with flexbg, 5436 * they could still across block group boundary. 5437 * 5438 * Also account for superblock, inode, quota and xattr blocks 5439 */ 5440 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5441 int pextents) 5442 { 5443 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5444 int gdpblocks; 5445 int idxblocks; 5446 int ret = 0; 5447 5448 /* 5449 * How many index blocks need to touch to map @lblocks logical blocks 5450 * to @pextents physical extents? 5451 */ 5452 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5453 5454 ret = idxblocks; 5455 5456 /* 5457 * Now let's see how many group bitmaps and group descriptors need 5458 * to account 5459 */ 5460 groups = idxblocks + pextents; 5461 gdpblocks = groups; 5462 if (groups > ngroups) 5463 groups = ngroups; 5464 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5465 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5466 5467 /* bitmaps and block group descriptor blocks */ 5468 ret += groups + gdpblocks; 5469 5470 /* Blocks for super block, inode, quota and xattr blocks */ 5471 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5472 5473 return ret; 5474 } 5475 5476 /* 5477 * Calculate the total number of credits to reserve to fit 5478 * the modification of a single pages into a single transaction, 5479 * which may include multiple chunks of block allocations. 5480 * 5481 * This could be called via ext4_write_begin() 5482 * 5483 * We need to consider the worse case, when 5484 * one new block per extent. 5485 */ 5486 int ext4_writepage_trans_blocks(struct inode *inode) 5487 { 5488 int bpp = ext4_journal_blocks_per_page(inode); 5489 int ret; 5490 5491 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5492 5493 /* Account for data blocks for journalled mode */ 5494 if (ext4_should_journal_data(inode)) 5495 ret += bpp; 5496 return ret; 5497 } 5498 5499 /* 5500 * Calculate the journal credits for a chunk of data modification. 5501 * 5502 * This is called from DIO, fallocate or whoever calling 5503 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5504 * 5505 * journal buffers for data blocks are not included here, as DIO 5506 * and fallocate do no need to journal data buffers. 5507 */ 5508 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5509 { 5510 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5511 } 5512 5513 /* 5514 * The caller must have previously called ext4_reserve_inode_write(). 5515 * Give this, we know that the caller already has write access to iloc->bh. 5516 */ 5517 int ext4_mark_iloc_dirty(handle_t *handle, 5518 struct inode *inode, struct ext4_iloc *iloc) 5519 { 5520 int err = 0; 5521 5522 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5523 put_bh(iloc->bh); 5524 return -EIO; 5525 } 5526 if (IS_I_VERSION(inode)) 5527 inode_inc_iversion(inode); 5528 5529 /* the do_update_inode consumes one bh->b_count */ 5530 get_bh(iloc->bh); 5531 5532 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5533 err = ext4_do_update_inode(handle, inode, iloc); 5534 put_bh(iloc->bh); 5535 return err; 5536 } 5537 5538 /* 5539 * On success, We end up with an outstanding reference count against 5540 * iloc->bh. This _must_ be cleaned up later. 5541 */ 5542 5543 int 5544 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5545 struct ext4_iloc *iloc) 5546 { 5547 int err; 5548 5549 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5550 return -EIO; 5551 5552 err = ext4_get_inode_loc(inode, iloc); 5553 if (!err) { 5554 BUFFER_TRACE(iloc->bh, "get_write_access"); 5555 err = ext4_journal_get_write_access(handle, iloc->bh); 5556 if (err) { 5557 brelse(iloc->bh); 5558 iloc->bh = NULL; 5559 } 5560 } 5561 ext4_std_error(inode->i_sb, err); 5562 return err; 5563 } 5564 5565 static int __ext4_expand_extra_isize(struct inode *inode, 5566 unsigned int new_extra_isize, 5567 struct ext4_iloc *iloc, 5568 handle_t *handle, int *no_expand) 5569 { 5570 struct ext4_inode *raw_inode; 5571 struct ext4_xattr_ibody_header *header; 5572 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5573 struct ext4_inode_info *ei = EXT4_I(inode); 