1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/slab.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "ext4_extents.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static inline int ext4_begin_ordered_truncate(struct inode *inode, 54 loff_t new_size) 55 { 56 return jbd2_journal_begin_ordered_truncate( 57 EXT4_SB(inode->i_sb)->s_journal, 58 &EXT4_I(inode)->jinode, 59 new_size); 60 } 61 62 static void ext4_invalidatepage(struct page *page, unsigned long offset); 63 64 /* 65 * Test whether an inode is a fast symlink. 66 */ 67 static int ext4_inode_is_fast_symlink(struct inode *inode) 68 { 69 int ea_blocks = EXT4_I(inode)->i_file_acl ? 70 (inode->i_sb->s_blocksize >> 9) : 0; 71 72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 73 } 74 75 /* 76 * Work out how many blocks we need to proceed with the next chunk of a 77 * truncate transaction. 78 */ 79 static unsigned long blocks_for_truncate(struct inode *inode) 80 { 81 ext4_lblk_t needed; 82 83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 84 85 /* Give ourselves just enough room to cope with inodes in which 86 * i_blocks is corrupt: we've seen disk corruptions in the past 87 * which resulted in random data in an inode which looked enough 88 * like a regular file for ext4 to try to delete it. Things 89 * will go a bit crazy if that happens, but at least we should 90 * try not to panic the whole kernel. */ 91 if (needed < 2) 92 needed = 2; 93 94 /* But we need to bound the transaction so we don't overflow the 95 * journal. */ 96 if (needed > EXT4_MAX_TRANS_DATA) 97 needed = EXT4_MAX_TRANS_DATA; 98 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 100 } 101 102 /* 103 * Truncate transactions can be complex and absolutely huge. So we need to 104 * be able to restart the transaction at a conventient checkpoint to make 105 * sure we don't overflow the journal. 106 * 107 * start_transaction gets us a new handle for a truncate transaction, 108 * and extend_transaction tries to extend the existing one a bit. If 109 * extend fails, we need to propagate the failure up and restart the 110 * transaction in the top-level truncate loop. --sct 111 */ 112 static handle_t *start_transaction(struct inode *inode) 113 { 114 handle_t *result; 115 116 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 117 if (!IS_ERR(result)) 118 return result; 119 120 ext4_std_error(inode->i_sb, PTR_ERR(result)); 121 return result; 122 } 123 124 /* 125 * Try to extend this transaction for the purposes of truncation. 126 * 127 * Returns 0 if we managed to create more room. If we can't create more 128 * room, and the transaction must be restarted we return 1. 129 */ 130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 131 { 132 if (!ext4_handle_valid(handle)) 133 return 0; 134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 135 return 0; 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 137 return 0; 138 return 1; 139 } 140 141 /* 142 * Restart the transaction associated with *handle. This does a commit, 143 * so before we call here everything must be consistently dirtied against 144 * this transaction. 145 */ 146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 147 int nblocks) 148 { 149 int ret; 150 151 /* 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 153 * moment, get_block can be called only for blocks inside i_size since 154 * page cache has been already dropped and writes are blocked by 155 * i_mutex. So we can safely drop the i_data_sem here. 156 */ 157 BUG_ON(EXT4_JOURNAL(inode) == NULL); 158 jbd_debug(2, "restarting handle %p\n", handle); 159 up_write(&EXT4_I(inode)->i_data_sem); 160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 161 down_write(&EXT4_I(inode)->i_data_sem); 162 ext4_discard_preallocations(inode); 163 164 return ret; 165 } 166 167 /* 168 * Called at the last iput() if i_nlink is zero. 169 */ 170 void ext4_delete_inode(struct inode *inode) 171 { 172 handle_t *handle; 173 int err; 174 175 if (!is_bad_inode(inode)) 176 dquot_initialize(inode); 177 178 if (ext4_should_order_data(inode)) 179 ext4_begin_ordered_truncate(inode, 0); 180 truncate_inode_pages(&inode->i_data, 0); 181 182 if (is_bad_inode(inode)) 183 goto no_delete; 184 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 186 if (IS_ERR(handle)) { 187 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 188 /* 189 * If we're going to skip the normal cleanup, we still need to 190 * make sure that the in-core orphan linked list is properly 191 * cleaned up. 192 */ 193 ext4_orphan_del(NULL, inode); 194 goto no_delete; 195 } 196 197 if (IS_SYNC(inode)) 198 ext4_handle_sync(handle); 199 inode->i_size = 0; 200 err = ext4_mark_inode_dirty(handle, inode); 201 if (err) { 202 ext4_warning(inode->i_sb, 203 "couldn't mark inode dirty (err %d)", err); 204 goto stop_handle; 205 } 206 if (inode->i_blocks) 207 ext4_truncate(inode); 208 209 /* 210 * ext4_ext_truncate() doesn't reserve any slop when it 211 * restarts journal transactions; therefore there may not be 212 * enough credits left in the handle to remove the inode from 213 * the orphan list and set the dtime field. 214 */ 215 if (!ext4_handle_has_enough_credits(handle, 3)) { 216 err = ext4_journal_extend(handle, 3); 217 if (err > 0) 218 err = ext4_journal_restart(handle, 3); 219 if (err != 0) { 220 ext4_warning(inode->i_sb, 221 "couldn't extend journal (err %d)", err); 222 stop_handle: 223 ext4_journal_stop(handle); 224 goto no_delete; 225 } 226 } 227 228 /* 229 * Kill off the orphan record which ext4_truncate created. 230 * AKPM: I think this can be inside the above `if'. 231 * Note that ext4_orphan_del() has to be able to cope with the 232 * deletion of a non-existent orphan - this is because we don't 233 * know if ext4_truncate() actually created an orphan record. 234 * (Well, we could do this if we need to, but heck - it works) 235 */ 236 ext4_orphan_del(handle, inode); 237 EXT4_I(inode)->i_dtime = get_seconds(); 238 239 /* 240 * One subtle ordering requirement: if anything has gone wrong 241 * (transaction abort, IO errors, whatever), then we can still 242 * do these next steps (the fs will already have been marked as 243 * having errors), but we can't free the inode if the mark_dirty 244 * fails. 245 */ 246 if (ext4_mark_inode_dirty(handle, inode)) 247 /* If that failed, just do the required in-core inode clear. */ 248 clear_inode(inode); 249 else 250 ext4_free_inode(handle, inode); 251 ext4_journal_stop(handle); 252 return; 253 no_delete: 254 clear_inode(inode); /* We must guarantee clearing of inode... */ 255 } 256 257 typedef struct { 258 __le32 *p; 259 __le32 key; 260 struct buffer_head *bh; 261 } Indirect; 262 263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 264 { 265 p->key = *(p->p = v); 266 p->bh = bh; 267 } 268 269 /** 270 * ext4_block_to_path - parse the block number into array of offsets 271 * @inode: inode in question (we are only interested in its superblock) 272 * @i_block: block number to be parsed 273 * @offsets: array to store the offsets in 274 * @boundary: set this non-zero if the referred-to block is likely to be 275 * followed (on disk) by an indirect block. 276 * 277 * To store the locations of file's data ext4 uses a data structure common 278 * for UNIX filesystems - tree of pointers anchored in the inode, with 279 * data blocks at leaves and indirect blocks in intermediate nodes. 280 * This function translates the block number into path in that tree - 281 * return value is the path length and @offsets[n] is the offset of 282 * pointer to (n+1)th node in the nth one. If @block is out of range 283 * (negative or too large) warning is printed and zero returned. 284 * 285 * Note: function doesn't find node addresses, so no IO is needed. All 286 * we need to know is the capacity of indirect blocks (taken from the 287 * inode->i_sb). 288 */ 289 290 /* 291 * Portability note: the last comparison (check that we fit into triple 292 * indirect block) is spelled differently, because otherwise on an 293 * architecture with 32-bit longs and 8Kb pages we might get into trouble 294 * if our filesystem had 8Kb blocks. We might use long long, but that would 295 * kill us on x86. Oh, well, at least the sign propagation does not matter - 296 * i_block would have to be negative in the very beginning, so we would not 297 * get there at all. 298 */ 299 300 static int ext4_block_to_path(struct inode *inode, 301 ext4_lblk_t i_block, 302 ext4_lblk_t offsets[4], int *boundary) 303 { 304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 306 const long direct_blocks = EXT4_NDIR_BLOCKS, 307 indirect_blocks = ptrs, 308 double_blocks = (1 << (ptrs_bits * 2)); 309 int n = 0; 310 int final = 0; 311 312 if (i_block < direct_blocks) { 313 offsets[n++] = i_block; 314 final = direct_blocks; 315 } else if ((i_block -= direct_blocks) < indirect_blocks) { 316 offsets[n++] = EXT4_IND_BLOCK; 317 offsets[n++] = i_block; 318 final = ptrs; 319 } else if ((i_block -= indirect_blocks) < double_blocks) { 320 offsets[n++] = EXT4_DIND_BLOCK; 321 offsets[n++] = i_block >> ptrs_bits; 322 offsets[n++] = i_block & (ptrs - 1); 323 final = ptrs; 324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 325 offsets[n++] = EXT4_TIND_BLOCK; 326 offsets[n++] = i_block >> (ptrs_bits * 2); 327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 328 offsets[n++] = i_block & (ptrs - 1); 329 final = ptrs; 330 } else { 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 332 i_block + direct_blocks + 333 indirect_blocks + double_blocks, inode->i_ino); 334 } 335 if (boundary) 336 *boundary = final - 1 - (i_block & (ptrs - 1)); 337 return n; 338 } 339 340 static int __ext4_check_blockref(const char *function, struct inode *inode, 341 __le32 *p, unsigned int max) 342 { 343 __le32 *bref = p; 344 unsigned int blk; 345 346 while (bref < p+max) { 347 blk = le32_to_cpu(*bref++); 348 if (blk && 349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 350 blk, 1))) { 351 __ext4_error(inode->i_sb, function, 352 "invalid block reference %u " 353 "in inode #%lu", blk, inode->i_ino); 354 return -EIO; 355 } 356 } 357 return 0; 358 } 359 360 361 #define ext4_check_indirect_blockref(inode, bh) \ 362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 363 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 364 365 #define ext4_check_inode_blockref(inode) \ 366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 367 EXT4_NDIR_BLOCKS) 368 369 /** 370 * ext4_get_branch - read the chain of indirect blocks leading to data 371 * @inode: inode in question 372 * @depth: depth of the chain (1 - direct pointer, etc.) 373 * @offsets: offsets of pointers in inode/indirect blocks 374 * @chain: place to store the result 375 * @err: here we store the error value 376 * 377 * Function fills the array of triples <key, p, bh> and returns %NULL 378 * if everything went OK or the pointer to the last filled triple 379 * (incomplete one) otherwise. Upon the return chain[i].key contains 380 * the number of (i+1)-th block in the chain (as it is stored in memory, 381 * i.e. little-endian 32-bit), chain[i].p contains the address of that 382 * number (it points into struct inode for i==0 and into the bh->b_data 383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 384 * block for i>0 and NULL for i==0. In other words, it holds the block 385 * numbers of the chain, addresses they were taken from (and where we can 386 * verify that chain did not change) and buffer_heads hosting these 387 * numbers. 388 * 389 * Function stops when it stumbles upon zero pointer (absent block) 390 * (pointer to last triple returned, *@err == 0) 391 * or when it gets an IO error reading an indirect block 392 * (ditto, *@err == -EIO) 393 * or when it reads all @depth-1 indirect blocks successfully and finds 394 * the whole chain, all way to the data (returns %NULL, *err == 0). 395 * 396 * Need to be called with 397 * down_read(&EXT4_I(inode)->i_data_sem) 398 */ 399 static Indirect *ext4_get_branch(struct inode *inode, int depth, 400 ext4_lblk_t *offsets, 401 Indirect chain[4], int *err) 402 { 403 struct super_block *sb = inode->i_sb; 404 Indirect *p = chain; 405 struct buffer_head *bh; 406 407 *err = 0; 408 /* i_data is not going away, no lock needed */ 409 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 410 if (!p->key) 411 goto no_block; 412 while (--depth) { 413 bh = sb_getblk(sb, le32_to_cpu(p->key)); 414 if (unlikely(!bh)) 415 goto failure; 416 417 if (!bh_uptodate_or_lock(bh)) { 418 if (bh_submit_read(bh) < 0) { 419 put_bh(bh); 420 goto failure; 421 } 422 /* validate block references */ 423 if (ext4_check_indirect_blockref(inode, bh)) { 424 put_bh(bh); 425 goto failure; 426 } 427 } 428 429 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 430 /* Reader: end */ 431 if (!p->key) 432 goto no_block; 433 } 434 return NULL; 435 436 failure: 437 *err = -EIO; 438 no_block: 439 return p; 440 } 441 442 /** 443 * ext4_find_near - find a place for allocation with sufficient locality 444 * @inode: owner 445 * @ind: descriptor of indirect block. 446 * 447 * This function returns the preferred place for block allocation. 448 * It is used when heuristic for sequential allocation fails. 449 * Rules are: 450 * + if there is a block to the left of our position - allocate near it. 451 * + if pointer will live in indirect block - allocate near that block. 452 * + if pointer will live in inode - allocate in the same 453 * cylinder group. 454 * 455 * In the latter case we colour the starting block by the callers PID to 456 * prevent it from clashing with concurrent allocations for a different inode 457 * in the same block group. The PID is used here so that functionally related 458 * files will be close-by on-disk. 459 * 460 * Caller must make sure that @ind is valid and will stay that way. 461 */ 462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 463 { 464 struct ext4_inode_info *ei = EXT4_I(inode); 465 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 466 __le32 *p; 467 ext4_fsblk_t bg_start; 468 ext4_fsblk_t last_block; 469 ext4_grpblk_t colour; 470 ext4_group_t block_group; 471 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 472 473 /* Try to find previous block */ 474 for (p = ind->p - 1; p >= start; p--) { 475 if (*p) 476 return le32_to_cpu(*p); 477 } 478 479 /* No such thing, so let's try location of indirect block */ 480 if (ind->bh) 481 return ind->bh->b_blocknr; 482 483 /* 484 * It is going to be referred to from the inode itself? OK, just put it 485 * into the same cylinder group then. 486 */ 487 block_group = ei->i_block_group; 488 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 489 block_group &= ~(flex_size-1); 490 if (S_ISREG(inode->i_mode)) 491 block_group++; 492 } 493 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 494 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 495 496 /* 497 * If we are doing delayed allocation, we don't need take 498 * colour into account. 499 */ 500 if (test_opt(inode->i_sb, DELALLOC)) 501 return bg_start; 502 503 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 504 colour = (current->pid % 16) * 505 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 506 else 507 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 508 return bg_start + colour; 509 } 510 511 /** 512 * ext4_find_goal - find a preferred place for allocation. 513 * @inode: owner 514 * @block: block we want 515 * @partial: pointer to the last triple within a chain 516 * 517 * Normally this function find the preferred place for block allocation, 518 * returns it. 519 * Because this is only used for non-extent files, we limit the block nr 520 * to 32 bits. 521 */ 522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 523 Indirect *partial) 524 { 525 ext4_fsblk_t goal; 526 527 /* 528 * XXX need to get goal block from mballoc's data structures 529 */ 530 531 goal = ext4_find_near(inode, partial); 532 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 533 return goal; 534 } 535 536 /** 537 * ext4_blks_to_allocate: Look up the block map and count the number 538 * of direct blocks need to be allocated for the given branch. 539 * 540 * @branch: chain of indirect blocks 541 * @k: number of blocks need for indirect blocks 542 * @blks: number of data blocks to be mapped. 543 * @blocks_to_boundary: the offset in the indirect block 544 * 545 * return the total number of blocks to be allocate, including the 546 * direct and indirect blocks. 547 */ 548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 549 int blocks_to_boundary) 550 { 551 unsigned int count = 0; 552 553 /* 554 * Simple case, [t,d]Indirect block(s) has not allocated yet 555 * then it's clear blocks on that path have not allocated 556 */ 557 if (k > 0) { 558 /* right now we don't handle cross boundary allocation */ 559 if (blks < blocks_to_boundary + 1) 560 count += blks; 561 else 562 count += blocks_to_boundary + 1; 563 return count; 564 } 565 566 count++; 567 while (count < blks && count <= blocks_to_boundary && 568 le32_to_cpu(*(branch[0].p + count)) == 0) { 569 count++; 570 } 571 return count; 572 } 573 574 /** 575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 576 * @indirect_blks: the number of blocks need to allocate for indirect 577 * blocks 578 * 579 * @new_blocks: on return it will store the new block numbers for 580 * the indirect blocks(if needed) and the first direct block, 581 * @blks: on return it will store the total number of allocated 582 * direct blocks 583 */ 584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 585 ext4_lblk_t iblock, ext4_fsblk_t goal, 586 int indirect_blks, int blks, 587 ext4_fsblk_t new_blocks[4], int *err) 588 { 589 struct ext4_allocation_request ar; 590 int target, i; 591 unsigned long count = 0, blk_allocated = 0; 592 int index = 0; 593 ext4_fsblk_t current_block = 0; 594 int ret = 0; 595 596 /* 597 * Here we try to allocate the requested multiple blocks at once, 598 * on a best-effort basis. 599 * To build a branch, we should allocate blocks for 600 * the indirect blocks(if not allocated yet), and at least 601 * the first direct block of this branch. That's the 602 * minimum number of blocks need to allocate(required) 603 */ 604 /* first we try to allocate the indirect blocks */ 605 target = indirect_blks; 606 while (target > 0) { 607 count = target; 608 /* allocating blocks for indirect blocks and direct blocks */ 609 current_block = ext4_new_meta_blocks(handle, inode, 610 goal, &count, err); 611 if (*err) 612 goto failed_out; 613 614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 615 EXT4_ERROR_INODE(inode, 616 "current_block %llu + count %lu > %d!", 617 current_block, count, 618 EXT4_MAX_BLOCK_FILE_PHYS); 619 *err = -EIO; 620 goto failed_out; 621 } 622 623 target -= count; 624 /* allocate blocks for indirect blocks */ 625 while (index < indirect_blks && count) { 626 new_blocks[index++] = current_block++; 627 count--; 628 } 629 if (count > 0) { 630 /* 631 * save the new block number 632 * for the first direct block 633 */ 634 new_blocks[index] = current_block; 635 printk(KERN_INFO "%s returned more blocks than " 636 "requested\n", __func__); 637 WARN_ON(1); 638 break; 639 } 640 } 641 642 target = blks - count ; 643 blk_allocated = count; 644 if (!target) 645 goto allocated; 646 /* Now allocate data blocks */ 647 memset(&ar, 0, sizeof(ar)); 648 ar.inode = inode; 649 ar.goal = goal; 650 ar.len = target; 651 ar.logical = iblock; 652 if (S_ISREG(inode->i_mode)) 653 /* enable in-core preallocation only for regular files */ 654 ar.flags = EXT4_MB_HINT_DATA; 655 656 current_block = ext4_mb_new_blocks(handle, &ar, err); 657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 658 EXT4_ERROR_INODE(inode, 659 "current_block %llu + ar.len %d > %d!", 660 current_block, ar.len, 661 EXT4_MAX_BLOCK_FILE_PHYS); 662 *err = -EIO; 663 goto failed_out; 664 } 665 666 if (*err && (target == blks)) { 667 /* 668 * if the allocation failed and we didn't allocate 669 * any blocks before 670 */ 671 goto failed_out; 672 } 673 if (!*err) { 674 if (target == blks) { 675 /* 676 * save the new block number 677 * for the first direct block 678 */ 679 new_blocks[index] = current_block; 680 } 681 blk_allocated += ar.len; 682 } 683 allocated: 684 /* total number of blocks allocated for direct blocks */ 685 ret = blk_allocated; 686 *err = 0; 687 return ret; 688 failed_out: 689 for (i = 0; i < index; i++) 690 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 691 return ret; 692 } 693 694 /** 695 * ext4_alloc_branch - allocate and set up a chain of blocks. 696 * @inode: owner 697 * @indirect_blks: number of allocated indirect blocks 698 * @blks: number of allocated direct blocks 699 * @offsets: offsets (in the blocks) to store the pointers to next. 700 * @branch: place to store the chain in. 701 * 702 * This function allocates blocks, zeroes out all but the last one, 703 * links them into chain and (if we are synchronous) writes them to disk. 704 * In other words, it prepares a branch that can be spliced onto the 705 * inode. It stores the information about that chain in the branch[], in 706 * the same format as ext4_get_branch() would do. We are calling it after 707 * we had read the existing part of chain and partial points to the last 708 * triple of that (one with zero ->key). Upon the exit we have the same 709 * picture as after the successful ext4_get_block(), except that in one 710 * place chain is disconnected - *branch->p is still zero (we did not 711 * set the last link), but branch->key contains the number that should 712 * be placed into *branch->p to fill that gap. 713 * 714 * If allocation fails we free all blocks we've allocated (and forget 715 * their buffer_heads) and return the error value the from failed 716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 717 * as described above and return 0. 718 */ 719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 720 ext4_lblk_t iblock, int indirect_blks, 721 int *blks, ext4_fsblk_t goal, 722 ext4_lblk_t *offsets, Indirect *branch) 723 { 724 int blocksize = inode->i_sb->s_blocksize; 725 int i, n = 0; 726 int err = 0; 727 struct buffer_head *bh; 728 int num; 729 ext4_fsblk_t new_blocks[4]; 730 ext4_fsblk_t current_block; 731 732 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 733 *blks, new_blocks, &err); 734 if (err) 735 return err; 736 737 branch[0].key = cpu_to_le32(new_blocks[0]); 738 /* 739 * metadata blocks and data blocks are allocated. 740 */ 741 for (n = 1; n <= indirect_blks; n++) { 742 /* 743 * Get buffer_head for parent block, zero it out 744 * and set the pointer to new one, then send 745 * parent to disk. 746 */ 747 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 748 branch[n].bh = bh; 749 lock_buffer(bh); 750 BUFFER_TRACE(bh, "call get_create_access"); 751 err = ext4_journal_get_create_access(handle, bh); 752 if (err) { 753 /* Don't brelse(bh) here; it's done in 754 * ext4_journal_forget() below */ 755 unlock_buffer(bh); 756 goto failed; 757 } 758 759 memset(bh->b_data, 0, blocksize); 760 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 761 branch[n].key = cpu_to_le32(new_blocks[n]); 762 *branch[n].p = branch[n].key; 763 if (n == indirect_blks) { 764 current_block = new_blocks[n]; 765 /* 766 * End of chain, update the last new metablock of 767 * the chain to point to the new allocated 768 * data blocks numbers 769 */ 770 for (i = 1; i < num; i++) 771 *(branch[n].p + i) = cpu_to_le32(++current_block); 772 } 773 BUFFER_TRACE(bh, "marking uptodate"); 774 set_buffer_uptodate(bh); 775 unlock_buffer(bh); 776 777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 778 err = ext4_handle_dirty_metadata(handle, inode, bh); 779 if (err) 780 goto failed; 781 } 782 *blks = num; 783 return err; 784 failed: 785 /* Allocation failed, free what we already allocated */ 786 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 787 for (i = 1; i <= n ; i++) { 788 /* 789 * branch[i].bh is newly allocated, so there is no 790 * need to revoke the block, which is why we don't 791 * need to set EXT4_FREE_BLOCKS_METADATA. 