1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 457 struct ext4_map_blocks *map) 458 { 459 unsigned int status; 460 int retval; 461 462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 463 retval = ext4_ext_map_blocks(handle, inode, map, 0); 464 else 465 retval = ext4_ind_map_blocks(handle, inode, map, 0); 466 467 if (retval <= 0) 468 return retval; 469 470 if (unlikely(retval != map->m_len)) { 471 ext4_warning(inode->i_sb, 472 "ES len assertion failed for inode " 473 "%lu: retval %d != map->m_len %d", 474 inode->i_ino, retval, map->m_len); 475 WARN_ON(1); 476 } 477 478 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 479 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 480 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 481 map->m_pblk, status); 482 return retval; 483 } 484 485 /* 486 * The ext4_map_blocks() function tries to look up the requested blocks, 487 * and returns if the blocks are already mapped. 488 * 489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 490 * and store the allocated blocks in the result buffer head and mark it 491 * mapped. 492 * 493 * If file type is extents based, it will call ext4_ext_map_blocks(), 494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 495 * based files 496 * 497 * On success, it returns the number of blocks being mapped or allocated. if 498 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 499 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 500 * 501 * It returns 0 if plain look up failed (blocks have not been allocated), in 502 * that case, @map is returned as unmapped but we still do fill map->m_len to 503 * indicate the length of a hole starting at map->m_lblk. 504 * 505 * It returns the error in case of allocation failure. 506 */ 507 int ext4_map_blocks(handle_t *handle, struct inode *inode, 508 struct ext4_map_blocks *map, int flags) 509 { 510 struct extent_status es; 511 int retval; 512 int ret = 0; 513 #ifdef ES_AGGRESSIVE_TEST 514 struct ext4_map_blocks orig_map; 515 516 memcpy(&orig_map, map, sizeof(*map)); 517 #endif 518 519 map->m_flags = 0; 520 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 521 flags, map->m_len, (unsigned long) map->m_lblk); 522 523 /* 524 * ext4_map_blocks returns an int, and m_len is an unsigned int 525 */ 526 if (unlikely(map->m_len > INT_MAX)) 527 map->m_len = INT_MAX; 528 529 /* We can handle the block number less than EXT_MAX_BLOCKS */ 530 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 531 return -EFSCORRUPTED; 532 533 /* Lookup extent status tree firstly */ 534 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 535 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 536 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 537 map->m_pblk = ext4_es_pblock(&es) + 538 map->m_lblk - es.es_lblk; 539 map->m_flags |= ext4_es_is_written(&es) ? 540 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 546 map->m_pblk = 0; 547 retval = es.es_len - (map->m_lblk - es.es_lblk); 548 if (retval > map->m_len) 549 retval = map->m_len; 550 map->m_len = retval; 551 retval = 0; 552 } else { 553 BUG(); 554 } 555 556 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 557 return retval; 558 #ifdef ES_AGGRESSIVE_TEST 559 ext4_map_blocks_es_recheck(handle, inode, map, 560 &orig_map, flags); 561 #endif 562 goto found; 563 } 564 /* 565 * In the query cache no-wait mode, nothing we can do more if we 566 * cannot find extent in the cache. 567 */ 568 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 569 return 0; 570 571 /* 572 * Try to see if we can get the block without requesting a new 573 * file system block. 574 */ 575 down_read(&EXT4_I(inode)->i_data_sem); 576 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 577 retval = ext4_ext_map_blocks(handle, inode, map, 0); 578 } else { 579 retval = ext4_ind_map_blocks(handle, inode, map, 0); 580 } 581 if (retval > 0) { 582 unsigned int status; 583 584 if (unlikely(retval != map->m_len)) { 585 ext4_warning(inode->i_sb, 586 "ES len assertion failed for inode " 587 "%lu: retval %d != map->m_len %d", 588 inode->i_ino, retval, map->m_len); 589 WARN_ON(1); 590 } 591 592 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 594 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 595 !(status & EXTENT_STATUS_WRITTEN) && 596 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 597 map->m_lblk + map->m_len - 1)) 598 status |= EXTENT_STATUS_DELAYED; 599 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 600 map->m_pblk, status); 601 } 602 up_read((&EXT4_I(inode)->i_data_sem)); 603 604 found: 605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 606 ret = check_block_validity(inode, map); 607 if (ret != 0) 608 return ret; 609 } 610 611 /* If it is only a block(s) look up */ 612 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 613 return retval; 614 615 /* 616 * Returns if the blocks have already allocated 617 * 618 * Note that if blocks have been preallocated 619 * ext4_ext_get_block() returns the create = 0 620 * with buffer head unmapped. 621 */ 622 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 623 /* 624 * If we need to convert extent to unwritten 625 * we continue and do the actual work in 626 * ext4_ext_map_blocks() 627 */ 628 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 629 return retval; 630 631 /* 632 * Here we clear m_flags because after allocating an new extent, 633 * it will be set again. 634 */ 635 map->m_flags &= ~EXT4_MAP_FLAGS; 636 637 /* 638 * New blocks allocate and/or writing to unwritten extent 639 * will possibly result in updating i_data, so we take 640 * the write lock of i_data_sem, and call get_block() 641 * with create == 1 flag. 642 */ 643 down_write(&EXT4_I(inode)->i_data_sem); 644 645 /* 646 * We need to check for EXT4 here because migrate 647 * could have changed the inode type in between 648 */ 649 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 650 retval = ext4_ext_map_blocks(handle, inode, map, flags); 651 } else { 652 retval = ext4_ind_map_blocks(handle, inode, map, flags); 653 654 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 655 /* 656 * We allocated new blocks which will result in 657 * i_data's format changing. Force the migrate 658 * to fail by clearing migrate flags 659 */ 660 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 661 } 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 } 712 713 out_sem: 714 up_write((&EXT4_I(inode)->i_data_sem)); 715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 716 ret = check_block_validity(inode, map); 717 if (ret != 0) 718 return ret; 719 720 /* 721 * Inodes with freshly allocated blocks where contents will be 722 * visible after transaction commit must be on transaction's 723 * ordered data list. 724 */ 725 if (map->m_flags & EXT4_MAP_NEW && 726 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 727 !(flags & EXT4_GET_BLOCKS_ZERO) && 728 !ext4_is_quota_file(inode) && 729 ext4_should_order_data(inode)) { 730 loff_t start_byte = 731 (loff_t)map->m_lblk << inode->i_blkbits; 732 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 733 734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 735 ret = ext4_jbd2_inode_add_wait(handle, inode, 736 start_byte, length); 737 else 738 ret = ext4_jbd2_inode_add_write(handle, inode, 739 start_byte, length); 740 if (ret) 741 return ret; 742 } 743 } 744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 745 map->m_flags & EXT4_MAP_MAPPED)) 746 ext4_fc_track_range(handle, inode, map->m_lblk, 747 map->m_lblk + map->m_len - 1); 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 old_state = READ_ONCE(bh->b_state); 775 do { 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 778 } 779 780 static int _ext4_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int flags) 782 { 783 struct ext4_map_blocks map; 784 int ret = 0; 785 786 if (ext4_has_inline_data(inode)) 787 return -ERANGE; 788 789 map.m_lblk = iblock; 790 map.m_len = bh->b_size >> inode->i_blkbits; 791 792 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 793 flags); 794 if (ret > 0) { 795 map_bh(bh, inode->i_sb, map.m_pblk); 796 ext4_update_bh_state(bh, map.m_flags); 797 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 798 ret = 0; 799 } else if (ret == 0) { 800 /* hole case, need to fill in bh->b_size */ 801 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 802 } 803 return ret; 804 } 805 806 int ext4_get_block(struct inode *inode, sector_t iblock, 807 struct buffer_head *bh, int create) 808 { 809 return _ext4_get_block(inode, iblock, bh, 810 create ? EXT4_GET_BLOCKS_CREATE : 0); 811 } 812 813 /* 814 * Get block function used when preparing for buffered write if we require 815 * creating an unwritten extent if blocks haven't been allocated. The extent 816 * will be converted to written after the IO is complete. 817 */ 818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 819 struct buffer_head *bh_result, int create) 820 { 821 int ret = 0; 822 823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 824 inode->i_ino, create); 825 ret = _ext4_get_block(inode, iblock, bh_result, 826 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 827 828 /* 829 * If the buffer is marked unwritten, mark it as new to make sure it is 830 * zeroed out correctly in case of partial writes. Otherwise, there is 831 * a chance of stale data getting exposed. 832 */ 833 if (ret == 0 && buffer_unwritten(bh_result)) 834 set_buffer_new(bh_result); 835 836 return ret; 837 } 838 839 /* Maximum number of blocks we map for direct IO at once. */ 840 #define DIO_MAX_BLOCKS 4096 841 842 /* 843 * `handle' can be NULL if create is zero 844 */ 845 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 846 ext4_lblk_t block, int map_flags) 847 { 848 struct ext4_map_blocks map; 849 struct buffer_head *bh; 850 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 851 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 852 int err; 853 854 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 855 || handle != NULL || create == 0); 856 ASSERT(create == 0 || !nowait); 857 858 map.m_lblk = block; 859 map.m_len = 1; 860 err = ext4_map_blocks(handle, inode, &map, map_flags); 861 862 if (err == 0) 863 return create ? ERR_PTR(-ENOSPC) : NULL; 864 if (err < 0) 865 return ERR_PTR(err); 866 867 if (nowait) 868 return sb_find_get_block(inode->i_sb, map.m_pblk); 869 870 bh = sb_getblk(inode->i_sb, map.m_pblk); 871 if (unlikely(!bh)) 872 return ERR_PTR(-ENOMEM); 873 if (map.m_flags & EXT4_MAP_NEW) { 874 ASSERT(create != 0); 875 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 876 || (handle != NULL)); 877 878 /* 879 * Now that we do not always journal data, we should 880 * keep in mind whether this should always journal the 881 * new buffer as metadata. For now, regular file 882 * writes use ext4_get_block instead, so it's not a 883 * problem. 884 */ 885 lock_buffer(bh); 886 BUFFER_TRACE(bh, "call get_create_access"); 887 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 888 EXT4_JTR_NONE); 889 if (unlikely(err)) { 890 unlock_buffer(bh); 891 goto errout; 892 } 893 if (!buffer_uptodate(bh)) { 894 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 895 set_buffer_uptodate(bh); 896 } 897 unlock_buffer(bh); 898 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 899 err = ext4_handle_dirty_metadata(handle, inode, bh); 900 if (unlikely(err)) 901 goto errout; 902 } else 903 BUFFER_TRACE(bh, "not a new buffer"); 904 return bh; 905 errout: 906 brelse(bh); 907 return ERR_PTR(err); 908 } 909 910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 911 ext4_lblk_t block, int map_flags) 912 { 913 struct buffer_head *bh; 914 int ret; 915 916 bh = ext4_getblk(handle, inode, block, map_flags); 917 if (IS_ERR(bh)) 918 return bh; 919 if (!bh || ext4_buffer_uptodate(bh)) 920 return bh; 921 922 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 923 if (ret) { 924 put_bh(bh); 925 return ERR_PTR(ret); 926 } 927 return bh; 928 } 929 930 /* Read a contiguous batch of blocks. */ 931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 932 bool wait, struct buffer_head **bhs) 933 { 934 int i, err; 935 936 for (i = 0; i < bh_count; i++) { 937 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 938 if (IS_ERR(bhs[i])) { 939 err = PTR_ERR(bhs[i]); 940 bh_count = i; 941 goto out_brelse; 942 } 943 } 944 945 for (i = 0; i < bh_count; i++) 946 /* Note that NULL bhs[i] is valid because of holes. */ 947 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 948 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 949 950 if (!wait) 951 return 0; 952 953 for (i = 0; i < bh_count; i++) 954 if (bhs[i]) 955 wait_on_buffer(bhs[i]); 956 957 for (i = 0; i < bh_count; i++) { 958 if (bhs[i] && !buffer_uptodate(bhs[i])) { 959 err = -EIO; 960 goto out_brelse; 961 } 962 } 963 return 0; 964 965 out_brelse: 966 for (i = 0; i < bh_count; i++) { 967 brelse(bhs[i]); 968 bhs[i] = NULL; 969 } 970 return err; 971 } 972 973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 974 struct buffer_head *head, 975 unsigned from, 976 unsigned to, 977 int *partial, 978 int (*fn)(handle_t *handle, struct inode *inode, 979 struct buffer_head *bh)) 980 { 981 struct buffer_head *bh; 982 unsigned block_start, block_end; 983 unsigned blocksize = head->b_size; 984 int err, ret = 0; 985 struct buffer_head *next; 986 987 for (bh = head, block_start = 0; 988 ret == 0 && (bh != head || !block_start); 989 block_start = block_end, bh = next) { 990 next = bh->b_this_page; 991 block_end = block_start + blocksize; 992 if (block_end <= from || block_start >= to) { 993 if (partial && !buffer_uptodate(bh)) 994 *partial = 1; 995 continue; 996 } 997 err = (*fn)(handle, inode, bh); 998 if (!ret) 999 ret = err; 1000 } 1001 return ret; 1002 } 1003 1004 /* 1005 * Helper for handling dirtying of journalled data. We also mark the folio as 1006 * dirty so that writeback code knows about this page (and inode) contains 1007 * dirty data. ext4_writepages() then commits appropriate transaction to 1008 * make data stable. 1009 */ 1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1011 { 1012 folio_mark_dirty(bh->b_folio); 1013 return ext4_handle_dirty_metadata(handle, NULL, bh); 1014 } 1015 1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1017 struct buffer_head *bh) 1018 { 1019 int dirty = buffer_dirty(bh); 1020 int ret; 1021 1022 if (!buffer_mapped(bh) || buffer_freed(bh)) 1023 return 0; 1024 /* 1025 * __block_write_begin() could have dirtied some buffers. Clean 1026 * the dirty bit as jbd2_journal_get_write_access() could complain 1027 * otherwise about fs integrity issues. Setting of the dirty bit 1028 * by __block_write_begin() isn't a real problem here as we clear 1029 * the bit before releasing a page lock and thus writeback cannot 1030 * ever write the buffer. 1031 */ 1032 if (dirty) 1033 clear_buffer_dirty(bh); 1034 BUFFER_TRACE(bh, "get write access"); 1035 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1036 EXT4_JTR_NONE); 1037 if (!ret && dirty) 1038 ret = ext4_dirty_journalled_data(handle, bh); 1039 return ret; 1040 } 1041 1042 #ifdef CONFIG_FS_ENCRYPTION 1043 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1044 get_block_t *get_block) 1045 { 1046 unsigned from = pos & (PAGE_SIZE - 1); 1047 unsigned to = from + len; 1048 struct inode *inode = folio->mapping->host; 1049 unsigned block_start, block_end; 1050 sector_t block; 1051 int err = 0; 1052 unsigned blocksize = inode->i_sb->s_blocksize; 1053 unsigned bbits; 1054 struct buffer_head *bh, *head, *wait[2]; 1055 int nr_wait = 0; 1056 int i; 1057 1058 BUG_ON(!folio_test_locked(folio)); 1059 BUG_ON(from > PAGE_SIZE); 1060 BUG_ON(to > PAGE_SIZE); 1061 BUG_ON(from > to); 1062 1063 head = folio_buffers(folio); 1064 if (!head) { 1065 create_empty_buffers(&folio->page, blocksize, 0); 1066 head = folio_buffers(folio); 1067 } 1068 bbits = ilog2(blocksize); 1069 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1070 1071 for (bh = head, block_start = 0; bh != head || !block_start; 1072 block++, block_start = block_end, bh = bh->b_this_page) { 1073 block_end = block_start + blocksize; 1074 if (block_end <= from || block_start >= to) { 1075 if (folio_test_uptodate(folio)) { 1076 set_buffer_uptodate(bh); 1077 } 1078 continue; 1079 } 1080 if (buffer_new(bh)) 1081 clear_buffer_new(bh); 1082 if (!buffer_mapped(bh)) { 1083 WARN_ON(bh->b_size != blocksize); 1084 err = get_block(inode, block, bh, 1); 1085 if (err) 1086 break; 1087 if (buffer_new(bh)) { 1088 if (folio_test_uptodate(folio)) { 1089 clear_buffer_new(bh); 1090 set_buffer_uptodate(bh); 1091 mark_buffer_dirty(bh); 1092 continue; 1093 } 1094 if (block_end > to || block_start < from) 1095 folio_zero_segments(folio, to, 1096 block_end, 1097 block_start, from); 1098 continue; 1099 } 1100 } 1101 if (folio_test_uptodate(folio)) { 1102 set_buffer_uptodate(bh); 1103 continue; 1104 } 1105 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1106 !buffer_unwritten(bh) && 1107 (block_start < from || block_end > to)) { 1108 ext4_read_bh_lock(bh, 0, false); 1109 wait[nr_wait++] = bh; 1110 } 1111 } 1112 /* 1113 * If we issued read requests, let them complete. 1114 */ 1115 for (i = 0; i < nr_wait; i++) { 1116 wait_on_buffer(wait[i]); 1117 if (!buffer_uptodate(wait[i])) 1118 err = -EIO; 1119 } 1120 if (unlikely(err)) { 1121 folio_zero_new_buffers(folio, from, to); 1122 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1123 for (i = 0; i < nr_wait; i++) { 1124 int err2; 1125 1126 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1127 blocksize, bh_offset(wait[i])); 1128 if (err2) { 1129 clear_buffer_uptodate(wait[i]); 1130 err = err2; 1131 } 1132 } 1133 } 1134 1135 return err; 1136 } 1137 #endif 1138 1139 /* 1140 * To preserve ordering, it is essential that the hole instantiation and 1141 * the data write be encapsulated in a single transaction. We cannot 1142 * close off a transaction and start a new one between the ext4_get_block() 1143 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1144 * ext4_write_begin() is the right place. 1145 */ 1146 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1147 loff_t pos, unsigned len, 1148 struct page **pagep, void **fsdata) 1149 { 1150 struct inode *inode = mapping->host; 1151 int ret, needed_blocks; 1152 handle_t *handle; 1153 int retries = 0; 1154 struct folio *folio; 1155 pgoff_t index; 1156 unsigned from, to; 1157 1158 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1159 return -EIO; 1160 1161 trace_ext4_write_begin(inode, pos, len); 1162 /* 1163 * Reserve one block more for addition to orphan list in case 1164 * we allocate blocks but write fails for some reason 1165 */ 1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1167 index = pos >> PAGE_SHIFT; 1168 from = pos & (PAGE_SIZE - 1); 1169 to = from + len; 1170 1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1173 pagep); 1174 if (ret < 0) 1175 return ret; 1176 if (ret == 1) 1177 return 0; 1178 } 1179 1180 /* 1181 * __filemap_get_folio() can take a long time if the 1182 * system is thrashing due to memory pressure, or if the folio 1183 * is being written back. So grab it first before we start 1184 * the transaction handle. This also allows us to allocate 1185 * the folio (if needed) without using GFP_NOFS. 1186 */ 1187 retry_grab: 1188 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1189 mapping_gfp_mask(mapping)); 1190 if (IS_ERR(folio)) 1191 return PTR_ERR(folio); 1192 /* 1193 * The same as page allocation, we prealloc buffer heads before 1194 * starting the handle. 1195 */ 1196 if (!folio_buffers(folio)) 1197 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1198 1199 folio_unlock(folio); 1200 1201 retry_journal: 1202 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1203 if (IS_ERR(handle)) { 1204 folio_put(folio); 1205 return PTR_ERR(handle); 1206 } 1207 1208 folio_lock(folio); 1209 if (folio->mapping != mapping) { 1210 /* The folio got truncated from under us */ 1211 folio_unlock(folio); 1212 folio_put(folio); 1213 ext4_journal_stop(handle); 1214 goto retry_grab; 1215 } 1216 /* In case writeback began while the folio was unlocked */ 1217 folio_wait_stable(folio); 1218 1219 #ifdef CONFIG_FS_ENCRYPTION 1220 if (ext4_should_dioread_nolock(inode)) 1221 ret = ext4_block_write_begin(folio, pos, len, 1222 ext4_get_block_unwritten); 1223 else 1224 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1225 #else 1226 if (ext4_should_dioread_nolock(inode)) 1227 ret = __block_write_begin(&folio->page, pos, len, 1228 ext4_get_block_unwritten); 1229 else 1230 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1231 #endif 1232 if (!ret && ext4_should_journal_data(inode)) { 1233 ret = ext4_walk_page_buffers(handle, inode, 1234 folio_buffers(folio), from, to, 1235 NULL, do_journal_get_write_access); 1236 } 1237 1238 if (ret) { 1239 bool extended = (pos + len > inode->i_size) && 1240 !ext4_verity_in_progress(inode); 1241 1242 folio_unlock(folio); 1243 /* 1244 * __block_write_begin may have instantiated a few blocks 1245 * outside i_size. Trim these off again. Don't need 1246 * i_size_read because we hold i_rwsem. 1247 * 1248 * Add inode to orphan list in case we crash before 1249 * truncate finishes 1250 */ 1251 if (extended && ext4_can_truncate(inode)) 1252 ext4_orphan_add(handle, inode); 1253 1254 ext4_journal_stop(handle); 1255 if (extended) { 1256 ext4_truncate_failed_write(inode); 1257 /* 1258 * If truncate failed early the inode might 1259 * still be on the orphan list; we need to 1260 * make sure the inode is removed from the 1261 * orphan list in that case. 1262 */ 1263 if (inode->i_nlink) 1264 ext4_orphan_del(NULL, inode); 1265 } 1266 1267 if (ret == -ENOSPC && 1268 ext4_should_retry_alloc(inode->i_sb, &retries)) 1269 goto retry_journal; 1270 folio_put(folio); 1271 return ret; 1272 } 1273 *pagep = &folio->page; 1274 return ret; 1275 } 1276 1277 /* For write_end() in data=journal mode */ 1278 static int write_end_fn(handle_t *handle, struct inode *inode, 1279 struct buffer_head *bh) 1280 { 1281 int ret; 1282 if (!buffer_mapped(bh) || buffer_freed(bh)) 1283 return 0; 1284 set_buffer_uptodate(bh); 1285 ret = ext4_dirty_journalled_data(handle, bh); 1286 clear_buffer_meta(bh); 1287 clear_buffer_prio(bh); 1288 return ret; 1289 } 1290 1291 /* 1292 * We need to pick up the new inode size which generic_commit_write gave us 1293 * `file' can be NULL - eg, when called from page_symlink(). 1294 * 1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1296 * buffers are managed internally. 