1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "ext4_extents.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static inline int ext4_begin_ordered_truncate(struct inode *inode, 53 loff_t new_size) 54 { 55 trace_ext4_begin_ordered_truncate(inode, new_size); 56 /* 57 * If jinode is zero, then we never opened the file for 58 * writing, so there's no need to call 59 * jbd2_journal_begin_ordered_truncate() since there's no 60 * outstanding writes we need to flush. 61 */ 62 if (!EXT4_I(inode)->jinode) 63 return 0; 64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 65 EXT4_I(inode)->jinode, 66 new_size); 67 } 68 69 static void ext4_invalidatepage(struct page *page, unsigned long offset); 70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 71 struct buffer_head *bh_result, int create); 72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 74 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 76 77 /* 78 * Test whether an inode is a fast symlink. 79 */ 80 static int ext4_inode_is_fast_symlink(struct inode *inode) 81 { 82 int ea_blocks = EXT4_I(inode)->i_file_acl ? 83 (inode->i_sb->s_blocksize >> 9) : 0; 84 85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 86 } 87 88 /* 89 * Restart the transaction associated with *handle. This does a commit, 90 * so before we call here everything must be consistently dirtied against 91 * this transaction. 92 */ 93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 94 int nblocks) 95 { 96 int ret; 97 98 /* 99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 100 * moment, get_block can be called only for blocks inside i_size since 101 * page cache has been already dropped and writes are blocked by 102 * i_mutex. So we can safely drop the i_data_sem here. 103 */ 104 BUG_ON(EXT4_JOURNAL(inode) == NULL); 105 jbd_debug(2, "restarting handle %p\n", handle); 106 up_write(&EXT4_I(inode)->i_data_sem); 107 ret = ext4_journal_restart(handle, nblocks); 108 down_write(&EXT4_I(inode)->i_data_sem); 109 ext4_discard_preallocations(inode); 110 111 return ret; 112 } 113 114 /* 115 * Called at the last iput() if i_nlink is zero. 116 */ 117 void ext4_evict_inode(struct inode *inode) 118 { 119 handle_t *handle; 120 int err; 121 122 trace_ext4_evict_inode(inode); 123 if (inode->i_nlink) { 124 /* 125 * When journalling data dirty buffers are tracked only in the 126 * journal. So although mm thinks everything is clean and 127 * ready for reaping the inode might still have some pages to 128 * write in the running transaction or waiting to be 129 * checkpointed. Thus calling jbd2_journal_invalidatepage() 130 * (via truncate_inode_pages()) to discard these buffers can 131 * cause data loss. Also even if we did not discard these 132 * buffers, we would have no way to find them after the inode 133 * is reaped and thus user could see stale data if he tries to 134 * read them before the transaction is checkpointed. So be 135 * careful and force everything to disk here... We use 136 * ei->i_datasync_tid to store the newest transaction 137 * containing inode's data. 138 * 139 * Note that directories do not have this problem because they 140 * don't use page cache. 141 */ 142 if (ext4_should_journal_data(inode) && 143 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 144 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 145 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 146 147 jbd2_log_start_commit(journal, commit_tid); 148 jbd2_log_wait_commit(journal, commit_tid); 149 filemap_write_and_wait(&inode->i_data); 150 } 151 truncate_inode_pages(&inode->i_data, 0); 152 goto no_delete; 153 } 154 155 if (!is_bad_inode(inode)) 156 dquot_initialize(inode); 157 158 if (ext4_should_order_data(inode)) 159 ext4_begin_ordered_truncate(inode, 0); 160 truncate_inode_pages(&inode->i_data, 0); 161 162 if (is_bad_inode(inode)) 163 goto no_delete; 164 165 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 166 if (IS_ERR(handle)) { 167 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 168 /* 169 * If we're going to skip the normal cleanup, we still need to 170 * make sure that the in-core orphan linked list is properly 171 * cleaned up. 172 */ 173 ext4_orphan_del(NULL, inode); 174 goto no_delete; 175 } 176 177 if (IS_SYNC(inode)) 178 ext4_handle_sync(handle); 179 inode->i_size = 0; 180 err = ext4_mark_inode_dirty(handle, inode); 181 if (err) { 182 ext4_warning(inode->i_sb, 183 "couldn't mark inode dirty (err %d)", err); 184 goto stop_handle; 185 } 186 if (inode->i_blocks) 187 ext4_truncate(inode); 188 189 /* 190 * ext4_ext_truncate() doesn't reserve any slop when it 191 * restarts journal transactions; therefore there may not be 192 * enough credits left in the handle to remove the inode from 193 * the orphan list and set the dtime field. 194 */ 195 if (!ext4_handle_has_enough_credits(handle, 3)) { 196 err = ext4_journal_extend(handle, 3); 197 if (err > 0) 198 err = ext4_journal_restart(handle, 3); 199 if (err != 0) { 200 ext4_warning(inode->i_sb, 201 "couldn't extend journal (err %d)", err); 202 stop_handle: 203 ext4_journal_stop(handle); 204 ext4_orphan_del(NULL, inode); 205 goto no_delete; 206 } 207 } 208 209 /* 210 * Kill off the orphan record which ext4_truncate created. 211 * AKPM: I think this can be inside the above `if'. 212 * Note that ext4_orphan_del() has to be able to cope with the 213 * deletion of a non-existent orphan - this is because we don't 214 * know if ext4_truncate() actually created an orphan record. 215 * (Well, we could do this if we need to, but heck - it works) 216 */ 217 ext4_orphan_del(handle, inode); 218 EXT4_I(inode)->i_dtime = get_seconds(); 219 220 /* 221 * One subtle ordering requirement: if anything has gone wrong 222 * (transaction abort, IO errors, whatever), then we can still 223 * do these next steps (the fs will already have been marked as 224 * having errors), but we can't free the inode if the mark_dirty 225 * fails. 226 */ 227 if (ext4_mark_inode_dirty(handle, inode)) 228 /* If that failed, just do the required in-core inode clear. */ 229 ext4_clear_inode(inode); 230 else 231 ext4_free_inode(handle, inode); 232 ext4_journal_stop(handle); 233 return; 234 no_delete: 235 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 236 } 237 238 #ifdef CONFIG_QUOTA 239 qsize_t *ext4_get_reserved_space(struct inode *inode) 240 { 241 return &EXT4_I(inode)->i_reserved_quota; 242 } 243 #endif 244 245 /* 246 * Calculate the number of metadata blocks need to reserve 247 * to allocate a block located at @lblock 248 */ 249 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 250 { 251 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 252 return ext4_ext_calc_metadata_amount(inode, lblock); 253 254 return ext4_ind_calc_metadata_amount(inode, lblock); 255 } 256 257 /* 258 * Called with i_data_sem down, which is important since we can call 259 * ext4_discard_preallocations() from here. 260 */ 261 void ext4_da_update_reserve_space(struct inode *inode, 262 int used, int quota_claim) 263 { 264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 265 struct ext4_inode_info *ei = EXT4_I(inode); 266 267 spin_lock(&ei->i_block_reservation_lock); 268 trace_ext4_da_update_reserve_space(inode, used); 269 if (unlikely(used > ei->i_reserved_data_blocks)) { 270 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 271 "with only %d reserved data blocks\n", 272 __func__, inode->i_ino, used, 273 ei->i_reserved_data_blocks); 274 WARN_ON(1); 275 used = ei->i_reserved_data_blocks; 276 } 277 278 /* Update per-inode reservations */ 279 ei->i_reserved_data_blocks -= used; 280 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 281 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 282 used + ei->i_allocated_meta_blocks); 283 ei->i_allocated_meta_blocks = 0; 284 285 if (ei->i_reserved_data_blocks == 0) { 286 /* 287 * We can release all of the reserved metadata blocks 288 * only when we have written all of the delayed 289 * allocation blocks. 290 */ 291 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 292 ei->i_reserved_meta_blocks); 293 ei->i_reserved_meta_blocks = 0; 294 ei->i_da_metadata_calc_len = 0; 295 } 296 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 297 298 /* Update quota subsystem for data blocks */ 299 if (quota_claim) 300 dquot_claim_block(inode, used); 301 else { 302 /* 303 * We did fallocate with an offset that is already delayed 304 * allocated. So on delayed allocated writeback we should 305 * not re-claim the quota for fallocated blocks. 306 */ 307 dquot_release_reservation_block(inode, used); 308 } 309 310 /* 311 * If we have done all the pending block allocations and if 312 * there aren't any writers on the inode, we can discard the 313 * inode's preallocations. 314 */ 315 if ((ei->i_reserved_data_blocks == 0) && 316 (atomic_read(&inode->i_writecount) == 0)) 317 ext4_discard_preallocations(inode); 318 } 319 320 static int __check_block_validity(struct inode *inode, const char *func, 321 unsigned int line, 322 struct ext4_map_blocks *map) 323 { 324 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 325 map->m_len)) { 326 ext4_error_inode(inode, func, line, map->m_pblk, 327 "lblock %lu mapped to illegal pblock " 328 "(length %d)", (unsigned long) map->m_lblk, 329 map->m_len); 330 return -EIO; 331 } 332 return 0; 333 } 334 335 #define check_block_validity(inode, map) \ 336 __check_block_validity((inode), __func__, __LINE__, (map)) 337 338 /* 339 * Return the number of contiguous dirty pages in a given inode 340 * starting at page frame idx. 341 */ 342 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 343 unsigned int max_pages) 344 { 345 struct address_space *mapping = inode->i_mapping; 346 pgoff_t index; 347 struct pagevec pvec; 348 pgoff_t num = 0; 349 int i, nr_pages, done = 0; 350 351 if (max_pages == 0) 352 return 0; 353 pagevec_init(&pvec, 0); 354 while (!done) { 355 index = idx; 356 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 357 PAGECACHE_TAG_DIRTY, 358 (pgoff_t)PAGEVEC_SIZE); 359 if (nr_pages == 0) 360 break; 361 for (i = 0; i < nr_pages; i++) { 362 struct page *page = pvec.pages[i]; 363 struct buffer_head *bh, *head; 364 365 lock_page(page); 366 if (unlikely(page->mapping != mapping) || 367 !PageDirty(page) || 368 PageWriteback(page) || 369 page->index != idx) { 370 done = 1; 371 unlock_page(page); 372 break; 373 } 374 if (page_has_buffers(page)) { 375 bh = head = page_buffers(page); 376 do { 377 if (!buffer_delay(bh) && 378 !buffer_unwritten(bh)) 379 done = 1; 380 bh = bh->b_this_page; 381 } while (!done && (bh != head)); 382 } 383 unlock_page(page); 384 if (done) 385 break; 386 idx++; 387 num++; 388 if (num >= max_pages) { 389 done = 1; 390 break; 391 } 392 } 393 pagevec_release(&pvec); 394 } 395 return num; 396 } 397 398 /* 399 * The ext4_map_blocks() function tries to look up the requested blocks, 400 * and returns if the blocks are already mapped. 401 * 402 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 403 * and store the allocated blocks in the result buffer head and mark it 404 * mapped. 405 * 406 * If file type is extents based, it will call ext4_ext_map_blocks(), 407 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 408 * based files 409 * 410 * On success, it returns the number of blocks being mapped or allocate. 411 * if create==0 and the blocks are pre-allocated and uninitialized block, 412 * the result buffer head is unmapped. If the create ==1, it will make sure 413 * the buffer head is mapped. 414 * 415 * It returns 0 if plain look up failed (blocks have not been allocated), in 416 * that casem, buffer head is unmapped 417 * 418 * It returns the error in case of allocation failure. 419 */ 420 int ext4_map_blocks(handle_t *handle, struct inode *inode, 421 struct ext4_map_blocks *map, int flags) 422 { 423 int retval; 424 425 map->m_flags = 0; 426 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 427 "logical block %lu\n", inode->i_ino, flags, map->m_len, 428 (unsigned long) map->m_lblk); 429 /* 430 * Try to see if we can get the block without requesting a new 431 * file system block. 432 */ 433 down_read((&EXT4_I(inode)->i_data_sem)); 434 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 435 retval = ext4_ext_map_blocks(handle, inode, map, 0); 436 } else { 437 retval = ext4_ind_map_blocks(handle, inode, map, 0); 438 } 439 up_read((&EXT4_I(inode)->i_data_sem)); 440 441 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 442 int ret = check_block_validity(inode, map); 443 if (ret != 0) 444 return ret; 445 } 446 447 /* If it is only a block(s) look up */ 448 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 449 return retval; 450 451 /* 452 * Returns if the blocks have already allocated 453 * 454 * Note that if blocks have been preallocated 455 * ext4_ext_get_block() returns th create = 0 456 * with buffer head unmapped. 457 */ 458 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 459 return retval; 460 461 /* 462 * When we call get_blocks without the create flag, the 463 * BH_Unwritten flag could have gotten set if the blocks 464 * requested were part of a uninitialized extent. We need to 465 * clear this flag now that we are committed to convert all or 466 * part of the uninitialized extent to be an initialized 467 * extent. This is because we need to avoid the combination 468 * of BH_Unwritten and BH_Mapped flags being simultaneously 469 * set on the buffer_head. 470 */ 471 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 472 473 /* 474 * New blocks allocate and/or writing to uninitialized extent 475 * will possibly result in updating i_data, so we take 476 * the write lock of i_data_sem, and call get_blocks() 477 * with create == 1 flag. 478 */ 479 down_write((&EXT4_I(inode)->i_data_sem)); 480 481 /* 482 * if the caller is from delayed allocation writeout path 483 * we have already reserved fs blocks for allocation 484 * let the underlying get_block() function know to 485 * avoid double accounting 486 */ 487 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 488 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 489 /* 490 * We need to check for EXT4 here because migrate 491 * could have changed the inode type in between 492 */ 493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 494 retval = ext4_ext_map_blocks(handle, inode, map, flags); 495 } else { 496 retval = ext4_ind_map_blocks(handle, inode, map, flags); 497 498 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 499 /* 500 * We allocated new blocks which will result in 501 * i_data's format changing. Force the migrate 502 * to fail by clearing migrate flags 503 */ 504 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 505 } 506 507 /* 508 * Update reserved blocks/metadata blocks after successful 509 * block allocation which had been deferred till now. We don't 510 * support fallocate for non extent files. So we can update 511 * reserve space here. 512 */ 513 if ((retval > 0) && 514 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 515 ext4_da_update_reserve_space(inode, retval, 1); 516 } 517 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 518 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 519 520 up_write((&EXT4_I(inode)->i_data_sem)); 521 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 522 int ret = check_block_validity(inode, map); 523 if (ret != 0) 524 return ret; 525 } 526 return retval; 527 } 528 529 /* Maximum number of blocks we map for direct IO at once. */ 530 #define DIO_MAX_BLOCKS 4096 531 532 static int _ext4_get_block(struct inode *inode, sector_t iblock, 533 struct buffer_head *bh, int flags) 534 { 535 handle_t *handle = ext4_journal_current_handle(); 536 struct ext4_map_blocks map; 537 int ret = 0, started = 0; 538 int dio_credits; 539 540 map.m_lblk = iblock; 541 map.m_len = bh->b_size >> inode->i_blkbits; 542 543 if (flags && !handle) { 544 /* Direct IO write... */ 545 if (map.m_len > DIO_MAX_BLOCKS) 546 map.m_len = DIO_MAX_BLOCKS; 547 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 548 handle = ext4_journal_start(inode, dio_credits); 549 if (IS_ERR(handle)) { 550 ret = PTR_ERR(handle); 551 return ret; 552 } 553 started = 1; 554 } 555 556 ret = ext4_map_blocks(handle, inode, &map, flags); 557 if (ret > 0) { 558 map_bh(bh, inode->i_sb, map.m_pblk); 559 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 560 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 561 ret = 0; 562 } 563 if (started) 564 ext4_journal_stop(handle); 565 return ret; 566 } 567 568 int ext4_get_block(struct inode *inode, sector_t iblock, 569 struct buffer_head *bh, int create) 570 { 571 return _ext4_get_block(inode, iblock, bh, 572 create ? EXT4_GET_BLOCKS_CREATE : 0); 573 } 574 575 /* 576 * `handle' can be NULL if create is zero 577 */ 578 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 579 ext4_lblk_t block, int create, int *errp) 580 { 581 struct ext4_map_blocks map; 582 struct buffer_head *bh; 583 int fatal = 0, err; 584 585 J_ASSERT(handle != NULL || create == 0); 586 587 map.m_lblk = block; 588 map.m_len = 1; 589 err = ext4_map_blocks(handle, inode, &map, 590 create ? EXT4_GET_BLOCKS_CREATE : 0); 591 592 if (err < 0) 593 *errp = err; 594 if (err <= 0) 595 return NULL; 596 *errp = 0; 597 598 bh = sb_getblk(inode->i_sb, map.m_pblk); 599 if (!bh) { 600 *errp = -EIO; 601 return NULL; 602 } 603 if (map.m_flags & EXT4_MAP_NEW) { 604 J_ASSERT(create != 0); 605 J_ASSERT(handle != NULL); 606 607 /* 608 * Now that we do not always journal data, we should 609 * keep in mind whether this should always journal the 610 * new buffer as metadata. For now, regular file 611 * writes use ext4_get_block instead, so it's not a 612 * problem. 