xref: /openbmc/linux/fs/ext4/inode.c (revision 2ed886852adfcb070bf350e66a0da0d98b2f3ab5)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 					      loff_t new_size)
55 {
56 	return jbd2_journal_begin_ordered_truncate(
57 					EXT4_SB(inode->i_sb)->s_journal,
58 					&EXT4_I(inode)->jinode,
59 					new_size);
60 }
61 
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 		(inode->i_sb->s_blocksize >> 9) : 0;
71 
72 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74 
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81 	ext4_lblk_t needed;
82 
83 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84 
85 	/* Give ourselves just enough room to cope with inodes in which
86 	 * i_blocks is corrupt: we've seen disk corruptions in the past
87 	 * which resulted in random data in an inode which looked enough
88 	 * like a regular file for ext4 to try to delete it.  Things
89 	 * will go a bit crazy if that happens, but at least we should
90 	 * try not to panic the whole kernel. */
91 	if (needed < 2)
92 		needed = 2;
93 
94 	/* But we need to bound the transaction so we don't overflow the
95 	 * journal. */
96 	if (needed > EXT4_MAX_TRANS_DATA)
97 		needed = EXT4_MAX_TRANS_DATA;
98 
99 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101 
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114 	handle_t *result;
115 
116 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 	if (!IS_ERR(result))
118 		return result;
119 
120 	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 	return result;
122 }
123 
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132 	if (!ext4_handle_valid(handle))
133 		return 0;
134 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 		return 0;
136 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 		return 0;
138 	return 1;
139 }
140 
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 				 int nblocks)
148 {
149 	int ret;
150 
151 	/*
152 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 	 * moment, get_block can be called only for blocks inside i_size since
154 	 * page cache has been already dropped and writes are blocked by
155 	 * i_mutex. So we can safely drop the i_data_sem here.
156 	 */
157 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 	jbd_debug(2, "restarting handle %p\n", handle);
159 	up_write(&EXT4_I(inode)->i_data_sem);
160 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 	down_write(&EXT4_I(inode)->i_data_sem);
162 	ext4_discard_preallocations(inode);
163 
164 	return ret;
165 }
166 
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_delete_inode(struct inode *inode)
171 {
172 	handle_t *handle;
173 	int err;
174 
175 	if (!is_bad_inode(inode))
176 		dquot_initialize(inode);
177 
178 	if (ext4_should_order_data(inode))
179 		ext4_begin_ordered_truncate(inode, 0);
180 	truncate_inode_pages(&inode->i_data, 0);
181 
182 	if (is_bad_inode(inode))
183 		goto no_delete;
184 
185 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186 	if (IS_ERR(handle)) {
187 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 		/*
189 		 * If we're going to skip the normal cleanup, we still need to
190 		 * make sure that the in-core orphan linked list is properly
191 		 * cleaned up.
192 		 */
193 		ext4_orphan_del(NULL, inode);
194 		goto no_delete;
195 	}
196 
197 	if (IS_SYNC(inode))
198 		ext4_handle_sync(handle);
199 	inode->i_size = 0;
200 	err = ext4_mark_inode_dirty(handle, inode);
201 	if (err) {
202 		ext4_warning(inode->i_sb,
203 			     "couldn't mark inode dirty (err %d)", err);
204 		goto stop_handle;
205 	}
206 	if (inode->i_blocks)
207 		ext4_truncate(inode);
208 
209 	/*
210 	 * ext4_ext_truncate() doesn't reserve any slop when it
211 	 * restarts journal transactions; therefore there may not be
212 	 * enough credits left in the handle to remove the inode from
213 	 * the orphan list and set the dtime field.
214 	 */
215 	if (!ext4_handle_has_enough_credits(handle, 3)) {
216 		err = ext4_journal_extend(handle, 3);
217 		if (err > 0)
218 			err = ext4_journal_restart(handle, 3);
219 		if (err != 0) {
220 			ext4_warning(inode->i_sb,
221 				     "couldn't extend journal (err %d)", err);
222 		stop_handle:
223 			ext4_journal_stop(handle);
224 			goto no_delete;
225 		}
226 	}
227 
228 	/*
229 	 * Kill off the orphan record which ext4_truncate created.
230 	 * AKPM: I think this can be inside the above `if'.
231 	 * Note that ext4_orphan_del() has to be able to cope with the
232 	 * deletion of a non-existent orphan - this is because we don't
233 	 * know if ext4_truncate() actually created an orphan record.
234 	 * (Well, we could do this if we need to, but heck - it works)
235 	 */
236 	ext4_orphan_del(handle, inode);
237 	EXT4_I(inode)->i_dtime	= get_seconds();
238 
239 	/*
240 	 * One subtle ordering requirement: if anything has gone wrong
241 	 * (transaction abort, IO errors, whatever), then we can still
242 	 * do these next steps (the fs will already have been marked as
243 	 * having errors), but we can't free the inode if the mark_dirty
244 	 * fails.
245 	 */
246 	if (ext4_mark_inode_dirty(handle, inode))
247 		/* If that failed, just do the required in-core inode clear. */
248 		clear_inode(inode);
249 	else
250 		ext4_free_inode(handle, inode);
251 	ext4_journal_stop(handle);
252 	return;
253 no_delete:
254 	clear_inode(inode);	/* We must guarantee clearing of inode... */
255 }
256 
257 typedef struct {
258 	__le32	*p;
259 	__le32	key;
260 	struct buffer_head *bh;
261 } Indirect;
262 
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 {
265 	p->key = *(p->p = v);
266 	p->bh = bh;
267 }
268 
269 /**
270  *	ext4_block_to_path - parse the block number into array of offsets
271  *	@inode: inode in question (we are only interested in its superblock)
272  *	@i_block: block number to be parsed
273  *	@offsets: array to store the offsets in
274  *	@boundary: set this non-zero if the referred-to block is likely to be
275  *	       followed (on disk) by an indirect block.
276  *
277  *	To store the locations of file's data ext4 uses a data structure common
278  *	for UNIX filesystems - tree of pointers anchored in the inode, with
279  *	data blocks at leaves and indirect blocks in intermediate nodes.
280  *	This function translates the block number into path in that tree -
281  *	return value is the path length and @offsets[n] is the offset of
282  *	pointer to (n+1)th node in the nth one. If @block is out of range
283  *	(negative or too large) warning is printed and zero returned.
284  *
285  *	Note: function doesn't find node addresses, so no IO is needed. All
286  *	we need to know is the capacity of indirect blocks (taken from the
287  *	inode->i_sb).
288  */
289 
290 /*
291  * Portability note: the last comparison (check that we fit into triple
292  * indirect block) is spelled differently, because otherwise on an
293  * architecture with 32-bit longs and 8Kb pages we might get into trouble
294  * if our filesystem had 8Kb blocks. We might use long long, but that would
295  * kill us on x86. Oh, well, at least the sign propagation does not matter -
296  * i_block would have to be negative in the very beginning, so we would not
297  * get there at all.
298  */
299 
300 static int ext4_block_to_path(struct inode *inode,
301 			      ext4_lblk_t i_block,
302 			      ext4_lblk_t offsets[4], int *boundary)
303 {
304 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 	const long direct_blocks = EXT4_NDIR_BLOCKS,
307 		indirect_blocks = ptrs,
308 		double_blocks = (1 << (ptrs_bits * 2));
309 	int n = 0;
310 	int final = 0;
311 
312 	if (i_block < direct_blocks) {
313 		offsets[n++] = i_block;
314 		final = direct_blocks;
315 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
316 		offsets[n++] = EXT4_IND_BLOCK;
317 		offsets[n++] = i_block;
318 		final = ptrs;
319 	} else if ((i_block -= indirect_blocks) < double_blocks) {
320 		offsets[n++] = EXT4_DIND_BLOCK;
321 		offsets[n++] = i_block >> ptrs_bits;
322 		offsets[n++] = i_block & (ptrs - 1);
323 		final = ptrs;
324 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 		offsets[n++] = EXT4_TIND_BLOCK;
326 		offsets[n++] = i_block >> (ptrs_bits * 2);
327 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 		offsets[n++] = i_block & (ptrs - 1);
329 		final = ptrs;
330 	} else {
331 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 			     i_block + direct_blocks +
333 			     indirect_blocks + double_blocks, inode->i_ino);
334 	}
335 	if (boundary)
336 		*boundary = final - 1 - (i_block & (ptrs - 1));
337 	return n;
338 }
339 
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341 				 __le32 *p, unsigned int max)
342 {
343 	__le32 *bref = p;
344 	unsigned int blk;
345 
346 	while (bref < p+max) {
347 		blk = le32_to_cpu(*bref++);
348 		if (blk &&
349 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350 						    blk, 1))) {
351 			__ext4_error(inode->i_sb, function,
352 				   "invalid block reference %u "
353 				   "in inode #%lu", blk, inode->i_ino);
354 			return -EIO;
355 		}
356 	}
357 	return 0;
358 }
359 
360 
361 #define ext4_check_indirect_blockref(inode, bh)                         \
362 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
363 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364 
365 #define ext4_check_inode_blockref(inode)                                \
366 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
367 			      EXT4_NDIR_BLOCKS)
368 
369 /**
370  *	ext4_get_branch - read the chain of indirect blocks leading to data
371  *	@inode: inode in question
372  *	@depth: depth of the chain (1 - direct pointer, etc.)
373  *	@offsets: offsets of pointers in inode/indirect blocks
374  *	@chain: place to store the result
375  *	@err: here we store the error value
376  *
377  *	Function fills the array of triples <key, p, bh> and returns %NULL
378  *	if everything went OK or the pointer to the last filled triple
379  *	(incomplete one) otherwise. Upon the return chain[i].key contains
380  *	the number of (i+1)-th block in the chain (as it is stored in memory,
381  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
382  *	number (it points into struct inode for i==0 and into the bh->b_data
383  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384  *	block for i>0 and NULL for i==0. In other words, it holds the block
385  *	numbers of the chain, addresses they were taken from (and where we can
386  *	verify that chain did not change) and buffer_heads hosting these
387  *	numbers.
388  *
389  *	Function stops when it stumbles upon zero pointer (absent block)
390  *		(pointer to last triple returned, *@err == 0)
391  *	or when it gets an IO error reading an indirect block
392  *		(ditto, *@err == -EIO)
393  *	or when it reads all @depth-1 indirect blocks successfully and finds
394  *	the whole chain, all way to the data (returns %NULL, *err == 0).
395  *
396  *      Need to be called with
397  *      down_read(&EXT4_I(inode)->i_data_sem)
398  */
399 static Indirect *ext4_get_branch(struct inode *inode, int depth,
400 				 ext4_lblk_t  *offsets,
401 				 Indirect chain[4], int *err)
402 {
403 	struct super_block *sb = inode->i_sb;
404 	Indirect *p = chain;
405 	struct buffer_head *bh;
406 
407 	*err = 0;
408 	/* i_data is not going away, no lock needed */
409 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410 	if (!p->key)
411 		goto no_block;
412 	while (--depth) {
413 		bh = sb_getblk(sb, le32_to_cpu(p->key));
414 		if (unlikely(!bh))
415 			goto failure;
416 
417 		if (!bh_uptodate_or_lock(bh)) {
418 			if (bh_submit_read(bh) < 0) {
419 				put_bh(bh);
420 				goto failure;
421 			}
422 			/* validate block references */
423 			if (ext4_check_indirect_blockref(inode, bh)) {
424 				put_bh(bh);
425 				goto failure;
426 			}
427 		}
428 
429 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430 		/* Reader: end */
431 		if (!p->key)
432 			goto no_block;
433 	}
434 	return NULL;
435 
436 failure:
437 	*err = -EIO;
438 no_block:
439 	return p;
440 }
441 
442 /**
443  *	ext4_find_near - find a place for allocation with sufficient locality
444  *	@inode: owner
445  *	@ind: descriptor of indirect block.
446  *
447  *	This function returns the preferred place for block allocation.
448  *	It is used when heuristic for sequential allocation fails.
449  *	Rules are:
450  *	  + if there is a block to the left of our position - allocate near it.
451  *	  + if pointer will live in indirect block - allocate near that block.
452  *	  + if pointer will live in inode - allocate in the same
453  *	    cylinder group.
454  *
455  * In the latter case we colour the starting block by the callers PID to
456  * prevent it from clashing with concurrent allocations for a different inode
457  * in the same block group.   The PID is used here so that functionally related
458  * files will be close-by on-disk.
459  *
460  *	Caller must make sure that @ind is valid and will stay that way.
461  */
462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
463 {
464 	struct ext4_inode_info *ei = EXT4_I(inode);
465 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466 	__le32 *p;
467 	ext4_fsblk_t bg_start;
468 	ext4_fsblk_t last_block;
469 	ext4_grpblk_t colour;
470 	ext4_group_t block_group;
471 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
472 
473 	/* Try to find previous block */
474 	for (p = ind->p - 1; p >= start; p--) {
475 		if (*p)
476 			return le32_to_cpu(*p);
477 	}
478 
479 	/* No such thing, so let's try location of indirect block */
480 	if (ind->bh)
481 		return ind->bh->b_blocknr;
482 
483 	/*
484 	 * It is going to be referred to from the inode itself? OK, just put it
485 	 * into the same cylinder group then.
486 	 */
487 	block_group = ei->i_block_group;
488 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489 		block_group &= ~(flex_size-1);
490 		if (S_ISREG(inode->i_mode))
491 			block_group++;
492 	}
493 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
495 
496 	/*
497 	 * If we are doing delayed allocation, we don't need take
498 	 * colour into account.
499 	 */
500 	if (test_opt(inode->i_sb, DELALLOC))
501 		return bg_start;
502 
503 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504 		colour = (current->pid % 16) *
505 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506 	else
507 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508 	return bg_start + colour;
509 }
510 
511 /**
512  *	ext4_find_goal - find a preferred place for allocation.
513  *	@inode: owner
514  *	@block:  block we want
515  *	@partial: pointer to the last triple within a chain
516  *
517  *	Normally this function find the preferred place for block allocation,
518  *	returns it.
519  *	Because this is only used for non-extent files, we limit the block nr
520  *	to 32 bits.
521  */
522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523 				   Indirect *partial)
524 {
525 	ext4_fsblk_t goal;
526 
527 	/*
528 	 * XXX need to get goal block from mballoc's data structures
529 	 */
530 
531 	goal = ext4_find_near(inode, partial);
532 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533 	return goal;
534 }
535 
536 /**
537  *	ext4_blks_to_allocate: Look up the block map and count the number
538  *	of direct blocks need to be allocated for the given branch.
539  *
540  *	@branch: chain of indirect blocks
541  *	@k: number of blocks need for indirect blocks
542  *	@blks: number of data blocks to be mapped.
543  *	@blocks_to_boundary:  the offset in the indirect block
544  *
545  *	return the total number of blocks to be allocate, including the
546  *	direct and indirect blocks.
547  */
548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549 				 int blocks_to_boundary)
550 {
551 	unsigned int count = 0;
552 
553 	/*
554 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 	 * then it's clear blocks on that path have not allocated
556 	 */
557 	if (k > 0) {
558 		/* right now we don't handle cross boundary allocation */
559 		if (blks < blocks_to_boundary + 1)
560 			count += blks;
561 		else
562 			count += blocks_to_boundary + 1;
563 		return count;
564 	}
565 
566 	count++;
567 	while (count < blks && count <= blocks_to_boundary &&
568 		le32_to_cpu(*(branch[0].p + count)) == 0) {
569 		count++;
570 	}
571 	return count;
572 }
573 
574 /**
575  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
576  *	@indirect_blks: the number of blocks need to allocate for indirect
577  *			blocks
578  *
579  *	@new_blocks: on return it will store the new block numbers for
580  *	the indirect blocks(if needed) and the first direct block,
581  *	@blks:	on return it will store the total number of allocated
582  *		direct blocks
583  */
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
586 			     int indirect_blks, int blks,
587 			     ext4_fsblk_t new_blocks[4], int *err)
588 {
589 	struct ext4_allocation_request ar;
590 	int target, i;
591 	unsigned long count = 0, blk_allocated = 0;
592 	int index = 0;
593 	ext4_fsblk_t current_block = 0;
594 	int ret = 0;
595 
596 	/*
597 	 * Here we try to allocate the requested multiple blocks at once,
598 	 * on a best-effort basis.
599 	 * To build a branch, we should allocate blocks for
600 	 * the indirect blocks(if not allocated yet), and at least
601 	 * the first direct block of this branch.  That's the
602 	 * minimum number of blocks need to allocate(required)
603 	 */
604 	/* first we try to allocate the indirect blocks */
605 	target = indirect_blks;
606 	while (target > 0) {
607 		count = target;
608 		/* allocating blocks for indirect blocks and direct blocks */
609 		current_block = ext4_new_meta_blocks(handle, inode,
610 							goal, &count, err);
611 		if (*err)
612 			goto failed_out;
613 
614 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 			EXT4_ERROR_INODE(inode,
616 					 "current_block %llu + count %lu > %d!",
617 					 current_block, count,
618 					 EXT4_MAX_BLOCK_FILE_PHYS);
619 			*err = -EIO;
620 			goto failed_out;
621 		}
622 
623 		target -= count;
624 		/* allocate blocks for indirect blocks */
625 		while (index < indirect_blks && count) {
626 			new_blocks[index++] = current_block++;
627 			count--;
628 		}
629 		if (count > 0) {
630 			/*
631 			 * save the new block number
632 			 * for the first direct block
633 			 */
634 			new_blocks[index] = current_block;
635 			printk(KERN_INFO "%s returned more blocks than "
636 						"requested\n", __func__);
637 			WARN_ON(1);
638 			break;
639 		}
640 	}
641 
642 	target = blks - count ;
643 	blk_allocated = count;
644 	if (!target)
645 		goto allocated;
646 	/* Now allocate data blocks */
647 	memset(&ar, 0, sizeof(ar));
648 	ar.inode = inode;
649 	ar.goal = goal;
650 	ar.len = target;
651 	ar.logical = iblock;
652 	if (S_ISREG(inode->i_mode))
653 		/* enable in-core preallocation only for regular files */
654 		ar.flags = EXT4_MB_HINT_DATA;
655 
656 	current_block = ext4_mb_new_blocks(handle, &ar, err);
657 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 		EXT4_ERROR_INODE(inode,
659 				 "current_block %llu + ar.len %d > %d!",
660 				 current_block, ar.len,
661 				 EXT4_MAX_BLOCK_FILE_PHYS);
662 		*err = -EIO;
663 		goto failed_out;
664 	}
665 
666 	if (*err && (target == blks)) {
667 		/*
668 		 * if the allocation failed and we didn't allocate
669 		 * any blocks before
670 		 */
671 		goto failed_out;
672 	}
673 	if (!*err) {
674 		if (target == blks) {
675 			/*
676 			 * save the new block number
677 			 * for the first direct block
678 			 */
679 			new_blocks[index] = current_block;
680 		}
681 		blk_allocated += ar.len;
682 	}
683 allocated:
684 	/* total number of blocks allocated for direct blocks */
685 	ret = blk_allocated;
686 	*err = 0;
687 	return ret;
688 failed_out:
689 	for (i = 0; i < index; i++)
690 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691 	return ret;
692 }
693 
694 /**
695  *	ext4_alloc_branch - allocate and set up a chain of blocks.
696  *	@inode: owner
697  *	@indirect_blks: number of allocated indirect blocks
698  *	@blks: number of allocated direct blocks
699  *	@offsets: offsets (in the blocks) to store the pointers to next.
700  *	@branch: place to store the chain in.
701  *
702  *	This function allocates blocks, zeroes out all but the last one,
703  *	links them into chain and (if we are synchronous) writes them to disk.
704  *	In other words, it prepares a branch that can be spliced onto the
705  *	inode. It stores the information about that chain in the branch[], in
706  *	the same format as ext4_get_branch() would do. We are calling it after
707  *	we had read the existing part of chain and partial points to the last
708  *	triple of that (one with zero ->key). Upon the exit we have the same
709  *	picture as after the successful ext4_get_block(), except that in one
710  *	place chain is disconnected - *branch->p is still zero (we did not
711  *	set the last link), but branch->key contains the number that should
712  *	be placed into *branch->p to fill that gap.
713  *
714  *	If allocation fails we free all blocks we've allocated (and forget
715  *	their buffer_heads) and return the error value the from failed
716  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717  *	as described above and return 0.
718  */
719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720 			     ext4_lblk_t iblock, int indirect_blks,
721 			     int *blks, ext4_fsblk_t goal,
722 			     ext4_lblk_t *offsets, Indirect *branch)
723 {
724 	int blocksize = inode->i_sb->s_blocksize;
725 	int i, n = 0;
726 	int err = 0;
727 	struct buffer_head *bh;
728 	int num;
729 	ext4_fsblk_t new_blocks[4];
730 	ext4_fsblk_t current_block;
731 
732 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733 				*blks, new_blocks, &err);
734 	if (err)
735 		return err;
736 
737 	branch[0].key = cpu_to_le32(new_blocks[0]);
738 	/*
739 	 * metadata blocks and data blocks are allocated.
740 	 */
741 	for (n = 1; n <= indirect_blks;  n++) {
742 		/*
743 		 * Get buffer_head for parent block, zero it out
744 		 * and set the pointer to new one, then send
745 		 * parent to disk.
746 		 */
747 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748 		branch[n].bh = bh;
749 		lock_buffer(bh);
750 		BUFFER_TRACE(bh, "call get_create_access");
751 		err = ext4_journal_get_create_access(handle, bh);
752 		if (err) {
753 			/* Don't brelse(bh) here; it's done in
754 			 * ext4_journal_forget() below */
755 			unlock_buffer(bh);
756 			goto failed;
757 		}
758 
759 		memset(bh->b_data, 0, blocksize);
760 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
761 		branch[n].key = cpu_to_le32(new_blocks[n]);
762 		*branch[n].p = branch[n].key;
763 		if (n == indirect_blks) {
764 			current_block = new_blocks[n];
765 			/*
766 			 * End of chain, update the last new metablock of
767 			 * the chain to point to the new allocated
768 			 * data blocks numbers
769 			 */
770 			for (i = 1; i < num; i++)
771 				*(branch[n].p + i) = cpu_to_le32(++current_block);
772 		}
773 		BUFFER_TRACE(bh, "marking uptodate");
774 		set_buffer_uptodate(bh);
775 		unlock_buffer(bh);
776 
777 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 		err = ext4_handle_dirty_metadata(handle, inode, bh);
779 		if (err)
780 			goto failed;
781 	}
782 	*blks = num;
783 	return err;
784 failed:
785 	/* Allocation failed, free what we already allocated */
786 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787 	for (i = 1; i <= n ; i++) {
788 		/*
789 		 * branch[i].bh is newly allocated, so there is no
790 		 * need to revoke the block, which is why we don't
791 		 * need to set EXT4_FREE_BLOCKS_METADATA.
792 		 */
793 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794 				 EXT4_FREE_BLOCKS_FORGET);
795 	}
796 	for (i = n+1; i < indirect_blks; i++)
797 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
798 
799 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
800 
801 	return err;
802 }
803 
804 /**
805  * ext4_splice_branch - splice the allocated branch onto inode.
806  * @inode: owner
807  * @block: (logical) number of block we are adding
808  * @chain: chain of indirect blocks (with a missing link - see
809  *	ext4_alloc_branch)
810  * @where: location of missing link
811  * @num:   number of indirect blocks we are adding
812  * @blks:  number of direct blocks we are adding
813  *
814  * This function fills the missing link and does all housekeeping needed in
815  * inode (->i_blocks, etc.). In case of success we end up with the full
816  * chain to new block and return 0.
817  */
818 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819 			      ext4_lblk_t block, Indirect *where, int num,
820 			      int blks)
821 {
822 	int i;
823 	int err = 0;
824 	ext4_fsblk_t current_block;
825 
826 	/*
827 	 * If we're splicing into a [td]indirect block (as opposed to the
828 	 * inode) then we need to get write access to the [td]indirect block
829 	 * before the splice.
830 	 */
831 	if (where->bh) {
832 		BUFFER_TRACE(where->bh, "get_write_access");
833 		err = ext4_journal_get_write_access(handle, where->bh);
834 		if (err)
835 			goto err_out;
836 	}
837 	/* That's it */
838 
839 	*where->p = where->key;
840 
841 	/*
842 	 * Update the host buffer_head or inode to point to more just allocated
843 	 * direct blocks blocks
844 	 */
845 	if (num == 0 && blks > 1) {
846 		current_block = le32_to_cpu(where->key) + 1;
847 		for (i = 1; i < blks; i++)
848 			*(where->p + i) = cpu_to_le32(current_block++);
849 	}
850 
851 	/* We are done with atomic stuff, now do the rest of housekeeping */
852 	/* had we spliced it onto indirect block? */
853 	if (where->bh) {
854 		/*
855 		 * If we spliced it onto an indirect block, we haven't
856 		 * altered the inode.  Note however that if it is being spliced
857 		 * onto an indirect block at the very end of the file (the
858 		 * file is growing) then we *will* alter the inode to reflect
859 		 * the new i_size.  But that is not done here - it is done in
860 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861 		 */
862 		jbd_debug(5, "splicing indirect only\n");
863 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865 		if (err)
866 			goto err_out;
867 	} else {
868 		/*
869 		 * OK, we spliced it into the inode itself on a direct block.