1297 */ 1298 static int ext4_write_end(struct file *file, 1299 struct address_space *mapping, 1300 loff_t pos, unsigned len, unsigned copied, 1301 struct page *page, void *fsdata) 1302 { 1303 struct folio *folio = page_folio(page); 1304 handle_t *handle = ext4_journal_current_handle(); 1305 struct inode *inode = mapping->host; 1306 loff_t old_size = inode->i_size; 1307 int ret = 0, ret2; 1308 int i_size_changed = 0; 1309 bool verity = ext4_verity_in_progress(inode); 1310 1311 trace_ext4_write_end(inode, pos, len, copied); 1312 1313 if (ext4_has_inline_data(inode) && 1314 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1315 return ext4_write_inline_data_end(inode, pos, len, copied, 1316 folio); 1317 1318 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1319 /* 1320 * it's important to update i_size while still holding folio lock: 1321 * page writeout could otherwise come in and zero beyond i_size. 1322 * 1323 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1324 * blocks are being written past EOF, so skip the i_size update. 1325 */ 1326 if (!verity) 1327 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1328 folio_unlock(folio); 1329 folio_put(folio); 1330 1331 if (old_size < pos && !verity) 1332 pagecache_isize_extended(inode, old_size, pos); 1333 /* 1334 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1335 * makes the holding time of folio lock longer. Second, it forces lock 1336 * ordering of folio lock and transaction start for journaling 1337 * filesystems. 1338 */ 1339 if (i_size_changed) 1340 ret = ext4_mark_inode_dirty(handle, inode); 1341 1342 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1343 /* if we have allocated more blocks and copied 1344 * less. We will have blocks allocated outside 1345 * inode->i_size. So truncate them 1346 */ 1347 ext4_orphan_add(handle, inode); 1348 1349 ret2 = ext4_journal_stop(handle); 1350 if (!ret) 1351 ret = ret2; 1352 1353 if (pos + len > inode->i_size && !verity) { 1354 ext4_truncate_failed_write(inode); 1355 /* 1356 * If truncate failed early the inode might still be 1357 * on the orphan list; we need to make sure the inode 1358 * is removed from the orphan list in that case. 1359 */ 1360 if (inode->i_nlink) 1361 ext4_orphan_del(NULL, inode); 1362 } 1363 1364 return ret ? ret : copied; 1365 } 1366 1367 /* 1368 * This is a private version of folio_zero_new_buffers() which doesn't 1369 * set the buffer to be dirty, since in data=journalled mode we need 1370 * to call ext4_dirty_journalled_data() instead. 1371 */ 1372 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1373 struct inode *inode, 1374 struct folio *folio, 1375 unsigned from, unsigned to) 1376 { 1377 unsigned int block_start = 0, block_end; 1378 struct buffer_head *head, *bh; 1379 1380 bh = head = folio_buffers(folio); 1381 do { 1382 block_end = block_start + bh->b_size; 1383 if (buffer_new(bh)) { 1384 if (block_end > from && block_start < to) { 1385 if (!folio_test_uptodate(folio)) { 1386 unsigned start, size; 1387 1388 start = max(from, block_start); 1389 size = min(to, block_end) - start; 1390 1391 folio_zero_range(folio, start, size); 1392 write_end_fn(handle, inode, bh); 1393 } 1394 clear_buffer_new(bh); 1395 } 1396 } 1397 block_start = block_end; 1398 bh = bh->b_this_page; 1399 } while (bh != head); 1400 } 1401 1402 static int ext4_journalled_write_end(struct file *file, 1403 struct address_space *mapping, 1404 loff_t pos, unsigned len, unsigned copied, 1405 struct page *page, void *fsdata) 1406 { 1407 struct folio *folio = page_folio(page); 1408 handle_t *handle = ext4_journal_current_handle(); 1409 struct inode *inode = mapping->host; 1410 loff_t old_size = inode->i_size; 1411 int ret = 0, ret2; 1412 int partial = 0; 1413 unsigned from, to; 1414 int size_changed = 0; 1415 bool verity = ext4_verity_in_progress(inode); 1416 1417 trace_ext4_journalled_write_end(inode, pos, len, copied); 1418 from = pos & (PAGE_SIZE - 1); 1419 to = from + len; 1420 1421 BUG_ON(!ext4_handle_valid(handle)); 1422 1423 if (ext4_has_inline_data(inode)) 1424 return ext4_write_inline_data_end(inode, pos, len, copied, 1425 folio); 1426 1427 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1428 copied = 0; 1429 ext4_journalled_zero_new_buffers(handle, inode, folio, 1430 from, to); 1431 } else { 1432 if (unlikely(copied < len)) 1433 ext4_journalled_zero_new_buffers(handle, inode, folio, 1434 from + copied, to); 1435 ret = ext4_walk_page_buffers(handle, inode, 1436 folio_buffers(folio), 1437 from, from + copied, &partial, 1438 write_end_fn); 1439 if (!partial) 1440 folio_mark_uptodate(folio); 1441 } 1442 if (!verity) 1443 size_changed = ext4_update_inode_size(inode, pos + copied); 1444 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1445 folio_unlock(folio); 1446 folio_put(folio); 1447 1448 if (old_size < pos && !verity) 1449 pagecache_isize_extended(inode, old_size, pos); 1450 1451 if (size_changed) { 1452 ret2 = ext4_mark_inode_dirty(handle, inode); 1453 if (!ret) 1454 ret = ret2; 1455 } 1456 1457 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1458 /* if we have allocated more blocks and copied 1459 * less. We will have blocks allocated outside 1460 * inode->i_size. So truncate them 1461 */ 1462 ext4_orphan_add(handle, inode); 1463 1464 ret2 = ext4_journal_stop(handle); 1465 if (!ret) 1466 ret = ret2; 1467 if (pos + len > inode->i_size && !verity) { 1468 ext4_truncate_failed_write(inode); 1469 /* 1470 * If truncate failed early the inode might still be 1471 * on the orphan list; we need to make sure the inode 1472 * is removed from the orphan list in that case. 1473 */ 1474 if (inode->i_nlink) 1475 ext4_orphan_del(NULL, inode); 1476 } 1477 1478 return ret ? ret : copied; 1479 } 1480 1481 /* 1482 * Reserve space for a single cluster 1483 */ 1484 static int ext4_da_reserve_space(struct inode *inode) 1485 { 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1487 struct ext4_inode_info *ei = EXT4_I(inode); 1488 int ret; 1489 1490 /* 1491 * We will charge metadata quota at writeout time; this saves 1492 * us from metadata over-estimation, though we may go over by 1493 * a small amount in the end. Here we just reserve for data. 1494 */ 1495 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1496 if (ret) 1497 return ret; 1498 1499 spin_lock(&ei->i_block_reservation_lock); 1500 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1501 spin_unlock(&ei->i_block_reservation_lock); 1502 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1503 return -ENOSPC; 1504 } 1505 ei->i_reserved_data_blocks++; 1506 trace_ext4_da_reserve_space(inode); 1507 spin_unlock(&ei->i_block_reservation_lock); 1508 1509 return 0; /* success */ 1510 } 1511 1512 void ext4_da_release_space(struct inode *inode, int to_free) 1513 { 1514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1515 struct ext4_inode_info *ei = EXT4_I(inode); 1516 1517 if (!to_free) 1518 return; /* Nothing to release, exit */ 1519 1520 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1521 1522 trace_ext4_da_release_space(inode, to_free); 1523 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1524 /* 1525 * if there aren't enough reserved blocks, then the 1526 * counter is messed up somewhere. Since this 1527 * function is called from invalidate page, it's 1528 * harmless to return without any action. 1529 */ 1530 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1531 "ino %lu, to_free %d with only %d reserved " 1532 "data blocks", inode->i_ino, to_free, 1533 ei->i_reserved_data_blocks); 1534 WARN_ON(1); 1535 to_free = ei->i_reserved_data_blocks; 1536 } 1537 ei->i_reserved_data_blocks -= to_free; 1538 1539 /* update fs dirty data blocks counter */ 1540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1541 1542 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1543 1544 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1545 } 1546 1547 /* 1548 * Delayed allocation stuff 1549 */ 1550 1551 struct mpage_da_data { 1552 /* These are input fields for ext4_do_writepages() */ 1553 struct inode *inode; 1554 struct writeback_control *wbc; 1555 unsigned int can_map:1; /* Can writepages call map blocks? */ 1556 1557 /* These are internal state of ext4_do_writepages() */ 1558 pgoff_t first_page; /* The first page to write */ 1559 pgoff_t next_page; /* Current page to examine */ 1560 pgoff_t last_page; /* Last page to examine */ 1561 /* 1562 * Extent to map - this can be after first_page because that can be 1563 * fully mapped. We somewhat abuse m_flags to store whether the extent 1564 * is delalloc or unwritten. 1565 */ 1566 struct ext4_map_blocks map; 1567 struct ext4_io_submit io_submit; /* IO submission data */ 1568 unsigned int do_map:1; 1569 unsigned int scanned_until_end:1; 1570 unsigned int journalled_more_data:1; 1571 }; 1572 1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1574 bool invalidate) 1575 { 1576 unsigned nr, i; 1577 pgoff_t index, end; 1578 struct folio_batch fbatch; 1579 struct inode *inode = mpd->inode; 1580 struct address_space *mapping = inode->i_mapping; 1581 1582 /* This is necessary when next_page == 0. */ 1583 if (mpd->first_page >= mpd->next_page) 1584 return; 1585 1586 mpd->scanned_until_end = 0; 1587 index = mpd->first_page; 1588 end = mpd->next_page - 1; 1589 if (invalidate) { 1590 ext4_lblk_t start, last; 1591 start = index << (PAGE_SHIFT - inode->i_blkbits); 1592 last = end << (PAGE_SHIFT - inode->i_blkbits); 1593 1594 /* 1595 * avoid racing with extent status tree scans made by 1596 * ext4_insert_delayed_block() 1597 */ 1598 down_write(&EXT4_I(inode)->i_data_sem); 1599 ext4_es_remove_extent(inode, start, last - start + 1); 1600 up_write(&EXT4_I(inode)->i_data_sem); 1601 } 1602 1603 folio_batch_init(&fbatch); 1604 while (index <= end) { 1605 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1606 if (nr == 0) 1607 break; 1608 for (i = 0; i < nr; i++) { 1609 struct folio *folio = fbatch.folios[i]; 1610 1611 if (folio->index < mpd->first_page) 1612 continue; 1613 if (folio_next_index(folio) - 1 > end) 1614 continue; 1615 BUG_ON(!folio_test_locked(folio)); 1616 BUG_ON(folio_test_writeback(folio)); 1617 if (invalidate) { 1618 if (folio_mapped(folio)) 1619 folio_clear_dirty_for_io(folio); 1620 block_invalidate_folio(folio, 0, 1621 folio_size(folio)); 1622 folio_clear_uptodate(folio); 1623 } 1624 folio_unlock(folio); 1625 } 1626 folio_batch_release(&fbatch); 1627 } 1628 } 1629 1630 static void ext4_print_free_blocks(struct inode *inode) 1631 { 1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1633 struct super_block *sb = inode->i_sb; 1634 struct ext4_inode_info *ei = EXT4_I(inode); 1635 1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1637 EXT4_C2B(EXT4_SB(inode->i_sb), 1638 ext4_count_free_clusters(sb))); 1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1641 (long long) EXT4_C2B(EXT4_SB(sb), 1642 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1644 (long long) EXT4_C2B(EXT4_SB(sb), 1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1646 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1648 ei->i_reserved_data_blocks); 1649 return; 1650 } 1651 1652 /* 1653 * ext4_insert_delayed_block - adds a delayed block to the extents status 1654 * tree, incrementing the reserved cluster/block 1655 * count or making a pending reservation 1656 * where needed 1657 * 1658 * @inode - file containing the newly added block 1659 * @lblk - logical block to be added 1660 * 1661 * Returns 0 on success, negative error code on failure. 1662 */ 1663 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1664 { 1665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1666 int ret; 1667 bool allocated = false; 1668 1669 /* 1670 * If the cluster containing lblk is shared with a delayed, 1671 * written, or unwritten extent in a bigalloc file system, it's 1672 * already been accounted for and does not need to be reserved. 1673 * A pending reservation must be made for the cluster if it's 1674 * shared with a written or unwritten extent and doesn't already 1675 * have one. Written and unwritten extents can be purged from the 1676 * extents status tree if the system is under memory pressure, so 1677 * it's necessary to examine the extent tree if a search of the 1678 * extents status tree doesn't get a match. 1679 */ 1680 if (sbi->s_cluster_ratio == 1) { 1681 ret = ext4_da_reserve_space(inode); 1682 if (ret != 0) /* ENOSPC */ 1683 return ret; 1684 } else { /* bigalloc */ 1685 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1686 if (!ext4_es_scan_clu(inode, 1687 &ext4_es_is_mapped, lblk)) { 1688 ret = ext4_clu_mapped(inode, 1689 EXT4_B2C(sbi, lblk)); 1690 if (ret < 0) 1691 return ret; 1692 if (ret == 0) { 1693 ret = ext4_da_reserve_space(inode); 1694 if (ret != 0) /* ENOSPC */ 1695 return ret; 1696 } else { 1697 allocated = true; 1698 } 1699 } else { 1700 allocated = true; 1701 } 1702 } 1703 } 1704 1705 ext4_es_insert_delayed_block(inode, lblk, allocated); 1706 return 0; 1707 } 1708 1709 /* 1710 * This function is grabs code from the very beginning of 1711 * ext4_map_blocks, but assumes that the caller is from delayed write 1712 * time. This function looks up the requested blocks and sets the 1713 * buffer delay bit under the protection of i_data_sem. 1714 */ 1715 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1716 struct ext4_map_blocks *map, 1717 struct buffer_head *bh) 1718 { 1719 struct extent_status es; 1720 int retval; 1721 sector_t invalid_block = ~((sector_t) 0xffff); 1722 #ifdef ES_AGGRESSIVE_TEST 1723 struct ext4_map_blocks orig_map; 1724 1725 memcpy(&orig_map, map, sizeof(*map)); 1726 #endif 1727 1728 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1729 invalid_block = ~0; 1730 1731 map->m_flags = 0; 1732 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1733 (unsigned long) map->m_lblk); 1734 1735 /* Lookup extent status tree firstly */ 1736 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1737 if (ext4_es_is_hole(&es)) 1738 goto add_delayed; 1739 1740 found: 1741 /* 1742 * Delayed extent could be allocated by fallocate. 1743 * So we need to check it. 1744 */ 1745 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1746 map_bh(bh, inode->i_sb, invalid_block); 1747 set_buffer_new(bh); 1748 set_buffer_delay(bh); 1749 return 0; 1750 } 1751 1752 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1753 retval = es.es_len - (iblock - es.es_lblk); 1754 if (retval > map->m_len) 1755 retval = map->m_len; 1756 map->m_len = retval; 1757 if (ext4_es_is_written(&es)) 1758 map->m_flags |= EXT4_MAP_MAPPED; 1759 else if (ext4_es_is_unwritten(&es)) 1760 map->m_flags |= EXT4_MAP_UNWRITTEN; 1761 else 1762 BUG(); 1763 1764 #ifdef ES_AGGRESSIVE_TEST 1765 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1766 #endif 1767 return retval; 1768 } 1769 1770 /* 1771 * Try to see if we can get the block without requesting a new 1772 * file system block. 1773 */ 1774 down_read(&EXT4_I(inode)->i_data_sem); 1775 if (ext4_has_inline_data(inode)) 1776 retval = 0; 1777 else 1778 retval = ext4_map_query_blocks(NULL, inode, map); 1779 up_read(&EXT4_I(inode)->i_data_sem); 1780 if (retval) 1781 return retval; 1782 1783 add_delayed: 1784 down_write(&EXT4_I(inode)->i_data_sem); 1785 /* 1786 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1787 * and fallocate path (no folio lock) can race. Make sure we 1788 * lookup the extent status tree here again while i_data_sem 1789 * is held in write mode, before inserting a new da entry in 1790 * the extent status tree. 1791 */ 1792 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1793 if (!ext4_es_is_hole(&es)) { 1794 up_write(&EXT4_I(inode)->i_data_sem); 1795 goto found; 1796 } 1797 } else if (!ext4_has_inline_data(inode)) { 1798 retval = ext4_map_query_blocks(NULL, inode, map); 1799 if (retval) { 1800 up_write(&EXT4_I(inode)->i_data_sem); 1801 return retval; 1802 } 1803 } 1804 1805 retval = ext4_insert_delayed_block(inode, map->m_lblk); 1806 up_write(&EXT4_I(inode)->i_data_sem); 1807 if (retval) 1808 return retval; 1809 1810 map_bh(bh, inode->i_sb, invalid_block); 1811 set_buffer_new(bh); 1812 set_buffer_delay(bh); 1813 return retval; 1814 } 1815 1816 /* 1817 * This is a special get_block_t callback which is used by 1818 * ext4_da_write_begin(). It will either return mapped block or 1819 * reserve space for a single block. 1820 * 1821 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1822 * We also have b_blocknr = -1 and b_bdev initialized properly 1823 * 1824 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1825 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1826 * initialized properly. 1827 */ 1828 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1829 struct buffer_head *bh, int create) 1830 { 1831 struct ext4_map_blocks map; 1832 int ret = 0; 1833 1834 BUG_ON(create == 0); 1835 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1836 1837 map.m_lblk = iblock; 1838 map.m_len = 1; 1839 1840 /* 1841 * first, we need to know whether the block is allocated already 1842 * preallocated blocks are unmapped but should treated 1843 * the same as allocated blocks. 1844 */ 1845 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1846 if (ret <= 0) 1847 return ret; 1848 1849 map_bh(bh, inode->i_sb, map.m_pblk); 1850 ext4_update_bh_state(bh, map.m_flags); 1851 1852 if (buffer_unwritten(bh)) { 1853 /* A delayed write to unwritten bh should be marked 1854 * new and mapped. Mapped ensures that we don't do 1855 * get_block multiple times when we write to the same 1856 * offset and new ensures that we do proper zero out 1857 * for partial write. 1858 */ 1859 set_buffer_new(bh); 1860 set_buffer_mapped(bh); 1861 } 1862 return 0; 1863 } 1864 1865 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1866 { 1867 mpd->first_page += folio_nr_pages(folio); 1868 folio_unlock(folio); 1869 } 1870 1871 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1872 { 1873 size_t len; 1874 loff_t size; 1875 int err; 1876 1877 BUG_ON(folio->index != mpd->first_page); 1878 folio_clear_dirty_for_io(folio); 1879 /* 1880 * We have to be very careful here! Nothing protects writeback path 1881 * against i_size changes and the page can be writeably mapped into 1882 * page tables. So an application can be growing i_size and writing 1883 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1884 * write-protects our page in page tables and the page cannot get 1885 * written to again until we release folio lock. So only after 1886 * folio_clear_dirty_for_io() we are safe to sample i_size for 1887 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1888 * on the barrier provided by folio_test_clear_dirty() in 1889 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1890 * after page tables are updated. 1891 */ 1892 size = i_size_read(mpd->inode); 1893 len = folio_size(folio); 1894 if (folio_pos(folio) + len > size && 1895 !ext4_verity_in_progress(mpd->inode)) 1896 len = size & ~PAGE_MASK; 1897 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1898 if (!err) 1899 mpd->wbc->nr_to_write--; 1900 1901 return err; 1902 } 1903 1904 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1905 1906 /* 1907 * mballoc gives us at most this number of blocks... 1908 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1909 * The rest of mballoc seems to handle chunks up to full group size. 1910 */ 1911 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1912 1913 /* 1914 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1915 * 1916 * @mpd - extent of blocks 1917 * @lblk - logical number of the block in the file 1918 * @bh - buffer head we want to add to the extent 1919 * 1920 * The function is used to collect contig. blocks in the same state. If the 1921 * buffer doesn't require mapping for writeback and we haven't started the 1922 * extent of buffers to map yet, the function returns 'true' immediately - the 1923 * caller can write the buffer right away. Otherwise the function returns true 1924 * if the block has been added to the extent, false if the block couldn't be 1925 * added. 1926 */ 1927 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1928 struct buffer_head *bh) 1929 { 1930 struct ext4_map_blocks *map = &mpd->map; 1931 1932 /* Buffer that doesn't need mapping for writeback? */ 1933 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1934 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1935 /* So far no extent to map => we write the buffer right away */ 1936 if (map->m_len == 0) 1937 return true; 1938 return false; 1939 } 1940 1941 /* First block in the extent? */ 1942 if (map->m_len == 0) { 1943 /* We cannot map unless handle is started... */ 1944 if (!mpd->do_map) 1945 return false; 1946 map->m_lblk = lblk; 1947 map->m_len = 1; 1948 map->m_flags = bh->b_state & BH_FLAGS; 1949 return true; 1950 } 1951 1952 /* Don't go larger than mballoc is willing to allocate */ 1953 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1954 return false; 1955 1956 /* Can we merge the block to our big extent? */ 1957 if (lblk == map->m_lblk + map->m_len && 1958 (bh->b_state & BH_FLAGS) == map->m_flags) { 1959 map->m_len++; 1960 return true; 1961 } 1962 return false; 1963 } 1964 1965 /* 1966 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1967 * 1968 * @mpd - extent of blocks for mapping 1969 * @head - the first buffer in the page 1970 * @bh - buffer we should start processing from 1971 * @lblk - logical number of the block in the file corresponding to @bh 1972 * 1973 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1974 * the page for IO if all buffers in this page were mapped and there's no 1975 * accumulated extent of buffers to map or add buffers in the page to the 1976 * extent of buffers to map. The function returns 1 if the caller can continue 1977 * by processing the next page, 0 if it should stop adding buffers to the 1978 * extent to map because we cannot extend it anymore. It can also return value 1979 * < 0 in case of error during IO submission. 1980 */ 1981 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1982 struct buffer_head *head, 1983 struct buffer_head *bh, 1984 ext4_lblk_t lblk) 1985 { 1986 struct inode *inode = mpd->inode; 1987 int err; 1988 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1989 >> inode->i_blkbits; 1990 1991 if (ext4_verity_in_progress(inode)) 1992 blocks = EXT_MAX_BLOCKS; 1993 1994 do { 1995 BUG_ON(buffer_locked(bh)); 1996 1997 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1998 /* Found extent to map? */ 1999 if (mpd->map.m_len) 2000 return 0; 2001 /* Buffer needs mapping and handle is not started? */ 2002 if (!mpd->do_map) 2003 return 0; 2004 /* Everything mapped so far and we hit EOF */ 2005 break; 2006 } 2007 } while (lblk++, (bh = bh->b_this_page) != head); 2008 /* So far everything mapped? Submit the page for IO. */ 2009 if (mpd->map.m_len == 0) { 2010 err = mpage_submit_folio(mpd, head->b_folio); 2011 if (err < 0) 2012 return err; 2013 mpage_folio_done(mpd, head->b_folio); 2014 } 2015 if (lblk >= blocks) { 2016 mpd->scanned_until_end = 1; 2017 return 0; 2018 } 2019 return 1; 2020 } 2021 2022 /* 2023 * mpage_process_folio - update folio buffers corresponding to changed extent 2024 * and may submit fully mapped page for IO 2025 * @mpd: description of extent to map, on return next extent to map 2026 * @folio: Contains these buffers. 