613 */ 614 lock_buffer(bh); 615 BUFFER_TRACE(bh, "call get_create_access"); 616 fatal = ext4_journal_get_create_access(handle, bh); 617 if (!fatal && !buffer_uptodate(bh)) { 618 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 619 set_buffer_uptodate(bh); 620 } 621 unlock_buffer(bh); 622 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 623 err = ext4_handle_dirty_metadata(handle, inode, bh); 624 if (!fatal) 625 fatal = err; 626 } else { 627 BUFFER_TRACE(bh, "not a new buffer"); 628 } 629 if (fatal) { 630 *errp = fatal; 631 brelse(bh); 632 bh = NULL; 633 } 634 return bh; 635 } 636 637 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 638 ext4_lblk_t block, int create, int *err) 639 { 640 struct buffer_head *bh; 641 642 bh = ext4_getblk(handle, inode, block, create, err); 643 if (!bh) 644 return bh; 645 if (buffer_uptodate(bh)) 646 return bh; 647 ll_rw_block(READ_META, 1, &bh); 648 wait_on_buffer(bh); 649 if (buffer_uptodate(bh)) 650 return bh; 651 put_bh(bh); 652 *err = -EIO; 653 return NULL; 654 } 655 656 static int walk_page_buffers(handle_t *handle, 657 struct buffer_head *head, 658 unsigned from, 659 unsigned to, 660 int *partial, 661 int (*fn)(handle_t *handle, 662 struct buffer_head *bh)) 663 { 664 struct buffer_head *bh; 665 unsigned block_start, block_end; 666 unsigned blocksize = head->b_size; 667 int err, ret = 0; 668 struct buffer_head *next; 669 670 for (bh = head, block_start = 0; 671 ret == 0 && (bh != head || !block_start); 672 block_start = block_end, bh = next) { 673 next = bh->b_this_page; 674 block_end = block_start + blocksize; 675 if (block_end <= from || block_start >= to) { 676 if (partial && !buffer_uptodate(bh)) 677 *partial = 1; 678 continue; 679 } 680 err = (*fn)(handle, bh); 681 if (!ret) 682 ret = err; 683 } 684 return ret; 685 } 686 687 /* 688 * To preserve ordering, it is essential that the hole instantiation and 689 * the data write be encapsulated in a single transaction. We cannot 690 * close off a transaction and start a new one between the ext4_get_block() 691 * and the commit_write(). So doing the jbd2_journal_start at the start of 692 * prepare_write() is the right place. 693 * 694 * Also, this function can nest inside ext4_writepage() -> 695 * block_write_full_page(). In that case, we *know* that ext4_writepage() 696 * has generated enough buffer credits to do the whole page. So we won't 697 * block on the journal in that case, which is good, because the caller may 698 * be PF_MEMALLOC. 699 * 700 * By accident, ext4 can be reentered when a transaction is open via 701 * quota file writes. If we were to commit the transaction while thus 702 * reentered, there can be a deadlock - we would be holding a quota 703 * lock, and the commit would never complete if another thread had a 704 * transaction open and was blocking on the quota lock - a ranking 705 * violation. 706 * 707 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 708 * will _not_ run commit under these circumstances because handle->h_ref 709 * is elevated. We'll still have enough credits for the tiny quotafile 710 * write. 711 */ 712 static int do_journal_get_write_access(handle_t *handle, 713 struct buffer_head *bh) 714 { 715 int dirty = buffer_dirty(bh); 716 int ret; 717 718 if (!buffer_mapped(bh) || buffer_freed(bh)) 719 return 0; 720 /* 721 * __block_write_begin() could have dirtied some buffers. Clean 722 * the dirty bit as jbd2_journal_get_write_access() could complain 723 * otherwise about fs integrity issues. Setting of the dirty bit 724 * by __block_write_begin() isn't a real problem here as we clear 725 * the bit before releasing a page lock and thus writeback cannot 726 * ever write the buffer. 727 */ 728 if (dirty) 729 clear_buffer_dirty(bh); 730 ret = ext4_journal_get_write_access(handle, bh); 731 if (!ret && dirty) 732 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 733 return ret; 734 } 735 736 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 737 struct buffer_head *bh_result, int create); 738 static int ext4_write_begin(struct file *file, struct address_space *mapping, 739 loff_t pos, unsigned len, unsigned flags, 740 struct page **pagep, void **fsdata) 741 { 742 struct inode *inode = mapping->host; 743 int ret, needed_blocks; 744 handle_t *handle; 745 int retries = 0; 746 struct page *page; 747 pgoff_t index; 748 unsigned from, to; 749 750 trace_ext4_write_begin(inode, pos, len, flags); 751 /* 752 * Reserve one block more for addition to orphan list in case 753 * we allocate blocks but write fails for some reason 754 */ 755 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 756 index = pos >> PAGE_CACHE_SHIFT; 757 from = pos & (PAGE_CACHE_SIZE - 1); 758 to = from + len; 759 760 retry: 761 handle = ext4_journal_start(inode, needed_blocks); 762 if (IS_ERR(handle)) { 763 ret = PTR_ERR(handle); 764 goto out; 765 } 766 767 /* We cannot recurse into the filesystem as the transaction is already 768 * started */ 769 flags |= AOP_FLAG_NOFS; 770 771 page = grab_cache_page_write_begin(mapping, index, flags); 772 if (!page) { 773 ext4_journal_stop(handle); 774 ret = -ENOMEM; 775 goto out; 776 } 777 *pagep = page; 778 779 if (ext4_should_dioread_nolock(inode)) 780 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 781 else 782 ret = __block_write_begin(page, pos, len, ext4_get_block); 783 784 if (!ret && ext4_should_journal_data(inode)) { 785 ret = walk_page_buffers(handle, page_buffers(page), 786 from, to, NULL, do_journal_get_write_access); 787 } 788 789 if (ret) { 790 unlock_page(page); 791 page_cache_release(page); 792 /* 793 * __block_write_begin may have instantiated a few blocks 794 * outside i_size. Trim these off again. Don't need 795 * i_size_read because we hold i_mutex. 796 * 797 * Add inode to orphan list in case we crash before 798 * truncate finishes 799 */ 800 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 801 ext4_orphan_add(handle, inode); 802 803 ext4_journal_stop(handle); 804 if (pos + len > inode->i_size) { 805 ext4_truncate_failed_write(inode); 806 /* 807 * If truncate failed early the inode might 808 * still be on the orphan list; we need to 809 * make sure the inode is removed from the 810 * orphan list in that case. 811 */ 812 if (inode->i_nlink) 813 ext4_orphan_del(NULL, inode); 814 } 815 } 816 817 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 818 goto retry; 819 out: 820 return ret; 821 } 822 823 /* For write_end() in data=journal mode */ 824 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 825 { 826 if (!buffer_mapped(bh) || buffer_freed(bh)) 827 return 0; 828 set_buffer_uptodate(bh); 829 return ext4_handle_dirty_metadata(handle, NULL, bh); 830 } 831 832 static int ext4_generic_write_end(struct file *file, 833 struct address_space *mapping, 834 loff_t pos, unsigned len, unsigned copied, 835 struct page *page, void *fsdata) 836 { 837 int i_size_changed = 0; 838 struct inode *inode = mapping->host; 839 handle_t *handle = ext4_journal_current_handle(); 840 841 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 842 843 /* 844 * No need to use i_size_read() here, the i_size 845 * cannot change under us because we hold i_mutex. 846 * 847 * But it's important to update i_size while still holding page lock: 848 * page writeout could otherwise come in and zero beyond i_size. 849 */ 850 if (pos + copied > inode->i_size) { 851 i_size_write(inode, pos + copied); 852 i_size_changed = 1; 853 } 854 855 if (pos + copied > EXT4_I(inode)->i_disksize) { 856 /* We need to mark inode dirty even if 857 * new_i_size is less that inode->i_size 858 * bu greater than i_disksize.(hint delalloc) 859 */ 860 ext4_update_i_disksize(inode, (pos + copied)); 861 i_size_changed = 1; 862 } 863 unlock_page(page); 864 page_cache_release(page); 865 866 /* 867 * Don't mark the inode dirty under page lock. First, it unnecessarily 868 * makes the holding time of page lock longer. Second, it forces lock 869 * ordering of page lock and transaction start for journaling 870 * filesystems. 871 */ 872 if (i_size_changed) 873 ext4_mark_inode_dirty(handle, inode); 874 875 return copied; 876 } 877 878 /* 879 * We need to pick up the new inode size which generic_commit_write gave us 880 * `file' can be NULL - eg, when called from page_symlink(). 881 * 882 * ext4 never places buffers on inode->i_mapping->private_list. metadata 883 * buffers are managed internally. 884 */ 885 static int ext4_ordered_write_end(struct file *file, 886 struct address_space *mapping, 887 loff_t pos, unsigned len, unsigned copied, 888 struct page *page, void *fsdata) 889 { 890 handle_t *handle = ext4_journal_current_handle(); 891 struct inode *inode = mapping->host; 892 int ret = 0, ret2; 893 894 trace_ext4_ordered_write_end(inode, pos, len, copied); 895 ret = ext4_jbd2_file_inode(handle, inode); 896 897 if (ret == 0) { 898 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 899 page, fsdata); 900 copied = ret2; 901 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 902 /* if we have allocated more blocks and copied 903 * less. We will have blocks allocated outside 904 * inode->i_size. So truncate them 905 */ 906 ext4_orphan_add(handle, inode); 907 if (ret2 < 0) 908 ret = ret2; 909 } 910 ret2 = ext4_journal_stop(handle); 911 if (!ret) 912 ret = ret2; 913 914 if (pos + len > inode->i_size) { 915 ext4_truncate_failed_write(inode); 916 /* 917 * If truncate failed early the inode might still be 918 * on the orphan list; we need to make sure the inode 919 * is removed from the orphan list in that case. 920 */ 921 if (inode->i_nlink) 922 ext4_orphan_del(NULL, inode); 923 } 924 925 926 return ret ? ret : copied; 927 } 928 929 static int ext4_writeback_write_end(struct file *file, 930 struct address_space *mapping, 931 loff_t pos, unsigned len, unsigned copied, 932 struct page *page, void *fsdata) 933 { 934 handle_t *handle = ext4_journal_current_handle(); 935 struct inode *inode = mapping->host; 936 int ret = 0, ret2; 937 938 trace_ext4_writeback_write_end(inode, pos, len, copied); 939 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 940 page, fsdata); 941 copied = ret2; 942 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 943 /* if we have allocated more blocks and copied 944 * less. We will have blocks allocated outside 945 * inode->i_size. So truncate them 946 */ 947 ext4_orphan_add(handle, inode); 948 949 if (ret2 < 0) 950 ret = ret2; 951 952 ret2 = ext4_journal_stop(handle); 953 if (!ret) 954 ret = ret2; 955 956 if (pos + len > inode->i_size) { 957 ext4_truncate_failed_write(inode); 958 /* 959 * If truncate failed early the inode might still be 960 * on the orphan list; we need to make sure the inode 961 * is removed from the orphan list in that case. 962 */ 963 if (inode->i_nlink) 964 ext4_orphan_del(NULL, inode); 965 } 966 967 return ret ? ret : copied; 968 } 969 970 static int ext4_journalled_write_end(struct file *file, 971 struct address_space *mapping, 972 loff_t pos, unsigned len, unsigned copied, 973 struct page *page, void *fsdata) 974 { 975 handle_t *handle = ext4_journal_current_handle(); 976 struct inode *inode = mapping->host; 977 int ret = 0, ret2; 978 int partial = 0; 979 unsigned from, to; 980 loff_t new_i_size; 981 982 trace_ext4_journalled_write_end(inode, pos, len, copied); 983 from = pos & (PAGE_CACHE_SIZE - 1); 984 to = from + len; 985 986 BUG_ON(!ext4_handle_valid(handle)); 987 988 if (copied < len) { 989 if (!PageUptodate(page)) 990 copied = 0; 991 page_zero_new_buffers(page, from+copied, to); 992 } 993 994 ret = walk_page_buffers(handle, page_buffers(page), from, 995 to, &partial, write_end_fn); 996 if (!partial) 997 SetPageUptodate(page); 998 new_i_size = pos + copied; 999 if (new_i_size > inode->i_size) 1000 i_size_write(inode, pos+copied); 1001 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1002 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1003 if (new_i_size > EXT4_I(inode)->i_disksize) { 1004 ext4_update_i_disksize(inode, new_i_size); 1005 ret2 = ext4_mark_inode_dirty(handle, inode); 1006 if (!ret) 1007 ret = ret2; 1008 } 1009 1010 unlock_page(page); 1011 page_cache_release(page); 1012 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1013 /* if we have allocated more blocks and copied 1014 * less. We will have blocks allocated outside 1015 * inode->i_size. So truncate them 1016 */ 1017 ext4_orphan_add(handle, inode); 1018 1019 ret2 = ext4_journal_stop(handle); 1020 if (!ret) 1021 ret = ret2; 1022 if (pos + len > inode->i_size) { 1023 ext4_truncate_failed_write(inode); 1024 /* 1025 * If truncate failed early the inode might still be 1026 * on the orphan list; we need to make sure the inode 1027 * is removed from the orphan list in that case. 1028 */ 1029 if (inode->i_nlink) 1030 ext4_orphan_del(NULL, inode); 1031 } 1032 1033 return ret ? ret : copied; 1034 } 1035 1036 /* 1037 * Reserve a single block located at lblock 1038 */ 1039 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1040 { 1041 int retries = 0; 1042 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1043 struct ext4_inode_info *ei = EXT4_I(inode); 1044 unsigned long md_needed; 1045 int ret; 1046 1047 /* 1048 * recalculate the amount of metadata blocks to reserve 1049 * in order to allocate nrblocks 1050 * worse case is one extent per block 1051 */ 1052 repeat: 1053 spin_lock(&ei->i_block_reservation_lock); 1054 md_needed = ext4_calc_metadata_amount(inode, lblock); 1055 trace_ext4_da_reserve_space(inode, md_needed); 1056 spin_unlock(&ei->i_block_reservation_lock); 1057 1058 /* 1059 * We will charge metadata quota at writeout time; this saves 1060 * us from metadata over-estimation, though we may go over by 1061 * a small amount in the end. Here we just reserve for data. 1062 */ 1063 ret = dquot_reserve_block(inode, 1); 1064 if (ret) 1065 return ret; 1066 /* 1067 * We do still charge estimated metadata to the sb though; 1068 * we cannot afford to run out of free blocks. 1069 */ 1070 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) { 1071 dquot_release_reservation_block(inode, 1); 1072 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1073 yield(); 1074 goto repeat; 1075 } 1076 return -ENOSPC; 1077 } 1078 spin_lock(&ei->i_block_reservation_lock); 1079 ei->i_reserved_data_blocks++; 1080 ei->i_reserved_meta_blocks += md_needed; 1081 spin_unlock(&ei->i_block_reservation_lock); 1082 1083 return 0; /* success */ 1084 } 1085 1086 static void ext4_da_release_space(struct inode *inode, int to_free) 1087 { 1088 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1089 struct ext4_inode_info *ei = EXT4_I(inode); 1090 1091 if (!to_free) 1092 return; /* Nothing to release, exit */ 1093 1094 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1095 1096 trace_ext4_da_release_space(inode, to_free); 1097 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1098 /* 1099 * if there aren't enough reserved blocks, then the 1100 * counter is messed up somewhere. Since this 1101 * function is called from invalidate page, it's 1102 * harmless to return without any action. 1103 */ 1104 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1105 "ino %lu, to_free %d with only %d reserved " 1106 "data blocks\n", inode->i_ino, to_free, 1107 ei->i_reserved_data_blocks); 1108 WARN_ON(1); 1109 to_free = ei->i_reserved_data_blocks; 1110 } 1111 ei->i_reserved_data_blocks -= to_free; 1112 1113 if (ei->i_reserved_data_blocks == 0) { 1114 /* 1115 * We can release all of the reserved metadata blocks 1116 * only when we have written all of the delayed 1117 * allocation blocks. 1118 */ 1119 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1120 ei->i_reserved_meta_blocks); 1121 ei->i_reserved_meta_blocks = 0; 1122 ei->i_da_metadata_calc_len = 0; 1123 } 1124 1125 /* update fs dirty data blocks counter */ 1126 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1127 1128 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1129 1130 dquot_release_reservation_block(inode, to_free); 1131 } 1132 1133 static void ext4_da_page_release_reservation(struct page *page, 1134 unsigned long offset) 1135 { 1136 int to_release = 0; 1137 struct buffer_head *head, *bh; 1138 unsigned int curr_off = 0; 1139 1140 head = page_buffers(page); 1141 bh = head; 1142 do { 1143 unsigned int next_off = curr_off + bh->b_size; 1144 1145 if ((offset <= curr_off) && (buffer_delay(bh))) { 1146 to_release++; 1147 clear_buffer_delay(bh); 1148 } 1149 curr_off = next_off; 1150 } while ((bh = bh->b_this_page) != head); 1151 ext4_da_release_space(page->mapping->host, to_release); 1152 } 1153 1154 /* 1155 * Delayed allocation stuff 1156 */ 1157 1158 /* 1159 * mpage_da_submit_io - walks through extent of pages and try to write 1160 * them with writepage() call back 1161 * 1162 * @mpd->inode: inode 1163 * @mpd->first_page: first page of the extent 1164 * @mpd->next_page: page after the last page of the extent 1165 * 1166 * By the time mpage_da_submit_io() is called we expect all blocks 1167 * to be allocated. this may be wrong if allocation failed. 1168 * 1169 * As pages are already locked by write_cache_pages(), we can't use it 1170 */ 1171 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1172 struct ext4_map_blocks *map) 1173 { 1174 struct pagevec pvec; 1175 unsigned long index, end; 1176 int ret = 0, err, nr_pages, i; 1177 struct inode *inode = mpd->inode; 1178 struct address_space *mapping = inode->i_mapping; 1179 loff_t size = i_size_read(inode); 1180 unsigned int len, block_start; 1181 struct buffer_head *bh, *page_bufs = NULL; 1182 int journal_data = ext4_should_journal_data(inode); 1183 sector_t pblock = 0, cur_logical = 0; 1184 struct ext4_io_submit io_submit; 1185 1186 BUG_ON(mpd->next_page <= mpd->first_page); 1187 memset(&io_submit, 0, sizeof(io_submit)); 1188 /* 1189 * We need to start from the first_page to the next_page - 1 1190 * to make sure we also write the mapped dirty buffer_heads. 