870 		 */
871 		ext4_mark_inode_dirty(handle, inode);
872 		jbd_debug(5, "splicing direct\n");
873 	}
874 	return err;
875 
876 err_out:
877 	for (i = 1; i <= num; i++) {
878 		/*
879 		 * branch[i].bh is newly allocated, so there is no
880 		 * need to revoke the block, which is why we don't
881 		 * need to set EXT4_FREE_BLOCKS_METADATA.
882 		 */
883 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884 				 EXT4_FREE_BLOCKS_FORGET);
885 	}
886 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887 			 blks, 0);
888 
889 	return err;
890 }
891 
892 /*
893  * The ext4_ind_map_blocks() function handles non-extents inodes
894  * (i.e., using the traditional indirect/double-indirect i_blocks
895  * scheme) for ext4_map_blocks().
896  *
897  * Allocation strategy is simple: if we have to allocate something, we will
898  * have to go the whole way to leaf. So let's do it before attaching anything
899  * to tree, set linkage between the newborn blocks, write them if sync is
900  * required, recheck the path, free and repeat if check fails, otherwise
901  * set the last missing link (that will protect us from any truncate-generated
902  * removals - all blocks on the path are immune now) and possibly force the
903  * write on the parent block.
904  * That has a nice additional property: no special recovery from the failed
905  * allocations is needed - we simply release blocks and do not touch anything
906  * reachable from inode.
907  *
908  * `handle' can be NULL if create == 0.
909  *
910  * return > 0, # of blocks mapped or allocated.
911  * return = 0, if plain lookup failed.
912  * return < 0, error case.
913  *
914  * The ext4_ind_get_blocks() function should be called with
915  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918  * blocks.
919  */
920 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
921 			       struct ext4_map_blocks *map,
922 			       int flags)
923 {
924 	int err = -EIO;
925 	ext4_lblk_t offsets[4];
926 	Indirect chain[4];
927 	Indirect *partial;
928 	ext4_fsblk_t goal;
929 	int indirect_blks;
930 	int blocks_to_boundary = 0;
931 	int depth;
932 	int count = 0;
933 	ext4_fsblk_t first_block = 0;
934 
935 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
936 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
937 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
938 				   &blocks_to_boundary);
939 
940 	if (depth == 0)
941 		goto out;
942 
943 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
944 
945 	/* Simplest case - block found, no allocation needed */
946 	if (!partial) {
947 		first_block = le32_to_cpu(chain[depth - 1].key);
948 		count++;
949 		/*map more blocks*/
950 		while (count < map->m_len && count <= blocks_to_boundary) {
951 			ext4_fsblk_t blk;
952 
953 			blk = le32_to_cpu(*(chain[depth-1].p + count));
954 
955 			if (blk == first_block + count)
956 				count++;
957 			else
958 				break;
959 		}
960 		goto got_it;
961 	}
962 
963 	/* Next simple case - plain lookup or failed read of indirect block */
964 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
965 		goto cleanup;
966 
967 	/*
968 	 * Okay, we need to do block allocation.
969 	*/
970 	goal = ext4_find_goal(inode, map->m_lblk, partial);
971 
972 	/* the number of blocks need to allocate for [d,t]indirect blocks */
973 	indirect_blks = (chain + depth) - partial - 1;
974 
975 	/*
976 	 * Next look up the indirect map to count the totoal number of
977 	 * direct blocks to allocate for this branch.
978 	 */
979 	count = ext4_blks_to_allocate(partial, indirect_blks,
980 				      map->m_len, blocks_to_boundary);
981 	/*
982 	 * Block out ext4_truncate while we alter the tree
983 	 */
984 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
985 				&count, goal,
986 				offsets + (partial - chain), partial);
987 
988 	/*
989 	 * The ext4_splice_branch call will free and forget any buffers
990 	 * on the new chain if there is a failure, but that risks using
991 	 * up transaction credits, especially for bitmaps where the
992 	 * credits cannot be returned.  Can we handle this somehow?  We
993 	 * may need to return -EAGAIN upwards in the worst case.  --sct
994 	 */
995 	if (!err)
996 		err = ext4_splice_branch(handle, inode, map->m_lblk,
997 					 partial, indirect_blks, count);
998 	if (err)
999 		goto cleanup;
1000 
1001 	map->m_flags |= EXT4_MAP_NEW;
1002 
1003 	ext4_update_inode_fsync_trans(handle, inode, 1);
1004 got_it:
1005 	map->m_flags |= EXT4_MAP_MAPPED;
1006 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1007 	map->m_len = count;
1008 	if (count > blocks_to_boundary)
1009 		map->m_flags |= EXT4_MAP_BOUNDARY;
1010 	err = count;
1011 	/* Clean up and exit */
1012 	partial = chain + depth - 1;	/* the whole chain */
1013 cleanup:
1014 	while (partial > chain) {
1015 		BUFFER_TRACE(partial->bh, "call brelse");
1016 		brelse(partial->bh);
1017 		partial--;
1018 	}
1019 out:
1020 	return err;
1021 }
1022 
1023 #ifdef CONFIG_QUOTA
1024 qsize_t *ext4_get_reserved_space(struct inode *inode)
1025 {
1026 	return &EXT4_I(inode)->i_reserved_quota;
1027 }
1028 #endif
1029 
1030 /*
1031  * Calculate the number of metadata blocks need to reserve
1032  * to allocate a new block at @lblocks for non extent file based file
1033  */
1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1035 					      sector_t lblock)
1036 {
1037 	struct ext4_inode_info *ei = EXT4_I(inode);
1038 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1039 	int blk_bits;
1040 
1041 	if (lblock < EXT4_NDIR_BLOCKS)
1042 		return 0;
1043 
1044 	lblock -= EXT4_NDIR_BLOCKS;
1045 
1046 	if (ei->i_da_metadata_calc_len &&
1047 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1048 		ei->i_da_metadata_calc_len++;
1049 		return 0;
1050 	}
1051 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1052 	ei->i_da_metadata_calc_len = 1;
1053 	blk_bits = order_base_2(lblock);
1054 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1055 }
1056 
1057 /*
1058  * Calculate the number of metadata blocks need to reserve
1059  * to allocate a block located at @lblock
1060  */
1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1062 {
1063 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064 		return ext4_ext_calc_metadata_amount(inode, lblock);
1065 
1066 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1067 }
1068 
1069 /*
1070  * Called with i_data_sem down, which is important since we can call
1071  * ext4_discard_preallocations() from here.
1072  */
1073 void ext4_da_update_reserve_space(struct inode *inode,
1074 					int used, int quota_claim)
1075 {
1076 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077 	struct ext4_inode_info *ei = EXT4_I(inode);
1078 
1079 	spin_lock(&ei->i_block_reservation_lock);
1080 	trace_ext4_da_update_reserve_space(inode, used);
1081 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1082 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1083 			 "with only %d reserved data blocks\n",
1084 			 __func__, inode->i_ino, used,
1085 			 ei->i_reserved_data_blocks);
1086 		WARN_ON(1);
1087 		used = ei->i_reserved_data_blocks;
1088 	}
1089 
1090 	/* Update per-inode reservations */
1091 	ei->i_reserved_data_blocks -= used;
1092 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1093 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1094 			   used + ei->i_allocated_meta_blocks);
1095 	ei->i_allocated_meta_blocks = 0;
1096 
1097 	if (ei->i_reserved_data_blocks == 0) {
1098 		/*
1099 		 * We can release all of the reserved metadata blocks
1100 		 * only when we have written all of the delayed
1101 		 * allocation blocks.
1102 		 */
1103 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104 				   ei->i_reserved_meta_blocks);
1105 		ei->i_reserved_meta_blocks = 0;
1106 		ei->i_da_metadata_calc_len = 0;
1107 	}
1108 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1109 
1110 	/* Update quota subsystem for data blocks */
1111 	if (quota_claim)
1112 		dquot_claim_block(inode, used);
1113 	else {
1114 		/*
1115 		 * We did fallocate with an offset that is already delayed
1116 		 * allocated. So on delayed allocated writeback we should
1117 		 * not re-claim the quota for fallocated blocks.
1118 		 */
1119 		dquot_release_reservation_block(inode, used);
1120 	}
1121 
1122 	/*
1123 	 * If we have done all the pending block allocations and if
1124 	 * there aren't any writers on the inode, we can discard the
1125 	 * inode's preallocations.
1126 	 */
1127 	if ((ei->i_reserved_data_blocks == 0) &&
1128 	    (atomic_read(&inode->i_writecount) == 0))
1129 		ext4_discard_preallocations(inode);
1130 }
1131 
1132 static int check_block_validity(struct inode *inode, const char *msg,
1133 				sector_t logical, sector_t phys, int len)
1134 {
1135 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1136 		__ext4_error(inode->i_sb, msg,
1137 			   "inode #%lu logical block %llu mapped to %llu "
1138 			   "(size %d)", inode->i_ino,
1139 			   (unsigned long long) logical,
1140 			   (unsigned long long) phys, len);
1141 		return -EIO;
1142 	}
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Return the number of contiguous dirty pages in a given inode
1148  * starting at page frame idx.
1149  */
1150 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1151 				    unsigned int max_pages)
1152 {
1153 	struct address_space *mapping = inode->i_mapping;
1154 	pgoff_t	index;
1155 	struct pagevec pvec;
1156 	pgoff_t num = 0;
1157 	int i, nr_pages, done = 0;
1158 
1159 	if (max_pages == 0)
1160 		return 0;
1161 	pagevec_init(&pvec, 0);
1162 	while (!done) {
1163 		index = idx;
1164 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1165 					      PAGECACHE_TAG_DIRTY,
1166 					      (pgoff_t)PAGEVEC_SIZE);
1167 		if (nr_pages == 0)
1168 			break;
1169 		for (i = 0; i < nr_pages; i++) {
1170 			struct page *page = pvec.pages[i];
1171 			struct buffer_head *bh, *head;
1172 
1173 			lock_page(page);
1174 			if (unlikely(page->mapping != mapping) ||
1175 			    !PageDirty(page) ||
1176 			    PageWriteback(page) ||
1177 			    page->index != idx) {
1178 				done = 1;
1179 				unlock_page(page);
1180 				break;
1181 			}
1182 			if (page_has_buffers(page)) {
1183 				bh = head = page_buffers(page);
1184 				do {
1185 					if (!buffer_delay(bh) &&
1186 					    !buffer_unwritten(bh))
1187 						done = 1;
1188 					bh = bh->b_this_page;
1189 				} while (!done && (bh != head));
1190 			}
1191 			unlock_page(page);
1192 			if (done)
1193 				break;
1194 			idx++;
1195 			num++;
1196 			if (num >= max_pages)
1197 				break;
1198 		}
1199 		pagevec_release(&pvec);
1200 	}
1201 	return num;
1202 }
1203 
1204 /*
1205  * The ext4_map_blocks() function tries to look up the requested blocks,
1206  * and returns if the blocks are already mapped.
1207  *
1208  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1209  * and store the allocated blocks in the result buffer head and mark it
1210  * mapped.
1211  *
1212  * If file type is extents based, it will call ext4_ext_map_blocks(),
1213  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1214  * based files
1215  *
1216  * On success, it returns the number of blocks being mapped or allocate.
1217  * if create==0 and the blocks are pre-allocated and uninitialized block,
1218  * the result buffer head is unmapped. If the create ==1, it will make sure
1219  * the buffer head is mapped.
1220  *
1221  * It returns 0 if plain look up failed (blocks have not been allocated), in
1222  * that casem, buffer head is unmapped
1223  *
1224  * It returns the error in case of allocation failure.
1225  */
1226 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1227 		    struct ext4_map_blocks *map, int flags)
1228 {
1229 	int retval;
1230 
1231 	map->m_flags = 0;
1232 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1233 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1234 		  (unsigned long) map->m_lblk);
1235 	/*
1236 	 * Try to see if we can get the block without requesting a new
1237 	 * file system block.
1238 	 */
1239 	down_read((&EXT4_I(inode)->i_data_sem));
1240 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1241 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1242 	} else {
1243 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1244 	}
1245 	up_read((&EXT4_I(inode)->i_data_sem));
1246 
1247 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1248 		int ret = check_block_validity(inode, "file system corruption",
1249 					map->m_lblk, map->m_pblk, retval);
1250 		if (ret != 0)
1251 			return ret;
1252 	}
1253 
1254 	/* If it is only a block(s) look up */
1255 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1256 		return retval;
1257 
1258 	/*
1259 	 * Returns if the blocks have already allocated
1260 	 *
1261 	 * Note that if blocks have been preallocated
1262 	 * ext4_ext_get_block() returns th create = 0
1263 	 * with buffer head unmapped.
1264 	 */
1265 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1266 		return retval;
1267 
1268 	/*
1269 	 * When we call get_blocks without the create flag, the
1270 	 * BH_Unwritten flag could have gotten set if the blocks
1271 	 * requested were part of a uninitialized extent.  We need to
1272 	 * clear this flag now that we are committed to convert all or
1273 	 * part of the uninitialized extent to be an initialized
1274 	 * extent.  This is because we need to avoid the combination
1275 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1276 	 * set on the buffer_head.
1277 	 */
1278 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1279 
1280 	/*
1281 	 * New blocks allocate and/or writing to uninitialized extent
1282 	 * will possibly result in updating i_data, so we take
1283 	 * the write lock of i_data_sem, and call get_blocks()
1284 	 * with create == 1 flag.
1285 	 */
1286 	down_write((&EXT4_I(inode)->i_data_sem));
1287 
1288 	/*
1289 	 * if the caller is from delayed allocation writeout path
1290 	 * we have already reserved fs blocks for allocation
1291 	 * let the underlying get_block() function know to
1292 	 * avoid double accounting
1293 	 */
1294 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1295 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1296 	/*
1297 	 * We need to check for EXT4 here because migrate
1298 	 * could have changed the inode type in between
1299 	 */
1300 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1301 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1302 	} else {
1303 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1304 
1305 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1306 			/*
1307 			 * We allocated new blocks which will result in
1308 			 * i_data's format changing.  Force the migrate
1309 			 * to fail by clearing migrate flags
1310 			 */
1311 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1312 		}
1313 
1314 		/*
1315 		 * Update reserved blocks/metadata blocks after successful
1316 		 * block allocation which had been deferred till now. We don't
1317 		 * support fallocate for non extent files. So we can update
1318 		 * reserve space here.
1319 		 */
1320 		if ((retval > 0) &&
1321 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1322 			ext4_da_update_reserve_space(inode, retval, 1);
1323 	}
1324 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1325 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326 
1327 	up_write((&EXT4_I(inode)->i_data_sem));
1328 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1329 		int ret = check_block_validity(inode, "file system "
1330 					       "corruption after allocation",
1331 					       map->m_lblk, map->m_pblk,
1332 					       retval);
1333 		if (ret != 0)
1334 			return ret;
1335 	}
1336 	return retval;
1337 }
1338 
1339 /* Maximum number of blocks we map for direct IO at once. */
1340 #define DIO_MAX_BLOCKS 4096
1341 
1342 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1343 			   struct buffer_head *bh, int flags)
1344 {
1345 	handle_t *handle = ext4_journal_current_handle();
1346 	struct ext4_map_blocks map;
1347 	int ret = 0, started = 0;
1348 	int dio_credits;
1349 
1350 	map.m_lblk = iblock;
1351 	map.m_len = bh->b_size >> inode->i_blkbits;
1352 
1353 	if (flags && !handle) {
1354 		/* Direct IO write... */
1355 		if (map.m_len > DIO_MAX_BLOCKS)
1356 			map.m_len = DIO_MAX_BLOCKS;
1357 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1358 		handle = ext4_journal_start(inode, dio_credits);
1359 		if (IS_ERR(handle)) {
1360 			ret = PTR_ERR(handle);
1361 			return ret;
1362 		}
1363 		started = 1;
1364 	}
1365 
1366 	ret = ext4_map_blocks(handle, inode, &map, flags);
1367 	if (ret > 0) {
1368 		map_bh(bh, inode->i_sb, map.m_pblk);
1369 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1370 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1371 		ret = 0;
1372 	}
1373 	if (started)
1374 		ext4_journal_stop(handle);
1375 	return ret;
1376 }
1377 
1378 int ext4_get_block(struct inode *inode, sector_t iblock,
1379 		   struct buffer_head *bh, int create)
1380 {
1381 	return _ext4_get_block(inode, iblock, bh,
1382 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1383 }
1384 
1385 /*
1386  * `handle' can be NULL if create is zero
1387  */
1388 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1389 				ext4_lblk_t block, int create, int *errp)
1390 {
1391 	struct ext4_map_blocks map;
1392 	struct buffer_head *bh;
1393 	int fatal = 0, err;
1394 
1395 	J_ASSERT(handle != NULL || create == 0);
1396 
1397 	map.m_lblk = block;
1398 	map.m_len = 1;
1399 	err = ext4_map_blocks(handle, inode, &map,
1400 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1401 
1402 	if (err < 0)
1403 		*errp = err;
1404 	if (err <= 0)
1405 		return NULL;
1406 	*errp = 0;
1407 
1408 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1409 	if (!bh) {
1410 		*errp = -EIO;
1411 		return NULL;
1412 	}
1413 	if (map.m_flags & EXT4_MAP_NEW) {
1414 		J_ASSERT(create != 0);
1415 		J_ASSERT(handle != NULL);
1416 
1417 		/*
1418 		 * Now that we do not always journal data, we should
1419 		 * keep in mind whether this should always journal the
1420 		 * new buffer as metadata.  For now, regular file
1421 		 * writes use ext4_get_block instead, so it's not a
1422 		 * problem.
1423 		 */
1424 		lock_buffer(bh);
1425 		BUFFER_TRACE(bh, "call get_create_access");
1426 		fatal = ext4_journal_get_create_access(handle, bh);
1427 		if (!fatal && !buffer_uptodate(bh)) {
1428 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1429 			set_buffer_uptodate(bh);
1430 		}
1431 		unlock_buffer(bh);
1432 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1433 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1434 		if (!fatal)
1435 			fatal = err;
1436 	} else {
1437 		BUFFER_TRACE(bh, "not a new buffer");
1438 	}
1439 	if (fatal) {
1440 		*errp = fatal;
1441 		brelse(bh);
1442 		bh = NULL;
1443 	}
1444 	return bh;
1445 }
1446 
1447 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1448 			       ext4_lblk_t block, int create, int *err)
1449 {
1450 	struct buffer_head *bh;
1451 
1452 	bh = ext4_getblk(handle, inode, block, create, err);
1453 	if (!bh)
1454 		return bh;
1455 	if (buffer_uptodate(bh))
1456 		return bh;
1457 	ll_rw_block(READ_META, 1, &bh);
1458 	wait_on_buffer(bh);
1459 	if (buffer_uptodate(bh))
1460 		return bh;
1461 	put_bh(bh);
1462 	*err = -EIO;
1463 	return NULL;
1464 }
1465 
1466 static int walk_page_buffers(handle_t *handle,
1467 			     struct buffer_head *head,
1468 			     unsigned from,
1469 			     unsigned to,
1470 			     int *partial,
1471 			     int (*fn)(handle_t *handle,
1472 				       struct buffer_head *bh))
1473 {
1474 	struct buffer_head *bh;
1475 	unsigned block_start, block_end;
1476 	unsigned blocksize = head->b_size;
1477 	int err, ret = 0;
1478 	struct buffer_head *next;
1479 
1480 	for (bh = head, block_start = 0;
1481 	     ret == 0 && (bh != head || !block_start);
1482 	     block_start = block_end, bh = next) {
1483 		next = bh->b_this_page;
1484 		block_end = block_start + blocksize;
1485 		if (block_end <= from || block_start >= to) {
1486 			if (partial && !buffer_uptodate(bh))
1487 				*partial = 1;
1488 			continue;
1489 		}
1490 		err = (*fn)(handle, bh);
1491 		if (!ret)
1492 			ret = err;
1493 	}
1494 	return ret;
1495 }
1496 
1497 /*
1498  * To preserve ordering, it is essential that the hole instantiation and
1499  * the data write be encapsulated in a single transaction.  We cannot
1500  * close off a transaction and start a new one between the ext4_get_block()
1501  * and the commit_write().  So doing the jbd2_journal_start at the start of
1502  * prepare_write() is the right place.
1503  *
1504  * Also, this function can nest inside ext4_writepage() ->
1505  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1506  * has generated enough buffer credits to do the whole page.  So we won't
1507  * block on the journal in that case, which is good, because the caller may
1508  * be PF_MEMALLOC.
1509  *
1510  * By accident, ext4 can be reentered when a transaction is open via
1511  * quota file writes.  If we were to commit the transaction while thus
1512  * reentered, there can be a deadlock - we would be holding a quota
1513  * lock, and the commit would never complete if another thread had a
1514  * transaction open and was blocking on the quota lock - a ranking
1515  * violation.
1516  *
1517  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1518  * will _not_ run commit under these circumstances because handle->h_ref
1519  * is elevated.  We'll still have enough credits for the tiny quotafile
1520  * write.
1521  */
1522 static int do_journal_get_write_access(handle_t *handle,
1523 				       struct buffer_head *bh)
1524 {
1525 	if (!buffer_mapped(bh) || buffer_freed(bh))
1526 		return 0;
1527 	return ext4_journal_get_write_access(handle, bh);
1528 }
1529 
1530 /*
1531  * Truncate blocks that were not used by write. We have to truncate the
1532  * pagecache as well so that corresponding buffers get properly unmapped.
1533  */
1534 static void ext4_truncate_failed_write(struct inode *inode)
1535 {
1536 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1537 	ext4_truncate(inode);
1538 }
1539 
1540 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1541 		   struct buffer_head *bh_result, int create);
1542 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1543 			    loff_t pos, unsigned len, unsigned flags,
1544 			    struct page **pagep, void **fsdata)
1545 {
1546 	struct inode *inode = mapping->host;
1547 	int ret, needed_blocks;
1548 	handle_t *handle;
1549 	int retries = 0;
1550 	struct page *page;
1551 	pgoff_t index;
1552 	unsigned from, to;
1553 
1554 	trace_ext4_write_begin(inode, pos, len, flags);
1555 	/*
1556 	 * Reserve one block more for addition to orphan list in case
1557 	 * we allocate blocks but write fails for some reason
1558 	 */
1559 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1560 	index = pos >> PAGE_CACHE_SHIFT;
1561 	from = pos & (PAGE_CACHE_SIZE - 1);
1562 	to = from + len;
1563 
1564 retry:
1565 	handle = ext4_journal_start(inode, needed_blocks);
1566 	if (IS_ERR(handle)) {
1567 		ret = PTR_ERR(handle);
1568 		goto out;
1569 	}
1570 
1571 	/* We cannot recurse into the filesystem as the transaction is already
1572 	 * started */
1573 	flags |= AOP_FLAG_NOFS;
1574 
1575 	page = grab_cache_page_write_begin(mapping, index, flags);
1576 	if (!page) {
1577 		ext4_journal_stop(handle);
1578 		ret = -ENOMEM;
1579 		goto out;
1580 	}
1581 	*pagep = page;
1582 
1583 	if (ext4_should_dioread_nolock(inode))
1584 		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1585 				fsdata, ext4_get_block_write);
1586 	else
1587 		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1588 				fsdata, ext4_get_block);
1589 
1590 	if (!ret && ext4_should_journal_data(inode)) {
1591 		ret = walk_page_buffers(handle, page_buffers(page),
1592 				from, to, NULL, do_journal_get_write_access);
1593 	}
1594 
1595 	if (ret) {
1596 		unlock_page(page);
1597 		page_cache_release(page);
1598 		/*
1599 		 * block_write_begin may have instantiated a few blocks
1600 		 * outside i_size.  Trim these off again. Don't need
1601 		 * i_size_read because we hold i_mutex.
1602 		 *
1603 		 * Add inode to orphan list in case we crash before
1604 		 * truncate finishes
1605 		 */
1606 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1607 			ext4_orphan_add(handle, inode);
1608 
1609 		ext4_journal_stop(handle);
1610 		if (pos + len > inode->i_size) {
1611 			ext4_truncate_failed_write(inode);
1612 			/*
1613 			 * If truncate failed early the inode might
1614 			 * still be on the orphan list; we need to
1615 			 * make sure the inode is removed from the
1616 			 * orphan list in that case.