2027 * @m_lblk: logical block mapping. 2028 * @m_pblk: corresponding physical mapping. 2029 * @map_bh: determines on return whether this page requires any further 2030 * mapping or not. 2031 * 2032 * Scan given folio buffers corresponding to changed extent and update buffer 2033 * state according to new extent state. 2034 * We map delalloc buffers to their physical location, clear unwritten bits. 2035 * If the given folio is not fully mapped, we update @mpd to the next extent in 2036 * the given folio that needs mapping & return @map_bh as true. 2037 */ 2038 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2039 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2040 bool *map_bh) 2041 { 2042 struct buffer_head *head, *bh; 2043 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2044 ext4_lblk_t lblk = *m_lblk; 2045 ext4_fsblk_t pblock = *m_pblk; 2046 int err = 0; 2047 int blkbits = mpd->inode->i_blkbits; 2048 ssize_t io_end_size = 0; 2049 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2050 2051 bh = head = folio_buffers(folio); 2052 do { 2053 if (lblk < mpd->map.m_lblk) 2054 continue; 2055 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2056 /* 2057 * Buffer after end of mapped extent. 2058 * Find next buffer in the folio to map. 2059 */ 2060 mpd->map.m_len = 0; 2061 mpd->map.m_flags = 0; 2062 io_end_vec->size += io_end_size; 2063 2064 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2065 if (err > 0) 2066 err = 0; 2067 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2068 io_end_vec = ext4_alloc_io_end_vec(io_end); 2069 if (IS_ERR(io_end_vec)) { 2070 err = PTR_ERR(io_end_vec); 2071 goto out; 2072 } 2073 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2074 } 2075 *map_bh = true; 2076 goto out; 2077 } 2078 if (buffer_delay(bh)) { 2079 clear_buffer_delay(bh); 2080 bh->b_blocknr = pblock++; 2081 } 2082 clear_buffer_unwritten(bh); 2083 io_end_size += (1 << blkbits); 2084 } while (lblk++, (bh = bh->b_this_page) != head); 2085 2086 io_end_vec->size += io_end_size; 2087 *map_bh = false; 2088 out: 2089 *m_lblk = lblk; 2090 *m_pblk = pblock; 2091 return err; 2092 } 2093 2094 /* 2095 * mpage_map_buffers - update buffers corresponding to changed extent and 2096 * submit fully mapped pages for IO 2097 * 2098 * @mpd - description of extent to map, on return next extent to map 2099 * 2100 * Scan buffers corresponding to changed extent (we expect corresponding pages 2101 * to be already locked) and update buffer state according to new extent state. 2102 * We map delalloc buffers to their physical location, clear unwritten bits, 2103 * and mark buffers as uninit when we perform writes to unwritten extents 2104 * and do extent conversion after IO is finished. If the last page is not fully 2105 * mapped, we update @map to the next extent in the last page that needs 2106 * mapping. Otherwise we submit the page for IO. 2107 */ 2108 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2109 { 2110 struct folio_batch fbatch; 2111 unsigned nr, i; 2112 struct inode *inode = mpd->inode; 2113 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2114 pgoff_t start, end; 2115 ext4_lblk_t lblk; 2116 ext4_fsblk_t pblock; 2117 int err; 2118 bool map_bh = false; 2119 2120 start = mpd->map.m_lblk >> bpp_bits; 2121 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2122 lblk = start << bpp_bits; 2123 pblock = mpd->map.m_pblk; 2124 2125 folio_batch_init(&fbatch); 2126 while (start <= end) { 2127 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2128 if (nr == 0) 2129 break; 2130 for (i = 0; i < nr; i++) { 2131 struct folio *folio = fbatch.folios[i]; 2132 2133 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2134 &map_bh); 2135 /* 2136 * If map_bh is true, means page may require further bh 2137 * mapping, or maybe the page was submitted for IO. 2138 * So we return to call further extent mapping. 2139 */ 2140 if (err < 0 || map_bh) 2141 goto out; 2142 /* Page fully mapped - let IO run! */ 2143 err = mpage_submit_folio(mpd, folio); 2144 if (err < 0) 2145 goto out; 2146 mpage_folio_done(mpd, folio); 2147 } 2148 folio_batch_release(&fbatch); 2149 } 2150 /* Extent fully mapped and matches with page boundary. We are done. */ 2151 mpd->map.m_len = 0; 2152 mpd->map.m_flags = 0; 2153 return 0; 2154 out: 2155 folio_batch_release(&fbatch); 2156 return err; 2157 } 2158 2159 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2160 { 2161 struct inode *inode = mpd->inode; 2162 struct ext4_map_blocks *map = &mpd->map; 2163 int get_blocks_flags; 2164 int err, dioread_nolock; 2165 2166 trace_ext4_da_write_pages_extent(inode, map); 2167 /* 2168 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2169 * to convert an unwritten extent to be initialized (in the case 2170 * where we have written into one or more preallocated blocks). It is 2171 * possible that we're going to need more metadata blocks than 2172 * previously reserved. However we must not fail because we're in 2173 * writeback and there is nothing we can do about it so it might result 2174 * in data loss. So use reserved blocks to allocate metadata if 2175 * possible. 2176 * 2177 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2178 * the blocks in question are delalloc blocks. This indicates 2179 * that the blocks and quotas has already been checked when 2180 * the data was copied into the page cache. 2181 */ 2182 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2183 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2184 EXT4_GET_BLOCKS_IO_SUBMIT; 2185 dioread_nolock = ext4_should_dioread_nolock(inode); 2186 if (dioread_nolock) 2187 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2188 if (map->m_flags & BIT(BH_Delay)) 2189 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2190 2191 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2192 if (err < 0) 2193 return err; 2194 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2195 if (!mpd->io_submit.io_end->handle && 2196 ext4_handle_valid(handle)) { 2197 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2198 handle->h_rsv_handle = NULL; 2199 } 2200 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2201 } 2202 2203 BUG_ON(map->m_len == 0); 2204 return 0; 2205 } 2206 2207 /* 2208 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2209 * mpd->len and submit pages underlying it for IO 2210 * 2211 * @handle - handle for journal operations 2212 * @mpd - extent to map 2213 * @give_up_on_write - we set this to true iff there is a fatal error and there 2214 * is no hope of writing the data. The caller should discard 2215 * dirty pages to avoid infinite loops. 2216 * 2217 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2218 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2219 * them to initialized or split the described range from larger unwritten 2220 * extent. Note that we need not map all the described range since allocation 2221 * can return less blocks or the range is covered by more unwritten extents. We 2222 * cannot map more because we are limited by reserved transaction credits. On 2223 * the other hand we always make sure that the last touched page is fully 2224 * mapped so that it can be written out (and thus forward progress is 2225 * guaranteed). After mapping we submit all mapped pages for IO. 2226 */ 2227 static int mpage_map_and_submit_extent(handle_t *handle, 2228 struct mpage_da_data *mpd, 2229 bool *give_up_on_write) 2230 { 2231 struct inode *inode = mpd->inode; 2232 struct ext4_map_blocks *map = &mpd->map; 2233 int err; 2234 loff_t disksize; 2235 int progress = 0; 2236 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2237 struct ext4_io_end_vec *io_end_vec; 2238 2239 io_end_vec = ext4_alloc_io_end_vec(io_end); 2240 if (IS_ERR(io_end_vec)) 2241 return PTR_ERR(io_end_vec); 2242 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2243 do { 2244 err = mpage_map_one_extent(handle, mpd); 2245 if (err < 0) { 2246 struct super_block *sb = inode->i_sb; 2247 2248 if (ext4_forced_shutdown(sb)) 2249 goto invalidate_dirty_pages; 2250 /* 2251 * Let the uper layers retry transient errors. 2252 * In the case of ENOSPC, if ext4_count_free_blocks() 2253 * is non-zero, a commit should free up blocks. 2254 */ 2255 if ((err == -ENOMEM) || 2256 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2257 if (progress) 2258 goto update_disksize; 2259 return err; 2260 } 2261 ext4_msg(sb, KERN_CRIT, 2262 "Delayed block allocation failed for " 2263 "inode %lu at logical offset %llu with" 2264 " max blocks %u with error %d", 2265 inode->i_ino, 2266 (unsigned long long)map->m_lblk, 2267 (unsigned)map->m_len, -err); 2268 ext4_msg(sb, KERN_CRIT, 2269 "This should not happen!! Data will " 2270 "be lost\n"); 2271 if (err == -ENOSPC) 2272 ext4_print_free_blocks(inode); 2273 invalidate_dirty_pages: 2274 *give_up_on_write = true; 2275 return err; 2276 } 2277 progress = 1; 2278 /* 2279 * Update buffer state, submit mapped pages, and get us new 2280 * extent to map 2281 */ 2282 err = mpage_map_and_submit_buffers(mpd); 2283 if (err < 0) 2284 goto update_disksize; 2285 } while (map->m_len); 2286 2287 update_disksize: 2288 /* 2289 * Update on-disk size after IO is submitted. Races with 2290 * truncate are avoided by checking i_size under i_data_sem. 2291 */ 2292 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2293 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2294 int err2; 2295 loff_t i_size; 2296 2297 down_write(&EXT4_I(inode)->i_data_sem); 2298 i_size = i_size_read(inode); 2299 if (disksize > i_size) 2300 disksize = i_size; 2301 if (disksize > EXT4_I(inode)->i_disksize) 2302 EXT4_I(inode)->i_disksize = disksize; 2303 up_write(&EXT4_I(inode)->i_data_sem); 2304 err2 = ext4_mark_inode_dirty(handle, inode); 2305 if (err2) { 2306 ext4_error_err(inode->i_sb, -err2, 2307 "Failed to mark inode %lu dirty", 2308 inode->i_ino); 2309 } 2310 if (!err) 2311 err = err2; 2312 } 2313 return err; 2314 } 2315 2316 /* 2317 * Calculate the total number of credits to reserve for one writepages 2318 * iteration. This is called from ext4_writepages(). We map an extent of 2319 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2320 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2321 * bpp - 1 blocks in bpp different extents. 2322 */ 2323 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2324 { 2325 int bpp = ext4_journal_blocks_per_page(inode); 2326 2327 return ext4_meta_trans_blocks(inode, 2328 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2329 } 2330 2331 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2332 size_t len) 2333 { 2334 struct buffer_head *page_bufs = folio_buffers(folio); 2335 struct inode *inode = folio->mapping->host; 2336 int ret, err; 2337 2338 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2339 NULL, do_journal_get_write_access); 2340 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2341 NULL, write_end_fn); 2342 if (ret == 0) 2343 ret = err; 2344 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2345 if (ret == 0) 2346 ret = err; 2347 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2348 2349 return ret; 2350 } 2351 2352 static int mpage_journal_page_buffers(handle_t *handle, 2353 struct mpage_da_data *mpd, 2354 struct folio *folio) 2355 { 2356 struct inode *inode = mpd->inode; 2357 loff_t size = i_size_read(inode); 2358 size_t len = folio_size(folio); 2359 2360 folio_clear_checked(folio); 2361 mpd->wbc->nr_to_write--; 2362 2363 if (folio_pos(folio) + len > size && 2364 !ext4_verity_in_progress(inode)) 2365 len = size & (len - 1); 2366 2367 return ext4_journal_folio_buffers(handle, folio, len); 2368 } 2369 2370 /* 2371 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2372 * needing mapping, submit mapped pages 2373 * 2374 * @mpd - where to look for pages 2375 * 2376 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2377 * IO immediately. If we cannot map blocks, we submit just already mapped 2378 * buffers in the page for IO and keep page dirty. When we can map blocks and 2379 * we find a page which isn't mapped we start accumulating extent of buffers 2380 * underlying these pages that needs mapping (formed by either delayed or 2381 * unwritten buffers). We also lock the pages containing these buffers. The 2382 * extent found is returned in @mpd structure (starting at mpd->lblk with 2383 * length mpd->len blocks). 2384 * 2385 * Note that this function can attach bios to one io_end structure which are 2386 * neither logically nor physically contiguous. Although it may seem as an 2387 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2388 * case as we need to track IO to all buffers underlying a page in one io_end. 2389 */ 2390 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2391 { 2392 struct address_space *mapping = mpd->inode->i_mapping; 2393 struct folio_batch fbatch; 2394 unsigned int nr_folios; 2395 pgoff_t index = mpd->first_page; 2396 pgoff_t end = mpd->last_page; 2397 xa_mark_t tag; 2398 int i, err = 0; 2399 int blkbits = mpd->inode->i_blkbits; 2400 ext4_lblk_t lblk; 2401 struct buffer_head *head; 2402 handle_t *handle = NULL; 2403 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2404 2405 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2406 tag = PAGECACHE_TAG_TOWRITE; 2407 else 2408 tag = PAGECACHE_TAG_DIRTY; 2409 2410 mpd->map.m_len = 0; 2411 mpd->next_page = index; 2412 if (ext4_should_journal_data(mpd->inode)) { 2413 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2414 bpp); 2415 if (IS_ERR(handle)) 2416 return PTR_ERR(handle); 2417 } 2418 folio_batch_init(&fbatch); 2419 while (index <= end) { 2420 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2421 tag, &fbatch); 2422 if (nr_folios == 0) 2423 break; 2424 2425 for (i = 0; i < nr_folios; i++) { 2426 struct folio *folio = fbatch.folios[i]; 2427 2428 /* 2429 * Accumulated enough dirty pages? This doesn't apply 2430 * to WB_SYNC_ALL mode. For integrity sync we have to 2431 * keep going because someone may be concurrently 2432 * dirtying pages, and we might have synced a lot of 2433 * newly appeared dirty pages, but have not synced all 2434 * of the old dirty pages. 2435 */ 2436 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2437 mpd->wbc->nr_to_write <= 2438 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2439 goto out; 2440 2441 /* If we can't merge this page, we are done. */ 2442 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2443 goto out; 2444 2445 if (handle) { 2446 err = ext4_journal_ensure_credits(handle, bpp, 2447 0); 2448 if (err < 0) 2449 goto out; 2450 } 2451 2452 folio_lock(folio); 2453 /* 2454 * If the page is no longer dirty, or its mapping no 2455 * longer corresponds to inode we are writing (which 2456 * means it has been truncated or invalidated), or the 2457 * page is already under writeback and we are not doing 2458 * a data integrity writeback, skip the page 2459 */ 2460 if (!folio_test_dirty(folio) || 2461 (folio_test_writeback(folio) && 2462 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2463 unlikely(folio->mapping != mapping)) { 2464 folio_unlock(folio); 2465 continue; 2466 } 2467 2468 folio_wait_writeback(folio); 2469 BUG_ON(folio_test_writeback(folio)); 2470 2471 /* 2472 * Should never happen but for buggy code in 2473 * other subsystems that call 2474 * set_page_dirty() without properly warning 2475 * the file system first. See [1] for more 2476 * information. 2477 * 2478 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2479 */ 2480 if (!folio_buffers(folio)) { 2481 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2482 folio_clear_dirty(folio); 2483 folio_unlock(folio); 2484 continue; 2485 } 2486 2487 if (mpd->map.m_len == 0) 2488 mpd->first_page = folio->index; 2489 mpd->next_page = folio_next_index(folio); 2490 /* 2491 * Writeout when we cannot modify metadata is simple. 2492 * Just submit the page. For data=journal mode we 2493 * first handle writeout of the page for checkpoint and 2494 * only after that handle delayed page dirtying. This 2495 * makes sure current data is checkpointed to the final 2496 * location before possibly journalling it again which 2497 * is desirable when the page is frequently dirtied 2498 * through a pin. 2499 */ 2500 if (!mpd->can_map) { 2501 err = mpage_submit_folio(mpd, folio); 2502 if (err < 0) 2503 goto out; 2504 /* Pending dirtying of journalled data? */ 2505 if (folio_test_checked(folio)) { 2506 err = mpage_journal_page_buffers(handle, 2507 mpd, folio); 2508 if (err < 0) 2509 goto out; 2510 mpd->journalled_more_data = 1; 2511 } 2512 mpage_folio_done(mpd, folio); 2513 } else { 2514 /* Add all dirty buffers to mpd */ 2515 lblk = ((ext4_lblk_t)folio->index) << 2516 (PAGE_SHIFT - blkbits); 2517 head = folio_buffers(folio); 2518 err = mpage_process_page_bufs(mpd, head, head, 2519 lblk); 2520 if (err <= 0) 2521 goto out; 2522 err = 0; 2523 } 2524 } 2525 folio_batch_release(&fbatch); 2526 cond_resched(); 2527 } 2528 mpd->scanned_until_end = 1; 2529 if (handle) 2530 ext4_journal_stop(handle); 2531 return 0; 2532 out: 2533 folio_batch_release(&fbatch); 2534 if (handle) 2535 ext4_journal_stop(handle); 2536 return err; 2537 } 2538 2539 static int ext4_do_writepages(struct mpage_da_data *mpd) 2540 { 2541 struct writeback_control *wbc = mpd->wbc; 2542 pgoff_t writeback_index = 0; 2543 long nr_to_write = wbc->nr_to_write; 2544 int range_whole = 0; 2545 int cycled = 1; 2546 handle_t *handle = NULL; 2547 struct inode *inode = mpd->inode; 2548 struct address_space *mapping = inode->i_mapping; 2549 int needed_blocks, rsv_blocks = 0, ret = 0; 2550 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2551 struct blk_plug plug; 2552 bool give_up_on_write = false; 2553 2554 trace_ext4_writepages(inode, wbc); 2555 2556 /* 2557 * No pages to write? This is mainly a kludge to avoid starting 2558 * a transaction for special inodes like journal inode on last iput() 2559 * because that could violate lock ordering on umount 2560 */ 2561 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2562 goto out_writepages; 2563 2564 /* 2565 * If the filesystem has aborted, it is read-only, so return 2566 * right away instead of dumping stack traces later on that 2567 * will obscure the real source of the problem. We test 2568 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2569 * the latter could be true if the filesystem is mounted 2570 * read-only, and in that case, ext4_writepages should 2571 * *never* be called, so if that ever happens, we would want 2572 * the stack trace. 2573 */ 2574 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2575 ret = -EROFS; 2576 goto out_writepages; 2577 } 2578 2579 /* 2580 * If we have inline data and arrive here, it means that 2581 * we will soon create the block for the 1st page, so 2582 * we'd better clear the inline data here. 2583 */ 2584 if (ext4_has_inline_data(inode)) { 2585 /* Just inode will be modified... */ 2586 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2587 if (IS_ERR(handle)) { 2588 ret = PTR_ERR(handle); 2589 goto out_writepages; 2590 } 2591 BUG_ON(ext4_test_inode_state(inode, 2592 EXT4_STATE_MAY_INLINE_DATA)); 2593 ext4_destroy_inline_data(handle, inode); 2594 ext4_journal_stop(handle); 2595 } 2596 2597 /* 2598 * data=journal mode does not do delalloc so we just need to writeout / 2599 * journal already mapped buffers. On the other hand we need to commit 2600 * transaction to make data stable. We expect all the data to be 2601 * already in the journal (the only exception are DMA pinned pages 2602 * dirtied behind our back) so we commit transaction here and run the 2603 * writeback loop to checkpoint them. The checkpointing is not actually 2604 * necessary to make data persistent *but* quite a few places (extent 2605 * shifting operations, fsverity, ...) depend on being able to drop 2606 * pagecache pages after calling filemap_write_and_wait() and for that 2607 * checkpointing needs to happen. 2608 */ 2609 if (ext4_should_journal_data(inode)) { 2610 mpd->can_map = 0; 2611 if (wbc->sync_mode == WB_SYNC_ALL) 2612 ext4_fc_commit(sbi->s_journal, 2613 EXT4_I(inode)->i_datasync_tid); 2614 } 2615 mpd->journalled_more_data = 0; 2616 2617 if (ext4_should_dioread_nolock(inode)) { 2618 /* 2619 * We may need to convert up to one extent per block in 2620 * the page and we may dirty the inode. 2621 */ 2622 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2623 PAGE_SIZE >> inode->i_blkbits); 2624 } 2625 2626 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2627 range_whole = 1; 2628 2629 if (wbc->range_cyclic) { 2630 writeback_index = mapping->writeback_index; 2631 if (writeback_index) 2632 cycled = 0; 2633 mpd->first_page = writeback_index; 2634 mpd->last_page = -1; 2635 } else { 2636 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2637 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2638 } 2639 2640 ext4_io_submit_init(&mpd->io_submit, wbc); 2641 retry: 2642 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2643 tag_pages_for_writeback(mapping, mpd->first_page, 2644 mpd->last_page); 2645 blk_start_plug(&plug); 2646 2647 /* 2648 * First writeback pages that don't need mapping - we can avoid 2649 * starting a transaction unnecessarily and also avoid being blocked 2650 * in the block layer on device congestion while having transaction 2651 * started. 2652 */ 2653 mpd->do_map = 0; 2654 mpd->scanned_until_end = 0; 2655 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2656 if (!mpd->io_submit.io_end) { 2657 ret = -ENOMEM; 2658 goto unplug; 2659 } 2660 ret = mpage_prepare_extent_to_map(mpd); 2661 /* Unlock pages we didn't use */ 2662 mpage_release_unused_pages(mpd, false); 2663 /* Submit prepared bio */ 2664 ext4_io_submit(&mpd->io_submit); 2665 ext4_put_io_end_defer(mpd->io_submit.io_end); 2666 mpd->io_submit.io_end = NULL; 2667 if (ret < 0) 2668 goto unplug; 2669 2670 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2671 /* For each extent of pages we use new io_end */ 2672 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2673 if (!mpd->io_submit.io_end) { 2674 ret = -ENOMEM; 2675 break; 2676 } 2677 2678 WARN_ON_ONCE(!mpd->can_map); 2679 /* 2680 * We have two constraints: We find one extent to map and we 2681 * must always write out whole page (makes a difference when 2682 * blocksize < pagesize) so that we don't block on IO when we 2683 * try to write out the rest of the page. Journalled mode is 2684 * not supported by delalloc. 