xref: /openbmc/linux/fs/ext4/inode.c (revision 441c850857148935babe000fc2ba1455fe54a6a9)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 					      loff_t new_size)
54 {
55 	trace_ext4_begin_ordered_truncate(inode, new_size);
56 	/*
57 	 * If jinode is zero, then we never opened the file for
58 	 * writing, so there's no need to call
59 	 * jbd2_journal_begin_ordered_truncate() since there's no
60 	 * outstanding writes we need to flush.
61 	 */
62 	if (!EXT4_I(inode)->jinode)
63 		return 0;
64 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 						   EXT4_I(inode)->jinode,
66 						   new_size);
67 }
68 
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 				   struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76 
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 		(inode->i_sb->s_blocksize >> 9) : 0;
84 
85 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87 
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 				 int nblocks)
95 {
96 	int ret;
97 
98 	/*
99 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 	 * moment, get_block can be called only for blocks inside i_size since
101 	 * page cache has been already dropped and writes are blocked by
102 	 * i_mutex. So we can safely drop the i_data_sem here.
103 	 */
104 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 	jbd_debug(2, "restarting handle %p\n", handle);
106 	up_write(&EXT4_I(inode)->i_data_sem);
107 	ret = ext4_journal_restart(handle, nblocks);
108 	down_write(&EXT4_I(inode)->i_data_sem);
109 	ext4_discard_preallocations(inode);
110 
111 	return ret;
112 }
113 
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 	handle_t *handle;
120 	int err;
121 
122 	trace_ext4_evict_inode(inode);
123 	if (inode->i_nlink) {
124 		/*
125 		 * When journalling data dirty buffers are tracked only in the
126 		 * journal. So although mm thinks everything is clean and
127 		 * ready for reaping the inode might still have some pages to
128 		 * write in the running transaction or waiting to be
129 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
130 		 * (via truncate_inode_pages()) to discard these buffers can
131 		 * cause data loss. Also even if we did not discard these
132 		 * buffers, we would have no way to find them after the inode
133 		 * is reaped and thus user could see stale data if he tries to
134 		 * read them before the transaction is checkpointed. So be
135 		 * careful and force everything to disk here... We use
136 		 * ei->i_datasync_tid to store the newest transaction
137 		 * containing inode's data.
138 		 *
139 		 * Note that directories do not have this problem because they
140 		 * don't use page cache.
141 		 */
142 		if (ext4_should_journal_data(inode) &&
143 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
144 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
145 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
146 
147 			jbd2_log_start_commit(journal, commit_tid);
148 			jbd2_log_wait_commit(journal, commit_tid);
149 			filemap_write_and_wait(&inode->i_data);
150 		}
151 		truncate_inode_pages(&inode->i_data, 0);
152 		goto no_delete;
153 	}
154 
155 	if (!is_bad_inode(inode))
156 		dquot_initialize(inode);
157 
158 	if (ext4_should_order_data(inode))
159 		ext4_begin_ordered_truncate(inode, 0);
160 	truncate_inode_pages(&inode->i_data, 0);
161 
162 	if (is_bad_inode(inode))
163 		goto no_delete;
164 
165 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
166 	if (IS_ERR(handle)) {
167 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
168 		/*
169 		 * If we're going to skip the normal cleanup, we still need to
170 		 * make sure that the in-core orphan linked list is properly
171 		 * cleaned up.
172 		 */
173 		ext4_orphan_del(NULL, inode);
174 		goto no_delete;
175 	}
176 
177 	if (IS_SYNC(inode))
178 		ext4_handle_sync(handle);
179 	inode->i_size = 0;
180 	err = ext4_mark_inode_dirty(handle, inode);
181 	if (err) {
182 		ext4_warning(inode->i_sb,
183 			     "couldn't mark inode dirty (err %d)", err);
184 		goto stop_handle;
185 	}
186 	if (inode->i_blocks)
187 		ext4_truncate(inode);
188 
189 	/*
190 	 * ext4_ext_truncate() doesn't reserve any slop when it
191 	 * restarts journal transactions; therefore there may not be
192 	 * enough credits left in the handle to remove the inode from
193 	 * the orphan list and set the dtime field.
194 	 */
195 	if (!ext4_handle_has_enough_credits(handle, 3)) {
196 		err = ext4_journal_extend(handle, 3);
197 		if (err > 0)
198 			err = ext4_journal_restart(handle, 3);
199 		if (err != 0) {
200 			ext4_warning(inode->i_sb,
201 				     "couldn't extend journal (err %d)", err);
202 		stop_handle:
203 			ext4_journal_stop(handle);
204 			ext4_orphan_del(NULL, inode);
205 			goto no_delete;
206 		}
207 	}
208 
209 	/*
210 	 * Kill off the orphan record which ext4_truncate created.
211 	 * AKPM: I think this can be inside the above `if'.
212 	 * Note that ext4_orphan_del() has to be able to cope with the
213 	 * deletion of a non-existent orphan - this is because we don't
214 	 * know if ext4_truncate() actually created an orphan record.
215 	 * (Well, we could do this if we need to, but heck - it works)
216 	 */
217 	ext4_orphan_del(handle, inode);
218 	EXT4_I(inode)->i_dtime	= get_seconds();
219 
220 	/*
221 	 * One subtle ordering requirement: if anything has gone wrong
222 	 * (transaction abort, IO errors, whatever), then we can still
223 	 * do these next steps (the fs will already have been marked as
224 	 * having errors), but we can't free the inode if the mark_dirty
225 	 * fails.
226 	 */
227 	if (ext4_mark_inode_dirty(handle, inode))
228 		/* If that failed, just do the required in-core inode clear. */
229 		ext4_clear_inode(inode);
230 	else
231 		ext4_free_inode(handle, inode);
232 	ext4_journal_stop(handle);
233 	return;
234 no_delete:
235 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
236 }
237 
238 #ifdef CONFIG_QUOTA
239 qsize_t *ext4_get_reserved_space(struct inode *inode)
240 {
241 	return &EXT4_I(inode)->i_reserved_quota;
242 }
243 #endif
244 
245 /*
246  * Calculate the number of metadata blocks need to reserve
247  * to allocate a block located at @lblock
248  */
249 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
250 {
251 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
252 		return ext4_ext_calc_metadata_amount(inode, lblock);
253 
254 	return ext4_ind_calc_metadata_amount(inode, lblock);
255 }
256 
257 /*
258  * Called with i_data_sem down, which is important since we can call
259  * ext4_discard_preallocations() from here.
260  */
261 void ext4_da_update_reserve_space(struct inode *inode,
262 					int used, int quota_claim)
263 {
264 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
265 	struct ext4_inode_info *ei = EXT4_I(inode);
266 
267 	spin_lock(&ei->i_block_reservation_lock);
268 	trace_ext4_da_update_reserve_space(inode, used);
269 	if (unlikely(used > ei->i_reserved_data_blocks)) {
270 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
271 			 "with only %d reserved data blocks\n",
272 			 __func__, inode->i_ino, used,
273 			 ei->i_reserved_data_blocks);
274 		WARN_ON(1);
275 		used = ei->i_reserved_data_blocks;
276 	}
277 
278 	/* Update per-inode reservations */
279 	ei->i_reserved_data_blocks -= used;
280 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
281 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
282 			   used + ei->i_allocated_meta_blocks);
283 	ei->i_allocated_meta_blocks = 0;
284 
285 	if (ei->i_reserved_data_blocks == 0) {
286 		/*
287 		 * We can release all of the reserved metadata blocks
288 		 * only when we have written all of the delayed
289 		 * allocation blocks.
290 		 */
291 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
292 				   ei->i_reserved_meta_blocks);
293 		ei->i_reserved_meta_blocks = 0;
294 		ei->i_da_metadata_calc_len = 0;
295 	}
296 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
297 
298 	/* Update quota subsystem for data blocks */
299 	if (quota_claim)
300 		dquot_claim_block(inode, used);
301 	else {
302 		/*
303 		 * We did fallocate with an offset that is already delayed
304 		 * allocated. So on delayed allocated writeback we should
305 		 * not re-claim the quota for fallocated blocks.
306 		 */
307 		dquot_release_reservation_block(inode, used);
308 	}
309 
310 	/*
311 	 * If we have done all the pending block allocations and if
312 	 * there aren't any writers on the inode, we can discard the
313 	 * inode's preallocations.
314 	 */
315 	if ((ei->i_reserved_data_blocks == 0) &&
316 	    (atomic_read(&inode->i_writecount) == 0))
317 		ext4_discard_preallocations(inode);
318 }
319 
320 static int __check_block_validity(struct inode *inode, const char *func,
321 				unsigned int line,
322 				struct ext4_map_blocks *map)
323 {
324 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
325 				   map->m_len)) {
326 		ext4_error_inode(inode, func, line, map->m_pblk,
327 				 "lblock %lu mapped to illegal pblock "
328 				 "(length %d)", (unsigned long) map->m_lblk,
329 				 map->m_len);
330 		return -EIO;
331 	}
332 	return 0;
333 }
334 
335 #define check_block_validity(inode, map)	\
336 	__check_block_validity((inode), __func__, __LINE__, (map))
337 
338 /*
339  * Return the number of contiguous dirty pages in a given inode
340  * starting at page frame idx.
341  */
342 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
343 				    unsigned int max_pages)
344 {
345 	struct address_space *mapping = inode->i_mapping;
346 	pgoff_t	index;
347 	struct pagevec pvec;
348 	pgoff_t num = 0;
349 	int i, nr_pages, done = 0;
350 
351 	if (max_pages == 0)
352 		return 0;
353 	pagevec_init(&pvec, 0);
354 	while (!done) {
355 		index = idx;
356 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
357 					      PAGECACHE_TAG_DIRTY,
358 					      (pgoff_t)PAGEVEC_SIZE);
359 		if (nr_pages == 0)
360 			break;
361 		for (i = 0; i < nr_pages; i++) {
362 			struct page *page = pvec.pages[i];
363 			struct buffer_head *bh, *head;
364 
365 			lock_page(page);
366 			if (unlikely(page->mapping != mapping) ||
367 			    !PageDirty(page) ||
368 			    PageWriteback(page) ||
369 			    page->index != idx) {
370 				done = 1;
371 				unlock_page(page);
372 				break;
373 			}
374 			if (page_has_buffers(page)) {
375 				bh = head = page_buffers(page);
376 				do {
377 					if (!buffer_delay(bh) &&
378 					    !buffer_unwritten(bh))
379 						done = 1;
380 					bh = bh->b_this_page;
381 				} while (!done && (bh != head));
382 			}
383 			unlock_page(page);
384 			if (done)
385 				break;
386 			idx++;
387 			num++;
388 			if (num >= max_pages) {
389 				done = 1;
390 				break;
391 			}
392 		}
393 		pagevec_release(&pvec);
394 	}
395 	return num;
396 }
397 
398 /*
399  * The ext4_map_blocks() function tries to look up the requested blocks,
400  * and returns if the blocks are already mapped.
401  *
402  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
403  * and store the allocated blocks in the result buffer head and mark it
404  * mapped.
405  *
406  * If file type is extents based, it will call ext4_ext_map_blocks(),
407  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
408  * based files
409  *
410  * On success, it returns the number of blocks being mapped or allocate.
411  * if create==0 and the blocks are pre-allocated and uninitialized block,
412  * the result buffer head is unmapped. If the create ==1, it will make sure
413  * the buffer head is mapped.
414  *
415  * It returns 0 if plain look up failed (blocks have not been allocated), in
416  * that casem, buffer head is unmapped
417  *
418  * It returns the error in case of allocation failure.
419  */
420 int ext4_map_blocks(handle_t *handle, struct inode *inode,
421 		    struct ext4_map_blocks *map, int flags)
422 {
423 	int retval;
424 
425 	map->m_flags = 0;
426 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
427 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
428 		  (unsigned long) map->m_lblk);
429 	/*
430 	 * Try to see if we can get the block without requesting a new
431 	 * file system block.
432 	 */
433 	down_read((&EXT4_I(inode)->i_data_sem));
434 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
436 	} else {
437 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
442 		int ret = check_block_validity(inode, map);
443 		if (ret != 0)
444 			return ret;
445 	}
446 
447 	/* If it is only a block(s) look up */
448 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
449 		return retval;
450 
451 	/*
452 	 * Returns if the blocks have already allocated
453 	 *
454 	 * Note that if blocks have been preallocated
455 	 * ext4_ext_get_block() returns th create = 0
456 	 * with buffer head unmapped.
457 	 */
458 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
459 		return retval;
460 
461 	/*
462 	 * When we call get_blocks without the create flag, the
463 	 * BH_Unwritten flag could have gotten set if the blocks
464 	 * requested were part of a uninitialized extent.  We need to
465 	 * clear this flag now that we are committed to convert all or
466 	 * part of the uninitialized extent to be an initialized
467 	 * extent.  This is because we need to avoid the combination
468 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
469 	 * set on the buffer_head.
470 	 */
471 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
472 
473 	/*
474 	 * New blocks allocate and/or writing to uninitialized extent
475 	 * will possibly result in updating i_data, so we take
476 	 * the write lock of i_data_sem, and call get_blocks()
477 	 * with create == 1 flag.
478 	 */
479 	down_write((&EXT4_I(inode)->i_data_sem));
480 
481 	/*
482 	 * if the caller is from delayed allocation writeout path
483 	 * we have already reserved fs blocks for allocation
484 	 * let the underlying get_block() function know to
485 	 * avoid double accounting
486 	 */
487 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
488 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
489 	/*
490 	 * We need to check for EXT4 here because migrate
491 	 * could have changed the inode type in between
492 	 */
493 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
495 	} else {
496 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
497 
498 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
499 			/*
500 			 * We allocated new blocks which will result in
501 			 * i_data's format changing.  Force the migrate
502 			 * to fail by clearing migrate flags
503 			 */
504 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
505 		}
506 
507 		/*
508 		 * Update reserved blocks/metadata blocks after successful
509 		 * block allocation which had been deferred till now. We don't
510 		 * support fallocate for non extent files. So we can update
511 		 * reserve space here.
512 		 */
513 		if ((retval > 0) &&
514 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
515 			ext4_da_update_reserve_space(inode, retval, 1);
516 	}
517 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
518 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
519 
520 	up_write((&EXT4_I(inode)->i_data_sem));
521 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
522 		int ret = check_block_validity(inode, map);
523 		if (ret != 0)
524 			return ret;
525 	}
526 	return retval;
527 }
528 
529 /* Maximum number of blocks we map for direct IO at once. */
530 #define DIO_MAX_BLOCKS 4096
531 
532 static int _ext4_get_block(struct inode *inode, sector_t iblock,
533 			   struct buffer_head *bh, int flags)
534 {
535 	handle_t *handle = ext4_journal_current_handle();
536 	struct ext4_map_blocks map;
537 	int ret = 0, started = 0;
538 	int dio_credits;
539 
540 	map.m_lblk = iblock;
541 	map.m_len = bh->b_size >> inode->i_blkbits;
542 
543 	if (flags && !handle) {
544 		/* Direct IO write... */
545 		if (map.m_len > DIO_MAX_BLOCKS)
546 			map.m_len = DIO_MAX_BLOCKS;
547 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
548 		handle = ext4_journal_start(inode, dio_credits);
549 		if (IS_ERR(handle)) {
550 			ret = PTR_ERR(handle);
551 			return ret;
552 		}
553 		started = 1;
554 	}
555 
556 	ret = ext4_map_blocks(handle, inode, &map, flags);
557 	if (ret > 0) {
558 		map_bh(bh, inode->i_sb, map.m_pblk);
559 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
560 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
561 		ret = 0;
562 	}
563 	if (started)
564 		ext4_journal_stop(handle);
565 	return ret;
566 }
567 
568 int ext4_get_block(struct inode *inode, sector_t iblock,
569 		   struct buffer_head *bh, int create)
570 {
571 	return _ext4_get_block(inode, iblock, bh,
572 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
573 }
574 
575 /*
576  * `handle' can be NULL if create is zero
577  */
578 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
579 				ext4_lblk_t block, int create, int *errp)
580 {
581 	struct ext4_map_blocks map;
582 	struct buffer_head *bh;
583 	int fatal = 0, err;
584 
585 	J_ASSERT(handle != NULL || create == 0);
586 
587 	map.m_lblk = block;
588 	map.m_len = 1;
589 	err = ext4_map_blocks(handle, inode, &map,
590 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
591 
592 	if (err < 0)
593 		*errp = err;
594 	if (err <= 0)
595 		return NULL;
596 	*errp = 0;
597 
598 	bh = sb_getblk(inode->i_sb, map.m_pblk);
599 	if (!bh) {
600 		*errp = -EIO;
601 		return NULL;
602 	}
603 	if (map.m_flags & EXT4_MAP_NEW) {
604 		J_ASSERT(create != 0);
605 		J_ASSERT(handle != NULL);
606 
607 		/*
608 		 * Now that we do not always journal data, we should
609 		 * keep in mind whether this should always journal the
610 		 * new buffer as metadata.  For now, regular file
611 		 * writes use ext4_get_block instead, so it's not a
612 		 * problem.