1617 			 */
1618 			if (inode->i_nlink)
1619 				ext4_orphan_del(NULL, inode);
1620 		}
1621 	}
1622 
1623 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1624 		goto retry;
1625 out:
1626 	return ret;
1627 }
1628 
1629 /* For write_end() in data=journal mode */
1630 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1631 {
1632 	if (!buffer_mapped(bh) || buffer_freed(bh))
1633 		return 0;
1634 	set_buffer_uptodate(bh);
1635 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1636 }
1637 
1638 static int ext4_generic_write_end(struct file *file,
1639 				  struct address_space *mapping,
1640 				  loff_t pos, unsigned len, unsigned copied,
1641 				  struct page *page, void *fsdata)
1642 {
1643 	int i_size_changed = 0;
1644 	struct inode *inode = mapping->host;
1645 	handle_t *handle = ext4_journal_current_handle();
1646 
1647 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1648 
1649 	/*
1650 	 * No need to use i_size_read() here, the i_size
1651 	 * cannot change under us because we hold i_mutex.
1652 	 *
1653 	 * But it's important to update i_size while still holding page lock:
1654 	 * page writeout could otherwise come in and zero beyond i_size.
1655 	 */
1656 	if (pos + copied > inode->i_size) {
1657 		i_size_write(inode, pos + copied);
1658 		i_size_changed = 1;
1659 	}
1660 
1661 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1662 		/* We need to mark inode dirty even if
1663 		 * new_i_size is less that inode->i_size
1664 		 * bu greater than i_disksize.(hint delalloc)
1665 		 */
1666 		ext4_update_i_disksize(inode, (pos + copied));
1667 		i_size_changed = 1;
1668 	}
1669 	unlock_page(page);
1670 	page_cache_release(page);
1671 
1672 	/*
1673 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1674 	 * makes the holding time of page lock longer. Second, it forces lock
1675 	 * ordering of page lock and transaction start for journaling
1676 	 * filesystems.
1677 	 */
1678 	if (i_size_changed)
1679 		ext4_mark_inode_dirty(handle, inode);
1680 
1681 	return copied;
1682 }
1683 
1684 /*
1685  * We need to pick up the new inode size which generic_commit_write gave us
1686  * `file' can be NULL - eg, when called from page_symlink().
1687  *
1688  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1689  * buffers are managed internally.
1690  */
1691 static int ext4_ordered_write_end(struct file *file,
1692 				  struct address_space *mapping,
1693 				  loff_t pos, unsigned len, unsigned copied,
1694 				  struct page *page, void *fsdata)
1695 {
1696 	handle_t *handle = ext4_journal_current_handle();
1697 	struct inode *inode = mapping->host;
1698 	int ret = 0, ret2;
1699 
1700 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1701 	ret = ext4_jbd2_file_inode(handle, inode);
1702 
1703 	if (ret == 0) {
1704 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1705 							page, fsdata);
1706 		copied = ret2;
1707 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1708 			/* if we have allocated more blocks and copied
1709 			 * less. We will have blocks allocated outside
1710 			 * inode->i_size. So truncate them
1711 			 */
1712 			ext4_orphan_add(handle, inode);
1713 		if (ret2 < 0)
1714 			ret = ret2;
1715 	}
1716 	ret2 = ext4_journal_stop(handle);
1717 	if (!ret)
1718 		ret = ret2;
1719 
1720 	if (pos + len > inode->i_size) {
1721 		ext4_truncate_failed_write(inode);
1722 		/*
1723 		 * If truncate failed early the inode might still be
1724 		 * on the orphan list; we need to make sure the inode
1725 		 * is removed from the orphan list in that case.
1726 		 */
1727 		if (inode->i_nlink)
1728 			ext4_orphan_del(NULL, inode);
1729 	}
1730 
1731 
1732 	return ret ? ret : copied;
1733 }
1734 
1735 static int ext4_writeback_write_end(struct file *file,
1736 				    struct address_space *mapping,
1737 				    loff_t pos, unsigned len, unsigned copied,
1738 				    struct page *page, void *fsdata)
1739 {
1740 	handle_t *handle = ext4_journal_current_handle();
1741 	struct inode *inode = mapping->host;
1742 	int ret = 0, ret2;
1743 
1744 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1745 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1746 							page, fsdata);
1747 	copied = ret2;
1748 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1749 		/* if we have allocated more blocks and copied
1750 		 * less. We will have blocks allocated outside
1751 		 * inode->i_size. So truncate them
1752 		 */
1753 		ext4_orphan_add(handle, inode);
1754 
1755 	if (ret2 < 0)
1756 		ret = ret2;
1757 
1758 	ret2 = ext4_journal_stop(handle);
1759 	if (!ret)
1760 		ret = ret2;
1761 
1762 	if (pos + len > inode->i_size) {
1763 		ext4_truncate_failed_write(inode);
1764 		/*
1765 		 * If truncate failed early the inode might still be
1766 		 * on the orphan list; we need to make sure the inode
1767 		 * is removed from the orphan list in that case.
1768 		 */
1769 		if (inode->i_nlink)
1770 			ext4_orphan_del(NULL, inode);
1771 	}
1772 
1773 	return ret ? ret : copied;
1774 }
1775 
1776 static int ext4_journalled_write_end(struct file *file,
1777 				     struct address_space *mapping,
1778 				     loff_t pos, unsigned len, unsigned copied,
1779 				     struct page *page, void *fsdata)
1780 {
1781 	handle_t *handle = ext4_journal_current_handle();
1782 	struct inode *inode = mapping->host;
1783 	int ret = 0, ret2;
1784 	int partial = 0;
1785 	unsigned from, to;
1786 	loff_t new_i_size;
1787 
1788 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1789 	from = pos & (PAGE_CACHE_SIZE - 1);
1790 	to = from + len;
1791 
1792 	if (copied < len) {
1793 		if (!PageUptodate(page))
1794 			copied = 0;
1795 		page_zero_new_buffers(page, from+copied, to);
1796 	}
1797 
1798 	ret = walk_page_buffers(handle, page_buffers(page), from,
1799 				to, &partial, write_end_fn);
1800 	if (!partial)
1801 		SetPageUptodate(page);
1802 	new_i_size = pos + copied;
1803 	if (new_i_size > inode->i_size)
1804 		i_size_write(inode, pos+copied);
1805 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1806 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1807 		ext4_update_i_disksize(inode, new_i_size);
1808 		ret2 = ext4_mark_inode_dirty(handle, inode);
1809 		if (!ret)
1810 			ret = ret2;
1811 	}
1812 
1813 	unlock_page(page);
1814 	page_cache_release(page);
1815 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1816 		/* if we have allocated more blocks and copied
1817 		 * less. We will have blocks allocated outside
1818 		 * inode->i_size. So truncate them
1819 		 */
1820 		ext4_orphan_add(handle, inode);
1821 
1822 	ret2 = ext4_journal_stop(handle);
1823 	if (!ret)
1824 		ret = ret2;
1825 	if (pos + len > inode->i_size) {
1826 		ext4_truncate_failed_write(inode);
1827 		/*
1828 		 * If truncate failed early the inode might still be
1829 		 * on the orphan list; we need to make sure the inode
1830 		 * is removed from the orphan list in that case.
1831 		 */
1832 		if (inode->i_nlink)
1833 			ext4_orphan_del(NULL, inode);
1834 	}
1835 
1836 	return ret ? ret : copied;
1837 }
1838 
1839 /*
1840  * Reserve a single block located at lblock
1841  */
1842 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1843 {
1844 	int retries = 0;
1845 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1846 	struct ext4_inode_info *ei = EXT4_I(inode);
1847 	unsigned long md_needed;
1848 	int ret;
1849 
1850 	/*
1851 	 * recalculate the amount of metadata blocks to reserve
1852 	 * in order to allocate nrblocks
1853 	 * worse case is one extent per block
1854 	 */
1855 repeat:
1856 	spin_lock(&ei->i_block_reservation_lock);
1857 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1858 	trace_ext4_da_reserve_space(inode, md_needed);
1859 	spin_unlock(&ei->i_block_reservation_lock);
1860 
1861 	/*
1862 	 * We will charge metadata quota at writeout time; this saves
1863 	 * us from metadata over-estimation, though we may go over by
1864 	 * a small amount in the end.  Here we just reserve for data.
1865 	 */
1866 	ret = dquot_reserve_block(inode, 1);
1867 	if (ret)
1868 		return ret;
1869 	/*
1870 	 * We do still charge estimated metadata to the sb though;
1871 	 * we cannot afford to run out of free blocks.
1872 	 */
1873 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1874 		dquot_release_reservation_block(inode, 1);
1875 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1876 			yield();
1877 			goto repeat;
1878 		}
1879 		return -ENOSPC;
1880 	}
1881 	spin_lock(&ei->i_block_reservation_lock);
1882 	ei->i_reserved_data_blocks++;
1883 	ei->i_reserved_meta_blocks += md_needed;
1884 	spin_unlock(&ei->i_block_reservation_lock);
1885 
1886 	return 0;       /* success */
1887 }
1888 
1889 static void ext4_da_release_space(struct inode *inode, int to_free)
1890 {
1891 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1892 	struct ext4_inode_info *ei = EXT4_I(inode);
1893 
1894 	if (!to_free)
1895 		return;		/* Nothing to release, exit */
1896 
1897 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1898 
1899 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1900 		/*
1901 		 * if there aren't enough reserved blocks, then the
1902 		 * counter is messed up somewhere.  Since this
1903 		 * function is called from invalidate page, it's
1904 		 * harmless to return without any action.
1905 		 */
1906 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1907 			 "ino %lu, to_free %d with only %d reserved "
1908 			 "data blocks\n", inode->i_ino, to_free,
1909 			 ei->i_reserved_data_blocks);
1910 		WARN_ON(1);
1911 		to_free = ei->i_reserved_data_blocks;
1912 	}
1913 	ei->i_reserved_data_blocks -= to_free;
1914 
1915 	if (ei->i_reserved_data_blocks == 0) {
1916 		/*
1917 		 * We can release all of the reserved metadata blocks
1918 		 * only when we have written all of the delayed
1919 		 * allocation blocks.
1920 		 */
1921 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1922 				   ei->i_reserved_meta_blocks);
1923 		ei->i_reserved_meta_blocks = 0;
1924 		ei->i_da_metadata_calc_len = 0;
1925 	}
1926 
1927 	/* update fs dirty data blocks counter */
1928 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1929 
1930 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1931 
1932 	dquot_release_reservation_block(inode, to_free);
1933 }
1934 
1935 static void ext4_da_page_release_reservation(struct page *page,
1936 					     unsigned long offset)
1937 {
1938 	int to_release = 0;
1939 	struct buffer_head *head, *bh;
1940 	unsigned int curr_off = 0;
1941 
1942 	head = page_buffers(page);
1943 	bh = head;
1944 	do {
1945 		unsigned int next_off = curr_off + bh->b_size;
1946 
1947 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1948 			to_release++;
1949 			clear_buffer_delay(bh);
1950 		}
1951 		curr_off = next_off;
1952 	} while ((bh = bh->b_this_page) != head);
1953 	ext4_da_release_space(page->mapping->host, to_release);
1954 }
1955 
1956 /*
1957  * Delayed allocation stuff
1958  */
1959 
1960 /*
1961  * mpage_da_submit_io - walks through extent of pages and try to write
1962  * them with writepage() call back
1963  *
1964  * @mpd->inode: inode
1965  * @mpd->first_page: first page of the extent
1966  * @mpd->next_page: page after the last page of the extent
1967  *
1968  * By the time mpage_da_submit_io() is called we expect all blocks
1969  * to be allocated. this may be wrong if allocation failed.
1970  *
1971  * As pages are already locked by write_cache_pages(), we can't use it
1972  */
1973 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1974 {
1975 	long pages_skipped;
1976 	struct pagevec pvec;
1977 	unsigned long index, end;
1978 	int ret = 0, err, nr_pages, i;
1979 	struct inode *inode = mpd->inode;
1980 	struct address_space *mapping = inode->i_mapping;
1981 
1982 	BUG_ON(mpd->next_page <= mpd->first_page);
1983 	/*
1984 	 * We need to start from the first_page to the next_page - 1
1985 	 * to make sure we also write the mapped dirty buffer_heads.
1986 	 * If we look at mpd->b_blocknr we would only be looking
1987 	 * at the currently mapped buffer_heads.
1988 	 */
1989 	index = mpd->first_page;
1990 	end = mpd->next_page - 1;
1991 
1992 	pagevec_init(&pvec, 0);
1993 	while (index <= end) {
1994 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1995 		if (nr_pages == 0)
1996 			break;
1997 		for (i = 0; i < nr_pages; i++) {
1998 			struct page *page = pvec.pages[i];
1999 
2000 			index = page->index;
2001 			if (index > end)
2002 				break;
2003 			index++;
2004 
2005 			BUG_ON(!PageLocked(page));
2006 			BUG_ON(PageWriteback(page));
2007 
2008 			pages_skipped = mpd->wbc->pages_skipped;
2009 			err = mapping->a_ops->writepage(page, mpd->wbc);
2010 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2011 				/*
2012 				 * have successfully written the page
2013 				 * without skipping the same
2014 				 */
2015 				mpd->pages_written++;
2016 			/*
2017 			 * In error case, we have to continue because
2018 			 * remaining pages are still locked
2019 			 * XXX: unlock and re-dirty them?
2020 			 */
2021 			if (ret == 0)
2022 				ret = err;
2023 		}
2024 		pagevec_release(&pvec);
2025 	}
2026 	return ret;
2027 }
2028 
2029 /*
2030  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2031  *
2032  * the function goes through all passed space and put actual disk
2033  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2034  */
2035 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2036 				 struct ext4_map_blocks *map)
2037 {
2038 	struct inode *inode = mpd->inode;
2039 	struct address_space *mapping = inode->i_mapping;
2040 	int blocks = map->m_len;
2041 	sector_t pblock = map->m_pblk, cur_logical;
2042 	struct buffer_head *head, *bh;
2043 	pgoff_t index, end;
2044 	struct pagevec pvec;
2045 	int nr_pages, i;
2046 
2047 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2048 	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2049 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2050 
2051 	pagevec_init(&pvec, 0);
2052 
2053 	while (index <= end) {
2054 		/* XXX: optimize tail */
2055 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2056 		if (nr_pages == 0)
2057 			break;
2058 		for (i = 0; i < nr_pages; i++) {
2059 			struct page *page = pvec.pages[i];
2060 
2061 			index = page->index;
2062 			if (index > end)
2063 				break;
2064 			index++;
2065 
2066 			BUG_ON(!PageLocked(page));
2067 			BUG_ON(PageWriteback(page));
2068 			BUG_ON(!page_has_buffers(page));
2069 
2070 			bh = page_buffers(page);
2071 			head = bh;
2072 
2073 			/* skip blocks out of the range */
2074 			do {
2075 				if (cur_logical >= map->m_lblk)
2076 					break;
2077 				cur_logical++;
2078 			} while ((bh = bh->b_this_page) != head);
2079 
2080 			do {
2081 				if (cur_logical >= map->m_lblk + blocks)
2082 					break;
2083 
2084 				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2085 
2086 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2087 
2088 					if (buffer_delay(bh)) {
2089 						clear_buffer_delay(bh);
2090 						bh->b_blocknr = pblock;
2091 					} else {
2092 						/*
2093 						 * unwritten already should have
2094 						 * blocknr assigned. Verify that
2095 						 */
2096 						clear_buffer_unwritten(bh);
2097 						BUG_ON(bh->b_blocknr != pblock);
2098 					}
2099 
2100 				} else if (buffer_mapped(bh))
2101 					BUG_ON(bh->b_blocknr != pblock);
2102 
2103 				if (map->m_flags & EXT4_MAP_UNINIT)
2104 					set_buffer_uninit(bh);
2105 				cur_logical++;
2106 				pblock++;
2107 			} while ((bh = bh->b_this_page) != head);
2108 		}
2109 		pagevec_release(&pvec);
2110 	}
2111 }
2112 
2113 
2114 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2115 					sector_t logical, long blk_cnt)
2116 {
2117 	int nr_pages, i;
2118 	pgoff_t index, end;
2119 	struct pagevec pvec;
2120 	struct inode *inode = mpd->inode;
2121 	struct address_space *mapping = inode->i_mapping;
2122 
2123 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124 	end   = (logical + blk_cnt - 1) >>
2125 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2126 	while (index <= end) {
2127 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2128 		if (nr_pages == 0)
2129 			break;
2130 		for (i = 0; i < nr_pages; i++) {
2131 			struct page *page = pvec.pages[i];
2132 			if (page->index > end)
2133 				break;
2134 			BUG_ON(!PageLocked(page));
2135 			BUG_ON(PageWriteback(page));
2136 			block_invalidatepage(page, 0);
2137 			ClearPageUptodate(page);
2138 			unlock_page(page);
2139 		}
2140 		index = pvec.pages[nr_pages - 1]->index + 1;
2141 		pagevec_release(&pvec);
2142 	}
2143 	return;
2144 }
2145 
2146 static void ext4_print_free_blocks(struct inode *inode)
2147 {
2148 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2149 	printk(KERN_CRIT "Total free blocks count %lld\n",
2150 	       ext4_count_free_blocks(inode->i_sb));
2151 	printk(KERN_CRIT "Free/Dirty block details\n");
2152 	printk(KERN_CRIT "free_blocks=%lld\n",
2153 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2154 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2155 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2156 	printk(KERN_CRIT "Block reservation details\n");
2157 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2158 	       EXT4_I(inode)->i_reserved_data_blocks);
2159 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2160 	       EXT4_I(inode)->i_reserved_meta_blocks);
2161 	return;
2162 }
2163 
2164 /*
2165  * mpage_da_map_blocks - go through given space
2166  *
2167  * @mpd - bh describing space
2168  *
2169  * The function skips space we know is already mapped to disk blocks.
2170  *
2171  */
2172 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2173 {
2174 	int err, blks, get_blocks_flags;
2175 	struct ext4_map_blocks map;
2176 	sector_t next = mpd->b_blocknr;
2177 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2178 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2179 	handle_t *handle = NULL;
2180 
2181 	/*
2182 	 * We consider only non-mapped and non-allocated blocks
2183 	 */
2184 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2185 		!(mpd->b_state & (1 << BH_Delay)) &&
2186 		!(mpd->b_state & (1 << BH_Unwritten)))
2187 		return 0;
2188 
2189 	/*
2190 	 * If we didn't accumulate anything to write simply return
2191 	 */
2192 	if (!mpd->b_size)
2193 		return 0;
2194 
2195 	handle = ext4_journal_current_handle();
2196 	BUG_ON(!handle);
2197 
2198 	/*
2199 	 * Call ext4_get_blocks() to allocate any delayed allocation
2200 	 * blocks, or to convert an uninitialized extent to be
2201 	 * initialized (in the case where we have written into
2202 	 * one or more preallocated blocks).
2203 	 *
2204 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2205 	 * indicate that we are on the delayed allocation path.  This
2206 	 * affects functions in many different parts of the allocation
2207 	 * call path.  This flag exists primarily because we don't
2208 	 * want to change *many* call functions, so ext4_get_blocks()
2209 	 * will set the magic i_delalloc_reserved_flag once the
2210 	 * inode's allocation semaphore is taken.
2211 	 *
2212 	 * If the blocks in questions were delalloc blocks, set
2213 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2214 	 * variables are updated after the blocks have been allocated.
2215 	 */
2216 	map.m_lblk = next;
2217 	map.m_len = max_blocks;
2218 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2219 	if (ext4_should_dioread_nolock(mpd->inode))
2220 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2221 	if (mpd->b_state & (1 << BH_Delay))
2222 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2223 
2224 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2225 	if (blks < 0) {
2226 		err = blks;
2227 		/*
2228 		 * If get block returns with error we simply
2229 		 * return. Later writepage will redirty the page and
2230 		 * writepages will find the dirty page again
2231 		 */
2232 		if (err == -EAGAIN)
2233 			return 0;
2234 
2235 		if (err == -ENOSPC &&
2236 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2237 			mpd->retval = err;
2238 			return 0;
2239 		}
2240 
2241 		/*
2242 		 * get block failure will cause us to loop in
2243 		 * writepages, because a_ops->writepage won't be able
2244 		 * to make progress. The page will be redirtied by
2245 		 * writepage and writepages will again try to write
2246 		 * the same.
2247 		 */
2248 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2249 			 "delayed block allocation failed for inode %lu at "
2250 			 "logical offset %llu with max blocks %zd with "
2251 			 "error %d", mpd->inode->i_ino,
2252 			 (unsigned long long) next,
2253 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2254 		printk(KERN_CRIT "This should not happen!!  "
2255 		       "Data will be lost\n");
2256 		if (err == -ENOSPC) {
2257 			ext4_print_free_blocks(mpd->inode);
2258 		}
2259 		/* invalidate all the pages */
2260 		ext4_da_block_invalidatepages(mpd, next,
2261 				mpd->b_size >> mpd->inode->i_blkbits);
2262 		return err;
2263 	}
2264 	BUG_ON(blks == 0);
2265 
2266 	if (map.m_flags & EXT4_MAP_NEW) {
2267 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2268 		int i;
2269 
2270 		for (i = 0; i < map.m_len; i++)
2271 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2272 	}
2273 
2274 	/*
2275 	 * If blocks are delayed marked, we need to
2276 	 * put actual blocknr and drop delayed bit
2277 	 */
2278 	if ((mpd->b_state & (1 << BH_Delay)) ||
2279 	    (mpd->b_state & (1 << BH_Unwritten)))
2280 		mpage_put_bnr_to_bhs(mpd, &map);
2281 
2282 	if (ext4_should_order_data(mpd->inode)) {
2283 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2284 		if (err)
2285 			return err;
2286 	}
2287 
2288 	/*
2289 	 * Update on-disk size along with block allocation.
2290 	 */
2291 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2292 	if (disksize > i_size_read(mpd->inode))
2293 		disksize = i_size_read(mpd->inode);
2294 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2295 		ext4_update_i_disksize(mpd->inode, disksize);
2296 		return ext4_mark_inode_dirty(handle, mpd->inode);
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2303 		(1 << BH_Delay) | (1 << BH_Unwritten))
2304 
2305 /*
2306  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2307  *
2308  * @mpd->lbh - extent of blocks
2309  * @logical - logical number of the block in the file
2310  * @bh - bh of the block (used to access block's state)
2311  *
2312  * the function is used to collect contig. blocks in same state
2313  */
2314 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2315 				   sector_t logical, size_t b_size,
2316 				   unsigned long b_state)
2317 {
2318 	sector_t next;
2319 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2320 
2321 	/*
2322 	 * XXX Don't go larger than mballoc is willing to allocate
2323 	 * This is a stopgap solution.  We eventually need to fold
2324 	 * mpage_da_submit_io() into this function and then call
2325 	 * ext4_get_blocks() multiple times in a loop
2326 	 */
2327 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2328 		goto flush_it;
2329 
2330 	/* check if thereserved journal credits might overflow */
2331 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2332 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2333 			/*
2334 			 * With non-extent format we are limited by the journal
2335 			 * credit available.  Total credit needed to insert
2336 			 * nrblocks contiguous blocks is dependent on the
2337 			 * nrblocks.  So limit nrblocks.
2338 			 */
2339 			goto flush_it;
2340 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2341 				EXT4_MAX_TRANS_DATA) {
2342 			/*
2343 			 * Adding the new buffer_head would make it cross the
2344 			 * allowed limit for which we have journal credit
2345 			 * reserved. So limit the new bh->b_size
2346 			 */
2347 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2348 						mpd->inode->i_blkbits;
2349 			/* we will do mpage_da_submit_io in the next loop */
2350 		}
2351 	}
2352 	/*
2353 	 * First block in the extent
2354 	 */
2355 	if (mpd->b_size == 0) {
2356 		mpd->b_blocknr = logical;
2357 		mpd->b_size = b_size;
2358 		mpd->b_state = b_state & BH_FLAGS;
2359 		return;
2360 	}
2361 
2362 	next = mpd->b_blocknr + nrblocks;
2363 	/*
2364 	 * Can we merge the block to our big extent?
2365 	 */
2366 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2367 		mpd->b_size += b_size;
2368 		return;
2369 	}
2370 
2371 flush_it:
2372 	/*
2373 	 * We couldn't merge the block to our extent, so we
2374 	 * need to flush current  extent and start new one
2375 	 */
2376 	if (mpage_da_map_blocks(mpd) == 0)
2377 		mpage_da_submit_io(mpd);
2378 	mpd->io_done = 1;
2379 	return;
2380 }
2381 
2382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2383 {
2384 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2385 }
2386 
2387 /*
2388  * __mpage_da_writepage - finds extent of pages and blocks
2389  *
2390  * @page: page to consider
2391  * @wbc: not used, we just follow rules
2392  * @data: context
2393  *
2394  * The function finds extents of pages and scan them for all blocks.