792 */ 793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 794 EXT4_FREE_BLOCKS_FORGET); 795 } 796 for (i = n+1; i < indirect_blks; i++) 797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 798 799 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 800 801 return err; 802 } 803 804 /** 805 * ext4_splice_branch - splice the allocated branch onto inode. 806 * @inode: owner 807 * @block: (logical) number of block we are adding 808 * @chain: chain of indirect blocks (with a missing link - see 809 * ext4_alloc_branch) 810 * @where: location of missing link 811 * @num: number of indirect blocks we are adding 812 * @blks: number of direct blocks we are adding 813 * 814 * This function fills the missing link and does all housekeeping needed in 815 * inode (->i_blocks, etc.). In case of success we end up with the full 816 * chain to new block and return 0. 817 */ 818 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 819 ext4_lblk_t block, Indirect *where, int num, 820 int blks) 821 { 822 int i; 823 int err = 0; 824 ext4_fsblk_t current_block; 825 826 /* 827 * If we're splicing into a [td]indirect block (as opposed to the 828 * inode) then we need to get write access to the [td]indirect block 829 * before the splice. 830 */ 831 if (where->bh) { 832 BUFFER_TRACE(where->bh, "get_write_access"); 833 err = ext4_journal_get_write_access(handle, where->bh); 834 if (err) 835 goto err_out; 836 } 837 /* That's it */ 838 839 *where->p = where->key; 840 841 /* 842 * Update the host buffer_head or inode to point to more just allocated 843 * direct blocks blocks 844 */ 845 if (num == 0 && blks > 1) { 846 current_block = le32_to_cpu(where->key) + 1; 847 for (i = 1; i < blks; i++) 848 *(where->p + i) = cpu_to_le32(current_block++); 849 } 850 851 /* We are done with atomic stuff, now do the rest of housekeeping */ 852 /* had we spliced it onto indirect block? */ 853 if (where->bh) { 854 /* 855 * If we spliced it onto an indirect block, we haven't 856 * altered the inode. Note however that if it is being spliced 857 * onto an indirect block at the very end of the file (the 858 * file is growing) then we *will* alter the inode to reflect 859 * the new i_size. But that is not done here - it is done in 860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 861 */ 862 jbd_debug(5, "splicing indirect only\n"); 863 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 864 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 865 if (err) 866 goto err_out; 867 } else { 868 /* 869 * OK, we spliced it into the inode itself on a direct block. 870 */ 871 ext4_mark_inode_dirty(handle, inode); 872 jbd_debug(5, "splicing direct\n"); 873 } 874 return err; 875 876 err_out: 877 for (i = 1; i <= num; i++) { 878 /* 879 * branch[i].bh is newly allocated, so there is no 880 * need to revoke the block, which is why we don't 881 * need to set EXT4_FREE_BLOCKS_METADATA. 882 */ 883 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 884 EXT4_FREE_BLOCKS_FORGET); 885 } 886 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 887 blks, 0); 888 889 return err; 890 } 891 892 /* 893 * The ext4_ind_map_blocks() function handles non-extents inodes 894 * (i.e., using the traditional indirect/double-indirect i_blocks 895 * scheme) for ext4_map_blocks(). 896 * 897 * Allocation strategy is simple: if we have to allocate something, we will 898 * have to go the whole way to leaf. So let's do it before attaching anything 899 * to tree, set linkage between the newborn blocks, write them if sync is 900 * required, recheck the path, free and repeat if check fails, otherwise 901 * set the last missing link (that will protect us from any truncate-generated 902 * removals - all blocks on the path are immune now) and possibly force the 903 * write on the parent block. 904 * That has a nice additional property: no special recovery from the failed 905 * allocations is needed - we simply release blocks and do not touch anything 906 * reachable from inode. 907 * 908 * `handle' can be NULL if create == 0. 909 * 910 * return > 0, # of blocks mapped or allocated. 911 * return = 0, if plain lookup failed. 912 * return < 0, error case. 913 * 914 * The ext4_ind_get_blocks() function should be called with 915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 918 * blocks. 919 */ 920 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 921 struct ext4_map_blocks *map, 922 int flags) 923 { 924 int err = -EIO; 925 ext4_lblk_t offsets[4]; 926 Indirect chain[4]; 927 Indirect *partial; 928 ext4_fsblk_t goal; 929 int indirect_blks; 930 int blocks_to_boundary = 0; 931 int depth; 932 int count = 0; 933 ext4_fsblk_t first_block = 0; 934 935 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 936 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 937 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 938 &blocks_to_boundary); 939 940 if (depth == 0) 941 goto out; 942 943 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 944 945 /* Simplest case - block found, no allocation needed */ 946 if (!partial) { 947 first_block = le32_to_cpu(chain[depth - 1].key); 948 count++; 949 /*map more blocks*/ 950 while (count < map->m_len && count <= blocks_to_boundary) { 951 ext4_fsblk_t blk; 952 953 blk = le32_to_cpu(*(chain[depth-1].p + count)); 954 955 if (blk == first_block + count) 956 count++; 957 else 958 break; 959 } 960 goto got_it; 961 } 962 963 /* Next simple case - plain lookup or failed read of indirect block */ 964 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 965 goto cleanup; 966 967 /* 968 * Okay, we need to do block allocation. 969 */ 970 goal = ext4_find_goal(inode, map->m_lblk, partial); 971 972 /* the number of blocks need to allocate for [d,t]indirect blocks */ 973 indirect_blks = (chain + depth) - partial - 1; 974 975 /* 976 * Next look up the indirect map to count the totoal number of 977 * direct blocks to allocate for this branch. 978 */ 979 count = ext4_blks_to_allocate(partial, indirect_blks, 980 map->m_len, blocks_to_boundary); 981 /* 982 * Block out ext4_truncate while we alter the tree 983 */ 984 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 985 &count, goal, 986 offsets + (partial - chain), partial); 987 988 /* 989 * The ext4_splice_branch call will free and forget any buffers 990 * on the new chain if there is a failure, but that risks using 991 * up transaction credits, especially for bitmaps where the 992 * credits cannot be returned. Can we handle this somehow? We 993 * may need to return -EAGAIN upwards in the worst case. --sct 994 */ 995 if (!err) 996 err = ext4_splice_branch(handle, inode, map->m_lblk, 997 partial, indirect_blks, count); 998 if (err) 999 goto cleanup; 1000 1001 map->m_flags |= EXT4_MAP_NEW; 1002 1003 ext4_update_inode_fsync_trans(handle, inode, 1); 1004 got_it: 1005 map->m_flags |= EXT4_MAP_MAPPED; 1006 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1007 map->m_len = count; 1008 if (count > blocks_to_boundary) 1009 map->m_flags |= EXT4_MAP_BOUNDARY; 1010 err = count; 1011 /* Clean up and exit */ 1012 partial = chain + depth - 1; /* the whole chain */ 1013 cleanup: 1014 while (partial > chain) { 1015 BUFFER_TRACE(partial->bh, "call brelse"); 1016 brelse(partial->bh); 1017 partial--; 1018 } 1019 out: 1020 return err; 1021 } 1022 1023 #ifdef CONFIG_QUOTA 1024 qsize_t *ext4_get_reserved_space(struct inode *inode) 1025 { 1026 return &EXT4_I(inode)->i_reserved_quota; 1027 } 1028 #endif 1029 1030 /* 1031 * Calculate the number of metadata blocks need to reserve 1032 * to allocate a new block at @lblocks for non extent file based file 1033 */ 1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1035 sector_t lblock) 1036 { 1037 struct ext4_inode_info *ei = EXT4_I(inode); 1038 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1039 int blk_bits; 1040 1041 if (lblock < EXT4_NDIR_BLOCKS) 1042 return 0; 1043 1044 lblock -= EXT4_NDIR_BLOCKS; 1045 1046 if (ei->i_da_metadata_calc_len && 1047 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1048 ei->i_da_metadata_calc_len++; 1049 return 0; 1050 } 1051 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1052 ei->i_da_metadata_calc_len = 1; 1053 blk_bits = order_base_2(lblock); 1054 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1055 } 1056 1057 /* 1058 * Calculate the number of metadata blocks need to reserve 1059 * to allocate a block located at @lblock 1060 */ 1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock) 1062 { 1063 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1064 return ext4_ext_calc_metadata_amount(inode, lblock); 1065 1066 return ext4_indirect_calc_metadata_amount(inode, lblock); 1067 } 1068 1069 /* 1070 * Called with i_data_sem down, which is important since we can call 1071 * ext4_discard_preallocations() from here. 1072 */ 1073 void ext4_da_update_reserve_space(struct inode *inode, 1074 int used, int quota_claim) 1075 { 1076 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1077 struct ext4_inode_info *ei = EXT4_I(inode); 1078 1079 spin_lock(&ei->i_block_reservation_lock); 1080 trace_ext4_da_update_reserve_space(inode, used); 1081 if (unlikely(used > ei->i_reserved_data_blocks)) { 1082 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1083 "with only %d reserved data blocks\n", 1084 __func__, inode->i_ino, used, 1085 ei->i_reserved_data_blocks); 1086 WARN_ON(1); 1087 used = ei->i_reserved_data_blocks; 1088 } 1089 1090 /* Update per-inode reservations */ 1091 ei->i_reserved_data_blocks -= used; 1092 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1093 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1094 used + ei->i_allocated_meta_blocks); 1095 ei->i_allocated_meta_blocks = 0; 1096 1097 if (ei->i_reserved_data_blocks == 0) { 1098 /* 1099 * We can release all of the reserved metadata blocks 1100 * only when we have written all of the delayed 1101 * allocation blocks. 1102 */ 1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1104 ei->i_reserved_meta_blocks); 1105 ei->i_reserved_meta_blocks = 0; 1106 ei->i_da_metadata_calc_len = 0; 1107 } 1108 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1109 1110 /* Update quota subsystem for data blocks */ 1111 if (quota_claim) 1112 dquot_claim_block(inode, used); 1113 else { 1114 /* 1115 * We did fallocate with an offset that is already delayed 1116 * allocated. So on delayed allocated writeback we should 1117 * not re-claim the quota for fallocated blocks. 1118 */ 1119 dquot_release_reservation_block(inode, used); 1120 } 1121 1122 /* 1123 * If we have done all the pending block allocations and if 1124 * there aren't any writers on the inode, we can discard the 1125 * inode's preallocations. 1126 */ 1127 if ((ei->i_reserved_data_blocks == 0) && 1128 (atomic_read(&inode->i_writecount) == 0)) 1129 ext4_discard_preallocations(inode); 1130 } 1131 1132 static int check_block_validity(struct inode *inode, const char *msg, 1133 sector_t logical, sector_t phys, int len) 1134 { 1135 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1136 __ext4_error(inode->i_sb, msg, 1137 "inode #%lu logical block %llu mapped to %llu " 1138 "(size %d)", inode->i_ino, 1139 (unsigned long long) logical, 1140 (unsigned long long) phys, len); 1141 return -EIO; 1142 } 1143 return 0; 1144 } 1145 1146 /* 1147 * Return the number of contiguous dirty pages in a given inode 1148 * starting at page frame idx. 1149 */ 1150 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1151 unsigned int max_pages) 1152 { 1153 struct address_space *mapping = inode->i_mapping; 1154 pgoff_t index; 1155 struct pagevec pvec; 1156 pgoff_t num = 0; 1157 int i, nr_pages, done = 0; 1158 1159 if (max_pages == 0) 1160 return 0; 1161 pagevec_init(&pvec, 0); 1162 while (!done) { 1163 index = idx; 1164 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1165 PAGECACHE_TAG_DIRTY, 1166 (pgoff_t)PAGEVEC_SIZE); 1167 if (nr_pages == 0) 1168 break; 1169 for (i = 0; i < nr_pages; i++) { 1170 struct page *page = pvec.pages[i]; 1171 struct buffer_head *bh, *head; 1172 1173 lock_page(page); 1174 if (unlikely(page->mapping != mapping) || 1175 !PageDirty(page) || 1176 PageWriteback(page) || 1177 page->index != idx) { 1178 done = 1; 1179 unlock_page(page); 1180 break; 1181 } 1182 if (page_has_buffers(page)) { 1183 bh = head = page_buffers(page); 1184 do { 1185 if (!buffer_delay(bh) && 1186 !buffer_unwritten(bh)) 1187 done = 1; 1188 bh = bh->b_this_page; 1189 } while (!done && (bh != head)); 1190 } 1191 unlock_page(page); 1192 if (done) 1193 break; 1194 idx++; 1195 num++; 1196 if (num >= max_pages) 1197 break; 1198 } 1199 pagevec_release(&pvec); 1200 } 1201 return num; 1202 } 1203 1204 /* 1205 * The ext4_map_blocks() function tries to look up the requested blocks, 1206 * and returns if the blocks are already mapped. 1207 * 1208 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1209 * and store the allocated blocks in the result buffer head and mark it 1210 * mapped. 1211 * 1212 * If file type is extents based, it will call ext4_ext_map_blocks(), 1213 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1214 * based files 1215 * 1216 * On success, it returns the number of blocks being mapped or allocate. 1217 * if create==0 and the blocks are pre-allocated and uninitialized block, 1218 * the result buffer head is unmapped. If the create ==1, it will make sure 1219 * the buffer head is mapped. 1220 * 1221 * It returns 0 if plain look up failed (blocks have not been allocated), in 1222 * that casem, buffer head is unmapped 1223 * 1224 * It returns the error in case of allocation failure. 1225 */ 1226 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1227 struct ext4_map_blocks *map, int flags) 1228 { 1229 int retval; 1230 1231 map->m_flags = 0; 1232 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1233 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1234 (unsigned long) map->m_lblk); 1235 /* 1236 * Try to see if we can get the block without requesting a new 1237 * file system block. 1238 */ 1239 down_read((&EXT4_I(inode)->i_data_sem)); 1240 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1241 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1242 } else { 1243 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1244 } 1245 up_read((&EXT4_I(inode)->i_data_sem)); 1246 1247 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1248 int ret = check_block_validity(inode, "file system corruption", 1249 map->m_lblk, map->m_pblk, retval); 1250 if (ret != 0) 1251 return ret; 1252 } 1253 1254 /* If it is only a block(s) look up */ 1255 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1256 return retval; 1257 1258 /* 1259 * Returns if the blocks have already allocated 1260 * 1261 * Note that if blocks have been preallocated 1262 * ext4_ext_get_block() returns th create = 0 1263 * with buffer head unmapped. 1264 */ 1265 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1266 return retval; 1267 1268 /* 1269 * When we call get_blocks without the create flag, the 1270 * BH_Unwritten flag could have gotten set if the blocks 1271 * requested were part of a uninitialized extent. We need to 1272 * clear this flag now that we are committed to convert all or 1273 * part of the uninitialized extent to be an initialized 1274 * extent. This is because we need to avoid the combination 1275 * of BH_Unwritten and BH_Mapped flags being simultaneously 1276 * set on the buffer_head. 1277 */ 1278 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1279 1280 /* 1281 * New blocks allocate and/or writing to uninitialized extent 1282 * will possibly result in updating i_data, so we take 1283 * the write lock of i_data_sem, and call get_blocks() 1284 * with create == 1 flag. 1285 */ 1286 down_write((&EXT4_I(inode)->i_data_sem)); 1287 1288 /* 1289 * if the caller is from delayed allocation writeout path 1290 * we have already reserved fs blocks for allocation 1291 * let the underlying get_block() function know to 1292 * avoid double accounting 1293 */ 1294 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1295 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1296 /* 1297 * We need to check for EXT4 here because migrate 1298 * could have changed the inode type in between 1299 */ 1300 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1301 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1302 } else { 1303 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1304 1305 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1306 /* 1307 * We allocated new blocks which will result in 1308 * i_data's format changing. Force the migrate 1309 * to fail by clearing migrate flags 1310 */ 1311 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1312 } 1313 1314 /* 1315 * Update reserved blocks/metadata blocks after successful 1316 * block allocation which had been deferred till now. We don't 1317 * support fallocate for non extent files. So we can update 1318 * reserve space here. 1319 */ 1320 if ((retval > 0) && 1321 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1322 ext4_da_update_reserve_space(inode, retval, 1); 1323 } 1324 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1325 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1326 1327 up_write((&EXT4_I(inode)->i_data_sem)); 1328 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1329 int ret = check_block_validity(inode, "file system " 1330 "corruption after allocation", 1331 map->m_lblk, map->m_pblk, 1332 retval); 1333 if (ret != 0) 1334 return ret; 1335 } 1336 return retval; 1337 } 1338 1339 /* Maximum number of blocks we map for direct IO at once. */ 1340 #define DIO_MAX_BLOCKS 4096 1341 1342 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1343 struct buffer_head *bh, int flags) 1344 { 1345 handle_t *handle = ext4_journal_current_handle(); 1346 struct ext4_map_blocks map; 1347 int ret = 0, started = 0; 1348 int dio_credits; 1349 1350 map.m_lblk = iblock; 1351 map.m_len = bh->b_size >> inode->i_blkbits; 1352 1353 if (flags && !handle) { 1354 /* Direct IO write... */ 1355 if (map.m_len > DIO_MAX_BLOCKS) 1356 map.m_len = DIO_MAX_BLOCKS; 1357 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1358 handle = ext4_journal_start(inode, dio_credits); 1359 if (IS_ERR(handle)) { 1360 ret = PTR_ERR(handle); 1361 return ret; 1362 } 1363 started = 1; 1364 } 1365 1366 ret = ext4_map_blocks(handle, inode, &map, flags); 1367 if (ret > 0) { 1368 map_bh(bh, inode->i_sb, map.m_pblk); 1369 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1370 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1371 ret = 0; 1372 } 1373 if (started) 1374 ext4_journal_stop(handle); 1375 return ret; 1376 } 1377 1378 int ext4_get_block(struct inode *inode, sector_t iblock, 1379 struct buffer_head *bh, int create) 1380 { 1381 return _ext4_get_block(inode, iblock, bh, 1382 create ? EXT4_GET_BLOCKS_CREATE : 0); 1383 } 1384 1385 /* 1386 * `handle' can be NULL if create is zero 1387 */ 1388 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1389 ext4_lblk_t block, int create, int *errp) 1390 { 1391 struct ext4_map_blocks map; 1392 struct buffer_head *bh; 1393 int fatal = 0, err; 1394 1395 J_ASSERT(handle != NULL || create == 0); 1396 1397 map.m_lblk = block; 1398 map.m_len = 1; 1399 err = ext4_map_blocks(handle, inode, &map, 1400 create ? EXT4_GET_BLOCKS_CREATE : 0); 1401 1402 if (err < 0) 1403 *errp = err; 1404 if (err <= 0) 1405 return NULL; 1406 *errp = 0; 1407 1408 bh = sb_getblk(inode->i_sb, map.m_pblk); 1409 if (!bh) { 1410 *errp = -EIO; 1411 return NULL; 1412 } 1413 if (map.m_flags & EXT4_MAP_NEW) { 1414 J_ASSERT(create != 0); 1415 J_ASSERT(handle != NULL); 1416 1417 /* 1418 * Now that we do not always journal data, we should 1419 * keep in mind whether this should always journal the 1420 * new buffer as metadata. For now, regular file 1421 * writes use ext4_get_block instead, so it's not a 1422 * problem. 1423 */ 1424 lock_buffer(bh); 1425 BUFFER_TRACE(bh, "call get_create_access"); 1426 fatal = ext4_journal_get_create_access(handle, bh); 1427 if (!fatal && !buffer_uptodate(bh)) { 1428 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1429 set_buffer_uptodate(bh); 1430 } 1431 unlock_buffer(bh); 1432 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1433 err = ext4_handle_dirty_metadata(handle, inode, bh); 1434 if (!fatal) 1435 fatal = err; 1436 } else { 1437 BUFFER_TRACE(bh, "not a new buffer"); 1438 } 1439 if (fatal) { 1440 *errp = fatal; 1441 brelse(bh); 1442 bh = NULL; 1443 } 1444 return bh; 1445 } 1446 1447 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1448 ext4_lblk_t block, int create, int *err) 1449 { 1450 struct buffer_head *bh; 1451 1452 bh = ext4_getblk(handle, inode, block, create, err); 1453 if (!bh) 1454 return bh; 1455 if (buffer_uptodate(bh)) 1456 return bh; 1457 ll_rw_block(READ_META, 1, &bh); 1458 wait_on_buffer(bh); 1459 if (buffer_uptodate(bh)) 1460 return bh; 1461 put_bh(bh); 1462 *err = -EIO; 1463 return NULL; 1464 } 1465 1466 static int walk_page_buffers(handle_t *handle, 1467 struct buffer_head *head, 1468 unsigned from, 1469 unsigned to, 1470 int *partial, 1471 int (*fn)(handle_t *handle, 1472 struct buffer_head *bh)) 1473 { 1474 struct buffer_head *bh; 1475 unsigned block_start, block_end; 1476 unsigned blocksize = head->b_size; 1477 int err, ret = 0; 1478 struct buffer_head *next; 1479 1480 for (bh = head, block_start = 0; 1481 ret == 0 && (bh != head || !block_start); 1482 block_start = block_end, bh = next) { 1483 next = bh->b_this_page; 1484 block_end = block_start + blocksize; 1485 if (block_end <= from || block_start >= to) { 1486 if (partial && !buffer_uptodate(bh)) 1487 *partial = 1; 1488 continue; 1489 } 1490 err = (*fn)(handle, bh); 1491 if (!ret) 1492 ret = err; 1493 } 1494 return ret; 1495 } 1496 1497 /* 1498 * To preserve ordering, it is essential that the hole instantiation and 1499 * the data write be encapsulated in a single transaction. We cannot 1500 * close off a transaction and start a new one between the ext4_get_block() 1501 * and the commit_write(). So doing the jbd2_journal_start at the start of 1502 * prepare_write() is the right place. 1503 * 1504 * Also, this function can nest inside ext4_writepage() -> 1505 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1506 * has generated enough buffer credits to do the whole page. So we won't 1507 * block on the journal in that case, which is good, because the caller may 1508 * be PF_MEMALLOC. 1509 * 1510 * By accident, ext4 can be reentered when a transaction is open via 1511 * quota file writes. If we were to commit the transaction while thus 1512 * reentered, there can be a deadlock - we would be holding a quota 1513 * lock, and the commit would never complete if another thread had a 1514 * transaction open and was blocking on the quota lock - a ranking 1515 * violation. 1516 * 1517 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1518 * will _not_ run commit under these circumstances because handle->h_ref 1519 * is elevated. We'll still have enough credits for the tiny quotafile 1520 * write. 1521 */ 1522 static int do_journal_get_write_access(handle_t *handle, 1523 struct buffer_head *bh) 1524 { 1525 if (!buffer_mapped(bh) || buffer_freed(bh)) 1526 return 0; 1527 return ext4_journal_get_write_access(handle, bh); 1528 } 1529 1530 /* 1531 * Truncate blocks that were not used by write. We have to truncate the 1532 * pagecache as well so that corresponding buffers get properly unmapped. 