613 		 */
614 		lock_buffer(bh);
615 		BUFFER_TRACE(bh, "call get_create_access");
616 		fatal = ext4_journal_get_create_access(handle, bh);
617 		if (!fatal && !buffer_uptodate(bh)) {
618 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
619 			set_buffer_uptodate(bh);
620 		}
621 		unlock_buffer(bh);
622 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
623 		err = ext4_handle_dirty_metadata(handle, inode, bh);
624 		if (!fatal)
625 			fatal = err;
626 	} else {
627 		BUFFER_TRACE(bh, "not a new buffer");
628 	}
629 	if (fatal) {
630 		*errp = fatal;
631 		brelse(bh);
632 		bh = NULL;
633 	}
634 	return bh;
635 }
636 
637 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
638 			       ext4_lblk_t block, int create, int *err)
639 {
640 	struct buffer_head *bh;
641 
642 	bh = ext4_getblk(handle, inode, block, create, err);
643 	if (!bh)
644 		return bh;
645 	if (buffer_uptodate(bh))
646 		return bh;
647 	ll_rw_block(READ_META, 1, &bh);
648 	wait_on_buffer(bh);
649 	if (buffer_uptodate(bh))
650 		return bh;
651 	put_bh(bh);
652 	*err = -EIO;
653 	return NULL;
654 }
655 
656 static int walk_page_buffers(handle_t *handle,
657 			     struct buffer_head *head,
658 			     unsigned from,
659 			     unsigned to,
660 			     int *partial,
661 			     int (*fn)(handle_t *handle,
662 				       struct buffer_head *bh))
663 {
664 	struct buffer_head *bh;
665 	unsigned block_start, block_end;
666 	unsigned blocksize = head->b_size;
667 	int err, ret = 0;
668 	struct buffer_head *next;
669 
670 	for (bh = head, block_start = 0;
671 	     ret == 0 && (bh != head || !block_start);
672 	     block_start = block_end, bh = next) {
673 		next = bh->b_this_page;
674 		block_end = block_start + blocksize;
675 		if (block_end <= from || block_start >= to) {
676 			if (partial && !buffer_uptodate(bh))
677 				*partial = 1;
678 			continue;
679 		}
680 		err = (*fn)(handle, bh);
681 		if (!ret)
682 			ret = err;
683 	}
684 	return ret;
685 }
686 
687 /*
688  * To preserve ordering, it is essential that the hole instantiation and
689  * the data write be encapsulated in a single transaction.  We cannot
690  * close off a transaction and start a new one between the ext4_get_block()
691  * and the commit_write().  So doing the jbd2_journal_start at the start of
692  * prepare_write() is the right place.
693  *
694  * Also, this function can nest inside ext4_writepage() ->
695  * block_write_full_page(). In that case, we *know* that ext4_writepage()
696  * has generated enough buffer credits to do the whole page.  So we won't
697  * block on the journal in that case, which is good, because the caller may
698  * be PF_MEMALLOC.
699  *
700  * By accident, ext4 can be reentered when a transaction is open via
701  * quota file writes.  If we were to commit the transaction while thus
702  * reentered, there can be a deadlock - we would be holding a quota
703  * lock, and the commit would never complete if another thread had a
704  * transaction open and was blocking on the quota lock - a ranking
705  * violation.
706  *
707  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
708  * will _not_ run commit under these circumstances because handle->h_ref
709  * is elevated.  We'll still have enough credits for the tiny quotafile
710  * write.
711  */
712 static int do_journal_get_write_access(handle_t *handle,
713 				       struct buffer_head *bh)
714 {
715 	int dirty = buffer_dirty(bh);
716 	int ret;
717 
718 	if (!buffer_mapped(bh) || buffer_freed(bh))
719 		return 0;
720 	/*
721 	 * __block_write_begin() could have dirtied some buffers. Clean
722 	 * the dirty bit as jbd2_journal_get_write_access() could complain
723 	 * otherwise about fs integrity issues. Setting of the dirty bit
724 	 * by __block_write_begin() isn't a real problem here as we clear
725 	 * the bit before releasing a page lock and thus writeback cannot
726 	 * ever write the buffer.
727 	 */
728 	if (dirty)
729 		clear_buffer_dirty(bh);
730 	ret = ext4_journal_get_write_access(handle, bh);
731 	if (!ret && dirty)
732 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
733 	return ret;
734 }
735 
736 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
737 		   struct buffer_head *bh_result, int create);
738 static int ext4_write_begin(struct file *file, struct address_space *mapping,
739 			    loff_t pos, unsigned len, unsigned flags,
740 			    struct page **pagep, void **fsdata)
741 {
742 	struct inode *inode = mapping->host;
743 	int ret, needed_blocks;
744 	handle_t *handle;
745 	int retries = 0;
746 	struct page *page;
747 	pgoff_t index;
748 	unsigned from, to;
749 
750 	trace_ext4_write_begin(inode, pos, len, flags);
751 	/*
752 	 * Reserve one block more for addition to orphan list in case
753 	 * we allocate blocks but write fails for some reason
754 	 */
755 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
756 	index = pos >> PAGE_CACHE_SHIFT;
757 	from = pos & (PAGE_CACHE_SIZE - 1);
758 	to = from + len;
759 
760 retry:
761 	handle = ext4_journal_start(inode, needed_blocks);
762 	if (IS_ERR(handle)) {
763 		ret = PTR_ERR(handle);
764 		goto out;
765 	}
766 
767 	/* We cannot recurse into the filesystem as the transaction is already
768 	 * started */
769 	flags |= AOP_FLAG_NOFS;
770 
771 	page = grab_cache_page_write_begin(mapping, index, flags);
772 	if (!page) {
773 		ext4_journal_stop(handle);
774 		ret = -ENOMEM;
775 		goto out;
776 	}
777 	*pagep = page;
778 
779 	if (ext4_should_dioread_nolock(inode))
780 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
781 	else
782 		ret = __block_write_begin(page, pos, len, ext4_get_block);
783 
784 	if (!ret && ext4_should_journal_data(inode)) {
785 		ret = walk_page_buffers(handle, page_buffers(page),
786 				from, to, NULL, do_journal_get_write_access);
787 	}
788 
789 	if (ret) {
790 		unlock_page(page);
791 		page_cache_release(page);
792 		/*
793 		 * __block_write_begin may have instantiated a few blocks
794 		 * outside i_size.  Trim these off again. Don't need
795 		 * i_size_read because we hold i_mutex.
796 		 *
797 		 * Add inode to orphan list in case we crash before
798 		 * truncate finishes
799 		 */
800 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
801 			ext4_orphan_add(handle, inode);
802 
803 		ext4_journal_stop(handle);
804 		if (pos + len > inode->i_size) {
805 			ext4_truncate_failed_write(inode);
806 			/*
807 			 * If truncate failed early the inode might
808 			 * still be on the orphan list; we need to
809 			 * make sure the inode is removed from the
810 			 * orphan list in that case.
811 			 */
812 			if (inode->i_nlink)
813 				ext4_orphan_del(NULL, inode);
814 		}
815 	}
816 
817 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
818 		goto retry;
819 out:
820 	return ret;
821 }
822 
823 /* For write_end() in data=journal mode */
824 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
825 {
826 	if (!buffer_mapped(bh) || buffer_freed(bh))
827 		return 0;
828 	set_buffer_uptodate(bh);
829 	return ext4_handle_dirty_metadata(handle, NULL, bh);
830 }
831 
832 static int ext4_generic_write_end(struct file *file,
833 				  struct address_space *mapping,
834 				  loff_t pos, unsigned len, unsigned copied,
835 				  struct page *page, void *fsdata)
836 {
837 	int i_size_changed = 0;
838 	struct inode *inode = mapping->host;
839 	handle_t *handle = ext4_journal_current_handle();
840 
841 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
842 
843 	/*
844 	 * No need to use i_size_read() here, the i_size
845 	 * cannot change under us because we hold i_mutex.
846 	 *
847 	 * But it's important to update i_size while still holding page lock:
848 	 * page writeout could otherwise come in and zero beyond i_size.
849 	 */
850 	if (pos + copied > inode->i_size) {
851 		i_size_write(inode, pos + copied);
852 		i_size_changed = 1;
853 	}
854 
855 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
856 		/* We need to mark inode dirty even if
857 		 * new_i_size is less that inode->i_size
858 		 * bu greater than i_disksize.(hint delalloc)
859 		 */
860 		ext4_update_i_disksize(inode, (pos + copied));
861 		i_size_changed = 1;
862 	}
863 	unlock_page(page);
864 	page_cache_release(page);
865 
866 	/*
867 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
868 	 * makes the holding time of page lock longer. Second, it forces lock
869 	 * ordering of page lock and transaction start for journaling
870 	 * filesystems.
871 	 */
872 	if (i_size_changed)
873 		ext4_mark_inode_dirty(handle, inode);
874 
875 	return copied;
876 }
877 
878 /*
879  * We need to pick up the new inode size which generic_commit_write gave us
880  * `file' can be NULL - eg, when called from page_symlink().
881  *
882  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
883  * buffers are managed internally.
884  */
885 static int ext4_ordered_write_end(struct file *file,
886 				  struct address_space *mapping,
887 				  loff_t pos, unsigned len, unsigned copied,
888 				  struct page *page, void *fsdata)
889 {
890 	handle_t *handle = ext4_journal_current_handle();
891 	struct inode *inode = mapping->host;
892 	int ret = 0, ret2;
893 
894 	trace_ext4_ordered_write_end(inode, pos, len, copied);
895 	ret = ext4_jbd2_file_inode(handle, inode);
896 
897 	if (ret == 0) {
898 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
899 							page, fsdata);
900 		copied = ret2;
901 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
902 			/* if we have allocated more blocks and copied
903 			 * less. We will have blocks allocated outside
904 			 * inode->i_size. So truncate them
905 			 */
906 			ext4_orphan_add(handle, inode);
907 		if (ret2 < 0)
908 			ret = ret2;
909 	}
910 	ret2 = ext4_journal_stop(handle);
911 	if (!ret)
912 		ret = ret2;
913 
914 	if (pos + len > inode->i_size) {
915 		ext4_truncate_failed_write(inode);
916 		/*
917 		 * If truncate failed early the inode might still be
918 		 * on the orphan list; we need to make sure the inode
919 		 * is removed from the orphan list in that case.
920 		 */
921 		if (inode->i_nlink)
922 			ext4_orphan_del(NULL, inode);
923 	}
924 
925 
926 	return ret ? ret : copied;
927 }
928 
929 static int ext4_writeback_write_end(struct file *file,
930 				    struct address_space *mapping,
931 				    loff_t pos, unsigned len, unsigned copied,
932 				    struct page *page, void *fsdata)
933 {
934 	handle_t *handle = ext4_journal_current_handle();
935 	struct inode *inode = mapping->host;
936 	int ret = 0, ret2;
937 
938 	trace_ext4_writeback_write_end(inode, pos, len, copied);
939 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
940 							page, fsdata);
941 	copied = ret2;
942 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
943 		/* if we have allocated more blocks and copied
944 		 * less. We will have blocks allocated outside
945 		 * inode->i_size. So truncate them
946 		 */
947 		ext4_orphan_add(handle, inode);
948 
949 	if (ret2 < 0)
950 		ret = ret2;
951 
952 	ret2 = ext4_journal_stop(handle);
953 	if (!ret)
954 		ret = ret2;
955 
956 	if (pos + len > inode->i_size) {
957 		ext4_truncate_failed_write(inode);
958 		/*
959 		 * If truncate failed early the inode might still be
960 		 * on the orphan list; we need to make sure the inode
961 		 * is removed from the orphan list in that case.
962 		 */
963 		if (inode->i_nlink)
964 			ext4_orphan_del(NULL, inode);
965 	}
966 
967 	return ret ? ret : copied;
968 }
969 
970 static int ext4_journalled_write_end(struct file *file,
971 				     struct address_space *mapping,
972 				     loff_t pos, unsigned len, unsigned copied,
973 				     struct page *page, void *fsdata)
974 {
975 	handle_t *handle = ext4_journal_current_handle();
976 	struct inode *inode = mapping->host;
977 	int ret = 0, ret2;
978 	int partial = 0;
979 	unsigned from, to;
980 	loff_t new_i_size;
981 
982 	trace_ext4_journalled_write_end(inode, pos, len, copied);
983 	from = pos & (PAGE_CACHE_SIZE - 1);
984 	to = from + len;
985 
986 	BUG_ON(!ext4_handle_valid(handle));
987 
988 	if (copied < len) {
989 		if (!PageUptodate(page))
990 			copied = 0;
991 		page_zero_new_buffers(page, from+copied, to);
992 	}
993 
994 	ret = walk_page_buffers(handle, page_buffers(page), from,
995 				to, &partial, write_end_fn);
996 	if (!partial)
997 		SetPageUptodate(page);
998 	new_i_size = pos + copied;
999 	if (new_i_size > inode->i_size)
1000 		i_size_write(inode, pos+copied);
1001 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1002 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1003 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1004 		ext4_update_i_disksize(inode, new_i_size);
1005 		ret2 = ext4_mark_inode_dirty(handle, inode);
1006 		if (!ret)
1007 			ret = ret2;
1008 	}
1009 
1010 	unlock_page(page);
1011 	page_cache_release(page);
1012 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1013 		/* if we have allocated more blocks and copied
1014 		 * less. We will have blocks allocated outside
1015 		 * inode->i_size. So truncate them
1016 		 */
1017 		ext4_orphan_add(handle, inode);
1018 
1019 	ret2 = ext4_journal_stop(handle);
1020 	if (!ret)
1021 		ret = ret2;
1022 	if (pos + len > inode->i_size) {
1023 		ext4_truncate_failed_write(inode);
1024 		/*
1025 		 * If truncate failed early the inode might still be
1026 		 * on the orphan list; we need to make sure the inode
1027 		 * is removed from the orphan list in that case.
1028 		 */
1029 		if (inode->i_nlink)
1030 			ext4_orphan_del(NULL, inode);
1031 	}
1032 
1033 	return ret ? ret : copied;
1034 }
1035 
1036 /*
1037  * Reserve a single block located at lblock
1038  */
1039 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1040 {
1041 	int retries = 0;
1042 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1043 	struct ext4_inode_info *ei = EXT4_I(inode);
1044 	unsigned long md_needed;
1045 	int ret;
1046 
1047 	/*
1048 	 * recalculate the amount of metadata blocks to reserve
1049 	 * in order to allocate nrblocks
1050 	 * worse case is one extent per block
1051 	 */
1052 repeat:
1053 	spin_lock(&ei->i_block_reservation_lock);
1054 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1055 	trace_ext4_da_reserve_space(inode, md_needed);
1056 	spin_unlock(&ei->i_block_reservation_lock);
1057 
1058 	/*
1059 	 * We will charge metadata quota at writeout time; this saves
1060 	 * us from metadata over-estimation, though we may go over by
1061 	 * a small amount in the end.  Here we just reserve for data.
1062 	 */
1063 	ret = dquot_reserve_block(inode, 1);
1064 	if (ret)
1065 		return ret;
1066 	/*
1067 	 * We do still charge estimated metadata to the sb though;
1068 	 * we cannot afford to run out of free blocks.
1069 	 */
1070 	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1071 		dquot_release_reservation_block(inode, 1);
1072 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1073 			yield();
1074 			goto repeat;
1075 		}
1076 		return -ENOSPC;
1077 	}
1078 	spin_lock(&ei->i_block_reservation_lock);
1079 	ei->i_reserved_data_blocks++;
1080 	ei->i_reserved_meta_blocks += md_needed;
1081 	spin_unlock(&ei->i_block_reservation_lock);
1082 
1083 	return 0;       /* success */
1084 }
1085 
1086 static void ext4_da_release_space(struct inode *inode, int to_free)
1087 {
1088 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1089 	struct ext4_inode_info *ei = EXT4_I(inode);
1090 
1091 	if (!to_free)
1092 		return;		/* Nothing to release, exit */
1093 
1094 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095 
1096 	trace_ext4_da_release_space(inode, to_free);
1097 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1098 		/*
1099 		 * if there aren't enough reserved blocks, then the
1100 		 * counter is messed up somewhere.  Since this
1101 		 * function is called from invalidate page, it's
1102 		 * harmless to return without any action.
1103 		 */
1104 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1105 			 "ino %lu, to_free %d with only %d reserved "
1106 			 "data blocks\n", inode->i_ino, to_free,
1107 			 ei->i_reserved_data_blocks);
1108 		WARN_ON(1);
1109 		to_free = ei->i_reserved_data_blocks;
1110 	}
1111 	ei->i_reserved_data_blocks -= to_free;
1112 
1113 	if (ei->i_reserved_data_blocks == 0) {
1114 		/*
1115 		 * We can release all of the reserved metadata blocks
1116 		 * only when we have written all of the delayed
1117 		 * allocation blocks.
1118 		 */
1119 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120 				   ei->i_reserved_meta_blocks);
1121 		ei->i_reserved_meta_blocks = 0;
1122 		ei->i_da_metadata_calc_len = 0;
1123 	}
1124 
1125 	/* update fs dirty data blocks counter */
1126 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1127 
1128 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1129 
1130 	dquot_release_reservation_block(inode, to_free);
1131 }
1132 
1133 static void ext4_da_page_release_reservation(struct page *page,
1134 					     unsigned long offset)
1135 {
1136 	int to_release = 0;
1137 	struct buffer_head *head, *bh;
1138 	unsigned int curr_off = 0;
1139 
1140 	head = page_buffers(page);
1141 	bh = head;
1142 	do {
1143 		unsigned int next_off = curr_off + bh->b_size;
1144 
1145 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1146 			to_release++;
1147 			clear_buffer_delay(bh);
1148 		}
1149 		curr_off = next_off;
1150 	} while ((bh = bh->b_this_page) != head);
1151 	ext4_da_release_space(page->mapping->host, to_release);
1152 }
1153 
1154 /*
1155  * Delayed allocation stuff
1156  */
1157 
1158 /*
1159  * mpage_da_submit_io - walks through extent of pages and try to write
1160  * them with writepage() call back
1161  *
1162  * @mpd->inode: inode
1163  * @mpd->first_page: first page of the extent
1164  * @mpd->next_page: page after the last page of the extent
1165  *
1166  * By the time mpage_da_submit_io() is called we expect all blocks
1167  * to be allocated. this may be wrong if allocation failed.
1168  *
1169  * As pages are already locked by write_cache_pages(), we can't use it
1170  */
1171 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1172 			      struct ext4_map_blocks *map)
1173 {
1174 	struct pagevec pvec;
1175 	unsigned long index, end;
1176 	int ret = 0, err, nr_pages, i;
1177 	struct inode *inode = mpd->inode;
1178 	struct address_space *mapping = inode->i_mapping;
1179 	loff_t size = i_size_read(inode);
1180 	unsigned int len, block_start;
1181 	struct buffer_head *bh, *page_bufs = NULL;
1182 	int journal_data = ext4_should_journal_data(inode);
1183 	sector_t pblock = 0, cur_logical = 0;
1184 	struct ext4_io_submit io_submit;
1185 
1186 	BUG_ON(mpd->next_page <= mpd->first_page);
1187 	memset(&io_submit, 0, sizeof(io_submit));
1188 	/*
1189 	 * We need to start from the first_page to the next_page - 1
1190 	 * to make sure we also write the mapped dirty buffer_heads.