2395  */
2396 static int __mpage_da_writepage(struct page *page,
2397 				struct writeback_control *wbc, void *data)
2398 {
2399 	struct mpage_da_data *mpd = data;
2400 	struct inode *inode = mpd->inode;
2401 	struct buffer_head *bh, *head;
2402 	sector_t logical;
2403 
2404 	/*
2405 	 * Can we merge this page to current extent?
2406 	 */
2407 	if (mpd->next_page != page->index) {
2408 		/*
2409 		 * Nope, we can't. So, we map non-allocated blocks
2410 		 * and start IO on them using writepage()
2411 		 */
2412 		if (mpd->next_page != mpd->first_page) {
2413 			if (mpage_da_map_blocks(mpd) == 0)
2414 				mpage_da_submit_io(mpd);
2415 			/*
2416 			 * skip rest of the page in the page_vec
2417 			 */
2418 			mpd->io_done = 1;
2419 			redirty_page_for_writepage(wbc, page);
2420 			unlock_page(page);
2421 			return MPAGE_DA_EXTENT_TAIL;
2422 		}
2423 
2424 		/*
2425 		 * Start next extent of pages ...
2426 		 */
2427 		mpd->first_page = page->index;
2428 
2429 		/*
2430 		 * ... and blocks
2431 		 */
2432 		mpd->b_size = 0;
2433 		mpd->b_state = 0;
2434 		mpd->b_blocknr = 0;
2435 	}
2436 
2437 	mpd->next_page = page->index + 1;
2438 	logical = (sector_t) page->index <<
2439 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2440 
2441 	if (!page_has_buffers(page)) {
2442 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2443 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2444 		if (mpd->io_done)
2445 			return MPAGE_DA_EXTENT_TAIL;
2446 	} else {
2447 		/*
2448 		 * Page with regular buffer heads, just add all dirty ones
2449 		 */
2450 		head = page_buffers(page);
2451 		bh = head;
2452 		do {
2453 			BUG_ON(buffer_locked(bh));
2454 			/*
2455 			 * We need to try to allocate
2456 			 * unmapped blocks in the same page.
2457 			 * Otherwise we won't make progress
2458 			 * with the page in ext4_writepage
2459 			 */
2460 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2461 				mpage_add_bh_to_extent(mpd, logical,
2462 						       bh->b_size,
2463 						       bh->b_state);
2464 				if (mpd->io_done)
2465 					return MPAGE_DA_EXTENT_TAIL;
2466 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2467 				/*
2468 				 * mapped dirty buffer. We need to update
2469 				 * the b_state because we look at
2470 				 * b_state in mpage_da_map_blocks. We don't
2471 				 * update b_size because if we find an
2472 				 * unmapped buffer_head later we need to
2473 				 * use the b_state flag of that buffer_head.
2474 				 */
2475 				if (mpd->b_size == 0)
2476 					mpd->b_state = bh->b_state & BH_FLAGS;
2477 			}
2478 			logical++;
2479 		} while ((bh = bh->b_this_page) != head);
2480 	}
2481 
2482 	return 0;
2483 }
2484 
2485 /*
2486  * This is a special get_blocks_t callback which is used by
2487  * ext4_da_write_begin().  It will either return mapped block or
2488  * reserve space for a single block.
2489  *
2490  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2491  * We also have b_blocknr = -1 and b_bdev initialized properly
2492  *
2493  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2494  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2495  * initialized properly.
2496  */
2497 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2498 				  struct buffer_head *bh, int create)
2499 {
2500 	struct ext4_map_blocks map;
2501 	int ret = 0;
2502 	sector_t invalid_block = ~((sector_t) 0xffff);
2503 
2504 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2505 		invalid_block = ~0;
2506 
2507 	BUG_ON(create == 0);
2508 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2509 
2510 	map.m_lblk = iblock;
2511 	map.m_len = 1;
2512 
2513 	/*
2514 	 * first, we need to know whether the block is allocated already
2515 	 * preallocated blocks are unmapped but should treated
2516 	 * the same as allocated blocks.
2517 	 */
2518 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2519 	if (ret < 0)
2520 		return ret;
2521 	if (ret == 0) {
2522 		if (buffer_delay(bh))
2523 			return 0; /* Not sure this could or should happen */
2524 		/*
2525 		 * XXX: __block_prepare_write() unmaps passed block,
2526 		 * is it OK?
2527 		 */
2528 		ret = ext4_da_reserve_space(inode, iblock);
2529 		if (ret)
2530 			/* not enough space to reserve */
2531 			return ret;
2532 
2533 		map_bh(bh, inode->i_sb, invalid_block);
2534 		set_buffer_new(bh);
2535 		set_buffer_delay(bh);
2536 		return 0;
2537 	}
2538 
2539 	map_bh(bh, inode->i_sb, map.m_pblk);
2540 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2541 
2542 	if (buffer_unwritten(bh)) {
2543 		/* A delayed write to unwritten bh should be marked
2544 		 * new and mapped.  Mapped ensures that we don't do
2545 		 * get_block multiple times when we write to the same
2546 		 * offset and new ensures that we do proper zero out
2547 		 * for partial write.
2548 		 */
2549 		set_buffer_new(bh);
2550 		set_buffer_mapped(bh);
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * This function is used as a standard get_block_t calback function
2557  * when there is no desire to allocate any blocks.  It is used as a
2558  * callback function for block_prepare_write(), nobh_writepage(), and
2559  * block_write_full_page().  These functions should only try to map a
2560  * single block at a time.
2561  *
2562  * Since this function doesn't do block allocations even if the caller
2563  * requests it by passing in create=1, it is critically important that
2564  * any caller checks to make sure that any buffer heads are returned
2565  * by this function are either all already mapped or marked for
2566  * delayed allocation before calling nobh_writepage() or
2567  * block_write_full_page().  Otherwise, b_blocknr could be left
2568  * unitialized, and the page write functions will be taken by
2569  * surprise.
2570  */
2571 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2572 				   struct buffer_head *bh_result, int create)
2573 {
2574 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2575 	return _ext4_get_block(inode, iblock, bh_result, 0);
2576 }
2577 
2578 static int bget_one(handle_t *handle, struct buffer_head *bh)
2579 {
2580 	get_bh(bh);
2581 	return 0;
2582 }
2583 
2584 static int bput_one(handle_t *handle, struct buffer_head *bh)
2585 {
2586 	put_bh(bh);
2587 	return 0;
2588 }
2589 
2590 static int __ext4_journalled_writepage(struct page *page,
2591 				       unsigned int len)
2592 {
2593 	struct address_space *mapping = page->mapping;
2594 	struct inode *inode = mapping->host;
2595 	struct buffer_head *page_bufs;
2596 	handle_t *handle = NULL;
2597 	int ret = 0;
2598 	int err;
2599 
2600 	page_bufs = page_buffers(page);
2601 	BUG_ON(!page_bufs);
2602 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2603 	/* As soon as we unlock the page, it can go away, but we have
2604 	 * references to buffers so we are safe */
2605 	unlock_page(page);
2606 
2607 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2608 	if (IS_ERR(handle)) {
2609 		ret = PTR_ERR(handle);
2610 		goto out;
2611 	}
2612 
2613 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2614 				do_journal_get_write_access);
2615 
2616 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2617 				write_end_fn);
2618 	if (ret == 0)
2619 		ret = err;
2620 	err = ext4_journal_stop(handle);
2621 	if (!ret)
2622 		ret = err;
2623 
2624 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2625 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2626 out:
2627 	return ret;
2628 }
2629 
2630 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2631 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2632 
2633 /*
2634  * Note that we don't need to start a transaction unless we're journaling data
2635  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2636  * need to file the inode to the transaction's list in ordered mode because if
2637  * we are writing back data added by write(), the inode is already there and if
2638  * we are writing back data modified via mmap(), noone guarantees in which
2639  * transaction the data will hit the disk. In case we are journaling data, we
2640  * cannot start transaction directly because transaction start ranks above page
2641  * lock so we have to do some magic.
2642  *
2643  * This function can get called via...
2644  *   - ext4_da_writepages after taking page lock (have journal handle)
2645  *   - journal_submit_inode_data_buffers (no journal handle)
2646  *   - shrink_page_list via pdflush (no journal handle)
2647  *   - grab_page_cache when doing write_begin (have journal handle)
2648  *
2649  * We don't do any block allocation in this function. If we have page with
2650  * multiple blocks we need to write those buffer_heads that are mapped. This
2651  * is important for mmaped based write. So if we do with blocksize 1K
2652  * truncate(f, 1024);
2653  * a = mmap(f, 0, 4096);
2654  * a[0] = 'a';
2655  * truncate(f, 4096);
2656  * we have in the page first buffer_head mapped via page_mkwrite call back
2657  * but other bufer_heads would be unmapped but dirty(dirty done via the
2658  * do_wp_page). So writepage should write the first block. If we modify
2659  * the mmap area beyond 1024 we will again get a page_fault and the
2660  * page_mkwrite callback will do the block allocation and mark the
2661  * buffer_heads mapped.
2662  *
2663  * We redirty the page if we have any buffer_heads that is either delay or
2664  * unwritten in the page.
2665  *
2666  * We can get recursively called as show below.
2667  *
2668  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2669  *		ext4_writepage()
2670  *
2671  * But since we don't do any block allocation we should not deadlock.
2672  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2673  */
2674 static int ext4_writepage(struct page *page,
2675 			  struct writeback_control *wbc)
2676 {
2677 	int ret = 0;
2678 	loff_t size;
2679 	unsigned int len;
2680 	struct buffer_head *page_bufs = NULL;
2681 	struct inode *inode = page->mapping->host;
2682 
2683 	trace_ext4_writepage(inode, page);
2684 	size = i_size_read(inode);
2685 	if (page->index == size >> PAGE_CACHE_SHIFT)
2686 		len = size & ~PAGE_CACHE_MASK;
2687 	else
2688 		len = PAGE_CACHE_SIZE;
2689 
2690 	if (page_has_buffers(page)) {
2691 		page_bufs = page_buffers(page);
2692 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2693 					ext4_bh_delay_or_unwritten)) {
2694 			/*
2695 			 * We don't want to do  block allocation
2696 			 * So redirty the page and return
2697 			 * We may reach here when we do a journal commit
2698 			 * via journal_submit_inode_data_buffers.
2699 			 * If we don't have mapping block we just ignore
2700 			 * them. We can also reach here via shrink_page_list
2701 			 */
2702 			redirty_page_for_writepage(wbc, page);
2703 			unlock_page(page);
2704 			return 0;
2705 		}
2706 	} else {
2707 		/*
2708 		 * The test for page_has_buffers() is subtle:
2709 		 * We know the page is dirty but it lost buffers. That means
2710 		 * that at some moment in time after write_begin()/write_end()
2711 		 * has been called all buffers have been clean and thus they
2712 		 * must have been written at least once. So they are all
2713 		 * mapped and we can happily proceed with mapping them
2714 		 * and writing the page.
2715 		 *
2716 		 * Try to initialize the buffer_heads and check whether
2717 		 * all are mapped and non delay. We don't want to
2718 		 * do block allocation here.
2719 		 */
2720 		ret = block_prepare_write(page, 0, len,
2721 					  noalloc_get_block_write);
2722 		if (!ret) {
2723 			page_bufs = page_buffers(page);
2724 			/* check whether all are mapped and non delay */
2725 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2726 						ext4_bh_delay_or_unwritten)) {
2727 				redirty_page_for_writepage(wbc, page);
2728 				unlock_page(page);
2729 				return 0;
2730 			}
2731 		} else {
2732 			/*
2733 			 * We can't do block allocation here
2734 			 * so just redity the page and unlock
2735 			 * and return
2736 			 */
2737 			redirty_page_for_writepage(wbc, page);
2738 			unlock_page(page);
2739 			return 0;
2740 		}
2741 		/* now mark the buffer_heads as dirty and uptodate */
2742 		block_commit_write(page, 0, len);
2743 	}
2744 
2745 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2746 		/*
2747 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2748 		 * doesn't seem much point in redirtying the page here.
2749 		 */
2750 		ClearPageChecked(page);
2751 		return __ext4_journalled_writepage(page, len);
2752 	}
2753 
2754 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2755 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2756 	else if (page_bufs && buffer_uninit(page_bufs)) {
2757 		ext4_set_bh_endio(page_bufs, inode);
2758 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2759 					    wbc, ext4_end_io_buffer_write);
2760 	} else
2761 		ret = block_write_full_page(page, noalloc_get_block_write,
2762 					    wbc);
2763 
2764 	return ret;
2765 }
2766 
2767 /*
2768  * This is called via ext4_da_writepages() to
2769  * calulate the total number of credits to reserve to fit
2770  * a single extent allocation into a single transaction,
2771  * ext4_da_writpeages() will loop calling this before
2772  * the block allocation.
2773  */
2774 
2775 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2776 {
2777 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2778 
2779 	/*
2780 	 * With non-extent format the journal credit needed to
2781 	 * insert nrblocks contiguous block is dependent on
2782 	 * number of contiguous block. So we will limit
2783 	 * number of contiguous block to a sane value
2784 	 */
2785 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2786 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2787 		max_blocks = EXT4_MAX_TRANS_DATA;
2788 
2789 	return ext4_chunk_trans_blocks(inode, max_blocks);
2790 }
2791 
2792 /*
2793  * write_cache_pages_da - walk the list of dirty pages of the given
2794  * address space and call the callback function (which usually writes
2795  * the pages).
2796  *
2797  * This is a forked version of write_cache_pages().  Differences:
2798  *	Range cyclic is ignored.
2799  *	no_nrwrite_index_update is always presumed true
2800  */
2801 static int write_cache_pages_da(struct address_space *mapping,
2802 				struct writeback_control *wbc,
2803 				struct mpage_da_data *mpd)
2804 {
2805 	int ret = 0;
2806 	int done = 0;
2807 	struct pagevec pvec;
2808 	int nr_pages;
2809 	pgoff_t index;
2810 	pgoff_t end;		/* Inclusive */
2811 	long nr_to_write = wbc->nr_to_write;
2812 
2813 	pagevec_init(&pvec, 0);
2814 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2815 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2816 
2817 	while (!done && (index <= end)) {
2818 		int i;
2819 
2820 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2821 			      PAGECACHE_TAG_DIRTY,
2822 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2823 		if (nr_pages == 0)
2824 			break;
2825 
2826 		for (i = 0; i < nr_pages; i++) {
2827 			struct page *page = pvec.pages[i];
2828 
2829 			/*
2830 			 * At this point, the page may be truncated or
2831 			 * invalidated (changing page->mapping to NULL), or
2832 			 * even swizzled back from swapper_space to tmpfs file
2833 			 * mapping. However, page->index will not change
2834 			 * because we have a reference on the page.
2835 			 */
2836 			if (page->index > end) {
2837 				done = 1;
2838 				break;
2839 			}
2840 
2841 			lock_page(page);
2842 
2843 			/*
2844 			 * Page truncated or invalidated. We can freely skip it
2845 			 * then, even for data integrity operations: the page
2846 			 * has disappeared concurrently, so there could be no
2847 			 * real expectation of this data interity operation
2848 			 * even if there is now a new, dirty page at the same
2849 			 * pagecache address.
2850 			 */
2851 			if (unlikely(page->mapping != mapping)) {
2852 continue_unlock:
2853 				unlock_page(page);
2854 				continue;
2855 			}
2856 
2857 			if (!PageDirty(page)) {
2858 				/* someone wrote it for us */
2859 				goto continue_unlock;
2860 			}
2861 
2862 			if (PageWriteback(page)) {
2863 				if (wbc->sync_mode != WB_SYNC_NONE)
2864 					wait_on_page_writeback(page);
2865 				else
2866 					goto continue_unlock;
2867 			}
2868 
2869 			BUG_ON(PageWriteback(page));
2870 			if (!clear_page_dirty_for_io(page))
2871 				goto continue_unlock;
2872 
2873 			ret = __mpage_da_writepage(page, wbc, mpd);
2874 			if (unlikely(ret)) {
2875 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2876 					unlock_page(page);
2877 					ret = 0;
2878 				} else {
2879 					done = 1;
2880 					break;
2881 				}
2882 			}
2883 
2884 			if (nr_to_write > 0) {
2885 				nr_to_write--;
2886 				if (nr_to_write == 0 &&
2887 				    wbc->sync_mode == WB_SYNC_NONE) {
2888 					/*
2889 					 * We stop writing back only if we are
2890 					 * not doing integrity sync. In case of
2891 					 * integrity sync we have to keep going
2892 					 * because someone may be concurrently
2893 					 * dirtying pages, and we might have
2894 					 * synced a lot of newly appeared dirty
2895 					 * pages, but have not synced all of the
2896 					 * old dirty pages.
2897 					 */
2898 					done = 1;
2899 					break;
2900 				}
2901 			}
2902 		}
2903 		pagevec_release(&pvec);
2904 		cond_resched();
2905 	}
2906 	return ret;
2907 }
2908 
2909 
2910 static int ext4_da_writepages(struct address_space *mapping,
2911 			      struct writeback_control *wbc)
2912 {
2913 	pgoff_t	index;
2914 	int range_whole = 0;
2915 	handle_t *handle = NULL;
2916 	struct mpage_da_data mpd;
2917 	struct inode *inode = mapping->host;
2918 	int pages_written = 0;
2919 	long pages_skipped;
2920 	unsigned int max_pages;
2921 	int range_cyclic, cycled = 1, io_done = 0;
2922 	int needed_blocks, ret = 0;
2923 	long desired_nr_to_write, nr_to_writebump = 0;
2924 	loff_t range_start = wbc->range_start;
2925 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2926 
2927 	trace_ext4_da_writepages(inode, wbc);
2928 
2929 	/*
2930 	 * No pages to write? This is mainly a kludge to avoid starting
2931 	 * a transaction for special inodes like journal inode on last iput()
2932 	 * because that could violate lock ordering on umount
2933 	 */
2934 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2935 		return 0;
2936 
2937 	/*
2938 	 * If the filesystem has aborted, it is read-only, so return
2939 	 * right away instead of dumping stack traces later on that
2940 	 * will obscure the real source of the problem.  We test
2941 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2942 	 * the latter could be true if the filesystem is mounted
2943 	 * read-only, and in that case, ext4_da_writepages should
2944 	 * *never* be called, so if that ever happens, we would want
2945 	 * the stack trace.
2946 	 */
2947 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2948 		return -EROFS;
2949 
2950 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2951 		range_whole = 1;
2952 
2953 	range_cyclic = wbc->range_cyclic;
2954 	if (wbc->range_cyclic) {
2955 		index = mapping->writeback_index;
2956 		if (index)
2957 			cycled = 0;
2958 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2959 		wbc->range_end  = LLONG_MAX;
2960 		wbc->range_cyclic = 0;
2961 	} else
2962 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2963 
2964 	/*
2965 	 * This works around two forms of stupidity.  The first is in
2966 	 * the writeback code, which caps the maximum number of pages
2967 	 * written to be 1024 pages.  This is wrong on multiple
2968 	 * levels; different architectues have a different page size,
2969 	 * which changes the maximum amount of data which gets
2970 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2971 	 * forces this value to be 16 megabytes by multiplying
2972 	 * nr_to_write parameter by four, and then relies on its
2973 	 * allocator to allocate larger extents to make them
2974 	 * contiguous.  Unfortunately this brings us to the second
2975 	 * stupidity, which is that ext4's mballoc code only allocates
2976 	 * at most 2048 blocks.  So we force contiguous writes up to
2977 	 * the number of dirty blocks in the inode, or
2978 	 * sbi->max_writeback_mb_bump whichever is smaller.
2979 	 */
2980 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2981 	if (!range_cyclic && range_whole)
2982 		desired_nr_to_write = wbc->nr_to_write * 8;
2983 	else
2984 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2985 							   max_pages);
2986 	if (desired_nr_to_write > max_pages)
2987 		desired_nr_to_write = max_pages;
2988 
2989 	if (wbc->nr_to_write < desired_nr_to_write) {
2990 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2991 		wbc->nr_to_write = desired_nr_to_write;
2992 	}
2993 
2994 	mpd.wbc = wbc;
2995 	mpd.inode = mapping->host;
2996 
2997 	pages_skipped = wbc->pages_skipped;
2998 
2999 retry:
3000 	while (!ret && wbc->nr_to_write > 0) {
3001 
3002 		/*
3003 		 * we  insert one extent at a time. So we need
3004 		 * credit needed for single extent allocation.
3005 		 * journalled mode is currently not supported
3006 		 * by delalloc
3007 		 */
3008 		BUG_ON(ext4_should_journal_data(inode));
3009 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3010 
3011 		/* start a new transaction*/
3012 		handle = ext4_journal_start(inode, needed_blocks);
3013 		if (IS_ERR(handle)) {
3014 			ret = PTR_ERR(handle);
3015 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3016 			       "%ld pages, ino %lu; err %d", __func__,
3017 				wbc->nr_to_write, inode->i_ino, ret);
3018 			goto out_writepages;
3019 		}
3020 
3021 		/*
3022 		 * Now call __mpage_da_writepage to find the next
3023 		 * contiguous region of logical blocks that need
3024 		 * blocks to be allocated by ext4.  We don't actually
3025 		 * submit the blocks for I/O here, even though
3026 		 * write_cache_pages thinks it will, and will set the
3027 		 * pages as clean for write before calling
3028 		 * __mpage_da_writepage().
3029 		 */
3030 		mpd.b_size = 0;
3031 		mpd.b_state = 0;
3032 		mpd.b_blocknr = 0;
3033 		mpd.first_page = 0;
3034 		mpd.next_page = 0;
3035 		mpd.io_done = 0;
3036 		mpd.pages_written = 0;
3037 		mpd.retval = 0;
3038 		ret = write_cache_pages_da(mapping, wbc, &mpd);
3039 		/*
3040 		 * If we have a contiguous extent of pages and we
3041 		 * haven't done the I/O yet, map the blocks and submit
3042 		 * them for I/O.
3043 		 */
3044 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3045 			if (mpage_da_map_blocks(&mpd) == 0)
3046 				mpage_da_submit_io(&mpd);
3047 			mpd.io_done = 1;
3048 			ret = MPAGE_DA_EXTENT_TAIL;
3049 		}
3050 		trace_ext4_da_write_pages(inode, &mpd);
3051 		wbc->nr_to_write -= mpd.pages_written;
3052 
3053 		ext4_journal_stop(handle);
3054 
3055 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3056 			/* commit the transaction which would
3057 			 * free blocks released in the transaction
3058 			 * and try again
3059 			 */
3060 			jbd2_journal_force_commit_nested(sbi->s_journal);
3061 			wbc->pages_skipped = pages_skipped;
3062 			ret = 0;
3063 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3064 			/*
3065 			 * got one extent now try with
3066 			 * rest of the pages
3067 			 */
3068 			pages_written += mpd.pages_written;
3069 			wbc->pages_skipped = pages_skipped;
3070 			ret = 0;
3071 			io_done = 1;
3072 		} else if (wbc->nr_to_write)
3073 			/*
3074 			 * There is no more writeout needed
3075 			 * or we requested for a noblocking writeout
3076 			 * and we found the device congested
3077 			 */
3078 			break;
3079 	}
3080 	if (!io_done && !cycled) {
3081 		cycled = 1;
3082 		index = 0;
3083 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3084 		wbc->range_end  = mapping->writeback_index - 1;
3085 		goto retry;
3086 	}
3087 	if (pages_skipped != wbc->pages_skipped)
3088 		ext4_msg(inode->i_sb, KERN_CRIT,
3089 			 "This should not happen leaving %s "
3090 			 "with nr_to_write = %ld ret = %d",
3091 			 __func__, wbc->nr_to_write, ret);
3092 
3093 	/* Update index */
3094 	index += pages_written;
3095 	wbc->range_cyclic = range_cyclic;
3096 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3097 		/*
3098 		 * set the writeback_index so that range_cyclic
3099 		 * mode will write it back later
3100 		 */
3101 		mapping->writeback_index = index;
3102 
3103 out_writepages:
3104 	wbc->nr_to_write -= nr_to_writebump;
3105 	wbc->range_start = range_start;
3106 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3107 	return ret;
3108 }
3109 
3110 #define FALL_BACK_TO_NONDELALLOC 1
3111 static int ext4_nonda_switch(struct super_block *sb)
3112 {
3113 	s64 free_blocks, dirty_blocks;
3114 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3115 
3116 	/*
3117 	 * switch to non delalloc mode if we are running low
3118 	 * on free block. The free block accounting via percpu
3119 	 * counters can get slightly wrong with percpu_counter_batch getting
3120 	 * accumulated on each CPU without updating global counters
3121 	 * Delalloc need an accurate free block accounting. So switch
3122 	 * to non delalloc when we are near to error range.