1533 */ 1534 static void ext4_truncate_failed_write(struct inode *inode) 1535 { 1536 truncate_inode_pages(inode->i_mapping, inode->i_size); 1537 ext4_truncate(inode); 1538 } 1539 1540 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1541 struct buffer_head *bh_result, int create); 1542 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1543 loff_t pos, unsigned len, unsigned flags, 1544 struct page **pagep, void **fsdata) 1545 { 1546 struct inode *inode = mapping->host; 1547 int ret, needed_blocks; 1548 handle_t *handle; 1549 int retries = 0; 1550 struct page *page; 1551 pgoff_t index; 1552 unsigned from, to; 1553 1554 trace_ext4_write_begin(inode, pos, len, flags); 1555 /* 1556 * Reserve one block more for addition to orphan list in case 1557 * we allocate blocks but write fails for some reason 1558 */ 1559 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1560 index = pos >> PAGE_CACHE_SHIFT; 1561 from = pos & (PAGE_CACHE_SIZE - 1); 1562 to = from + len; 1563 1564 retry: 1565 handle = ext4_journal_start(inode, needed_blocks); 1566 if (IS_ERR(handle)) { 1567 ret = PTR_ERR(handle); 1568 goto out; 1569 } 1570 1571 /* We cannot recurse into the filesystem as the transaction is already 1572 * started */ 1573 flags |= AOP_FLAG_NOFS; 1574 1575 page = grab_cache_page_write_begin(mapping, index, flags); 1576 if (!page) { 1577 ext4_journal_stop(handle); 1578 ret = -ENOMEM; 1579 goto out; 1580 } 1581 *pagep = page; 1582 1583 if (ext4_should_dioread_nolock(inode)) 1584 ret = block_write_begin(file, mapping, pos, len, flags, pagep, 1585 fsdata, ext4_get_block_write); 1586 else 1587 ret = block_write_begin(file, mapping, pos, len, flags, pagep, 1588 fsdata, ext4_get_block); 1589 1590 if (!ret && ext4_should_journal_data(inode)) { 1591 ret = walk_page_buffers(handle, page_buffers(page), 1592 from, to, NULL, do_journal_get_write_access); 1593 } 1594 1595 if (ret) { 1596 unlock_page(page); 1597 page_cache_release(page); 1598 /* 1599 * block_write_begin may have instantiated a few blocks 1600 * outside i_size. Trim these off again. Don't need 1601 * i_size_read because we hold i_mutex. 1602 * 1603 * Add inode to orphan list in case we crash before 1604 * truncate finishes 1605 */ 1606 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1607 ext4_orphan_add(handle, inode); 1608 1609 ext4_journal_stop(handle); 1610 if (pos + len > inode->i_size) { 1611 ext4_truncate_failed_write(inode); 1612 /* 1613 * If truncate failed early the inode might 1614 * still be on the orphan list; we need to 1615 * make sure the inode is removed from the 1616 * orphan list in that case. 1617 */ 1618 if (inode->i_nlink) 1619 ext4_orphan_del(NULL, inode); 1620 } 1621 } 1622 1623 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1624 goto retry; 1625 out: 1626 return ret; 1627 } 1628 1629 /* For write_end() in data=journal mode */ 1630 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1631 { 1632 if (!buffer_mapped(bh) || buffer_freed(bh)) 1633 return 0; 1634 set_buffer_uptodate(bh); 1635 return ext4_handle_dirty_metadata(handle, NULL, bh); 1636 } 1637 1638 static int ext4_generic_write_end(struct file *file, 1639 struct address_space *mapping, 1640 loff_t pos, unsigned len, unsigned copied, 1641 struct page *page, void *fsdata) 1642 { 1643 int i_size_changed = 0; 1644 struct inode *inode = mapping->host; 1645 handle_t *handle = ext4_journal_current_handle(); 1646 1647 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1648 1649 /* 1650 * No need to use i_size_read() here, the i_size 1651 * cannot change under us because we hold i_mutex. 1652 * 1653 * But it's important to update i_size while still holding page lock: 1654 * page writeout could otherwise come in and zero beyond i_size. 1655 */ 1656 if (pos + copied > inode->i_size) { 1657 i_size_write(inode, pos + copied); 1658 i_size_changed = 1; 1659 } 1660 1661 if (pos + copied > EXT4_I(inode)->i_disksize) { 1662 /* We need to mark inode dirty even if 1663 * new_i_size is less that inode->i_size 1664 * bu greater than i_disksize.(hint delalloc) 1665 */ 1666 ext4_update_i_disksize(inode, (pos + copied)); 1667 i_size_changed = 1; 1668 } 1669 unlock_page(page); 1670 page_cache_release(page); 1671 1672 /* 1673 * Don't mark the inode dirty under page lock. First, it unnecessarily 1674 * makes the holding time of page lock longer. Second, it forces lock 1675 * ordering of page lock and transaction start for journaling 1676 * filesystems. 1677 */ 1678 if (i_size_changed) 1679 ext4_mark_inode_dirty(handle, inode); 1680 1681 return copied; 1682 } 1683 1684 /* 1685 * We need to pick up the new inode size which generic_commit_write gave us 1686 * `file' can be NULL - eg, when called from page_symlink(). 1687 * 1688 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1689 * buffers are managed internally. 1690 */ 1691 static int ext4_ordered_write_end(struct file *file, 1692 struct address_space *mapping, 1693 loff_t pos, unsigned len, unsigned copied, 1694 struct page *page, void *fsdata) 1695 { 1696 handle_t *handle = ext4_journal_current_handle(); 1697 struct inode *inode = mapping->host; 1698 int ret = 0, ret2; 1699 1700 trace_ext4_ordered_write_end(inode, pos, len, copied); 1701 ret = ext4_jbd2_file_inode(handle, inode); 1702 1703 if (ret == 0) { 1704 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1705 page, fsdata); 1706 copied = ret2; 1707 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1708 /* if we have allocated more blocks and copied 1709 * less. We will have blocks allocated outside 1710 * inode->i_size. So truncate them 1711 */ 1712 ext4_orphan_add(handle, inode); 1713 if (ret2 < 0) 1714 ret = ret2; 1715 } 1716 ret2 = ext4_journal_stop(handle); 1717 if (!ret) 1718 ret = ret2; 1719 1720 if (pos + len > inode->i_size) { 1721 ext4_truncate_failed_write(inode); 1722 /* 1723 * If truncate failed early the inode might still be 1724 * on the orphan list; we need to make sure the inode 1725 * is removed from the orphan list in that case. 1726 */ 1727 if (inode->i_nlink) 1728 ext4_orphan_del(NULL, inode); 1729 } 1730 1731 1732 return ret ? ret : copied; 1733 } 1734 1735 static int ext4_writeback_write_end(struct file *file, 1736 struct address_space *mapping, 1737 loff_t pos, unsigned len, unsigned copied, 1738 struct page *page, void *fsdata) 1739 { 1740 handle_t *handle = ext4_journal_current_handle(); 1741 struct inode *inode = mapping->host; 1742 int ret = 0, ret2; 1743 1744 trace_ext4_writeback_write_end(inode, pos, len, copied); 1745 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1746 page, fsdata); 1747 copied = ret2; 1748 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1749 /* if we have allocated more blocks and copied 1750 * less. We will have blocks allocated outside 1751 * inode->i_size. So truncate them 1752 */ 1753 ext4_orphan_add(handle, inode); 1754 1755 if (ret2 < 0) 1756 ret = ret2; 1757 1758 ret2 = ext4_journal_stop(handle); 1759 if (!ret) 1760 ret = ret2; 1761 1762 if (pos + len > inode->i_size) { 1763 ext4_truncate_failed_write(inode); 1764 /* 1765 * If truncate failed early the inode might still be 1766 * on the orphan list; we need to make sure the inode 1767 * is removed from the orphan list in that case. 1768 */ 1769 if (inode->i_nlink) 1770 ext4_orphan_del(NULL, inode); 1771 } 1772 1773 return ret ? ret : copied; 1774 } 1775 1776 static int ext4_journalled_write_end(struct file *file, 1777 struct address_space *mapping, 1778 loff_t pos, unsigned len, unsigned copied, 1779 struct page *page, void *fsdata) 1780 { 1781 handle_t *handle = ext4_journal_current_handle(); 1782 struct inode *inode = mapping->host; 1783 int ret = 0, ret2; 1784 int partial = 0; 1785 unsigned from, to; 1786 loff_t new_i_size; 1787 1788 trace_ext4_journalled_write_end(inode, pos, len, copied); 1789 from = pos & (PAGE_CACHE_SIZE - 1); 1790 to = from + len; 1791 1792 if (copied < len) { 1793 if (!PageUptodate(page)) 1794 copied = 0; 1795 page_zero_new_buffers(page, from+copied, to); 1796 } 1797 1798 ret = walk_page_buffers(handle, page_buffers(page), from, 1799 to, &partial, write_end_fn); 1800 if (!partial) 1801 SetPageUptodate(page); 1802 new_i_size = pos + copied; 1803 if (new_i_size > inode->i_size) 1804 i_size_write(inode, pos+copied); 1805 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1806 if (new_i_size > EXT4_I(inode)->i_disksize) { 1807 ext4_update_i_disksize(inode, new_i_size); 1808 ret2 = ext4_mark_inode_dirty(handle, inode); 1809 if (!ret) 1810 ret = ret2; 1811 } 1812 1813 unlock_page(page); 1814 page_cache_release(page); 1815 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1816 /* if we have allocated more blocks and copied 1817 * less. We will have blocks allocated outside 1818 * inode->i_size. So truncate them 1819 */ 1820 ext4_orphan_add(handle, inode); 1821 1822 ret2 = ext4_journal_stop(handle); 1823 if (!ret) 1824 ret = ret2; 1825 if (pos + len > inode->i_size) { 1826 ext4_truncate_failed_write(inode); 1827 /* 1828 * If truncate failed early the inode might still be 1829 * on the orphan list; we need to make sure the inode 1830 * is removed from the orphan list in that case. 1831 */ 1832 if (inode->i_nlink) 1833 ext4_orphan_del(NULL, inode); 1834 } 1835 1836 return ret ? ret : copied; 1837 } 1838 1839 /* 1840 * Reserve a single block located at lblock 1841 */ 1842 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock) 1843 { 1844 int retries = 0; 1845 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1846 struct ext4_inode_info *ei = EXT4_I(inode); 1847 unsigned long md_needed; 1848 int ret; 1849 1850 /* 1851 * recalculate the amount of metadata blocks to reserve 1852 * in order to allocate nrblocks 1853 * worse case is one extent per block 1854 */ 1855 repeat: 1856 spin_lock(&ei->i_block_reservation_lock); 1857 md_needed = ext4_calc_metadata_amount(inode, lblock); 1858 trace_ext4_da_reserve_space(inode, md_needed); 1859 spin_unlock(&ei->i_block_reservation_lock); 1860 1861 /* 1862 * We will charge metadata quota at writeout time; this saves 1863 * us from metadata over-estimation, though we may go over by 1864 * a small amount in the end. Here we just reserve for data. 1865 */ 1866 ret = dquot_reserve_block(inode, 1); 1867 if (ret) 1868 return ret; 1869 /* 1870 * We do still charge estimated metadata to the sb though; 1871 * we cannot afford to run out of free blocks. 1872 */ 1873 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1874 dquot_release_reservation_block(inode, 1); 1875 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1876 yield(); 1877 goto repeat; 1878 } 1879 return -ENOSPC; 1880 } 1881 spin_lock(&ei->i_block_reservation_lock); 1882 ei->i_reserved_data_blocks++; 1883 ei->i_reserved_meta_blocks += md_needed; 1884 spin_unlock(&ei->i_block_reservation_lock); 1885 1886 return 0; /* success */ 1887 } 1888 1889 static void ext4_da_release_space(struct inode *inode, int to_free) 1890 { 1891 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1892 struct ext4_inode_info *ei = EXT4_I(inode); 1893 1894 if (!to_free) 1895 return; /* Nothing to release, exit */ 1896 1897 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1898 1899 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1900 /* 1901 * if there aren't enough reserved blocks, then the 1902 * counter is messed up somewhere. Since this 1903 * function is called from invalidate page, it's 1904 * harmless to return without any action. 1905 */ 1906 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1907 "ino %lu, to_free %d with only %d reserved " 1908 "data blocks\n", inode->i_ino, to_free, 1909 ei->i_reserved_data_blocks); 1910 WARN_ON(1); 1911 to_free = ei->i_reserved_data_blocks; 1912 } 1913 ei->i_reserved_data_blocks -= to_free; 1914 1915 if (ei->i_reserved_data_blocks == 0) { 1916 /* 1917 * We can release all of the reserved metadata blocks 1918 * only when we have written all of the delayed 1919 * allocation blocks. 1920 */ 1921 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1922 ei->i_reserved_meta_blocks); 1923 ei->i_reserved_meta_blocks = 0; 1924 ei->i_da_metadata_calc_len = 0; 1925 } 1926 1927 /* update fs dirty data blocks counter */ 1928 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1929 1930 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1931 1932 dquot_release_reservation_block(inode, to_free); 1933 } 1934 1935 static void ext4_da_page_release_reservation(struct page *page, 1936 unsigned long offset) 1937 { 1938 int to_release = 0; 1939 struct buffer_head *head, *bh; 1940 unsigned int curr_off = 0; 1941 1942 head = page_buffers(page); 1943 bh = head; 1944 do { 1945 unsigned int next_off = curr_off + bh->b_size; 1946 1947 if ((offset <= curr_off) && (buffer_delay(bh))) { 1948 to_release++; 1949 clear_buffer_delay(bh); 1950 } 1951 curr_off = next_off; 1952 } while ((bh = bh->b_this_page) != head); 1953 ext4_da_release_space(page->mapping->host, to_release); 1954 } 1955 1956 /* 1957 * Delayed allocation stuff 1958 */ 1959 1960 /* 1961 * mpage_da_submit_io - walks through extent of pages and try to write 1962 * them with writepage() call back 1963 * 1964 * @mpd->inode: inode 1965 * @mpd->first_page: first page of the extent 1966 * @mpd->next_page: page after the last page of the extent 1967 * 1968 * By the time mpage_da_submit_io() is called we expect all blocks 1969 * to be allocated. this may be wrong if allocation failed. 1970 * 1971 * As pages are already locked by write_cache_pages(), we can't use it 1972 */ 1973 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1974 { 1975 long pages_skipped; 1976 struct pagevec pvec; 1977 unsigned long index, end; 1978 int ret = 0, err, nr_pages, i; 1979 struct inode *inode = mpd->inode; 1980 struct address_space *mapping = inode->i_mapping; 1981 1982 BUG_ON(mpd->next_page <= mpd->first_page); 1983 /* 1984 * We need to start from the first_page to the next_page - 1 1985 * to make sure we also write the mapped dirty buffer_heads. 1986 * If we look at mpd->b_blocknr we would only be looking 1987 * at the currently mapped buffer_heads. 1988 */ 1989 index = mpd->first_page; 1990 end = mpd->next_page - 1; 1991 1992 pagevec_init(&pvec, 0); 1993 while (index <= end) { 1994 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1995 if (nr_pages == 0) 1996 break; 1997 for (i = 0; i < nr_pages; i++) { 1998 struct page *page = pvec.pages[i]; 1999 2000 index = page->index; 2001 if (index > end) 2002 break; 2003 index++; 2004 2005 BUG_ON(!PageLocked(page)); 2006 BUG_ON(PageWriteback(page)); 2007 2008 pages_skipped = mpd->wbc->pages_skipped; 2009 err = mapping->a_ops->writepage(page, mpd->wbc); 2010 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 2011 /* 2012 * have successfully written the page 2013 * without skipping the same 2014 */ 2015 mpd->pages_written++; 2016 /* 2017 * In error case, we have to continue because 2018 * remaining pages are still locked 2019 * XXX: unlock and re-dirty them? 2020 */ 2021 if (ret == 0) 2022 ret = err; 2023 } 2024 pagevec_release(&pvec); 2025 } 2026 return ret; 2027 } 2028 2029 /* 2030 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 2031 * 2032 * the function goes through all passed space and put actual disk 2033 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 2034 */ 2035 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, 2036 struct ext4_map_blocks *map) 2037 { 2038 struct inode *inode = mpd->inode; 2039 struct address_space *mapping = inode->i_mapping; 2040 int blocks = map->m_len; 2041 sector_t pblock = map->m_pblk, cur_logical; 2042 struct buffer_head *head, *bh; 2043 pgoff_t index, end; 2044 struct pagevec pvec; 2045 int nr_pages, i; 2046 2047 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2048 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2049 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2050 2051 pagevec_init(&pvec, 0); 2052 2053 while (index <= end) { 2054 /* XXX: optimize tail */ 2055 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2056 if (nr_pages == 0) 2057 break; 2058 for (i = 0; i < nr_pages; i++) { 2059 struct page *page = pvec.pages[i]; 2060 2061 index = page->index; 2062 if (index > end) 2063 break; 2064 index++; 2065 2066 BUG_ON(!PageLocked(page)); 2067 BUG_ON(PageWriteback(page)); 2068 BUG_ON(!page_has_buffers(page)); 2069 2070 bh = page_buffers(page); 2071 head = bh; 2072 2073 /* skip blocks out of the range */ 2074 do { 2075 if (cur_logical >= map->m_lblk) 2076 break; 2077 cur_logical++; 2078 } while ((bh = bh->b_this_page) != head); 2079 2080 do { 2081 if (cur_logical >= map->m_lblk + blocks) 2082 break; 2083 2084 if (buffer_delay(bh) || buffer_unwritten(bh)) { 2085 2086 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2087 2088 if (buffer_delay(bh)) { 2089 clear_buffer_delay(bh); 2090 bh->b_blocknr = pblock; 2091 } else { 2092 /* 2093 * unwritten already should have 2094 * blocknr assigned. Verify that 2095 */ 2096 clear_buffer_unwritten(bh); 2097 BUG_ON(bh->b_blocknr != pblock); 2098 } 2099 2100 } else if (buffer_mapped(bh)) 2101 BUG_ON(bh->b_blocknr != pblock); 2102 2103 if (map->m_flags & EXT4_MAP_UNINIT) 2104 set_buffer_uninit(bh); 2105 cur_logical++; 2106 pblock++; 2107 } while ((bh = bh->b_this_page) != head); 2108 } 2109 pagevec_release(&pvec); 2110 } 2111 } 2112 2113 2114 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2115 sector_t logical, long blk_cnt) 2116 { 2117 int nr_pages, i; 2118 pgoff_t index, end; 2119 struct pagevec pvec; 2120 struct inode *inode = mpd->inode; 2121 struct address_space *mapping = inode->i_mapping; 2122 2123 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2124 end = (logical + blk_cnt - 1) >> 2125 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2126 while (index <= end) { 2127 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2128 if (nr_pages == 0) 2129 break; 2130 for (i = 0; i < nr_pages; i++) { 2131 struct page *page = pvec.pages[i]; 2132 if (page->index > end) 2133 break; 2134 BUG_ON(!PageLocked(page)); 2135 BUG_ON(PageWriteback(page)); 2136 block_invalidatepage(page, 0); 2137 ClearPageUptodate(page); 2138 unlock_page(page); 2139 } 2140 index = pvec.pages[nr_pages - 1]->index + 1; 2141 pagevec_release(&pvec); 2142 } 2143 return; 2144 } 2145 2146 static void ext4_print_free_blocks(struct inode *inode) 2147 { 2148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2149 printk(KERN_CRIT "Total free blocks count %lld\n", 2150 ext4_count_free_blocks(inode->i_sb)); 2151 printk(KERN_CRIT "Free/Dirty block details\n"); 2152 printk(KERN_CRIT "free_blocks=%lld\n", 2153 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2154 printk(KERN_CRIT "dirty_blocks=%lld\n", 2155 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2156 printk(KERN_CRIT "Block reservation details\n"); 2157 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2158 EXT4_I(inode)->i_reserved_data_blocks); 2159 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2160 EXT4_I(inode)->i_reserved_meta_blocks); 2161 return; 2162 } 2163 2164 /* 2165 * mpage_da_map_blocks - go through given space 2166 * 2167 * @mpd - bh describing space 2168 * 2169 * The function skips space we know is already mapped to disk blocks. 2170 * 2171 */ 2172 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2173 { 2174 int err, blks, get_blocks_flags; 2175 struct ext4_map_blocks map; 2176 sector_t next = mpd->b_blocknr; 2177 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2178 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2179 handle_t *handle = NULL; 2180 2181 /* 2182 * We consider only non-mapped and non-allocated blocks 2183 */ 2184 if ((mpd->b_state & (1 << BH_Mapped)) && 2185 !(mpd->b_state & (1 << BH_Delay)) && 2186 !(mpd->b_state & (1 << BH_Unwritten))) 2187 return 0; 2188 2189 /* 2190 * If we didn't accumulate anything to write simply return 2191 */ 2192 if (!mpd->b_size) 2193 return 0; 2194 2195 handle = ext4_journal_current_handle(); 2196 BUG_ON(!handle); 2197 2198 /* 2199 * Call ext4_get_blocks() to allocate any delayed allocation 2200 * blocks, or to convert an uninitialized extent to be 2201 * initialized (in the case where we have written into 2202 * one or more preallocated blocks). 2203 * 2204 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2205 * indicate that we are on the delayed allocation path. This 2206 * affects functions in many different parts of the allocation 2207 * call path. This flag exists primarily because we don't 2208 * want to change *many* call functions, so ext4_get_blocks() 2209 * will set the magic i_delalloc_reserved_flag once the 2210 * inode's allocation semaphore is taken. 2211 * 2212 * If the blocks in questions were delalloc blocks, set 2213 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2214 * variables are updated after the blocks have been allocated. 2215 */ 2216 map.m_lblk = next; 2217 map.m_len = max_blocks; 2218 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2219 if (ext4_should_dioread_nolock(mpd->inode)) 2220 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2221 if (mpd->b_state & (1 << BH_Delay)) 2222 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2223 2224 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2225 if (blks < 0) { 2226 err = blks; 2227 /* 2228 * If get block returns with error we simply 2229 * return. Later writepage will redirty the page and 2230 * writepages will find the dirty page again 2231 */ 2232 if (err == -EAGAIN) 2233 return 0; 2234 2235 if (err == -ENOSPC && 2236 ext4_count_free_blocks(mpd->inode->i_sb)) { 2237 mpd->retval = err; 2238 return 0; 2239 } 2240 2241 /* 2242 * get block failure will cause us to loop in 2243 * writepages, because a_ops->writepage won't be able 2244 * to make progress. The page will be redirtied by 2245 * writepage and writepages will again try to write 2246 * the same. 2247 */ 2248 ext4_msg(mpd->inode->i_sb, KERN_CRIT, 2249 "delayed block allocation failed for inode %lu at " 2250 "logical offset %llu with max blocks %zd with " 2251 "error %d", mpd->inode->i_ino, 2252 (unsigned long long) next, 2253 mpd->b_size >> mpd->inode->i_blkbits, err); 2254 printk(KERN_CRIT "This should not happen!! " 2255 "Data will be lost\n"); 2256 if (err == -ENOSPC) { 2257 ext4_print_free_blocks(mpd->inode); 2258 } 2259 /* invalidate all the pages */ 2260 ext4_da_block_invalidatepages(mpd, next, 2261 mpd->b_size >> mpd->inode->i_blkbits); 2262 return err; 2263 } 2264 BUG_ON(blks == 0); 2265 2266 if (map.m_flags & EXT4_MAP_NEW) { 2267 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2268 int i; 2269 2270 for (i = 0; i < map.m_len; i++) 2271 unmap_underlying_metadata(bdev, map.m_pblk + i); 2272 } 2273 2274 /* 2275 * If blocks are delayed marked, we need to 2276 * put actual blocknr and drop delayed bit 2277 */ 2278 if ((mpd->b_state & (1 << BH_Delay)) || 2279 (mpd->b_state & (1 << BH_Unwritten))) 2280 mpage_put_bnr_to_bhs(mpd, &map); 2281 2282 if (ext4_should_order_data(mpd->inode)) { 2283 err = ext4_jbd2_file_inode(handle, mpd->inode); 2284 if (err) 2285 return err; 2286 } 2287 2288 /* 2289 * Update on-disk size along with block allocation. 2290 */ 2291 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2292 if (disksize > i_size_read(mpd->inode)) 2293 disksize = i_size_read(mpd->inode); 2294 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2295 ext4_update_i_disksize(mpd->inode, disksize); 2296 return ext4_mark_inode_dirty(handle, mpd->inode); 2297 } 2298 2299 return 0; 2300 } 2301 2302 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2303 (1 << BH_Delay) | (1 << BH_Unwritten)) 2304 2305 /* 2306 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2307 * 2308 * @mpd->lbh - extent of blocks 2309 * @logical - logical number of the block in the file 2310 * @bh - bh of the block (used to access block's state) 2311 * 2312 * the function is used to collect contig. blocks in same state 2313 */ 2314 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2315 sector_t logical, size_t b_size, 2316 unsigned long b_state) 2317 { 2318 sector_t next; 2319 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2320 2321 /* 2322 * XXX Don't go larger than mballoc is willing to allocate 2323 * This is a stopgap solution. We eventually need to fold 2324 * mpage_da_submit_io() into this function and then call 2325 * ext4_get_blocks() multiple times in a loop 2326 */ 2327 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2328 goto flush_it; 2329 2330 /* check if thereserved journal credits might overflow */ 2331 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2332 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2333 /* 2334 * With non-extent format we are limited by the journal 2335 * credit available. Total credit needed to insert 2336 * nrblocks contiguous blocks is dependent on the 2337 * nrblocks. So limit nrblocks. 