1191 	 * If we look at mpd->b_blocknr we would only be looking
1192 	 * at the currently mapped buffer_heads.
1193 	 */
1194 	index = mpd->first_page;
1195 	end = mpd->next_page - 1;
1196 
1197 	pagevec_init(&pvec, 0);
1198 	while (index <= end) {
1199 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1200 		if (nr_pages == 0)
1201 			break;
1202 		for (i = 0; i < nr_pages; i++) {
1203 			int commit_write = 0, skip_page = 0;
1204 			struct page *page = pvec.pages[i];
1205 
1206 			index = page->index;
1207 			if (index > end)
1208 				break;
1209 
1210 			if (index == size >> PAGE_CACHE_SHIFT)
1211 				len = size & ~PAGE_CACHE_MASK;
1212 			else
1213 				len = PAGE_CACHE_SIZE;
1214 			if (map) {
1215 				cur_logical = index << (PAGE_CACHE_SHIFT -
1216 							inode->i_blkbits);
1217 				pblock = map->m_pblk + (cur_logical -
1218 							map->m_lblk);
1219 			}
1220 			index++;
1221 
1222 			BUG_ON(!PageLocked(page));
1223 			BUG_ON(PageWriteback(page));
1224 
1225 			/*
1226 			 * If the page does not have buffers (for
1227 			 * whatever reason), try to create them using
1228 			 * __block_write_begin.  If this fails,
1229 			 * skip the page and move on.
1230 			 */
1231 			if (!page_has_buffers(page)) {
1232 				if (__block_write_begin(page, 0, len,
1233 						noalloc_get_block_write)) {
1234 				skip_page:
1235 					unlock_page(page);
1236 					continue;
1237 				}
1238 				commit_write = 1;
1239 			}
1240 
1241 			bh = page_bufs = page_buffers(page);
1242 			block_start = 0;
1243 			do {
1244 				if (!bh)
1245 					goto skip_page;
1246 				if (map && (cur_logical >= map->m_lblk) &&
1247 				    (cur_logical <= (map->m_lblk +
1248 						     (map->m_len - 1)))) {
1249 					if (buffer_delay(bh)) {
1250 						clear_buffer_delay(bh);
1251 						bh->b_blocknr = pblock;
1252 					}
1253 					if (buffer_unwritten(bh) ||
1254 					    buffer_mapped(bh))
1255 						BUG_ON(bh->b_blocknr != pblock);
1256 					if (map->m_flags & EXT4_MAP_UNINIT)
1257 						set_buffer_uninit(bh);
1258 					clear_buffer_unwritten(bh);
1259 				}
1260 
1261 				/* skip page if block allocation undone */
1262 				if (buffer_delay(bh) || buffer_unwritten(bh))
1263 					skip_page = 1;
1264 				bh = bh->b_this_page;
1265 				block_start += bh->b_size;
1266 				cur_logical++;
1267 				pblock++;
1268 			} while (bh != page_bufs);
1269 
1270 			if (skip_page)
1271 				goto skip_page;
1272 
1273 			if (commit_write)
1274 				/* mark the buffer_heads as dirty & uptodate */
1275 				block_commit_write(page, 0, len);
1276 
1277 			clear_page_dirty_for_io(page);
1278 			/*
1279 			 * Delalloc doesn't support data journalling,
1280 			 * but eventually maybe we'll lift this
1281 			 * restriction.
1282 			 */
1283 			if (unlikely(journal_data && PageChecked(page)))
1284 				err = __ext4_journalled_writepage(page, len);
1285 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1286 				err = ext4_bio_write_page(&io_submit, page,
1287 							  len, mpd->wbc);
1288 			else
1289 				err = block_write_full_page(page,
1290 					noalloc_get_block_write, mpd->wbc);
1291 
1292 			if (!err)
1293 				mpd->pages_written++;
1294 			/*
1295 			 * In error case, we have to continue because
1296 			 * remaining pages are still locked
1297 			 */
1298 			if (ret == 0)
1299 				ret = err;
1300 		}
1301 		pagevec_release(&pvec);
1302 	}
1303 	ext4_io_submit(&io_submit);
1304 	return ret;
1305 }
1306 
1307 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1308 {
1309 	int nr_pages, i;
1310 	pgoff_t index, end;
1311 	struct pagevec pvec;
1312 	struct inode *inode = mpd->inode;
1313 	struct address_space *mapping = inode->i_mapping;
1314 
1315 	index = mpd->first_page;
1316 	end   = mpd->next_page - 1;
1317 	while (index <= end) {
1318 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1319 		if (nr_pages == 0)
1320 			break;
1321 		for (i = 0; i < nr_pages; i++) {
1322 			struct page *page = pvec.pages[i];
1323 			if (page->index > end)
1324 				break;
1325 			BUG_ON(!PageLocked(page));
1326 			BUG_ON(PageWriteback(page));
1327 			block_invalidatepage(page, 0);
1328 			ClearPageUptodate(page);
1329 			unlock_page(page);
1330 		}
1331 		index = pvec.pages[nr_pages - 1]->index + 1;
1332 		pagevec_release(&pvec);
1333 	}
1334 	return;
1335 }
1336 
1337 static void ext4_print_free_blocks(struct inode *inode)
1338 {
1339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1340 	printk(KERN_CRIT "Total free blocks count %lld\n",
1341 	       ext4_count_free_blocks(inode->i_sb));
1342 	printk(KERN_CRIT "Free/Dirty block details\n");
1343 	printk(KERN_CRIT "free_blocks=%lld\n",
1344 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1345 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1346 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1347 	printk(KERN_CRIT "Block reservation details\n");
1348 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1349 	       EXT4_I(inode)->i_reserved_data_blocks);
1350 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1351 	       EXT4_I(inode)->i_reserved_meta_blocks);
1352 	return;
1353 }
1354 
1355 /*
1356  * mpage_da_map_and_submit - go through given space, map them
1357  *       if necessary, and then submit them for I/O
1358  *
1359  * @mpd - bh describing space
1360  *
1361  * The function skips space we know is already mapped to disk blocks.
1362  *
1363  */
1364 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1365 {
1366 	int err, blks, get_blocks_flags;
1367 	struct ext4_map_blocks map, *mapp = NULL;
1368 	sector_t next = mpd->b_blocknr;
1369 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1370 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1371 	handle_t *handle = NULL;
1372 
1373 	/*
1374 	 * If the blocks are mapped already, or we couldn't accumulate
1375 	 * any blocks, then proceed immediately to the submission stage.
1376 	 */
1377 	if ((mpd->b_size == 0) ||
1378 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1379 	     !(mpd->b_state & (1 << BH_Delay)) &&
1380 	     !(mpd->b_state & (1 << BH_Unwritten))))
1381 		goto submit_io;
1382 
1383 	handle = ext4_journal_current_handle();
1384 	BUG_ON(!handle);
1385 
1386 	/*
1387 	 * Call ext4_map_blocks() to allocate any delayed allocation
1388 	 * blocks, or to convert an uninitialized extent to be
1389 	 * initialized (in the case where we have written into
1390 	 * one or more preallocated blocks).
1391 	 *
1392 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1393 	 * indicate that we are on the delayed allocation path.  This
1394 	 * affects functions in many different parts of the allocation
1395 	 * call path.  This flag exists primarily because we don't
1396 	 * want to change *many* call functions, so ext4_map_blocks()
1397 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1398 	 * inode's allocation semaphore is taken.
1399 	 *
1400 	 * If the blocks in questions were delalloc blocks, set
1401 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1402 	 * variables are updated after the blocks have been allocated.
1403 	 */
1404 	map.m_lblk = next;
1405 	map.m_len = max_blocks;
1406 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1407 	if (ext4_should_dioread_nolock(mpd->inode))
1408 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1409 	if (mpd->b_state & (1 << BH_Delay))
1410 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1411 
1412 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1413 	if (blks < 0) {
1414 		struct super_block *sb = mpd->inode->i_sb;
1415 
1416 		err = blks;
1417 		/*
1418 		 * If get block returns EAGAIN or ENOSPC and there
1419 		 * appears to be free blocks we will just let
1420 		 * mpage_da_submit_io() unlock all of the pages.
1421 		 */
1422 		if (err == -EAGAIN)
1423 			goto submit_io;
1424 
1425 		if (err == -ENOSPC &&
1426 		    ext4_count_free_blocks(sb)) {
1427 			mpd->retval = err;
1428 			goto submit_io;
1429 		}
1430 
1431 		/*
1432 		 * get block failure will cause us to loop in
1433 		 * writepages, because a_ops->writepage won't be able
1434 		 * to make progress. The page will be redirtied by
1435 		 * writepage and writepages will again try to write
1436 		 * the same.
1437 		 */
1438 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1439 			ext4_msg(sb, KERN_CRIT,
1440 				 "delayed block allocation failed for inode %lu "
1441 				 "at logical offset %llu with max blocks %zd "
1442 				 "with error %d", mpd->inode->i_ino,
1443 				 (unsigned long long) next,
1444 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1445 			ext4_msg(sb, KERN_CRIT,
1446 				"This should not happen!! Data will be lost\n");
1447 			if (err == -ENOSPC)
1448 				ext4_print_free_blocks(mpd->inode);
1449 		}
1450 		/* invalidate all the pages */
1451 		ext4_da_block_invalidatepages(mpd);
1452 
1453 		/* Mark this page range as having been completed */
1454 		mpd->io_done = 1;
1455 		return;
1456 	}
1457 	BUG_ON(blks == 0);
1458 
1459 	mapp = &map;
1460 	if (map.m_flags & EXT4_MAP_NEW) {
1461 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1462 		int i;
1463 
1464 		for (i = 0; i < map.m_len; i++)
1465 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1466 	}
1467 
1468 	if (ext4_should_order_data(mpd->inode)) {
1469 		err = ext4_jbd2_file_inode(handle, mpd->inode);
1470 		if (err)
1471 			/* This only happens if the journal is aborted */
1472 			return;
1473 	}
1474 
1475 	/*
1476 	 * Update on-disk size along with block allocation.
1477 	 */
1478 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1479 	if (disksize > i_size_read(mpd->inode))
1480 		disksize = i_size_read(mpd->inode);
1481 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1482 		ext4_update_i_disksize(mpd->inode, disksize);
1483 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1484 		if (err)
1485 			ext4_error(mpd->inode->i_sb,
1486 				   "Failed to mark inode %lu dirty",
1487 				   mpd->inode->i_ino);
1488 	}
1489 
1490 submit_io:
1491 	mpage_da_submit_io(mpd, mapp);
1492 	mpd->io_done = 1;
1493 }
1494 
1495 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1496 		(1 << BH_Delay) | (1 << BH_Unwritten))
1497 
1498 /*
1499  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1500  *
1501  * @mpd->lbh - extent of blocks
1502  * @logical - logical number of the block in the file
1503  * @bh - bh of the block (used to access block's state)
1504  *
1505  * the function is used to collect contig. blocks in same state
1506  */
1507 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1508 				   sector_t logical, size_t b_size,
1509 				   unsigned long b_state)
1510 {
1511 	sector_t next;
1512 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1513 
1514 	/*
1515 	 * XXX Don't go larger than mballoc is willing to allocate
1516 	 * This is a stopgap solution.  We eventually need to fold
1517 	 * mpage_da_submit_io() into this function and then call
1518 	 * ext4_map_blocks() multiple times in a loop
1519 	 */
1520 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1521 		goto flush_it;
1522 
1523 	/* check if thereserved journal credits might overflow */
1524 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1525 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1526 			/*
1527 			 * With non-extent format we are limited by the journal
1528 			 * credit available.  Total credit needed to insert
1529 			 * nrblocks contiguous blocks is dependent on the
1530 			 * nrblocks.  So limit nrblocks.
1531 			 */
1532 			goto flush_it;
1533 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1534 				EXT4_MAX_TRANS_DATA) {
1535 			/*
1536 			 * Adding the new buffer_head would make it cross the
1537 			 * allowed limit for which we have journal credit
1538 			 * reserved. So limit the new bh->b_size
1539 			 */
1540 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1541 						mpd->inode->i_blkbits;
1542 			/* we will do mpage_da_submit_io in the next loop */
1543 		}
1544 	}
1545 	/*
1546 	 * First block in the extent
1547 	 */
1548 	if (mpd->b_size == 0) {
1549 		mpd->b_blocknr = logical;
1550 		mpd->b_size = b_size;
1551 		mpd->b_state = b_state & BH_FLAGS;
1552 		return;
1553 	}
1554 
1555 	next = mpd->b_blocknr + nrblocks;
1556 	/*
1557 	 * Can we merge the block to our big extent?
1558 	 */
1559 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1560 		mpd->b_size += b_size;
1561 		return;
1562 	}
1563 
1564 flush_it:
1565 	/*
1566 	 * We couldn't merge the block to our extent, so we
1567 	 * need to flush current  extent and start new one
1568 	 */
1569 	mpage_da_map_and_submit(mpd);
1570 	return;
1571 }
1572 
1573 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1574 {
1575 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1576 }
1577 
1578 /*
1579  * This is a special get_blocks_t callback which is used by
1580  * ext4_da_write_begin().  It will either return mapped block or
1581  * reserve space for a single block.
1582  *
1583  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1584  * We also have b_blocknr = -1 and b_bdev initialized properly
1585  *
1586  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1587  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1588  * initialized properly.
1589  */
1590 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1591 				  struct buffer_head *bh, int create)
1592 {
1593 	struct ext4_map_blocks map;
1594 	int ret = 0;
1595 	sector_t invalid_block = ~((sector_t) 0xffff);
1596 
1597 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1598 		invalid_block = ~0;
1599 
1600 	BUG_ON(create == 0);
1601 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1602 
1603 	map.m_lblk = iblock;
1604 	map.m_len = 1;
1605 
1606 	/*
1607 	 * first, we need to know whether the block is allocated already
1608 	 * preallocated blocks are unmapped but should treated
1609 	 * the same as allocated blocks.
1610 	 */
1611 	ret = ext4_map_blocks(NULL, inode, &map, 0);
1612 	if (ret < 0)
1613 		return ret;
1614 	if (ret == 0) {
1615 		if (buffer_delay(bh))
1616 			return 0; /* Not sure this could or should happen */
1617 		/*
1618 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1619 		 */
1620 		ret = ext4_da_reserve_space(inode, iblock);
1621 		if (ret)
1622 			/* not enough space to reserve */
1623 			return ret;
1624 
1625 		map_bh(bh, inode->i_sb, invalid_block);
1626 		set_buffer_new(bh);
1627 		set_buffer_delay(bh);
1628 		return 0;
1629 	}
1630 
1631 	map_bh(bh, inode->i_sb, map.m_pblk);
1632 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1633 
1634 	if (buffer_unwritten(bh)) {
1635 		/* A delayed write to unwritten bh should be marked
1636 		 * new and mapped.  Mapped ensures that we don't do
1637 		 * get_block multiple times when we write to the same
1638 		 * offset and new ensures that we do proper zero out
1639 		 * for partial write.
1640 		 */
1641 		set_buffer_new(bh);
1642 		set_buffer_mapped(bh);
1643 	}
1644 	return 0;
1645 }
1646 
1647 /*
1648  * This function is used as a standard get_block_t calback function
1649  * when there is no desire to allocate any blocks.  It is used as a
1650  * callback function for block_write_begin() and block_write_full_page().
1651  * These functions should only try to map a single block at a time.
1652  *
1653  * Since this function doesn't do block allocations even if the caller
1654  * requests it by passing in create=1, it is critically important that
1655  * any caller checks to make sure that any buffer heads are returned
1656  * by this function are either all already mapped or marked for
1657  * delayed allocation before calling  block_write_full_page().  Otherwise,
1658  * b_blocknr could be left unitialized, and the page write functions will
1659  * be taken by surprise.
1660  */
1661 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1662 				   struct buffer_head *bh_result, int create)
1663 {
1664 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1665 	return _ext4_get_block(inode, iblock, bh_result, 0);
1666 }
1667 
1668 static int bget_one(handle_t *handle, struct buffer_head *bh)
1669 {
1670 	get_bh(bh);
1671 	return 0;
1672 }
1673 
1674 static int bput_one(handle_t *handle, struct buffer_head *bh)
1675 {
1676 	put_bh(bh);
1677 	return 0;
1678 }
1679 
1680 static int __ext4_journalled_writepage(struct page *page,
1681 				       unsigned int len)
1682 {
1683 	struct address_space *mapping = page->mapping;
1684 	struct inode *inode = mapping->host;
1685 	struct buffer_head *page_bufs;
1686 	handle_t *handle = NULL;
1687 	int ret = 0;
1688 	int err;
1689 
1690 	ClearPageChecked(page);
1691 	page_bufs = page_buffers(page);
1692 	BUG_ON(!page_bufs);
1693 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1694 	/* As soon as we unlock the page, it can go away, but we have
1695 	 * references to buffers so we are safe */
1696 	unlock_page(page);
1697 
1698 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1699 	if (IS_ERR(handle)) {
1700 		ret = PTR_ERR(handle);
1701 		goto out;
1702 	}
1703 
1704 	BUG_ON(!ext4_handle_valid(handle));
1705 
1706 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1707 				do_journal_get_write_access);
1708 
1709 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1710 				write_end_fn);
1711 	if (ret == 0)
1712 		ret = err;
1713 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1714 	err = ext4_journal_stop(handle);
1715 	if (!ret)
1716 		ret = err;
1717 
1718 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1719 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1720 out:
1721 	return ret;
1722 }
1723 
1724 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1725 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1726 
1727 /*
1728  * Note that we don't need to start a transaction unless we're journaling data
1729  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1730  * need to file the inode to the transaction's list in ordered mode because if
1731  * we are writing back data added by write(), the inode is already there and if
1732  * we are writing back data modified via mmap(), no one guarantees in which
1733  * transaction the data will hit the disk. In case we are journaling data, we
1734  * cannot start transaction directly because transaction start ranks above page
1735  * lock so we have to do some magic.
1736  *
1737  * This function can get called via...