3123 	 */
3124 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3125 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3126 	if (2 * free_blocks < 3 * dirty_blocks ||
3127 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3128 		/*
3129 		 * free block count is less than 150% of dirty blocks
3130 		 * or free blocks is less than watermark
3131 		 */
3132 		return 1;
3133 	}
3134 	/*
3135 	 * Even if we don't switch but are nearing capacity,
3136 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3137 	 */
3138 	if (free_blocks < 2 * dirty_blocks)
3139 		writeback_inodes_sb_if_idle(sb);
3140 
3141 	return 0;
3142 }
3143 
3144 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3145 			       loff_t pos, unsigned len, unsigned flags,
3146 			       struct page **pagep, void **fsdata)
3147 {
3148 	int ret, retries = 0;
3149 	struct page *page;
3150 	pgoff_t index;
3151 	unsigned from, to;
3152 	struct inode *inode = mapping->host;
3153 	handle_t *handle;
3154 
3155 	index = pos >> PAGE_CACHE_SHIFT;
3156 	from = pos & (PAGE_CACHE_SIZE - 1);
3157 	to = from + len;
3158 
3159 	if (ext4_nonda_switch(inode->i_sb)) {
3160 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3161 		return ext4_write_begin(file, mapping, pos,
3162 					len, flags, pagep, fsdata);
3163 	}
3164 	*fsdata = (void *)0;
3165 	trace_ext4_da_write_begin(inode, pos, len, flags);
3166 retry:
3167 	/*
3168 	 * With delayed allocation, we don't log the i_disksize update
3169 	 * if there is delayed block allocation. But we still need
3170 	 * to journalling the i_disksize update if writes to the end
3171 	 * of file which has an already mapped buffer.
3172 	 */
3173 	handle = ext4_journal_start(inode, 1);
3174 	if (IS_ERR(handle)) {
3175 		ret = PTR_ERR(handle);
3176 		goto out;
3177 	}
3178 	/* We cannot recurse into the filesystem as the transaction is already
3179 	 * started */
3180 	flags |= AOP_FLAG_NOFS;
3181 
3182 	page = grab_cache_page_write_begin(mapping, index, flags);
3183 	if (!page) {
3184 		ext4_journal_stop(handle);
3185 		ret = -ENOMEM;
3186 		goto out;
3187 	}
3188 	*pagep = page;
3189 
3190 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3191 				ext4_da_get_block_prep);
3192 	if (ret < 0) {
3193 		unlock_page(page);
3194 		ext4_journal_stop(handle);
3195 		page_cache_release(page);
3196 		/*
3197 		 * block_write_begin may have instantiated a few blocks
3198 		 * outside i_size.  Trim these off again. Don't need
3199 		 * i_size_read because we hold i_mutex.
3200 		 */
3201 		if (pos + len > inode->i_size)
3202 			ext4_truncate_failed_write(inode);
3203 	}
3204 
3205 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3206 		goto retry;
3207 out:
3208 	return ret;
3209 }
3210 
3211 /*
3212  * Check if we should update i_disksize
3213  * when write to the end of file but not require block allocation
3214  */
3215 static int ext4_da_should_update_i_disksize(struct page *page,
3216 					    unsigned long offset)
3217 {
3218 	struct buffer_head *bh;
3219 	struct inode *inode = page->mapping->host;
3220 	unsigned int idx;
3221 	int i;
3222 
3223 	bh = page_buffers(page);
3224 	idx = offset >> inode->i_blkbits;
3225 
3226 	for (i = 0; i < idx; i++)
3227 		bh = bh->b_this_page;
3228 
3229 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3230 		return 0;
3231 	return 1;
3232 }
3233 
3234 static int ext4_da_write_end(struct file *file,
3235 			     struct address_space *mapping,
3236 			     loff_t pos, unsigned len, unsigned copied,
3237 			     struct page *page, void *fsdata)
3238 {
3239 	struct inode *inode = mapping->host;
3240 	int ret = 0, ret2;
3241 	handle_t *handle = ext4_journal_current_handle();
3242 	loff_t new_i_size;
3243 	unsigned long start, end;
3244 	int write_mode = (int)(unsigned long)fsdata;
3245 
3246 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3247 		if (ext4_should_order_data(inode)) {
3248 			return ext4_ordered_write_end(file, mapping, pos,
3249 					len, copied, page, fsdata);
3250 		} else if (ext4_should_writeback_data(inode)) {
3251 			return ext4_writeback_write_end(file, mapping, pos,
3252 					len, copied, page, fsdata);
3253 		} else {
3254 			BUG();
3255 		}
3256 	}
3257 
3258 	trace_ext4_da_write_end(inode, pos, len, copied);
3259 	start = pos & (PAGE_CACHE_SIZE - 1);
3260 	end = start + copied - 1;
3261 
3262 	/*
3263 	 * generic_write_end() will run mark_inode_dirty() if i_size
3264 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3265 	 * into that.
3266 	 */
3267 
3268 	new_i_size = pos + copied;
3269 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3270 		if (ext4_da_should_update_i_disksize(page, end)) {
3271 			down_write(&EXT4_I(inode)->i_data_sem);
3272 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3273 				/*
3274 				 * Updating i_disksize when extending file
3275 				 * without needing block allocation
3276 				 */
3277 				if (ext4_should_order_data(inode))
3278 					ret = ext4_jbd2_file_inode(handle,
3279 								   inode);
3280 
3281 				EXT4_I(inode)->i_disksize = new_i_size;
3282 			}
3283 			up_write(&EXT4_I(inode)->i_data_sem);
3284 			/* We need to mark inode dirty even if
3285 			 * new_i_size is less that inode->i_size
3286 			 * bu greater than i_disksize.(hint delalloc)
3287 			 */
3288 			ext4_mark_inode_dirty(handle, inode);
3289 		}
3290 	}
3291 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3292 							page, fsdata);
3293 	copied = ret2;
3294 	if (ret2 < 0)
3295 		ret = ret2;
3296 	ret2 = ext4_journal_stop(handle);
3297 	if (!ret)
3298 		ret = ret2;
3299 
3300 	return ret ? ret : copied;
3301 }
3302 
3303 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3304 {
3305 	/*
3306 	 * Drop reserved blocks
3307 	 */
3308 	BUG_ON(!PageLocked(page));
3309 	if (!page_has_buffers(page))
3310 		goto out;
3311 
3312 	ext4_da_page_release_reservation(page, offset);
3313 
3314 out:
3315 	ext4_invalidatepage(page, offset);
3316 
3317 	return;
3318 }
3319 
3320 /*
3321  * Force all delayed allocation blocks to be allocated for a given inode.
3322  */
3323 int ext4_alloc_da_blocks(struct inode *inode)
3324 {
3325 	trace_ext4_alloc_da_blocks(inode);
3326 
3327 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3328 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3329 		return 0;
3330 
3331 	/*
3332 	 * We do something simple for now.  The filemap_flush() will
3333 	 * also start triggering a write of the data blocks, which is
3334 	 * not strictly speaking necessary (and for users of
3335 	 * laptop_mode, not even desirable).  However, to do otherwise
3336 	 * would require replicating code paths in:
3337 	 *
3338 	 * ext4_da_writepages() ->
3339 	 *    write_cache_pages() ---> (via passed in callback function)
3340 	 *        __mpage_da_writepage() -->
3341 	 *           mpage_add_bh_to_extent()
3342 	 *           mpage_da_map_blocks()
3343 	 *
3344 	 * The problem is that write_cache_pages(), located in
3345 	 * mm/page-writeback.c, marks pages clean in preparation for
3346 	 * doing I/O, which is not desirable if we're not planning on
3347 	 * doing I/O at all.
3348 	 *
3349 	 * We could call write_cache_pages(), and then redirty all of
3350 	 * the pages by calling redirty_page_for_writeback() but that
3351 	 * would be ugly in the extreme.  So instead we would need to
3352 	 * replicate parts of the code in the above functions,
3353 	 * simplifying them becuase we wouldn't actually intend to
3354 	 * write out the pages, but rather only collect contiguous
3355 	 * logical block extents, call the multi-block allocator, and
3356 	 * then update the buffer heads with the block allocations.
3357 	 *
3358 	 * For now, though, we'll cheat by calling filemap_flush(),
3359 	 * which will map the blocks, and start the I/O, but not
3360 	 * actually wait for the I/O to complete.
3361 	 */
3362 	return filemap_flush(inode->i_mapping);
3363 }
3364 
3365 /*
3366  * bmap() is special.  It gets used by applications such as lilo and by
3367  * the swapper to find the on-disk block of a specific piece of data.
3368  *
3369  * Naturally, this is dangerous if the block concerned is still in the
3370  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3371  * filesystem and enables swap, then they may get a nasty shock when the
3372  * data getting swapped to that swapfile suddenly gets overwritten by
3373  * the original zero's written out previously to the journal and
3374  * awaiting writeback in the kernel's buffer cache.
3375  *
3376  * So, if we see any bmap calls here on a modified, data-journaled file,
3377  * take extra steps to flush any blocks which might be in the cache.
3378  */
3379 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3380 {
3381 	struct inode *inode = mapping->host;
3382 	journal_t *journal;
3383 	int err;
3384 
3385 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3386 			test_opt(inode->i_sb, DELALLOC)) {
3387 		/*
3388 		 * With delalloc we want to sync the file
3389 		 * so that we can make sure we allocate
3390 		 * blocks for file
3391 		 */
3392 		filemap_write_and_wait(mapping);
3393 	}
3394 
3395 	if (EXT4_JOURNAL(inode) &&
3396 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3397 		/*
3398 		 * This is a REALLY heavyweight approach, but the use of
3399 		 * bmap on dirty files is expected to be extremely rare:
3400 		 * only if we run lilo or swapon on a freshly made file
3401 		 * do we expect this to happen.
3402 		 *
3403 		 * (bmap requires CAP_SYS_RAWIO so this does not
3404 		 * represent an unprivileged user DOS attack --- we'd be
3405 		 * in trouble if mortal users could trigger this path at
3406 		 * will.)
3407 		 *
3408 		 * NB. EXT4_STATE_JDATA is not set on files other than
3409 		 * regular files.  If somebody wants to bmap a directory
3410 		 * or symlink and gets confused because the buffer
3411 		 * hasn't yet been flushed to disk, they deserve
3412 		 * everything they get.
3413 		 */
3414 
3415 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3416 		journal = EXT4_JOURNAL(inode);
3417 		jbd2_journal_lock_updates(journal);
3418 		err = jbd2_journal_flush(journal);
3419 		jbd2_journal_unlock_updates(journal);
3420 
3421 		if (err)
3422 			return 0;
3423 	}
3424 
3425 	return generic_block_bmap(mapping, block, ext4_get_block);
3426 }
3427 
3428 static int ext4_readpage(struct file *file, struct page *page)
3429 {
3430 	return mpage_readpage(page, ext4_get_block);
3431 }
3432 
3433 static int
3434 ext4_readpages(struct file *file, struct address_space *mapping,
3435 		struct list_head *pages, unsigned nr_pages)
3436 {
3437 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3438 }
3439 
3440 static void ext4_free_io_end(ext4_io_end_t *io)
3441 {
3442 	BUG_ON(!io);
3443 	if (io->page)
3444 		put_page(io->page);
3445 	iput(io->inode);
3446 	kfree(io);
3447 }
3448 
3449 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3450 {
3451 	struct buffer_head *head, *bh;
3452 	unsigned int curr_off = 0;
3453 
3454 	if (!page_has_buffers(page))
3455 		return;
3456 	head = bh = page_buffers(page);
3457 	do {
3458 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3459 					&& bh->b_private) {
3460 			ext4_free_io_end(bh->b_private);
3461 			bh->b_private = NULL;
3462 			bh->b_end_io = NULL;
3463 		}
3464 		curr_off = curr_off + bh->b_size;
3465 		bh = bh->b_this_page;
3466 	} while (bh != head);
3467 }
3468 
3469 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3470 {
3471 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3472 
3473 	/*
3474 	 * free any io_end structure allocated for buffers to be discarded
3475 	 */
3476 	if (ext4_should_dioread_nolock(page->mapping->host))
3477 		ext4_invalidatepage_free_endio(page, offset);
3478 	/*
3479 	 * If it's a full truncate we just forget about the pending dirtying
3480 	 */
3481 	if (offset == 0)
3482 		ClearPageChecked(page);
3483 
3484 	if (journal)
3485 		jbd2_journal_invalidatepage(journal, page, offset);
3486 	else
3487 		block_invalidatepage(page, offset);
3488 }
3489 
3490 static int ext4_releasepage(struct page *page, gfp_t wait)
3491 {
3492 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3493 
3494 	WARN_ON(PageChecked(page));
3495 	if (!page_has_buffers(page))
3496 		return 0;
3497 	if (journal)
3498 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3499 	else
3500 		return try_to_free_buffers(page);
3501 }
3502 
3503 /*
3504  * O_DIRECT for ext3 (or indirect map) based files
3505  *
3506  * If the O_DIRECT write will extend the file then add this inode to the
3507  * orphan list.  So recovery will truncate it back to the original size
3508  * if the machine crashes during the write.
3509  *
3510  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3511  * crashes then stale disk data _may_ be exposed inside the file. But current
3512  * VFS code falls back into buffered path in that case so we are safe.
3513  */
3514 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3515 			      const struct iovec *iov, loff_t offset,
3516 			      unsigned long nr_segs)
3517 {
3518 	struct file *file = iocb->ki_filp;
3519 	struct inode *inode = file->f_mapping->host;
3520 	struct ext4_inode_info *ei = EXT4_I(inode);
3521 	handle_t *handle;
3522 	ssize_t ret;
3523 	int orphan = 0;
3524 	size_t count = iov_length(iov, nr_segs);
3525 	int retries = 0;
3526 
3527 	if (rw == WRITE) {
3528 		loff_t final_size = offset + count;
3529 
3530 		if (final_size > inode->i_size) {
3531 			/* Credits for sb + inode write */
3532 			handle = ext4_journal_start(inode, 2);
3533 			if (IS_ERR(handle)) {
3534 				ret = PTR_ERR(handle);
3535 				goto out;
3536 			}
3537 			ret = ext4_orphan_add(handle, inode);
3538 			if (ret) {
3539 				ext4_journal_stop(handle);
3540 				goto out;
3541 			}
3542 			orphan = 1;
3543 			ei->i_disksize = inode->i_size;
3544 			ext4_journal_stop(handle);
3545 		}
3546 	}
3547 
3548 retry:
3549 	if (rw == READ && ext4_should_dioread_nolock(inode))
3550 		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3551 				 inode->i_sb->s_bdev, iov,
3552 				 offset, nr_segs,
3553 				 ext4_get_block, NULL);
3554 	else
3555 		ret = blockdev_direct_IO(rw, iocb, inode,
3556 				 inode->i_sb->s_bdev, iov,
3557 				 offset, nr_segs,
3558 				 ext4_get_block, NULL);
3559 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3560 		goto retry;
3561 
3562 	if (orphan) {
3563 		int err;
3564 
3565 		/* Credits for sb + inode write */
3566 		handle = ext4_journal_start(inode, 2);
3567 		if (IS_ERR(handle)) {
3568 			/* This is really bad luck. We've written the data
3569 			 * but cannot extend i_size. Bail out and pretend
3570 			 * the write failed... */
3571 			ret = PTR_ERR(handle);
3572 			if (inode->i_nlink)
3573 				ext4_orphan_del(NULL, inode);
3574 
3575 			goto out;
3576 		}
3577 		if (inode->i_nlink)
3578 			ext4_orphan_del(handle, inode);
3579 		if (ret > 0) {
3580 			loff_t end = offset + ret;
3581 			if (end > inode->i_size) {
3582 				ei->i_disksize = end;
3583 				i_size_write(inode, end);
3584 				/*
3585 				 * We're going to return a positive `ret'
3586 				 * here due to non-zero-length I/O, so there's
3587 				 * no way of reporting error returns from
3588 				 * ext4_mark_inode_dirty() to userspace.  So
3589 				 * ignore it.
3590 				 */
3591 				ext4_mark_inode_dirty(handle, inode);
3592 			}
3593 		}
3594 		err = ext4_journal_stop(handle);
3595 		if (ret == 0)
3596 			ret = err;
3597 	}
3598 out:
3599 	return ret;
3600 }
3601 
3602 /*
3603  * ext4_get_block used when preparing for a DIO write or buffer write.
3604  * We allocate an uinitialized extent if blocks haven't been allocated.
3605  * The extent will be converted to initialized after the IO is complete.
3606  */
3607 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3608 		   struct buffer_head *bh_result, int create)
3609 {
3610 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3611 		   inode->i_ino, create);
3612 	return _ext4_get_block(inode, iblock, bh_result,
3613 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3614 }
3615 
3616 static void dump_completed_IO(struct inode * inode)
3617 {
3618 #ifdef	EXT4_DEBUG
3619 	struct list_head *cur, *before, *after;
3620 	ext4_io_end_t *io, *io0, *io1;
3621 	unsigned long flags;
3622 
3623 	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3624 		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3625 		return;
3626 	}
3627 
3628 	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3629 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3630 	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3631 		cur = &io->list;
3632 		before = cur->prev;
3633 		io0 = container_of(before, ext4_io_end_t, list);
3634 		after = cur->next;
3635 		io1 = container_of(after, ext4_io_end_t, list);
3636 
3637 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3638 			    io, inode->i_ino, io0, io1);
3639 	}
3640 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3641 #endif
3642 }
3643 
3644 /*
3645  * check a range of space and convert unwritten extents to written.
3646  */
3647 static int ext4_end_io_nolock(ext4_io_end_t *io)
3648 {
3649 	struct inode *inode = io->inode;
3650 	loff_t offset = io->offset;
3651 	ssize_t size = io->size;
3652 	int ret = 0;
3653 
3654 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3655 		   "list->prev 0x%p\n",
3656 	           io, inode->i_ino, io->list.next, io->list.prev);
3657 
3658 	if (list_empty(&io->list))
3659 		return ret;
3660 
3661 	if (io->flag != EXT4_IO_UNWRITTEN)
3662 		return ret;
3663 
3664 	ret = ext4_convert_unwritten_extents(inode, offset, size);
3665 	if (ret < 0) {
3666 		printk(KERN_EMERG "%s: failed to convert unwritten"
3667 			"extents to written extents, error is %d"
3668 			" io is still on inode %lu aio dio list\n",
3669                        __func__, ret, inode->i_ino);
3670 		return ret;
3671 	}
3672 
3673 	/* clear the DIO AIO unwritten flag */
3674 	io->flag = 0;
3675 	return ret;
3676 }
3677 
3678 /*
3679  * work on completed aio dio IO, to convert unwritten extents to extents
3680  */
3681 static void ext4_end_io_work(struct work_struct *work)
3682 {
3683 	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
3684 	struct inode		*inode = io->inode;
3685 	struct ext4_inode_info	*ei = EXT4_I(inode);
3686 	unsigned long		flags;
3687 	int			ret;
3688 
3689 	mutex_lock(&inode->i_mutex);
3690 	ret = ext4_end_io_nolock(io);
3691 	if (ret < 0) {
3692 		mutex_unlock(&inode->i_mutex);
3693 		return;
3694 	}
3695 
3696 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3697 	if (!list_empty(&io->list))
3698 		list_del_init(&io->list);
3699 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3700 	mutex_unlock(&inode->i_mutex);
3701 	ext4_free_io_end(io);
3702 }
3703 
3704 /*
3705  * This function is called from ext4_sync_file().
3706  *
3707  * When IO is completed, the work to convert unwritten extents to
3708  * written is queued on workqueue but may not get immediately
3709  * scheduled. When fsync is called, we need to ensure the
3710  * conversion is complete before fsync returns.
3711  * The inode keeps track of a list of pending/completed IO that
3712  * might needs to do the conversion. This function walks through
3713  * the list and convert the related unwritten extents for completed IO
3714  * to written.
3715  * The function return the number of pending IOs on success.
3716  */
3717 int flush_completed_IO(struct inode *inode)
3718 {
3719 	ext4_io_end_t *io;
3720 	struct ext4_inode_info *ei = EXT4_I(inode);
3721 	unsigned long flags;
3722 	int ret = 0;
3723 	int ret2 = 0;
3724 
3725 	if (list_empty(&ei->i_completed_io_list))
3726 		return ret;
3727 
3728 	dump_completed_IO(inode);
3729 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3730 	while (!list_empty(&ei->i_completed_io_list)){
3731 		io = list_entry(ei->i_completed_io_list.next,
3732 				ext4_io_end_t, list);
3733 		/*
3734 		 * Calling ext4_end_io_nolock() to convert completed
3735 		 * IO to written.
3736 		 *
3737 		 * When ext4_sync_file() is called, run_queue() may already
3738 		 * about to flush the work corresponding to this io structure.
3739 		 * It will be upset if it founds the io structure related
3740 		 * to the work-to-be schedule is freed.
3741 		 *
3742 		 * Thus we need to keep the io structure still valid here after
3743 		 * convertion finished. The io structure has a flag to
3744 		 * avoid double converting from both fsync and background work
3745 		 * queue work.
3746 		 */
3747 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3748 		ret = ext4_end_io_nolock(io);
3749 		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3750 		if (ret < 0)
3751 			ret2 = ret;
3752 		else
3753 			list_del_init(&io->list);
3754 	}
3755 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3756 	return (ret2 < 0) ? ret2 : 0;
3757 }
3758 
3759 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3760 {
3761 	ext4_io_end_t *io = NULL;
3762 
3763 	io = kmalloc(sizeof(*io), flags);
3764 
3765 	if (io) {
3766 		igrab(inode);
3767 		io->inode = inode;
3768 		io->flag = 0;
3769 		io->offset = 0;
3770 		io->size = 0;
3771 		io->page = NULL;
3772 		INIT_WORK(&io->work, ext4_end_io_work);
3773 		INIT_LIST_HEAD(&io->list);
3774 	}
3775 
3776 	return io;
3777 }
3778 
3779 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3780 			    ssize_t size, void *private)
3781 {
3782         ext4_io_end_t *io_end = iocb->private;
3783 	struct workqueue_struct *wq;
3784 	unsigned long flags;
3785 	struct ext4_inode_info *ei;
3786 
3787 	/* if not async direct IO or dio with 0 bytes write, just return */
3788 	if (!io_end || !size)
3789 		return;
3790 
3791 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3792 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3793  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3794 		  size);
3795 
3796 	/* if not aio dio with unwritten extents, just free io and return */
3797 	if (io_end->flag != EXT4_IO_UNWRITTEN){
3798 		ext4_free_io_end(io_end);
3799 		iocb->private = NULL;
3800 		return;
3801 	}
3802 
3803 	io_end->offset = offset;
3804 	io_end->size = size;
3805 	io_end->flag = EXT4_IO_UNWRITTEN;
3806 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3807 
3808 	/* queue the work to convert unwritten extents to written */
3809 	queue_work(wq, &io_end->work);
3810 
3811 	/* Add the io_end to per-inode completed aio dio list*/
3812 	ei = EXT4_I(io_end->inode);
3813 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3814 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3815 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3816 	iocb->private = NULL;
3817 }
3818 
3819 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3820 {
3821 	ext4_io_end_t *io_end = bh->b_private;
3822 	struct workqueue_struct *wq;
3823 	struct inode *inode;
3824 	unsigned long flags;
3825 
3826 	if (!test_clear_buffer_uninit(bh) || !io_end)
3827 		goto out;
3828 
3829 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3830 		printk("sb umounted, discard end_io request for inode %lu\n",
3831 			io_end->inode->i_ino);
3832 		ext4_free_io_end(io_end);
3833 		goto out;
3834 	}
3835 
3836 	io_end->flag = EXT4_IO_UNWRITTEN;
3837 	inode = io_end->inode;
3838 
3839 	/* Add the io_end to per-inode completed io list*/
3840 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3841 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3842 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3843 
3844 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3845 	/* queue the work to convert unwritten extents to written */
3846 	queue_work(wq, &io_end->work);
3847 out:
3848 	bh->b_private = NULL;
3849 	bh->b_end_io = NULL;
3850 	clear_buffer_uninit(bh);
3851 	end_buffer_async_write(bh, uptodate);
3852 }
3853 
3854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3855 {
3856 	ext4_io_end_t *io_end;
3857 	struct page *page = bh->b_page;
3858 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3859 	size_t size = bh->b_size;
3860 
3861 retry:
3862 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3863 	if (!io_end) {
3864 		if (printk_ratelimit())
3865 			printk(KERN_WARNING "%s: allocation fail\n", __func__);
3866 		schedule();
3867 		goto retry;
3868 	}
3869 	io_end->offset = offset;
3870 	io_end->size = size;
3871 	/*
3872 	 * We need to hold a reference to the page to make sure it
3873 	 * doesn't get evicted before ext4_end_io_work() has a chance
3874 	 * to convert the extent from written to unwritten.