1191 * If we look at mpd->b_blocknr we would only be looking 1192 * at the currently mapped buffer_heads. 1193 */ 1194 index = mpd->first_page; 1195 end = mpd->next_page - 1; 1196 1197 pagevec_init(&pvec, 0); 1198 while (index <= end) { 1199 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1200 if (nr_pages == 0) 1201 break; 1202 for (i = 0; i < nr_pages; i++) { 1203 int commit_write = 0, skip_page = 0; 1204 struct page *page = pvec.pages[i]; 1205 1206 index = page->index; 1207 if (index > end) 1208 break; 1209 1210 if (index == size >> PAGE_CACHE_SHIFT) 1211 len = size & ~PAGE_CACHE_MASK; 1212 else 1213 len = PAGE_CACHE_SIZE; 1214 if (map) { 1215 cur_logical = index << (PAGE_CACHE_SHIFT - 1216 inode->i_blkbits); 1217 pblock = map->m_pblk + (cur_logical - 1218 map->m_lblk); 1219 } 1220 index++; 1221 1222 BUG_ON(!PageLocked(page)); 1223 BUG_ON(PageWriteback(page)); 1224 1225 /* 1226 * If the page does not have buffers (for 1227 * whatever reason), try to create them using 1228 * __block_write_begin. If this fails, 1229 * skip the page and move on. 1230 */ 1231 if (!page_has_buffers(page)) { 1232 if (__block_write_begin(page, 0, len, 1233 noalloc_get_block_write)) { 1234 skip_page: 1235 unlock_page(page); 1236 continue; 1237 } 1238 commit_write = 1; 1239 } 1240 1241 bh = page_bufs = page_buffers(page); 1242 block_start = 0; 1243 do { 1244 if (!bh) 1245 goto skip_page; 1246 if (map && (cur_logical >= map->m_lblk) && 1247 (cur_logical <= (map->m_lblk + 1248 (map->m_len - 1)))) { 1249 if (buffer_delay(bh)) { 1250 clear_buffer_delay(bh); 1251 bh->b_blocknr = pblock; 1252 } 1253 if (buffer_unwritten(bh) || 1254 buffer_mapped(bh)) 1255 BUG_ON(bh->b_blocknr != pblock); 1256 if (map->m_flags & EXT4_MAP_UNINIT) 1257 set_buffer_uninit(bh); 1258 clear_buffer_unwritten(bh); 1259 } 1260 1261 /* skip page if block allocation undone */ 1262 if (buffer_delay(bh) || buffer_unwritten(bh)) 1263 skip_page = 1; 1264 bh = bh->b_this_page; 1265 block_start += bh->b_size; 1266 cur_logical++; 1267 pblock++; 1268 } while (bh != page_bufs); 1269 1270 if (skip_page) 1271 goto skip_page; 1272 1273 if (commit_write) 1274 /* mark the buffer_heads as dirty & uptodate */ 1275 block_commit_write(page, 0, len); 1276 1277 clear_page_dirty_for_io(page); 1278 /* 1279 * Delalloc doesn't support data journalling, 1280 * but eventually maybe we'll lift this 1281 * restriction. 1282 */ 1283 if (unlikely(journal_data && PageChecked(page))) 1284 err = __ext4_journalled_writepage(page, len); 1285 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1286 err = ext4_bio_write_page(&io_submit, page, 1287 len, mpd->wbc); 1288 else 1289 err = block_write_full_page(page, 1290 noalloc_get_block_write, mpd->wbc); 1291 1292 if (!err) 1293 mpd->pages_written++; 1294 /* 1295 * In error case, we have to continue because 1296 * remaining pages are still locked 1297 */ 1298 if (ret == 0) 1299 ret = err; 1300 } 1301 pagevec_release(&pvec); 1302 } 1303 ext4_io_submit(&io_submit); 1304 return ret; 1305 } 1306 1307 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1308 { 1309 int nr_pages, i; 1310 pgoff_t index, end; 1311 struct pagevec pvec; 1312 struct inode *inode = mpd->inode; 1313 struct address_space *mapping = inode->i_mapping; 1314 1315 index = mpd->first_page; 1316 end = mpd->next_page - 1; 1317 while (index <= end) { 1318 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1319 if (nr_pages == 0) 1320 break; 1321 for (i = 0; i < nr_pages; i++) { 1322 struct page *page = pvec.pages[i]; 1323 if (page->index > end) 1324 break; 1325 BUG_ON(!PageLocked(page)); 1326 BUG_ON(PageWriteback(page)); 1327 block_invalidatepage(page, 0); 1328 ClearPageUptodate(page); 1329 unlock_page(page); 1330 } 1331 index = pvec.pages[nr_pages - 1]->index + 1; 1332 pagevec_release(&pvec); 1333 } 1334 return; 1335 } 1336 1337 static void ext4_print_free_blocks(struct inode *inode) 1338 { 1339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1340 printk(KERN_CRIT "Total free blocks count %lld\n", 1341 ext4_count_free_blocks(inode->i_sb)); 1342 printk(KERN_CRIT "Free/Dirty block details\n"); 1343 printk(KERN_CRIT "free_blocks=%lld\n", 1344 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 1345 printk(KERN_CRIT "dirty_blocks=%lld\n", 1346 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1347 printk(KERN_CRIT "Block reservation details\n"); 1348 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1349 EXT4_I(inode)->i_reserved_data_blocks); 1350 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1351 EXT4_I(inode)->i_reserved_meta_blocks); 1352 return; 1353 } 1354 1355 /* 1356 * mpage_da_map_and_submit - go through given space, map them 1357 * if necessary, and then submit them for I/O 1358 * 1359 * @mpd - bh describing space 1360 * 1361 * The function skips space we know is already mapped to disk blocks. 1362 * 1363 */ 1364 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1365 { 1366 int err, blks, get_blocks_flags; 1367 struct ext4_map_blocks map, *mapp = NULL; 1368 sector_t next = mpd->b_blocknr; 1369 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1370 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1371 handle_t *handle = NULL; 1372 1373 /* 1374 * If the blocks are mapped already, or we couldn't accumulate 1375 * any blocks, then proceed immediately to the submission stage. 1376 */ 1377 if ((mpd->b_size == 0) || 1378 ((mpd->b_state & (1 << BH_Mapped)) && 1379 !(mpd->b_state & (1 << BH_Delay)) && 1380 !(mpd->b_state & (1 << BH_Unwritten)))) 1381 goto submit_io; 1382 1383 handle = ext4_journal_current_handle(); 1384 BUG_ON(!handle); 1385 1386 /* 1387 * Call ext4_map_blocks() to allocate any delayed allocation 1388 * blocks, or to convert an uninitialized extent to be 1389 * initialized (in the case where we have written into 1390 * one or more preallocated blocks). 1391 * 1392 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1393 * indicate that we are on the delayed allocation path. This 1394 * affects functions in many different parts of the allocation 1395 * call path. This flag exists primarily because we don't 1396 * want to change *many* call functions, so ext4_map_blocks() 1397 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1398 * inode's allocation semaphore is taken. 1399 * 1400 * If the blocks in questions were delalloc blocks, set 1401 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1402 * variables are updated after the blocks have been allocated. 1403 */ 1404 map.m_lblk = next; 1405 map.m_len = max_blocks; 1406 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1407 if (ext4_should_dioread_nolock(mpd->inode)) 1408 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1409 if (mpd->b_state & (1 << BH_Delay)) 1410 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1411 1412 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1413 if (blks < 0) { 1414 struct super_block *sb = mpd->inode->i_sb; 1415 1416 err = blks; 1417 /* 1418 * If get block returns EAGAIN or ENOSPC and there 1419 * appears to be free blocks we will just let 1420 * mpage_da_submit_io() unlock all of the pages. 1421 */ 1422 if (err == -EAGAIN) 1423 goto submit_io; 1424 1425 if (err == -ENOSPC && 1426 ext4_count_free_blocks(sb)) { 1427 mpd->retval = err; 1428 goto submit_io; 1429 } 1430 1431 /* 1432 * get block failure will cause us to loop in 1433 * writepages, because a_ops->writepage won't be able 1434 * to make progress. The page will be redirtied by 1435 * writepage and writepages will again try to write 1436 * the same. 1437 */ 1438 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1439 ext4_msg(sb, KERN_CRIT, 1440 "delayed block allocation failed for inode %lu " 1441 "at logical offset %llu with max blocks %zd " 1442 "with error %d", mpd->inode->i_ino, 1443 (unsigned long long) next, 1444 mpd->b_size >> mpd->inode->i_blkbits, err); 1445 ext4_msg(sb, KERN_CRIT, 1446 "This should not happen!! Data will be lost\n"); 1447 if (err == -ENOSPC) 1448 ext4_print_free_blocks(mpd->inode); 1449 } 1450 /* invalidate all the pages */ 1451 ext4_da_block_invalidatepages(mpd); 1452 1453 /* Mark this page range as having been completed */ 1454 mpd->io_done = 1; 1455 return; 1456 } 1457 BUG_ON(blks == 0); 1458 1459 mapp = ↦ 1460 if (map.m_flags & EXT4_MAP_NEW) { 1461 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1462 int i; 1463 1464 for (i = 0; i < map.m_len; i++) 1465 unmap_underlying_metadata(bdev, map.m_pblk + i); 1466 } 1467 1468 if (ext4_should_order_data(mpd->inode)) { 1469 err = ext4_jbd2_file_inode(handle, mpd->inode); 1470 if (err) 1471 /* This only happens if the journal is aborted */ 1472 return; 1473 } 1474 1475 /* 1476 * Update on-disk size along with block allocation. 1477 */ 1478 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1479 if (disksize > i_size_read(mpd->inode)) 1480 disksize = i_size_read(mpd->inode); 1481 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1482 ext4_update_i_disksize(mpd->inode, disksize); 1483 err = ext4_mark_inode_dirty(handle, mpd->inode); 1484 if (err) 1485 ext4_error(mpd->inode->i_sb, 1486 "Failed to mark inode %lu dirty", 1487 mpd->inode->i_ino); 1488 } 1489 1490 submit_io: 1491 mpage_da_submit_io(mpd, mapp); 1492 mpd->io_done = 1; 1493 } 1494 1495 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1496 (1 << BH_Delay) | (1 << BH_Unwritten)) 1497 1498 /* 1499 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1500 * 1501 * @mpd->lbh - extent of blocks 1502 * @logical - logical number of the block in the file 1503 * @bh - bh of the block (used to access block's state) 1504 * 1505 * the function is used to collect contig. blocks in same state 1506 */ 1507 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1508 sector_t logical, size_t b_size, 1509 unsigned long b_state) 1510 { 1511 sector_t next; 1512 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1513 1514 /* 1515 * XXX Don't go larger than mballoc is willing to allocate 1516 * This is a stopgap solution. We eventually need to fold 1517 * mpage_da_submit_io() into this function and then call 1518 * ext4_map_blocks() multiple times in a loop 1519 */ 1520 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1521 goto flush_it; 1522 1523 /* check if thereserved journal credits might overflow */ 1524 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1525 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1526 /* 1527 * With non-extent format we are limited by the journal 1528 * credit available. Total credit needed to insert 1529 * nrblocks contiguous blocks is dependent on the 1530 * nrblocks. So limit nrblocks. 1531 */ 1532 goto flush_it; 1533 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1534 EXT4_MAX_TRANS_DATA) { 1535 /* 1536 * Adding the new buffer_head would make it cross the 1537 * allowed limit for which we have journal credit 1538 * reserved. So limit the new bh->b_size 1539 */ 1540 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1541 mpd->inode->i_blkbits; 1542 /* we will do mpage_da_submit_io in the next loop */ 1543 } 1544 } 1545 /* 1546 * First block in the extent 1547 */ 1548 if (mpd->b_size == 0) { 1549 mpd->b_blocknr = logical; 1550 mpd->b_size = b_size; 1551 mpd->b_state = b_state & BH_FLAGS; 1552 return; 1553 } 1554 1555 next = mpd->b_blocknr + nrblocks; 1556 /* 1557 * Can we merge the block to our big extent? 1558 */ 1559 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1560 mpd->b_size += b_size; 1561 return; 1562 } 1563 1564 flush_it: 1565 /* 1566 * We couldn't merge the block to our extent, so we 1567 * need to flush current extent and start new one 1568 */ 1569 mpage_da_map_and_submit(mpd); 1570 return; 1571 } 1572 1573 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1574 { 1575 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1576 } 1577 1578 /* 1579 * This is a special get_blocks_t callback which is used by 1580 * ext4_da_write_begin(). It will either return mapped block or 1581 * reserve space for a single block. 1582 * 1583 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1584 * We also have b_blocknr = -1 and b_bdev initialized properly 1585 * 1586 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1587 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1588 * initialized properly. 1589 */ 1590 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1591 struct buffer_head *bh, int create) 1592 { 1593 struct ext4_map_blocks map; 1594 int ret = 0; 1595 sector_t invalid_block = ~((sector_t) 0xffff); 1596 1597 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1598 invalid_block = ~0; 1599 1600 BUG_ON(create == 0); 1601 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1602 1603 map.m_lblk = iblock; 1604 map.m_len = 1; 1605 1606 /* 1607 * first, we need to know whether the block is allocated already 1608 * preallocated blocks are unmapped but should treated 1609 * the same as allocated blocks. 1610 */ 1611 ret = ext4_map_blocks(NULL, inode, &map, 0); 1612 if (ret < 0) 1613 return ret; 1614 if (ret == 0) { 1615 if (buffer_delay(bh)) 1616 return 0; /* Not sure this could or should happen */ 1617 /* 1618 * XXX: __block_write_begin() unmaps passed block, is it OK? 1619 */ 1620 ret = ext4_da_reserve_space(inode, iblock); 1621 if (ret) 1622 /* not enough space to reserve */ 1623 return ret; 1624 1625 map_bh(bh, inode->i_sb, invalid_block); 1626 set_buffer_new(bh); 1627 set_buffer_delay(bh); 1628 return 0; 1629 } 1630 1631 map_bh(bh, inode->i_sb, map.m_pblk); 1632 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1633 1634 if (buffer_unwritten(bh)) { 1635 /* A delayed write to unwritten bh should be marked 1636 * new and mapped. Mapped ensures that we don't do 1637 * get_block multiple times when we write to the same 1638 * offset and new ensures that we do proper zero out 1639 * for partial write. 1640 */ 1641 set_buffer_new(bh); 1642 set_buffer_mapped(bh); 1643 } 1644 return 0; 1645 } 1646 1647 /* 1648 * This function is used as a standard get_block_t calback function 1649 * when there is no desire to allocate any blocks. It is used as a 1650 * callback function for block_write_begin() and block_write_full_page(). 1651 * These functions should only try to map a single block at a time. 1652 * 1653 * Since this function doesn't do block allocations even if the caller 1654 * requests it by passing in create=1, it is critically important that 1655 * any caller checks to make sure that any buffer heads are returned 1656 * by this function are either all already mapped or marked for 1657 * delayed allocation before calling block_write_full_page(). Otherwise, 1658 * b_blocknr could be left unitialized, and the page write functions will 1659 * be taken by surprise. 1660 */ 1661 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1662 struct buffer_head *bh_result, int create) 1663 { 1664 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1665 return _ext4_get_block(inode, iblock, bh_result, 0); 1666 } 1667 1668 static int bget_one(handle_t *handle, struct buffer_head *bh) 1669 { 1670 get_bh(bh); 1671 return 0; 1672 } 1673 1674 static int bput_one(handle_t *handle, struct buffer_head *bh) 1675 { 1676 put_bh(bh); 1677 return 0; 1678 } 1679 1680 static int __ext4_journalled_writepage(struct page *page, 1681 unsigned int len) 1682 { 1683 struct address_space *mapping = page->mapping; 1684 struct inode *inode = mapping->host; 1685 struct buffer_head *page_bufs; 1686 handle_t *handle = NULL; 1687 int ret = 0; 1688 int err; 1689 1690 ClearPageChecked(page); 1691 page_bufs = page_buffers(page); 1692 BUG_ON(!page_bufs); 1693 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1694 /* As soon as we unlock the page, it can go away, but we have 1695 * references to buffers so we are safe */ 1696 unlock_page(page); 1697 1698 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1699 if (IS_ERR(handle)) { 1700 ret = PTR_ERR(handle); 1701 goto out; 1702 } 1703 1704 BUG_ON(!ext4_handle_valid(handle)); 1705 1706 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1707 do_journal_get_write_access); 1708 1709 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1710 write_end_fn); 1711 if (ret == 0) 1712 ret = err; 1713 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1714 err = ext4_journal_stop(handle); 1715 if (!ret) 1716 ret = err; 1717 1718 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1719 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1720 out: 1721 return ret; 1722 } 1723 1724 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1725 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1726 1727 /* 1728 * Note that we don't need to start a transaction unless we're journaling data 1729 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1730 * need to file the inode to the transaction's list in ordered mode because if 1731 * we are writing back data added by write(), the inode is already there and if 1732 * we are writing back data modified via mmap(), no one guarantees in which 1733 * transaction the data will hit the disk. In case we are journaling data, we 1734 * cannot start transaction directly because transaction start ranks above page 1735 * lock so we have to do some magic. 