1738  *   - ext4_da_writepages after taking page lock (have journal handle)
1739  *   - journal_submit_inode_data_buffers (no journal handle)
1740  *   - shrink_page_list via pdflush (no journal handle)
1741  *   - grab_page_cache when doing write_begin (have journal handle)
1742  *
1743  * We don't do any block allocation in this function. If we have page with
1744  * multiple blocks we need to write those buffer_heads that are mapped. This
1745  * is important for mmaped based write. So if we do with blocksize 1K
1746  * truncate(f, 1024);
1747  * a = mmap(f, 0, 4096);
1748  * a[0] = 'a';
1749  * truncate(f, 4096);
1750  * we have in the page first buffer_head mapped via page_mkwrite call back
1751  * but other bufer_heads would be unmapped but dirty(dirty done via the
1752  * do_wp_page). So writepage should write the first block. If we modify
1753  * the mmap area beyond 1024 we will again get a page_fault and the
1754  * page_mkwrite callback will do the block allocation and mark the
1755  * buffer_heads mapped.
1756  *
1757  * We redirty the page if we have any buffer_heads that is either delay or
1758  * unwritten in the page.
1759  *
1760  * We can get recursively called as show below.
1761  *
1762  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1763  *		ext4_writepage()
1764  *
1765  * But since we don't do any block allocation we should not deadlock.
1766  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1767  */
1768 static int ext4_writepage(struct page *page,
1769 			  struct writeback_control *wbc)
1770 {
1771 	int ret = 0, commit_write = 0;
1772 	loff_t size;
1773 	unsigned int len;
1774 	struct buffer_head *page_bufs = NULL;
1775 	struct inode *inode = page->mapping->host;
1776 
1777 	trace_ext4_writepage(page);
1778 	size = i_size_read(inode);
1779 	if (page->index == size >> PAGE_CACHE_SHIFT)
1780 		len = size & ~PAGE_CACHE_MASK;
1781 	else
1782 		len = PAGE_CACHE_SIZE;
1783 
1784 	/*
1785 	 * If the page does not have buffers (for whatever reason),
1786 	 * try to create them using __block_write_begin.  If this
1787 	 * fails, redirty the page and move on.
1788 	 */
1789 	if (!page_has_buffers(page)) {
1790 		if (__block_write_begin(page, 0, len,
1791 					noalloc_get_block_write)) {
1792 		redirty_page:
1793 			redirty_page_for_writepage(wbc, page);
1794 			unlock_page(page);
1795 			return 0;
1796 		}
1797 		commit_write = 1;
1798 	}
1799 	page_bufs = page_buffers(page);
1800 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1801 			      ext4_bh_delay_or_unwritten)) {
1802 		/*
1803 		 * We don't want to do block allocation, so redirty
1804 		 * the page and return.  We may reach here when we do
1805 		 * a journal commit via journal_submit_inode_data_buffers.
1806 		 * We can also reach here via shrink_page_list
1807 		 */
1808 		goto redirty_page;
1809 	}
1810 	if (commit_write)
1811 		/* now mark the buffer_heads as dirty and uptodate */
1812 		block_commit_write(page, 0, len);
1813 
1814 	if (PageChecked(page) && ext4_should_journal_data(inode))
1815 		/*
1816 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1817 		 * doesn't seem much point in redirtying the page here.
1818 		 */
1819 		return __ext4_journalled_writepage(page, len);
1820 
1821 	if (buffer_uninit(page_bufs)) {
1822 		ext4_set_bh_endio(page_bufs, inode);
1823 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1824 					    wbc, ext4_end_io_buffer_write);
1825 	} else
1826 		ret = block_write_full_page(page, noalloc_get_block_write,
1827 					    wbc);
1828 
1829 	return ret;
1830 }
1831 
1832 /*
1833  * This is called via ext4_da_writepages() to
1834  * calculate the total number of credits to reserve to fit
1835  * a single extent allocation into a single transaction,
1836  * ext4_da_writpeages() will loop calling this before
1837  * the block allocation.
1838  */
1839 
1840 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1841 {
1842 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1843 
1844 	/*
1845 	 * With non-extent format the journal credit needed to
1846 	 * insert nrblocks contiguous block is dependent on
1847 	 * number of contiguous block. So we will limit
1848 	 * number of contiguous block to a sane value
1849 	 */
1850 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1851 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1852 		max_blocks = EXT4_MAX_TRANS_DATA;
1853 
1854 	return ext4_chunk_trans_blocks(inode, max_blocks);
1855 }
1856 
1857 /*
1858  * write_cache_pages_da - walk the list of dirty pages of the given
1859  * address space and accumulate pages that need writing, and call
1860  * mpage_da_map_and_submit to map a single contiguous memory region
1861  * and then write them.
1862  */
1863 static int write_cache_pages_da(struct address_space *mapping,
1864 				struct writeback_control *wbc,
1865 				struct mpage_da_data *mpd,
1866 				pgoff_t *done_index)
1867 {
1868 	struct buffer_head	*bh, *head;
1869 	struct inode		*inode = mapping->host;
1870 	struct pagevec		pvec;
1871 	unsigned int		nr_pages;
1872 	sector_t		logical;
1873 	pgoff_t			index, end;
1874 	long			nr_to_write = wbc->nr_to_write;
1875 	int			i, tag, ret = 0;
1876 
1877 	memset(mpd, 0, sizeof(struct mpage_da_data));
1878 	mpd->wbc = wbc;
1879 	mpd->inode = inode;
1880 	pagevec_init(&pvec, 0);
1881 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
1882 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
1883 
1884 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1885 		tag = PAGECACHE_TAG_TOWRITE;
1886 	else
1887 		tag = PAGECACHE_TAG_DIRTY;
1888 
1889 	*done_index = index;
1890 	while (index <= end) {
1891 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1892 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1893 		if (nr_pages == 0)
1894 			return 0;
1895 
1896 		for (i = 0; i < nr_pages; i++) {
1897 			struct page *page = pvec.pages[i];
1898 
1899 			/*
1900 			 * At this point, the page may be truncated or
1901 			 * invalidated (changing page->mapping to NULL), or
1902 			 * even swizzled back from swapper_space to tmpfs file
1903 			 * mapping. However, page->index will not change
1904 			 * because we have a reference on the page.
1905 			 */
1906 			if (page->index > end)
1907 				goto out;
1908 
1909 			*done_index = page->index + 1;
1910 
1911 			/*
1912 			 * If we can't merge this page, and we have
1913 			 * accumulated an contiguous region, write it
1914 			 */
1915 			if ((mpd->next_page != page->index) &&
1916 			    (mpd->next_page != mpd->first_page)) {
1917 				mpage_da_map_and_submit(mpd);
1918 				goto ret_extent_tail;
1919 			}
1920 
1921 			lock_page(page);
1922 
1923 			/*
1924 			 * If the page is no longer dirty, or its
1925 			 * mapping no longer corresponds to inode we
1926 			 * are writing (which means it has been
1927 			 * truncated or invalidated), or the page is
1928 			 * already under writeback and we are not
1929 			 * doing a data integrity writeback, skip the page
1930 			 */
1931 			if (!PageDirty(page) ||
1932 			    (PageWriteback(page) &&
1933 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
1934 			    unlikely(page->mapping != mapping)) {
1935 				unlock_page(page);
1936 				continue;
1937 			}
1938 
1939 			wait_on_page_writeback(page);
1940 			BUG_ON(PageWriteback(page));
1941 
1942 			if (mpd->next_page != page->index)
1943 				mpd->first_page = page->index;
1944 			mpd->next_page = page->index + 1;
1945 			logical = (sector_t) page->index <<
1946 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1947 
1948 			if (!page_has_buffers(page)) {
1949 				mpage_add_bh_to_extent(mpd, logical,
1950 						       PAGE_CACHE_SIZE,
1951 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1952 				if (mpd->io_done)
1953 					goto ret_extent_tail;
1954 			} else {
1955 				/*
1956 				 * Page with regular buffer heads,
1957 				 * just add all dirty ones
1958 				 */
1959 				head = page_buffers(page);
1960 				bh = head;
1961 				do {
1962 					BUG_ON(buffer_locked(bh));
1963 					/*
1964 					 * We need to try to allocate
1965 					 * unmapped blocks in the same page.
1966 					 * Otherwise we won't make progress
1967 					 * with the page in ext4_writepage
1968 					 */
1969 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1970 						mpage_add_bh_to_extent(mpd, logical,
1971 								       bh->b_size,
1972 								       bh->b_state);
1973 						if (mpd->io_done)
1974 							goto ret_extent_tail;
1975 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1976 						/*
1977 						 * mapped dirty buffer. We need
1978 						 * to update the b_state
1979 						 * because we look at b_state
1980 						 * in mpage_da_map_blocks.  We
1981 						 * don't update b_size because
1982 						 * if we find an unmapped
1983 						 * buffer_head later we need to
1984 						 * use the b_state flag of that
1985 						 * buffer_head.
1986 						 */
1987 						if (mpd->b_size == 0)
1988 							mpd->b_state = bh->b_state & BH_FLAGS;
1989 					}
1990 					logical++;
1991 				} while ((bh = bh->b_this_page) != head);
1992 			}
1993 
1994 			if (nr_to_write > 0) {
1995 				nr_to_write--;
1996 				if (nr_to_write == 0 &&
1997 				    wbc->sync_mode == WB_SYNC_NONE)
1998 					/*
1999 					 * We stop writing back only if we are
2000 					 * not doing integrity sync. In case of
2001 					 * integrity sync we have to keep going
2002 					 * because someone may be concurrently
2003 					 * dirtying pages, and we might have
2004 					 * synced a lot of newly appeared dirty
2005 					 * pages, but have not synced all of the
2006 					 * old dirty pages.
2007 					 */
2008 					goto out;
2009 			}
2010 		}
2011 		pagevec_release(&pvec);
2012 		cond_resched();
2013 	}
2014 	return 0;
2015 ret_extent_tail:
2016 	ret = MPAGE_DA_EXTENT_TAIL;
2017 out:
2018 	pagevec_release(&pvec);
2019 	cond_resched();
2020 	return ret;
2021 }
2022 
2023 
2024 static int ext4_da_writepages(struct address_space *mapping,
2025 			      struct writeback_control *wbc)
2026 {
2027 	pgoff_t	index;
2028 	int range_whole = 0;
2029 	handle_t *handle = NULL;
2030 	struct mpage_da_data mpd;
2031 	struct inode *inode = mapping->host;
2032 	int pages_written = 0;
2033 	unsigned int max_pages;
2034 	int range_cyclic, cycled = 1, io_done = 0;
2035 	int needed_blocks, ret = 0;
2036 	long desired_nr_to_write, nr_to_writebump = 0;
2037 	loff_t range_start = wbc->range_start;
2038 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2039 	pgoff_t done_index = 0;
2040 	pgoff_t end;
2041 
2042 	trace_ext4_da_writepages(inode, wbc);
2043 
2044 	/*
2045 	 * No pages to write? This is mainly a kludge to avoid starting
2046 	 * a transaction for special inodes like journal inode on last iput()
2047 	 * because that could violate lock ordering on umount
2048 	 */
2049 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2050 		return 0;
2051 
2052 	/*
2053 	 * If the filesystem has aborted, it is read-only, so return
2054 	 * right away instead of dumping stack traces later on that
2055 	 * will obscure the real source of the problem.  We test
2056 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2057 	 * the latter could be true if the filesystem is mounted
2058 	 * read-only, and in that case, ext4_da_writepages should
2059 	 * *never* be called, so if that ever happens, we would want
2060 	 * the stack trace.
2061 	 */
2062 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2063 		return -EROFS;
2064 
2065 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2066 		range_whole = 1;
2067 
2068 	range_cyclic = wbc->range_cyclic;
2069 	if (wbc->range_cyclic) {
2070 		index = mapping->writeback_index;
2071 		if (index)
2072 			cycled = 0;
2073 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2074 		wbc->range_end  = LLONG_MAX;
2075 		wbc->range_cyclic = 0;
2076 		end = -1;
2077 	} else {
2078 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2079 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2080 	}
2081 
2082 	/*
2083 	 * This works around two forms of stupidity.  The first is in
2084 	 * the writeback code, which caps the maximum number of pages
2085 	 * written to be 1024 pages.  This is wrong on multiple
2086 	 * levels; different architectues have a different page size,
2087 	 * which changes the maximum amount of data which gets
2088 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2089 	 * forces this value to be 16 megabytes by multiplying
2090 	 * nr_to_write parameter by four, and then relies on its
2091 	 * allocator to allocate larger extents to make them
2092 	 * contiguous.  Unfortunately this brings us to the second
2093 	 * stupidity, which is that ext4's mballoc code only allocates
2094 	 * at most 2048 blocks.  So we force contiguous writes up to
2095 	 * the number of dirty blocks in the inode, or
2096 	 * sbi->max_writeback_mb_bump whichever is smaller.
2097 	 */
2098 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2099 	if (!range_cyclic && range_whole) {
2100 		if (wbc->nr_to_write == LONG_MAX)
2101 			desired_nr_to_write = wbc->nr_to_write;
2102 		else
2103 			desired_nr_to_write = wbc->nr_to_write * 8;
2104 	} else
2105 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2106 							   max_pages);
2107 	if (desired_nr_to_write > max_pages)
2108 		desired_nr_to_write = max_pages;
2109 
2110 	if (wbc->nr_to_write < desired_nr_to_write) {
2111 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2112 		wbc->nr_to_write = desired_nr_to_write;
2113 	}
2114 
2115 retry:
2116 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2117 		tag_pages_for_writeback(mapping, index, end);
2118 
2119 	while (!ret && wbc->nr_to_write > 0) {
2120 
2121 		/*
2122 		 * we  insert one extent at a time. So we need
2123 		 * credit needed for single extent allocation.
2124 		 * journalled mode is currently not supported
2125 		 * by delalloc
2126 		 */
2127 		BUG_ON(ext4_should_journal_data(inode));
2128 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2129 
2130 		/* start a new transaction*/
2131 		handle = ext4_journal_start(inode, needed_blocks);
2132 		if (IS_ERR(handle)) {
2133 			ret = PTR_ERR(handle);
2134 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2135 			       "%ld pages, ino %lu; err %d", __func__,
2136 				wbc->nr_to_write, inode->i_ino, ret);
2137 			goto out_writepages;
2138 		}
2139 
2140 		/*
2141 		 * Now call write_cache_pages_da() to find the next
2142 		 * contiguous region of logical blocks that need
2143 		 * blocks to be allocated by ext4 and submit them.
2144 		 */
2145 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2146 		/*
2147 		 * If we have a contiguous extent of pages and we
2148 		 * haven't done the I/O yet, map the blocks and submit
2149 		 * them for I/O.
2150 		 */
2151 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2152 			mpage_da_map_and_submit(&mpd);
2153 			ret = MPAGE_DA_EXTENT_TAIL;
2154 		}
2155 		trace_ext4_da_write_pages(inode, &mpd);
2156 		wbc->nr_to_write -= mpd.pages_written;
2157 
2158 		ext4_journal_stop(handle);
2159 
2160 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2161 			/* commit the transaction which would
2162 			 * free blocks released in the transaction
2163 			 * and try again
2164 			 */
2165 			jbd2_journal_force_commit_nested(sbi->s_journal);
2166 			ret = 0;
2167 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2168 			/*
2169 			 * got one extent now try with
2170 			 * rest of the pages
2171 			 */
2172 			pages_written += mpd.pages_written;
2173 			ret = 0;
2174 			io_done = 1;
2175 		} else if (wbc->nr_to_write)
2176 			/*
2177 			 * There is no more writeout needed
2178 			 * or we requested for a noblocking writeout
2179 			 * and we found the device congested
2180 			 */
2181 			break;
2182 	}
2183 	if (!io_done && !cycled) {
2184 		cycled = 1;
2185 		index = 0;
2186 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2187 		wbc->range_end  = mapping->writeback_index - 1;
2188 		goto retry;
2189 	}
2190 
2191 	/* Update index */
2192 	wbc->range_cyclic = range_cyclic;
2193 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2194 		/*
2195 		 * set the writeback_index so that range_cyclic
2196 		 * mode will write it back later
2197 		 */
2198 		mapping->writeback_index = done_index;
2199 
2200 out_writepages:
2201 	wbc->nr_to_write -= nr_to_writebump;
2202 	wbc->range_start = range_start;
2203 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2204 	return ret;
2205 }
2206 
2207 #define FALL_BACK_TO_NONDELALLOC 1
2208 static int ext4_nonda_switch(struct super_block *sb)
2209 {
2210 	s64 free_blocks, dirty_blocks;
2211 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2212 
2213 	/*
2214 	 * switch to non delalloc mode if we are running low
2215 	 * on free block. The free block accounting via percpu
2216 	 * counters can get slightly wrong with percpu_counter_batch getting
2217 	 * accumulated on each CPU without updating global counters
2218 	 * Delalloc need an accurate free block accounting. So switch
2219 	 * to non delalloc when we are near to error range.
2220 	 */
2221 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2222 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2223 	if (2 * free_blocks < 3 * dirty_blocks ||
2224 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2225 		/*
2226 		 * free block count is less than 150% of dirty blocks
2227 		 * or free blocks is less than watermark
2228 		 */
2229 		return 1;
2230 	}
2231 	/*
2232 	 * Even if we don't switch but are nearing capacity,
2233 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2234 	 */
2235 	if (free_blocks < 2 * dirty_blocks)
2236 		writeback_inodes_sb_if_idle(sb);
2237 
2238 	return 0;
2239 }
2240 
2241 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2242 			       loff_t pos, unsigned len, unsigned flags,
2243 			       struct page **pagep, void **fsdata)
2244 {
2245 	int ret, retries = 0;
2246 	struct page *page;
2247 	pgoff_t index;
2248 	struct inode *inode = mapping->host;
2249 	handle_t *handle;
2250 
2251 	index = pos >> PAGE_CACHE_SHIFT;
2252 
2253 	if (ext4_nonda_switch(inode->i_sb)) {
2254 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2255 		return ext4_write_begin(file, mapping, pos,
2256 					len, flags, pagep, fsdata);
2257 	}
2258 	*fsdata = (void *)0;
2259 	trace_ext4_da_write_begin(inode, pos, len, flags);
2260 retry:
2261 	/*
2262 	 * With delayed allocation, we don't log the i_disksize update
2263 	 * if there is delayed block allocation. But we still need
2264 	 * to journalling the i_disksize update if writes to the end
2265 	 * of file which has an already mapped buffer.