3875 	 */
3876 	io_end->page = page;
3877 	get_page(io_end->page);
3878 
3879 	bh->b_private = io_end;
3880 	bh->b_end_io = ext4_end_io_buffer_write;
3881 	return 0;
3882 }
3883 
3884 /*
3885  * For ext4 extent files, ext4 will do direct-io write to holes,
3886  * preallocated extents, and those write extend the file, no need to
3887  * fall back to buffered IO.
3888  *
3889  * For holes, we fallocate those blocks, mark them as unintialized
3890  * If those blocks were preallocated, we mark sure they are splited, but
3891  * still keep the range to write as unintialized.
3892  *
3893  * The unwrritten extents will be converted to written when DIO is completed.
3894  * For async direct IO, since the IO may still pending when return, we
3895  * set up an end_io call back function, which will do the convertion
3896  * when async direct IO completed.
3897  *
3898  * If the O_DIRECT write will extend the file then add this inode to the
3899  * orphan list.  So recovery will truncate it back to the original size
3900  * if the machine crashes during the write.
3901  *
3902  */
3903 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3904 			      const struct iovec *iov, loff_t offset,
3905 			      unsigned long nr_segs)
3906 {
3907 	struct file *file = iocb->ki_filp;
3908 	struct inode *inode = file->f_mapping->host;
3909 	ssize_t ret;
3910 	size_t count = iov_length(iov, nr_segs);
3911 
3912 	loff_t final_size = offset + count;
3913 	if (rw == WRITE && final_size <= inode->i_size) {
3914 		/*
3915  		 * We could direct write to holes and fallocate.
3916 		 *
3917  		 * Allocated blocks to fill the hole are marked as uninitialized
3918  		 * to prevent paralel buffered read to expose the stale data
3919  		 * before DIO complete the data IO.
3920 		 *
3921  		 * As to previously fallocated extents, ext4 get_block
3922  		 * will just simply mark the buffer mapped but still
3923  		 * keep the extents uninitialized.
3924  		 *
3925 		 * for non AIO case, we will convert those unwritten extents
3926 		 * to written after return back from blockdev_direct_IO.
3927 		 *
3928 		 * for async DIO, the conversion needs to be defered when
3929 		 * the IO is completed. The ext4 end_io callback function
3930 		 * will be called to take care of the conversion work.
3931 		 * Here for async case, we allocate an io_end structure to
3932 		 * hook to the iocb.
3933  		 */
3934 		iocb->private = NULL;
3935 		EXT4_I(inode)->cur_aio_dio = NULL;
3936 		if (!is_sync_kiocb(iocb)) {
3937 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3938 			if (!iocb->private)
3939 				return -ENOMEM;
3940 			/*
3941 			 * we save the io structure for current async
3942 			 * direct IO, so that later ext4_get_blocks()
3943 			 * could flag the io structure whether there
3944 			 * is a unwritten extents needs to be converted
3945 			 * when IO is completed.
3946 			 */
3947 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3948 		}
3949 
3950 		ret = blockdev_direct_IO(rw, iocb, inode,
3951 					 inode->i_sb->s_bdev, iov,
3952 					 offset, nr_segs,
3953 					 ext4_get_block_write,
3954 					 ext4_end_io_dio);
3955 		if (iocb->private)
3956 			EXT4_I(inode)->cur_aio_dio = NULL;
3957 		/*
3958 		 * The io_end structure takes a reference to the inode,
3959 		 * that structure needs to be destroyed and the
3960 		 * reference to the inode need to be dropped, when IO is
3961 		 * complete, even with 0 byte write, or failed.
3962 		 *
3963 		 * In the successful AIO DIO case, the io_end structure will be
3964 		 * desctroyed and the reference to the inode will be dropped
3965 		 * after the end_io call back function is called.
3966 		 *
3967 		 * In the case there is 0 byte write, or error case, since
3968 		 * VFS direct IO won't invoke the end_io call back function,
3969 		 * we need to free the end_io structure here.
3970 		 */
3971 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3972 			ext4_free_io_end(iocb->private);
3973 			iocb->private = NULL;
3974 		} else if (ret > 0 && ext4_test_inode_state(inode,
3975 						EXT4_STATE_DIO_UNWRITTEN)) {
3976 			int err;
3977 			/*
3978 			 * for non AIO case, since the IO is already
3979 			 * completed, we could do the convertion right here
3980 			 */
3981 			err = ext4_convert_unwritten_extents(inode,
3982 							     offset, ret);
3983 			if (err < 0)
3984 				ret = err;
3985 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3986 		}
3987 		return ret;
3988 	}
3989 
3990 	/* for write the the end of file case, we fall back to old way */
3991 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3992 }
3993 
3994 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3995 			      const struct iovec *iov, loff_t offset,
3996 			      unsigned long nr_segs)
3997 {
3998 	struct file *file = iocb->ki_filp;
3999 	struct inode *inode = file->f_mapping->host;
4000 
4001 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4002 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4003 
4004 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4005 }
4006 
4007 /*
4008  * Pages can be marked dirty completely asynchronously from ext4's journalling
4009  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4010  * much here because ->set_page_dirty is called under VFS locks.  The page is
4011  * not necessarily locked.
4012  *
4013  * We cannot just dirty the page and leave attached buffers clean, because the
4014  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4015  * or jbddirty because all the journalling code will explode.
4016  *
4017  * So what we do is to mark the page "pending dirty" and next time writepage
4018  * is called, propagate that into the buffers appropriately.
4019  */
4020 static int ext4_journalled_set_page_dirty(struct page *page)
4021 {
4022 	SetPageChecked(page);
4023 	return __set_page_dirty_nobuffers(page);
4024 }
4025 
4026 static const struct address_space_operations ext4_ordered_aops = {
4027 	.readpage		= ext4_readpage,
4028 	.readpages		= ext4_readpages,
4029 	.writepage		= ext4_writepage,
4030 	.sync_page		= block_sync_page,
4031 	.write_begin		= ext4_write_begin,
4032 	.write_end		= ext4_ordered_write_end,
4033 	.bmap			= ext4_bmap,
4034 	.invalidatepage		= ext4_invalidatepage,
4035 	.releasepage		= ext4_releasepage,
4036 	.direct_IO		= ext4_direct_IO,
4037 	.migratepage		= buffer_migrate_page,
4038 	.is_partially_uptodate  = block_is_partially_uptodate,
4039 	.error_remove_page	= generic_error_remove_page,
4040 };
4041 
4042 static const struct address_space_operations ext4_writeback_aops = {
4043 	.readpage		= ext4_readpage,
4044 	.readpages		= ext4_readpages,
4045 	.writepage		= ext4_writepage,
4046 	.sync_page		= block_sync_page,
4047 	.write_begin		= ext4_write_begin,
4048 	.write_end		= ext4_writeback_write_end,
4049 	.bmap			= ext4_bmap,
4050 	.invalidatepage		= ext4_invalidatepage,
4051 	.releasepage		= ext4_releasepage,
4052 	.direct_IO		= ext4_direct_IO,
4053 	.migratepage		= buffer_migrate_page,
4054 	.is_partially_uptodate  = block_is_partially_uptodate,
4055 	.error_remove_page	= generic_error_remove_page,
4056 };
4057 
4058 static const struct address_space_operations ext4_journalled_aops = {
4059 	.readpage		= ext4_readpage,
4060 	.readpages		= ext4_readpages,
4061 	.writepage		= ext4_writepage,
4062 	.sync_page		= block_sync_page,
4063 	.write_begin		= ext4_write_begin,
4064 	.write_end		= ext4_journalled_write_end,
4065 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4066 	.bmap			= ext4_bmap,
4067 	.invalidatepage		= ext4_invalidatepage,
4068 	.releasepage		= ext4_releasepage,
4069 	.is_partially_uptodate  = block_is_partially_uptodate,
4070 	.error_remove_page	= generic_error_remove_page,
4071 };
4072 
4073 static const struct address_space_operations ext4_da_aops = {
4074 	.readpage		= ext4_readpage,
4075 	.readpages		= ext4_readpages,
4076 	.writepage		= ext4_writepage,
4077 	.writepages		= ext4_da_writepages,
4078 	.sync_page		= block_sync_page,
4079 	.write_begin		= ext4_da_write_begin,
4080 	.write_end		= ext4_da_write_end,
4081 	.bmap			= ext4_bmap,
4082 	.invalidatepage		= ext4_da_invalidatepage,
4083 	.releasepage		= ext4_releasepage,
4084 	.direct_IO		= ext4_direct_IO,
4085 	.migratepage		= buffer_migrate_page,
4086 	.is_partially_uptodate  = block_is_partially_uptodate,
4087 	.error_remove_page	= generic_error_remove_page,
4088 };
4089 
4090 void ext4_set_aops(struct inode *inode)
4091 {
4092 	if (ext4_should_order_data(inode) &&
4093 		test_opt(inode->i_sb, DELALLOC))
4094 		inode->i_mapping->a_ops = &ext4_da_aops;
4095 	else if (ext4_should_order_data(inode))
4096 		inode->i_mapping->a_ops = &ext4_ordered_aops;
4097 	else if (ext4_should_writeback_data(inode) &&
4098 		 test_opt(inode->i_sb, DELALLOC))
4099 		inode->i_mapping->a_ops = &ext4_da_aops;
4100 	else if (ext4_should_writeback_data(inode))
4101 		inode->i_mapping->a_ops = &ext4_writeback_aops;
4102 	else
4103 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4104 }
4105 
4106 /*
4107  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4108  * up to the end of the block which corresponds to `from'.
4109  * This required during truncate. We need to physically zero the tail end
4110  * of that block so it doesn't yield old data if the file is later grown.
4111  */
4112 int ext4_block_truncate_page(handle_t *handle,
4113 		struct address_space *mapping, loff_t from)
4114 {
4115 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4116 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4117 	unsigned blocksize, length, pos;
4118 	ext4_lblk_t iblock;
4119 	struct inode *inode = mapping->host;
4120 	struct buffer_head *bh;
4121 	struct page *page;
4122 	int err = 0;
4123 
4124 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4125 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4126 	if (!page)
4127 		return -EINVAL;
4128 
4129 	blocksize = inode->i_sb->s_blocksize;
4130 	length = blocksize - (offset & (blocksize - 1));
4131 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4132 
4133 	/*
4134 	 * For "nobh" option,  we can only work if we don't need to
4135 	 * read-in the page - otherwise we create buffers to do the IO.
4136 	 */
4137 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4138 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4139 		zero_user(page, offset, length);
4140 		set_page_dirty(page);
4141 		goto unlock;
4142 	}
4143 
4144 	if (!page_has_buffers(page))
4145 		create_empty_buffers(page, blocksize, 0);
4146 
4147 	/* Find the buffer that contains "offset" */
4148 	bh = page_buffers(page);
4149 	pos = blocksize;
4150 	while (offset >= pos) {
4151 		bh = bh->b_this_page;
4152 		iblock++;
4153 		pos += blocksize;
4154 	}
4155 
4156 	err = 0;
4157 	if (buffer_freed(bh)) {
4158 		BUFFER_TRACE(bh, "freed: skip");
4159 		goto unlock;
4160 	}
4161 
4162 	if (!buffer_mapped(bh)) {
4163 		BUFFER_TRACE(bh, "unmapped");
4164 		ext4_get_block(inode, iblock, bh, 0);
4165 		/* unmapped? It's a hole - nothing to do */
4166 		if (!buffer_mapped(bh)) {
4167 			BUFFER_TRACE(bh, "still unmapped");
4168 			goto unlock;
4169 		}
4170 	}
4171 
4172 	/* Ok, it's mapped. Make sure it's up-to-date */
4173 	if (PageUptodate(page))
4174 		set_buffer_uptodate(bh);
4175 
4176 	if (!buffer_uptodate(bh)) {
4177 		err = -EIO;
4178 		ll_rw_block(READ, 1, &bh);
4179 		wait_on_buffer(bh);
4180 		/* Uhhuh. Read error. Complain and punt. */
4181 		if (!buffer_uptodate(bh))
4182 			goto unlock;
4183 	}
4184 
4185 	if (ext4_should_journal_data(inode)) {
4186 		BUFFER_TRACE(bh, "get write access");
4187 		err = ext4_journal_get_write_access(handle, bh);
4188 		if (err)
4189 			goto unlock;
4190 	}
4191 
4192 	zero_user(page, offset, length);
4193 
4194 	BUFFER_TRACE(bh, "zeroed end of block");
4195 
4196 	err = 0;
4197 	if (ext4_should_journal_data(inode)) {
4198 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4199 	} else {
4200 		if (ext4_should_order_data(inode))
4201 			err = ext4_jbd2_file_inode(handle, inode);
4202 		mark_buffer_dirty(bh);
4203 	}
4204 
4205 unlock:
4206 	unlock_page(page);
4207 	page_cache_release(page);
4208 	return err;
4209 }
4210 
4211 /*
4212  * Probably it should be a library function... search for first non-zero word
4213  * or memcmp with zero_page, whatever is better for particular architecture.
4214  * Linus?
4215  */
4216 static inline int all_zeroes(__le32 *p, __le32 *q)
4217 {
4218 	while (p < q)
4219 		if (*p++)
4220 			return 0;
4221 	return 1;
4222 }
4223 
4224 /**
4225  *	ext4_find_shared - find the indirect blocks for partial truncation.
4226  *	@inode:	  inode in question
4227  *	@depth:	  depth of the affected branch
4228  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4229  *	@chain:	  place to store the pointers to partial indirect blocks
4230  *	@top:	  place to the (detached) top of branch
4231  *
4232  *	This is a helper function used by ext4_truncate().
4233  *
4234  *	When we do truncate() we may have to clean the ends of several
4235  *	indirect blocks but leave the blocks themselves alive. Block is
4236  *	partially truncated if some data below the new i_size is refered
4237  *	from it (and it is on the path to the first completely truncated
4238  *	data block, indeed).  We have to free the top of that path along
4239  *	with everything to the right of the path. Since no allocation
4240  *	past the truncation point is possible until ext4_truncate()
4241  *	finishes, we may safely do the latter, but top of branch may
4242  *	require special attention - pageout below the truncation point
4243  *	might try to populate it.
4244  *
4245  *	We atomically detach the top of branch from the tree, store the
4246  *	block number of its root in *@top, pointers to buffer_heads of
4247  *	partially truncated blocks - in @chain[].bh and pointers to
4248  *	their last elements that should not be removed - in
4249  *	@chain[].p. Return value is the pointer to last filled element
4250  *	of @chain.
4251  *
4252  *	The work left to caller to do the actual freeing of subtrees:
4253  *		a) free the subtree starting from *@top
4254  *		b) free the subtrees whose roots are stored in
4255  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4256  *		c) free the subtrees growing from the inode past the @chain[0].
4257  *			(no partially truncated stuff there).  */
4258 
4259 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4260 				  ext4_lblk_t offsets[4], Indirect chain[4],
4261 				  __le32 *top)
4262 {
4263 	Indirect *partial, *p;
4264 	int k, err;
4265 
4266 	*top = 0;
4267 	/* Make k index the deepest non-null offset + 1 */
4268 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4269 		;
4270 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4271 	/* Writer: pointers */
4272 	if (!partial)
4273 		partial = chain + k-1;
4274 	/*
4275 	 * If the branch acquired continuation since we've looked at it -
4276 	 * fine, it should all survive and (new) top doesn't belong to us.
4277 	 */
4278 	if (!partial->key && *partial->p)
4279 		/* Writer: end */
4280 		goto no_top;
4281 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4282 		;
4283 	/*
4284 	 * OK, we've found the last block that must survive. The rest of our
4285 	 * branch should be detached before unlocking. However, if that rest
4286 	 * of branch is all ours and does not grow immediately from the inode
4287 	 * it's easier to cheat and just decrement partial->p.
4288 	 */
4289 	if (p == chain + k - 1 && p > chain) {
4290 		p->p--;
4291 	} else {
4292 		*top = *p->p;
4293 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4294 #if 0
4295 		*p->p = 0;
4296 #endif
4297 	}
4298 	/* Writer: end */
4299 
4300 	while (partial > p) {
4301 		brelse(partial->bh);
4302 		partial--;
4303 	}
4304 no_top:
4305 	return partial;
4306 }
4307 
4308 /*
4309  * Zero a number of block pointers in either an inode or an indirect block.
4310  * If we restart the transaction we must again get write access to the
4311  * indirect block for further modification.
4312  *
4313  * We release `count' blocks on disk, but (last - first) may be greater
4314  * than `count' because there can be holes in there.
4315  */
4316 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4317 			     struct buffer_head *bh,
4318 			     ext4_fsblk_t block_to_free,
4319 			     unsigned long count, __le32 *first,
4320 			     __le32 *last)
4321 {
4322 	__le32 *p;
4323 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4324 
4325 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4326 		flags |= EXT4_FREE_BLOCKS_METADATA;
4327 
4328 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4329 				   count)) {
4330 		ext4_error(inode->i_sb, "inode #%lu: "
4331 			   "attempt to clear blocks %llu len %lu, invalid",
4332 			   inode->i_ino, (unsigned long long) block_to_free,
4333 			   count);
4334 		return 1;
4335 	}
4336 
4337 	if (try_to_extend_transaction(handle, inode)) {
4338 		if (bh) {
4339 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4340 			ext4_handle_dirty_metadata(handle, inode, bh);
4341 		}
4342 		ext4_mark_inode_dirty(handle, inode);
4343 		ext4_truncate_restart_trans(handle, inode,
4344 					    blocks_for_truncate(inode));
4345 		if (bh) {
4346 			BUFFER_TRACE(bh, "retaking write access");
4347 			ext4_journal_get_write_access(handle, bh);
4348 		}
4349 	}
4350 
4351 	for (p = first; p < last; p++)
4352 		*p = 0;
4353 
4354 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4355 	return 0;
4356 }
4357 
4358 /**
4359  * ext4_free_data - free a list of data blocks
4360  * @handle:	handle for this transaction
4361  * @inode:	inode we are dealing with
4362  * @this_bh:	indirect buffer_head which contains *@first and *@last
4363  * @first:	array of block numbers
4364  * @last:	points immediately past the end of array
4365  *
4366  * We are freeing all blocks refered from that array (numbers are stored as
4367  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4368  *
4369  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4370  * blocks are contiguous then releasing them at one time will only affect one
4371  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4372  * actually use a lot of journal space.
4373  *
4374  * @this_bh will be %NULL if @first and @last point into the inode's direct
4375  * block pointers.
4376  */
4377 static void ext4_free_data(handle_t *handle, struct inode *inode,
4378 			   struct buffer_head *this_bh,
4379 			   __le32 *first, __le32 *last)
4380 {
4381 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4382 	unsigned long count = 0;	    /* Number of blocks in the run */
4383 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4384 					       corresponding to
4385 					       block_to_free */
4386 	ext4_fsblk_t nr;		    /* Current block # */
4387 	__le32 *p;			    /* Pointer into inode/ind
4388 					       for current block */
4389 	int err;
4390 
4391 	if (this_bh) {				/* For indirect block */
4392 		BUFFER_TRACE(this_bh, "get_write_access");
4393 		err = ext4_journal_get_write_access(handle, this_bh);
4394 		/* Important: if we can't update the indirect pointers
4395 		 * to the blocks, we can't free them. */
4396 		if (err)
4397 			return;
4398 	}
4399 
4400 	for (p = first; p < last; p++) {
4401 		nr = le32_to_cpu(*p);
4402 		if (nr) {
4403 			/* accumulate blocks to free if they're contiguous */
4404 			if (count == 0) {
4405 				block_to_free = nr;
4406 				block_to_free_p = p;
4407 				count = 1;
4408 			} else if (nr == block_to_free + count) {
4409 				count++;
4410 			} else {
4411 				if (ext4_clear_blocks(handle, inode, this_bh,
4412 						      block_to_free, count,
4413 						      block_to_free_p, p))
4414 					break;
4415 				block_to_free = nr;
4416 				block_to_free_p = p;
4417 				count = 1;
4418 			}
4419 		}
4420 	}
4421 
4422 	if (count > 0)
4423 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4424 				  count, block_to_free_p, p);
4425 
4426 	if (this_bh) {
4427 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4428 
4429 		/*
4430 		 * The buffer head should have an attached journal head at this
4431 		 * point. However, if the data is corrupted and an indirect
4432 		 * block pointed to itself, it would have been detached when
4433 		 * the block was cleared. Check for this instead of OOPSing.
4434 		 */
4435 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4436 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4437 		else
4438 			ext4_error(inode->i_sb,
4439 				   "circular indirect block detected, "
4440 				   "inode=%lu, block=%llu",
4441 				   inode->i_ino,
4442 				   (unsigned long long) this_bh->b_blocknr);
4443 	}
4444 }
4445 
4446 /**
4447  *	ext4_free_branches - free an array of branches
4448  *	@handle: JBD handle for this transaction
4449  *	@inode:	inode we are dealing with
4450  *	@parent_bh: the buffer_head which contains *@first and *@last
4451  *	@first:	array of block numbers
4452  *	@last:	pointer immediately past the end of array
4453  *	@depth:	depth of the branches to free
4454  *
4455  *	We are freeing all blocks refered from these branches (numbers are
4456  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4457  *	appropriately.
4458  */
4459 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4460 			       struct buffer_head *parent_bh,
4461 			       __le32 *first, __le32 *last, int depth)
4462 {
4463 	ext4_fsblk_t nr;
4464 	__le32 *p;
4465 
4466 	if (ext4_handle_is_aborted(handle))
4467 		return;
4468 
4469 	if (depth--) {
4470 		struct buffer_head *bh;
4471 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4472 		p = last;
4473 		while (--p >= first) {
4474 			nr = le32_to_cpu(*p);
4475 			if (!nr)
4476 				continue;		/* A hole */
4477 
4478 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4479 						   nr, 1)) {
4480 				ext4_error(inode->i_sb,
4481 					   "indirect mapped block in inode "
4482 					   "#%lu invalid (level %d, blk #%lu)",
4483 					   inode->i_ino, depth,
4484 					   (unsigned long) nr);
4485 				break;
4486 			}
4487 
4488 			/* Go read the buffer for the next level down */
4489 			bh = sb_bread(inode->i_sb, nr);
4490 
4491 			/*
4492 			 * A read failure? Report error and clear slot
4493 			 * (should be rare).
4494 			 */
4495 			if (!bh) {
4496 				ext4_error(inode->i_sb,
4497 					   "Read failure, inode=%lu, block=%llu",
4498 					   inode->i_ino, nr);
4499 				continue;
4500 			}
4501 
4502 			/* This zaps the entire block.  Bottom up. */
4503 			BUFFER_TRACE(bh, "free child branches");
4504 			ext4_free_branches(handle, inode, bh,
4505 					(__le32 *) bh->b_data,
4506 					(__le32 *) bh->b_data + addr_per_block,
4507 					depth);
4508 
4509 			/*
4510 			 * We've probably journalled the indirect block several
4511 			 * times during the truncate.  But it's no longer
4512 			 * needed and we now drop it from the transaction via
4513 			 * jbd2_journal_revoke().
4514 			 *
4515 			 * That's easy if it's exclusively part of this
4516 			 * transaction.  But if it's part of the committing
4517 			 * transaction then jbd2_journal_forget() will simply
4518 			 * brelse() it.  That means that if the underlying
4519 			 * block is reallocated in ext4_get_block(),
4520 			 * unmap_underlying_metadata() will find this block
4521 			 * and will try to get rid of it.  damn, damn.
4522 			 *
4523 			 * If this block has already been committed to the
4524 			 * journal, a revoke record will be written.  And
4525 			 * revoke records must be emitted *before* clearing
4526 			 * this block's bit in the bitmaps.
4527 			 */
4528 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4529 
4530 			/*
4531 			 * Everything below this this pointer has been
4532 			 * released.  Now let this top-of-subtree go.
4533 			 *
4534 			 * We want the freeing of this indirect block to be
4535 			 * atomic in the journal with the updating of the
4536 			 * bitmap block which owns it.  So make some room in
4537 			 * the journal.