5574 int error; 5575 5576 /* this was checked at iget time, but double check for good measure */ 5577 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5578 (ei->i_extra_isize & 3)) { 5579 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5580 ei->i_extra_isize, 5581 EXT4_INODE_SIZE(inode->i_sb)); 5582 return -EFSCORRUPTED; 5583 } 5584 if ((new_extra_isize < ei->i_extra_isize) || 5585 (new_extra_isize < 4) || 5586 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5587 return -EINVAL; /* Should never happen */ 5588 5589 raw_inode = ext4_raw_inode(iloc); 5590 5591 header = IHDR(inode, raw_inode); 5592 5593 /* No extended attributes present */ 5594 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5595 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5596 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5597 EXT4_I(inode)->i_extra_isize, 0, 5598 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5599 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5600 return 0; 5601 } 5602 5603 /* try to expand with EAs present */ 5604 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5605 raw_inode, handle); 5606 if (error) { 5607 /* 5608 * Inode size expansion failed; don't try again 5609 */ 5610 *no_expand = 1; 5611 } 5612 5613 return error; 5614 } 5615 5616 /* 5617 * Expand an inode by new_extra_isize bytes. 5618 * Returns 0 on success or negative error number on failure. 5619 */ 5620 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5621 unsigned int new_extra_isize, 5622 struct ext4_iloc iloc, 5623 handle_t *handle) 5624 { 5625 int no_expand; 5626 int error; 5627 5628 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5629 return -EOVERFLOW; 5630 5631 /* 5632 * In nojournal mode, we can immediately attempt to expand 5633 * the inode. When journaled, we first need to obtain extra 5634 * buffer credits since we may write into the EA block 5635 * with this same handle. If journal_extend fails, then it will 5636 * only result in a minor loss of functionality for that inode. 5637 * If this is felt to be critical, then e2fsck should be run to 5638 * force a large enough s_min_extra_isize. 5639 */ 5640 if (ext4_journal_extend(handle, 5641 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5642 return -ENOSPC; 5643 5644 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5645 return -EBUSY; 5646 5647 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5648 handle, &no_expand); 5649 ext4_write_unlock_xattr(inode, &no_expand); 5650 5651 return error; 5652 } 5653 5654 int ext4_expand_extra_isize(struct inode *inode, 5655 unsigned int new_extra_isize, 5656 struct ext4_iloc *iloc) 5657 { 5658 handle_t *handle; 5659 int no_expand; 5660 int error, rc; 5661 5662 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5663 brelse(iloc->bh); 5664 return -EOVERFLOW; 5665 } 5666 5667 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5668 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5669 if (IS_ERR(handle)) { 5670 error = PTR_ERR(handle); 5671 brelse(iloc->bh); 5672 return error; 5673 } 5674 5675 ext4_write_lock_xattr(inode, &no_expand); 5676 5677 BUFFER_TRACE(iloc->bh, "get_write_access"); 5678 error = ext4_journal_get_write_access(handle, iloc->bh); 5679 if (error) { 5680 brelse(iloc->bh); 5681 goto out_stop; 5682 } 5683 5684 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5685 handle, &no_expand); 5686 5687 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5688 if (!error) 5689 error = rc; 5690 5691 ext4_write_unlock_xattr(inode, &no_expand); 5692 out_stop: 5693 ext4_journal_stop(handle); 5694 return error; 5695 } 5696 5697 /* 5698 * What we do here is to mark the in-core inode as clean with respect to inode 5699 * dirtiness (it may still be data-dirty). 5700 * This means that the in-core inode may be reaped by prune_icache 5701 * without having to perform any I/O. This is a very good thing, 5702 * because *any* task may call prune_icache - even ones which 5703 * have a transaction open against a different journal. 