2338 */ 2339 goto flush_it; 2340 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2341 EXT4_MAX_TRANS_DATA) { 2342 /* 2343 * Adding the new buffer_head would make it cross the 2344 * allowed limit for which we have journal credit 2345 * reserved. So limit the new bh->b_size 2346 */ 2347 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2348 mpd->inode->i_blkbits; 2349 /* we will do mpage_da_submit_io in the next loop */ 2350 } 2351 } 2352 /* 2353 * First block in the extent 2354 */ 2355 if (mpd->b_size == 0) { 2356 mpd->b_blocknr = logical; 2357 mpd->b_size = b_size; 2358 mpd->b_state = b_state & BH_FLAGS; 2359 return; 2360 } 2361 2362 next = mpd->b_blocknr + nrblocks; 2363 /* 2364 * Can we merge the block to our big extent? 2365 */ 2366 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2367 mpd->b_size += b_size; 2368 return; 2369 } 2370 2371 flush_it: 2372 /* 2373 * We couldn't merge the block to our extent, so we 2374 * need to flush current extent and start new one 2375 */ 2376 if (mpage_da_map_blocks(mpd) == 0) 2377 mpage_da_submit_io(mpd); 2378 mpd->io_done = 1; 2379 return; 2380 } 2381 2382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2383 { 2384 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2385 } 2386 2387 /* 2388 * __mpage_da_writepage - finds extent of pages and blocks 2389 * 2390 * @page: page to consider 2391 * @wbc: not used, we just follow rules 2392 * @data: context 2393 * 2394 * The function finds extents of pages and scan them for all blocks. 2395 */ 2396 static int __mpage_da_writepage(struct page *page, 2397 struct writeback_control *wbc, void *data) 2398 { 2399 struct mpage_da_data *mpd = data; 2400 struct inode *inode = mpd->inode; 2401 struct buffer_head *bh, *head; 2402 sector_t logical; 2403 2404 /* 2405 * Can we merge this page to current extent? 2406 */ 2407 if (mpd->next_page != page->index) { 2408 /* 2409 * Nope, we can't. So, we map non-allocated blocks 2410 * and start IO on them using writepage() 2411 */ 2412 if (mpd->next_page != mpd->first_page) { 2413 if (mpage_da_map_blocks(mpd) == 0) 2414 mpage_da_submit_io(mpd); 2415 /* 2416 * skip rest of the page in the page_vec 2417 */ 2418 mpd->io_done = 1; 2419 redirty_page_for_writepage(wbc, page); 2420 unlock_page(page); 2421 return MPAGE_DA_EXTENT_TAIL; 2422 } 2423 2424 /* 2425 * Start next extent of pages ... 2426 */ 2427 mpd->first_page = page->index; 2428 2429 /* 2430 * ... and blocks 2431 */ 2432 mpd->b_size = 0; 2433 mpd->b_state = 0; 2434 mpd->b_blocknr = 0; 2435 } 2436 2437 mpd->next_page = page->index + 1; 2438 logical = (sector_t) page->index << 2439 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2440 2441 if (!page_has_buffers(page)) { 2442 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2443 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2444 if (mpd->io_done) 2445 return MPAGE_DA_EXTENT_TAIL; 2446 } else { 2447 /* 2448 * Page with regular buffer heads, just add all dirty ones 2449 */ 2450 head = page_buffers(page); 2451 bh = head; 2452 do { 2453 BUG_ON(buffer_locked(bh)); 2454 /* 2455 * We need to try to allocate 2456 * unmapped blocks in the same page. 2457 * Otherwise we won't make progress 2458 * with the page in ext4_writepage 2459 */ 2460 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2461 mpage_add_bh_to_extent(mpd, logical, 2462 bh->b_size, 2463 bh->b_state); 2464 if (mpd->io_done) 2465 return MPAGE_DA_EXTENT_TAIL; 2466 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2467 /* 2468 * mapped dirty buffer. We need to update 2469 * the b_state because we look at 2470 * b_state in mpage_da_map_blocks. We don't 2471 * update b_size because if we find an 2472 * unmapped buffer_head later we need to 2473 * use the b_state flag of that buffer_head. 2474 */ 2475 if (mpd->b_size == 0) 2476 mpd->b_state = bh->b_state & BH_FLAGS; 2477 } 2478 logical++; 2479 } while ((bh = bh->b_this_page) != head); 2480 } 2481 2482 return 0; 2483 } 2484 2485 /* 2486 * This is a special get_blocks_t callback which is used by 2487 * ext4_da_write_begin(). It will either return mapped block or 2488 * reserve space for a single block. 2489 * 2490 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2491 * We also have b_blocknr = -1 and b_bdev initialized properly 2492 * 2493 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2494 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2495 * initialized properly. 2496 */ 2497 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2498 struct buffer_head *bh, int create) 2499 { 2500 struct ext4_map_blocks map; 2501 int ret = 0; 2502 sector_t invalid_block = ~((sector_t) 0xffff); 2503 2504 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2505 invalid_block = ~0; 2506 2507 BUG_ON(create == 0); 2508 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2509 2510 map.m_lblk = iblock; 2511 map.m_len = 1; 2512 2513 /* 2514 * first, we need to know whether the block is allocated already 2515 * preallocated blocks are unmapped but should treated 2516 * the same as allocated blocks. 2517 */ 2518 ret = ext4_map_blocks(NULL, inode, &map, 0); 2519 if (ret < 0) 2520 return ret; 2521 if (ret == 0) { 2522 if (buffer_delay(bh)) 2523 return 0; /* Not sure this could or should happen */ 2524 /* 2525 * XXX: __block_prepare_write() unmaps passed block, 2526 * is it OK? 2527 */ 2528 ret = ext4_da_reserve_space(inode, iblock); 2529 if (ret) 2530 /* not enough space to reserve */ 2531 return ret; 2532 2533 map_bh(bh, inode->i_sb, invalid_block); 2534 set_buffer_new(bh); 2535 set_buffer_delay(bh); 2536 return 0; 2537 } 2538 2539 map_bh(bh, inode->i_sb, map.m_pblk); 2540 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2541 2542 if (buffer_unwritten(bh)) { 2543 /* A delayed write to unwritten bh should be marked 2544 * new and mapped. Mapped ensures that we don't do 2545 * get_block multiple times when we write to the same 2546 * offset and new ensures that we do proper zero out 2547 * for partial write. 2548 */ 2549 set_buffer_new(bh); 2550 set_buffer_mapped(bh); 2551 } 2552 return 0; 2553 } 2554 2555 /* 2556 * This function is used as a standard get_block_t calback function 2557 * when there is no desire to allocate any blocks. It is used as a 2558 * callback function for block_prepare_write(), nobh_writepage(), and 2559 * block_write_full_page(). These functions should only try to map a 2560 * single block at a time. 2561 * 2562 * Since this function doesn't do block allocations even if the caller 2563 * requests it by passing in create=1, it is critically important that 2564 * any caller checks to make sure that any buffer heads are returned 2565 * by this function are either all already mapped or marked for 2566 * delayed allocation before calling nobh_writepage() or 2567 * block_write_full_page(). Otherwise, b_blocknr could be left 2568 * unitialized, and the page write functions will be taken by 2569 * surprise. 2570 */ 2571 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2572 struct buffer_head *bh_result, int create) 2573 { 2574 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2575 return _ext4_get_block(inode, iblock, bh_result, 0); 2576 } 2577 2578 static int bget_one(handle_t *handle, struct buffer_head *bh) 2579 { 2580 get_bh(bh); 2581 return 0; 2582 } 2583 2584 static int bput_one(handle_t *handle, struct buffer_head *bh) 2585 { 2586 put_bh(bh); 2587 return 0; 2588 } 2589 2590 static int __ext4_journalled_writepage(struct page *page, 2591 unsigned int len) 2592 { 2593 struct address_space *mapping = page->mapping; 2594 struct inode *inode = mapping->host; 2595 struct buffer_head *page_bufs; 2596 handle_t *handle = NULL; 2597 int ret = 0; 2598 int err; 2599 2600 page_bufs = page_buffers(page); 2601 BUG_ON(!page_bufs); 2602 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2603 /* As soon as we unlock the page, it can go away, but we have 2604 * references to buffers so we are safe */ 2605 unlock_page(page); 2606 2607 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2608 if (IS_ERR(handle)) { 2609 ret = PTR_ERR(handle); 2610 goto out; 2611 } 2612 2613 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2614 do_journal_get_write_access); 2615 2616 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2617 write_end_fn); 2618 if (ret == 0) 2619 ret = err; 2620 err = ext4_journal_stop(handle); 2621 if (!ret) 2622 ret = err; 2623 2624 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2625 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2626 out: 2627 return ret; 2628 } 2629 2630 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2631 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2632 2633 /* 2634 * Note that we don't need to start a transaction unless we're journaling data 2635 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2636 * need to file the inode to the transaction's list in ordered mode because if 2637 * we are writing back data added by write(), the inode is already there and if 2638 * we are writing back data modified via mmap(), noone guarantees in which 2639 * transaction the data will hit the disk. In case we are journaling data, we 2640 * cannot start transaction directly because transaction start ranks above page 2641 * lock so we have to do some magic. 2642 * 2643 * This function can get called via... 2644 * - ext4_da_writepages after taking page lock (have journal handle) 2645 * - journal_submit_inode_data_buffers (no journal handle) 2646 * - shrink_page_list via pdflush (no journal handle) 2647 * - grab_page_cache when doing write_begin (have journal handle) 2648 * 2649 * We don't do any block allocation in this function. If we have page with 2650 * multiple blocks we need to write those buffer_heads that are mapped. This 2651 * is important for mmaped based write. So if we do with blocksize 1K 2652 * truncate(f, 1024); 2653 * a = mmap(f, 0, 4096); 2654 * a[0] = 'a'; 2655 * truncate(f, 4096); 2656 * we have in the page first buffer_head mapped via page_mkwrite call back 2657 * but other bufer_heads would be unmapped but dirty(dirty done via the 2658 * do_wp_page). So writepage should write the first block. If we modify 2659 * the mmap area beyond 1024 we will again get a page_fault and the 2660 * page_mkwrite callback will do the block allocation and mark the 2661 * buffer_heads mapped. 2662 * 2663 * We redirty the page if we have any buffer_heads that is either delay or 2664 * unwritten in the page. 2665 * 2666 * We can get recursively called as show below. 2667 * 2668 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2669 * ext4_writepage() 2670 * 2671 * But since we don't do any block allocation we should not deadlock. 2672 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2673 */ 2674 static int ext4_writepage(struct page *page, 2675 struct writeback_control *wbc) 2676 { 2677 int ret = 0; 2678 loff_t size; 2679 unsigned int len; 2680 struct buffer_head *page_bufs = NULL; 2681 struct inode *inode = page->mapping->host; 2682 2683 trace_ext4_writepage(inode, page); 2684 size = i_size_read(inode); 2685 if (page->index == size >> PAGE_CACHE_SHIFT) 2686 len = size & ~PAGE_CACHE_MASK; 2687 else 2688 len = PAGE_CACHE_SIZE; 2689 2690 if (page_has_buffers(page)) { 2691 page_bufs = page_buffers(page); 2692 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2693 ext4_bh_delay_or_unwritten)) { 2694 /* 2695 * We don't want to do block allocation 2696 * So redirty the page and return 2697 * We may reach here when we do a journal commit 2698 * via journal_submit_inode_data_buffers. 2699 * If we don't have mapping block we just ignore 2700 * them. We can also reach here via shrink_page_list 2701 */ 2702 redirty_page_for_writepage(wbc, page); 2703 unlock_page(page); 2704 return 0; 2705 } 2706 } else { 2707 /* 2708 * The test for page_has_buffers() is subtle: 2709 * We know the page is dirty but it lost buffers. That means 2710 * that at some moment in time after write_begin()/write_end() 2711 * has been called all buffers have been clean and thus they 2712 * must have been written at least once. So they are all 2713 * mapped and we can happily proceed with mapping them 2714 * and writing the page. 2715 * 2716 * Try to initialize the buffer_heads and check whether 2717 * all are mapped and non delay. We don't want to 2718 * do block allocation here. 2719 */ 2720 ret = block_prepare_write(page, 0, len, 2721 noalloc_get_block_write); 2722 if (!ret) { 2723 page_bufs = page_buffers(page); 2724 /* check whether all are mapped and non delay */ 2725 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2726 ext4_bh_delay_or_unwritten)) { 2727 redirty_page_for_writepage(wbc, page); 2728 unlock_page(page); 2729 return 0; 2730 } 2731 } else { 2732 /* 2733 * We can't do block allocation here 2734 * so just redity the page and unlock 2735 * and return 2736 */ 2737 redirty_page_for_writepage(wbc, page); 2738 unlock_page(page); 2739 return 0; 2740 } 2741 /* now mark the buffer_heads as dirty and uptodate */ 2742 block_commit_write(page, 0, len); 2743 } 2744 2745 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2746 /* 2747 * It's mmapped pagecache. Add buffers and journal it. There 2748 * doesn't seem much point in redirtying the page here. 2749 */ 2750 ClearPageChecked(page); 2751 return __ext4_journalled_writepage(page, len); 2752 } 2753 2754 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2755 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2756 else if (page_bufs && buffer_uninit(page_bufs)) { 2757 ext4_set_bh_endio(page_bufs, inode); 2758 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2759 wbc, ext4_end_io_buffer_write); 2760 } else 2761 ret = block_write_full_page(page, noalloc_get_block_write, 2762 wbc); 2763 2764 return ret; 2765 } 2766 2767 /* 2768 * This is called via ext4_da_writepages() to 2769 * calulate the total number of credits to reserve to fit 2770 * a single extent allocation into a single transaction, 2771 * ext4_da_writpeages() will loop calling this before 2772 * the block allocation. 2773 */ 2774 2775 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2776 { 2777 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2778 2779 /* 2780 * With non-extent format the journal credit needed to 2781 * insert nrblocks contiguous block is dependent on 2782 * number of contiguous block. So we will limit 2783 * number of contiguous block to a sane value 2784 */ 2785 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) && 2786 (max_blocks > EXT4_MAX_TRANS_DATA)) 2787 max_blocks = EXT4_MAX_TRANS_DATA; 2788 2789 return ext4_chunk_trans_blocks(inode, max_blocks); 2790 } 2791 2792 /* 2793 * write_cache_pages_da - walk the list of dirty pages of the given 2794 * address space and call the callback function (which usually writes 2795 * the pages). 2796 * 2797 * This is a forked version of write_cache_pages(). Differences: 2798 * Range cyclic is ignored. 2799 * no_nrwrite_index_update is always presumed true 2800 */ 2801 static int write_cache_pages_da(struct address_space *mapping, 2802 struct writeback_control *wbc, 2803 struct mpage_da_data *mpd) 2804 { 2805 int ret = 0; 2806 int done = 0; 2807 struct pagevec pvec; 2808 int nr_pages; 2809 pgoff_t index; 2810 pgoff_t end; /* Inclusive */ 2811 long nr_to_write = wbc->nr_to_write; 2812 2813 pagevec_init(&pvec, 0); 2814 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2815 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2816 2817 while (!done && (index <= end)) { 2818 int i; 2819 2820 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2821 PAGECACHE_TAG_DIRTY, 2822 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2823 if (nr_pages == 0) 2824 break; 2825 2826 for (i = 0; i < nr_pages; i++) { 2827 struct page *page = pvec.pages[i]; 2828 2829 /* 2830 * At this point, the page may be truncated or 2831 * invalidated (changing page->mapping to NULL), or 2832 * even swizzled back from swapper_space to tmpfs file 2833 * mapping. However, page->index will not change 2834 * because we have a reference on the page. 2835 */ 2836 if (page->index > end) { 2837 done = 1; 2838 break; 2839 } 2840 2841 lock_page(page); 2842 2843 /* 2844 * Page truncated or invalidated. We can freely skip it 2845 * then, even for data integrity operations: the page 2846 * has disappeared concurrently, so there could be no 2847 * real expectation of this data interity operation 2848 * even if there is now a new, dirty page at the same 2849 * pagecache address. 2850 */ 2851 if (unlikely(page->mapping != mapping)) { 2852 continue_unlock: 2853 unlock_page(page); 2854 continue; 2855 } 2856 2857 if (!PageDirty(page)) { 2858 /* someone wrote it for us */ 2859 goto continue_unlock; 2860 } 2861 2862 if (PageWriteback(page)) { 2863 if (wbc->sync_mode != WB_SYNC_NONE) 2864 wait_on_page_writeback(page); 2865 else 2866 goto continue_unlock; 2867 } 2868 2869 BUG_ON(PageWriteback(page)); 2870 if (!clear_page_dirty_for_io(page)) 2871 goto continue_unlock; 2872 2873 ret = __mpage_da_writepage(page, wbc, mpd); 2874 if (unlikely(ret)) { 2875 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2876 unlock_page(page); 2877 ret = 0; 2878 } else { 2879 done = 1; 2880 break; 2881 } 2882 } 2883 2884 if (nr_to_write > 0) { 2885 nr_to_write--; 2886 if (nr_to_write == 0 && 2887 wbc->sync_mode == WB_SYNC_NONE) { 2888 /* 2889 * We stop writing back only if we are 2890 * not doing integrity sync. In case of 2891 * integrity sync we have to keep going 2892 * because someone may be concurrently 2893 * dirtying pages, and we might have 2894 * synced a lot of newly appeared dirty 2895 * pages, but have not synced all of the 2896 * old dirty pages. 2897 */ 2898 done = 1; 2899 break; 2900 } 2901 } 2902 } 2903 pagevec_release(&pvec); 2904 cond_resched(); 2905 } 2906 return ret; 2907 } 2908 2909 2910 static int ext4_da_writepages(struct address_space *mapping, 2911 struct writeback_control *wbc) 2912 { 2913 pgoff_t index; 2914 int range_whole = 0; 2915 handle_t *handle = NULL; 2916 struct mpage_da_data mpd; 2917 struct inode *inode = mapping->host; 2918 int pages_written = 0; 2919 long pages_skipped; 2920 unsigned int max_pages; 2921 int range_cyclic, cycled = 1, io_done = 0; 2922 int needed_blocks, ret = 0; 2923 long desired_nr_to_write, nr_to_writebump = 0; 2924 loff_t range_start = wbc->range_start; 2925 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2926 2927 trace_ext4_da_writepages(inode, wbc); 2928 2929 /* 2930 * No pages to write? This is mainly a kludge to avoid starting 2931 * a transaction for special inodes like journal inode on last iput() 2932 * because that could violate lock ordering on umount 2933 */ 2934 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2935 return 0; 2936 2937 /* 2938 * If the filesystem has aborted, it is read-only, so return 2939 * right away instead of dumping stack traces later on that 2940 * will obscure the real source of the problem. We test 2941 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2942 * the latter could be true if the filesystem is mounted 2943 * read-only, and in that case, ext4_da_writepages should 2944 * *never* be called, so if that ever happens, we would want 2945 * the stack trace. 2946 */ 2947 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2948 return -EROFS; 2949 2950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2951 range_whole = 1; 2952 2953 range_cyclic = wbc->range_cyclic; 2954 if (wbc->range_cyclic) { 2955 index = mapping->writeback_index; 2956 if (index) 2957 cycled = 0; 2958 wbc->range_start = index << PAGE_CACHE_SHIFT; 2959 wbc->range_end = LLONG_MAX; 2960 wbc->range_cyclic = 0; 2961 } else 2962 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2963 2964 /* 2965 * This works around two forms of stupidity. The first is in 2966 * the writeback code, which caps the maximum number of pages 2967 * written to be 1024 pages. This is wrong on multiple 2968 * levels; different architectues have a different page size, 2969 * which changes the maximum amount of data which gets 2970 * written. Secondly, 4 megabytes is way too small. XFS 2971 * forces this value to be 16 megabytes by multiplying 2972 * nr_to_write parameter by four, and then relies on its 2973 * allocator to allocate larger extents to make them 2974 * contiguous. Unfortunately this brings us to the second 2975 * stupidity, which is that ext4's mballoc code only allocates 2976 * at most 2048 blocks. So we force contiguous writes up to 2977 * the number of dirty blocks in the inode, or 2978 * sbi->max_writeback_mb_bump whichever is smaller. 2979 */ 2980 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2981 if (!range_cyclic && range_whole) 2982 desired_nr_to_write = wbc->nr_to_write * 8; 2983 else 2984 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2985 max_pages); 2986 if (desired_nr_to_write > max_pages) 2987 desired_nr_to_write = max_pages; 2988 2989 if (wbc->nr_to_write < desired_nr_to_write) { 2990 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2991 wbc->nr_to_write = desired_nr_to_write; 2992 } 2993 2994 mpd.wbc = wbc; 2995 mpd.inode = mapping->host; 2996 2997 pages_skipped = wbc->pages_skipped; 2998 2999 retry: 3000 while (!ret && wbc->nr_to_write > 0) { 3001 3002 /* 3003 * we insert one extent at a time. So we need 3004 * credit needed for single extent allocation. 3005 * journalled mode is currently not supported 3006 * by delalloc 3007 */ 3008 BUG_ON(ext4_should_journal_data(inode)); 3009 needed_blocks = ext4_da_writepages_trans_blocks(inode); 3010 3011 /* start a new transaction*/ 3012 handle = ext4_journal_start(inode, needed_blocks); 3013 if (IS_ERR(handle)) { 3014 ret = PTR_ERR(handle); 3015 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 3016 "%ld pages, ino %lu; err %d", __func__, 3017 wbc->nr_to_write, inode->i_ino, ret); 3018 goto out_writepages; 3019 } 3020 3021 /* 3022 * Now call __mpage_da_writepage to find the next 3023 * contiguous region of logical blocks that need 3024 * blocks to be allocated by ext4. We don't actually 3025 * submit the blocks for I/O here, even though 3026 * write_cache_pages thinks it will, and will set the 3027 * pages as clean for write before calling 3028 * __mpage_da_writepage(). 3029 */ 3030 mpd.b_size = 0; 3031 mpd.b_state = 0; 3032 mpd.b_blocknr = 0; 3033 mpd.first_page = 0; 3034 mpd.next_page = 0; 3035 mpd.io_done = 0; 3036 mpd.pages_written = 0; 3037 mpd.retval = 0; 3038 ret = write_cache_pages_da(mapping, wbc, &mpd); 3039 /* 3040 * If we have a contiguous extent of pages and we 3041 * haven't done the I/O yet, map the blocks and submit 3042 * them for I/O. 3043 */ 3044 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3045 if (mpage_da_map_blocks(&mpd) == 0) 3046 mpage_da_submit_io(&mpd); 3047 mpd.io_done = 1; 3048 ret = MPAGE_DA_EXTENT_TAIL; 3049 } 3050 trace_ext4_da_write_pages(inode, &mpd); 3051 wbc->nr_to_write -= mpd.pages_written; 3052 3053 ext4_journal_stop(handle); 3054 3055 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3056 /* commit the transaction which would 3057 * free blocks released in the transaction 3058 * and try again 3059 */ 3060 jbd2_journal_force_commit_nested(sbi->s_journal); 3061 wbc->pages_skipped = pages_skipped; 3062 ret = 0; 3063 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3064 /* 3065 * got one extent now try with 3066 * rest of the pages 3067 */ 3068 pages_written += mpd.pages_written; 3069 wbc->pages_skipped = pages_skipped; 3070 ret = 0; 3071 io_done = 1; 3072 } else if (wbc->nr_to_write) 3073 /* 3074 * There is no more writeout needed 3075 * or we requested for a noblocking writeout 3076 * and we found the device congested 3077 */ 3078 break; 3079 } 3080 if (!io_done && !cycled) { 3081 cycled = 1; 3082 index = 0; 3083 wbc->range_start = index << PAGE_CACHE_SHIFT; 3084 wbc->range_end = mapping->writeback_index - 1; 3085 goto retry; 3086 } 3087 if (pages_skipped != wbc->pages_skipped) 3088 ext4_msg(inode->i_sb, KERN_CRIT, 3089 "This should not happen leaving %s " 3090 "with nr_to_write = %ld ret = %d", 3091 __func__, wbc->nr_to_write, ret); 3092 3093 /* Update index */ 3094 index += pages_written; 3095 wbc->range_cyclic = range_cyclic; 3096 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3097 /* 3098 * set the writeback_index so that range_cyclic 3099 * mode will write it back later 3100 */ 3101 mapping->writeback_index = index; 3102 3103 out_writepages: 3104 wbc->nr_to_write -= nr_to_writebump; 3105 wbc->range_start = range_start; 3106 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3107 return ret; 3108 } 3109 3110 #define FALL_BACK_TO_NONDELALLOC 1 3111 static int ext4_nonda_switch(struct super_block *sb) 3112 { 3113 s64 free_blocks, dirty_blocks; 3114 struct ext4_sb_info *sbi = EXT4_SB(sb); 3115 3116 /* 3117 * switch to non delalloc mode if we are running low 3118 * on free block. The free block accounting via percpu 3119 * counters can get slightly wrong with percpu_counter_batch getting 3120 * accumulated on each CPU without updating global counters 3121 * Delalloc need an accurate free block accounting. So switch 3122 * to non delalloc when we are near to error range. 