2266 	 */
2267 	handle = ext4_journal_start(inode, 1);
2268 	if (IS_ERR(handle)) {
2269 		ret = PTR_ERR(handle);
2270 		goto out;
2271 	}
2272 	/* We cannot recurse into the filesystem as the transaction is already
2273 	 * started */
2274 	flags |= AOP_FLAG_NOFS;
2275 
2276 	page = grab_cache_page_write_begin(mapping, index, flags);
2277 	if (!page) {
2278 		ext4_journal_stop(handle);
2279 		ret = -ENOMEM;
2280 		goto out;
2281 	}
2282 	*pagep = page;
2283 
2284 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2285 	if (ret < 0) {
2286 		unlock_page(page);
2287 		ext4_journal_stop(handle);
2288 		page_cache_release(page);
2289 		/*
2290 		 * block_write_begin may have instantiated a few blocks
2291 		 * outside i_size.  Trim these off again. Don't need
2292 		 * i_size_read because we hold i_mutex.
2293 		 */
2294 		if (pos + len > inode->i_size)
2295 			ext4_truncate_failed_write(inode);
2296 	}
2297 
2298 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2299 		goto retry;
2300 out:
2301 	return ret;
2302 }
2303 
2304 /*
2305  * Check if we should update i_disksize
2306  * when write to the end of file but not require block allocation
2307  */
2308 static int ext4_da_should_update_i_disksize(struct page *page,
2309 					    unsigned long offset)
2310 {
2311 	struct buffer_head *bh;
2312 	struct inode *inode = page->mapping->host;
2313 	unsigned int idx;
2314 	int i;
2315 
2316 	bh = page_buffers(page);
2317 	idx = offset >> inode->i_blkbits;
2318 
2319 	for (i = 0; i < idx; i++)
2320 		bh = bh->b_this_page;
2321 
2322 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2323 		return 0;
2324 	return 1;
2325 }
2326 
2327 static int ext4_da_write_end(struct file *file,
2328 			     struct address_space *mapping,
2329 			     loff_t pos, unsigned len, unsigned copied,
2330 			     struct page *page, void *fsdata)
2331 {
2332 	struct inode *inode = mapping->host;
2333 	int ret = 0, ret2;
2334 	handle_t *handle = ext4_journal_current_handle();
2335 	loff_t new_i_size;
2336 	unsigned long start, end;
2337 	int write_mode = (int)(unsigned long)fsdata;
2338 
2339 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2340 		if (ext4_should_order_data(inode)) {
2341 			return ext4_ordered_write_end(file, mapping, pos,
2342 					len, copied, page, fsdata);
2343 		} else if (ext4_should_writeback_data(inode)) {
2344 			return ext4_writeback_write_end(file, mapping, pos,
2345 					len, copied, page, fsdata);
2346 		} else {
2347 			BUG();
2348 		}
2349 	}
2350 
2351 	trace_ext4_da_write_end(inode, pos, len, copied);
2352 	start = pos & (PAGE_CACHE_SIZE - 1);
2353 	end = start + copied - 1;
2354 
2355 	/*
2356 	 * generic_write_end() will run mark_inode_dirty() if i_size
2357 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2358 	 * into that.
2359 	 */
2360 
2361 	new_i_size = pos + copied;
2362 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2363 		if (ext4_da_should_update_i_disksize(page, end)) {
2364 			down_write(&EXT4_I(inode)->i_data_sem);
2365 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2366 				/*
2367 				 * Updating i_disksize when extending file
2368 				 * without needing block allocation
2369 				 */
2370 				if (ext4_should_order_data(inode))
2371 					ret = ext4_jbd2_file_inode(handle,
2372 								   inode);
2373 
2374 				EXT4_I(inode)->i_disksize = new_i_size;
2375 			}
2376 			up_write(&EXT4_I(inode)->i_data_sem);
2377 			/* We need to mark inode dirty even if
2378 			 * new_i_size is less that inode->i_size
2379 			 * bu greater than i_disksize.(hint delalloc)
2380 			 */
2381 			ext4_mark_inode_dirty(handle, inode);
2382 		}
2383 	}
2384 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2385 							page, fsdata);
2386 	copied = ret2;
2387 	if (ret2 < 0)
2388 		ret = ret2;
2389 	ret2 = ext4_journal_stop(handle);
2390 	if (!ret)
2391 		ret = ret2;
2392 
2393 	return ret ? ret : copied;
2394 }
2395 
2396 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2397 {
2398 	/*
2399 	 * Drop reserved blocks
2400 	 */
2401 	BUG_ON(!PageLocked(page));
2402 	if (!page_has_buffers(page))
2403 		goto out;
2404 
2405 	ext4_da_page_release_reservation(page, offset);
2406 
2407 out:
2408 	ext4_invalidatepage(page, offset);
2409 
2410 	return;
2411 }
2412 
2413 /*
2414  * Force all delayed allocation blocks to be allocated for a given inode.
2415  */
2416 int ext4_alloc_da_blocks(struct inode *inode)
2417 {
2418 	trace_ext4_alloc_da_blocks(inode);
2419 
2420 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2421 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2422 		return 0;
2423 
2424 	/*
2425 	 * We do something simple for now.  The filemap_flush() will
2426 	 * also start triggering a write of the data blocks, which is
2427 	 * not strictly speaking necessary (and for users of
2428 	 * laptop_mode, not even desirable).  However, to do otherwise
2429 	 * would require replicating code paths in:
2430 	 *
2431 	 * ext4_da_writepages() ->
2432 	 *    write_cache_pages() ---> (via passed in callback function)
2433 	 *        __mpage_da_writepage() -->
2434 	 *           mpage_add_bh_to_extent()
2435 	 *           mpage_da_map_blocks()
2436 	 *
2437 	 * The problem is that write_cache_pages(), located in
2438 	 * mm/page-writeback.c, marks pages clean in preparation for
2439 	 * doing I/O, which is not desirable if we're not planning on
2440 	 * doing I/O at all.
2441 	 *
2442 	 * We could call write_cache_pages(), and then redirty all of
2443 	 * the pages by calling redirty_page_for_writepage() but that
2444 	 * would be ugly in the extreme.  So instead we would need to
2445 	 * replicate parts of the code in the above functions,
2446 	 * simplifying them because we wouldn't actually intend to
2447 	 * write out the pages, but rather only collect contiguous
2448 	 * logical block extents, call the multi-block allocator, and
2449 	 * then update the buffer heads with the block allocations.
2450 	 *
2451 	 * For now, though, we'll cheat by calling filemap_flush(),
2452 	 * which will map the blocks, and start the I/O, but not
2453 	 * actually wait for the I/O to complete.
2454 	 */
2455 	return filemap_flush(inode->i_mapping);
2456 }
2457 
2458 /*
2459  * bmap() is special.  It gets used by applications such as lilo and by
2460  * the swapper to find the on-disk block of a specific piece of data.
2461  *
2462  * Naturally, this is dangerous if the block concerned is still in the
2463  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2464  * filesystem and enables swap, then they may get a nasty shock when the
2465  * data getting swapped to that swapfile suddenly gets overwritten by
2466  * the original zero's written out previously to the journal and
2467  * awaiting writeback in the kernel's buffer cache.
2468  *
2469  * So, if we see any bmap calls here on a modified, data-journaled file,
2470  * take extra steps to flush any blocks which might be in the cache.
2471  */
2472 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2473 {
2474 	struct inode *inode = mapping->host;
2475 	journal_t *journal;
2476 	int err;
2477 
2478 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2479 			test_opt(inode->i_sb, DELALLOC)) {
2480 		/*
2481 		 * With delalloc we want to sync the file
2482 		 * so that we can make sure we allocate
2483 		 * blocks for file
2484 		 */
2485 		filemap_write_and_wait(mapping);
2486 	}
2487 
2488 	if (EXT4_JOURNAL(inode) &&
2489 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2490 		/*
2491 		 * This is a REALLY heavyweight approach, but the use of
2492 		 * bmap on dirty files is expected to be extremely rare:
2493 		 * only if we run lilo or swapon on a freshly made file
2494 		 * do we expect this to happen.
2495 		 *
2496 		 * (bmap requires CAP_SYS_RAWIO so this does not
2497 		 * represent an unprivileged user DOS attack --- we'd be
2498 		 * in trouble if mortal users could trigger this path at
2499 		 * will.)
2500 		 *
2501 		 * NB. EXT4_STATE_JDATA is not set on files other than
2502 		 * regular files.  If somebody wants to bmap a directory
2503 		 * or symlink and gets confused because the buffer
2504 		 * hasn't yet been flushed to disk, they deserve
2505 		 * everything they get.
2506 		 */
2507 
2508 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2509 		journal = EXT4_JOURNAL(inode);
2510 		jbd2_journal_lock_updates(journal);
2511 		err = jbd2_journal_flush(journal);
2512 		jbd2_journal_unlock_updates(journal);
2513 
2514 		if (err)
2515 			return 0;
2516 	}
2517 
2518 	return generic_block_bmap(mapping, block, ext4_get_block);
2519 }
2520 
2521 static int ext4_readpage(struct file *file, struct page *page)
2522 {
2523 	trace_ext4_readpage(page);
2524 	return mpage_readpage(page, ext4_get_block);
2525 }
2526 
2527 static int
2528 ext4_readpages(struct file *file, struct address_space *mapping,
2529 		struct list_head *pages, unsigned nr_pages)
2530 {
2531 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2532 }
2533 
2534 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2535 {
2536 	struct buffer_head *head, *bh;
2537 	unsigned int curr_off = 0;
2538 
2539 	if (!page_has_buffers(page))
2540 		return;
2541 	head = bh = page_buffers(page);
2542 	do {
2543 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2544 					&& bh->b_private) {
2545 			ext4_free_io_end(bh->b_private);
2546 			bh->b_private = NULL;
2547 			bh->b_end_io = NULL;
2548 		}
2549 		curr_off = curr_off + bh->b_size;
2550 		bh = bh->b_this_page;
2551 	} while (bh != head);
2552 }
2553 
2554 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2555 {
2556 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2557 
2558 	trace_ext4_invalidatepage(page, offset);
2559 
2560 	/*
2561 	 * free any io_end structure allocated for buffers to be discarded
2562 	 */
2563 	if (ext4_should_dioread_nolock(page->mapping->host))
2564 		ext4_invalidatepage_free_endio(page, offset);
2565 	/*
2566 	 * If it's a full truncate we just forget about the pending dirtying
2567 	 */
2568 	if (offset == 0)
2569 		ClearPageChecked(page);
2570 
2571 	if (journal)
2572 		jbd2_journal_invalidatepage(journal, page, offset);
2573 	else
2574 		block_invalidatepage(page, offset);
2575 }
2576 
2577 static int ext4_releasepage(struct page *page, gfp_t wait)
2578 {
2579 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2580 
2581 	trace_ext4_releasepage(page);
2582 
2583 	WARN_ON(PageChecked(page));
2584 	if (!page_has_buffers(page))
2585 		return 0;
2586 	if (journal)
2587 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2588 	else
2589 		return try_to_free_buffers(page);
2590 }
2591 
2592 /*
2593  * ext4_get_block used when preparing for a DIO write or buffer write.
2594  * We allocate an uinitialized extent if blocks haven't been allocated.
2595  * The extent will be converted to initialized after the IO is complete.
2596  */
2597 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2598 		   struct buffer_head *bh_result, int create)
2599 {
2600 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2601 		   inode->i_ino, create);
2602 	return _ext4_get_block(inode, iblock, bh_result,
2603 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2604 }
2605 
2606 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2607 			    ssize_t size, void *private, int ret,
2608 			    bool is_async)
2609 {
2610 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2611         ext4_io_end_t *io_end = iocb->private;
2612 	struct workqueue_struct *wq;
2613 	unsigned long flags;
2614 	struct ext4_inode_info *ei;
2615 
2616 	/* if not async direct IO or dio with 0 bytes write, just return */
2617 	if (!io_end || !size)
2618 		goto out;
2619 
2620 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2621 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2622  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2623 		  size);
2624 
2625 	/* if not aio dio with unwritten extents, just free io and return */
2626 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2627 		ext4_free_io_end(io_end);
2628 		iocb->private = NULL;
2629 out:
2630 		if (is_async)
2631 			aio_complete(iocb, ret, 0);
2632 		inode_dio_done(inode);
2633 		return;
2634 	}
2635 
2636 	io_end->offset = offset;
2637 	io_end->size = size;
2638 	if (is_async) {
2639 		io_end->iocb = iocb;
2640 		io_end->result = ret;
2641 	}
2642 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2643 
2644 	/* Add the io_end to per-inode completed aio dio list*/
2645 	ei = EXT4_I(io_end->inode);
2646 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2647 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2648 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2649 
2650 	/* queue the work to convert unwritten extents to written */
2651 	queue_work(wq, &io_end->work);
2652 	iocb->private = NULL;
2653 
2654 	/* XXX: probably should move into the real I/O completion handler */
2655 	inode_dio_done(inode);
2656 }
2657 
2658 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2659 {
2660 	ext4_io_end_t *io_end = bh->b_private;
2661 	struct workqueue_struct *wq;
2662 	struct inode *inode;
2663 	unsigned long flags;
2664 
2665 	if (!test_clear_buffer_uninit(bh) || !io_end)
2666 		goto out;
2667 
2668 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2669 		printk("sb umounted, discard end_io request for inode %lu\n",
2670 			io_end->inode->i_ino);
2671 		ext4_free_io_end(io_end);
2672 		goto out;
2673 	}
2674 
2675 	io_end->flag = EXT4_IO_END_UNWRITTEN;
2676 	inode = io_end->inode;
2677 
2678 	/* Add the io_end to per-inode completed io list*/
2679 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2680 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2681 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2682 
2683 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2684 	/* queue the work to convert unwritten extents to written */
2685 	queue_work(wq, &io_end->work);
2686 out:
2687 	bh->b_private = NULL;
2688 	bh->b_end_io = NULL;
2689 	clear_buffer_uninit(bh);
2690 	end_buffer_async_write(bh, uptodate);
2691 }
2692 
2693 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2694 {
2695 	ext4_io_end_t *io_end;
2696 	struct page *page = bh->b_page;
2697 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2698 	size_t size = bh->b_size;
2699 
2700 retry:
2701 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2702 	if (!io_end) {
2703 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2704 		schedule();
2705 		goto retry;
2706 	}
2707 	io_end->offset = offset;
2708 	io_end->size = size;
2709 	/*
2710 	 * We need to hold a reference to the page to make sure it
2711 	 * doesn't get evicted before ext4_end_io_work() has a chance
2712 	 * to convert the extent from written to unwritten.
2713 	 */
2714 	io_end->page = page;
2715 	get_page(io_end->page);
2716 
2717 	bh->b_private = io_end;
2718 	bh->b_end_io = ext4_end_io_buffer_write;
2719 	return 0;
2720 }
2721 
2722 /*
2723  * For ext4 extent files, ext4 will do direct-io write to holes,
2724  * preallocated extents, and those write extend the file, no need to
2725  * fall back to buffered IO.
2726  *
2727  * For holes, we fallocate those blocks, mark them as uninitialized
2728  * If those blocks were preallocated, we mark sure they are splited, but
2729  * still keep the range to write as uninitialized.
2730  *
2731  * The unwrritten extents will be converted to written when DIO is completed.
2732  * For async direct IO, since the IO may still pending when return, we
2733  * set up an end_io call back function, which will do the conversion
2734  * when async direct IO completed.
2735  *
2736  * If the O_DIRECT write will extend the file then add this inode to the
2737  * orphan list.  So recovery will truncate it back to the original size
2738  * if the machine crashes during the write.
2739  *
2740  */
2741 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2742 			      const struct iovec *iov, loff_t offset,
2743 			      unsigned long nr_segs)
2744 {
2745 	struct file *file = iocb->ki_filp;
2746 	struct inode *inode = file->f_mapping->host;
2747 	ssize_t ret;
2748 	size_t count = iov_length(iov, nr_segs);
2749 
2750 	loff_t final_size = offset + count;
2751 	if (rw == WRITE && final_size <= inode->i_size) {
2752 		/*
2753  		 * We could direct write to holes and fallocate.
2754 		 *
2755  		 * Allocated blocks to fill the hole are marked as uninitialized
2756  		 * to prevent parallel buffered read to expose the stale data
2757  		 * before DIO complete the data IO.
2758 		 *
2759  		 * As to previously fallocated extents, ext4 get_block
2760  		 * will just simply mark the buffer mapped but still
2761  		 * keep the extents uninitialized.
2762  		 *
2763 		 * for non AIO case, we will convert those unwritten extents
2764 		 * to written after return back from blockdev_direct_IO.
2765 		 *
2766 		 * for async DIO, the conversion needs to be defered when
2767 		 * the IO is completed. The ext4 end_io callback function
2768 		 * will be called to take care of the conversion work.
2769 		 * Here for async case, we allocate an io_end structure to
2770 		 * hook to the iocb.
2771  		 */
2772 		iocb->private = NULL;
2773 		EXT4_I(inode)->cur_aio_dio = NULL;
2774 		if (!is_sync_kiocb(iocb)) {
2775 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2776 			if (!iocb->private)
2777 				return -ENOMEM;
2778 			/*
2779 			 * we save the io structure for current async
2780 			 * direct IO, so that later ext4_map_blocks()
2781 			 * could flag the io structure whether there
2782 			 * is a unwritten extents needs to be converted
2783 			 * when IO is completed.
2784 			 */
2785 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2786 		}
2787 
2788 		ret = __blockdev_direct_IO(rw, iocb, inode,
2789 					 inode->i_sb->s_bdev, iov,
2790 					 offset, nr_segs,
2791 					 ext4_get_block_write,
2792 					 ext4_end_io_dio,
2793 					 NULL,
2794 					 DIO_LOCKING | DIO_SKIP_HOLES);
2795 		if (iocb->private)
2796 			EXT4_I(inode)->cur_aio_dio = NULL;
2797 		/*
2798 		 * The io_end structure takes a reference to the inode,
2799 		 * that structure needs to be destroyed and the
2800 		 * reference to the inode need to be dropped, when IO is
2801 		 * complete, even with 0 byte write, or failed.