1736 * 1737 * This function can get called via... 1738 * - ext4_da_writepages after taking page lock (have journal handle) 1739 * - journal_submit_inode_data_buffers (no journal handle) 1740 * - shrink_page_list via pdflush (no journal handle) 1741 * - grab_page_cache when doing write_begin (have journal handle) 1742 * 1743 * We don't do any block allocation in this function. If we have page with 1744 * multiple blocks we need to write those buffer_heads that are mapped. This 1745 * is important for mmaped based write. So if we do with blocksize 1K 1746 * truncate(f, 1024); 1747 * a = mmap(f, 0, 4096); 1748 * a[0] = 'a'; 1749 * truncate(f, 4096); 1750 * we have in the page first buffer_head mapped via page_mkwrite call back 1751 * but other bufer_heads would be unmapped but dirty(dirty done via the 1752 * do_wp_page). So writepage should write the first block. If we modify 1753 * the mmap area beyond 1024 we will again get a page_fault and the 1754 * page_mkwrite callback will do the block allocation and mark the 1755 * buffer_heads mapped. 1756 * 1757 * We redirty the page if we have any buffer_heads that is either delay or 1758 * unwritten in the page. 1759 * 1760 * We can get recursively called as show below. 1761 * 1762 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1763 * ext4_writepage() 1764 * 1765 * But since we don't do any block allocation we should not deadlock. 1766 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1767 */ 1768 static int ext4_writepage(struct page *page, 1769 struct writeback_control *wbc) 1770 { 1771 int ret = 0, commit_write = 0; 1772 loff_t size; 1773 unsigned int len; 1774 struct buffer_head *page_bufs = NULL; 1775 struct inode *inode = page->mapping->host; 1776 1777 trace_ext4_writepage(page); 1778 size = i_size_read(inode); 1779 if (page->index == size >> PAGE_CACHE_SHIFT) 1780 len = size & ~PAGE_CACHE_MASK; 1781 else 1782 len = PAGE_CACHE_SIZE; 1783 1784 /* 1785 * If the page does not have buffers (for whatever reason), 1786 * try to create them using __block_write_begin. If this 1787 * fails, redirty the page and move on. 1788 */ 1789 if (!page_has_buffers(page)) { 1790 if (__block_write_begin(page, 0, len, 1791 noalloc_get_block_write)) { 1792 redirty_page: 1793 redirty_page_for_writepage(wbc, page); 1794 unlock_page(page); 1795 return 0; 1796 } 1797 commit_write = 1; 1798 } 1799 page_bufs = page_buffers(page); 1800 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1801 ext4_bh_delay_or_unwritten)) { 1802 /* 1803 * We don't want to do block allocation, so redirty 1804 * the page and return. We may reach here when we do 1805 * a journal commit via journal_submit_inode_data_buffers. 1806 * We can also reach here via shrink_page_list 1807 */ 1808 goto redirty_page; 1809 } 1810 if (commit_write) 1811 /* now mark the buffer_heads as dirty and uptodate */ 1812 block_commit_write(page, 0, len); 1813 1814 if (PageChecked(page) && ext4_should_journal_data(inode)) 1815 /* 1816 * It's mmapped pagecache. Add buffers and journal it. There 1817 * doesn't seem much point in redirtying the page here. 1818 */ 1819 return __ext4_journalled_writepage(page, len); 1820 1821 if (buffer_uninit(page_bufs)) { 1822 ext4_set_bh_endio(page_bufs, inode); 1823 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1824 wbc, ext4_end_io_buffer_write); 1825 } else 1826 ret = block_write_full_page(page, noalloc_get_block_write, 1827 wbc); 1828 1829 return ret; 1830 } 1831 1832 /* 1833 * This is called via ext4_da_writepages() to 1834 * calculate the total number of credits to reserve to fit 1835 * a single extent allocation into a single transaction, 1836 * ext4_da_writpeages() will loop calling this before 1837 * the block allocation. 1838 */ 1839 1840 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1841 { 1842 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1843 1844 /* 1845 * With non-extent format the journal credit needed to 1846 * insert nrblocks contiguous block is dependent on 1847 * number of contiguous block. So we will limit 1848 * number of contiguous block to a sane value 1849 */ 1850 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1851 (max_blocks > EXT4_MAX_TRANS_DATA)) 1852 max_blocks = EXT4_MAX_TRANS_DATA; 1853 1854 return ext4_chunk_trans_blocks(inode, max_blocks); 1855 } 1856 1857 /* 1858 * write_cache_pages_da - walk the list of dirty pages of the given 1859 * address space and accumulate pages that need writing, and call 1860 * mpage_da_map_and_submit to map a single contiguous memory region 1861 * and then write them. 1862 */ 1863 static int write_cache_pages_da(struct address_space *mapping, 1864 struct writeback_control *wbc, 1865 struct mpage_da_data *mpd, 1866 pgoff_t *done_index) 1867 { 1868 struct buffer_head *bh, *head; 1869 struct inode *inode = mapping->host; 1870 struct pagevec pvec; 1871 unsigned int nr_pages; 1872 sector_t logical; 1873 pgoff_t index, end; 1874 long nr_to_write = wbc->nr_to_write; 1875 int i, tag, ret = 0; 1876 1877 memset(mpd, 0, sizeof(struct mpage_da_data)); 1878 mpd->wbc = wbc; 1879 mpd->inode = inode; 1880 pagevec_init(&pvec, 0); 1881 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1882 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1883 1884 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1885 tag = PAGECACHE_TAG_TOWRITE; 1886 else 1887 tag = PAGECACHE_TAG_DIRTY; 1888 1889 *done_index = index; 1890 while (index <= end) { 1891 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1892 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1893 if (nr_pages == 0) 1894 return 0; 1895 1896 for (i = 0; i < nr_pages; i++) { 1897 struct page *page = pvec.pages[i]; 1898 1899 /* 1900 * At this point, the page may be truncated or 1901 * invalidated (changing page->mapping to NULL), or 1902 * even swizzled back from swapper_space to tmpfs file 1903 * mapping. However, page->index will not change 1904 * because we have a reference on the page. 1905 */ 1906 if (page->index > end) 1907 goto out; 1908 1909 *done_index = page->index + 1; 1910 1911 /* 1912 * If we can't merge this page, and we have 1913 * accumulated an contiguous region, write it 1914 */ 1915 if ((mpd->next_page != page->index) && 1916 (mpd->next_page != mpd->first_page)) { 1917 mpage_da_map_and_submit(mpd); 1918 goto ret_extent_tail; 1919 } 1920 1921 lock_page(page); 1922 1923 /* 1924 * If the page is no longer dirty, or its 1925 * mapping no longer corresponds to inode we 1926 * are writing (which means it has been 1927 * truncated or invalidated), or the page is 1928 * already under writeback and we are not 1929 * doing a data integrity writeback, skip the page 1930 */ 1931 if (!PageDirty(page) || 1932 (PageWriteback(page) && 1933 (wbc->sync_mode == WB_SYNC_NONE)) || 1934 unlikely(page->mapping != mapping)) { 1935 unlock_page(page); 1936 continue; 1937 } 1938 1939 wait_on_page_writeback(page); 1940 BUG_ON(PageWriteback(page)); 1941 1942 if (mpd->next_page != page->index) 1943 mpd->first_page = page->index; 1944 mpd->next_page = page->index + 1; 1945 logical = (sector_t) page->index << 1946 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1947 1948 if (!page_has_buffers(page)) { 1949 mpage_add_bh_to_extent(mpd, logical, 1950 PAGE_CACHE_SIZE, 1951 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1952 if (mpd->io_done) 1953 goto ret_extent_tail; 1954 } else { 1955 /* 1956 * Page with regular buffer heads, 1957 * just add all dirty ones 1958 */ 1959 head = page_buffers(page); 1960 bh = head; 1961 do { 1962 BUG_ON(buffer_locked(bh)); 1963 /* 1964 * We need to try to allocate 1965 * unmapped blocks in the same page. 1966 * Otherwise we won't make progress 1967 * with the page in ext4_writepage 1968 */ 1969 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 1970 mpage_add_bh_to_extent(mpd, logical, 1971 bh->b_size, 1972 bh->b_state); 1973 if (mpd->io_done) 1974 goto ret_extent_tail; 1975 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 1976 /* 1977 * mapped dirty buffer. We need 1978 * to update the b_state 1979 * because we look at b_state 1980 * in mpage_da_map_blocks. We 1981 * don't update b_size because 1982 * if we find an unmapped 1983 * buffer_head later we need to 1984 * use the b_state flag of that 1985 * buffer_head. 1986 */ 1987 if (mpd->b_size == 0) 1988 mpd->b_state = bh->b_state & BH_FLAGS; 1989 } 1990 logical++; 1991 } while ((bh = bh->b_this_page) != head); 1992 } 1993 1994 if (nr_to_write > 0) { 1995 nr_to_write--; 1996 if (nr_to_write == 0 && 1997 wbc->sync_mode == WB_SYNC_NONE) 1998 /* 1999 * We stop writing back only if we are 2000 * not doing integrity sync. In case of 2001 * integrity sync we have to keep going 2002 * because someone may be concurrently 2003 * dirtying pages, and we might have 2004 * synced a lot of newly appeared dirty 2005 * pages, but have not synced all of the 2006 * old dirty pages. 2007 */ 2008 goto out; 2009 } 2010 } 2011 pagevec_release(&pvec); 2012 cond_resched(); 2013 } 2014 return 0; 2015 ret_extent_tail: 2016 ret = MPAGE_DA_EXTENT_TAIL; 2017 out: 2018 pagevec_release(&pvec); 2019 cond_resched(); 2020 return ret; 2021 } 2022 2023 2024 static int ext4_da_writepages(struct address_space *mapping, 2025 struct writeback_control *wbc) 2026 { 2027 pgoff_t index; 2028 int range_whole = 0; 2029 handle_t *handle = NULL; 2030 struct mpage_da_data mpd; 2031 struct inode *inode = mapping->host; 2032 int pages_written = 0; 2033 unsigned int max_pages; 2034 int range_cyclic, cycled = 1, io_done = 0; 2035 int needed_blocks, ret = 0; 2036 long desired_nr_to_write, nr_to_writebump = 0; 2037 loff_t range_start = wbc->range_start; 2038 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2039 pgoff_t done_index = 0; 2040 pgoff_t end; 2041 2042 trace_ext4_da_writepages(inode, wbc); 2043 2044 /* 2045 * No pages to write? This is mainly a kludge to avoid starting 2046 * a transaction for special inodes like journal inode on last iput() 2047 * because that could violate lock ordering on umount 2048 */ 2049 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2050 return 0; 2051 2052 /* 2053 * If the filesystem has aborted, it is read-only, so return 2054 * right away instead of dumping stack traces later on that 2055 * will obscure the real source of the problem. We test 2056 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2057 * the latter could be true if the filesystem is mounted 2058 * read-only, and in that case, ext4_da_writepages should 2059 * *never* be called, so if that ever happens, we would want 2060 * the stack trace. 2061 */ 2062 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2063 return -EROFS; 2064 2065 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2066 range_whole = 1; 2067 2068 range_cyclic = wbc->range_cyclic; 2069 if (wbc->range_cyclic) { 2070 index = mapping->writeback_index; 2071 if (index) 2072 cycled = 0; 2073 wbc->range_start = index << PAGE_CACHE_SHIFT; 2074 wbc->range_end = LLONG_MAX; 2075 wbc->range_cyclic = 0; 2076 end = -1; 2077 } else { 2078 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2079 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2080 } 2081 2082 /* 2083 * This works around two forms of stupidity. The first is in 2084 * the writeback code, which caps the maximum number of pages 2085 * written to be 1024 pages. This is wrong on multiple 2086 * levels; different architectues have a different page size, 2087 * which changes the maximum amount of data which gets 2088 * written. Secondly, 4 megabytes is way too small. XFS 2089 * forces this value to be 16 megabytes by multiplying 2090 * nr_to_write parameter by four, and then relies on its 2091 * allocator to allocate larger extents to make them 2092 * contiguous. Unfortunately this brings us to the second 2093 * stupidity, which is that ext4's mballoc code only allocates 2094 * at most 2048 blocks. So we force contiguous writes up to 2095 * the number of dirty blocks in the inode, or 2096 * sbi->max_writeback_mb_bump whichever is smaller. 2097 */ 2098 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2099 if (!range_cyclic && range_whole) { 2100 if (wbc->nr_to_write == LONG_MAX) 2101 desired_nr_to_write = wbc->nr_to_write; 2102 else 2103 desired_nr_to_write = wbc->nr_to_write * 8; 2104 } else 2105 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2106 max_pages); 2107 if (desired_nr_to_write > max_pages) 2108 desired_nr_to_write = max_pages; 2109 2110 if (wbc->nr_to_write < desired_nr_to_write) { 2111 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2112 wbc->nr_to_write = desired_nr_to_write; 2113 } 2114 2115 retry: 2116 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2117 tag_pages_for_writeback(mapping, index, end); 2118 2119 while (!ret && wbc->nr_to_write > 0) { 2120 2121 /* 2122 * we insert one extent at a time. So we need 2123 * credit needed for single extent allocation. 2124 * journalled mode is currently not supported 2125 * by delalloc 2126 */ 2127 BUG_ON(ext4_should_journal_data(inode)); 2128 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2129 2130 /* start a new transaction*/ 2131 handle = ext4_journal_start(inode, needed_blocks); 2132 if (IS_ERR(handle)) { 2133 ret = PTR_ERR(handle); 2134 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2135 "%ld pages, ino %lu; err %d", __func__, 2136 wbc->nr_to_write, inode->i_ino, ret); 2137 goto out_writepages; 2138 } 2139 2140 /* 2141 * Now call write_cache_pages_da() to find the next 2142 * contiguous region of logical blocks that need 2143 * blocks to be allocated by ext4 and submit them. 2144 */ 2145 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2146 /* 2147 * If we have a contiguous extent of pages and we 2148 * haven't done the I/O yet, map the blocks and submit 2149 * them for I/O. 2150 */ 2151 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2152 mpage_da_map_and_submit(&mpd); 2153 ret = MPAGE_DA_EXTENT_TAIL; 2154 } 2155 trace_ext4_da_write_pages(inode, &mpd); 2156 wbc->nr_to_write -= mpd.pages_written; 2157 2158 ext4_journal_stop(handle); 2159 2160 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2161 /* commit the transaction which would 2162 * free blocks released in the transaction 2163 * and try again 2164 */ 2165 jbd2_journal_force_commit_nested(sbi->s_journal); 2166 ret = 0; 2167 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2168 /* 2169 * got one extent now try with 2170 * rest of the pages 2171 */ 2172 pages_written += mpd.pages_written; 2173 ret = 0; 2174 io_done = 1; 2175 } else if (wbc->nr_to_write) 2176 /* 2177 * There is no more writeout needed 2178 * or we requested for a noblocking writeout 2179 * and we found the device congested 2180 */ 2181 break; 2182 } 2183 if (!io_done && !cycled) { 2184 cycled = 1; 2185 index = 0; 2186 wbc->range_start = index << PAGE_CACHE_SHIFT; 2187 wbc->range_end = mapping->writeback_index - 1; 2188 goto retry; 2189 } 2190 2191 /* Update index */ 2192 wbc->range_cyclic = range_cyclic; 2193 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2194 /* 2195 * set the writeback_index so that range_cyclic 2196 * mode will write it back later 2197 */ 2198 mapping->writeback_index = done_index; 2199 2200 out_writepages: 2201 wbc->nr_to_write -= nr_to_writebump; 2202 wbc->range_start = range_start; 2203 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2204 return ret; 2205 } 2206 2207 #define FALL_BACK_TO_NONDELALLOC 1 2208 static int ext4_nonda_switch(struct super_block *sb) 2209 { 2210 s64 free_blocks, dirty_blocks; 2211 struct ext4_sb_info *sbi = EXT4_SB(sb); 2212 2213 /* 2214 * switch to non delalloc mode if we are running low 2215 * on free block. The free block accounting via percpu 2216 * counters can get slightly wrong with percpu_counter_batch getting 2217 * accumulated on each CPU without updating global counters 2218 * Delalloc need an accurate free block accounting. So switch 2219 * to non delalloc when we are near to error range. 2220 */ 2221 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2222 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2223 if (2 * free_blocks < 3 * dirty_blocks || 2224 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2225 /* 2226 * free block count is less than 150% of dirty blocks 2227 * or free blocks is less than watermark 2228 */ 2229 return 1; 2230 } 2231 /* 2232 * Even if we don't switch but are nearing capacity, 2233 * start pushing delalloc when 1/2 of free blocks are dirty. 2234 */ 2235 if (free_blocks < 2 * dirty_blocks) 2236 writeback_inodes_sb_if_idle(sb); 2237 2238 return 0; 2239 } 2240 2241 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2242 loff_t pos, unsigned len, unsigned flags, 2243 struct page **pagep, void **fsdata) 2244 { 2245 int ret, retries = 0; 2246 struct page *page; 2247 pgoff_t index; 2248 struct inode *inode = mapping->host; 2249 handle_t *handle; 2250 2251 index = pos >> PAGE_CACHE_SHIFT; 2252 2253 if (ext4_nonda_switch(inode->i_sb)) { 2254 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2255 return ext4_write_begin(file, mapping, pos, 2256 len, flags, pagep, fsdata); 2257 } 2258 *fsdata = (void *)0; 2259 trace_ext4_da_write_begin(inode, pos, len, flags); 2260 retry: 2261 /* 2262 * With delayed allocation, we don't log the i_disksize update 2263 * if there is delayed block allocation. But we still need 2264 * to journalling the i_disksize update if writes to the end 2265 * of file which has an already mapped buffer. 