5704 * 5705 * Is this cheating? Not really. Sure, we haven't written the 5706 * inode out, but prune_icache isn't a user-visible syncing function. 5707 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5708 * we start and wait on commits. 5709 */ 5710 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5711 { 5712 struct ext4_iloc iloc; 5713 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5714 int err; 5715 5716 might_sleep(); 5717 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5718 err = ext4_reserve_inode_write(handle, inode, &iloc); 5719 if (err) 5720 return err; 5721 5722 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5723 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5724 iloc, handle); 5725 5726 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5727 } 5728 5729 /* 5730 * ext4_dirty_inode() is called from __mark_inode_dirty() 5731 * 5732 * We're really interested in the case where a file is being extended. 5733 * i_size has been changed by generic_commit_write() and we thus need 5734 * to include the updated inode in the current transaction. 5735 * 5736 * Also, dquot_alloc_block() will always dirty the inode when blocks 5737 * are allocated to the file. 5738 * 5739 * If the inode is marked synchronous, we don't honour that here - doing 5740 * so would cause a commit on atime updates, which we don't bother doing. 5741 * We handle synchronous inodes at the highest possible level. 5742 * 5743 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5744 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5745 * to copy into the on-disk inode structure are the timestamp files. 5746 */ 5747 void ext4_dirty_inode(struct inode *inode, int flags) 5748 { 5749 handle_t *handle; 5750 5751 if (flags == I_DIRTY_TIME) 5752 return; 5753 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5754 if (IS_ERR(handle)) 5755 goto out; 5756 5757 ext4_mark_inode_dirty(handle, inode); 5758 5759 ext4_journal_stop(handle); 5760 out: 5761 return; 5762 } 5763 5764 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5765 { 5766 journal_t *journal; 5767 handle_t *handle; 5768 int err; 5769 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5770 5771 /* 5772 * We have to be very careful here: changing a data block's 5773 * journaling status dynamically is dangerous. If we write a 5774 * data block to the journal, change the status and then delete 5775 * that block, we risk forgetting to revoke the old log record 5776 * from the journal and so a subsequent replay can corrupt data. 5777 * So, first we make sure that the journal is empty and that 5778 * nobody is changing anything. 5779 */ 5780 5781 journal = EXT4_JOURNAL(inode); 5782 if (!journal) 5783 return 0; 5784 if (is_journal_aborted(journal)) 5785 return -EROFS; 5786 5787 /* Wait for all existing dio workers */ 5788 inode_dio_wait(inode); 5789 5790 /* 5791 * Before flushing the journal and switching inode's aops, we have 5792 * to flush all dirty data the inode has. There can be outstanding 5793 * delayed allocations, there can be unwritten extents created by 5794 * fallocate or buffered writes in dioread_nolock mode covered by 5795 * dirty data which can be converted only after flushing the dirty 5796 * data (and journalled aops don't know how to handle these cases). 5797 */ 5798 if (val) { 5799 down_write(&EXT4_I(inode)->i_mmap_sem); 5800 err = filemap_write_and_wait(inode->i_mapping); 5801 if (err < 0) { 5802 up_write(&EXT4_I(inode)->i_mmap_sem); 5803 return err; 5804 } 5805 } 5806 5807 percpu_down_write(&sbi->s_journal_flag_rwsem); 5808 jbd2_journal_lock_updates(journal); 5809 5810 /* 5811 * OK, there are no updates running now, and all cached data is 5812 * synced to disk. We are now in a completely consistent state 5813 * which doesn't have anything in the journal, and we know that 5814 * no filesystem updates are running, so it is safe to modify 5815 * the inode's in-core data-journaling state flag now. 5816 */ 5817 5818 if (val) 5819 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5820 else { 5821 err = jbd2_journal_flush(journal); 5822 if (err < 0) { 5823 