2802 		 *
2803 		 * In the successful AIO DIO case, the io_end structure will be
2804 		 * desctroyed and the reference to the inode will be dropped
2805 		 * after the end_io call back function is called.
2806 		 *
2807 		 * In the case there is 0 byte write, or error case, since
2808 		 * VFS direct IO won't invoke the end_io call back function,
2809 		 * we need to free the end_io structure here.
2810 		 */
2811 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2812 			ext4_free_io_end(iocb->private);
2813 			iocb->private = NULL;
2814 		} else if (ret > 0 && ext4_test_inode_state(inode,
2815 						EXT4_STATE_DIO_UNWRITTEN)) {
2816 			int err;
2817 			/*
2818 			 * for non AIO case, since the IO is already
2819 			 * completed, we could do the conversion right here
2820 			 */
2821 			err = ext4_convert_unwritten_extents(inode,
2822 							     offset, ret);
2823 			if (err < 0)
2824 				ret = err;
2825 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2826 		}
2827 		return ret;
2828 	}
2829 
2830 	/* for write the the end of file case, we fall back to old way */
2831 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2832 }
2833 
2834 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2835 			      const struct iovec *iov, loff_t offset,
2836 			      unsigned long nr_segs)
2837 {
2838 	struct file *file = iocb->ki_filp;
2839 	struct inode *inode = file->f_mapping->host;
2840 	ssize_t ret;
2841 
2842 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2843 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2844 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2845 	else
2846 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2847 	trace_ext4_direct_IO_exit(inode, offset,
2848 				iov_length(iov, nr_segs), rw, ret);
2849 	return ret;
2850 }
2851 
2852 /*
2853  * Pages can be marked dirty completely asynchronously from ext4's journalling
2854  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2855  * much here because ->set_page_dirty is called under VFS locks.  The page is
2856  * not necessarily locked.
2857  *
2858  * We cannot just dirty the page and leave attached buffers clean, because the
2859  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2860  * or jbddirty because all the journalling code will explode.
2861  *
2862  * So what we do is to mark the page "pending dirty" and next time writepage
2863  * is called, propagate that into the buffers appropriately.
2864  */
2865 static int ext4_journalled_set_page_dirty(struct page *page)
2866 {
2867 	SetPageChecked(page);
2868 	return __set_page_dirty_nobuffers(page);
2869 }
2870 
2871 static const struct address_space_operations ext4_ordered_aops = {
2872 	.readpage		= ext4_readpage,
2873 	.readpages		= ext4_readpages,
2874 	.writepage		= ext4_writepage,
2875 	.write_begin		= ext4_write_begin,
2876 	.write_end		= ext4_ordered_write_end,
2877 	.bmap			= ext4_bmap,
2878 	.invalidatepage		= ext4_invalidatepage,
2879 	.releasepage		= ext4_releasepage,
2880 	.direct_IO		= ext4_direct_IO,
2881 	.migratepage		= buffer_migrate_page,
2882 	.is_partially_uptodate  = block_is_partially_uptodate,
2883 	.error_remove_page	= generic_error_remove_page,
2884 };
2885 
2886 static const struct address_space_operations ext4_writeback_aops = {
2887 	.readpage		= ext4_readpage,
2888 	.readpages		= ext4_readpages,
2889 	.writepage		= ext4_writepage,
2890 	.write_begin		= ext4_write_begin,
2891 	.write_end		= ext4_writeback_write_end,
2892 	.bmap			= ext4_bmap,
2893 	.invalidatepage		= ext4_invalidatepage,
2894 	.releasepage		= ext4_releasepage,
2895 	.direct_IO		= ext4_direct_IO,
2896 	.migratepage		= buffer_migrate_page,
2897 	.is_partially_uptodate  = block_is_partially_uptodate,
2898 	.error_remove_page	= generic_error_remove_page,
2899 };
2900 
2901 static const struct address_space_operations ext4_journalled_aops = {
2902 	.readpage		= ext4_readpage,
2903 	.readpages		= ext4_readpages,
2904 	.writepage		= ext4_writepage,
2905 	.write_begin		= ext4_write_begin,
2906 	.write_end		= ext4_journalled_write_end,
2907 	.set_page_dirty		= ext4_journalled_set_page_dirty,
2908 	.bmap			= ext4_bmap,
2909 	.invalidatepage		= ext4_invalidatepage,
2910 	.releasepage		= ext4_releasepage,
2911 	.is_partially_uptodate  = block_is_partially_uptodate,
2912 	.error_remove_page	= generic_error_remove_page,
2913 };
2914 
2915 static const struct address_space_operations ext4_da_aops = {
2916 	.readpage		= ext4_readpage,
2917 	.readpages		= ext4_readpages,
2918 	.writepage		= ext4_writepage,
2919 	.writepages		= ext4_da_writepages,
2920 	.write_begin		= ext4_da_write_begin,
2921 	.write_end		= ext4_da_write_end,
2922 	.bmap			= ext4_bmap,
2923 	.invalidatepage		= ext4_da_invalidatepage,
2924 	.releasepage		= ext4_releasepage,
2925 	.direct_IO		= ext4_direct_IO,
2926 	.migratepage		= buffer_migrate_page,
2927 	.is_partially_uptodate  = block_is_partially_uptodate,
2928 	.error_remove_page	= generic_error_remove_page,
2929 };
2930 
2931 void ext4_set_aops(struct inode *inode)
2932 {
2933 	if (ext4_should_order_data(inode) &&
2934 		test_opt(inode->i_sb, DELALLOC))
2935 		inode->i_mapping->a_ops = &ext4_da_aops;
2936 	else if (ext4_should_order_data(inode))
2937 		inode->i_mapping->a_ops = &ext4_ordered_aops;
2938 	else if (ext4_should_writeback_data(inode) &&
2939 		 test_opt(inode->i_sb, DELALLOC))
2940 		inode->i_mapping->a_ops = &ext4_da_aops;
2941 	else if (ext4_should_writeback_data(inode))
2942 		inode->i_mapping->a_ops = &ext4_writeback_aops;
2943 	else
2944 		inode->i_mapping->a_ops = &ext4_journalled_aops;
2945 }
2946 
2947 /*
2948  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2949  * up to the end of the block which corresponds to `from'.
2950  * This required during truncate. We need to physically zero the tail end
2951  * of that block so it doesn't yield old data if the file is later grown.
2952  */
2953 int ext4_block_truncate_page(handle_t *handle,
2954 		struct address_space *mapping, loff_t from)
2955 {
2956 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2957 	unsigned length;
2958 	unsigned blocksize;
2959 	struct inode *inode = mapping->host;
2960 
2961 	blocksize = inode->i_sb->s_blocksize;
2962 	length = blocksize - (offset & (blocksize - 1));
2963 
2964 	return ext4_block_zero_page_range(handle, mapping, from, length);
2965 }
2966 
2967 /*
2968  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2969  * starting from file offset 'from'.  The range to be zero'd must
2970  * be contained with in one block.  If the specified range exceeds
2971  * the end of the block it will be shortened to end of the block
2972  * that cooresponds to 'from'
2973  */
2974 int ext4_block_zero_page_range(handle_t *handle,
2975 		struct address_space *mapping, loff_t from, loff_t length)
2976 {
2977 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2978 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2979 	unsigned blocksize, max, pos;
2980 	ext4_lblk_t iblock;
2981 	struct inode *inode = mapping->host;
2982 	struct buffer_head *bh;
2983 	struct page *page;
2984 	int err = 0;
2985 
2986 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2987 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
2988 	if (!page)
2989 		return -EINVAL;
2990 
2991 	blocksize = inode->i_sb->s_blocksize;
2992 	max = blocksize - (offset & (blocksize - 1));
2993 
2994 	/*
2995 	 * correct length if it does not fall between
2996 	 * 'from' and the end of the block
2997 	 */
2998 	if (length > max || length < 0)
2999 		length = max;
3000 
3001 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3002 
3003 	if (!page_has_buffers(page))
3004 		create_empty_buffers(page, blocksize, 0);
3005 
3006 	/* Find the buffer that contains "offset" */
3007 	bh = page_buffers(page);
3008 	pos = blocksize;
3009 	while (offset >= pos) {
3010 		bh = bh->b_this_page;
3011 		iblock++;
3012 		pos += blocksize;
3013 	}
3014 
3015 	err = 0;
3016 	if (buffer_freed(bh)) {
3017 		BUFFER_TRACE(bh, "freed: skip");
3018 		goto unlock;
3019 	}
3020 
3021 	if (!buffer_mapped(bh)) {
3022 		BUFFER_TRACE(bh, "unmapped");
3023 		ext4_get_block(inode, iblock, bh, 0);
3024 		/* unmapped? It's a hole - nothing to do */
3025 		if (!buffer_mapped(bh)) {
3026 			BUFFER_TRACE(bh, "still unmapped");
3027 			goto unlock;
3028 		}
3029 	}
3030 
3031 	/* Ok, it's mapped. Make sure it's up-to-date */
3032 	if (PageUptodate(page))
3033 		set_buffer_uptodate(bh);
3034 
3035 	if (!buffer_uptodate(bh)) {
3036 		err = -EIO;
3037 		ll_rw_block(READ, 1, &bh);
3038 		wait_on_buffer(bh);
3039 		/* Uhhuh. Read error. Complain and punt. */
3040 		if (!buffer_uptodate(bh))
3041 			goto unlock;
3042 	}
3043 
3044 	if (ext4_should_journal_data(inode)) {
3045 		BUFFER_TRACE(bh, "get write access");
3046 		err = ext4_journal_get_write_access(handle, bh);
3047 		if (err)
3048 			goto unlock;
3049 	}
3050 
3051 	zero_user(page, offset, length);
3052 
3053 	BUFFER_TRACE(bh, "zeroed end of block");
3054 
3055 	err = 0;
3056 	if (ext4_should_journal_data(inode)) {
3057 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3058 	} else {
3059 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3060 			err = ext4_jbd2_file_inode(handle, inode);
3061 		mark_buffer_dirty(bh);
3062 	}
3063 
3064 unlock:
3065 	unlock_page(page);
3066 	page_cache_release(page);
3067 	return err;
3068 }
3069 
3070 int ext4_can_truncate(struct inode *inode)
3071 {
3072 	if (S_ISREG(inode->i_mode))
3073 		return 1;
3074 	if (S_ISDIR(inode->i_mode))
3075 		return 1;
3076 	if (S_ISLNK(inode->i_mode))
3077 		return !ext4_inode_is_fast_symlink(inode);
3078 	return 0;
3079 }
3080 
3081 /*
3082  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3083  * associated with the given offset and length
3084  *
3085  * @inode:  File inode
3086  * @offset: The offset where the hole will begin
3087  * @len:    The length of the hole
3088  *
3089  * Returns: 0 on sucess or negative on failure
3090  */
3091 
3092 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3093 {
3094 	struct inode *inode = file->f_path.dentry->d_inode;
3095 	if (!S_ISREG(inode->i_mode))
3096 		return -ENOTSUPP;
3097 
3098 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3099 		/* TODO: Add support for non extent hole punching */
3100 		return -ENOTSUPP;
3101 	}
3102 
3103 	return ext4_ext_punch_hole(file, offset, length);
3104 }
3105 
3106 /*
3107  * ext4_truncate()
3108  *
3109  * We block out ext4_get_block() block instantiations across the entire
3110  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3111  * simultaneously on behalf of the same inode.
3112  *
3113  * As we work through the truncate and commmit bits of it to the journal there
3114  * is one core, guiding principle: the file's tree must always be consistent on
3115  * disk.  We must be able to restart the truncate after a crash.
3116  *
3117  * The file's tree may be transiently inconsistent in memory (although it
3118  * probably isn't), but whenever we close off and commit a journal transaction,
3119  * the contents of (the filesystem + the journal) must be consistent and
3120  * restartable.  It's pretty simple, really: bottom up, right to left (although
3121  * left-to-right works OK too).
3122  *
3123  * Note that at recovery time, journal replay occurs *before* the restart of
3124  * truncate against the orphan inode list.
3125  *
3126  * The committed inode has the new, desired i_size (which is the same as
3127  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3128  * that this inode's truncate did not complete and it will again call
3129  * ext4_truncate() to have another go.  So there will be instantiated blocks
3130  * to the right of the truncation point in a crashed ext4 filesystem.  But
3131  * that's fine - as long as they are linked from the inode, the post-crash
3132  * ext4_truncate() run will find them and release them.
3133  */
3134 void ext4_truncate(struct inode *inode)
3135 {
3136 	trace_ext4_truncate_enter(inode);
3137 
3138 	if (!ext4_can_truncate(inode))
3139 		return;
3140 
3141 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3142 
3143 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3144 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3145 
3146 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3147 		ext4_ext_truncate(inode);
3148 	else
3149 		ext4_ind_truncate(inode);
3150 
3151 	trace_ext4_truncate_exit(inode);
3152 }
3153 
3154 /*
3155  * ext4_get_inode_loc returns with an extra refcount against the inode's
3156  * underlying buffer_head on success. If 'in_mem' is true, we have all
3157  * data in memory that is needed to recreate the on-disk version of this
3158  * inode.
3159  */
3160 static int __ext4_get_inode_loc(struct inode *inode,
3161 				struct ext4_iloc *iloc, int in_mem)
3162 {
3163 	struct ext4_group_desc	*gdp;
3164 	struct buffer_head	*bh;
3165 	struct super_block	*sb = inode->i_sb;
3166 	ext4_fsblk_t		block;
3167 	int			inodes_per_block, inode_offset;
3168 
3169 	iloc->bh = NULL;
3170 	if (!ext4_valid_inum(sb, inode->i_ino))
3171 		return -EIO;
3172 
3173 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3174 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3175 	if (!gdp)
3176 		return -EIO;
3177 
3178 	/*
3179 	 * Figure out the offset within the block group inode table
3180 	 */
3181 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3182 	inode_offset = ((inode->i_ino - 1) %
3183 			EXT4_INODES_PER_GROUP(sb));
3184 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3185 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3186 
3187 	bh = sb_getblk(sb, block);
3188 	if (!bh) {
3189 		EXT4_ERROR_INODE_BLOCK(inode, block,
3190 				       "unable to read itable block");
3191 		return -EIO;
3192 	}
3193 	if (!buffer_uptodate(bh)) {
3194 		lock_buffer(bh);
3195 
3196 		/*
3197 		 * If the buffer has the write error flag, we have failed
3198 		 * to write out another inode in the same block.  In this
3199 		 * case, we don't have to read the block because we may
3200 		 * read the old inode data successfully.
3201 		 */
3202 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3203 			set_buffer_uptodate(bh);
3204 
3205 		if (buffer_uptodate(bh)) {
3206 			/* someone brought it uptodate while we waited */
3207 			unlock_buffer(bh);
3208 			goto has_buffer;
3209 		}
3210 
3211 		/*
3212 		 * If we have all information of the inode in memory and this
3213 		 * is the only valid inode in the block, we need not read the
3214 		 * block.
3215 		 */
3216 		if (in_mem) {
3217 			struct buffer_head *bitmap_bh;
3218 			int i, start;
3219 
3220 			start = inode_offset & ~(inodes_per_block - 1);
3221 
3222 			/* Is the inode bitmap in cache? */
3223 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3224 			if (!bitmap_bh)
3225 				goto make_io;
3226 
3227 			/*
3228 			 * If the inode bitmap isn't in cache then the
3229 			 * optimisation may end up performing two reads instead
3230 			 * of one, so skip it.
3231 			 */
3232 			if (!buffer_uptodate(bitmap_bh)) {
3233 				brelse(bitmap_bh);
3234 				goto make_io;
3235 			}
3236 			for (i = start; i < start + inodes_per_block; i++) {
3237 				if (i == inode_offset)
3238 					continue;
3239 				if (ext4_test_bit(i, bitmap_bh->b_data))
3240 					break;
3241 			}
3242 			brelse(bitmap_bh);
3243 			if (i == start + inodes_per_block) {
3244 				/* all other inodes are free, so skip I/O */
3245 				memset(bh->b_data, 0, bh->b_size);
3246 				set_buffer_uptodate(bh);
3247 				unlock_buffer(bh);
3248 				goto has_buffer;
3249 			}
3250 		}
3251 
3252 make_io:
3253 		/*
3254 		 * If we need to do any I/O, try to pre-readahead extra
3255 		 * blocks from the inode table.
3256 		 */
3257 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3258 			ext4_fsblk_t b, end, table;
3259 			unsigned num;
3260 
3261 			table = ext4_inode_table(sb, gdp);
3262 			/* s_inode_readahead_blks is always a power of 2 */
3263 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3264 			if (table > b)
3265 				b = table;
3266 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3267 			num = EXT4_INODES_PER_GROUP(sb);
3268 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3269 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3270 				num -= ext4_itable_unused_count(sb, gdp);
3271 			table += num / inodes_per_block;
3272 			if (end > table)
3273 				end = table;
3274 			while (b <= end)
3275 				sb_breadahead(sb, b++);
3276 		}
3277 
3278 		/*
3279 		 * There are other valid inodes in the buffer, this inode
3280 		 * has in-inode xattrs, or we don't have this inode in memory.
3281 		 * Read the block from disk.