2266 */ 2267 handle = ext4_journal_start(inode, 1); 2268 if (IS_ERR(handle)) { 2269 ret = PTR_ERR(handle); 2270 goto out; 2271 } 2272 /* We cannot recurse into the filesystem as the transaction is already 2273 * started */ 2274 flags |= AOP_FLAG_NOFS; 2275 2276 page = grab_cache_page_write_begin(mapping, index, flags); 2277 if (!page) { 2278 ext4_journal_stop(handle); 2279 ret = -ENOMEM; 2280 goto out; 2281 } 2282 *pagep = page; 2283 2284 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2285 if (ret < 0) { 2286 unlock_page(page); 2287 ext4_journal_stop(handle); 2288 page_cache_release(page); 2289 /* 2290 * block_write_begin may have instantiated a few blocks 2291 * outside i_size. Trim these off again. Don't need 2292 * i_size_read because we hold i_mutex. 2293 */ 2294 if (pos + len > inode->i_size) 2295 ext4_truncate_failed_write(inode); 2296 } 2297 2298 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2299 goto retry; 2300 out: 2301 return ret; 2302 } 2303 2304 /* 2305 * Check if we should update i_disksize 2306 * when write to the end of file but not require block allocation 2307 */ 2308 static int ext4_da_should_update_i_disksize(struct page *page, 2309 unsigned long offset) 2310 { 2311 struct buffer_head *bh; 2312 struct inode *inode = page->mapping->host; 2313 unsigned int idx; 2314 int i; 2315 2316 bh = page_buffers(page); 2317 idx = offset >> inode->i_blkbits; 2318 2319 for (i = 0; i < idx; i++) 2320 bh = bh->b_this_page; 2321 2322 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2323 return 0; 2324 return 1; 2325 } 2326 2327 static int ext4_da_write_end(struct file *file, 2328 struct address_space *mapping, 2329 loff_t pos, unsigned len, unsigned copied, 2330 struct page *page, void *fsdata) 2331 { 2332 struct inode *inode = mapping->host; 2333 int ret = 0, ret2; 2334 handle_t *handle = ext4_journal_current_handle(); 2335 loff_t new_i_size; 2336 unsigned long start, end; 2337 int write_mode = (int)(unsigned long)fsdata; 2338 2339 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2340 if (ext4_should_order_data(inode)) { 2341 return ext4_ordered_write_end(file, mapping, pos, 2342 len, copied, page, fsdata); 2343 } else if (ext4_should_writeback_data(inode)) { 2344 return ext4_writeback_write_end(file, mapping, pos, 2345 len, copied, page, fsdata); 2346 } else { 2347 BUG(); 2348 } 2349 } 2350 2351 trace_ext4_da_write_end(inode, pos, len, copied); 2352 start = pos & (PAGE_CACHE_SIZE - 1); 2353 end = start + copied - 1; 2354 2355 /* 2356 * generic_write_end() will run mark_inode_dirty() if i_size 2357 * changes. So let's piggyback the i_disksize mark_inode_dirty 2358 * into that. 2359 */ 2360 2361 new_i_size = pos + copied; 2362 if (new_i_size > EXT4_I(inode)->i_disksize) { 2363 if (ext4_da_should_update_i_disksize(page, end)) { 2364 down_write(&EXT4_I(inode)->i_data_sem); 2365 if (new_i_size > EXT4_I(inode)->i_disksize) { 2366 /* 2367 * Updating i_disksize when extending file 2368 * without needing block allocation 2369 */ 2370 if (ext4_should_order_data(inode)) 2371 ret = ext4_jbd2_file_inode(handle, 2372 inode); 2373 2374 EXT4_I(inode)->i_disksize = new_i_size; 2375 } 2376 up_write(&EXT4_I(inode)->i_data_sem); 2377 /* We need to mark inode dirty even if 2378 * new_i_size is less that inode->i_size 2379 * bu greater than i_disksize.(hint delalloc) 2380 */ 2381 ext4_mark_inode_dirty(handle, inode); 2382 } 2383 } 2384 ret2 = generic_write_end(file, mapping, pos, len, copied, 2385 page, fsdata); 2386 copied = ret2; 2387 if (ret2 < 0) 2388 ret = ret2; 2389 ret2 = ext4_journal_stop(handle); 2390 if (!ret) 2391 ret = ret2; 2392 2393 return ret ? ret : copied; 2394 } 2395 2396 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2397 { 2398 /* 2399 * Drop reserved blocks 2400 */ 2401 BUG_ON(!PageLocked(page)); 2402 if (!page_has_buffers(page)) 2403 goto out; 2404 2405 ext4_da_page_release_reservation(page, offset); 2406 2407 out: 2408 ext4_invalidatepage(page, offset); 2409 2410 return; 2411 } 2412 2413 /* 2414 * Force all delayed allocation blocks to be allocated for a given inode. 2415 */ 2416 int ext4_alloc_da_blocks(struct inode *inode) 2417 { 2418 trace_ext4_alloc_da_blocks(inode); 2419 2420 if (!EXT4_I(inode)->i_reserved_data_blocks && 2421 !EXT4_I(inode)->i_reserved_meta_blocks) 2422 return 0; 2423 2424 /* 2425 * We do something simple for now. The filemap_flush() will 2426 * also start triggering a write of the data blocks, which is 2427 * not strictly speaking necessary (and for users of 2428 * laptop_mode, not even desirable). However, to do otherwise 2429 * would require replicating code paths in: 2430 * 2431 * ext4_da_writepages() -> 2432 * write_cache_pages() ---> (via passed in callback function) 2433 * __mpage_da_writepage() --> 2434 * mpage_add_bh_to_extent() 2435 * mpage_da_map_blocks() 2436 * 2437 * The problem is that write_cache_pages(), located in 2438 * mm/page-writeback.c, marks pages clean in preparation for 2439 * doing I/O, which is not desirable if we're not planning on 2440 * doing I/O at all. 2441 * 2442 * We could call write_cache_pages(), and then redirty all of 2443 * the pages by calling redirty_page_for_writepage() but that 2444 * would be ugly in the extreme. So instead we would need to 2445 * replicate parts of the code in the above functions, 2446 * simplifying them because we wouldn't actually intend to 2447 * write out the pages, but rather only collect contiguous 2448 * logical block extents, call the multi-block allocator, and 2449 * then update the buffer heads with the block allocations. 2450 * 2451 * For now, though, we'll cheat by calling filemap_flush(), 2452 * which will map the blocks, and start the I/O, but not 2453 * actually wait for the I/O to complete. 2454 */ 2455 return filemap_flush(inode->i_mapping); 2456 } 2457 2458 /* 2459 * bmap() is special. It gets used by applications such as lilo and by 2460 * the swapper to find the on-disk block of a specific piece of data. 2461 * 2462 * Naturally, this is dangerous if the block concerned is still in the 2463 * journal. If somebody makes a swapfile on an ext4 data-journaling 2464 * filesystem and enables swap, then they may get a nasty shock when the 2465 * data getting swapped to that swapfile suddenly gets overwritten by 2466 * the original zero's written out previously to the journal and 2467 * awaiting writeback in the kernel's buffer cache. 2468 * 2469 * So, if we see any bmap calls here on a modified, data-journaled file, 2470 * take extra steps to flush any blocks which might be in the cache. 2471 */ 2472 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2473 { 2474 struct inode *inode = mapping->host; 2475 journal_t *journal; 2476 int err; 2477 2478 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2479 test_opt(inode->i_sb, DELALLOC)) { 2480 /* 2481 * With delalloc we want to sync the file 2482 * so that we can make sure we allocate 2483 * blocks for file 2484 */ 2485 filemap_write_and_wait(mapping); 2486 } 2487 2488 if (EXT4_JOURNAL(inode) && 2489 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2490 /* 2491 * This is a REALLY heavyweight approach, but the use of 2492 * bmap on dirty files is expected to be extremely rare: 2493 * only if we run lilo or swapon on a freshly made file 2494 * do we expect this to happen. 2495 * 2496 * (bmap requires CAP_SYS_RAWIO so this does not 2497 * represent an unprivileged user DOS attack --- we'd be 2498 * in trouble if mortal users could trigger this path at 2499 * will.) 2500 * 2501 * NB. EXT4_STATE_JDATA is not set on files other than 2502 * regular files. If somebody wants to bmap a directory 2503 * or symlink and gets confused because the buffer 2504 * hasn't yet been flushed to disk, they deserve 2505 * everything they get. 2506 */ 2507 2508 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2509 journal = EXT4_JOURNAL(inode); 2510 jbd2_journal_lock_updates(journal); 2511 err = jbd2_journal_flush(journal); 2512 jbd2_journal_unlock_updates(journal); 2513 2514 if (err) 2515 return 0; 2516 } 2517 2518 return generic_block_bmap(mapping, block, ext4_get_block); 2519 } 2520 2521 static int ext4_readpage(struct file *file, struct page *page) 2522 { 2523 trace_ext4_readpage(page); 2524 return mpage_readpage(page, ext4_get_block); 2525 } 2526 2527 static int 2528 ext4_readpages(struct file *file, struct address_space *mapping, 2529 struct list_head *pages, unsigned nr_pages) 2530 { 2531 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2532 } 2533 2534 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2535 { 2536 struct buffer_head *head, *bh; 2537 unsigned int curr_off = 0; 2538 2539 if (!page_has_buffers(page)) 2540 return; 2541 head = bh = page_buffers(page); 2542 do { 2543 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2544 && bh->b_private) { 2545 ext4_free_io_end(bh->b_private); 2546 bh->b_private = NULL; 2547 bh->b_end_io = NULL; 2548 } 2549 curr_off = curr_off + bh->b_size; 2550 bh = bh->b_this_page; 2551 } while (bh != head); 2552 } 2553 2554 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2555 { 2556 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2557 2558 trace_ext4_invalidatepage(page, offset); 2559 2560 /* 2561 * free any io_end structure allocated for buffers to be discarded 2562 */ 2563 if (ext4_should_dioread_nolock(page->mapping->host)) 2564 ext4_invalidatepage_free_endio(page, offset); 2565 /* 2566 * If it's a full truncate we just forget about the pending dirtying 2567 */ 2568 if (offset == 0) 2569 ClearPageChecked(page); 2570 2571 if (journal) 2572 jbd2_journal_invalidatepage(journal, page, offset); 2573 else 2574 block_invalidatepage(page, offset); 2575 } 2576 2577 static int ext4_releasepage(struct page *page, gfp_t wait) 2578 { 2579 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2580 2581 trace_ext4_releasepage(page); 2582 2583 WARN_ON(PageChecked(page)); 2584 if (!page_has_buffers(page)) 2585 return 0; 2586 if (journal) 2587 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2588 else 2589 return try_to_free_buffers(page); 2590 } 2591 2592 /* 2593 * ext4_get_block used when preparing for a DIO write or buffer write. 2594 * We allocate an uinitialized extent if blocks haven't been allocated. 2595 * The extent will be converted to initialized after the IO is complete. 2596 */ 2597 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2598 struct buffer_head *bh_result, int create) 2599 { 2600 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2601 inode->i_ino, create); 2602 return _ext4_get_block(inode, iblock, bh_result, 2603 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2604 } 2605 2606 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2607 ssize_t size, void *private, int ret, 2608 bool is_async) 2609 { 2610 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2611 ext4_io_end_t *io_end = iocb->private; 2612 struct workqueue_struct *wq; 2613 unsigned long flags; 2614 struct ext4_inode_info *ei; 2615 2616 /* if not async direct IO or dio with 0 bytes write, just return */ 2617 if (!io_end || !size) 2618 goto out; 2619 2620 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2621 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2622 iocb->private, io_end->inode->i_ino, iocb, offset, 2623 size); 2624 2625 /* if not aio dio with unwritten extents, just free io and return */ 2626 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2627 ext4_free_io_end(io_end); 2628 iocb->private = NULL; 2629 out: 2630 if (is_async) 2631 aio_complete(iocb, ret, 0); 2632 inode_dio_done(inode); 2633 return; 2634 } 2635 2636 io_end->offset = offset; 2637 io_end->size = size; 2638 if (is_async) { 2639 io_end->iocb = iocb; 2640 io_end->result = ret; 2641 } 2642 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2643 2644 /* Add the io_end to per-inode completed aio dio list*/ 2645 ei = EXT4_I(io_end->inode); 2646 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2647 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2648 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2649 2650 /* queue the work to convert unwritten extents to written */ 2651 queue_work(wq, &io_end->work); 2652 iocb->private = NULL; 2653 2654 /* XXX: probably should move into the real I/O completion handler */ 2655 inode_dio_done(inode); 2656 } 2657 2658 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2659 { 2660 ext4_io_end_t *io_end = bh->b_private; 2661 struct workqueue_struct *wq; 2662 struct inode *inode; 2663 unsigned long flags; 2664 2665 if (!test_clear_buffer_uninit(bh) || !io_end) 2666 goto out; 2667 2668 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2669 printk("sb umounted, discard end_io request for inode %lu\n", 2670 io_end->inode->i_ino); 2671 ext4_free_io_end(io_end); 2672 goto out; 2673 } 2674 2675 io_end->flag = EXT4_IO_END_UNWRITTEN; 2676 inode = io_end->inode; 2677 2678 /* Add the io_end to per-inode completed io list*/ 2679 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2680 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2681 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2682 2683 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2684 /* queue the work to convert unwritten extents to written */ 2685 queue_work(wq, &io_end->work); 2686 out: 2687 bh->b_private = NULL; 2688 bh->b_end_io = NULL; 2689 clear_buffer_uninit(bh); 2690 end_buffer_async_write(bh, uptodate); 2691 } 2692 2693 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2694 { 2695 ext4_io_end_t *io_end; 2696 struct page *page = bh->b_page; 2697 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2698 size_t size = bh->b_size; 2699 2700 retry: 2701 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2702 if (!io_end) { 2703 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2704 schedule(); 2705 goto retry; 2706 } 2707 io_end->offset = offset; 2708 io_end->size = size; 2709 /* 2710 * We need to hold a reference to the page to make sure it 2711 * doesn't get evicted before ext4_end_io_work() has a chance 2712 * to convert the extent from written to unwritten. 2713 */ 2714 io_end->page = page; 2715 get_page(io_end->page); 2716 2717 bh->b_private = io_end; 2718 bh->b_end_io = ext4_end_io_buffer_write; 2719 return 0; 2720 } 2721 2722 /* 2723 * For ext4 extent files, ext4 will do direct-io write to holes, 2724 * preallocated extents, and those write extend the file, no need to 2725 * fall back to buffered IO. 2726 * 2727 * For holes, we fallocate those blocks, mark them as uninitialized 2728 * If those blocks were preallocated, we mark sure they are splited, but 2729 * still keep the range to write as uninitialized. 2730 * 2731 * The unwrritten extents will be converted to written when DIO is completed. 2732 * For async direct IO, since the IO may still pending when return, we 2733 * set up an end_io call back function, which will do the conversion 2734 * when async direct IO completed. 2735 * 2736 * If the O_DIRECT write will extend the file then add this inode to the 2737 * orphan list. So recovery will truncate it back to the original size 2738 * if the machine crashes during the write. 2739 * 2740 */ 2741 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2742 const struct iovec *iov, loff_t offset, 2743 unsigned long nr_segs) 2744 { 2745 struct file *file = iocb->ki_filp; 2746 struct inode *inode = file->f_mapping->host; 2747 ssize_t ret; 2748 size_t count = iov_length(iov, nr_segs); 2749 2750 loff_t final_size = offset + count; 2751 if (rw == WRITE && final_size <= inode->i_size) { 2752 /* 2753 * We could direct write to holes and fallocate. 2754 * 2755 * Allocated blocks to fill the hole are marked as uninitialized 2756 * to prevent parallel buffered read to expose the stale data 2757 * before DIO complete the data IO. 2758 * 2759 * As to previously fallocated extents, ext4 get_block 2760 * will just simply mark the buffer mapped but still 2761 * keep the extents uninitialized. 2762 * 2763 * for non AIO case, we will convert those unwritten extents 2764 * to written after return back from blockdev_direct_IO. 2765 * 2766 * for async DIO, the conversion needs to be defered when 2767 * the IO is completed. The ext4 end_io callback function 2768 * will be called to take care of the conversion work. 2769 * Here for async case, we allocate an io_end structure to 2770 * hook to the iocb. 2771 */ 2772 iocb->private = NULL; 2773 EXT4_I(inode)->cur_aio_dio = NULL; 2774 if (!is_sync_kiocb(iocb)) { 2775 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2776 if (!iocb->private) 2777 return -ENOMEM; 2778 /* 2779 * we save the io structure for current async 2780 * direct IO, so that later ext4_map_blocks() 2781 * could flag the io structure whether there 2782 * is a unwritten extents needs to be converted 2783 * when IO is completed. 2784 */ 2785 EXT4_I(inode)->cur_aio_dio = iocb->private; 2786 } 2787 2788 ret = __blockdev_direct_IO(rw, iocb, inode, 2789 inode->i_sb->s_bdev, iov, 2790 offset, nr_segs, 2791 ext4_get_block_write, 2792 ext4_end_io_dio, 2793 NULL, 2794 DIO_LOCKING | DIO_SKIP_HOLES); 2795 if (iocb->private) 2796 EXT4_I(inode)->cur_aio_dio = NULL; 2797 /* 2798 * The io_end structure takes a reference to the inode, 2799 * that structure needs to be destroyed and the 2800 * reference to the inode need to be dropped, when IO is 2801 * complete, even with 0 byte write, or failed. 2802 * 2803 * In the successful AIO DIO case, the io_end structure will be 2804 * desctroyed and the reference to the inode will be dropped 2805 * after the end_io call back function is called. 