2685 */ 2686 BUG_ON(ext4_should_journal_data(inode)); 2687 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2688 2689 /* start a new transaction */ 2690 handle = ext4_journal_start_with_reserve(inode, 2691 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2692 if (IS_ERR(handle)) { 2693 ret = PTR_ERR(handle); 2694 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2695 "%ld pages, ino %lu; err %d", __func__, 2696 wbc->nr_to_write, inode->i_ino, ret); 2697 /* Release allocated io_end */ 2698 ext4_put_io_end(mpd->io_submit.io_end); 2699 mpd->io_submit.io_end = NULL; 2700 break; 2701 } 2702 mpd->do_map = 1; 2703 2704 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2705 ret = mpage_prepare_extent_to_map(mpd); 2706 if (!ret && mpd->map.m_len) 2707 ret = mpage_map_and_submit_extent(handle, mpd, 2708 &give_up_on_write); 2709 /* 2710 * Caution: If the handle is synchronous, 2711 * ext4_journal_stop() can wait for transaction commit 2712 * to finish which may depend on writeback of pages to 2713 * complete or on page lock to be released. In that 2714 * case, we have to wait until after we have 2715 * submitted all the IO, released page locks we hold, 2716 * and dropped io_end reference (for extent conversion 2717 * to be able to complete) before stopping the handle. 2718 */ 2719 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2720 ext4_journal_stop(handle); 2721 handle = NULL; 2722 mpd->do_map = 0; 2723 } 2724 /* Unlock pages we didn't use */ 2725 mpage_release_unused_pages(mpd, give_up_on_write); 2726 /* Submit prepared bio */ 2727 ext4_io_submit(&mpd->io_submit); 2728 2729 /* 2730 * Drop our io_end reference we got from init. We have 2731 * to be careful and use deferred io_end finishing if 2732 * we are still holding the transaction as we can 2733 * release the last reference to io_end which may end 2734 * up doing unwritten extent conversion. 2735 */ 2736 if (handle) { 2737 ext4_put_io_end_defer(mpd->io_submit.io_end); 2738 ext4_journal_stop(handle); 2739 } else 2740 ext4_put_io_end(mpd->io_submit.io_end); 2741 mpd->io_submit.io_end = NULL; 2742 2743 if (ret == -ENOSPC && sbi->s_journal) { 2744 /* 2745 * Commit the transaction which would 2746 * free blocks released in the transaction 2747 * and try again 2748 */ 2749 jbd2_journal_force_commit_nested(sbi->s_journal); 2750 ret = 0; 2751 continue; 2752 } 2753 /* Fatal error - ENOMEM, EIO... */ 2754 if (ret) 2755 break; 2756 } 2757 unplug: 2758 blk_finish_plug(&plug); 2759 if (!ret && !cycled && wbc->nr_to_write > 0) { 2760 cycled = 1; 2761 mpd->last_page = writeback_index - 1; 2762 mpd->first_page = 0; 2763 goto retry; 2764 } 2765 2766 /* Update index */ 2767 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2768 /* 2769 * Set the writeback_index so that range_cyclic 2770 * mode will write it back later 2771 */ 2772 mapping->writeback_index = mpd->first_page; 2773 2774 out_writepages: 2775 trace_ext4_writepages_result(inode, wbc, ret, 2776 nr_to_write - wbc->nr_to_write); 2777 return ret; 2778 } 2779 2780 static int ext4_writepages(struct address_space *mapping, 2781 struct writeback_control *wbc) 2782 { 2783 struct super_block *sb = mapping->host->i_sb; 2784 struct mpage_da_data mpd = { 2785 .inode = mapping->host, 2786 .wbc = wbc, 2787 .can_map = 1, 2788 }; 2789 int ret; 2790 int alloc_ctx; 2791 2792 if (unlikely(ext4_forced_shutdown(sb))) 2793 return -EIO; 2794 2795 alloc_ctx = ext4_writepages_down_read(sb); 2796 ret = ext4_do_writepages(&mpd); 2797 /* 2798 * For data=journal writeback we could have come across pages marked 2799 * for delayed dirtying (PageChecked) which were just added to the 2800 * running transaction. Try once more to get them to stable storage. 2801 */ 2802 if (!ret && mpd.journalled_more_data) 2803 ret = ext4_do_writepages(&mpd); 2804 ext4_writepages_up_read(sb, alloc_ctx); 2805 2806 return ret; 2807 } 2808 2809 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2810 { 2811 struct writeback_control wbc = { 2812 .sync_mode = WB_SYNC_ALL, 2813 .nr_to_write = LONG_MAX, 2814 .range_start = jinode->i_dirty_start, 2815 .range_end = jinode->i_dirty_end, 2816 }; 2817 struct mpage_da_data mpd = { 2818 .inode = jinode->i_vfs_inode, 2819 .wbc = &wbc, 2820 .can_map = 0, 2821 }; 2822 return ext4_do_writepages(&mpd); 2823 } 2824 2825 static int ext4_dax_writepages(struct address_space *mapping, 2826 struct writeback_control *wbc) 2827 { 2828 int ret; 2829 long nr_to_write = wbc->nr_to_write; 2830 struct inode *inode = mapping->host; 2831 int alloc_ctx; 2832 2833 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2834 return -EIO; 2835 2836 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2837 trace_ext4_writepages(inode, wbc); 2838 2839 ret = dax_writeback_mapping_range(mapping, 2840 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2841 trace_ext4_writepages_result(inode, wbc, ret, 2842 nr_to_write - wbc->nr_to_write); 2843 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2844 return ret; 2845 } 2846 2847 static int ext4_nonda_switch(struct super_block *sb) 2848 { 2849 s64 free_clusters, dirty_clusters; 2850 struct ext4_sb_info *sbi = EXT4_SB(sb); 2851 2852 /* 2853 * switch to non delalloc mode if we are running low 2854 * on free block. The free block accounting via percpu 2855 * counters can get slightly wrong with percpu_counter_batch getting 2856 * accumulated on each CPU without updating global counters 2857 * Delalloc need an accurate free block accounting. So switch 2858 * to non delalloc when we are near to error range. 2859 */ 2860 free_clusters = 2861 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2862 dirty_clusters = 2863 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2864 /* 2865 * Start pushing delalloc when 1/2 of free blocks are dirty. 2866 */ 2867 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2868 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2869 2870 if (2 * free_clusters < 3 * dirty_clusters || 2871 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2872 /* 2873 * free block count is less than 150% of dirty blocks 2874 * or free blocks is less than watermark 2875 */ 2876 return 1; 2877 } 2878 return 0; 2879 } 2880 2881 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2882 loff_t pos, unsigned len, 2883 struct page **pagep, void **fsdata) 2884 { 2885 int ret, retries = 0; 2886 struct folio *folio; 2887 pgoff_t index; 2888 struct inode *inode = mapping->host; 2889 2890 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2891 return -EIO; 2892 2893 index = pos >> PAGE_SHIFT; 2894 2895 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2896 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2897 return ext4_write_begin(file, mapping, pos, 2898 len, pagep, fsdata); 2899 } 2900 *fsdata = (void *)0; 2901 trace_ext4_da_write_begin(inode, pos, len); 2902 2903 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2904 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2905 pagep, fsdata); 2906 if (ret < 0) 2907 return ret; 2908 if (ret == 1) 2909 return 0; 2910 } 2911 2912 retry: 2913 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2914 mapping_gfp_mask(mapping)); 2915 if (IS_ERR(folio)) 2916 return PTR_ERR(folio); 2917 2918 #ifdef CONFIG_FS_ENCRYPTION 2919 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2920 #else 2921 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2922 #endif 2923 if (ret < 0) { 2924 folio_unlock(folio); 2925 folio_put(folio); 2926 /* 2927 * block_write_begin may have instantiated a few blocks 2928 * outside i_size. Trim these off again. Don't need 2929 * i_size_read because we hold inode lock. 2930 */ 2931 if (pos + len > inode->i_size) 2932 ext4_truncate_failed_write(inode); 2933 2934 if (ret == -ENOSPC && 2935 ext4_should_retry_alloc(inode->i_sb, &retries)) 2936 goto retry; 2937 return ret; 2938 } 2939 2940 *pagep = &folio->page; 2941 return ret; 2942 } 2943 2944 /* 2945 * Check if we should update i_disksize 2946 * when write to the end of file but not require block allocation 2947 */ 2948 static int ext4_da_should_update_i_disksize(struct folio *folio, 2949 unsigned long offset) 2950 { 2951 struct buffer_head *bh; 2952 struct inode *inode = folio->mapping->host; 2953 unsigned int idx; 2954 int i; 2955 2956 bh = folio_buffers(folio); 2957 idx = offset >> inode->i_blkbits; 2958 2959 for (i = 0; i < idx; i++) 2960 bh = bh->b_this_page; 2961 2962 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2963 return 0; 2964 return 1; 2965 } 2966 2967 static int ext4_da_do_write_end(struct address_space *mapping, 2968 loff_t pos, unsigned len, unsigned copied, 2969 struct folio *folio) 2970 { 2971 struct inode *inode = mapping->host; 2972 loff_t old_size = inode->i_size; 2973 bool disksize_changed = false; 2974 loff_t new_i_size; 2975 2976 /* 2977 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2978 * flag, which all that's needed to trigger page writeback. 2979 */ 2980 copied = block_write_end(NULL, mapping, pos, len, copied, 2981 &folio->page, NULL); 2982 new_i_size = pos + copied; 2983 2984 /* 2985 * It's important to update i_size while still holding folio lock, 2986 * because folio writeout could otherwise come in and zero beyond 2987 * i_size. 2988 * 2989 * Since we are holding inode lock, we are sure i_disksize <= 2990 * i_size. We also know that if i_disksize < i_size, there are 2991 * delalloc writes pending in the range up to i_size. If the end of 2992 * the current write is <= i_size, there's no need to touch 2993 * i_disksize since writeback will push i_disksize up to i_size 2994 * eventually. If the end of the current write is > i_size and 2995 * inside an allocated block which ext4_da_should_update_i_disksize() 2996 * checked, we need to update i_disksize here as certain 2997 * ext4_writepages() paths not allocating blocks and update i_disksize. 2998 */ 2999 if (new_i_size > inode->i_size) { 3000 unsigned long end; 3001 3002 i_size_write(inode, new_i_size); 3003 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3004 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3005 ext4_update_i_disksize(inode, new_i_size); 3006 disksize_changed = true; 3007 } 3008 } 3009 3010 folio_unlock(folio); 3011 folio_put(folio); 3012 3013 if (old_size < pos) 3014 pagecache_isize_extended(inode, old_size, pos); 3015 3016 if (disksize_changed) { 3017 handle_t *handle; 3018 3019 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3020 if (IS_ERR(handle)) 3021 return PTR_ERR(handle); 3022 ext4_mark_inode_dirty(handle, inode); 3023 ext4_journal_stop(handle); 3024 } 3025 3026 return copied; 3027 } 3028 3029 static int ext4_da_write_end(struct file *file, 3030 struct address_space *mapping, 3031 loff_t pos, unsigned len, unsigned copied, 3032 struct page *page, void *fsdata) 3033 { 3034 struct inode *inode = mapping->host; 3035 int write_mode = (int)(unsigned long)fsdata; 3036 struct folio *folio = page_folio(page); 3037 3038 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3039 return ext4_write_end(file, mapping, pos, 3040 len, copied, &folio->page, fsdata); 3041 3042 trace_ext4_da_write_end(inode, pos, len, copied); 3043 3044 if (write_mode != CONVERT_INLINE_DATA && 3045 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3046 ext4_has_inline_data(inode)) 3047 return ext4_write_inline_data_end(inode, pos, len, copied, 3048 folio); 3049 3050 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3051 copied = 0; 3052 3053 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3054 } 3055 3056 /* 3057 * Force all delayed allocation blocks to be allocated for a given inode. 3058 */ 3059 int ext4_alloc_da_blocks(struct inode *inode) 3060 { 3061 trace_ext4_alloc_da_blocks(inode); 3062 3063 if (!EXT4_I(inode)->i_reserved_data_blocks) 3064 return 0; 3065 3066 /* 3067 * We do something simple for now. The filemap_flush() will 3068 * also start triggering a write of the data blocks, which is 3069 * not strictly speaking necessary (and for users of 3070 * laptop_mode, not even desirable). However, to do otherwise 3071 * would require replicating code paths in: 3072 * 3073 * ext4_writepages() -> 3074 * write_cache_pages() ---> (via passed in callback function) 3075 * __mpage_da_writepage() --> 3076 * mpage_add_bh_to_extent() 3077 * mpage_da_map_blocks() 3078 * 3079 * The problem is that write_cache_pages(), located in 3080 * mm/page-writeback.c, marks pages clean in preparation for 3081 * doing I/O, which is not desirable if we're not planning on 3082 * doing I/O at all. 3083 * 3084 * We could call write_cache_pages(), and then redirty all of 3085 * the pages by calling redirty_page_for_writepage() but that 3086 * would be ugly in the extreme. So instead we would need to 3087 * replicate parts of the code in the above functions, 3088 * simplifying them because we wouldn't actually intend to 3089 * write out the pages, but rather only collect contiguous 3090 * logical block extents, call the multi-block allocator, and 3091 * then update the buffer heads with the block allocations. 3092 * 3093 * For now, though, we'll cheat by calling filemap_flush(), 3094 * which will map the blocks, and start the I/O, but not 3095 * actually wait for the I/O to complete. 3096 */ 3097 return filemap_flush(inode->i_mapping); 3098 } 3099 3100 /* 3101 * bmap() is special. It gets used by applications such as lilo and by 3102 * the swapper to find the on-disk block of a specific piece of data. 3103 * 3104 * Naturally, this is dangerous if the block concerned is still in the 3105 * journal. If somebody makes a swapfile on an ext4 data-journaling 3106 * filesystem and enables swap, then they may get a nasty shock when the 3107 * data getting swapped to that swapfile suddenly gets overwritten by 3108 * the original zero's written out previously to the journal and 3109 * awaiting writeback in the kernel's buffer cache. 3110 * 3111 * So, if we see any bmap calls here on a modified, data-journaled file, 3112 * take extra steps to flush any blocks which might be in the cache. 3113 */ 3114 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3115 { 3116 struct inode *inode = mapping->host; 3117 sector_t ret = 0; 3118 3119 inode_lock_shared(inode); 3120 /* 3121 * We can get here for an inline file via the FIBMAP ioctl 3122 */ 3123 if (ext4_has_inline_data(inode)) 3124 goto out; 3125 3126 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3127 (test_opt(inode->i_sb, DELALLOC) || 3128 ext4_should_journal_data(inode))) { 3129 /* 3130 * With delalloc or journalled data we want to sync the file so 3131 * that we can make sure we allocate blocks for file and data 3132 * is in place for the user to see it 3133 */ 3134 filemap_write_and_wait(mapping); 3135 } 3136 3137 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3138 3139 out: 3140 inode_unlock_shared(inode); 3141 return ret; 3142 } 3143 3144 static int ext4_read_folio(struct file *file, struct folio *folio) 3145 { 3146 int ret = -EAGAIN; 3147 struct inode *inode = folio->mapping->host; 3148 3149 trace_ext4_read_folio(inode, folio); 3150 3151 if (ext4_has_inline_data(inode)) 3152 ret = ext4_readpage_inline(inode, folio); 3153 3154 if (ret == -EAGAIN) 3155 return ext4_mpage_readpages(inode, NULL, folio); 3156 3157 return ret; 3158 } 3159 3160 static void ext4_readahead(struct readahead_control *rac) 3161 { 3162 struct inode *inode = rac->mapping->host; 3163 3164 /* If the file has inline data, no need to do readahead. */ 3165 if (ext4_has_inline_data(inode)) 3166 return; 3167 3168 ext4_mpage_readpages(inode, rac, NULL); 3169 } 3170 3171 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3172 size_t length) 3173 { 3174 trace_ext4_invalidate_folio(folio, offset, length); 3175 3176 /* No journalling happens on data buffers when this function is used */ 3177 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3178 3179 block_invalidate_folio(folio, offset, length); 3180 } 3181 3182 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3183 size_t offset, size_t length) 3184 { 3185 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3186 3187 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3188 3189 /* 3190 * If it's a full truncate we just forget about the pending dirtying 3191 */ 3192 if (offset == 0 && length == folio_size(folio)) 3193 folio_clear_checked(folio); 3194 3195 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3196 } 3197 3198 /* Wrapper for aops... */ 3199 static void ext4_journalled_invalidate_folio(struct folio *folio, 3200 size_t offset, 3201 size_t length) 3202 { 3203 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3204 } 3205 3206 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3207 { 3208 struct inode *inode = folio->mapping->host; 3209 journal_t *journal = EXT4_JOURNAL(inode); 3210 3211 trace_ext4_release_folio(inode, folio); 3212 3213 /* Page has dirty journalled data -> cannot release */ 3214 if (folio_test_checked(folio)) 3215 return false; 3216 if (journal) 3217 return jbd2_journal_try_to_free_buffers(journal, folio); 3218 else 3219 return try_to_free_buffers(folio); 3220 } 3221 3222 static bool ext4_inode_datasync_dirty(struct inode *inode) 3223 { 3224 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3225 3226 if (journal) { 3227 if (jbd2_transaction_committed(journal, 3228 EXT4_I(inode)->i_datasync_tid)) 3229 return false; 3230 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3231 return !list_empty(&EXT4_I(inode)->i_fc_list); 3232 return true; 3233 } 3234 3235 /* Any metadata buffers to write? */ 3236 if (!list_empty(&inode->i_mapping->private_list)) 3237 return true; 3238 return inode->i_state & I_DIRTY_DATASYNC; 3239 } 3240 3241 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3242 struct ext4_map_blocks *map, loff_t offset, 3243 loff_t length, unsigned int flags) 3244 { 3245 u8 blkbits = inode->i_blkbits; 3246 3247 /* 3248 * Writes that span EOF might trigger an I/O size update on completion, 3249 * so consider them to be dirty for the purpose of O_DSYNC, even if 3250 * there is no other metadata changes being made or are pending. 3251 */ 3252 iomap->flags = 0; 3253 if (ext4_inode_datasync_dirty(inode) || 3254 offset + length > i_size_read(inode)) 3255 iomap->flags |= IOMAP_F_DIRTY; 3256 3257 if (map->m_flags & EXT4_MAP_NEW) 3258 iomap->flags |= IOMAP_F_NEW; 3259 3260 if (flags & IOMAP_DAX) 3261 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3262 else 3263 iomap->bdev = inode->i_sb->s_bdev; 3264 iomap->offset = (u64) map->m_lblk << blkbits; 3265 iomap->length = (u64) map->m_len << blkbits; 3266 3267 if ((map->m_flags & EXT4_MAP_MAPPED) && 3268 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3269 iomap->flags |= IOMAP_F_MERGED; 3270 3271 /* 3272 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3273 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3274 * set. In order for any allocated unwritten extents to be converted 3275 * into written extents correctly within the ->end_io() handler, we 3276 * need to ensure that the iomap->type is set appropriately. Hence, the 3277 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3278 * been set first. 3279 */ 3280 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3281 iomap->type = IOMAP_UNWRITTEN; 3282 iomap->addr = (u64) map->m_pblk << blkbits; 3283 if (flags & IOMAP_DAX) 3284 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3285 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3286 iomap->type = IOMAP_MAPPED; 3287 iomap->addr = (u64) map->m_pblk << blkbits; 3288 if (flags & IOMAP_DAX) 3289 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3290 } else { 3291 iomap->type = IOMAP_HOLE; 3292 iomap->addr = IOMAP_NULL_ADDR; 3293 } 3294 } 3295 3296 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3297 unsigned int flags) 3298 { 3299 handle_t *handle; 3300 u8 blkbits = inode->i_blkbits; 3301 int ret, dio_credits, m_flags = 0, retries = 0; 3302 3303 /* 3304 * Trim the mapping request to the maximum value that we can map at 3305 * once for direct I/O. 3306 */ 3307 if (map->m_len > DIO_MAX_BLOCKS) 3308 map->m_len = DIO_MAX_BLOCKS; 3309 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3310 3311 retry: 3312 /* 3313 * Either we allocate blocks and then don't get an unwritten extent, so 3314 * in that case we have reserved enough credits. Or, the blocks are 3315 * already allocated and unwritten. In that case, the extent conversion 3316 * fits into the credits as well. 3317 */ 3318 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3319 if (IS_ERR(handle)) 3320 return PTR_ERR(handle); 3321 3322 /* 3323 * DAX and direct I/O are the only two operations that are currently 3324 * supported with IOMAP_WRITE. 3325 */ 3326 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3327 if (flags & IOMAP_DAX) 3328 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3329 /* 3330 * We use i_size instead of i_disksize here because delalloc writeback 3331 * can complete at any point during the I/O and subsequently push the 3332 * i_disksize out to i_size. This could be beyond where direct I/O is 3333 * happening and thus expose allocated blocks to direct I/O reads. 3334 */ 3335 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3336 m_flags = EXT4_GET_BLOCKS_CREATE; 3337 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3338 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3339 3340 ret = ext4_map_blocks(handle, inode, map, m_flags); 3341 3342 /* 3343 * We cannot fill holes in indirect tree based inodes as that could 3344 * expose stale data in the case of a crash. Use the magic error code 3345 * to fallback to buffered I/O. 3346 */ 3347 if (!m_flags && !ret) 3348 ret = -ENOTBLK; 3349 3350 ext4_journal_stop(handle); 3351 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3352 goto retry; 3353 3354 return ret; 3355 } 3356 3357 3358 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3359 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3360 { 3361 int ret; 3362 struct ext4_map_blocks map; 3363 u8 blkbits = inode->i_blkbits; 3364 3365 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3366 return -EINVAL; 3367 3368 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3369 return -ERANGE; 3370 3371 /* 3372 * Calculate the first and last logical blocks respectively. 