3282 		 */
3283 		trace_ext4_load_inode(inode);
3284 		get_bh(bh);
3285 		bh->b_end_io = end_buffer_read_sync;
3286 		submit_bh(READ_META, bh);
3287 		wait_on_buffer(bh);
3288 		if (!buffer_uptodate(bh)) {
3289 			EXT4_ERROR_INODE_BLOCK(inode, block,
3290 					       "unable to read itable block");
3291 			brelse(bh);
3292 			return -EIO;
3293 		}
3294 	}
3295 has_buffer:
3296 	iloc->bh = bh;
3297 	return 0;
3298 }
3299 
3300 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3301 {
3302 	/* We have all inode data except xattrs in memory here. */
3303 	return __ext4_get_inode_loc(inode, iloc,
3304 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3305 }
3306 
3307 void ext4_set_inode_flags(struct inode *inode)
3308 {
3309 	unsigned int flags = EXT4_I(inode)->i_flags;
3310 
3311 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3312 	if (flags & EXT4_SYNC_FL)
3313 		inode->i_flags |= S_SYNC;
3314 	if (flags & EXT4_APPEND_FL)
3315 		inode->i_flags |= S_APPEND;
3316 	if (flags & EXT4_IMMUTABLE_FL)
3317 		inode->i_flags |= S_IMMUTABLE;
3318 	if (flags & EXT4_NOATIME_FL)
3319 		inode->i_flags |= S_NOATIME;
3320 	if (flags & EXT4_DIRSYNC_FL)
3321 		inode->i_flags |= S_DIRSYNC;
3322 }
3323 
3324 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3325 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3326 {
3327 	unsigned int vfs_fl;
3328 	unsigned long old_fl, new_fl;
3329 
3330 	do {
3331 		vfs_fl = ei->vfs_inode.i_flags;
3332 		old_fl = ei->i_flags;
3333 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3334 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3335 				EXT4_DIRSYNC_FL);
3336 		if (vfs_fl & S_SYNC)
3337 			new_fl |= EXT4_SYNC_FL;
3338 		if (vfs_fl & S_APPEND)
3339 			new_fl |= EXT4_APPEND_FL;
3340 		if (vfs_fl & S_IMMUTABLE)
3341 			new_fl |= EXT4_IMMUTABLE_FL;
3342 		if (vfs_fl & S_NOATIME)
3343 			new_fl |= EXT4_NOATIME_FL;
3344 		if (vfs_fl & S_DIRSYNC)
3345 			new_fl |= EXT4_DIRSYNC_FL;
3346 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3347 }
3348 
3349 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3350 				  struct ext4_inode_info *ei)
3351 {
3352 	blkcnt_t i_blocks ;
3353 	struct inode *inode = &(ei->vfs_inode);
3354 	struct super_block *sb = inode->i_sb;
3355 
3356 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3357 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3358 		/* we are using combined 48 bit field */
3359 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3360 					le32_to_cpu(raw_inode->i_blocks_lo);
3361 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3362 			/* i_blocks represent file system block size */
3363 			return i_blocks  << (inode->i_blkbits - 9);
3364 		} else {
3365 			return i_blocks;
3366 		}
3367 	} else {
3368 		return le32_to_cpu(raw_inode->i_blocks_lo);
3369 	}
3370 }
3371 
3372 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3373 {
3374 	struct ext4_iloc iloc;
3375 	struct ext4_inode *raw_inode;
3376 	struct ext4_inode_info *ei;
3377 	struct inode *inode;
3378 	journal_t *journal = EXT4_SB(sb)->s_journal;
3379 	long ret;
3380 	int block;
3381 
3382 	inode = iget_locked(sb, ino);
3383 	if (!inode)
3384 		return ERR_PTR(-ENOMEM);
3385 	if (!(inode->i_state & I_NEW))
3386 		return inode;
3387 
3388 	ei = EXT4_I(inode);
3389 	iloc.bh = NULL;
3390 
3391 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3392 	if (ret < 0)
3393 		goto bad_inode;
3394 	raw_inode = ext4_raw_inode(&iloc);
3395 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3396 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3397 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3398 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3399 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3400 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3401 	}
3402 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3403 
3404 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3405 	ei->i_dir_start_lookup = 0;
3406 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3407 	/* We now have enough fields to check if the inode was active or not.
3408 	 * This is needed because nfsd might try to access dead inodes
3409 	 * the test is that same one that e2fsck uses
3410 	 * NeilBrown 1999oct15
3411 	 */
3412 	if (inode->i_nlink == 0) {
3413 		if (inode->i_mode == 0 ||
3414 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3415 			/* this inode is deleted */
3416 			ret = -ESTALE;
3417 			goto bad_inode;
3418 		}
3419 		/* The only unlinked inodes we let through here have
3420 		 * valid i_mode and are being read by the orphan
3421 		 * recovery code: that's fine, we're about to complete
3422 		 * the process of deleting those. */
3423 	}
3424 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3425 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3426 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3427 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3428 		ei->i_file_acl |=
3429 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3430 	inode->i_size = ext4_isize(raw_inode);
3431 	ei->i_disksize = inode->i_size;
3432 #ifdef CONFIG_QUOTA
3433 	ei->i_reserved_quota = 0;
3434 #endif
3435 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3436 	ei->i_block_group = iloc.block_group;
3437 	ei->i_last_alloc_group = ~0;
3438 	/*
3439 	 * NOTE! The in-memory inode i_data array is in little-endian order
3440 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3441 	 */
3442 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3443 		ei->i_data[block] = raw_inode->i_block[block];
3444 	INIT_LIST_HEAD(&ei->i_orphan);
3445 
3446 	/*
3447 	 * Set transaction id's of transactions that have to be committed
3448 	 * to finish f[data]sync. We set them to currently running transaction
3449 	 * as we cannot be sure that the inode or some of its metadata isn't
3450 	 * part of the transaction - the inode could have been reclaimed and
3451 	 * now it is reread from disk.
3452 	 */
3453 	if (journal) {
3454 		transaction_t *transaction;
3455 		tid_t tid;
3456 
3457 		read_lock(&journal->j_state_lock);
3458 		if (journal->j_running_transaction)
3459 			transaction = journal->j_running_transaction;
3460 		else
3461 			transaction = journal->j_committing_transaction;
3462 		if (transaction)
3463 			tid = transaction->t_tid;
3464 		else
3465 			tid = journal->j_commit_sequence;
3466 		read_unlock(&journal->j_state_lock);
3467 		ei->i_sync_tid = tid;
3468 		ei->i_datasync_tid = tid;
3469 	}
3470 
3471 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3472 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3473 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3474 		    EXT4_INODE_SIZE(inode->i_sb)) {
3475 			ret = -EIO;
3476 			goto bad_inode;
3477 		}
3478 		if (ei->i_extra_isize == 0) {
3479 			/* The extra space is currently unused. Use it. */
3480 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3481 					    EXT4_GOOD_OLD_INODE_SIZE;
3482 		} else {
3483 			__le32 *magic = (void *)raw_inode +
3484 					EXT4_GOOD_OLD_INODE_SIZE +
3485 					ei->i_extra_isize;
3486 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3487 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3488 		}
3489 	} else
3490 		ei->i_extra_isize = 0;
3491 
3492 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3493 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3494 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3495 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3496 
3497 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3498 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3499 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3500 			inode->i_version |=
3501 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3502 	}
3503 
3504 	ret = 0;
3505 	if (ei->i_file_acl &&
3506 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3507 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3508 				 ei->i_file_acl);
3509 		ret = -EIO;
3510 		goto bad_inode;
3511 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3512 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3513 		    (S_ISLNK(inode->i_mode) &&
3514 		     !ext4_inode_is_fast_symlink(inode)))
3515 			/* Validate extent which is part of inode */
3516 			ret = ext4_ext_check_inode(inode);
3517 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3518 		   (S_ISLNK(inode->i_mode) &&
3519 		    !ext4_inode_is_fast_symlink(inode))) {
3520 		/* Validate block references which are part of inode */
3521 		ret = ext4_ind_check_inode(inode);
3522 	}
3523 	if (ret)
3524 		goto bad_inode;
3525 
3526 	if (S_ISREG(inode->i_mode)) {
3527 		inode->i_op = &ext4_file_inode_operations;
3528 		inode->i_fop = &ext4_file_operations;
3529 		ext4_set_aops(inode);
3530 	} else if (S_ISDIR(inode->i_mode)) {
3531 		inode->i_op = &ext4_dir_inode_operations;
3532 		inode->i_fop = &ext4_dir_operations;
3533 	} else if (S_ISLNK(inode->i_mode)) {
3534 		if (ext4_inode_is_fast_symlink(inode)) {
3535 			inode->i_op = &ext4_fast_symlink_inode_operations;
3536 			nd_terminate_link(ei->i_data, inode->i_size,
3537 				sizeof(ei->i_data) - 1);
3538 		} else {
3539 			inode->i_op = &ext4_symlink_inode_operations;
3540 			ext4_set_aops(inode);
3541 		}
3542 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3543 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3544 		inode->i_op = &ext4_special_inode_operations;
3545 		if (raw_inode->i_block[0])
3546 			init_special_inode(inode, inode->i_mode,
3547 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3548 		else
3549 			init_special_inode(inode, inode->i_mode,
3550 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3551 	} else {
3552 		ret = -EIO;
3553 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3554 		goto bad_inode;
3555 	}
3556 	brelse(iloc.bh);
3557 	ext4_set_inode_flags(inode);
3558 	unlock_new_inode(inode);
3559 	return inode;
3560 
3561 bad_inode:
3562 	brelse(iloc.bh);
3563 	iget_failed(inode);
3564 	return ERR_PTR(ret);
3565 }
3566 
3567 static int ext4_inode_blocks_set(handle_t *handle,
3568 				struct ext4_inode *raw_inode,
3569 				struct ext4_inode_info *ei)
3570 {
3571 	struct inode *inode = &(ei->vfs_inode);
3572 	u64 i_blocks = inode->i_blocks;
3573 	struct super_block *sb = inode->i_sb;
3574 
3575 	if (i_blocks <= ~0U) {
3576 		/*
3577 		 * i_blocks can be represnted in a 32 bit variable
3578 		 * as multiple of 512 bytes
3579 		 */
3580 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3581 		raw_inode->i_blocks_high = 0;
3582 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3583 		return 0;
3584 	}
3585 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3586 		return -EFBIG;
3587 
3588 	if (i_blocks <= 0xffffffffffffULL) {
3589 		/*
3590 		 * i_blocks can be represented in a 48 bit variable
3591 		 * as multiple of 512 bytes
3592 		 */
3593 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3594 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3595 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3596 	} else {
3597 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598 		/* i_block is stored in file system block size */
3599 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3600 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3601 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3602 	}
3603 	return 0;
3604 }
3605 
3606 /*
3607  * Post the struct inode info into an on-disk inode location in the
3608  * buffer-cache.  This gobbles the caller's reference to the
3609  * buffer_head in the inode location struct.
3610  *
3611  * The caller must have write access to iloc->bh.
3612  */
3613 static int ext4_do_update_inode(handle_t *handle,
3614 				struct inode *inode,
3615 				struct ext4_iloc *iloc)
3616 {
3617 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3618 	struct ext4_inode_info *ei = EXT4_I(inode);
3619 	struct buffer_head *bh = iloc->bh;
3620 	int err = 0, rc, block;
3621 
3622 	/* For fields not not tracking in the in-memory inode,
3623 	 * initialise them to zero for new inodes. */
3624 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3625 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3626 
3627 	ext4_get_inode_flags(ei);
3628 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3629 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3630 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3631 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3632 /*
3633  * Fix up interoperability with old kernels. Otherwise, old inodes get
3634  * re-used with the upper 16 bits of the uid/gid intact
3635  */
3636 		if (!ei->i_dtime) {
3637 			raw_inode->i_uid_high =
3638 				cpu_to_le16(high_16_bits(inode->i_uid));
3639 			raw_inode->i_gid_high =
3640 				cpu_to_le16(high_16_bits(inode->i_gid));
3641 		} else {
3642 			raw_inode->i_uid_high = 0;
3643 			raw_inode->i_gid_high = 0;
3644 		}
3645 	} else {
3646 		raw_inode->i_uid_low =
3647 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3648 		raw_inode->i_gid_low =
3649 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3650 		raw_inode->i_uid_high = 0;
3651 		raw_inode->i_gid_high = 0;
3652 	}
3653 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3654 
3655 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3656 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3657 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3658 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3659 
3660 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3661 		goto out_brelse;
3662 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3663 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3664 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3665 	    cpu_to_le32(EXT4_OS_HURD))
3666 		raw_inode->i_file_acl_high =
3667 			cpu_to_le16(ei->i_file_acl >> 32);
3668 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3669 	ext4_isize_set(raw_inode, ei->i_disksize);
3670 	if (ei->i_disksize > 0x7fffffffULL) {
3671 		struct super_block *sb = inode->i_sb;
3672 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3673 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3674 				EXT4_SB(sb)->s_es->s_rev_level ==
3675 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3676 			/* If this is the first large file
3677 			 * created, add a flag to the superblock.
3678 			 */
3679 			err = ext4_journal_get_write_access(handle,
3680 					EXT4_SB(sb)->s_sbh);
3681 			if (err)
3682 				goto out_brelse;
3683 			ext4_update_dynamic_rev(sb);
3684 			EXT4_SET_RO_COMPAT_FEATURE(sb,
3685 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3686 			sb->s_dirt = 1;
3687 			ext4_handle_sync(handle);
3688 			err = ext4_handle_dirty_metadata(handle, NULL,
3689 					EXT4_SB(sb)->s_sbh);
3690 		}
3691 	}
3692 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3693 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3694 		if (old_valid_dev(inode->i_rdev)) {
3695 			raw_inode->i_block[0] =
3696 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3697 			raw_inode->i_block[1] = 0;
3698 		} else {
3699 			raw_inode->i_block[0] = 0;
3700 			raw_inode->i_block[1] =
3701 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3702 			raw_inode->i_block[2] = 0;
3703 		}
3704 	} else
3705 		for (block = 0; block < EXT4_N_BLOCKS; block++)
3706 			raw_inode->i_block[block] = ei->i_data[block];
3707 
3708 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3709 	if (ei->i_extra_isize) {
3710 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3711 			raw_inode->i_version_hi =
3712 			cpu_to_le32(inode->i_version >> 32);
3713 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3714 	}
3715 
3716 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3717 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3718 	if (!err)
3719 		err = rc;
3720 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3721 
3722 	ext4_update_inode_fsync_trans(handle, inode, 0);
3723 out_brelse:
3724 	brelse(bh);
3725 	ext4_std_error(inode->i_sb, err);
3726 	return err;
3727 }
3728 
3729 /*
3730  * ext4_write_inode()
3731  *
3732  * We are called from a few places:
3733  *
3734  * - Within generic_file_write() for O_SYNC files.
3735  *   Here, there will be no transaction running. We wait for any running
3736  *   trasnaction to commit.
3737  *
3738  * - Within sys_sync(), kupdate and such.
3739  *   We wait on commit, if tol to.
3740  *
3741  * - Within prune_icache() (PF_MEMALLOC == true)
3742  *   Here we simply return.  We can't afford to block kswapd on the
3743  *   journal commit.
3744  *
3745  * In all cases it is actually safe for us to return without doing anything,
3746  * because the inode has been copied into a raw inode buffer in
3747  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3748  * knfsd.
3749  *
3750  * Note that we are absolutely dependent upon all inode dirtiers doing the
3751  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3752  * which we are interested.
3753  *
3754  * It would be a bug for them to not do this.  The code:
3755  *
3756  *	mark_inode_dirty(inode)
3757  *	stuff();
3758  *	inode->i_size = expr;
3759  *
3760  * is in error because a kswapd-driven write_inode() could occur while
3761  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3762  * will no longer be on the superblock's dirty inode list.
3763  */
3764 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3765 {
3766 	int err;
3767 
3768 	if (current->flags & PF_MEMALLOC)
3769 		return 0;
3770 
3771 	if (EXT4_SB(inode->i_sb)->s_journal) {
3772 		if (ext4_journal_current_handle()) {
3773 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3774 			dump_stack();
3775 			return -EIO;
3776 		}
3777 
3778 		if (wbc->sync_mode != WB_SYNC_ALL)
3779 			return 0;
3780 
3781 		err = ext4_force_commit(inode->i_sb);
3782 	} else {
3783 		struct ext4_iloc iloc;
3784 
3785 		err = __ext4_get_inode_loc(inode, &iloc, 0);
3786 		if (err)
3787 			return err;
3788 		if (wbc->sync_mode == WB_SYNC_ALL)
3789 			sync_dirty_buffer(iloc.bh);
3790 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3791 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3792 					 "IO error syncing inode");
3793 			err = -EIO;
3794 		}
3795 		brelse(iloc.bh);
3796 	}
3797 	return err;
3798 }
3799 
3800 /*
3801  * ext4_setattr()
3802  *
3803  * Called from notify_change.
3804  *
3805  * We want to trap VFS attempts to truncate the file as soon as
3806  * possible.  In particular, we want to make sure that when the VFS
3807  * shrinks i_size, we put the inode on the orphan list and modify
3808  * i_disksize immediately, so that during the subsequent flushing of
3809  * dirty pages and freeing of disk blocks, we can guarantee that any
3810  * commit will leave the blocks being flushed in an unused state on
3811  * disk.  (On recovery, the inode will get truncated and the blocks will
3812  * be freed, so we have a strong guarantee that no future commit will
3813  * leave these blocks visible to the user.)
3814  *
3815  * Another thing we have to assure is that if we are in ordered mode
3816  * and inode is still attached to the committing transaction, we must
3817  * we start writeout of all the dirty pages which are being truncated.
3818  * This way we are sure that all the data written in the previous
3819  * transaction are already on disk (truncate waits for pages under
3820  * writeback).
3821  *
3822  * Called with inode->i_mutex down.