3123 */ 3124 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3125 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3126 if (2 * free_blocks < 3 * dirty_blocks || 3127 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3128 /* 3129 * free block count is less than 150% of dirty blocks 3130 * or free blocks is less than watermark 3131 */ 3132 return 1; 3133 } 3134 /* 3135 * Even if we don't switch but are nearing capacity, 3136 * start pushing delalloc when 1/2 of free blocks are dirty. 3137 */ 3138 if (free_blocks < 2 * dirty_blocks) 3139 writeback_inodes_sb_if_idle(sb); 3140 3141 return 0; 3142 } 3143 3144 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3145 loff_t pos, unsigned len, unsigned flags, 3146 struct page **pagep, void **fsdata) 3147 { 3148 int ret, retries = 0; 3149 struct page *page; 3150 pgoff_t index; 3151 unsigned from, to; 3152 struct inode *inode = mapping->host; 3153 handle_t *handle; 3154 3155 index = pos >> PAGE_CACHE_SHIFT; 3156 from = pos & (PAGE_CACHE_SIZE - 1); 3157 to = from + len; 3158 3159 if (ext4_nonda_switch(inode->i_sb)) { 3160 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3161 return ext4_write_begin(file, mapping, pos, 3162 len, flags, pagep, fsdata); 3163 } 3164 *fsdata = (void *)0; 3165 trace_ext4_da_write_begin(inode, pos, len, flags); 3166 retry: 3167 /* 3168 * With delayed allocation, we don't log the i_disksize update 3169 * if there is delayed block allocation. But we still need 3170 * to journalling the i_disksize update if writes to the end 3171 * of file which has an already mapped buffer. 3172 */ 3173 handle = ext4_journal_start(inode, 1); 3174 if (IS_ERR(handle)) { 3175 ret = PTR_ERR(handle); 3176 goto out; 3177 } 3178 /* We cannot recurse into the filesystem as the transaction is already 3179 * started */ 3180 flags |= AOP_FLAG_NOFS; 3181 3182 page = grab_cache_page_write_begin(mapping, index, flags); 3183 if (!page) { 3184 ext4_journal_stop(handle); 3185 ret = -ENOMEM; 3186 goto out; 3187 } 3188 *pagep = page; 3189 3190 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 3191 ext4_da_get_block_prep); 3192 if (ret < 0) { 3193 unlock_page(page); 3194 ext4_journal_stop(handle); 3195 page_cache_release(page); 3196 /* 3197 * block_write_begin may have instantiated a few blocks 3198 * outside i_size. Trim these off again. Don't need 3199 * i_size_read because we hold i_mutex. 3200 */ 3201 if (pos + len > inode->i_size) 3202 ext4_truncate_failed_write(inode); 3203 } 3204 3205 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3206 goto retry; 3207 out: 3208 return ret; 3209 } 3210 3211 /* 3212 * Check if we should update i_disksize 3213 * when write to the end of file but not require block allocation 3214 */ 3215 static int ext4_da_should_update_i_disksize(struct page *page, 3216 unsigned long offset) 3217 { 3218 struct buffer_head *bh; 3219 struct inode *inode = page->mapping->host; 3220 unsigned int idx; 3221 int i; 3222 3223 bh = page_buffers(page); 3224 idx = offset >> inode->i_blkbits; 3225 3226 for (i = 0; i < idx; i++) 3227 bh = bh->b_this_page; 3228 3229 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3230 return 0; 3231 return 1; 3232 } 3233 3234 static int ext4_da_write_end(struct file *file, 3235 struct address_space *mapping, 3236 loff_t pos, unsigned len, unsigned copied, 3237 struct page *page, void *fsdata) 3238 { 3239 struct inode *inode = mapping->host; 3240 int ret = 0, ret2; 3241 handle_t *handle = ext4_journal_current_handle(); 3242 loff_t new_i_size; 3243 unsigned long start, end; 3244 int write_mode = (int)(unsigned long)fsdata; 3245 3246 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3247 if (ext4_should_order_data(inode)) { 3248 return ext4_ordered_write_end(file, mapping, pos, 3249 len, copied, page, fsdata); 3250 } else if (ext4_should_writeback_data(inode)) { 3251 return ext4_writeback_write_end(file, mapping, pos, 3252 len, copied, page, fsdata); 3253 } else { 3254 BUG(); 3255 } 3256 } 3257 3258 trace_ext4_da_write_end(inode, pos, len, copied); 3259 start = pos & (PAGE_CACHE_SIZE - 1); 3260 end = start + copied - 1; 3261 3262 /* 3263 * generic_write_end() will run mark_inode_dirty() if i_size 3264 * changes. So let's piggyback the i_disksize mark_inode_dirty 3265 * into that. 3266 */ 3267 3268 new_i_size = pos + copied; 3269 if (new_i_size > EXT4_I(inode)->i_disksize) { 3270 if (ext4_da_should_update_i_disksize(page, end)) { 3271 down_write(&EXT4_I(inode)->i_data_sem); 3272 if (new_i_size > EXT4_I(inode)->i_disksize) { 3273 /* 3274 * Updating i_disksize when extending file 3275 * without needing block allocation 3276 */ 3277 if (ext4_should_order_data(inode)) 3278 ret = ext4_jbd2_file_inode(handle, 3279 inode); 3280 3281 EXT4_I(inode)->i_disksize = new_i_size; 3282 } 3283 up_write(&EXT4_I(inode)->i_data_sem); 3284 /* We need to mark inode dirty even if 3285 * new_i_size is less that inode->i_size 3286 * bu greater than i_disksize.(hint delalloc) 3287 */ 3288 ext4_mark_inode_dirty(handle, inode); 3289 } 3290 } 3291 ret2 = generic_write_end(file, mapping, pos, len, copied, 3292 page, fsdata); 3293 copied = ret2; 3294 if (ret2 < 0) 3295 ret = ret2; 3296 ret2 = ext4_journal_stop(handle); 3297 if (!ret) 3298 ret = ret2; 3299 3300 return ret ? ret : copied; 3301 } 3302 3303 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3304 { 3305 /* 3306 * Drop reserved blocks 3307 */ 3308 BUG_ON(!PageLocked(page)); 3309 if (!page_has_buffers(page)) 3310 goto out; 3311 3312 ext4_da_page_release_reservation(page, offset); 3313 3314 out: 3315 ext4_invalidatepage(page, offset); 3316 3317 return; 3318 } 3319 3320 /* 3321 * Force all delayed allocation blocks to be allocated for a given inode. 3322 */ 3323 int ext4_alloc_da_blocks(struct inode *inode) 3324 { 3325 trace_ext4_alloc_da_blocks(inode); 3326 3327 if (!EXT4_I(inode)->i_reserved_data_blocks && 3328 !EXT4_I(inode)->i_reserved_meta_blocks) 3329 return 0; 3330 3331 /* 3332 * We do something simple for now. The filemap_flush() will 3333 * also start triggering a write of the data blocks, which is 3334 * not strictly speaking necessary (and for users of 3335 * laptop_mode, not even desirable). However, to do otherwise 3336 * would require replicating code paths in: 3337 * 3338 * ext4_da_writepages() -> 3339 * write_cache_pages() ---> (via passed in callback function) 3340 * __mpage_da_writepage() --> 3341 * mpage_add_bh_to_extent() 3342 * mpage_da_map_blocks() 3343 * 3344 * The problem is that write_cache_pages(), located in 3345 * mm/page-writeback.c, marks pages clean in preparation for 3346 * doing I/O, which is not desirable if we're not planning on 3347 * doing I/O at all. 3348 * 3349 * We could call write_cache_pages(), and then redirty all of 3350 * the pages by calling redirty_page_for_writeback() but that 3351 * would be ugly in the extreme. So instead we would need to 3352 * replicate parts of the code in the above functions, 3353 * simplifying them becuase we wouldn't actually intend to 3354 * write out the pages, but rather only collect contiguous 3355 * logical block extents, call the multi-block allocator, and 3356 * then update the buffer heads with the block allocations. 3357 * 3358 * For now, though, we'll cheat by calling filemap_flush(), 3359 * which will map the blocks, and start the I/O, but not 3360 * actually wait for the I/O to complete. 3361 */ 3362 return filemap_flush(inode->i_mapping); 3363 } 3364 3365 /* 3366 * bmap() is special. It gets used by applications such as lilo and by 3367 * the swapper to find the on-disk block of a specific piece of data. 3368 * 3369 * Naturally, this is dangerous if the block concerned is still in the 3370 * journal. If somebody makes a swapfile on an ext4 data-journaling 3371 * filesystem and enables swap, then they may get a nasty shock when the 3372 * data getting swapped to that swapfile suddenly gets overwritten by 3373 * the original zero's written out previously to the journal and 3374 * awaiting writeback in the kernel's buffer cache. 3375 * 3376 * So, if we see any bmap calls here on a modified, data-journaled file, 3377 * take extra steps to flush any blocks which might be in the cache. 3378 */ 3379 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3380 { 3381 struct inode *inode = mapping->host; 3382 journal_t *journal; 3383 int err; 3384 3385 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3386 test_opt(inode->i_sb, DELALLOC)) { 3387 /* 3388 * With delalloc we want to sync the file 3389 * so that we can make sure we allocate 3390 * blocks for file 3391 */ 3392 filemap_write_and_wait(mapping); 3393 } 3394 3395 if (EXT4_JOURNAL(inode) && 3396 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3397 /* 3398 * This is a REALLY heavyweight approach, but the use of 3399 * bmap on dirty files is expected to be extremely rare: 3400 * only if we run lilo or swapon on a freshly made file 3401 * do we expect this to happen. 3402 * 3403 * (bmap requires CAP_SYS_RAWIO so this does not 3404 * represent an unprivileged user DOS attack --- we'd be 3405 * in trouble if mortal users could trigger this path at 3406 * will.) 3407 * 3408 * NB. EXT4_STATE_JDATA is not set on files other than 3409 * regular files. If somebody wants to bmap a directory 3410 * or symlink and gets confused because the buffer 3411 * hasn't yet been flushed to disk, they deserve 3412 * everything they get. 3413 */ 3414 3415 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3416 journal = EXT4_JOURNAL(inode); 3417 jbd2_journal_lock_updates(journal); 3418 err = jbd2_journal_flush(journal); 3419 jbd2_journal_unlock_updates(journal); 3420 3421 if (err) 3422 return 0; 3423 } 3424 3425 return generic_block_bmap(mapping, block, ext4_get_block); 3426 } 3427 3428 static int ext4_readpage(struct file *file, struct page *page) 3429 { 3430 return mpage_readpage(page, ext4_get_block); 3431 } 3432 3433 static int 3434 ext4_readpages(struct file *file, struct address_space *mapping, 3435 struct list_head *pages, unsigned nr_pages) 3436 { 3437 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3438 } 3439 3440 static void ext4_free_io_end(ext4_io_end_t *io) 3441 { 3442 BUG_ON(!io); 3443 if (io->page) 3444 put_page(io->page); 3445 iput(io->inode); 3446 kfree(io); 3447 } 3448 3449 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3450 { 3451 struct buffer_head *head, *bh; 3452 unsigned int curr_off = 0; 3453 3454 if (!page_has_buffers(page)) 3455 return; 3456 head = bh = page_buffers(page); 3457 do { 3458 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3459 && bh->b_private) { 3460 ext4_free_io_end(bh->b_private); 3461 bh->b_private = NULL; 3462 bh->b_end_io = NULL; 3463 } 3464 curr_off = curr_off + bh->b_size; 3465 bh = bh->b_this_page; 3466 } while (bh != head); 3467 } 3468 3469 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3470 { 3471 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3472 3473 /* 3474 * free any io_end structure allocated for buffers to be discarded 3475 */ 3476 if (ext4_should_dioread_nolock(page->mapping->host)) 3477 ext4_invalidatepage_free_endio(page, offset); 3478 /* 3479 * If it's a full truncate we just forget about the pending dirtying 3480 */ 3481 if (offset == 0) 3482 ClearPageChecked(page); 3483 3484 if (journal) 3485 jbd2_journal_invalidatepage(journal, page, offset); 3486 else 3487 block_invalidatepage(page, offset); 3488 } 3489 3490 static int ext4_releasepage(struct page *page, gfp_t wait) 3491 { 3492 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3493 3494 WARN_ON(PageChecked(page)); 3495 if (!page_has_buffers(page)) 3496 return 0; 3497 if (journal) 3498 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3499 else 3500 return try_to_free_buffers(page); 3501 } 3502 3503 /* 3504 * O_DIRECT for ext3 (or indirect map) based files 3505 * 3506 * If the O_DIRECT write will extend the file then add this inode to the 3507 * orphan list. So recovery will truncate it back to the original size 3508 * if the machine crashes during the write. 3509 * 3510 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3511 * crashes then stale disk data _may_ be exposed inside the file. But current 3512 * VFS code falls back into buffered path in that case so we are safe. 3513 */ 3514 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3515 const struct iovec *iov, loff_t offset, 3516 unsigned long nr_segs) 3517 { 3518 struct file *file = iocb->ki_filp; 3519 struct inode *inode = file->f_mapping->host; 3520 struct ext4_inode_info *ei = EXT4_I(inode); 3521 handle_t *handle; 3522 ssize_t ret; 3523 int orphan = 0; 3524 size_t count = iov_length(iov, nr_segs); 3525 int retries = 0; 3526 3527 if (rw == WRITE) { 3528 loff_t final_size = offset + count; 3529 3530 if (final_size > inode->i_size) { 3531 /* Credits for sb + inode write */ 3532 handle = ext4_journal_start(inode, 2); 3533 if (IS_ERR(handle)) { 3534 ret = PTR_ERR(handle); 3535 goto out; 3536 } 3537 ret = ext4_orphan_add(handle, inode); 3538 if (ret) { 3539 ext4_journal_stop(handle); 3540 goto out; 3541 } 3542 orphan = 1; 3543 ei->i_disksize = inode->i_size; 3544 ext4_journal_stop(handle); 3545 } 3546 } 3547 3548 retry: 3549 if (rw == READ && ext4_should_dioread_nolock(inode)) 3550 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 3551 inode->i_sb->s_bdev, iov, 3552 offset, nr_segs, 3553 ext4_get_block, NULL); 3554 else 3555 ret = blockdev_direct_IO(rw, iocb, inode, 3556 inode->i_sb->s_bdev, iov, 3557 offset, nr_segs, 3558 ext4_get_block, NULL); 3559 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3560 goto retry; 3561 3562 if (orphan) { 3563 int err; 3564 3565 /* Credits for sb + inode write */ 3566 handle = ext4_journal_start(inode, 2); 3567 if (IS_ERR(handle)) { 3568 /* This is really bad luck. We've written the data 3569 * but cannot extend i_size. Bail out and pretend 3570 * the write failed... */ 3571 ret = PTR_ERR(handle); 3572 if (inode->i_nlink) 3573 ext4_orphan_del(NULL, inode); 3574 3575 goto out; 3576 } 3577 if (inode->i_nlink) 3578 ext4_orphan_del(handle, inode); 3579 if (ret > 0) { 3580 loff_t end = offset + ret; 3581 if (end > inode->i_size) { 3582 ei->i_disksize = end; 3583 i_size_write(inode, end); 3584 /* 3585 * We're going to return a positive `ret' 3586 * here due to non-zero-length I/O, so there's 3587 * no way of reporting error returns from 3588 * ext4_mark_inode_dirty() to userspace. So 3589 * ignore it. 3590 */ 3591 ext4_mark_inode_dirty(handle, inode); 3592 } 3593 } 3594 err = ext4_journal_stop(handle); 3595 if (ret == 0) 3596 ret = err; 3597 } 3598 out: 3599 return ret; 3600 } 3601 3602 /* 3603 * ext4_get_block used when preparing for a DIO write or buffer write. 3604 * We allocate an uinitialized extent if blocks haven't been allocated. 3605 * The extent will be converted to initialized after the IO is complete. 3606 */ 3607 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3608 struct buffer_head *bh_result, int create) 3609 { 3610 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3611 inode->i_ino, create); 3612 return _ext4_get_block(inode, iblock, bh_result, 3613 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3614 } 3615 3616 static void dump_completed_IO(struct inode * inode) 3617 { 3618 #ifdef EXT4_DEBUG 3619 struct list_head *cur, *before, *after; 3620 ext4_io_end_t *io, *io0, *io1; 3621 unsigned long flags; 3622 3623 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){ 3624 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino); 3625 return; 3626 } 3627 3628 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino); 3629 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3630 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){ 3631 cur = &io->list; 3632 before = cur->prev; 3633 io0 = container_of(before, ext4_io_end_t, list); 3634 after = cur->next; 3635 io1 = container_of(after, ext4_io_end_t, list); 3636 3637 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3638 io, inode->i_ino, io0, io1); 3639 } 3640 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3641 #endif 3642 } 3643 3644 /* 3645 * check a range of space and convert unwritten extents to written. 3646 */ 3647 static int ext4_end_io_nolock(ext4_io_end_t *io) 3648 { 3649 struct inode *inode = io->inode; 3650 loff_t offset = io->offset; 3651 ssize_t size = io->size; 3652 int ret = 0; 3653 3654 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 3655 "list->prev 0x%p\n", 3656 io, inode->i_ino, io->list.next, io->list.prev); 3657 3658 if (list_empty(&io->list)) 3659 return ret; 3660 3661 if (io->flag != EXT4_IO_UNWRITTEN) 3662 return ret; 3663 3664 ret = ext4_convert_unwritten_extents(inode, offset, size); 3665 if (ret < 0) { 3666 printk(KERN_EMERG "%s: failed to convert unwritten" 3667 "extents to written extents, error is %d" 3668 " io is still on inode %lu aio dio list\n", 3669 __func__, ret, inode->i_ino); 3670 return ret; 3671 } 3672 3673 /* clear the DIO AIO unwritten flag */ 3674 io->flag = 0; 3675 return ret; 3676 } 3677 3678 /* 3679 * work on completed aio dio IO, to convert unwritten extents to extents 3680 */ 3681 static void ext4_end_io_work(struct work_struct *work) 3682 { 3683 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3684 struct inode *inode = io->inode; 3685 struct ext4_inode_info *ei = EXT4_I(inode); 3686 unsigned long flags; 3687 int ret; 3688 3689 mutex_lock(&inode->i_mutex); 3690 ret = ext4_end_io_nolock(io); 3691 if (ret < 0) { 3692 mutex_unlock(&inode->i_mutex); 3693 return; 3694 } 3695 3696 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3697 if (!list_empty(&io->list)) 3698 list_del_init(&io->list); 3699 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3700 mutex_unlock(&inode->i_mutex); 3701 ext4_free_io_end(io); 3702 } 3703 3704 /* 3705 * This function is called from ext4_sync_file(). 3706 * 3707 * When IO is completed, the work to convert unwritten extents to 3708 * written is queued on workqueue but may not get immediately 3709 * scheduled. When fsync is called, we need to ensure the 3710 * conversion is complete before fsync returns. 3711 * The inode keeps track of a list of pending/completed IO that 3712 * might needs to do the conversion. This function walks through 3713 * the list and convert the related unwritten extents for completed IO 3714 * to written. 3715 * The function return the number of pending IOs on success. 3716 */ 3717 int flush_completed_IO(struct inode *inode) 3718 { 3719 ext4_io_end_t *io; 3720 struct ext4_inode_info *ei = EXT4_I(inode); 3721 unsigned long flags; 3722 int ret = 0; 3723 int ret2 = 0; 3724 3725 if (list_empty(&ei->i_completed_io_list)) 3726 return ret; 3727 3728 dump_completed_IO(inode); 3729 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3730 while (!list_empty(&ei->i_completed_io_list)){ 3731 io = list_entry(ei->i_completed_io_list.next, 3732 ext4_io_end_t, list); 3733 /* 3734 * Calling ext4_end_io_nolock() to convert completed 3735 * IO to written. 3736 * 3737 * When ext4_sync_file() is called, run_queue() may already 3738 * about to flush the work corresponding to this io structure. 3739 * It will be upset if it founds the io structure related 3740 * to the work-to-be schedule is freed. 3741 * 3742 * Thus we need to keep the io structure still valid here after 3743 * convertion finished. The io structure has a flag to 3744 * avoid double converting from both fsync and background work 3745 * queue work. 3746 */ 3747 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3748 ret = ext4_end_io_nolock(io); 3749 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3750 if (ret < 0) 3751 ret2 = ret; 3752 else 3753 list_del_init(&io->list); 3754 } 3755 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3756 return (ret2 < 0) ? ret2 : 0; 3757 } 3758 3759 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags) 3760 { 3761 ext4_io_end_t *io = NULL; 3762 3763 io = kmalloc(sizeof(*io), flags); 3764 3765 if (io) { 3766 igrab(inode); 3767 io->inode = inode; 3768 io->flag = 0; 3769 io->offset = 0; 3770 io->size = 0; 3771 io->page = NULL; 3772 INIT_WORK(&io->work, ext4_end_io_work); 3773 INIT_LIST_HEAD(&io->list); 3774 } 3775 3776 return io; 3777 } 3778 3779 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3780 ssize_t size, void *private) 3781 { 3782 ext4_io_end_t *io_end = iocb->private; 3783 struct workqueue_struct *wq; 3784 unsigned long flags; 3785 struct ext4_inode_info *ei; 3786 3787 /* if not async direct IO or dio with 0 bytes write, just return */ 3788 if (!io_end || !size) 3789 return; 3790 3791 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3792 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3793 iocb->private, io_end->inode->i_ino, iocb, offset, 3794 size); 3795 3796 /* if not aio dio with unwritten extents, just free io and return */ 3797 if (io_end->flag != EXT4_IO_UNWRITTEN){ 3798 ext4_free_io_end(io_end); 3799 iocb->private = NULL; 3800 return; 3801 } 3802 3803 io_end->offset = offset; 3804 io_end->size = size; 3805 io_end->flag = EXT4_IO_UNWRITTEN; 3806 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3807 3808 /* queue the work to convert unwritten extents to written */ 3809 queue_work(wq, &io_end->work); 3810 3811 /* Add the io_end to per-inode completed aio dio list*/ 3812 ei = EXT4_I(io_end->inode); 3813 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3814 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3815 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3816 iocb->private = NULL; 3817 } 3818 3819 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3820 { 3821 ext4_io_end_t *io_end = bh->b_private; 3822 struct workqueue_struct *wq; 3823 struct inode *inode; 3824 unsigned long flags; 3825 3826 if (!test_clear_buffer_uninit(bh) || !io_end) 3827 goto out; 3828 3829 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3830 printk("sb umounted, discard end_io request for inode %lu\n", 3831 io_end->inode->i_ino); 3832 ext4_free_io_end(io_end); 3833 goto out; 3834 } 3835 3836 io_end->flag = EXT4_IO_UNWRITTEN; 3837 inode = io_end->inode; 3838 3839 /* Add the io_end to per-inode completed io list*/ 3840 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3841 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3842 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3843 3844 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3845 /* queue the work to convert unwritten extents to written */ 3846 queue_work(wq, &io_end->work); 3847 out: 3848 bh->b_private = NULL; 3849 bh->b_end_io = NULL; 3850 clear_buffer_uninit(bh); 3851 end_buffer_async_write(bh, uptodate); 3852 } 3853 3854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3855 { 3856 ext4_io_end_t *io_end; 3857 struct page *page = bh->b_page; 3858 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3859 size_t size = bh->b_size; 3860 3861 retry: 3862 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3863 if (!io_end) { 3864 if (printk_ratelimit()) 3865 printk(KERN_WARNING "%s: allocation fail\n", __func__); 3866 schedule(); 3867 goto retry; 3868 } 3869 io_end->offset = offset; 3870 io_end->size = size; 3871 /* 3872 * We need to hold a reference to the page to make sure it 3873 * doesn't get evicted before ext4_end_io_work() has a chance 3874 * to convert the extent from written to unwritten. 