3373 */ 3374 map.m_lblk = offset >> blkbits; 3375 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3376 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3377 3378 if (flags & IOMAP_WRITE) { 3379 /* 3380 * We check here if the blocks are already allocated, then we 3381 * don't need to start a journal txn and we can directly return 3382 * the mapping information. This could boost performance 3383 * especially in multi-threaded overwrite requests. 3384 */ 3385 if (offset + length <= i_size_read(inode)) { 3386 ret = ext4_map_blocks(NULL, inode, &map, 0); 3387 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3388 goto out; 3389 } 3390 ret = ext4_iomap_alloc(inode, &map, flags); 3391 } else { 3392 ret = ext4_map_blocks(NULL, inode, &map, 0); 3393 } 3394 3395 if (ret < 0) 3396 return ret; 3397 out: 3398 /* 3399 * When inline encryption is enabled, sometimes I/O to an encrypted file 3400 * has to be broken up to guarantee DUN contiguity. Handle this by 3401 * limiting the length of the mapping returned. 3402 */ 3403 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3404 3405 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3406 3407 return 0; 3408 } 3409 3410 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3411 loff_t length, unsigned flags, struct iomap *iomap, 3412 struct iomap *srcmap) 3413 { 3414 int ret; 3415 3416 /* 3417 * Even for writes we don't need to allocate blocks, so just pretend 3418 * we are reading to save overhead of starting a transaction. 3419 */ 3420 flags &= ~IOMAP_WRITE; 3421 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3422 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3423 return ret; 3424 } 3425 3426 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3427 ssize_t written, unsigned flags, struct iomap *iomap) 3428 { 3429 /* 3430 * Check to see whether an error occurred while writing out the data to 3431 * the allocated blocks. If so, return the magic error code so that we 3432 * fallback to buffered I/O and attempt to complete the remainder of 3433 * the I/O. Any blocks that may have been allocated in preparation for 3434 * the direct I/O will be reused during buffered I/O. 3435 */ 3436 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3437 return -ENOTBLK; 3438 3439 return 0; 3440 } 3441 3442 const struct iomap_ops ext4_iomap_ops = { 3443 .iomap_begin = ext4_iomap_begin, 3444 .iomap_end = ext4_iomap_end, 3445 }; 3446 3447 const struct iomap_ops ext4_iomap_overwrite_ops = { 3448 .iomap_begin = ext4_iomap_overwrite_begin, 3449 .iomap_end = ext4_iomap_end, 3450 }; 3451 3452 static bool ext4_iomap_is_delalloc(struct inode *inode, 3453 struct ext4_map_blocks *map) 3454 { 3455 struct extent_status es; 3456 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3457 3458 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3459 map->m_lblk, end, &es); 3460 3461 if (!es.es_len || es.es_lblk > end) 3462 return false; 3463 3464 if (es.es_lblk > map->m_lblk) { 3465 map->m_len = es.es_lblk - map->m_lblk; 3466 return false; 3467 } 3468 3469 offset = map->m_lblk - es.es_lblk; 3470 map->m_len = es.es_len - offset; 3471 3472 return true; 3473 } 3474 3475 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3476 loff_t length, unsigned int flags, 3477 struct iomap *iomap, struct iomap *srcmap) 3478 { 3479 int ret; 3480 bool delalloc = false; 3481 struct ext4_map_blocks map; 3482 u8 blkbits = inode->i_blkbits; 3483 3484 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3485 return -EINVAL; 3486 3487 if (ext4_has_inline_data(inode)) { 3488 ret = ext4_inline_data_iomap(inode, iomap); 3489 if (ret != -EAGAIN) { 3490 if (ret == 0 && offset >= iomap->length) 3491 ret = -ENOENT; 3492 return ret; 3493 } 3494 } 3495 3496 /* 3497 * Calculate the first and last logical block respectively. 3498 */ 3499 map.m_lblk = offset >> blkbits; 3500 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3501 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3502 3503 /* 3504 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3505 * So handle it here itself instead of querying ext4_map_blocks(). 3506 * Since ext4_map_blocks() will warn about it and will return 3507 * -EIO error. 3508 */ 3509 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3510 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3511 3512 if (offset >= sbi->s_bitmap_maxbytes) { 3513 map.m_flags = 0; 3514 goto set_iomap; 3515 } 3516 } 3517 3518 ret = ext4_map_blocks(NULL, inode, &map, 0); 3519 if (ret < 0) 3520 return ret; 3521 if (ret == 0) 3522 delalloc = ext4_iomap_is_delalloc(inode, &map); 3523 3524 set_iomap: 3525 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3526 if (delalloc && iomap->type == IOMAP_HOLE) 3527 iomap->type = IOMAP_DELALLOC; 3528 3529 return 0; 3530 } 3531 3532 const struct iomap_ops ext4_iomap_report_ops = { 3533 .iomap_begin = ext4_iomap_begin_report, 3534 }; 3535 3536 /* 3537 * For data=journal mode, folio should be marked dirty only when it was 3538 * writeably mapped. When that happens, it was already attached to the 3539 * transaction and marked as jbddirty (we take care of this in 3540 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3541 * so we should have nothing to do here, except for the case when someone 3542 * had the page pinned and dirtied the page through this pin (e.g. by doing 3543 * direct IO to it). In that case we'd need to attach buffers here to the 3544 * transaction but we cannot due to lock ordering. We cannot just dirty the 3545 * folio and leave attached buffers clean, because the buffers' dirty state is 3546 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3547 * the journalling code will explode. So what we do is to mark the folio 3548 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3549 * to the transaction appropriately. 3550 */ 3551 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3552 struct folio *folio) 3553 { 3554 WARN_ON_ONCE(!folio_buffers(folio)); 3555 if (folio_maybe_dma_pinned(folio)) 3556 folio_set_checked(folio); 3557 return filemap_dirty_folio(mapping, folio); 3558 } 3559 3560 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3561 { 3562 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3563 WARN_ON_ONCE(!folio_buffers(folio)); 3564 return block_dirty_folio(mapping, folio); 3565 } 3566 3567 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3568 struct file *file, sector_t *span) 3569 { 3570 return iomap_swapfile_activate(sis, file, span, 3571 &ext4_iomap_report_ops); 3572 } 3573 3574 static const struct address_space_operations ext4_aops = { 3575 .read_folio = ext4_read_folio, 3576 .readahead = ext4_readahead, 3577 .writepages = ext4_writepages, 3578 .write_begin = ext4_write_begin, 3579 .write_end = ext4_write_end, 3580 .dirty_folio = ext4_dirty_folio, 3581 .bmap = ext4_bmap, 3582 .invalidate_folio = ext4_invalidate_folio, 3583 .release_folio = ext4_release_folio, 3584 .direct_IO = noop_direct_IO, 3585 .migrate_folio = buffer_migrate_folio, 3586 .is_partially_uptodate = block_is_partially_uptodate, 3587 .error_remove_page = generic_error_remove_page, 3588 .swap_activate = ext4_iomap_swap_activate, 3589 }; 3590 3591 static const struct address_space_operations ext4_journalled_aops = { 3592 .read_folio = ext4_read_folio, 3593 .readahead = ext4_readahead, 3594 .writepages = ext4_writepages, 3595 .write_begin = ext4_write_begin, 3596 .write_end = ext4_journalled_write_end, 3597 .dirty_folio = ext4_journalled_dirty_folio, 3598 .bmap = ext4_bmap, 3599 .invalidate_folio = ext4_journalled_invalidate_folio, 3600 .release_folio = ext4_release_folio, 3601 .direct_IO = noop_direct_IO, 3602 .migrate_folio = buffer_migrate_folio_norefs, 3603 .is_partially_uptodate = block_is_partially_uptodate, 3604 .error_remove_page = generic_error_remove_page, 3605 .swap_activate = ext4_iomap_swap_activate, 3606 }; 3607 3608 static const struct address_space_operations ext4_da_aops = { 3609 .read_folio = ext4_read_folio, 3610 .readahead = ext4_readahead, 3611 .writepages = ext4_writepages, 3612 .write_begin = ext4_da_write_begin, 3613 .write_end = ext4_da_write_end, 3614 .dirty_folio = ext4_dirty_folio, 3615 .bmap = ext4_bmap, 3616 .invalidate_folio = ext4_invalidate_folio, 3617 .release_folio = ext4_release_folio, 3618 .direct_IO = noop_direct_IO, 3619 .migrate_folio = buffer_migrate_folio, 3620 .is_partially_uptodate = block_is_partially_uptodate, 3621 .error_remove_page = generic_error_remove_page, 3622 .swap_activate = ext4_iomap_swap_activate, 3623 }; 3624 3625 static const struct address_space_operations ext4_dax_aops = { 3626 .writepages = ext4_dax_writepages, 3627 .direct_IO = noop_direct_IO, 3628 .dirty_folio = noop_dirty_folio, 3629 .bmap = ext4_bmap, 3630 .swap_activate = ext4_iomap_swap_activate, 3631 }; 3632 3633 void ext4_set_aops(struct inode *inode) 3634 { 3635 switch (ext4_inode_journal_mode(inode)) { 3636 case EXT4_INODE_ORDERED_DATA_MODE: 3637 case EXT4_INODE_WRITEBACK_DATA_MODE: 3638 break; 3639 case EXT4_INODE_JOURNAL_DATA_MODE: 3640 inode->i_mapping->a_ops = &ext4_journalled_aops; 3641 return; 3642 default: 3643 BUG(); 3644 } 3645 if (IS_DAX(inode)) 3646 inode->i_mapping->a_ops = &ext4_dax_aops; 3647 else if (test_opt(inode->i_sb, DELALLOC)) 3648 inode->i_mapping->a_ops = &ext4_da_aops; 3649 else 3650 inode->i_mapping->a_ops = &ext4_aops; 3651 } 3652 3653 static int __ext4_block_zero_page_range(handle_t *handle, 3654 struct address_space *mapping, loff_t from, loff_t length) 3655 { 3656 ext4_fsblk_t index = from >> PAGE_SHIFT; 3657 unsigned offset = from & (PAGE_SIZE-1); 3658 unsigned blocksize, pos; 3659 ext4_lblk_t iblock; 3660 struct inode *inode = mapping->host; 3661 struct buffer_head *bh; 3662 struct folio *folio; 3663 int err = 0; 3664 3665 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3666 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3667 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3668 if (IS_ERR(folio)) 3669 return PTR_ERR(folio); 3670 3671 blocksize = inode->i_sb->s_blocksize; 3672 3673 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3674 3675 bh = folio_buffers(folio); 3676 if (!bh) { 3677 create_empty_buffers(&folio->page, blocksize, 0); 3678 bh = folio_buffers(folio); 3679 } 3680 3681 /* Find the buffer that contains "offset" */ 3682 pos = blocksize; 3683 while (offset >= pos) { 3684 bh = bh->b_this_page; 3685 iblock++; 3686 pos += blocksize; 3687 } 3688 if (buffer_freed(bh)) { 3689 BUFFER_TRACE(bh, "freed: skip"); 3690 goto unlock; 3691 } 3692 if (!buffer_mapped(bh)) { 3693 BUFFER_TRACE(bh, "unmapped"); 3694 ext4_get_block(inode, iblock, bh, 0); 3695 /* unmapped? It's a hole - nothing to do */ 3696 if (!buffer_mapped(bh)) { 3697 BUFFER_TRACE(bh, "still unmapped"); 3698 goto unlock; 3699 } 3700 } 3701 3702 /* Ok, it's mapped. Make sure it's up-to-date */ 3703 if (folio_test_uptodate(folio)) 3704 set_buffer_uptodate(bh); 3705 3706 if (!buffer_uptodate(bh)) { 3707 err = ext4_read_bh_lock(bh, 0, true); 3708 if (err) 3709 goto unlock; 3710 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3711 /* We expect the key to be set. */ 3712 BUG_ON(!fscrypt_has_encryption_key(inode)); 3713 err = fscrypt_decrypt_pagecache_blocks(folio, 3714 blocksize, 3715 bh_offset(bh)); 3716 if (err) { 3717 clear_buffer_uptodate(bh); 3718 goto unlock; 3719 } 3720 } 3721 } 3722 if (ext4_should_journal_data(inode)) { 3723 BUFFER_TRACE(bh, "get write access"); 3724 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3725 EXT4_JTR_NONE); 3726 if (err) 3727 goto unlock; 3728 } 3729 folio_zero_range(folio, offset, length); 3730 BUFFER_TRACE(bh, "zeroed end of block"); 3731 3732 if (ext4_should_journal_data(inode)) { 3733 err = ext4_dirty_journalled_data(handle, bh); 3734 } else { 3735 err = 0; 3736 mark_buffer_dirty(bh); 3737 if (ext4_should_order_data(inode)) 3738 err = ext4_jbd2_inode_add_write(handle, inode, from, 3739 length); 3740 } 3741 3742 unlock: 3743 folio_unlock(folio); 3744 folio_put(folio); 3745 return err; 3746 } 3747 3748 /* 3749 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3750 * starting from file offset 'from'. The range to be zero'd must 3751 * be contained with in one block. If the specified range exceeds 3752 * the end of the block it will be shortened to end of the block 3753 * that corresponds to 'from' 3754 */ 3755 static int ext4_block_zero_page_range(handle_t *handle, 3756 struct address_space *mapping, loff_t from, loff_t length) 3757 { 3758 struct inode *inode = mapping->host; 3759 unsigned offset = from & (PAGE_SIZE-1); 3760 unsigned blocksize = inode->i_sb->s_blocksize; 3761 unsigned max = blocksize - (offset & (blocksize - 1)); 3762 3763 /* 3764 * correct length if it does not fall between 3765 * 'from' and the end of the block 3766 */ 3767 if (length > max || length < 0) 3768 length = max; 3769 3770 if (IS_DAX(inode)) { 3771 return dax_zero_range(inode, from, length, NULL, 3772 &ext4_iomap_ops); 3773 } 3774 return __ext4_block_zero_page_range(handle, mapping, from, length); 3775 } 3776 3777 /* 3778 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3779 * up to the end of the block which corresponds to `from'. 3780 * This required during truncate. We need to physically zero the tail end 3781 * of that block so it doesn't yield old data if the file is later grown. 3782 */ 3783 static int ext4_block_truncate_page(handle_t *handle, 3784 struct address_space *mapping, loff_t from) 3785 { 3786 unsigned offset = from & (PAGE_SIZE-1); 3787 unsigned length; 3788 unsigned blocksize; 3789 struct inode *inode = mapping->host; 3790 3791 /* If we are processing an encrypted inode during orphan list handling */ 3792 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3793 return 0; 3794 3795 blocksize = inode->i_sb->s_blocksize; 3796 length = blocksize - (offset & (blocksize - 1)); 3797 3798 return ext4_block_zero_page_range(handle, mapping, from, length); 3799 } 3800 3801 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3802 loff_t lstart, loff_t length) 3803 { 3804 struct super_block *sb = inode->i_sb; 3805 struct address_space *mapping = inode->i_mapping; 3806 unsigned partial_start, partial_end; 3807 ext4_fsblk_t start, end; 3808 loff_t byte_end = (lstart + length - 1); 3809 int err = 0; 3810 3811 partial_start = lstart & (sb->s_blocksize - 1); 3812 partial_end = byte_end & (sb->s_blocksize - 1); 3813 3814 start = lstart >> sb->s_blocksize_bits; 3815 end = byte_end >> sb->s_blocksize_bits; 3816 3817 /* Handle partial zero within the single block */ 3818 if (start == end && 3819 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3820 err = ext4_block_zero_page_range(handle, mapping, 3821 lstart, length); 3822 return err; 3823 } 3824 /* Handle partial zero out on the start of the range */ 3825 if (partial_start) { 3826 err = ext4_block_zero_page_range(handle, mapping, 3827 lstart, sb->s_blocksize); 3828 if (err) 3829 return err; 3830 } 3831 /* Handle partial zero out on the end of the range */ 3832 if (partial_end != sb->s_blocksize - 1) 3833 err = ext4_block_zero_page_range(handle, mapping, 3834 byte_end - partial_end, 3835 partial_end + 1); 3836 return err; 3837 } 3838 3839 int ext4_can_truncate(struct inode *inode) 3840 { 3841 if (S_ISREG(inode->i_mode)) 3842 return 1; 3843 if (S_ISDIR(inode->i_mode)) 3844 return 1; 3845 if (S_ISLNK(inode->i_mode)) 3846 return !ext4_inode_is_fast_symlink(inode); 3847 return 0; 3848 } 3849 3850 /* 3851 * We have to make sure i_disksize gets properly updated before we truncate 3852 * page cache due to hole punching or zero range. Otherwise i_disksize update 3853 * can get lost as it may have been postponed to submission of writeback but 3854 * that will never happen after we truncate page cache. 3855 */ 3856 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3857 loff_t len) 3858 { 3859 handle_t *handle; 3860 int ret; 3861 3862 loff_t size = i_size_read(inode); 3863 3864 WARN_ON(!inode_is_locked(inode)); 3865 if (offset > size || offset + len < size) 3866 return 0; 3867 3868 if (EXT4_I(inode)->i_disksize >= size) 3869 return 0; 3870 3871 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3872 if (IS_ERR(handle)) 3873 return PTR_ERR(handle); 3874 ext4_update_i_disksize(inode, size); 3875 ret = ext4_mark_inode_dirty(handle, inode); 3876 ext4_journal_stop(handle); 3877 3878 return ret; 3879 } 3880 3881 static void ext4_wait_dax_page(struct inode *inode) 3882 { 3883 filemap_invalidate_unlock(inode->i_mapping); 3884 schedule(); 3885 filemap_invalidate_lock(inode->i_mapping); 3886 } 3887 3888 int ext4_break_layouts(struct inode *inode) 3889 { 3890 struct page *page; 3891 int error; 3892 3893 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3894 return -EINVAL; 3895 3896 do { 3897 page = dax_layout_busy_page(inode->i_mapping); 3898 if (!page) 3899 return 0; 3900 3901 error = ___wait_var_event(&page->_refcount, 3902 atomic_read(&page->_refcount) == 1, 3903 TASK_INTERRUPTIBLE, 0, 0, 3904 ext4_wait_dax_page(inode)); 3905 } while (error == 0); 3906 3907 return error; 3908 } 3909 3910 /* 3911 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3912 * associated with the given offset and length 3913 * 3914 * @inode: File inode 3915 * @offset: The offset where the hole will begin 3916 * @len: The length of the hole 3917 * 3918 * Returns: 0 on success or negative on failure 3919 */ 3920 3921 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3922 { 3923 struct inode *inode = file_inode(file); 3924 struct super_block *sb = inode->i_sb; 3925 ext4_lblk_t first_block, stop_block; 3926 struct address_space *mapping = inode->i_mapping; 3927 loff_t first_block_offset, last_block_offset, max_length; 3928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3929 handle_t *handle; 3930 unsigned int credits; 3931 int ret = 0, ret2 = 0; 3932 3933 trace_ext4_punch_hole(inode, offset, length, 0); 3934 3935 /* 3936 * Write out all dirty pages to avoid race conditions 3937 * Then release them. 3938 */ 3939 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3940 ret = filemap_write_and_wait_range(mapping, offset, 3941 offset + length - 1); 3942 if (ret) 3943 return ret; 3944 } 3945 3946 inode_lock(inode); 3947 3948 /* No need to punch hole beyond i_size */ 3949 if (offset >= inode->i_size) 3950 goto out_mutex; 3951 3952 /* 3953 * If the hole extends beyond i_size, set the hole 3954 * to end after the page that contains i_size 3955 */ 3956 if (offset + length > inode->i_size) { 3957 length = inode->i_size + 3958 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3959 offset; 3960 } 3961 3962 /* 3963 * For punch hole the length + offset needs to be within one block 3964 * before last range. Adjust the length if it goes beyond that limit. 3965 */ 3966 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3967 if (offset + length > max_length) 3968 length = max_length - offset; 3969 3970 if (offset & (sb->s_blocksize - 1) || 3971 (offset + length) & (sb->s_blocksize - 1)) { 3972 /* 3973 * Attach jinode to inode for jbd2 if we do any zeroing of 3974 * partial block 3975 */ 3976 ret = ext4_inode_attach_jinode(inode); 3977 if (ret < 0) 3978 goto out_mutex; 3979 3980 } 3981 3982 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3983 inode_dio_wait(inode); 3984 3985 ret = file_modified(file); 3986 if (ret) 3987 goto out_mutex; 3988 3989 /* 3990 * Prevent page faults from reinstantiating pages we have released from 3991 * page cache. 3992 */ 3993 filemap_invalidate_lock(mapping); 3994 3995 ret = ext4_break_layouts(inode); 3996 if (ret) 3997 goto out_dio; 3998 3999 first_block_offset = round_up(offset, sb->s_blocksize); 4000 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4001 4002 /* Now release the pages and zero block aligned part of pages*/ 4003 if (last_block_offset > first_block_offset) { 4004 ret = ext4_update_disksize_before_punch(inode, offset, length); 4005 if (ret) 4006 goto out_dio; 4007 truncate_pagecache_range(inode, first_block_offset, 4008 last_block_offset); 4009 } 4010 4011 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4012 credits = ext4_writepage_trans_blocks(inode); 4013 else 4014 credits = ext4_blocks_for_truncate(inode); 4015 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4016 if (IS_ERR(handle)) { 4017 ret = PTR_ERR(handle); 4018 ext4_std_error(sb, ret); 4019 goto out_dio; 4020 } 4021 4022 ret = ext4_zero_partial_blocks(handle, inode, offset, 4023 length); 4024 if (ret) 4025 goto out_stop; 4026 4027 first_block = (offset + sb->s_blocksize - 1) >> 4028 EXT4_BLOCK_SIZE_BITS(sb); 4029 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4030 4031 /* If there are blocks to remove, do it */ 4032 if (stop_block > first_block) { 4033 4034 down_write(&EXT4_I(inode)->i_data_sem); 4035 ext4_discard_preallocations(inode, 0); 4036 4037 ext4_es_remove_extent(inode, first_block, 4038 stop_block - first_block); 4039 4040 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4041 ret = ext4_ext_remove_space(inode, first_block, 4042 stop_block - 1); 4043 else 4044 ret = ext4_ind_remove_space(handle, inode, first_block, 4045 stop_block); 4046 4047 up_write(&EXT4_I(inode)->i_data_sem); 4048 } 4049 ext4_fc_track_range(handle, inode, first_block, stop_block); 4050 if (IS_SYNC(inode)) 4051 ext4_handle_sync(handle); 4052 4053 inode->i_mtime = inode_set_ctime_current(inode); 4054 ret2 = ext4_mark_inode_dirty(handle, inode); 4055 if (unlikely(ret2)) 4056 ret = ret2; 4057 if (ret >= 0) 4058 ext4_update_inode_fsync_trans(handle, inode, 1); 4059 out_stop: 4060 ext4_journal_stop(handle); 4061 out_dio: 4062 filemap_invalidate_unlock(mapping); 4063 out_mutex: 4064 inode_unlock(inode); 4065 return ret; 4066 } 4067 4068 int ext4_inode_attach_jinode(struct inode *inode) 4069 { 4070 struct ext4_inode_info *ei = EXT4_I(inode); 4071 struct jbd2_inode *jinode; 4072 4073 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4074 return 0; 4075 4076 jinode = jbd2_alloc_inode(GFP_KERNEL); 4077 spin_lock(&inode->i_lock); 4078 if (!ei->jinode) { 4079 if (!jinode) { 4080 spin_unlock(&inode->i_lock); 4081 return -ENOMEM; 4082 } 4083 ei->jinode = jinode; 4084 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4085 jinode = NULL; 4086 } 4087 spin_unlock(&inode->i_lock); 4088 if (unlikely(jinode != NULL)) 4089 jbd2_free_inode(jinode); 4090 return 0; 4091 } 4092 4093 /* 4094 * ext4_truncate() 4095 * 4096 * We block out ext4_get_block() block instantiations across the entire 4097 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4098 * simultaneously on behalf of the same inode. 4099 * 4100 * As we work through the truncate and commit bits of it to the journal there 4101 * is one core, guiding principle: the file's tree must always be consistent on 4102 * disk. We must be able to restart the truncate after a crash. 