2806 * 2807 * In the case there is 0 byte write, or error case, since 2808 * VFS direct IO won't invoke the end_io call back function, 2809 * we need to free the end_io structure here. 2810 */ 2811 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2812 ext4_free_io_end(iocb->private); 2813 iocb->private = NULL; 2814 } else if (ret > 0 && ext4_test_inode_state(inode, 2815 EXT4_STATE_DIO_UNWRITTEN)) { 2816 int err; 2817 /* 2818 * for non AIO case, since the IO is already 2819 * completed, we could do the conversion right here 2820 */ 2821 err = ext4_convert_unwritten_extents(inode, 2822 offset, ret); 2823 if (err < 0) 2824 ret = err; 2825 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2826 } 2827 return ret; 2828 } 2829 2830 /* for write the the end of file case, we fall back to old way */ 2831 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2832 } 2833 2834 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2835 const struct iovec *iov, loff_t offset, 2836 unsigned long nr_segs) 2837 { 2838 struct file *file = iocb->ki_filp; 2839 struct inode *inode = file->f_mapping->host; 2840 ssize_t ret; 2841 2842 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 2843 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 2844 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 2845 else 2846 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2847 trace_ext4_direct_IO_exit(inode, offset, 2848 iov_length(iov, nr_segs), rw, ret); 2849 return ret; 2850 } 2851 2852 /* 2853 * Pages can be marked dirty completely asynchronously from ext4's journalling 2854 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 2855 * much here because ->set_page_dirty is called under VFS locks. The page is 2856 * not necessarily locked. 2857 * 2858 * We cannot just dirty the page and leave attached buffers clean, because the 2859 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 2860 * or jbddirty because all the journalling code will explode. 2861 * 2862 * So what we do is to mark the page "pending dirty" and next time writepage 2863 * is called, propagate that into the buffers appropriately. 2864 */ 2865 static int ext4_journalled_set_page_dirty(struct page *page) 2866 { 2867 SetPageChecked(page); 2868 return __set_page_dirty_nobuffers(page); 2869 } 2870 2871 static const struct address_space_operations ext4_ordered_aops = { 2872 .readpage = ext4_readpage, 2873 .readpages = ext4_readpages, 2874 .writepage = ext4_writepage, 2875 .write_begin = ext4_write_begin, 2876 .write_end = ext4_ordered_write_end, 2877 .bmap = ext4_bmap, 2878 .invalidatepage = ext4_invalidatepage, 2879 .releasepage = ext4_releasepage, 2880 .direct_IO = ext4_direct_IO, 2881 .migratepage = buffer_migrate_page, 2882 .is_partially_uptodate = block_is_partially_uptodate, 2883 .error_remove_page = generic_error_remove_page, 2884 }; 2885 2886 static const struct address_space_operations ext4_writeback_aops = { 2887 .readpage = ext4_readpage, 2888 .readpages = ext4_readpages, 2889 .writepage = ext4_writepage, 2890 .write_begin = ext4_write_begin, 2891 .write_end = ext4_writeback_write_end, 2892 .bmap = ext4_bmap, 2893 .invalidatepage = ext4_invalidatepage, 2894 .releasepage = ext4_releasepage, 2895 .direct_IO = ext4_direct_IO, 2896 .migratepage = buffer_migrate_page, 2897 .is_partially_uptodate = block_is_partially_uptodate, 2898 .error_remove_page = generic_error_remove_page, 2899 }; 2900 2901 static const struct address_space_operations ext4_journalled_aops = { 2902 .readpage = ext4_readpage, 2903 .readpages = ext4_readpages, 2904 .writepage = ext4_writepage, 2905 .write_begin = ext4_write_begin, 2906 .write_end = ext4_journalled_write_end, 2907 .set_page_dirty = ext4_journalled_set_page_dirty, 2908 .bmap = ext4_bmap, 2909 .invalidatepage = ext4_invalidatepage, 2910 .releasepage = ext4_releasepage, 2911 .is_partially_uptodate = block_is_partially_uptodate, 2912 .error_remove_page = generic_error_remove_page, 2913 }; 2914 2915 static const struct address_space_operations ext4_da_aops = { 2916 .readpage = ext4_readpage, 2917 .readpages = ext4_readpages, 2918 .writepage = ext4_writepage, 2919 .writepages = ext4_da_writepages, 2920 .write_begin = ext4_da_write_begin, 2921 .write_end = ext4_da_write_end, 2922 .bmap = ext4_bmap, 2923 .invalidatepage = ext4_da_invalidatepage, 2924 .releasepage = ext4_releasepage, 2925 .direct_IO = ext4_direct_IO, 2926 .migratepage = buffer_migrate_page, 2927 .is_partially_uptodate = block_is_partially_uptodate, 2928 .error_remove_page = generic_error_remove_page, 2929 }; 2930 2931 void ext4_set_aops(struct inode *inode) 2932 { 2933 if (ext4_should_order_data(inode) && 2934 test_opt(inode->i_sb, DELALLOC)) 2935 inode->i_mapping->a_ops = &ext4_da_aops; 2936 else if (ext4_should_order_data(inode)) 2937 inode->i_mapping->a_ops = &ext4_ordered_aops; 2938 else if (ext4_should_writeback_data(inode) && 2939 test_opt(inode->i_sb, DELALLOC)) 2940 inode->i_mapping->a_ops = &ext4_da_aops; 2941 else if (ext4_should_writeback_data(inode)) 2942 inode->i_mapping->a_ops = &ext4_writeback_aops; 2943 else 2944 inode->i_mapping->a_ops = &ext4_journalled_aops; 2945 } 2946 2947 /* 2948 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 2949 * up to the end of the block which corresponds to `from'. 2950 * This required during truncate. We need to physically zero the tail end 2951 * of that block so it doesn't yield old data if the file is later grown. 2952 */ 2953 int ext4_block_truncate_page(handle_t *handle, 2954 struct address_space *mapping, loff_t from) 2955 { 2956 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2957 unsigned length; 2958 unsigned blocksize; 2959 struct inode *inode = mapping->host; 2960 2961 blocksize = inode->i_sb->s_blocksize; 2962 length = blocksize - (offset & (blocksize - 1)); 2963 2964 return ext4_block_zero_page_range(handle, mapping, from, length); 2965 } 2966 2967 /* 2968 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 2969 * starting from file offset 'from'. The range to be zero'd must 2970 * be contained with in one block. If the specified range exceeds 2971 * the end of the block it will be shortened to end of the block 2972 * that cooresponds to 'from' 2973 */ 2974 int ext4_block_zero_page_range(handle_t *handle, 2975 struct address_space *mapping, loff_t from, loff_t length) 2976 { 2977 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2978 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2979 unsigned blocksize, max, pos; 2980 ext4_lblk_t iblock; 2981 struct inode *inode = mapping->host; 2982 struct buffer_head *bh; 2983 struct page *page; 2984 int err = 0; 2985 2986 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 2987 mapping_gfp_mask(mapping) & ~__GFP_FS); 2988 if (!page) 2989 return -EINVAL; 2990 2991 blocksize = inode->i_sb->s_blocksize; 2992 max = blocksize - (offset & (blocksize - 1)); 2993 2994 /* 2995 * correct length if it does not fall between 2996 * 'from' and the end of the block 2997 */ 2998 if (length > max || length < 0) 2999 length = max; 3000 3001 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3002 3003 if (!page_has_buffers(page)) 3004 create_empty_buffers(page, blocksize, 0); 3005 3006 /* Find the buffer that contains "offset" */ 3007 bh = page_buffers(page); 3008 pos = blocksize; 3009 while (offset >= pos) { 3010 bh = bh->b_this_page; 3011 iblock++; 3012 pos += blocksize; 3013 } 3014 3015 err = 0; 3016 if (buffer_freed(bh)) { 3017 BUFFER_TRACE(bh, "freed: skip"); 3018 goto unlock; 3019 } 3020 3021 if (!buffer_mapped(bh)) { 3022 BUFFER_TRACE(bh, "unmapped"); 3023 ext4_get_block(inode, iblock, bh, 0); 3024 /* unmapped? It's a hole - nothing to do */ 3025 if (!buffer_mapped(bh)) { 3026 BUFFER_TRACE(bh, "still unmapped"); 3027 goto unlock; 3028 } 3029 } 3030 3031 /* Ok, it's mapped. Make sure it's up-to-date */ 3032 if (PageUptodate(page)) 3033 set_buffer_uptodate(bh); 3034 3035 if (!buffer_uptodate(bh)) { 3036 err = -EIO; 3037 ll_rw_block(READ, 1, &bh); 3038 wait_on_buffer(bh); 3039 /* Uhhuh. Read error. Complain and punt. */ 3040 if (!buffer_uptodate(bh)) 3041 goto unlock; 3042 } 3043 3044 if (ext4_should_journal_data(inode)) { 3045 BUFFER_TRACE(bh, "get write access"); 3046 err = ext4_journal_get_write_access(handle, bh); 3047 if (err) 3048 goto unlock; 3049 } 3050 3051 zero_user(page, offset, length); 3052 3053 BUFFER_TRACE(bh, "zeroed end of block"); 3054 3055 err = 0; 3056 if (ext4_should_journal_data(inode)) { 3057 err = ext4_handle_dirty_metadata(handle, inode, bh); 3058 } else { 3059 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 3060 err = ext4_jbd2_file_inode(handle, inode); 3061 mark_buffer_dirty(bh); 3062 } 3063 3064 unlock: 3065 unlock_page(page); 3066 page_cache_release(page); 3067 return err; 3068 } 3069 3070 int ext4_can_truncate(struct inode *inode) 3071 { 3072 if (S_ISREG(inode->i_mode)) 3073 return 1; 3074 if (S_ISDIR(inode->i_mode)) 3075 return 1; 3076 if (S_ISLNK(inode->i_mode)) 3077 return !ext4_inode_is_fast_symlink(inode); 3078 return 0; 3079 } 3080 3081 /* 3082 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3083 * associated with the given offset and length 3084 * 3085 * @inode: File inode 3086 * @offset: The offset where the hole will begin 3087 * @len: The length of the hole 3088 * 3089 * Returns: 0 on sucess or negative on failure 3090 */ 3091 3092 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3093 { 3094 struct inode *inode = file->f_path.dentry->d_inode; 3095 if (!S_ISREG(inode->i_mode)) 3096 return -ENOTSUPP; 3097 3098 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3099 /* TODO: Add support for non extent hole punching */ 3100 return -ENOTSUPP; 3101 } 3102 3103 return ext4_ext_punch_hole(file, offset, length); 3104 } 3105 3106 /* 3107 * ext4_truncate() 3108 * 3109 * We block out ext4_get_block() block instantiations across the entire 3110 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3111 * simultaneously on behalf of the same inode. 3112 * 3113 * As we work through the truncate and commmit bits of it to the journal there 3114 * is one core, guiding principle: the file's tree must always be consistent on 3115 * disk. We must be able to restart the truncate after a crash. 3116 * 3117 * The file's tree may be transiently inconsistent in memory (although it 3118 * probably isn't), but whenever we close off and commit a journal transaction, 3119 * the contents of (the filesystem + the journal) must be consistent and 3120 * restartable. It's pretty simple, really: bottom up, right to left (although 3121 * left-to-right works OK too). 3122 * 3123 * Note that at recovery time, journal replay occurs *before* the restart of 3124 * truncate against the orphan inode list. 3125 * 3126 * The committed inode has the new, desired i_size (which is the same as 3127 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3128 * that this inode's truncate did not complete and it will again call 3129 * ext4_truncate() to have another go. So there will be instantiated blocks 3130 * to the right of the truncation point in a crashed ext4 filesystem. But 3131 * that's fine - as long as they are linked from the inode, the post-crash 3132 * ext4_truncate() run will find them and release them. 3133 */ 3134 void ext4_truncate(struct inode *inode) 3135 { 3136 trace_ext4_truncate_enter(inode); 3137 3138 if (!ext4_can_truncate(inode)) 3139 return; 3140 3141 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3142 3143 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3144 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3145 3146 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3147 ext4_ext_truncate(inode); 3148 else 3149 ext4_ind_truncate(inode); 3150 3151 trace_ext4_truncate_exit(inode); 3152 } 3153 3154 /* 3155 * ext4_get_inode_loc returns with an extra refcount against the inode's 3156 * underlying buffer_head on success. If 'in_mem' is true, we have all 3157 * data in memory that is needed to recreate the on-disk version of this 3158 * inode. 3159 */ 3160 static int __ext4_get_inode_loc(struct inode *inode, 3161 struct ext4_iloc *iloc, int in_mem) 3162 { 3163 struct ext4_group_desc *gdp; 3164 struct buffer_head *bh; 3165 struct super_block *sb = inode->i_sb; 3166 ext4_fsblk_t block; 3167 int inodes_per_block, inode_offset; 3168 3169 iloc->bh = NULL; 3170 if (!ext4_valid_inum(sb, inode->i_ino)) 3171 return -EIO; 3172 3173 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3174 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3175 if (!gdp) 3176 return -EIO; 3177 3178 /* 3179 * Figure out the offset within the block group inode table 3180 */ 3181 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3182 inode_offset = ((inode->i_ino - 1) % 3183 EXT4_INODES_PER_GROUP(sb)); 3184 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3185 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3186 3187 bh = sb_getblk(sb, block); 3188 if (!bh) { 3189 EXT4_ERROR_INODE_BLOCK(inode, block, 3190 "unable to read itable block"); 3191 return -EIO; 3192 } 3193 if (!buffer_uptodate(bh)) { 3194 lock_buffer(bh); 3195 3196 /* 3197 * If the buffer has the write error flag, we have failed 3198 * to write out another inode in the same block. In this 3199 * case, we don't have to read the block because we may 3200 * read the old inode data successfully. 3201 */ 3202 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3203 set_buffer_uptodate(bh); 3204 3205 if (buffer_uptodate(bh)) { 3206 /* someone brought it uptodate while we waited */ 3207 unlock_buffer(bh); 3208 goto has_buffer; 3209 } 3210 3211 /* 3212 * If we have all information of the inode in memory and this 3213 * is the only valid inode in the block, we need not read the 3214 * block. 3215 */ 3216 if (in_mem) { 3217 struct buffer_head *bitmap_bh; 3218 int i, start; 3219 3220 start = inode_offset & ~(inodes_per_block - 1); 3221 3222 /* Is the inode bitmap in cache? */ 3223 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3224 if (!bitmap_bh) 3225 goto make_io; 3226 3227 /* 3228 * If the inode bitmap isn't in cache then the 3229 * optimisation may end up performing two reads instead 3230 * of one, so skip it. 3231 */ 3232 if (!buffer_uptodate(bitmap_bh)) { 3233 brelse(bitmap_bh); 3234 goto make_io; 3235 } 3236 for (i = start; i < start + inodes_per_block; i++) { 3237 if (i == inode_offset) 3238 continue; 3239 if (ext4_test_bit(i, bitmap_bh->b_data)) 3240 break; 3241 } 3242 brelse(bitmap_bh); 3243 if (i == start + inodes_per_block) { 3244 /* all other inodes are free, so skip I/O */ 3245 memset(bh->b_data, 0, bh->b_size); 3246 set_buffer_uptodate(bh); 3247 unlock_buffer(bh); 3248 goto has_buffer; 3249 } 3250 } 3251 3252 make_io: 3253 /* 3254 * If we need to do any I/O, try to pre-readahead extra 3255 * blocks from the inode table. 3256 */ 3257 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3258 ext4_fsblk_t b, end, table; 3259 unsigned num; 3260 3261 table = ext4_inode_table(sb, gdp); 3262 /* s_inode_readahead_blks is always a power of 2 */ 3263 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3264 if (table > b) 3265 b = table; 3266 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3267 num = EXT4_INODES_PER_GROUP(sb); 3268 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3269 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3270 num -= ext4_itable_unused_count(sb, gdp); 3271 table += num / inodes_per_block; 3272 if (end > table) 3273 end = table; 3274 while (b <= end) 3275 sb_breadahead(sb, b++); 3276 } 3277 3278 /* 3279 * There are other valid inodes in the buffer, this inode 3280 * has in-inode xattrs, or we don't have this inode in memory. 3281 * Read the block from disk. 3282 */ 3283 trace_ext4_load_inode(inode); 3284 get_bh(bh); 3285 bh->b_end_io = end_buffer_read_sync; 3286 submit_bh(READ_META, bh); 3287 wait_on_buffer(bh); 3288 if (!buffer_uptodate(bh)) { 3289 EXT4_ERROR_INODE_BLOCK(inode, block, 3290 "unable to read itable block"); 3291 brelse(bh); 3292 return -EIO; 3293 } 3294 } 3295 has_buffer: 3296 iloc->bh = bh; 3297 return 0; 3298 } 3299 3300 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3301 { 3302 /* We have all inode data except xattrs in memory here. */ 3303 return __ext4_get_inode_loc(inode, iloc, 3304 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3305 } 3306 3307 void ext4_set_inode_flags(struct inode *inode) 3308 { 3309 unsigned int flags = EXT4_I(inode)->i_flags; 3310 3311 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3312 if (flags & EXT4_SYNC_FL) 3313 inode->i_flags |= S_SYNC; 3314 if (flags & EXT4_APPEND_FL) 3315 inode->i_flags |= S_APPEND; 3316 if (flags & EXT4_IMMUTABLE_FL) 3317 inode->i_flags |= S_IMMUTABLE; 3318 if (flags & EXT4_NOATIME_FL) 3319 inode->i_flags |= S_NOATIME; 3320 if (flags & EXT4_DIRSYNC_FL) 3321 inode->i_flags |= S_DIRSYNC; 3322 } 3323 3324 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3325 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3326 { 3327 unsigned int vfs_fl; 3328 unsigned long old_fl, new_fl; 3329 3330 do { 3331 vfs_fl = ei->vfs_inode.i_flags; 3332 old_fl = ei->i_flags; 3333 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3334 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3335 EXT4_DIRSYNC_FL); 3336 if (vfs_fl & S_SYNC) 3337 new_fl |= EXT4_SYNC_FL; 3338 if (vfs_fl & S_APPEND) 3339 new_fl |= EXT4_APPEND_FL; 3340 if (vfs_fl & S_IMMUTABLE) 3341 new_fl |= EXT4_IMMUTABLE_FL; 3342 if (vfs_fl & S_NOATIME) 3343 new_fl |= EXT4_NOATIME_FL; 3344 if (vfs_fl & S_DIRSYNC) 3345 new_fl |= EXT4_DIRSYNC_FL; 3346 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3347 } 3348 3349 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3350 struct ext4_inode_info *ei) 3351 { 3352 blkcnt_t i_blocks ; 3353 struct inode *inode = &(ei->vfs_inode); 3354 struct super_block *sb = inode->i_sb; 3355 3356 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3357 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3358 /* we are using combined 48 bit field */ 3359 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3360 le32_to_cpu(raw_inode->i_blocks_lo); 3361 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3362 /* i_blocks represent file system block size */ 3363 return i_blocks << (inode->i_blkbits - 9); 3364 } else { 3365 return i_blocks; 3366 } 3367 } else { 3368 return le32_to_cpu(raw_inode->i_blocks_lo); 3369 } 3370 } 3371 3372 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3373 { 3374 struct ext4_iloc iloc; 3375 struct ext4_inode *raw_inode; 3376 struct ext4_inode_info *ei; 3377 struct inode *inode; 3378 journal_t *journal = EXT4_SB(sb)->s_journal; 3379 long ret; 3380 int block; 3381 3382 inode = iget_locked(sb, ino); 3383 if (!inode) 3384 return ERR_PTR(-ENOMEM); 3385 if (!