4538 			 *
4539 			 * We zero the parent pointer *after* freeing its
4540 			 * pointee in the bitmaps, so if extend_transaction()
4541 			 * for some reason fails to put the bitmap changes and
4542 			 * the release into the same transaction, recovery
4543 			 * will merely complain about releasing a free block,
4544 			 * rather than leaking blocks.
4545 			 */
4546 			if (ext4_handle_is_aborted(handle))
4547 				return;
4548 			if (try_to_extend_transaction(handle, inode)) {
4549 				ext4_mark_inode_dirty(handle, inode);
4550 				ext4_truncate_restart_trans(handle, inode,
4551 					    blocks_for_truncate(inode));
4552 			}
4553 
4554 			ext4_free_blocks(handle, inode, 0, nr, 1,
4555 					 EXT4_FREE_BLOCKS_METADATA);
4556 
4557 			if (parent_bh) {
4558 				/*
4559 				 * The block which we have just freed is
4560 				 * pointed to by an indirect block: journal it
4561 				 */
4562 				BUFFER_TRACE(parent_bh, "get_write_access");
4563 				if (!ext4_journal_get_write_access(handle,
4564 								   parent_bh)){
4565 					*p = 0;
4566 					BUFFER_TRACE(parent_bh,
4567 					"call ext4_handle_dirty_metadata");
4568 					ext4_handle_dirty_metadata(handle,
4569 								   inode,
4570 								   parent_bh);
4571 				}
4572 			}
4573 		}
4574 	} else {
4575 		/* We have reached the bottom of the tree. */
4576 		BUFFER_TRACE(parent_bh, "free data blocks");
4577 		ext4_free_data(handle, inode, parent_bh, first, last);
4578 	}
4579 }
4580 
4581 int ext4_can_truncate(struct inode *inode)
4582 {
4583 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4584 		return 0;
4585 	if (S_ISREG(inode->i_mode))
4586 		return 1;
4587 	if (S_ISDIR(inode->i_mode))
4588 		return 1;
4589 	if (S_ISLNK(inode->i_mode))
4590 		return !ext4_inode_is_fast_symlink(inode);
4591 	return 0;
4592 }
4593 
4594 /*
4595  * ext4_truncate()
4596  *
4597  * We block out ext4_get_block() block instantiations across the entire
4598  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4599  * simultaneously on behalf of the same inode.
4600  *
4601  * As we work through the truncate and commmit bits of it to the journal there
4602  * is one core, guiding principle: the file's tree must always be consistent on
4603  * disk.  We must be able to restart the truncate after a crash.
4604  *
4605  * The file's tree may be transiently inconsistent in memory (although it
4606  * probably isn't), but whenever we close off and commit a journal transaction,
4607  * the contents of (the filesystem + the journal) must be consistent and
4608  * restartable.  It's pretty simple, really: bottom up, right to left (although
4609  * left-to-right works OK too).
4610  *
4611  * Note that at recovery time, journal replay occurs *before* the restart of
4612  * truncate against the orphan inode list.
4613  *
4614  * The committed inode has the new, desired i_size (which is the same as
4615  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4616  * that this inode's truncate did not complete and it will again call
4617  * ext4_truncate() to have another go.  So there will be instantiated blocks
4618  * to the right of the truncation point in a crashed ext4 filesystem.  But
4619  * that's fine - as long as they are linked from the inode, the post-crash
4620  * ext4_truncate() run will find them and release them.
4621  */
4622 void ext4_truncate(struct inode *inode)
4623 {
4624 	handle_t *handle;
4625 	struct ext4_inode_info *ei = EXT4_I(inode);
4626 	__le32 *i_data = ei->i_data;
4627 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4628 	struct address_space *mapping = inode->i_mapping;
4629 	ext4_lblk_t offsets[4];
4630 	Indirect chain[4];
4631 	Indirect *partial;
4632 	__le32 nr = 0;
4633 	int n;
4634 	ext4_lblk_t last_block;
4635 	unsigned blocksize = inode->i_sb->s_blocksize;
4636 
4637 	if (!ext4_can_truncate(inode))
4638 		return;
4639 
4640 	EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4641 
4642 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4643 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4644 
4645 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4646 		ext4_ext_truncate(inode);
4647 		return;
4648 	}
4649 
4650 	handle = start_transaction(inode);
4651 	if (IS_ERR(handle))
4652 		return;		/* AKPM: return what? */
4653 
4654 	last_block = (inode->i_size + blocksize-1)
4655 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4656 
4657 	if (inode->i_size & (blocksize - 1))
4658 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4659 			goto out_stop;
4660 
4661 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4662 	if (n == 0)
4663 		goto out_stop;	/* error */
4664 
4665 	/*
4666 	 * OK.  This truncate is going to happen.  We add the inode to the
4667 	 * orphan list, so that if this truncate spans multiple transactions,
4668 	 * and we crash, we will resume the truncate when the filesystem
4669 	 * recovers.  It also marks the inode dirty, to catch the new size.
4670 	 *
4671 	 * Implication: the file must always be in a sane, consistent
4672 	 * truncatable state while each transaction commits.
4673 	 */
4674 	if (ext4_orphan_add(handle, inode))
4675 		goto out_stop;
4676 
4677 	/*
4678 	 * From here we block out all ext4_get_block() callers who want to
4679 	 * modify the block allocation tree.
4680 	 */
4681 	down_write(&ei->i_data_sem);
4682 
4683 	ext4_discard_preallocations(inode);
4684 
4685 	/*
4686 	 * The orphan list entry will now protect us from any crash which
4687 	 * occurs before the truncate completes, so it is now safe to propagate
4688 	 * the new, shorter inode size (held for now in i_size) into the
4689 	 * on-disk inode. We do this via i_disksize, which is the value which
4690 	 * ext4 *really* writes onto the disk inode.
4691 	 */
4692 	ei->i_disksize = inode->i_size;
4693 
4694 	if (n == 1) {		/* direct blocks */
4695 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4696 			       i_data + EXT4_NDIR_BLOCKS);
4697 		goto do_indirects;
4698 	}
4699 
4700 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4701 	/* Kill the top of shared branch (not detached) */
4702 	if (nr) {
4703 		if (partial == chain) {
4704 			/* Shared branch grows from the inode */
4705 			ext4_free_branches(handle, inode, NULL,
4706 					   &nr, &nr+1, (chain+n-1) - partial);
4707 			*partial->p = 0;
4708 			/*
4709 			 * We mark the inode dirty prior to restart,
4710 			 * and prior to stop.  No need for it here.
4711 			 */
4712 		} else {
4713 			/* Shared branch grows from an indirect block */
4714 			BUFFER_TRACE(partial->bh, "get_write_access");
4715 			ext4_free_branches(handle, inode, partial->bh,
4716 					partial->p,
4717 					partial->p+1, (chain+n-1) - partial);
4718 		}
4719 	}
4720 	/* Clear the ends of indirect blocks on the shared branch */
4721 	while (partial > chain) {
4722 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4723 				   (__le32*)partial->bh->b_data+addr_per_block,
4724 				   (chain+n-1) - partial);
4725 		BUFFER_TRACE(partial->bh, "call brelse");
4726 		brelse(partial->bh);
4727 		partial--;
4728 	}
4729 do_indirects:
4730 	/* Kill the remaining (whole) subtrees */
4731 	switch (offsets[0]) {
4732 	default:
4733 		nr = i_data[EXT4_IND_BLOCK];
4734 		if (nr) {
4735 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4736 			i_data[EXT4_IND_BLOCK] = 0;
4737 		}
4738 	case EXT4_IND_BLOCK:
4739 		nr = i_data[EXT4_DIND_BLOCK];
4740 		if (nr) {
4741 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4742 			i_data[EXT4_DIND_BLOCK] = 0;
4743 		}
4744 	case EXT4_DIND_BLOCK:
4745 		nr = i_data[EXT4_TIND_BLOCK];
4746 		if (nr) {
4747 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4748 			i_data[EXT4_TIND_BLOCK] = 0;
4749 		}
4750 	case EXT4_TIND_BLOCK:
4751 		;
4752 	}
4753 
4754 	up_write(&ei->i_data_sem);
4755 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4756 	ext4_mark_inode_dirty(handle, inode);
4757 
4758 	/*
4759 	 * In a multi-transaction truncate, we only make the final transaction
4760 	 * synchronous
4761 	 */
4762 	if (IS_SYNC(inode))
4763 		ext4_handle_sync(handle);
4764 out_stop:
4765 	/*
4766 	 * If this was a simple ftruncate(), and the file will remain alive
4767 	 * then we need to clear up the orphan record which we created above.
4768 	 * However, if this was a real unlink then we were called by
4769 	 * ext4_delete_inode(), and we allow that function to clean up the
4770 	 * orphan info for us.
4771 	 */
4772 	if (inode->i_nlink)
4773 		ext4_orphan_del(handle, inode);
4774 
4775 	ext4_journal_stop(handle);
4776 }
4777 
4778 /*
4779  * ext4_get_inode_loc returns with an extra refcount against the inode's
4780  * underlying buffer_head on success. If 'in_mem' is true, we have all
4781  * data in memory that is needed to recreate the on-disk version of this
4782  * inode.
4783  */
4784 static int __ext4_get_inode_loc(struct inode *inode,
4785 				struct ext4_iloc *iloc, int in_mem)
4786 {
4787 	struct ext4_group_desc	*gdp;
4788 	struct buffer_head	*bh;
4789 	struct super_block	*sb = inode->i_sb;
4790 	ext4_fsblk_t		block;
4791 	int			inodes_per_block, inode_offset;
4792 
4793 	iloc->bh = NULL;
4794 	if (!ext4_valid_inum(sb, inode->i_ino))
4795 		return -EIO;
4796 
4797 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4798 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4799 	if (!gdp)
4800 		return -EIO;
4801 
4802 	/*
4803 	 * Figure out the offset within the block group inode table
4804 	 */
4805 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4806 	inode_offset = ((inode->i_ino - 1) %
4807 			EXT4_INODES_PER_GROUP(sb));
4808 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4809 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4810 
4811 	bh = sb_getblk(sb, block);
4812 	if (!bh) {
4813 		ext4_error(sb, "unable to read inode block - "
4814 			   "inode=%lu, block=%llu", inode->i_ino, block);
4815 		return -EIO;
4816 	}
4817 	if (!buffer_uptodate(bh)) {
4818 		lock_buffer(bh);
4819 
4820 		/*
4821 		 * If the buffer has the write error flag, we have failed
4822 		 * to write out another inode in the same block.  In this
4823 		 * case, we don't have to read the block because we may
4824 		 * read the old inode data successfully.
4825 		 */
4826 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4827 			set_buffer_uptodate(bh);
4828 
4829 		if (buffer_uptodate(bh)) {
4830 			/* someone brought it uptodate while we waited */
4831 			unlock_buffer(bh);
4832 			goto has_buffer;
4833 		}
4834 
4835 		/*
4836 		 * If we have all information of the inode in memory and this
4837 		 * is the only valid inode in the block, we need not read the
4838 		 * block.
4839 		 */
4840 		if (in_mem) {
4841 			struct buffer_head *bitmap_bh;
4842 			int i, start;
4843 
4844 			start = inode_offset & ~(inodes_per_block - 1);
4845 
4846 			/* Is the inode bitmap in cache? */
4847 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4848 			if (!bitmap_bh)
4849 				goto make_io;
4850 
4851 			/*
4852 			 * If the inode bitmap isn't in cache then the
4853 			 * optimisation may end up performing two reads instead
4854 			 * of one, so skip it.
4855 			 */
4856 			if (!buffer_uptodate(bitmap_bh)) {
4857 				brelse(bitmap_bh);
4858 				goto make_io;
4859 			}
4860 			for (i = start; i < start + inodes_per_block; i++) {
4861 				if (i == inode_offset)
4862 					continue;
4863 				if (ext4_test_bit(i, bitmap_bh->b_data))
4864 					break;
4865 			}
4866 			brelse(bitmap_bh);
4867 			if (i == start + inodes_per_block) {
4868 				/* all other inodes are free, so skip I/O */
4869 				memset(bh->b_data, 0, bh->b_size);
4870 				set_buffer_uptodate(bh);
4871 				unlock_buffer(bh);
4872 				goto has_buffer;
4873 			}
4874 		}
4875 
4876 make_io:
4877 		/*
4878 		 * If we need to do any I/O, try to pre-readahead extra
4879 		 * blocks from the inode table.
4880 		 */
4881 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4882 			ext4_fsblk_t b, end, table;
4883 			unsigned num;
4884 
4885 			table = ext4_inode_table(sb, gdp);
4886 			/* s_inode_readahead_blks is always a power of 2 */
4887 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4888 			if (table > b)
4889 				b = table;
4890 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4891 			num = EXT4_INODES_PER_GROUP(sb);
4892 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4893 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4894 				num -= ext4_itable_unused_count(sb, gdp);
4895 			table += num / inodes_per_block;
4896 			if (end > table)
4897 				end = table;
4898 			while (b <= end)
4899 				sb_breadahead(sb, b++);
4900 		}
4901 
4902 		/*
4903 		 * There are other valid inodes in the buffer, this inode
4904 		 * has in-inode xattrs, or we don't have this inode in memory.
4905 		 * Read the block from disk.
4906 		 */
4907 		get_bh(bh);
4908 		bh->b_end_io = end_buffer_read_sync;
4909 		submit_bh(READ_META, bh);
4910 		wait_on_buffer(bh);
4911 		if (!buffer_uptodate(bh)) {
4912 			ext4_error(sb, "unable to read inode block - inode=%lu,"
4913 				   " block=%llu", inode->i_ino, block);
4914 			brelse(bh);
4915 			return -EIO;
4916 		}
4917 	}
4918 has_buffer:
4919 	iloc->bh = bh;
4920 	return 0;
4921 }
4922 
4923 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4924 {
4925 	/* We have all inode data except xattrs in memory here. */
4926 	return __ext4_get_inode_loc(inode, iloc,
4927 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4928 }
4929 
4930 void ext4_set_inode_flags(struct inode *inode)
4931 {
4932 	unsigned int flags = EXT4_I(inode)->i_flags;
4933 
4934 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4935 	if (flags & EXT4_SYNC_FL)
4936 		inode->i_flags |= S_SYNC;
4937 	if (flags & EXT4_APPEND_FL)
4938 		inode->i_flags |= S_APPEND;
4939 	if (flags & EXT4_IMMUTABLE_FL)
4940 		inode->i_flags |= S_IMMUTABLE;
4941 	if (flags & EXT4_NOATIME_FL)
4942 		inode->i_flags |= S_NOATIME;
4943 	if (flags & EXT4_DIRSYNC_FL)
4944 		inode->i_flags |= S_DIRSYNC;
4945 }
4946 
4947 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4948 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4949 {
4950 	unsigned int flags = ei->vfs_inode.i_flags;
4951 
4952 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4953 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4954 	if (flags & S_SYNC)
4955 		ei->i_flags |= EXT4_SYNC_FL;
4956 	if (flags & S_APPEND)
4957 		ei->i_flags |= EXT4_APPEND_FL;
4958 	if (flags & S_IMMUTABLE)
4959 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4960 	if (flags & S_NOATIME)
4961 		ei->i_flags |= EXT4_NOATIME_FL;
4962 	if (flags & S_DIRSYNC)
4963 		ei->i_flags |= EXT4_DIRSYNC_FL;
4964 }
4965 
4966 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4967 				  struct ext4_inode_info *ei)
4968 {
4969 	blkcnt_t i_blocks ;
4970 	struct inode *inode = &(ei->vfs_inode);
4971 	struct super_block *sb = inode->i_sb;
4972 
4973 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4974 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4975 		/* we are using combined 48 bit field */
4976 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4977 					le32_to_cpu(raw_inode->i_blocks_lo);
4978 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4979 			/* i_blocks represent file system block size */
4980 			return i_blocks  << (inode->i_blkbits - 9);
4981 		} else {
4982 			return i_blocks;
4983 		}
4984 	} else {
4985 		return le32_to_cpu(raw_inode->i_blocks_lo);
4986 	}
4987 }
4988 
4989 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4990 {
4991 	struct ext4_iloc iloc;
4992 	struct ext4_inode *raw_inode;
4993 	struct ext4_inode_info *ei;
4994 	struct inode *inode;
4995 	journal_t *journal = EXT4_SB(sb)->s_journal;
4996 	long ret;
4997 	int block;
4998 
4999 	inode = iget_locked(sb, ino);
5000 	if (!inode)
5001 		return ERR_PTR(-ENOMEM);
5002 	if (!(inode->i_state & I_NEW))
5003 		return inode;
5004 
5005 	ei = EXT4_I(inode);
5006 	iloc.bh = 0;
5007 
5008 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
5009 	if (ret < 0)
5010 		goto bad_inode;
5011 	raw_inode = ext4_raw_inode(&iloc);
5012 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5013 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5014 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5015 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5016 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5017 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5018 	}
5019 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5020 
5021 	ei->i_state_flags = 0;
5022 	ei->i_dir_start_lookup = 0;
5023 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5024 	/* We now have enough fields to check if the inode was active or not.
5025 	 * This is needed because nfsd might try to access dead inodes
5026 	 * the test is that same one that e2fsck uses
5027 	 * NeilBrown 1999oct15
5028 	 */
5029 	if (inode->i_nlink == 0) {
5030 		if (inode->i_mode == 0 ||
5031 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5032 			/* this inode is deleted */
5033 			ret = -ESTALE;
5034 			goto bad_inode;
5035 		}
5036 		/* The only unlinked inodes we let through here have
5037 		 * valid i_mode and are being read by the orphan
5038 		 * recovery code: that's fine, we're about to complete
5039 		 * the process of deleting those. */
5040 	}
5041 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5042 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5043 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5044 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5045 		ei->i_file_acl |=
5046 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5047 	inode->i_size = ext4_isize(raw_inode);
5048 	ei->i_disksize = inode->i_size;
5049 #ifdef CONFIG_QUOTA
5050 	ei->i_reserved_quota = 0;
5051 #endif
5052 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5053 	ei->i_block_group = iloc.block_group;
5054 	ei->i_last_alloc_group = ~0;
5055 	/*
5056 	 * NOTE! The in-memory inode i_data array is in little-endian order
5057 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5058 	 */
5059 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5060 		ei->i_data[block] = raw_inode->i_block[block];
5061 	INIT_LIST_HEAD(&ei->i_orphan);
5062 
5063 	/*
5064 	 * Set transaction id's of transactions that have to be committed
5065 	 * to finish f[data]sync. We set them to currently running transaction
5066 	 * as we cannot be sure that the inode or some of its metadata isn't
5067 	 * part of the transaction - the inode could have been reclaimed and
5068 	 * now it is reread from disk.
5069 	 */
5070 	if (journal) {
5071 		transaction_t *transaction;
5072 		tid_t tid;
5073 
5074 		spin_lock(&journal->j_state_lock);
5075 		if (journal->j_running_transaction)
5076 			transaction = journal->j_running_transaction;
5077 		else
5078 			transaction = journal->j_committing_transaction;
5079 		if (transaction)
5080 			tid = transaction->t_tid;
5081 		else
5082 			tid = journal->j_commit_sequence;
5083 		spin_unlock(&journal->j_state_lock);
5084 		ei->i_sync_tid = tid;
5085 		ei->i_datasync_tid = tid;
5086 	}
5087 
5088 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5089 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5090 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5091 		    EXT4_INODE_SIZE(inode->i_sb)) {
5092 			ret = -EIO;
5093 			goto bad_inode;
5094 		}
5095 		if (ei->i_extra_isize == 0) {
5096 			/* The extra space is currently unused. Use it. */
5097 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5098 					    EXT4_GOOD_OLD_INODE_SIZE;
5099 		} else {
5100 			__le32 *magic = (void *)raw_inode +
5101 					EXT4_GOOD_OLD_INODE_SIZE +
5102 					ei->i_extra_isize;
5103 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5104 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5105 		}
5106 	} else
5107 		ei->i_extra_isize = 0;
5108 
5109 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5110 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5111 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5112 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5113 
5114 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5115 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5116 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5117 			inode->i_version |=
5118 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5119 	}
5120 
5121 	ret = 0;
5122 	if (ei->i_file_acl &&
5123 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5124 		ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5125 			   ei->i_file_acl, inode->i_ino);
5126 		ret = -EIO;
5127 		goto bad_inode;
5128 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5129 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5130 		    (S_ISLNK(inode->i_mode) &&
5131 		     !ext4_inode_is_fast_symlink(inode)))
5132 			/* Validate extent which is part of inode */
5133 			ret = ext4_ext_check_inode(inode);
5134 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5135 		   (S_ISLNK(inode->i_mode) &&
5136 		    !ext4_inode_is_fast_symlink(inode))) {
5137 		/* Validate block references which are part of inode */
5138 		ret = ext4_check_inode_blockref(inode);
5139 	}
5140 	if (ret)
5141 		goto bad_inode;
5142 
5143 	if (S_ISREG(inode->i_mode)) {
5144 		inode->i_op = &ext4_file_inode_operations;
5145 		inode->i_fop = &ext4_file_operations;
5146 		ext4_set_aops(inode);
5147 	} else if (S_ISDIR(inode->i_mode)) {
5148 		inode->i_op = &ext4_dir_inode_operations;
5149 		inode->i_fop = &ext4_dir_operations;
5150 	} else if (S_ISLNK(inode->i_mode)) {
5151 		if (ext4_inode_is_fast_symlink(inode)) {
5152 			inode->i_op = &ext4_fast_symlink_inode_operations;
5153 			nd_terminate_link(ei->i_data, inode->i_size,
5154 				sizeof(ei->i_data) - 1);
5155 		} else {
5156 			inode->i_op = &ext4_symlink_inode_operations;
5157 			ext4_set_aops(inode);
5158 		}
5159 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5160 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5161 		inode->i_op = &ext4_special_inode_operations;
5162 		if (raw_inode->i_block[0])
5163 			init_special_inode(inode, inode->i_mode,
5164 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5165 		else
5166 			init_special_inode(inode, inode->i_mode,
5167 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5168 	} else {
5169 		ret = -EIO;
5170 		ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5171 			   inode->i_mode, inode->i_ino);
5172 		goto bad_inode;
5173 	}
5174 	brelse(iloc.bh);
5175 	ext4_set_inode_flags(inode);
5176 	unlock_new_inode(inode);
5177 	return inode;
5178 
5179 bad_inode:
5180 	brelse(iloc.bh);
5181 	iget_failed(inode);
5182 	return ERR_PTR(ret);
5183 }
5184 
5185 static int ext4_inode_blocks_set(handle_t *handle,
5186 				struct ext4_inode *raw_inode,
5187 				struct ext4_inode_info *ei)
5188 {
5189 	struct inode *inode = &(ei->vfs_inode);
5190 	u64 i_blocks = inode->i_blocks;
5191 	struct super_block *sb = inode->i_sb;
5192 
5193 	if (i_blocks <= ~0U) {
5194 		/*
5195 		 * i_blocks can be represnted in a 32 bit variable
5196 		 * as multiple of 512 bytes
5197 		 */
5198 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5199 		raw_inode->i_blocks_high = 0;
5200 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5201 		return 0;
5202 	}
5203 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5204 		return -EFBIG;
5205 
5206 	if (i_blocks <= 0xffffffffffffULL) {
5207 		/*
5208 		 * i_blocks can be represented in a 48 bit variable
5209 		 * as multiple of 512 bytes
5210 		 */
5211 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5212 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5213 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5214 	} else {
5215 		ei->i_flags |= EXT4_HUGE_FILE_FL;
5216 		/* i_block is stored in file system block size */
5217 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5218 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5219 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5220 	}
5221 	return 0;
5222 }
5223 
5224 /*
5225  * Post the struct inode info into an on-disk inode location in the
5226  * buffer-cache.  This gobbles the caller's reference to the
5227  * buffer_head in the inode location struct.
5228  *
5229  * The caller must have write access to iloc->bh.