4103 * 4104 * The file's tree may be transiently inconsistent in memory (although it 4105 * probably isn't), but whenever we close off and commit a journal transaction, 4106 * the contents of (the filesystem + the journal) must be consistent and 4107 * restartable. It's pretty simple, really: bottom up, right to left (although 4108 * left-to-right works OK too). 4109 * 4110 * Note that at recovery time, journal replay occurs *before* the restart of 4111 * truncate against the orphan inode list. 4112 * 4113 * The committed inode has the new, desired i_size (which is the same as 4114 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4115 * that this inode's truncate did not complete and it will again call 4116 * ext4_truncate() to have another go. So there will be instantiated blocks 4117 * to the right of the truncation point in a crashed ext4 filesystem. But 4118 * that's fine - as long as they are linked from the inode, the post-crash 4119 * ext4_truncate() run will find them and release them. 4120 */ 4121 int ext4_truncate(struct inode *inode) 4122 { 4123 struct ext4_inode_info *ei = EXT4_I(inode); 4124 unsigned int credits; 4125 int err = 0, err2; 4126 handle_t *handle; 4127 struct address_space *mapping = inode->i_mapping; 4128 4129 /* 4130 * There is a possibility that we're either freeing the inode 4131 * or it's a completely new inode. In those cases we might not 4132 * have i_rwsem locked because it's not necessary. 4133 */ 4134 if (!(inode->i_state & (I_NEW|I_FREEING))) 4135 WARN_ON(!inode_is_locked(inode)); 4136 trace_ext4_truncate_enter(inode); 4137 4138 if (!ext4_can_truncate(inode)) 4139 goto out_trace; 4140 4141 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4142 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4143 4144 if (ext4_has_inline_data(inode)) { 4145 int has_inline = 1; 4146 4147 err = ext4_inline_data_truncate(inode, &has_inline); 4148 if (err || has_inline) 4149 goto out_trace; 4150 } 4151 4152 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4153 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4154 err = ext4_inode_attach_jinode(inode); 4155 if (err) 4156 goto out_trace; 4157 } 4158 4159 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4160 credits = ext4_writepage_trans_blocks(inode); 4161 else 4162 credits = ext4_blocks_for_truncate(inode); 4163 4164 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4165 if (IS_ERR(handle)) { 4166 err = PTR_ERR(handle); 4167 goto out_trace; 4168 } 4169 4170 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4171 ext4_block_truncate_page(handle, mapping, inode->i_size); 4172 4173 /* 4174 * We add the inode to the orphan list, so that if this 4175 * truncate spans multiple transactions, and we crash, we will 4176 * resume the truncate when the filesystem recovers. It also 4177 * marks the inode dirty, to catch the new size. 4178 * 4179 * Implication: the file must always be in a sane, consistent 4180 * truncatable state while each transaction commits. 4181 */ 4182 err = ext4_orphan_add(handle, inode); 4183 if (err) 4184 goto out_stop; 4185 4186 down_write(&EXT4_I(inode)->i_data_sem); 4187 4188 ext4_discard_preallocations(inode, 0); 4189 4190 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4191 err = ext4_ext_truncate(handle, inode); 4192 else 4193 ext4_ind_truncate(handle, inode); 4194 4195 up_write(&ei->i_data_sem); 4196 if (err) 4197 goto out_stop; 4198 4199 if (IS_SYNC(inode)) 4200 ext4_handle_sync(handle); 4201 4202 out_stop: 4203 /* 4204 * If this was a simple ftruncate() and the file will remain alive, 4205 * then we need to clear up the orphan record which we created above. 4206 * However, if this was a real unlink then we were called by 4207 * ext4_evict_inode(), and we allow that function to clean up the 4208 * orphan info for us. 4209 */ 4210 if (inode->i_nlink) 4211 ext4_orphan_del(handle, inode); 4212 4213 inode->i_mtime = inode_set_ctime_current(inode); 4214 err2 = ext4_mark_inode_dirty(handle, inode); 4215 if (unlikely(err2 && !err)) 4216 err = err2; 4217 ext4_journal_stop(handle); 4218 4219 out_trace: 4220 trace_ext4_truncate_exit(inode); 4221 return err; 4222 } 4223 4224 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4225 { 4226 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4227 return inode_peek_iversion_raw(inode); 4228 else 4229 return inode_peek_iversion(inode); 4230 } 4231 4232 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4233 struct ext4_inode_info *ei) 4234 { 4235 struct inode *inode = &(ei->vfs_inode); 4236 u64 i_blocks = READ_ONCE(inode->i_blocks); 4237 struct super_block *sb = inode->i_sb; 4238 4239 if (i_blocks <= ~0U) { 4240 /* 4241 * i_blocks can be represented in a 32 bit variable 4242 * as multiple of 512 bytes 4243 */ 4244 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4245 raw_inode->i_blocks_high = 0; 4246 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4247 return 0; 4248 } 4249 4250 /* 4251 * This should never happen since sb->s_maxbytes should not have 4252 * allowed this, sb->s_maxbytes was set according to the huge_file 4253 * feature in ext4_fill_super(). 4254 */ 4255 if (!ext4_has_feature_huge_file(sb)) 4256 return -EFSCORRUPTED; 4257 4258 if (i_blocks <= 0xffffffffffffULL) { 4259 /* 4260 * i_blocks can be represented in a 48 bit variable 4261 * as multiple of 512 bytes 4262 */ 4263 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4264 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4265 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4266 } else { 4267 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4268 /* i_block is stored in file system block size */ 4269 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4271 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4272 } 4273 return 0; 4274 } 4275 4276 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4277 { 4278 struct ext4_inode_info *ei = EXT4_I(inode); 4279 uid_t i_uid; 4280 gid_t i_gid; 4281 projid_t i_projid; 4282 int block; 4283 int err; 4284 4285 err = ext4_inode_blocks_set(raw_inode, ei); 4286 4287 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4288 i_uid = i_uid_read(inode); 4289 i_gid = i_gid_read(inode); 4290 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4291 if (!(test_opt(inode->i_sb, NO_UID32))) { 4292 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4293 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4294 /* 4295 * Fix up interoperability with old kernels. Otherwise, 4296 * old inodes get re-used with the upper 16 bits of the 4297 * uid/gid intact. 4298 */ 4299 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4300 raw_inode->i_uid_high = 0; 4301 raw_inode->i_gid_high = 0; 4302 } else { 4303 raw_inode->i_uid_high = 4304 cpu_to_le16(high_16_bits(i_uid)); 4305 raw_inode->i_gid_high = 4306 cpu_to_le16(high_16_bits(i_gid)); 4307 } 4308 } else { 4309 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4310 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4311 raw_inode->i_uid_high = 0; 4312 raw_inode->i_gid_high = 0; 4313 } 4314 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4315 4316 EXT4_INODE_SET_CTIME(inode, raw_inode); 4317 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4318 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4319 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4320 4321 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4322 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4323 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4324 raw_inode->i_file_acl_high = 4325 cpu_to_le16(ei->i_file_acl >> 32); 4326 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4327 ext4_isize_set(raw_inode, ei->i_disksize); 4328 4329 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4330 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4331 if (old_valid_dev(inode->i_rdev)) { 4332 raw_inode->i_block[0] = 4333 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4334 raw_inode->i_block[1] = 0; 4335 } else { 4336 raw_inode->i_block[0] = 0; 4337 raw_inode->i_block[1] = 4338 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4339 raw_inode->i_block[2] = 0; 4340 } 4341 } else if (!ext4_has_inline_data(inode)) { 4342 for (block = 0; block < EXT4_N_BLOCKS; block++) 4343 raw_inode->i_block[block] = ei->i_data[block]; 4344 } 4345 4346 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4347 u64 ivers = ext4_inode_peek_iversion(inode); 4348 4349 raw_inode->i_disk_version = cpu_to_le32(ivers); 4350 if (ei->i_extra_isize) { 4351 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4352 raw_inode->i_version_hi = 4353 cpu_to_le32(ivers >> 32); 4354 raw_inode->i_extra_isize = 4355 cpu_to_le16(ei->i_extra_isize); 4356 } 4357 } 4358 4359 if (i_projid != EXT4_DEF_PROJID && 4360 !ext4_has_feature_project(inode->i_sb)) 4361 err = err ?: -EFSCORRUPTED; 4362 4363 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4364 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4365 raw_inode->i_projid = cpu_to_le32(i_projid); 4366 4367 ext4_inode_csum_set(inode, raw_inode, ei); 4368 return err; 4369 } 4370 4371 /* 4372 * ext4_get_inode_loc returns with an extra refcount against the inode's 4373 * underlying buffer_head on success. If we pass 'inode' and it does not 4374 * have in-inode xattr, we have all inode data in memory that is needed 4375 * to recreate the on-disk version of this inode. 4376 */ 4377 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4378 struct inode *inode, struct ext4_iloc *iloc, 4379 ext4_fsblk_t *ret_block) 4380 { 4381 struct ext4_group_desc *gdp; 4382 struct buffer_head *bh; 4383 ext4_fsblk_t block; 4384 struct blk_plug plug; 4385 int inodes_per_block, inode_offset; 4386 4387 iloc->bh = NULL; 4388 if (ino < EXT4_ROOT_INO || 4389 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4390 return -EFSCORRUPTED; 4391 4392 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4393 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4394 if (!gdp) 4395 return -EIO; 4396 4397 /* 4398 * Figure out the offset within the block group inode table 4399 */ 4400 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4401 inode_offset = ((ino - 1) % 4402 EXT4_INODES_PER_GROUP(sb)); 4403 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4404 4405 block = ext4_inode_table(sb, gdp); 4406 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4407 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4408 ext4_error(sb, "Invalid inode table block %llu in " 4409 "block_group %u", block, iloc->block_group); 4410 return -EFSCORRUPTED; 4411 } 4412 block += (inode_offset / inodes_per_block); 4413 4414 bh = sb_getblk(sb, block); 4415 if (unlikely(!bh)) 4416 return -ENOMEM; 4417 if (ext4_buffer_uptodate(bh)) 4418 goto has_buffer; 4419 4420 lock_buffer(bh); 4421 if (ext4_buffer_uptodate(bh)) { 4422 /* Someone brought it uptodate while we waited */ 4423 unlock_buffer(bh); 4424 goto has_buffer; 4425 } 4426 4427 /* 4428 * If we have all information of the inode in memory and this 4429 * is the only valid inode in the block, we need not read the 4430 * block. 4431 */ 4432 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4433 struct buffer_head *bitmap_bh; 4434 int i, start; 4435 4436 start = inode_offset & ~(inodes_per_block - 1); 4437 4438 /* Is the inode bitmap in cache? */ 4439 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4440 if (unlikely(!bitmap_bh)) 4441 goto make_io; 4442 4443 /* 4444 * If the inode bitmap isn't in cache then the 4445 * optimisation may end up performing two reads instead 4446 * of one, so skip it. 4447 */ 4448 if (!buffer_uptodate(bitmap_bh)) { 4449 brelse(bitmap_bh); 4450 goto make_io; 4451 } 4452 for (i = start; i < start + inodes_per_block; i++) { 4453 if (i == inode_offset) 4454 continue; 4455 if (ext4_test_bit(i, bitmap_bh->b_data)) 4456 break; 4457 } 4458 brelse(bitmap_bh); 4459 if (i == start + inodes_per_block) { 4460 struct ext4_inode *raw_inode = 4461 (struct ext4_inode *) (bh->b_data + iloc->offset); 4462 4463 /* all other inodes are free, so skip I/O */ 4464 memset(bh->b_data, 0, bh->b_size); 4465 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4466 ext4_fill_raw_inode(inode, raw_inode); 4467 set_buffer_uptodate(bh); 4468 unlock_buffer(bh); 4469 goto has_buffer; 4470 } 4471 } 4472 4473 make_io: 4474 /* 4475 * If we need to do any I/O, try to pre-readahead extra 4476 * blocks from the inode table. 4477 */ 4478 blk_start_plug(&plug); 4479 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4480 ext4_fsblk_t b, end, table; 4481 unsigned num; 4482 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4483 4484 table = ext4_inode_table(sb, gdp); 4485 /* s_inode_readahead_blks is always a power of 2 */ 4486 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4487 if (table > b) 4488 b = table; 4489 end = b + ra_blks; 4490 num = EXT4_INODES_PER_GROUP(sb); 4491 if (ext4_has_group_desc_csum(sb)) 4492 num -= ext4_itable_unused_count(sb, gdp); 4493 table += num / inodes_per_block; 4494 if (end > table) 4495 end = table; 4496 while (b <= end) 4497 ext4_sb_breadahead_unmovable(sb, b++); 4498 } 4499 4500 /* 4501 * There are other valid inodes in the buffer, this inode 4502 * has in-inode xattrs, or we don't have this inode in memory. 4503 * Read the block from disk. 4504 */ 4505 trace_ext4_load_inode(sb, ino); 4506 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4507 blk_finish_plug(&plug); 4508 wait_on_buffer(bh); 4509 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4510 if (!buffer_uptodate(bh)) { 4511 if (ret_block) 4512 *ret_block = block; 4513 brelse(bh); 4514 return -EIO; 4515 } 4516 has_buffer: 4517 iloc->bh = bh; 4518 return 0; 4519 } 4520 4521 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4522 struct ext4_iloc *iloc) 4523 { 4524 ext4_fsblk_t err_blk = 0; 4525 int ret; 4526 4527 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4528 &err_blk); 4529 4530 if (ret == -EIO) 4531 ext4_error_inode_block(inode, err_blk, EIO, 4532 "unable to read itable block"); 4533 4534 return ret; 4535 } 4536 4537 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4538 { 4539 ext4_fsblk_t err_blk = 0; 4540 int ret; 4541 4542 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4543 &err_blk); 4544 4545 if (ret == -EIO) 4546 ext4_error_inode_block(inode, err_blk, EIO, 4547 "unable to read itable block"); 4548 4549 return ret; 4550 } 4551 4552 4553 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4554 struct ext4_iloc *iloc) 4555 { 4556 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4557 } 4558 4559 static bool ext4_should_enable_dax(struct inode *inode) 4560 { 4561 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4562 4563 if (test_opt2(inode->i_sb, DAX_NEVER)) 4564 return false; 4565 if (!S_ISREG(inode->i_mode)) 4566 return false; 4567 if (ext4_should_journal_data(inode)) 4568 return false; 4569 if (ext4_has_inline_data(inode)) 4570 return false; 4571 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4572 return false; 4573 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4574 return false; 4575 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4576 return false; 4577 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4578 return true; 4579 4580 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4581 } 4582 4583 void ext4_set_inode_flags(struct inode *inode, bool init) 4584 { 4585 unsigned int flags = EXT4_I(inode)->i_flags; 4586 unsigned int new_fl = 0; 4587 4588 WARN_ON_ONCE(IS_DAX(inode) && init); 4589 4590 if (flags & EXT4_SYNC_FL) 4591 new_fl |= S_SYNC; 4592 if (flags & EXT4_APPEND_FL) 4593 new_fl |= S_APPEND; 4594 if (flags & EXT4_IMMUTABLE_FL) 4595 new_fl |= S_IMMUTABLE; 4596 if (flags & EXT4_NOATIME_FL) 4597 new_fl |= S_NOATIME; 4598 if (flags & EXT4_DIRSYNC_FL) 4599 new_fl |= S_DIRSYNC; 4600 4601 /* Because of the way inode_set_flags() works we must preserve S_DAX 4602 * here if already set. */ 4603 new_fl |= (inode->i_flags & S_DAX); 4604 if (init && ext4_should_enable_dax(inode)) 4605 new_fl |= S_DAX; 4606 4607 if (flags & EXT4_ENCRYPT_FL) 4608 new_fl |= S_ENCRYPTED; 4609 if (flags & EXT4_CASEFOLD_FL) 4610 new_fl |= S_CASEFOLD; 4611 if (flags & EXT4_VERITY_FL) 4612 new_fl |= S_VERITY; 4613 inode_set_flags(inode, new_fl, 4614 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4615 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4616 } 4617 4618 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4619 struct ext4_inode_info *ei) 4620 { 4621 blkcnt_t i_blocks ; 4622 struct inode *inode = &(ei->vfs_inode); 4623 struct super_block *sb = inode->i_sb; 4624 4625 if (ext4_has_feature_huge_file(sb)) { 4626 /* we are using combined 48 bit field */ 4627 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4628 le32_to_cpu(raw_inode->i_blocks_lo); 4629 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4630 /* i_blocks represent file system block size */ 4631 return i_blocks << (inode->i_blkbits - 9); 4632 } else { 4633 return i_blocks; 4634 } 4635 } else { 4636 return le32_to_cpu(raw_inode->i_blocks_lo); 4637 } 4638 } 4639 4640 static inline int ext4_iget_extra_inode(struct inode *inode, 4641 struct ext4_inode *raw_inode, 4642 struct ext4_inode_info *ei) 4643 { 4644 __le32 *magic = (void *)raw_inode + 4645 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4646 4647 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4648 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4649 int err; 4650 4651 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4652 err = ext4_find_inline_data_nolock(inode); 4653 if (!err && ext4_has_inline_data(inode)) 4654 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4655 return err; 4656 } else 4657 EXT4_I(inode)->i_inline_off = 0; 4658 return 0; 4659 } 4660 4661 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4662 { 4663 if (!ext4_has_feature_project(inode->i_sb)) 4664 return -EOPNOTSUPP; 4665 *projid = EXT4_I(inode)->i_projid; 4666 return 0; 4667 } 4668 4669 /* 4670 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4671 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4672 * set. 4673 */ 4674 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4675 { 4676 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4677 inode_set_iversion_raw(inode, val); 4678 else 4679 inode_set_iversion_queried(inode, val); 4680 } 4681 4682 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4683 4684 { 4685 if (flags & EXT4_IGET_EA_INODE) { 4686 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4687 return "missing EA_INODE flag"; 4688 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4689 EXT4_I(inode)->i_file_acl) 4690 return "ea_inode with extended attributes"; 4691 } else { 4692 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4693 return "unexpected EA_INODE flag"; 4694 } 4695 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4696 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4697 return NULL; 4698 } 4699 4700 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4701 ext4_iget_flags flags, const char *function, 4702 unsigned int line) 4703 { 4704 struct ext4_iloc iloc; 4705 struct ext4_inode *raw_inode; 4706 struct ext4_inode_info *ei; 4707 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4708 struct inode *inode; 4709 const char *err_str; 4710 journal_t *journal = EXT4_SB(sb)->s_journal; 4711 long ret; 4712 loff_t size; 4713 int block; 4714 uid_t i_uid; 4715 gid_t i_gid; 4716 projid_t i_projid; 4717 4718 if ((!(flags & EXT4_IGET_SPECIAL) && 4719 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4720 ino == le32_to_cpu(es->s_usr_quota_inum) || 4721 ino == le32_to_cpu(es->s_grp_quota_inum) || 4722 ino == le32_to_cpu(es->s_prj_quota_inum) || 4723 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4724 (ino < EXT4_ROOT_INO) || 4725 (ino > le32_to_cpu(es->s_inodes_count))) { 4726 if (flags & EXT4_IGET_HANDLE) 4727 return ERR_PTR(-ESTALE); 4728 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4729 "inode #%lu: comm %s: iget: illegal inode #", 4730 ino, current->comm); 4731 return ERR_PTR(-EFSCORRUPTED); 4732 } 4733 4734 inode = iget_locked(sb, ino); 4735 if (!inode) 4736 return ERR_PTR(-ENOMEM); 4737 if (!(inode->i_state & I_NEW)) { 4738 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4739 ext4_error_inode(inode, function, line, 0, err_str); 4740 iput(inode); 4741 return ERR_PTR(-EFSCORRUPTED); 4742 } 4743 return inode; 4744 } 4745 4746 ei = EXT4_I(inode); 4747 iloc.bh = NULL; 4748 4749 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4750 if (ret < 0) 4751 goto bad_inode; 4752 raw_inode = ext4_raw_inode(&iloc); 4753 4754 if ((flags & EXT4_IGET_HANDLE) && 4755 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4756 ret = -ESTALE; 4757 goto bad_inode; 4758 } 4759 4760 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4761 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4762 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4763 EXT4_INODE_SIZE(inode->i_sb) || 4764 (ei->i_extra_isize & 3)) { 4765 ext4_error_inode(inode, function, line, 0, 4766 "iget: bad extra_isize %u " 4767 "(inode size %u)", 4768 ei->i_extra_isize, 4769 EXT4_INODE_SIZE(inode->i_sb)); 4770 ret = -EFSCORRUPTED; 4771 goto bad_inode; 4772 } 4773 } else 4774 ei->i_extra_isize = 0; 4775 4776 /* Precompute checksum seed for inode metadata */ 4777 if (ext4_has_metadata_csum(sb)) { 4778 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4779 __u32 csum; 4780 __le32 inum = cpu_to_le32(inode->i_ino); 4781 __le32 gen = raw_inode->i_generation; 4782 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4783 sizeof(inum)); 4784 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4785 sizeof(gen)); 4786 } 4787 4788 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4789 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4790 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4791 ext4_error_inode_err(inode, function, line, 0, 4792 EFSBADCRC, "iget: checksum invalid"); 4793 ret = -EFSBADCRC; 4794 goto bad_inode; 4795 } 4796 4797 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4798 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4799 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4800 if (ext4_has_feature_project(sb) && 4801 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4802 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4803 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4804 else 4805 i_projid = EXT4_DEF_PROJID; 4806 4807 if (!