3823  */
3824 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3825 {
3826 	struct inode *inode = dentry->d_inode;
3827 	int error, rc = 0;
3828 	int orphan = 0;
3829 	const unsigned int ia_valid = attr->ia_valid;
3830 
3831 	error = inode_change_ok(inode, attr);
3832 	if (error)
3833 		return error;
3834 
3835 	if (is_quota_modification(inode, attr))
3836 		dquot_initialize(inode);
3837 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3838 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3839 		handle_t *handle;
3840 
3841 		/* (user+group)*(old+new) structure, inode write (sb,
3842 		 * inode block, ? - but truncate inode update has it) */
3843 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3844 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3845 		if (IS_ERR(handle)) {
3846 			error = PTR_ERR(handle);
3847 			goto err_out;
3848 		}
3849 		error = dquot_transfer(inode, attr);
3850 		if (error) {
3851 			ext4_journal_stop(handle);
3852 			return error;
3853 		}
3854 		/* Update corresponding info in inode so that everything is in
3855 		 * one transaction */
3856 		if (attr->ia_valid & ATTR_UID)
3857 			inode->i_uid = attr->ia_uid;
3858 		if (attr->ia_valid & ATTR_GID)
3859 			inode->i_gid = attr->ia_gid;
3860 		error = ext4_mark_inode_dirty(handle, inode);
3861 		ext4_journal_stop(handle);
3862 	}
3863 
3864 	if (attr->ia_valid & ATTR_SIZE) {
3865 		inode_dio_wait(inode);
3866 
3867 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3868 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3869 
3870 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
3871 				return -EFBIG;
3872 		}
3873 	}
3874 
3875 	if (S_ISREG(inode->i_mode) &&
3876 	    attr->ia_valid & ATTR_SIZE &&
3877 	    (attr->ia_size < inode->i_size)) {
3878 		handle_t *handle;
3879 
3880 		handle = ext4_journal_start(inode, 3);
3881 		if (IS_ERR(handle)) {
3882 			error = PTR_ERR(handle);
3883 			goto err_out;
3884 		}
3885 		if (ext4_handle_valid(handle)) {
3886 			error = ext4_orphan_add(handle, inode);
3887 			orphan = 1;
3888 		}
3889 		EXT4_I(inode)->i_disksize = attr->ia_size;
3890 		rc = ext4_mark_inode_dirty(handle, inode);
3891 		if (!error)
3892 			error = rc;
3893 		ext4_journal_stop(handle);
3894 
3895 		if (ext4_should_order_data(inode)) {
3896 			error = ext4_begin_ordered_truncate(inode,
3897 							    attr->ia_size);
3898 			if (error) {
3899 				/* Do as much error cleanup as possible */
3900 				handle = ext4_journal_start(inode, 3);
3901 				if (IS_ERR(handle)) {
3902 					ext4_orphan_del(NULL, inode);
3903 					goto err_out;
3904 				}
3905 				ext4_orphan_del(handle, inode);
3906 				orphan = 0;
3907 				ext4_journal_stop(handle);
3908 				goto err_out;
3909 			}
3910 		}
3911 	}
3912 
3913 	if (attr->ia_valid & ATTR_SIZE) {
3914 		if (attr->ia_size != i_size_read(inode)) {
3915 			truncate_setsize(inode, attr->ia_size);
3916 			ext4_truncate(inode);
3917 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3918 			ext4_truncate(inode);
3919 	}
3920 
3921 	if (!rc) {
3922 		setattr_copy(inode, attr);
3923 		mark_inode_dirty(inode);
3924 	}
3925 
3926 	/*
3927 	 * If the call to ext4_truncate failed to get a transaction handle at
3928 	 * all, we need to clean up the in-core orphan list manually.
3929 	 */
3930 	if (orphan && inode->i_nlink)
3931 		ext4_orphan_del(NULL, inode);
3932 
3933 	if (!rc && (ia_valid & ATTR_MODE))
3934 		rc = ext4_acl_chmod(inode);
3935 
3936 err_out:
3937 	ext4_std_error(inode->i_sb, error);
3938 	if (!error)
3939 		error = rc;
3940 	return error;
3941 }
3942 
3943 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3944 		 struct kstat *stat)
3945 {
3946 	struct inode *inode;
3947 	unsigned long delalloc_blocks;
3948 
3949 	inode = dentry->d_inode;
3950 	generic_fillattr(inode, stat);
3951 
3952 	/*
3953 	 * We can't update i_blocks if the block allocation is delayed
3954 	 * otherwise in the case of system crash before the real block
3955 	 * allocation is done, we will have i_blocks inconsistent with
3956 	 * on-disk file blocks.
3957 	 * We always keep i_blocks updated together with real
3958 	 * allocation. But to not confuse with user, stat
3959 	 * will return the blocks that include the delayed allocation
3960 	 * blocks for this file.
3961 	 */
3962 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3963 
3964 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3965 	return 0;
3966 }
3967 
3968 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3969 {
3970 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3971 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3972 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3973 }
3974 
3975 /*
3976  * Account for index blocks, block groups bitmaps and block group
3977  * descriptor blocks if modify datablocks and index blocks
3978  * worse case, the indexs blocks spread over different block groups
3979  *
3980  * If datablocks are discontiguous, they are possible to spread over
3981  * different block groups too. If they are contiuguous, with flexbg,
3982  * they could still across block group boundary.
3983  *
3984  * Also account for superblock, inode, quota and xattr blocks
3985  */
3986 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3987 {
3988 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
3989 	int gdpblocks;
3990 	int idxblocks;
3991 	int ret = 0;
3992 
3993 	/*
3994 	 * How many index blocks need to touch to modify nrblocks?
3995 	 * The "Chunk" flag indicating whether the nrblocks is
3996 	 * physically contiguous on disk
3997 	 *
3998 	 * For Direct IO and fallocate, they calls get_block to allocate
3999 	 * one single extent at a time, so they could set the "Chunk" flag
4000 	 */
4001 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4002 
4003 	ret = idxblocks;
4004 
4005 	/*
4006 	 * Now let's see how many group bitmaps and group descriptors need
4007 	 * to account
4008 	 */
4009 	groups = idxblocks;
4010 	if (chunk)
4011 		groups += 1;
4012 	else
4013 		groups += nrblocks;
4014 
4015 	gdpblocks = groups;
4016 	if (groups > ngroups)
4017 		groups = ngroups;
4018 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4019 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4020 
4021 	/* bitmaps and block group descriptor blocks */
4022 	ret += groups + gdpblocks;
4023 
4024 	/* Blocks for super block, inode, quota and xattr blocks */
4025 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4026 
4027 	return ret;
4028 }
4029 
4030 /*
4031  * Calculate the total number of credits to reserve to fit
4032  * the modification of a single pages into a single transaction,
4033  * which may include multiple chunks of block allocations.
4034  *
4035  * This could be called via ext4_write_begin()
4036  *
4037  * We need to consider the worse case, when
4038  * one new block per extent.
4039  */
4040 int ext4_writepage_trans_blocks(struct inode *inode)
4041 {
4042 	int bpp = ext4_journal_blocks_per_page(inode);
4043 	int ret;
4044 
4045 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4046 
4047 	/* Account for data blocks for journalled mode */
4048 	if (ext4_should_journal_data(inode))
4049 		ret += bpp;
4050 	return ret;
4051 }
4052 
4053 /*
4054  * Calculate the journal credits for a chunk of data modification.
4055  *
4056  * This is called from DIO, fallocate or whoever calling
4057  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4058  *
4059  * journal buffers for data blocks are not included here, as DIO
4060  * and fallocate do no need to journal data buffers.
4061  */
4062 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4063 {
4064 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4065 }
4066 
4067 /*
4068  * The caller must have previously called ext4_reserve_inode_write().
4069  * Give this, we know that the caller already has write access to iloc->bh.
4070  */
4071 int ext4_mark_iloc_dirty(handle_t *handle,
4072 			 struct inode *inode, struct ext4_iloc *iloc)
4073 {
4074 	int err = 0;
4075 
4076 	if (test_opt(inode->i_sb, I_VERSION))
4077 		inode_inc_iversion(inode);
4078 
4079 	/* the do_update_inode consumes one bh->b_count */
4080 	get_bh(iloc->bh);
4081 
4082 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4083 	err = ext4_do_update_inode(handle, inode, iloc);
4084 	put_bh(iloc->bh);
4085 	return err;
4086 }
4087 
4088 /*
4089  * On success, We end up with an outstanding reference count against
4090  * iloc->bh.  This _must_ be cleaned up later.
4091  */
4092 
4093 int
4094 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4095 			 struct ext4_iloc *iloc)
4096 {
4097 	int err;
4098 
4099 	err = ext4_get_inode_loc(inode, iloc);
4100 	if (!err) {
4101 		BUFFER_TRACE(iloc->bh, "get_write_access");
4102 		err = ext4_journal_get_write_access(handle, iloc->bh);
4103 		if (err) {
4104 			brelse(iloc->bh);
4105 			iloc->bh = NULL;
4106 		}
4107 	}
4108 	ext4_std_error(inode->i_sb, err);
4109 	return err;
4110 }
4111 
4112 /*
4113  * Expand an inode by new_extra_isize bytes.
4114  * Returns 0 on success or negative error number on failure.
4115  */
4116 static int ext4_expand_extra_isize(struct inode *inode,
4117 				   unsigned int new_extra_isize,
4118 				   struct ext4_iloc iloc,
4119 				   handle_t *handle)
4120 {
4121 	struct ext4_inode *raw_inode;
4122 	struct ext4_xattr_ibody_header *header;
4123 
4124 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4125 		return 0;
4126 
4127 	raw_inode = ext4_raw_inode(&iloc);
4128 
4129 	header = IHDR(inode, raw_inode);
4130 
4131 	/* No extended attributes present */
4132 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4133 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4135 			new_extra_isize);
4136 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4137 		return 0;
4138 	}
4139 
4140 	/* try to expand with EAs present */
4141 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4142 					  raw_inode, handle);
4143 }
4144 
4145 /*
4146  * What we do here is to mark the in-core inode as clean with respect to inode
4147  * dirtiness (it may still be data-dirty).
4148  * This means that the in-core inode may be reaped by prune_icache
4149  * without having to perform any I/O.  This is a very good thing,
4150  * because *any* task may call prune_icache - even ones which
4151  * have a transaction open against a different journal.
4152  *
4153  * Is this cheating?  Not really.  Sure, we haven't written the
4154  * inode out, but prune_icache isn't a user-visible syncing function.
4155  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4156  * we start and wait on commits.
4157  *
4158  * Is this efficient/effective?  Well, we're being nice to the system
4159  * by cleaning up our inodes proactively so they can be reaped
4160  * without I/O.  But we are potentially leaving up to five seconds'
4161  * worth of inodes floating about which prune_icache wants us to
4162  * write out.  One way to fix that would be to get prune_icache()
4163  * to do a write_super() to free up some memory.  It has the desired
4164  * effect.
4165  */
4166 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4167 {
4168 	struct ext4_iloc iloc;
4169 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4170 	static unsigned int mnt_count;
4171 	int err, ret;
4172 
4173 	might_sleep();
4174 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4175 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4176 	if (ext4_handle_valid(handle) &&
4177 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4178 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4179 		/*
4180 		 * We need extra buffer credits since we may write into EA block
4181 		 * with this same handle. If journal_extend fails, then it will
4182 		 * only result in a minor loss of functionality for that inode.
4183 		 * If this is felt to be critical, then e2fsck should be run to
4184 		 * force a large enough s_min_extra_isize.
4185 		 */
4186 		if ((jbd2_journal_extend(handle,
4187 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4188 			ret = ext4_expand_extra_isize(inode,
4189 						      sbi->s_want_extra_isize,
4190 						      iloc, handle);
4191 			if (ret) {
4192 				ext4_set_inode_state(inode,
4193 						     EXT4_STATE_NO_EXPAND);
4194 				if (mnt_count !=
4195 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4196 					ext4_warning(inode->i_sb,
4197 					"Unable to expand inode %lu. Delete"
4198 					" some EAs or run e2fsck.",
4199 					inode->i_ino);
4200 					mnt_count =
4201 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4202 				}
4203 			}
4204 		}
4205 	}
4206 	if (!err)
4207 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4208 	return err;
4209 }
4210 
4211 /*
4212  * ext4_dirty_inode() is called from __mark_inode_dirty()
4213  *
4214  * We're really interested in the case where a file is being extended.
4215  * i_size has been changed by generic_commit_write() and we thus need
4216  * to include the updated inode in the current transaction.
4217  *
4218  * Also, dquot_alloc_block() will always dirty the inode when blocks
4219  * are allocated to the file.
4220  *
4221  * If the inode is marked synchronous, we don't honour that here - doing
4222  * so would cause a commit on atime updates, which we don't bother doing.
4223  * We handle synchronous inodes at the highest possible level.
4224  */
4225 void ext4_dirty_inode(struct inode *inode, int flags)
4226 {
4227 	handle_t *handle;
4228 
4229 	handle = ext4_journal_start(inode, 2);
4230 	if (IS_ERR(handle))
4231 		goto out;
4232 
4233 	ext4_mark_inode_dirty(handle, inode);
4234 
4235 	ext4_journal_stop(handle);
4236 out:
4237 	return;
4238 }
4239 
4240 #if 0
4241 /*
4242  * Bind an inode's backing buffer_head into this transaction, to prevent
4243  * it from being flushed to disk early.  Unlike
4244  * ext4_reserve_inode_write, this leaves behind no bh reference and
4245  * returns no iloc structure, so the caller needs to repeat the iloc
4246  * lookup to mark the inode dirty later.
4247  */
4248 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4249 {
4250 	struct ext4_iloc iloc;
4251 
4252 	int err = 0;
4253 	if (handle) {
4254 		err = ext4_get_inode_loc(inode, &iloc);
4255 		if (!err) {
4256 			BUFFER_TRACE(iloc.bh, "get_write_access");
4257 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4258 			if (!err)
4259 				err = ext4_handle_dirty_metadata(handle,
4260 								 NULL,
4261 								 iloc.bh);
4262 			brelse(iloc.bh);
4263 		}
4264 	}
4265 	ext4_std_error(inode->i_sb, err);
4266 	return err;
4267 }
4268 #endif
4269 
4270 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4271 {
4272 	journal_t *journal;
4273 	handle_t *handle;
4274 	int err;
4275 
4276 	/*
4277 	 * We have to be very careful here: changing a data block's
4278 	 * journaling status dynamically is dangerous.  If we write a
4279 	 * data block to the journal, change the status and then delete
4280 	 * that block, we risk forgetting to revoke the old log record
4281 	 * from the journal and so a subsequent replay can corrupt data.
4282 	 * So, first we make sure that the journal is empty and that
4283 	 * nobody is changing anything.
4284 	 */
4285 
4286 	journal = EXT4_JOURNAL(inode);
4287 	if (!journal)
4288 		return 0;
4289 	if (is_journal_aborted(journal))
4290 		return -EROFS;
4291 
4292 	jbd2_journal_lock_updates(journal);
4293 	jbd2_journal_flush(journal);
4294 
4295 	/*
4296 	 * OK, there are no updates running now, and all cached data is
4297 	 * synced to disk.  We are now in a completely consistent state
4298 	 * which doesn't have anything in the journal, and we know that
4299 	 * no filesystem updates are running, so it is safe to modify
4300 	 * the inode's in-core data-journaling state flag now.
4301 	 */
4302 
4303 	if (val)
4304 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4305 	else
4306 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4307 	ext4_set_aops(inode);
4308 
4309 	jbd2_journal_unlock_updates(journal);
4310 
4311 	/* Finally we can mark the inode as dirty. */
4312 
4313 	handle = ext4_journal_start(inode, 1);
4314 	if (IS_ERR(handle))
4315 		return PTR_ERR(handle);
4316 
4317 	err = ext4_mark_inode_dirty(handle, inode);
4318 	ext4_handle_sync(handle);
4319 	ext4_journal_stop(handle);
4320 	ext4_std_error(inode->i_sb, err);
4321 
4322 	return err;
4323 }
4324 
4325 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4326 {
4327 	return !buffer_mapped(bh);
4328 }
4329 
4330 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4331 {
4332 	struct page *page = vmf->page;
4333 	loff_t size;
4334 	unsigned long len;
4335 	int ret;
4336 	struct file *file = vma->vm_file;
4337 	struct inode *inode = file->f_path.dentry->d_inode;
4338 	struct address_space *mapping = inode->i_mapping;
4339 	handle_t *handle;
4340 	get_block_t *get_block;
4341 	int retries = 0;
4342 
4343 	/*
4344 	 * This check is racy but catches the common case. We rely on
4345 	 * __block_page_mkwrite() to do a reliable check.
4346 	 */
4347 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4348 	/* Delalloc case is easy... */
4349 	if (test_opt(inode->i_sb, DELALLOC) &&
4350 	    !ext4_should_journal_data(inode) &&
4351 	    !ext4_nonda_switch(inode->i_sb)) {
4352 		do {
4353 			ret = __block_page_mkwrite(vma, vmf,
4354 						   ext4_da_get_block_prep);
4355 		} while (ret == -ENOSPC &&
4356 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4357 		goto out_ret;
4358 	}
4359 
4360 	lock_page(page);
4361 	size = i_size_read(inode);
4362 	/* Page got truncated from under us? */
4363 	if (page->mapping != mapping || page_offset(page) > size) {
4364 		unlock_page(page);
4365 		ret = VM_FAULT_NOPAGE;
4366 		goto out;
4367 	}
4368 
4369 	if (page->index == size >> PAGE_CACHE_SHIFT)
4370 		len = size & ~PAGE_CACHE_MASK;
4371 	else
4372 		len = PAGE_CACHE_SIZE;
4373 	/*
4374 	 * Return if we have all the buffers mapped. This avoids the need to do
4375 	 * journal_start/journal_stop which can block and take a long time
4376 	 */
4377 	if (page_has_buffers(page)) {
4378 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4379 					ext4_bh_unmapped)) {
4380 			/* Wait so that we don't change page under IO */
4381 			wait_on_page_writeback(page);
4382 			ret = VM_FAULT_LOCKED;
4383 			goto out;
4384 		}
4385 	}
4386 	unlock_page(page);
4387 	/* OK, we need to fill the hole... */
4388 	if (ext4_should_dioread_nolock(inode))
4389 		get_block = ext4_get_block_write;
4390 	else
4391 		get_block = ext4_get_block;
4392 retry_alloc:
4393 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4394 	if (IS_ERR(handle)) {
4395 		ret = VM_FAULT_SIGBUS;
4396 		goto out;
4397 	}
4398 	ret = __block_page_mkwrite(vma, vmf, get_block);
4399 	if (!ret && ext4_should_journal_data(inode)) {
4400 		if (walk_page_buffers(handle, page_buffers(page), 0,
4401 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4402 			unlock_page(page);
4403 			ret = VM_FAULT_SIGBUS;
4404 			goto out;
4405 		}
4406 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4407 	}
4408 	ext4_journal_stop(handle);
4409 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4410 		goto retry_alloc;
4411 out_ret:
4412 	ret = block_page_mkwrite_return(ret);
4413 out:
4414 	return ret;
4415 }
4416