jbd2_journal_unlock_updates(journal); 5824 percpu_up_write(&sbi->s_journal_flag_rwsem); 5825 return err; 5826 } 5827 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5828 } 5829 ext4_set_aops(inode); 5830 5831 jbd2_journal_unlock_updates(journal); 5832 percpu_up_write(&sbi->s_journal_flag_rwsem); 5833 5834 if (val) 5835 up_write(&EXT4_I(inode)->i_mmap_sem); 5836 5837 /* Finally we can mark the inode as dirty. */ 5838 5839 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5840 if (IS_ERR(handle)) 5841 return PTR_ERR(handle); 5842 5843 err = ext4_mark_inode_dirty(handle, inode); 5844 ext4_handle_sync(handle); 5845 ext4_journal_stop(handle); 5846 ext4_std_error(inode->i_sb, err); 5847 5848 return err; 5849 } 5850 5851 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5852 { 5853 return !buffer_mapped(bh); 5854 } 5855 5856 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 5857 { 5858 struct vm_area_struct *vma = vmf->vma; 5859 struct page *page = vmf->page; 5860 loff_t size; 5861 unsigned long len; 5862 int err; 5863 vm_fault_t ret; 5864 struct file *file = vma->vm_file; 5865 struct inode *inode = file_inode(file); 5866 struct address_space *mapping = inode->i_mapping; 5867 handle_t *handle; 5868 get_block_t *get_block; 5869 int retries = 0; 5870 5871 if (unlikely(IS_IMMUTABLE(inode))) 5872 return VM_FAULT_SIGBUS; 5873 5874 sb_start_pagefault(inode->i_sb); 5875 file_update_time(vma->vm_file); 5876 5877 down_read(&EXT4_I(inode)->i_mmap_sem); 5878 5879 err = ext4_convert_inline_data(inode); 5880 if (err) 5881 goto out_ret; 5882 5883 /* Delalloc case is easy... */ 5884 if (test_opt(inode->i_sb, DELALLOC) && 5885 !ext4_should_journal_data(inode) && 5886 !ext4_nonda_switch(inode->i_sb)) { 5887 do { 5888 err = block_page_mkwrite(vma, vmf, 5889 ext4_da_get_block_prep); 5890 } while (err == -ENOSPC && 5891 ext4_should_retry_alloc(inode->i_sb, &retries)); 5892 goto out_ret; 5893 } 5894 5895 lock_page(page); 5896 size = i_size_read(inode); 5897 /* Page got truncated from under us? */ 5898 if (page->mapping != mapping || page_offset(page) > size) { 5899 unlock_page(page); 5900 ret = VM_FAULT_NOPAGE; 5901 goto out; 5902 } 5903 5904 if (page->index == size >> PAGE_SHIFT) 5905 len = size & ~PAGE_MASK; 5906 else 5907 len = PAGE_SIZE; 5908 /* 5909 * Return if we have all the buffers mapped. This avoids the need to do 5910 * journal_start/journal_stop which can block and take a long time 5911 */ 5912 if (page_has_buffers(page)) { 5913 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5914 0, len, NULL, 5915 ext4_bh_unmapped)) { 5916 /* Wait so that we don't change page under IO */ 5917 wait_for_stable_page(page); 5918 ret = VM_FAULT_LOCKED; 5919 goto out; 5920 } 5921 } 5922 unlock_page(page); 5923 /* OK, we need to fill the hole... */ 5924 if (ext4_should_dioread_nolock(inode)) 5925 get_block = ext4_get_block_unwritten; 5926 else 5927 get_block = ext4_get_block; 5928 retry_alloc: 5929 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5930 ext4_writepage_trans_blocks(inode)); 5931 if (IS_ERR(handle)) { 5932 ret = VM_FAULT_SIGBUS; 5933 goto out; 5934 } 5935 err = block_page_mkwrite(vma, vmf, get_block); 5936 if (!err && ext4_should_journal_data(inode)) { 5937 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5938 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5939 unlock_page(page); 5940 ret = VM_FAULT_SIGBUS; 5941 ext4_journal_stop(handle); 5942 goto out; 5943 } 5944 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5945 } 5946 ext4_journal_stop(handle); 5947 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5948 goto retry_alloc; 5949 out_ret: 5950 ret = block_page_mkwrite_return(err); 5951 out: 5952 up_read(&EXT4_I(inode)->i_mmap_sem); 5953 sb_end_pagefault(inode->i_sb); 5954 return ret; 5955 } 5956 5957 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 5958 { 5959 struct inode *inode = file_inode(vmf->vma->vm_file); 5960 vm_fault_t ret; 5961 5962 down_read(&EXT4_I(inode)->i_mmap_sem); 5963 ret = filemap_fault(vmf); 5964 up_read(&EXT4_I(inode)->i_mmap_sem); 5965 5966 return ret; 5967 } 5968