(test_opt(inode->i_sb, NO_UID32))) { 4808 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4809 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4810 } 4811 i_uid_write(inode, i_uid); 4812 i_gid_write(inode, i_gid); 4813 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4814 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4815 4816 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4817 ei->i_inline_off = 0; 4818 ei->i_dir_start_lookup = 0; 4819 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4820 /* We now have enough fields to check if the inode was active or not. 4821 * This is needed because nfsd might try to access dead inodes 4822 * the test is that same one that e2fsck uses 4823 * NeilBrown 1999oct15 4824 */ 4825 if (inode->i_nlink == 0) { 4826 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4827 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4828 ino != EXT4_BOOT_LOADER_INO) { 4829 /* this inode is deleted or unallocated */ 4830 if (flags & EXT4_IGET_SPECIAL) { 4831 ext4_error_inode(inode, function, line, 0, 4832 "iget: special inode unallocated"); 4833 ret = -EFSCORRUPTED; 4834 } else 4835 ret = -ESTALE; 4836 goto bad_inode; 4837 } 4838 /* The only unlinked inodes we let through here have 4839 * valid i_mode and are being read by the orphan 4840 * recovery code: that's fine, we're about to complete 4841 * the process of deleting those. 4842 * OR it is the EXT4_BOOT_LOADER_INO which is 4843 * not initialized on a new filesystem. */ 4844 } 4845 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4846 ext4_set_inode_flags(inode, true); 4847 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4848 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4849 if (ext4_has_feature_64bit(sb)) 4850 ei->i_file_acl |= 4851 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4852 inode->i_size = ext4_isize(sb, raw_inode); 4853 if ((size = i_size_read(inode)) < 0) { 4854 ext4_error_inode(inode, function, line, 0, 4855 "iget: bad i_size value: %lld", size); 4856 ret = -EFSCORRUPTED; 4857 goto bad_inode; 4858 } 4859 /* 4860 * If dir_index is not enabled but there's dir with INDEX flag set, 4861 * we'd normally treat htree data as empty space. But with metadata 4862 * checksumming that corrupts checksums so forbid that. 4863 */ 4864 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4865 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4866 ext4_error_inode(inode, function, line, 0, 4867 "iget: Dir with htree data on filesystem without dir_index feature."); 4868 ret = -EFSCORRUPTED; 4869 goto bad_inode; 4870 } 4871 ei->i_disksize = inode->i_size; 4872 #ifdef CONFIG_QUOTA 4873 ei->i_reserved_quota = 0; 4874 #endif 4875 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4876 ei->i_block_group = iloc.block_group; 4877 ei->i_last_alloc_group = ~0; 4878 /* 4879 * NOTE! The in-memory inode i_data array is in little-endian order 4880 * even on big-endian machines: we do NOT byteswap the block numbers! 4881 */ 4882 for (block = 0; block < EXT4_N_BLOCKS; block++) 4883 ei->i_data[block] = raw_inode->i_block[block]; 4884 INIT_LIST_HEAD(&ei->i_orphan); 4885 ext4_fc_init_inode(&ei->vfs_inode); 4886 4887 /* 4888 * Set transaction id's of transactions that have to be committed 4889 * to finish f[data]sync. We set them to currently running transaction 4890 * as we cannot be sure that the inode or some of its metadata isn't 4891 * part of the transaction - the inode could have been reclaimed and 4892 * now it is reread from disk. 4893 */ 4894 if (journal) { 4895 transaction_t *transaction; 4896 tid_t tid; 4897 4898 read_lock(&journal->j_state_lock); 4899 if (journal->j_running_transaction) 4900 transaction = journal->j_running_transaction; 4901 else 4902 transaction = journal->j_committing_transaction; 4903 if (transaction) 4904 tid = transaction->t_tid; 4905 else 4906 tid = journal->j_commit_sequence; 4907 read_unlock(&journal->j_state_lock); 4908 ei->i_sync_tid = tid; 4909 ei->i_datasync_tid = tid; 4910 } 4911 4912 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4913 if (ei->i_extra_isize == 0) { 4914 /* The extra space is currently unused. Use it. */ 4915 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4916 ei->i_extra_isize = sizeof(struct ext4_inode) - 4917 EXT4_GOOD_OLD_INODE_SIZE; 4918 } else { 4919 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4920 if (ret) 4921 goto bad_inode; 4922 } 4923 } 4924 4925 EXT4_INODE_GET_CTIME(inode, raw_inode); 4926 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4927 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4928 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4929 4930 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4931 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4932 4933 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4934 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4935 ivers |= 4936 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4937 } 4938 ext4_inode_set_iversion_queried(inode, ivers); 4939 } 4940 4941 ret = 0; 4942 if (ei->i_file_acl && 4943 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4944 ext4_error_inode(inode, function, line, 0, 4945 "iget: bad extended attribute block %llu", 4946 ei->i_file_acl); 4947 ret = -EFSCORRUPTED; 4948 goto bad_inode; 4949 } else if (!ext4_has_inline_data(inode)) { 4950 /* validate the block references in the inode */ 4951 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4952 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4953 (S_ISLNK(inode->i_mode) && 4954 !ext4_inode_is_fast_symlink(inode)))) { 4955 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4956 ret = ext4_ext_check_inode(inode); 4957 else 4958 ret = ext4_ind_check_inode(inode); 4959 } 4960 } 4961 if (ret) 4962 goto bad_inode; 4963 4964 if (S_ISREG(inode->i_mode)) { 4965 inode->i_op = &ext4_file_inode_operations; 4966 inode->i_fop = &ext4_file_operations; 4967 ext4_set_aops(inode); 4968 } else if (S_ISDIR(inode->i_mode)) { 4969 inode->i_op = &ext4_dir_inode_operations; 4970 inode->i_fop = &ext4_dir_operations; 4971 } else if (S_ISLNK(inode->i_mode)) { 4972 /* VFS does not allow setting these so must be corruption */ 4973 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4974 ext4_error_inode(inode, function, line, 0, 4975 "iget: immutable or append flags " 4976 "not allowed on symlinks"); 4977 ret = -EFSCORRUPTED; 4978 goto bad_inode; 4979 } 4980 if (IS_ENCRYPTED(inode)) { 4981 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4982 } else if (ext4_inode_is_fast_symlink(inode)) { 4983 inode->i_link = (char *)ei->i_data; 4984 inode->i_op = &ext4_fast_symlink_inode_operations; 4985 nd_terminate_link(ei->i_data, inode->i_size, 4986 sizeof(ei->i_data) - 1); 4987 } else { 4988 inode->i_op = &ext4_symlink_inode_operations; 4989 } 4990 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4991 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4992 inode->i_op = &ext4_special_inode_operations; 4993 if (raw_inode->i_block[0]) 4994 init_special_inode(inode, inode->i_mode, 4995 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4996 else 4997 init_special_inode(inode, inode->i_mode, 4998 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4999 } else if (ino == EXT4_BOOT_LOADER_INO) { 5000 make_bad_inode(inode); 5001 } else { 5002 ret = -EFSCORRUPTED; 5003 ext4_error_inode(inode, function, line, 0, 5004 "iget: bogus i_mode (%o)", inode->i_mode); 5005 goto bad_inode; 5006 } 5007 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5008 ext4_error_inode(inode, function, line, 0, 5009 "casefold flag without casefold feature"); 5010 ret = -EFSCORRUPTED; 5011 goto bad_inode; 5012 } 5013 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 5014 ext4_error_inode(inode, function, line, 0, err_str); 5015 ret = -EFSCORRUPTED; 5016 goto bad_inode; 5017 } 5018 5019 brelse(iloc.bh); 5020 unlock_new_inode(inode); 5021 return inode; 5022 5023 bad_inode: 5024 brelse(iloc.bh); 5025 iget_failed(inode); 5026 return ERR_PTR(ret); 5027 } 5028 5029 static void __ext4_update_other_inode_time(struct super_block *sb, 5030 unsigned long orig_ino, 5031 unsigned long ino, 5032 struct ext4_inode *raw_inode) 5033 { 5034 struct inode *inode; 5035 5036 inode = find_inode_by_ino_rcu(sb, ino); 5037 if (!inode) 5038 return; 5039 5040 if (!inode_is_dirtytime_only(inode)) 5041 return; 5042 5043 spin_lock(&inode->i_lock); 5044 if (inode_is_dirtytime_only(inode)) { 5045 struct ext4_inode_info *ei = EXT4_I(inode); 5046 5047 inode->i_state &= ~I_DIRTY_TIME; 5048 spin_unlock(&inode->i_lock); 5049 5050 spin_lock(&ei->i_raw_lock); 5051 EXT4_INODE_SET_CTIME(inode, raw_inode); 5052 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5053 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5054 ext4_inode_csum_set(inode, raw_inode, ei); 5055 spin_unlock(&ei->i_raw_lock); 5056 trace_ext4_other_inode_update_time(inode, orig_ino); 5057 return; 5058 } 5059 spin_unlock(&inode->i_lock); 5060 } 5061 5062 /* 5063 * Opportunistically update the other time fields for other inodes in 5064 * the same inode table block. 5065 */ 5066 static void ext4_update_other_inodes_time(struct super_block *sb, 5067 unsigned long orig_ino, char *buf) 5068 { 5069 unsigned long ino; 5070 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5071 int inode_size = EXT4_INODE_SIZE(sb); 5072 5073 /* 5074 * Calculate the first inode in the inode table block. Inode 5075 * numbers are one-based. That is, the first inode in a block 5076 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5077 */ 5078 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5079 rcu_read_lock(); 5080 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5081 if (ino == orig_ino) 5082 continue; 5083 __ext4_update_other_inode_time(sb, orig_ino, ino, 5084 (struct ext4_inode *)buf); 5085 } 5086 rcu_read_unlock(); 5087 } 5088 5089 /* 5090 * Post the struct inode info into an on-disk inode location in the 5091 * buffer-cache. This gobbles the caller's reference to the 5092 * buffer_head in the inode location struct. 5093 * 5094 * The caller must have write access to iloc->bh. 5095 */ 5096 static int ext4_do_update_inode(handle_t *handle, 5097 struct inode *inode, 5098 struct ext4_iloc *iloc) 5099 { 5100 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5101 struct ext4_inode_info *ei = EXT4_I(inode); 5102 struct buffer_head *bh = iloc->bh; 5103 struct super_block *sb = inode->i_sb; 5104 int err; 5105 int need_datasync = 0, set_large_file = 0; 5106 5107 spin_lock(&ei->i_raw_lock); 5108 5109 /* 5110 * For fields not tracked in the in-memory inode, initialise them 5111 * to zero for new inodes. 5112 */ 5113 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5114 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5115 5116 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5117 need_datasync = 1; 5118 if (ei->i_disksize > 0x7fffffffULL) { 5119 if (!ext4_has_feature_large_file(sb) || 5120 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5121 set_large_file = 1; 5122 } 5123 5124 err = ext4_fill_raw_inode(inode, raw_inode); 5125 spin_unlock(&ei->i_raw_lock); 5126 if (err) { 5127 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5128 goto out_brelse; 5129 } 5130 5131 if (inode->i_sb->s_flags & SB_LAZYTIME) 5132 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5133 bh->b_data); 5134 5135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5136 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5137 if (err) 5138 goto out_error; 5139 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5140 if (set_large_file) { 5141 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5142 err = ext4_journal_get_write_access(handle, sb, 5143 EXT4_SB(sb)->s_sbh, 5144 EXT4_JTR_NONE); 5145 if (err) 5146 goto out_error; 5147 lock_buffer(EXT4_SB(sb)->s_sbh); 5148 ext4_set_feature_large_file(sb); 5149 ext4_superblock_csum_set(sb); 5150 unlock_buffer(EXT4_SB(sb)->s_sbh); 5151 ext4_handle_sync(handle); 5152 err = ext4_handle_dirty_metadata(handle, NULL, 5153 EXT4_SB(sb)->s_sbh); 5154 } 5155 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5156 out_error: 5157 ext4_std_error(inode->i_sb, err); 5158 out_brelse: 5159 brelse(bh); 5160 return err; 5161 } 5162 5163 /* 5164 * ext4_write_inode() 5165 * 5166 * We are called from a few places: 5167 * 5168 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5169 * Here, there will be no transaction running. We wait for any running 5170 * transaction to commit. 5171 * 5172 * - Within flush work (sys_sync(), kupdate and such). 5173 * We wait on commit, if told to. 5174 * 5175 * - Within iput_final() -> write_inode_now() 5176 * We wait on commit, if told to. 5177 * 5178 * In all cases it is actually safe for us to return without doing anything, 5179 * because the inode has been copied into a raw inode buffer in 5180 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5181 * writeback. 5182 * 5183 * Note that we are absolutely dependent upon all inode dirtiers doing the 5184 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5185 * which we are interested. 5186 * 5187 * It would be a bug for them to not do this. The code: 5188 * 5189 * mark_inode_dirty(inode) 5190 * stuff(); 5191 * inode->i_size = expr; 5192 * 5193 * is in error because write_inode() could occur while `stuff()' is running, 5194 * and the new i_size will be lost. Plus the inode will no longer be on the 5195 * superblock's dirty inode list. 5196 */ 5197 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5198 { 5199 int err; 5200 5201 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5202 return 0; 5203 5204 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5205 return -EIO; 5206 5207 if (EXT4_SB(inode->i_sb)->s_journal) { 5208 if (ext4_journal_current_handle()) { 5209 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5210 dump_stack(); 5211 return -EIO; 5212 } 5213 5214 /* 5215 * No need to force transaction in WB_SYNC_NONE mode. Also 5216 * ext4_sync_fs() will force the commit after everything is 5217 * written. 5218 */ 5219 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5220 return 0; 5221 5222 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5223 EXT4_I(inode)->i_sync_tid); 5224 } else { 5225 struct ext4_iloc iloc; 5226 5227 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5228 if (err) 5229 return err; 5230 /* 5231 * sync(2) will flush the whole buffer cache. No need to do 5232 * it here separately for each inode. 5233 */ 5234 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5235 sync_dirty_buffer(iloc.bh); 5236 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5237 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5238 "IO error syncing inode"); 5239 err = -EIO; 5240 } 5241 brelse(iloc.bh); 5242 } 5243 return err; 5244 } 5245 5246 /* 5247 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5248 * buffers that are attached to a folio straddling i_size and are undergoing 5249 * commit. In that case we have to wait for commit to finish and try again. 5250 */ 5251 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5252 { 5253 unsigned offset; 5254 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5255 tid_t commit_tid = 0; 5256 int ret; 5257 5258 offset = inode->i_size & (PAGE_SIZE - 1); 5259 /* 5260 * If the folio is fully truncated, we don't need to wait for any commit 5261 * (and we even should not as __ext4_journalled_invalidate_folio() may 5262 * strip all buffers from the folio but keep the folio dirty which can then 5263 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5264 * buffers). Also we don't need to wait for any commit if all buffers in 5265 * the folio remain valid. This is most beneficial for the common case of 5266 * blocksize == PAGESIZE. 5267 */ 5268 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5269 return; 5270 while (1) { 5271 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5272 inode->i_size >> PAGE_SHIFT); 5273 if (IS_ERR(folio)) 5274 return; 5275 ret = __ext4_journalled_invalidate_folio(folio, offset, 5276 folio_size(folio) - offset); 5277 folio_unlock(folio); 5278 folio_put(folio); 5279 if (ret != -EBUSY) 5280 return; 5281 commit_tid = 0; 5282 read_lock(&journal->j_state_lock); 5283 if (journal->j_committing_transaction) 5284 commit_tid = journal->j_committing_transaction->t_tid; 5285 read_unlock(&journal->j_state_lock); 5286 if (commit_tid) 5287 jbd2_log_wait_commit(journal, commit_tid); 5288 } 5289 } 5290 5291 /* 5292 * ext4_setattr() 5293 * 5294 * Called from notify_change. 5295 * 5296 * We want to trap VFS attempts to truncate the file as soon as 5297 * possible. In particular, we want to make sure that when the VFS 5298 * shrinks i_size, we put the inode on the orphan list and modify 5299 * i_disksize immediately, so that during the subsequent flushing of 5300 * dirty pages and freeing of disk blocks, we can guarantee that any 5301 * commit will leave the blocks being flushed in an unused state on 5302 * disk. (On recovery, the inode will get truncated and the blocks will 5303 * be freed, so we have a strong guarantee that no future commit will 5304 * leave these blocks visible to the user.) 5305 * 5306 * Another thing we have to assure is that if we are in ordered mode 5307 * and inode is still attached to the committing transaction, we must 5308 * we start writeout of all the dirty pages which are being truncated. 5309 * This way we are sure that all the data written in the previous 5310 * transaction are already on disk (truncate waits for pages under 5311 * writeback). 5312 * 5313 * Called with inode->i_rwsem down. 5314 */ 5315 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5316 struct iattr *attr) 5317 { 5318 struct inode *inode = d_inode(dentry); 5319 int error, rc = 0; 5320 int orphan = 0; 5321 const unsigned int ia_valid = attr->ia_valid; 5322 bool inc_ivers = true; 5323 5324 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5325 return -EIO; 5326 5327 if (unlikely(IS_IMMUTABLE(inode))) 5328 return -EPERM; 5329 5330 if (unlikely(IS_APPEND(inode) && 5331 (ia_valid & (ATTR_MODE | ATTR_UID | 5332 ATTR_GID | ATTR_TIMES_SET)))) 5333 return -EPERM; 5334 5335 error = setattr_prepare(idmap, dentry, attr); 5336 if (error) 5337 return error; 5338 5339 error = fscrypt_prepare_setattr(dentry, attr); 5340 if (error) 5341 return error; 5342 5343 error = fsverity_prepare_setattr(dentry, attr); 5344 if (error) 5345 return error; 5346 5347 if (is_quota_modification(idmap, inode, attr)) { 5348 error = dquot_initialize(inode); 5349 if (error) 5350 return error; 5351 } 5352 5353 if (i_uid_needs_update(idmap, attr, inode) || 5354 i_gid_needs_update(idmap, attr, inode)) { 5355 handle_t *handle; 5356 5357 /* (user+group)*(old+new) structure, inode write (sb, 5358 * inode block, ? - but truncate inode update has it) */ 5359 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5360 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5361 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5362 if (IS_ERR(handle)) { 5363 error = PTR_ERR(handle); 5364 goto err_out; 5365 } 5366 5367 /* dquot_transfer() calls back ext4_get_inode_usage() which 5368 * counts xattr inode references. 5369 */ 5370 down_read(&EXT4_I(inode)->xattr_sem); 5371 error = dquot_transfer(idmap, inode, attr); 5372 up_read(&EXT4_I(inode)->xattr_sem); 5373 5374 if (error) { 5375 ext4_journal_stop(handle); 5376 return error; 5377 } 5378 /* Update corresponding info in inode so that everything is in 5379 * one transaction */ 5380 i_uid_update(idmap, attr, inode); 5381 i_gid_update(idmap, attr, inode); 5382 error = ext4_mark_inode_dirty(handle, inode); 5383 ext4_journal_stop(handle); 5384 if (unlikely(error)) { 5385 return error; 5386 } 5387 } 5388 5389 if (attr->ia_valid & ATTR_SIZE) { 5390 handle_t *handle; 5391 loff_t oldsize = inode->i_size; 5392 loff_t old_disksize; 5393 int shrink = (attr->ia_size < inode->i_size); 5394 5395 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5396 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5397 5398 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5399 return -EFBIG; 5400 } 5401 } 5402 if (!S_ISREG(inode->i_mode)) { 5403 return -EINVAL; 5404 } 5405 5406 if (attr->ia_size == inode->i_size) 5407 inc_ivers = false; 5408 5409 if (shrink) { 5410 if (ext4_should_order_data(inode)) { 5411 error = ext4_begin_ordered_truncate(inode, 5412 attr->ia_size); 5413 if (error) 5414 goto err_out; 5415 } 5416 /* 5417 * Blocks are going to be removed from the inode. Wait 5418 * for dio in flight. 5419 */ 5420 inode_dio_wait(inode); 5421 } 5422 5423 filemap_invalidate_lock(inode->i_mapping); 5424 5425 rc = ext4_break_layouts(inode); 5426 if (rc) { 5427 filemap_invalidate_unlock(inode->i_mapping); 5428 goto err_out; 5429 } 5430 5431 if (attr->ia_size != inode->i_size) { 5432 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5433 if (IS_ERR(handle)) { 5434 error = PTR_ERR(handle); 5435 goto out_mmap_sem; 5436 } 5437 if (ext4_handle_valid(handle) && shrink) { 5438 error = ext4_orphan_add(handle, inode); 5439 orphan = 1; 5440 } 5441 /* 5442 * Update c/mtime on truncate up, ext4_truncate() will 5443 * update c/mtime in shrink case below 5444 */ 5445 if (!shrink) 5446 inode->i_mtime = inode_set_ctime_current(inode); 5447 5448 if (shrink) 5449 ext4_fc_track_range(handle, inode, 5450 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5451 inode->i_sb->s_blocksize_bits, 5452 EXT_MAX_BLOCKS - 1); 5453 else 5454 ext4_fc_track_range( 5455 handle, inode, 5456 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5457 inode->i_sb->s_blocksize_bits, 5458 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5459 inode->i_sb->s_blocksize_bits); 5460 5461 down_write(&EXT4_I(inode)->i_data_sem); 5462 old_disksize = EXT4_I(inode)->i_disksize; 5463 EXT4_I(inode)->i_disksize = attr->ia_size; 5464 rc = ext4_mark_inode_dirty(handle, inode); 5465 if (!error) 5466 error = rc; 5467 /* 5468 * We have to update i_size under i_data_sem together 5469 * with i_disksize to avoid races with writeback code 5470 * running ext4_wb_update_i_disksize(). 5471 */ 5472 if (!error) 5473 i_size_write(inode, attr->ia_size); 5474 else 5475 EXT4_I(inode)->i_disksize = old_disksize; 5476 up_write(&EXT4_I(inode)->i_data_sem); 5477 ext4_journal_stop(handle); 5478 if (error) 5479 goto out_mmap_sem; 5480 if (!shrink) { 5481 pagecache_isize_extended(inode, oldsize, 5482 inode->i_size); 5483 } else if (ext4_should_journal_data(inode)) { 5484 ext4_wait_for_tail_page_commit(inode); 5485 } 5486 } 5487 5488 /* 5489 * Truncate pagecache after we've waited for commit 5490 * in data=journal mode to make pages freeable. 5491 */ 5492 truncate_pagecache(inode, inode->i_size); 5493 /* 5494 * Call ext4_truncate() even if i_size didn't change to 5495 * truncate possible preallocated blocks. 