(inode->i_state & I_NEW)) 3386 return inode; 3387 3388 ei = EXT4_I(inode); 3389 iloc.bh = NULL; 3390 3391 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3392 if (ret < 0) 3393 goto bad_inode; 3394 raw_inode = ext4_raw_inode(&iloc); 3395 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3396 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3397 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3398 if (!(test_opt(inode->i_sb, NO_UID32))) { 3399 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3400 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3401 } 3402 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3403 3404 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3405 ei->i_dir_start_lookup = 0; 3406 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3407 /* We now have enough fields to check if the inode was active or not. 3408 * This is needed because nfsd might try to access dead inodes 3409 * the test is that same one that e2fsck uses 3410 * NeilBrown 1999oct15 3411 */ 3412 if (inode->i_nlink == 0) { 3413 if (inode->i_mode == 0 || 3414 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3415 /* this inode is deleted */ 3416 ret = -ESTALE; 3417 goto bad_inode; 3418 } 3419 /* The only unlinked inodes we let through here have 3420 * valid i_mode and are being read by the orphan 3421 * recovery code: that's fine, we're about to complete 3422 * the process of deleting those. */ 3423 } 3424 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3425 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3426 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3427 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3428 ei->i_file_acl |= 3429 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3430 inode->i_size = ext4_isize(raw_inode); 3431 ei->i_disksize = inode->i_size; 3432 #ifdef CONFIG_QUOTA 3433 ei->i_reserved_quota = 0; 3434 #endif 3435 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3436 ei->i_block_group = iloc.block_group; 3437 ei->i_last_alloc_group = ~0; 3438 /* 3439 * NOTE! The in-memory inode i_data array is in little-endian order 3440 * even on big-endian machines: we do NOT byteswap the block numbers! 3441 */ 3442 for (block = 0; block < EXT4_N_BLOCKS; block++) 3443 ei->i_data[block] = raw_inode->i_block[block]; 3444 INIT_LIST_HEAD(&ei->i_orphan); 3445 3446 /* 3447 * Set transaction id's of transactions that have to be committed 3448 * to finish f[data]sync. We set them to currently running transaction 3449 * as we cannot be sure that the inode or some of its metadata isn't 3450 * part of the transaction - the inode could have been reclaimed and 3451 * now it is reread from disk. 3452 */ 3453 if (journal) { 3454 transaction_t *transaction; 3455 tid_t tid; 3456 3457 read_lock(&journal->j_state_lock); 3458 if (journal->j_running_transaction) 3459 transaction = journal->j_running_transaction; 3460 else 3461 transaction = journal->j_committing_transaction; 3462 if (transaction) 3463 tid = transaction->t_tid; 3464 else 3465 tid = journal->j_commit_sequence; 3466 read_unlock(&journal->j_state_lock); 3467 ei->i_sync_tid = tid; 3468 ei->i_datasync_tid = tid; 3469 } 3470 3471 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3472 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3473 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3474 EXT4_INODE_SIZE(inode->i_sb)) { 3475 ret = -EIO; 3476 goto bad_inode; 3477 } 3478 if (ei->i_extra_isize == 0) { 3479 /* The extra space is currently unused. Use it. */ 3480 ei->i_extra_isize = sizeof(struct ext4_inode) - 3481 EXT4_GOOD_OLD_INODE_SIZE; 3482 } else { 3483 __le32 *magic = (void *)raw_inode + 3484 EXT4_GOOD_OLD_INODE_SIZE + 3485 ei->i_extra_isize; 3486 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3487 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3488 } 3489 } else 3490 ei->i_extra_isize = 0; 3491 3492 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3493 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3494 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3495 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3496 3497 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3498 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3499 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3500 inode->i_version |= 3501 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3502 } 3503 3504 ret = 0; 3505 if (ei->i_file_acl && 3506 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3507 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3508 ei->i_file_acl); 3509 ret = -EIO; 3510 goto bad_inode; 3511 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3512 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3513 (S_ISLNK(inode->i_mode) && 3514 !ext4_inode_is_fast_symlink(inode))) 3515 /* Validate extent which is part of inode */ 3516 ret = ext4_ext_check_inode(inode); 3517 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3518 (S_ISLNK(inode->i_mode) && 3519 !ext4_inode_is_fast_symlink(inode))) { 3520 /* Validate block references which are part of inode */ 3521 ret = ext4_ind_check_inode(inode); 3522 } 3523 if (ret) 3524 goto bad_inode; 3525 3526 if (S_ISREG(inode->i_mode)) { 3527 inode->i_op = &ext4_file_inode_operations; 3528 inode->i_fop = &ext4_file_operations; 3529 ext4_set_aops(inode); 3530 } else if (S_ISDIR(inode->i_mode)) { 3531 inode->i_op = &ext4_dir_inode_operations; 3532 inode->i_fop = &ext4_dir_operations; 3533 } else if (S_ISLNK(inode->i_mode)) { 3534 if (ext4_inode_is_fast_symlink(inode)) { 3535 inode->i_op = &ext4_fast_symlink_inode_operations; 3536 nd_terminate_link(ei->i_data, inode->i_size, 3537 sizeof(ei->i_data) - 1); 3538 } else { 3539 inode->i_op = &ext4_symlink_inode_operations; 3540 ext4_set_aops(inode); 3541 } 3542 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3543 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3544 inode->i_op = &ext4_special_inode_operations; 3545 if (raw_inode->i_block[0]) 3546 init_special_inode(inode, inode->i_mode, 3547 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3548 else 3549 init_special_inode(inode, inode->i_mode, 3550 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3551 } else { 3552 ret = -EIO; 3553 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3554 goto bad_inode; 3555 } 3556 brelse(iloc.bh); 3557 ext4_set_inode_flags(inode); 3558 unlock_new_inode(inode); 3559 return inode; 3560 3561 bad_inode: 3562 brelse(iloc.bh); 3563 iget_failed(inode); 3564 return ERR_PTR(ret); 3565 } 3566 3567 static int ext4_inode_blocks_set(handle_t *handle, 3568 struct ext4_inode *raw_inode, 3569 struct ext4_inode_info *ei) 3570 { 3571 struct inode *inode = &(ei->vfs_inode); 3572 u64 i_blocks = inode->i_blocks; 3573 struct super_block *sb = inode->i_sb; 3574 3575 if (i_blocks <= ~0U) { 3576 /* 3577 * i_blocks can be represnted in a 32 bit variable 3578 * as multiple of 512 bytes 3579 */ 3580 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3581 raw_inode->i_blocks_high = 0; 3582 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3583 return 0; 3584 } 3585 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3586 return -EFBIG; 3587 3588 if (i_blocks <= 0xffffffffffffULL) { 3589 /* 3590 * i_blocks can be represented in a 48 bit variable 3591 * as multiple of 512 bytes 3592 */ 3593 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3594 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3595 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3596 } else { 3597 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3598 /* i_block is stored in file system block size */ 3599 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3600 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3601 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3602 } 3603 return 0; 3604 } 3605 3606 /* 3607 * Post the struct inode info into an on-disk inode location in the 3608 * buffer-cache. This gobbles the caller's reference to the 3609 * buffer_head in the inode location struct. 3610 * 3611 * The caller must have write access to iloc->bh. 3612 */ 3613 static int ext4_do_update_inode(handle_t *handle, 3614 struct inode *inode, 3615 struct ext4_iloc *iloc) 3616 { 3617 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3618 struct ext4_inode_info *ei = EXT4_I(inode); 3619 struct buffer_head *bh = iloc->bh; 3620 int err = 0, rc, block; 3621 3622 /* For fields not not tracking in the in-memory inode, 3623 * initialise them to zero for new inodes. */ 3624 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3625 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3626 3627 ext4_get_inode_flags(ei); 3628 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3629 if (!(test_opt(inode->i_sb, NO_UID32))) { 3630 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3631 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3632 /* 3633 * Fix up interoperability with old kernels. Otherwise, old inodes get 3634 * re-used with the upper 16 bits of the uid/gid intact 3635 */ 3636 if (!ei->i_dtime) { 3637 raw_inode->i_uid_high = 3638 cpu_to_le16(high_16_bits(inode->i_uid)); 3639 raw_inode->i_gid_high = 3640 cpu_to_le16(high_16_bits(inode->i_gid)); 3641 } else { 3642 raw_inode->i_uid_high = 0; 3643 raw_inode->i_gid_high = 0; 3644 } 3645 } else { 3646 raw_inode->i_uid_low = 3647 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3648 raw_inode->i_gid_low = 3649 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3650 raw_inode->i_uid_high = 0; 3651 raw_inode->i_gid_high = 0; 3652 } 3653 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3654 3655 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 3656 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 3657 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 3658 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 3659 3660 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 3661 goto out_brelse; 3662 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3663 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 3664 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3665 cpu_to_le32(EXT4_OS_HURD)) 3666 raw_inode->i_file_acl_high = 3667 cpu_to_le16(ei->i_file_acl >> 32); 3668 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 3669 ext4_isize_set(raw_inode, ei->i_disksize); 3670 if (ei->i_disksize > 0x7fffffffULL) { 3671 struct super_block *sb = inode->i_sb; 3672 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 3673 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 3674 EXT4_SB(sb)->s_es->s_rev_level == 3675 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 3676 /* If this is the first large file 3677 * created, add a flag to the superblock. 3678 */ 3679 err = ext4_journal_get_write_access(handle, 3680 EXT4_SB(sb)->s_sbh); 3681 if (err) 3682 goto out_brelse; 3683 ext4_update_dynamic_rev(sb); 3684 EXT4_SET_RO_COMPAT_FEATURE(sb, 3685 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3686 sb->s_dirt = 1; 3687 ext4_handle_sync(handle); 3688 err = ext4_handle_dirty_metadata(handle, NULL, 3689 EXT4_SB(sb)->s_sbh); 3690 } 3691 } 3692 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3693 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3694 if (old_valid_dev(inode->i_rdev)) { 3695 raw_inode->i_block[0] = 3696 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3697 raw_inode->i_block[1] = 0; 3698 } else { 3699 raw_inode->i_block[0] = 0; 3700 raw_inode->i_block[1] = 3701 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3702 raw_inode->i_block[2] = 0; 3703 } 3704 } else 3705 for (block = 0; block < EXT4_N_BLOCKS; block++) 3706 raw_inode->i_block[block] = ei->i_data[block]; 3707 3708 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3709 if (ei->i_extra_isize) { 3710 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3711 raw_inode->i_version_hi = 3712 cpu_to_le32(inode->i_version >> 32); 3713 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3714 } 3715 3716 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3717 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 3718 if (!err) 3719 err = rc; 3720 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 3721 3722 ext4_update_inode_fsync_trans(handle, inode, 0); 3723 out_brelse: 3724 brelse(bh); 3725 ext4_std_error(inode->i_sb, err); 3726 return err; 3727 } 3728 3729 /* 3730 * ext4_write_inode() 3731 * 3732 * We are called from a few places: 3733 * 3734 * - Within generic_file_write() for O_SYNC files. 3735 * Here, there will be no transaction running. We wait for any running 3736 * trasnaction to commit. 3737 * 3738 * - Within sys_sync(), kupdate and such. 3739 * We wait on commit, if tol to. 3740 * 3741 * - Within prune_icache() (PF_MEMALLOC == true) 3742 * Here we simply return. We can't afford to block kswapd on the 3743 * journal commit. 3744 * 3745 * In all cases it is actually safe for us to return without doing anything, 3746 * because the inode has been copied into a raw inode buffer in 3747 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3748 * knfsd. 3749 * 3750 * Note that we are absolutely dependent upon all inode dirtiers doing the 3751 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3752 * which we are interested. 3753 * 3754 * It would be a bug for them to not do this. The code: 3755 * 3756 * mark_inode_dirty(inode) 3757 * stuff(); 3758 * inode->i_size = expr; 3759 * 3760 * is in error because a kswapd-driven write_inode() could occur while 3761 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3762 * will no longer be on the superblock's dirty inode list. 3763 */ 3764 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 3765 { 3766 int err; 3767 3768 if (current->flags & PF_MEMALLOC) 3769 return 0; 3770 3771 if (EXT4_SB(inode->i_sb)->s_journal) { 3772 if (ext4_journal_current_handle()) { 3773 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3774 dump_stack(); 3775 return -EIO; 3776 } 3777 3778 if (wbc->sync_mode != WB_SYNC_ALL) 3779 return 0; 3780 3781 err = ext4_force_commit(inode->i_sb); 3782 } else { 3783 struct ext4_iloc iloc; 3784 3785 err = __ext4_get_inode_loc(inode, &iloc, 0); 3786 if (err) 3787 return err; 3788 if (wbc->sync_mode == WB_SYNC_ALL) 3789 sync_dirty_buffer(iloc.bh); 3790 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 3791 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 3792 "IO error syncing inode"); 3793 err = -EIO; 3794 } 3795 brelse(iloc.bh); 3796 } 3797 return err; 3798 } 3799 3800 /* 3801 * ext4_setattr() 3802 * 3803 * Called from notify_change. 3804 * 3805 * We want to trap VFS attempts to truncate the file as soon as 3806 * possible. In particular, we want to make sure that when the VFS 3807 * shrinks i_size, we put the inode on the orphan list and modify 3808 * i_disksize immediately, so that during the subsequent flushing of 3809 * dirty pages and freeing of disk blocks, we can guarantee that any 3810 * commit will leave the blocks being flushed in an unused state on 3811 * disk. (On recovery, the inode will get truncated and the blocks will 3812 * be freed, so we have a strong guarantee that no future commit will 3813 * leave these blocks visible to the user.) 3814 * 3815 * Another thing we have to assure is that if we are in ordered mode 3816 * and inode is still attached to the committing transaction, we must 3817 * we start writeout of all the dirty pages which are being truncated. 3818 * This way we are sure that all the data written in the previous 3819 * transaction are already on disk (truncate waits for pages under 3820 * writeback). 