3875 */ 3876 io_end->page = page; 3877 get_page(io_end->page); 3878 3879 bh->b_private = io_end; 3880 bh->b_end_io = ext4_end_io_buffer_write; 3881 return 0; 3882 } 3883 3884 /* 3885 * For ext4 extent files, ext4 will do direct-io write to holes, 3886 * preallocated extents, and those write extend the file, no need to 3887 * fall back to buffered IO. 3888 * 3889 * For holes, we fallocate those blocks, mark them as unintialized 3890 * If those blocks were preallocated, we mark sure they are splited, but 3891 * still keep the range to write as unintialized. 3892 * 3893 * The unwrritten extents will be converted to written when DIO is completed. 3894 * For async direct IO, since the IO may still pending when return, we 3895 * set up an end_io call back function, which will do the convertion 3896 * when async direct IO completed. 3897 * 3898 * If the O_DIRECT write will extend the file then add this inode to the 3899 * orphan list. So recovery will truncate it back to the original size 3900 * if the machine crashes during the write. 3901 * 3902 */ 3903 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3904 const struct iovec *iov, loff_t offset, 3905 unsigned long nr_segs) 3906 { 3907 struct file *file = iocb->ki_filp; 3908 struct inode *inode = file->f_mapping->host; 3909 ssize_t ret; 3910 size_t count = iov_length(iov, nr_segs); 3911 3912 loff_t final_size = offset + count; 3913 if (rw == WRITE && final_size <= inode->i_size) { 3914 /* 3915 * We could direct write to holes and fallocate. 3916 * 3917 * Allocated blocks to fill the hole are marked as uninitialized 3918 * to prevent paralel buffered read to expose the stale data 3919 * before DIO complete the data IO. 3920 * 3921 * As to previously fallocated extents, ext4 get_block 3922 * will just simply mark the buffer mapped but still 3923 * keep the extents uninitialized. 3924 * 3925 * for non AIO case, we will convert those unwritten extents 3926 * to written after return back from blockdev_direct_IO. 3927 * 3928 * for async DIO, the conversion needs to be defered when 3929 * the IO is completed. The ext4 end_io callback function 3930 * will be called to take care of the conversion work. 3931 * Here for async case, we allocate an io_end structure to 3932 * hook to the iocb. 3933 */ 3934 iocb->private = NULL; 3935 EXT4_I(inode)->cur_aio_dio = NULL; 3936 if (!is_sync_kiocb(iocb)) { 3937 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3938 if (!iocb->private) 3939 return -ENOMEM; 3940 /* 3941 * we save the io structure for current async 3942 * direct IO, so that later ext4_get_blocks() 3943 * could flag the io structure whether there 3944 * is a unwritten extents needs to be converted 3945 * when IO is completed. 3946 */ 3947 EXT4_I(inode)->cur_aio_dio = iocb->private; 3948 } 3949 3950 ret = blockdev_direct_IO(rw, iocb, inode, 3951 inode->i_sb->s_bdev, iov, 3952 offset, nr_segs, 3953 ext4_get_block_write, 3954 ext4_end_io_dio); 3955 if (iocb->private) 3956 EXT4_I(inode)->cur_aio_dio = NULL; 3957 /* 3958 * The io_end structure takes a reference to the inode, 3959 * that structure needs to be destroyed and the 3960 * reference to the inode need to be dropped, when IO is 3961 * complete, even with 0 byte write, or failed. 3962 * 3963 * In the successful AIO DIO case, the io_end structure will be 3964 * desctroyed and the reference to the inode will be dropped 3965 * after the end_io call back function is called. 3966 * 3967 * In the case there is 0 byte write, or error case, since 3968 * VFS direct IO won't invoke the end_io call back function, 3969 * we need to free the end_io structure here. 3970 */ 3971 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3972 ext4_free_io_end(iocb->private); 3973 iocb->private = NULL; 3974 } else if (ret > 0 && ext4_test_inode_state(inode, 3975 EXT4_STATE_DIO_UNWRITTEN)) { 3976 int err; 3977 /* 3978 * for non AIO case, since the IO is already 3979 * completed, we could do the convertion right here 3980 */ 3981 err = ext4_convert_unwritten_extents(inode, 3982 offset, ret); 3983 if (err < 0) 3984 ret = err; 3985 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3986 } 3987 return ret; 3988 } 3989 3990 /* for write the the end of file case, we fall back to old way */ 3991 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3992 } 3993 3994 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3995 const struct iovec *iov, loff_t offset, 3996 unsigned long nr_segs) 3997 { 3998 struct file *file = iocb->ki_filp; 3999 struct inode *inode = file->f_mapping->host; 4000 4001 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 4002 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 4003 4004 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 4005 } 4006 4007 /* 4008 * Pages can be marked dirty completely asynchronously from ext4's journalling 4009 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 4010 * much here because ->set_page_dirty is called under VFS locks. The page is 4011 * not necessarily locked. 4012 * 4013 * We cannot just dirty the page and leave attached buffers clean, because the 4014 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 4015 * or jbddirty because all the journalling code will explode. 4016 * 4017 * So what we do is to mark the page "pending dirty" and next time writepage 4018 * is called, propagate that into the buffers appropriately. 4019 */ 4020 static int ext4_journalled_set_page_dirty(struct page *page) 4021 { 4022 SetPageChecked(page); 4023 return __set_page_dirty_nobuffers(page); 4024 } 4025 4026 static const struct address_space_operations ext4_ordered_aops = { 4027 .readpage = ext4_readpage, 4028 .readpages = ext4_readpages, 4029 .writepage = ext4_writepage, 4030 .sync_page = block_sync_page, 4031 .write_begin = ext4_write_begin, 4032 .write_end = ext4_ordered_write_end, 4033 .bmap = ext4_bmap, 4034 .invalidatepage = ext4_invalidatepage, 4035 .releasepage = ext4_releasepage, 4036 .direct_IO = ext4_direct_IO, 4037 .migratepage = buffer_migrate_page, 4038 .is_partially_uptodate = block_is_partially_uptodate, 4039 .error_remove_page = generic_error_remove_page, 4040 }; 4041 4042 static const struct address_space_operations ext4_writeback_aops = { 4043 .readpage = ext4_readpage, 4044 .readpages = ext4_readpages, 4045 .writepage = ext4_writepage, 4046 .sync_page = block_sync_page, 4047 .write_begin = ext4_write_begin, 4048 .write_end = ext4_writeback_write_end, 4049 .bmap = ext4_bmap, 4050 .invalidatepage = ext4_invalidatepage, 4051 .releasepage = ext4_releasepage, 4052 .direct_IO = ext4_direct_IO, 4053 .migratepage = buffer_migrate_page, 4054 .is_partially_uptodate = block_is_partially_uptodate, 4055 .error_remove_page = generic_error_remove_page, 4056 }; 4057 4058 static const struct address_space_operations ext4_journalled_aops = { 4059 .readpage = ext4_readpage, 4060 .readpages = ext4_readpages, 4061 .writepage = ext4_writepage, 4062 .sync_page = block_sync_page, 4063 .write_begin = ext4_write_begin, 4064 .write_end = ext4_journalled_write_end, 4065 .set_page_dirty = ext4_journalled_set_page_dirty, 4066 .bmap = ext4_bmap, 4067 .invalidatepage = ext4_invalidatepage, 4068 .releasepage = ext4_releasepage, 4069 .is_partially_uptodate = block_is_partially_uptodate, 4070 .error_remove_page = generic_error_remove_page, 4071 }; 4072 4073 static const struct address_space_operations ext4_da_aops = { 4074 .readpage = ext4_readpage, 4075 .readpages = ext4_readpages, 4076 .writepage = ext4_writepage, 4077 .writepages = ext4_da_writepages, 4078 .sync_page = block_sync_page, 4079 .write_begin = ext4_da_write_begin, 4080 .write_end = ext4_da_write_end, 4081 .bmap = ext4_bmap, 4082 .invalidatepage = ext4_da_invalidatepage, 4083 .releasepage = ext4_releasepage, 4084 .direct_IO = ext4_direct_IO, 4085 .migratepage = buffer_migrate_page, 4086 .is_partially_uptodate = block_is_partially_uptodate, 4087 .error_remove_page = generic_error_remove_page, 4088 }; 4089 4090 void ext4_set_aops(struct inode *inode) 4091 { 4092 if (ext4_should_order_data(inode) && 4093 test_opt(inode->i_sb, DELALLOC)) 4094 inode->i_mapping->a_ops = &ext4_da_aops; 4095 else if (ext4_should_order_data(inode)) 4096 inode->i_mapping->a_ops = &ext4_ordered_aops; 4097 else if (ext4_should_writeback_data(inode) && 4098 test_opt(inode->i_sb, DELALLOC)) 4099 inode->i_mapping->a_ops = &ext4_da_aops; 4100 else if (ext4_should_writeback_data(inode)) 4101 inode->i_mapping->a_ops = &ext4_writeback_aops; 4102 else 4103 inode->i_mapping->a_ops = &ext4_journalled_aops; 4104 } 4105 4106 /* 4107 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4108 * up to the end of the block which corresponds to `from'. 4109 * This required during truncate. We need to physically zero the tail end 4110 * of that block so it doesn't yield old data if the file is later grown. 4111 */ 4112 int ext4_block_truncate_page(handle_t *handle, 4113 struct address_space *mapping, loff_t from) 4114 { 4115 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 4116 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4117 unsigned blocksize, length, pos; 4118 ext4_lblk_t iblock; 4119 struct inode *inode = mapping->host; 4120 struct buffer_head *bh; 4121 struct page *page; 4122 int err = 0; 4123 4124 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4125 mapping_gfp_mask(mapping) & ~__GFP_FS); 4126 if (!page) 4127 return -EINVAL; 4128 4129 blocksize = inode->i_sb->s_blocksize; 4130 length = blocksize - (offset & (blocksize - 1)); 4131 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4132 4133 /* 4134 * For "nobh" option, we can only work if we don't need to 4135 * read-in the page - otherwise we create buffers to do the IO. 4136 */ 4137 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 4138 ext4_should_writeback_data(inode) && PageUptodate(page)) { 4139 zero_user(page, offset, length); 4140 set_page_dirty(page); 4141 goto unlock; 4142 } 4143 4144 if (!page_has_buffers(page)) 4145 create_empty_buffers(page, blocksize, 0); 4146 4147 /* Find the buffer that contains "offset" */ 4148 bh = page_buffers(page); 4149 pos = blocksize; 4150 while (offset >= pos) { 4151 bh = bh->b_this_page; 4152 iblock++; 4153 pos += blocksize; 4154 } 4155 4156 err = 0; 4157 if (buffer_freed(bh)) { 4158 BUFFER_TRACE(bh, "freed: skip"); 4159 goto unlock; 4160 } 4161 4162 if (!buffer_mapped(bh)) { 4163 BUFFER_TRACE(bh, "unmapped"); 4164 ext4_get_block(inode, iblock, bh, 0); 4165 /* unmapped? It's a hole - nothing to do */ 4166 if (!buffer_mapped(bh)) { 4167 BUFFER_TRACE(bh, "still unmapped"); 4168 goto unlock; 4169 } 4170 } 4171 4172 /* Ok, it's mapped. Make sure it's up-to-date */ 4173 if (PageUptodate(page)) 4174 set_buffer_uptodate(bh); 4175 4176 if (!buffer_uptodate(bh)) { 4177 err = -EIO; 4178 ll_rw_block(READ, 1, &bh); 4179 wait_on_buffer(bh); 4180 /* Uhhuh. Read error. Complain and punt. */ 4181 if (!buffer_uptodate(bh)) 4182 goto unlock; 4183 } 4184 4185 if (ext4_should_journal_data(inode)) { 4186 BUFFER_TRACE(bh, "get write access"); 4187 err = ext4_journal_get_write_access(handle, bh); 4188 if (err) 4189 goto unlock; 4190 } 4191 4192 zero_user(page, offset, length); 4193 4194 BUFFER_TRACE(bh, "zeroed end of block"); 4195 4196 err = 0; 4197 if (ext4_should_journal_data(inode)) { 4198 err = ext4_handle_dirty_metadata(handle, inode, bh); 4199 } else { 4200 if (ext4_should_order_data(inode)) 4201 err = ext4_jbd2_file_inode(handle, inode); 4202 mark_buffer_dirty(bh); 4203 } 4204 4205 unlock: 4206 unlock_page(page); 4207 page_cache_release(page); 4208 return err; 4209 } 4210 4211 /* 4212 * Probably it should be a library function... search for first non-zero word 4213 * or memcmp with zero_page, whatever is better for particular architecture. 4214 * Linus? 4215 */ 4216 static inline int all_zeroes(__le32 *p, __le32 *q) 4217 { 4218 while (p < q) 4219 if (*p++) 4220 return 0; 4221 return 1; 4222 } 4223 4224 /** 4225 * ext4_find_shared - find the indirect blocks for partial truncation. 4226 * @inode: inode in question 4227 * @depth: depth of the affected branch 4228 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4229 * @chain: place to store the pointers to partial indirect blocks 4230 * @top: place to the (detached) top of branch 4231 * 4232 * This is a helper function used by ext4_truncate(). 4233 * 4234 * When we do truncate() we may have to clean the ends of several 4235 * indirect blocks but leave the blocks themselves alive. Block is 4236 * partially truncated if some data below the new i_size is refered 4237 * from it (and it is on the path to the first completely truncated 4238 * data block, indeed). We have to free the top of that path along 4239 * with everything to the right of the path. Since no allocation 4240 * past the truncation point is possible until ext4_truncate() 4241 * finishes, we may safely do the latter, but top of branch may 4242 * require special attention - pageout below the truncation point 4243 * might try to populate it. 4244 * 4245 * We atomically detach the top of branch from the tree, store the 4246 * block number of its root in *@top, pointers to buffer_heads of 4247 * partially truncated blocks - in @chain[].bh and pointers to 4248 * their last elements that should not be removed - in 4249 * @chain[].p. Return value is the pointer to last filled element 4250 * of @chain. 4251 * 4252 * The work left to caller to do the actual freeing of subtrees: 4253 * a) free the subtree starting from *@top 4254 * b) free the subtrees whose roots are stored in 4255 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4256 * c) free the subtrees growing from the inode past the @chain[0]. 4257 * (no partially truncated stuff there). */ 4258 4259 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4260 ext4_lblk_t offsets[4], Indirect chain[4], 4261 __le32 *top) 4262 { 4263 Indirect *partial, *p; 4264 int k, err; 4265 4266 *top = 0; 4267 /* Make k index the deepest non-null offset + 1 */ 4268 for (k = depth; k > 1 && !offsets[k-1]; k--) 4269 ; 4270 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4271 /* Writer: pointers */ 4272 if (!partial) 4273 partial = chain + k-1; 4274 /* 4275 * If the branch acquired continuation since we've looked at it - 4276 * fine, it should all survive and (new) top doesn't belong to us. 4277 */ 4278 if (!partial->key && *partial->p) 4279 /* Writer: end */ 4280 goto no_top; 4281 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4282 ; 4283 /* 4284 * OK, we've found the last block that must survive. The rest of our 4285 * branch should be detached before unlocking. However, if that rest 4286 * of branch is all ours and does not grow immediately from the inode 4287 * it's easier to cheat and just decrement partial->p. 4288 */ 4289 if (p == chain + k - 1 && p > chain) { 4290 p->p--; 4291 } else { 4292 *top = *p->p; 4293 /* Nope, don't do this in ext4. Must leave the tree intact */ 4294 #if 0 4295 *p->p = 0; 4296 #endif 4297 } 4298 /* Writer: end */ 4299 4300 while (partial > p) { 4301 brelse(partial->bh); 4302 partial--; 4303 } 4304 no_top: 4305 return partial; 4306 } 4307 4308 /* 4309 * Zero a number of block pointers in either an inode or an indirect block. 4310 * If we restart the transaction we must again get write access to the 4311 * indirect block for further modification. 4312 * 4313 * We release `count' blocks on disk, but (last - first) may be greater 4314 * than `count' because there can be holes in there. 4315 */ 4316 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4317 struct buffer_head *bh, 4318 ext4_fsblk_t block_to_free, 4319 unsigned long count, __le32 *first, 4320 __le32 *last) 4321 { 4322 __le32 *p; 4323 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4324 4325 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4326 flags |= EXT4_FREE_BLOCKS_METADATA; 4327 4328 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4329 count)) { 4330 ext4_error(inode->i_sb, "inode #%lu: " 4331 "attempt to clear blocks %llu len %lu, invalid", 4332 inode->i_ino, (unsigned long long) block_to_free, 4333 count); 4334 return 1; 4335 } 4336 4337 if (try_to_extend_transaction(handle, inode)) { 4338 if (bh) { 4339 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4340 ext4_handle_dirty_metadata(handle, inode, bh); 4341 } 4342 ext4_mark_inode_dirty(handle, inode); 4343 ext4_truncate_restart_trans(handle, inode, 4344 blocks_for_truncate(inode)); 4345 if (bh) { 4346 BUFFER_TRACE(bh, "retaking write access"); 4347 ext4_journal_get_write_access(handle, bh); 4348 } 4349 } 4350 4351 for (p = first; p < last; p++) 4352 *p = 0; 4353 4354 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4355 return 0; 4356 } 4357 4358 /** 4359 * ext4_free_data - free a list of data blocks 4360 * @handle: handle for this transaction 4361 * @inode: inode we are dealing with 4362 * @this_bh: indirect buffer_head which contains *@first and *@last 4363 * @first: array of block numbers 4364 * @last: points immediately past the end of array 4365 * 4366 * We are freeing all blocks refered from that array (numbers are stored as 4367 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4368 * 4369 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4370 * blocks are contiguous then releasing them at one time will only affect one 4371 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4372 * actually use a lot of journal space. 4373 * 4374 * @this_bh will be %NULL if @first and @last point into the inode's direct 4375 * block pointers. 4376 */ 4377 static void ext4_free_data(handle_t *handle, struct inode *inode, 4378 struct buffer_head *this_bh, 4379 __le32 *first, __le32 *last) 4380 { 4381 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4382 unsigned long count = 0; /* Number of blocks in the run */ 4383 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4384 corresponding to 4385 block_to_free */ 4386 ext4_fsblk_t nr; /* Current block # */ 4387 __le32 *p; /* Pointer into inode/ind 4388 for current block */ 4389 int err; 4390 4391 if (this_bh) { /* For indirect block */ 4392 BUFFER_TRACE(this_bh, "get_write_access"); 4393 err = ext4_journal_get_write_access(handle, this_bh); 4394 /* Important: if we can't update the indirect pointers 4395 * to the blocks, we can't free them. */ 4396 if (err) 4397 return; 4398 } 4399 4400 for (p = first; p < last; p++) { 4401 nr = le32_to_cpu(*p); 4402 if (nr) { 4403 /* accumulate blocks to free if they're contiguous */ 4404 if (count == 0) { 4405 block_to_free = nr; 4406 block_to_free_p = p; 4407 count = 1; 4408 } else if (nr == block_to_free + count) { 4409 count++; 4410 } else { 4411 if (ext4_clear_blocks(handle, inode, this_bh, 4412 block_to_free, count, 4413 block_to_free_p, p)) 4414 break; 4415 block_to_free = nr; 4416 block_to_free_p = p; 4417 count = 1; 4418 } 4419 } 4420 } 4421 4422 if (count > 0) 4423 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4424 count, block_to_free_p, p); 4425 4426 if (this_bh) { 4427 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4428 4429 /* 4430 * The buffer head should have an attached journal head at this 4431 * point. However, if the data is corrupted and an indirect 4432 * block pointed to itself, it would have been detached when 4433 * the block was cleared. Check for this instead of OOPSing. 4434 */ 4435 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4436 ext4_handle_dirty_metadata(handle, inode, this_bh); 4437 else 4438 ext4_error(inode->i_sb, 4439 "circular indirect block detected, " 4440 "inode=%lu, block=%llu", 4441 inode->i_ino, 4442 (unsigned long long) this_bh->b_blocknr); 4443 } 4444 } 4445 4446 /** 4447 * ext4_free_branches - free an array of branches 4448 * @handle: JBD handle for this transaction 4449 * @inode: inode we are dealing with 4450 * @parent_bh: the buffer_head which contains *@first and *@last 4451 * @first: array of block numbers 4452 * @last: pointer immediately past the end of array 4453 * @depth: depth of the branches to free 4454 * 4455 * We are freeing all blocks refered from these branches (numbers are 4456 * stored as little-endian 32-bit) and updating @inode->i_blocks 4457 * appropriately. 4458 */ 4459 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4460 struct buffer_head *parent_bh, 4461 __le32 *first, __le32 *last, int depth) 4462 { 4463 ext4_fsblk_t nr; 4464 __le32 *p; 4465 4466 if (ext4_handle_is_aborted(handle)) 4467 return; 4468 4469 if (depth--) { 4470 struct buffer_head *bh; 4471 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4472 p = last; 4473 while (--p >= first) { 4474 nr = le32_to_cpu(*p); 4475 if (!nr) 4476 continue; /* A hole */ 4477 4478 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4479 nr, 1)) { 4480 ext4_error(inode->i_sb, 4481 "indirect mapped block in inode " 4482 "#%lu invalid (level %d, blk #%lu)", 4483 inode->i_ino, depth, 4484 (unsigned long) nr); 4485 break; 4486 } 4487 4488 /* Go read the buffer for the next level down */ 4489 bh = sb_bread(inode->i_sb, nr); 4490 4491 /* 4492 * A read failure? Report error and clear slot 4493 * (should be rare). 4494 */ 4495 if (!bh) { 4496 ext4_error(inode->i_sb, 4497 "Read failure, inode=%lu, block=%llu", 4498 inode->i_ino, nr); 4499 continue; 4500 } 4501 4502 /* This zaps the entire block. Bottom up. */ 4503 BUFFER_TRACE(bh, "free child branches"); 4504 ext4_free_branches(handle, inode, bh, 4505 (__le32 *) bh->b_data, 4506 (__le32 *) bh->b_data + addr_per_block, 4507 depth); 4508 4509 /* 4510 * We've probably journalled the indirect block several 4511 * times during the truncate. But it's no longer 4512 * needed and we now drop it from the transaction via 4513 * jbd2_journal_revoke(). 4514 * 4515 * That's easy if it's exclusively part of this 4516 * transaction. But if it's part of the committing 4517 * transaction then jbd2_journal_forget() will simply 4518 * brelse() it. That means that if the underlying 4519 * block is reallocated in ext4_get_block(), 4520 * unmap_underlying_metadata() will find this block 4521 * and will try to get rid of it. damn, damn. 4522 * 4523 * If this block has already been committed to the 4524 * journal, a revoke record will be written. And 4525 * revoke records must be emitted *before* clearing 4526 * this block's bit in the bitmaps. 4527 */ 4528 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 4529 4530 /* 4531 * Everything below this this pointer has been 4532 * released. Now let this top-of-subtree go. 4533 * 4534 * We want the freeing of this indirect block to be 4535 * atomic in the journal with the updating of the 4536 * bitmap block which owns it. So make some room in 4537 * the journal. 4538 * 4539 * We zero the parent pointer *after* freeing its 4540 * pointee in the bitmaps, so if extend_transaction() 4541 * for some reason fails to put the bitmap changes and 4542 * the release into the same transaction, recovery 4543 * will merely complain about releasing a free block, 4544 * rather than leaking blocks. 