5230  */
5231 static int ext4_do_update_inode(handle_t *handle,
5232 				struct inode *inode,
5233 				struct ext4_iloc *iloc)
5234 {
5235 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5236 	struct ext4_inode_info *ei = EXT4_I(inode);
5237 	struct buffer_head *bh = iloc->bh;
5238 	int err = 0, rc, block;
5239 
5240 	/* For fields not not tracking in the in-memory inode,
5241 	 * initialise them to zero for new inodes. */
5242 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5243 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5244 
5245 	ext4_get_inode_flags(ei);
5246 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5247 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5248 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5249 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5250 /*
5251  * Fix up interoperability with old kernels. Otherwise, old inodes get
5252  * re-used with the upper 16 bits of the uid/gid intact
5253  */
5254 		if (!ei->i_dtime) {
5255 			raw_inode->i_uid_high =
5256 				cpu_to_le16(high_16_bits(inode->i_uid));
5257 			raw_inode->i_gid_high =
5258 				cpu_to_le16(high_16_bits(inode->i_gid));
5259 		} else {
5260 			raw_inode->i_uid_high = 0;
5261 			raw_inode->i_gid_high = 0;
5262 		}
5263 	} else {
5264 		raw_inode->i_uid_low =
5265 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5266 		raw_inode->i_gid_low =
5267 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5268 		raw_inode->i_uid_high = 0;
5269 		raw_inode->i_gid_high = 0;
5270 	}
5271 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5272 
5273 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5274 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5275 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5276 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5277 
5278 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5279 		goto out_brelse;
5280 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5281 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5282 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5283 	    cpu_to_le32(EXT4_OS_HURD))
5284 		raw_inode->i_file_acl_high =
5285 			cpu_to_le16(ei->i_file_acl >> 32);
5286 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5287 	ext4_isize_set(raw_inode, ei->i_disksize);
5288 	if (ei->i_disksize > 0x7fffffffULL) {
5289 		struct super_block *sb = inode->i_sb;
5290 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5291 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5292 				EXT4_SB(sb)->s_es->s_rev_level ==
5293 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5294 			/* If this is the first large file
5295 			 * created, add a flag to the superblock.
5296 			 */
5297 			err = ext4_journal_get_write_access(handle,
5298 					EXT4_SB(sb)->s_sbh);
5299 			if (err)
5300 				goto out_brelse;
5301 			ext4_update_dynamic_rev(sb);
5302 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5303 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5304 			sb->s_dirt = 1;
5305 			ext4_handle_sync(handle);
5306 			err = ext4_handle_dirty_metadata(handle, NULL,
5307 					EXT4_SB(sb)->s_sbh);
5308 		}
5309 	}
5310 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5311 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5312 		if (old_valid_dev(inode->i_rdev)) {
5313 			raw_inode->i_block[0] =
5314 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5315 			raw_inode->i_block[1] = 0;
5316 		} else {
5317 			raw_inode->i_block[0] = 0;
5318 			raw_inode->i_block[1] =
5319 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5320 			raw_inode->i_block[2] = 0;
5321 		}
5322 	} else
5323 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5324 			raw_inode->i_block[block] = ei->i_data[block];
5325 
5326 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5327 	if (ei->i_extra_isize) {
5328 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5329 			raw_inode->i_version_hi =
5330 			cpu_to_le32(inode->i_version >> 32);
5331 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5332 	}
5333 
5334 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5335 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5336 	if (!err)
5337 		err = rc;
5338 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5339 
5340 	ext4_update_inode_fsync_trans(handle, inode, 0);
5341 out_brelse:
5342 	brelse(bh);
5343 	ext4_std_error(inode->i_sb, err);
5344 	return err;
5345 }
5346 
5347 /*
5348  * ext4_write_inode()
5349  *
5350  * We are called from a few places:
5351  *
5352  * - Within generic_file_write() for O_SYNC files.
5353  *   Here, there will be no transaction running. We wait for any running
5354  *   trasnaction to commit.
5355  *
5356  * - Within sys_sync(), kupdate and such.
5357  *   We wait on commit, if tol to.
5358  *
5359  * - Within prune_icache() (PF_MEMALLOC == true)
5360  *   Here we simply return.  We can't afford to block kswapd on the
5361  *   journal commit.
5362  *
5363  * In all cases it is actually safe for us to return without doing anything,
5364  * because the inode has been copied into a raw inode buffer in
5365  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5366  * knfsd.
5367  *
5368  * Note that we are absolutely dependent upon all inode dirtiers doing the
5369  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5370  * which we are interested.
5371  *
5372  * It would be a bug for them to not do this.  The code:
5373  *
5374  *	mark_inode_dirty(inode)
5375  *	stuff();
5376  *	inode->i_size = expr;
5377  *
5378  * is in error because a kswapd-driven write_inode() could occur while
5379  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5380  * will no longer be on the superblock's dirty inode list.
5381  */
5382 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5383 {
5384 	int err;
5385 
5386 	if (current->flags & PF_MEMALLOC)
5387 		return 0;
5388 
5389 	if (EXT4_SB(inode->i_sb)->s_journal) {
5390 		if (ext4_journal_current_handle()) {
5391 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5392 			dump_stack();
5393 			return -EIO;
5394 		}
5395 
5396 		if (wbc->sync_mode != WB_SYNC_ALL)
5397 			return 0;
5398 
5399 		err = ext4_force_commit(inode->i_sb);
5400 	} else {
5401 		struct ext4_iloc iloc;
5402 
5403 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5404 		if (err)
5405 			return err;
5406 		if (wbc->sync_mode == WB_SYNC_ALL)
5407 			sync_dirty_buffer(iloc.bh);
5408 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5409 			ext4_error(inode->i_sb, "IO error syncing inode, "
5410 				   "inode=%lu, block=%llu", inode->i_ino,
5411 				   (unsigned long long)iloc.bh->b_blocknr);
5412 			err = -EIO;
5413 		}
5414 		brelse(iloc.bh);
5415 	}
5416 	return err;
5417 }
5418 
5419 /*
5420  * ext4_setattr()
5421  *
5422  * Called from notify_change.
5423  *
5424  * We want to trap VFS attempts to truncate the file as soon as
5425  * possible.  In particular, we want to make sure that when the VFS
5426  * shrinks i_size, we put the inode on the orphan list and modify
5427  * i_disksize immediately, so that during the subsequent flushing of
5428  * dirty pages and freeing of disk blocks, we can guarantee that any
5429  * commit will leave the blocks being flushed in an unused state on
5430  * disk.  (On recovery, the inode will get truncated and the blocks will
5431  * be freed, so we have a strong guarantee that no future commit will
5432  * leave these blocks visible to the user.)
5433  *
5434  * Another thing we have to assure is that if we are in ordered mode
5435  * and inode is still attached to the committing transaction, we must
5436  * we start writeout of all the dirty pages which are being truncated.
5437  * This way we are sure that all the data written in the previous
5438  * transaction are already on disk (truncate waits for pages under
5439  * writeback).
5440  *
5441  * Called with inode->i_mutex down.
5442  */
5443 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5444 {
5445 	struct inode *inode = dentry->d_inode;
5446 	int error, rc = 0;
5447 	const unsigned int ia_valid = attr->ia_valid;
5448 
5449 	error = inode_change_ok(inode, attr);
5450 	if (error)
5451 		return error;
5452 
5453 	if (ia_valid & ATTR_SIZE)
5454 		dquot_initialize(inode);
5455 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5456 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5457 		handle_t *handle;
5458 
5459 		/* (user+group)*(old+new) structure, inode write (sb,
5460 		 * inode block, ? - but truncate inode update has it) */
5461 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5462 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5463 		if (IS_ERR(handle)) {
5464 			error = PTR_ERR(handle);
5465 			goto err_out;
5466 		}
5467 		error = dquot_transfer(inode, attr);
5468 		if (error) {
5469 			ext4_journal_stop(handle);
5470 			return error;
5471 		}
5472 		/* Update corresponding info in inode so that everything is in
5473 		 * one transaction */
5474 		if (attr->ia_valid & ATTR_UID)
5475 			inode->i_uid = attr->ia_uid;
5476 		if (attr->ia_valid & ATTR_GID)
5477 			inode->i_gid = attr->ia_gid;
5478 		error = ext4_mark_inode_dirty(handle, inode);
5479 		ext4_journal_stop(handle);
5480 	}
5481 
5482 	if (attr->ia_valid & ATTR_SIZE) {
5483 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5484 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5485 
5486 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5487 				error = -EFBIG;
5488 				goto err_out;
5489 			}
5490 		}
5491 	}
5492 
5493 	if (S_ISREG(inode->i_mode) &&
5494 	    attr->ia_valid & ATTR_SIZE &&
5495 	    (attr->ia_size < inode->i_size ||
5496 	     (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5497 		handle_t *handle;
5498 
5499 		handle = ext4_journal_start(inode, 3);
5500 		if (IS_ERR(handle)) {
5501 			error = PTR_ERR(handle);
5502 			goto err_out;
5503 		}
5504 
5505 		error = ext4_orphan_add(handle, inode);
5506 		EXT4_I(inode)->i_disksize = attr->ia_size;
5507 		rc = ext4_mark_inode_dirty(handle, inode);
5508 		if (!error)
5509 			error = rc;
5510 		ext4_journal_stop(handle);
5511 
5512 		if (ext4_should_order_data(inode)) {
5513 			error = ext4_begin_ordered_truncate(inode,
5514 							    attr->ia_size);
5515 			if (error) {
5516 				/* Do as much error cleanup as possible */
5517 				handle = ext4_journal_start(inode, 3);
5518 				if (IS_ERR(handle)) {
5519 					ext4_orphan_del(NULL, inode);
5520 					goto err_out;
5521 				}
5522 				ext4_orphan_del(handle, inode);
5523 				ext4_journal_stop(handle);
5524 				goto err_out;
5525 			}
5526 		}
5527 		/* ext4_truncate will clear the flag */
5528 		if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5529 			ext4_truncate(inode);
5530 	}
5531 
5532 	rc = inode_setattr(inode, attr);
5533 
5534 	/* If inode_setattr's call to ext4_truncate failed to get a
5535 	 * transaction handle at all, we need to clean up the in-core
5536 	 * orphan list manually. */
5537 	if (inode->i_nlink)
5538 		ext4_orphan_del(NULL, inode);
5539 
5540 	if (!rc && (ia_valid & ATTR_MODE))
5541 		rc = ext4_acl_chmod(inode);
5542 
5543 err_out:
5544 	ext4_std_error(inode->i_sb, error);
5545 	if (!error)
5546 		error = rc;
5547 	return error;
5548 }
5549 
5550 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5551 		 struct kstat *stat)
5552 {
5553 	struct inode *inode;
5554 	unsigned long delalloc_blocks;
5555 
5556 	inode = dentry->d_inode;
5557 	generic_fillattr(inode, stat);
5558 
5559 	/*
5560 	 * We can't update i_blocks if the block allocation is delayed
5561 	 * otherwise in the case of system crash before the real block
5562 	 * allocation is done, we will have i_blocks inconsistent with
5563 	 * on-disk file blocks.
5564 	 * We always keep i_blocks updated together with real
5565 	 * allocation. But to not confuse with user, stat
5566 	 * will return the blocks that include the delayed allocation
5567 	 * blocks for this file.
5568 	 */
5569 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5570 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5571 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5572 
5573 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5574 	return 0;
5575 }
5576 
5577 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5578 				      int chunk)
5579 {
5580 	int indirects;
5581 
5582 	/* if nrblocks are contiguous */
5583 	if (chunk) {
5584 		/*
5585 		 * With N contiguous data blocks, it need at most
5586 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5587 		 * 2 dindirect blocks
5588 		 * 1 tindirect block
5589 		 */
5590 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5591 		return indirects + 3;
5592 	}
5593 	/*
5594 	 * if nrblocks are not contiguous, worse case, each block touch
5595 	 * a indirect block, and each indirect block touch a double indirect
5596 	 * block, plus a triple indirect block
5597 	 */
5598 	indirects = nrblocks * 2 + 1;
5599 	return indirects;
5600 }
5601 
5602 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5603 {
5604 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5605 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5606 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5607 }
5608 
5609 /*
5610  * Account for index blocks, block groups bitmaps and block group
5611  * descriptor blocks if modify datablocks and index blocks
5612  * worse case, the indexs blocks spread over different block groups
5613  *
5614  * If datablocks are discontiguous, they are possible to spread over
5615  * different block groups too. If they are contiuguous, with flexbg,
5616  * they could still across block group boundary.
5617  *
5618  * Also account for superblock, inode, quota and xattr blocks
5619  */
5620 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5621 {
5622 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5623 	int gdpblocks;
5624 	int idxblocks;
5625 	int ret = 0;
5626 
5627 	/*
5628 	 * How many index blocks need to touch to modify nrblocks?
5629 	 * The "Chunk" flag indicating whether the nrblocks is
5630 	 * physically contiguous on disk
5631 	 *
5632 	 * For Direct IO and fallocate, they calls get_block to allocate
5633 	 * one single extent at a time, so they could set the "Chunk" flag
5634 	 */
5635 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5636 
5637 	ret = idxblocks;
5638 
5639 	/*
5640 	 * Now let's see how many group bitmaps and group descriptors need
5641 	 * to account
5642 	 */
5643 	groups = idxblocks;
5644 	if (chunk)
5645 		groups += 1;
5646 	else
5647 		groups += nrblocks;
5648 
5649 	gdpblocks = groups;
5650 	if (groups > ngroups)
5651 		groups = ngroups;
5652 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5653 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5654 
5655 	/* bitmaps and block group descriptor blocks */
5656 	ret += groups + gdpblocks;
5657 
5658 	/* Blocks for super block, inode, quota and xattr blocks */
5659 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5660 
5661 	return ret;
5662 }
5663 
5664 /*
5665  * Calulate the total number of credits to reserve to fit
5666  * the modification of a single pages into a single transaction,
5667  * which may include multiple chunks of block allocations.
5668  *
5669  * This could be called via ext4_write_begin()
5670  *
5671  * We need to consider the worse case, when
5672  * one new block per extent.
5673  */
5674 int ext4_writepage_trans_blocks(struct inode *inode)
5675 {
5676 	int bpp = ext4_journal_blocks_per_page(inode);
5677 	int ret;
5678 
5679 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5680 
5681 	/* Account for data blocks for journalled mode */
5682 	if (ext4_should_journal_data(inode))
5683 		ret += bpp;
5684 	return ret;
5685 }
5686 
5687 /*
5688  * Calculate the journal credits for a chunk of data modification.
5689  *
5690  * This is called from DIO, fallocate or whoever calling
5691  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5692  *
5693  * journal buffers for data blocks are not included here, as DIO
5694  * and fallocate do no need to journal data buffers.
5695  */
5696 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5697 {
5698 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5699 }
5700 
5701 /*
5702  * The caller must have previously called ext4_reserve_inode_write().
5703  * Give this, we know that the caller already has write access to iloc->bh.
5704  */
5705 int ext4_mark_iloc_dirty(handle_t *handle,
5706 			 struct inode *inode, struct ext4_iloc *iloc)
5707 {
5708 	int err = 0;
5709 
5710 	if (test_opt(inode->i_sb, I_VERSION))
5711 		inode_inc_iversion(inode);
5712 
5713 	/* the do_update_inode consumes one bh->b_count */
5714 	get_bh(iloc->bh);
5715 
5716 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5717 	err = ext4_do_update_inode(handle, inode, iloc);
5718 	put_bh(iloc->bh);
5719 	return err;
5720 }
5721 
5722 /*
5723  * On success, We end up with an outstanding reference count against
5724  * iloc->bh.  This _must_ be cleaned up later.
5725  */
5726 
5727 int
5728 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5729 			 struct ext4_iloc *iloc)
5730 {
5731 	int err;
5732 
5733 	err = ext4_get_inode_loc(inode, iloc);
5734 	if (!err) {
5735 		BUFFER_TRACE(iloc->bh, "get_write_access");
5736 		err = ext4_journal_get_write_access(handle, iloc->bh);
5737 		if (err) {
5738 			brelse(iloc->bh);
5739 			iloc->bh = NULL;
5740 		}
5741 	}
5742 	ext4_std_error(inode->i_sb, err);
5743 	return err;
5744 }
5745 
5746 /*
5747  * Expand an inode by new_extra_isize bytes.
5748  * Returns 0 on success or negative error number on failure.
5749  */
5750 static int ext4_expand_extra_isize(struct inode *inode,
5751 				   unsigned int new_extra_isize,
5752 				   struct ext4_iloc iloc,
5753 				   handle_t *handle)
5754 {
5755 	struct ext4_inode *raw_inode;
5756 	struct ext4_xattr_ibody_header *header;
5757 	struct ext4_xattr_entry *entry;
5758 
5759 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5760 		return 0;
5761 
5762 	raw_inode = ext4_raw_inode(&iloc);
5763 
5764 	header = IHDR(inode, raw_inode);
5765 	entry = IFIRST(header);
5766 
5767 	/* No extended attributes present */
5768 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5769 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5770 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5771 			new_extra_isize);
5772 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5773 		return 0;
5774 	}
5775 
5776 	/* try to expand with EAs present */
5777 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5778 					  raw_inode, handle);
5779 }
5780 
5781 /*
5782  * What we do here is to mark the in-core inode as clean with respect to inode
5783  * dirtiness (it may still be data-dirty).
5784  * This means that the in-core inode may be reaped by prune_icache
5785  * without having to perform any I/O.  This is a very good thing,
5786  * because *any* task may call prune_icache - even ones which
5787  * have a transaction open against a different journal.
5788  *
5789  * Is this cheating?  Not really.  Sure, we haven't written the
5790  * inode out, but prune_icache isn't a user-visible syncing function.
5791  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5792  * we start and wait on commits.
5793  *
5794  * Is this efficient/effective?  Well, we're being nice to the system
5795  * by cleaning up our inodes proactively so they can be reaped
5796  * without I/O.  But we are potentially leaving up to five seconds'
5797  * worth of inodes floating about which prune_icache wants us to
5798  * write out.  One way to fix that would be to get prune_icache()
5799  * to do a write_super() to free up some memory.  It has the desired
5800  * effect.
5801  */
5802 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5803 {
5804 	struct ext4_iloc iloc;
5805 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806 	static unsigned int mnt_count;
5807 	int err, ret;
5808 
5809 	might_sleep();
5810 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5811 	if (ext4_handle_valid(handle) &&
5812 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5813 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5814 		/*
5815 		 * We need extra buffer credits since we may write into EA block
5816 		 * with this same handle. If journal_extend fails, then it will
5817 		 * only result in a minor loss of functionality for that inode.
5818 		 * If this is felt to be critical, then e2fsck should be run to
5819 		 * force a large enough s_min_extra_isize.
5820 		 */
5821 		if ((jbd2_journal_extend(handle,
5822 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5823 			ret = ext4_expand_extra_isize(inode,
5824 						      sbi->s_want_extra_isize,
5825 						      iloc, handle);
5826 			if (ret) {
5827 				ext4_set_inode_state(inode,
5828 						     EXT4_STATE_NO_EXPAND);
5829 				if (mnt_count !=
5830 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5831 					ext4_warning(inode->i_sb,
5832 					"Unable to expand inode %lu. Delete"
5833 					" some EAs or run e2fsck.",
5834 					inode->i_ino);
5835 					mnt_count =
5836 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5837 				}
5838 			}
5839 		}
5840 	}
5841 	if (!err)
5842 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5843 	return err;
5844 }
5845 
5846 /*
5847  * ext4_dirty_inode() is called from __mark_inode_dirty()
5848  *
5849  * We're really interested in the case where a file is being extended.
5850  * i_size has been changed by generic_commit_write() and we thus need
5851  * to include the updated inode in the current transaction.
5852  *
5853  * Also, dquot_alloc_block() will always dirty the inode when blocks
5854  * are allocated to the file.
5855  *
5856  * If the inode is marked synchronous, we don't honour that here - doing
5857  * so would cause a commit on atime updates, which we don't bother doing.
5858  * We handle synchronous inodes at the highest possible level.
5859  */
5860 void ext4_dirty_inode(struct inode *inode)
5861 {
5862 	handle_t *handle;
5863 
5864 	handle = ext4_journal_start(inode, 2);
5865 	if (IS_ERR(handle))
5866 		goto out;
5867 
5868 	ext4_mark_inode_dirty(handle, inode);
5869 
5870 	ext4_journal_stop(handle);
5871 out:
5872 	return;
5873 }
5874 
5875 #if 0
5876 /*
5877  * Bind an inode's backing buffer_head into this transaction, to prevent
5878  * it from being flushed to disk early.  Unlike
5879  * ext4_reserve_inode_write, this leaves behind no bh reference and
5880  * returns no iloc structure, so the caller needs to repeat the iloc
5881  * lookup to mark the inode dirty later.
5882  */
5883 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5884 {
5885 	struct ext4_iloc iloc;
5886 
5887 	int err = 0;
5888 	if (handle) {
5889 		err = ext4_get_inode_loc(inode, &iloc);
5890 		if (!err) {
5891 			BUFFER_TRACE(iloc.bh, "get_write_access");
5892 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5893 			if (!err)
5894 				err = ext4_handle_dirty_metadata(handle,
5895 								 NULL,
5896 								 iloc.bh);
5897 			brelse(iloc.bh);
5898 		}
5899 	}
5900 	ext4_std_error(inode->i_sb, err);
5901 	return err;
5902 }
5903 #endif
5904 
5905 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5906 {
5907 	journal_t *journal;
5908 	handle_t *handle;
5909 	int err;
5910 
5911 	/*
5912 	 * We have to be very careful here: changing a data block's
5913 	 * journaling status dynamically is dangerous.  If we write a
5914 	 * data block to the journal, change the status and then delete
5915 	 * that block, we risk forgetting to revoke the old log record
5916 	 * from the journal and so a subsequent replay can corrupt data.
5917 	 * So, first we make sure that the journal is empty and that
5918 	 * nobody is changing anything.
5919 	 */
5920 
5921 	journal = EXT4_JOURNAL(inode);
5922 	if (!journal)
5923 		return 0;
5924 	if (is_journal_aborted(journal))
5925 		return -EROFS;
5926 
5927 	jbd2_journal_lock_updates(journal);
5928 	jbd2_journal_flush(journal);
5929 
5930 	/*
5931 	 * OK, there are no updates running now, and all cached data is
5932 	 * synced to disk.  We are now in a completely consistent state
5933 	 * which doesn't have anything in the journal, and we know that
5934 	 * no filesystem updates are running, so it is safe to modify
5935 	 * the inode's in-core data-journaling state flag now.
5936 	 */
5937 
5938 	if (val)
5939 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5940 	else
5941 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5942 	ext4_set_aops(inode);
5943 
5944 	jbd2_journal_unlock_updates(journal);
5945 
5946 	/* Finally we can mark the inode as dirty. */
5947 
5948 	handle = ext4_journal_start(inode, 1);
5949 	if (IS_ERR(handle))
5950 		return PTR_ERR(handle);
5951 
5952 	err = ext4_mark_inode_dirty(handle, inode);
5953 	ext4_handle_sync(handle);
5954 	ext4_journal_stop(handle);
5955 	ext4_std_error(inode->i_sb, err);
5956 
5957 	return err;
5958 }
5959 
5960 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5961 {
5962 	return !buffer_mapped(bh);
5963 }
5964 
5965 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5966 {
5967 	struct page *page = vmf->page;
5968 	loff_t size;
5969 	unsigned long len;
5970 	int ret = -EINVAL;
5971 	void *fsdata;
5972 	struct file *file = vma->vm_file;
5973 	struct inode *inode = file->f_path.dentry->d_inode;
5974 	struct address_space *mapping = inode->i_mapping;
5975 
5976 	/*
5977 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5978 	 * get i_mutex because we are already holding mmap_sem.
5979 	 */
5980 	down_read(&inode->i_alloc_sem);
5981 	size = i_size_read(inode);
5982 	if (page->mapping != mapping || size <= page_offset(page)
5983 	    || !PageUptodate(page)) {
5984 		/* page got truncated from under us? */
5985 		goto out_unlock;
5986 	}
5987 	ret = 0;
5988 	if (PageMappedToDisk(page))
5989 		goto out_unlock;
5990 
5991 	if (page->index == size >> PAGE_CACHE_SHIFT)
5992 		len = size & ~PAGE_CACHE_MASK;
5993 	else
5994 		len = PAGE_CACHE_SIZE;
5995 
5996 	lock_page(page);
5997 	/*
5998 	 * return if we have all the buffers mapped. This avoid
5999 	 * the need to call write_begin/write_end which does a
6000 	 * journal_start/journal_stop which can block and take
6001 	 * long time
6002 	 */
6003 	if (page_has_buffers(page)) {
6004 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6005 					ext4_bh_unmapped)) {
6006 			unlock_page(page);
6007 			goto out_unlock;
6008 		}
6009 	}
6010 	unlock_page(page);
6011 	/*
6012 	 * OK, we need to fill the hole... Do write_begin write_end
6013 	 * to do block allocation/reservation.We are not holding
6014 	 * inode.i__mutex here. That allow * parallel write_begin,
6015 	 * write_end call. lock_page prevent this from happening
6016 	 * on the same page though
6017 	 */
6018 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6019 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6020 	if (ret < 0)
6021 		goto out_unlock;
6022 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6023 			len, len, page, fsdata);
6024 	if (ret < 0)
6025 		goto out_unlock;
6026 	ret = 0;
6027 out_unlock:
6028 	if (ret)
6029 		ret = VM_FAULT_SIGBUS;
6030 	up_read(&inode->i_alloc_sem);
6031 	return ret;
6032 }
6033