3821 * 3822 * Called with inode->i_mutex down. 3823 */ 3824 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3825 { 3826 struct inode *inode = dentry->d_inode; 3827 int error, rc = 0; 3828 int orphan = 0; 3829 const unsigned int ia_valid = attr->ia_valid; 3830 3831 error = inode_change_ok(inode, attr); 3832 if (error) 3833 return error; 3834 3835 if (is_quota_modification(inode, attr)) 3836 dquot_initialize(inode); 3837 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3838 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3839 handle_t *handle; 3840 3841 /* (user+group)*(old+new) structure, inode write (sb, 3842 * inode block, ? - but truncate inode update has it) */ 3843 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3844 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 3845 if (IS_ERR(handle)) { 3846 error = PTR_ERR(handle); 3847 goto err_out; 3848 } 3849 error = dquot_transfer(inode, attr); 3850 if (error) { 3851 ext4_journal_stop(handle); 3852 return error; 3853 } 3854 /* Update corresponding info in inode so that everything is in 3855 * one transaction */ 3856 if (attr->ia_valid & ATTR_UID) 3857 inode->i_uid = attr->ia_uid; 3858 if (attr->ia_valid & ATTR_GID) 3859 inode->i_gid = attr->ia_gid; 3860 error = ext4_mark_inode_dirty(handle, inode); 3861 ext4_journal_stop(handle); 3862 } 3863 3864 if (attr->ia_valid & ATTR_SIZE) { 3865 inode_dio_wait(inode); 3866 3867 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3868 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3869 3870 if (attr->ia_size > sbi->s_bitmap_maxbytes) 3871 return -EFBIG; 3872 } 3873 } 3874 3875 if (S_ISREG(inode->i_mode) && 3876 attr->ia_valid & ATTR_SIZE && 3877 (attr->ia_size < inode->i_size)) { 3878 handle_t *handle; 3879 3880 handle = ext4_journal_start(inode, 3); 3881 if (IS_ERR(handle)) { 3882 error = PTR_ERR(handle); 3883 goto err_out; 3884 } 3885 if (ext4_handle_valid(handle)) { 3886 error = ext4_orphan_add(handle, inode); 3887 orphan = 1; 3888 } 3889 EXT4_I(inode)->i_disksize = attr->ia_size; 3890 rc = ext4_mark_inode_dirty(handle, inode); 3891 if (!error) 3892 error = rc; 3893 ext4_journal_stop(handle); 3894 3895 if (ext4_should_order_data(inode)) { 3896 error = ext4_begin_ordered_truncate(inode, 3897 attr->ia_size); 3898 if (error) { 3899 /* Do as much error cleanup as possible */ 3900 handle = ext4_journal_start(inode, 3); 3901 if (IS_ERR(handle)) { 3902 ext4_orphan_del(NULL, inode); 3903 goto err_out; 3904 } 3905 ext4_orphan_del(handle, inode); 3906 orphan = 0; 3907 ext4_journal_stop(handle); 3908 goto err_out; 3909 } 3910 } 3911 } 3912 3913 if (attr->ia_valid & ATTR_SIZE) { 3914 if (attr->ia_size != i_size_read(inode)) { 3915 truncate_setsize(inode, attr->ia_size); 3916 ext4_truncate(inode); 3917 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 3918 ext4_truncate(inode); 3919 } 3920 3921 if (!rc) { 3922 setattr_copy(inode, attr); 3923 mark_inode_dirty(inode); 3924 } 3925 3926 /* 3927 * If the call to ext4_truncate failed to get a transaction handle at 3928 * all, we need to clean up the in-core orphan list manually. 3929 */ 3930 if (orphan && inode->i_nlink) 3931 ext4_orphan_del(NULL, inode); 3932 3933 if (!rc && (ia_valid & ATTR_MODE)) 3934 rc = ext4_acl_chmod(inode); 3935 3936 err_out: 3937 ext4_std_error(inode->i_sb, error); 3938 if (!error) 3939 error = rc; 3940 return error; 3941 } 3942 3943 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 3944 struct kstat *stat) 3945 { 3946 struct inode *inode; 3947 unsigned long delalloc_blocks; 3948 3949 inode = dentry->d_inode; 3950 generic_fillattr(inode, stat); 3951 3952 /* 3953 * We can't update i_blocks if the block allocation is delayed 3954 * otherwise in the case of system crash before the real block 3955 * allocation is done, we will have i_blocks inconsistent with 3956 * on-disk file blocks. 3957 * We always keep i_blocks updated together with real 3958 * allocation. But to not confuse with user, stat 3959 * will return the blocks that include the delayed allocation 3960 * blocks for this file. 3961 */ 3962 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 3963 3964 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 3965 return 0; 3966 } 3967 3968 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 3969 { 3970 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 3971 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 3972 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 3973 } 3974 3975 /* 3976 * Account for index blocks, block groups bitmaps and block group 3977 * descriptor blocks if modify datablocks and index blocks 3978 * worse case, the indexs blocks spread over different block groups 3979 * 3980 * If datablocks are discontiguous, they are possible to spread over 3981 * different block groups too. If they are contiuguous, with flexbg, 3982 * they could still across block group boundary. 3983 * 3984 * Also account for superblock, inode, quota and xattr blocks 3985 */ 3986 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 3987 { 3988 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 3989 int gdpblocks; 3990 int idxblocks; 3991 int ret = 0; 3992 3993 /* 3994 * How many index blocks need to touch to modify nrblocks? 3995 * The "Chunk" flag indicating whether the nrblocks is 3996 * physically contiguous on disk 3997 * 3998 * For Direct IO and fallocate, they calls get_block to allocate 3999 * one single extent at a time, so they could set the "Chunk" flag 4000 */ 4001 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4002 4003 ret = idxblocks; 4004 4005 /* 4006 * Now let's see how many group bitmaps and group descriptors need 4007 * to account 4008 */ 4009 groups = idxblocks; 4010 if (chunk) 4011 groups += 1; 4012 else 4013 groups += nrblocks; 4014 4015 gdpblocks = groups; 4016 if (groups > ngroups) 4017 groups = ngroups; 4018 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4019 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4020 4021 /* bitmaps and block group descriptor blocks */ 4022 ret += groups + gdpblocks; 4023 4024 /* Blocks for super block, inode, quota and xattr blocks */ 4025 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4026 4027 return ret; 4028 } 4029 4030 /* 4031 * Calculate the total number of credits to reserve to fit 4032 * the modification of a single pages into a single transaction, 4033 * which may include multiple chunks of block allocations. 4034 * 4035 * This could be called via ext4_write_begin() 4036 * 4037 * We need to consider the worse case, when 4038 * one new block per extent. 4039 */ 4040 int ext4_writepage_trans_blocks(struct inode *inode) 4041 { 4042 int bpp = ext4_journal_blocks_per_page(inode); 4043 int ret; 4044 4045 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4046 4047 /* Account for data blocks for journalled mode */ 4048 if (ext4_should_journal_data(inode)) 4049 ret += bpp; 4050 return ret; 4051 } 4052 4053 /* 4054 * Calculate the journal credits for a chunk of data modification. 4055 * 4056 * This is called from DIO, fallocate or whoever calling 4057 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4058 * 4059 * journal buffers for data blocks are not included here, as DIO 4060 * and fallocate do no need to journal data buffers. 4061 */ 4062 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4063 { 4064 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4065 } 4066 4067 /* 4068 * The caller must have previously called ext4_reserve_inode_write(). 4069 * Give this, we know that the caller already has write access to iloc->bh. 4070 */ 4071 int ext4_mark_iloc_dirty(handle_t *handle, 4072 struct inode *inode, struct ext4_iloc *iloc) 4073 { 4074 int err = 0; 4075 4076 if (test_opt(inode->i_sb, I_VERSION)) 4077 inode_inc_iversion(inode); 4078 4079 /* the do_update_inode consumes one bh->b_count */ 4080 get_bh(iloc->bh); 4081 4082 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4083 err = ext4_do_update_inode(handle, inode, iloc); 4084 put_bh(iloc->bh); 4085 return err; 4086 } 4087 4088 /* 4089 * On success, We end up with an outstanding reference count against 4090 * iloc->bh. This _must_ be cleaned up later. 4091 */ 4092 4093 int 4094 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4095 struct ext4_iloc *iloc) 4096 { 4097 int err; 4098 4099 err = ext4_get_inode_loc(inode, iloc); 4100 if (!err) { 4101 BUFFER_TRACE(iloc->bh, "get_write_access"); 4102 err = ext4_journal_get_write_access(handle, iloc->bh); 4103 if (err) { 4104 brelse(iloc->bh); 4105 iloc->bh = NULL; 4106 } 4107 } 4108 ext4_std_error(inode->i_sb, err); 4109 return err; 4110 } 4111 4112 /* 4113 * Expand an inode by new_extra_isize bytes. 4114 * Returns 0 on success or negative error number on failure. 4115 */ 4116 static int ext4_expand_extra_isize(struct inode *inode, 4117 unsigned int new_extra_isize, 4118 struct ext4_iloc iloc, 4119 handle_t *handle) 4120 { 4121 struct ext4_inode *raw_inode; 4122 struct ext4_xattr_ibody_header *header; 4123 4124 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4125 return 0; 4126 4127 raw_inode = ext4_raw_inode(&iloc); 4128 4129 header = IHDR(inode, raw_inode); 4130 4131 /* No extended attributes present */ 4132 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4133 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4134 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4135 new_extra_isize); 4136 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4137 return 0; 4138 } 4139 4140 /* try to expand with EAs present */ 4141 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4142 raw_inode, handle); 4143 } 4144 4145 /* 4146 * What we do here is to mark the in-core inode as clean with respect to inode 4147 * dirtiness (it may still be data-dirty). 4148 * This means that the in-core inode may be reaped by prune_icache 4149 * without having to perform any I/O. This is a very good thing, 4150 * because *any* task may call prune_icache - even ones which 4151 * have a transaction open against a different journal. 4152 * 4153 * Is this cheating? Not really. Sure, we haven't written the 4154 * inode out, but prune_icache isn't a user-visible syncing function. 4155 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4156 * we start and wait on commits. 4157 * 4158 * Is this efficient/effective? Well, we're being nice to the system 4159 * by cleaning up our inodes proactively so they can be reaped 4160 * without I/O. But we are potentially leaving up to five seconds' 4161 * worth of inodes floating about which prune_icache wants us to 4162 * write out. One way to fix that would be to get prune_icache() 4163 * to do a write_super() to free up some memory. It has the desired 4164 * effect. 4165 */ 4166 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4167 { 4168 struct ext4_iloc iloc; 4169 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4170 static unsigned int mnt_count; 4171 int err, ret; 4172 4173 might_sleep(); 4174 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4175 err = ext4_reserve_inode_write(handle, inode, &iloc); 4176 if (ext4_handle_valid(handle) && 4177 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4178 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4179 /* 4180 * We need extra buffer credits since we may write into EA block 4181 * with this same handle. If journal_extend fails, then it will 4182 * only result in a minor loss of functionality for that inode. 4183 * If this is felt to be critical, then e2fsck should be run to 4184 * force a large enough s_min_extra_isize. 4185 */ 4186 if ((jbd2_journal_extend(handle, 4187 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4188 ret = ext4_expand_extra_isize(inode, 4189 sbi->s_want_extra_isize, 4190 iloc, handle); 4191 if (ret) { 4192 ext4_set_inode_state(inode, 4193 EXT4_STATE_NO_EXPAND); 4194 if (mnt_count != 4195 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4196 ext4_warning(inode->i_sb, 4197 "Unable to expand inode %lu. Delete" 4198 " some EAs or run e2fsck.", 4199 inode->i_ino); 4200 mnt_count = 4201 le16_to_cpu(sbi->s_es->s_mnt_count); 4202 } 4203 } 4204 } 4205 } 4206 if (!err) 4207 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4208 return err; 4209 } 4210 4211 /* 4212 * ext4_dirty_inode() is called from __mark_inode_dirty() 4213 * 4214 * We're really interested in the case where a file is being extended. 4215 * i_size has been changed by generic_commit_write() and we thus need 4216 * to include the updated inode in the current transaction. 4217 * 4218 * Also, dquot_alloc_block() will always dirty the inode when blocks 4219 * are allocated to the file. 4220 * 4221 * If the inode is marked synchronous, we don't honour that here - doing 4222 * so would cause a commit on atime updates, which we don't bother doing. 4223 * We handle synchronous inodes at the highest possible level. 4224 */ 4225 void ext4_dirty_inode(struct inode *inode, int flags) 4226 { 4227 handle_t *handle; 4228 4229 handle = ext4_journal_start(inode, 2); 4230 if (IS_ERR(handle)) 4231 goto out; 4232 4233 ext4_mark_inode_dirty(handle, inode); 4234 4235 ext4_journal_stop(handle); 4236 out: 4237 return; 4238 } 4239 4240 #if 0 4241 /* 4242 * Bind an inode's backing buffer_head into this transaction, to prevent 4243 * it from being flushed to disk early. Unlike 4244 * ext4_reserve_inode_write, this leaves behind no bh reference and 4245 * returns no iloc structure, so the caller needs to repeat the iloc 4246 * lookup to mark the inode dirty later. 4247 */ 4248 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4249 { 4250 struct ext4_iloc iloc; 4251 4252 int err = 0; 4253 if (handle) { 4254 err = ext4_get_inode_loc(inode, &iloc); 4255 if (!err) { 4256 BUFFER_TRACE(iloc.bh, "get_write_access"); 4257 err = jbd2_journal_get_write_access(handle, iloc.bh); 4258 if (!err) 4259 err = ext4_handle_dirty_metadata(handle, 4260 NULL, 4261 iloc.bh); 4262 brelse(iloc.bh); 4263 } 4264 } 4265 ext4_std_error(inode->i_sb, err); 4266 return err; 4267 } 4268 #endif 4269 4270 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4271 { 4272 journal_t *journal; 4273 handle_t *handle; 4274 int err; 4275 4276 /* 4277 * We have to be very careful here: changing a data block's 4278 * journaling status dynamically is dangerous. If we write a 4279 * data block to the journal, change the status and then delete 4280 * that block, we risk forgetting to revoke the old log record 4281 * from the journal and so a subsequent replay can corrupt data. 4282 * So, first we make sure that the journal is empty and that 4283 * nobody is changing anything. 4284 */ 4285 4286 journal = EXT4_JOURNAL(inode); 4287 if (!journal) 4288 return 0; 4289 if (is_journal_aborted(journal)) 4290 return -EROFS; 4291 4292 jbd2_journal_lock_updates(journal); 4293 jbd2_journal_flush(journal); 4294 4295 /* 4296 * OK, there are no updates running now, and all cached data is 4297 * synced to disk. We are now in a completely consistent state 4298 * which doesn't have anything in the journal, and we know that 4299 * no filesystem updates are running, so it is safe to modify 4300 * the inode's in-core data-journaling state flag now. 4301 */ 4302 4303 if (val) 4304 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4305 else 4306 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4307 ext4_set_aops(inode); 4308 4309 jbd2_journal_unlock_updates(journal); 4310 4311 /* Finally we can mark the inode as dirty. */ 4312 4313 handle = ext4_journal_start(inode, 1); 4314 if (IS_ERR(handle)) 4315 return PTR_ERR(handle); 4316 4317 err = ext4_mark_inode_dirty(handle, inode); 4318 ext4_handle_sync(handle); 4319 ext4_journal_stop(handle); 4320 ext4_std_error(inode->i_sb, err); 4321 4322 return err; 4323 } 4324 4325 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4326 { 4327 return !buffer_mapped(bh); 4328 } 4329 4330 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4331 { 4332 struct page *page = vmf->page; 4333 loff_t size; 4334 unsigned long len; 4335 int ret; 4336 struct file *file = vma->vm_file; 4337 struct inode *inode = file->f_path.dentry->d_inode; 4338 struct address_space *mapping = inode->i_mapping; 4339 handle_t *handle; 4340 get_block_t *get_block; 4341 int retries = 0; 4342 4343 /* 4344 * This check is racy but catches the common case. We rely on 4345 * __block_page_mkwrite() to do a reliable check. 4346 */ 4347 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4348 /* Delalloc case is easy... */ 4349 if (test_opt(inode->i_sb, DELALLOC) && 4350 !ext4_should_journal_data(inode) && 4351 !ext4_nonda_switch(inode->i_sb)) { 4352 do { 4353 ret = __block_page_mkwrite(vma, vmf, 4354 ext4_da_get_block_prep); 4355 } while (ret == -ENOSPC && 4356 ext4_should_retry_alloc(inode->i_sb, &retries)); 4357 goto out_ret; 4358 } 4359 4360 lock_page(page); 4361 size = i_size_read(inode); 4362 /* Page got truncated from under us? */ 4363 if (page->mapping != mapping || page_offset(page) > size) { 4364 unlock_page(page); 4365 ret = VM_FAULT_NOPAGE; 4366 goto out; 4367 } 4368 4369 if (page->index == size >> PAGE_CACHE_SHIFT) 4370 len = size & ~PAGE_CACHE_MASK; 4371 else 4372 len = PAGE_CACHE_SIZE; 4373 /* 4374 * Return if we have all the buffers mapped. This avoids the need to do 4375 * journal_start/journal_stop which can block and take a long time 4376 */ 4377 if (page_has_buffers(page)) { 4378 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4379 ext4_bh_unmapped)) { 4380 /* Wait so that we don't change page under IO */ 4381 wait_on_page_writeback(page); 4382 ret = VM_FAULT_LOCKED; 4383 goto out; 4384 } 4385 } 4386 unlock_page(page); 4387 /* OK, we need to fill the hole... */ 4388 if (ext4_should_dioread_nolock(inode)) 4389 get_block = ext4_get_block_write; 4390 else 4391 get_block = ext4_get_block; 4392 retry_alloc: 4393 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4394 if (IS_ERR(handle)) { 4395 ret = VM_FAULT_SIGBUS; 4396 goto out; 4397 } 4398 ret = __block_page_mkwrite(vma, vmf, get_block); 4399 if (!ret && ext4_should_journal_data(inode)) { 4400 if (walk_page_buffers(handle, page_buffers(page), 0, 4401 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4402 unlock_page(page); 4403 ret = VM_FAULT_SIGBUS; 4404 goto out; 4405 } 4406 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4407 } 4408 ext4_journal_stop(handle); 4409 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4410 goto retry_alloc; 4411 out_ret: 4412 ret = block_page_mkwrite_return(ret); 4413 out: 4414 return ret; 4415 } 4416