4545 */ 4546 if (ext4_handle_is_aborted(handle)) 4547 return; 4548 if (try_to_extend_transaction(handle, inode)) { 4549 ext4_mark_inode_dirty(handle, inode); 4550 ext4_truncate_restart_trans(handle, inode, 4551 blocks_for_truncate(inode)); 4552 } 4553 4554 ext4_free_blocks(handle, inode, 0, nr, 1, 4555 EXT4_FREE_BLOCKS_METADATA); 4556 4557 if (parent_bh) { 4558 /* 4559 * The block which we have just freed is 4560 * pointed to by an indirect block: journal it 4561 */ 4562 BUFFER_TRACE(parent_bh, "get_write_access"); 4563 if (!ext4_journal_get_write_access(handle, 4564 parent_bh)){ 4565 *p = 0; 4566 BUFFER_TRACE(parent_bh, 4567 "call ext4_handle_dirty_metadata"); 4568 ext4_handle_dirty_metadata(handle, 4569 inode, 4570 parent_bh); 4571 } 4572 } 4573 } 4574 } else { 4575 /* We have reached the bottom of the tree. */ 4576 BUFFER_TRACE(parent_bh, "free data blocks"); 4577 ext4_free_data(handle, inode, parent_bh, first, last); 4578 } 4579 } 4580 4581 int ext4_can_truncate(struct inode *inode) 4582 { 4583 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4584 return 0; 4585 if (S_ISREG(inode->i_mode)) 4586 return 1; 4587 if (S_ISDIR(inode->i_mode)) 4588 return 1; 4589 if (S_ISLNK(inode->i_mode)) 4590 return !ext4_inode_is_fast_symlink(inode); 4591 return 0; 4592 } 4593 4594 /* 4595 * ext4_truncate() 4596 * 4597 * We block out ext4_get_block() block instantiations across the entire 4598 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4599 * simultaneously on behalf of the same inode. 4600 * 4601 * As we work through the truncate and commmit bits of it to the journal there 4602 * is one core, guiding principle: the file's tree must always be consistent on 4603 * disk. We must be able to restart the truncate after a crash. 4604 * 4605 * The file's tree may be transiently inconsistent in memory (although it 4606 * probably isn't), but whenever we close off and commit a journal transaction, 4607 * the contents of (the filesystem + the journal) must be consistent and 4608 * restartable. It's pretty simple, really: bottom up, right to left (although 4609 * left-to-right works OK too). 4610 * 4611 * Note that at recovery time, journal replay occurs *before* the restart of 4612 * truncate against the orphan inode list. 4613 * 4614 * The committed inode has the new, desired i_size (which is the same as 4615 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4616 * that this inode's truncate did not complete and it will again call 4617 * ext4_truncate() to have another go. So there will be instantiated blocks 4618 * to the right of the truncation point in a crashed ext4 filesystem. But 4619 * that's fine - as long as they are linked from the inode, the post-crash 4620 * ext4_truncate() run will find them and release them. 4621 */ 4622 void ext4_truncate(struct inode *inode) 4623 { 4624 handle_t *handle; 4625 struct ext4_inode_info *ei = EXT4_I(inode); 4626 __le32 *i_data = ei->i_data; 4627 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4628 struct address_space *mapping = inode->i_mapping; 4629 ext4_lblk_t offsets[4]; 4630 Indirect chain[4]; 4631 Indirect *partial; 4632 __le32 nr = 0; 4633 int n; 4634 ext4_lblk_t last_block; 4635 unsigned blocksize = inode->i_sb->s_blocksize; 4636 4637 if (!ext4_can_truncate(inode)) 4638 return; 4639 4640 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL; 4641 4642 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4643 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4644 4645 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 4646 ext4_ext_truncate(inode); 4647 return; 4648 } 4649 4650 handle = start_transaction(inode); 4651 if (IS_ERR(handle)) 4652 return; /* AKPM: return what? */ 4653 4654 last_block = (inode->i_size + blocksize-1) 4655 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4656 4657 if (inode->i_size & (blocksize - 1)) 4658 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4659 goto out_stop; 4660 4661 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4662 if (n == 0) 4663 goto out_stop; /* error */ 4664 4665 /* 4666 * OK. This truncate is going to happen. We add the inode to the 4667 * orphan list, so that if this truncate spans multiple transactions, 4668 * and we crash, we will resume the truncate when the filesystem 4669 * recovers. It also marks the inode dirty, to catch the new size. 4670 * 4671 * Implication: the file must always be in a sane, consistent 4672 * truncatable state while each transaction commits. 4673 */ 4674 if (ext4_orphan_add(handle, inode)) 4675 goto out_stop; 4676 4677 /* 4678 * From here we block out all ext4_get_block() callers who want to 4679 * modify the block allocation tree. 4680 */ 4681 down_write(&ei->i_data_sem); 4682 4683 ext4_discard_preallocations(inode); 4684 4685 /* 4686 * The orphan list entry will now protect us from any crash which 4687 * occurs before the truncate completes, so it is now safe to propagate 4688 * the new, shorter inode size (held for now in i_size) into the 4689 * on-disk inode. We do this via i_disksize, which is the value which 4690 * ext4 *really* writes onto the disk inode. 4691 */ 4692 ei->i_disksize = inode->i_size; 4693 4694 if (n == 1) { /* direct blocks */ 4695 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4696 i_data + EXT4_NDIR_BLOCKS); 4697 goto do_indirects; 4698 } 4699 4700 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4701 /* Kill the top of shared branch (not detached) */ 4702 if (nr) { 4703 if (partial == chain) { 4704 /* Shared branch grows from the inode */ 4705 ext4_free_branches(handle, inode, NULL, 4706 &nr, &nr+1, (chain+n-1) - partial); 4707 *partial->p = 0; 4708 /* 4709 * We mark the inode dirty prior to restart, 4710 * and prior to stop. No need for it here. 4711 */ 4712 } else { 4713 /* Shared branch grows from an indirect block */ 4714 BUFFER_TRACE(partial->bh, "get_write_access"); 4715 ext4_free_branches(handle, inode, partial->bh, 4716 partial->p, 4717 partial->p+1, (chain+n-1) - partial); 4718 } 4719 } 4720 /* Clear the ends of indirect blocks on the shared branch */ 4721 while (partial > chain) { 4722 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4723 (__le32*)partial->bh->b_data+addr_per_block, 4724 (chain+n-1) - partial); 4725 BUFFER_TRACE(partial->bh, "call brelse"); 4726 brelse(partial->bh); 4727 partial--; 4728 } 4729 do_indirects: 4730 /* Kill the remaining (whole) subtrees */ 4731 switch (offsets[0]) { 4732 default: 4733 nr = i_data[EXT4_IND_BLOCK]; 4734 if (nr) { 4735 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4736 i_data[EXT4_IND_BLOCK] = 0; 4737 } 4738 case EXT4_IND_BLOCK: 4739 nr = i_data[EXT4_DIND_BLOCK]; 4740 if (nr) { 4741 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4742 i_data[EXT4_DIND_BLOCK] = 0; 4743 } 4744 case EXT4_DIND_BLOCK: 4745 nr = i_data[EXT4_TIND_BLOCK]; 4746 if (nr) { 4747 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4748 i_data[EXT4_TIND_BLOCK] = 0; 4749 } 4750 case EXT4_TIND_BLOCK: 4751 ; 4752 } 4753 4754 up_write(&ei->i_data_sem); 4755 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4756 ext4_mark_inode_dirty(handle, inode); 4757 4758 /* 4759 * In a multi-transaction truncate, we only make the final transaction 4760 * synchronous 4761 */ 4762 if (IS_SYNC(inode)) 4763 ext4_handle_sync(handle); 4764 out_stop: 4765 /* 4766 * If this was a simple ftruncate(), and the file will remain alive 4767 * then we need to clear up the orphan record which we created above. 4768 * However, if this was a real unlink then we were called by 4769 * ext4_delete_inode(), and we allow that function to clean up the 4770 * orphan info for us. 4771 */ 4772 if (inode->i_nlink) 4773 ext4_orphan_del(handle, inode); 4774 4775 ext4_journal_stop(handle); 4776 } 4777 4778 /* 4779 * ext4_get_inode_loc returns with an extra refcount against the inode's 4780 * underlying buffer_head on success. If 'in_mem' is true, we have all 4781 * data in memory that is needed to recreate the on-disk version of this 4782 * inode. 4783 */ 4784 static int __ext4_get_inode_loc(struct inode *inode, 4785 struct ext4_iloc *iloc, int in_mem) 4786 { 4787 struct ext4_group_desc *gdp; 4788 struct buffer_head *bh; 4789 struct super_block *sb = inode->i_sb; 4790 ext4_fsblk_t block; 4791 int inodes_per_block, inode_offset; 4792 4793 iloc->bh = NULL; 4794 if (!ext4_valid_inum(sb, inode->i_ino)) 4795 return -EIO; 4796 4797 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4798 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4799 if (!gdp) 4800 return -EIO; 4801 4802 /* 4803 * Figure out the offset within the block group inode table 4804 */ 4805 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4806 inode_offset = ((inode->i_ino - 1) % 4807 EXT4_INODES_PER_GROUP(sb)); 4808 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4809 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4810 4811 bh = sb_getblk(sb, block); 4812 if (!bh) { 4813 ext4_error(sb, "unable to read inode block - " 4814 "inode=%lu, block=%llu", inode->i_ino, block); 4815 return -EIO; 4816 } 4817 if (!buffer_uptodate(bh)) { 4818 lock_buffer(bh); 4819 4820 /* 4821 * If the buffer has the write error flag, we have failed 4822 * to write out another inode in the same block. In this 4823 * case, we don't have to read the block because we may 4824 * read the old inode data successfully. 4825 */ 4826 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4827 set_buffer_uptodate(bh); 4828 4829 if (buffer_uptodate(bh)) { 4830 /* someone brought it uptodate while we waited */ 4831 unlock_buffer(bh); 4832 goto has_buffer; 4833 } 4834 4835 /* 4836 * If we have all information of the inode in memory and this 4837 * is the only valid inode in the block, we need not read the 4838 * block. 4839 */ 4840 if (in_mem) { 4841 struct buffer_head *bitmap_bh; 4842 int i, start; 4843 4844 start = inode_offset & ~(inodes_per_block - 1); 4845 4846 /* Is the inode bitmap in cache? */ 4847 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4848 if (!bitmap_bh) 4849 goto make_io; 4850 4851 /* 4852 * If the inode bitmap isn't in cache then the 4853 * optimisation may end up performing two reads instead 4854 * of one, so skip it. 4855 */ 4856 if (!buffer_uptodate(bitmap_bh)) { 4857 brelse(bitmap_bh); 4858 goto make_io; 4859 } 4860 for (i = start; i < start + inodes_per_block; i++) { 4861 if (i == inode_offset) 4862 continue; 4863 if (ext4_test_bit(i, bitmap_bh->b_data)) 4864 break; 4865 } 4866 brelse(bitmap_bh); 4867 if (i == start + inodes_per_block) { 4868 /* all other inodes are free, so skip I/O */ 4869 memset(bh->b_data, 0, bh->b_size); 4870 set_buffer_uptodate(bh); 4871 unlock_buffer(bh); 4872 goto has_buffer; 4873 } 4874 } 4875 4876 make_io: 4877 /* 4878 * If we need to do any I/O, try to pre-readahead extra 4879 * blocks from the inode table. 4880 */ 4881 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4882 ext4_fsblk_t b, end, table; 4883 unsigned num; 4884 4885 table = ext4_inode_table(sb, gdp); 4886 /* s_inode_readahead_blks is always a power of 2 */ 4887 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4888 if (table > b) 4889 b = table; 4890 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4891 num = EXT4_INODES_PER_GROUP(sb); 4892 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4893 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4894 num -= ext4_itable_unused_count(sb, gdp); 4895 table += num / inodes_per_block; 4896 if (end > table) 4897 end = table; 4898 while (b <= end) 4899 sb_breadahead(sb, b++); 4900 } 4901 4902 /* 4903 * There are other valid inodes in the buffer, this inode 4904 * has in-inode xattrs, or we don't have this inode in memory. 4905 * Read the block from disk. 4906 */ 4907 get_bh(bh); 4908 bh->b_end_io = end_buffer_read_sync; 4909 submit_bh(READ_META, bh); 4910 wait_on_buffer(bh); 4911 if (!buffer_uptodate(bh)) { 4912 ext4_error(sb, "unable to read inode block - inode=%lu," 4913 " block=%llu", inode->i_ino, block); 4914 brelse(bh); 4915 return -EIO; 4916 } 4917 } 4918 has_buffer: 4919 iloc->bh = bh; 4920 return 0; 4921 } 4922 4923 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4924 { 4925 /* We have all inode data except xattrs in memory here. */ 4926 return __ext4_get_inode_loc(inode, iloc, 4927 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4928 } 4929 4930 void ext4_set_inode_flags(struct inode *inode) 4931 { 4932 unsigned int flags = EXT4_I(inode)->i_flags; 4933 4934 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4935 if (flags & EXT4_SYNC_FL) 4936 inode->i_flags |= S_SYNC; 4937 if (flags & EXT4_APPEND_FL) 4938 inode->i_flags |= S_APPEND; 4939 if (flags & EXT4_IMMUTABLE_FL) 4940 inode->i_flags |= S_IMMUTABLE; 4941 if (flags & EXT4_NOATIME_FL) 4942 inode->i_flags |= S_NOATIME; 4943 if (flags & EXT4_DIRSYNC_FL) 4944 inode->i_flags |= S_DIRSYNC; 4945 } 4946 4947 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4948 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4949 { 4950 unsigned int flags = ei->vfs_inode.i_flags; 4951 4952 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4953 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4954 if (flags & S_SYNC) 4955 ei->i_flags |= EXT4_SYNC_FL; 4956 if (flags & S_APPEND) 4957 ei->i_flags |= EXT4_APPEND_FL; 4958 if (flags & S_IMMUTABLE) 4959 ei->i_flags |= EXT4_IMMUTABLE_FL; 4960 if (flags & S_NOATIME) 4961 ei->i_flags |= EXT4_NOATIME_FL; 4962 if (flags & S_DIRSYNC) 4963 ei->i_flags |= EXT4_DIRSYNC_FL; 4964 } 4965 4966 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4967 struct ext4_inode_info *ei) 4968 { 4969 blkcnt_t i_blocks ; 4970 struct inode *inode = &(ei->vfs_inode); 4971 struct super_block *sb = inode->i_sb; 4972 4973 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4974 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4975 /* we are using combined 48 bit field */ 4976 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4977 le32_to_cpu(raw_inode->i_blocks_lo); 4978 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4979 /* i_blocks represent file system block size */ 4980 return i_blocks << (inode->i_blkbits - 9); 4981 } else { 4982 return i_blocks; 4983 } 4984 } else { 4985 return le32_to_cpu(raw_inode->i_blocks_lo); 4986 } 4987 } 4988 4989 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4990 { 4991 struct ext4_iloc iloc; 4992 struct ext4_inode *raw_inode; 4993 struct ext4_inode_info *ei; 4994 struct inode *inode; 4995 journal_t *journal = EXT4_SB(sb)->s_journal; 4996 long ret; 4997 int block; 4998 4999 inode = iget_locked(sb, ino); 5000 if (!inode) 5001 return ERR_PTR(-ENOMEM); 5002 if (!(inode->i_state & I_NEW)) 5003 return inode; 5004 5005 ei = EXT4_I(inode); 5006 iloc.bh = 0; 5007 5008 ret = __ext4_get_inode_loc(inode, &iloc, 0); 5009 if (ret < 0) 5010 goto bad_inode; 5011 raw_inode = ext4_raw_inode(&iloc); 5012 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5013 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5014 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5015 if (!(test_opt(inode->i_sb, NO_UID32))) { 5016 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5017 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5018 } 5019 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 5020 5021 ei->i_state_flags = 0; 5022 ei->i_dir_start_lookup = 0; 5023 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5024 /* We now have enough fields to check if the inode was active or not. 5025 * This is needed because nfsd might try to access dead inodes 5026 * the test is that same one that e2fsck uses 5027 * NeilBrown 1999oct15 5028 */ 5029 if (inode->i_nlink == 0) { 5030 if (inode->i_mode == 0 || 5031 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 5032 /* this inode is deleted */ 5033 ret = -ESTALE; 5034 goto bad_inode; 5035 } 5036 /* The only unlinked inodes we let through here have 5037 * valid i_mode and are being read by the orphan 5038 * recovery code: that's fine, we're about to complete 5039 * the process of deleting those. */ 5040 } 5041 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5042 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5043 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5044 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 5045 ei->i_file_acl |= 5046 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5047 inode->i_size = ext4_isize(raw_inode); 5048 ei->i_disksize = inode->i_size; 5049 #ifdef CONFIG_QUOTA 5050 ei->i_reserved_quota = 0; 5051 #endif 5052 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5053 ei->i_block_group = iloc.block_group; 5054 ei->i_last_alloc_group = ~0; 5055 /* 5056 * NOTE! The in-memory inode i_data array is in little-endian order 5057 * even on big-endian machines: we do NOT byteswap the block numbers! 5058 */ 5059 for (block = 0; block < EXT4_N_BLOCKS; block++) 5060 ei->i_data[block] = raw_inode->i_block[block]; 5061 INIT_LIST_HEAD(&ei->i_orphan); 5062 5063 /* 5064 * Set transaction id's of transactions that have to be committed 5065 * to finish f[data]sync. We set them to currently running transaction 5066 * as we cannot be sure that the inode or some of its metadata isn't 5067 * part of the transaction - the inode could have been reclaimed and 5068 * now it is reread from disk. 5069 */ 5070 if (journal) { 5071 transaction_t *transaction; 5072 tid_t tid; 5073 5074 spin_lock(&journal->j_state_lock); 5075 if (journal->j_running_transaction) 5076 transaction = journal->j_running_transaction; 5077 else 5078 transaction = journal->j_committing_transaction; 5079 if (transaction) 5080 tid = transaction->t_tid; 5081 else 5082 tid = journal->j_commit_sequence; 5083 spin_unlock(&journal->j_state_lock); 5084 ei->i_sync_tid = tid; 5085 ei->i_datasync_tid = tid; 5086 } 5087 5088 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5089 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5090 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5091 EXT4_INODE_SIZE(inode->i_sb)) { 5092 ret = -EIO; 5093 goto bad_inode; 5094 } 5095 if (ei->i_extra_isize == 0) { 5096 /* The extra space is currently unused. Use it. */ 5097 ei->i_extra_isize = sizeof(struct ext4_inode) - 5098 EXT4_GOOD_OLD_INODE_SIZE; 5099 } else { 5100 __le32 *magic = (void *)raw_inode + 5101 EXT4_GOOD_OLD_INODE_SIZE + 5102 ei->i_extra_isize; 5103 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 5104 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5105 } 5106 } else 5107 ei->i_extra_isize = 0; 5108 5109 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5110 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5111 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5112 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5113 5114 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 5115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5116 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5117 inode->i_version |= 5118 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5119 } 5120 5121 ret = 0; 5122 if (ei->i_file_acl && 5123 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5124 ext4_error(sb, "bad extended attribute block %llu inode #%lu", 5125 ei->i_file_acl, inode->i_ino); 5126 ret = -EIO; 5127 goto bad_inode; 5128 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 5129 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5130 (S_ISLNK(inode->i_mode) && 5131 !ext4_inode_is_fast_symlink(inode))) 5132 /* Validate extent which is part of inode */ 5133 ret = ext4_ext_check_inode(inode); 5134 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5135 (S_ISLNK(inode->i_mode) && 5136 !ext4_inode_is_fast_symlink(inode))) { 5137 /* Validate block references which are part of inode */ 5138 ret = ext4_check_inode_blockref(inode); 5139 } 5140 if (ret) 5141 goto bad_inode; 5142 5143 if (S_ISREG(inode->i_mode)) { 5144 inode->i_op = &ext4_file_inode_operations; 5145 inode->i_fop = &ext4_file_operations; 5146 ext4_set_aops(inode); 5147 } else if (S_ISDIR(inode->i_mode)) { 5148 inode->i_op = &ext4_dir_inode_operations; 5149 inode->i_fop = &ext4_dir_operations; 5150 } else if (S_ISLNK(inode->i_mode)) { 5151 if (ext4_inode_is_fast_symlink(inode)) { 5152 inode->i_op = &ext4_fast_symlink_inode_operations; 5153 nd_terminate_link(ei->i_data, inode->i_size, 5154 sizeof(ei->i_data) - 1); 5155 } else { 5156 inode->i_op = &ext4_symlink_inode_operations; 5157 ext4_set_aops(inode); 5158 } 5159 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5160 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5161 inode->i_op = &ext4_special_inode_operations; 5162 if (raw_inode->i_block[0]) 5163 init_special_inode(inode, inode->i_mode, 5164 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5165 else 5166 init_special_inode(inode, inode->i_mode, 5167 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5168 } else { 5169 ret = -EIO; 5170 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu", 5171 inode->i_mode, inode->i_ino); 5172 goto bad_inode; 5173 } 5174 brelse(iloc.bh); 5175 ext4_set_inode_flags(inode); 5176 unlock_new_inode(inode); 5177 return inode; 5178 5179 bad_inode: 5180 brelse(iloc.bh); 5181 iget_failed(inode); 5182 return ERR_PTR(ret); 5183 } 5184 5185 static int ext4_inode_blocks_set(handle_t *handle, 5186 struct ext4_inode *raw_inode, 5187 struct ext4_inode_info *ei) 5188 { 5189 struct inode *inode = &(ei->vfs_inode); 5190 u64 i_blocks = inode->i_blocks; 5191 struct super_block *sb = inode->i_sb; 5192 5193 if (i_blocks <= ~0U) { 5194 /* 5195 * i_blocks can be represnted in a 32 bit variable 5196 * as multiple of 512 bytes 5197 */ 5198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5199 raw_inode->i_blocks_high = 0; 5200 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5201 return 0; 5202 } 5203 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5204 return -EFBIG; 5205 5206 if (i_blocks <= 0xffffffffffffULL) { 5207 /* 5208 * i_blocks can be represented in a 48 bit variable 5209 * as multiple of 512 bytes 5210 */ 5211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5213 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 5214 } else { 5215 ei->i_flags |= EXT4_HUGE_FILE_FL; 5216 /* i_block is stored in file system block size */ 5217 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5220 } 5221 return 0; 5222 } 5223 5224 /* 5225 * Post the struct inode info into an on-disk inode location in the 5226 * buffer-cache. This gobbles the caller's reference to the 5227 * buffer_head in the inode location struct. 5228 * 5229 * The caller must have write access to iloc->bh. 5230 */ 5231 static int ext4_do_update_inode(handle_t *handle, 5232 struct inode *inode, 5233 struct ext4_iloc *iloc) 5234 { 5235 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5236 struct ext4_inode_info *ei = EXT4_I(inode); 5237 struct buffer_head *bh = iloc->bh; 5238 int err = 0, rc, block; 5239 5240 /* For fields not not tracking in the in-memory inode, 5241 * initialise them to zero for new inodes. */ 5242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5244 5245 ext4_get_inode_flags(ei); 5246 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5247 if (!(test_opt(inode->i_sb, NO_UID32))) { 5248 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5249 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5250 /* 5251 * Fix up interoperability with old kernels. Otherwise, old inodes get 5252 * re-used with the upper 16 bits of the uid/gid intact 5253 */ 5254 if (!ei->i_dtime) { 5255 raw_inode->i_uid_high = 5256 cpu_to_le16(high_16_bits(inode->i_uid)); 5257 raw_inode->i_gid_high = 5258 cpu_to_le16(high_16_bits(inode->i_gid)); 5259 } else { 5260 raw_inode->i_uid_high = 0; 5261 raw_inode->i_gid_high = 0; 5262 } 5263 } else { 5264 raw_inode->i_uid_low = 5265 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5266 raw_inode->i_gid_low = 5267 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5268 raw_inode->i_uid_high = 0; 5269 raw_inode->i_gid_high = 0; 5270 } 5271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5272 5273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5277 5278 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5279 goto out_brelse; 5280 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5281 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5282 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5283 cpu_to_le32(EXT4_OS_HURD)) 5284 raw_inode->i_file_acl_high = 5285 cpu_to_le16(ei->i_file_acl >> 32); 5286 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5287 ext4_isize_set(raw_inode, ei->i_disksize); 5288 if (ei->i_disksize > 0x7fffffffULL) { 5289 struct super_block *sb = inode->i_sb; 5290 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5291 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5292 EXT4_SB(sb)->s_es->s_rev_level == 5293 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5294 /* If this is the first large file 5295 * created, add a flag to the superblock. 