5496 */ 5497 if (attr->ia_size <= oldsize) { 5498 rc = ext4_truncate(inode); 5499 if (rc) 5500 error = rc; 5501 } 5502 out_mmap_sem: 5503 filemap_invalidate_unlock(inode->i_mapping); 5504 } 5505 5506 if (!error) { 5507 if (inc_ivers) 5508 inode_inc_iversion(inode); 5509 setattr_copy(idmap, inode, attr); 5510 mark_inode_dirty(inode); 5511 } 5512 5513 /* 5514 * If the call to ext4_truncate failed to get a transaction handle at 5515 * all, we need to clean up the in-core orphan list manually. 5516 */ 5517 if (orphan && inode->i_nlink) 5518 ext4_orphan_del(NULL, inode); 5519 5520 if (!error && (ia_valid & ATTR_MODE)) 5521 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5522 5523 err_out: 5524 if (error) 5525 ext4_std_error(inode->i_sb, error); 5526 if (!error) 5527 error = rc; 5528 return error; 5529 } 5530 5531 u32 ext4_dio_alignment(struct inode *inode) 5532 { 5533 if (fsverity_active(inode)) 5534 return 0; 5535 if (ext4_should_journal_data(inode)) 5536 return 0; 5537 if (ext4_has_inline_data(inode)) 5538 return 0; 5539 if (IS_ENCRYPTED(inode)) { 5540 if (!fscrypt_dio_supported(inode)) 5541 return 0; 5542 return i_blocksize(inode); 5543 } 5544 return 1; /* use the iomap defaults */ 5545 } 5546 5547 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5548 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5549 { 5550 struct inode *inode = d_inode(path->dentry); 5551 struct ext4_inode *raw_inode; 5552 struct ext4_inode_info *ei = EXT4_I(inode); 5553 unsigned int flags; 5554 5555 if ((request_mask & STATX_BTIME) && 5556 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5557 stat->result_mask |= STATX_BTIME; 5558 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5559 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5560 } 5561 5562 /* 5563 * Return the DIO alignment restrictions if requested. We only return 5564 * this information when requested, since on encrypted files it might 5565 * take a fair bit of work to get if the file wasn't opened recently. 5566 */ 5567 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5568 u32 dio_align = ext4_dio_alignment(inode); 5569 5570 stat->result_mask |= STATX_DIOALIGN; 5571 if (dio_align == 1) { 5572 struct block_device *bdev = inode->i_sb->s_bdev; 5573 5574 /* iomap defaults */ 5575 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5576 stat->dio_offset_align = bdev_logical_block_size(bdev); 5577 } else { 5578 stat->dio_mem_align = dio_align; 5579 stat->dio_offset_align = dio_align; 5580 } 5581 } 5582 5583 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5584 if (flags & EXT4_APPEND_FL) 5585 stat->attributes |= STATX_ATTR_APPEND; 5586 if (flags & EXT4_COMPR_FL) 5587 stat->attributes |= STATX_ATTR_COMPRESSED; 5588 if (flags & EXT4_ENCRYPT_FL) 5589 stat->attributes |= STATX_ATTR_ENCRYPTED; 5590 if (flags & EXT4_IMMUTABLE_FL) 5591 stat->attributes |= STATX_ATTR_IMMUTABLE; 5592 if (flags & EXT4_NODUMP_FL) 5593 stat->attributes |= STATX_ATTR_NODUMP; 5594 if (flags & EXT4_VERITY_FL) 5595 stat->attributes |= STATX_ATTR_VERITY; 5596 5597 stat->attributes_mask |= (STATX_ATTR_APPEND | 5598 STATX_ATTR_COMPRESSED | 5599 STATX_ATTR_ENCRYPTED | 5600 STATX_ATTR_IMMUTABLE | 5601 STATX_ATTR_NODUMP | 5602 STATX_ATTR_VERITY); 5603 5604 generic_fillattr(idmap, request_mask, inode, stat); 5605 return 0; 5606 } 5607 5608 int ext4_file_getattr(struct mnt_idmap *idmap, 5609 const struct path *path, struct kstat *stat, 5610 u32 request_mask, unsigned int query_flags) 5611 { 5612 struct inode *inode = d_inode(path->dentry); 5613 u64 delalloc_blocks; 5614 5615 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5616 5617 /* 5618 * If there is inline data in the inode, the inode will normally not 5619 * have data blocks allocated (it may have an external xattr block). 5620 * Report at least one sector for such files, so tools like tar, rsync, 5621 * others don't incorrectly think the file is completely sparse. 5622 */ 5623 if (unlikely(ext4_has_inline_data(inode))) 5624 stat->blocks += (stat->size + 511) >> 9; 5625 5626 /* 5627 * We can't update i_blocks if the block allocation is delayed 5628 * otherwise in the case of system crash before the real block 5629 * allocation is done, we will have i_blocks inconsistent with 5630 * on-disk file blocks. 5631 * We always keep i_blocks updated together with real 5632 * allocation. But to not confuse with user, stat 5633 * will return the blocks that include the delayed allocation 5634 * blocks for this file. 5635 */ 5636 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5637 EXT4_I(inode)->i_reserved_data_blocks); 5638 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5639 return 0; 5640 } 5641 5642 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5643 int pextents) 5644 { 5645 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5646 return ext4_ind_trans_blocks(inode, lblocks); 5647 return ext4_ext_index_trans_blocks(inode, pextents); 5648 } 5649 5650 /* 5651 * Account for index blocks, block groups bitmaps and block group 5652 * descriptor blocks if modify datablocks and index blocks 5653 * worse case, the indexs blocks spread over different block groups 5654 * 5655 * If datablocks are discontiguous, they are possible to spread over 5656 * different block groups too. If they are contiguous, with flexbg, 5657 * they could still across block group boundary. 5658 * 5659 * Also account for superblock, inode, quota and xattr blocks 5660 */ 5661 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5662 int pextents) 5663 { 5664 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5665 int gdpblocks; 5666 int idxblocks; 5667 int ret; 5668 5669 /* 5670 * How many index blocks need to touch to map @lblocks logical blocks 5671 * to @pextents physical extents? 5672 */ 5673 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5674 5675 ret = idxblocks; 5676 5677 /* 5678 * Now let's see how many group bitmaps and group descriptors need 5679 * to account 5680 */ 5681 groups = idxblocks + pextents; 5682 gdpblocks = groups; 5683 if (groups > ngroups) 5684 groups = ngroups; 5685 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5686 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5687 5688 /* bitmaps and block group descriptor blocks */ 5689 ret += groups + gdpblocks; 5690 5691 /* Blocks for super block, inode, quota and xattr blocks */ 5692 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5693 5694 return ret; 5695 } 5696 5697 /* 5698 * Calculate the total number of credits to reserve to fit 5699 * the modification of a single pages into a single transaction, 5700 * which may include multiple chunks of block allocations. 5701 * 5702 * This could be called via ext4_write_begin() 5703 * 5704 * We need to consider the worse case, when 5705 * one new block per extent. 5706 */ 5707 int ext4_writepage_trans_blocks(struct inode *inode) 5708 { 5709 int bpp = ext4_journal_blocks_per_page(inode); 5710 int ret; 5711 5712 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5713 5714 /* Account for data blocks for journalled mode */ 5715 if (ext4_should_journal_data(inode)) 5716 ret += bpp; 5717 return ret; 5718 } 5719 5720 /* 5721 * Calculate the journal credits for a chunk of data modification. 5722 * 5723 * This is called from DIO, fallocate or whoever calling 5724 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5725 * 5726 * journal buffers for data blocks are not included here, as DIO 5727 * and fallocate do no need to journal data buffers. 5728 */ 5729 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5730 { 5731 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5732 } 5733 5734 /* 5735 * The caller must have previously called ext4_reserve_inode_write(). 5736 * Give this, we know that the caller already has write access to iloc->bh. 5737 */ 5738 int ext4_mark_iloc_dirty(handle_t *handle, 5739 struct inode *inode, struct ext4_iloc *iloc) 5740 { 5741 int err = 0; 5742 5743 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5744 put_bh(iloc->bh); 5745 return -EIO; 5746 } 5747 ext4_fc_track_inode(handle, inode); 5748 5749 /* the do_update_inode consumes one bh->b_count */ 5750 get_bh(iloc->bh); 5751 5752 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5753 err = ext4_do_update_inode(handle, inode, iloc); 5754 put_bh(iloc->bh); 5755 return err; 5756 } 5757 5758 /* 5759 * On success, We end up with an outstanding reference count against 5760 * iloc->bh. This _must_ be cleaned up later. 5761 */ 5762 5763 int 5764 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5765 struct ext4_iloc *iloc) 5766 { 5767 int err; 5768 5769 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5770 return -EIO; 5771 5772 err = ext4_get_inode_loc(inode, iloc); 5773 if (!err) { 5774 BUFFER_TRACE(iloc->bh, "get_write_access"); 5775 err = ext4_journal_get_write_access(handle, inode->i_sb, 5776 iloc->bh, EXT4_JTR_NONE); 5777 if (err) { 5778 brelse(iloc->bh); 5779 iloc->bh = NULL; 5780 } 5781 } 5782 ext4_std_error(inode->i_sb, err); 5783 return err; 5784 } 5785 5786 static int __ext4_expand_extra_isize(struct inode *inode, 5787 unsigned int new_extra_isize, 5788 struct ext4_iloc *iloc, 5789 handle_t *handle, int *no_expand) 5790 { 5791 struct ext4_inode *raw_inode; 5792 struct ext4_xattr_ibody_header *header; 5793 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5794 struct ext4_inode_info *ei = EXT4_I(inode); 5795 int error; 5796 5797 /* this was checked at iget time, but double check for good measure */ 5798 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5799 (ei->i_extra_isize & 3)) { 5800 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5801 ei->i_extra_isize, 5802 EXT4_INODE_SIZE(inode->i_sb)); 5803 return -EFSCORRUPTED; 5804 } 5805 if ((new_extra_isize < ei->i_extra_isize) || 5806 (new_extra_isize < 4) || 5807 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5808 return -EINVAL; /* Should never happen */ 5809 5810 raw_inode = ext4_raw_inode(iloc); 5811 5812 header = IHDR(inode, raw_inode); 5813 5814 /* No extended attributes present */ 5815 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5816 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5817 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5818 EXT4_I(inode)->i_extra_isize, 0, 5819 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5820 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5821 return 0; 5822 } 5823 5824 /* 5825 * We may need to allocate external xattr block so we need quotas 5826 * initialized. Here we can be called with various locks held so we 5827 * cannot affort to initialize quotas ourselves. So just bail. 5828 */ 5829 if (dquot_initialize_needed(inode)) 5830 return -EAGAIN; 5831 5832 /* try to expand with EAs present */ 5833 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5834 raw_inode, handle); 5835 if (error) { 5836 /* 5837 * Inode size expansion failed; don't try again 5838 */ 5839 *no_expand = 1; 5840 } 5841 5842 return error; 5843 } 5844 5845 /* 5846 * Expand an inode by new_extra_isize bytes. 5847 * Returns 0 on success or negative error number on failure. 5848 */ 5849 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5850 unsigned int new_extra_isize, 5851 struct ext4_iloc iloc, 5852 handle_t *handle) 5853 { 5854 int no_expand; 5855 int error; 5856 5857 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5858 return -EOVERFLOW; 5859 5860 /* 5861 * In nojournal mode, we can immediately attempt to expand 5862 * the inode. When journaled, we first need to obtain extra 5863 * buffer credits since we may write into the EA block 5864 * with this same handle. If journal_extend fails, then it will 5865 * only result in a minor loss of functionality for that inode. 5866 * If this is felt to be critical, then e2fsck should be run to 5867 * force a large enough s_min_extra_isize. 5868 */ 5869 if (ext4_journal_extend(handle, 5870 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5871 return -ENOSPC; 5872 5873 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5874 return -EBUSY; 5875 5876 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5877 handle, &no_expand); 5878 ext4_write_unlock_xattr(inode, &no_expand); 5879 5880 return error; 5881 } 5882 5883 int ext4_expand_extra_isize(struct inode *inode, 5884 unsigned int new_extra_isize, 5885 struct ext4_iloc *iloc) 5886 { 5887 handle_t *handle; 5888 int no_expand; 5889 int error, rc; 5890 5891 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5892 brelse(iloc->bh); 5893 return -EOVERFLOW; 5894 } 5895 5896 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5897 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5898 if (IS_ERR(handle)) { 5899 error = PTR_ERR(handle); 5900 brelse(iloc->bh); 5901 return error; 5902 } 5903 5904 ext4_write_lock_xattr(inode, &no_expand); 5905 5906 BUFFER_TRACE(iloc->bh, "get_write_access"); 5907 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5908 EXT4_JTR_NONE); 5909 if (error) { 5910 brelse(iloc->bh); 5911 goto out_unlock; 5912 } 5913 5914 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5915 handle, &no_expand); 5916 5917 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5918 if (!error) 5919 error = rc; 5920 5921 out_unlock: 5922 ext4_write_unlock_xattr(inode, &no_expand); 5923 ext4_journal_stop(handle); 5924 return error; 5925 } 5926 5927 /* 5928 * What we do here is to mark the in-core inode as clean with respect to inode 5929 * dirtiness (it may still be data-dirty). 5930 * This means that the in-core inode may be reaped by prune_icache 5931 * without having to perform any I/O. This is a very good thing, 5932 * because *any* task may call prune_icache - even ones which 5933 * have a transaction open against a different journal. 5934 * 5935 * Is this cheating? Not really. Sure, we haven't written the 5936 * inode out, but prune_icache isn't a user-visible syncing function. 5937 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5938 * we start and wait on commits. 5939 */ 5940 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5941 const char *func, unsigned int line) 5942 { 5943 struct ext4_iloc iloc; 5944 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5945 int err; 5946 5947 might_sleep(); 5948 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5949 err = ext4_reserve_inode_write(handle, inode, &iloc); 5950 if (err) 5951 goto out; 5952 5953 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5954 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5955 iloc, handle); 5956 5957 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5958 out: 5959 if (unlikely(err)) 5960 ext4_error_inode_err(inode, func, line, 0, err, 5961 "mark_inode_dirty error"); 5962 return err; 5963 } 5964 5965 /* 5966 * ext4_dirty_inode() is called from __mark_inode_dirty() 5967 * 5968 * We're really interested in the case where a file is being extended. 5969 * i_size has been changed by generic_commit_write() and we thus need 5970 * to include the updated inode in the current transaction. 5971 * 5972 * Also, dquot_alloc_block() will always dirty the inode when blocks 5973 * are allocated to the file. 5974 * 5975 * If the inode is marked synchronous, we don't honour that here - doing 5976 * so would cause a commit on atime updates, which we don't bother doing. 5977 * We handle synchronous inodes at the highest possible level. 5978 */ 5979 void ext4_dirty_inode(struct inode *inode, int flags) 5980 { 5981 handle_t *handle; 5982 5983 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5984 if (IS_ERR(handle)) 5985 return; 5986 ext4_mark_inode_dirty(handle, inode); 5987 ext4_journal_stop(handle); 5988 } 5989 5990 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5991 { 5992 journal_t *journal; 5993 handle_t *handle; 5994 int err; 5995 int alloc_ctx; 5996 5997 /* 5998 * We have to be very careful here: changing a data block's 5999 * journaling status dynamically is dangerous. If we write a 6000 * data block to the journal, change the status and then delete 6001 * that block, we risk forgetting to revoke the old log record 6002 * from the journal and so a subsequent replay can corrupt data. 6003 * So, first we make sure that the journal is empty and that 6004 * nobody is changing anything. 6005 */ 6006 6007 journal = EXT4_JOURNAL(inode); 6008 if (!journal) 6009 return 0; 6010 if (is_journal_aborted(journal)) 6011 return -EROFS; 6012 6013 /* Wait for all existing dio workers */ 6014 inode_dio_wait(inode); 6015 6016 /* 6017 * Before flushing the journal and switching inode's aops, we have 6018 * to flush all dirty data the inode has. There can be outstanding 6019 * delayed allocations, there can be unwritten extents created by 6020 * fallocate or buffered writes in dioread_nolock mode covered by 6021 * dirty data which can be converted only after flushing the dirty 6022 * data (and journalled aops don't know how to handle these cases). 6023 */ 6024 if (val) { 6025 filemap_invalidate_lock(inode->i_mapping); 6026 err = filemap_write_and_wait(inode->i_mapping); 6027 if (err < 0) { 6028 filemap_invalidate_unlock(inode->i_mapping); 6029 return err; 6030 } 6031 } 6032 6033 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6034 jbd2_journal_lock_updates(journal); 6035 6036 /* 6037 * OK, there are no updates running now, and all cached data is 6038 * synced to disk. We are now in a completely consistent state 6039 * which doesn't have anything in the journal, and we know that 6040 * no filesystem updates are running, so it is safe to modify 6041 * the inode's in-core data-journaling state flag now. 6042 */ 6043 6044 if (val) 6045 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6046 else { 6047 err = jbd2_journal_flush(journal, 0); 6048 if (err < 0) { 6049 jbd2_journal_unlock_updates(journal); 6050 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6051 return err; 6052 } 6053 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6054 } 6055 ext4_set_aops(inode); 6056 6057 jbd2_journal_unlock_updates(journal); 6058 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6059 6060 if (val) 6061 filemap_invalidate_unlock(inode->i_mapping); 6062 6063 /* Finally we can mark the inode as dirty. */ 6064 6065 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6066 if (IS_ERR(handle)) 6067 return PTR_ERR(handle); 6068 6069 ext4_fc_mark_ineligible(inode->i_sb, 6070 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6071 err = ext4_mark_inode_dirty(handle, inode); 6072 ext4_handle_sync(handle); 6073 ext4_journal_stop(handle); 6074 ext4_std_error(inode->i_sb, err); 6075 6076 return err; 6077 } 6078 6079 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6080 struct buffer_head *bh) 6081 { 6082 return !buffer_mapped(bh); 6083 } 6084 6085 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6086 { 6087 struct vm_area_struct *vma = vmf->vma; 6088 struct folio *folio = page_folio(vmf->page); 6089 loff_t size; 6090 unsigned long len; 6091 int err; 6092 vm_fault_t ret; 6093 struct file *file = vma->vm_file; 6094 struct inode *inode = file_inode(file); 6095 struct address_space *mapping = inode->i_mapping; 6096 handle_t *handle; 6097 get_block_t *get_block; 6098 int retries = 0; 6099 6100 if (unlikely(IS_IMMUTABLE(inode))) 6101 return VM_FAULT_SIGBUS; 6102 6103 sb_start_pagefault(inode->i_sb); 6104 file_update_time(vma->vm_file); 6105 6106 filemap_invalidate_lock_shared(mapping); 6107 6108 err = ext4_convert_inline_data(inode); 6109 if (err) 6110 goto out_ret; 6111 6112 /* 6113 * On data journalling we skip straight to the transaction handle: 6114 * there's no delalloc; page truncated will be checked later; the 6115 * early return w/ all buffers mapped (calculates size/len) can't 6116 * be used; and there's no dioread_nolock, so only ext4_get_block. 6117 */ 6118 if (ext4_should_journal_data(inode)) 6119 goto retry_alloc; 6120 6121 /* Delalloc case is easy... */ 6122 if (test_opt(inode->i_sb, DELALLOC) && 6123 !ext4_nonda_switch(inode->i_sb)) { 6124 do { 6125 err = block_page_mkwrite(vma, vmf, 6126 ext4_da_get_block_prep); 6127 } while (err == -ENOSPC && 6128 ext4_should_retry_alloc(inode->i_sb, &retries)); 6129 goto out_ret; 6130 } 6131 6132 folio_lock(folio); 6133 size = i_size_read(inode); 6134 /* Page got truncated from under us? */ 6135 if (folio->mapping != mapping || folio_pos(folio) > size) { 6136 folio_unlock(folio); 6137 ret = VM_FAULT_NOPAGE; 6138 goto out; 6139 } 6140 6141 len = folio_size(folio); 6142 if (folio_pos(folio) + len > size) 6143 len = size - folio_pos(folio); 6144 /* 6145 * Return if we have all the buffers mapped. This avoids the need to do 6146 * journal_start/journal_stop which can block and take a long time 6147 * 6148 * This cannot be done for data journalling, as we have to add the 6149 * inode to the transaction's list to writeprotect pages on commit. 6150 */ 6151 if (folio_buffers(folio)) { 6152 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6153 0, len, NULL, 6154 ext4_bh_unmapped)) { 6155 /* Wait so that we don't change page under IO */ 6156 folio_wait_stable(folio); 6157 ret = VM_FAULT_LOCKED; 6158 goto out; 6159 } 6160 } 6161 folio_unlock(folio); 6162 /* OK, we need to fill the hole... */ 6163 if (ext4_should_dioread_nolock(inode)) 6164 get_block = ext4_get_block_unwritten; 6165 else 6166 get_block = ext4_get_block; 6167 retry_alloc: 6168 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6169 ext4_writepage_trans_blocks(inode)); 6170 if (IS_ERR(handle)) { 6171 ret = VM_FAULT_SIGBUS; 6172 goto out; 6173 } 6174 /* 6175 * Data journalling can't use block_page_mkwrite() because it 6176 * will set_buffer_dirty() before do_journal_get_write_access() 6177 * thus might hit warning messages for dirty metadata buffers. 6178 */ 6179 if (!ext4_should_journal_data(inode)) { 6180 err = block_page_mkwrite(vma, vmf, get_block); 6181 } else { 6182 folio_lock(folio); 6183 size = i_size_read(inode); 6184 /* Page got truncated from under us? */ 6185 if (folio->mapping != mapping || folio_pos(folio) > size) { 6186 ret = VM_FAULT_NOPAGE; 6187 goto out_error; 6188 } 6189 6190 len = folio_size(folio); 6191 if (folio_pos(folio) + len > size) 6192 len = size - folio_pos(folio); 6193 6194 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6195 if (!err) { 6196 ret = VM_FAULT_SIGBUS; 6197 if (ext4_journal_folio_buffers(handle, folio, len)) 6198 goto out_error; 6199 } else { 6200 folio_unlock(folio); 6201 } 6202 } 6203 ext4_journal_stop(handle); 6204 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6205 goto retry_alloc; 6206 out_ret: 6207 ret = vmf_fs_error(err); 6208 out: 6209 filemap_invalidate_unlock_shared(mapping); 6210 sb_end_pagefault(inode->i_sb); 6211 return ret; 6212 out_error: 6213 folio_unlock(folio); 6214 ext4_journal_stop(handle); 6215 goto out; 6216 } 6217