5296 */ 5297 err = ext4_journal_get_write_access(handle, 5298 EXT4_SB(sb)->s_sbh); 5299 if (err) 5300 goto out_brelse; 5301 ext4_update_dynamic_rev(sb); 5302 EXT4_SET_RO_COMPAT_FEATURE(sb, 5303 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5304 sb->s_dirt = 1; 5305 ext4_handle_sync(handle); 5306 err = ext4_handle_dirty_metadata(handle, NULL, 5307 EXT4_SB(sb)->s_sbh); 5308 } 5309 } 5310 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5311 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5312 if (old_valid_dev(inode->i_rdev)) { 5313 raw_inode->i_block[0] = 5314 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5315 raw_inode->i_block[1] = 0; 5316 } else { 5317 raw_inode->i_block[0] = 0; 5318 raw_inode->i_block[1] = 5319 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5320 raw_inode->i_block[2] = 0; 5321 } 5322 } else 5323 for (block = 0; block < EXT4_N_BLOCKS; block++) 5324 raw_inode->i_block[block] = ei->i_data[block]; 5325 5326 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5327 if (ei->i_extra_isize) { 5328 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5329 raw_inode->i_version_hi = 5330 cpu_to_le32(inode->i_version >> 32); 5331 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5332 } 5333 5334 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5335 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5336 if (!err) 5337 err = rc; 5338 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5339 5340 ext4_update_inode_fsync_trans(handle, inode, 0); 5341 out_brelse: 5342 brelse(bh); 5343 ext4_std_error(inode->i_sb, err); 5344 return err; 5345 } 5346 5347 /* 5348 * ext4_write_inode() 5349 * 5350 * We are called from a few places: 5351 * 5352 * - Within generic_file_write() for O_SYNC files. 5353 * Here, there will be no transaction running. We wait for any running 5354 * trasnaction to commit. 5355 * 5356 * - Within sys_sync(), kupdate and such. 5357 * We wait on commit, if tol to. 5358 * 5359 * - Within prune_icache() (PF_MEMALLOC == true) 5360 * Here we simply return. We can't afford to block kswapd on the 5361 * journal commit. 5362 * 5363 * In all cases it is actually safe for us to return without doing anything, 5364 * because the inode has been copied into a raw inode buffer in 5365 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5366 * knfsd. 5367 * 5368 * Note that we are absolutely dependent upon all inode dirtiers doing the 5369 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5370 * which we are interested. 5371 * 5372 * It would be a bug for them to not do this. The code: 5373 * 5374 * mark_inode_dirty(inode) 5375 * stuff(); 5376 * inode->i_size = expr; 5377 * 5378 * is in error because a kswapd-driven write_inode() could occur while 5379 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5380 * will no longer be on the superblock's dirty inode list. 5381 */ 5382 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5383 { 5384 int err; 5385 5386 if (current->flags & PF_MEMALLOC) 5387 return 0; 5388 5389 if (EXT4_SB(inode->i_sb)->s_journal) { 5390 if (ext4_journal_current_handle()) { 5391 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5392 dump_stack(); 5393 return -EIO; 5394 } 5395 5396 if (wbc->sync_mode != WB_SYNC_ALL) 5397 return 0; 5398 5399 err = ext4_force_commit(inode->i_sb); 5400 } else { 5401 struct ext4_iloc iloc; 5402 5403 err = __ext4_get_inode_loc(inode, &iloc, 0); 5404 if (err) 5405 return err; 5406 if (wbc->sync_mode == WB_SYNC_ALL) 5407 sync_dirty_buffer(iloc.bh); 5408 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5409 ext4_error(inode->i_sb, "IO error syncing inode, " 5410 "inode=%lu, block=%llu", inode->i_ino, 5411 (unsigned long long)iloc.bh->b_blocknr); 5412 err = -EIO; 5413 } 5414 brelse(iloc.bh); 5415 } 5416 return err; 5417 } 5418 5419 /* 5420 * ext4_setattr() 5421 * 5422 * Called from notify_change. 5423 * 5424 * We want to trap VFS attempts to truncate the file as soon as 5425 * possible. In particular, we want to make sure that when the VFS 5426 * shrinks i_size, we put the inode on the orphan list and modify 5427 * i_disksize immediately, so that during the subsequent flushing of 5428 * dirty pages and freeing of disk blocks, we can guarantee that any 5429 * commit will leave the blocks being flushed in an unused state on 5430 * disk. (On recovery, the inode will get truncated and the blocks will 5431 * be freed, so we have a strong guarantee that no future commit will 5432 * leave these blocks visible to the user.) 5433 * 5434 * Another thing we have to assure is that if we are in ordered mode 5435 * and inode is still attached to the committing transaction, we must 5436 * we start writeout of all the dirty pages which are being truncated. 5437 * This way we are sure that all the data written in the previous 5438 * transaction are already on disk (truncate waits for pages under 5439 * writeback). 5440 * 5441 * Called with inode->i_mutex down. 5442 */ 5443 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5444 { 5445 struct inode *inode = dentry->d_inode; 5446 int error, rc = 0; 5447 const unsigned int ia_valid = attr->ia_valid; 5448 5449 error = inode_change_ok(inode, attr); 5450 if (error) 5451 return error; 5452 5453 if (ia_valid & ATTR_SIZE) 5454 dquot_initialize(inode); 5455 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5456 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5457 handle_t *handle; 5458 5459 /* (user+group)*(old+new) structure, inode write (sb, 5460 * inode block, ? - but truncate inode update has it) */ 5461 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5462 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5463 if (IS_ERR(handle)) { 5464 error = PTR_ERR(handle); 5465 goto err_out; 5466 } 5467 error = dquot_transfer(inode, attr); 5468 if (error) { 5469 ext4_journal_stop(handle); 5470 return error; 5471 } 5472 /* Update corresponding info in inode so that everything is in 5473 * one transaction */ 5474 if (attr->ia_valid & ATTR_UID) 5475 inode->i_uid = attr->ia_uid; 5476 if (attr->ia_valid & ATTR_GID) 5477 inode->i_gid = attr->ia_gid; 5478 error = ext4_mark_inode_dirty(handle, inode); 5479 ext4_journal_stop(handle); 5480 } 5481 5482 if (attr->ia_valid & ATTR_SIZE) { 5483 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 5484 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5485 5486 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5487 error = -EFBIG; 5488 goto err_out; 5489 } 5490 } 5491 } 5492 5493 if (S_ISREG(inode->i_mode) && 5494 attr->ia_valid & ATTR_SIZE && 5495 (attr->ia_size < inode->i_size || 5496 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) { 5497 handle_t *handle; 5498 5499 handle = ext4_journal_start(inode, 3); 5500 if (IS_ERR(handle)) { 5501 error = PTR_ERR(handle); 5502 goto err_out; 5503 } 5504 5505 error = ext4_orphan_add(handle, inode); 5506 EXT4_I(inode)->i_disksize = attr->ia_size; 5507 rc = ext4_mark_inode_dirty(handle, inode); 5508 if (!error) 5509 error = rc; 5510 ext4_journal_stop(handle); 5511 5512 if (ext4_should_order_data(inode)) { 5513 error = ext4_begin_ordered_truncate(inode, 5514 attr->ia_size); 5515 if (error) { 5516 /* Do as much error cleanup as possible */ 5517 handle = ext4_journal_start(inode, 3); 5518 if (IS_ERR(handle)) { 5519 ext4_orphan_del(NULL, inode); 5520 goto err_out; 5521 } 5522 ext4_orphan_del(handle, inode); 5523 ext4_journal_stop(handle); 5524 goto err_out; 5525 } 5526 } 5527 /* ext4_truncate will clear the flag */ 5528 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL)) 5529 ext4_truncate(inode); 5530 } 5531 5532 rc = inode_setattr(inode, attr); 5533 5534 /* If inode_setattr's call to ext4_truncate failed to get a 5535 * transaction handle at all, we need to clean up the in-core 5536 * orphan list manually. */ 5537 if (inode->i_nlink) 5538 ext4_orphan_del(NULL, inode); 5539 5540 if (!rc && (ia_valid & ATTR_MODE)) 5541 rc = ext4_acl_chmod(inode); 5542 5543 err_out: 5544 ext4_std_error(inode->i_sb, error); 5545 if (!error) 5546 error = rc; 5547 return error; 5548 } 5549 5550 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5551 struct kstat *stat) 5552 { 5553 struct inode *inode; 5554 unsigned long delalloc_blocks; 5555 5556 inode = dentry->d_inode; 5557 generic_fillattr(inode, stat); 5558 5559 /* 5560 * We can't update i_blocks if the block allocation is delayed 5561 * otherwise in the case of system crash before the real block 5562 * allocation is done, we will have i_blocks inconsistent with 5563 * on-disk file blocks. 5564 * We always keep i_blocks updated together with real 5565 * allocation. But to not confuse with user, stat 5566 * will return the blocks that include the delayed allocation 5567 * blocks for this file. 5568 */ 5569 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5570 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5571 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5572 5573 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5574 return 0; 5575 } 5576 5577 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5578 int chunk) 5579 { 5580 int indirects; 5581 5582 /* if nrblocks are contiguous */ 5583 if (chunk) { 5584 /* 5585 * With N contiguous data blocks, it need at most 5586 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5587 * 2 dindirect blocks 5588 * 1 tindirect block 5589 */ 5590 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5591 return indirects + 3; 5592 } 5593 /* 5594 * if nrblocks are not contiguous, worse case, each block touch 5595 * a indirect block, and each indirect block touch a double indirect 5596 * block, plus a triple indirect block 5597 */ 5598 indirects = nrblocks * 2 + 1; 5599 return indirects; 5600 } 5601 5602 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5603 { 5604 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 5605 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5606 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5607 } 5608 5609 /* 5610 * Account for index blocks, block groups bitmaps and block group 5611 * descriptor blocks if modify datablocks and index blocks 5612 * worse case, the indexs blocks spread over different block groups 5613 * 5614 * If datablocks are discontiguous, they are possible to spread over 5615 * different block groups too. If they are contiuguous, with flexbg, 5616 * they could still across block group boundary. 5617 * 5618 * Also account for superblock, inode, quota and xattr blocks 5619 */ 5620 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5621 { 5622 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5623 int gdpblocks; 5624 int idxblocks; 5625 int ret = 0; 5626 5627 /* 5628 * How many index blocks need to touch to modify nrblocks? 5629 * The "Chunk" flag indicating whether the nrblocks is 5630 * physically contiguous on disk 5631 * 5632 * For Direct IO and fallocate, they calls get_block to allocate 5633 * one single extent at a time, so they could set the "Chunk" flag 5634 */ 5635 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5636 5637 ret = idxblocks; 5638 5639 /* 5640 * Now let's see how many group bitmaps and group descriptors need 5641 * to account 5642 */ 5643 groups = idxblocks; 5644 if (chunk) 5645 groups += 1; 5646 else 5647 groups += nrblocks; 5648 5649 gdpblocks = groups; 5650 if (groups > ngroups) 5651 groups = ngroups; 5652 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5653 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5654 5655 /* bitmaps and block group descriptor blocks */ 5656 ret += groups + gdpblocks; 5657 5658 /* Blocks for super block, inode, quota and xattr blocks */ 5659 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5660 5661 return ret; 5662 } 5663 5664 /* 5665 * Calulate the total number of credits to reserve to fit 5666 * the modification of a single pages into a single transaction, 5667 * which may include multiple chunks of block allocations. 5668 * 5669 * This could be called via ext4_write_begin() 5670 * 5671 * We need to consider the worse case, when 5672 * one new block per extent. 5673 */ 5674 int ext4_writepage_trans_blocks(struct inode *inode) 5675 { 5676 int bpp = ext4_journal_blocks_per_page(inode); 5677 int ret; 5678 5679 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5680 5681 /* Account for data blocks for journalled mode */ 5682 if (ext4_should_journal_data(inode)) 5683 ret += bpp; 5684 return ret; 5685 } 5686 5687 /* 5688 * Calculate the journal credits for a chunk of data modification. 5689 * 5690 * This is called from DIO, fallocate or whoever calling 5691 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks. 5692 * 5693 * journal buffers for data blocks are not included here, as DIO 5694 * and fallocate do no need to journal data buffers. 5695 */ 5696 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5697 { 5698 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5699 } 5700 5701 /* 5702 * The caller must have previously called ext4_reserve_inode_write(). 5703 * Give this, we know that the caller already has write access to iloc->bh. 5704 */ 5705 int ext4_mark_iloc_dirty(handle_t *handle, 5706 struct inode *inode, struct ext4_iloc *iloc) 5707 { 5708 int err = 0; 5709 5710 if (test_opt(inode->i_sb, I_VERSION)) 5711 inode_inc_iversion(inode); 5712 5713 /* the do_update_inode consumes one bh->b_count */ 5714 get_bh(iloc->bh); 5715 5716 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5717 err = ext4_do_update_inode(handle, inode, iloc); 5718 put_bh(iloc->bh); 5719 return err; 5720 } 5721 5722 /* 5723 * On success, We end up with an outstanding reference count against 5724 * iloc->bh. This _must_ be cleaned up later. 5725 */ 5726 5727 int 5728 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5729 struct ext4_iloc *iloc) 5730 { 5731 int err; 5732 5733 err = ext4_get_inode_loc(inode, iloc); 5734 if (!err) { 5735 BUFFER_TRACE(iloc->bh, "get_write_access"); 5736 err = ext4_journal_get_write_access(handle, iloc->bh); 5737 if (err) { 5738 brelse(iloc->bh); 5739 iloc->bh = NULL; 5740 } 5741 } 5742 ext4_std_error(inode->i_sb, err); 5743 return err; 5744 } 5745 5746 /* 5747 * Expand an inode by new_extra_isize bytes. 5748 * Returns 0 on success or negative error number on failure. 5749 */ 5750 static int ext4_expand_extra_isize(struct inode *inode, 5751 unsigned int new_extra_isize, 5752 struct ext4_iloc iloc, 5753 handle_t *handle) 5754 { 5755 struct ext4_inode *raw_inode; 5756 struct ext4_xattr_ibody_header *header; 5757 struct ext4_xattr_entry *entry; 5758 5759 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5760 return 0; 5761 5762 raw_inode = ext4_raw_inode(&iloc); 5763 5764 header = IHDR(inode, raw_inode); 5765 entry = IFIRST(header); 5766 5767 /* No extended attributes present */ 5768 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5769 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5770 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5771 new_extra_isize); 5772 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5773 return 0; 5774 } 5775 5776 /* try to expand with EAs present */ 5777 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5778 raw_inode, handle); 5779 } 5780 5781 /* 5782 * What we do here is to mark the in-core inode as clean with respect to inode 5783 * dirtiness (it may still be data-dirty). 5784 * This means that the in-core inode may be reaped by prune_icache 5785 * without having to perform any I/O. This is a very good thing, 5786 * because *any* task may call prune_icache - even ones which 5787 * have a transaction open against a different journal. 5788 * 5789 * Is this cheating? Not really. Sure, we haven't written the 5790 * inode out, but prune_icache isn't a user-visible syncing function. 5791 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5792 * we start and wait on commits. 5793 * 5794 * Is this efficient/effective? Well, we're being nice to the system 5795 * by cleaning up our inodes proactively so they can be reaped 5796 * without I/O. But we are potentially leaving up to five seconds' 5797 * worth of inodes floating about which prune_icache wants us to 5798 * write out. One way to fix that would be to get prune_icache() 5799 * to do a write_super() to free up some memory. It has the desired 5800 * effect. 5801 */ 5802 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5803 { 5804 struct ext4_iloc iloc; 5805 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5806 static unsigned int mnt_count; 5807 int err, ret; 5808 5809 might_sleep(); 5810 err = ext4_reserve_inode_write(handle, inode, &iloc); 5811 if (ext4_handle_valid(handle) && 5812 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5813 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5814 /* 5815 * We need extra buffer credits since we may write into EA block 5816 * with this same handle. If journal_extend fails, then it will 5817 * only result in a minor loss of functionality for that inode. 5818 * If this is felt to be critical, then e2fsck should be run to 5819 * force a large enough s_min_extra_isize. 5820 */ 5821 if ((jbd2_journal_extend(handle, 5822 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5823 ret = ext4_expand_extra_isize(inode, 5824 sbi->s_want_extra_isize, 5825 iloc, handle); 5826 if (ret) { 5827 ext4_set_inode_state(inode, 5828 EXT4_STATE_NO_EXPAND); 5829 if (mnt_count != 5830 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5831 ext4_warning(inode->i_sb, 5832 "Unable to expand inode %lu. Delete" 5833 " some EAs or run e2fsck.", 5834 inode->i_ino); 5835 mnt_count = 5836 le16_to_cpu(sbi->s_es->s_mnt_count); 5837 } 5838 } 5839 } 5840 } 5841 if (!err) 5842 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5843 return err; 5844 } 5845 5846 /* 5847 * ext4_dirty_inode() is called from __mark_inode_dirty() 5848 * 5849 * We're really interested in the case where a file is being extended. 5850 * i_size has been changed by generic_commit_write() and we thus need 5851 * to include the updated inode in the current transaction. 5852 * 5853 * Also, dquot_alloc_block() will always dirty the inode when blocks 5854 * are allocated to the file. 5855 * 5856 * If the inode is marked synchronous, we don't honour that here - doing 5857 * so would cause a commit on atime updates, which we don't bother doing. 5858 * We handle synchronous inodes at the highest possible level. 5859 */ 5860 void ext4_dirty_inode(struct inode *inode) 5861 { 5862 handle_t *handle; 5863 5864 handle = ext4_journal_start(inode, 2); 5865 if (IS_ERR(handle)) 5866 goto out; 5867 5868 ext4_mark_inode_dirty(handle, inode); 5869 5870 ext4_journal_stop(handle); 5871 out: 5872 return; 5873 } 5874 5875 #if 0 5876 /* 5877 * Bind an inode's backing buffer_head into this transaction, to prevent 5878 * it from being flushed to disk early. Unlike 5879 * ext4_reserve_inode_write, this leaves behind no bh reference and 5880 * returns no iloc structure, so the caller needs to repeat the iloc 5881 * lookup to mark the inode dirty later. 5882 */ 5883 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5884 { 5885 struct ext4_iloc iloc; 5886 5887 int err = 0; 5888 if (handle) { 5889 err = ext4_get_inode_loc(inode, &iloc); 5890 if (!err) { 5891 BUFFER_TRACE(iloc.bh, "get_write_access"); 5892 err = jbd2_journal_get_write_access(handle, iloc.bh); 5893 if (!err) 5894 err = ext4_handle_dirty_metadata(handle, 5895 NULL, 5896 iloc.bh); 5897 brelse(iloc.bh); 5898 } 5899 } 5900 ext4_std_error(inode->i_sb, err); 5901 return err; 5902 } 5903 #endif 5904 5905 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5906 { 5907 journal_t *journal; 5908 handle_t *handle; 5909 int err; 5910 5911 /* 5912 * We have to be very careful here: changing a data block's 5913 * journaling status dynamically is dangerous. If we write a 5914 * data block to the journal, change the status and then delete 5915 * that block, we risk forgetting to revoke the old log record 5916 * from the journal and so a subsequent replay can corrupt data. 5917 * So, first we make sure that the journal is empty and that 5918 * nobody is changing anything. 5919 */ 5920 5921 journal = EXT4_JOURNAL(inode); 5922 if (!journal) 5923 return 0; 5924 if (is_journal_aborted(journal)) 5925 return -EROFS; 5926 5927 jbd2_journal_lock_updates(journal); 5928 jbd2_journal_flush(journal); 5929 5930 /* 5931 * OK, there are no updates running now, and all cached data is 5932 * synced to disk. We are now in a completely consistent state 5933 * which doesn't have anything in the journal, and we know that 5934 * no filesystem updates are running, so it is safe to modify 5935 * the inode's in-core data-journaling state flag now. 5936 */ 5937 5938 if (val) 5939 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5940 else 5941 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5942 ext4_set_aops(inode); 5943 5944 jbd2_journal_unlock_updates(journal); 5945 5946 /* Finally we can mark the inode as dirty. */ 5947 5948 handle = ext4_journal_start(inode, 1); 5949 if (IS_ERR(handle)) 5950 return PTR_ERR(handle); 5951 5952 err = ext4_mark_inode_dirty(handle, inode); 5953 ext4_handle_sync(handle); 5954 ext4_journal_stop(handle); 5955 ext4_std_error(inode->i_sb, err); 5956 5957 return err; 5958 } 5959 5960 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5961 { 5962 return !buffer_mapped(bh); 5963 } 5964 5965 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5966 { 5967 struct page *page = vmf->page; 5968 loff_t size; 5969 unsigned long len; 5970 int ret = -EINVAL; 5971 void *fsdata; 5972 struct file *file = vma->vm_file; 5973 struct inode *inode = file->f_path.dentry->d_inode; 5974 struct address_space *mapping = inode->i_mapping; 5975 5976 /* 5977 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5978 * get i_mutex because we are already holding mmap_sem. 5979 */ 5980 down_read(&inode->i_alloc_sem); 5981 size = i_size_read(inode); 5982 if (page->mapping != mapping || size <= page_offset(page) 5983 || !PageUptodate(page)) { 5984 /* page got truncated from under us? */ 5985 goto out_unlock; 5986 } 5987 ret = 0; 5988 if (PageMappedToDisk(page)) 5989 goto out_unlock; 5990 5991 if (page->index == size >> PAGE_CACHE_SHIFT) 5992 len = size & ~PAGE_CACHE_MASK; 5993 else 5994 len = PAGE_CACHE_SIZE; 5995 5996 lock_page(page); 5997 /* 5998 * return if we have all the buffers mapped. This avoid 5999 * the need to call write_begin/write_end which does a 6000 * journal_start/journal_stop which can block and take 6001 * long time 6002 */ 6003 if (page_has_buffers(page)) { 6004 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 6005 ext4_bh_unmapped)) { 6006 unlock_page(page); 6007 goto out_unlock; 6008 } 6009 } 6010 unlock_page(page); 6011 /* 6012 * OK, we need to fill the hole... Do write_begin write_end 6013 * to do block allocation/reservation.We are not holding 6014 * inode.i__mutex here. That allow * parallel write_begin, 6015 * write_end call. lock_page prevent this from happening 6016 * on the same page though 6017 */ 6018 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 6019 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 6020 if (ret < 0) 6021 goto out_unlock; 6022 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 6023 len, len, page, fsdata); 6024 if (ret < 0) 6025 goto out_unlock; 6026 ret = 0; 6027 out_unlock: 6028 if (ret) 6029 ret = VM_FAULT_SIGBUS; 6030 up_read(&inode->i_alloc_sem); 6031 return ret; 6032 } 6033